

Lecture Notes in Computer Science 4803
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Robert Meersman Zahir Tari (Eds.)

On the Move to Meaningful
Internet Systems 2007:
CoopIS, DOA, ODBASE,
GADA, and IS

OTM Confederated International Conferences
CoopIS, DOA, ODBASE, GADA, and IS 2007
Vilamoura, Portugal, November 25-30, 2007
Proceedings, Part I

13

Volume Editors

Robert Meersman
Vrije Universiteit Brussel (VUB), STARLab
Bldg G/10, Pleinlaan 2, 1050 Brussels, Belgium
E-mail: meersman@vub.ac.be

Zahir Tari
RMIT University, School of Computer Science and Information Technology
Bld 10.10, 376-392 Swanston Street, VIC 3001, Melbourne, Australia
E-mail: zahir.tari@rmit.edu.au

Library of Congress Control Number: 2007939491

CR Subject Classification (1998): H.2, H.3, H.4, C.2, H.5, D.2.12, I.2, K.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-76846-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-76846-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12192205 06/3180 5 4 3 2 1 0

Volume Editors

Robert Meersman
Zahir Tari

CoopIS

Francisco Curbera
Frank Leymann
Mathias Weske

DOA

Pascal Felber
Aad van Moorsel

Calton Pu

ODBASE

Tharam Dillon
Michele Missikoff

Steffen Staab

GADA

Pilar Herrero
Daniel S. Katz
Maŕıa S. Pérez
Domenico Talia

IS

Mário Freire
Simão Melo de Sousa

Vitor Santos
Jong Hyuk Park

OTM 2007 General Co-chairs’ Message

OnTheMove 2007 held in Vilamoura, Portugal, November 25–30 further consoli-
dated the growth of the conference series that was started in Irvine, California in
2002, and then held in Catania, Sicily in 2003, in Cyprus in 2004 and 2005, and
in Montpellier last year. It continues to attract a diversifying and representative
selection of today’s worldwide research on the scientific concepts underlying new
computing paradigms that of necessity must be distributed, heterogeneous and
autonomous yet meaningfully collaborative.

Indeed, as such large, complex and networked intelligent information systems
become the focus and norm for computing, it is clear that there is an acute and in-
creasing need to address and discuss in an integrated forum the implied software
and system issues as well as methodological, semantical, theoretical and appli-
cation issues. As we all know, e-mail, the Internet, and even video conferences
are not sufficient for effective and efficient scientific exchange. This is why the
OnTheMove (OTM) Federated Conferences series has been created to cover the
increasingly wide yet closely connected range of fundamental technologies such
as data and Web semantics, distributed objects, Web services, databases, infor-
mation systems, workflow, cooperation, ubiquity, interoperability, mobility, grid
and high-performance systems. OnTheMove aspires to be a primary scientific
meeting place where all aspects of the development of Internet- and Intranet-
based systems in organizations and for e-business are discussed in a scientifically
motivated way. This sixth 2007 edition of the OTM Federated Conferences event,
therefore, again provided, an opportunity for researchers and practitioners to un-
derstand and publish these developments within their individual as well as within
their broader contexts.

Originally the federative structure of OTM was formed by the co-location of
three related, complementary and successful main conference series: DOA (Dis-
tributed Objects and Applications, since 1999), covering the relevant
infrastructure-enabling technologies, ODBASE (Ontologies, DataBases and Ap-
plications of SEmantics, since 2002) covering Web semantics, XML databases
and ontologies, CoopIS (Cooperative Information Systems, since 1993) covering
the application of these technologies in an enterprise context through, e.g., work-
flow systems and knowledge management. In 2006 a fourth conference, GADA
(Grid computing, high-performAnce and Distributed Applications), was added
as a main symposium, and this year the same happened with IS (Information Se-
curity). Both started off as successful workshops at OTM, the first covering the
large-scale integration of heterogeneous computing systems and data resources
with the aim of providing a global computing space, the second covering the
issues of security in complex Internet-based information systems. Each of these
five conferences encourages researchers to treat their respective topics within a

VIII Preface

framework that incorporates jointly (a) theory , (b) conceptual design and devel-
opment, and (c) applications, in particular case studies and industrial solutions.

Following and expanding the model created in 2003, we again solicited and
selected quality workshop proposals to complement the more “archival” nature
of the main conferences with research results in a number of selected and more
“avant garde” areas related to the general topic of distributed computing. For
instance, the so-called Semantic Web has given rise to several novel research areas
combining linguistics, information systems technology, and artificial intelligence,
such as the modeling of (legal) regulatory systems and the ubiquitous nature of
their usage. We were glad to see that no less than eight of our earlier successful
workshops (notably AweSOMe, CAMS, SWWS, ORM, OnToContent, MONET,
PerSys, RDDS) re-appeared in 2007 with a second or third edition, and that four
brand-new workshops emerged to be selected and hosted, and were successfully
organized by their respective proposers: NDKM, PIPE, PPN, and SSWS. We
know that as before, workshop audiences will productively mingle with another
and with those of the main conferences, as is already visible from the overlap
in authors! The OTM organizers are especially grateful for the leadership and
competence of Pilar Herrero in managing this complex process into a success for
the fourth year in a row.

A special mention for 2007 is to be made of the third and enlarged edition of
the OnTheMove Academy (formerly called Doctoral Consortium Workshop), our
“vision for the future” in research in the areas covered by OTM. Its 2007 orga-
nizers, Antonia Albani, Torben Hansen and Johannes Maria Zaha, three young
and active researchers, guaranteed once more the unique interactive formula to
bring PhD students together: research proposals are submitted for evaluation;
selected submissions and their approaches are presented by the students in front
of a wider audience at the conference, and are independently and extensively
analyzed and discussed in public by a panel of senior professors. This year these
were once more Johann Eder and Maria Orlowska, under the guidance of Jan
Dietz, the incumbent Dean of the OnTheMove Academy. The successful students
only pay a minimal fee for the Doctoral Symposium itself and also are awarded
free access to all other parts of the OTM program (in fact their attendance is
largely sponsored by the other participants!).

All five main conferences and the associated workshops share the distributed
aspects of modern computing systems, and the resulting application-pull created
by the Internet and the so-called Semantic Web. For DOA 2007, the primary
emphasis stayed on the distributed object infrastructure; for ODBASE 2007, it
became the knowledge bases and methods required for enabling the use of for-
mal semantics; for CoopIS 2007, the topic as usual was the interaction of such
technologies and methods with management issues, such as occur in networked
organizations; for GADA 2007, the topic was the scalable integration of heteroge-
neous computing systems and data resources with the aim of providing a global
computing space; and last but not least in the relative newcomer IS 2007 the
emphasis was on information security in the networked society. These subject
areas overlap naturally and many submissions in fact also treated an envisaged

Preface IX

mutual impact among them. As for the earlier editions, the organizers wanted to
stimulate this cross-pollination by a shared program of famous keynote speakers:
this year we were proud to announce Mark Little of Red Hat, York Sure of SAP
Research, Donald Ferguson of Microsoft, and Dennis Gannon of Indiana Uni-
versity. As always, we also encouraged multiple event attendance by providing
all authors, also those of workshop papers, with free access or discounts to one
other conference or workshop of their choice.

We received a total of 362 submissions for the five main conferences and 241
for the workshops. Not only may we indeed again claim success in attracting
an increasingly representative volume of scientific papers, but such a harvest
of course allows the Program Committees to compose a higher-quality cross-
section of current research in the areas covered by OTM. In fact, in spite of the
larger number of submissions, the Program Chairs of each of the three main
conferences decided to accept only approximately the same number of papers
for presentation and publication as in 2004 and 2005 (i.e., average one paper out
of every three to four submitted, not counting posters). For the workshops, the
acceptance rate varied but was much stricter than before, consistently about one
accepted paper for every two to three submitted. Also for this reason, we separate
the proceedings into four books with their own titles, two for main conferences
and two for workshops, and we are grateful to Springer for their suggestions and
collaboration in producing these books and CD-Roms. The reviewing process
by the respective Program Committees was again performed very professionally
and each paper in the main conferences was reviewed by at least three referees,
with arbitrated e-mail discussions in the case of strongly diverging evaluations.
It may be worthwhile to emphasize that it is an explicit OnTheMove policy
that all conference Program Committees and Chairs make their selections com-
pletely autonomously from the OTM organization itself. Continuing a costly
but nice tradition, the OnTheMove Federated Event organizers decided again
to make all proceedings available to all participants of conferences and work-
shops, independently of one’s registration to a specific conference or workshop.
Each participant also received a CD-Rom with the full combined proceedings
(conferences + workshops).

The General Chairs are once more especially grateful to all the many peo-
ple directly or indirectly involved in the set-up of these federated conferences,
who contributed to making them a success. Few people realize what a large
number of individuals have to be involved, and what a huge amount of work,
and sometimes risk, the organization of an event like OTM entails. Apart from
the persons mentioned above, we therefore in particular wish to thank our
12 main conference PC Co-chairs (GADA 2007: Pilar Herrero, Daniel Katz,
Maŕıa S. Pérez, Domenico Talia; DOA 2007: Pascal Felber, Aad van Moorsel,
Calton Pu; ODBASE 2007: Tharam Dillon, Michele Missikoff, Steffen Staab;
CoopIS 2007: Francisco Curbera, Frank Leymann, Mathias Weske; IS 2007:
Mário Freire, Simão Melo de Sousa, Vitor Santos, Jong Hyuk Park) and our 36
workshop PC Co-chairs (Antonia Albani, Susana Alcalde, Adezzine Boukerche,
George Buchanan, Roy Campbell, Werner Ceusters, Elizabeth Chang, Antonio

X Preface

Coronato, Simon Courtenage, Ernesto Damiani, Skevos Evripidou, Pascal Felber,
Fernando Ferri, Achille Fokoue, Mario Freire, Daniel Grosu, Michael Gurstein,
Pilar Herrero, Terry Halpin, Annika Hinze, Jong Hyuk Park, Mustafa Jarrar,
Jiankun Hu, Cornel Klein, David Lewis, Arek Kasprzyk, Thorsten Liebig, Gon-
zalo Méndez, Jelena Mitic, John Mylopoulos, Farid Nad-Abdessalam, Sjir
Nijssen, the late Claude Ostyn, Bijan Parsia, Maurizio Rafanelli, Marta Sabou,
Andreas Schmidt, Simão Melo de Sousa, York Sure, Katia Sycara, Thanassis
Tiropanis, Arianna D’Ulizia, Rainer Unland, Eiko Yoneki, Yuanbo Guo).

All together with their many PC members, did a superb and professional job
in selecting the best papers from the large harvest of submissions.

We also must heartily thank Jos Valente de Oliveira for the efforts in ar-
ranging facilities at the venue and coordinating the substantial and varied local
activities needed for a multi-conference event such as ours. And we must all
be grateful also to Ana Cecilia Martinez-Barbosa for researching and securing
the sponsoring arrangements, to our extremely competent and experienced Con-
ference Secretariat and technical support staff in Antwerp, Daniel Meersman,
Ana-Cecilia, and Jan Demey, and last but not least to our energetic Publica-
tions Chair and loyal collaborator of many years in Melbourne, Kwong Yuen Lai,
this year vigorously assisted by Vidura Gamini Abhaya and Peter Dimopoulos.

The General Chairs gratefully acknowledge the academic freedom, logistic
support and facilities they enjoy from their respective institutions, Vrije Univer-
siteit Brussel (VUB) and RMIT University, Melbourne, without which such an
enterprise would not be feasible.

We do hope that the results of this federated scientific enterprise contribute
to your research and your place in the scientific network.

August 2007 Robert Meersman
Zahir Tari

Organizing Committee

The OTM (On The Move) 2007 Federated Conferences, which involve CoopIS
(Cooperative Information Systems), DOA (distributed Objects and Applica-
tions), GADA (Grid computing, high-performAnce and Distributed Applica-
tions), IS (Information Security) and ODBASE (Ontologies, Databases and Ap-
plications of Semantics) are proudly supported by RMIT University (School of
Computer Science and Information Technology) and Vrije Universiteit Brussel
(Department of Computer Science).

Executive Committee

OTM 2007 General Co-chairs Robert Meersman (Vrije Universiteit Brussel,
Belgium) and Zahir Tari (RMIT University,

Australia)
GADA 2007 PC Co-chairs Pilar Herrero (Universidad Politécnica de

Madrid, Spain), Daniel Katz (Louisiana State
University, USA), Maŕıa S. Pérez (Universidad
Politécnica de Madrid, Spain), and Domenico
Talia (Università della Callabria, Italy)

CoopIS 2007 PC Co-chairs Francisco Curbera (IBM, USA), Frank Ley-
mann (University of Stuttgart, Germany), and
Mathias Weske (University of Potsdam,

Germany)
DOA 2007 PC Co-chairs Pascal Felber (Université de Neuchâtel,

Switzerland), Aad van Moorsel (Newcastle
University, UK), and Calton Pu (Georgia Tech,

USA)
IS 2007 PC Co-chairs Mário M. Freire (University of Beira Interior,

Portugal), Simão Melo de Sousa (University
of Beira Interior, Portugal), Vitor Santos (Mi-
crosoft, Portugal), and Jong Hyuk Park

(Kyungnam University, Korea)
ODBASE 2007 PC Co-chairs Tharam Dillon (University of Technology Syd-

ney, Australia), Michele Missikoff (CNR, Italy),
and Steffen Staab (University of

Koblenz-Landau, Germany)
Publication Co-chairs Kwong Yuen Lai (RMIT University, Australia)

and Vidura Gamini Abhaya (RMIT University,
Australia)

Local Organizing Chair José Valente de Oliveira (University of Algarve,
Portugal)

XII Organization

Conferences Publicity Chair Jean-Marc Petit (INSA, Lyon, France)
Workshops Publicity Chair Gonzalo Mendez (Universidad Complutense de

Madrid, Spain)
Secretariat Ana-Cecilia Martinez Barbosa, Jan Demey, and

Daniel Meersman

CoopIS 2007 Program Committee

Marco Aiello
Bernd Amann
Alistair Barros
Zohra Bellahsene
Boualem Benatallah
Salima Benbernou
Djamal Benslimane
Klemens Böhm
Laura Bright
Christoph Bussler
Malu Castellanos
Vincenco D’Andrea
Umesh Dayal
Susanna Donatelli
Marlon Dumas
Schahram Dustdar
ohannesson Eder
Rik Eshuis
Opher Etzion
Klaus Fischer
Avigdor Gal
Paul Grefen
Mohand-Said Hacid
Geert-Jan Houben
Michael Huhns
Paul Johannesson
Dimka Karastoyanova
Rania Khalaf
Bernd Krämer
Akhil Kumar

Dominik Kuropka
Tiziana Margaria
Maristella Matera
Massimo Mecella
Ingo Melzer
Jörg Müller
Wolfgang Nejdl
Werner Nutt
Andreas Oberweis
Mike Papazoglou
Cesare Pautasso
Barbara Pernici
Frank Puhlmann
Manfred Reichert
Stefanie Rinderle
Rainer Ruggaber
Kai-Uwe Sattler
Ralf Schenkel
Timos Sellis
Brigitte Trousse
Susan Urban
Willem-Jan Van den Heuvel
Wil Van der Aalst
Maria Esther Vidal
Jian Yang
Kyu-Young Whang
Leon Zhao
Michael zur Muehlen

DOA 2007 Program Committee

Marco Aiello
Bernd Amann
Alistair Barros,

Zohra Bellahsene
Boualem Benatallah
Salima Benbernou

Organization XIII

Djamal Benslimane
Klemens Böhm
Laura Bright
Christoph Bussler
Malu Castellanos
Vincenco D’Andrea
Umesh Dayal
Susanna Donatelli
Marlon Dumas
Schahram Dustdar
Johannesson Eder
Rik Eshuis
Opher Etzion
Klaus Fischer
Avigdor Gal
Paul Grefen
Mohand-Said Hacid
Geert-Jan Houben
Michael Huhns
Paul Johannesson
Dimka Karastoyanova
Rania Khalaf
Bernd Krämer
Akhil Kumar
Dominik Kuropka
Tiziana Margaria
Maristella Matera

Massimo Mecella
Ingo Melzer
Jörg Müller
Wolfgang Nejdl
Werner Nutt
Andreas Oberweis
Mike Papazoglou
Cesare Pautasso
Barbara Pernici
Frank Puhlmann
Manfred Reichert
Stefanie Rinderle
Rainer Ruggaber
Kai-Uwe Sattler
Ralf Schenkel
Timos Sellis
Brigitte Trousse
Susan Urban
Willem-Jan Van den Heuvel,
Wil Van der Aalst
Maria Esther Vidal
Jian Yang
Kyu-Young Whang
Leon Zhao
Michael zur Muehlen

GADA 2007 Program Committee

Jemal Abawajy
Akshai Aggarwal
Sattar B. Sadkhan Almaliky
Artur Andrzejak
Amy Apon
Oscar Ardaiz
Costin Badica
Rosa M. Badia
Mark Baker
Angelos Bilas
Jose L. Bosque
Juan A. Bota Blaya
Pascal Bouvry
Rajkumar Buyya
Santi Caball Llobet

Mario Cannataro
Jesús Carretero
Charlie Catlett
Pablo Chacin
Isaac Chao
Jinjun Chen
Félix J. Garćıa Clemente
Carmela Comito
Toni Cortes
Geoff Coulson
Jose Cunha
Ewa Deelman
Marios Dikaiakos
Beniamino Di Martino
Jack Dongarra

XIV Organization

Markus Endler
Alvaro A.A. Fernandes
Maria Ganzha
Felix Garćıa
Angel Lucas Gonzalez
Alastair Hampshire
Jose Cunha
Neil P Chue Hong
Eduardo Huedo
Jan Humble
Liviu Joita
Kostas Karasavvas
Chung-Ta King
Kamil Kuliberda
Laurent Lefevre
Ignacio M. Llorente
Francisco Luna
Edgar Magana
Gregorio Martinez
Ruben S. Montero
Reagan Moore
Mirela Notare
Hong Ong
Mohamed Ould-Khaoua
Marcin Paprzycki
Manish Parashar

Jose M. Peña
Dana Petcu
Beth A. Plale
José Luis Vázquez Poletti
Maŕıa Eugenia de Pool
Bhanu Prasad
Thierry Priol
Vı́ctor Robles
Rizos Sakellariou, Univ. of Manchester
Manuel Salvadores
Alberto Sanchez
Hamid Sarbazi-Azad
Franciszek Seredynski
Francisco José da Silva e Silva
Antonio F. Gómez Skarmeta
Enrique Soler
Heinz Stockinger
Alan Sussman
Elghazali Talbi
Jordi Torres
Cho-Li Wang
Adam Wierzbicki
Laurence T. Yang
Albert Zomaya

IS 2007 Program Committee

J.H. Abbawajy
André Adelsbach
Emmanuelle Anceaume
José Carlos Bacelar
Manuel Bernardo Barbosa
João Barros
Carlo Blundo
Phillip G. Bradford
Thierry Brouard
Han-Chieh Chao
Hsiao-Hwa Chen
Ilyoung Chong
Stelvio Cimato
Nathan Clarke
Miguel P. Correia

Cas Cremers
Gwenaël Doërr
Paul Dowland
Mahmoud T. El-Hadidi
Huirong Fu
Steven Furnell
Michael Gertz
Swapna S. Gokhale
Vesna Hassler
Lech J. Janczewski
Wipul Jayawickrama
Vasilis Katos
Hyun-KooK Kahng
Hiroaki Kikuchi
Paris Kitsos

Organization XV

Kwok-Yan Lam
Deok-Gyu Lee
Sérgio Tenreiro de Magalhães
Henrique S. Mamede
Evangelos Markatos
Arnaldo Martins
Paulo Mateus
Sjouke Mauw
Natalie Miloslavskaya
Edmundo Monteiro
Yi Mu
José Lúıs Oliveira
Nuno Ferreira Neves
Maria Papadaki
Manuela Pereira
Hartmut Pohl
Christian Rechberger
Carlos Ribeiro
Vincent Rijmen
José Ruela

Henrique Santos
Biplab K. Sarker
Ryoichi Sasaki
Jörg Schwenk
Paulo Simões
Filipe de Sá Soares
Basie von Solms
Stephanie Teufel
Luis Javier Garcia Villalba
Umberto Villano
Jozef Vyskoc
Carlos Becker Westphall
Liudong Xing
Chao-Tung Yang
Jeong Hyun Yi
Wang Yufeng
Deqing Zou
André Zũquete

ODBASE 2007 Program Committee

Andreas Abecker
Harith Alani
Jürgen Angele
Franz Baader
Sonia Bergamaschi
Alex Borgida
Mohand Boughanem
Paolo Bouquet
Jean-Pierre Bourey
Christoph Bussler
Silvana Castano
Paolo Ceravolo
Vassilis Christophides
Philipp Cimiano
Oscar Corcho
Ernesto Damiani
Ling Feng
Asuncion Gómez-Pérez
Benjamin Habegger
Mounira Harzallah
Andreas Hotho

Farookh Hussain
Dimitris Karagiannis
Manolis Koubarakis
Georg Lausen
Maurizio Lenzerini
Alexander Löser
Gregoris Metzas
Riichiro Mizoguchi
Boris Motik
John Mylopoulos
Wolfgang Nejdl
Eric Neuhold
Yves Pigneur
Axel Polleres
Li Qing
Wenny Rahayu
Rajugan Rajagopalapillai
Rainer Ruggaber
Heiko Schuldt
Eva Soderstrom
Wolf Siberski

XVI Organization

Sergej Sizov
Chantal Soule-Dupuy
Umberto Straccia
Heiner Stuckenschmidt
VS Subrahmanian
York Sure

Francesco Taglino
Robert Tolksdorf
Guido Vetere
Roberto Zicari

OTM Conferences 2007 Additional Reviewers

Baptiste Alcalde
Soeren Auer
Abdul Babar
Luis Manuel Vilches Blázquez
Ralph Bobrik
Ngoc (Betty) Bao Bui
David Buján Carballal
Nuno Carvalho
Gabriella Castelli
Carlos Viegas Damasio
Jörg Domaschka
Viktor S. W. Eide
Michael Erdmann
Abdelkarim Erradi
Peter Fankhauser
Alfio Ferrara
Fernando Castor Filho
Ganna Frankova
Peng Han
Alexander Hornung
Hugo Jonker
Rüdiger Kapitz
Alexander Lazovik
Thortsen Liebig
Joäo Leitäo

Baochuan Lu
Giuliano Mega
Paolo Merialdo
Patrick S. Merten
Maja Milicic
Dominic Müller
Linh Ngo
José Manuel

Gómez Pérez
Sasa Radomirovic
Hans P. Reiser
Thomas Risse
Kurt Rohloff
Romain Rouvoy
Bernhard Schiemann
Jan Schlüter
Martin Steinert
Patrick Stiefel
Boris Villazón Terrazas
Hagen Voelzer
Jochem Vonk
Franklin Webber
Wei Xing
Christian Zimmer

Table of Contents – Part I

CoopIS 2007 International Conference (International
Conference on Cooperative Information Systems)

CoopIS 2007 PC Co-chairs’ Message . 3

Keynote

The Internet Service Bus . 5
Donald F. Ferguson

Process Analysis and Semantics

Soundness Verification of Business Processes Specified in the
Pi-Calculus . 6

Frank Puhlmann

Extending BPMN for Modeling Complex Choreographies 24
Gero Decker and Frank Puhlmann

Semantics of Standard Process Models with OR-Joins 41
Marlon Dumas, Alexander Grosskopf, Thomas Hettel, and
Moe Wynn

Pattern-Based Design and Validation of Business Process
Compliance . 59

Kioumars Namiri and Nenad Stojanovic

Process Modeling

Constraint-Based Workflow Models: Change Made Easy 77
M. Pesic, M.H. Schonenberg, N. Sidorova, and W.M.P. van der Aalst

Dynamic, Extensible and Context-Aware Exception Handling for
Workflows . 95

Michael Adams, Arthur H.M. ter Hofstede,
Wil M.P. van der Aalst, and David Edmond

Understanding the Occurrence of Errors in Process Models Based on
Metrics . 113

Jan Mendling, Gustaf Neumann, and Wil van der Aalst

Data-Driven Modeling and Coordination of Large Process Structures . . . 131
Dominic Müller, Manfred Reichert, and Joachim Herbst

XVIII Table of Contents – Part I

Supporting Ad-Hoc Changes in Distributed Workflow Management
Systems . 150

Manfred Reichert and Thomas Bauer

P2P

Acquaintance Based Consistency in an Instance-Mapped P2P Data
Sharing System During Transaction Processing . 169

Md Mehedi Masud and Iluju Kiringa

Enabling Selective Flooding to Reduce P2P Traffic 188
Francesco Buccafurri and Gianluca Lax

Improving the Dependability of Prefix-Based Routing in DHTs 206
Sabina Serbu, Peter Kropf, and Pascal Felber

Collaboration

Social Topology Analyzed . 226
Nj̊al T. Borch, Anders Andersen, and Lars K. Vognild

Conflict Resolution of Boolean Operations by Integration in Real-Time
Collaborative CAD Systems . 238

Yang Zheng, Haifeng Shen, Steven Xia, and Chengzheng Sun

Trust Extension Device: Providing Mobility and Portability of Trust in
Cooperative Information Systems . 253

Surya Nepal, John Zic, Hon Hwang, and David Moreland

Organizing Meaning Evolution Supporting Systems Using Semantic
Decision Tables . 272

Yan Tang and Robert Meersman

Business Transactions

Extending Online Travel Agency with Adaptive Reservations 285
Yu Zhang, Wenfei Fan, Huajun Chen, Hao Sheng, and Zhaohui Wu

A Multi-level Model for Activity Commitments in E-contracts 300
K. Vidyasankar, P. Radha Krishna, and Kamalakar Karlapalem

Decentralised Commitment for Optimistic Semantic Replication 318
Pierre Sutra, João Barreto, and Marc Shapiro

Coordinate BPEL Scopes and Processes by Extending the WS-Business
Activity Framework . 336

Stefan Pottinger, Ralph Mietzner, and Frank Leymann

Table of Contents – Part I XIX

Verifying Composite Service Transactional Behavior Using Event
Calculus . 353

Walid Gaaloul, Mohsen Rouached, Claude Godart, and
Manfred Hauswirth

Short Papers

Matching Cognitive Characteristics of Actors and Tasks 371
S.J. Overbeek, P. van Bommel, H.A. (Erik) Proper, and
D.B.B. Rijsenbrij

The OpenKnowledge System: An Interaction-Centered Approach to
Knowledge Sharing . 381

Ronny Siebes, Dave Dupplaw, Spyros Kotoulas,
Adrian Perreau de Pinninck, Frank van Harmelen, and
David Robertson

Ontology Enrichment in Multi Agent Systems Through Semantic
Negotiation . 391

Salvatore Garruzzo and Domenico Rosaci

A Relaxed But Not Necessarily Constrained Way from the Top to the
Sky . 399

Katja Hose, Christian Lemke, Kai-Uwe Sattler, and Daniel Zinn

Collaborative Filtering Based on Opportunistic Information Sharing in
Mobile Ad-Hoc Networks . 408

Alexandre de Spindler, Moira C. Norrie, and Michael Grossniklaus

Policy-Based Service Registration and Discovery . 417
Tan Phan, Jun Han, Jean-Guy Schneider, Tim Ebringer, and
Tony Rogers

Business Process Quality Metrics: Log-Based Complexity of Workflow
Patterns . 427

Jorge Cardoso

Distributed Objects and Applications (DOA) 2007
International Conference

DOA 2007 PC Co-chairs’ Message . 437

Keynote

WS-CAF: Contexts, Coordination and Transactions for Web Services . . . 439
Mark Little

XX Table of Contents – Part I

Dependability and Security

Resilient Security for False Event Detection Without Loss of Legitimate
Events in Wireless Sensor Networks . 454

Yuichi Sei and Shinichi Honiden

Formal Verification of a Group Membership Protocol Using Model
Checking . 471

Valério Rosset, Pedro F. Souto, and Francisco Vasques

Revisiting Certification-Based Replicated Database Recovery 489
M.I. Ruiz-Fuertes, J. Pla-Civera, J.E. Armendáriz-Iñigo,
J.R. González de Mend́ıvil, and F.D. Muñoz-Escóı

A Survey of Fault Tolerant CORBA Systems . 505
Muhammad Fahad, Aamer Nadeem, and Michael R. Lyu

Middleware and Web Services

Flexible Reuse of Middleware Infrastructures in Heterogeneous IT
Environments . 522

Ralf Wagner and Bernhard Mitschang

Self-optimization of Clustered Message-Oriented Middleware 540
Christophe Taton, Noël De Palma, Daniel Hagimont,
Sara Bouchenak, and Jérémy Philippe

Minimal Traffic-Constrained Similarity-Based SOAP Multicast Routing
Protocol . 558

Khoi Anh Phan, Peter Bertok, Andrew Fry, and Caspar Ryan

Implementing a State-Based Application Using Web Objects in XML . . . 577
Carlos R. Jaimez González and Simon M. Lucas

Aspects and Development Tools

Experience with Dynamic Crosscutting in Cougaar 595
John Zinky, Richard Shapiro, Sarah Siracuse, and Todd Wright

Property-Preserving Evolution of Components Using VPA-Based
Aspects . 613

Dong Ha Nguyen and Mario Südholt

Multi-Stage Aspect-Oriented Composition of Component-Based
Applications . 630

Bert Lagaisse, Eddy Truyen, and Wouter Joosen

An Eclipse-Based Tool for Symbolic Debugging of Distributed Object
Systems . 648

Giuliano Mega and Fabio Kon

Table of Contents – Part I XXI

Mobility and Distributed Algorithms

A Bluetooth-Based JXME Infrastructure . 667
Carlo Blundo and Emiliano De Cristofaro

Agreements and Policies in Cooperative Mobile Agents: Formalization
and Implementation . 683

Fuyuki Ishikawa, Nobukazu Yoshioka, and Shinichi Honiden

An Adaptive Coupling-Based Algorithm for Internal Clock
Synchronization of Large Scale Dynamic Systems . 701

Roberto Baldoni, Angelo Corsaro, Leonardo Querzoni,
Sirio Scipioni, and Sara Tucci-Piergiovanni

Reviewing Amnesia Support in Database Recovery Protocols 717
Rubén de Juan-Maŕın, Luis H. Garćıa-Muñoz,
J. Enrique Armendáriz-Íñigo, and Francesc D. Muñoz-Escóı

Frameworks, Patterns, and Testbeds

The Conceptualization of a Configurable Multi-party Multi-message
Request-Reply Conversation . 735

Nataliya Mulyar, Lachlan Aldred, and Wil M.P. van der Aalst

Building Adaptive Systems with Service Composition Frameworks 754
Liliana Rosa, Lúıs Rodrigues, and Antónia Lopes

Invasive Patterns for Distributed Programs . 772
Luis Daniel Benavides Navarro, Mario Südholt, Rémi Douence, and
Jean-Marc Menaud

NSLoadGen – A Testbed for Notification Services . 790
Diego Palmisano and Mariano Cilia

Ontologies, Databases and Applications of Semantics
(ODBASE) 2007 International Conference

ODBASE 2007 PC Co-chairs’ Message . 811

Keynote

Towards Next Generation Value Networks . 813
York Sure

Ontology Mapping

Combining the Semantic Web with the Web as Background Knowledge
for Ontology Mapping . 814

Ruben Vazquez and Nik Swoboda

XXII Table of Contents – Part I

Discovering Executable Semantic Mappings Between Ontologies 832
Han Qin, Dejing Dou, and Paea LePendu

Interoperability of XML Schema Applications with OWL Domain
Knowledge and Semantic Web Tools . 850

Chrisa Tsinaraki and Stavros Christodoulakis

Semantic Querying

Query Expansion and Interpretation to Go Beyond Semantic P2P
Interoperability . 870

Anthony Ventresque, Sylvie Cazalens, Philippe Lamarre, and
Patrick Valduriez

SPARQL++ for Mapping Between RDF Vocabularies 878
Axel Polleres, François Scharffe, and Roman Schindlauer

OntoPath: A Language for Retrieving Ontology Fragments 897
E. Jiménez-Ruiz, R. Berlanga, V. Nebot, and I. Sanz

Ontology Development

Taxonomy Construction Using Compound Similarity Measure 915
Mahmood Neshati and Leila Sharif Hassanabadi

r3– A Foundational Ontology for Reactive Rules . 933
José Júlio Alferes and Ricardo Amador

Heuristics for Constructing Bayesian Network Based Geospatial
Ontologies . 953

Sumit Sen and Antonio Krüger

OntoCase - A Pattern-Based Ontology Construction Approach 971
Eva Blomqvist

Towards Community-Based Evolution of Knowledge-Intensive
Systems . 989

Pieter De Leenheer and Robert Meersman

ImageNotion: Methodology, Tool Support and Evaluation 1007
Andreas Walter and Gábor Nagypál

Learning and Text Mining

Optimal Learning of Ontology Mappings from Human Interactions 1025
Sumit Sen, Dolphy Fernandes, and N.L. Sarda

Table of Contents – Part I XXIII

Automatic Feeding of an Innovation Knowledge Base Using a Semantic
Representation of Field Knowledge . 1034

Issam Al Haj Hasan, Michel Schneider, and Grigore Gogu

Ontology Learning for Search Applications . 1050
Jon Atle Gulla, Hans Olaf Borch, and Jon Espen Ingvaldsen

Annotation and Metadata Management

MultiBeeBrowse – Accessible Browsing on Unstructured Metadata 1063
Sebastian Ryszard Kruk, Adam Gzella, Filip Czaja,
W�ladys�law Bultrowicz, and Ewelina Kruk

Matching of Ontologies with XML Schemas Using a Generic
Metamodel . 1081

Christoph Quix, David Kensche, and Xiang Li

Labeling Data Extracted from the Web . 1099
Altigran S. da Silva, Denilson Barbosa, João M.B. Cavalcanti, and
Marco A.S. Sevalho

Ontology Applications

Data Quality Enhancement of Databases Using Ontologies and
Inductive Reasoning . 1117

Olivier Curé and Robert Jeansoulin

A Web Services-Based Annotation Application for Semantic Annotation
of Highly Specialised Documents About the Field of Marketing 1135

Mercedes Argüello Casteleiro, Mukhtar Abusa,
Maria Jesus Fernandez Prieto, Veronica Brookes, and
Fonbeyin Henry Abanda

Ontology Based Categorization in eGovernment Application 1153
Claude Moulin, Fathia Bettahar, Jean-Paul Barthès, and
Marco Luca Sbodio

Semantic Matching Based on Enterprise Ontologies 1161
Andreas Billig, Eva Blomqvist, and Feiyu Lin

Author Index . 1169

CoopIS 2007 International Conference
(International Conference on Cooperative

Information Systems)

CoopIS 2007 PC Co-chairs’ Message

Welcome to the proceeding of the 15th International Conference on Cooperative
Information Systems (CoopIS 2007) held in Vilamoura, Portugal, November 28-
30, 2007.

The CoopIS conferences provide a forum for exchanging ideas and results on
scientific research from a variety of areas, such as CSCW, Internet data man-
agement, electronic commerce, human–computer interaction, business process
management, agent technologies, P2P systems, and software architectures, to
name but a few. We encourage the participation of both researchers and prac-
titioners in order to facilitate exchange and cross-fertilization of ideas and to
support the transfer of knowledge to research projects and products. Towards
this goal, we accepted both research and experience papers.

This year’s conference included sessions that covered a broad range of top-
ics in the design and development of cooperative information systems: pro-
cess analysis and semantics, process modeling, P2P, collaboration, and business
transactions.

This high-quality program would not have been possible without the authors
who chose CoopIS as a venue to submit their publications. Out of 92 submitted
papers, we selected 21 full papers and 7 short papers in a careful review pro-
cess. Each submitted paper received at least three independent reviews. We are
grateful for the dedicated work of the 58 experts in the field (including their
co-reviewers) who served on the Program Committee and who did an excellent
job.

To round up this excellent program, Microsoft Technical Fellow Donald Fer-
guson agreed to be our keynote speaker.

Finally, we are deeply indebted to Kwong Yuen Lai for his hard work, en-
thusiasm and almost constant availability. He was key to facilitating the paper
management process and making sure that the review process stayed on sched-
ule. We would also like to thank Robert Meersman and Zahir Tari for their
support in organizing this event.

We hope that you enjoy this year’s selection of contributions for CoopIS.

August 2007 Francisco Curbera
Frank Leymann
Mathias Weske

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, p. 5, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Internet Service Bus

Donald F. Ferguson

Abstract. Service oriented architectures (SOA) increasingly form the basis for
cooperative information systems. Many enterprises and application solutions
have been practicing SOA for many years. SOA is an architecture that IT
practitioners can layer on many technologies: messaging, RPC, etc. Most SOA
solutions are evolving to exploit an "enterprise service bus" for integrating and
connecting applications.

Web services are a set of standards that simplifies building cooperative
information systems. The standards eliminate the need to enable the
infrastructure to cooperate before enabling application cooperation.

Web services exploitation of Internet protocols and concepts creates an
additional opportunity. Many, if not most, cooperating information systems
have elements in different organizations: enterprises, sites, lines-of-business,
etc. The same architectural style that led to an enterprise services bus will yield
an Internet Service Bus.

This presentation will explain the Internet Service Bus concepts using a
scenario. The scenario will also highlight many of the benefits of an ISB. There
are several interesting technical and architectural challenges for building and
using an ISB, which the presentation will discuss.

Speaker Bio

Dr. Donald F. Ferguson is a Microsoft Technical Fellow working in the Office of the
CTO. Don focuses on advanced and future projects in the areas of enterprise
computing and business applications. Before joining Microsoft, Don was an IBM
Fellow and Chief Architect of IBM Software Group (SWG). He chaired the SWG
Architecture Board, which provide overall technical guidance to WebSphere,
Rational, Tivoli and Lotus products. Don was the founding technical lead for
WebSphere. Don has contributed to several sets of standards, especially J2EE and
Web services.

Soundness Verification of Business Processes

Specified in the Pi-Calculus

Frank Puhlmann

Business Process Technology Group
Hasso Plattner Institut for IT Systems Engineering

University of Potsdam
D-14482 Potsdam, Germany

frank.puhlmann@hpi.uni-potsdam.de

Abstract. Recent research in the area of business process management
(BPM) introduced the application of a process algebra—the π-calculus—
for the formal description of business processes and interactions among
them. Especially in the area of service-oriented architectures, the key
architecture for today’s BPM systems, the π-calculus—as well as other
process algebras—have shown their benefits in representing dynamic
topologies. What is missing, however, are investigations regarding the cor-
rectness, i.e. soundness, of process algebraic formalizations of business
processes. Due to the fact that most existing soundness properties are
given for Petri nets, these cannot be applied. This paper closes the gap by
giving characterizations of invariants on the behavior of business processes
in terms of bisimulation equivalence. Since bisimulation equivalence is a
well known concept in the world of process algebras, the characterizations
can directly be applied to π-calculus formalizations of business processes.
In particular, we investigate the characterization of five major soundness
properties, i.e. easy, lazy, weak, relaxed, and classical soundness.

1 Introduction

Process algebras, which are algebraic frameworks for the study of concurrent
processes, recently gained extended attention in the area of business process
management (BPM), e.g. [1,2,3,4,5,6,7]. This is especially true within the area
of service-oriented architecture (SOA) [8], which is today’s standard architectural
style for realizing BPM solutions [9,10]. What the existing approaches lack, how-
ever, is a distinguished investigation on correctness properties for the business
processes they describe. By correctness properties, we refer to the different kinds
of soundness that have been introduced in the workflow management domain and
later on refined. In particular, these are the original soundness definition by van
der Aalst [11], nowadays denoted as classical soundness, relaxed soundness by
Dehnert [12], and weak soundness by Martens [13]. Noteworthy, all these proper-
ties cannot directly be applied to process algebraic formalizations of business pro-
cesses, since they are characterized using Petri nets. Furthermore, liveness and
boundedness are used to prove business processes formalized with Petri nets to be
sound; both techniques which are not available for process algebraic verification.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 6–23, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Soundness Verification of Business Processes Specified in the Pi-Calculus 7

Table 1. Comparison of the different kinds of soundness

Easy Lazy Weak Relaxed Classical

Possibility of termination + + + + +

Support for lazy activities + + - + -

Deadlock freedom - + + - +

Participation of all activities - - - + +

The focus of our research is on the application of a special kind of process
algebra—the π-calculus—to the domain of business process management [14,15].
This calculus is of special interest, since it supports a direct representation of dy-
namic binding as found in service-oriented architectures [16]. In this paper, how-
ever, we do not tackle dynamic binding but instead investigate the correctness
of the ”inner workings” of the different services found in a SOA. The behavior
of the ”inner workings” of a service is described as a business process composed
out of common patterns [17]. During our research on the formal representation
of these patterns, we developed a new soundness property, that proves a business
process to be lazy sound if it always provides a result [18]. While lazy soundness
provides one way of proving an invariant of a business process represented in a
process algebraic formalization, there exists no investigation that discusses the
verification of business processes according to existing soundness properties. In a
practical setting, however, different properties might be required. A comparison
of the different kinds of soundness is shown in table 1.

Since the availability of correctness properties is a fundamental constraint for
any formalization of business processes [19], we close the gap for π-calculus map-
pings by providing means to characterize soundness using bisimulation equiva-
lence. Stated simply, a bisimulation is an equivalence relation between two pro-
cesses, where the actions of both processes are matched, i.e. if one process can
do an action, there exists a matching action in the other process and vice versa.
Beyond providing characterizations for existing soundness properties, we discuss
the declaration and reasoning on arbitrary invariants for the behavior of busi-
ness processes using bisimulation equivalence. The discussion provides the reader
with the theoretical equipment to his or her tailored soundness property.

The paper is organized as follows. We start with a short introduction to the
π-calculus in section 2, followed by a discussion of how invariants for the be-
havior of business processes can be represented and proved. Section 3 provides
characterizations of five major soundness properties in the π-calculus. The prac-
tical applicability of bisimulation equivalence is shown in section 4. Finally, we
conclude with a discussion of related work in section 5.

2 Preliminaries

We start with an introduction to the π-calculus and introduce how business
processes can be formalized using this algebra. Thereafter we discuss the rep-
resentation of weak invariants, i.e. properties that have to be fulfilled by some

8 F. Puhlmann

instances of a business process, and strong invariants, i.e. properties that have
to be fulfilled by all instances.

2.1 The Pi-Calculus

The π-calculus is a process algebra for the formal description and analysis of
concurrent, interacting processes, denoted as agents. The calculus is based on
names, that represent the unification of channels and data, used by agents defined
according to [20].

Definition 1 (Pi-Calculus). The syntax of the π-calculus is given by:

P ::= M | P |P | νz P | A(y1, . . . , yn)
M ::= 0 | π.P | M + M

π ::= x〈ỹ〉 | x(z̃) | τ | [x = y]π .

P and M denote the agents and summations of the calculus. The informal se-
mantics is as follows: P |P is the concurrent execution of P and P , νz P is the
restriction of the scope of the name z to P , i.e. z is only visible in P and distinct
from all other names, and A(y1, · · · , yn) denotes parametric recursion over the
set of agent identifiers. 0 is inaction, a process that can do nothing, and M+M is
the exclusive choice between M and M . The prefixes of the calculus are given by
π. The output prefix x〈ỹ〉.P sends a tuple of names ỹ via the co-name x and then
continues as P . The input prefix x(z̃) receives a tuple of names via the name
x and then continues as P with z̃ replaced by the received names. Matching
input and output prefixes of different components might communicate, leading
to an intraaction that is unobservable (τ). An explicit representation of an un-
observable action is given by the prefix τ.P and the match prefix [x = y]π.P
behaves as π.P if x is equal to y. Throughout this paper, upper case letters are
used for agent identifiers and lower case letters for names. We abbreviate a set
of components as

∏n
i=1 Pi, i.e.

∏3
i=1 Pi = P1 | P2 | P3.

2.2 Business Process Formalizations

Informally, a business process can be seen as a a special process that creates a
value or a result for a customer. A business process is characterized by activities
and control flow relations between them. Additional ingredients are the types
of the activities, if they route the control flow, or additional attributes, mostly
related to control flow decisions. For reasoning on soundness, we abstract from
other perspectives. Formally, a business process can be represented by a process
graph given by:

Definition 2 (Process Graph). A process graph is a four-tuple consisting of
nodes, directed edges, types, and attributes. Formally: P = (N, E, T, A) with

– N as a finite, non-empty set of nodes,
– E ⊆ (N × N) as a set of directed edges between nodes,

Soundness Verification of Business Processes Specified in the Pi-Calculus 9

Receive
Order

Send Flowers
3

Reject Order

N1 N2

N3

N4

N5
N6

N7
e1 e2

e3

e4

e5

e6

e7

Fig. 1. A sample business process in BPMN notation

– T : N → TYPE as a function from nodes to types, and
– A ⊆ (N × (KEY × VALUE)) as a relation from nodes to key/value pairs.�

N represents activities, incl. those responsible for routing the control flow given
by E. T relates nodes with workflow patterns [21], where we assume simple activ-
ities or tasks to match the sequence pattern. A maps additional key/value pairs
to nodes. Notable, a process graph only describes the static structure, i.e. the
schema, of a business process. A process graph can easily be related to graphical
notations such as EPCs [22], UML activity diagrams [23], or BPMN [24]. To
give a process algebraic semantics to a process graph, the following, sketched
algorithm is used (details can be found in [18]):

Algorithm 1 (Mapping Process Graphs to Agents). A process graph
P = (PN , PE , PT , PA) is mapped to π-calculus agents as follows:

1. All nodes of P are assigned a unique π-calculus agent identifier N1 . . . N |PN |.
2. All edges of P are assigned a unique π-calculus name e1 . . . e|PE |.
3. The π-calculus agents are defined according to the process patterns found

in [17]. The functional perspective is represented by 〈·〉. If the process graph
is cyclic, recursion has to be used to allow multiple instances of activities.

4. An agent N
def
= (νe1 , . . . , e|PE |)(

∏|PN |
i=1 Ni) representing a process instance

is defined. This agent might contain further components or restricted names
according to the contained patterns. �

The given mapping of a process graph represents a single instance (case) of
a business process. During the evolution of the agent terms, their structure is
reduced to future states, whereas all (possible) past states are lost. We showcase
the formalization of an example given in figure 1, where we provide a graphical
representation of the process graph using BPMN. Contained is a simple business
process of a flower shipper. The shipper receives an order and either accepts the
order, and sends flowers to three participants given in the order, or the order
is rejected. The flowers are sent asynchronously via a multiple instance task
without synchronization (denoted by the arrow at the bottom of the activity).

The formalization of the business process starts by assigning unique agent
identifiers and names to the nodes and edges. These are already shown in the
figure. The corresponding agents are given according to step three of algorithm 1
as follows:

N1
def
= 〈·〉.e1 .0 and N7

def
= e7 .〈·〉.0

10 F. Puhlmann

represent the start and the end event. The functional perspective is abstracted
by 〈·〉, which will be filled later on. The nodes of the type task are given by the
sequence workflow pattern:

N2
def
= e1 .〈·〉.e2 .0 and N5

def
= e4 .〈·〉.e6 .0 .

The exclusive split and join gateways are given by

N3
def
= e2 .〈·〉.(e3 .0 + e4 .0) and N6

def
= e5 .〈·〉.e7 .0 + e6 .〈·〉.e7 .0 .

The multiple instance task with three static instances is given by

N4
def
= e3 .(〈·〉.0 | 〈·〉.0 | 〈·〉.0 | e5 .0) .

Finally, an agent

N
def
= (νe1 , . . . , e7)(

7∏

i=1

Ni) .

represents a fresh process instance. An extended discussion of the semantics and
the mapping can be found in [17,18].

2.3 Simulation

To specify that a process instance given by π-calculus agents can fulfill an invari-
ant, we need the concept of simulation from the process algebraic toolbox. Infor-
mally, a simulation relates an agent P with another agent Q, if Q can follow every
action of P . We say that Q can simulate P . The actions of the agents are given by
the input, output, and unobservable prefixes, denoted as Act = {x〈ỹ〉, x(z̃), τ}.
The evolution of the state of an agent to a succeeding state is denoted by a

transition bearing the corresponding action, i.e. a〈w〉.A a〈w〉−→ A.

Definition 3 (Simulation). A simulation is a binary relation R on agents
such that ∀α ∈ Act:

PRQ ∧ P
α−→ P ′ ⇒ ∃Q ′ : Q

α−→ Q ′ ∧ P ′RQ ′ .

Q is similar to P , denoted as P � Q, if they are related by a simulation.

Simulation considers a strong relation between interactions and unobservable
actions. Two agents

P
def
= a(x).τ.τ.b〈z〉.0 and Q

def
= a(x).τ.b〈z〉.0

cannot simulate each other, since they differ in the number of their unobservable
actions (τ transitions). A simulation that abstracts from these unobservable
actions is called weak simulation. Weak simulations are of particular interest,
since they abstract from the internal behavior of agents and instead only consider
the external visible behavior. A weak simulation is obtained by defining =⇒ to
represent zero or more τ transitions, i.e. τ−→

∗
, α=⇒ as =⇒ α−→=⇒, and α̂=⇒ as

α=⇒ if α �= τ and =⇒ if α = τ .

Soundness Verification of Business Processes Specified in the Pi-Calculus 11

Definition 4 (Weak Simulation). A weak simulation is a binary relation R
on agents such that ∀α ∈ Act:

PRQ ∧ P
α−→ P ′ ⇒ ∃Q ′ : Q

α̂=⇒ Q ′ ∧ P ′RQ ′ .

Q is weak similar to P , denoted as P � Q, if they are related by a weak simula-
tion.

By using weak simulation, we can match π-calculus mappings of process graphs
for the potential fulfillment of arbitrary invariants. Therefore we specify the
invariant by a π-calculus agent that trivially fulfills them. Consider for instance

I1
def
= s.0 ,

that denotes that an activity can occur during the execution of a process instance
via an emission of s. To enhance the agent that represents the activity under
investigation in the π-calculus mapping, we need to replace 〈·〉 by s. Let’s assume
we want to prove that the reject order task from figure 1 can be executed. Hence,
we change agent N5 accordingly:

N5
def
= e4 .s .e6 .0 .

We assume all other functional abstractions to be filled with unobservable actions
(τ). Now we can decide if I1 � N holds by finding a relation R that relates both
agents. If we are able to find such a relation, we proved that the reject order task
can indeed be executed. If we found a counterexample, i.e. something that I1
can do but N is unable to simulate, we disproved the invariant for the business
process. The magic of weak simulation lies in the fact that all internal interactions
between components, i.e. between N1 and N2 via e1 are unobservable from the
outside, meaning they resemble τ . Since all names e∗ are restricted inside N ,
only s has to be considered in the simulation. Regarding this semantics, the
agent N breaks down to a number of τ actions, a possible emission via s, and

another number of τ actions. Hence, it resembles ŝ=⇒. According to definition 4,
R is given by {(I1 , N), (0,0)} and I1 � N holds. Thus, the business process
from figure 1 fulfills the invariant that the reject order task can be executed.

We can also disprove invariants for business processes, i.e. show that the reject
order activity will never be executed twice per instance. Therefore we modify
the agent representing the invariant to

I2
def
= s.s.0 .

Due to the fact that I2 s−→ s.0, and correspondingly N
ŝ=⇒ 0, the remainder of

I2 can do another action s that the remainder 0 of N cannot simulate. Hence,
I2 �� N disproves the supposed invariant.

12 F. Puhlmann

2.4 Bisimulation

By using weak simulation we are able to show an optional behavior. This is
due to the fact that a simulation only investigates one direction. If the agent
mapping of a process graph contains additional actions, it is not investigated if
the agent representing the invariant can mimic them. To enforce that two agents
are able to mimic all their actions in arbitrary directions, i.e. the first agent does
something, the second agent corresponds, and thereafter the second agent does
something else that the first agent needs to mimic, etc., we require the relation R
to be symmetric. Helpful is again the weak variant, yielding weak bisimulation:

Definition 5 (Weak Bisimulation). A weak bisimulation is a symmetric, bi-
nary relation R on agents such that ∀α ∈ Act:

PRQ ∧ P
α−→ P ′ ⇒ ∃Q ′ : Q

α̂=⇒ αQ ′ ∧ P ′RQ ′ .

P and Q are weak bisimilar, denoted as P ≈ Q, if they are related by a weak
bisimulation.

According to this definition, weak bisimulation equivalence, or weak bisimilarity,
between two agents P and Q is stronger than mutual simulation, i.e. from P ≈
Q ⇒ P � Q ∧ Q � P , but the converse does not necessarily hold. Consider for
instance once again I1 and N as given in the previous section. While I1 � N
holds (as shown), also N � I1 holds (proof left for the reader). However, this does
not mean that the reject order task is executed in every instance, as can be easily
checked in figure 1. The technical difference lies in the fact that bisimulation
is symmetric, a property that allows switching the direction after every step
instead assuming a fixed order. According to bisimulation, we need to find a
counterexample to prove I1 �≈ N and thereby disprove the proposition that
reject order is executed in every instance. Since this is a quite complex task,
we refer the reader to section 4, where we introduce tool-supported reasoning
(indeed, a counterexample can be found).

The last application of bisimulation that we will consider is proving invariants
that hold for all instances. Regarding figure 1, it seems obvious that receive order
is executed in every instance. We can prove this proposition by returning to the
original definition of N and modify its component N2 , representing the receive
order task, accordingly:

N2
def
= e1 .s.e2 .0 .

By finding a relation R between I1 and the modified N according to definition 5
we can prove that receive order is executed in each instance. Since such an
relation exists, I1 ≈ N holds (for the modified N). As the relation contains 29
tuples, we once again refer to section 4 for tool-supported reasoning.

3 Characterizations of Soundness

After having shown how can properties of business processes are proved using
simulation and must properties are proved using bisimulation, we discuss exist-
ing soundness properties. Since most existing properties are given for workflow

Soundness Verification of Business Processes Specified in the Pi-Calculus 13

nets [25], a subclass of Petri nets, we define a subset of process graphs that fulfills
the same structural properties. We denote this property as structural soundness.
Informally, structural soundness is given by:

A process graph is structural sound if it has exactly one initial node,
exactly one final node, and all other nodes lie on a path between the
initial and the final node.

Structural sound process graphs resemble placeholders for business processes
with the denoted structural properties. We omit the (obvious) formal definition
due to space limits.

3.1 Easy Soundness

The least soundness property a business process should fulfill is given by easy
soundness, informally given by:

A structural sound process graph representing a business process is easy
sound if a result can be provided.

As indicated by the word can, we have to use simulation to prove this property
for process algebraic formalizations of business processes. In particular, we have
to be able to observe the occurrence of the initial and the final node. The idea
is depicted in figure 2. A structural sound process graph is fed into a black box.
Each time we press the start button, an instance of the process graph is executed.
Each time the final node of process graph is executed, the done bulb flashes.
Regarding easy soundness, we have to find at least one process instance where
the done bulb flashes, denoting the delivery of the result. An agent fulfilling this
invariant is given by:

SEASY
def
= i.τ.o.0 . (1)

The input prefix i denotes the pushbutton, whereas the output prefix o resembles
the done bulb. Both are in a fixed sequence, i.e. o follows always after i. The
τ in-between denotes the abstraction from complex actions. Since we use weak
(bi)-simulations, however, it could also be omitted. To be able to decide whether
a business process given by π-calculus agents is weak similar to SEASY , we have
to enhance the agents representing the business process:

Algorithm 2 (Easy Soundness Annotated Pi-Calculus Mapping). The
π-calculus mapping of a process graph according to algorithm 1 is enhanced for
reasoning on easy soundness as follows. The functional abstraction 〈·〉 of (1)
the agent that represents the initial node is replaced by i.τ ; (2) the agent that
represents the final node is replaced by τ.o; (3) all other agents are replaced by
τ . Obviously, i and o are not permitted to appear anywhere else in the agent
terms. �
A formal definition of easy soundness using weak similarity is now given by:

Definition 6 (Easy Sound Process Graph). A structural sound process
graph P with a semantics given by the easy soundness annotated π-calculus map-
ping D of P is easy sound if SEASY � D holds.

14 F. Puhlmann

Black Box

Start Done

Structural
Sound Process

Graph

Fig. 2. Black box investigation of a structural sound process graph

We can prove the sample business process from figure 1 to be easy sound by
finding a relation for SEASY � NEASY , with NEASY being syntactically equal
to N with 〈·〉 replaced by τ and:

N1
def
= i.τ.e1 .0 and N7

def
= e7 .τ.o.0 .

Since such a relation exists (4 tuples), the business process of the flower shipper
is easy sound. The relation can be reconstructed by the reader as will be shown
in section 4.

3.2 Lazy Soundness

One obvious extension to easy soundness is given by enforcing that all instances
of a process graph provide a result:

A structural sound process graph representing a business process is lazy
sound if in any case a result is provided exactly once.

This property can be proved using weak bisimilarity. Furthermore, all assump-
tions from easy soundness also hold. In particular, we need to be able to observe
the occurrence of the final node after each occurrence of the initial node. Re-
garding the black box from figure 2, this means that each time the start button
is pressed, we need to be able to observe exactly one flash of the done bulb. In
contrast to easy soundness, we cannot try until we observe a flash of the done
bulb, but have to consider all possibilities instead. This supplies two problems:
(1) How can we be sure that all path of the process graph have been traversed,
i.e. we do not need to press the start button anymore; (2) How do we know if
we do not need to wait any longer for the done bulb to flash, i.e. a deadlock has
occurred? If we are able to find a bisimulation between an invariant given by

SLAZY
def
= i.τ.o.0 (2)

and an annotated agent mapping of a process graph, both problems have been
overcome. The former due to the fact that a bisimulation enumerates all possible
states and the latter by the fact that a bisimulation is finite. Since SLAZY exactly
resembles SEASY , the same annotation for the agents has to be used:

Algorithm 3 (Lazy Soundness Annotated Pi-Calculus Mapping). The
same as given by algorithm 2. �

Soundness Verification of Business Processes Specified in the Pi-Calculus 15

A formal definition of lazy soundness using weak bisimilarity is now given by:

Definition 7 (Lazy Sound Process Graph). A structural sound process
graph P with a semantics given by the lazy soundness annotated π-calculus map-
ping D of P is lazy sound if D ≈ SLAZY holds.

The business process from figure 1 can be checked for satisfying lazy soundness;
i.e. we need to prove that SLAZY ≈ NEASY holds.

3.3 Weak Soundness

Lazy soundness only considers the return of a result, whereas the termination of
the process graph, i.e. all nodes are terminated, is not considered. This is due to
the fact that deferred, so called lazy, activities can remain active after the result
has been provided (an extended discussion can be found in [18]). Nevertheless,
in some cases it has to be guaranteed that the termination of a business process
occurs the very moment the result is provided:

A structural sound process graph representing a business process is weak
sound if in any case a result is provided and the process instance is
terminated the moment the result is provided.

Since once again all cases need to be considered, weak bisimilarity is the tech-
nique of choice. What has to be changed, however, is the black box we use for
investigation. In addition to be able to observe the occurrence of the initial and
the final node, we also need to be able to observe the occurrence of each other
node. This enhancement is depicted in figure 3. A business process placed inside
the enhanced black box is weak sound if we are unable to observe a flash of the
step bulb after a flash of the done bulb. Furthermore, a flash of the done bulb
has to be observed exactly once for each push on the start button. Deriving the
invariant is not this easy, however. A naive version given by

I
def
= i.I1 and I1

def
= s.I1 + τ.o.0

will not work with an annotated π-calculus mapping given below (the proof is
left to the reader; hint: I1 can send an unlimited times via s). The problem can
be overcome by allowing each instance of a process graph to emit via s only once.
The choice which node will emit via s has to be made non-deterministically. This
is done via an activity observation agent that will be included in the π-calculus
mapping of a process graph later on:

X(x, s)
def
= x(ack).(τ.ack .0 | X(x, s)) + x(ack).(τ.s.ack .0 | X1 (x))

X1 (x)
def
= x(ack).(τ.ack .0 | X1 (x)) .

(3)

Agent X is triggered via x and thereafter has the non-deterministic choice be-
tween acknowledging via ack or emitting via s and thereafter acknowledging. If
the former happened, X behaves again as X . If the latter happened, X behaves
as X1 that is only capable of acknowledging. Due the activity observation agent,

16 F. Puhlmann

Enhanced Black Box

Start DoneStep

Structural
Sound Process

Graph

Fig. 3. Enhanced black box investigation of a structural sound process graph

each node of a process graph has the capability of signaling its execution. As
this explicitly includes nodes of a process graph that are active after the final
node has signaled its execution, weak soundness can be proved by an invariant
given as

SWEAK
def
= i.(τ.o.0 + τ.s.o.0) . (4)

SWEAK is the same as SLAZY regarding i and o. After the observation of the
initial node via i, a choice between observing o or s is made. If o is observed,
no other observations are possible (due to SWEAK becomes inaction). If s is
observed, the next observation has to be o. Thereafter, no other observations
are possible. This behavior resembles the enhanced black box with the exception
that the step bulb might flash only once before/after the done bulb flashed. The
agents that represent the business process have to be enhanced as given by the
following algorithm:

Algorithm 4 (Weak Soundness Annotated Pi-Calculus Mapping).
The π-calculus mapping D of a process graph P = (N, E, T, A) according to
algorithm 1 is enhanced for reasoning on weak soundness as follows. The func-
tional abstraction 〈·〉 of (1) the agent that represents the initial node is replaced
by νack i.x〈ack 〉.ack ; (2) the agent that represents the final node is replaced
by νack x〈ack 〉.ack .o.τ ; (3) all other agents are replaced by νack x〈ack 〉.ack .
Furthermore, the agent from equation 3 has to be included in D:

D
def
= (νe1 , . . . , e|E|, x)(

|N |∏

i=1

(Di) | X) .

The names i, o, and s are not permitted to appear anywhere else in the agent
terms. �
A formal definition of weak soundness for a process graph is now given by:

Definition 8 (Weak Sound Process Graph). A structural sound process
graph P with a semantics given by the weak soundness annotated π-calculus
mapping D of P is weak sound if D ≈ SWEAK holds.

The business process from figure 1 is not fulfilling weak soundness. This is due
to the fact that the flowers are sent asynchronously; i.e. the send flowers activity
is lazy.

3.4 Relaxed Soundness

All preceding soundness properties neglect an investigation regarding the par-
ticipation of activities in a business process. Sometimes this is an important

Soundness Verification of Business Processes Specified in the Pi-Calculus 17

property, due to the fact that unused activities can be removed from a business
process. Similar to [12], our interpretation of relaxed soundness also supports
the synchronizing merge pattern:

A structural sound process graph representing a business process is re-
laxed sound if each node of the process graph has the possibility of being
executed in between the execution of the initial and the final node.

Since we talk about a possibility, weak similarity has to be used this time. We
can reuse the enhanced black box from figure 3 with a special preparation of
the π-calculus mapping. In particular, we need to prepare as much copies of
the π-calculus mapping as there are nodes in the process graph. In each copy we
need to give another node the possibility of emitting via s to signal its execution.
Hence, for each enhanced mapping of a process graph feed into the enhanced
black box, we should be able to observe a flash of the step and done bulb in
sequence in at least one pass. The invariant is given by:

SRELAXED
def
= i.s.o.0 .

The agent SRELAXED simply resembles the execution order. However, special
care has to be taken if the node under observation is always executed more than
once (the next action of SRELAXED after s, o, cannot be simulated by a mapping
that emits s once again!). This problem can be solved by including an activity
loop observation agent that only emits s for the first execution of a node:

Y (y, s)
def
= y(ack).s.ack .Y1 (y) and Y1 (y)

def
= y(ack).τ.ack .Y1 (y) .

The agent is integrated in the mapping of a process graph as follows:

Algorithm 5 (Relaxed Soundness Annotated Pi-Calculus Mapping).
To annotate a π-calculus mapping D of a process graph P = (N, E, T, A) for
a certain node n ∈ N \ {x, y} with T (x) = InitialNode, T (y) = FinalNode for
reasoning on relaxed soundness regarding the node n, the following steps have
to be made. The functional abstraction 〈·〉 of (1) the agent that represents the
initial node is replaced by i.τ ; (2) the agent that represents the final node is
replaced by τ.o; (3) the agent that represents n is replaced by νack y〈ack 〉.ack ;
(4) all other agent is replaced by τ . Furthermore, the agent from equation 3.4
has to be included in D:

D
def
= (νe1 , . . . , e|E|, y)(

|N |∏

i=1

(Di) | Y) .

The names i, o, and s are not permitted to appear anywhere else in the agent
terms. �
Relaxed soundness is formally given by:

Definition 9 (Relaxed Sound Process Graph). A structural sound pro-
cess graph P = (N, E, T, A) is relaxed sound if for each relaxed soundness
annotated π-calculus mapping D considering n ∈ N \ {x, y} with T (x) =
InitialNode, T (y) = FinalNode it holds that SRELAXED � D.

18 F. Puhlmann

Regarding the example from figure 1, it can be shown that each node has the
possibility to participate in the business process by calculating the corresponding
weak simulations.

3.5 Classical Soundness

A strong soundness property, known as (classical) soundness [11], is given infor-
mally by:

A structural sound process graph representing a business process is sound
if (1) in any case a result is provided; (2) the process instance is termi-
nated the moment the result is provided; and (3) each node of the process
graph has the possibility of being executed after the initial node.

The first two criteria coincidence with weak soundness. The last criterion is given
by a modified version of relaxed soundness, where the activity loop observation
agent and o are omitted from the π-calculus mapping. The relaxed invariant is
given by:

SPART
def
= i.s.0 (5)

We can omit the activity loop observation agent due to the fact that multi-
ple emissions via s from the π-calculus mapping of the process graph are not
disturbing the similarity because o is omitted.

Algorithm 6 (Participating Annotated Pi-Calculus Mapping). To
annotate a π-calculus mapping of a process graph P = (N, E, T, A) for a certain
node n ∈ N \ {x, y} with T (x) = InitialNode , T (y) = FinalNode for reasoning
on the participation of n in the business process, the following steps have to be
made. The functional abstraction 〈·〉 of (1) the agent that represents the initial
node is replaced by i.τ ; (2) the agent that represents the node n is replaced by
s; (3) all other agents is replaced by τ . The names i and s are not permitted to
appear anywhere else in the agent terms. �
The definition of classical soundness using weak similarity and bisimilarity is
formally given by:

Definition 10 (Classical Sound Process Graph). A structural sound pro-
cess graph P = (N, E, T, A) with a semantics given by (1) the weak soundness
annotated π-calculus mapping D1 of P and (2) a set of participating annotated
π-calculus mappings D2 for each n ∈ N \{x, y} with T (x) = InitialNode , T (y) =
FinalNode is classical sound if it holds that (a) D1 ≈ SWEAK and (b) SPART �
D for each D ∈ D2 .

4 Tool Support and Efforts

This first part of this section shows the practical applicability of the different
soundness characterization using an existing tool. The second part discusses an
important criterion: The efforts required for deciding bisimulation equivalence
for the different kinds of soundness.

Soundness Verification of Business Processes Specified in the Pi-Calculus 19

4.1 Tool-Supported Reasoning

Reasoning on similarity and bisimilarity of π-calculus agents can be done using
the Advanced Bisimulation Checker (ABC).1 The reasoner accepts agents in
an ASCII syntax described in the corresponding documentation. In a nutshell,
’x<y> represents an output prefix, x(y) an input prefix, t an unobservable
action, and (^z) the restriction operator. Regarding the easy/lazy soundness
annotated mapping from figure 1, the following input is appropriate:

agent N1(e1,i)=i.t.’e1.0
agent N2(e1,e2)=e1.t.’e2.0
agent N3(e2,e3,e4)=e2.t.(’e3.0 + ’e4.0)
agent N4(e3,e5)=e3.(t.0 | t.0 | t.0 | ’e5.0)
agent N5(e4,e6)=e4.t.’e6.0
agent N6(e5,e6,e7)=e5.t.’e7.0 + e6.t.’e7.0
agent N7(e7,o)=e7.t.’o.0
agent N(i,o)=(^e1,e2,e3,e4,e5,e6,e7)(N1(e1,i) | N2(e1,e2) | N3(e2,e3,e4) | N4(e3,e5) |

N5(e4,e6) | N6(e5,e6,e7) | N7(e7,o))
agent S_EASY(i,o)=i.t.’o.0
agent S_LAZY(i,o)=i.t.’o.0

Easy soundness can be decided by asking ABC for proving similarity between
SEASY and N using the wlt command:

abc > wlt S_EASY(i,o) N(i,o)
The two agents are weakly related (4).

Since a simulation exists, easy soundness for the business process from figure 1
has been proved. Lazy soundness can be decided by proving bisimilarity between
SLAZY and N using the weq command:

abc > weq S_LAZY(i,o) N(i,o)
The two agents are weakly related (70).

Both agents are bisimilar due to the fact that a bisimulation has been found. A
session disproving weak soundness for the example is given by:

agent N1(e1,i,x)=i.(^ack)’x<ack>.ack.’e1.0
agent N2(e1,e2,x)=e1.(^ack)’x<ack>.ack.’e2.0
agent N3(e2,e3,e4,x)=e2.(^ack)’x<ack>.ack.(’e3.0 + ’e4.0)
agent N4(e3,e5,x)=e3.((^ack)’x<ack>.ack.0 | (^ack)’x<ack>.ack.0 | (^ack)’x<ack>.ack.0 |’e5.0)
agent N5(e4,e6,x)=e4.(^ack)’x<ack>.ack.’e6.0
agent N6(e5,e6,e7,x)=e5.(^ack)’x<ack>.ack.’e7.0 + e6.(^ack)’x<ack>.ack.’e7.0
agent N7(e7,o,x)=e7.(^ack)’x<ack>.ack.’o.0
agent X(x,s)=x(ack).(t.’ack.0 | X(x,s)) + x(ack).(’s.’ack.0 | X_1(x))
agent X_1(x)=x(ack).(t.’ack.0 | X_1(x))
agent N(i,o,s)=(^e1,e2,e3,e4,e5,e6,e7,x)(N1(e1,i,x) | N2(e1,e2,x) | N3(e2,e3,e4,x) |

N4(e3,e5,x) | N5(e4,e6,x) | N6(e5,e6,e7,x) | N7(e7,o,x) | X(x,s))
agent S_WEAK(i,o,s)=i.(t.’o.0 + t.’s.’o.0)

abc > weq S_WEAK(i,o,s) N(i,o,s)
The two agents are not weakly related (30).

Further examples are omitted due to a lack of space.

1 Available at http://lampwww.epfl.ch/∼sbriais/abc/abc.html

http://lampwww.epfl.ch/~sbriais/abc/abc.html

20 F. Puhlmann

4.2 Efforts

This subsection takes a closer look at the complexity of deciding bisimulation. In
the general case, bisimulation equivalence on π-calculus agents is undecidable.
This is due to the Turing-completeness of the calculus, e.g. shown in [20]. What
can be decided, however, is non-equivalence of agents, since after finite number
of transitions, a counterexample has to be found. Nevertheless, our aim is to
prove that a π-calculus mapping of a business process fulfills a certain property,
hence it is equivalent.

The problems can partly be overcome by restricting the grammar of the π-
calculus variant applied. For the following discussion, we consider a business
process with a number of nodes, given by the following agent:

N
def
= (e1 , e2 , . . .)(

∏

i=1

Ni) .

Agents with Simple Sequences. Simple sequences, such as

N1
def
= 〈·〉.e1 .0 , N2

def
= e1 .〈·〉.e2 .0 and N3

def
= n2 .〈·〉.0 ,

can be enforced by removing recursion via defined agent identifiers from the
calculus. As a result, loops are prohibited. This significantly drops the effort for
most practical problem sizes. However, we also loose Turing-completeness.

Agents Mappings with Loops in the Business Processes. Agents that represent
business processes with loops, such as

N1
def
= 〈·〉.e1 .0 , N2

def
= e1 .〈·〉.((e1 .0 + e2 .0) | N2) and N3

def
= n2 .〈·〉.0 ,

can in most cases efficiently be checked, because the same state(s) appears over
and over again. However, we do not allow the creation of restricted names in
recursive passages, since this would lead to the next problem class.

Arbitrary Recursion and Restrictions. Agents such as

A
def
= a.(A1 (b) | A2)

A1 (prev)
def
= νnext create i〈next , prev 〉.A1 (next) + prev .0

A2
def
= create i(next , prev).(〈·〉.next .prev .0 | A2) .

where arbitrary restricted names can be created in recursive passages are hard to
verify, because new states are created all the way. However, this kind of problem
is only to be found in the multiple instances workflow patterns (as shown), which
can be abstracted by τ for verification.

Agents with massive non-determinism. Agents such as X and Y according to
weak and relaxed soundness contain massive amounts of non-determinism. This
has an exponential influence on the state space that needs to be checked. Con-
sequently, the most promising property regarding computational complexity is
lazy soundness.

Soundness Verification of Business Processes Specified in the Pi-Calculus 21

Solutions. Our current efforts go into the direction of implementing a domain-
specific bisimulation checker for BPM. The already restricted input set given
by process graphs is further stripped down by applying the asynchronous π-
calculus [20], which is also able to represent all workflow patterns. The goal of our
research is not limiting the input further, e.g. by only allowing block structures
or prohibiting loops. Instead, we are working on a simplification of the workflow
pattern formalization, the normalization and optimization of the generated agent
term, as well as including heuristics via external data (e.g. process graphs). In
this paper, we laid the formal foundations behind bisimulation-based soundness
verification.

5 Conclusion and Related Work

In this paper we have shown how invariants for π-calculus mappings of business
processes can be declared and proved. Besides introducing the general concepts in
section 2, we also investigated easy, lazy, weak, relaxed, and classical soundness in
section 3. The practical feasibility of our findings has been sketched afterwards in
section 4, where we sketched the question of computational complexity. However,
future research in this area is crucial for the practical applicability. In particular,
we will investigate different classes of inputs vs. different soundness properties.
While weak, relaxed, and classical soundness rely on link passing mobility, that
is not available in all process algebras, the general concepts can also be applied
to other algebras like CCS [26]. We already presented a tool chain for lazy
soundness as part of earlier research [18,27]. This paper goes one step further by
discussing the general concepts as well as missing soundness properties. To the
knowledge of the authors, no other approach using similarity and bisimilarity
for deciding different kinds of soundness has been published. Nevertheless, as we
already sketched in [27], also projection inheritance [28] for Petri nets can be
used.

Regarding foundational work, the different soundness definitions from van
der Aalst [11], Dehnert [12], and Martens [13] directly inspired our definitions.
Since these are given for Petri nets, we could only informally resemble them. For
instance, the black box verification of lazy soundness closely resembles the first
criterion of soundness for workflow nets:

∀M (i ∗−→ M) ⇒ (M ∗−→ o) .

It states that a workflow net has the option to always complete, i.e. deliver a
result from our perspective. The second criterion,

∀M (i ∗−→ M ∧ M ≥ o) ⇒ (M = o) ,

is resembled by weak soundness and the enhanced black box observation. It
states that a workflow net terminates the moment a token is in the final place,
i.e. the result is provided the moment the process instance is terminated. The
third criterion,

∀t∈T ∃M,M ′ i
∗−→ M

t−→ M ′ ,

22 F. Puhlmann

states that each task of a workflow net can participate in the workflow. It is
resembled by a subset of relaxed soundness as described in section 3.5.

Remarks. The definition of weak bisimulation has been simplified, since other-
wise more elaborate foundations for the π-calculus would be required (e.g. bound
and free names). The reader is refered to [14].

References

1. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing Web Service Chore-
ographies. In: Proceedings of First International Workshop on Web Services and
Formal Methods. Electronic Notes in Theoretical Computer Science, Elsevier, Am-
sterdam (2004)

2. Laneve, C., Zavattaro, G.: Foundations of Web Transactions. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

3. Bordeaux, L., Salaün, G.: Using Process Algebra for Web Services: Early Results
and Perspectives. In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS,
vol. 3324, pp. 54–68. Springer, Heidelberg (2005)

4. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus
for Service Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

5. Mazzara, M., Lanese, I.: Towards a Unifying Theory for Web Service Composition.
In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 257–272. Springer, Heidelberg (2006)

6. Ferrara, A.: Web Services: A Process Algebra Approach. In: ICSOC 2004. Pro-
ceedings of the 2nd international conference on Service oriented computing, pp.
242–251. ACM Press, New York, NY, USA (2004)

7. Decker, G., Zaha, J.M., Dumas, M.: Execution Semantics for Service Choreogra-
phies. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 163–177. Springer, Heidelberg (2006)

8. Burbeck, S.: The Tao of E-Business Services (2000)
9. Woodley, T., Gagnon, S.: BPM and SOA: Synergies and Challenges. In: Ngu,

A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE
2005. LNCS, vol. 3806, pp. 679–688. Springer, Heidelberg (2005)

10. Newcomer, E., Lomov, G.: Understanding SOA with Web Services. Addison–
Wesley, London (2005)

11. Aalst, W.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

12. Dehnert, J., Rittgen, P.: Relaxed Soundness of Business Processes. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–170.
Springer, Heidelberg (2001)

13. Martens, A.: Analyzing Web Service based Business Processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

14. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I/II.
Information and Computation 100, 1–77 (1992)

15. Puhlmann, F.: Why do we actually need the Pi-Calculus for Business Process
Management? In: Abramowicz, W., Mayr, H. (eds.) BIS 2006. 9th International
Conference on Business Information Systems, Bonn. LNI, vol. P-85, pp. 77–89.
Gesellschaft für Informatik (2006)

Soundness Verification of Business Processes Specified in the Pi-Calculus 23

16. Overdick, H., Puhlmann, F., Weske, M.: Towards a Formal Model for Agile Ser-
vice Discovery and Integration. In: Proceedings of the International Workshop on
Dynamic Web Processes (DWP 2005). IBM technical report RC23822, Amsterdam
(2005)

17. Puhlmann, F., Weske, M.: Using the Pi-Calculus for Formalizing Workflow Pat-
terns. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.)
BPM 2005. LNCS, vol. 3649, pp. 153–168. Springer, Heidelberg (2005)

18. Puhlmann, F., Weske, M.: Investigations on Soundness Regarding Lazy Activities.
In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp.
145–160. Springer, Heidelberg (2006)

19. Aalst, W., Hofstede, A., Weske, M.: Business Process Management: A Survey. In:
van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

20. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Paper-
back edn. Cambridge University Press, Cambridge (2003)

21. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.P.: Workflow Patterns. Dis-
tributed and Parallel Databases 14, 5–51 (2003)

22. Keller, G., Nüttgens, M., Scheer, A.: Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report 89, Insti-
tut für Wirtschaftsinformatik, Saarbrücken (1992)

23. OMG: UML 2.0 Superstructure Final Adopted specification (2003)
24. OMG.org: Business Process Modeling Notation. 1.0 edn. (2006)
25. Aalst, W., Hee, K.: Workflow Management. MIT Press, Cambridge (2002)
26. Milner, R.: A Calculus of Communicating Systems. In: Jones, N.D. (ed.) Semantics-

Directed Compiler Generation. LNCS, vol. 94, Springer, Heidelberg (1980)
27. Puhlmann, F.: A Tool Chain for Lazy Soundness. In: Demo Session of the 4th In-

ternational Conference on Business Process Management, CEUR Workshop Pro-
ceedings, Vienna, vol. 203, pp. 9–16 (2006)

28. Basten, T.: In Terms of Nets: System Design with Petri Nets and Process Alge-
bra. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands
(1998)

Extending BPMN for Modeling Complex

Choreographies

Gero Decker and Frank Puhlmann

Business Process Technology Group
Hasso Plattner Institut for IT Systems Engineering

University of Potsdam
D-14482 Potsdam, Germany

{gero.decker,frank.puhlmann}@hpi.uni-potsdam.de

Abstract. Capturing the interaction behavior between two or more
business parties has major importance in the context of business-to-
business (B2B) process integration. The Business Process Modeling No-
tation (BPMN), being the de-facto standard for modeling intra-organiz-
ational processes, also includes capabilities for describing cross-organiz-
ational collaboration. However, as this paper will show, BPMN fails to
capture advanced choreography scenarios. Therefore, this paper proposes
extensions to broaden the applicability of BPMN. The proposal is vali-
dated using the Service Interaction Patterns.

1 Introduction

With the rise of service-oriented architectures (SOA [1]), business process defini-
tions are more and more used as configuration artifacts for information systems.
Services, being loosely coupled components described in a uniform way, ideally
have such a granularity that they have business meaning. These services can be
orchestrated in executable business processes, e.g. described in BPEL [2]. This
enables an organization to quickly adapt to changing requirements and business
environments. Especially in inter-organizational settings, interconnected busi-
ness processes realized as services are at the center of attention. This calls for
languages suited for describing the interaction behavior between the different
services (a.k.a. the service choreography). Examples for such languages are Let’s
Dance [3] and WS-CDL [4]. Our aim is to use the popular Business Process
Modeling Notation (BPMN [5]) as choreography language.

The Service Interaction Patterns [6] describe a set of recurrent choreography
scenarios. They range from simple message exchanges to scenarios involving
multiple participants and multiple message exchanges. These patterns can be
used to evaluate choreography languages. Although the BPMN allows to define
choreographies through a swimlane concept and a distinction between control
flow and message flow, it only provides direct support for a limited set of the
patterns. This papers discusses these deficiencies and increases the suitability of
BPMN for choreography modeling by introducing language extensions.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 24–40, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Extending BPMN for Modeling Complex Choreographies 25

The remainder of this paper is structured as follows. The next section will
introduce a choreography example and assess BPMN for its pattern support.
Section 3 gives an overview of the proposed extensions, before section 4 validates
the extensions by investigating on their pattern support and section 5 further
discusses our results. Section 6 reports on related work and finally section 7
concludes and gives an outlook to future work.

2 Assessment of BPMN

Figure 1 shows an auctioning scenario represented in BPMN. It involves three
roles, namely seller, bidder and auctioning service. Every time a seller decides to
initiate an auction, it sends an auction creation request to the auctioning service.
This triggers the instantiation of the auctioning service’s process. The auction
is scheduled to start at a defined point in time. Once this moment is reached,
different bids are received by the auctioning service. Bids are placed by different
bidders and an individual bidder is allowed to place several bids. The latter allows
a bidder to react on higher bids from other bidders. Once the auction is over, it is
checked if at least one bid has been received. If this is not the case, the auctioning
service informs the seller and the choreography instance (a.k.a. conversation)
ends. Otherwise, the winning bidder is selected and the seller is informed about
who won. Those bidders who were not successful are notified. The winning bidder
is informed, which finally leads to payment and the delivery of the goods.

The figure illustrates the different participant behavior descriptions which are
interconnected through message flow. We omitted the (required) BPMN end
events due to space reasons. We represented the receipt of multiple bids via a
loop marker in the “receive bid” task. The end of the auction is denoted with an
intermediate timer event attached to the receive and send bid activities of the
auctioning service and the bidder. We used the event-based gateway to route
the sequence flows of the seller and the bidder according to the outcome of the
auction. Furthermore, we used the multiple instances marker to represent the
parallel emission of all sorry messages.

The resulting BPMN diagram captures the processes of each participant, the
bidder, the auctioning service, as well as the seller. However, several aspects
could not be captured.

– Multiplicity of participants. In our scenario, several bidders take part in
one conversation. All bidders must conform to the same interaction behavior
as depicted in the BPMN diagram. However, in addition to the mere fact
that we have many bidders involved, we need to distinguish them: Only one
bidder can win the auction. It is only her to receive the completion message,
whereas the others receive sorry messages. It is only her to perform payment
and to receive the product.

– Correlation. The auctioning service receives messages from different bid-
ders. As we are dealing with an asynchronous setting, it is essential for a
participant to correlate messages exchanged with the same interaction part-
ner. Imagine more complex sub-conversations between the auctioning service

26 G. Decker and F. Puhlmann

Fig. 1. BPMN choreography describing an auctioning scenario

Extending BPMN for Modeling Complex Choreographies 27

and the bidders. Here, the different sub-conversations with the different bid-
ders need to be distinguished from each other.

– Participant reference passing. The winning bidder—the buyer—needs
to contact the seller that is former unknown to her. To make this happen,
she somehow needs to gain knowledge about the seller. Hence, the auctioning
service passes the reference to the seller to her. In turn, the seller needs to
make sure that she only accepts payment from the winning bidder. This can
only be ensured if the auctioning service actually tells her who has won.

None of the these requirements can be properly represented in BPMN. This
has an effect on BPMN’s support for the Service Interaction Patterns as these
requirements also appear in the set of patterns.

Three of the four “single-transmission multilateral interaction patterns” in-
volve a set of participants, where the exact number might only be known at
runtime. Therefore, BPMN does not support this group of patterns (except for
Racing Incoming Messages, which is directly supported through the event-based
gateway). The multiplicity problem also applies to Contingent Request, where a
participant sends a request to another participant. If this participant does not
respond within a given timeframe, a third participant is contacted. As the length
of the list of potential recipients of request might not be known at design-time,
BPMN does not support this pattern.

Request with Referral involves participant reference passing. Also Relayed Re-
quest might involve reference passing. Here, a participant A makes a request to
a participant B who delegates it to yet another participant C. C subsequently
interacts with A, while B observes a view of the interactions. As C might not
know A in advance, B might need to send the reference of A when delegating
the request. Therefore, both Request with Referral and Relayed Request are not
supported in BPMN. In analogy to [7], we do not consider Dynamic Routing in
this assessment as the pattern description is too imprecise.

Only patterns Send, Receive, Send/receive, Racing Incoming Messages and
Multi-responses are directly supported in BPMN. Therefore, we present BPMN
extensions that overcome the illustrated issues in the next section.

3 BPMN Extensions

We introduce extension for the BPMN that allow the representation of multiple
participants, correlations, and reference passing.

3.1 Participant Sets

Pools can represent individual participants in BPMN. As we have seen in the
previous section we need to distinguish those cases where at most one partici-
pant of a particular participant type is involved in one conversation or if there
can be potentially many participants involved. In our auctioning example, there
is exactly one seller and one auctioning service involved in one conversation.
However, we have potentially many bidders involved.

28 G. Decker and F. Puhlmann

(a) Participant sets (b) References (c) Reference sets

(d) Reference passing

Fig. 2. BPMN extensions

For representing multiple participants we introduce shadowed pools as new
notational element, shown in figure 2(a). A set of participants of the same type
involved in the same conversation is called a participant set.

3.2 References

The main challenge with participant sets is that we need to distinguish individual
participants out of this set. We do this via references as shown in figure 2(b).
A reference is a special data object enhanced with 〈ref〉. A reference can be
connected to a flow object via associations. We give the following semantics to
the different connection directions:

– A reference can be written by a flow object (represented by an association
from the flow object to the reference). (i) If the flow object is a receive
activity, e.g. an intermediate message event or an activity with incoming
message flow, the reference will point to the sender upon message receipt. If
the reference already pointed to a participant, the reference will simply be
overwritten. (ii) If the flow object is not a receive activity, it is not specified
what participant the reference will point to. Consider the selection of the
buyer in our example.

– A reference can be read by a flow object (represented by an association from
the reference to the flow object). (i) If the flow object is a send activity,
the message will be sent to the participant the reference points to. In our
example the auctioning service sends a completion notification to exactly
that bidder out of the bidder set, who was selected to have won the auction.
(ii) If the flow object is a receive activity, then a message is only awaited
from the defined participant. E.g. the seller only waits for payment from the
buyer. (iii) If the flow object is neither a send nor a receive activity, it is not
specified what happens with that reference inside the activity.

References cover those cases where an individual participant needs to be iden-
tified. However, we might need to select subsets of the participants involved in

Extending BPMN for Modeling Complex Choreographies 29

one conversation. In our example, this is the case for those bidders who did not
win the auction. We need to send a sorry message to all of them—but we must
not send this message to the winning bidder. We introduce reference sets as
shown in figure 2(c) with the following semantics:

– A reference set can be modified by a flow object (represented through an
association from the flow object to the reference set). (i) If the flow object is
a receive activity, a reference to the sender of the message will be added to
the reference set if such a reference is not already contained in the set. In our
example we find a “receive bids” activity where bids from different bidders
are received. In case a bidder who has already placed a bid in the same
auction places another bid, no reference will be added to the set. However,
if a new bidder takes part, a reference will be added. (ii) If the flow object is
not a receive activity, it is not specified, what exactly happens with the set.
It might be overwritten completely or references might be added, removed
or changed.

– A reference set can be read by a flow object. (i) If the activity is a looped
activity, i.e. a sequential loop or a multiple-instances activity, the reference
set determines the number of repetitions or instances. This requires that at
most one reference set serves as input for a looped activity. A special case
is a looped send activity. Here, a message is sent to every of the referenced
participants. In those cases, where the looped activity is a complex activity, a
reference can be placed inside this activity which will represents the selected
reference out of the set for a particular instance or repetition. (ii) If the
activity is not a looped activity, it is not specified how the reference set is
used within the activity. In our example, the “select buyer” activity takes
the reference set as input and selects the winning bidder.

3.3 Reference Passing

References can be passed to other participants as shown in figure 2(d). The ref-
erence is connected to a message flow with an undirected association. The passed
reference can be connected to other flow objects with directed associations. In
figure 2(d), the passed reference is used in the task.

3.4 Example

The example from figure 1 is extended with the proposed extensions, shown in
figure 3. First of all, a shadow was added to the pool of the bidder to repre-
sent a participant set. The “receive bid” task of the auctioning service collects
the references of the different bidders into a reference set. The reference set
is forwarded to the “select buyer” task. Inside this task, the successful bidder
is selected and placed into a new reference, denoted as buyer. The remaining
references of the bidders reference set are placed into an others reference set.
The others reference set is used as an input to the “send sorry message” task.
Here, an instance is created for each element of the set. Hence, all unsuccessful
bidders are notified. The buyer reference is forwarded to the “send completion

30 G. Decker and F. Puhlmann

Fig. 3. The auctioning scenario represented using the extended BPMN

Extending BPMN for Modeling Complex Choreographies 31

notification” task, where it determines the instance of the bidder that should be
contacted. Furthermore, it is passed to the seller, where it is used as an input for
the reception of the payment as well as determining the reference of the bidder’s
instance to which the product should be sent. Finally, a reference of the seller
is passed to the successful bidder. This reference is acquired implicitly via the
initial interaction between the seller and the auctioning service.

4 Validation

This section validates the proposed BPMN extensions by investigating how the
Service Interaction Patterns can be represented. It is notable that many of the
patterns require multiple participants and/or dynamic binding of interaction
partners via reference passing.

4.1 Single Transmission Bilateral Interaction Patterns

The single transmission bilateral interaction patterns represent basic interaction
behavior. Graphical representations are shown in figure 4.

(a) Send (b) Send to Reference (c) Receive

(d) Receive from Refer-
ence

(e) Receive Reference (f) Send/Receive

(g) Send to / Receive from Reference

Fig. 4. Single transmission bilateral interaction patterns

32 G. Decker and F. Puhlmann

Send: A process sends a message to another process. The Send interaction pat-
tern is depicted in figure 4(a). It is an assumption that the receiver gains knowl-
edge about the reference of the requester. If the message flow is targeted at
a participant set, the matching instance has to be determined via a reference,
shown in figure 4(b).

Receive: A process receives a message from another process. The Receive inter-
action pattern is depicted in figure 4(c). According to the previous pattern, the
receiver automatically gains knowledge about the reference of the requester. If
the message should be received from a particular instance of a participant set, a
reference according to figure 4(d) has to be used. If a message is received from
an unspecified instance of the participant set, the corresponding reference can
be collected, shown in figure 4(e).

Send/Receive: A process X engages in two causally related interactions. In the
first interaction X sends a message to another process Y (the request), while
in the second one X receives a message from Y (the response). A combined
send/receive interaction is shown in figure 4(f). Once again, due to a one to
one multiplicity, the correlation between requester and provider is evident. If
the interaction partner is a certain instance of a participant set, a reference
according to figure 4(g) has to be used.

4.2 Single Transmission Multilateral Interaction Patterns

The single transmission multilateral interaction patterns represent one to many
or many to one interactions. Graphical representations are shown in figure 5.

Racing Incoming Messages: A process expects to receive one among a set of
messages. These messages may be structurally different (i.e. different types) and
may come from different categories of processes. The way a message is processed
depends on its type and/or the category of processes from which it comes. Fig-
ure 5(a) shows the solution to this pattern. If several instances of a participant
set should be used instead of Y and Z, a single receive task is sufficient.

One-to-many Send: A process sends messages to several other processes. The
messages all have the same type (although their contents may differ). This pat-
tern is depicted in figure 5(b). The multiple instance task A sends a message to
each reference contained in the reference set. We assume that all participants
referenced are of the same type.

One-from-many Receive: A process receives a number of logically related mes-
sages that arise from autonomous events occurring at different processes. The
arrival of messages needs to be timely so that they can be correlated as a single
logical request. The one-from-many receive pattern is shown in figure 5(c). The
references of the senders are collected in a reference set created in the loop-type
task A. If enough messages have been gathered (decided internally inside A),
the standard outgoing sequence flow is activated. If instead a timeout occurred,
the interaction failed.

Extending BPMN for Modeling Complex Choreographies 33

(a) Racing incoming mes-
sages

(b) One-to-many send (c) One-from-many receive

(d) One-to-many send/receive

Fig. 5. Single transmission multilateral interaction patterns

On-to-many send/receive: A process sends a request to several other processes,
which may all be identical or logical related. Responses are expected within a
given timeframe. However, some responses may not arrive within the timeframe
and some processes may even not respond at all. The One-to-many Send/receive
pattern is shown in figure 5(d). The associated reference set points to the par-
ticipants that should be included. Like in the preceding pattern, also in this
pattern the task B decides if enough responses have been gathered in the given
timeframe. The figure includes a reference y’ used within the sub-process. This
reference is to be filled for every instance that is spawned, as already mentioned
in section 3.2.

4.3 Multi Transmission Interaction Patterns

The multi transmission interaction patterns represent many to many interac-
tions. Graphical representations are shown in figure 6.

Multi-responses: A process X sends a request to another process Y. Subsequently,
X receives any number of responses from Y until no further responses are re-
quired. The trigger of no further responses can arise from a temporal condition
or message content, and can arise from either X or Y’s side. This pattern is
depicted in figure 6(a). The task D of X sends an initial request to task A of Y.

34 G. Decker and F. Puhlmann

(a) Multi-responses

(b) Contingent requests

Fig. 6. Multi transmission interaction patterns

Task B of Y responds until they are no more responses. Task E in X receives
the responses until (1) a timeout occurs, (2) E decides to have gathered enough
responses, or (3) a stop messages arrives from Y.

Contingent Requests: A process X makes a request to another party Y. If X does
not receive a response within a certain timeframe, X alternatively sends a request
to another process Z, and so on. This pattern is shown in figure 6(b). Initially, a
reference set is passed to a task that selects a certain reference out of the set. The
downstream task A receives this reference and initiates a request. Task B tries to
receive the response. If no response is received in the given timeframe, another
reference out of the reference set is selected and processed as described. What
cannot be captured with our extensions, however, is the reception of messages
from previous requests that failed due to a timeout.

Atomic Multicast Notification: A process sends notifications to several parties
such that a certain number of parties are required to accept the notification within
a certain timeframe. This pattern requires transactional behavior spanning mul-
tiple processes. Transactions are included in BPMN, however, they must only be
applied within one process. Distributed transactions are not supported. There-
fore, we can only provide a workaround for this pattern in our extended BPMN.
It looks similar to One-to-many Send/receive with a completion condition at the
notifying side.

Extending BPMN for Modeling Complex Choreographies 35

(a) Request with Referral (b) Relayed Request

Fig. 7. Routing patterns

4.4 Routing Patterns

The routing patterns describe flexible interaction behavior between a set of pro-
cesses. Graphical representations are shown in figure 7.

Request with Referral: Process X sends a request to process Y indicating that
any follow-up response should be sent to a number of other processes (Z1, Z2,
. . . , Zn) depending on the evaluation of certain conditions. The solution to this
pattern is shown in figure 7(a). It uses reference passing to denote the instances
of Z that should receive the follow-up responses.

Relayed Request: Process X makes a request to process Y which delegates the
request to other processes (Z1, . . . , Zn). Processes Z1, . . . , Zn then continue

Table 1. BPMN vs. extended BPMN

Pattern BPMN ext. BPMN
Send + +
Receive + +
Send/Receive + +
Racing Incoming Messages + +
One-to-many Send - +
One-from-many Receive - +
One-to-many Send/Receive - +
Multi-reponses + +
Contingent Request - +/-
Atomic Multicast Notification - -
Request with a Referral - +
Relayed Request - +

36 G. Decker and F. Puhlmann

interacting with process X while process Y observes a “view” of the interactions
including faults. The interacting parties are aware of this “view”. The Relayed
Request pattern is shown in figure 7(b). While participant Z has immediate
knowledge of Y, it needs a reference to participant X. This is received via refer-
ence passing from Y.

4.5 Validation Summary

A comparison on the supported Service Interaction Patterns for the standard
BPMN as well as our proposed extension is shown in table 4.4. As already
argued previously, we do not support Atomic Multicast Notification and did not
consider Dynamic Routing in this assessment. Contingent Requests is also only
partly supported, since (late) responses from earlier requests are ignored.

5 Discussion

Our proposals make heavy use of refined data objects. A major problem with
BPMN data objects is that their semantics is not clearly defined in the BPMN
specification. E.g. it is unclear what it means if different activities write on the
same data object. Here, we simply assume that if an activity has write-access
to a data object, it (might) overwrite the entire content of the data object upon
completion. BPMN does not have the notion of collections or buffers, as they are
present in UML Activity Diagrams [8]. Therefore, we introduced a distinction
between simple data objects and data object sets, where we assume that write-
access to a data object set typically means that the activity (might) add an
object to the set. We do not require that data objects are only placed within
pools or only accessed from within one pool. However, we have to leave a detailed
discussion on BPMN data objects and their semantics to future work.

The BPMN extensions presented in this paper are aligned with the work done
on BPEL4Chor [9], an extension to abstract BPEL for modeling choreographies.
This becomes evident in the semantics of references and reference sets. Awaiting
messages from any sender vs. awaiting messages from a particular sender ex-
pressed through the absence or presence of a read-relationship between references
and receive activities is analogous to the semantics of BPEL4Chor participant
references that are either uninitialized or already set. Furthermore, the notion of
adding references to a reference set in case a message is received from a sender
that is not yet referenced in the set, is analogous to the notion of containment
of a BPEL4Chor participant reference in a participant reference set. However,
a detailed transformation of our extended BPMN to BPEL4Chor goes beyond
the scope of this paper and must be left to future work.

References express correlation in those cases where receive activities read ref-
erences. This defines who messages are to be received from. However, this notion
of correlation only covers a limited set of scenarios. Imagine settings, where the
same pair of participants engage in different parallel conversations. Here, our
notion of references is not sufficient to distinguish the different conversations.

Extending BPMN for Modeling Complex Choreographies 37

Furthermore, it might be important to specify what message parts correlation
is actually based on. E.g. a customer id or a shipment invoice number might be
used as concrete correlation identifiers. There might be even more sophisticated
correlation mechanisms needed, such as ranges of values or time-based corre-
lation of messages. [10] provides a set of correlation patterns that might be a
starting point for further refinements for correlation support.

In this paper we have left BPMN unchanged as much as possible while pro-
viding increased support for the Service Interaction Patterns. However, there is
a general discussion whether the interconnection modeling approach, as it is the
case for BPMN, is suited for choreography modeling at all. We have seen that
we basically define control flow on a per-participant basis. Corresponding send
and receive activities are connected through a message flow, jointly representing
interactions.

An alternative to this approach is interaction modeling, where atomic interac-
tions are the basic building blocks and control and data flow is defined between
them. The main advantage of this approach is that incompatibility between dif-
ferent participants cannot occur in choreography models. It also reduces the
number of modeling elements for representing a certain choreography. This in-
creases modeling speed and helps to keep the models readable. Control and data
flow dependencies are defined from a global perspective in the sense that (for
most constructs) it does not need to be expressed explicitly, to what particular
participant it actually belongs. Techniques for generating participant behavior
descriptions out of the interaction model then care about which participant ac-
tually has to enforce a certain dependency later on.

Sometimes it is not possible to generate participant behavior descriptions such
that all dependencies in the choreography are collectively enforced by them with-
out adding synchronization interactions. Such choreographies are called locally
unenforceable. For details please refer to [11] and [12]. A detailed comparison
between interconnection models and interaction models goes beyond the scope
of this paper and needs to be discussed in future work.

6 Related Work

BPMN enjoys widespread use in both industry and academia. [13] delivers an
assessment of BPMN regarding its support for the Workflow Patterns [14] as
well as its capabilities for the data and resource allocation perspective. However,
this assessment does not include the Service Interaction Patterns.

A range of languages where introduced for modeling choreographies. BPEL4-
Chor [9] adds a thin layer on top of abstract BPEL, interconnecting the different
participant behavior descriptions. Let’s Dance [3] and WS-CDL [4] follow the
interaction modeling approach as described in the previous section. Like BPMN,
Let’s Dance is mainly targeted at business analysts and comes with a graphi-
cal notation. WS-CDL is tightly linked to other web services standards such as
WSDL. Both languages have been assessed for their Service Interaction Pattern
support (cf. [7]). It turns out that Let’s Dance directly supports most patterns.

38 G. Decker and F. Puhlmann

WS-CDL is a little less suited for choreography modeling as it only comes with
limited support for expressing those scenarios where multiple participants of the
same type are involved in a conversation and the actual number of participants
is only known at runtime. Event-driven Process Chains (EPC) is another widely-
used process modeling language. In [15] extensions for inter-organizational pro-
cess modeling are proposed. However, there has not been an assessment using
the Service Interaction Patterns regarding their suitability.

There has also been work on mapping (subsets of) BPMN to formalisms. Di-
jkman et al. present a mapping to Petri nets in [16], enabling the verification
of soundness and liveless. However, the formalization does not include message
flows. Therefore, reasoning on choreographies is out of scope of their work. Wong
et al. present another formalization of BPMN based on Communicating Sequen-
tial Processes (CSP) in [17]. In [18] they then show how compatibility checking
can be carried out for BPMN choreographies. Other approaches for compatibility
checking in choreographies are introduced by Martens [19], Puhlmann et al. [20]
and Massuthe et al. [21]. A general introduction into the different viewpoints of
choreographies can be found in [22].

7 Conclusion

In this paper we have identified weaknesses of BPMN regarding its suitability
for choreography modeling. We based our assessment on the Service Interaction
Patterns and concluded that there is direct support for only five out of the twelve
patterns considered. We then proposed extensions to overcome these limitations
and validated the extended BPMN with the patterns.

In future work we are going to introduce a formal mapping for the new con-
cepts. This enables the verification of complex choreographies, including com-
patibility and conformance checking. In [23] we have already shown that name
creation and restriction in π-calculus are useful concepts for formalizing chore-
ographies. Therefore, we consider using π-calculus or a Petri net version en-
hanced with a name concept, e.g. similar to ν-nets as presented in [24], as formal
basis. The latter would enable us to reuse and extend the Petri-nets-mapping
in [16].

References

1. Burbeck, S.: The Tao of E-Business Services (2000)
2. Fallside, D.C., Walmsley, P.: Web Services Business Process Execution Language

Version 2.0. Technical report (2005),
http://www.oasis-open.org/apps/org/workgroup/wsbpel/

3. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: A Language for Service
Behavior Modeling. In: CoopIS 2006. Proceedings 14th International Conference
on Cooperative Information Systems, Montpellier, France, Springer, Heidelberg
(2006)

http://www.oasis-open.org/apps/org/workgroup/wsbpel/

Extending BPMN for Modeling Complex Choreographies 39

4. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation. Technical
report (2005), http://www.w3.org/TR/ws-cdl-10

5. OMG.org: Business Process Modeling Notation. 1.0 edn. (2006)
6. Barros, A., Dumas, M., Hofstede, A.: Service Interaction Patterns. In: van der

Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

7. Decker, G., Overdick, H., Zaha, J.M.: On the Suitability of WS-CDL for Choreog-
raphy Modeling. In: EMISA 2006. Proceedings of Methoden, Konzepte und Tech-
nologien für die Entwicklung von dienstebasierten Informationssystemen, Ham-
burg, Germany (2006)

8. Object Management Group (OMG): UML 2.0 Superstructure Specification (2005)
9. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4chor: Extending BPEL

for Modeling Choreographies. In: Proceedings International Conference on Web
Services (ICWS) (2007)

10. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-
Oriented Architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, Springer, Heidelberg (2007)

11. Zaha, J.M., Dumas, M., ter Hofstede, A., Barros, A., Decker, G.: Service Interaction
Modeling: Bridging Global and Local Views. In: EDOC 2006. Proceedings 10th
IEEE International EDOC Conference, Hong Kong, IEEE Computer Society Press,
Los Alamitos (2006)

12. Decker, G., Weske, M.: Local Enforceability in Interaction Petri Nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, Springer,
Heidelberg (2007)

13. Wohed, P., van der Aalst, W.M., Dumas, M., ter Hofstede, A., Russell, N.: On
the Suitability of BPMN for Business Process Modelling. In: Dustdar, S., Fiadeiro,
J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, Springer, Heidelberg (2006)

14. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

15. Seel, C., Vanderhaeghen, D.: Meta-model based extensions of the epc for inter-
organisational process modelling. In: Proceedings 4th GI-Workshop EPK 2005 -
Geschäftsprozessmanagement (2005)

16. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and automated analysis
of BPMN process models. Preprint 7115, Queensland University of Technology,
Brisbane, Australia (2007)

17. Wong, P.Y., Gibbons, J.: A process semantics for BPMN. Technical report, Oxford
University Computing Laboratory (2007),
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmnsem.pdf

18. Wong, P.Y., Gibbons, J.: Verifying business process compatibility. In: MTCoord
2007. Proceedings 3rd International Workshop on Methods and Tools for Coordi-
nating Concurrent, Distributed and Mobile Systems, Paphos, Cyprus (2007)

19. Martens, A.: Analyzing Web Service based Business Processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, Springer, Heidelberg (2005)

20. Puhlmann, F., Weske, M.: Interaction Soundness for Service Orchestrations. In:
Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 302–313.
Springer, Heidelberg (2006)

21. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1, 35–43 (2005)

http://www.w3.org/TR/ws-cdl-10
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmnsem.pdf

40 G. Decker and F. Puhlmann

22. Dijkman, R., Dumas, M.: Service-oriented Design: A Multi-viewpoint Approach.
International Journal of Cooperative Information Systems 13, 337–368 (2004)

23. Decker, G., Puhlmann, F., Weske, M.: Formalizing Service Interactions. In: Dust-
dar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp. 414–419.
Springer, Heidelberg (2006)

24. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in petri net
systems. In: Petri Nets 2007. Proceedings 28th International Conference on Appli-
cation and Theory of Petri Nets and other Models of Concurrency, Siedlce, Poland
(2007)

Semantics of Standard Process Models with

OR-Joins

Marlon Dumas1,2, Alexander Grosskopf3, Thomas Hettel4,1, and Moe Wynn1

1 Queensland University of Technology, Australia
{m.dumas, m.wynn}@qut.edu.au

2 University of Tartu, Estonia
marlon.dumas@ut.ee

3 Hasso-Plattner Institute, Potsdam, Germany
alexander.grosskopf@hpi.uni-potsdam.de
4 SAP Research Centre Brisbane, Australia

t.hettel@sap.com

Abstract. The Business Process Modeling Notation (BPMN) is an
emerging standard for capturing business processes. Like its predeces-
sors, BPMN lacks a formal semantics and many of its features are sub-
ject to interpretation. One construct of BPMN that has an ambiguous
semantics is the OR-join. Several formal semantics of this construct have
been proposed for similar languages such as EPCs and YAWL. However,
these existing semantics are computationally expensive. This paper for-
mulates a semantics of the OR-join in BPMN for which enablement of an
OR-join in a process model can be evaluated in quadratic time in terms
of the total number of elements in the model. This complexity can be
reduced down to linear-time after materializing a quadratic-sized data
structure at design-time. The paper also shows how to efficiently detect
the enablement of an OR-join incrementally as the execution of a process
instance unfolds.

1 Introduction

Business process management as a discipline has traditionally suffered from a
proliferation of process definition languages based on similar but subtly differ-
ent concepts and constructs. After numerous attempts, standardization efforts
in this space have converged towards two languages: the Business Process Mod-
eling Notation (BPMN) [13], which is intended for modeling business processes
primarily during the analysis and design phases, and the Business Process Ex-
ecution Language (BPEL) [9], which is intended for implementation and ex-
ecution of business processes in a service-oriented architecture. The standard
specifications of both of these languages are given in a narrative, informal style.
In the case of BPEL, a number of formalizations have been proposed [3]. On
the other hand, virtually no attempt has been made to attach a formal se-
mantics to BPMN, barring recent work on formalizing subsets thereof [17,7].
Compounded with the fact that executability has not been a major concern dur-
ing the standardization of BPMN, this has led to a standard specification with

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 41–58, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

42 M. Dumas et al.

Fig. 1. Process fragment with an OR-join (example inspired from [14])

numerous ambiguities. This situation raises the risk that different tools adopt
different interpretations of BPMN, especially those tools supporting process sim-
ulation and automated generation of executable process definitions which start
to emerge [16].

In separate work, we formalized a subset of BPMN [7]. One of the constructs
left aside in this formalization, as well as in reference [17], is the inclusive merge
gateway (hereafter called the OR-join). This construct corresponds to a workflow
pattern called “Synchronizing Merge” [2]. An OR-join is a point in a process
where several branches converge. For each of its incoming branch, the OR-join
will normally wait for a token indicating its completion; but if at some point in
time it can be determined that no token will ever arrive along a given incoming
branch, the OR-join will not wait for a token along that branch.

Figure 1 shows a use case of the OR-join. The first time this process frag-
ment is executed, both tasks “Abstract Variability” and “Specify Integrated
Subsystem” are executed in parallel. This parallel execution is captured by the
AND-split gateway (a lozenge with a “+” symbol). The OR-join (lozenge with an
“O” symbol) will then wait for both tasks to complete. Thereafter, the execution
proceeds along task “Generate Significant Paths” followed by “Generate Opti-
mal Path Combination”. After completion of this latter task, a choice is made
between repeating task “Specify Integrated Subsystem” or proceeding with the
rest of the process (not shown in the figure). When the second execution of
“Specify Integrated Subsystem” completes, the OR-join receives a token along
one of its incoming branches. The OR-join can fire at this point without waiting
for a token from task “Abstract Variability”, because this task is not executed
in the second round. In other words, the branch coming from task “Abstract
Variability” into the OR-join is not “active”, and thus the OR-join will not wait
for a token along this branch.

Formalizing the OR-join is challenging as highlighted by previous experiences
in defining semantics for languages that incorporate this construct, such as
EPCs [10] and YAWL [19]. Unlike other routing constructs, the OR-join has a
non-local semantics: in order to determine whether or not an OR-join is enabled,
it is not sufficient to examine the presence of tokens in its immediate vicin-
ity. Instead, enablement of an OR-join may depend on the presence or absence of

Semantics of Standard Process Models with OR-Joins 43

Fig. 2. Example of a vicious circle. Tokens are represented as black dots.

tokens in places far away in the model. Not surprisingly, the evaluation of en-
ablement for OR-joins using existing semantics is computationally expensive.

Another issue when defining a semantics for the OR-join, is that the state
of enablement of an OR-join (i.e. its ability to fire at a given point during the
execution) may depend on the state of enablement of another OR-join in the
model and vice-versa. In other words, two OR-joins may end up waiting for one
another, a situation known as a vicious circle [1]. An example of a vicious circle
is given in Figure 2. One may argue that such scenarios are hypothetical and
there is no harm in excluding them or giving them an arbitrary semantics that
generates deadlocks. However, in this paper we show that, without adding to
the complexity, we can define a semantics for the OR-join in BPMN that is able
to deal with such scenarios without generating deadlocks.

The contribution of this paper is a semantics of the OR-join in BPMN that
strikes a balance between precision in determining when an OR-join should fire,
and the computational complexity of determining whether or not an OR-join is
enabled. After formulating this semantics, the paper presents an algorithm that
allows enablement of a given OR-join in a model to be determined in quadratic
time in terms of the total number of elements in the model. This complexity
can be reduced to linear time if a quadratic-sized data structure is materialized
at design-time for each OR-join in the model. Furthermore, we show that the
proposed algorithm can be adapted to an incremental evaluation mode.

The rest of the paper is structured as follows. Some background on BPMN
is given in Section 2. Next, the semantics of BPMN models with OR-joins is
presented in Section 3, while Section 4 describes an algorithm for evaluating
enablement of an OR-join in a given state. Section 5 introduces an incremental
version of the algorithm that provides some additional optimization. Finally,
Section 6 discusses related work while Section 7 concludes.

2 Syntax of BPMN

This section introduces the BPMN notation and provides an abstract syntax for
BPMN process models.

2.1 BPMN Overview

A process model in BPMN is represented as a Business Process Diagram (BPD).
A BPD is a graph in which nodes correspond to activities or routing steps

44 M. Dumas et al.

Fig. 3. BPMN graphical elements

(collectively called objects), while edges correspond to flows of control or flows
of messages. Objects and flows can be grouped into pools and swimlanes to
capture domains of responsibility. They can also be associated with artifacts
that capture non-functional information. In this paper, we concentrate on the
control-flow semantics of BPMN and thus we leave aside pools, swimlanes and
artifacts. Also, since we only consider the semantics of one process model at a
time, as opposed to the semantics of multiple communicating processes, we leave
aside message flows. Figure 3 summarizes the constructs we focus upon.

An object can be an event, an activity or a gateway. An event, depicted as
a circle, represents something that can affect a process execution. Events are
classified based on their position in the graph into start events (events that
are source in the graph), end events (events that are sink in the graph) and
intermediate events. Events are also classified based on their triggering cause into
timer events, message events, etc. Given that the cause of an event is not relevant
from a control-flow perspective, we do not consider this latter classification.

An activity, depicted as a rounded rectangle, represents a unit of work. An
activity may correspond to an undecomposed task or to a subprocess invocation.
In this paper, we capture the execution of one individual process at a time. If
this process invokes another one, the invoked subprocess is seen as a black-box,
and accordingly, we treat its execution as that of an undecomposed task.

A gateway is used to control branching, forking, merging, and joining of paths
and is represented using a diamond. There are different gateway types: (i) exclu-
sive gateways for selecting one branch among a set of alternative branches based
on data or events (XOR-split), or for merging a number of alternative branches
(XOR-join); (ii) parallel gateways for forking one branch into multiple concur-
rent branches (AND-split) or for merging multiple concurrent branches into
one (AND-join) using a barrier-synchronization policy; (iii) inclusive gateways
for choosing one or multiple branches based on boolean expressions (OR-split),
or for synchronizing multiple branches while waiting only for those branches that

Semantics of Standard Process Models with OR-Joins 45

are active (OR-join); and (iv) complex gateway for modeling complex branching
conditions and synchronization policies (e.g., wait for 3 branches out of 5).

Objects in a BPD are related by means of sequence flows and exception flows.
A sequence flow captures a sequential dependency: when the task completes
normally, a token is placed on each of its outgoing sequence flows. Meanwhile, if
an error occurs during the performance of an activity, the activity is interrupted
and a token is placed in the exception flow corresponding to that error.

2.2 Abstract Syntax

Abstracting from its concrete syntax, a BPD can be thought of as containing
various types of objects and flows as captured by the following definition.

Definition 1 (Business Process Diagram (BPD)). A BPD is a tuple
BPD=(O, A, G, E, GX , GP , GI, GC, GE , ES , EI , EE , F , abf), where

– O is a set of objects which can be partitioned into disjoint sets of activities
A, gateways G and events E,

– G is a set of gateways which can be partitioned into disjoint sets of exclusive
OR gateways GX , parallel AND gateways GP , inclusive OR gateways GI ,
complex gateways GC and event-based gateways GE ,

– E is a set of events which can be partitioned into disjoint sets of start events
ES , intermediate events EI and end events EE ,

– F ⊆ O × O is the flow relation between objects.
– abf : GC → O is a function capturing the preconditions for a complex gateway

to be enabled, as discussed later in Section 3.2.

The relation F defines a directed graph over the set of objects O. For any object
x ∈ O, the set of direct predecessors is given by pred(x) = {y ∈ O|yFx} and
analogously the set of direct successors is given by succ(x) = {y ∈ O|xFy}.
F∗ is the reflexive transitive closure of F . The set of all direct and transitive
predecessors of an object x is given by function pred∗(x) = {y ∈ O|yF∗x}.

A BPD as defined in Definition 1 has no structural requirements in terms of
a starting point or an end point. Typically, a business process model has one
starting point, one or more end points and all the objects used in the modeled are
connected. Definition 2 defines minimal structural requirements for a (connected)
BPD, i.e., there is a start event, there is one or more end events and every object
is on a path from the start event to an end event.

Definition 2 (Connected BPD). A BPD = (O, A, . . .) is connected if it
satisfies the following conditions:

– there is exactly one start event with zero incoming flow and at least one
outgoing flow: |ES | = 1 ∧ ∃s ∈ ESpred(s) = ∅ ∧ |succ(s)| ≥ 1

– there is one or more end events with incoming flows and zero outgoing flow:
|EE | ≥ 1 ∧ ∀e ∈ EE |pred(e)| ≥ 1 ∧ succ(e) = ∅

– every object (other than the start and end events) is on a path from a start
event to an end event: ∀x ∈ O \ (ES ∪ EE) ∃s ∈ ES ∃e ∈ EE sF∗x ∧ xF∗e.

46 M. Dumas et al.

We assume that all BPDs are connected. We also assume, without loss of gener-
ality, that every gateway in a BPD is either a split gateway (it has one incoming
flow and multiple outgoing flows) or a join gateway (multiple incoming flows
and one outgoing flow). Similarly, we assume that activities and intermediate
events have only one incoming flow and one outgoing flow. It is straightforward
to expand a BPD that does not satisfy these conditions into one that does by
applying simple expansion rules. For example, if an activity has multiple incom-
ing flows it is equivalent to a structure where these flows lead to an XOR-join
gateway and this gateway has a flow that leads into the activity in question.
The above conditions together with the connectedness requirement entail that
no activity or event in a BPD is both the source and target of the same flow.

We have excluded exception flows from the abstract syntax. To simplify the
presentation of the proposed OR-join semantics and without loss of generality, we
assume that a BPD is pre-processed as follows in order to replace all exception
flows with gateways and sequence flows. If an activity contains at least one
exception flow, all the outgoing flows of this activity are deleted and replaced
by one single sequence flow that leads to an exclusive decision gateway (i.e. an
XOR-split). This XOR-split has multiple branches: one branch corresponds to
the sequence flow going out of the activity, and the other branches correspond to
the various exception flows, and these exception flows are replaced with normal
sequence flows. The idea is that once an activity completes (whether normally
or abnormally) a decision is made to determine if the sequence flow is taken
(if the task completed normally), or one of the exception flows is taken (if the
task completed due to an error). This decision is captured by such a decision
gateway, and in doing so, all the exception flows are replaced with sequence
flows. Hereafter, we will use the term flow to refer to a sequence flow.

3 Semantics of BPMN Models

This section formulates a semantics for the OR-join in BPMN. After some con-
siderations regarding the notion of the OR-join, the section introduces a formal
definition of enablement of objects in BPMN process models with OR-joins.

3.1 Informal Definition

The BPMN specification makes vague statements about the meaning of the
OR-join, such as: “the Inclusive Gateway [...] will wait for (synchronize) all
Tokens that have been produced upstream. It does not require that all incoming
Sequence Flow produce a Token (as the Parallel Gateway does). It requires that
all [Tokens] that were actually produced by an upstream [object arrive].”1 The
clarity of this statement is hampered by the fact that the term “upstream” is
not defined, and its meaning is unclear if there are cycles in the graph. Also, this
statement does not clarify how many tokens from each incoming flow should the
OR-join wait for.
1 This sentence is incomplete in the specification, so we have added the last two words.

Semantics of Standard Process Models with OR-Joins 47

From a detailed reading of the BPMN specification, and from the definition
of the Synchronizing Merge pattern [2] to which the BPMN specification refers
to, we can distill the following characteristics of the OR-join:

– In line with the definition of all other gateways in BPMN, a necessary con-
dition for an OR-join to be enabled is that there is at least one token in at
least one of its incoming flows.

– A sufficient condition for an OR-join to be enabled is that there is at least
one token in each of its incoming flows, i.e. all branches have “completed”.

– If an incoming flow of the OR-join has no token, a necessary condition for
the OR-join to be enabled is that it is not possible for a token to reach this
flow. This captures the notion of waiting for tokens produced “upstream”.

Thus an OR-join has a behavior in-between the XOR-join and the AND-join.
The XOR-join waits for one token in one of its incoming flows, while the AND-
join waits for one token in each of its incoming flows. The OR-join may behave
like an XOR-join, or like an AND-join, or like something in-between depending
on the state of the process instance. Another characteristic of the OR-join is
that it only waits for tokens that will eventually arrive. As a result, an OR-join
will not deadlock in situations where an AND-join would. For example, if we
replaced the OR-join in Figure 1 with an AND-join, a deadlock would occur if
task “Specify Integrated Subsystem” was repeated.

We decompose the control-flow semantics of objects in BPMN into an en-
ablement rule and a firing rule. The enablement rule determines if the object is
ready to fire in a given state. If one or more objects are enabled, the execution
environment may select any one of them and fire it. The firing rule determines
what happens then. For example, when an AND-join fires, it consumes one to-
ken from each of its incoming flows and it produces one token in its outgoing
flow. On the other hand, when an OR-join fires, it consumes one token from
each incoming flow that has a token, and it produces a token in the outgoing
flow. The definition of firing rules for the various types of BPMN objects, in-
cluding gateways, does not pose major challenges. Accordingly, we focus on the
enablement rules, especially the one for the OR-join.

Given the above characteristic of the OR-join, we propose the following OR-
join enablement rule:

An OR-join o is enabled if there is at least one token in one of its incoming
flows, and for each of its incoming flows f , either f has at least one token
or, taking as an assumption that o will not fire, no token will arrive to
flow f through a sequence of firings starting from the current state.

One variable in this informal definition is how to determine that no token will
ever arrive to flow f . In the semantics of the OR-join for YAWL [18], a far-
sighted approach is taken. Conceptually, the entire set of possible future states is
computed to determine if, in any of these possible states, there will be at least one
token in the incoming flow in question. This far-sighted approach ensures that
the OR-join is enabled as early as possible. But its computational complexity

48 M. Dumas et al.

is proportional to the number of possible states, as opposed to the number
of elements in the model. To avoid this computational problem, we propose a
“myopic” (or “short-sighted”) approach: we can determine that no token will
ever arrive to flow f , if we can determine that none of the direct or indirect
predecessors of f is enabled.

This definition also needs some refinement to deal with cycles containing OR-
joins. Hereafter, we say that two OR-joins are in structural conflict if one is a
predecessor of the other and vice-versa. At a given state, two OR-joins are said
to be in partial conflict if they are in structural conflict and each of them has
at least one token in at least one of its incoming flows. Finally, two OR-joins
are said to be in full conflict iff they are in structural conflict and they are only
waiting for each other to fire first so that they can become enabled. This scenario
was illustrated in Figure 2. Also, if an OR-join is part of a loop, this OR-join is
in structural conflict with itself, and if some of its input flows contain a token,
the OR-join may end up being in full conflict with itself.

With respect to the above enablement rule, partial and full conflicts raise the
following issue: In the process of determining whether the OR-join o1 is enabled,
we may need to recursively ask ourselves the question of whether o1 is enabled;
or in the process of determining whether o1 is enabled, we ask the question
of whether another OR-join o′1 is enabled, and in determining whether o′1 is
enabled we ask the question of whether o1 is enabled. At least two approaches
are possible to break such vicious circles [19]. We could be “optimistic” and say
that o1 is enabled if it has at least one of its input flow marked. Or we can be
“pessimistic” and say that o1 is enabled if and only if tokens are present at each
of its incoming branches. Adopting an optimistic strategy can lead to deadlocks
[20], for example in the full conflict depicted in Figure 2. Accordingly, in this
paper, we adopt a pessimistic strategy: in the case of a partial or full conflict
between o1 and o′1, gateway o1 will treat o′1 as not enabled, and reciprocally, o′1
will treat o1 as not enabled. Consequently, both o1 and o′1 will be enabled if they
are in full conflict.

3.2 Formal Definition of Enablement

From a control-flow perspective, the state of an instance of a BPD can be cap-
tured as a set of tokens distributed among the flows composing the BPD. We
can think of a flow f ∈ F as a place where tokens are stored. Initially, one token
is located in each of the flows emanating from the start event of a BPD. As the
execution of the BPD proceeds, tokens are removed from certain flows and added
to other flows according to the firing rules. Hence, the state of a process instance
at a given state can be captured using a token count function tc : F → N that
takes as input a flow and returns the number of tokens stored in that flow. Flows
are represented as pairs of objects (o1, o2).

Definition 3 formalizes the conditions for enablement of different types of
objects. It defines a function that takes as parameter an object, a state of a
BPD execution and a set of “visited objects” V .

Semantics of Standard Process Models with OR-Joins 49

Definition 3 (Object Enablement). Given a BPD and a token count func-
tion tc, an object o is enabled in the state represented by tc iff enabled(o, tc, ∅)
is true, where: enabled: O × (F → N) × (℘(O) → B) is defined as follows:

enabled(o1, tc, V) =
o1 ∈ GX ∧ ∃o2 ∈ pred(o1)tc((o2, o1)) ≥ 1 ∨
o1 ∈ (A ∪ EI)∧ ∃o2 ∈ pred(o1) \ GE tc((o2, o1)) ≥ 1 ∧

∃o2 ∈ pred(o1) ∩ GE ∃o3 ∈ pred(o2) tc((o3, o2)) ≥ 1 ∨
o1 ∈ GP ∧ ∀o2 ∈ pred(o1) tc((o2, o1)) ≥ 1 ∨
o1 ∈ GC ∧ ∃s ∈ abf (o1) ∀o2 ∈ s tc(o2, o1) ≥ 1 ∨
o1 ∈ GI ∧ o1 ∈ V ∧ ∃o2 ∈ pred(o1) tc(o2, o1) ≥ 1∧

∀o2 ∈ pred(o1) tc(o2, o1) = 0 ⇒
¬∃o3 ∈ pred∗(o2) enabled(o3, tc, V ∪ {o1})

For objects other than OR-joins, it is straightforward to determine if they are
enabled. For example, an exclusive gateway (GX) is enabled if there is at least
one token in at least one of its incoming flows.2 Activities (A) and intermediate
events (EI) are also enabled if there is at least one token in their incoming
flow. An exception to this latter rule occurs if one of the predecessor of the
activity or event in question is an event-driven choice gateway. In this case, the
activity/event is enabled if there is at least one token in one of the incoming
flows of that event-driven choice gateway. A parallel gateway (GP) requires all
incoming flows to carry a token for enablement. For the complex gateway (GC),
a subset of the incoming flows need to all contain at least one token. In the
concrete syntax of BPMN, a boolean condition over sequence flows is given to
capture under which situations is a complex gateway enabled, i.e. which are the
possible subsets of incoming flows that need to contain tokens for the complex
gateway to fire. Here, we abstract away from the concrete syntax and we assume
the existence of a function abf which given a complex gateway o1 in a BPD,
retrieves the set of possible subsets of predecessors of o2, such that a token
needs to be present in each flow (o2, o1) for the complex gateway to be enabled.

For inclusive OR Gateways (GI), specifically those with more than one in-
coming flow (i.e. OR-joins), the semantics is more complicated. The informal
semantics is such that if any object in the set of predecessors of an OR-join is
enabled, the OR-join should wait. If there is at least one token at each of the
incoming flows of an OR-join, the OR-join is clearly enabled. Otherwise, it is
necessary to explore some or all of the predecessors of the OR-join, to detect
whether the OR-join needs to wait for them or not. This may lead to a recur-
sive definition if an OR-join is its own set of predecessors. To avoid an infinite
recursion, the definition of enablement keeps track of the set of OR-joins that
have been visited. This is the role of parameter V .

The first time an OR-join is visited, its semantics is treated as non-local: the
OR-join is enabled if and only if there is at least one token in one of the incoming
flows and all predecessors along incoming flows with no tokens are disabled. For

2 Event-driven choice gateways (GE) are never enabled. Their presence however deter-
mines whether or not the objects that immediately succeed them are enabled.

50 M. Dumas et al.

Fig. 4. Checking if a non-visited OR-join is enabled

example, Figure 4 shows an OR-join with three incoming flows. The flow coming
from A contains a token (shown as a black dot). To determine if this OR-join is
enabled, we inspect the set of predecessors along the other flows (which have no
tokens in the current state) and we check that none of them is enabled.

Meanwhile, if an OR-join has already been visited, it is necessarily in partial
or full conflict with another OR-join. Indeed, an object o is only added to the
set of visited objects V by a recursive call to function enabled , with the first
parameter of this call being a predecessor of o along an empty flow. So if o
has already been visited, it means that there is an OR-join o′1 such that o′1 ∈
pred*(o1) ∧ o1 ∈ pred*(o′1) and such that function enabled has been previously
called with o′1 as first parameter and this call generated a call to enabled with
o1 as first parameter.3 Thus, we have a situation where, to determine if o′1 is
enabled, we ask the question of whether or not o1 is enabled, and vice-versa as
depicted in Figure 2. To resolve this conflict, we treat o1 as not enabled with
respect to o′1. Accordingly, if o1 ∈ V , the function evaluates to false.

4 Algorithm for Determining Enablement of an OR-Join

A naive implementation of the formal definition of enablement is computationally
expensive. To determine whether an OR-join is enabled, a naive algorithm needs
to potentially visit every predecessor of the OR-join (transitive or not), and
for each non-visited OR-join in this set of predecessors, it needs to make a
recursive call. In the worst-case, each object is a predecessor of each other and
then, the number of recursive calls of the enablement function is equal to the
number of objects in the BPD minus the number of visited objects. Thus, the
complexity of the naive algorithm is captured by the following recursive function:
c(T, X) = (N−X)×c(N, X−1) where N is the number of objects in the BPD and
X is the number of visited objects. Given a BPD with T tasks, the complexity
of the function call enabled(o, tc, { }) is thus in the order O(T !).

The problem with the naive algorithm is that each object is examined a re-
peated number of times, and each time, the same question is asked, namely “is
the object enabled?” If the BPD is primarily composed of OR-joins and all these
OR-joins are in structural conflict, this leads to a combinatorial explosion.
3 Here, o1 and o′

1 may be the same object.

Semantics of Standard Process Models with OR-Joins 51

Below we present an algorithm that overcomes this combinatorial explosion
by avoiding the recursion. We achieve this by making the following observation:
An OR-join for which enablement needs to be determined (say gateway o1) does
not actually need to know whether a preceding OR-join (say o′1) is enabled or
not. What is important is to determine if o1 must wait for o′1 assuming that o1

is not waiting for any other of its precedessors. Indeed, the algorithm will visit
all relevant predecessors of o1, and if it determines that o1 needs to wait for any
of them, the algorithm will return false. Under this assumption gateway o1 must
wait for o′1 if the following conditions hold:

1. There is at least one token in at least one incoming flow of o′1.
2. There is at least one token in each incoming flow of o′1 that is part of a path

starting at o1 and finishing at o′1.4

The first condition is a necessary condition for enablement of an OR-join, and
thus it is a necessary condition for o1 to have to wait for o′1. The second condition
is also necessary. If this condition was false for a given path from o1 to o′1, then
o1 and o′1 are in full conflict, thus entailing that o1 must not wait for o′1. Indeed,
we are assuming that o1 is not waiting for any other of its predecessors to fire.
We can then conclude that o′1 is not waiting for any of its predecessors neither
(apart from o1) since all predecessors of o′1 are also predecessors of o1. So o1 and
o′1 are waiting only for one another, and hence they are in full conflict.

The two conditions are also sufficient for o1 to have to wait for o′1. Indeed,
one of the characteristics of the definition of the OR-join is that if there is a
token in one of the incoming flows of this OR-join (o′1 in this case), this OR-join
will eventually fire. Hence, if the first condition is true then o1 must wait for
o′1 unless there is a possibility of a full conflict between the two gateways. This
latter case is excluded if the second condition also holds.

We split the proposed algorithm into two functions: one for determining the
enablement of any object except an OR-join, and the other for OR-joins. Ac-
cordingly, we first define a function IsObjectEnabled that determines if a given
object is enabled for a BPD (see Figure 5). This function implicitly takes as
input a BPD, but for simplicity, the BPD is not shown as a parameter; instead,
the components of the BPD (e.g. GI) are referred to in the body of the function.

Function call IsObjectEnabled (o, tc) returns true iff object o is enabled in
state tc. Unlike the enablement function in Section 3.2, IsObjectEnabled does
not maintain a set of visited objects, as it is not recursive. This function han-
dles all gateways except the OR-join. Enablement of an OR-join is determined
by another function, namely IsOREnabled – see Figure 6. The function call
IsOREnabled(o, tc) returns true iff OR-join o is enabled in state tc.

The algorithm first checks that the OR-join o has at least one token in at
least one of its incoming flows. If so, it iterates over the set of predecessors of
the OR-join along an empty incoming flow (i.e. an incoming flow of o that has no

4 Importantly, if there is no path from o1 and o′
1, meaning that there is no cycle

involving both o1 and o′
1, this condition is true.

52 M. Dumas et al.

1 FUNCTION IsObjectEnabled(o1 : O, tc : F → N): B
2 case
3 o1 ∈ (GX ∪ GE):
4 return ∃o2 ∈ pred(o1) tc(o2, o1) ≥ 1;
5 . . . (other cases except o1 ∈ GI treated as per Definition 3)
6 o1 ∈ GI :
7 return IsOREnabled(o1, tc);
8 end case;

Fig. 5. Algorithm to determine whether an object is enabled

1 FUNCTION IsOREnabled(o : GI , tc : F → N) : B
2 if ¬∃po ∈ pred(o) tc((po, o)) ≥ 1 then
3 return false;
4 else
5 PredAlongEmptyFlows := {o′ ∈ pred*(po) | ∃po ∈ pred(o) tc((po, o)) = 0}
6 foreach o′ ∈ PredAlongEmptyFlows do
7 if o′ ∈ GI ∧ ∃po′ ∈ pred(o′) tc((po′, o′)) ≥ 1 ∧
8 ∀po′ ∈ pred(o′) o ∈ pred*(po′) ⇒ tc((po′, o′)) ≥ 1 then
9 return false
10 else if o′
∈ GI ∧ IsObjectEnabled(o′, tc) then
11 return false;
12 end if
13 end foreach;
14 return true;

Fig. 6. Optimized algorithm to determine if an OR-join is enabled.

token). For each of these predecessor objects, the function returns false if either
the object in question is an OR-join and it satisfies the above two conditions
(cf. lines 7 and 8 respectively), or it is not an OR-join and it is enabled as
determined by function IsObjectEnabled (cf. line 10). If all the predecessors of
the OR-join are visited and none satisfies any of these conditions, it means the
OR-join should not wait for anything and thus the function returns true.

To analyze the algorithm’s complexity, we first observe that function pred*
involves computing a transitive closure which has a complexity of O(|V | + |E|),
E being the set of edges (flows in the BPD) and V the set of vertices (i.e. ob-
jects). Thus, the complexity of one invocation to this function is O(N) where
N is the total number of elements in the BPD. After computing the set of pre-
decessors along each empty incoming flow of o, the algorithm iterates over this
set of predecessors, which in the worst case includes all objects in the model
except for end events. If one of these predecessors (o′) is itself an OR-join, the
algorithm checks if there is a path between o and o′. This latter step involves
invoking function pred* for each incoming flow of o′. We can thus bound the
worst-case complexity of the algorithm by O(N2), as function pred* is poten-
tially invoked for each element in the model, and each invocation has a cost of
O(N).

Semantics of Standard Process Models with OR-Joins 53

A substantial reduction in time complexity can be achieved by computing at
design-time the set of predecessors of each object in the model, and storing the
result in such a way that the set of predecessors of an object can be retrieved in
constant time, e.g. using a hash table where the keys are objects in the BPD and
the values are sets of predecessors. The size of this data structure is O(T × N),
where T is the number of objects in the model (excluding flows). Once the data
structure is materialized and the invocations to pred* are replaced by constant-
time lookups, the complexity of the algorithm is reduced to O(N).

5 Incremental Evaluation

Since the complexity of evaluating enablement for OR-joins is still higher than
that for other gateways, it is desirable to further optimize the evaluation proce-
dure. We therefore reuse the result of the evaluation of an OR-join’s enablement
in one state, when determining enablement of this OR-join in the next state. In
other words, we would like to materialize the results of evaluating the enable-
ment of each OR-join, so that after a state change (e.g. after an enabled object
in the BPD fires), we only need to examine objects affected by the change. We
call this incremental evaluation.

We assume a state change is represented as a set of flows in which tokens
have been either added or removed. We capture all information pertaining to
the enablement of each OR-join in a global (hash) table, namely mustWaitFor,
which associates to each OR-join in the model, the set of predecessors for which
this OR-join would have to wait if it was partially enabled, i.e. if it had at least
one token in one of its incoming flows. For convenience, we write mustWaitFor [o]
to refer to the entry in this table corresponding to object o, i.e. the set of pre-
decessors that o must wait for as evaluated in the state prior to the change.

The incremental evaluation function is algorithmically described in Figure 7.
The function takes as input an OR-join, the current state of the execution (after
the change), and the state change Δ. The function should be called each time a
state change occurs.

The first part of the algorithm (lines 2-11) updates the set mustWaitFor [o].
For each predecessor o′ of o such that one of the incoming flows of o′ has changed,
the algorithm evaluates the new state of enablement of o′ and, if necessary, it
adds or removes o′ from set mustWaitFor [o]. For this purpose, we reuse lines 7
and 8 of the IsOrEnabled algorithm, as well as function IsObjectEnabled , but
we only call this latter function for objects other than OR-joins. In this “updat-
ing” phase of the algorithm, we consider predecessors of o along flows with no
tokens as well as predecessors of o along flows that already contain tokens. The
rationale is that all changes have to be accounted for, even if they do not have
an immediate influence on the enablement of the OR-join o. Indeed, if o already
has a token in one of its incoming flows, it will eventually fire, and when this
happens, tokens will be removed from some of its incoming flows. As a result,
some incoming flows may switch from having one token to having no token, and
previously irrelevant changes may become relevant again.

54 M. Dumas et al.

1 FUNCTION IsOREnabledInc(o : GI , tc : F → N, Δ : ℘(O × O)) : B
2 foreach (o′′, o′) ∈ Δ where o′ ∈ pred*(o) \ {o} do
3 if o′ ∈ GI ∧ ∃po′ ∈ pred(o′) tc(po′, o′) ≥ 1 ∧
4 ∀w ∈ pred(o′) o ∈ pred*(w) ⇒ tc(w, o′) ≥ 1 then
5 mustWaitFor[o] := mustWaitFor[o] ∪ {o′};
6 else if o′
∈ GI ∧ IsObjectEnabled(o′, tc) then
7 mustWaitFor[o] := mustWaitFor[o] ∪ {o′};
8 else
9 mustWaitFor[o] := mustWaitFor[o] \ {o′};
10 end if ;
11 end foreach;
12 if ∃po ∈ pred(o) tc(po, o) ≥ 1 then
13 foreach po ∈ pred(o) where tc(po, o) = 0 do
14 if ∃o′ ∈ pred*(po) o′ ∈ mustWaitFor [o] then return false;
15 end foreach
16 return true;
17 else
18 return false;
19 end if

Fig. 7. Algorithm for incrementally evaluating OR-join enablement.

Once all changes are accounted for, the status of the OR-join has to be re-
evaluated (lines 12-19). Here, all predecessors along empty flows are checked. If
at least one of them object is in the set mustWaitFor [o], then o is not enabled.

6 Related Work

An assessment of fourteen state of the art commercial offerings in [15] revealed
that only a handful of them support the OR-join construct without imposing
syntactic restrictions. Many other languages support the OR-join but only in
restricted settings. For example, in BPEL [9] it is only possible to define an OR-
join in the context of acyclic networks of activities connected through so-called
control links. In such restricted settings, the semantics of the OR-join becomes
easier to define. Similarly, workflow management systems like InConcert, ePro-
cess, and WebSphere MQ Workflow have avoided the problems related to defining
the OR-join semantics by introducing syntactic restrictions. Eastman supports
an OR-join with non-local semantics, but it is acknowledged in the Eastman
manual that the use of OR-joins may result in poor performance [8].

There are several proposals to formally define a semantics for the OR-join
in Event Process Chains (EPCs) without introducing syntactic restrictions.
In van der Aalst et al [1], the problems with the OR-join semantics in EPCs,
especially that of vicious circles, are highlighted. It is suggested that any
formal OR-join semantics will impose some restrictions or will deviate from the
informal semantics to some extent. This leads to a proposal by Kindler [10,11] to
define a non-local semantics in EPCs (including the OR-join) in terms of a pair of

Semantics of Standard Process Models with OR-Joins 55

transition relations using techniques from fixed point theory. Kindler’s semantics
can be considered as the most general and precise semantics of the OR-join, but
as acknowledged by the author in subsequent papers, such fixed-point techniques
are “very inefficient and intractable in practise” [5,6]

To address this computational complexity hurdle, Kindler proposed the use
of binary decision diagrams (BDDs) to represent large sets of states and large
transition relations in a compact manner [11]. Cuntz et al [4] later proposed a
concrete method to calculate these transition systems using Kleene’s fix-point
theorem and techniques from symbolic model checking, instead of using a fixed-
point iteration as in Kindler’s original proposal. Specifically, Cuntz et al outline
a technique for calculating the semantics of EPCs that combines a forward con-
struction of the transition system with a backwards marking algorithm. Unfortu-
nately, this optimized algorithm is not complete, meaning that it does not work
on all EPC models. Also, despite these optimizations, the complexity of their
approach is still proportional to the size of the transition system and hence, the
approach only works for EPCs with small state spaces. In contrast, the OR-join
semantics we have put forward can be evaluated in linear time on the number
of elements in the process model, making it more scalable.

Mendling et al. [12] explore another approach to formally define the semantics
of OR-joins in syntactically correct EPCs. This new semantics is inspired by the
semantics of the OR-join in BPEL, but it can be applied to process models with
arbitrary cycles. The semantics of Mendling et al. relies on the notion of state
(i.e., tokens attached to arcs as in our approach) in combination with a notion of
context (i.e., special tokens indicating if a given arc is in a “wait” or in a “dead”
status). The context of an input arc to an OR-join is then used to determine
whether an OR-join should be enabled at a given state. The evaluation of this
OR-join semantics requires that both “normal” tokens, as well as “wait status”
and “dead status” tokens are propagated during the execution of the process
model. In contrast, our approach does not require the propagation of additional
types of tokens. Also, in the semantics proposed by Mendling et al., an OR-join
may “wait forever” if there is a deadlock preceding an OR-join. Specifically, if
an AND-join connector “upstream” can not propagate tokens due to a deadlock,
an OR-join connector “downstream” will continue to wait for a token forever.
In contrast, our semantics will detect the deadlock situation upstream and the
OR-join will be enabled rather than waiting for a token that will never arrive.
In other words, the semantics of the OR-join presented in this paper detects
deadlock situation and allows the OR-join to fire despite such deadlocks.

Wynn [19] proposed a general OR-join semantics for the YAWL workflow
language that takes into account the “cancellation region” construct supported
by this language. A concrete algorithm based on the backwards coverability of
reset nets together with two optimization techniques are given to support the
implementation in the YAWL workflow environment [18]. In line with Kindler’s
semantics, the OR-join semantics in YAWL is far-sighted: As soon as it is pos-
sible to conclude that an unmarked branch leading into an OR-join will not be
reached, the OR-join will detect this situation and not wait anymore for tokens

56 M. Dumas et al.

along that branch. In contrast, the semantics proposed in this paper is more
short-sighted: only when no state change whatsoever can occur among the set
of predecessors leading into an incoming branch of an OR-join, will the OR-join
fire. This choice constitutes a tradeoff between precision (i.e. how early do we
detect that an OR-join can fire) and the efficiency of evaluating the enablement
of an OR-join. Another difference is that the semantics proposed in this paper
does not lead to deadlocks in the presence of vicious circles, while the YAWL
semantics does. A major issue addressed by the OR-join semantics of YAWL is
that of dealing with the notion of “cancellation feature”. This is similar to the
notion of “exception handler” in BPMN. However, in YAWL it is possible to can-
cel certain parts of a (sub)-process without canceling the entire (sub)-process.
This leads to an interference between the OR-join behavior and the cancellation
behavior. In BPMN, this type of cancellation behavior is impossible. Exception
handling behavior in BPMN is attached to a sub-process and when an exception
occurs, all the tokens from this sub-process are removed at once (and therefore
all the OR-joins inside the sub-process are disabled). Therefore, the OR-join
construct and the exception handling construct in BPMN do not interfere with
one another.

In conclusion, our major contribution with respect to previous related work
has been to define a semantics of the OR-join which has a linear computational
complexity and can be evaluated incrementally, while at the same time not im-
posing syntactic restrictions on the process models and maintaining the desirable
properties of a non-local OR-join semantics.

7 Conclusion

We have proposed a formalization of the enablement rules for a subset of BPMN
objects, including the OR-join gateway, with the following characteristics:

– It does not impose restrictions on the topology of the process models, other
than the minimal restrictions imposed by the syntax of BPMN itself.

– It has a relatively low computational complexity: determining if an OR-
join is enabled can be computed in O(N2) where N is the total number of
elements (objects + flows) in the model. This complexity can be reduced to
O(N) after materializing a data structure of size O(N2) at design-time. In
addition, the semantics lends itself to an incremental evaluation mode.

– It does not generate deadlocks in the presence of cycles in the model involving
multiple OR-joins.

The proposed OR-join semantics can be labeled as operational as it captures
how an execution of a process model moves from one state to another. For static
analysis purposes, it is desirable to have a semantics defined by translation of
BPMN to a formalism (e.g. Petri nets) for which static analysis tools are avail-
able. In future, we plan to extend our mapping from BPMN to Petri nets [7] with
the ability to deal with OR-joins. This would involve defining rules to transform
BPMN models that contain OR-joins, into models that do not, since Petri nets

Semantics of Standard Process Models with OR-Joins 57

do not directly support this construct. As a by-product, such transformation
rules could be useful in building simulation engines for BPMN, as they would
replace all OR-joins with constructs that are easier to simulate.

Acknowledgments. We thank Alistair Barros for his valuable comments. The
first author is supported by a fellowship funded by Queensland Government and
SAP. The second author conducted this work while at SAP Research.

References

1. van der Aalst, W.M.P., Desel, J., Kindler, E.: On the Semantics of EPCs: A Vicious
Circle. In: Rump, M., Nüttgens, F.J. (eds.) Proceedings of the EPK 2002: Busi-
ness Process Management using EPCs, Trier, Germany, pp. 71–80. Gesellschaft für
Informatik (2002)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M, Kiepuszewski, B., Barros, A.P.: Work-
flow Patterns. Distributed and Parallel Databases 14, 5–51 (2003)

3. van Breugel, F., Koshkina, M.: Models and verification of BPEL. Working paper
(September 2006),
http://www.cse.yorku.ca/∼franck/research/drafts/tutorial.pdf

4. Cuntz, N., Freiheit, J., Kindler, E.: On the semantics of EPCs: Faster calculation
for EPCs with small state spaces. In: Nüttgens, F.J., Rump, M. (eds.) Proceedings
of EPK 2005, Hamburg, pp. 7–23 (December 2005)

5. Cuntz, N., Kindler, E.: On the semantics of EPCs: Efficient calculation and sim-
ulation. In: Nüttgens, F.J., Rump, M. (eds.) Proceedings of EPK 2004, pp. 7–26
(October 2004)

6. Cuntz, N., Kindler, E.: On the semantics of EPCs: Efficient calculation and simu-
lation (Extended Abstract). In: van der Aalst, W.M.P., Benatallah, B., Casati, F.,
Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 398–403. Springer, Heidelberg
(2005)

7. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and automated analysis
of BPMN process models. Preprint 5969, Queensland University of Technology
(January 2007), https://eprints.qut.edu.au/archive/00005969

8. Eastman Software. RouteBuilder Tool User’s Guide. Eastman Software, Inc, Bil-
lerica, MA, USA (1998)

9. Jordan, D., Evdemon, J. (eds.): Web Services Business Process Execution Language
Version 2.0. OASIS WS-BPEL TC (2005),
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel

10. Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp.
82–97. Springer, Heidelberg (2004)

11. Kindler, E.: On the Semantics of EPCs: Resolving the Vicious Circle. Data and
Knowledge Engineering 56(1), 23–40 (2006)

12. Mendling, J., van der Aalst, W.M.P.: Formalization and Verification of EPCs with
OR-Joins based on State and Context. In: CAiSE 2007. Proceedings of the 19th
International Conference on Advanced Information Systems Engineering, Trond-
heim, Norway, Springer, Heidelberg (to appear, 2007)

13. OMG. Business Process Modeling Notation (BPMN) Version 1.0. OMG Final
Adopted Specification. OMG (February 2006), http://www.bpmn.org/

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
https://eprints.qut.edu.au/archive/00005969
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.bpmn.org/

58 M. Dumas et al.

14. Reis, S., Metzger, A., Pohl, K.: Integration testing in software product line engi-
neering. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, Springer,
Heidelberg (2007)

15. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow
control flow patterns: A revised view. BPMCenter Technical report BPM-06-22,
BPMCenter.org (2006)

16. Silver, B.: The 2006 BPMS Report: Understanding and Evaluating BPM Suites
(2006), http://www.bpminstitute.org/bpmsreport.html

17. Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. Preprint, Oxford Uni-
versity Computing Laboratory (March 2007),
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmn extended.pdf

18. Wynn, M.T.: Semantics, Verification, and Implementation of Workflows with Can-
cellation Regions and OR-joins. PhD Thesis, Faculty of Information Technology,
Queensland University of Technology (November 2006)

19. Wynn, M.T., Edmond, D., van der Aalst, W.M.P., ter Hofstede, A.H.M: Achieving
a General, Formal and Decidable Approach to the OR-join in Workflow using Reset
nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 423–
443. Springer, Heidelberg (2005)

20. Wynn, M.T., Edmond, D., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Achieving
a General, Formal and Decidable Approach to the OR-join in Workflow using Reset
nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 423–
443. Springer, Heidelberg (2005)

http://www.bpminstitute.org/bpmsreport.html
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmn_extended.pdf

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 59–76, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Pattern-Based Design and Validation of Business Process
Compliance

Kioumars Namiri1 and Nenad Stojanovic2

1 SAP Research Center CEC Karlsruhe, SAP AG, Vincenz-Prießnitz-Str.1
76131 Karlsruhe, Germany

Kioumars.Namiri@sap.com
2 FZI Karlsruhe, Haid-und-Neu-Str. 10-14

76131 Karlsruhe, Germany
Nenad.Stojanovic@fzi.de

Abstract. In this paper we present a novel approach for the modeling and
implementation of Internal Controls in Business Processes. The approach is
based on the formal modeling of Internal Controls in the validation process
under the usage of frequently recurring control patterns. The main idea is the
introduction of a semantic layer in which the process instances are interpreted
according to an independently designed set of controls. This ensures separation
of business and control objectives in a Business Process. A prototypical
implementation of the approach is presented.

Keywords: BPM, Regulatory Compliance, Internal Controls, Patterns.

1 Introduction

The advent of regulatory compliance requirements in the area of Internal Controls
such as Sarbanes Oxley Act 2002 (SOX) [1] requires the implementation of an
effective Internal Controls system in enterprises as a management responsibility. In
this context COSO (Committee of Sponsoring Organizations of the Treadway
Commission) has proposed an integrated framework [2], which is recognized by
regulation bodies and auditors as a de facto standard for realizing the Internal
Controls System. COSO defines the Internal Controls as a “process” designed to
provide reasonable assurance regarding the achievement of objectives in effectiveness
and efficiency of operations, reliability of financial reporting, and compliance with
applicable laws and regulations. The realization and effectiveness of this process
involves different roles: Internal Auditing consultants/Compliance experts, external
regulation bodies, Business Process experts (including system developers/technical
consultants). Each of these roles has a different view on the enterprise, uses different
terminology for speaking about the same domain and requires specific system
support. This is one of the main issues why the introduction and operations of Internal
Controls compliance (e.g. SOX 404) is considered to be expensive and time
consuming [3].

This paper presents a semantic-based approach for managing above mentioned
complexity in the realization of the compliance process. In the nutshell of the

60 K. Namiri and N. Stojanovic

approach is the patter-based abstraction layer that separates business process and
compliance management. Two sets of compliance patterns are introduced: a set of
high level control patterns, which represent the way Compliance/Business Process
experts communicate about the compliance domain and a set of system level control
patterns based on the property specification pattern system proposed originally by
Dwyer at al [5]. Each pattern on its abstraction level should accordingly give software
and compliance/business practitioners access to specify and design the compliance
requirements. We are mostly concerned with automation of the so called Application
Controls (AC), which control Business Processes to support financial control
objectives and to prevent or detect unauthorized transactions. However, the approach
provides a general framework that can be applied with respect to any other
compliance domain using BPM technology.

The paper is organized as follows: We start with a motivating scenario. In the third
section we introduce the domain model of Internal Controls/SOX compliance, which
we base on our analysis of the COSO framework. In the fourth section we present the
patterns for compliance controls and their usage. In section five we introduce the
approach built on top of the domain model and the patterns introduced previously
whereas the sixth section explains its implementation architecture. Related literature
is discussed in section seven. Concluding remarks and some future research questions
are given in the last section.

2 Motivating Scenario

We use the Purchase-To-Pay (P2P) Process delivered by an ERP product as an
example. The process starts by creating the request for a Purchase Order (PO) and
ends when the payment of that PO is recorded in Accounting. An excerpt of P2P is
illustrated in Fig. 1.

Fig. 1. Purchase-To-Pay (P2P) Process: an excerpt

The Internal Controls compliance of P2P depends on an enterprise specific risk
assessment. Table 1 shows an excerpt of the risk assessment carried out by
Compliance experts of two different enterprises. It shows their different control
objectives, risks, and controls on the same standard P2P Process.

We have identified that there exist frequently defined patterns of controls on
Business Processes at different enterprises. Taking the perspective of an ERP vendor,
providing this set of patterns in a repository where a certain pattern can be selected,

 Pattern-Based Design and Validation of Business Process Compliance 61

instantiated to a real control, and applied on Business Processes by their customers
brings a higher level of system and component reusability for the ERP/BP products.
Taking the perspective of a customer company building their compliance on top of
such a pattern repository can reduce the required domain specific knowledge in
compliance projects. Therefore, the process models become nowadays too
complicated, not readable and manageable when they are directly, i.e. manually
enriched with the necessary compliance controls. In the rest of the text we present an
approach that copes with this kind of complexity.

Table 1. Risk assessment on Purchase-To-Pay (P2P) Process for two different enterprises

Control Objective Risk Control
Enterprise A:
Prevent
unauthorized
use

Unauthorized
creation of
POs and
payments for
not existing
suppliers

1) POs for material types which have not been
ordered during last year and an amount higher
than 5000 $ must be double approved by two
different purchasing clerks (Second Set of Eyes
Control - SSE).
2) Segregation of Duties (SoD) on PO Creation
and PO Approvals with an amount higher than
5000 $.

Enterprise B: React
flexible on changes
in the supplier
market

Dependancy
on one single
supplier in the
market

Minimum Number of Suppliers is 2 for material
type 5: Keep at least two contracted Suppliers in
your Supplier Relationship Management (SRM)
System for the given material type.

3 Domain Model for Internal Controls Compliance

One of the main issues in the separation of the business and control objectives of a
Business Process is that business objectives and control objectives for a Business
Process have different life cycles and stakeholders. Figure 2 illustrates how we see the
relationship between BPM and Internal Controls Management [11]: The design of a
control should control the way a Business Process is executed. A (re)design of a
Business Process causes an update of risk assessment on a Business Process, which
may lead to a new/updated set of controls including new tests. The Business Process
monitoring and validation techniques may be used to assess the effective design of
controls and their operations and can serve as an input to Compliance certification.

Fig. 2. Relations between BPM and Internal Controls Management

62 K. Namiri and N. Stojanovic

3.1 Roles Involved

We distinguish three roles involved in Business Process Compliance with the
following interests/expertise:

Business Process Expert: A Business Process expert knows how to configure and
maintain the processes having business objectives (goals) in mind. The business
objective for, e.g. a purchasing process, is simply to set up a process in which internal
orders created can be processed and sent to suppliers, to receive the ordered goods,
and to pay the supplier invoices. It is obvious that in large scale ERP systems this role
is carried out by different persons, even different organizational units. This group of
persons in an enterprise has no or little knowledge about regulations and compliance
requirements, but very detailed knowledge on how a process is implemented.

Compliance Expert: The auditing consultants are Compliance/SOX experts and have
detailed knowledge about the regulatory requirements. They have no or little
knowledge about the realization of Business Processes in an enterprise. Their main
task is rather to define and monitor the necessary controls according to the risk
assessment and to notify other entities in the enterprise in case of control violations.
They do not define how to bring a process in a compliant state because this is the task
of Business Process experts.

External Auditors: External auditors are regulation bodies or official firms who
certify the design and effectiveness of the Internal Controls system in an enterprise
on a periodical basis. The external auditors are out of scope in this work.

3.2 Interplay of the Entities in the Domain Model

Based on this view, we introduce a set of models for implementing the Internal
Controls process. We are concerned with providing a cooperative environment for
Business Process experts and Compliance experts to achieve their necessary tasks
regarding Business Process compliance as discussed above.

The entities and their relations to each other provide the terminology used to
formulate logical statements representing the controls constraining the behavior of a
Business Process.

In the following we enrich the entities resulted from our analysis of (mainly not IT-
related) COSO by additional entities. These additional entities will enable the model
to serve to us as an operational basis for our approach later on. Only those parts of
COSO necessary for understanding our approach are presented Figure 3. It shows the
upper domain model of required entities for the Internal Controls process.

Each Risk is assigned to those Business Processes that affect a Significant Account.
A risk is assessed according to its Control Objectives. A Business Process may
contain multiple risks (or not) and the same risk may occur in different Business
Processes. Application Control (AC) is a subtype of the entity Control. We further
introduce Company Level Controls and IT Controls. Company Level Controls are
controls covering the “Control Environment”-component in COSO, which requires
the management to create a social environment in an enterprise where effective
Internal Controls are to be achieved. This includes controlling the management as
well. IT Controls are controls regarding the realization and operation of IT projects
and systems. IT Controls and Company level controls are out of scope for this work.

 Pattern-Based Design and Validation of Business Process Compliance 63

Fig. 3. Upper domain model for Internal Controls compliance

In the following we discuss those parts of the model that are relevant for our
approach in detail: Business Process and Application Control (we simply use the term
control).

3.2.1 Control - Business Process Model
Below we further detail the relationship between a Business Process and a Control as
shown in Figure 4.

Fig. 4. Relationship between a control and a Business Process

We interpret a business process according to [7], where it is defined as a set of
logically related tasks (or activities) to achieve a defined business outcome. An
Activity can be aggregated by other activities. A special kind of activity is the
Coordinator Activity (such as switch/fork/join etc.), which defines the behavior of the
flow in a business process known from workflow modeling. An Activity consumes
and produces Business Documents (such as Purchase Order, Invoice etc.). And finally
an Activity is performed by a User (human or computer). Thus a control influences
different dimensions of the way a business process is enacted, namely:

 The execution order and occurrence of its activities (including their state
changes and attributes such as its duration etc.)

 The Business Documents involved (including their state changes and
attributes such as amount etc.) and

 The users performing an activity (including their roles and authorities).

64 K. Namiri and N. Stojanovic

For each control at least one Recovery Action must have been designed, which
reacts on the violation of a control. The nature of the recovery action depends on the
current role of the person involved in the business process compliance: The
Compliance expert or the Business Process expert. We detail this in the next
subsection.

3.2.2 Role Based Recovery Action Model
As a control is originally defined by a Compliance expert in an enterprise, his main
objective is to design the control and to monitor its effectiveness. As said before, a
Compliance expert has no or little knowledge about the implementation of a Business
Process. The detailed knowledge on how to bring a Business Process model/instance
into a compliant form/state is the task of a Business Process expert.

Fig. 5. Recovery Actions on Control Violation

Our model for Business Process compliance recognizes this fact by introducing a
role based recovery action model (Figure 5):

In the following we explain the different types of possible recovery actions:

Ignore: The control violation is ignored.
Block: The current instance of the BP, which generated a control violation, is
blocked.
Notify (User, Message): A notification message for the specified user User is
created with the given message Message.
Retry: The activity that generated the violation is retried again.
Rollback (Activity): The current instance of the BP that generated the control
violation is rolled back to the given activity Activity.
Recover (RecoveryProcess): A previously designed recovery process
RecoveryProcess is instantiated parallel to the current instance of the original
BP that generated the control violation. The recovery process itself is an
autonomous Business Process.

Please note that a combination of the above listed recovery actions is also possible
such as Retry & Notify etc.

In case of a control violation a Compliance expert defines the recovery actions as a
minimal set of actions regarding the Business Process logic. The decision on recovery

 Pattern-Based Design and Validation of Business Process Compliance 65

action selection in a certain control design is up to the Compliance expert. The
decision depends on the enterprise specific risk assessment, which may vary from
enterprise to enterprise for the same kind of control. After the control is initially
designed with a recovery action by a Compliance expert, it is stored in a control
repository. The corresponding Business Process expert is notified about the creation
of a new control. The Business Process expert now has the possibility to review and
edit the recovery actions for that control, that were originally designed by the
Compliance expert.

Based on the recovery action that was originally selected by the Compliance
expert, only a limited set of recovery actions is allowed to be selected by the Business
Process expert. The valid combination of recovery actions set by the Compliance
expert and Business Process expert follows these basic rules:

- A control violation always requires a reaction, particularly a single Ignore is
never allowed, since the existence of a control with such a recovery model
makes that control meaningless.

- The recovery action designed by a Business Process expert is never allowed to
“weaken” the original recovery action designed by the Compliance Expert. For
instance if an Compliance expert requires a Block & Notify on a Business
Process instance in case of a certain control violation, the Business Process
expert is not allowed to redesign the recovery of a control to only Notify.

3.2.3 Controlled Entities
We can see that in the domain model of Business Process compliance for Internal
Controls, we have four different types of first class entities: activities, business
documents, users, and the controls.

We refer to these four different entities as Controlled Entities (CE) in a Business
Process. Their relationship is obvious: An activity performed by a user may consume
business documents, may produce new business documents or may change the state of
an already existing business document or a user itself. A control exists to assure that a
condition defined for one of the other three CEs is effective in a Business Process.

Fig. 6. Composition of Controlled Entity - CE

We consider a control as a controlled entity in a Business Process because the
effectiveness of a control should impact the execution of a Business Process. This

66 K. Namiri and N. Stojanovic

means basically that if a control is not effective, i.e. its violation has no implications
on a Business Process, the enterprise runs the risk of not being compliant. Thus the
main tasks of Compliance experts include not only to design the controls but also to
assure their effectiveness.

CEs have dependent artifacts in common in their structural composition as
visualized in Figure 6. The concept of these artifacts will serve us as a basis for
implementing the controls in Business Processes.

A CE may have additional Meta data information (CEHeader) specifying an
instance of that CE in more detail. Each instance of a CE has a current state (CEState)
and a set of valid state changes, which are caused by activities executed on an
instance of that CE. The item (CEItem) of a CE Business Document represents all sub
parts of that entity (For instance a PurchaseOrder PO may contain several items for
different material types as sub orders). The item can be a CE itself and it may consist
of other sub items. The query of a CE (CEQuery) determines the number of all
instances of that CE according to a given filter (CEQueryFilter).

Example: A Query for all POs POQuery with a filter POQueryFilter

- approved POs in
- the period of last quarter and
- for a certain supplier ”XYZ”
will return the number of all PO instances satisfying the given filter criteria.

4 Control Patterns

In the following we introduce two different sets of patterns, which we call high level
and system level control patterns. They basically represent the same thing on different
abstraction levels in a domain, namely frequently recurring/defined patterns of
controls on Business Processes. The high level control patterns provide the basis for
the terminology in which the Compliance experts communicate about the domain. We
have determined the presented set of high level control patterns empirically by
analyzing different kinds of typical ERP Business Processes (Purchasing, Sales and
Human Resource Management and all belonging side processes such as Goods
Return, Payment, Dunning, etc.). Here we have grouped typical control categories
that are defined on those Business Processes at different enterprises built on top of a
provided set of process reference models inside an ERP Product.

Fig. 7. From a High level Control pattern to its technical Representation in a System

 Pattern-Based Design and Validation of Business Process Compliance 67

The system level control patterns represent a more technical view on the controls
and their introduction is aimed to facilitate the use of formal methods by system
developers/technical personnel having the task of implementing the controls in
ERP/BPM Systems. The system level patterns themselves are generic in their nature
in that way that they are not bound to the usage of certain formal logics. Each
development team can select its favorite and suitable technical representation of the
system level control patterns which can vary from database-oriented/SQL to different
temporal logics such as LTL or CTL (see Figure 7).

4.1 High Level Control Patterns

In Figure 8 we expose different categories of control patterns on Business Processes
and give a brief description for each pattern category type without going into details.

Fig. 8. High level Control Patterns

SSE Patterns: We already mentioned this kind of control patterns briefly in the
scenario section, which basically requires the SSE-principle on certain transactions.
Here we add the comment that a control demanding a “higher number of eyes” would
also be possible and would fall into this category as well.

68 K. Namiri and N. Stojanovic

Business Document Control Patterns: Here the syntax and semantics in and
between different business documents are subject to the controls.

Inter Activity Control Patterns: The controls satisfying these patterns require that
certain activities occur (or are absent) if certain set of other activities occur in a
Business Process (or a side process).

Report Patterns: Reports are collected based on attributes on certain types of
activities and business documents in an enterprise during a certain period, e.g.
monthly turnover reports. The purpose of report control patterns is not the definition
of a report, but rather to control that a report has been generated respectively reports
are compared to each other as required in the control.

SoD Patterns: In order to minimize fraud or misusage it is required that an activity is
divided into sub activities and each sub activity is executed by different users or roles.

Authorization Patterns: These controls limit users/roles access to CEs.

Escalation Patterns: In case that detected controls are ignored by the responsible
users, this fact can/has to be escalated to responsible entities in the enterprise.

Each high level control pattern is specified by following attributes

 Name of the pattern
 (optional) A (nested) list of super type categories of the given pattern, in

order to identify the pattern
 Pattern Description: The aim of the control pattern is described.
 Subjected CE: The CE type, which is subject to the control
 Objected CE(s): The CE(s) which are required to design the control
 Control Trigger: the definition of conditions that make a control to be

triggered.
 Related to: (optional) the possible dependency links between different types

of control patterns. Typically SoD and SSE patterns are related to
Authorization patterns and Escalation patterns to all other types of control
patterns.

 Example: (optional) a concrete control in P2P process that follows the given
pattern

Below we give an example for the specification of the pattern “N-Way-Match”
including its description:

 Description: certain fields in header and items of different business
document types belonging to the same Business Process instance must match
each other

 Subjected CE: Business Document
 Objected CE: Business Document, Activity
 Related to: -
 Control Trigger: State change of an Activity or Business Document
 Example: 3-way match control on PO, Invoice, and Delivery of Business

Documents of a P2P process instance if the supplier identification is
identical.

 Pattern-Based Design and Validation of Business Process Compliance 69

4.2 System Level Control Patterns

System level patterns are used to represent the technical representation of a high level
compliance pattern. Each high level control pattern corresponds to a system level
pattern, which is described by a Control Strategy:

A Control Strategy defines the way a control monitors the behavior of one or
controlled entities inside a Business Process (Figure 9). In order to become active a
control requires to be triggered according to the state of the process parameters in a
scope. We defined the two elements of a control strategy scope and pattern based
conceptually on the work done by Dwyer et al [5]. Although their patterns are mainly
used for defining formal requirements on program specifications, they can be applied
to Internal Controls compliance and the monitoring requirements there. For a detailed
description of the scopes and patterns and their semantics please refer to [5].

We have extended the Dwyer patterns by an entity called CECondition, which
represents a constraint on one or more CEs. This extension is necessary in order to
reflect special conditions in the subjected and objected CEs (including their queries
and items in case of business documents).

Fig. 9. A Semi-formalization of the control implementation through patterns

Example: Recall the first control on the P2P Process of enterprise A given in the
scenario section. This is an “Intra Role SSE” Pattern, which means that it is sufficient
that each approver belongs to the same role and can be mapped to the following
system level control strategy:

 ControlTrigger = Activity “SelectSupplier”
 Scope = Between the activity “SelectSupplier” and activity “SendPO”
 Control Pattern = Bounded Existence of n=2 on CE “ApprovePO”-

Activity
 CEConditions:

o POHeader.amount > 5000$
o ApprovePO1.User.Role = “Purchasing Clerk”
o ApprovePO2.User.Role = “Purchasing Clerk”
o ApprovePO1.User.Id ≠ ApprovePO2.User.Id
o ∀ti,∀POItemi ∈ {PO.POItems),POQueryFilteri=POItemi.lastOrderDate

ti = POQuery(POQueryFiliter) | ti > 1 year

70 K. Namiri and N. Stojanovic

5 The Approach

In order to realize the separation of the business and control objectives presented in
Figure 2, our approach introduces another layer above the Business Process model.
This layer is called “SemanticMirror”. According to the assessed risks, a set of
Controls is defined on that layer. Finally, by executing a Business Process, the
semantic process layer will be continually updated with information needed for the
evaluation of defined controls in order to ensure that compliance tests will pass. The
approach spans over three phases: Control Design phase, Recovery Action Design
phase, and Business Process Execution phase. The first two phases each have a sub
phase, which we call Business Process Model Adaptation.

5.1 Phase 1 - Control Design Phase

Before this phase, the process models may be non-compliant in terms of they do not
contain the required controls according the risk assessment of the enterprise. During
this phase, a Compliance expert goes through the relevant Business Process model, as
it may be delivered by an ERP vendor, step by step. First, the Compliance expert
selects an activity contained in the process model. Then he selects a certain control
pattern from the control pattern repository. He instantiates the selected pattern by
configuring it according to the enterprise’s specific requirements. He then stores the
control: a) the control is stored in the SemanticMirror and b) the currently selected
activity in the process model is extended by the control (Business Process model
adaptation).

5.2 Phase 2 - Recovery Action Design Phase

After a new control is created in the SemanticMirror, the according Business Process
expert is notified about this fact. He checks the recovery action part of the control
and, if necessary, he modifies/extends the recovery action model of the control. After
this phase, the control in the SemanticMirror and the process model in the BP
repository are updated with necessary modifications done by the Business Process
expert (Business Process model adaptation).

In the following we go into greater details on Business Process model adaptation,
which occurs in phase 1 and 2.

Business Process Model Adaptation
A process model is originally in a control-free form. After phase 1 and 2 not only a
required control is stored in the SemanticMirror, but also the process model is
extended by the required control. The control in the process model makes sure that the
process model is executed in a compliant way. Later on, during phase 3, the control in
the SemanticMirror monitors that the controls are effective, i.e. that they operate as
designed, which is required by law. This way, even if a designed control in the
Business Process model during this sub-phase is removed from the Business Process
Model by a Business Process expert/Developer who is not aware of compliance
requirements, the control in the SemanticMirror will still detect that a control
violation occurred.

 Pattern-Based Design and Validation of Business Process Compliance 71

Below we show the process model adaptation for a process model p by a control c
as an example:

Let p be the original control-free process model, c the required control, the control
scope for c be before activity n, and the recovery action model selected be Retry &
Notify & Recover(r) with r being a pre-designed recovery process for process p in
case of violation of c.

Then the process model adaptation is as follows:

create(p, cd);create(p,cn); transition(p,cd,n,”ok”);transition(p,cd,cn,”notOK”);
transition(p,cn,before(p,n),”default”);⊗ r;

where cn is an activity that generates a notification message in case of violation of c; cd is an
activity-node of type decision; the operator create(p,a) creates a node a in the process model p; the
operator transition(p,a,b,m) creates a transition in the process model p from node a to b when
message m is generated after processing node a; the operator before(p,a) returns the position of the
activity immediately before activity a in the process model p; and finally the operator ⊗ r creates
an instance of the process model r.

The process model adaptation described above for the selected recovery action
model is visualized in Figure 10.

Fig. 10. Process Model adaptation for Retry&Notify/Recover (r)

The cooperative interactions of the actors and the systems during phase 1 and 2 are
summarized in Figure 11.

5.3 Phase 3 - Business Process Execution Phase

This phase enables the bidirectional interaction between BPM and Internal Controls
management (see Figure 2): The SemanticMirror will be updated by information
about the current instance of the Business Process enacted and if a control is violated,
the recovery action defined in the control will be executed.

In order to enable the automated generation of the SemanticMirror during
execution time, it has to be continuously updated when an activity is performed in the
given Business Process instance. The update of the SemanticMirror is done by the
introduction of a Knowledge Base of Activities (KBA) enacted during execution of a
Business Process. With the help of KBA, the current context of the Business Process
instance (i.e. all relevant CEs) can be provided to the SemanticMirror.

The KBA updating the SemanticMirror are orthogonal to the Business Process
management and we introduce them on the conceptual level. The update mechanism

72 K. Namiri and N. Stojanovic

Fig. 11. Phase 1 and phase 2

of the SemanticMirror is dependent on the underlying BPM infrastructure, i.e. its
description is a technical issue. However, in all the cases the destination of a KBA on
an implementation level is a network of addressable device such as Trace/log files, a
RDBMS, or a messaging destination such as a MQSeries/JMS’s Topic/Queue. The
destination of the KBAs can be the SemanticMirror itself, when the underlying
process execution infrastructure implements the observer design pattern or the
command design pattern [6].

In the following we describe the validation of control c during execution time of
Business Process p with a recovery action on violation of c Retry & Notify &
Recover(r). All steps are visualized in Figure 12:

Fig. 12. Phase 3

• 1a. The process context is written to a KBA. Note that this can be done
directly on the SemanticMirror itself (updating facts directly in it) depending
on the underlying BPM Engine implementation. In this case, go to step 2a.

 Pattern-Based Design and Validation of Business Process Compliance 73

• 1b. The log entries are extracted and corresponding CE-facts are created and
updated in the SemanticMirror.

• 2a. As the state of the SemanticMirror changes in terms of adding/updating
CE facts to it, the trigger of control c gets activated. The condition of c is
determined by the values of the CE facts in the SemanticMirror itself or

• 2b. optionally by querying the necessary backend systems using the CEQuery
of a subjected CE.

• 3. If the conditions of the controls are violated, a new fact in the
SemanticMirror (cViolation) will be generated signaling that control c has
been violated.

• 4. An instance of the recovery process r is generated.
• 5. The instance p steps into the decision node cd.
• 6a. cd, being a decision node, is a coordinator activity. The activity of cd

queries the SemanticMirror for a fact instance called cViolation.
• 6b. In case of existence of a cViolation in the SemanticMirror, cd sets the

transition to “ok”, otherwise to “notOK”.

Please notice that the approach described above will still detect a control violation
in the SemanticMirror, even if a Business Process expert/technical consultant will
remove the control from the process model being not aware of the necessity of that
control: the process context is always written to the SemanticMirror during step 1a/1b
and the controls exist independently in the SemanticMirror. Further, the described
approach enables dynamical application of the controls during the execution phase of
a Business Process. There is a minimum overlap between Business Process design
and compliance design. Thus, new application controls can be designed for Business
Processes by adding new control statements to the SemanticMirror while the original
design of the Business Process requires no manual change, which is one of the main
advantages of our approach.

6 Implementation

Besides the conceptual soundness, one of the challenges in such a kind of approaches
is their efficient and scalable implementation. There are two open issues that have to
be discussed from the implementation point of view: 1) How to design and execute
the Business Processes and 2) How to implement the SemanticMirror.

Regarding the first issue, we have selected to implement a prototype based on
JBoss jBPM (JBoss, http://www.jboss.com). We have decided to use jBPM since it
offers concepts such as task management and identity management, which allowed us
to completely simulate typical ERP scenarios necessary for our experimental
environment. The basis for the implementation of SemanticMirror is the model of
the Internal Controls (see section 3). We have decided to implement the controls as
Event-Condition-Action (ECA) rules. The Dwyer patterns and scopes [5] can be
mapped to ECA rules (as already shown in [12]), thus the control patterns and scopes
can be mapped to them. We use the JBoss Rule Engine (also known as Drools)
implementing the RETE-Algorithm.

74 K. Namiri and N. Stojanovic

For the task of updating the SemanticMirror during execution time of Business
Processes (Phase 3 of the approach), we use facilities provided by jBPM Engine
implementing the command software design pattern [6]: jBPM provides the
possibility to register (during design-time) a so called ActionHandler to each node-
class (activity) of a Process definition (called jPDL in jBPM) with additional custom
functionality. Our implementation of the ActionHandler-Interface
(SemanticMirrorSynchronizer) obtains a reference to the SemanticMirror (in terms of
obtaining a reference to Rule Engines working memory) and the current instance of
the process context provided automatically by the jBPM Process Engine to
SemanticMirrorSynchronizer is added to the SemanticMirror. Additionally each
Decision-Node in jPDL can be equipped with a DecisionHandler, which determines
which transition to take. Our implementation of the DecisionHandler establishes a
connection to the SemanticMirror and queries it for determining an instance of the
cViolation-fact.

Fig. 13. A snapshot of the Internal Controls Modeling Tool

Further, we are currently in the process of implementing an Internal Controls
Modeling tool based on the high-level control pattern repository for the Compliance
experts. The java-based implementations of CEs (activities, business documents,
users, and controls) are equipped with additional information specifying to which
control patterns in which Business Process models they may occur using the java
annotation mechanism. In this way, after a control pattern is instantiated via the so
called Internal Controls Modeling Tool based on a concrete control for a specific
Business Process, all the necessary subjected and objected CEs for
designing/configuring that control are automatically proposed to the Compliance
expert. Figure 13 shows a snapshot of the Internal Controls Modeling Tool for an
already instantiated control “Minimum number of suppliers” which satisfies the
“Limit checks” control pattern.

 Pattern-Based Design and Validation of Business Process Compliance 75

7 Related Work

On a conceptual level our work is related to [4], where a taxonomy of risks in
Business Processes is provided. It does not explicitly state how a risk is positioned
inside the Internal Controls compliance domain and leaves the semantic link between
risks, Business Process design and execution open. [8] presents a logical language,
called PENELOPE, that provides the ability to verify temporal constraints arising
from compliance requirements on effected Business Processes. The contributions of
this paper are: i) providing an overall methodology for a model driven approach to
Business Process compliance; ii) offering a technique for process model enrichment
based on a finite extensible set of control patterns; and iii) proposing an explicit
realization of guarding the compliant behaviour of a Business Process during its
execution.

Significant research exists on the modeling of control flow in Business Processes
by usage of patterns to identify commonly used constructs
[www.workflowpatterns.com]. On a similar note, [13] provides temporal rule patterns
for regulatory policies, although the objective of this work is to facilitate event
monitoring rather than the usage of the patterns for support of compliance in Business
Processes. Further a conceptual model based on UML Profile is defined there as a
basis for defining compliance rules. But the work does not explicitly state how to
reason over the UML Profiles and how they may be related to the Business Process
execution level of enterprises.

Casati et al have contributed significant work in [14] for pattern-based exception
handling in workflows, which we consider as highly related to our pattern-based
approach. Especially the proposed algorithms for pattern instantiation and
specialization can be reused for application to the high level control patterns proposed
in our work.

On a technical level the work done by Robinson in [12] we consider as related to
ours. He uses monitoring patterns based on the Dwyer patterns [5] expressed as rules
(in an extension of Jess) to monitor the runtime behavior of a system to verify
whether runtime execution satisfies its design time specification. The difference is
that we are concerned with the separation of Business and Internal Controls process in
order to keep entities developed in both areas better adaptable and reusable, where his
work is located in the area of system requirement engineering, in particular system
verification.

8 Conclusion

In this paper we introduced a pattern based approach for modeling Internal Controls
required by regulations such as SOX. They can be captured as declarative rules and
checked during execution-time on Business Processes. We built the model based on
the de facto Internal Controls standard called COSO. The approach supports the
definition of the controls outside of the workflow in order to enable the reuse of
process models and controls in different business environments.

Currently our approach requires the manual selection of a concrete control pattern
and its specific design on a Business Process according to the enterprise-specific

76 K. Namiri and N. Stojanovic

compliance needs. A higher level of automation can be brought to the approach by
building a “Risk Repository” as a starting point of the approach.

Another issue that must be addressed is the inter-control dependency: in order to
become effective, a “well-designed” control may depend on existence, effective
design, and operation of other controls. This issue is also mentioned directly by law
[9]. We currently recognize this fact by introducing the “related to” attribute in a
pattern specification. On a similar note, different designed controls can contradict,
subsume or block each other in a Business Process. We have to extend the Control
Design phase by concepts to detect such situations.

References

1. Pub. L. 107-204. 116 Stat. 754, Sarbanes Oxley Act (2002)
2. Committee of Sponsoring Organizations of the Treadway Commission (COSO), Internal

Control - Integrated Framework (1992)
3. Hartman, T.: The Cost of Being Public in the Era of Sarbanes-Oxley (June 2005)
4. zur Muehlen, M., Rosemann, M.: Integrating Risks in Business Process Models. In: ACIS

2005. Proceedings of the 2005 Australasian Conference on Information Systems, Manly,
Sydney, Australia, November 30-December 2 (2005)

5. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in Property Specification for Finite-State
Verification. In: Proceedings of the 21st International Conference on Software
Engineering, pp. 411–420 (May 1999)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Element of Reusable
Object Oriented Software. Addison-Wesley, Reading (1995)

7. Davenport, T., Short, J.: The New Industrial Engineering: Information Technology and
Business Process Redesign. Sloan Management Review 31, 11–27 (1990)

8. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes from Obligations
and Permissions. In: BPD 2006. 2nd Workshop on Business Processes Design Proceedings
(2006)

9. Public Company Accounting Oversight Board (PCAOB), PCAOB Accounting Standard
No. 2, Paragraph 12

10. Namiri, K., Stojanovic, N.: A Formal Approach for Internal Controls Compliance in
Business Processes. In: BPMDS 2007. 8th Workshop on Business Process Modeling,
Development, and Support conjunction with CAiSE 2007 (2007)

11. Sadiq, S., Governatori, G., Kioumars, N.: Modeling Control Objectives for Business
Processes. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
Springer, Heidelberg (2007)

12. Robinson, W.: Implementing Rule-based Monitors within a Framework for Continuous
Requirements Monitoring, HICSS 2005, Hawaii, USA (2005)

13. Giblin, C., Muller, S., Pfitzmann, B.: From regulatory policies to event monitoring rules:
Towards model driven compliance automation. IBM Research Report. Zurich Research
Laboratory (October 2006)

14. Casati, F., Castano, S., Fugini, M., Mirbel, I., Pernici, B.: Using Patterns to Design Rules
in Workflows. IEEE Transactions on Software Engineering 26(8) (August 2000)

Constraint-Based Workflow Models:
Change Made Easy

M. Pesic1, M.H. Schonenberg2, N. Sidorova2, and W.M.P. van der Aalst2

1 Department of Technology Management
2 Department of Mathematics and Computer Science,

Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{m.pesic, m.h.schonenberg, n.sidorova, w.m.p.v.d.aalst}@tue.nl

Abstract. The degree of flexibility of workflow management systems heavily
influences the way business processes are executed. Constraint-based models are
considered to be more flexible than traditional models because of their semantics:
everything that does not violate constraints is allowed. Although constraint-based
models are flexible, changes to process definitions might be needed to comply
with evolving business domains and exceptional situations. Flexibility can be
increased by run-time support for dynamic changes – transferring instances to
a new model – and ad-hoc changes – changing the process definition for one
instance. In this paper we propose a general framework for a constraint-based
process modeling language and its implementation. Our approach supports both
ad-hoc and dynamic change, and the transfer of instances can be done easier than
in traditional approaches.

1 Introduction

When supporting business processes there is a difficult trade-off to be made. On the one
hand, there is a desire to control processes and to avoid incorrect or undesirable exe-
cutions of these processes. On the other hand, workers want flexible processes that do
not constrain them in their actions. This apparent paradox has limited the application of
workflow management systems thus far since, as indicated by many authors, workflow
management systems are too restrictive and have problems concerning dealing with
change [3].

Many approaches to resolve the paradox have been proposed. Some of them try to
avoid change, e.g. by generating implicit alternative paths [6, 8], or by differing the se-
lection of the desired behavior [7]. Others allow for changing the model for a single
instance and/or changing a process model while migrating all instances [9, 11, 19, 23].
The migration of process instances from one model to another introduces many interest-
ing problems [3,9,19,23]. For example, the “dynamic change bug” originally described
in [11] shows that it may be impossible to put the process instance into a suitable state
of the new model without skipping or repeatedly executing tasks.

In this paper we propose a solution that has some features of both approaches: we
try to avoid the need for change and at the same time we provide full support for all
kinds of change. To avoid the need for change we address the following problem: Tra-
ditional workflow languages force or stimulate the designer to over-specify things. For

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 77–94, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

78 M. Pesic et al.

example, it is possible to model all kinds of choices in today’s systems. It is, however,
not possible to simply state that two activities should never occur together. Instead, the
user is forced to provide a detailed strategy to implement this simple requirement, e.g.
by introducing a decision task and deciding when and by whom this task is executed.
We believe that replacing the imperative approach with a declarative one is essential for
making workflow management more flexible. Therefore, we consider here a framework
where workflows are defined by constraint models.

Avoiding over-specification makes processes more flexible (more execution paths
are allowed) and allows avoiding costly changes. Change is sometimes still unavoid-
able because of exceptions (e.g., an important customer has a special request which
requires the violation of a business rule) or changed circumstances (e.g., a new law en-
forcing to reverse the order of two activities). This paper explores what change means in
the context of constraint-based languages. Here it is interesting to see whether similar
problems as reported in [3, 11, 19] occur. Surprisingly, it turns out that both ad-hoc and
evolutionary changes are rather easy to support. This explains the subtitle of this paper:
“Change Made Easy”.

The results we report here show that it is possible both (1) to avoid the need for un-
necessary changes and restrictions (using a more declarative style) and (2) to provide
support for changes at the instance level (ad-hoc change) and at the type level (evolu-
tionary change). Moreover, it is also possible to easily differentiate between mandatory
and optional constraints. A user is forbidden to violate a mandatory constraint or to
change a model so that a mandatory constraint becomes violated. For optional con-
straints a warning is generated and the user may choose to violate it or not. Note that in
each case model checking techniques can give good diagnostic information that helps
the user to understand potential problems.

Our framework is supported by the ConDec language [16]. ConDec is a graphical
declarative process modeling language supported by the Declare tool, which also sup-
ports related languages such as DecSerFlow [4]. The Declare workflow management
system is open in the sense that it can support multiple constraint-based languages and
each of the languages is extendible and can be changed without changing the engine.
This is achieved by a flexible mechanism mapping graphical constraints onto LTL (Lin-
ear Temporal Logic) [14]. Note that the semantics are expressed in a temporal logic but
the end user only sees the graphical notation when modeling. The Declare system fully
supports the approach presented in this paper and the software can be downloaded from
http://is.tm.tue.nl/staff/mpesic/declare.htm.

The remainder of the paper is organized as follows. The general framework of con-
straint modeling and changes are presented in Section 2. In Section 3 we describe Con-
Dec, an implementation of a constraint modeling language, based on the general frame-
work. ConDec is supported by the Declare tool. The support of change in ConDec is
described in Section 4. Section 5 discusses related work, and finally Section 6 concludes
the paper and gives directions for future work.

2 Constraint Models

Constraint models are suitable for supporting flexible processes that allow many differ-
ent executions. Most theoretical process modeling languages, such as Petri Nets [17],

http://is.tm.tue.nl/staff/mpesic/declare.htm

Constraint-Based Workflow Models: Change Made Easy 79

process algebras [15] and more applied business languages like BPMN, UML and
EPCs [20] define direct causal relationships between activities in process models. Op-
posed to this, constraint-based languages are of a less procedural nature and use a more
declarative style. Using constraints, the behavior is restricted. Unlike procedural lan-
guages constraints may be non-local, e.g., “eventually A is followed by B” and negative,
e.g., “either A or B can occur but not both”.

Activities and constraints on activities are the key elements of a constraint-based
model. We distinguish the universe of all activities A and the universe of all constraints
C. A∗ denotes the set of all sequences over A. We say that c is a constraint over A ⊆ A,
if it does not mention any activity a /∈ A. A constraint is a boolean expression that
evaluates to true or false for every trace σ ∈ A∗. If a constraint c evaluates to true for a
trace σ ∈ A∗, then we say that σ satisfies c, denoted as σ � c, otherwise we denote it as
σ � c. In Section 3 we will show that such constraints can be expressed graphically and
be mapped onto LTL.

Example 1 (Constraint). Let A = {curse,pray} be a set of two activities and c =“Every
curse activity is eventually followed by a pray activity” be a constraint over A. Then
〈curse〉 � c, 〈pray,pray〉 � c, 〈curse,curse,pray〉 � c and 〈curse,pray,curse〉 � c.

2.1 Preliminaries

First we introduce sequence concatenation (�), function overriding (⊕) and reduction
(), which are used in the remainder of the framework. Sequences can be concatenated
into a new sequence.

Definition 1 (Sequence concatenation �). Let σ,γ be sequences over A with σ =
a1,a2,a3, . . . ,an(∀ai ∈ A) and γ = b1,b2,b3, . . . ,bn(∀bi ∈ A). Then σ�γ = a1,a2,a3,
. . . ,an,b1,b2,b3, . . . ,bn.

We use function overriding to add and remap elements of a function domain and we use
function reduction to remove elements from a function domain. When a function f is
undefined for an element a, we denote this as f (a) = ⊥.

Definition 2 (Function overriding ⊕). Let f : A → B. Then f ⊕ (a,b) : A ∪ {a} →
B ∪{b} such that (f ⊕ (a,b))(a) = b and ∀x ∈ A\{a} : (f ⊕ (a,b))(x) = f (x).

Definition 3 (Function reduction). Let f : A → B, a ∈ A, b ∈ B. Then f 	 (a,b) :
A\{a} → B\{b} such that (f 	 (a,b))(a) = ⊥ and ∀x ∈ A\{a} : (f 	 (a,b))(x) = f (x).

2.2 Constraint Workflows

Constraints define the boundaries within which activities can be executed. Besides ac-
tivities and constraints on these activities, the constraint model also includes a mapping
that defines whether constraints are optional (may be violated) or mandatory (may never
be violated).

Definition 4 (Constraint Model cm). A constraint model cm is defined as a triple cm =
(A,C,ctype), where

80 M. Pesic et al.

– A ⊆ A is a set of activities in the model;
– C ⊆ C is a set of constraints where every element c ∈ C is a constraint over A;
– ctype : C → {mandatory,optional} is a function that defines whether constraints

are mandatory or optional.

We use UCM to denote the universe of all constraint models.

For convenience, we define an operation to remove optional constraints from a con-
straint model.

Definition 5 (Mandatory version of cm). Let cm = (A,C,ctype) be a constraint model,
then mand(A,C, ctype) = (A,C′,c′

type), where C′ = {c ∈ C | ctype(c) = mandatory} and
c′

type : C′ →
{mandatory}.

A constraint workflow contains several running instances, each related to a constraint
model and a sequence of actions performed by the instance up to the current moment.
The framework we develop here, should support changes of the constraint model by
redefining restrictions on the behavior at run time. Moreover, we want to be able to
change a constraint model for a cluster of instances, which could be e.g., all instances
related to the handling of complaints at an insurance department. For this purpose, we
introduce the notion of constraint model identifiers. This identifier is then mapped to
one of the constraint models from the universe. Instances, in their turn, are mapped to a
constraint model identifier.

Definition 6 (Constraint Workflow wf). A workflow specification based on constraint
models is defined by the tuple wf = (Pid,cmid,Pmap,CMmap, trace), where

– Pid is a set of process identifiers (instances);
– cmid is a set of constraint model identifiers;
– Pmap : Pid → cmid is a function that maps instances to model identifiers;
– CMmap : cmid → UCM is a function that maps model identifiers to constraint mod-

els;
– trace : Pid → A∗ is a function that maps instances to execution traces.

We use UW F to denote the universe of all constraint workflows wf .

Figure 1 depicts a mapping from instances of Pid to model identifiers in cmid and a map-
ping from these model identifiers to constraint models in UCM . CMmap(cmid) results in
a constraint model cm. Note that not all constraint models in the universe UCM need to

Fig. 1. Mappings

Constraint-Based Workflow Models: Change Made Easy 81

have a related model identifier in cmid . Also observe that different process instances can
be mapped onto the same constraint model identifier, i.e., the same constraint model.
Even different constraint model identifiers might be mapped onto the same constraint
model, which reflects situations in which the same constraint model is used in different
contexts (e.g., two companies can develop two identical models).

Satisfaction of constraint sets depends on the execution trace.

Definition 7 (Satisfaction of constraint sets). Let C be a set of constraints and σ ∈ A∗

then σ � C ⇐⇒ ∀c ∈ C : σ � c and σ � C ⇐⇒ ∃c ∈ C : σ � c.

The purpose of constraints is, however, to define conditions that should hold on the
completed traces of instances. During execution we can only evaluate prefixes of those
traces, and a constraint violation on a prefix does not necessarily imply that the con-
straint will be violated on the completed trace. Therefore, we introduce an evalua-
tion function that determines whether a constraint model cm is satisfied, violated or
temporarily violated, i.e., although the trace currently violates the constraints, the con-
straints can still become satisfied in the future.

Definition 8 (Evaluation eval). Let cm =∈ UCM be a constraint model where cm =
(A,C,ctype) and σ ∈ A∗ be a trace. Then the evaluation function eval is defined as

eval(σ,(A,C,ctype)) =

⎧
⎨

⎩

satisfied if σ � C;
temporarily violated if (σ � C)∧ (∃γ ∈ A∗ : σ�γ � C);
violated otherwise.

Example 2. (Satisfaction) Consider again constraint c, with c =“Every curse activity
is eventually followed by a pray activity”. Suppose trace σ = 〈curse,curse〉 at some
moment during execution. Obviously σ � c, but σ can be a prefix of a trace that could
satisfy c during execution. For example 〈curse,curse,pray〉 � c.

When an instance executes actions, the trace of that instance is updated.

Definition 9 (Execution exec). Let wf ∈ UW F be a constraint workflow where wf =
(Pid,cmid,Pmap,CMmap, trace). Let pid ∈ Pid, CMmap(Pmap(pid)) = cm,
cm = (A,C,ctype) and a ∈ A. Then the execution function exec is defined as

exec(wf ,a,pid) = (Pid,cmid,Pmap,CMmap, trace⊕ (pid, trace(pid)�〈a〉)).

Furthermore we call an execution:

– normal if no constraint is violated: eval(trace(pid)�〈a〉,cm) �= violated;
– deviating if only optional constraints are violated: eval(trace(pid)�〈a〉,cm) =

violated ∧ eval(trace(pid)�〈a〉,mand(cm)) �= violated;
– invalid otherwise.

If an instance is closed, the instance will be removed, together with its trace. Unlike in
procedural language where an instance is closed automatically when some closing state
is reached, instances of constraint-based models can have multiple states at which the
instance could be closed. Therefore, many strategies can be used to close an instance of
a constraint-based model. One example of a closing strategy would be to allow users to
explicitly choose when to close an instance and to allow only “normal” closings.

82 M. Pesic et al.

Definition 10 (Closing an instance close). Let wf =∈ UW F be a constraint workflow
where wf = (Pid,cmid,Pmap,CMmap, trace). Let pid ∈ Pid, Pmap(pid) = cmid and
CMmap(cmid) = cm. Then closing instance close is defined as

close(wf ,pid) = (Pid
′,cmid,Pmap′,CMmap, trace′),

where
Pid

′ = Pid\{pid}, Pmap′ = Pmap 	 (pid,cmid) and trace′ = trace 	 (pid, trace(pid)).
We call closing of an instance:

– normal if all constraints are satisfied: eval(trace(pid),cm) = satisfied;
– deviating if all mandatory constraints, but not all optional constraints are satisfied:

eval(trace(pid),cm) �= satisfied ∧ eval(trace(pid),mand(cm)) = satisfied;
– invalid otherwise.

Operations. We can easily add an instance to a workflow by extending the instance set
and adding an empty trace for this instance to the trace mapping.

Definition 11 (Adding a process instance addPI). Let wf ∈ UW F be a constraint work-
flow where wf = (Pid,cmid,Pmap, CMmap, trace). Let pid /∈ Pid, cmid ∈ cmid, then

addPI(wf ,pid,cmid) = (Pid ∪{pid},cmid,Pmap⊕ (pid,cmid),CMmap, trace⊕ (pid,〈〉)).

Constraint models from the universe can be added to the workflow by adding a con-
straint model identifier to the identifier set and linking the identifier to the required
constraint model.

Definition 12 (Adding a constraint model addCMI). Let wf ∈ UW F be a constraint
workflow where wf = (Pid,cmid,Pmap,CMmap, trace). Let cmid /∈ cmid, cm ∈ UCM,
then

addCMI(wf ,cmid,cm) = (Pid,cmid ∪{cmid},Pmap,CMmap⊕ (cmid,cm), trace).

Verification. Once a constraint model has been defined, we can verify whether it con-
tains dead activities and conflicts. We call an activity a dead activity, when all traces that
contain this activity violate the constraints. We say that the model contains a conflict
when there are no traces that could (eventually) satisfy the constraints.

Definition 13 (Dead activity). Let cm = (A,C,ctype) and a ∈ A. Then a is a dead ac-
tivity if ∀σ ∈ A∗ : a ∈ σ ⇒ σ � C.

Definition 14 (Conflict). Let cm = (A,C,ctype), then there is a conflict in cm if ∀σ ∈
A∗ : σ � C.

Note that if there is a conflict in the model, then all activities of the model are dead
activities.

Constraint-Based Workflow Models: Change Made Easy 83

Pid CMid UCM

(b) Ad-hoc change

i1
i2
i3

1

2

3i4

CM1

CM2

CM3

CM4

Pid CMid UCM

(c) Total evolutionary change

i1
i2
i3
i4

1

2

3

CM1

CM2

CM3

CM4

Pid CMid UCM

(d) Partial evolutionary change

i1
i2
i3
i4

1

2

3

CM1

CM2

CM3

CM4

Pid CMid UCM

(a) Initial situation

i1
i2
i3

1

2

3

CM1

CM2

CM3

CM4i4

Fig. 2. Changes for constraint workflows

2.3 Change

Constraint models support both ad-hoc and evolutionary changes. Ad-hoc changes are
typically needed to handle an exceptional situation for one case. An ad-hoc change for
an instance is allowed, when the instance trace satisfies the new model. Evolutionary
changes occur when there is a change in the process itself, e.g., by new laws or business
strategies. Traces of all running instances of the corresponding process model should
be evaluated and, if possible, the instances should be transferred (remapped) to the new
model. When this is not possible, i.e., the trace violates the new constraints, we call this
a history violation.

Figure 2 depicts a constraint workflow (without the trace mapping) and is used to il-
lustrate all change types. In Figure 2(a) four instances are depicted, of which i1, i2, i3 are
instances of constraint model cm1. Instance i4 is an instance of cm4. Constraint model
cm2 has no instances yet and cm3 is not part of the constraint workflow. In the remain-
der of this section we will explain all change types, by describing changes performed
on the original workflow, depicted in Figure 2(a). Dashed lines denote a remapping of
Pmap or CMmap with respect to the original workflow.

Definition 15 (Ad-hoc change δAH). Let wf ∈ UW F be a constraint workflow where
wf = (Pid,cmid,Pmap,CMmap, trace). Let pid ∈ Pid, cmid ∈ cmid

1,
eval(trace(pid),CMmap(cmid)) �= violated, then

δAH(wf ,pid,cmid) = (Pid,cmid,Pmap⊕ (pid,cmid),CMmap, trace).

Figure 2(b) shows a possible ad-hoc change. Suppose we would like to perform an ad-
hoc change on instance i3. We want this instance to use constraint model cm2 instead
of cm1. If the trace of instance i3 does not violate the constraints of the new model cm2,
we can remap instance i3 to identifier 2, which maps onto model cm2.

Total evolutionary changes can only be performed when all instances satisfy the new
model. If this is the case, all instances will be transfered to the new model.

1 Note that if cmid /∈ cmid , operation addCMI could be executed first.

84 M. Pesic et al.

Definition 16 (Total evolutionary change δEtotal). Let wf ∈ UW F be a constraint work-
flow where wf = (Pid,cmid,Pmap,CMmap, trace). Let cmid ∈ cmid, cm ∈ UCM,
∀pid ∈ Pmap−1(cmid) : eval(trace(pid), CMmap(cmid)) �= violated, then

δEtotal (wf ,cmid,cm) = (Pid,cmid,Pmap,CMmap⊕ (cmid,cm), trace).

In Figure 2(c) we illustrate an example of a total evolutionary change. Suppose we
would like to transfer all instances of constraint model cm1 (instances mapped to iden-
tifier 1) to cm2. When for all instances the current trace satisfies cm2, we can remap
identifier 1 to cm2.

We also define partial evolutionary change, in which only instances that satisfy the
new model are transferred to the new model. All other instances proceed their execution
according to the old model.

Definition 17 (Partial evolutionary change δEpartial). Let wf ∈ UW F be a constraint
workflow where wf = (Pid,cmid,Pmap,CMmap, trace). Let cm1 ∈ cmid, cm2 ∈ cmid,
then

δEpartial (wf ,cm1,cm2) = (Pid,cmid,Pmap′,CMmap, trace),

where Pmap′ : Pid → cmid, such that

Pmap′(pid) =
{

cm2 ,∀pid ∈ SatPid

Pmap(pid) ,∀pid ∈ Pid\SatPid.

and
SatPid =

{
pid ∈ Pid | Pmap(pid) = cm1 ∧ eval

(
trace(pid),CMmap(cm2)

)
�= violated

}
.

An example of partial evolutionary change is given in Figure 2(d). Again, suppose we
would like to transfer instances of constraint model cm1 (instances mapped to identifier
1) to cm2. Then all instances that satisfy cm2 are remapped to an identifier that is related
to cm2. Note that for instance i1 it is not possible to migrate. Therefore, it remains an
instance of cm1.

Change in imperative models is hindered by the fact that an equivalent new state
must be found in the new model, which is not always possible [11]. For declarative
models it is straightforward to transfer instances. Instances for which the current trace
satisfies the constraints of the new model, are mapped onto the new model. Hence the
“dynamic change bug” described in [11] does not apply. In the next section we will
present an implementation based on this framework.

3 ConDec and Declare

In this section we briefly introduce ConDec [16], a constraint-based process modeling
language, based on the framework we presented in Section 2. ConDec is supported by
the Declare tool, see Section 3.2.

3.1 ConDec

ConDec uses an open set of constraint templates for the definition of relationships be-
tween activities. Each template has (1) a name, (2) a graphical representation and (3)

Constraint-Based Workflow Models: Change Made Easy 85

(a) constraint template in
ConDec language

(b) constraint in model “X”

(c) constraint in model “Y”

[] (curse -> <> pray)

[] (service -> <> report)

[] (A -> <> B)

Fig. 3. Constraint template “response” and two “response” constraints

semantics given by a Linear Temporal Logic (LTL) formula on finite traces [13]. LTL
is a temporal logic that, in addition to classical logical operators, uses several temporal
operators: always (�), eventually (�), until (�) and next time (©) [14]. LTL formulas
can be added to the language by means of constraint templates. Constraint templates
are parameterized graphical representations of LTL formulas. Templates can easily be
added, removed and changed in ConDec.

Figure 3 shows a constraint template and its application to two models. For the sake
of clarity, we have also added the corresponding LTL formulas to the picture. The
template depicted in Figure 3(a) is the response template and it is defined as a sin-
gle line with special symbols between some activities “A” and “B”, i.e., “A” and “B”
are parameters of the template. The semantics of the template are given by the formula
�(A → �B): every execution of activity “A” should eventually be followed by at least
one execution of activity “B”. The response template can be used to create response
constraints in various ConDec process models, by replacing template parameters with
activities from the model. Figures 3(b) and 3(c) show parts of two ConDec models, each
containing a response constraint between two activities.

Defining templates in this way enables adding various types of relations between activ-
ities in ConDec. More than twenty LTL-based constraint templates are described in [5].
The great benefit of constraint templates is that LTL formulas are hidden from the users,
therefore they do not have to be LTL experts in order to understand underlying formulas.

Process Modeling in ConDec. ConDec models are suitable for supporting flexible
processes with many deviations during the execution. As an example, consider the pro-
cess for a car rental shop. The model of the car rental process is given in Figure 4.
Initially, the client gets registered (activity “register client data”). The client will be
charged (activity “charge”) for the rental and (if applicable) all damage he caused. The
“charge” activity will occur at least once, but the moment of charging is not fixed. If
during the rental period a problem is identified (activity “identify problem”), then car
will be checked (activity “check”). During the rental period the client can request re-
pairs (activity “request”) on which the car rental shop will repair the car if necessary
(activity “service”) and include the findings in the maintenance report of the car (activ-
ity “report”) at a suitable moment. The client could request many repairs, or none at all
and it is not known in advance when requests will be made.

86 M. Pesic et al.

start with
“register

client data”

“report” after each “service”

if “identify probem”
then “schedule check”

wait for a new “request” before each “service”

at most one
“schedule check”

at least one
“charge”

Fig. 4. Activities and constraints in car rental example

To model the the process of the car rental shop, we add several constraints on the
execution of the activities in the shop. Every instance must start with registering the
client (constraint “init”). The client will be charged for the rental and for all caused
damage, so he will be charged at least once (constraint “1..*”). Every repair service
on the car will only be done on request of the client, i.e., there has to be at least one
occurrence of activity “request” between each two occurrences of activity “service”.
Note that other activities may be executed in between “request” and “service”. Also,
for every service, eventually a report must be generated (constraint “response”). The
car must be checked when a problem is identified (constraint “responded existence”).
However, in case of a car with a long period without checks, employees can decide to
schedule check even if no serious problems were identified. At most one check will be
performed during rental (constraint “0..1”).

Process Execution. Execution of activities in a process instance creates a history trace
for that instance (cf. Definition 9). The history of a process instance is a chronologically
ordered list of events that occurred in the instance. During execution, the state of every
constraint (cf. Definition 8) is depicted by a color: (1) green for satisfied, (2) orange for
temporarily violated and (3) red for violated. We do not allow the execution of activities
that would permanently violate mandatory constraints (depicted by solid lines). The
user will be warned for violation of optional constraints (depicted by dashed lines),
but he is free to choose to violate optional constraints. Closing an instance is only
allowed when all mandatory constraints are satisfied. Again, warnings are given when
an instance that is closed does not satisfy all optional constraints, but the user is free to
close the instance anyway.

Constraint semantics (expressed in LTL formulas) are used for the automated ex-
ecution of ConDec models. Every constraint (LTL formula) is translated into a finite
automaton [13]. The constraint is satisfied when the automaton is in an accepting state.
If the automaton is not in an accepting state and an accepting state is still reachable,
the constraint is temporarily violated. The constraint is permanently violated when the
automaton is not in an accepting state and an accepting state is not reachable. Also, one
overall automaton (mandatory automaton) is generated for the conjunction of LTL for-
mulas of all mandatory constraints in the model, and it is used to decide which activities
can be executed without violating mandatory constraints (cf. Definition 9).

Constraint-Based Workflow Models: Change Made Easy 87

(a) ConDec model (b) automaton for [] (curse -> <> (pray))

[] (curse -> <>(pray))

s1s0

!curse pray

curse !pray

curse, bless

pray, bless pray

s0 s1(!curse) s1

curse

(!pray)

bless

s0(pray)

pray

(c) history: curse, bless, pray

curse

Fig. 5. Illustrative example - an instance with history 〈curse, bless, pray〉

For illustration purposes we use a simple ConDec model with three activities
(“curse”, “pray” and “bless”) and only one constraint, as shown in Figure 5(a). The
response constraint specifies that after every execution of the activity “curse” at least
one execution of the activity “pray” has to follow (i.e., �(curse → �(pray))).

The automaton corresponding to the constraint in the ConDec model is shown in
Figure 5(b). The automaton has two states {s0,s1}. The initial state is s0, which is also
the accepting state of the automaton 2. Executing an activity triggers a transition of the
automaton.

Let us assume that an instance of the model presented in Figure 5(a) has history
〈curse, bless, pray〉. Figure 5(c) shows how this execution history determines the states
of the automaton 3. Initially, the automaton is in its accepting state s0 (the response
constraint is satisfied). Next, activity “curse” triggers a transition to state s1. State s1 is
not an accepting state, but an accepting state (s0) is reachable from it (the response con-
straint is temporary violated). Execution of activity “bless” triggers transition “!pray”
and the automaton remains in state s1. Finally, activity “pray” transfers the automaton
to accepting state s0 (the constraint model is satisfied again).

Verification of ConDec models. For correct execution it is important that models do
not contain errors. Errors can be discovered in a ConDec model using the mandatory
automaton of that model. First, if there is no transition in the automaton that can be
triggered by an activity then this activity is dead (cf. Definition 13). Second, if the
automaton is empty (has no states and no transitions) then the model has a conflict (cf.
Definition 14). It is possible to detect the smallest subset of constraints that causes the
error by searching through the powerset of all mandatory constraints in the model. To

2 Termination of instances is possible only if the automaton is in an accepting state (s0 in our
case).

3 Note that Figure 5(b) shows a simplified deterministic automata for the response formula. The
automata generated from LTL formulas are in general non-deterministic automata [13]. The
standard determinization procedure [21] can be used to build a deterministic automaton.

88 M. Pesic et al.

(a) “service” is a dead activity (b) conflict

[] (service -> (! <> report))

[] (service -> (<> report)) <> service

[] (service -> (! <> report))

[] (service -> (<> report))

Fig. 6. Errors independent from history: dead activities and conflicts

achieve this, conjunction automata for subsets of constraints are created and analyzed.
If an error is found in a subset, its supersets will be discarded during the search because
all of them will contain the same error. This kind of verification can be performed on
new models and during run-time changes (Section 4).

Activity “service” in the model given in Figure 6(a) is a dead activity due to the
combination of the response and the not-response constraints, while other constraints
in the model in Figure 4 do not contribute to this error. The response constraint ex-
presses that every time “service” is executed, “register” has to be executed afterwards
at least once. The not-response constraint specifies exactly the opposite, namely that
activity “register” cannot be executed after activity “service”. As long as activity “ser-
vice” is not executed in the model, both constraints are fulfilled. However, as soon as
activity “service” is executed for the first time, it becomes impossible to fulfill both
constraints. Therefore, we can not allow execution of activity “service” in any instance
of this model.

Figure 6(b) shows a model with a conflicting combination of constraints. There is no
possibility to satisfy: (1) the existence constraint (“1..*”) on “service”, (2) the response
constraint on “service” and “report” and (3) the not-response constraint on “service”
and “report”. Therefore, the combination of these three constraints causes a conflict.

3.2 Declare Tool

We developed the Declare tool for development and enactment of declarative process
models. Declare can support various languages based on constraint templates as de-
scribed in Section 3. Specifying languages in the tool is relatively easy – languages
and constraint templates can be added, deleted, changed. Each language should include
templates specific for a certain domain. For example, the DecSerFlow language [4] has
been developed for web-service domain. This language is very similar to ConDec and
it contains more than twenty constraint templates. Currently, Declare stores the seman-
tics of constraint templates as LTL formulas, but it is implemented in a way that other
formalization languages can be used. Templates are used in Declare to quickly define
constraints in models: a template is first selected and activities form the model are as-
signed to the parameters of the template (cf. Figure 3). In this way, knowledge of the
semantics formalization language (e.g., LTL) is not necessary for the development of
models in Declare. Declare consists of three tools (see Figure 3.2): (1) the Designer is

Constraint-Based Workflow Models: Change Made Easy 89

DECLARE

Framework DesignerWorklist

declarative
processes

enactment
adaptation

development
verification

execution

user

ConDec
templates

Y
A

W
L

sub-process
super-process

Fig. 7. Declare tool

used for the specification of languages (e.g. DecSerFlow, ConDec, etc.), specification of
constraint templates, development of process models; (2) the Framework is the execu-
tion engine where process instances can be launched, run-time changes can be applied
to instances, etc. and (3) the Worklist is a simple tool that each user uses to execute pro-
cess instances. Declare works together with the YAWL workflow management system
(www.yawl-system.com) [2]. On one hand, a DECLARE process can be implemented
as a sub-process of a YAWL process. On the other hand, a YAWL process can be im-
plemented as a sub-process of a DECLARE process. Therefore, it is possible to have
workflows which are partly procedural and partly declarative. In the next section we
show how Declare is extended to support changes.

4 Change in ConDec

Thanks to the usage of automata (cf. Section 3.1) it is fairly easy to change ConDec
models for already running instances. ConDec supports both ad-hoc and evolutionary
changes as defined in Section 2.3 (cf. Definitions 15, 16 and 17).

Procedure for change. The procedure for changing an instance during the execution
is slightly different from the procedure for starting an instance. Figure 8 shows how
the DECLARE tool performs both procedures. When an instance of a verified con-
straint model is started, an automaton is created for the mandatory constraints and is
set to the initial state. After these steps, the instance starts executing with the constraint
automaton in its initial state. During change, one additional step, called instance veri-
fication (cf. Definition 8), is needed to determine whether the history trace satisfies the
constraints of the new (changed) model. Instance verification could reveal history viola-
tions. A history violation is a permanent violation of mandatory constraints of the new
model. It occurs when the history (generated by the automaton for the old model) can-
not be replayed by the new automaton (for the changed model). Change is only allowed
in the absence of history violations. After change, the instance continues its execution
according to the new model. The state of the new automaton is the state that was set by

www.yawl-system.com

90 M. Pesic et al.

developing
model

changing
instance

starting
instance

create
mandatory
automaton

instance
verification

(replay history)

strat from
current state

set to
 initial state

X X

X XX ? ok

X

report error
cancel change

not ok

verify against
dead activities
and conflicts

?

?

report error

not ok

Fig. 8. Procedure for starting and changing instances

the history trace, i.e. history is “replayed” in the new model. In cases of history viola-
tion, the minimal subset of constraints causing the violation is detected using the same
technique as we used for dead activities and conflict verification.

Change operations. Changes of ConDec models in the DECLARE tool can be
achieved by: (1) adding constraints, (2) removing constraints, (3) adding activities and
(4) removing activities. Using combinations of these four atomic change operations it
is also possible to change constraint types from mandatory to optional and vice versa in
running instances. For example, changing type of a constraint from optional into manda-
tory can be decomposed into two atomic actions: an optional constraint is removed and
an mandatory constraint is added to the model.

The automaton used for execution of an instance is generated based on all manda-
tory constraints in the instance model. Therefore, this automaton will change only when
adding/removing mandatory constraints. In cases of other changes (i.e., adding and re-
moving activities and optional constraints), the execution automaton will remain the
same like before the change. Due to this fact, history violations can only occur when
adding mandatory constraints to the constraint model. When an activity is added (or
removed) in the running instance, its execution automaton will remain the same, but
the users will (or will not) be able to execute the activity in the future for the running
instance (cf. Definition 9). When removing an activity involved in one or more con-
straints, one of the two strategies can be adopted: (1) the change operation is rejected
and the activity cannot be removed or (2) the activity and all related constraints are
removed from the model. Currently, the second strategy is implemented in Declare.

Figure 9(a) shows a ConDec model where a precedence constraint has been added
to the model. The precedence constraint specifies that each “bless” activity can be ex-
ecuted only after at least one execution of activity “pray”. Figure 9(b) shows the au-
tomaton for all constraints of the ConDec model. In the automaton the “bless” activity
is only allowed after execution of the “pray” activity (state s1). Figure 9(c) shows a
history violation for trace 〈curse, bless, pray, bless〉. The violation is caused by the fact
that the automaton is unable to execute “bless” in s0. Therefore, adding the “prece-
dence” constraint is not allowed for instances with this history trace. Figure 10 shows
a screenshot of Declare reporting this history violation for the “precedence” constraint.

Constraint-Based Workflow Models: Change Made Easy 91

s0 s0(!bless)

curse

(?)

bless

(c) history: curse, bless, pray

<> pray(<> bless) -> (!bless U pray)

(a) ConDec model

(b) automaton for

((<> bless) -> (!bless U pray))
 /\ (<> pray)

s0 s1pray

!bless -

Fig. 9. “Precedence(pray,bless)” violates history 〈curse, bless, pray〉

Fig. 10. Declare screenshot - precedence constraint violating history 〈curse, bless, pray〉

Note that there might be cases where a group of constraint causes a history violation.
Declare searches for the smallest subset of constraints that causes an verification error
(dead activity, conflict or history violation) by searching through the powerset of all
mandatory constraints as described in Section 3.1.

Change types. The DECLARE tool supports both total and partial evolutionary change
of ConDec models. For an ad-hoc change, instance verification is only performed for
the relevant instance. In traditional languages migration of instances is complicated
and not always possible. The complexity of this operation stems from the fact that for
the current state of an instance, an appropriate state in the new model has to be found
and this is not always possible (cf. the “dynamic change bug” described in [11] and
the many problems described in [19]). In declarative languages, such as ConDec, it is
not necessary to find such a state. DECLARE only investigates the state of the new
mandatory constraint automaton for the history trace(s), to detect whether migration

92 M. Pesic et al.

is possible. For evolutionary changes, DECLARE performs instance verification on all
instances of the old constraint model. Instances that do not cause history violation are
migrated to the new model. Other instances continue execution with the old model.

5 Related Work

Many researchers have been trying to provide ways of avoiding the apparent paradox
where, on the one hand, there is the desire to control the process and to avoid incorrect
or undesirable executions of the processes, and, on the other hand, workers want lots of
flexibly and to feel unconstrained in their actions [1,3,4,6,7,8,9,11,16,18,19,23]. It is
impossible to provide a complete overview of related work. Therefore, we refer to only
some of the most related papers in this area.

See [3] for a taxonomy of change and [12] for an introduction to the different types
of workflow processes. The case handling concept is advocated as a way to avoid re-
stricting users in their actions [6]. This is achieved by a range of mechanisms that allow
for implicit deviations that are rather harmless. In [8] completely different techniques
are used, but also the core idea is that implicit paths are generated to allow for more
flexibility. In [7] pockets of flexibility are identified that are specified/selected later in
the process, i.e., there is some form of “late binding” at run-time. Many papers look at
problems related to ad-hoc and/or evolutionary change [1,9,11,18,19,23]. The problem
of the dynamic change bug was introduced in [11]. In [1] this problem is addressed by
calculating so-called change regions based on the structure of the process. A particu-
lar correctness property is described in [23] and the problem of instance migration is
also investigated in [9]. In the context of the ADEPT system the problem of workflow
change has been investigated in detail (including data analysis) [18, 19].

It is also interesting to mention some commercial workflow management systems in
this context. Historically, InConcert of Xerox and Ensemble of FileNet were systems
among the first commercial systems to address the problem of change. Both supported
ad-hoc changes in a rather restrictive setting. Several systems have been extended with
some form of late binding. For example, the Staffware workflow system allows for the
dynamic selection of subprocesses at run-time. Probably the most flexible commercial
system is FLOWer of Pallas Athena [6]; this system supports a variety of case handling
mechanisms to enable flexibility at run-time while avoiding changes of the model.

This paper is based on the earlier work on ConDec [16] and DecSerFlow [4] where a
more declarative style of modeling is advocated. In those papers, the problem of change
is not addressed, i.e., the goal is to avoid change. Despite various approaches to declar-
ative (and constraint-based) workflow specification [10, 22], as far as we know, this
paper is the first paper that investigates the possibility of allowing ad-hoc and evolu-
tionary changes in a constraint-based language.

6 Conclusions

This paper presented a new and comprehensive approach towards supporting change
in constraint-based workflow models. This approach combines the advantages of hav-
ing a declarative style of modeling and allowing ad-hoc and evolutionary changes. On

Constraint-Based Workflow Models: Change Made Easy 93

the one hand, we try to avoid over-specification by using a declarative style of modeling
rather than the typical procedural styles used in today’s workflow management systems.
On the other hand, we acknowledge the fact that sometimes change is unavoidable and
provide extensive support for this. The results presented in this paper show that it is rel-
atively easy to support ad-hoc and evolutionary changes in constraint-based workflow
models.

In this paper, we presented a general approach and also showed a concrete appli-
cation of the ideas using the ConDec language [16]. Moreover, the whole approach
is supported by the Declare system. The reader is invited to download the tool from
http://is.tm.tue.nl/staff/mpesic/declare.htm. Declare works together with
the YAWL workflow management system [2] (www.yawl-system.com) that also al-
lows for flexibility through so-called worklets [7]. This enables developing workflows
which are partly procedural and partly declarative while using all kinds of flexibility
mechanisms. Future work will aim at experimenting with interesting mixtures of these
mechanisms, e.g., to provide guidelines on when to use particular types of flexibility.

References

1. van der Aalst, W.M.P.: Exterminating the Dynamic Change Bug: A Concrete Approach to
Support Workflow Change. Information Systems Frontiers 3(3), 297–317 (2001)

2. van der Aalst, W.M.P., Aldred, L., Dumas, M., ter Hofstede, A.H.M.: Design and Implemen-
tation of the YAWL System. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084,
pp. 142–159. Springer, Heidelberg (2004)

3. van der Aalst, W.M.P., Jablonski, S.: Dealing with Workflow Change: Identification of Issues
and Solutions. International Journal of Computer Systems, Science, and Engineering 15(5),
267–276 (2000)

4. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 1–23. Springer, Heidelberg (2006)

5. van der Aalst, W.M.P., Pesic, M.: Specifying, discovering, and monitoring service flows:
Making web services process-aware. BPM Center Report BPM-06-09, BPM Center (2006),
http://www.BPMcenter.org

6. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A New Paradigm for
Business Process Support. Data and Knowledge Engineering 53(2), 129–162 (2005)

7. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A Service-
Oriented Implementation of Dynamic Flexibility in Workflows. In: Meersman, R., Tari,
Z. (eds.) On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg (2006)

8. Agostini, A., De Michelis, G.: Improving Flexibility of Workflow Management Systems. In:
van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS,
vol. 1806, pp. 218–234. Springer, Heidelberg (2000)

9. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow Evolution. Data and Knowledge Engi-
neering 24(3), 211–238 (1998)

10. Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., Zbyslaw, A.: Freeflow: mediating
between representation and action in workflow systems. In: CSCW 1996. Proceedings of the
1996 ACM conference on Computer supported cooperative work, pp. 190–198. ACM Press,
New York, NY, USA (1996)

http://is.tm.tue.nl/staff/mpesic/declare.htm
www.yawl-system.com
http://www.BPMcenter.org

94 M. Pesic et al.

11. Ellis, C.A., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems. In: Com-
stock, N., Ellis, C., Kling, R., Mylopoulos, J., Kaplan, S. (eds.) ACM SIGOIS. Proceedings
of the Conference on Organizational Computing Systems, Milpitas, California, pp. 10–21.
ACM Press, New York (1995)

12. Georgakopoulos, D., Hornick, M., Sheth, A.: An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases 3, 119–153 (1995)

13. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on
running programs. In: ASE 2001. Proceedings of the 16th IEEE international conference on
Automated software engineering, p. 412. IEEE Computer Society Press, Washington, DC,
USA (2001)

14. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge,
Massachusetts and London, UK (1999)

15. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge University
Press, Cambridge, UK (1999)

16. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business Processes.
In: Eder, J., Dustdar, S. (eds.) Business Process Management Workshops. LNCS, vol. 4103,
pp. 169–180. Springer, Heidelberg (2006)

17. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Fakultät für Mathematik und
Physik, Technische Hochschule Darmstadt, Darmstadt, Germany (1962)

18. Reichert, M., Dadam, P.: ADEPTflex: Supporting Dynamic Changes of Workflow without
Loosing Control. Journal of Intelligent Information Systems 10(2), 93–129 (1998)

19. Rinderle, S., Reichert, M., Dadam, P.: Correctness Criteria For Dynamic Changes in Work-
flow Systems: A Survey. Data and Knowledge Engineering 50(1), 9–34 (2004)

20. Scheer, A.-W.: ARIS: business process modeling, 2nd edn. Springer, Berlin (1998)
21. Sudkamp, T.-A.: Languages and machines: an introduction to the theory of computer science,

2nd edn. Addison-Wesley Pub., Reading (1997)
22. Wainer, J., de Lima Bezerra, F.: Groupware: Design, Implementation, and Use. In: Favela, J.,

Decouchant, D. (eds.) CRIWG 2003. LNCS, vol. 2806, pp. 151–158. Springer, Heidelberg
(2003)

23. Weske, M.: Formal Foundation and Conceptual Design of Dynamic Adaptations in a Work-
flow Management System. In: Sprague, R. (ed.) HICSS-34. Proceedings of the Thirty-Fourth
Annual Hawaii International Conference on System Science, IEEE Computer Society Press,
Los Alamitos, California (2001)

Dynamic, Extensible and Context-Aware

Exception Handling for Workflows

Michael Adams1, Arthur H.M. ter Hofstede1, and Wil M.P. van der Aalst1,2,
and David Edmond1

1 Business Process Management Group
Queensland University of Technology, Brisbane, Australia

{m3.adams, a.terhofstede, d.edmond}@qut.edu.au
2 Department of Mathematics and Computer Science

Eindhoven University of Technology, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tue.nl

Abstract. This paper presents the realisation, using a Service Oriented
Architecture, of an approach for dynamic, flexible and extensible excep-
tion handling in workflows, based not on proprietary frameworks, but on
accepted ideas of how people actually work. The resultant service im-
plements a detailed taxonomy of workflow exception patterns to provide
an extensible repertoire of self-contained exception-handling processes
called exlets, which may be applied at the task, case or specification
levels. When an exception occurs at runtime, an exlet is dynamically se-
lected from the repertoire depending on the context of the exception and
of the particular work instance. Both expected and unexpected excep-
tions are catered for in real time, so that ‘manual handling’ is avoided.

1 Introduction

Workflow management systems (WfMS) are used to configure and control struc-
tured business processes from which well-defined workflow models and instances
can be derived [1,2,3]. However, the proprietary process definition frameworks
imposed by WfMSs make it difficult to support (i) dynamic evolution (i.e. mod-
ifying process definitions during execution) following unexpected or develop-
mental change in the business processes being modelled [4]; and (ii) process
exceptions, or deviations from the prescribed process model at runtime [5,6].

For exceptions, the accepted practice is that if it can conceivably be antic-
ipated, then it should be included in the static process model. However, this
approach can lead to very complex models, much of which will not be executed
in most instances. Also, mixing business logic with exception handling routines
complicates the verification and modification of both [7], in addition to rendering
the process model almost unintelligible to many stakeholders.

Conversely, if an unexpected exception occurs, then the model is deemed to be
simply deficient and thus must be amended to include the previously unimagined
event (see for example [8]), which disregards the frequency of such events and
the costs involved with their correction. Most often, the only available options

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 95–112, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

96 M. Adams et al.

are suspension while the exception is handled manually or termination of the
case, but since most processes are long and complex, neither option presents a
satisfactory solution [7]. Manual handling incurs an added penalty: the correc-
tive actions undertaken are not added to ‘organisational memory’ [9,10], and
so natural process evolution is not incorporated into future iterations of the
process. Associated problems include those of migration, synchronisation and
version control [5].

Thus a large group of business processes do not easily map to the rigid mod-
elling structures provided [11], due to the lack of flexibility inherent in a frame-
work that, by definition, imposes rigidity. Business processes are ‘system-centric’,
or straight-jacketed [2] into the supplied framework, rather than truly reflecting
the way work is actually performed [1]. As a result, users are forced to work out-
side of the system, and/or constantly revise the static process model, in order to
successfully perform their activities, thereby negating the efficiency gains sought
by implementing a workflow solution in the first place.

The flux inherent in work practices has been further borne out by our pre-
vious work on process mining. When considering processes where people are
expected to execute tasks in a structured way but are not forced to by a work-
flow system, process mining shows that the processes are much more dynamic
than expected. That is, workers tend to deviate from the ‘normal flow’, often
with good reasons.

To gain a grounded understanding of actual work practices, we previously
undertook a detailed study of Activity Theory, a broad collective of theoris-
ing and research in organised human activity (cf. [12,13]), and derived from it
a set of principles that describe the nature of participation in organisational
work practices [14]. We then applied those principles to the design and imple-
mentation of a discrete web-based service that maintains an extensible reper-
toire of self-contained exception handling processes, known as exlets, and an
associated set of contextual selection rules, to dynamically support exception
handling for business process instances orthogonal to the underlying workflow
engine.

This paper describes the resultant service, which uses the ‘worklets’ approach
introduced in [15,16] as a conceptual foundation, and applies the classification
of workflow exception patterns from [17]. The implementation platform used is
the well-known workflow environment YAWL [18,19], which supports a Service
Oriented Architecture (SOA) — but the discrete nature of the service means
its applicability is in no way limited to the YAWL environment. Also, being
open-source, the service is freely available for use and extension.

The paper is organised as follows: Section 2 provides an overview of the design
and operation of the service, while Section 3 details the service architecture.
Section 4 discusses exception types handled by the service and the definition of
exlets. Section 5 describes how the approach utilises Ripple Down Rules (RDR)
to achieve contextual, dynamic selection of exlets at runtime. Section 6 discusses
related work, and finally Section 7 concludes the paper.

Dynamic, Extensible and Context-Aware Exception Handling for Workflows 97

2 Service Overview

The implemented service, known as the Worklet Service1 comprises two distinct
but complementary sub-services: a Selection sub-service, which enables dynamic
flexibility for process instances (cf. [15]); and an Exception Handling sub-service
(the subject of this paper), which provides facilities to handle both expected and
unexpected process exceptions at runtime.

The Exception Handling sub-service (or, more simply, the Exception Service)
allows administrators to define exception handling processes (called exlets) for par-
entworkflow instances, to be invokedwhen certain events occur, and thereby allow-
ing execution of the parent process to continue unhindered. It has been designed
so that the enactment engine, besides providing notifications at certain points in
the life cycle of a process instance, needs no knowledge of an exception occurring,
nor of any consequent invocation of exlets — all exception checking and handling
is provided by the service. Additionally, all exlets in a specification’s repertoire
automatically become an implicit part of the process specification for all current
and future instances of the process, which provides for continuous evolution of the
process while avoiding any requirement to modify the original process definition.

The Exception Service is built on the same conceptual framework as the
Worklet Selection sub-service, and so uses the same repertoire and dynamic
rules approach (see Section 5). There are, however, two fundamental differences
between the two sub-services. First, where the Selection Service selects a worklet
as the result of satisfying a rule in a rule set, the result of an Exception Service
rule being satisfied is an exlet (which may contain a worklet to be executed as a
compensation process). Second, while the Selection Service is invoked for certain
nominated tasks in a process, the Exception Service, when enabled, is invoked
for every case and task executed by the enactment engine, and will detect and
handle up to ten different kinds of process exceptions (those exception types are
described in Section 4.1).

Most modern programming languages provide mechanisms that separate ex-
ception handling routines from the ‘normal’ program logic, which facilitates the
design of readable, comprehensible programs [20,21,22]. Similar methods are in-
corporated into distributed frameworks and operating systems. However, little
or no such means are provided in most WfMSs. Usually, any or all possible
exceptions must be incorporated into the monolithic workflow model, which
contravenes accepted paradigms of modularity, encapsulation and reusability.

For the Exception Service, an exlet (discrete and external to the parent model)
may consist of a number of various actions (such as cancel, suspend, complete,
fail, restart and compensate) and be automatically applied at a workitem, case
and/or specification level. And, because exlets can include worklets as compensa-
tion processes, the original parent process model only needs to reveal the actual
business logic for the process.

1 Essentially, a worklet is a small, discrete workflow process that may act as both a
late-bound sub-net for an enabled workitem and a compensation process within an
exception handler.

98 M. Adams et al.

book stadium sell tickets do show

‘parent’ process

ItemPreConstraint
 exletsC

C

C

cancel stadium book theatre advise fans

compensation worklet

OrganiseConcert

ChangeToMidVenue

C

Fig. 1. Process – Exlet – Worklet Hierarchy

Each time an exception occurs, the service makes a choice from the repertoire
based on the type of exception and the contextual data of the workitem/case,
using a set of rules to select the most appropriate exlet to execute (see Section
5). If the exlet contains a compensation primitive, the associated worklet is run
as a separate case in the enactment engine, so that from an engine perspective,
the worklet and its ‘parent’ (i.e. the process that invoked the exception) are two
distinct, unrelated cases. The service tracks the relationships, data mappings
and synchronisations between cases, and maintains execution logs that may be
combined with those of the engine via case identifiers to provide a complete
operational history of each process. Figure 1 shows the relationship between
a ‘parent’ process, an exlet repertoire and a compensatory worklet, using as
an example a simple process for the organisation of a rock concert (Organise
Concert).

The repertoire of exlets grows as new exceptions arise or different ways of
handling exceptions are formulated, including while the parent process is execut-
ing, and those handling methods automatically become an implicit part of the
process specification for all current and future instances of the process.

Any number of exlets can form the repertoire of each particular exception
type for an individual task or case. An exlet may be a member of one or more
repertoires – that is, it may be re-used for several distinct tasks or cases within
and across process specifications. The Selection and Exception sub-services can
be used in combination within case instances to achieve dynamic flexibility and
exception handling simultaneously.

Dynamic, Extensible and Context-Aware Exception Handling for Workflows 99

3 Service Architecture

The Worklet Service has been implemented as a YAWL Custom Service [18,19].
The YAWL environment was chosen as the implementation platform since it
provides a very powerful and expressive workflow language based on the workflow
patterns identified in [23], together with a formal semantics. It also provides
a workflow enactment engine, and an editor for process model creation, that
support the control flow, data and (basic) resource perspectives.

The YAWL environment is open-source and offers a service-oriented architec-
ture, allowing the service to be implemented completely independent to the core
engine. Thus the deployment of the Worklet Service is in no way limited to the
YAWL environment, but may be ported to other environments (for example,
BPEL based systems, classical workflow systems, and the Windows Workflow
Foundation) by making the necessary linkages in the service interface. As such,
this implementation also represents a case study in service-oriented computing
whereby dynamic flexibility and exception handling for workflows, orthogonal to
the underlying workflow language, is provided.

To enable the Worklet Service to serve a workflow enactment engine, a number
of events and methods must be provided by an interface between them. In the
conceptualisation and design of the service, the size or ‘footprint’ of the interface
has been kept to an absolute minimum to accommodate ease-of-deployment and
thus maximise the installation base, or the number of enactment engines, that
may benefit from the extended capabilities that the worklet service offers. Being
a web-service, the worklet service has been designed to enable remote deployment
and to allow a single instance of the service to concurrently manage the flexibility
and exception handling management needs for a number of disparate enactment
engines that conform to the interface.

The YAWL environment provides for the workflow enactment engine and
external services to interact across several interfaces supporting the ability to
send and receive both messages and XML data to and from the engine. Three
of those interfaces are used by the Worklet Exception Service:

– Interface A provides endpoints for process definition, administration and
monitoring [19] – the service uses Interface A to upload worklet specifications
to the engine;

– Interface B provides endpoints for client and invoked applications and work-
flow interoperability [19] – used by the service for connecting to the engine,
to start and cancel case instances, and to check workitems in and out of the
engine after interrogating their associated data; and

– Interface X (‘X’ for ‘eXception’) which has been designed to provide the
engine with the ability to notify custom services of certain events and check-
points during the life-cycle of each process instance and each of its tasks
where process exceptions either may have occurred or should be tested for.
Thus Interface X provides the Exception Service with the necessary triggers
to dynamically capture and handle process exceptions.

100 M. Adams et al.

Rules

Logs

Worklet
Worklet
Service

X

Selection

Exception

YAWL
engine A

B

YAWL
worklist

Rules
Editor

YAWL
Editor

Specs

user

Fig. 2. External Architecture of the Worklet Service

In fact, Interface X was created to enable the Exception Service to be built.
However, one of the overriding design objectives was that the interface should
be structured for generic application — that is, it can be applied by a variety of
services that wish to make use of checkpoint and/or event notifications during
process executions. For example, in addition to exception handling, the inter-
face’s methods provide the tools to enable ad-hoc or permanent adaptations to
process schemas, such as re-doing, skipping, replacing and looping of tasks.

Figure 2 shows the external architecture of the Worklet Service. The entities
‘Worklet specs’, ‘Rules’ and ‘Logs’ in Figure 2 comprise the worklet repository.
The service uses the repository to store rule sets, worklet specifications for up-
loading to the engine, and generated process and audit logs. The YAWL editor
is used to create new worklet specifications, and may be invoked from the Rules
Editor, which is used to create new or augment existing rule sets, making use of
certain selection logs to do so, and may communicate with the Worklet Service
via a JSP/Servlet interface to override worklet selections following rule set ad-
ditions (see Section 5). The service also provides servlet pages that allow users
to directly communicate with the service to raise external exceptions and carry
out administration tasks.

4 Exception Types and Handling Primitives

This section introduces the ten different types of process exception that have
been identified, seven of which are supported by the current version of the
Exception Service. It then describes the handling primitives that may be used
to form an exception handling process (i.e. an exlet). The exception types and

Dynamic, Extensible and Context-Aware Exception Handling for Workflows 101

primitives described here are based on and extend from those identified by Rus-
sell et al., who define a rigorous classification framework for workflow exception
handling independent of specific modelling approaches or technologies [17].

4.1 Exception Types

The following seven types of exceptions are supported by our current implemen-
tation:

Constraint Types: Constraints are rules that are applied to a workitem or case
immediately before and after execution of that workitem or case. Thus, there
are four types of constraint exception:

– CasePreConstraint - case-level pre-constraint rules are checked when each
case instance begins execution;

– ItemPreConstraint - item-level pre-constraint rules are checked when each
workitem in a case becomes enabled (i.e. ready to be checked out);

– ItemPostConstraint - item-level post-constraint rules are checked when each
workitem moves to a completed status; and

– CasePostConstraint - case-level post constraint rules are checked when a
case completes.

When the service receives an constraint event notification, the rule set is
queried (see Section 5), and if a constraint has been violated the associated
exlet is selected and invoked.

TimeOut: A timeout event occurs when a workitem reaches a set deadline. The
service receives a reference to the workitem and to each of the other workitems
running in parallel to it. Therefore, timeout rules may be defined for each of
the workitems affected by the timeout (including the actual timed out workitem
itself).

Externally Triggered Types: Externally triggered exceptions occur because of
an occurrence outside of the process instance that has an effect on the continuing
execution of the process. Thus, these events are triggered directly by a user via
a servlet page (for example, Figure 5); depending on the actual event and the
context of the case or workitem, a particular exlet will be invoked. There are
two types of external exceptions, CaseExternalTrigger (for case-level events) and
ItemExternalTrigger (for item-level events).

Three more exception types have been identified but are not yet supported,
since they rely more heavily on the internal mechanisms of the enactment engine:

ItemAbort: This event occurs when a workitem being handled by an external
program (as opposed to a human user) reports that the program has aborted
before completion.

ResourceUnavailable: This event occurs when an attempt has been made to
allocate a workitem to a resource and the resource reports that it is unable to
accept the allocation or the allocation cannot proceed.

ConstraintViolation: This event occurs when a data constraint has been vio-
lated for a workitem during its execution (as opposed to pre- or post- execution).

102 M. Adams et al.

Fig. 3. Example Exlet in the Rules Editor

4.2 Exception Handling Primitives

Each exlet is defined graphically using the Worklet Rules Editor, and may con-
tain any number of steps, or primitives. Figure 3 shows the Rules Editor with
an example exlet displayed. On the left of the Editor is the set of available
primitives, which are (reading left-to-right, top-to-bottom):

– Remove WorkItem: removes (or cancels) the workitem; execution ends, and
the workitem is marked with a status of cancelled. No further execution
occurs on the process path that contains the workitem.

– Remove Case: removes the case. Case execution ends.
– Remove All Cases : removes all case instances for the specification in which

the workitem is defined, or of which the case is an instance.
– Suspend WorkItem: suspends (or pauses) execution of a workitem, until it is

continued, restarted, cancelled, failed or completed, or the case that contains
the workitem is cancelled or completed.

– Suspend Case: suspends all ‘live’ workitems in the current case instance (a
live workitem has a status of fired, enabled or executing), effectively sus-
pending execution of the entire case.

– Suspend All Cases : suspends all ‘live’ workitems in all of the currently execut-
ing instances of the specification in which the workitem is defined, effectively
suspending all running cases of the specification.

– Continue WorkItem: un-suspends (or continues) execution of the previously
suspended workitem.

– Continue Case: un-suspends execution of all previously suspended workitems
for the case, effectively continuing case execution.

– Continue All Cases: un-suspends execution of all workitems previously sus-
pended for all cases of the specification in which the workitem is defined or of
which the case is an instance, effectively continuing all previously suspended
cases of the specification.

– Restart WorkItem: rewinds workitem execution back to its start. Resets the
workitem’s data values to those it had when it began execution.

– Force Complete WorkItem: completes a ‘live’ workitem. Execution of the
workitem ends, and the workitem is marked with a status of ForcedComplete,

Dynamic, Extensible and Context-Aware Exception Handling for Workflows 103

which is regarded as a successful completion, rather than a cancellation or
failure. Execution proceeds to the next workitem on the process path.

– Force Fail WorkItem: fails a ‘live’ workitem. Execution of the workitem ends,
and the workitem is marked with a status of Failed, which is regarded as an
unsuccessful completion, but not as a cancellation – execution proceeds to
the next workitem on the process path.

– Compensate: runs a compensatory process (i.e. a worklet). Depending on the
actions of previous primitives in the exlet, the worklet may execute simulta-
neously to the parent case, or execute while the parent is suspended. One or
more worklets may be simultaneously invoked by a compensate primitive.

Thus, the example exlet in Figure 3 will suspend the case, execute a compen-
sation process, then continue (or unsuspend) the case. A compensation primitive
may contain an array of one or more worklets – when multiple worklets are de-
fined they are launched concurrently as an effectively composite compensatory
action. Execution moves to the next primitive in the exlet when all worklets have
completed. Additionally, relevant data values may be mapped from a case to a
compensatory worklet, where they may be modified and mapped back again to
the original case.

Worklets that are executed as compensatory processes within exlets can in
turn invoke child worklets to any depth. The primitives ‘Suspend All Cases’,
‘Continue All Cases’ and ‘Remove All Cases’ may be flagged when being added
to an exlet definition in the Rules Editor so that their action is restricted to
ancestor cases only. Ancestor cases are those in a hierarchy of worklets back to
the original parent case — that is, where a process invokes an exlet which invokes
a compensatory worklet which in turn invokes another worklet and/or an exlet,
and so on. Since compensatory worklets are launched as separate cases in the
enactment engine, they too are monitored by the service for exceptions and thus
may have exlets launched for them in certain circumstances. Also, the ‘Continue’
primitives are applied only to those workitems and cases that were previously
suspended by the same exlet. Execution moves to the next primitive in the exlet
when all worklets launched from a compensation primitive have completed.

Referring to Figure 1, the centre tier shows the exlets repertoire for an Item-
PreConstraint violation for a particular task, which correspond to the rule tree
shown in Figure 4. There may actually be up to eleven different ‘planes’ for this
tier — one for each exception type. Also, each exlet may refer to a different set
of compensatory processes, or worklets, and so at any point there may be several
worklets operating on the upper tier.

5 Contextual Selection of Exlets

The runtime selection of an exlet relies on the type of exception that has oc-
curred and the relevant context of the workitem and/or case instance, derived
from data attribute values of the case instance, workitem-level values, the inter-
nal status of each workitem in the process instance, resource data, historical data

104 M. Adams et al.

from process logs, and other extensible external sources. Some of these data are
supplied directly by the enactment engine across the interfaces, others may be
indirectly supplied using process mining techniques.

The selection process is achieved through the use of modified Ripple Down
Rules (RDR), which comprise a hierarchical set of rules with associated excep-
tions, first devised by Compton and Jansen [24]. The fundamental feature of
RDR is that it avoids the difficulties inherent in attempting to compile, a-priori,
a systematic understanding, organisation and assembly of all knowledge in a
particular domain. Instead, it allows for general rules to be defined first with
refinements added later as the need arises [25].

Each specification may have an associated rule set, which consists of a set of
RDR trees stored as XML data. Each RDR tree is a collection of simple rules
of the form “if condition then conclusion”, conceptually arranged in a binary
tree structure (see Figure 4). When a rule tree is queried, it is traversed from
the root node of the tree along the branches, each node having its condition
evaluated along the way. For non-terminal nodes, if a node’s condition evaluates
to True, the node connected on its True branch is subsequently evaluated; if
it evaluates to False, the node connected on its False branch is evaluated [26].
When a terminal node is reached, if its condition evaluates to True then that
conclusion is returned as the result of the tree traversal; if it evaluates to False,
then the conclusion of the last node in the traversal that evaluated to True is
returned as the result.

Effectively, each rule node on the true branch of its parent is an exception
rule of the more general one of its parent (that is, it is a refinement of the more
general parent rule), while each rule node on the false branch of its parent node
is an “else” rule to its parent (or an alternate to the parent rule). This tree
traversal provides implied locality - a rule on an exception branch is tested for
applicability only if its parent (next-general) rule is also applicable.

The hierarchy of a worklet rule set is (from the bottom up):

– Rule Node: contains the details (condition, conclusion, id, parent and so
on) of one discrete ripple-down rule. The conclusion of a node equates to an
exlet.

– Rule Tree: consists of a number of rule nodes conceptually linked in a
binary tree structure.

– Tree Set: a set of one or more rule trees. Each tree set is specific to a
particular exception type. The tree set of a case-level exception type will
contain exactly one tree. The tree set of an item-level type will contain one
rule tree for each task of the specification that has rules defined for it.

– Rule Set: a set of one or more tree sets representing the entire set of rules
defined for a specification. Each rule set is specific to a particular specifica-
tion. A rule set will contain one tree set for each exception type for which
rules have been defined.

A repertoire of exlets may be formed for each exception type. Each specifica-
tion has a unique rule set (if any), which contains between one and eleven tree

Dynamic, Extensible and Context-Aware Exception Handling for Workflows 105

0

true

default

1

TicketsSold < (Seating * 0.75)

suspend workitem
run ChangeToMidVenue
continue workitem

3

EquipmentInstalled = False

suspend case
run RescheduleConcert
continue case

2

TicketsSold < (Seating * 0.5)

suspend workitem
run ChangeToSmallVenue
continue workitem

4

TicketsSold < (Seating * 0.2)

suspend case
run CancelShow
remove case

Condition not satisfied
Condition satisfied

condition

conclusion

Fig. 4. Example rule tree (ItemPreConstraint for DoShow task of OrganiseConcert)

sets (or sets of rule trees), one for selection rules (used by the Selection sub-
service) and one for each of the ten exception types. Three of those ten relate to
case-level exceptions (i.e. CasePreConstraint, CasePostConstraint and CaseEx-
ternalTrigger) and so each of these will have at most one rule tree in the tree set.
The other eight tree sets relate to workitem-level events (seven exception types
plus selection), and so may have one rule tree for each task in the specification
— that is, the tree sets for these eight rule types may consist of a number of
rule trees. The rule set for each specification is stored as XML data in a discrete
disk file. All rule set files are stored in the worklet repository.

If there are no rules defined for a certain exception type in the rule set for
a specification, a runtime event of that type is ignored by the service. Thus
rules are needed only for those exception events that are desired to be handled
for a particular task and/or specification. So, for example, if an administrator is
interested only in capturing pre- and post- constraints at the workitem level, then
only the ItemPreConstraint and ItemPostConstraint tree sets need to be defined
(that is, rules defined within those tree sets). Of course, rules for other types can
be added later when required. Figure 4 shows the ItemPreConstraint rule tree
for the third task in the Organise Concert example, Do Show, (corresponding to
the centre and lower tiers of Figure 1 respectively); it is evaluated when a Do
Show workitem instance is enabled. This rule tree provides exlets for organisers
to change the venue of the concert, or cancel it, when there are insufficient tickets
sold to fill the original venue. For example, if a particular Do Show instance has

106 M. Adams et al.

Fig. 5. Raise Case-Level Exception Screen (Organise Concert example)

a value for the attribute ‘TicketsSold’ that is less than 75% of the attribute
‘Seating’ (i.e. the seating capacity of the venue), an exlet is run that suspends
the workitem, runs the compensatory worklet ChangeToMidVenue, and then,
once the worklet has completed, continues (or unsuspends) the workitem. By
following the exception path of the rule tree, it can be seen that each subsequent
node is a refinement of its parent, since it is only evaluated if its parent rule is
satisfied. So, if the tickets sold are also less than 50% of the capacity, then we
want instead to suspend the workitem, run the ChangeToSmallVenue worklet,
and then unsuspend the workitem. Finally, if less than 20% of the tickets have
been sold, we want to suspend the entire case, run a worklet to perform the tasks
required to cancel the show, and then remove (i.e. cancel) the case2.

As mentioned previously, the service provides a set of servlet pages that can be
invoked directly by the user via add-ins to the YAWL worklist handler, which are
visible only when the service is enabled. One of the servlet pages allows a user to
raise an exception directly with the service (i.e. bypassing the engine) at any time
during the execution of a case. When invoked, the service lists from the rule set
for the selected case the existing external exception triggers (if any) for the case’s
specification (see Figure 5). Note that these triggers may describe events that
may be considered either adverse (e.g. Band Broken Up) or beneficial (e.g. Ticket
Sales Better Than Expected) to the current case, or may simply represent new
or additional tasks that need to be carried out for the particular case instance
(e.g. Band Requests Backstage Refreshments). When a trigger is selected by the

2 It has been formally shown that an RDR tree traverses through a smaller number
of rules enroute to its final conclusion than traversal through an equivalent decision
list [25].

Dynamic, Extensible and Context-Aware Exception Handling for Workflows 107

user, the corresponding rule set is queried and the appropriate exlet, relative
to the case’s context and the trigger selected, is executed. Item-level external
exceptions can be raised in a similar way.

Notice that at the bottom of the list of triggers in Figure 5 the option to add a
New External Exception is provided. If an unexpected external exception arises
that none of the available triggers represent, a user can use that option to notify
an administrator, via another servlet page, of the new exception, its context
and possible ways to handle it — the notification of an unexpected external
exception automatically suspends the case as a safeguard. The administrator
can then create a new exlet in the Rules Editor and, from the Editor, connect
directly to the service to launch the new exlet for the parent case. New exlets for
unexpected internal exceptions are raised and launched using the same approach
as that described for the Selection sub-service in [15].

The examples used in this section have been intentionally simplified to demon-
strate the operation of the Exception Service; while not intended to portray a
realistic process, it is desirable to not camouflage the subject of this paper by
using a more realistic, and thus a necessarily more complex process. However,
exemplary studies have been undertaken using real-world processes from both a
relatively rigid business scenario and a more creative environment, which serve
to fully validate the approach (see Chapter 7 of [27]).

6 Related Work

Since the mid-nineties much research has been carried out on issues related to
exception handling in workflow management systems. Such research was initiated
because, generally, commercial workflow management systems provide only basic
support for handling exceptions [17,28,7,29] (besides modelling them directly in
the main ‘business logic’), and each deals with them in a proprietary manner;
they typically require the model to be fully defined before it can be instantiated,
and changes must be incorporated by modifying the model statically.

While it is not the intention of this paper to provide a complete overview of
the work done in this area, reference is made here to a number of quite different
approaches. For a more systematic overview see [17], where different tools are
evaluated with respect to their exception handing capabilities using a patterns-
based approach.

Tibco iProcess provides constructs called event nodes, from which a separate
pre-defined exception handling path or sequence can be activated when an ex-
ception occurs. It may also suspend a process either indefinitely or wait until
a timeout occurs. If a work item cannot be processed it is forwarded to a ‘de-
fault exception queue’ where it may be manually purged or re-submitted. COSA
provides for the definition of external ‘triggers’ or events that may be used to
start a sub-process. All events and sub-processes must be defined at design time.
Websphere MQ Workflow supports timeouts and, when they occur, will branch
to a pre-defined exception path and/or send a message to an administrator.
SAP Workflow supports exception events for cancelling workflow instances, for

108 M. Adams et al.

checking workitem pre- and post- constraints, and for ‘waiting’ until an exter-
nal trigger occurs. Exception handling processes may be assigned to a workflow
based on the type of exception that has occurred, although the handlers for
each are specified at design time, and only one may be assigned to each type.
FLOWer is described as a ‘case-handling’ system, and supports some exception
handling actions [2]. For example, a deadline expiry can automatically complete
a workitem. Also, some support for constraint violation is offered: a plan may
be automatically created or completed when a specified condition evaluates to
true [17].

Among the non-commercial systems, the OPERA prototype [7] has a modu-
lar structure in which activities are nested. When a task fails, its execution is
stopped and the control of the process is handed over to a single handler prede-
fined for that type of exception — the context of the activity is not accounted
for. If the handler cannot solve the problem, it propagates the exception up the
activity tree; if no handler can be found the entire process instance aborts. The
eFlow system [30] supports the definition of compensation rules for regions, al-
though they are static and cannot be defined separately to the standard model.
AgentWork [31] provides the ability to modify process instances by dropping
and adding individual tasks based on events and ECA rules. However, the rules
do not offer the flexibility or extensibility of Ripple Down Rules, and changes
are limited to individual tasks, rather than the task-process-specification hierar-
chy supported by the Worklet Service. Also, the possibility exists for conflicting
rules to generate incompatible actions, which requires manual intervention and
resolution. The TREX system [32] allows the modeller to choose from a cat-
alog of exception handlers during runtime to handle exceptions as they arise;
however, it requires a human agent to intervene whenever an exception occurs.
Also, the exceptions handled are, for the most part, transactional, and scope for
most expected and all unexpected exceptions is not provided. The MARIFlow
system [33] supports document exchange and coordination across the internet.
The system supports some transactional-level exception handling, for example
rolling back and restarting a blocked or dead process, but there is no support for
dynamic change or handling exceptions within the control flow of the process.
CBRFlow [34] uses a case-based reasoning approach to support adaptation of
predefined workflow models to changing circumstances by allowing (manual) an-
notation of business rules during run-time via incremental evaluation. It should
be noted that only a small number of academic prototypes have had any impact
on the frameworks offered by commercial systems [17,28].

The majority of languages used to described and define business process mod-
els are of a procedural nature, which limits their effectiveness in very flexible
environments [35]. For example, BPEL provides compensation handlers that are
intended to support rollback or undo of activities after an error has occurred;
however, they are essentially unable to access the current process state [36] —
thus the context of the case cannot be taken into account. In addition, com-
pensation handlers cannot affect other process instances (i.e. at the specification
level), cannot be used to effect non-erroneous changes in process execution [36]

Dynamic, Extensible and Context-Aware Exception Handling for Workflows 109

and may only perform a termination action (all in contrast to the various actions
supported by the Worklet Exception Service). Also, BPEL offers no support for
constraint violations [17].

In summary, approaches to workflow flexibility and exception handling usually
rely on a high-level of runtime user interactivity, which directly impedes on the
basic aim of workflow systems (to bring greater efficiencies to work practices) and
distracts users from their primary work procedures into process support activi-
ties. Another common theme is the complex update, modification and migration
issues required to evolve process models. The Worklet Service differs consider-
ably from those approaches. Exlets, that may include worklets as compensatory
processes, as members of a repertoire, and dynamically linked to Ripple Down
Rule sets, provide a novel, complete and extensible approach for the provision
of dynamic exception handling in workflows.

7 Conclusion

The Worklet Exception Service has been constructed around the idea that excep-
tions, or deviations from a process specification, are a natural occurrence within
almost every instantiation of a process. Thus the service provides a fully featured
exception handling paradigm that detects (through constraint checking), reacts
to, handles and incorporates exceptions and the way they are handled as they
occur. The service also allows for unexpected exceptions to be handled during
execution, so that a process instance need not be terminated when one occurs,
or be handled off-system.

The service provides easy to use mechanisms to incorporate new handling pro-
cedures for unexpected exceptions implicitly into the process specification so that
they are automatically available for all current and future instantiations of the
specification. Thus a repertoire of exception handling procedures is maintained
by the service for each process specification, so completely avoiding the need to
modify a specification each time a deviation from its prescribed flow occurs —
which also avoids the on-costs associated with taking the specification off-line
while modifications are performed and verified, versioning problems, migration
control issues and so on.

In providing these benefits, the Worklet Exception Service:

– Keeps the parent model clean and relatively simple;
– Promotes the reuse of sub-processes in different models, and allows standard

processes to also be used as compensation processes, and vice versa;
– Maintains an extensible repertoire of exlets that can be constructed during

design and/or runtime and can be invoked as required;
– Allows a specification to implicitly build a history of executions, providing

for a learning system that can take the appropriate actions within certain
contexts automatically;

– Maintains exlets, and compensatory worklets, as fully encapsulated pro-
cesses, which allows for easier verification and modification; and

110 M. Adams et al.

– Allows a model to evolve without the need to stop and modify the design of
the whole specification when an exception occurs.

All system files, source code and documentation for YAWL and the worklet
service, including the examples discussed in this paper, may be downloaded via
www.yawl-system.com.

References

1. Bider, I.: Masking flexibility behind rigidity: Notes on how much flexibility people
are willing to cope with. In: Castro, J., Teniente, E. (eds.) CAiSE 2005 Workshops,
vol. 1, pp. 7–18, FEUP Edicoes, Porto (2005)

2. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: A new paradigm
for business process support. Data & Knowledge Engineering 53(2), 129–162 (2005)

3. Joeris, G.: Defining flexible workflow execution behaviors. In: Dadam, P., Re-
ichert, M. (eds.) Enterprise-wide and Cross-enterprise Workflow Management: Con-
cepts, Systems, Applications. CEUR Workshop Proceedings, Paderborn, Germany,
vol. 24, pp. 49–55 (October 1999)

4. Borgida, A., Murata, T.: Tolerating exceptions in workflows: a unified framework
for data and processes. In: WACC 1999. Proceedings of the International Joint
Conference on Work Activities, Coordination and Collaboration, pp. 59–68. ACM
Press, San Francisco, California, USA (1999)

5. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems: a survey. Data and Knowledge Engineering 50(1), 9–34 (2004)

6. Casati, F.: A discussion on approaches to handling exceptions in workflows. In:
Proceedings of the CSCW Workshop on Adaptive Workflow Systems, Seattle, USA
(November 1998)

7. Hagen, C., Alonso, G.: Exception handling in workflow management systems. IEEE
Transactions on Software Engineering 26(10), 943–958 (2000)

8. Casati, F., Fugini, M., Mirbel, I.: An environment for designing exceptions in work-
flows. Information Systems 24(3), 255–273 (1999)

9. Ackerman, M.S., Halverson, C.: Considering an organization’s memory. In: Pro-
ceedings of the ACM 1998 Conference on Computer Supported Cooperative Work,
pp. 39–48. ACM Press, Seattle, Washington, USA (1998)

10. Larkin, P.A.K., Gould, E.: Activity theory applied to the corporate memory loss
problem. In: Svennson, L., Snis, U., Sorensen, C., Fagerlind, H., Lindroth, T., Mag-
nusson, M., Ostlund, C. (eds.) Proceedings of IRIS 23 Laboratorium for Interaction
Technology, University of Trollhattan Uddevalla, Sweden (2000)

11. Bardram, J.E.: I love the system - I just don’t use it! In: Jakob, E. (ed.) GROUP
1997. Proceedings of the International ACM SIGGROUP Conference on Support-
ing Group Work, Phoenix, Arizona, USA, pp. 251–260. ACM Press, New York
(1997)

12. Engestrom, Y., Miettinen, R., Punamaki, R.-L. (eds.): Perspectives on Activity
Theory. Cambridge University Press, Cambridge (1999)

13. Nardi, B.A. (ed.): Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, Cambridge, Massachusetts (1996)

14. Adams, M., Edmond, D., ter Hofstede, A.H.M.: The application of activity theory
to dynamic workflow adaptation issues. In: PACIS 2003. Proceedings of the 2003
Pacific Asia Conference on Information Systems, Adelaide, Australia, pp. 1836–
1852 (July 2003)

www.yawl-system.com

Dynamic, Extensible and Context-Aware Exception Handling for Workflows 111

15. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A
service-oriented implementation of dynamic flexibility in workflows. In: Meersman,
R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2006: CoopIS,
DOA, GADA, and ODBASE. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg
(2006)

16. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Facilitating
flexibility and dynamic exception handling in workflows through worklets. In: Bello,
O., Eder, J., Pastor, O., Cunha, J.F. (eds.) CAiSE 2005 Forum, pp. 45–50, FEUP
Edicoes, Porto (2005)

17. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow exception
patterns. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 288–
302. Springer, Heidelberg (2006)

18. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Information Systems 30(4), 245–275 (2005)

19. van der Aalst, W.M.P., Aldred, L., Dumas, M., ter Hofstede, A.H.M.: Design and
implementation of the YAWL system. In: Persson, A., Stirna, J. (eds.) CAiSE 2004.
LNCS, vol. 3084, pp. 142–159. Springer, Heidelberg (2004)

20. Hagen, C., Alonso, G.: Flexible exception handling in process support systems.
Technical report No. 290, ETH Zurich, Switzerland (1998)

21. Lei, Y., Singh, M.P.: A comparison of workflow metamodels. In: Proceedings of the
ER-97 Workshop on Behavioral Modeling and Design Transformations: Issues and
Opportunities in Conceptual Modeling, Los Angeles, California, USA (November
1997)

22. Goodenough, J.B.: Exception handling: issues and a proposed notation. Commu-
nications of the ACM 18(12), 683–696 (1975)

23. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)

24. Compton, P., Jansen, B.: Knowledge in context: A strategy for expert system
maintenance. In: Barter, C.J., Brooks, M.J. (eds.) AI 1988. LNCS, vol. 406, pp.
292–306. Springer, Heidelberg (1990)

25. Scheffer, T.: Algebraic foundation and improved methods of induction of ripple
down rules. In: Proceedings of the 2nd Pacific Rim Workshop on Knowledge Ac-
quisition, Sydney, Australia, pp. 279–292 (1996)

26. Drake, B., Beydoun, G.: Predicate logic-based incremental knowledge acquisition.
In: Compton, P., Hoffmann, A., Motoda, H., Yamaguchi, T. (eds.) Proceedings
of the sixth Pacific International Knowledge Acquisition Workshop, Sydney, Aus-
tralia, pp. 71–88 (December 2000)

27. Adams, M.: Facilitating Dynamic Flexibility and Exception Handling for Work-
flows. Phd thesis. Faculty of Information Technology, Queensland University of
Technology, Brisbane, Australia (2007),
http://yawlfoundation.org/documents/AdamsWorkletsFinalThesis.pdf

28. zur Muehlen, M.: Workflow-based Process Controlling. Foundation, Design, and
Implementation of Workflow-driven Process Information Systems. In: Advances in
Information Systems and Management Science. vol. 6, Logos, Berlin (2004)

29. Casati, F., Pozzi, G.: Modelling exceptional behaviours in commercial workflow
management systems. In: CoopIS 1999. Proceedings of the 4th IFCIS International
Conference on Cooperative Information Systems, Edinburgh, Scotland, pp. 127–
138. IEEE, Los Alamitos (1999)

30. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and
dynamic composition in eFlow. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000.
LNCS, vol. 1789, pp. 13–31. Springer, Heidelberg (2000)

http://yawlfoundation.org/documents/AdamsWorkletsFinalThesis.pdf

112 M. Adams et al.

31. Muller, R., Greiner, U., Rahm, E.: AgentWork: a workflow system supporting rule-
based workflow adaptation. Data & Knowledge Engineering 51(2), 223–256 (2004)

32. van Stiphout, R., Meijler, T.D., Aerts, A., Hammer, D., le Comte, R.: TREX:
Workflow TRansactions by Means of EXceptions. Technical report, Eindhoven Uni-
versity of Technology (1997)

33. Dogac, A., Tambag, Y., Tumer, A., Ezbiderli, M., Tatbul, N., Hamali, N., Icdem,
C., Beeri, C.: A workflow system through cooperating agents for control and doc-
ument flow over the internet. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000.
LNCS, vol. 1901, pp. 138–143. Springer, Heidelberg (2000)

34. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational case-based reasoning. In: Funk, P., González Calero,
P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 434–448. Springer, Heidel-
berg (2004)

35. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business pro-
cesses. In: Eder, J., Dustdar, S. (eds.) Business Process Management Workshops.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

36. Coleman, J.W.: Examining BPEL’s compensation construct. In: REFT 2005. Pro-
ceedings of the Workshop on Rigorous Engineering of Fault-Tolerant Systems, New-
castle upon Tyne, UK, pp. 122–128 (July 2005)

Understanding the Occurrence of Errors in

Process Models Based on Metrics

Jan Mendling1, Gustaf Neumann2, and Wil van der Aalst3

1 BPM Cluster, Faculty of Information Technology
Queensland University of Technology, Australia

j.mendling@qut.edu.au
2 Institute of Information Systems and New Media

Vienna University of Economics and Business Administration, Austria
neumann@wu-wien.ac.at

3 Department of Computer Science,
Eindhoven University of Technology, The Netherlands

w.m.p.v.d.aalst@tue.nl

Abstract. Business process models play an important role for the man-
agement, design, and improvement of process organizations and process-
aware information systems. Despite the extensive application of pro-
cess modeling in practice, there are hardly empirical results available
on quality aspects of process models. This paper aims to advance the
understanding of this matter by analyzing the connection between for-
mal errors (such as deadlocks) and a set of metrics that capture various
structural and behavioral aspects of a process model. In particular, we
discuss the theoretical connection between errors and metrics, and pro-
vide a comprehensive validation based on an extensive sample of EPC
process models from practice. Furthermore, we investigate the capability
of the metrics to predict errors in a second independent sample of models.
The high explanatory power of the metrics has considerable consequences
for the design of future modeling guidelines and modeling tools.

1 Introduction

Even though workflow and process modeling have been used extensively over the
past 30 years, we know surprisingly little about the act of modeling and which
factors contribute to a “good” process model in terms of error probability. This
observation contrasts the large body of knowledge that is available for the for-
mal analysis and verification of desirable properties, in particular for Petri nets.
While conceptual work was conducted on guidelines and quality frameworks (e.g.
[1,2,3,4]), there is clearly a need for an empirical research agenda to acquire new
insights on quality (cf. [5]) and usage aspects (cf. [6]) of process modeling.

A recent study provides evidence that larger process models from practice
tend to have more formal flaws (such as e.g. deadlocks) than smaller models
[7,8]. One obvious hypothesis related to this phenomenon would be that human
modelers loose track of the interrelations of large and complex models due to

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 113–130, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

114 J. Mendling, G. Neumann, and W. van der Aalst

their limited cognitive capabilities (cf. [9]), and then introduce errors that they
would not insert in a small model. Yet, there are further factors beyond simple
count metrics such as the degrees of sequentiality, concurrency, or structuredness
that need to be considered [10]. Against this background, this paper provides the
following three contributions. First, we introduce a tool-based approach for de-
tecting errors and calculating metrics for Event-driven Process Chains (EPCs),
a popular business process modeling language. Second, we utilize an extensive
sample of EPC models from practice to analyze the statistical connection be-
tween errors and metrics. Third, we calculate a logistic regression model and
validate its ability to predict errors in a second independent sample. All these
contributions relate to the formal correctness of the process model as a design ar-
tifact. Validation aspects with respect to the content of a process model, human
understandability issues, ease of use of the modeling language, and modeling
pragmatics are also closely related to quality, but they are not considered here.

The remainder of the paper is structured as follows. In Section 2 we give a
brief overview of EPCs, EPC soundness, and the kind of metrics we calculate.
In Section 3 we introduce a sample of 2003 EPCs from practice that we use
to investigate the connection between errors and metrics. Moreover, we provide
disaggregated descriptive statistics. In Section 4 we determine the correlation
between errors and metrics, and estimate a logistic regression function. This
function is validated against a second independent sample of EPCs for its ca-
pability to predict errors. Section 5 discusses our findings in the light of related
research before Section 6 concludes the paper.

2 Error Detection and Metrics Calculation for EPCs

The Event-driven Process Chain (EPC) is a business process modeling language
for representing temporal and logical dependencies of activities in a business
process (see [11]). EPCs offer function type elements to capture activities of a
process and event type elements describing pre- and post-conditions of func-
tions. Process interface type elements are used to refer to subsequent processes.
Furthermore, there are three kinds of connector types including AND (symbol
∧), OR (symbol ∨), and XOR (symbol ×) for the definition of complex routing
rules. Connectors have either multiple incoming and one outgoing arc (join
connectors) or one incoming and multiple outgoing arcs (split connectors). The
informal (or intended) semantics of an EPC can be described as follows. The
AND-split activates all subsequent branches in concurrency. The XOR-split rep-
resents a choice between one of alternative branches. The OR-split triggers one,
two or up to all of multiple branches based on conditions. In both cases of the
XOR- and OR-split, the activation conditions are given in events subsequent to
the connector. The AND-join waits for all incoming branches to complete, then
it propagates control to the subsequent EPC element. The XOR-join merges al-
ternative branches. The OR-join synchronizes all active incoming branches. This
feature is called non-locality since the state of all transitive predecessor nodes

Understanding the Occurrence of Errors in Process Models Based on Metrics 115

has to be considered. Regarding their routing elements, EPCs are quite similar
to BPMN [12] and YAWL [13]. Recently, EPC semantics have been formalized,
and there is tool support for the verification of EPC soundness (see [14]). In
this paper, we use EPC soundness as a correctness criterion in order to find out
whether the model has errors or not. In particular, an EPC is sound if and only
if for a set of initial markings I and a set of final markings O the following three
properties hold:

(i) For each start-arc there exists an initial marking i ∈ I where the arc (and
hence the corresponding start event) holds a positive token.

(ii) For every marking reachable from an initial state i ∈ I, there exists a firing
sequence leading from this marking to a final marking o ∈ O.

(iii) The final markings o ∈ O are the only markings reachable from a marking
i ∈ I such that there is no node that can fire.

We use two complementary tools to check whether an EPC is sound (has no
errors) or unsound (has errors): firstly, xoEPC that implements a fast, but not
complete reduction rule approach, secondly, a ProM plug-in [15] that calculates
the reachability graph which is complete, but not very performative [16]. Both
tools can be coupled using the EPML interchange format [17].

Beyond verification of EPC soundness, xoEPC also calculates a set of process
model metrics. We briefly describe them in the following list including their
hypothetical connection with errors. The formulas for calculating the different
metrics are given and extensively discussed in [16, Chap.5].1 Furthermore, this
reference mentions related work for each of the metrics.

Size. SN refers to the number of nodes of the process model graph. An increase
in SN should imply an increase in error probability (+). Count metrics of
different node types are written as e.g. SC for connectors.

Diameter. diam gives the length of the longest path from a start node to an
end node in the process model. It is presumably positively connected with
error probability (+).

Density. Δ relates the number of arcs to the maximum number of arcs between
all nodes. We presume a positive connection (+).

Coefficient of Connectivity. CNC gives the ratio of arcs to nodes (+).
Average Connector Degree. dC gives the number of nodes a connector is in

average connected to (+).
Maximum Connector Degree. d̂C captures the maximum degree over all

connectors (+).
Separability. Π gives the ratio of the number of cut-vertices to the number of

nodes. An increase in Π should imply a decrease in error probability (–).
Sequentiality. Ξ is the number of arcs between none-connector nodes divided

by the overall number of arcs (–).

1 This reference is also available online at http://wi.wu-wien.ac.at/home/mendling/
publications/Mendling%20Doctoral%20thesis.pdf

116 J. Mendling, G. Neumann, and W. van der Aalst

Structuredness. Φ of the process graph is one minus the number of nodes in
the EPC reduced with structured reduction rules divided by the number of
nodes in the original EPC (–).

Depth. Λ captures how deep nodes are nested between splits and joins (+).
Connector Mismatch. MM gives the sum of mismatches for each connector

type. The mismatch is the absolute sum of all input arcs minus output arcs
over all connectors of a connector type (+).

Connector Heterogeneity. CH gives the type entropy of the connectors (+).
Control Flow Complexity. CFC sums up all choice of a process based on

the number of splits of each type and its number of outgoing arcs (+).
Cyclicity. CY C relates nodes on cycles to all nodes (+).
Token Splits. TS sums up all concurrent threads that can be activated by

AND- and OR-splits in the process (+).

Figure 1 illustrates for an example EPC taken from [18] which nodes and arcs
contribute to the more elaborate metrics. Since the different count metrics, in
particular for size, can be easily read from the model, we focus on those that
need to be calculated from the process graph, i.e. separability, sequentiality,
structuredness, depth, cyclicity, and diameter.

The separability ratio Π depends on the identification of cut vertices (i.e.
articulation points), i.e. those nodes whose deletion breaks up the graph in two
or more disconnected components. Figure 1 displays articulation points with a
letter A written next to the top left-hand side of the node. For example, if the
function “record loan request” is deleted, the start event is no longer connected
with the rest of the process model. There are eleven articulation points in total
yielding a separability ratio of 11/(27 − 2) = 0.440. Note that start and end
events do not belong to the set of articulation points, since their deletion does
not increase the number of separate components.

The sequentiality ratio Ξ is calculated by relating the number of sequence
arcs, i.e. arcs that connect functions and events, to the total number of arcs.
Figure 1 highlights sequence arcs with an s label. There are ten sequence arcs
and 29 arcs altogether which results in a sequentiality ratio of 10/29 = 0.345.
The degree of structuredness Φ relates the size of a reduced process model to
the size of the original one. Figure 1 shows those elements with a cross on
the left-hand side that are eliminated by reduction of trivial constructs. Other
structured reduction rules are not applicable. Since 15 elements are deleted by
reduction, the structuredness ratio is 1 − 15/27 = 0.556. The in-depth and out-
depth is also indicated for each node in Figure 1. The depth of a node is then
the minimum of in-depth and out-depth. Several nodes have a depth of 1, which
is a maximum, and therefore also the depth of the overall process. The cyclicity
is based on the relation between number of nodes on a cycle and nodes in total.
Figure 1 shows nodes on a cycle with a letter C written to the left-hand side
bottom. There are seven such nodes yielding a cyclicity ratio of 7/27 = 0.259.
Finally, Figure 1 connects those 14 nodes that are on the diameter with a bold
line.

Understanding the Occurrence of Errors in Process Models Based on Metrics 117

s

s

loan is
requested

record loan
request

request is
recorded

conduct risk
assessment

negative risk
assessment

positive risk
assessment

requester is
new client

check client
assessment

set up loan
contract

analyze
requirements

requirements
are analyzed

loan contract
is set up

sign loan
contract

loan contract
is completed

positive client
assessment

negative client
assessment

reject loan
request

loan request
is rejected

s

s

s

s

s

s

offer further
products

s

s

Sequence arcs

Cut Vertex /
Articulation point

Cycle nodes

Diameter

In-depth, out-depth
in
out

0

1

0

1

0

1

0
0

0

0

0
0

1

0

1

0

1
1

2

0

2

0

2

0

2

1

1
0

2
1

3
0

2
1

3
0

2

0

2

0

2

0

3

0

3

0

3

1

3

1

3

1

2

0

Reducible by
structured rule

A

C

A

A

A
C

A
C

A

A A

A

A
C

A

A

C

C

C

C

Fig. 1. EPC example with sequence arcs, articulation points, cycle nodes, diameter,
depth, and reducible nodes

3 Empirical Distribution of Errors and Metrics

As input to our analysis we use a sample of EPC business process models that
are available in the XML interchange format of ARIS Toolset of IDS Scheer

118 J. Mendling, G. Neumann, and W. van der Aalst

AG. The sample includes four collections of EPCs with a total of 2003 process
models. All EPCs of the four groups were developed by practitioners.

1. SAP Reference Model: The first collection of EPCs is the SAP Reference
Model. The development of the SAP reference model started in 1992 and first
models were presented at CEBIT’93 [19, p.VII]. We use the SAP reference
model in its version from 2000 that includes 604 non-trivial EPCs.

2. Service Model: The second collection of EPCs stems from a German process
reengineering project in the service sector. The project was carried out in
the late 1990s. The models of this project include 381 non-trivial EPCs.

3. Finance Model: The third model collection contains EPCs of a process doc-
umentation project in the Austrian financial industry. It includes 935 EPCs.

4. Consulting Model: The fourth collection covers in total 83 EPCs from three
different consulting companies.

As a first step, the set of ARIS XML files is read and processed by xoEPC
to generate information on errors and values for all the metrics. Furthermore,
each EPC is then checked by the help of the reachability analysis plug-in for
ProM. The results of this analysis are added to an analysis table. We use the
software package for the statistical analysis of this table. In particular we present
descriptive statistics disaggregated by group and error in Sections 3.1 and 3.2.

3.1 Descriptive Statistics Disaggregated by Group

In this section we characterize the overall EPC sample and its four sub-groups
by the help of mean values μ and standard deviation σ for each metric. Several
of the disaggregated mean values are quite close to each other, but in particu-
lar the Finance Model shows a striking differences: it has the highest mean in
structuredness and sequentiality. Figures 2 and 3 illustrates the distribution

Fig. 2. Box plot for structuredness dis-
aggregated by group (1=SAP, 2=Service,
3=Finance, and 4=Consulting)

Fig. 3. Box plot for sequentiality disag-
gregated by group (1=SAP, 2=Service,
3=Finance, and 4=Consulting)

Understanding the Occurrence of Errors in Process Models Based on Metrics 119

Table 1. Errors in the sample models

Parameter Complete SAP Ref. Services Finance Consulting
Sample Model Model Model Models

xoEPC errors 154 90 28 26 10
Unreduced EPCs 156 103 18 17 18
ProM error EPCs 115 75 16 7 17

EPCs with errors 215 126 37 31 21
EPCs in total 2003 604 381 935 83

Error ratio 10.7% 20.9% 9.7% 3.3% 25.3%

of both these metrics as box plots disaggregated by group. In this type of di-
agram invented by Tukey [20] the median is depicted as a horizontal line in a
box that represents the interval between lower and upper quartile, i.e. the EPCs
ranked by the metric from 25% to 75%. The upper and lower wicks define a
one and a half multiple of the respective quartile. Values outside these two in-
tervals are drawn as individual points and are considered to be outliers. From
this observation on structuredness and sequentiality we might conclude that the
Finance Model contains the more structured EPCs and thus might have less
error models.

There is some evidence for such a hypothesis when we look at the number of
errors in each of the four groups. Table 1 gives a respective overview. It can be
seen that there are 2003 EPCs in the overall sample and 215 of them have at
least one error. Accordingly, there is an overall error ratio of 10.7%. 154 of the
215 errors were found by xoEPC. 156 EPCs could not be reduced completely
and were analyzed with ProM. This analysis revealed that 115 of the unre-
duced EPCs still had errors. Please note that there are EPCs for which both
xoEPC and ProM found errors. Therefore, the number of EPCs with errors is
less than the sum of EPCs with xoEPC and ProM errors. The comparison of the
groups shows that the error ratio is quite different. In the previous paragraph
we hypothesized that the finance model group might have less errors since its
models are more structured. This suggests that metrics could be able to ex-
plain the low error ratio of only 3.3 %. We search further evidence in the next
section.

3.2 Descriptive Statistics Disaggregated by hasErrors

In this section we discuss the distribution of the different metrics disaggregated
by the variable hasErrors. Table 2 shows that there are quite large differences
in the mean values of the sub-samples with and without errors. It is interest-
ing to note that the error mean μe is higher than the non-error mean μn for
most metrics where we assumed a positive connection with error probability in
Section 2 and smaller for those metrics with a presumably negative connection.
The only case where this does not hold is the density metric; it seems that it
more accurately works as a counter-indicator for size than as an indicator for
the density of connections in the model. The two columns on the right hand

120 J. Mendling, G. Neumann, and W. van der Aalst

Table 2. Mean and Standard Deviation of the sample models disaggregated by error

Parameter Complete Sample Non-Error EPCs Error EPCs 2 σ dev. up 2 σ dev. down
μ σ μn σn μe σe μn + 2σn μn − 2σn

SN 20.71 16.84 18.04 13.48 42.97 24.08 44.99 ≈ μe

SE 10.47 8.66 9.06 6.69 22.17 13.19 22.45 ≈ μe

SF 5.98 4.94 5.67 4.65 8.53 6.33 14.97
SC 4.27 5.01 3.30 3.47 12.26 7.89 10.24 < μe

SA 21.11 18.87 18.14 15.20 45.79 26.78 48.54 ≈ μe

diam 11.45 8.21 10.63 7.71 18.25 9.01 26.06
Δ 0.09 0.07 0.09 0.07 0.03 0.02 0.23
CNC 0.96 0.13 0.95 0.13 1.05 0.08 1.21

dC 3.56 2.40 2.80 1.66 3.57 0.68 6.11

d̂C 2.88 1.60 3.31 2.28 5.64 2.41 7.87
Sep. Π 0.56 0.27 0.59 0.27 0.35 0.13 0.06
Seq. Ξ 0.46 0.31 0.49 0.30 0.18 0.14 -0.12
Strct. Φ 0.88 0.11 0.90 0.09 0.70 0.16 0.72 > μe

Depth Λ 0.70 0.74 0.61 0.69 1.45 0.73 1.98
MM 3.31 4.55 2.54 3.45 9.71 6.92 9.44 < μe

CH 0.28 0.35 0.22 0.32 0.75 0.19 0.85
CFC 382.62 8849.48 202.19 6306.23 1883.17 19950.26 12814.64
CY C 0.01 0.08 0.01 0.06 0.07 0.17 0.12
TS 1.82 3.53 1.28 2.46 6.26 6.62 6.20 < μe

Fig. 4. Box plot for structuredness disag-
gregated by error

Fig. 5. Box plot for connector heterogene-
ity disaggregated by error

side of Table 2 might provide the basis for proposing potential error thresholds.
The first of these columns gives a double σn deviation upwards from the non-
error mean μn. Given a normal distribution only 2.5% of the population can be
expected to have a metric value greater than this. The comparison of this value
to the mean μe of the error EPCs gives an idea how good the two subparts of the
sample can be separated by the metric. In several cases the mean μe is outside
the double σn interval around μn. The box plots in Figures 4 and 5 illustrate
the different distributions. It can be seen that correct EPCs tend to have much
higher structuredness values and lower connector heterogeneity values. The next
section investigates this observation with inferential statistics.

Understanding the Occurrence of Errors in Process Models Based on Metrics 121

Table 3. Spearman correlation between hasError and metrics ordered by absolute
correlation

hasError hasError
cHeterogeneity 0.46 Sequentiality -0.35

C 0.43 Depth 0.34
MM 0.42 MaxCDegree 0.33
CFC 0.39 CYC 0.30

A 0.38 diameter 0.30
tokenSplit 0.38 Separability -0.29

N 0.38 CNC 0.28
E 0.38 AvCDegree 0.23

Density -0.37 F 0.19
Structuredness -0.36

4 Inferential Statistics

4.1 Correlation Analysis

This section approaches the connection between error probability and metrics
with a correlation analysis. We use the Spearman rank correlation coefficient for
ordinal data. As a confirmation of the previous observation all variables have the
expected direction of influence besides the density metric. Table 3 presents the
Spearman correlation between hasErrors and the metrics ordered by strength of
correlation. It can be seen that several correlations are quite considerable with
absolute values between 0.30 and 0.50. The significance of all correlations is good
with 99% confidence.

The ability of a metric to separate error from non-error models by ranking
is illustrated in Figures 6 and 7. For Figure 6 all models are ranked accord-
ing to their size. A point (x, y) in the graph relates a size x to the relative
frequency of error models in a subset of models that have at least size x, i.e.
y = |{ |errorEPCs|

|allEPCs| | SN (EPC) > x}|. It can be seen that the relative frequency
of error EPCs increases by increasing the minimum number of nodes. In partic-
ular, the relative frequency of error EPCs is higher than 50% for all EPCs of at
least 48 nodes. In Figure 6 all models are ranked according to their structured-
ness and (x, y) relates the structuredness x to the subset of models that have

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140

Number of Nodes

E
rr

or
 F

re
qu

en
cy

Fig. 6. Error frequency to ordered num-
ber of nodes

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1

Structuredness

E
rr

or
 F

re
qu

en
cy

Fig. 7. Error frequency to ordered struc-
turedness

122 J. Mendling, G. Neumann, and W. van der Aalst

at most structuredness x. Here, the graph decreases and drops below 50% at a
structuredness value of 0.80. Similar observations can be made for some of the
other metrics, too. The values could be used as candidate thresholds. Altogether
the relative frequency of error models above 50% is reached if

number of nodes SN > 48 number of arcs SA > 62
number of connectors SC > 8 token splits TS > 7
number of events SE > 22 connector mismatch MM > 9
number of functions SF > 40 structuredness Φ < 0.8

4.2 Logistic Regression Estimation

This section provides an introduction to logistic regression analysis and presents
the result of its application for estimating the prediction model for error prob-
ability based on metrics. Logistic regression is a statistical model to estimate
the probability of binary choices. It is perfectly suited to deal with dependent
variables such as hasErrors with its range error and no error. The idea of bi-
nary choice models is to describe the probability of a binary event by its odds,
i.e., the ratio of event probability divided by non-event probability. In the lo-
gistic regression (or logit) model the odds are defined as logit(pi) = ln(pi

1−pi
) =

β0 + β1x1,i + . . . + βkxk,i for k input variables and i observations, i.e. i EPCs in
our context. From this follows that

pi =
eβ0+β1x1,i+...+βkxk,i

1 + eβ0+β1x1,i+...+βkxk,i

The relationship between input and dependent variables is represented by an
S-shaped curve of the logistic function that converges to 0 for −∞ and to 1 for
∞. The cut value of 0.5 defines whether event or non-event is predicted. Exp(B)
gives the multiplicative change of the odds if the input variable is increased by
one unit, i.e. Exp(B) > 1 increases and Exp(B) < 1 decreases error probability.
The actual value Exp(B) cannot be interpreted in isolation since its impact de-
pends upon the position on the non-linear curve [21, p.791]. The significance of a
logistic regression model is assessed by the help of two statistics. First, the Hos-
mer & Lemeshow Test should be greater than 5% to indicate a good fit based on
the difference between observed and predicted frequencies. Second, Nagelkerke’s
R2 ranging from 0 to 1 serves as a coefficient of determination indicating which
fraction of the variability is explained. Furthermore, each estimated coefficient of
the logit model is tested using the Wald statistic for being significantly different
from zero. The significance should be less than 5%. We calculate the logistic re-
gression model based on a stepwise introduction of those variables that provide
the greatest increase in likelihood. For more on logistic regression see [22].

Before calculating a multivariate logistic regression model for error probabil-
ity we carry out two preparatory analyses. First, we check collinearity, then we
determine which variables are included in the regression model. Furthermore,
we excluded 29 EPCs from the analysis that were not syntactically correct.

Understanding the Occurrence of Errors in Process Models Based on Metrics 123

Collinearity describes the phenomenon that at least one of the independent vari-
ables can be represented as a linear combination of other variables. The absence
of collinearity is not a hard criterion for the applicability of logistic regression,
but it is desirable. Since the tolerance test indicated collinearity problems, we
had to dropped all count metrics apart from SN since they were highly cor-
related. This resulted in a reduced variable set with no collinearity problems.
Furthermore, we calculated univariate models with and without a constant in
order to check whether all inputs were significantly different from zero. As a
conclusion from this analysis we drop the constant and the control flow com-
plexity CFC for the multivariate analysis. First, the constant is not significantly
different from zero (Wald statistic of 0.872 and 0.117) in the separability and
the sequentiality model which suggests that it is not necessary. Second, the CFC
metric is not significantly different from zero (Wald statistic of 0.531 and 0.382)
in both models with and without constant. All other metrics stay in the set of
input variables from the multivariate logistic regression model.

The final model was calculated in nine steps and it includes seven variables.
It is interesting to note that again the hypothetical impact direction of the
included metrics is confirmed. All variables have an excellent Wald statistic value
of better than 0.001 indicating that they are significantly different from zero.
Furthermore, the Hosmer & Lemeshow test is greater than 0.05 which is also a
good value. Finally, the Nagelkerke R2 has an excellent value of 0.901 indicating
a high degree of explanation. Based on the regression results we can derive a
classification function p(EPC) for EPCs. It predicts that the EPC has errors if
the result is greater than 0.5. Otherwise it predicts that there are no errors in
the EPC. It is calculated by the help of the metrics coefficient of connectivity
CNC, connector mismatch MM , cyclicity CY C, separability Π , structuredness
Φ, connector heterogeneity CH , and the diameter. It is

p(EPC) =
elogit(EPC)

1 + elogit(EPC)

with

logit(EPC) = +4.008 CNC
+0.094 MM
+3.409 CY C
−2.338 Π
−9.957 Φ
+3.003 CH
+0.064 diameter

It is easy to calculate an error prediction for an EPC based on this function. For
the sample this function yields the following classification:

– 1724 EPCs are correctly predicted to have no errors,
– 155 EPCs are correctly predicted to have errors,
– 58 EPCs are predicted to have no errors, but actually had, and
– 37 EPCs are predicted to have errors, but actually had none.

124 J. Mendling, G. Neumann, and W. van der Aalst

Altogether 1879 EPCs have the correct prediction. The overall percentage is
95.2%, that is 6% better than the naive model that always predicts no error
(89.2%). Furthermore, there are 213 EPCs with errors in the reduced sample.
155 of them are correctly predicted, i.e. 72.7%. Finally, the prediction function
gives a clue about the relative importance of the different metrics. Structured-
ness appears to be the most important parameter since its absolute value is
three times as high as the second. Then, the coefficient of connectivity, cyclicity,
separability, and connector heterogeneity seem to be of comparable importance.
Finally, connector mismatch and the diameter might be of minor importance.

In the following section we analyze how good the regression function is able
to forecast errors in a sample of EPCs that was not included in the estimation.

4.3 Logistic Regression Validation

In this section we utilize the estimated function to predict errors in EPCs from
a holdout sample. This step is of paramount importance for establishing the
criterion validity of the measurements, i.e. their pragmatic value (cf. e.g. [23]).
For testing the performance of the prediction function we gathered a sample
from popular German EPC business process modeling textbooks. The sample
includes 112 models from the following books in alphabetical order:

– Becker and Schütte [24]. This book discusses information systems in the
retail sector with a special focus on conceptual modeling. In particular it
covers 65 EPC models that we include in the holdout sample.

– Scheer [25]. This textbook is an introduction to the ARIS framework and
uses reference models for production companies to illustrate it. From this
book we includes 27 EPC reference models in the holdout sample.

– Seidlmeier [26]. This book is an introduction to the ARIS framework. It
includes 10 EPCs that we include in the holdout sample.

– Staud [27]. This book focuses on business process modeling and in particular
EPCs. We included 13 EPCs from this book in the holdout sample.

All EPCs of the holdout sample were checked for errors first with xoEPC and
afterwards with the ProM plug-in. Altogether there are 25 of the 113 models
that have errors, i.e. 21.43%. Based on the metrics generated by xoEPC we can

Classification Table
 Predicted

 hasErrors Percentage
Observed 0 1 Correct
hasErrors 0 86 2 97,73%

1 9 16 64,00%
Overall Percentage 90,27%
The cut value is ,500
113 cases included

Fig. 8. Classification table for EPCs from the holdout sample

Understanding the Occurrence of Errors in Process Models Based on Metrics 125

easily apply the prediction function. The result of this calculation is summarized
in the classification table in Figure 8. It can be seen that 102 of the 113 EPCs
are classified correctly, i.e. 86 models without errors are predicted to have none
and 16 with errors are predicted to have at least one. Altogether 90.27% of the
113 EPCs were predicted correctly. Please note that there is a difference in the
interpretation of this classification result and the one in Section 4.2. During the
estimation of the logistic regression the sample is known and used to tune the co-
efficients. Here, we use this function to classify an independent sample. Based on
the De Moivre-Laplace theorem, we are able to calculate a confidence interval for
the accuracy of the prediction function. With a confidence value of 95% it yields
an accuracy interval from 81.15% to 96.77%, i.e. the prediction can be expected
to be correct in at least 81.15% of the cases with a 95% confidence. This result
strongly supports the validity of the function for predicting error probability.

4.4 Implications of the Findings

In this section we have conducted several statistical analyses related to the hy-
potheses on a connection between metrics and error probability. The results
strongly confirm the hypotheses since the mean difference between error and
non-error models, the correlation coefficients, and the regression coefficients con-
firm the hypothetical impact direction of all metrics except the density metric
(see Table 4). This metric appears to be more closely related to the inverse of
size than the relative number of arcs of an EPC.

Table 4. Hypothetical and empirical connection between metrics and errors

Hypothetical μe − μn Correlation Regression Direction
connection coefficient

SN + 24.93 0.38 confirmed

SE + 13.11 0.38 confirmed

SF + 2.86 0.19 confirmed

SC + 8.96 0.43 confirmed

SA + 27.64 0.38 confirmed

diam + 7.62 0.30 0.064 confirmed

Δ + -0.06 -0.37 not confirmed

CNC + 0.11 0.28 4.008 confirmed

dC + 0.76 0.23 confirmed

d̂C + 2.33 0.33 confirmed

Sep. Π - -0.24 -0.29 -2.338 confirmed

Seq. Ξ - -0.31 -0.35 confirmed

Strct. Φ - -0.20 -0.36 -9.957 confirmed

Depth Λ + 0.85 0.34 confirmed

MM + 7.18 0.42 0.094 confirmed

CH + 0.54 0.46 3.003 confirmed

CFC + 1680.99 0.39 confirmed

CY C + 0.06 0.30 3.409 confirmed

TS + 4.97 0.38 confirmed

126 J. Mendling, G. Neumann, and W. van der Aalst

These results have strong implications for the quality of business process mod-
eling:

1. The connection of the metrics with error probability provides a theoretical
and empirical basis for defining process modeling principles and guidelines.
The analysis reveals that in particular structured models are less error prone.

2. The established connection builds a foundation for a measurement-based
management approach for the process of business process modeling. Different
design alternatives can be discussed more objectively on the metric values.

3. The design of future business process modeling tools can benefit from these
findings by providing online feedback to the modeler when a certain metric
passes an error threshold.

4. It has also some implications on the level of the process modeling language.
Considering that the connector heterogeneity has an impact on error proba-
bility it might be a good idea to restrict modeling to the two connector types
AND and XOR, and use OR-connectors only in structured blocks. Further-
more, there was a strong correlation between the number of start and end
events with error probability. This fact suggests to restrict the use of multiple
starts and ends. Modelers seem to loose track of the allowed combinations of
these elements quite fast. In the reduced set of EPCs there are several EPCs
for which no combination of start events guarantees a proper execution.

5. The results have implications for the teaching of business process modeling.
On the one hand, the large number of errors suggests that practitioners
frequently have problems to understand the behavioral implications of their
design. On the other hand, the metrics are a good starting point to teach
patterns that are unlikely to result in errors.

5 Related Work

There are basically two main streams of research related to our work in the
conceptual modeling area: top-down quality frameworks and bottom-up metrics
that relate to quality aspects. For related work on Petri net verification refer to
[28] and on EPCs to [16].

One prominent top-down quality framework is the SEQUAL framework [1,4].
It builds on semiotic theory and defines several quality aspects based on relation-
ships between a model, a body of knowledge, a domain, a modeling language,
and the activities of learning, taking action, and modeling. Its usefulness was
confirmed in an experiment [29]. The Guidelines of Modeling (GoM) [2] define
an alternative quality framework that is inspired by general accounting princi-
ples. The guidelines include the six principles of correctness, clarity, relevance,
comparability, economic efficiency, and systematic design. This framework was
operationalized for EPCs and also tested in experiments [2]. Furthermore, there
are authors (e.g. [5]) advocating a specification of a quality framework for
conceptual modeling in compliance with the ISO 9126 standard [30] for software

Understanding the Occurrence of Errors in Process Models Based on Metrics 127

quality. A respective adaptation to business process modeling is reported in [31].
Our research complements these approaches regarding semantical correctness.
While the frameworks tend to be rather abstract, we find strong support for
operational recommendations like using structured building blocks and limiting
the number of nodes in a single process model.

Much work has been done related to bottom-up metrics that relate to qual-
ity aspects of process models, stemming from different research and partially
isolated from each other (see [32,33,34,35,36,37,38,39,40,10] or for an overview
[16]). Several of these contributions are theoretic without empirical validation.
Most authors doing experiments focus on the relationship between metrics and
quality aspects: Canfora et al. study the connection between mainly count met-
rics for e.g. activities or routing elements and maintainability of software process
models [38]; Cardoso validates the correlation between control flow complexity
and perceived complexity [41]; and Mendling et al. use metrics to predict control
flow errors such as deadlocks in process models [8,10]. The results of this research
confirm the negative connection between size and quality aspects. Beyond that,
it extends this stream of research with a validation of an error prediction func-
tion that was derived by the help of an extensive sample of process models from
practice.

Finally, there are some further surveys that investigate the maturity [42],
usability [43], and understandability of business process modeling languages [44].
They also relate to quality aspects of process models, but not directly to the
connection of errors and metrics.

6 Conclusions and Future Work

With this paper, we addressed the shortage of empirical insight into business
process modeling and its quality parameters in practice. In particular, we used
a collection of 2003 EPC business process models from practice, and determined
for each of the models whether they have errors or not. Furthermore, we calcu-
lated an extensive set of metrics for each model. Based on this data, we were
able to show that several metrics have a strong statistical connection with the
occurrence of errors, and that most of the metrics increase or decrease error
probability as expected. Using a logistic regression model, we could even derive
a prediction function that accurately classifies models as having errors or not
based on metrics.

These findings clearly demonstrate that errors do not occur by chance in
business process models, and that certain characteristics like structuredness are
desirable for avoiding errors. In future research we aim to conduct further ex-
periments to test the connection between the metrics and other quality aspects
of modeling like understandability and maintainability. As a result from these
experiments, we expect to define new business process modeling guidelines which
are metrics-based, which can be easily translated into operations, and which lead
to high quality business process models.

128 J. Mendling, G. Neumann, and W. van der Aalst

References

1. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual mod-
eling. IEEE Software 11, 42–49 (1994)

2. Becker, J., Rosemann, M., Uthmann, C.: Guidelines of Business Process Modeling.
In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management.
Models, Techniques, and Empirical Studies, pp. 30–49. Springer, Berlin (2000)

3. Hoppenbrouwers, S.S., Proper, H.E., van der Weide, T.: A Fundamental View on
the Process of Conceptual Modeling. In: Delcambre, L.M.L., Kop, C., Mayr, H.C.,
Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 128–143. Springer,
Heidelberg (2005)

4. Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for
action: a revised quality framework. European Journal of Information Systems 15,
91–102 (2006)

5. Moody, D.: Theoretical and practical issues in evaluating the quality of conceptual
models: current state and future directions. Data & Knowledge Engineering 55,
243–276 (2005)

6. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners
use conceptual modeling in practice? Data & Knowledge Engineering 58, 358–380
(2006)

7. Mendling, J., Moser, M., Neumann, G., Verbeek, H., Dongen, B., van der Aalst,
W.: Faulty EPCs in the SAP Reference Model. In: Dustdar, S., Fiadeiro, J.L.,
Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp. 451–457. Springer, Heidelberg
(2006)

8. Mendling, J., Moser, M., Neumann, G., Verbeek, H., Dongen, B., van der Aalst,
W.: Detection and Prediction of Errors in EPCs of the SAP Reference Model. Data
& Knowledge Engineering (accepted for publication)

9. Simon, H.: Sciences of the Artificial, 3rd edn. The MIT Press, Cambridge (1996)

10. Mendling, J., Neumann, G.: Error metrics for business process models. Technical
Report JM-2006-12-03, Vienna Univ. of Econ. and Business Administration (2006)

11. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Heft 89, Institut für
Wirtschaftsinformatik, Saarbrücken, Germany (1992)

12. OMG, (ed.): Business Process Modeling Notation (BPMN) Specification. Final
Adopted Specification, dtc/06-02-01, Object Management Group (2006)

13. van der Aalst, W., ter Hofstede, A.: YAWL: Yet Another Workflow Language.
Information Systems 30, 245–275 (2005)

14. Mendling, J., van der Aalst, W.: Formalization and Verification of EPCs with OR-
Joins Based on State and Context. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007. LNCS, vol. 4495, Springer, Heidelberg (2007)

15. van Dongen, B., Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The
ProM framework: A New Era in Process Mining Tool Support. In: Ciardo, G.,
Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Hei-
delberg (2005)

16. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models.
PhD thesis, Vienna University of Economics and Business Administration (2007)

17. Mendling, J., Nüttgens, M.: EPC Markup Language (EPML) - An XML-Based
Interchange Format for Event-Driven Process Chains (EPC). Information Systems
and e-Business Management 4, 245–263 (2006)

Understanding the Occurrence of Errors in Process Models Based on Metrics 129

18. Nüttgens, M., Rump, F.J.: Syntax und Semantik Ereignisgesteuerter Prozessketten
(EPK). In: Desel, J., Weske, M. (eds.) Proceedings of Promise 2002, Potsdam,
Germany. Lecture Notes in Informatics, vol. 21, pp. 64–77 (2002)

19. Keller, G., Teufel, T.: SAP(R) R/3 Process Oriented Implementation: Iterative
Process Prototyping. Addison-Wesley, Reading (1998)

20. Tukey, J.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)

21. Judge, G., Hill, R., Griffiths, W., Lütkepohl, H., Lee, T.C.: Introduction to the
theory and practice of econometrics, 2nd edn. John Wiley & Sons, England (1988)

22. Hosmer, D., Lemeshow, S.: Applied Logistic Regression. Wiley & Sons, England
(2000)

23. Marczyk, G., DeMatteo, D., Festinger, D.: Essentials of Research Design and
Methodology. Wiley & Sons, Inc., England (2005)

24. Becker, J., Schütte, R.: Handelsinformationssysteme. Moderne Industrie (2004)

25. Scheer, A.-W.: Wirtschaftsinformatik: Referenzmodelle für industrielle Geschäfts-
prozesse. Springer, Heidelberg (1998)

26. Seidlmeier, H.: Prozessmodellierung mit ARIS. Vieweg Verlag (2002)

27. Staud, J.: Geschäftsprozessanalyse: Ereignisgesteuerte Prozessketten und Objek-
torientierte Geschäftsprozessmodellierung. Springer, Heidelberg (2006)

28. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models. LNCS,
vol. 1491. Springer, Heidelberg (1998)

29. Moody, D., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the quality of pro-
cess models: Empirical testing of a quality framework. In: Spaccapietra, S., March,
S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 380–396. Springer,
Heidelberg (2002)

30. ISO: Information technology - software product evaluation - quality characteristics
and guide lines for their use. Iso/iec is 9126 (1991)

31. Güceglioglu, A.S., Demirörs, O.: Using software quality characteristics to measure
business process quality. In: van der Aalst, W.M.P., Benatallah, B., Casati, F.,
Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 374–379. Springer, Heidelberg
(2005)

32. Lee, G., Yoon, J.M.: An empirical study on the complexity metrics of petri nets.
Microelectronics and Reliability 32, 323–329 (1992)

33. Nissen, M.: Redesigning reengineering through measurement-driven inference. MIS
Quarterly 22, 509–534 (1998)

34. Morasca, S.: Measuring attributes of concurrent software specifications in petri
nets. In: METRICS 1999. Proceedings of the 6th International Symposium on
Software Metrics, pp. 100–110. IEEE Computer Society Press, Washington, DC,
USA (1999)

35. Reijers, H., Vanderfeesten, I.: Cohesion and coupling metrics for workflow process
design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080,
pp. 290–305. Springer, Heidelberg (2004)

36. Cardoso, J.: Evaluating Workflows and Web Process Complexity. In: Workflow
Handbook 2005, Future Strategies Inc., 284–290 (2005)

37. Balasubramanian, S., Gupta, M.: Structural metrics for goal based business process
design and evaluation. Business Process Management Journal 11, 680–694 (2005)

38. Canfora, G., Garćıa, F., Piattini, M., Ruiz, F., Visaggio, C.: A family of exper-
iments to validate metrics for software process models. Journal of Systems and
Software 77, 113–129 (2005)

130 J. Mendling, G. Neumann, and W. van der Aalst

39. Aguilar, E.R., Ruiz, F., Garćıa, F., Piattini, M.: Towards a Suite of Metrics for
Business Process Models in BPMN. In: Manolopoulos, Y., Filipe, J., Constan-
topoulos, P., Cordeiro, J. (eds.) ICEIS 2006. Proceedings of the Eighth Interna-
tional Conference on Enterprise Information Systems: Databases and Information
Systems Integration (III), Paphos, Cyprus, May 23-27, 2006, pp. 440–443 (2006)

40. Laue, R., Gruhn, V.: Complexity metrics for business process models. In:
Abramowicz, W., Mayr, H.C. (eds.) BIS 2006. 9th International Conference on
Business Information Systems. Lecture Notes in Informatics, vol. 85, pp. 1–12
(2006)

41. Cardoso, J.: Process control-flow complexity metric: An empirical validation. In:
IEEE SCC 2006. Proceedings of IEEE International Conference on Services Com-
puting, Chicago, USA, September 18-22, pp. 167–173. IEEE Computer Society
Press, Los Alamitos (2006)

42. Rosemann, M., Recker, J., Indulska, M., Green, P.: A study of the evolution of the
representational capabilities of process modeling grammars. In: Dubois, E., Pohl,
K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 447–461. Springer, Heidelberg (2006)

43. Agarwal, R., Sinha, A.P.: Object-oriented modeling with UML: a study of devel-
opers’ perceptions. Commun. ACM 46, 248–256 (2003)

44. Sarshar, K., Loos, P.: Comparing the control-flow of epc and petri net from the end-
user perspective. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera,
F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 434–439. Springer, Heidelberg (2005)

Data-Driven Modeling and Coordination
of Large Process Structures�

Dominic Müller1,2, Manfred Reichert1, and Joachim Herbst2

1 Information Systems Group, University of Twente, The Netherlands
{d.mueller, m.u.reichert}@ewi.utwente.nl

2 Dept. GR/EPD, DaimlerChrysler AG
Group Research & Advanced Engineering, Germany

joachim.j.herbst@daimlerchrysler.com

Abstract. In the engineering domain, the development of complex
products (e.g., cars) necessitates the coordination of thousands of (sub-)
processes. One of the biggest challenges for process management sys-
tems is to support the modeling, monitoring and maintenance of the
many interdependencies between these sub-processes. The resulting pro-
cess structures are large and can be characterized by a strong relationship
with the assembly of the product; i.e., the sub-processes to be coordi-
nated can be related to the different product components. So far, sub-
process coordination has been mainly accomplished manually, resulting
in high efforts and inconsistencies. IT support is required to utilize the
information about the product and its structure for deriving, coordinat-
ing and maintaining such data-driven process structures. In this paper,
we introduce the COREPRO framework for the data-driven modeling
of large process structures. The approach reduces modeling efforts sig-
nificantly and provides mechanisms for maintaining data-driven process
structures.

1 Introduction

Enterprises are increasingly demanding IT support for their business processes.
One challenge emerging in this context is to coordinate the execution of large and
long-running processes (e.g., related to car development). Engineering processes,
for instance, often consist of numerous concurrently executed, interdependent
sub-processes. The reasons for this fragmentation are manifold: Typically, these
sub-processes are related to different (data) objects (e.g., product components),
enacted by different organizational units (e.g., dealing with the testing or releas-
ing of single components), and controlled by different IT systems. We denote
such correlated sub-processes as process structure.

These process structures have in common that changes (e.g., removing a sub-
process or adding a dependency between sub-processes) as well as real-world
exceptions (e.g., abnormal termination of a sub-process) occur frequently and
� This work has been funded by Daimler AG Group Research and has been conducted

in the COREPRO (COnfiguration based RElease PROcesses) project.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 131–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

132 D. Müller, M. Reichert, and J. Herbst

Product Data Structure Data-driven Process Structure

Total System:
S-Class

System: Engine

S ECS P S

S ECV VC R

Subsystem: Speed Sensor Unit

T R

V [OK]
T
[*]

S

RSubSys

Release
System

Install
System

System: Navigation

S ECS P S T R

S ECV VC R

Subsystem: Main Unit

V [OK]
T
[*]

S ECV VC R

Subsystem: GPS Unit

V [OK]
T
[*]

E

Release
System

Install
System

SC SCRSubSys RSubSys

ReleaseS ETestedTestdrive

Total System: S-Class

Released

Several (Sub-)Processes Executed
for Data Product Objects

Subsystem:
Speed
Sensor

Subsystem:
GPS Unit

System:
NavigationSystem:

Engine

Sub-Process
Coordination Based on

Data Object States

Dependencies between
(Sub-)Processes

Synchronizing (Sub-)
Process

Subsystem:
Main Unit Data Relations Indicate

Process Dependencies

S
tro

ng
 R

el
at

io
ns

hi
p

be
tw

ee
n

D
at

a
an

d
P

ro
ce

ss
es

Product Data Objects
Modified by

(Sub-)Processes

SC

Fig. 1. Example for a Data Structure and a Related Data-driven Process Structure

may affect not only single sub-processes but also the whole process structure
[1,2]. Consequently, IT support must flexibly cover modeling, enactment and
maintenance of process structures and assure their consistency. Even the mod-
eling of process structures constitutes a challenging task since these structures
usually comprise hundreds up to thousands of sub-processes (and sub-process de-
pendencies). Doing this manually often results in errors or inconsistencies leading
to bad process performance and high process costs.

To cope with these challenges, we have to better understand the dependencies
between sub-processes. Case studies we conducted in the automotive industry
[1,3] have revealed that the dependencies between the different sub-processes of
a process structure typically base on the assembly of the product to be man-
ufactured. As an example for a product structure (or configuration structure)
consider the total electrical system in a modern car which consists of up to 300
interconnected components. To verify the functionality of the total system, sev-
eral sub-processes (e.g., testing and release) have to be executed for each electri-
cal (sub-)component. Interestingly, the technical relations between the different
product components indicate sub-process dependencies; i.e., the relation between
two components leads to dependencies between sub-processes modifying these
components. We use the notion of data-driven process structures to characterize
process structures, which are prescribed by respective data structures. Fig. 1
presents an example for a data-driven process structure. The strong relationship
between data structures and process structures (e.g., the relations between the
S-Class and the Navigation object leads to respective sub-process dependen-
cies) also implies that a changed data structure (e.g., total electrical system for
another car series without navigation) leads to a different process structure.

Our goal is to reduce modeling efforts for data-driven process structures by
increasing model reusability and maintainability. In the automotive domain,

Data-Driven Modeling and Coordination of Large Process Structures 133

for instance, we can benefit from the upcoming standardization of development
processes driven by quality frameworks like CMMI (Capability Maturity Model
Integration) or engineering guidelines (e.g., [4]). This leads to standardized pro-
cessing of objects (e.g., the testing process for the speed sensor is independent
from the car series it is built in), which can be utilized to increase reuse of process
models and to reduce modeling efforts. In order to benefit from the standardiza-
tion, a loose coupling of data structures and process structures is required. In
particular, three issues arise:

1. How to describe the processing of single objects, i.e., the relationship between
an object and its modifying sub-processes?

2. How to describe the processing of the overall data structure, i.e., the depen-
dencies between the sub-processes in relation to the different data objects?

3. How to automatically derive a proper process structure that can be cus-
tomized by the underlying data structure, i.e., different data structures lead
to different process structures?

So far, there exists no IT support for configuring a process structure based on
a given data structure. IT systems used in industry, such as product data man-
agement systems or workflow management tools currently lack an integration of
data and processes [1]. Approaches from academia, such as data-centered process
paradigms [5,6,7] also do not fully address the aforementioned issues. Instead,
users have to manually define the requested process structure for each given
data structure. This often leads to inflexible process structures and generates
high efforts for coordinating and maintaining them. In this paper, we introduce
the modeling component of the COREPRO approach, which aims at an intu-
itive and product-related integration of data and (sub-)processes. In particular,
COREPRO enables

– the data-driven specification of process structures at the model level
– the automated creation of process structures based on given data structures
– the data-driven adaptation of process structures to deal with real-world

changes.

We utilize the life cycles of objects (i.e., the sequence of states an object goes
through during its lifetime) for enabling data-driven modeling and coordination
of process structures. State transitions within a life cycle take place when a
sub-process is enacted for the related object [8,9,10,11]. According to the rela-
tions between objects, we connect the life cycles of these objects. The concept
thereby enables the automated derivation of the process structure for a given
data structure.

The remainder of this paper is structured as follows: Section 2 character-
izes the relationship between data and process structures, and introduces our
approach for describing them. Section 3 shows how to model and instantiate
(product) data structures. Section 4 deals with the data-driven creation and
change of large process structures. Section 5 illustrates the practical benefits
of the COREPRO approach. Section 6 discusses related work, and Section 7
concludes with a summary and outlook.

134 D. Müller, M. Reichert, and J. Herbst

2 Overview of the Approach

IT support for the modeling and change of data-driven process structures must
meet four major requirements. First, it must enable the definition of the (prod-
uct) data structure, i.e., its objects and their relations. Second, with each (data)
object a set of sub-processes for processing this object and for transforming its
state has to be associated. Third, sub-process dependencies have to be defined
based on the object relations. For example, a sub-process for the Navigation
object shall be not started before having finished the sub-processes of the re-
lated subsystems (cf. Fig. 1). Fourth, the concepts must enable the automated
creation of a data-driven process structure.

The COREPRO modeling framework meets these requirements. In order to
enable reuse and to reduce modeling efforts, COREPRO distinguishes between
the model and the instance level when creating data-driven process structures (cf.
Fig. 2). We allow defining a domain specific data model consisting of object and
relation types (cf. Step 1a in Fig. 2). Such a data model can then be instantiated
to create specific data structures (e.g., a bill of material) consisting of objects
and relations (cf. Step 1b in Fig. 2). While the definition of a data model requires
profound domain knowledge, the instantiation can be done by users.

Further, process experts describe the dynamic aspects of each object type
by modeling object life cycles (OLC). An OLC defines the coordination of sub-
processes associated with a particular object type (cf. Step 2a in Fig. 2). A sub-
process is an autonomous process (or activity). In COREPRO an OLC is mapped

Fig. 2. Overall Concept of the COREPRO Modeling Approach

Data-Driven Modeling and Coordination of Large Process Structures 135

to a state transition system whose states correspond to object states and whose
(internal) state transitions are triggered when associated sub-processes (which
are modifying the object) are completed. In Fig. 2, the OLC for object type
System (Step 2a), for example, goes through state S1 followed by state S2. The
internal state transition from S1 to S2 takes place when finishing sub-process Y.
Altogether, an OLC constitutes an integrated view on a particular object and
on the sub-processes manipulating this object.

Defining the dynamic aspects of each object type by modeling its OLC is only
half of the story. We also have to deal with the many dependencies existing be-
tween the sub-processes associated with different objects types. Such dependen-
cies might describe, for example, that every system (Engine and Navigation)
must have reached a certain state before the Testdrive sub-process for the
S-Class can be started (cf. Fig. 1). Consequently, a sub-process dependency
can be seen as a synchronization link between the states of concurrently enacted
OLCs.

In COREPRO, we specify such sub-process dependencies by defining external
state transitions, which connect states of different OLCs. Like an internal state
transition within an OLC, an external state transition can lead to the enactment
of a sub-process. In Fig. 2, for example, the external state transition between
the OLCs of Type System and Type Subsystem is associated with sub-process
V (cf. Step 2a). Further, external state transitions are mapped to relation types.

In COREPRO, the OLCs for every object type and the external state tran-
sitions for every relation type form the Life Cycle Coordination Model (LCM)
(cf. Fig. 2, Step 2a). Consequently, the LCM describes the dynamic aspects of
the whole data model and constitutes the blueprint for creating the data-driven
process structure.

On instance level, the life cycle coordination structure (LCS) describes the
process structure for a particular data structure. While data model, data struc-
ture, and LCM are created manually, the LCS can be automatically generated
based on these ingredients (cf. Step 2b in Fig. 2). The LCS includes an OLC for
every object in the data structure. Likewise, for each relation in the data struc-
ture, external state transitions are inserted to the LCS. For example, for every
hasSubsystem relation in the data structure from Fig. 2 (Step 1b), the associ-
ated external state transitions (with the associated sub-process V) are inserted.
The result is an enactable process structure describing the dynamic aspects of
the given data structure. Further details are presented in the following sections.

3 Modeling and Instantiation of Data Structures

In COREPRO, a domain specific data structure establishes the basis for creating
data-driven process structures. COREPRO enables the definition of dynamic
aspects of objects and relations at model level. Therefore, the definition of a
data model may consist of object and relation types (cf. Fig. 3a). Based on
this, data structures can then be created by instantiating specific objects and
relations (cf. Fig. 3b).

136 D. Müller, M. Reichert, and J. Herbst

Fig. 3. a) Data Model and b) a Possible Instantiation (Data Structure)

3.1 Creation of a Data Model

Generally, a data meta model provides the constructs for describing a data model
[12,13,14]. In COREPRO, we use a simple data meta model, comprising object
and relation types1. An object type represents, for example, an abstract or phys-
ical product component that is part of the logical structure of a car. A relation
type expresses a single relationship between two object types (including cardi-
nality). A data model comprises object and relation types, and describes how
objects are structured in a specific domain (cf. Fig. 3a). Based on the restrictions
of the data model, several data structures (i.e., instances of the data model) can
be created, such as product structures for different car series.

Generally, multiple relation types can be defined between two object types.
Further, we allow defining recursive relation types, which can be used to realize
relations between objects of the same object type on instance level.

Definition 1 (Data Model). Let T be the set of all object types and let R be
the set of all relation types. Then: A data model is a tuple dm = (OT, RT) where

– OT ⊆ T comprises a set of object types
– RT ⊆ OT × R × OT comprises a set of binary relation types defined for

object types
– card : RT �→ N0 × N0 with card(ot1, rt, ot2) = (minrt, maxrt) assigns to

each relation type rt ∈ RT a minimal and maximal cardinality.

3.2 Creation of the Data Structure

A data structure contains objects and relations, which constitute instances of the
object and relation types defined by the data model. In Fig. 3b, for example, the
Total System type is instantiated once, while the System type is instantiated
three times (Engine, Navigation, and Instrument Panel). The cardinalities
associated with relation types restrict the number of concrete relations between
objects. Accordingly, a Subsystem object can only be related to one System
1 The data meta model neglects descriptive object attributes since they do not influent

the generation of the requested process structure.

Data-Driven Modeling and Coordination of Large Process Structures 137

object via the hasSubsystem relation (cf. Fig. 3b). Note that the data structure
from Fig. 3b is a simplified example. In Sect. 5 we indicate, that such a data
structure may comprise a high number of instantiated objects in practice.

Definition 2 (Data Structure). Let dm = (OT, RT) be a data model. Then:
A data structure created from dm is a tuple ds = (O, R) with

– O is a set of objects where each object o ∈ O is associated with an object type
objtype(o) ∈ OT

– R ⊆ O×RT ×O is a set of object relations meeting the cardinality constraints
defined by the data models. Each relation r = (o1, rt, o2) ∈ R has a relation
type rt = reltype(r) with (objtype(o1), rt, objtype(o2)) ∈ RT .

4 Integration of Data and Processes

After having defined how a data structure is modeled, we need to specify its rela-
tionship to the process structure. To allow for reuse, we describe this relationship
at the model level; i.e., we define the dynamic aspects for the data model and
translate them to the instance level afterwards. Therefore, an object life cycle
(OLC) describes the dynamic aspects of an object type and an OLC dependency
defines the dynamic aspects of a relation type. The life cycle coordination model
(LCM) comprises the OLCs for every object type and the OLC dependencies
for every relation type. Consequently, the LCM describes the dynamic aspects
of the whole data model. On instance level, in turn, the LCM constitutes the
basis for creating life cycle coordination structures (LCS) for given data struc-
tures. Altogether, the LCS defines the dynamic aspects of the underlying data
structure and represents the data-driven process structure.

4.1 Modeling of the Dynamic Aspects of Single Object Types

Every object type is associated with an OLC, which constitutes a labeled tran-
sition system describing object states and internal state transitions (cf. Fig. 4).
An internal state transition can be associated with a sub-process modifying the
object (and thus inducing a state change). This sub-process becomes enacted
when the source state of the transition is enabled. After having executed it, the
source state of the transition is disabled and the target state becomes enabled.
Hence, the definition of the OLC constitutes the mediator for associating stateful
objects with modifying sub-processes2.

To realize non-deterministic processing, the definition of conditional (i.e., non-
deterministic) internal state transitions is possible in COREPRO. All internal
state transitions with same OLC state as source are associated with the same
sub-process, but can be bound to (different) sub-process results, i.e., exit codes
(e.g., finished with errors). Depending on the concrete sub-process result, always
one internal state transition is triggered at runtime. In Fig. 4, for example,
2 Stateless objects are also supported. Their OLCs include one internal state transition

(with an associated sub-process) from the start to the end state.

138 D. Müller, M. Reichert, and J. Herbst

S ETested Release
Total System

Released

Faulty

Testdrive[OK]

[*]

State = Object State

Process Internal State Transition
with Associated Process= E = Endstate

S = Startstate

Fig. 4. Object Life Cycle with Conditional State Transitions

the result of the Testdrive sub-process determines, whether the state Tested
or Faulty is enabled. The default transition to state Faulty (indicated by *)
becomes activated in case of uncovered sub-process results. A conditional internal
transition may also be used for modeling loops within an OLC.

Definition 3 (Object Life Cycle). Let dm = (OT, RT) be a data model
and let ot ∈ OT be an object type. Then: The object life cycle of ot is a tu-
ple olc = (P, V, TS) where

– P is a set of sub-processes that can be applied to instances of object type ot
and V is a set of possible sub-process results (σ : P �→ P(V) with σ(p) ⊆ V
is the set of possible results defined for sub-process p)

– TS = (S, T, sstart, send) is a labeled transition system, where
• S is the set of states that can be reached by objects of type ot
• T ⊆ S × (P × V) × S is a set of internal state transitions with

∗ t = (s, (p, v), s′) ∈ T, ⇒ v ∈ σ(p); i.e., a state transition t is triggered
by the completion of a sub-process p with particular result v

∗ ∀ti = (si, (pi, vi), s′i) ∈ T, i = 1, 2 with t1 	= t2 and s1 = s2, ⇒
p1 = p2 ∧ v1 	= v2; i.e., if there are several state transitions with
same source state s, all of them will be associated with the same sub-
process p. The concrete target state is determined based on the sub-
process result. In case of non-deterministic state transitions, there is
a default transition that will be chosen if the associated sub-process
delivers a result not covered by the other transitions.

• sstart ∈ S is the initial state and send ∈ S is the final state of the
transition system; sstart is the only state without incoming transitions
and send is the only state without outgoing transitions.

Let OLC be the set of all object life cycles. For olc ∈ OLC, sstart(olc) denotes
the start and send(olc) the end state of the respective transition system.

4.2 Modeling of the Dynamic Aspects of the Data Model

Modeling the dynamic aspects of single object types is only one part of the chal-
lenge. To define the processing of the whole data model, we also have to spec-
ify the dynamic aspects of relation types. Relation Types are associated with
OLC dependencies which synchronize the OLCs of related objects. An OLC de-
pendency comprises several external state transitions between the states of the
dependent OLCs. The resulting structure is denoted as life cycle coordination
model (LCM). A LCM describes the dynamic aspects of the data model by inte-
grating the OLCs associated with object types as well as the OLC dependencies

Data-Driven Modeling and Coordination of Large Process Structures 139

Li fe Cyc le
Co ord i nat ion S t ruct ure

L i f e C y c l e
C o o r d i n a t i o n M o d e l

ba M o d e l L e v e l I n s t a n c e L e v e l

Fig. 5. Example for a) LCM and b) generated LCS

140 D. Müller, M. Reichert, and J. Herbst

Table 1. Classification of State Transitions in COREPRO

Type Meaning Operational Semantics
Internal State
Transition

Connects two states within one OLC Fires after sub-process execution
dependent on sub-process result

External State
Transition

Connects two states from different OLCs Fires after sub-process execution

Direct State
Transition

Connects LCS start state with start state of
an OLC (end states accordingly)

Fires immediately

associated with relation types (Fig. 5a presents the LCM for the data model
from Fig. 3a).

Like internal state transitions (within an OLC), an external state transition
can be associated with a sub-process. As an example, consider the OLC depen-
dency of the relation type hasSystem in Fig. 5a. This dependency consists of two
external state transitions, which synchronize (1) the start state of the Total
System OLC with the Tested state of the System OLC and (2) the Release
state of the System OLC with the Release state of the Total System OLC.
The sub-process associated with the external state transition (e.g., sub-process
InstallComponent) can be considered as synchronizing (sub-)process, which op-
erates on both related object types.

Definition 4 (OLC Dependency). Let olci = (Pi, Vi, TSi), i = 1, 2 be two
different object life cycles with TSi = (Si, Ti, sstart, send) (cf. Def. 3). Then: An
OLC dependency between olc1 and olc2 is a tuple olcDep = (Id, P, EST) where

– Id is the identifier of the dependency
– P is a set of sub-processes that can operate on both object types
– EST is a set of external state transitions with

est = (s, p, s′) ∈ EST ⇔ (s ∈ S1 ∧ s′ ∈ S2) ∨ (s′ ∈ S1 ∧ s ∈ S2).

OLCDEP denotes the set of all OLC dependencies. For an OLC dependency
olcDep ∈ OLCDEP , let est(olcDep) denote the set of related external state transi-
tions.

It is important to mention that internal and external state transitions differ
in their operational semantics (cf. Table 1). During runtime, the concurrent
processing of different objects is required to enhance process efficiency (e.g., by
supporting concurrent engineering techniques). In COREPRO, this is realized
by concurrently enacting different OLCs while avoiding concurrency within an
OLC3. Both, internal and external state transition become activated (i.e., their
sub-processes are started) when the source state of the transition is entered.
While the completion of the sub-process of an internal state transition induces
the deactivation of the source state and the activation of the target state, the
completion of the sub-process of an external state transition does not imply any
state change in the source OLC.

3 Concurrently activated states are not allowed within one OLC since this has not
been a requirement in our case studies.

Data-Driven Modeling and Coordination of Large Process Structures 141

Further, the target state is activated if and only if the sub-processes of (1) one
incoming internal state transition and (2) all incoming external transitions are
fired. This rule allows for concurrently activated states within different OLCs of
an LCS, while it prevents concurrently activated states within a single OLC. Due
to the lack of space, we omit a formal specification of the operational semantics
of internal and external state transtions.

Definition 5 (Life Cycle Coordination Model). Let dm = (OT, RT) be a
data model and let P be a set of sub-processes. Then: The life cycle coordination
model associated with dm is a tuple lcm = (olc, olcDEP) where

– olc : OT �→ OLC assigns to each object type ot ∈ OT (of the data model) an
object life cycle olc(ot) ∈ OLC

– olcDEP : RT �→ OLCDEP assigns to each relation type rt = (ot1, rt, ot2) ∈
RT an OLC dependency olcDEP (rt) for the object life cycles olc(ot1) and
olc(ot2) of the object types ot1 and ot2.

Regarding the execution of created process structures, it is important to guar-
antee soundness, i.e., to ensure that data-driven process structures terminate
with a correct end state. Deadlocks might occur (1) when external state tran-
sitions are starting from non-deterministic states, and (2) when external state
transitions are forming cycles. The first situation can be avoided during runtime,
for example, using deadpath elimination techniques. The second situation can be
recognized during buildtime by analyzing the process structure. Analyzing large
data-driven process structures, however, generates high efforts. COREPRO en-
ables checking soundness on model level and guarantees soundness for every
data-driven process structure that bases on a sound LCM.

To check soundness of a LCM, all OLCs and OLC dependencies (i.e., their
external state transitions) of the LCM are composed. In addition, a unique start
state is added and connected with all start states of the OLCs via direct state
transitions (cf. Fig. 6). Accordingly, all OLC end states are connected with a
unique end state. Direct state transitions are concurrently triggered and lead to

L
C

M

M
a

c
h

in
e

S ETested
Total System

System

S EPrepared

S EVersion
Choosen Released

Subsystem

Tested Released

Released

Validated

Faulty

S E

S EVersion
Choosen Released

Subsystem

Validated

Object OLC for
Object (Type) = External State

Transition = State Object
State= = Internal State

Transition

Fig. 6. LCM Machine for the LCM from Fig. 5a

142 D. Müller, M. Reichert, and J. Herbst

the deactivation of the source state and the activation of the target state (cf.
Table 1). We denote the extended transition system resulting from this as LCM
machine. The LCM machine constitutes a LCS for a data structure where every
element and relation type is instantiated once (to map OLC dependencies for
recursive relation types, it is necessary to contemplate two OLCs for the object
type associated with the recursive relation type). Thereby, efforts for soundness
checks do not rise with the size of the instantiated process structure but only
depend on the size of the LCM machine. As example consider Fig. 6, which
shows the LCM machine for the LCM depicted in Fig. 5a. Since sub-processes
connected with state transitions do not affect soundness checks (we presume
sound sub-processes), they can be neglected when analyzing soundness.

Definition 6 (Soundness of the LCM). A LCM machine is sound if each
state of the LCM machine (including its end state) can be enabled by direct or
internal state transitions beginning with the start state of the LCM machine and
every external transition becomes activated (or deactivated) then.

4.3 Creating the Life Cycle Coordination Structure

So far, we have introduced the data part which comprises the data model and
the data structure, and the LCM (consisting of OLCs and OLC dependencies)
which integrates the data model and the sub-processes. Based on this, the data-
driven process structure, i.e., the life cycle coordination structure (LCS), can
be automatically derived for respective data structures. The LCS comprises a
start and an end state, an OLC instance for every object in the data structure,
and external state transitions between these OLC instances according to the
relations defined between the objects (cf. Fig. 5b).

Definition 7 (Life Cycle Coordination Structure). Let dm = (O, R)
be a data structure and let lcm = (olc, olcDEP) be a life cycle coordination
model. Then: A life cycle coordination structure based on dm and lcm is a tuple
lcs = (olcinst, estinst, sstart, send, ST, ET) where

– olcinst : O �→ OLC assigns to each object o ∈ O an instance of the associated
object life cycle olcinst(o) = olc(objtype(o))

– estinst : R �→ OLCDEP assigns to each relation r ∈ R the associated external
state transitions estinst(r) = est(olcDEP (reltype(r)))

– sstart denotes the initial state and send the final state
– ST is the set of direct state transitions connecting the start state of the LCS

with the start states of the instantiated object life cycles
– ET is the set of direct state transitions connecting the end states of the

instantiated object life cycles with the end state of the LCS.

The operations for creating a LCS are defined in Table 2. Based on a data struc-
ture and an LCM, three steps become necessary to generate the LCS. Algorithm
1 describes these steps in detail:

1. For every object in the data structure, the OLC associated with the corre-
sponding object type is instantiated.

Data-Driven Modeling and Coordination of Large Process Structures 143

Table 2. Operations for Creating an LCS

Operation Effect
createLCS Creates a new LCS
insertStartState(lcs) Inserts the initial state sstart to the given lcs
insertEndState(lcs) Inserts the final state send to the given lcs
insertOLC(lcs,olc) Inserts an instance of the given OLC to the given lcs
insertExtTrans(lcs,s,p,s’) Inserts an external state transition from state s = (Transitionsystem,

State) to state s’ = (Transitionsystem, State) with the associated
sub-process p to the given lcs

insertDirTrans(lcs,s,s’) Inserts a direct state transition from state s = (Transitionsystem,
State) to state s’ = (Transitionsystem, State) to the given lcs

2. For every relation in the data structure, the OLC dependencies associated
with the corresponding relation type (i.e., their external state transitions)
are inserted to connect states of the dependent OLCs.

3. Direct state transitions are inserted, which connect the LCS start state with
all OLC start states and all OLC end states with the LCS end state.

As result, we obtain the complete LCS representing the logical view on the
data-driven process structure (cf. Fig. 5b). Such LCS can be transformed to
activity-centered process representations, like BPMN or WS-BPEL.

Checking soundness of an LCS comprising hundreds up to thousands of
sub-processes and (external) state transitions is a complex task to accomplish.
COREPRO enables soundness checking on model level and ensures that every
LCS created on basis of a sound LCM is sound as well (cf. Theorem 1).

Theorem 1 (Soundness of the LCS). Assume that an LCS has been created
with Alg. 1 with a particular data structure and an LCM as input. Then: If the
LCM machine of the LCM is sound (cf. Definition 6), the created LCS is sound
as well.

Theorem 1 can be inductively proven: The LCM machine constitutes a sound
LCS for a data structure where every object type and every relation type are

Input: DS = (O, R), LCM = (OLC, OLCDEP)1
Output: lcs = (OLCinst, ESTinst, sstart, send, ST, ET)2
// Initialize the LCS and insert start and end state3
lcs := createLCS; s := insertStartState(lcs); e := insertEndState(lcs);4
// Insert an OLC instance for every instantiated object and connect it with the start5

and end state of the LCS via directed state transitions
forall obj ∈ O do6

olc := insertOLC(lcs,olc(objtype(obj)));7
insertDirTrans(lcs, (lcs, sstart), (olc, sstart(olc)));8
insertDirTrans(lcs, (olc, send(olc)), (lcs, send));9

// Insert external state transitions for each instantiated relation10
forall rel = (o1, rt, o2) ∈ R do11

// Insert external state transitions between the OLC of o1 and the OLC of o212
forall est = (s1, p, s2) ∈ olcDEP (rt) do13

insertExtTrans(lcs, (olcinst(o1), s1), p, (olcinst(o2), s2));14
return(lcs);15

Algorithm 1. Generation of the Life Cycle Coordination Structure

144 D. Müller, M. Reichert, and J. Herbst

instantiated once. When adding one additional object and all corresponding re-
lations to other objects, we can prove that this leads to a sound LCS again
(n = 1). Making this assumption for n additional objects, we can show that
soundness can still be guaranteed when adding a further object and correspond-
ing relations (n → n + 1). Due to lack of space, we omit further details.

4.4 Change Scenarios

When dealing with data-driven process structures, change management becomes
an important issue. Adaptations of process structures become necessary, for ex-
ample, when the underlying data structure is changed (e.g., when adding a new
object). In COREPRO, such changes can be specified at the data level and
are then automatically translated into corresponding adaptations of the process
structure. Compared to conventional approaches (e.g., the manual adaptation
of activity-centered process structure representations), adaptation efforts can
be significantly reduced. To illustrate this, we sketch three change scenarios in
which users (e.g., engineers) adapt the (product) data structure.

Removing an object
Example: The Speed Sensor subsystem shall not be processed any longer, i.e.,
the Speed Sensor and all its relations to or from other objects are removed from
the data structure (cf. Fig. 3b).
Conventional approach: Manually removing associated sub-processes and their
incoming and outgoing synchronization links from the process structure.
COREPRO procedure: The corresponding OLC and the external state transitions
are automatically removed from the LCS.

Removing a relation
Example: The Main Unit does not use the Speed Sensor any longer, i.e., the
relation usesSubsystem between the Main Unit and the Speed Sensor object
is removed from the data structure (cf. Fig. 3b).
Conventional approach: Manually removing the sub-process dependencies which
are no longer necessary from the process structure (i.e., synchronization links of
the sub-processes modifying the Main Unit and the Speed Sensor subsystem).
COREPRO procedure: The corresponding external state transitions are auto-
matically removed from the LCS.

Adding an object
Example: A new Head-Up Display subsystem shall be processed as part of the
Navigation system, i.e., a new object is added to the data structure and related
to the Navigation object (cf. Fig. 3b).
Conventional approach: Manually inserting the corresponding sub-processes and
associated synchronization links.
COREPRO procedure: The corresponding OLC and the external state transitions
are automatically added to the LCS.

Taking these scenarios, COREPRO allows users to apply process structure
changes at a high level of abstraction. Using conventional, activity-driven ap-
proaches for process modeling, process structures would have to be manually

Data-Driven Modeling and Coordination of Large Process Structures 145

adapted in case of a data structure change. That requires extensive process
knowledge and necessitates additional soundness checks. By contrast, CORE-
PRO significantly reduces efforts for adaptation. The process structure can be
adapted without comprehensive process knowledge by simply changing the data
structure. The soundness of the resulting process structure is assured, since the
model level (i.e., the data model and the LCM) remains unchanged.

5 Practical Impact

To indicate the practical benefit of our modeling approach, we introduce a model
calculation for a characteristic process from the car development domain: the
release management (RLM) process for electrical systems [1,3]. The calculation
(cf. Table 3) bases on the experiences we gained from case studies in this do-
main.

The release of an electrical system encompasses 200 to 300 components (de-
pending on the car series), which are divided in root components and their
variants (e.g., driver’s airbag as root component and passenger’s airbag as its
variant). Root components are further divided into categories requiring different
processing. For example, releasing a multimedia component requires different
sub-processes when compared to a security related component. Additionally,
components are grouped into systems (e.g., navigation system covers several
components) to integrate logically coherent components. Finally, systems are
collected in total systems, which represent the car series to be developed (e.g.,
S-Class). Altogether, this leads to the definition of a data model with about 20
object types and 25 relation types connecting them.

On instance level, the relation types with a 1:n cardinality lead to more
than 200 instantiated relations. Additionally, there exist dependencies between
components that exchange signals and messages. These relation types are defined
with an n:m cardinality leading to more than 400 relations. OLCs for the different
object types coordinate 5 (for components) to 20 (for systems) sub-processes.

In constrast to conventional modeling, the creation of the process structure
constitutes an automated task. In total, the LCS contains 200 to 300 OLCs (ac-
cording to the number of objects) with more than 1300 sub-processes. Relation
types encompass 2 to 6 external state transitions (cf. Table 3) leading to more
than 1500 external state transitions within the generated LCS.

Table 3. Projection of the Modeling Efforts Reduction

Model
Data Model LCM

Object Types Relation Types Sub-Processes Ext. Transitions per Relation Type
20 25 5-20 2-6

Instance
Data Structure LCS

Objects Relations Sub-Processes Ext. Transitions
200-300 >600 >1300 >1500

Modeling Efforts Reduced by
>90% >95% >98% >99%

146 D. Müller, M. Reichert, and J. Herbst

The potential for reducing modeling efforts when using the instantiation mech-
anism of COREPRO depends on the ratio of object types to objects. Even though
the calculation bases on a moderate estimate, it indicates that the modeling ef-
forts for RLM processes can be significantly reduced by more than 90%. The
benefit even increases considering the fact that soundness checks (cf. Sect. 4.2)
and changes (cf. Sect. 4.4) become less complex.

6 Related Work

Activity-driven approaches for process modeling do not focus on the automated
creation of large process structures comprising multiple sub-processes. Interac-
tion graphs [15] and choreographydefinition languages (e.g., [16]), for example, are
activity-centered approaches to specify the choreographybetween distributed sub-
processes. The data-driven derivation of sub-process dependencies is not covered.
Other approaches partially enable the data-driven creation of process structures.
For example, multiple instantiation of activities based on simple data structures
(set, list) [17,18] is supported by UML 2.0 activity diagrams (Expansion Region)
[14] and BPMN (Multiple Instances) [19]. They enable iterated or concurrent exe-
cution of the same activity for each element given by a flat data container. Utiliza-
tion of respective data structures raises further options, such as data-driven pro-
cess control with exception handling mechanisms [20]. However, these approaches
aim at the sequential or concurrent execution of multiply instantiated activities.
COREPRO, by contrast, focuses on the definition of arbitrary complex data struc-
tures and their associationwith (sub-)processes.The data-drivenprocess structure
in Fig. 7, for example, realizes the interleaved synchronization of sub-processes. It
represents a list structure where sub-processes are executed for every list element.
In this context, COREPRO also allows for the realization of anticipation concepts
[21]: Regarding the generated LCS, Process A for Element 2 can be started even
though the processing of Element 1 has not been finished.

Fig. 7. Interleaved Processing of a List

Data-Driven Modeling and Coordination of Large Process Structures 147

Approaches for explicitly generating process structures based on bills of
material are described in [5,7]. The idea of coordinating activities based on data
dependencies also constitutes the basis of the Case Handling paradigm [6]. The
idea is to model a process structure by relating activities to the data flow. The
concrete activity execution order at runtime then depends on the availability
of data. Another approach integrating control and data flow is provided by
AHEAD [22], which offers dynamic support for (software) development process
structures. The approach enables the integration of control and data flow,
by relating activities to the objects defined in the data model. Based on
this information, dynamic task nets are generated. The goal of respective
data-driven approaches is the precise mapping of object relations to sub-process
dependencies. Though the object relations indicate sub-process dependencies
(cf. Sect. 2), the information given by relations is insufficient for their direct
mapping to synchronization edges for three reasons. First, several sub-processes
may modify one object, whereas the relation itself does not reflect which of these
sub-processes have to be synchronized. Second, the relations do not provide suf-
ficient information about the direction of synchronization dependencies. In Fig.
1, for example, the relation points from the Speed Sensor to the Navigation
object, while the synchronization dependencies between their sub-processes
point in both directions. Third, it is also requested to associate synchronization
dependencies with the enactment of synchronizing sub-processes (cf. Sect. 4.2).

A general approach following the idea of modeling life cycles and relating them
is Object/Behavior Diagrams. The concept allows for the object-oriented defini-
tion of data models which can be enhanced by runtime aspects [8]. The behavior
is defined for every object within a Petri Net relied life cycle diagram. Another
approach using life cycles for describing operational semantics of business arti-
facts (semantic objects) is Operational Specification (OpS) [11]. The collection
of all objects and their life cycles specifies the operational model for the entire
business. The Object-Process Methodology (OPM) is an object-oriented approach
from the engineering domain. It focuses on connecting objects (or object states)
and processes by procedural links [10]. Team Automata provide a formal method
to describe the connection of labeled transition systems (automata) via external
actions associated with (internal) transitions [9]. Automata including transitions
with the same external action perform them simultaneously. The idea is adopted
in [23] where Team-Automata are structured in an object-oriented way. Its syn-
chronization mechanisms are based on events. These approaches rather focus on
an activity-driven specification of dependencies (based on events) than on the
consideration of data relations for process structure generation. In contrast to
event-based synchronization, external state transitions can be added, removed
or disabled (e.g., in order to avoid deadlocks) without changing the dynamic
aspects of the object itself (i.e., the OLC).

7 Summary and Outlook

The COREPRO approach offers promising perspectives with respect to the
modeling and coordination of large data-driven process structures consisting of

148 D. Müller, M. Reichert, and J. Herbst

numerous sub-processes and their interdependencies. COREPRO supports the
loose coupling of data and sub-processes by defining life cycles of data objects,
and it provides a well-defined mapping of object relations to OLC dependencies.
Further, COREPRO distinguishes between model and instance level, which en-
ables a high level of abstraction, extensibility and reuse. In particular, modeling
and change effectiveness are significantly enhanced by

– introducing model-driven design in conjunction with an instantiation mech-
anism for data-driven process structures

– enabling the instantiation of different data structures and automatically gen-
erating respective data-driven process structures

– integrating data and processes which allows users without process knowledge
to adapt the process structures by changing the data structure.

Another important issue to be considered is the need for flexibility at run-
time, such as applying structural changes during enactment (cf. Sect. 4.4). This
becomes necessary, for example, when the number of objects or relations be-
tween them is not (exactly) known at buildtime. Due to the many sub-process
dependencies, uncontrolled runtime changes may lead to inconsistencies not only
within single OLCs, but also within the whole LCS. In addition to structural
changes, we also have to consider state changes. To realize iterative development
processes, for example, data structures need to be processed several times. How-
ever, that necessitates the (partial) utilization of previous processing states of
objects; i.e., object states which were already activated before execution, have to
be retained. For example, product components which have already been tested
and which remain unchanged do not need to be tested again. Applying such
changes and supporting exceptional situations (e.g., abnormal termination of a
sub-process or backward jumps within an OLC) while preserving consistency is a
challenging problem [2]. Solutions for runtime scenarios and exception handling
are also addressed by COREPRO and will be presented in future publications.

We have implemented major parts of the presented modeling concepts in a
prototype, which we use for a first proof-of-concept case study in car develop-
ment [24]. The approach will be applied for modeling, coordinating and main-
taining data-driven process structures in the automotive industry. However, the
presented concept is not specific to the engineering domain. We also plan to eval-
uate COREPRO in the healthcare domain, where the approach shall be used to
model medical treatment processes [25].

References

1. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release manage-
ment processes in the automotive industry. In: Washio, T., Sakurai, A., Nakajima,
K., Takeda, H., Tojo, S., Yokoo, M. (eds.) New Frontiers in Artificial Intelligence.
LNCS (LNAI), vol. 4102, pp. 368–377. Springer, Heidelberg (2006)

2. Müller, D., Reichert, M., Herbst, J.: Enabling flexibility of data-driven process
structures. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS, vol. 4103,
pp. 181–192. Springer, Heidelberg (2006)

Data-Driven Modeling and Coordination of Large Process Structures 149

3. Bestfleisch, U., Herbst, J., Reichert, M.: Requirememts for the workflow-based
support of release management processes in the automotive sector. In: ECEC, pp.
130–134 (2005)

4. VDI: VDI Systematic Approach to the Design of Technical Systems and Products.
Beuth Verlag (1987) (VDI Guidelines (2221)

5. Aalst, W.: On the automatic generation of workflow processes based on product
structures. Comput. Ind. 39(2), 97–111 (1999)

6. Aalst, W., Berens, P.J.S.: Beyond workflow management: Product-driven case han-
dling. In: GROUP, pp. 42–51 (2001)

7. Reijers, H., Limam, S., Aalst, W.: Product-based workflow design. MIS 20(1), 229–
262 (2003)

8. Kappel, G., Schrefl, M.: Object/behavior diagrams. In: ICDE, pp. 530–539 (1991)
9. Ellis, C.A.: Team automata for groupware systems. In: Group, pp. 415–424. ACM,

New York (1997)
10. Dori, D.: Object-process methodology as a business-process modelling tool. In:

ECIS (2000)
11. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specifi-

cation. IBM Systems Journal 42(3), 428–445 (2003)
12. Chen, P.: The entity-relationship model - toward a unified view of data. ACM

Transactions on Database Systems 1(1), 9–36 (1976)
13. Jackson, M.A.: Principles of Program Design. Academic Press, London (1975)
14. OMG: UML Superstructure proposal 2.0 (2003)
15. Heinlein, C.: Workflow and process synchronization with interaction expressions

and graphs. In: ICDE, pp. 243–252 (2001)
16. W3C: WS-CDL 1.0 (2005)
17. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Dis-

tributed and Parallel Databases 14(1), 5–51 (2003)
18. Guabtni, A., Charoy, F.: Multiple instantiation in a dynamic workflow environ-

ment. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 175–188.
Springer, Heidelberg (2004)

19. BPMI: Business process modeling notation specification (BPMN) (2006)
20. Rinderle, S., Reichert, M.: Data-driven process control and exception handling in

process management systems. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 273–287. Springer, Heidelberg (2006)

21. Grigori, D., Charoy, F., Godart, C.: Coo-flow: A process technology to support
cooperative processes. IJSEKE 14(1), 61–78 (2004)

22. Jäger, D., Schleicher, A., Westfechtel, B.: AHEAD: A graph-based system for mod-
eling and managing development processes. In: Münch, M., Nagl, M. (eds.) AG-
TIVE 1999. LNCS, vol. 1779, pp. 325–339. Springer, Heidelberg (2000)

23. Engels, G., Groenewegen, L.: Towards team-automata-driven object-oriented col-
laborative work. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) For-
mal and Natural Computing. LNCS, vol. 2300, pp. 257–276. Springer, Heidelberg
(2002)

24. Müller, D., Reichert, M., Herbst, J., Poppa, F.: Data-driven design of engineering
processes with COREPROModeler. In: WETICE (ProGility) (2007)

25. Lenz, R., Reichert, M.: IT support for healthcare processes - premises, challenges,
perspectives. Business Process Management 61, 39–58 (2007)

Supporting Ad-Hoc Changes in Distributed

Workflow Management Systems

Manfred Reichert1 and Thomas Bauer2

1Informaton Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

2Dept. GR/EPD, DaimlerChrysler AG Group Research, Germany
thomas.tb.bauer@daimlerchrysler.com

Abstract. Flexible support of distributed business processes is a charac-
teristic challenge for any workflow management system (WfMS).
Scalability at the presence of high loads as well as the capability to
dynamically adapt running process instances are essential requirements.
Should the latter one be not met, the WfMS will not have the neces-
sary flexibility to cover the wide range of process-oriented applications
deployed in many organizations. Scalability and flexibility have, for the
most part, been treated separately in literature thus far. Even though
they are basic needs for a WfMS, the requirements related with them
are totally different. To achieve satisfactory scalability, on the one hand
the system needs to be designed such that a workflow (WF) instance can
be controlled by several WF servers that are as independent from each
other as possible. Yet dynamic WF changes, on the other hand, neces-
sitate a (logical) central control instance which knows the current and
global state of a WF instance. This paper presents methods which allow
ad-hoc modifications (e.g., to insert, delete, or shift steps) to be correctly
performed in a distributed WfMS; i.e., in a WfMS with partitioned WF
execution graphs and distributed WF control. It is especially noteworthy
that the system succeeds in realizing the full functionality as given in the
central case while, at the same time, achieving favorable behavior with
respect to communication costs.

1 Introduction

Workflow management systems (WfMS) enable the definition, execution, and
monitoring of computerized business processes. Very often, a centralized WfMS
shows deficits when it is confronted with high loads or when the business pro-
cesses to be supported span multiple organizations. As in several other ap-
proaches (e.g. [9,15]), in the ADEPT project, we have met this particular demand
by realizing a distributed WfMS made up of several workflow (WF) servers. WF
schemes may be divided into several partitions such that related WF instance
may be controlled ”piecewise” by different WF servers in order to obtain a fa-
vorable communication behavior [3,5]. Such a distributed WF execution is also
needed, for example, for the WF-based support of ubiquitous applications and
their integration with backend systems.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 150–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 151

Comparable to centralized WfMS (e.g., Staffware), a distributed WfMS must
meet high flexibility requirements in order to cover the broad spectrum of pro-
cesses we can find in large organizations [16,20,14]. In particular, at the WF
instance level it must be possible to deviate from the pre-defined WF schema
during runtime if required (e.g., by adding, deleting or moving process activi-
ties in the flow of control). As reported in literature (e.g., [14,19]), such ad-hoc
WF changes become necessary to deal with exceptional or changing situations.
Within the ADEPT project we have developed an advanced technology for the
support of adaptive workflows. In paticular, ADEPT allows users (or agents) to
dynamically modify a running WF instance without causing any run-time error
or inconsistency in the sequel (e.g., deadlocks or program crashes due to activity
invocations with missing input parameter data) [16,17].

In our previous work we considered distributed execution of partitioned WF
schemes and ad-hoc modifications as separate issues. In fact, we have not system-
atically investigated how these two vital aspects of a WfMS interact. Typically
such an investigation is not trivial as the requirements related to each of these
two aspects are different: Ad-hoc WF instance modifications and the correct
processing of the WF instance afterwards prescribe a logically central control
instance to ensure correctness and consistency [16]. The existence of such a
central instance, however, contradicts to the accomplishments achieved by dis-
tributed WF execution. The reason for this is that a central component decreases
the availability of the WfMS and increases communication efforts between WF
clients and the WF server. One reason for this lies in the fact that the central
control instance must be informed of each and every change in the state of any
WF instance. This state of the instance is needed to decide whether an intended
modification is executable at all [16].

The objective of this paper is to introduce an approach for enabling ad-hoc
modifications of single WF instances in a distributed WfMS; i.e., a WfMS with
WF schema partitioning and distributed WF control. As a necessary prerequi-
site, distributed WF control must not affect the applicability of ad-hoc modifi-
cations; i.e., each modification, allowed in the central case, must be applicable
in case of distributed WF execution as well. And the support of such ad-hoc
modifications, in turn, must not impact distributed WF control. In particular,
normal WF execution should not necessitate a great deal of additional commu-
nication effort due to the application of WF instance modifications. Finally, in
the system to be developed, ad-hoc modifications should be correctly performed
and as efficiently as possible. To deal with these requirements, it is essential to
examine which servers of the WfMS must be involved in the synchronization of
an ad-hoc modification. Most likely we will have to consider those servers cur-
rently involved in the control of the respective WF instance. These active servers
require the resulting execution schema of the WF instance (i.e., the schema and
state resulting from the ad-hoc modification) in order to correctly control it after
the modification. Thus we first need an efficient approach to determine the set
of active servers for a given WF instance. This must be possible without a sub-
stantial expense of communication efforts. In addition, we must clarify how the

152 M. Reichert and T. Bauer

new execution schema of the WF instance, generated as a result of the ad-hoc
modification, may be transmitted to relevant servers. An essential requirement
is, thereby, that the amount of communication may not exceed acceptable limits.

Section 2 gives background information about distributed WfMS, which which
is needed for the understanding of this paper. Section 3 describes how ad-hoc
modifications are performed in a distributed WfMS, while Section 4 sets out how
modified WF instances can be efficiently controlled in such a system. We discuss
related work in Section 5 and end with a summary in Section 6.

2 Distributed Workflow Execution in ADEPT

Usually, WfMS with one central WF server are unsuitable if the WF participants
(i.e., the actors of the WF activities) are distributed across multiple enterprises
or organizational units. In such a case, the use of one central WF server would
restrict the autonomy of the involved partners and might be disadvantageous
with respect to respones times. Particularly, if the organizations are widespread,
response times will significantly increase due to the long distance communication
between WF clients and the WF server. In addition, owing to the large number
of users and co-active WF instances typical for enterprise-wide applications,
the WfMS is generally subjected to an extremely heavy load. This may lead
to certain components of the system becoming overloaded. For all these and
other reasons, in the distributed variant of ADEPT, a WF instance may not
be controlled by only one WF server. Instead, its related WF schema may be
partitioned at buildtime (if favorable), and the resulting partitions be controlled
”piecewise” by multiple WF servers during runtime 1 [3] (cf. Fig. 1). As soon
as the end of a partition is reached at run-time, control over the respective WF
instance is handed over to the next WF server (in the following we call this
migration).

When performing such a migration, a description of the state of the WF
instance has to be transmitted to the target server before this WF server can
take over control. This includes, for example, information about the state of WF
activities as well as values for WF relevant data; i.e., data elements connected
with output parameters of activities. (To simplify matters, in this paper we
assume that WF templates (i.e., respective WF schemes) have been replicated
and stored on all (relevant) WF servers of the distributed WfMS.)

To avoid unnecessary communication between WF servers, ADEPT allows
to control parallel branches of a WF instance independently from each other –
at least as no synchronization due to other reasons, e.g. a dynamic WF modi-
fication, becomes necessary. In the example given in Figure 1b, WF server s3,
which currently controls activity d, normally does not know how far execution
has progressed in the upper branch (activities b and c). This has the advantage
that the WF servers responsible for controlling the activities of parallel branches
do not need to be synchronized.
1 To achieve a better scalability we allow the same partition of different WF instances

to be controlled by multiple WF servers (for details see [6]).

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 153

� � � � � � � � � 	

� � � � � � � � � 	 �

� � � � � � � � � 	 �

 � 	 � � � � � � 	 �
�

�

� �

�

�

 � 	 � � � � � � 	 �
�

 � 	 � � � � � � 	 �

� � � � � � 	 � � � � � � � 	 � � � �

� � � � � � � 	 � � � �

� � � 	 � � � � � � � � �

�

�

�

�

� � � � � � � �

! � " � 	 � � � � � � � # 	 � � � 	 � � � � � � � �

� � 	 � " � 	 � � � $ � � � � � %

& ' ((� ()

! � " � 	 � � � � � � � # 	 � � 	 � * � � � � � � #

� + � � * � � � 	 � # 	 � 	 * � � � %

� , - . / � � �

! � " � 	 � + � � * � � � � 	 � � 	 � " � 	

� � � � � � � # 	 � � � 	 � � � � � " � � %

� � � � � � � � � 	

� � � � � � � � � 	 �

� � � � � � � � � 	 �

 � 	 � � � � � � 	 �
�

�

� �

�

�

 � 	 � � � � � � 	 �
�

 � 	 � � � � � � 	 �

�

�

� %

� %

� � � � � � � � �

� � � � � � � � � 	 �
 � � �

� � � � � � � � 	

 � � � � � �

� � � � � � � � 	

 � � � � � �

� � � � � � � � 	

 � � � � � �

�

�

� (0 � � � � �

� (0 1 � � �

Fig. 1. a) Migration of a WF instance (from s1 to s3) and b) the resulting state of the
WF instance

The partitioning of WF schemes and distributed WF control have been suc-
cessfully utilized in other approaches as well (e.g. [9,15]).In ADEPT, we have
targeted an additional goal, namely the minimization of communication costs.
Concrete experiences we gained in working with commercial WfMS have shown
that there is a great deal of communication between the WF server and its WF
clients, oftentimes necessitating the exchange of large amounts of data. This may
lead to the communication system becoming overloaded. Hence, the WF servers
responsible for controlling activities in ADEPT are defined in such a way that
communication in the overall system is reduced: Typically, the WF server for
the control of a specific activity is selected in a way such that it is located in
the subnet to which most of the potential actors belong (i.e., the users whose
role would allow them to handle the activity). This way of selecting the server
contributes to avoid cross-subnet communication between the WF server and its
clients. Further benefits are improved response times and increased availability.
This is achieved due to the fact that neither a gateway nor a WAN (Wide Area
Network) is interposed when executing activities. The efficiency of the described
approach – with respect to WF server load and communication costs – has been
proven by means of comprehensive simulations and is outside the scope of this
paper (see [4]).

Usually, servers are assigned to the activities of a WF schema already at
build-time. However, in some cases this approach does not suffice to achieve the
desired results. This may be the case, for example, if dependent actor assignments
become necessary. Such assignments indicate, for example, that an activity n has
to be performed by the same actor as a preceding activity m. Consequently, the
set of potential actors of activity n is dependent on the concrete actor assigned
to activity m. Since this set of prospective actors can only be determined at run-
time, it would be beneficial to wait with WF server assignment until run-time
as well. Then, a server in a suitable subnet can be selected; i.e., one that is most

154 M. Reichert and T. Bauer

favorable for the actors defined. For this purpose, ADEPT supports so-called
variable server assignments [5]. Here, server assignment expressions like "server
in subnet of the actor performing activity m" are assigned to activities and then
evaluated at run-time. This allows the WF server, which shall control the related
activity instance, to be determined dynamically.

3 Ad-Hoc Modifications in a Distributed WfMS

In principle, in a distributed WfMS ad-hoc modifications of single WF instances
have to be performed just as in a central system (for an example see Fig. 2).
The WfMS has to check whether or not the desired modification is allowed on
basis of the current structure and state of the concerned WF instance. If the
modification is permissible (e.g., if the instance has not progressed too far in its
execution), the related change operations will have to be determined and the
WF schema belonging to the WF instance will be modified accordingly (incl.
adaptations of the WF instance state if required).

� %

� %

� � �

� %

 2 	 	 	 � � � � � � � � � � � � � # 	 + 	 � � � � � 	 3 � 4 	 5 � � � � � 	 3 � 4 6

7 � " � � � � (� � � � # � � ! � 8 	 � (0 9 � � � � % 8 	

7 � " � � � � (� � � � # � � ! � 8 	 � (0 : � � � % 8

7 � � � � � � (� � � ! + % 8 	

7 � � � � � � � � � � � � � � � � � ! � 8 + % 8 	

7 � � � � � � � � � � � � � � � � � ! + 8 � %

9 � � � � ! � 8 	 2 2 2 % 8 	 � � � ! � 8 	 2 2 2 % 8 	 9 � � � � ! � 8 	 2 2 2 % 8 	 # � - � � � � !
 %

9 � � � � ! � 8 	 2 2 2 % 8 	 � � � ! � 8 	 2 2 2 % 8 	 9 � � � � ! � 8 	 2 2 2 %

� � � � � � 	 � � � � � � � # 	 +

� � � � � � � 	 � 	 � � � 	 �

�
�

+
�

� (9 � � � � � (: � � �

5 � � � � � 	 � " � 	 � # � � � � � 	 � � � � � � � � � � � � 6

� � � � � 	 � " � 	 � # � � � � � 	 � � � � � � � � � � � � 6

�

�

�

�

�

� %

� %

� %

� � � � � � � � � � � �
 � �

� � � � � � � � � � � � � � � � �

� �
 � � � � � � � � � � �

�

�

�

� � � � � � � �

! � " � 	 � � � � � � � # 	 � � � 	 � � � � � � � �

� � 	 � " � 	 � � � $ � � � � � %

& ' ((� ()

! � " � 	 � � � � � � � # 	 � � 	 � * � � � � � � #

� + � � * � � � 	 � # 	 � 	 * � � � %

� , - . / � � �

! � " � 	 � + � � * � � � � 	 � � 	 � " � 	

� � � � � � � # 	 � � � 	 � � � � � " � � %

� � � � � � � � � 	 �
 � � �

�

Fig. 2. (Simplified) example of an ad-hoc modification in a centralized WfMS with a)
WF execution schema, b) execution history, and c) modification history

To investigate whether an ad-hoc modification is permissible in a distributed
WfMS, first, the system needs to know the current global state of the (dis-
tributed) WF instance (or at least relevant parts of it). In case of parallel execu-
tion branches this state information may be distributed over several WF servers
and therefore may have to be retrieved from these WF servers when a change
becomes necessary.

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 155

This section describes a method for determining the set of WF servers on
which the state information relevant for the applicability of a modification is
located. In contrast to a central WfMS, in distributed WfMS it is generally
not sufficient to modify the execution schema of the WF instance solely on
the WF server responsible for controlling the modification. Otherwise, errors or
inconsistencies may occur in the following, since other WF servers would use
”out-of-date” schema and state information when controlling the WF instance.
Therefore, in the following, we show which WF servers have to be involved in
the modification procedure and how corresponding protocols look like.

3.1 Synchronizing Workflow Servers During Ad-Hoc Modifications

An authorized user may invoke an ad-hoc modification on any WF server which
(currently) controls the WF instance in question. Yet as a rule, this WF server
alone may not always be able to correctly perform the modification. If other WF
servers currently control parallel branches of the corresponding WF instance,
state information from these WF servers may be needed as well. In addition, the
WF server initiating the change process must also ensure that the corresponding
modifications are taken over into the execution schemes of the respective WF
instance, which are being managed by these other WF servers. Note that this
becomes necessary to enable them to correctly proceed with the control flow in
the sequel (see below). A naive solution would be to involve all WF servers of the
WfMS by a broadcast. However, this approach is impractical in most cases as it
is excessively expensive. In addition, all server machines of the WfMS must be
available before an ad-hoc modification can be performed. Thus we have come
up with three alternative approaches, which we explain and discuss below.

Approach 1: Synchronize all Servers Concerned With the WF Instance

This approach considers those WF servers which either have been or are currently
active in controlling activities of the WF instance or which will be involved in the
execution of future activities. Although the effort involved in communication is
greatly reduced as compared to the naive solution mentioned above, it may still
be unduly large. For example, communication with those WF servers which were
involved in controlling the WF instance in the past and which will not participate
again in future is superfluous. They do not need to be synchronized any more
and the state information managed by them has already been migrated.

Approach 2: Synchronize Current and Future Servers of the WF In-
stance.
To be able to control a WF instance, a WF server needs to know its current
WF execution schema. This, in turn, requires knowledge of all ad-hoc modifi-
cations performed so far. For this reason, a modification is relevant for those
WF servers which either are currently active in controlling the WF instance or
will be involved in controlling it in the future. Thus it seems to make sense to
synchronize exactly these WF servers in the modification procedure. However,
with this approach, problems may arise in connection with conditional branches.

156 M. Reichert and T. Bauer

For XOR-splits, which will be performed in the future, it cannot always be
determined in advance which execution branch will be chosen. As different ex-
ecution branches may be controlled by different WF servers, the set of relevant
WF servers cannot be calculated immediately. Generally, it is only possible to
calculate the set of the WF servers that will be potentially involved in this WF
instance in the future. The situation becomes even worse if variable server as-
signments (cf. Sect. 2) are used. Then, generally, for a given WF instance it is
not possible to determine the WF servers that will be potentially involved in
the execution of future activities. The reason for this is that the run-time data
of the WF instance, which is required to evaluate the WF server assignment
expressions, may not even exist at this point in time. For example, in Figure 3,
during execution of activity g, the WF server of activity j cannot be determined
since the actor responsible for activity i has not been fixed yet. Thus the system
will not always be able to synchronize future servers of the WF instance when
an ad-hoc modification takes place. As these WF servers do not need to be in-
formed about the modification at this time (since they do not yet control the
WF instance), we suggest another approach.

Approach 3: Synchronize all Current Servers of the WF Instance

The only workable solution is to synchronize exclusively those WF servers cur-
rently involved in controlling the WF instance, i.e. the active WF servers. Gen-
erally, it is not trivial at all to determine which WF servers these in fact are.
The reason is that in case of distributed WF control, for an active WF server
of a WF instance the execution state of the activities being executed in paral-
lel (by other WF servers) is not known. As depicted in Figure 3, for example,
WF server s4, which controls activity g, does not know whether migration Mc,d

has already been executed and, as a result, whether the parallel branch is being
controlled by WF server s2 or by WF server s3. In addition, it is not possible
to determine which WF server controls a parallel branch, without further effort,
if variable server assignments are used. In Figure 3, for example, the WF server
assignment of activity e refers to the actor of activity c, which is not known by
WF server s4. – In the following, we restrict our considerations to Approach 3.

�

�

�

	 � 	 1
�

�
;

�
<

�

� * � � � � ! � � � � � ! � % %

�
�
�

�

"
�
;

� * � � � � ! � � � � � ! � % %

�
�
�

	 �
�

+

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
" 8 �

-
� 8 �

-
� 8 1

Fig. 3. Insertion of activity x between the activities g and d by the server s4

3.2 Determining the Set of Active Servers of a Workflow Instance

As explained above, generally, a WF server is not always able to determine from
its local state information which other WF servers are currently executing ac-
tivities of a specific WF instance. And it is not a good idea to use a broadcast

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 157

call to search for these WF servers, as this would result in exactly the same
drawbacks as described for the naive solution at the beginning of Section 3.1.
We, therefore, require an approach for explicitly managing the active WF servers
of a WF instance. The administration of these WF servers, however, should not
be carried out by a fixed (and therefore central) WF server since this might lead
to bottlenecks, thus negatively impacting the availability of the whole WfMS.

For this reason, in ADEPT, the set of active WF servers (ActiveServers) is
managed by a ServerManager specific to the WF instance. For this purpose, for
example, the start server of the WF instance can be used as the ServerManager.
Normally, this WF server varies for each of the WF instances (even if they are
of the same WF type), thus avoiding bottlenecks.

The start WF server can be easily determined from the (local) execution his-
tory by any WF server involved in the control of the WF instance. The following
subsections show how the set of active WF servers of a specific WF instance is
managed by the ServerManager, how this set is determined, and how ad-hoc
modifications can be efficiently synchronized.

Managing Active WF Servers of a WF Instance. As mentioned above, for
the ad-hoc modification of a WF instance we require the set ActiveServers, which
comprises all WF servers currently involved in the control of the WF instance.
This set, which may be changed due to migrations, is explicitly managed by the
ServerManager. Thereby, the following two rules have to be considered:

1. Multiple migrations of the same WF instance must not overlap arbitrarily,
since this would lead to inconsistencies when changing the set of active WF
servers.

2. For a given WF instance, the set ActiveServers must not change due to mi-
grations during the execution of an ad-hoc modification. Otherwise, wrong
WF servers would be involved in the ad-hoc modification or necessary WF
servers would be left out.

As we will see in the following, we prevent these two cases by the use of sev-
eral locks.2 We now describe the algorithms necessary to satisfy these require-
ments. Algorithm 1 shows the way migrations are performed in ADEPT. It
interacts with Algorithm 2 by calling the procedure UpdateActiveServers (re-
motely), which is defined by this algorithm. This procedure manages the set of
active WF servers currently involved in the WF instance; i.e., it updates this set
consistently in case of WF server changes.

2 A secure behavior of the distributed WfMS could also be achieved by perform-
ing each ad-hoc modification and each migration (incl. the adaptation of the set
ActiveServers) within a distributed transaction (with 2-phase-commit). But this ap-
proach would be very restrictive since during the execution of such an operation,
“normal WF execution” would be prevented. That means, while performing a mi-
gration, the whole WF instance would be locked and, therefore, even the execution of
activities actually not concerned would not be possible. Such a restrictive approach
is not acceptable for any WfMS. However, it is not required in our approach and we
realize a higher degree of parallel execution while achieving the same security.

158 M. Reichert and T. Bauer

Algorithm 1 illustrates how a migration is carried out. It is initiated and ex-
ecuted by a source WF server that hands over control to a target WF server.
First, the SourceServer requests a non-exclusive lock from the ServerManager,
which prevents the migration from being performed during an ad-hoc modifi-
cation (cf. Algorithm 3). Then an exclusive, short-term lock is requested. This
lock ensures that the ActiveServers set of a given WF instance is not changed si-
multaneously by several migrations within parallel branches. (Both lock requests
may be incorporated into a single call to save a communication cycle.)

The SourceServer reports the change of the ActiveServers set to the Server-
Manager, specifying whether it remains active for the concerned WF instance
(Stay), or whether it will not be involved any longer (LogOff). If, for example, in
Figure 3 the migration Mb,c is executed before Mf,g, the option Stay will be used
for the migration Mb,c since WF server s1 remains active for this WF instance.
Thus, the option LogOff is used for the subsequent migration Mf,g as it ends
the last branch controlled by s1. The (exclusive) short-term lock prevents that
these two migrations may be executed simultaneously. This ensures that it is
always clear whether or not a WF server remains active for a WF instance when
a migration has ended. Next, the WF instance data (e.g., the current state of
the WF instance) is transmitted to the target WF server of the migration. Since
this is done after the exclusive short-term lock has been released (by Update-
ActiveServers), several migrations of the same WF instance may be executed
simultaneously. The algorithm ends with the release of the non-exclusive lock.

Algorithm 1 (Performing a Migration)

input
Inst: ID of the WF instance to be migrated
SourceServer: source server of the migration (it performs this algorithm)
TargetServer: target server of the migration

begin
// calculate the ServerManager for this WF instance by the use of its execution

history
ServerManager = StartServer(Inst);
// request a non-exclusive lock and an exclusive short-term lock from the Server-

Manager
RequestSharedLock(Inst) → ServerManager;3

RequestShortTermLock(Inst) → ServerManager;
// change the set of active servers (cf. Algorithm 2)
if LastBranch(Inst) then

// the migration is performed for the last execution branch of the WF instance,
that is active at the

// SourceServer
UpdateActiveServers(Inst, SourceServer, LogOff, TargetServer) → ServerMan-

ager;
else // another execution path is active at SourceServer

UpdateActiveServers(Inst, SourceServer, Stay, TargetServer) → ServerManager;

3 p() → s means that procedure p is called and then executed by server s.

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 159

// perform the actual migration and release the non-exclusive lock
MigrateWorkflowInstance(Inst) → TargetServer;
ReleaseSharedLock(Inst) → ServerManager;

end.

Algorithm 2 is used by the ServerManager to manage the WF servers currently
involved in controlling a given WF instance. To fulfill this task, the ServerMan-
ager also has to manage the locks mentioned above. If the procedure Update-
ActiveServers is called with the option LogOff, the source WF server of the
migration is deleted from the set ActiveServers(Inst); i.e., the set of active WF
servers with respect to the given WF instance. The reason for this is that this
WF server is no longer involved in controlling this WF instance. The target WF
server for the migration, however, is always inserted into this set independently
of whether it is already contained or not because this operation is idempotent.

The short-term lock requested by Algorithm 1 before the invocation of Up-
dateActiveServers prevents Algorithm 2 from being run in parallel more than
once for a given WF instance. This helps to avoid an error due to overlapping
changes of the set ActiveServers(Inst). When this set has been adapted, the
short-term lock is released.

Algorithm 2 (UpdateActiveServers: Managing the Active WF Servers)

input
Inst: ID of the affected WF instance
SourceServer: source server of the migration
Option: source server be involved in the WF instance furthermore (Stay) or not

(LogOff)?
TargetServer: target server of the migration

begin
// update the set of the current WF servers of the WF instance Inst
if Option = LogOff then

ActiveServers(Inst) = ActiveServers(Inst) − {SourceServer};
end if
ActiveServers(Inst) = ActiveServers(Inst) ∪ {TargetServer};
ReleaseShortTermLock(Inst); // release the short-term lock

end.

Performing Ad-hoc Modifications. Where the previous section has de-
scribed how the ServerManager handles the set of currently active WF servers
for a particular WF instance, this section sets out how this set is utilized when
ad-hoc modifications are performed.

First of all, if no parallel branches are currently being executed, trivially, the
set of active WF servers contains exactly one element, namely the current WF
server. This case may be detected by making use of the state and structure
information (locally) available at the current WF server. The same applies to
the special case that currently all parallel branches are controlled by the same
WF server. In both cases, the method described in the following is not needed

160 M. Reichert and T. Bauer

and therefore not applied. Instead, the WF server currently controlling the WF
instance performs the ad-hoc modification without consulting any other WF
server. Consequently, this WF server must not communicate with the Server-
Manager as well. For this special case, therefore, no additional synchronization
effort occurs (when compared to the central case).

We now consider the case that parallel branches exist; i.e., an ad-hoc modifi-
cation of the WF instance may have to be synchronized between multiple WF
servers. The WF server which coordinates the ad-hoc modification then requests
the set ActiveServers from the ServerManager. When performing the ad-hoc
modification, it is essential that this set is not changed due to concurrent mi-
grations. Otherwise, wrong WF servers would be involved in the modification
procedure. In addition, it is vital that the WF execution schema of the WF in-
stance is not restructured due to concurrent modifications, since this may result
in the generation of an incorrect schema.

To prevent either of these faults we introduce Algorithm 3. It requests an ex-
clusive lock from the ServerManager to avoid the mentioned conflicts. This lock
corresponds to a write lock [11] in a database system and is incompatible with
read locks (RequestSharedLock in Algorithm 1) and other write locks of the same
WF instance. Thus, it prevents that migrations are performed simultaneously to
an ad-hoc modification of the WF instance.

Algorithm 3 (Performing an Ad-hoc Modification)

input
Inst: ID of the WF instance to be modified
Modification: specification of the ad-hoc modification

begin
// calculate the ServerManager for this WF instance
ServerManager = StartServer(Inst);
// request an exclusive lock from the ServerManager and calculate the set of active

WF servers
RequestExclusiveLock(Inst) → ServerManager;
ActiveServers = GetActiveServers(Inst) → ServerManager;
// request a lock from all servers, calculate the current WF state, and perform the

change (if possible)
for each Server s ∈ ActiveServers do

RequestStateLock(Inst) → s;
GlobalState = GetLocalState(Inst);
for each Server s ∈ ActiveServers do

LocalState = GetLocalState(Inst) → s;
GlobalState = GlobalState ∪ LocalState;

if DynamicModificationPossible(Inst, GlobalState, Modification) then
for each Server s ∈ ActiveServers do

PerformDynamicModification(Inst, GlobalState, Modification) → s;
// release all locks
for each Server s ∈ ActiveServers do

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 161

ReleaseStateLock(Inst) → s;
ReleaseExclusiveLock(Inst) → ServerManager;

end.

As soon as the lock has been granted, a query is sent to acquire the set of ac-
tive WF servers of this WF instance.4 Then a lock is requested at all WF servers
belonging to the set ActiveServers in order to prevent local changes to the state
of the WF instance. Any activities already started, however, may be finished
normally since this does not affect the applicability of an ad-hoc modification.
Next the (locked) state information is retrieved from all active WF servers. Note
that the resulting global and current state of the WF instance is required to
check whether the ad-hoc modification to be performed is permissible or not. In
Figure 3, for example, WF server s4, which is currently controlling activity g and
which wants to insert activity x after activity g and before activity d, normally
does not know the current state of activity d (from the parallel branch). Yet
the ad-hoc modification is permissible only if activity d has not been started at
the time the modification is initiated [16]. If this is the case, the modification
is performed at all active WF servers of the WF instance (PerformDynamic-
Modification). Afterwards, the locks are released and any blocked migrations or
modification procedures may then be carried out.

3.3 Illustrative Example

How migrations and ad-hoc modifications work together is explained by means
of an example. Figure 4a shows a WF instance, which is currently controlled by
only one WF server, namely the WF server s1. Figure 4b shows the same WF
instance after it migrated to a second WF server (s2). In Figure 4c the execution
was continued. One can also see that each of the two WF servers must not always
possess complete information about the global state of the WF instance.

Assume now that an ad-hoc modification has to be performed, which is co-
ordinated by the WF server s1. Afterwards, both WF servers shall possess the
current schema of the WF instance to correctly proceed with the flow of control.
With respect to the (complete) current state of the WF instance, it is sufficient
that it is known by the coordinator s1 (since only this WF server has to decide on
the applicability of the desired modification). The other WF server only carries
out the modification (as specified by WF server s1).

4 Distributed Execution of a Modified Workflow Instance

If a migration of a WF instance has to be performed, its current state has to be
transmitted to the target WF server. In ADEPT, this is done by transmitting
the relevant parts of the execution history of the WF instance together with the

4 This query may be combined with the lock request into a single call to save a
communication cycle.

162 M. Reichert and T. Bauer

�

� �

� �

�

�
�

�
�

�
�

�

�

�

� �
�

� � � � � � � � � 	 -
� 8 �
	 � � � � 	 � � � � � � 	 �

	 � � 	 � � � � � � 	 �

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

� �
�

�

� � 	 � � � � � � � 	 � 	 � # � � � � � 	 � � � � � � � � � � � � 	 ! � � � � � � � � � 	 � � 	 + 	 � � � � � 	 3 � 4 	 � � � 	 � � � � � � 	 3 � 8 	 � 4 	 � # 	 � " � 	 � � � � � � 	 �

% 8 	

�

	 � � = * � � � � 	 � � � � � 	 � � � � � � � � � � � 	 � � � � 	 � " � 	 � � � � � � 	 �

�
	

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

� �

� ���

� � � � � � � � � � � 	 � � 	 � " � 	 � # � � � � � 	 � � � � � � � � � � � � 	 � # 	 � � � � � � 	 �

	 ! � � � � � � � � � � � � 	 � � 	 � " � 	 � + � � * � � � � 	 � � � � " 	 � � 	 � � � 	 � � � � � � 	

� � � � � � � 8 	 � " � � � 	 � � � 	 �

	 � � � 	 �

�
	 � � 	 � " � 	 � + � � � � � %

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

� �

� ���

+

�

�

+

�

�

� � � � � � � * � � � 	 � + � � * � � � � 	 � � 	 � 	 � � � � � � � � � � 	 ! � 	 � # 	 �

% 	 � � � 	 � 	 ! � # 	 �

�
% 	 ! � � 	 � � � � 	 � � 	 � � � � � � 	 � 	 � + � � * � � � � 8 	 � � 	 � � � � � 	

� # � � " � � � � > � � � � � 	 � � 	 � � � � � � � � � 	 � � � � � � � 	 � " � 	 � � � � � � � 	 � � 	 � � � � � � � � 	 � � � � � " � � %

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

� �

� �

�

� %

� %

� %

� %

� %

�

�

Fig. 4. Effects of migrations and ad-hoc modifications on the (distributed) execution
schema of a WF instance (local view of the WF servers)

values of WF relevant data (i.e., data elements used as input and output data
of WF activities or as input data for branching and loop conditions)

If an ad-hoc modification was previously performed, the target WF server
of a migration also needs to know the modified execution schema of the WF
instance in order to be able to control the WF instance correctly. In the approach
introduced in the previous section, only the active WF servers of the WF instance
to be modified have been involved in the modification. As a consequence, the
WF servers of subsequent activities, however, still have to be informed about the
modification. In our approach, the necessary information is transmitted upon

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 163

migration of the WF instance to the WF servers in question. Since migrations
are rather frequently performed in distributed WfMS, this communication needs
to be performed efficiently. Therefore, in Section 4.1 we introduce a technique
which fulfills this requirement to a satisfactory degree. Section 4.2 presents an
enhancement of the technique that precludes redundant data transfer.

4.1 Efficient Transmission of Information About Ad-Hoc
Modifications

In the following, we examine how a modified WF execution schema can be com-
municated to the target WF server of a migration. The key objective of this inves-
tigation is the development of an efficient technique that reduces communication-
related costs as far as possible.

Of course, the simplest way to communicate the current execution schema of
the respective WF instance to the migration target server is to transmit this
schema in whole. Yet this technique burdens the communication system unnec-
essarily because related WF graph of this WF schema may comprise a large
number of nodes and edges. This results in an enormous amount of data to be
transferred – an inefficient and cost-intensive approach. Apart from this, the
entire execution schema does not need to be transmitted to the migration target
server as the related WF template has been already located there. (Note that
a WF template is being deployed to all relevant WF servers before any WF in-
stance may be created from it.) In fact, in most cases the current WF schema of
the WF instance is almost identical to the WF schema associated with the WF
template. Thus it is more efficient to transfer solely the relatively small amount
of data which specifies the modification operation(s) applied to the WF instance.
It would therefore seem practical to use the change history for this purpose. In
ADEPT the migration target server needs this history anyway [16], so that its
transmission does not lead to an additional effort. When the base operations
recorded in the change history are applied to the original WF schema of the
WF template, the result is the current WF schema of the given WF instance.
This simple technique dramatically reduces the effort necessary for communica-
tion. In addition, as typically only very few modifications are performed on any
individual WF instance, computation time is kept to a minimum.

4.2 Enhancing the Method Used to Transmit Modification Histories

Generally, one and the same WF server may be involved more than once in
the execution of a WF instance – especially in conjunction with loops. In the
example from Figure 5, for instance, WF server s1 hands over control to WF
server s2 after completion of activity b but will receive control again later in the
flow to execute activity d. Since each WF server stores the change history until
being informed that the given WF instance has been completed, such a WF
server s already knows the history entries for the modifications it has performed
itself. In addition, s knows any modifications that had been effected by other
WF servers before s handed over the control of the WF instance to another WF

164 M. Reichert and T. Bauer

�

�

�

	 � �

"

�

�

�

�

�
;

�

�
�

�

�
�

�
�

� %

� % 9 � � � � ! � 8 	 �

8 	 2 2 2 % 8 	 # � - � � � � !
 % 8 	 � � � ! � 8 	 �

8 	 2 2 2 % 8 	 # � - � � � � ! � % 8 	 9 � � � � ! � 8 	 �

8 	 2 2 2 % 8 	 � � � ! � 8 	 �

8 	 2 2 2 % 8 	

9 � � � � ! � 8 	 �
�
8 	 2 2 2 % 8 	 # � - � � � � ! � % 8 	 � � � ! � 8 	 �

�
8 	 2 2 2 % 	

�

� �

�

	 �

�
�

�

�

�

	 � �

"

�

�

�

�

�
;

�

�
�

�

�
�

�
�

� %

�

�

�

�

�

	 � ��

�

�

�

�

�
�

�

�
�

�
�

� %

�

� � �	 � ��

�

�

�
�

�

�
�

�
�

� %

� � � � � 	 � � 	 � � � � � � � # 	 �

� � � � � � � � � 	 � � 	 � � � � � � � # 	 � 	 ! � � � � � � � � � � 	 � # 	 � � � � � � 	 �

% 	 � � � � � 	 � � � � � � � # 	 � 	 � � � 	 � � � � � � 	 � � � � � � � # 	 �

� � � � � � � � � � 	 � � 	 � � � � � � � # 	 �

� � � � � � � � � 	 � � 	 � � � � � � � # 	 " 	 ! � � � � � � � � � � 	 � # 	 � � � � � � 	 �
;
% 	 � � � � � 	 � � � � � � � # 	 � 	 � � � 	 � � � � � � 	 � � � � � � � # 	 �

� + � � * � � � � 	 � � 	 � � � � � � � # 	 � 	 � � � 	 � � � � � 	 � � 	 � � � � � � � # 	 �

� � � � � � � � � 	 � � 	 � � � � � � � # 	 � 	 ! � � � � � � � � � � 	 � # 	 � � � � � � 	 �
�
% 	 � � � � � 	 � � � � � � � # 	 �

� � � � � � � � � � 	 � � 	 � � � � � � � # 	 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
" 8 �

-
" 8 �

-
� 8 "

-
� 8 "

Fig. 5. a-d) WF instance and e) Execution history of WF server s2 after completion of
activity c. – In case of distributed WF control, with each entry the execution history
records the WF server responsible for the control of the corresponding activity.

server for the last time. Hence the data related to this part of the change history
need not be transmitted to the WF server. This further reduces the amount of
data required for the migration of the “current execution schema”.

Transmitting Change History Entries. An obvious solution for avoiding
redundant transfer of change history entries would be as follows: The migra-
tion source server determines from the existing execution history exactly which
modification the target WF server must already know. The related entries are
then simply not transmitted when migrating the WF instance. In the example
given in Figure 5, WF server s2 can determine, upon ending activity c, that the
migration target server s1 must already know the modifications 1 and 2. In the
execution history (cf. Figure 5e), references to these modifications (DynModif(1)
and DynModif(2)) have been recorded before the entry End(b, s1, ...) (which was
logged when completing activity b). As this activity was controlled by WF server
s1, this WF server does already know the modifications 1 and 2. Thus, for the

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 165

migration Mc,d, only the change history entry corresponding to modification 3
needs to be transmitted. The transmitted part of the change history is concate-
nated with the part already present at the target server before this WF server
generates the new execution schema and proceeds with the flow of control.

In some cases, however, redundant transfer of change history data cannot be
avoided with this approach: As an example take the migrations Md,e and Mh,f

to the WF server s3. For both migrations, with the above approach, all entries
corresponding to modifications 1, 2, and 3 must be transmitted because the WF
server s3 was not involved in executing the WF instance thus far. The problem
is that the migration source servers s1 and s4 are not able, from their locally
available history data, to derive whether the other migration from the parallel
branch has already been effected or not. For this reason, the entire change history
must be transmitted. Yet with the more advanced approach set out in the next
section, we can avoid such redundant data transfer.

Requesting Change History Entries. To avoid redundant data transmis-
sions as described in the previous section, we now sketch a more sophisticated
method. With this method, the necessary change history entries are explicitly
requested by the migration target server. When a migration takes place, the tar-
get WF server informs the source WF server about the history entries it already
knows. The source WF server then only transmits those change history entries
of the respective WF instance which are yet missing on the target server. In
ADEPT, a similar method has been used for transmitting execution histories;
i.e., necessary data is provided on basis of a request from the migration target
server. Here, no additional effort is expended for communication, since both, the
request for and the transmission of change history entries may be carried out
within the same communication cycle.

With the described method, requesting the missing part of a change history
is efficient and easy to implement in our approach. If the migration target server
was previously involved in the control of the WF instance, it already possesses
all entries of the change history up to a certain point (i.e., it knows all ad-hoc
modifications that had been performed before this server handed over control
the last time). But from this point on, it does not know any further entries. It is
thus sufficient to transfer the ID of the last known entry to the migration source
server to specify the required change history entries. The source WF server then
transmits all change history entries made after this point. Due to lack of space
we omit further details.

To sum up, with our approach not only ad-hoc modifications can be performed
efficiently in a distributed WfMS (see Section 3), transmission costs for migration
of modified WF instances may also be kept very low.

5 Related Work

There are only few approaches which address both WF modification issues and
distributed WF control [8,9,13,21,2]. WIDE [9] allows WF schema modifications

166 M. Reichert and T. Bauer

and their propagation to running WF instances (if compliant to the new schema).
In addition, control of WF instances is distributed [9]. Thereby, the set of the
potential actors of an activity determines the WF server which is to control this
activity. In MOKASSIN [13] and WASA [20,21], distributed WF execution is
realized through an underlying CORBA infrastructure. Both approaches do not
discuss the criteria used to determine a concrete distribution of the tasks; i.e.,
the question which WF server has to control a specific activity remains open.
Here, modifications may be made at both, the WF schema and the WF instance
level under consideration of correctness issues. INCAs [2] realizes WF instance
control by means of rules. WF control is distributed, in INCAs, with a given
WF instance controlled by that processing station that belongs to the actor of
the current activity. The mentioned rules are used to calculate the processing
station of the subsequent activity and, thereby, the actor of that activity. With
this approach, it is possible to modify the rules, what results in an ad-hoc change
of the WF instance behavior. As opposed to the approach presented in this
paper, all these approaches do not explicitly address how ad-hoc modifications
and distributed WF execution interact. The approach proposed in [10] enables
some kind of flexibility in distributed WfMS as well, especially in the context
of virtual enterprises. However, it does not allow to modifiy the structure of
in-progress WF instances. Instead, the activities of a WF template represent
placeholders for which the concrete implementations are selected at run-time.

In the WF literature, some approaches for distributed WF management are
cited where a WF instance is controlled by one and the same WF server over
its entire lifetime; e.g., Exotica [1] and MOBILE [12]. (The latter approach was
extended in [18] that way that a sub-process may be controlled by a different WF
server, which is determined at run-time.) Although migrations are not performed,
different WF instances may be controlled by different WF servers. And, since
a central control instance exists for each WF instance in these approaches, ad-
hoc modifications may be performed just as in a central WfMS. Yet there is
a drawback with respect to communication costs: The distribution model does
not allow to select the most favorable WF server for the individual activities.
When developing ADEPT, we therefore did not follow such an approach since the
additional costs incurred in standard WF execution are higher than the savings
generated due to the (relatively seldom performed) ad-hoc modifications.

6 Summary

Both distributed WF execution and ad-hoc modification are essential functions
of any WfMS. Each of these aspects is closely linked with a number of require-
ments and objectives that are, to some extent, opposing. Reason for this is
that the central control instance necessary for ad-hoc modifications typically
impacts the efficiency of distributed WF execution. Therefore, we cannot afford
to consider these two aspects separately. An investigation of exactly how these
functions interact has been presented. And the results show that they are, in
fact, compatible: We have realized ad-hoc modifications in a distributed WfMS.

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 167

Our approach also allows efficient distributed control of previously modified WF
instances since only a part of the relatively small change history needs to be
transmitted when transferring the modified execution schema. This is vital as
migrations are frequent. To conclude, ADEPT succeeds in seamlessly integrat-
ing both distributed WF execution and ad-hoc WF modifications into a single
system. The presented concepts have been implemented in a powerful proof-
of-concept prototype, which constitutes the distributed variant of the ADEPT
system (cf. Fig. 6). It shows that one can really build a WfMS which offers
the described functionality within one system (for details see [7]). It also shows,
however, that such a high-end WfMS is a large software systems, easily reaching
the code complexity of high-end database management systems.

Fig. 6. ADEPT monitoring component showing a distributed workflow controlled by
servers S1 and S2 after its runtime modification

References

1. Alonso, G., Kamath, M., Agrawal, D., El Abbadi, A., Günthör, R., Mohan, C.:
Failure Handling in Large Scale Workflow Management Systems. Technical Report
RJ9913, IBM Almaden Research Center (1994)

2. Barbará, D., Mehrotra, S., Rusinkiewicz, M.: INCAs: Managing Dynamic Work-
flows in Distributed Environments. J. of Database Management 7(1), 5–15 (1996)

3. Bauer, T., Dadam, P.: A Distributed Execution Environment for Large-Scale Work-
flow Management Systems with Subnets and Server Migration. In: Proc. CoopIS
1997, Kiawah Island, SC, pp. 99–108 (1997)

4. Bauer, T., Dadam, P.: Distribution Models for Workflow Management Systems.
Informatik Forschung und Entwicklung 14(4), 203–217 (1999) (in German)

5. Bauer, T., Dadam, P.: Efficient Distributed Workflow Management Based on Vari-
able Server Assignments. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000.
LNCS, vol. 1789, pp. 94–109. Springer, Heidelberg (2000)

6. Bauer, T., Reichert, M., Dadam, P.: Intra-Subnet Load Balancing for Distributed
Workflow Management Systems. Int. J. Coop. Inf. Sys. 12(3), 295–323 (2003)

168 M. Reichert and T. Bauer

7. Bauer, Th., Reichert, M.: An Approach for Supporting Ad-hoc Process Changes
in Distributed Workflow Management Systems. Technical report, University of
Twente, CTIT (September 2007)

8. Cao, J., Yang, J., Chan, W., Xu, C.: Exception handling in distributed workflow
systems using mobile agents. In: Proc. ICEBE 2005, pp. 48–55 (2005)

9. Casati, F., Grefen, P., Pernici, B., Pozzi, G., Sánchez, G.: WIDE: Workflow Model
and Architecture. CTIT Technical Report 96-19, University of Twente (1996)

10. Cichocki, A., Georgakopoulos, D., Rusinkiewicz, M.: Workflow Migration Support-
ing Virtual Enterprises. In: Proc. BIS 2000, Poznań, pp. 20–35 (2000)

11. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, San Francisco (1993)

12. Jablonski, S.: Architecture of Workflow Management Systems. Informatik
Forschung und Entwicklung 12(2), 72–81 (1997) (in German)

13. Joeris, G., Herzog, O.: Managing Evolving Workflow Specifications. In: Proc.
CoopIS 1998, New York, pp. 310–321 (1998)

14. Lenz, R., Reichert, M.: IT Support for Healthcare Processes - Premises, Challenges,
Perspectives. DKE 61, 82–111 (2007)

15. Muth, P., Wodtke, D., Weißenfels, J., Kotz-Dittrich, A., Weikum, G.: From Cen-
tralized Workflow Specification to Distributed Workflow Execution. JIIS 10(2),
159–184 (1998)

16. Reichert, M., Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Workflows
Without Losing Control. JIIS 10(2), 93–129 (1998)

17. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adap-
tive workflow systems. Distributed and Parallel Databases 16(1), 91–116 (2004)

18. Schuster, H., Neeb, J., Schamburger, R.: A Configuration Management Approach
for Large Workflow Management Systems. In: Proc. Int. Conf. on Work Activities
Coordination and Collaboration, San Francisco (1999)

19. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features
in process-aware information systems. In: CAiSE 2007. Proc. 19th Int’l Conf. on
Advanced Information Systems Engineering, pp. 574–588 (2007)

20. Weske, M.: Flexible Modeling and Execution of Workflow Activities. In: Proc. 31st
Hawaii Int. Conf. on Sys Sciences, Hawaii, pp. 713–722 (1998)

21. Weske, M.: Workflow Management Through Distributed and Persistent CORBA
Workflow Objects. In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626,
pp. 446–450. Springer, Heidelberg (1999)

Acquaintance Based Consistency in an

Instance-Mapped P2P Data Sharing System
During Transaction Processing

Md Mehedi Masud and Iluju Kiringa

SITE, University of Ottawa, Canada
{mmasud,kiringa}@site.uottawa.ca

Abstract. The paper presents a transaction processing mechanism in a
peer-to-peer (P2P) database environment that combines both P2P and
database management systems functionalities. We assume that each peer
has an independently created relational database and data heterogeneity
between two peers is resolved by data-level mappings. For such an envi-
ronment, the paper first introduces the execution semantics of a transac-
tion and shows the challenges for concurrent execution of transactions,
initiated from a peer, over the network. Later the paper presents a cor-
rectness criterion that ensures the correct execution of transactions over
the P2P network. We present two approaches ensuring the correctness
criterion and finally discuss the implementation issues.

1 Introduction

In the past few years peer-to-peer (P2P) technology has emerged as a new
paradigm for distributed data sharing systems. In P2P all participating com-
puters (or peers) have equivalent capabilities and responsibilities and exchange
resources and services through pair-wise communication by eliminating the need
for centralized servers. Until now there are many domain specific P2P systems
(e.g. Freenet, Gnutella, SETI@home, ICQ, etc.) have already been deployed.
With a few notable exceptions, currently implemented P2P systems lack data
management capabilities that are typically found in database management sys-
tem (DBMS).

A P2P database system (P2PDBS) combines both P2P and database man-
agement systems functionalities. In a P2PDBS, a peer provides access to its re-
sources to other peers and shares its data with other peers through the pair-wise
communication. A P2PDBS is similar to a conventional multidatabase system
(MDBS) in the sense that each system consists of a collection of independently
created local database systems (LDBSs), and transaction management is handled
at both the global and local levels. In a MDBS, global level transactions are is-
sued to the global transaction manager (GTM), where they are decomposed into
a set of global subtransactions to be individually submitted to the corresponding
LDBSs. Local transactions are directly submitted to the local transaction man-
agement systems (LTMs). Each local transaction manager maintains the correct

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 169–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 M.M. Masud and I. Kiringa

execution of both local transactions and global subtransactions at its site. It is
left to the GTM to maintain the correct execution of global transactions.

In contrast, a P2PDBS is built on a dynamic network of peers without a
global transaction manager or controller. In a P2PDBS, global level transac-
tions are initiated by any peer. If a transaction is submitted to a peer and needs
to be executed over the network, then the transaction is propagated from peer
to peer. Note that when a user submits a transaction to a peer, he/she is only
aware of the local database schema. The mappings between the peer, where the
transaction is active, and other peers in the network determine the translation of
the transaction and propagation and execution of the transaction to other peers.
The logical connection, that is established through mappings, between two peers
is called an acquaintance. The acquaintance is established either with data-level
mappings [1] or schema-level mappings [3]. In this paper, we use data-level map-
pings created from mapping tables [1] to establish an acquaintance. Intuitively,
mapping tables provide data-level mappings which list pairs of corresponding
values between two sources. The use of mapping tables does not require peers
to disclose their schemas and mappings can be established between peers that
belong to different worlds but store related data. Basically, mapping tables act
as an interface or as a data descriptor to relate data between two peers. The do-
main of such settings can be applied to biological, health care, flight reservation,
and business to business databases systems.

One of the prime objectives of transaction management is to guarantee seri-
alizable execution of local and global transactions. In a conventional distributed
database system, serializability is ensured using the distributed two-phase lock-
ing (2PL) protocol and atomicity of transactions is ensured using the two-phase
commit (2PC) protocol. Several solutions have been proposed for ensuring se-
rializable execution of global transactions in MDBSs [4,6,9,7]. Such solutions
are usually applied to short living transactions and for systems where all local
databases can be logically integrated through a dedicated central software mod-
ule. However, they are not well suited for a P2P environment because such a
centralized component can’t be created due to the dynamic nature of peers and
the arbitrary topology of P2P networks.

1.1 Objectives, Assumptions, and Contributions

Although we assume that each LDBS of each peer guarantees serializability, con-
current global transactions that execute in multiple peers may be serialized in
different orders at different peers resulting in a non-serializable global schedule.
This paper identifies some potential problems ensuring global serializability dur-
ing concurrent execution of global transactions in a P2PDBS and presents two
approaches that ensure global serializability overcoming the problems. The main
feature of the approaches is that we do not need any change to the underlying
LDBSs. The model discussed in this paper is based on the following assumptions:

1. When a user submits a transaction to a peer, he/she is only aware of the local
database schema and there is no global transaction manager or coordinator in
the system and no changes are allowed to the local database system software.

Acquaintance Based Consistency in an Instance-Mapped P2P 171

Fig. 1. The P2PDBS model

2. An LDBS is not allowed to distinguish between a local and global transaction
which are active at the local peer.

3. A peer can communicate with another peer only for sending and receiving
transaction messages and acknowledgements. However, a peer is not able to
communicate with a peer to synchronize the execution of global transactions.

4. Each LDBS uses its own locking protocol and has a mechanism for ensuring
local serializability.

Our contributions are as follows:

– We introduce a transaction execution semantics in a P2PDBS where data-
bases may contain related data that overlap little, if at all. The semantics
relies on the translation of transactions between peers through the use of
mapping tables.

– We analyze the execution semantics of transactions initiated by a peer and
identify the potential problems ensuring global serializable execution of the
transactions.

– We introduce a correctness criterion for the consistency of a P2PDBS during
execution of transactions and propose two approaches for ensuring correct-
ness criterion without violating the autonomy of LDBSs.

– Finally, we briefly discuss the implementation issues.

2 P2P Database Systems Model

A P2PDBS is a set P = {P1, P2, · · · , Pn} of n peers with autonomous preexisting
local database systems (LDBSs). Formally, each peer Pi (1 ≤ i ≤ n) is defined
by a pair of < DBi, Mi >, where DBi is a database and Mi is a set of mapping
tables. A set of mapping tables Mij = {M1

ij, · · · , Mk
ij} ⊆ Mi in Pi stores the data

mappings between Pi and Pj that Pi shares its local data with Pj . The placement
of mapping tables Mij creates an acquaintance (i → j) between Pi and Pj .
Here, Pj is called the acquaintee of Pi. Each peer provides transaction service
(local and remote) to local and remote users in order to access its database. To
illustrate, a P2PDBS model is shown in Figure 1. The figure shows that peers
are connected in a P2P network and each peer is attached with a database and

172 M.M. Masud and I. Kiringa

a set of mapping tables. We see that both the local and global transactions can
be initiated in a peer. The system has no centralized controller. Acquaintances
are established between peers by mapping tables.

For the purpose of this paper, we use the well-known read-write model of
transactions. We now recall the basics of this model. Let a database be a (finite)
set D = {a, b, c, · · · } of data objects. A transaction T is a partially ordered set
of database operations applied to data object a ∈ D. Formally, T=(OT , ≺T),
where OT , is a finite set of operations and ≺T is a partial order operations that
can be invoked by a transaction T . The operations of a transaction T consists of
a set of read (denoted by r(a)) and write (denoted by w(a)) operations. Further,
each T has begin and termination operations commit or abort. For simplicity,
we do not consider the begin and termination operations, but assume that all
transactions under consideration end successfully.

The concurrent execution of transactions results in a schedule. A schedule
S=(ΓS , ≺S), where ΓS is a finite set of transactions and ≺S is a partial order
over the operations belonging to transactions in ΓS . The partial order ≺S satisfies
the property that it preserves the order of steps within each transaction (that
is, ≺Ti⊆≺S, for each Ti ∈ ΓS).

A transaction Ti is said to conflict (direct conflict) with Tj , denoted by Ti →c

Tj, if there exist operations oi in Ti and oj in Tj, Ti �= Tj, such that oi ≺S oj , and
oi, oj access the same data item and one of them is a write operation. By ∗→c we
denote the transitive closure (indirect conflict) of the →c relation. Another way
we can say that a transaction Ti is said to indirectly conflict with Tj , denoted by
Ti
∗→cTj, if there exist operations ok in Tk such that Ti conflicts with Tk and Tk

conflicts with Tj . In this paper, we call the conflict relation between transactions
as serialization order.

In a P2PDBS, a transaction Ti initiates and executes locally at a peer Pi in
which case the appropriate updates are done on the local DBi. Our thesis is
that for a user to issue a transaction, he/she needs only be aware of the local
schema she is using. Ti may execute in other peers Pj(1 ≤ j ≤ n) in a P2PDBS
subject to the mapping constraint between Pi and Pj . Hence, if Ti is propagated
to Pj from Pi then there must exist data mappings between Pi and Pj with the
accessed data by Ti. Thus, all transactions in a P2PDBS are submitted locally
while they may be processed globally in the P2P network. When a transaction
Ti needs to execute globally, the local peer translates the transaction for each
of its acquaintee which is relevant to Ti. A peer Pj is relevant to Ti, if Ti can
be translated for Pj over the acquaintance (i → j) with respect to the mapping

tables Mij . The translation is denoted as Ti
Mij−→Tj. Each transaction is defined,

in terms of syntax, with respect to the schema of local DBi. Based on the exe-
cution semantics, transactions are classified into three categories, namely local,
remote, and global transactions.

-Local transaction (Li): A transaction Li submitted at a peer Pi and accessing
only the local database DBi.

Acquaintance Based Consistency in an Instance-Mapped P2P 173

(a) Global transaction
propagation in a network

(b) Global transaction
structure (Layered view)

(c) Global transaction
structure (Tree view)

Fig. 2. Global transaction structure

-Remote transaction (T j
i→j): A transaction T j

i→j is a remote transaction at Pj

accessing database DBj that is originated at Pi. The subscript (i → j) denotes
the propagation path of Ti from Pi to Pj through which Ti has been propagated.
For the sake of presentation, we sometimes omit the propagation path from the
notation of a remote transaction. For example, we will represent the remote
transaction T j

i→j as T j
i .

-Global transaction (Gi): A global transaction Gi={Ti, T
j
i , T k

i , · · · } consists
of Ti originated at Pi and a set of remote transactions T j

i (1 ≤ j ≤ n).
Note: For ease of presentation we sometimes denote T j

i , T k
i , · · · as Ti since they

are actually generated from Ti and a global transaction Gi is represented with the
initiator Ti. Intuitively, execution of any component transaction Ti, T

j
i , T k

i , · · ·
is called the execution of Gi.

2.1 Global Transaction Structure

We now examine the structure of a global transaction Gi created from a trans-
action Ti at Pi. When Pi generates a set of remote transactions from Ti, using
mappings, to be executed in its immediate acquaintees, Gi can be viewed as
a two-level transaction. In this case, Ti becomes the root of Gi. Gi becomes a
multi-level transaction when the acquaintees of Pi also generate remote trans-
actions for their respective acquaintees. Consequently, a global transaction may
have multiple layers depending on the number of hops it propagates.

Intuitively, as transactions are propagated in the system acquaintance-by-
acquaintance, a (directed) transaction dependency tree is induced. The nodes in
this tree represent transactions and there is an edge from T j

i to T k
i , if Pj forwards

Ti to Pk for execution. For each edge we define the relationship as parent-child
relationship. Therefore, T j

i (T k
i) is the parent (child) of T k

i (T j
i) and denoted as

T j
i PT k

i (T k
i CT j

i)

Example 1. Consider the P2P network of Figure 2(a). The network consists of
four peers P=(P1, P2, P3, P4). The undirected edges between peers represent the
acquaintances between them and the directed edges depict transaction prop-
agations. We assume that the acquaintances are bi-directional. Consider the

174 M.M. Masud and I. Kiringa

construction of a global transaction G1 initiated by T1 at P1. Assume that T1

needs to be executed at P2 and P3 due to the data mappings for the data items
mentioned by T1. Therefore, P1 translates T1 for P2 and P3 and forwards the
translated transactions T 2

1 and T 3
1 to P2 and P3 respectively. After execution,

P2 also forwards T 2
1 to P4 and P3 and peer P3 forwards T 3

1 to P2. Therefore, the
global transaction generated from T1 is G1 = {T1, T

2
1 , T 3

1 , T 4
1 }. Note that, both

P2 and P3 forward T1 to each other. We omitted these transactions, because
they previously received T1 from P1. Figure 2(b) and 2(c) show the layered and
tree view of G1

2.2 Transaction Translation

When a transaction is forwarded to an acquaintee for execution, first the trans-
action is translated in terms of the data vocabularies of the acquaintee. During
translation, each r(a) and w(a) operation is translated into the same operation
substituting the data value a with the corresponding data value a′ using the ap-
propriate mapping table that contains the association a → a′ and the translation
restriction is followed which is defined below.

Definition 1 (Translation Restriction). Consider two transactions Ti and
Tj with partial orders ≺Tj and ≺Tj respectively. Transaction Tj follows trans-
lation restriction of Ti if OTj ⊆ OTi and for all o1,o2 ∈ OTj , o1 ≺OTj

o2 iff
o1 ≺OTi

o2.

Note that the translation keeps each operation (read/write) same but only trans-
lates the data items mentioned in the operations.

Definition 2 (Schedule Translation Restriction). For a schedule Si =
(ΓSi , ≺Si) we define a schedule Sj = (ΓSj , ≺Sj) follows the translation restriction
of Si if for operations o1,o2 in Sj, o1 ≺Sj o2, iff o1 ≺Si o2.

Translation of a transaction may be either partial or complete over the acquain-
tance.

Definition 3 (Partial Translation). A transaction Tj is a partial translation
of a transaction Ti, if OTj ⊂ OTi and Tj follows the translation restriction of Ti.

Definition 4 (Complete Translation). A transaction Tj is a complete trans-
lation of a transaction Ti, if OTj = OTi and Tj follows the translation restriction
of Ti.

Example 2. Let a global transaction G1 is initiated by T1 at P1 in the P2P
network of Figure 2(a).

T1=w1(a1)r1(b1)w1(c1)w1(d1)

Suppose the following data mappings exist in different acquaintances.

(1 → 2): a1 → a2, c1 → c2, d1 → d2

(1 → 3): c1 → c3, d1 → d3, (3 → 4): c3 → c4, d3 → d4

Acquaintance Based Consistency in an Instance-Mapped P2P 175

Fig. 3. The peer Pi and its acquaintees

Based on the mappings, P1 generates the following remote transactions from T1

for P2 and P3.

T 2
1 =w1(a2)w1(c2)w1(d2), T 3

1 =w1(c3)w1(d3)

When P3 receives T 3
1 , it also generates the following remote transaction for P4

using the data mappings exist between P3 and P4.

T 4
1 =w1(c4)w1(d4)

From the above translation, we can say that T 2
1 and T 3

1 are partial translation
of T1. Meanwhile, T 4

1 is a complete translation of T 3
1 . All of the translations also

follow the translation restriction.

2.3 Transaction Dependency

In a P2PDBS, a global transaction consists of a set of transactions that includes
a global transaction initiator and a set of remote transactions. Each of these
transactions is called a component transaction of the global transaction. Note
that each component transaction is an atomic transaction resulted from the par-
tial or complete translation of another component transaction. Each component
transaction accesses data items that are located in the peer where the transac-
tion is active. Unlike a global transaction in a MDBS, a component transaction
is not decomposed in to subtransactions to access data at acquaintees. In order
to access data at acquaintees, the component transaction is propagated as an
atomic transaction after translation (partial/complete) to each of the acquain-
tees, if there are data mappings between the acquainted peers with respect to
the accessed data by the transaction. Therefore, a parent-child relationship can
be considered between the component transactions considering the initiator as
the root of the global transaction.

3 Consistency of a P2PDBS

In a P2PDBS, global transactions propagate from peer to peer along the acquain-
tances. Therefore, the consistency of a P2PDBS can be achieved by recursively

176 M.M. Masud and I. Kiringa

ensuring the consistency of each acquaintance that is included in the propagation
paths of the global transactions.

Consider Figure 3 where Pi is acquainted with Pj ,Pl,· · · ,Pm. Peer Pm is also
acquainted with Pn. In order to ensure the consistency of the P2PDBS during
execution of transactions generated from Pi, it is necessary to ensure the con-
sistency of each acquaintance of the propagation paths starting from Pi. The
ultimate goal of the acquaintance-level consistency (AC) carries two implica-
tions:

1. All the operations of a transaction must be executed in the same order in
peers Pi and Pj of an acquaintance (i → j). Formally, for all acquaintances
(j → k) between Pj and Pk (1 ≤ k ≤ m) where T j

i PT k
i and for all operations

o1,o2∈OT k
i
, o1 ≺T k

i
o2, iff o1 ≺O

T
j
i

o2.

2. For any concurrent execution of global transactions, it is required to maintain
the consistent execution order of the transactions over all the acquaintances
in the propagation paths of the global transactions. Formally, for any ac-
quaintance (j → k) between Pj and Pk, if there are schedules Sj = (ΓSj , ≺Sj)
and Sk = (ΓSk

, ≺Sk
) in Pj and Pk respectively such that each transaction

in ΓSk
is a translation of a transaction in ΓSj , then for all operations o1,o2

∈ Sk, o1 ≺Sk
o2 iff o1 ≺Sj o2

The first condition simply enforces the same execution order of operations
of a transaction at both peers in an acquaintance. The condition can be satis-
fied easily by forwarding each translated transaction as a single message to the
acquaintees. Each acquaintee processes the transaction just like it processes its
local transactions. Therefore, the order of the operations of a single transaction
is maintained. In order to meet the second condition, we need a serializability
theory that ensures the same serial execution of transactions in each acquain-
tance of a peer. Note that the second condition cannot be fulfilled by sending
the transactions serially according to the local serialization order of the sender,
since the sender has no knowledge about the execution order of transactions in
a remote peer. In a remote peer, a local transaction can create indirect conflict
that may serialize the transactions differently. In the following, we describe some
of the problems that we encounter during concurrent execution of global trans-
actions over acquaintees. Later we present a correctness criteria that ensures the
consistent execution of global transactions in an acquaintance.

4 Transactions Scheduling Problem in a P2PDBS

Generally, in a multidatabase environment, the GTM has the control over the
execution of global transactions and the operations they issue. The GTM can en-
sure the global serializability by a direct or indirect control of the global transac-
tions. For example, altruistic locking [4], 2PC Agent Method [8], site graph [11],
and Ticket Method [10]. All of the methods have a global transaction man-
ager which plays an important role to ensure the global serializability. However,
in a P2PDBS there is no such GTM. The only assumption we can make that

Acquaintance Based Consistency in an Instance-Mapped P2P 177

Fig. 4. Direct conflict

each peer ensures the local serializability. Once the transactions are sent to the
acquaintees, the sender has no control of the execution of transactions at the
acquaintees. In the following, we describe some of the cases that cause prob-
lems maintaining the global serializability when transactions are executed in the
system.

Example 3 (Direct conflict). Consider a P2PDBS with three peers shown in Fig-
ure 4. Assume that peer P1 has data items {a1, b1, c1}, P2 has data items {a2, c2},
and P3 has data items {a3, b3}. Suppose that the transactions T1 and T2 are ex-
ecuted at P1 concurrently and produced the schedule S1 as follows:.

T1 : w1(a1)w1(c1), T2 : r2(b1)r2(c1) S1 = w1(a1)w1(c1)r2(b1)r2(c1)

Suppose the following data mappings exist in the acquaintances.

(1 → 2): a1 → a2, c1 → c2, (1 → 3): a1 → a3, b1 → b3.

Therefore, P1 should translate T1 and T2 and forward to P2 and P3 for exe-
cution. The translation of T1 and T2 for P2 and P3 are as follows:

(P2):T1=w1(a2)w1(c2), T2=r2(c2), (P3):T1=w1(a3), T2=r2(b3)

For ease of presentation we keep the same notation of T1 and T2 and their
translation for P2 and P3. Also assume that the following local transactions
execute at the same time when P1 and P2 receive T1 and T2.

(P2) :L2 = rL2(a2)rL2(c2), (P3) :L3 = rL3(a3)wL3(b3)

Consider that the following schedules result at P2 and P3.

S2 = rL2(a2)rL2(c2)w1(a2)w1(c2)r2(c2), S3 = rL3(a3)w1(a3)r2(b3)wL3(b3)

The resulting serialization orders at P1, P2, and P3 are as follows:

SO1 : T1 → T2, SO2 : L2 → T1 → T2, SO3 : T2 → L3 → T1

We notice that each local schedule is serializable but they are not globally seri-
alizable with respect to S1 of P1 even T1 and T2 has direct conflict (T1 →c T2)
at P1. At P3, the local transaction L3 creates an indirect conflict between T1

and T2 (T2
∗→cT1), which serializes T1 and T2 in different order.

178 M.M. Masud and I. Kiringa

Fig. 5. Indirect conflict

Example 4 (Indirect conflict). Consider another example that the global serial-
izability is violated even there is no conflict between transactions when they were
initiated at a peer. The situation occurs when local transactions at acquaintees
create indirect conflicts between the transactions. Assume that the transactions
T1 and T2 executed concurrently at P1 and produced the schedule S1.

T1 : w1(a1), T2 : w2(b1)w2(c1) S1 = w1(a1)w2(b1)w2(c1)

According to the data mappings, P1 generates the following transactions for
P2 and P3 respectively.

(P2) :T1=w1(a2), T2=w2(c2), (P3) :T1=w1(a3), T2=w2(b3)

Also assume that the following local transactions execute at the same time when
P2 and P3 receive T1 and T2:

(P2) :L2 = rL2(a2)rL2(c2), (P3) :L3 = rL3(a3)rL3(b3)

Consider that the following schedules result at P2 and P3 respectively.

S2 = w1(a2)rL2(a2)rL2(c2)w2(c2), S3 = rL3(a3)w1(a3)w2(b3)rL3(b3)

We notice that T1 and T2 has no conflict at P1 when they were executed and the
serialization order (according to execution order) of T1 and T2 at P1 is T1 → T2.
Meanwhile, the following serialization orders result at P2 and P3 .

SO2 : T1 → L2 → T2, SO3 : T2 → L3 → T1

Notice that the serialization orders at P2 and P3 are different. Hence, the global
serializability is violated.

5 P2PDBS Serializability Theory

When a set of global transactions T = {T1, T2, · · · , Tn} are executed concurrently
in a peer Pi, the local concurrency control system of LDBSi generates a schedule
Si. The set T may be propagated over the acquaintances (i → j) between Pi and

Acquaintance Based Consistency in an Instance-Mapped P2P 179

Pj (1 ≤ j ≤ m) and each Pj independently generates its own schedule Sj . The
schedule Si is called the parent schedule and each Sj is called the child schedule.
The set of schedules Si=Si ∪ (

⋃m
j=1 Sj) is called the acquaintance-level schedule

with respect to Si at Pi.

Definition 5 (Acquaintance-Level Schedule). An acquaintance-level sched-
ule Si with respect to Si at Pi, is a set {Si, S1, S2, · · · , Sm} of local schedules,
where Si is the parent schedule of a set of global transactions T and each Sj is
a child schedule for each (i → j) (1 ≤ j ≤ m).

Definition 6 (Global P2P Schedule). A global P2P schedule S= Si∪(
⋃n

j=1 Sj)
over a set of global transactions T = {T1, T2, · · · , Tn} initiated at Pi, consist of the
acquaintance-level schedule Si w.r.t Si at Pi and all the acquaintance-level schedules
Sj w.r.t Sj at Pj , (1 ≤ j ≤ n, i �= j) in a P2PDBS where T is executed.

We already mentioned that in a P2PDBS, the consistency can be achieved by
ensuring the consistency over each acquaintance recursively in the propagation
paths of global transactions. Now, let us introduce the notion of acquaintance-
level serial schedule.

Definition 7 (Acquaintance-Level Serial Schedule). A global P2P sched-
ule S is called acquaintance-level serial with respect to a schedule Si and all sched-
ules Sj of each (i → j) over a set of global transactions T = {T1, T2, · · · , Tn}
if

1. all the local schedules in Si are serializable and
2. for any two global transactions T1 and T2 in Si, if there exist a serializ-

able order (SO) T1 → T2, then for all schedules Sj ∈ Si(i �= j), the SO is
consistent between T1 and T2

Theorem 1. A global P2P schedule S is acquaintance-level serializable between
peers Pi and all acquaintees Pj of Pi (1 ≤ j ≤ m), if S is acquaintance-level
serial w.r.t Si.

Proposition 1. A global P2P schedule S consists of a set of global transactions
T = {T1, T2, · · · , Tn} is serializable over a propagation path (Pi →, · · · , → Pz)
with respect to a schedule Si at Pi, if for each acquaintance in (Pi →, · · · , → Pz),
S is acquaintance-level serializable.

Proof. We can prove the proposition 1 by induction method considering each
acquaintance between Pi to Pz.

Let l be the length of the propagation path of T from Pi to Pz .
Case l = 0: T executes only at Pi and there is no further propagation of T .
According to our assumption that each local schedule is serializable. Hence the
global P2P schedule S, which consists of only the schedule Si, is serializable.

Case l = 1: T executes at Pi and an acquaintee Pj of Pi over an acquaintance
(i → j). Since S is serializable over a single acquaintance (i → j) according to
Theorem 1, therefore serialization orders of T in Si and Sj are same. Hence, S
is serializable over the path (Pi → Pj).

180 M.M. Masud and I. Kiringa

Fig. 6. Example of global P2P serializability

Case (0 ≤ k ≤ l): For the induction step we assume that serializability holds
along the path between Pi and Pk recursively in each acquaintance, where Pk

is a peer before Pz. Now we need to show that serializability holds between Pk

and Pz , where l = k + 1. Since S is serializable over the path (Pi →, · · · , → Pk)
and Pk and Pz are directly acquainted, therefore, S is serializable in (Pk → Pz).
Hence, global serializability holds over the path (Pi →, · · · , → Pz).

Definition 8 (Global P2P Serializability). A global P2P schedule S over a
set of global transactions T initiated at Pi is globally serializable if

1. all local schedules in S are serializable and
2. for each acquaintance (j → k) over all the propagation paths (Pi →, · · · , →

Pz), S is acquaintance-level serializable.

Proposition 2. A global P2P schedule S consists of a set of global transactions
T = {T1, T2, · · · , Tn} is globally serializable with respect to an initial schedule Si

at Pi, if for all propagation paths (Pi →, · · · , → Pz)(1 ≤ z ≤ m) and for each
acquaintance in each path (Pi →, · · · , → Pz), S is acquaintance-level serializable
and each path between Pi and Pz is acyclic.

Proof. According to proposition 1, S is serializable in a path of T ′s propagation.
That means T is serializable in each path (Pi →, · · · , → Pz)(1 ≤ z ≤ m). Also,
each path is acyclic. Therefore, S is globally serializable.

Example 5. Consider the Figure 6 where two global transactions T1 and T2 are
initiated at P1. In the scenario, the global P2P schedule S is {S1, S2, S3, S4}.
From the figure we notice that all the local schedules are locally serializable. The
initial schedule S1 has the serialization order SO1 = T1 → T2. The acquaintance-
level schedule S1 with respect to S1 at P1 is {S1, S2, S3}. We see that S1 is
acquaintance-level serial with respect to S1 because both SO2 and SO3 have the
serialization order T1 → T2. But S3 is not acquaintance-level serial because SO4

at P4 is not consistent with SO3 of P3. Therefore, S is not globally serializable.

Acquaintance Based Consistency in an Instance-Mapped P2P 181

6 Scheduling Transactions in a P2PDBS

Although there is no GTM in a P2PDBS, but the global serializability can
be achieved by ensuring acquaintance-level serializability in each propagation
paths of global transactions. In order to ensure acquaintance-level serializabil-
ity, we need to guarantee the consistent serialization order of the transactions
at all the acquaintees of a peer. We know that when a set of global transac-
tions T is initiated at a peer Pi, the transactions are executed immediately
at Pi. Therefore, Pi generates its local schedule Si without waiting for the
execution of T in its acquaintees. Pi then forward T to its acquaintees after
translation. The execution and forward steps continue until no propagation of
T is possible. Each of the peer Pj executes T with the local concurrency con-
trol and generates the local schedule Sj independently. The main challenge is
how to guarantee the consistent serialization order in all Sj with respect to
Si. In the following, we propose two methods that ensures acquaintance-level
serializability.

6.1 Merged Global Transactions (MGT)

When a set of global transactions T is initiated at a peer or is received by a
peer then the peer immediately executes T with the local concurrency control
protocol. Therefore, the peer generates a local serializable schedule forming a
specific serialization order of the global transactions in T . The main goal of
the P2P global serializability is that each participating peer must execute T in
the same order as it is generated at the initiator. In this method, we assume
that a function called returnSchedule() is used by each peer that returns the
locally generated schedule of T . Note that the local schedule may contain the
operations of local transactions. The returnSchedule() function returns only the
operations of T in the same order appeared in the schedule. We assume that the
function is added externally in the system. A peer treats the schedule returned
by returnSchedule() as an atomic transaction and translates the schedule for
each of its acquaintee according to the data mappings. The peer then forwards
the schedule as a new transaction to its acquaintees. When an acquaintee re-
ceives the schedule (now transaction), the acquaintee processes the schedule as
it processes a transaction. Note that treating a schedule as a transaction keeps
the order of operations of the original transactions since the order of the inter-
leaved operations in the schedule remains same during translation according to
Definition 2.

Now we describe the method with examples. We show that the acquaintance-
level serializability is maintained considering both the direct and indirect con-
flict.

Example 6 (Direct Conflict). Consider the situation of Example 3. The
returnSchedule() function returns the following schedule generated at P1.

S1 = w1(a1)w1(c1)r2(b1)r2(c1).

182 M.M. Masud and I. Kiringa

According to the method, P1 creates a transaction T12 for its acquaintees P2

and P3 from the schedule S1. The order of operations of T12 follows the order as
mentioned in the schedule S1.

(P2) : T12 = w12(a2)w12(c2)r12(c2), (P3) : T12 = w12(a3)r12(b3)

Consider that P2 and P3 generate the following schedules when they receive T12.

S2 = rL2(a2)rL2(c2)w12(a2)w12(c2)r12(c2), S3 = rL3(a3)w12(a3)r12(b3)wL3(b3)

Note that the schedule S3 is not allowed by the local concurrency control of P3.
That is either L3 or T12 will be blocked or aborted. On the other hand, if the
local schedule at P3 were

S3 = rL3(a3)wL3(b3)w12(a3)r12(b3) or S3 = w12(a3)r12(b3)rL3(a3)wL3(b3)

then the schedule would be permitted by the local concurrency control at P3 and
therefore ensures serializability with respect to S1. Note that the transaction T12

contains the operations of T1 and T2. As T12 is an atomic transaction for the
transaction manager of P2 and P3, therefore the operations T12 are executed in
the same order as executed at P1. Hence, the serialization order of T1 and T2

must be same at P1, P2, and P3. Therefore, acquaintance − level serializability
is maintained at P1,P2, and P3 with respect to schedule S1.

Example 7 (Indirect conflict). Consider the Example 4, there is no conflict be-
tween T1 and T2 when they were initiated at P1. Assume that the following
schedule is generated at P1.

S1 = w1(a1)w2(b1)w2(c1)

According to the method, P1 creates the following transactions for its acquaintees
P2 and P3 from the schedule S1.

(P2) : T12=w1(a2)w2(c2), (P3) : T12=w1(a3)w2(b3)

Assume that the following schedules result at P2 and P3 respectively.

S2 = w12(a2)rL2(a2)rL2(c2)w12(c2), S3 = rL3(a3)w12(a3)w12(b3)rL3(b3)

Notice that the schedule S2 and S3 are not allowed by the local concurrency
control of P2 and P3. In P2, either L2 or T12 will be blocked or aborted. If the
local schedule in P2 were

S2 = rL2(a2)rL2(c2)w12(a2)w12(c2) or S2 = w12(a2)w12(c2)rL2(a2)rL2(c2)

then the schedule would be permitted by the local concurrency control at P2.
Similarly, if the local schedule in P3 were

S3 = w12(a3)w12(b3)rL3(a3)rL3(b3) or S3 = rL3(a3)rL3(b3)w12(a3)w12(b3)

then the schedule would be permitted by the local concurrency control at P3.
Note that from the above execution, both P2 and P3 schedule the transactions

Acquaintance Based Consistency in an Instance-Mapped P2P 183

T1 and T2 logically in the same order. Therefore, the acquaintance-level serializ-
ability is maintained with respect to S1.

6.2 Ticket Method

In this method we exploit the concept of ticket approach [10]. According to this
protocol, a peer includes an extra operation w(t) before the first operation of
each transaction when the transactions are forwarded to the acquaintees. The
w(t) is a write ticket operation. A ticket is a (logical) timestamp whose value
is stored as a regular data item in each LDBS [10]. The intuition behind the
use of w(t) operation is to create a relative serialization order of the global
transactions. The inclusion of w(t) operation does not violate the autonomy of
LDBS nor does pose any restriction in the LDBS. The inclusion of w(t) operation
is outside the scope of local TM. We also assume that there is a function called
getSeriliazeOrder() that returns the serialization order of the executed global
transactions in the local peer. When the peer forwards the global transactions,
it sends them according to the serialization order as returned by the function
getSeriliazeOrder(). This can be performed simply by delaying the transactions.
When a remote peer receives the transactions it processes them accordingly and
is allowed to interleave the operations of the transactions under the control of
the LDBS. Note that, adding the w(t) operation creates a direct conflict between
the transactions at remote peers. Therefore, transactions will be serialized in the
remote peer as determined by the sender.

In the following we describe the protocol using an example considering that
there is a no conflict between transactions when they are initiated at a peer.

Example 8 (Indirect conflict). Consider the Example 4. The returnSchedule()
function returns the following schedule at P1.

S1 = w1(a1)w2(b1)w2(c1).

According to the method, P1 creates the following transactions adding w(t)
operation to T1 and T2 before forwarding them to the acquaintees P2 and P3.

(P2):T1=w1(t)w1(a2), T2=w2(t)w2(c2), (P3):T1=w1(t)w1(a3), T2=w2(t)w2(b3)

P1 uses the getSeriliazeOrder() function to find the serialization order of T1

and T2. From the schedule we see that T1 is executed before T2 in S1. Therefore,
P1 sends T1 before T2 to its acquaintees P2 and P3 respectively.

Consider that the following schedule are generated by P2 and P3 after receiving
T1 and T2.

S2 = w1(t)w1(a2)rL2(a2)rL2(c2)w2(t)w2(c2),
S3 = rL3(a3)w1(t)w1(a3)w2(t)w2(b3)wL3(b3)

Note that the schedule S3 is not allowed by the local concurrency control of P3.
That is either L3 or T2 will be blocked or aborted. On the other hand, if the
local schedule in P3 were

184 M.M. Masud and I. Kiringa

S3 = w1(t)w1(a3)w2(t)w2(b3)rL3(a3)wL3(b3),
S3 = w1(t)w1(a3)rL3(a3)wL3(b3)w2(t)w2(b3)

then the schedule would be permitted by the local concurrency control at P3

and therefore ensures acquaintance-level serializability. Similarly, for example 3,
we can show that acquaintance-level serializability can be maintained using the
ticket method.

7 Implementation Issues

We are developing the transaction processing framework to incorporate into
the Hyperion [2] P2PDBS system as a transaction service. The underlying P2P
network is created using the JXTA framework and each peer contains a MySQL
database. We consider a transaction as a transaction service that contains either
a single or a group of SQL commands (e.g. Select, Update, etc.). In the following
we describe the different components of the service module:

– Transaction Service: A transaction service operates in two modes: local
or remote. In the local mode, the service processes request locally without
requiring assistance of other peers; in the remote mode, the service needs
remote resources (i.e. acquaintance to other peers and services offered by
those peers [transaction service]) to finish its job.

– Transaction Service Manager: Each peer has a transaction service man-
ager that handles execution of transactions. The transaction service manager
takes care of transactions that are received from the local as well as from
remote peers. Transaction service manager creates a transaction handler for
each of the transactions.

– Service Handler: A Transaction Service Manager can coordinate multiple
transactions simultaneously by using transaction Service Handlers. When a
Transaction Service Manager receives a transaction, it first creates a Service
Handler for that transaction and passes over the transaction to the Han-
dler. Afterwards, the Handler uses the LDBS to process the transaction; the
service continues to wait for a new transaction.

7.1 Typical Transaction Service Request Scenario

1. User on peer A submits a transaction execution request. The Transaction
Service Manager creates a service handler to process the request.

2. The service handler processes the request locally and asks the transaction
service manager to find the remote resource for execution over peer A’s
acquaintances.

3. The transaction service manager invokes acquaintance service to get acquain-
tances of peer A.

4. The manager then consults with Transaction Translation Component to
translate the transaction for all the acquaintances and sends the translated
transactions to the corresponding acquaintees.

Acquaintance Based Consistency in an Instance-Mapped P2P 185

5. The acquaintee peer B receives the request and forwards to the Transaction
Service Manager. The Service Manager of peer B then creates a transaction
handler to process the transaction locally.

6. The Service Handler of peer B then sends a response to the Transaction
Service Manager. The Transaction Service Manager of peer B then sends
the response to peer A.

7. The Transaction Service Manager wakes up the waiting Handler and delivers
the response message to it.

8. The Handler finishes processing the transaction and gives the result back to
the Transaction Service Manager.

9. Transaction Service Manager notifies the waiting user that the transaction
is processed.

8 Related Work

Until now there have been many algorithms proposed for transaction manage-
ment for MDBSs. The solutions are not directly applicable in P2PDBSs due
to the absence of a global coordinator in the systems and arbitrary topology
of P2P networks. Recently, very few researchers attempted to focus on
transaction processing in P2P networks. Now we describe some of the
solutions.

In [13,12] a concept of transaction processing in P2P environment is pre-
sented. The authors proposed a decentralized concurrency control for transac-
tions relying on a decentralized serialization graph. Each peer and each trans-
action maintain a local serialization graph. The serialization graph of the peer
reflects the dependencies of the transactions that invoked service calls on that
peer whereas the serialization graph of the transaction includes the depen-
dencies in which the transaction is involved. However, the strategy needs to
modify the underlying database system to support the protocol. Also, it needs
an application layer for creating the transactions agents, managing lock table,
and processing the serialization graphs. In this paper, we assume that underly-
ing system remains unchanged. In [15], authors present a preliminary proposal
for peer-to-peer e-business transaction processing system. More specifically, the
paper focuses on requirements analysis on different aspects of the collabora-
tion and transaction procedure. However, it lacks precise semantics of transac-
tions and does not describe the execution semantics of transactions. In [14] a
preliminary approach for agent-based transaction in a decentralized P2P net-
work is presented. The focus is on a cooperative information system based on
a P2P model. The model consists of a multi agent system with four compo-
nents(wrapper, mediator, facilitator, and planner) which are responsible for the
management and control of transactions composed by data management oper-
ations (read, write, delete) and their outcomes. However, the approach has no
details.

186 M.M. Masud and I. Kiringa

9 Concluding Remarks

In this paper, we introduced a transaction model for a P2PDBS where sources are
heterogeneous and instance level mappings are used to associate data from dif-
ferent sources. Our approach is scalable because a peer doesn’t need any global
knowledge of the system and there is no global coordinator. Transactions are
processed by each peer independently and consistency is maintained recursively
through acquaintances. A peer only ensures the serializability of its immediate
acquaintances by ensuring acquaintance − level serializability. Mainly, we con-
tribute the following:

• analyze the properties and semantics of transactions in a P2PDBS.
• show a correctness criterion that ensures the consistency of a P2PDBS

during concurrent execution of transactions initiated from a single peer.
• propose two approaches ensuring global serializability without violating the

autonomy of LDBSs and describe the implementation scenario to demonstrate
the approaches.

A future goal is to investigate the transaction processing when global transac-
tions initiated form many peers need to be executed concurrently in the system
and analyze the correctness criterion for such executions. Finally, we want to
investigate these problems in a large peer network and show the scalability of
the system.

References

1. Kementsietsidis, A., Arenas, M., Miller, R.J.: Mapping Data in Peer-to-Peer Sys-
tems: Semantics and Algorithmic Issues. In: SIGMOD (2003)

2. Hyperion Project. World Wide Web, http://www.cs.toronto.edu/db/hyperion/
3. Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The

piazza peer-data management system. IEEE Transactions on Knowledge and Data
Engineering 16(7) (2004)

4. Alonso, R., Garcia-Molina, H., Salem, K.: Concurrency Control and Recovery for
Global Procedures in Federated Database Systems. IEEE Data Engineering Bul-
letin 10(3) (1987)

5. Breitbart, Y., Garcia-Molina, H., Silberschatz, A.: Overview of multidatabase
transaction management. VLDB Journal 1(2) (1992)

6. Breitbart, Y., Silberschatz, A., Thompson, G.R.: Transaction Management Issues
in a Failure-Prone Multidatabase System Environment. VLDB Journal 1(1) (1992)

7. Du, W., Elmagarmid, A.: Quasi serializability: a correctness criterion for global
concurrency control in InterBase. In: VLDB (1989)

8. Wolski, A., Veijalainen, J.: 2PC Agent Method: Achieving Serializability In Pres-
ence Of Failures In A Heterogeneous Multidatabase. In: PARBASE (1990)

9. Mehrotra, S., Rastogi, R., Breitbart, Y., Korth, H.F., Silberschatz, A.: Overcoming
Heterogeneity and Autonomy in Multidatabase Systems. Information and Compu-
tation 167(2) (2001)

10. Georgakopoulos, D., Rusinkiewicz, M., Sheth, A.: Using Tickets to Enforce the
Serializability of Multidatabase Transactions. IEEE Transactions on Knowledge
and Data Engineering 6(1) (1994)

 http://www.cs.toronto.edu/db/hyperion/

Acquaintance Based Consistency in an Instance-Mapped P2P 187

11. Breitbart, Y., Silberschatz, A.: Multidatabase update issues. In: ACM SIGMOD,
ACM Press, New York (1988)

12. Haller, K., Schuldt, H., Türker, C.: Decentralized Coordination of Transactional
Processes in Peer-to-Peer Environments. In: CIKM (2005)

13. Türker, C., Haller, K., Schuler, C., Schek, H.: How can we support Grid Transac-
tions? Towards Peer-to-Peer Transaction Processing. In: CIDR (2005)

14. Penserini, L., Panti, M., Spalazzi, L.: Agent-Based Transactions into Decentralised
P2P. In: AAMAS (2002)

15. Androutsellis-Theotokis, S., Spinellis, D., Karakoidas, V.: Performing peer-to-peer
e-business transactions: A requirements analysis and preliminary design proposal.
In: IADIS (2004)

Enabling Selective Flooding

to Reduce P2P Traffic

Francesco Buccafurri and Gianluca Lax

DIMET, Università degli Studi Mediterranea di Reggio Calabria
Via Graziella, Località Feo di Vito, 89122 Reggio Calabria, Italy

bucca@unirc.it, lax@unirc.it

Abstract. We propose a P2P cooperation policy to increase the effec-
tiveness of the flooding-based approach used to retrieve information over
pure P2P networks. Flooding consists in propagating the original query
from the source peer to “known” peers, and, in turn, to other peers,
producing, in the general case, an exponential grow of the search traffic
in the network. According to our policy, each peer involved in the flood-
ing process propagates the query only toward peers hopefully capable of
satisfying it. The crucial point is: how to detect such good candidates?
Of course, “local” properties of similarity between peers not satisfying
the transitivity property cannot be used to the above purpose, due to
the necessity of propagating queries. Our solution relies on recovering
some transitivity behavior in similarity-based P2P information retrieval
approaches by considering neighborhood semantic properties. Experi-
mental results show that the selective flooding so obtained is effective in
the sense the traffic is drastically reduced w.r.t. the standard flooding
(like GNUTELLA), with no loss of query success.

1 Introduction

Peer-to-Peer is a class of systems using distributed resources in a decentralized
and autonomous manner. They are exploited in many contexts such as mar-
ket and demographic analysis, code breaking, risk hedge calculations, genome
sequence, protein folding, instant messaging, file mirroring, online storage, file
sharing, and many others. Whenever objects are searched in the P2P system
with no unique key (i.e., in case of partial queries), the common approach, called
flooding, is submitting the query to the neighborhood of the source peer, and
forwarding it until a stop condition occurs. More precisely, a peer P, looking for
an item X, broadcasts a message containing a request for X to all its neighbors.
In turn, each peer receiving the request, iterates the above protocol, by possibly
answering to P and by forwarding the message to its neighbors. For example,
this is essentially what GNUTELLA [14] does. In order to guarantee finiteness
of the protocol, both the life time and the number of times the query is for-
warded (hops) as well as the list of the crossed peers, may be stored into the
query, and used for halting its propagation. Unfortunately, the above approach
produces an exponential grow of messages generated by a query in the number

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 188–205, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Enabling Selective Flooding to Reduce P2P Traffic 189

of hops. Thus, propagation of a query must be significantly limited, by setting
a small maximum number of hops (typically up to 10) and/or a little query life
time. Clearly, the more propagation is limited the lower expectation about query
success is. As a consequence, it is a very interesting issue to investigate methods
for reducing the number of peers the query is forwarded to (at each hop).

In this paper we propose a P2P cooperation policy, whose purpose is increas-
ing the effectiveness of approaches commonly used for retrieving information
over pure P2P networks. We refer to the case of partial queries in absence of
directory services (i.e., in pure P2P systems) 1. Our proposal is based on the de-
tection, for each peer involved in the query propagation, of the k-most promising
peers which the query has to be forwarded to. Both the value of k and, more
importantly, the way of determining such k-most promising peers belong to a
common policy, voluntarily adopted by the community. We consider the case
of non-critical activities performed in the P2P system. Moreover, as it will be
clear in the following, both condition (a) and condition (b) stated above are
verified. In particular, condition (a) is guaranteed by the improvement of the
effectiveness of information search, making the approach advantageous for every
member (this is shown in the paper by simulation), and condition (b) is satis-
fied since the failure of some member to comply with the policy (by enabling a
standard non-filtered flooding) produces only negative effects locally restricted
to the member itself.

The basic problem is of course which strategy the policy has to rely on, in
order to reduce the traffic generated by the flooding process and, consequently,
improving the information search. Interesting approaches are those the above
“blind” search is substituted by a semantic-driven one. However, due to query
propagation, a semantic-driven approach based on similarity between peers may
be effective only if such a property presents some form of transitive behavior.
Indeed, only in this case, the peer pruning strategy can be applied at each stage
of the query propagation. On the other hand, semantic embedded into the query
can be used in order to propagate information useful for peer pruning (see [7]
as an example of approaches of this type). However, in order that the query can
carry a sufficient semantic power, its structure, to be compared with the peer
content, should be enough rich and complex.

We consider the real-life case of simple retrieval queries, so we do not want to
assume that the information embedded into the query can be exploited for peer
pruning. Beside applicability to general real-life contexts, a similar approach has
the important advantage that peer selection can be performed off-line, before the
query is submitted. Even though we fall into the case of peer similarity-based
approaches, we propose a model for extracting, instead of just local similarities
(i.e., similarities between peers), neighborhood semantic properties, embedding
similarities, and presenting some form of transitivity in their behavior. The term
neighborhood means that what we use is not simply the similarity of a peer
w.r.t. another peer, but also the closeness of the latter w.r.t. the community of

1 [13] is an example of P2P system in which no node is more important than any other
node, while, for instance [19] uses a central directory service.

190 F. Buccafurri and G. Lax

peer enough similar to the former. In addition, the neighborhood-based approach
shows nice properties of adaptivity to user interests, without producing unstable
behaviors.

The paper is organized as follows. Section 2 illustrates how resources of peers
are described and how similarity between two peers is defined. In Section 3
we describe the core of our proposal: We introduce the notion of expectation
and we define the mathematical framework allowing us to represent semantic
closeness among peers. In Section 4 we describe how adaptivity is implemented
in our system, while Section 5 illustrates through an extensive example how
the method works. In Section 6 we provide a number of experiments we have
conducted in order to validate the proposed method. In Section 7 we survey
the main proposal related to our work and finally, in Section 8 we draw our
conclusions.

2 Peer Similarity

Peer similarity is based on resources contained in the peers. Our approach does
not rely on sophisticated ontology models shared by the peers, but on a simple
model in which resources (for example music files) are represented by a number
of metadata (like for instance author, category , etc.) along with their value (e.g.,
Pink Floyd, Rock, etc.) and their occurrence (e.g., 30, 850, etc., meaning that
such a peer contains 30 Pink Floyd’s songs, 850 files belonging to the category
Rock, etc.). We describe more precisely this model next. Now we observe that
the choice of this simple model arises from two considerations. First, the main
aspect of our proposal regards the use of the expectation property (defined in the
following) allowing us to overcome limits of similarity-based systems. Therefore,
we have chosen to introduce the expectation in a context as simple as possible.
The second advantage arising from our choice is making our approach applicable
to real-life P2P commercial environments where resources are basically described
in the same way as our model. Anyway, our approach is parametric w.r.t. the
used ontology model and, consequently, other models, possibly more sophisti-
cated, like [12,4,7,25], could be exploited without changes (beside, obviously, the
computation of the similarity).

Our ontology model is defined by a finite set U = {M1, . . . , Mm} of possible
metadata. Each metadata Ml can assume a value within its domain D(Ml). The
content of each peer is described according to this shared ontology model. Each
resource is associated with a non empty subset of U (i.e., a number of metadata).

Given a peer P , for each pair (Ml, V), where Ml is a metadata occurring in
(some resource of) P and V ∈ D(Ml), we denote by NumP (Ml, V) the number
of resources of P with metadata Ml assuming the value V . The pair (Ml, V) is
said assignment for Ml. For example, if a peer P contains 23 files having the
value classical for the metadata type, then NumP (type, classical) = 23.

Given a positive integer s, the (s-)content descriptor of a peer P is the set
of pairs 〈(Ml, V), NumP (Ml, V)〉 such that Ml is a metadata occurring in P
and NumP (Ml, V) ≥ s. s represents a threshold, making explicit the minimum

Enabling Selective Flooding to Reduce P2P Traffic 191

number of occurrences of metadata instances, thus allowing us to represent only
metadata sufficiently relevant. The default used in this paper for s is 1.

Example 1. An example of 5-content descriptor of a peer whose user is interested
in classical music might be the following: (〈type, classical, 23〉, 〈author, Mozart,
10〉, 〈author, Bach, 7〉). Observe that since 23 > 10 + 7, in this peer there are
also other classical music authors, but the number of occurring pieces of each
one is not considered relevant (i.e., it is less than 5).

The problem we have to consider now is defining a suitable notion of similarity
between two peers. When similarity notion has to be designed, a starting question
should have to be considered. Has this relation S to be a fuzzy similarity relation
[28]? That is, has it to be reflexive (i.e., Sii = 1) , symmetric (i.e., Sij = Sji)
and transitive (i.e., Sij ≥ Sik ⊕ Skj , where ⊕ is any T-norm like the minimum
function)? While renouncing to the first two properties would be unfounded, the
last property is often missed (under plausible T-norms as the minimum), every
time similarity is computed on the basis of possibly independent dimensions
used for representing the content of the peers. In words, it is acceptable that we
want to capture the case: A is very similar to B on the basis of some dimensions
belonging to their description, B is very similar to C, but A is not similar to C,
since dimensions which the similarity between B and C is based on are different
from those supporting the closeness between A and B.

Let introduce now the notion of peer similarity. Let Pi and Pj be two peers
with content descriptors Oi and Oj , respectively. The similarity Si,j between Pi

and Pj is defined as: Sij =
∑

(Ml,V)∈Oi∩Oj
min(NumPi

(Ml,V),NumPj
(Ml,V))

min(
∑

(Ml,V)∈Oi
NumPi

(Ml,V),
∑

(Ml,V)∈Oj
NumPj

(Ml,V)) .

The numerator computes the number of resources of the two peers having the
same value for the same metadata. The denominator normalizes the result so
that similarity value lies into the range [0, 1]. In the following example we show
how the similarity is computed and we show that our notion of similarity (but,
we guess, every reasonable similarity for our ontology model) is not transitive
(under the T-norm minimum).

file/peer wine spir. food nutr. sc.
P1 60 42 6 0

P2 48 0 65 16

P3 13 0 64 34

Fig. 1. File distribution

simil. P1 P2 P3

P1 1 0.50 0.18

P2 0.50 1 0.84

P3 0.18 0.84 1

Fig. 2. Peer similarity

Example 2. Consider three peers P1, P2 and P3, having for the metadata cat-
egory the following values: wine, spirits, food and nutritional science, as re-
ported in Figure 1. Similarity coefficients between any pair of peers is reported
in Figure 2. For example, the similarity between P1 and P3 is obtained by:
S13 = 13+6

min(108,111) = 19
108 = 0.18. As it can be verified by looking at Figure 3,

this is an example of non transitivity (under T-norm minimum) of our notion

192 F. Buccafurri and G. Lax

P 1 P 3

P 2

0.50 0.84

0.18

Fig. 3. Graph description

of similarity. Indeed, S13 < minimum(S12, S23). Intuitively, it happens that the
peer P1 is significantly similar to the peer P2 thanks to the category Wine, while
the high similarity between P2 and P3 relies on the community of interests in
Food. Thus, there is no intersection of interests about P1 and P3, leading to a
low similarity between such a pair of peers.

But, who does compute the similarity among peers? Each peer has to compute
the similarity between itself and its neighbors. For this purpose, peers exchange
their content-descriptor each other. In particular, in order to reduce the traffic
overhead, each peer stores two different content-descriptors. The first one, called
CCD (current content descriptor), is continuously updated accordingly to the
new resources shared. The second one, called LSCD (last sent content descrip-
tor), is initially equal to CCD. Each peer sends to its neighbors its CCD every
time the similarity between CCD and LSCD is less than a fixed threshold δ.
Then LSCD is update to CCD.

3 Beyond the Similarity: The Expectation Notion

The basic purpose of our approach is reducing the number of peers which the
query is propagated to at each hop. As explained, this can be done by exploiting
semantic properties. However, it is not possible to use the similarity tout-court
in order to reach the above goal. Indeed, after the submission of the query to
adjacent enough similar nodes, similarity cannot be exploited anymore, since it
is not transitive. More precisely, if a peer B is chosen by a peer A according to
its similarity, a generic peer C which the query has to be forwarded to, of course
cannot be chosen on the basis of the similarity w.r.t. B, since we cannot argue
anything about the similarity between A and C.

The aim of this section is (recursively) defining a new property, called ex-
pectation of a given peer A w.r.t. another peer B, by taking into account not
only similarity between A and B, but also the expectations of all other peers
C, enough similar to B. Expectation, as well as similarity, is represented as a
fuzzy coefficient (i.e., it lies into the range [0, 1]). In words, expectation, from an
anthropomorphic point of view of a peer A, captures something like: if all the
peers C, which my expectation w.r.t. is high, are highly similar to a peer B, then
my expectation w.r.t. B has to increase, possibly compensating a low similarity
of B w.r.t. me.

Enabling Selective Flooding to Reduce P2P Traffic 193

By using expectation, we obtain the double advantage of: (1) giving to the
method stability properties, due to the insertion of a network of logical connec-
tion from a peer to another peer instead of a single connection (this issue will be
analyzed by simulation, in Section 6), and (2) giving to such a semantic property
a sort of transitive behavior, overcoming the limit of the pure similarity (this
issue will be better explained by an example in the following).

The informal notion described above, is defined through a linear system as
follows. Let P = {P1, P2, . . . , Pn} a set of peers. Let Pi, with i > n, be a peer
not occurring in P . Consider given P and Pi for the rest of the paper. The tuple
〈Ei1, Ei2, . . . , Ein〉 of the expectations of Pi w.r.t. the peers in P , is the unique
solution of the following linear system:

(∀j ∈ {1, . . . , n})
(
Eij = αij(βiSij + (1 − βi) 1

Ŝj

∑
k=1...n,k �=j EikSkj)

)
(1)

where (1) Ŝj =
∑

k=1...n,k �=j Skj and (2) 0 ≤ αij ≤ 1 and 0 ≤ βi ≤ 1 are suitable
coefficients initialized to 1.

Before giving the intuitive explanation of the above system, it is worth noting
that the above definition is well founded, since the system admits always a unique
admissible solution (that is, consisting of values ranging from 0 to 1). This is in
fact stated next in Theorem 1.

Let give now an informal description of how the system works. Initially, do
not consider coefficients αij and βi, which will be explained later. Eij is ob-
tained by summing two contributions. The first one (i.e., Sij) is the similarity
between Pi and Pj . It can be considered a local component. The second one
(i.e., 1

Ŝj

∑
k=1...n,k �=j EikSkj))), makes Eij neighborhood-dependent, that is de-

pendent on the whole set P of peers. Thus, this component is said neighborhood-
based. It increases Eij by a contribution proportional to the expectancy of Pi

w.r.t. any peer Pk, for each k (different from j). In order to make relevant only
contributions relating to peers enough similar to Pj , the more the similarity be-
tween Pk and Pj , the higher the coefficient weighting such a contribution (i.e.,
Skj

Ŝj
) is. In this way the overall expectation Eij of Pi w.r.t. Pj takes into account

not only similarity between Pi and Pj , but also the expectations of all other peers
Pk, “enough” similar to Pj . According to this mechanism, the linear system can
be viewed as a sort of set of equilibrium equations for the whole system.

Which is the role of αij and βi? αij , as it will appear more clear in the next
section, produces the reduction of expectation w.r.t. peers failing queries. It
represents an aging coefficient. βi modulates the importance of the local compo-
nent w.r.t. the neighborhood-based one, and, as it will be explained in the next
section, depends on the dynamics of the P2P system.

We are ready to present the theorem supporting the definition of expectation.
This theorem shows that, for every value of the parameters occurring in (1),
there exists a unique solution of the linear system (1), that is a value assignment
to the expectation coefficients satisfying (1). Obviously, such a solution can be
polynomially computed.

194 F. Buccafurri and G. Lax

Theorem 1. Given a set of real coefficients {αij, βi, Sij, Sjk such that αij ∈
(0, 1), βi ∈ (0, 1), Sij ∈ [0, 1], Sjk ∈ [0, 1], with j ∈ {1, . . . , n} e k ∈ {1, . . . , n} \
{j}}, there exists a unique n-tuple of [0, 1] real values S = 〈Ei1, . . . , Ein〉 satis-
fying (1).

Proof. We first prove that there exists unique a solution of the system (1).
Then, we show that such a solution is a tuple of fuzzy values (i.e., ranging from
0 to 1).

Existence and Uniqueness. It suffices to prove that the coefficient matrix M
of the system (1) has maximum rank (i.e., its determinant is null). Denote by
mhk = αih(1 − βi)Skh

Ŝj
a generic element of M, where 0 ≤

∑
r=1...n,r �=h mhr < 1.

Then, M can be rewritten in the following way:

M =

⎡

⎢
⎢
⎣

−1 m12 ... m1n

m21 −1 ... m2n

...
mn1 mn2 ... −1

⎤

⎥
⎥
⎦

By contradiction suppose the determinant of M is null. Thus, there exists a
linear combination of the columns of M with non null coefficients 〈h1, . . . , hn〉,
producing the 0-tuple. In particular, by considering the k−th row, with k such
that hk has the maximum value among 〈h1, . . . , hn〉, we obtain:

−hk +
∑

r=1...n,r �=k mirhr = 0 ⇒ hk =
∑

r=1...n,r �=k mirhr

Let s be such that hs assumes the 2nd maximum value among 〈h1, . . . , hn〉.
Then, it follows that: hk ≤ hs

∑
r=1...n,r �=s mir.

Applying the summation for
∑

r=1...n,r �=h mhr < 1, it results hk < hs, that is
a contradiction. This concludes this part of the proof. Now it remains to prove
that the solution is a tuple of values ranging from 0 to 1.

First we show that the solution is a tuple of values greater or equal than 0.

Eih ≥ 0 ∀h ∈ {1, . . . ,n}. By contradiction suppose there exists in the solution
of (1) a negative expectation. Thus, if Eim denotes the minimum expectation of
the solution, then Eim < 0. Therefore, by (1) we obtain:

Eim = αim

(
βiSim + (1 − βi) 1

Ŝm

∑
k=1...n,k �=m EikSkm

)
< 0

Since Eim is the minimum expectation and αim ranges from 0 to 1, we have
that:

Eim ≥ αim

(
βiSim+(1 − βi) 1

Ŝm

∑
k=1...n,k �=m EimSkm

)
≥ βiSim + (1 − βi)Eim

and thus: βiEim ≥ βiSim ⇒ Eim ≥ 0.
We have thus reached a contradiction, concluding this part of the proof.

The last step is showing that the solution is a tuple of value less or equal
than 1.

Enabling Selective Flooding to Reduce P2P Traffic 195

Eih ≤ 1 ∀h ∈ {1, . . . ,n}. By contradiction suppose that there exist in the solu-
tion at least one expectation greater than 1. Denote by EiM be the expectation
having the maximum value. Necessarily, EiM > 1. Since we have already proven
that Eih ≥ 0 ∀h ∈ {1, . . . , n}, from (1) we obtain:

αiM (βiSiM +(1−βi)
1

ŜM

∑

k=1...n,k �=M

EikSkM) ≤ βi+(1−βi)
1

ŜM

∑

k=1...n,k �=M

EiM

and, thus: EiM ≤ βi +(1−βi)EiM ⇒ EiM ≤ 1, that is a contradiction. The
theorem is then proven. �

In the next example we show that the above mechanism gives to the expectation
based relation used for measuring the “semantic closeness” between two peers,
a sort of transitive behavior, which is not satisfied whenever just the similarity
is adopted (as shown in Example 2).

Example 3. Consider the set of peers introduced in Example 2. Suppose that
β1 = 0.22, α12 = 0.87, α13 = 0.92, meaning that the attention of P1 toward the
expectation parameter is considerable (and thus, the importance the peer gives
to the similarity is low), and furthermore, both P2 and P3 have satisfied queries
submitted by P1 in the recent past (since the α coefficients are high). The last
fact denotes that even though P1 and P3 are structurally not similar (as the
reader may found in Figure 1, P1 is mainly concerned with alcoholic beverage,
while P3 is interested in information – even scientific – about food), there could
be an interest of P1 in the resources shared by P3 about, for example, both
information about food and information about nutrition science, since the user
of P1 is now interested in right combination between food and wine as well as in
nutritional information about wine. The solution of the linear system produces
in this case the following result: 〈E12 = 56.25%, E13 = 43.75%〉, indicating that
the peer P3, despite its low similarity, is appealing for P1 nearly as much as
the very similar peer P2. Observe that, by considering similarities, being S12 =
73.53%, S13 = 26.47%, the attractiveness of the peer P3 w.r.t. P1 would have
been dramatically smaller than P2 one (in fact, this reflect the non-transitive
behavior of the similarity, shown in Example 2).

The example above shows that, whenever the dynamics of the system gives us
knowledge contrasting with the quasi-static information embedded in the content
descriptor, the expectation-based approach allows us to exploit this knowledge,
by emphasizing semantic closeness not discovered by the similarity-based analy-
sis. In other words, even though we accept the non transitivity of the similarity
notion (since, as already discussed, we require the capability of encoding a close-
ness measure based on possibly orthogonal dimensions), there are cases in which
the query history shows that such a transitivity has to be in a certain measure
recovered, so that we have to use something more than just the similarity.

We remark that the above linear system does not capture the whole P2P
system, but just the view a peer Pi has of it. Indeed, the set P represents
the set of adjacent peers of Pi (i.e., those peers whose IP is known to Pi). As

196 F. Buccafurri and G. Lax

a consequence, every peer occurring in the system has a different view of it,
corresponding with a different set of adjacent peers and, thus, a different linear
system. It is worth noting that, as will be more clear in Section 5, the set of
adjacent peers constantly tends to increase, since every time a peer Pj responds
to a query coming from a peer Pi, Pj is inserted (if not already present) into
the set of adjacent peers of Pi. As usual in P2P systems, in order to avoid an
inflationary grow of its dimension, the set of adjacent peers must be pruned,
by fixing a maximum allowed size. To this aim, standard approaches can be
directly applied to our case, but of course, the low expectation can be used as
a criterion for replacing peers when needed. Another parameter that our policy
has to manage, for taking into account QoS features, is the maximum allowed set
of contacts (i.e., peers, among adjacent ones, which queries are forwarded to).
Throughout this paper we often call this parameter selection size. Thus, denoting
by k the selection size, every peer Pi complying to the policy, first computes the
expectation w.r.t. its adjacent peers and then, among these, forwards queries
only to the k−first peers according to the expectation value.

Concerning the computational complexity, we observe that the only relevant
task to analyze is the solution of a linear system like (1). This is a classic well
studied problem, and many algorithms have been proposed for making feasible
its solution also for large system dimensions. These results are of high practical
interest, since large systems of linear equations occur in many applications such
as finite element analysis, power system analysis, circuit simulation for VLSI
CAD, and so on. In the general case, the cost for finding an exact solution
is O(nω), coinciding with the cost of executing a n × n-matrix product. The
currently best known ω is 2.376 [8], while a practical bound is 2.81 [23,6]. We
observe that the coefficient matrix of our linear system is sparse in many prac-
tical situations. Indeed, it arises from the set of contacts of peers in the system
forming typically weakly connected components. Note that for sparse linear sys-
tems, more efficient solutions may be found. In [21] it is shown that the cost is
O(n + s(n)ω), where s(n) is a function measuring the sparsity of the system’s
coefficient matrix (note that s(n) = O(n), in the general case). Beside exact (di-
rect) methods considered above, there exists a wide variety of iterative methods,
whose effectiveness strongly depends on the matrix sparsity. In [21] an evaluation
of the upper bound of the number of iterations needed for the convergence of
an ε−solution (for relative error ε) is provided. Each iteration has in general the
cost O(nω) since it requires a matrix product. Multigrid methods can be applied
[1,20] in order to decrease the cost per iteration until O(nω), even though such
methods are not applicable in general and may suffer of instability problems.

In Section 6 we have performed experiments in order to test the efficiency of
the computation of the expectations, obtaining the result that such a computa-
tion is feasible also in case whose dimension is significant in real-life contexts.

4 System Adaptivity

Adaptivity of the system is implemented by the updating rules of the coeffi-
cients αij and βi appearing in the linear system. What we want the system

Enabling Selective Flooding to Reduce P2P Traffic 197

learns, while it works, is both (1) the success degree in finding query results in
high-expectation peers and (2) the influence of local similarity w.r.t. the success
degree. Discovering (1) allows us to progressively reduce (by reducing αij) the
expectation of a peer w.r.t. another peer, if no positive answer comes from this
peer anymore. The purpose of (2) is adapting (by modifying βi) the importance
of the similarity w.r.t. the neighborhood-based component.

W.l.o.g, think to the P2P system seen by Pi like a discrete-time system such
that at the generic intermediate step k the following events occur in order: (1)
the answers to the query submitted by Pi at the previous step are received
by Pi, (2) accordingly, α and β parameters are updated, (3) a new query is
submitted by Pi. Initially αij = 1 for each 1 ≤ j ≤ n. We expect that every
time the peer Pj is not able to answer to the query of Pi, the coefficient αij is
decreased. However, according to a locality principle, the reduction of αij should
be limited in case Pj is enough similar to some peer that, in the last step, has
satisfied the query of Pi. Conversely, the decrease of αij should be bigger, in
the other case. Certainly, if Pj satisfies the query of Pi, αij is reset to 1. The
above mechanism can be captured by the following updating rule, where the
dependency on the time instant is made explicit. Thus, at the instant time k,
if Pj has not satisfied the query submitted by Pi at the instant time k − 1,
then αij(k) is obtained by: αij(k) = αij(k−1)+αij(k−1)·maxPh∈Yik

(Shj)

2
, where Yik

denotes the set of peers which have satisfied the query of Pi submitted at the
time instant k − 1. Otherwise (i.e., if Pj ∈ Yik – that is, it has responded to the
query at the previous step) αij(k) = 1. Concerning the coefficient βi, initially
set to 1, the value at the time instant k has to be increased if, at the preceding
instant, success peers was similar to Pi. βi has to be decreased, otherwise. Also
this choice satisfies a sort of locality principle w.r.t. user interests. Thanks to this
mechanism we avoid that the system continues to force Pi towards similar peers
(thus towards interests consolidated into its content) in case the recent query
history shows that peers useful for Pi are other peers, so that interests of Pi are
changing. The adopted updating rule is: βi(k) =

βi(k−1)+ 1
|Yik|

∑
Ph∈Yik

(Shi)

2
.

Observe that both for αij and βi, values at time k are obtained by averaging
with the value at time k − 1 in order to smooth their changes and to avoid
unstable behaviors of the system.

5 A Working Example

In this section we present an example giving more concretely the flavor of our
proposal. Even though this example has also the purpose of showing the effec-
tiveness of the technique about the capability of selecting interesting peers which
the query can be forwarded to, this latter issue is more deeply treated in Section
6. We consider a P2P system consisting of m peers Pi (0 ≤ i < m). Whenever a
peer P joins the system, it obtains the IP of some other peers2. Such peers ini-
tialize the set of adjacent peers of P . Then, P contacts its adjacent peers in order
2 In commercial applications such a set of peers is obtained by a server or by IP

scanning.

198 F. Buccafurri and G. Lax

Table 1. File distribution

file/peer rock pop rap jazz blues
P0 37 52 11 0 0

P1 36 42 23 0 4

P2 12 31 0 0 15

P3 0 7 4 12 36

P4 0 3 12 21 43

P5 0 0 7 25 27

Table 2. Similarity among peers

simil. P0 P1 P2 P3 P4 P5

P0 1 0.89 0.74 0.18 0.18 0.12

P1 0.89 1 0.81 0.25 0.24 0.19

P2 0.74 0.81 1 0.38 0.31 0.26

P3 0.18 0.25 0.38 1 0.93 0.72

P4 0.18 0.24 0.31 0.93 1 0.93

P5 0.12 0.19 0.26 0.72 0.93 1

both to receive their content descriptor and to compute similarity and expecta-
tion. The policy adopted in this example sets to 3 the number of “promising”
peers which the query has to be forwarded to, at each hop. Such peers, called
contacts, are determined according to the expectation-based strategy so far il-
lustrated. For simplicity, we focus only on the communications between the peer
P0 and the 5 peers Pk (by assuming that m > 5), with 1 ≤ k ≤ 5. We suppose
the shared resources are audio files and each resource belongs to one of 5 music
categories (that is the metadata category has 5 possible values). Table 1 reports
the file distribution per peer. For example, the peer P0 shares 37 rock songs, 52
pop songs and 11 rap songs. Table 2 contains all the similarity coefficients among
peers. We analyze the evolution of the system starting from a situation in which
P0 has only P1 and P2 as adjacent peers and the parameters of the linear system
are: β0 = 0.8, α01 = 0.8, α02 = 0.8. The sensible values of α01 and α02 denote
that P0 have recently requested files shared from P1 and P2. Moreover, β0 is also
high as P1 and P2 are very similar to P0. Accordingly with the maximum for-
ward degree fixed to 3 in our example, we select at each iteration the three peers
having the maximum expectation. Now we suppose P0 searches a file not occur-
ring either in P1 or P2. Thus, they propagate the query to other peers (including
P3). We suppose that P3 sends the searched file to P0. This causes that P3 be-
comes a new adjacent peer of P0. The above query produces the update of the
parameters in the following way: β0 = 0.8+0.18

2 = 0.49, α01 = 0.8+0.25·0.8
2 = 0.50,

α02 = 0.8+0.38·0.8
2 = 0.55, α03 = 1 according to the rules given in Section 3. The

solution of the updated linear system, consisting of the expectations of P0 w.r.t.
P1, P2 and P3 are: E01 = 42, 58%, E02 = 41, 10%, E03 = 16, 32%, expressed
as a percentage. The expectation of P0 w.r.t. P3 is now comparable to those of
P0 w.r.t. P1 and P2. We observe that the similarity between P0 and P3 is low.
At this point, suppose P0 searches a new file by sending the query to P1, P2

and P3 (remember the number of contacts is 3) and, this time, only the peer
P4 satisfies the request. Then, the updated parameters of the linear system (in-
cluding also P4) are: β0 = 0.26, α01 = 0.31, α02 = 0.36, α03 = 0.97, α04 = 1.
The new expectation values are: E01 = 25, 04%, E02 = 25, 75%, E03 = 25, 18%,
E04 = 24, 03%. This result shows that the system is perceiving changing of user
interests. In fact, in the last two steps, peers that are not much similar to P0

(i.e., P3 and P4) have satisfied its queries, so that their expectation is increased,
meaning that the peer P0 is at moment interested in the contents of these peers.

Enabling Selective Flooding to Reduce P2P Traffic 199

Clearly, this increasing of expectation w.r.t. P3 and P4 has as a counterpart an
initial decreasing of the expectations w.r.t. P1 and P2, that are peers which,
despite their similarity, P0 is currently reducing its interest in. However, among
adjacent peers P1, P2, P3 and P4, only the first three are also contacts, so that
P0 will not send to P4 the next query. Consider now a further iteration of the
system, in which the peers P4 and P5 satisfy the request of P0. In this case,
the parameter of the linear system become: β0 = 0.20, α01 = 0.19, α02 = 0.24,
α03 = 0.93, α04 = 1, α05 = 1, and the resulting expectations are: E01 = 18, 81%,
E02 = 19, 84%, E03 = 19, 47%, E04 = 25, 00%, E05 = 16, 88%. In this situation,
the peer P1 is substituted by the peer P4, according to our previous observation.

We observe also that the above example describes the system working during
a transitory phase in which the user of P0 is changing his interests. We can
argue that, after a number of iterations, the content descriptor of P0 will change
becoming more similar to the last answering peers. Once this new “equilibrium
interest” is reached, the similarity will become important (thanks to updating
rules defined for the β coefficients), until new changes moves the user from
this equilibrium. Our system thus shows the nice capability of capturing both
equilibrium and transitory phases.

6 Experiments

In this section we describe the results of a number of experiments performed on
a P2P simulator. We used a simulator in order to make feasible experiments with
a large number of peers. It is widely accepted, in the context of P2P systems,
that the results obtained by simulation are strongly significative for real-life
applications.

We generated a network with 20 000 peers, in which 500 peers are simulta-
neously active and the number of neighbors per peer is 10. This experiment are
representative for the population of 20 000 peers since in practice only around
5% of users are active at any given time [27] (see also [15] where experiments
are conducted on the same number of peers).

We have considered a pre-built set of shared resources belonging to a universe
of 100 domains, representing potential user’s interests. Each user shares a certain
number of resources belonging to i domains, where i follows a Zipf distribution
[30], with z = 1. The Zipf distribution, originally used in linguistic field, is
widely used for representing data distributions in various settings, like networks,
Web systems, databases, etc. [11,3], and in particular P2P [22,15]. Here the
Zipf distribution represents the fact that the most of users are interested in few
domains.

We considered three query sets. The query set 1 is composed of files belonging
to the domains the user is the most interested in. This query set models the case
that user interests remain constant. The query set 2 is composed of files belonging
to a new domain. This query set models the (stable) change of user interests to a
new category. Finally, the query set 3 is obtained randomly combining the above
two query set. This query set models an impulsive behavior of the user.

200 F. Buccafurri and G. Lax

Each query has TTL = 4, that is the maximum number of hops of the query
is 4. We called Selection Size (SS), the number of peers (among adjacent ones)
the query is submitted to. We have performed experiments with several values
for this parameter. In particular, we consider the case SS = 10 corresponding
to the classic GNUTELLA flooding, and the cases in which SS < 10, where
the adjacent peers to which forward the query are selected by exploiting our
approach in one of the following variants:

1. method Sim, that considers only the similarity property, thus obtained by
setting α = 1 and β = 1 in the linear system;

2. method Sim & Aging, that uses both the similarity property and the aging
coefficient, thus obtained by setting β = 1;

3. method Exp that adopts only the expectation property, thus obtained by
setting α to 1;

4. method Exp & Aging, that fully implements our proposal.

In our experiments we analyze the traffic generated and the query success
ratio versus the maximum contact degree of the peers with or without enabling
expectations. In every case, we have tested the superiority of the method when
expectations are enabled. Let us start with the description of our experiments.

2 4 6 8 10
20

30

40

50

60

70

80

90

100

110

selection size

su
cc

es
s

%
 w

.r
.t.

 G
N

U
T

E
LL

A

Exp&Aging
Exp
Sim&Aging
Sim

Fig. 4. Results for query set 1

2 4 6 8 10
0

20

40

60

80

100

selection size

su
cc

es
s

%
 w

.r
.t.

 G
N

U
T

E
LL

A

Exp&Aging
Exp
Sim&Aging
Sim

Fig. 5. Results for query set 2

Now we report the results of our experiments conducted by setting δ = 0.90
(we recall that each peer sends to neighbors its current content-descriptor CD
whenever the similarity between CD and the content-descriptor currently known
by its neighbors is less than δ). First consider the query set 1. We recall that this
query set models the case the user interests do not vary significantly over the
time. In Figure 4 a graph displaying the number of successfully queries versus
selection size, for all considered approaches, is reported. The figure shows that
performances of methods sim (i.e., the similarity-based one) and sim & aging
(i.e., the similarity/alpha-based one) are comparable. Of course, such approaches
take advantages by the increasing of the selection size in a quasi-linear way.
However, it is interesting to observe that their performances are lower than

Enabling Selective Flooding to Reduce P2P Traffic 201

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

110

selection size

Exp&Aging
Exp
Sim&Aging
Sim

su
cc

es
s

%
 w

.r
.t.

 G
N

U
T

E
LL

A

Fig. 6. Results for query set 3

the other two approaches. Expectation-based methods present the capability of
rapidly “capturing” interesting peers. However the graph shows that considering
the full approach (by taking into account both expectations and α coefficients)
produces the best results. Consider now the query set 2. Recall that this query
set models the (stable) change of user interests. Results are reported in Figure
5, where we can verify that the gap of performances between the expectation-
based techniques and the similarity-based techniques is now significantly higher.
This proves that the expectation-based methods are better than the others in
terms of reactivity to interest changes, that is they are capable of adapting to
new knowledge by using a small training query set. Note that the usage of the
expectations produces a rapid success increase at small selection sizes, witnessing
that whenever the selection size is just above a small threshold, the methods
develop their full capabilities. In other words, above this threshold, the selection
size does not work as a bottleneck against the full exploitation of properties
implemented by expectations. From this perspective, similarity-based methods
show a different behavior. They result significantly less sensitive w.r.t. benefits
given by the increase of the selection size. This reflects the fact that similarities
are properties inherently local. Again, observe that the best method is the full
one, also in terms of sensitivity w.r.t. the selection size.

The last case considers the query set 3, modeling an impulsive behavior of
the user. A problem which adaptive methods may suffer from, due to their
capability of following user interests, is producing unstable behaviors. In this
case, performances of these methods become dramatically worse whether the user
behavior is impulsive. Experiments conducted on the query set 3 (as displayed
in Figure 6) show that our method does not present the above drawback, since
the full method shows still good performances definitely superior w.r.t. the other
considered methods. This proves that as well as the linear system mechanism,
are designed in such a way that a suitable degree of inertia avoids drastic changes
and smoothes outliers occurring in the user behavior.

202 F. Buccafurri and G. Lax

3 4 5 6 7 8 9 10

10
0

10
1

10
2

selection size

tr
af

fic
 %

 w
.r

.t.
 G

N
U

T
E

LL
A

d=0
d=0.99

Fig. 7. Traffic measured

200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

number of equations

tim
e

(s
ec

.)

Fig. 8. System resolution time

In the next experiment we measured the traffic generated by varying selection
size and by exploiting our proposal. The results are shown in Figure 7. We
considered two values for the parameter δ that influences the traffic overhead
due to the distribution of the similarity vector to the neighbors frequency of
upload. Observe that according to the definition of δ, such a traffic is null when
δ = 0. The difference between the line for δ = 0.99 and the line for δ = 0
allows us to obtain an estimation of the traffic overhead due to the similarity
vector sending, necessary to implement our proposal. Figure 7 shows that such an
overhead decreases as the selection size increases and that, for realistic values of
selection size, the overall traffic generated by applying our proposal is negligible.
For example, setting the selection size to 7, that as shown by previous results
gives us an high query success value, and δ = 0.99, the traffic measured is about
25% of that one produced by GNUTELLA.

Finally, we have measured the time necessary for the computation of the
expectation coefficients versus the number of adjacent peers. Experiments are
performed by a Pentium IV with 1024MB. Results of such experiments are re-
ported in Figure 8. Observe that when the number of adjacent peers is around
200, which is a value considerable high in real-life contexts, the time taken is
very small (only 0.050 s).

7 Related Work

In this section we summarize several proposals addressing the information re-
trieval problem in P2P systems. In [17] the authors present some early measure-
ments of a Cluster-based Architecture that uses a technique (Network-Aware
Clustering) to group clients topologically close and under common administra-
tive control. The introduction of one more hierarchy is aimed at scaling up query
lookup and forwarding. [26] presents the Directed BFS technique, which relies
on feedback mechanisms to intelligently choose which peer a message should be
sent to. Neighbors that have provided quality results in the past will be chosen
first, yet neighbors with high loads will be passed over, so that good peers do not

Enabling Selective Flooding to Reduce P2P Traffic 203

become overloaded. In [9], message routing is improved with “routing indices”,
compact summaries of the content that can be reached via a link. With routing
indices, nodes can quickly route queries to the peers that can respond, without
wasting the resources of many peers who cannot. The authors of [24] study how
to maximize the query answer rate of the entire system by setting the rate of
query injection at each node. Concerning local and neighborhood properties, our
paper may be related to [16], where the problem of identifying malicious peers in
the network is faced. Indeed, the authors attack this problem by using the con-
cept of global trust value, which is a value uniquely assigned to each peer of the
network, reflecting the experiences of the other peers with that peer. The global
trust value is obtained by a reputation system that aggregates the local trust
values of all the users. [10] proposes a method to improve the search and scale
performances in P2P systems where data is naturally clustered. The approach is
based on Semantic Overlay Networks (SON), a flexible network organization in
which nodes with semantically similar content are clustered together and queries
are processed by identifying which SONs are better suited to answer it. They
evaluate a classification hierarchy in order to select a small number of overlay
networks whose nodes have a high number of hits, given a request. In [7] the
authors propose the HELIOS framework to enable knowledge sharing and evo-
lution considering a pure P2P system. The knowledge sharing and the evolution
processes are based on peer ontologies, describing the knowledge of each peer,
and on interactions among peers, allowing information search and knowledge
acquisition, according to a pre-defined query model and semantic techniques for
ontology matching. In [2] an agent-based P2P system architecture to support
search for information through a flexible integration of semantic information is
defined. Most of the papers cited above, and in particular [17,26,9,29,16,10], are
close to our approach since they try to locate a peculiar group of peers in the
network for better scaling queries. The only that, like our approach, uses global
values computed by local values is [16]. However, it works in the different context
of security in P2P systems, so that the meaning of local and global properties
defined in it is quite different from our case. Our concept of similarity can be
related to [18], where the authors propose a set of measures capturing the sim-
ilarity of ontologies at two different levels, lexical and conceptual, focusing on
“real-world ontologies”. Finally, outside the context of P2P systems, our ap-
proach can be related to [5], where, in the setting of multi-agent systems, the
usage of neighborhood-based properties is introduced. The approach used in [5]
has some similarity with our one, but it cannot be used in P2P systems. Indeed,
it works only in case of agent communities with a limited number of agents where
a central agency, coordinating the cooperation, is available.

8 Conclusions

We have proposed a P2P strategy to increase the effectiveness of flooding-based
information retrieval approaches. The strategy limits the number of peers which
the query is forwarded to at each hop, allowing us to attack the problem of traffic

204 F. Buccafurri and G. Lax

explosion due to query propagation. The selection is done on the basis of semantic
closeness among peers, measured through what we call the expectation, which re-
lies both on local properties (i.e., similarity properties) and neighborhood-based
ones. The effectiveness of the method is shown through a number of experiments
that compare our approach with the standard flooding one (like GNUTELLA)
at parity of retrieval success.

Acknowledgments

This work was partially supported by the research project QuaDRAnTIS, funded
by the Italian Ministry of University and Research (MUR).

References

1. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math.
Comput. 31, 333–390 (1977)

2. Beneventano, D., Bergamaschi, S., Fergnani, A., Guerra, F., Vincini, M.: A peer-
to-peer agent-based semantic search engine. In: Proceedings of the Eleventh Italian
Symposium on Advanced Database Systems, pp. 367–378 (2003)

3. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like
distributions: Evidence and implications. In: INFOCOM (1), pp. 126–134 (1999)

4. Buccafurri, F., Lax, G., Rosaci, D., Ursino, D.: A user behavior-based agent for
improving web usage. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA
2002, and ODBASE 2002. LNCS, vol. 2519, pp. 1168–1185. Springer, Heidelberg
(2002)

5. Buccafurri, F., Rosaci, D., Sarnè, G.M.L., Palopoli, L.: Spy: A multi-agent model
yielding semantic properties. In: IAT-2001. Proceedings of the The Second Asia-
Pacific Conference on Intelligent Agent Technology, pp. 44–53 (2001)

6. Bunch, J., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix
multiplication. Math. Comp. 28(125), 231–236 (1974)

7. Castano, S., Ferrara, A., Montanelli, S.: The helios framework for peer-based knowl-
edge sharing and evolution. In: Proceedings of the Eleventh Italian Symposium on
Advanced Database Systems, pp. 347–358 (2003)

8. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progression.
Journal of Symbolic Computation 9(3), 251–280 (1990)

9. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: ICDCS
2002. Proceedings of the 22 nd International Conference on Distributed Computing
Systems, p. 23. IEEE Computer Society, Los Alamitos (2002)

10. Crespo, A., Garcia-Molina, H.: Semantic overlay networks for p2p systems. In:
tech. rep., Computer Science Department, Stanford University (2002)

11. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the inter-
net topology. In: Proceedings of the conference on Applications, technologies, ar-
chitectures, and protocols for computer communication, pp. 251–262. ACM Press,
New York (1999)

12. Fensel, D.: Ontologies:A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer, Heidelberg (2001)

13. Freenet. The freenet home page, http://www.freenetproject.org

http://www.freenetproject.org

Enabling Selective Flooding to Reduce P2P Traffic 205

14. Gnutella, http://gnutella.wego.com
15. Kalnis, P., Ng, W.S., Ooi, B.C., Tan, K.-L.: Answering similarity queries in peer-

to-peer networks. Inf. Syst. 31(1), 57–72 (2006)
16. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for

reputation management in p2p networks. In: WWW, pp. 640–651 (2003)
17. Krishnamurthy, B., Wang, J., Xie, Y.: Early measurements of a cluster-based archi-

tecture for p2p systems. In: Proceedings of the First ACM SIGCOMM Workshop
on Internet Measurement, pp. 105–109. ACM Press, New York (2001)

18. Maedche, A., Staab, S.: Measuring similarity between ontologies (2002)
19. Napster, http://www.napster.com
20. Press, W.H., Teukolsky, S.A.: Multigrid methods for boundary value problems.

Computers in Physics, 514–519 (1991)
21. Reif, J.H.: Efficient approximate solution of sparse linear systems. Computers

Math. Applic. 36(9), 37–58 (1998)
22. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. IEEE/ACM

Trans. Netw. 12(2), 219–232 (2004)
23. Strassen, V.: Gaussian elimination is not optimal. Numerishe Mathematik 13, 354–

356 (1969)
24. Sun, Q., Daswani, N., Garcia-Molina, H.: Maximizing remote work in flooding-

based peer-to-peer systems. Computer Networks 50(10), 1583–1598 (2006)
25. Tamma, V., Wooldridge, M., Blacoe, I., Dickinson, I.: An ontology based approach

to automated negotiation. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS
2002. LNCS (LNAI), vol. 2636, Springer, Heidelberg (2003)

26. Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: ICDCS
2002. Proceedings of the 22 nd International Conference on Distributed Computing
Systems, p. 5. IEEE Computer Society, Los Alamitos (2002)

27. Yang, B., Garcia-Molina, H.: Comparing hybrid peer-to-peer systems. The VLDB
Journal, 561–570 (September 2001)

28. Zadeh, L.A.: Similarity relations and fuzzy orderings. Information Sciences 3, 177–
200 (1971)

29. Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D.: Exploiting locality for scal-
able information retrieval in peer-to-peer networks. Information Systems 30, 277–
298 (2005)

30. Zipf, G.K. (ed.): Human behaviour and the principle of least effort. Addison-
Wesley, Reading, Mass (1949)

http://gnutella.wego.com
http://www.napster.com

Improving the Dependability of Prefix-Based
Routing in DHTs

Sabina Serbu, Peter Kropf, and Pascal Felber

University of Neuchâtel, CH-2009, Neuchâtel, Switzerland
{sabina.serbu, peter.kropf, pascal.felber}@unine.ch

Abstract. Under frequent node arrival and departure (churn) in an overlay net-
work structure, the problem of preserving accessibility is addressed by maintain-
ing valid entries in the routing tables towards nodes that are alive. However, if
the system fails to replace the entries of dead nodes with entries of live nodes in
the routing tables soon enough, requests may fail. In such cases, mechanisms to
route around failures are required to increase the tolerance to node failures.

Existing Distributed Hash Tables (DHTs) overlays include extensions to pro-
vide fault tolerance when looking up keys, however, these are often insufficient.
We analyze the case of greedy routing, often preferred for its simplicity, but with
limited dependability even when extensions are applied.

The main idea is that fault tolerance aspects need to be dealt with already at
design time of the overlay. We thus propose a simple overlay that offers support
for alternative paths, and we create a routing strategy which takes advantage of
all these paths to route the requests, while keeping maintenance cost low. Experi-
mental evaluation demonstrates that our approach provides an excellent resilience
to failures.

Keywords: fault tolerance, reliability, DHT, routing.

1 Introduction

Dependability concerns many properties of a system, such as scalability, reliability,
security, data integrity, availability, routing or fault tolerance. These properties are gen-
erally dealt with according to the system’s architecture. In this paper we address the
accessibility of the stored data, focusing on the routing and fault tolerance issues in
structured P2P systems.

Consistent information about the nodes in the system is crucial for effective oper-
ation and it is essential that a peer-to-peer system allows for fault tolerance. Thus, a
silent node departure shall not turn the whole or part of the system inoperable. Though
information (data) may disappear from the system when a node silently departs, the
routing functions that it assumed shall be taken over by other peers alive. This calls
for some system management and maintenance functions as far as the overlay network
organization and associated routing functions are concerned. Clearly there is a trade-off
between the costs of such maintenance and the effectiveness of the routing achieved,
which depends of course on the properties of the particular overlay structure.

The main trend in existing P2P systems is to essentially focus on preserving stored
data and preserving consistency of the network structure, ignoring fault-tolerant access

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 206–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improving the Dependability of Prefix-Based Routing in DHTs 207

to the data under churn, i.e., frequent node arrival and departure. To provide data acces-
sibility in a system under churn, both a fault-tolerant infrastructure and fault-tolerant
routing need to be taken into account. In the following, we present these aspects and
later in Section 2 we show some of the existing methods providing for fault tolerance.

Distributed hash-tables (DHTs) use specialized placement algorithms to assign re-
sponsibility for each object to peers as well as “directed search” protocols to efficiently
locate objects. With regard to the infrastructure aspect, they rely on a large variety of
different structures, such as rings, multidimensional spaces, hypercubes or other types
of graphs. One notable difference between these structures is the degree that each node
in the overlay has, which, in this context, is the number of neighbors with which a
node maintains continuous contact for supporting the routing mechanism. A constant
node degree assures low maintenance costs for the entries in the routing tables, costs
related to the control traffic that is required to check for the state of the neighbors and
to set a new node for an entry that is found to contain a dead node. Unfortunately, this
also means that they do not offer a significant tolerance to faults. Examples include
de Bruijn-based overlays [1], Viceroy [2] or CAN [3]. Other DHTs use a logarithmic
node degree, such as Chord [4], Pastry [5], Tapestry [6] or Kademlia [7]. These systems
show higher costs for maintaining the routing tables compared to the systems that use
a constant node degree. Nevertheless, they can use alternative entries when an entry
fails, which provides a good start base towards a fault-tolerant infrastructure. This is
the reason why, in our research, we are focusing on this type of overlays.

An overlay infrastructure needs to be able to recover from failures by replacing en-
tries of dead nodes with entries of live nodes in the routing tables. To update such an
entry in the routing table, one must find a node that would fit at that entry. Since it is
costly and mostly impossible to keep all routing tables entries always populated with
live nodes, these updates are made periodically: at each time interval, maintenance re-
quests are issued and the routing tables are updated. As a consequence, this still leaves
a time window when entries may refer to dead nodes. Because routing table entries
become often invalid under churn, the system has to additionally provide fault-tolerant
routing by finding alternative routes to forward the requests towards the destination. As
in [8], we say that the overlay routing is dependable if a request reaches its destination.

To discuss fault-tolerant routing, we illustrate in Section 3 the case of Chord-like
DHTs which use greedy routing, one of the most-known and widely-used routing
algorithm. Greedy routing is simple: at each routing step, the request is directed to-
wards a node as close as possible to the destination. This strategy provides fast lookup
because the number of hops is minimized. In case of node failure, greedy routing algo-
rithms typically apply a “route around” strategy by using a lower entry from the routing
table if the normally chosen entry contains a dead node. Experimental results have con-
firmed that greedy routing under node failures is an unreliable strategy with respect
to fault tolerance and routing dependability. Indeed, the advantage of getting as close
as possible to the destination at each routing step (i.e., going as far as possible from
the source) becomes a disadvantage under node failures, as this strategy exploits only
a small part of the possible paths. At each routing step, the number of possible paths
towards destination is heavily decreasing, which drastically diminishes the chances of
finding a valid path to destination.

208 S. Serbu, P. Kropf, and P. Felber

Following the analysis of standard greedy routing, we propose an overlay structure
and a routing scheme to provide a high degree of fault tolerance, while still keeping
maintenance costs low:

– the hypeer overlay is a logarithmic node degree DHT with a structure that approx-
imates a hypercube.

– the FT-routing strategy is an efficient routing scheme that allows multiple options
in the selection of a next node in the request path to provide fault tolerance in case
of churn.

The hypeer overlay offers the choice between many redundant paths, which is needed
in a fault tolerant system. As all other DHTs, it uses an identifier space where the nodes
and the keys obtain IDs in a form of a sequence of binary digits. To route towards a
node responsible for the requested key, several intermediate nodes are traversed such
that the digits from the source identifier are successively replaced by the digits of the
key identifier. Our proposed structure is loosely based on a hypercube. This offers the
possibility of treating the digits in any order when routing from source to destination,
which tunes the number of redundant paths. The redundant paths considerably enhance
fault tolerance.

The rest of the paper is organized as follows. In Section 2 we discuss related work
on hypercubes and fault-tolerance support. Section 3 further details the motivation of
our work. In Section 4 we present our system: its structure, routing strategies and func-
tionality. In Section 5 we present the experiments conducted and discuss the results
obtained. Then, we conclude in Section 6.

2 Related Work

In this section we present related work for hypercubes, which represents the structure
that offers the highest choice for alternative paths, and then some of the existing so-
lutions for fault-tolerance with respect to the infrastructure and the routing strategies.
Note that we do not deal with any security aspects, such as trusted nodes or trusted
information (this is well detailed in [9]).

2.1 Hypercube-Based DHTs

There are several DHTs that use the hypercube structure in order to provide alternative
paths. This allows for fault tolerance, however with a penalty of increasing the com-
plexity of the overlay maintenance.

The eQuus [10] system has a topology of a partial hypercube. Each vertex represents
a clique, i.e., a group of nodes that are close in terms of a proximity metric. The lookup
procedure is similar to Pastry [5], with the main difference that each entry represents a
clique and not a single node. The nodes in a clique share the same ID and keys. Thus,
fault tolerance is mostly treated from the point of view of data availability, and not to
achieve routing fault tolerance.

Schlosser et al. [11] present HyperCuP, a hypercube structure that is built as peers
join the system. A node keeps its neighbors on a per-dimension basis, and it might have

Improving the Dependability of Prefix-Based Routing in DHTs 209

the same node as neighbor in two or more dimensions, if no other suitable node has
been found. When joining the system, a new node contacts an existing random node
which will become its new neighbor in a dimension of its choice. The strongest point
of this solution is the idea of the hypercube construction, however a node may become
responsible of too many vertices of the hypercube, thus its failure may severely affect
the routing. Moreover, the usage of broadcast messages to all or a part of the dimensions
of the hypercube may become too costly in terms of number of messages.

In [12], Alvarez et al. propose to increase the number of path connections through the
use of a hypercube structure. Each node has an identifier and a mask that indicates the
ID space that the node is responsible for. The routing algorithm can be either proactive,
assuring a specific route to each node based on a tree distribution of the IDs, or reactive
by creating on demand a route and keep it for a certain period of time. The usage of
route creation makes this solution seem more adequate for systems where churn rates
are rather low.

2.2 Fault Tolerance with Other Structures

In order to achieve fault tolerance, the resource discovery mechanism described in [13]
is based on an arrangement of multiple Chord rings, each one responsible for a keyword.
However, the system relays on a super ring which contains pointers to each Chord ring.
This solution aims for fault tolerance, however the super ring is a critical point of failure.

Wepiwé et al. [14] propose a concentric multi-ring overlay for high reliability, where
the nodes on a given inner ring form a de Bruijn graph. This overlay assumes knowledge
about the reliability of the nodes, which normally is not a constant in any system.

2.3 Extensions for Fault-Tolerance

Backup Nodes. The easiest and most widely adopted solution to deal with dead nodes
in routing tables is the addition of backup nodes (redundant links). The best-known
examples are systems like Chord [4] or Pastry [5]. In Chord, each node maintains a list
of a fixed number of successors on the ring. When an entry has failed, a lower entry is
used. For the lowest entries, the list of successors may be used. Lam et al. [15] propose
the K-consistent networks. Each node keeps always K nodes at each entry in its routing
table. Whenever a node from the routing table fails to respond, a repair mechanism
tries to find a new suitable node for the same entry. This type of solutions is obviously
limited by the number of backup nodes used. A high number of backup nodes means
a higher number of alternative paths, and so a higher probability of success. However,
the backup nodes need also maintenance, so the disadvantage is seen in the additional
costs imposed by maintaining more node entries in the routing tables.

Reducing the number of dead entries. Castro et al. [8] use a different approach to the
ones mentioned so far, proposing techniques to detect node failures and repair routes.
They apply this solution in MSPastry, a particular implementation of Pastry. These tech-
niques successfully decrease the number of dead entries in the routing tables, however
there is no solution to completely eliminate them, which means that there is still the
need for routing around failures.

210 S. Serbu, P. Kropf, and P. Felber

Replication. Replication is one of the most simple solutions for fault-tolerance, where
several replicas of the same object are placed at different nodes. These nodes are either
chosen uniformly in the identifier space, in the neighborhood of the destination, or using
a replica function [9]. Replication can be easily applied as a complementary solution to
any fault-tolerant infrastructure or routing solution.

2.4 Fault-Tolerant Routing

For dependable routing under failures, Aspnes et al. [16,17] propose two extensions for
greedy routing. When a node cannot find another node that is closer to the destination
than itself, it can use either random re-route (random choice of another node to forward
the request to), or backtracking (sending back the request to the previous node in the
request path by keeping track of some visited nodes). These two extensions provide
reasonable results, however, they still exploit only a small number of possible paths.

Backtracking is however a good technique to enlarge the number of alternative paths,
but it is not well exploited when used with greedy routing. A request that gets close to
the destination, but is forced to use backtracking, would do small back hops, which
means that the gained number of alternative paths remains small.

Another possibility to increase the request success rate is redundant routing (as it
is called in [9], or parallel routing as in [18]). In this case, several copies of the same
request are sent towards the same destination through different paths. In [9], for fault-
tolerance, such copies are sent from the source to a set of its neighbors towards the
nodes that own replicas of the requested object and following different paths. Indepen-
dently of the choice for the next hops of the paths, when applying redundant routing,
more requests are sent in the system, so more processing is required at the nodes. This,
obviously, increases the costs considerably.

In contrast to the existing solutions for fault tolerance, we aim to improve depend-
ability by allowing at each routing step to consider the maximum number of possible
alternative paths, even if no failure has been detected yet.

3 Motivation

To provide a high level of fault tolerance, we consider it necessary to take into account
both the overlay and the routing strategy.

3.1 On the Dependability of Greedy Routing

Many DHTs use greedy routing to forward the requests because of its simplicity. This
strategy gives good results in terms of path length, but it has limitations in the number
of paths it can exploit. To get from source to destination, greedy routing adjusts the bits
from left to right when the request is forwarded to the next hop in the request path.
This strategy generally leads to path convergence: the last hops of most requests for a
certain destination pass through only a small set of nodes, which are mostly the

Improving the Dependability of Prefix-Based Routing in DHTs 211

preceding neighbors. Under a failure-free operation, these nodes are likely to be over-
loaded if the destination is very popular. Furthermore, if one of them fails, the traffic
will be severely affected.

15

64 | 0

61

19

5

12

16

13

24

30

26

22

18

38

55

52

��
��
��
��

��
��
��
��

��
��
��
��

Fig. 1. Example of Chord with an identifier space of 2m = 64

Systems such as Chord [4] or Pastry [5] suffer from these limitations of greedy rout-
ing. A graphical representation of a Chord example is shown in Figure 1. In Chord,
each node and object has a m-bit identifier on a 2m ring, obtained by respectively hash-
ing the IP address and the name. The objects are mapped to their subsequent node on
the ring. For routing purposes, each node has a routing table with m entries, each en-
try i pointing towards the first node on the ring at a distance of minimum 2i, where
i = 0..m − 1. Conversely, each node is in the routing table of other nodes, so it has
incoming links from these nodes. In the example of Figure 1, 15 (out of 40) nodes are
shown on a 26 ring. The incoming links of node 22 are shown with dashed dark lines,
and its outgoing links are shown with solid dark lines. While each of the outgoing links
points to nodes at a distance close to a power of 2 away, the distance from the incoming
link nodes is less predictable. Each request is forwarded by greedy routing, following
always a clockwise path, as for example the request going from node 61 to node 22 in
three hops (the dashed grey line).

Figure 2 shows, in percentages, the cumulative distribution function (CDF) of the
number of requests that are received per incoming link in a Chord-like system with no
node failures. In this experiment, the identifiers are mapped on m = 15 bits. The system
has 10,000 nodes and 20,000 keys, with 200,000 requests uniformly issued. As can be
seen on the left-hand side of the graph, most of the traffic is received from the incoming
links with small distances, which limits the possibility for redundant paths. More than
80% of the traffic is received from the incoming links at 2i away, where i ≤ 4. Note
that the first entries of the routing table (small values of i) may point to the same node
because of the inter-node distance. Thus, the predecessors of a node are critical nodes
because they bear the majority of the traffic for that node. If such a node fails, the rate
of request success drastically decreases.

212 S. Serbu, P. Kropf, and P. Felber

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

C
D

F
of

 r
ec

ei
ve

d
re

qu
es

ts
 (

%
)

incoming link number i (distance=2i)

Greedy Routing

Fig. 2. The Cumulative Distribution Function
(CDF) of the percentage of received requests
per incoming link (2i) in a Chord system using
greedy routing

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

pe
rc

en
ta

ge
 o

f
fa

ile
d

re
qu

es
ts

percentage of failed nodes

Greedy Routing

Fig. 3. Failure rate of greedy routing. The
high percent of failures shows that greedy
routing does not exploit the redundant paths

In the experiment under failures, whenever a routing table entry refers to a failed
node, a lower entry is used instead. Figure 3 shows the percentage of failed requests
when varying the percentage of failed nodes. The graph shows that this strategy is not
dependable: when half of the nodes fail, half of the requests also fail.

The main reason for this poor performance is that alternative paths are not exploited.
At each node, the request is sent as close as possible to the destination. This means
that the distance between a next hop node nnh and the destination nd of a request is
minimal. Unfortunately, it also means that the number of possible alternative paths is
minimal once the request has reached nnh. As an example, a request in Figure 1 goes
from node ns = 61 to node nd = 22, by going through nodes 15 and then 19, according
to greedy routing. The possible alternative paths go through each of the incoming links
of nd: 5, 12, 13, 16, 18 and 19. At ns, greedy routing chooses nnh = 15. When this
node is reached, the request (which always travels clockwise) may pass only through
the incoming links 16, 18 and 19. If these nodes fail, the request will also fail to reach
its destination, even though alternative paths from ns through the incoming links of nd,
nodes 5, 12, or 13, would be valid.

Another aspect of this kind of overlays is that the outgoing links of a node are not
exactly at 2i distances, so the request does not necessarily follow 2i jumps. This fact
prevents from applying a deterministic routing strategy to exploit other valid paths.

All these observations uncover the mismatch between the goal of providing fault
tolerance and the means used for lookup with greedy routing. The extensions for fault-
tolerance may give good results, however, if better support for exploiting alternative
paths is already considered at overlay design time, even better results may be obtained.

3.2 The Hypercube Structure Approach

Based on the above observations, we seek for a structure that best provides alternative
paths, where the routing algorithm is able to process in any order the digits from the
source identifier to match that of the destination. In such cases, the total number of

Improving the Dependability of Prefix-Based Routing in DHTs 213

available paths is m!, where m is the number of digits in the identifier sequence. After i
bits have been treated, the number of available paths is (m − i)!. Such a routing pro-
cedure that exploits alternative paths is well achievable in hypercube structures. Some
hypercube based systems were already described in Section 2.

In a hypercube architecture with N nodes, each node has a O(log N) node degree,
where the number of neighbors is equal to the number of dimensions. Each neighbor
has an identifier that differs by exactly one digit.

The problem of using the hypercube for an overlay is that it requires complex proto-
cols to deal with churn. When new peers join, the number of dimensions has to be in-
creased. Conversely, when peers leave the system, the overlay has to treat the dimension
split problem. Because of these problems and the high costs their treatment induces, de-
terministically constructed hypercubes are not suitable to provide fault tolerance under
high churn.

However, to take advantage of the (structural) availability of alternative paths for
routing in a hypercube, while avoiding the drawbacks of increased maintenance costs
for rearranging the structure in case of churn, one could use an approximation of a
hypercube that is built probabilistically.

In our study, we seek to achieve this by assigning non-random IDs when peers join.
The idea is to assign to a new node nb an ID that is exactly at a power of 2 away
from an existing random node na. Thus, a hypercube vertex is set to nb and an edge
is created from na to nb. As more peers join, new dimensions of the hypercube fork
spontaneously by populating its edges and vertexes. In terms of the overlay structure,
after node nb joins the system, node na will have nb at entry i of its routing table, and nb

will be at exactly 2i away from na.
Figure 5 illustrates this structure, which we call a pseudo-hypercube. It has an al-

most deterministic node placement, and as a consequence, we can route almost deter-
ministically. Greedy routing is still supported, but we can also use non-greedy routing
algorithms that are more efficient for fault tolerance, as presented in the next section.

4 hypeer Design

Our design goal is based on the discussion in the previous sections. We propose hy-
peer, a DHT with a ring structure embedded in a directed pseudo-hypercube supporting
several routing strategies.

The nodes and the keys have IDs in an identifier space of length 2m, where m is the
number of bits in the identifier sequence. The responsibility for a key is given to the
first node that follows the key on the ring (as it is the case in Chord).

In contrast to the common method of using a hash function to map the nodes on
the ring, we choose to assign the node identifiers in a way to approximate a hypercube
structure by trying to maintain an even inter-node distance equal to a power of 2 despite
churn. We call inter-node distance the distance between a node and its predecessor.

Each node has a link to its predecessor and successor on the ring (see Figure 4). The
routing table of a node contains entries which are, with a high probability, at exactly 2i

away, with i from 0 to m − 1. These are the neighbors of the node in the hypercube.
The links between a node and its neighbors are shown with arrows in Figure 5. The

214 S. Serbu, P. Kropf, and P. Felber

000...

100...

110...
001...

011...

010...

111...

Fig. 4. The ring structure

010...

000... 100...

111...

110...

011...

001...

Fig. 5. The Hypercube structure

nodes 2m−1 away from each other have bidirectional links (they are in “diametrical
opposition” on the ring) and are denoted by black arrows. The gray arrows are the other
links in the hypercube approximation.

The routing procedure is based on replacing the bits from the source ID by the bits of
the destination ID, i.e., bit i from the identifier sequence is replaced through a jump to
a node at 2i away. Our hypercube structure provides in most cases links towards nodes
that are exactly at 2i away. However, in some cases, and mostly for small values of i,
links may point to nodes that are not exactly at 2i away. Thus, a jump to such a node
would affect also some of the bits at the right-hand side of the replaced bit. One or more
of the bits on the left side may be affected only when changing a bit from 1 to 0, because
of the resulting carry over. Thus, in hypeer there are not only links towards nodes with
only one bit changed as in a proper hypercube. To construct a proper hypercube, the
ith link should point counterclockwise if the ith bit is set, and clockwise if it is not set,
which would create double links between nodes.

A fault tolerant routing strategy must provide a large number of alternative paths even
when the request is close to the destination (close means a small number of digits that
are different in the source and destination identification sequences). As a consequence,
we propose a solution where the request follows small steps in the beginning of the
routing path (where the low-order digits are treated) and then longer steps (treating
higher-order digits). It is clear that when no failures occur, the strategy gives similar
results to greedy routing, because the number of hops to route a request is of the order
O(log N), assuming that we can treat the bits in any order. However, when failures do
occur, this strategy exploits a much higher number of possible paths, as the requests are
routed around failures with a higher probability.

In short, we are applying simple modifications to Chord-like systems. Chord cannot
easily exploit redundant paths because of its non-determinism in node placement that
does not permit treating digits in any order, so we are fixing this by adding some deter-
minism in the placement of the nodes. This is obviously advantageous for the routing
strategy due to the control of node position. Besides fault tolerant routing, this structure
can also adopt a routing strategy to balance the traffic load on the path towards a popular
destination.

Improving the Dependability of Prefix-Based Routing in DHTs 215

4.1 hypeer Overlay

Our system has the IDs assigned deterministically, with the purpose of creating a hyper-
cube-like structure. The main idea is to maintain 2i links between the nodes and implic-
itly an inter-node distance of a power of 2 in order to take advantage of the redundant
paths of the hypercube for routing.

We start dealing with fault tolerance at design time of our overlay. As explained
before, we do not use a hash function to map the nodes on the ring. When a new node
arrives in the system, it sends a request to a random key (e.g., obtained by hashing the
IP address of the new node). The node responsible for that key adds the new node as
a 2i neighbor. A new vertex and the edge between the existing node and the new node
are thus populated. The joining procedure is shown in Algorithm 1.

Algorithm 1. Node na receives a Join Request
0: {First decide whether na or its predecessor assigns the ID}
1: if dist(pred(na), na) > dist(na, succ(na)) then
2: Send the request to pred(na)
3: else
4: {Check each entry x of the routing table RT , starting from the highest entry}
5: entry ← x, where RT (x) �= na + 2x

6: if entry found then
7: Respond with nb ← na + 2x

8: RT (x)← na + 2x

9: else
10: Send request to pred(na)
11: end if
12: end if

A new node nb that wants to join the system has to issue a join request towards a
random ID. The request is routed in the system until it arrives at node na which is
responsible for that ID.

Node na consults its routing table to find the entry that has not yet a node that is
exactly at a power of 2 away, by starting with the highest entries pointing to the furthest
away nodes (lines 4-5). We thus give priority for perfect 2i edges between nodes which
are at long distances from one another on the ring (high i), because these are not affected
by the inter-node distance that can vary. Node nb will be assigned with an ID equal
to (na + 2x), where x is the entry found (lines 7-8).

In the case that na has at each entry x a node at exactly 2x away, the joining request
is sent to its predecessor (lines 9-10).

Node na is chosen randomly, as the associated ID was chosen randomly. As an opti-
mization, with the objective to not partition the ID space into small pieces, na checks if
its predecessor pred(na) is further away than its successor succ(na), and in such a case,
it asks pred(na) to assign the ID (lines 0-2). Of course, more complicated schemes to
choose this node may be used for a better approximation of the hypercube. However,
randomness gives good results, as we show later in Section 5. Besides creating the
hypercube-like structure, this scheme also assures the uniformity of the distribution of
the node IDs in the identifier space.

After nb obtains its ID, it will start populating its routing table. Node nb issues re-
quests towards IDs that are 2i away from itself, where i goes from 0 to m − 1. Node na

216 S. Serbu, P. Kropf, and P. Felber

will wait for a short period of time before updating its routing table with nb to allow nb

to create its own routing table.
To detect node joins and departures, the routing tables are periodically updated, in

the classic way of issuing requests to the ID that each entry should accommodate, i.e, a
node n sends requests to all n + 2i, with i from m to 0.

4.2 Routing Strategies

First we present our fault tolerant routing strategy that may be used with the hypeer
overlay, and then we discuss other routing strategies, pursuing other goals such as traffic
load balancing.

Fault-Tolerant Routing (FT-routing)

Algorithm. For fault tolerance, we want to take advantage of all available incoming
links of a destination, starting from the source node and going clockwise towards the
destination on the ring.

The idea of the routing algorithm is to reach the nodes that have direct 2i links
towards the destination. These nodes are, with a high probability, the nodes that are
responsible for the IDs keyId−2i, where keyId is the requested key and i goes from 0
to t − 1. The value of t depends on the distance between the source node and the key,
where keyId−2t represents the furthest incoming link of the destination that is between
the source and the destination on the ring.

The routing algorithm at node nx is presented in Algorithm 2. We show later in this
subsection how we deal with node failures.

Algorithm 2. FT routing algorithm
1: upon receive lookup(T, key) at node nx

2: {Receive request}
3: if pred(nx) < key ≤ nx then
4: {Node nx is responsible for key: success}
5: else if T ≤ pred(nx) < key then
6: {Went too far: send to the predecessor}
7: Send lookup(T, key) to pred(nx)
8: else
9: {Compute next hop}

10: FT-route(key, key)
11: end if
12:
13: function FT-route(T, key)
14: if ∃nk ∈ RT s.t. nk − range < T ≤ nk then
15: {This node is probably responsible for T}
16: Send lookup(T, key) to nk

17: else
18: {Compute new T}
19: T ← T − 2i, where i is max in T − 2i > nx

20: FT-route(T, key)
21: end if

Upon receiving a lookup request, node nx directly responds to the request if it is
responsible for the key (lines 1-4) and the request path ends here.

Improving the Dependability of Prefix-Based Routing in DHTs 217

At each node nx from the request path, a next node on the request path towards
the requested key needs to be found. We use a recursive function, which we call FT-
route(T, key) with parameters T and key. It terminates when it has found a node to
forward the request to. T is a target (an identifier) that we aim to reach on the ring
from nx in a single hop. If nx is not able to directly send the request to T , a new target T
is set and the function is called recursively. In the first call of FT-route(T, key) at any
node, T is set to the destination key, and then T decreases in the subsequent recursive
calls with the largest power of 2 possible such that T is still between the source and
the destination on the ring. With each call, the power of 2 decreases and the target gets
closer to the source.

In the following, we say that a node is responsible for an identifier, if the identifier is
between the node and its predecessor on the ring (in the same way as we map keys to
nodes). Furthermore, we say that a node is probably responsible for an identifier when
the identifier is between the node and an estimation of the position of its predecessor on
the ring. When we are not aware of the position of the predecessor (as it is the case for
the predecessors of the nodes in the routing table) we use an estimation of the inter-node
distance.

Node nx needs to find a node nk from its routing table which is probably responsible
for the target T . The condition at line 14 is satisfied, if T lies on the ring between
nk − range (the assumed predecessor node of nk, where range is the estimation of
the inter-node distance) and nk. Since the nodes are uniformly distributed on the ring
and because a large enough estimation of the inter-node distance shall be used, we
set range as the maximum between the inter-node distance of nx and the inter-node
distance of its successor. This can be easily computed since nx knows its predecessor
and successor IDs. Other values might be used as well, for example the average of the
inter-node distance of all the nodes that the request passed through, which of course
would add this value to the request message.

The chosen estimation works well in most cases due to the fact that the inter-node
distance is the same for the majority of the nodes, as we will show later in Section 5.
However, in some cases it happens that the request is sent further away than the node
responsible for the target. The request is then sent to the responsible node by using
one or more (but only few) hops through predecessor links (lines 5-7). To treat such
cases, the target itself is added to the request message when forwarding the request to a
probably responsible node for a target (line 16).

If nx did not find a suitable node in its routing table to forward the request towards T ,
it will set a new target, which is 2i before the current target on the ring. For the fault
tolerance goal, we choose i as the maximum value between 0 and m − 1 such that the
new target is still after nx on the ring (lines 18-20). This assignment for recursive calls
creates a virtual path where each hop is a power of 2, and moreover, the powers of 2
increase with each hop.

Note that the algorithm provides flexibility for the order of fixing the digits. If we
choose i as the minimum value, this leads to a form of greedy routing. Moreover, if i is
chosen randomly, this leads to a routing strategy that balances the load on the incoming
links of the destination. This latter strategy is further detailed in the next subsection.

218 S. Serbu, P. Kropf, and P. Felber

Treating Failures. In the following, we show how the above algorithm deals with the
failures of nodes in the system.

If no entry from the routing table of nx points to a live node (from those who point to-
ward nodes before the destination on the ring), we say that a dead-end has been reached.
Then, the request is backtracked to the previous node in the request path. The same hap-
pens when the request needs to be sent to the predecessor (line 5 of Algorithm 2) and the
predecessor is down or a dead-end. To be able to use backtracking, before forwarding a
request, a node adds its ID to the request message.

However, if the suitable entry is down or a dead-end, but other nodes from the rout-
ing table are not, nx chooses another entry as follows. If nx has found a node that is
probably responsible for the target, but it is down or a dead-end, it will choose a node at
a higher entry (starting from the following entry, going up), in order to ”jump” over that
target. If no node is found suitable from the higher entries (i.e., alive, not a dead-end
and before the destination on the ring), a smaller entry (starting from the previous entry,
and decreasing) is used. We choose first the higher entries and then the smaller ones
because we want the request to quickly by-pass the faulty target, and not to increase un-
necessarily the path length in the attempt to reach the same target that seems to belong
to a dead node.

Without loss of generality, we do not consider failures of the destination node, as we
treat fault tolerance from the routing point of view. If the destination node is down, its
keys are lost anyway. Any request for such a key would then result in a non successful
lookup.

Other Routing Strategies

LB-routing and GR-routing. Alternative routing strategies to the FT-routing algorithm
described above include the following:

– random-order routing (LB-routing), where the digits are replaced in a random or-
der, but not necessarily independently. The fault tolerance is not as high as for the
FT-routing, but considers traffic load balancing on the incoming links.

– greedy routing (GR-routing), where the digits are treated from left to right. Our
overlay supports also greedy routing, however, neither fault tolerance nor load bal-
ancing are expected.

Besides fault-tolerance, another advantage of alternative paths is to reduce the traffic
load of the last nodes on the paths to a popular key. This is the reason for including
LB-routing as a routing strategy in hypeer. LB-routing implements the same algorithm
as FT-routing (presented in Algorithm 2), with the difference that at line 19, the new
target T is chosen randomly. However, to maintain the same virtual path at each node,
the targets have to be chosen the same at each node. Otherwise, setting different targets
at each hop might increase significantly the path length.

The results for LB-routing have also been included in the experiments presented in
Section 5 as a compromise between GR-routing and FT-routing.

To additionally improve fault tolerance, several copies of the same request may
be forwarded using a different routing strategy. This technique is called redundant
routing[9] or parallel routing[18].

Improving the Dependability of Prefix-Based Routing in DHTs 219

5 Evaluation

In this section we analyze hypeer, a structure with a uniform partitioned space, and FT-
routing in hypeer, as a good routing strategy with or without failures. To present the
results, we compare FT-routing with GR-routing and LB-routing.

5.1 Overlay Structure

Our approach for assigning node IDs to new nodes ensures that they are at a distance
of 2i from some existing node. Further, on expectation, nodes are uniformly distributed
in the identifier space. To validate this claim, we have simulated 10,000 node arrivals
in an identifier space of 2m, m = 20 and then computed the distribution of inter-node
distances.

 0

 10

 20

 30

 40

 50

 60

2182162142122102826242220

P
er

ce
nt

 o
f n

od
es

Distance from predecessor after 10,000 nodes joined the system

distance to successor

Fig. 6. Inter-node distance for 10,000 nodes
in an identifier space of 220

 0
 10
 20
 30
 40
 50
 60

2182162142122102826242220

P
er

ce
nt

 o
f n

od
es

(b) After 5,000 times a node left and a new node joined the system

distance to successor

 0
 10
 20
 30
 40
 50
 60

2182162142122102826242220

P
er

ce
nt

 o
f n

od
es

(a) After 5,000 nodes left and then 5,000 nodes joined the system

distance to successor

Fig. 7. Inter-node distance under churn

As can be seen in Figure 6, among all 20 possible distance values, most of the nodes
(roughly 95%) have an inter-node distance of either 26 or 27. Having two values with
consecutive exponent for inter-node distance is expected, because of the continuous
change in the hypercube structure caused by the new nodes arrival.

With this overlay we further analyzed the inter-node distance when dealing with
churn. The results of two scenarios are depicted in Figure 7: (a) a scenario where 5,000
nodes leave and then 5,000 nodes join, and alternatively (b) a scenario with 5,000 suc-
cessions of a leave followed by a join. Here, we observe that churn is only slightly
affecting the overlay: the inter-node distances remain almost the same.

Next, we analyzed the number of outgoing links that are at exactly 2i away from the
current node, as shown in Figure 8. The maximum number of different outgoing links
is 14 (out of m=20), because at least the first 6 entries of the routing tables point to
the successor node, as a direct consequence of the inter-node distance of minimally 26.
This explains the 0-percentage of nodes having a number of outgoing links larger or
equal to 15 (the right-hand side of the graph), and also the smaller percentage for 14
outgoing links. The main observation is that the graph has an increasing tendance: a

220 S. Serbu, P. Kropf, and P. Felber

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

 o
f n

od
es

n

percentage of nodes with n exact links

Fig. 8. Percent of nodes with the same number
of outgoing links at exactly powers of 2 away,
for 10,000 nodes in an identifier space of 220

 0
 5

 10
 15
 20
 25
 30

 0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

 o
f n

od
es

(b) After 5,000 nodes left and then 5,000 nodes joined the system

percentage of nodes with n exact links

 0
 5

 10
 15
 20
 25
 30

 0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

 o
f n

od
es

(a) After 5,000 times a node left and a new node joined the system

percentage of nodes with n exact links

Fig. 9. Percent of nodes with the same number
of outgoing links at exactly powers of 2 away
under churn

higher percentage of the nodes have a higher number of outgoing links towards nodes
at 2i away. This means that the hypercube edges at 2m−1 are populated first, and then
the lower ones. The same observation holds when analyzing the incoming links.

As in the inter-node distance analysis, churn has only a light effect. Figure 9 shows
the number of outgoing links with the same two scenarios as for Figure 7 for an overlay
with 10,000 nodes. Again, the 0-percentage on the right-hand side of the graphs is
justified by the inter-node distance, which has not been chopped by churn. Moreover,
the graphs continue to show the increasing tendency.

We can thus conclude that our join algorithm produces a structure that is quite uni-
form and regular, which is key to deterministically locate redundant paths and route
around failures.

5.2 Routing Under Failure-Free Operation

The fact that greedy routing results in big steps at the beginning of the request path lim-
its the number of alternative paths if one node in the request path fails. Conversely, FT-
routing proceeds by small steps in the beginning and larger ones in the end. This allows
for a larger number of alternative paths until the destination is reached. Intuitively, FT-
routing can be seen as striving to “keep all options open” while greedy routing would
rather proceed “rushing blindly”. This more careful behavior of FT-routing, which is
key to ensuring fault-tolerant routing, is analyzed next.

In the following experiments, we consider a system with 10,000 nodes and 20,000
objects in a space of 2m, m = 15, where we issue 200,000 requests. When using greedy
routing, a request is sent to the highest node entry smaller than or equal to the requested
key.

We have first run experiments in ideal settings without node failures to analyze the path
lengths of FT-routing and to compare it against those of greedy routing (GR-routing). We
have also included the analysis of LB-routing. Table 1 shows the average and the vari-
ance for the path lengths obtained with the three routing strategies in hypeer. We note
that the results obtained do not differ significantly, which indicates that FT-routing and

Improving the Dependability of Prefix-Based Routing in DHTs 221

LB-routing perform well under failure-free operation. The higher average and variance
of FT-routing can be explained by the fact that it can better locate and exploit very short
paths, but at the same time some paths are longer than on average because of the incom-
plete hypercube embedding.

Table 1. Statistics for path length with
no failures

Routing Strategy Average Variance

GR-routing 7.27 3.5
LB-routing 7.46 4.5
FT-routing 8.66 24.8

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

C
D

F
of

 r
ec

ei
ve

d
re

qu
es

ts
 (

%
)

Incoming link number i (distance=2i)

GR-routing
LB-routing
FT-routing

Fig. 10. Comparison between the percentage of re-
ceived requests per incoming link (2i) using GR-
routing, LB-routing and FT-routing with no failures

We have then analyzed the average load on the incoming links of the destinations of
the issued requests, by repeating the experiment shown in Figure 2 with FT-routing (the
results for greedy routing are shown again for comparison purposes). Additionally, we
present the results for random routing. Figure 10 shows that, with FT-routing, the in-
coming links that are used the most are the furthest-away ones from the destination. The
reason is that the requests are sent from the source to the closest node that has a direct
link to the destination. This trend contrasts with GR-routing, which essentially relies
upon close links to destination. LB-routing, where the next hop is chosen at random
among the nodes that have a link to the destination, represents a compromise between
GR-routing and FT-routing and balances the load on all incoming links.

We have also analyzed the case where the request has to backtrack along predeces-
sors (because of an inappropriate estimation of the inter-node distance). Under the same
experiment with 200,000 requests, the real owner of the target is only one or at most
two steps away. Moreover, it happens with only a small probability of 6%. This means
that the estimation of the inter-node distance performs well.

5.3 Routing Upon Failure

To validate the robustness of our routing algorithm, we have run experiments when a
given proportion of random nodes fail simultaneously. This adverse scenario simulates
correlated failures, e.g., network partitions. We have observed how effective the three
routing strategies (GR-routing, LB-routing and FT-routing) are at reaching a given key
right after the node failures occur, i.e., before the routing tables have been repaired.

222 S. Serbu, P. Kropf, and P. Felber

Failure Rates. We deploy two types of experiments under failures. First, we analyze
the results for the base algorithms, and next we apply backtracking to each of them. In
all experiments we vary the proportion p of failed nodes from 10% to 90%.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pe
rc

en
ta

ge
 o

f
Fa

ile
d

R
eq

ue
st

s

Percentage of Failed Nodes

GR-routing
LB-routing
FT-routing

Fig. 11. Failure rates: Comparison between GR-
routing, LB-routing and FT-routing, without us-
ing backtracking

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pe
rc

en
ta

ge
 o

f
Fa

ile
d

R
eq

ue
st

s

Percentage of Failed Nodes

GR-routing, BKT5
LB-routing, BKT5
FT-routing, BKT5

Fig. 12. Failure rates: Comparison between
GR-routing, LB-routing and FT-routing, us-
ing a backtrack chain of 5 nodes

Figure 11 shows the comparison between the failure rates of the three routing strate-
gies without using backtracking. For up to 60% node failure, FT-routing has a percent-
age of failed requests equal to half of the one obtained by GR-routing. From 70% on,
the results are still better for FT-routing. As expected, LB-routing has a percentage of
failed requests between GR and FT routing. Not surprisingly, at high percentage of node
failures, the results are similar for all three routing strategies.

Figure 12 shows the same comparison, but this time all routing strategies use back-
tracking. In the experiments, we have used a backtrack chain of 5 nodes. The results are
obviously better for each of the three routing strategies, again FT-routing obtaining the
best results, and LB-routing being in the middle. However, we observe that their results
differ much more this time. Backtracking acts much better with FT-routing than with
GR-routing, because, when the request is close to the destination and has to backtrack,
the jumps back are larger in the case of FT-routing (un-fixing the high order bits), so a
larger number of redundant paths can be exploited thereafter. For FT-routing, only a few
requests are lost for failure rates of up to p=70%. For instance, with 50% node failure,
FT-routing reaches almost always the destination (only 1.4% of the requests fail) while
GR-routing can only deliver one third of the requests (30.45%). The low percentage of
failed requests for even high rates of failures demonstrates the high dependability of
FT-routing.

We have compared our results with the results obtained by Aspnes et al. in [17].
The authors showed that backtracking is a good solution to exploit alternative paths,
and moreover they applied heuristics to the routing table maintenance. Their results are
good, however we obtain better results with FT-routing for up to 70% node failures.

Average Path Length. The average path lengths for the two types of experiments
(without and with backtracking) are shown in Figures 13 and respectively 14.

Improving the Dependability of Prefix-Based Routing in DHTs 223

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

Pa
th

 L
en

gt
h

fo
r

Su
cc

es
sf

ul
 R

eq
ue

st
s

Percentage of Failed Nodes

GR-routing
LB-routing
FT-routing

Fig. 13. Average Path length: Comparison be-
tween GR-routing, LB-routing and FT-routing
under failures, without using backtracking

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

Pa
th

 L
en

gt
h

fo
r

Su
cc

es
sf

ul
 R

eq
ue

st
s

Percentage of Failed Nodes

GR-routing, BKT5
LB-routing, BKT5
FT-routing, BKT5

Fig. 14. Average Path length: Comparison
between GR-routing, LB-routing and FT-
routing under failures, using backtracking
with 5 nodes

When backtracking is not used (Figure 13), as expected, the path length for GR-
routing is the smallest. The increase in the path length of FT-routing is justified by the
additional requests (compared to GR-routing) that are successful. For LB-routing, the
path length is the longest. This is mostly caused by the random choice of the bits to
be treated, which can lead in some cases to too small order bits to be treated and thus
implying hops that are smaller than the inter-node distance.

Backtracking significantly increases the path lengths of all routing strategies (Fig-
ure 14), since the jumps back are also counted. The results for FT-routing and GR-
routing are getting closer. This can be justified by the requests that backtrack when
they are close to the destination. In such cases, GR-routing makes smaller hops than
FT-routing, and so it needs more hops to go back to a certain node.

 0

 50

 100

 150

 200

201612840

N
um

be
r

of
 H

op
s

Number of Requests (CDF, x104)

CDF Requests per Hops

 0

 10

 20

 30

 40

 50

1612840

Fig. 15. CDF of the number of requests per num-
ber of hops, where 200,000 requests were issued
with a maximum acceptable path length of 200
hops and of 50 hops in the inner graph

Table 2. Percentage of failed requests when
using a backtrack chain of 5 nodes and dif-
ferent maximum acceptable path length

Routing Req Failures Path avg

FT, max 200 hops 11.86% 34.3
FT, max 50 hops 29.50% 23.0

GR, max 200 hops 54.78% 27.8

In all experiments, we have set the maximum acceptable path length to 200 hops.
Figure 15 shows the cumulative distribution function (CDF) of the number of requests

224 S. Serbu, P. Kropf, and P. Felber

per number of hops under 70% node failures and using a backtrack sequence of 5 nodes
(the total number of issued requests is 200,000). In this case, 11.86% of the requests
failed (as shown earlier in Figure 12). The average path length is 34.3 hops. There is
only a small part of the requests that have very long paths (notice the very quick in-
crease in the path length at the right-hand side of the graph). Thus, we choose to limit
the maximum path length to 50 hops (see inner graph), so the requests with path length
larger than 50 hops are considered as failed. In this case, the average path length de-
creases to 23 hops (as expected, since the increase in path length until 50 hops is almost
linear), but of course the percentage of failed requests increases. It becomes 29.5%,
which is still smaller than in case of GR-routing. Table 2 summarizes these results.

The Choice for Redundant Routing. At very high failure rates (80% and 90%) exper-
iments showed that the request failures tend to be independent of the proximity between
the source and the destination. However, the request failures experienced by FT-routing
for node failures of up to 70% were identified as being mostly due to the proximity
between the source and the destination, which severely limits the number of redundant
paths. In such cases, our algorithm could be extended to also search for paths that tra-
verse nodes outside the range between source and the destination, i.e., by initially mov-
ing away from the destination. For example, for small distances between the source
node and the destination, redundant routing could be applied, by sending a request us-
ing FT-routing, and another request through the highest routing table entry available,
and then apply FT-routing to take advantage of all incoming links of that particular
destination. This could also be an alternative solution to using backtracking.

6 Conclusions

The analysis on the fault-tolerant infrastructures and routing strategies shows that the
support for fault-tolerance cannot be an afterthought when willing to provide a high
fault tolerance at low costs. Greedy routing is simple, however for fault-tolerance, it
lacks of dependability.

Consequently, we designed both the infrastructure and the routing strategy of our
overlay with the goal to offer the support for fault tolerance. We applied simple modifi-
cations to Chord-like systems. Chord cannot easily exploit redundant paths because of
its non-determinism in node placement that does not permit treating digits in any order,
so we are fixing this by adding some determinism in the placement of the nodes. This
means that we may control the position of the nodes on the ring, which is obviously ad-
vantageous for the routing strategy. In contrast to the common method of using a hash
function to map the nodes on the ring, we approximate a hypercube structure by trying
to maintain an even inter-node distance equal to a power of 2 despite churn. Then, we
are also modifying the routing protocol to exploit alternative paths by taking into ac-
count all possible incoming links of the destination starting from the source node. The
rate of request success is much higher, and the maintenance cost remains low, since no
additional structures that need to be maintained are required.

Our experiments clearly demonstrate that the FT-routing algorithm, combined with
uniform space partitioning that allows us to route deterministically via multiple paths,
provide an excellent resilience to failures.

Improving the Dependability of Prefix-Based Routing in DHTs 225

References

1. Kaashoek, M.F., Karger, D.R.: Koorde: A simple degree-optimal distributed hash table. In:
Proceedings of the 2nd International Workshop on Peer-to-Peer Systems, pp. 323–336 (2003)

2. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the but-
terfly. In: Proceedings of the 21st ACM Symposium on Principles of Distributed Computing,
pp. 183–192. ACM Press, New York (2002)

3. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable
network. In: Proceedings of ACM SIGCOMM, pp. 161–172. ACM Press, New York (2001)

4. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Proceedings of ACM SIGCOMM, pp.
149–160. ACM Press, New York (2001)

5. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218,
pp. 329–350. Springer, Heidelberg (2001)

6. Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A., Kubiatowicz, J.: Tapestry: A resilient
global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communi-
cations 22(1), 41–53 (2004)

7. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based on the
xor metric. In: Proceedings of the 1st International Workshop on Peer-to-Peer Systems, pp.
53–65 (2002)

8. Castro, M., Costa, M., Rowstron, A.: Performance and dependability of structured peer-to-
peer overlays. In: DSN2004. Proc. 2004 International Conference on Dependable Systems
and Networks, pp. 9–19 (2004)

9. Castro, M., Drushel, P., Ganesh, A., Rowstron, A., Wallach, D.: Secure routing for structured
peer-to-peer overlay networks. In: OSDI2002. Proc. 5th Symposium on Operating Systems
Design and Implementation, pp. 299–314 (2002)

10. Locher, T., Schmid, S., Watternhofer, R.: eQuus: A provably robust and locality-aware peer-
to-peer system. In: Proceedings of the 6th International Conference on Peer-to-Peer Com-
puting, pp. 3–11 (2006)

11. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: Hypercup – hypercubes, ontologies and
efficient search on p2p networks. In: Moro, G., Koubarakis, M. (eds.) AP2PC 2002. LNCS
(LNAI), vol. 2530, pp. 112–124. Springer, Heidelberg (2003)

12. Alvarez-Hamelin, J.I., Viana, A.C., Amorim, M.D.: DHT-based functionalities using hy-
percubes. In: Proceedings of World Computer Congress IFIP WCC, vol. 212, pp. 157–176
(2006)

13. Salter, J., Antonopoulos, N.: An efficient fault tolerant approach to resource discovery in p2p
networks. Technical Report CS-04-02, University of Surrey Guildford (2004)

14. Wepiwé, G., Simeonov, P.L.: A concentric multi-ring overlay for highly reliable p2p net-
works. In: NCA, pp. 83–90 (2005)

15. Lam, S.S., Liu, H.: Failure recovery for structured p2p networks: Protocol design and perfor-
mance evaluation. In: Proceedings of ACM SIGMETRICS - Performace, pp. 199–210. ACM
Press, New York (2004)

16. Aspnes, J., Diamadi, Z., Shah, G.: Fault-tolerant routing in peer-to-peer systems. In:
PODC2002. Proceedings 21st ACM Symp. on Principles of Distributed Computing, pp. 223–
232. ACM Press, New York (2002)

17. Aspnes, J., Diamadi, Z., Shah, G.: Greedy routing in peer-to-peer systems. extended version
of Fault-tolerant routing in peer-to-peer systems (2006)

18. Oh, E., Chen, J.: Parallel routing in hypercube networks with faulty nodes. In: ICPADS, pp.
338–345 (2001)

Social Topology Analyzed

Nj̊al T. Borch1, Anders Andersen2, and Lars K. Vognild1

1 Norut AS, Tromsø, Norway
2 Department of Computer Science, University of Tromsø, Norway

Abstract. It is an aspiring trend that Internet users not only consume,
but also produce and share content. This leads to content of great diver-
sity. Personalized navigation is an approach to correctly discover inter-
esting content for the user. This navigation can be based on both search
and recommendation systems.

The Socialized.Net is a social Peer-to-Peer network infrastructure sup-
porting personalized navigation. In this paper, a data trace of a popular
file sharing site is analyzed and shown to have semantically close users.
The data trace is further used for simulations in The Socialized.Net. Ev-
idence is given that a fully distributed social network can be created
based on traffic analysis. This can provide a powerful platform for per-
sonalized content navigation.

Keywords: Social topology, p2p search, personalization, integrity, per-
formance.

1 Introduction

Internet users are moving away from being pure consumers. They are increasingly
also becoming producers of content. While the content creation is performed in
a distributed manner, centralized distribution system is often required. Weblogs
and wikis are examples of centralized services produced and consumed by the
end users.

Peer-to-Peer (P2P) networks naturally map onto a world of fairly equal peers.
P2P can allow users to decouple themselves from the central distributor. It
allows them to freely cooperate, assist and provide services to each other. Such
decentralized solutions could improve the user experience by removing some of
the limitations of centralized solutions. A few examples of such limitations are
bandwidth usage, data storage, freedom of speech and monetary cost.

While P2P networks can provide a powerful and suitable platform for resource
sharing, there are a number of issues to resolve. First, an efficient and easy way
to locate resources is of vital importance. This would likely be a combination
of searching, browsing and recommendations. Second, the peers must have an
incentive to share resources with each other. With little or no incentive, peers are
less likely to donate resources to the network. This limits the total resources of
the network, limiting its usefulness. Third, the network integrity must be high,
ensuring the authenticity of located resources. For example, if a game application
is expected a virus is not acceptable.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 226–237, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Social Topology Analyzed 227

In the next section, related work is presented. In section 3, The Socialized.Net
is introduced. Section 4 presents a real-world data trace and how these data are
used for simulations. A set of performed simulations with The Socialized.Net are
described in section 5. Section 6 presents a set of analysis of both data traces
and the simulated topologies. Finally concluding remarks and future work is
presented in 7.

2 Related Work

In order to perform efficient searches, most centralized solutions use inverted
indexes [1]. These indexes allow fast lookups, providing results for a large number
of users within fractions of a second. In order to provide relevant and high quality
results, these search engines typically pre-calculate a rating for each resource.
Pagerank [2] is an example of such a rating system, giving each web page a certain
rank. Due to their complexity, these ranks cannot be calculated dynamically for
each search, but must be pre-calculated by the system. This makes it difficult
to provide personalized search results. In effect, the more popular resources will
always be preferred, which might not be appropriate given the variance in taste
of the users.

Another approach to searching is to analyze usage patterns. This approach is
often used in recommendation systems. One strength is that such systems can
work fairly well even though the resources themselves cannot be categorized or
analyzed automatically. The way “Last.FM” recommends music based on similar
user’s taste is one example. Another is to recommend a set of head phones when
buying a portable music player, as can be experienced on Amazon.

During the development of decentralized content distribution, a myriad of
Peer-to-Peer networks have been created. Gnutella [3] was the first popular fully
decentralized P2P network with incorporated search facilities. The flooding al-
gorithm used for searching would forward queries to all nodes, thereby giving
fairly good guarantees that available resources would be found. This algorithm
does however not scale very well [4]. Newer versions of Gnutella is based on a
hierarchical structure [5], which to a certain degree improves the scalability of
the system.

The early P2P file sharing network Napster utilized a central server to provide
the index. This server thus became a single point of failure, and the network
failed to operate when the server was stopped [6]. Most large P2P file-sharing
networks utilize servers to locate resources. In order to provide a more stable
infrastructure, these networks can change the set of servers dynamically. A failing
server can therefore be replaced by other servers without inconveniencing the
users.

Distributed hash table (DHT) based P2P networks provide a distributed in-
verted index [7]. DHTs work by using a hash function to locate a responsible
node within the topology. This allows them to provide very efficient key lookup
[8,9,10]. The keys, for example file names, must however be known in advance
in order for these networks to function properly. This leads to a dependency of

228 N.T. Borch, A. Andersen, and L.K. Vognild

some other mechanism in order to search for resources. DHTs also have issues
with incentive. The hashing of keys means that nodes in a DHT network are
typically put in charge of keys they do not have any interest in. The nodes are
thus less likely to spend enough resources to provide a good service.

The popular BitTorrent protocol does not incorporate any search facilities.
This requires users to share meta-information about resources (“torrent” key
files) through other channels. This sharing is typically done via web pages. The
BitTorrent protocol does however have a fairly successful incentive algorithm,
namely the “Tit-for-tat” algorithm [11]. The basic idea is that the faster a peer
can deliver data, the more data it will receive. When resources are scarce, this
algorithm will focus resources to the best connected nodes. These nodes are in
turn likely the best candidates to provide the resources to yet more nodes. The
Tribler project [12] tries to solve the distribution and navigation of torrent files
by providing a recommendation system within BitTorrent client software.

Semantic routing is a different approach to Peer-to-Peer networks. In semantic
routing algorithms, only peers likely to provide relevant information are queried
[13,14]. The number of messages in the system is thus kept low. Semantic net-
works solve incentive issues by keeping the resources at the nodes who find them
interesting. It is of course possible to use a swarming protocol like BitTorrent to
perform the actual data transfer. While efficient, semantic networks are prone to
malicious hosts. Malicious hosts are peers that knowingly provide false informa-
tion or resources. For example, they might send a virus instead of the requested
resource. In semantic networks, malicious nodes might also be able to control
their own location in the topology of the overlay network. This can be done
by pretending to have an interest or providing some popular resources. Their
strategic position can later be exploited in order to perform attacks. Malicious
nodes could therefore be a larger issue in semantic networks than in hash based
or centralized systems.

3 The Socialized.Net

The Socialized.Net [15] is a fully distributed Peer-to-Peer search infrastructure.
It is based on a semantic routing protocol utilizing semantic similarity and a
locally calculated node preference.

Semantic knowledge of nodes is gathered by observing the traffic in the net-
work. For each neighbor, a node weights each observed keyword by how often
it is seen. These keyword statistics are the base for the semantic similarity of
nodes. When routing a query, a score is calculated for each neighbor as the sum
of the intersection of keywords of the query and the neighbor. The semantic
routing is thus performed dynamically for each query.

Statistics about the behavior of neighbors is also gathered. These statistics
are used to calculate a set of ratios. The ratios are only used locally, and as such
are not communicated between nodes.

Social Topology Analyzed 229

– Contribution Ratio
describes whether a neighbor contributes to the network by providing replies
as opposed to only sending queries.

– IGot ratio
describes whether the node has resources of interest for the neighbor.

– YouGot ratio
the reverse of IGot ratio, describing whether the neighbor has resources of
interest for the node.

– Relay ratio
seeks to prioritize direct contact between nodes by penalizing neighbors that
require relaying of large numbers of messages.

– Bogus ratio
measures the ratio of how many uninteresting announcements and replies
are received from a neighbor.

The ratios are summarized in a locally calculated, subjective preference [16].
Nodes will gossip about their preference with their neighbors, spreading repu-
tations. This gossip is piggy-backed on liveness messages, thereby limiting the
impact on network usage. Preference and reputation is calculated periodically.
Direct interaction is also allowed, enabling users or applications to change the
preference for a node. For example, an application can ban nodes that provide
files with mismatching file types and extensions.

The preference and reputation together allows each node to rate all its neigh-
bors. When routing queries, this rating is added to the dynamic semantic score
of each neighbor. This allows nodes that statistically has been seen to be con-
tributing and often provide good results to be prioritized. Similarly, misbehaving
nodes can be penalized.

4 Filelist.org Analysis

Social networks are graphs that can exhibit small world properties [17]. This phe-
nomena states that social networks is an efficient way to find short paths through
graphs based largely on local information. The success is however dependent on
incentive [18] and the presence of “long links” [19]. A long link is defined as a
binding between two nodes that are topologically placed a substantial distance
away from each other.

In semantic networks, the small world phenomena is exploited by using simi-
larity in interests in order to group nodes. Locating a resource is thus question
of finding a group with corresponding interests. An experiment analyzing the
Gnutella network for illegal pornography [20] demonstrated tight grouping be-
tween nodes sharing such content. It is believed that similar grouping also exists
for other subjects.

In order to verify grouping on interests, we have performed data analysis
on trace data gathered from the popular “FileList.org” BitTorrent file sharing
site. “FileList.org” has a limit of 100 000 registered users (beginning of 2006).

230 N.T. Borch, A. Andersen, and L.K. Vognild

The data trace was performed by the University of Delft, the Netherlands. The
trace was performed by crawling the “FileList.org” website repeatedly. Lists
of available files were refreshed every 200 seconds, current download statistics
approximately every 10 minutes.

The analysis was performed on three months of trace data from January 2006
through March 2006. The data set contains 87 129 distinct nodes sharing a
total of 3 275 resources described by 3 290 distinct keywords. Each resource is
described by 1 to 12 keywords, with an average of 3.7.

The data has been analyzed with respect to grouping nodes by keywords.
By doing this, we can verify the assumption that nodes can be grouped based
on semantic distance. As nodes are likely to keep an interest for longer than it
takes to download a file, we do not require two nodes to download a file at the
same time in order to share interest in the file. The number of shared keywords
between each node was counted and the 25 top neighbors of each node were
stored.

Due to the computational power and memory demands of simulating such
a vast amount of nodes, we did a random selection of 10% of these nodes for
simulation. In the figures presented below and in the simulation, these 8 713
nodes were used. These nodes shared the same resources as the complete set of
nodes. This is due to the relatively small number of resources in the community.
In fact, during the three months of monitoring, the average number of new
resources was only 36 per day.

The number of nodes having at least one resource in common were then
counted. The results are shown in figure 1, and show that a substantial amount
of common resources are present. This is expected, as the number of resources is
low in comparison with the number of nodes. More than 90% of the nodes have
more than 250 nodes sharing common resources.

Fig. 1. Resource distribution

Social Topology Analyzed 231

5 Simulation

In order to get a good understanding of how The Socialized.Net performs, the
trace data described above was used in simulations. Only information about
“which nodes shared what resources” was extracted from the trace, no actual
measure of node activity was available. For the simulation, a set of nodes was
therefore selected to be malicious and another set of nodes to be free-riders.
This was done to verify whether The Socialized.Net is able to efficiently handle
malicious and free-riding nodes. The malicious nodes should receive the worst
ratings in order to limit their impact on the network. Free-riders should also
receive bad ratings as they are less likely to be of use. All nodes with ID less than
10,000 were defined as malicious. This is a set of 51 nodes (0.6% of the simulated
nodes) that will reply to any query with resources that does not match the query
itself. All nodes with ID of over 800 000 is deemed a free-rider, and will as such
not reply to any query. This is approximately 2 600 nodes (30% of the simulated
nodes). For the FileList.Org community, these numbers are likely smaller due to
the internal rating and subsequent banning of free-riders and inactive users. The
selection does however allow us to monitor how the different routing protocols
handle malicious and free-riding nodes.

A custom cycle based simulator was written in order to limit the memory
footprint while maintaining complete neighbor lists for all nodes. The simulator
was largely written in SQL, utilizing a database to efficiently maintain the state
of the network. This was done due to the large amount of gathered state in
the network. During each cycle, each 20th node generated a query with a set of
3 keywords selected from the node’s associated resources. All nodes are equally
active, so after 20 cycles all nodes would create and transmit a query. In order to
bootstrap the network, a central node was used. The Socialized.Net bootstraps
in a similar way, even though possibly using more than one bootstrapping node1.

Three different routing algorithms were tested: random routing, semantic
routing and social routing. Flooding (sending to all neighbors) was not possible
due to massive resource usage.

A random routing protocol would select 6 random neighbors. A purely seman-
tic routing algorithm was also implemented. This algorithm would select the se-
mantically closest neighbors based on the query being routed, as described earlier.
3 to 6 neighbors were selected for routing. More neighbors were selected if they
were believed to be semantically closer. This basic semantic routing does not de-
tect free-riders or malicious nodes. Replies that are invalid are discarded, and both
free-riders and malicious nodes will slowly be integrated into the infrastructure.

Social routing was implemented by also including preference and reputation.
This routing is expected to perform similarly to the pure semantic routing albeit
with malicious nodes rated lower. Free-riders should also be penalized, although
they should be preferred over malicious nodes.

1 The Socialized.Net also uses local node discovery to allow nodes on local networks to
introduce each other into the network. This reduces the load on the bootstrapping
nodes as the network grows in popularity.

232 N.T. Borch, A. Andersen, and L.K. Vognild

Fig. 2. P@10

The simulations were run for 300 cycles. Every 10th cycle, a set of test searches
were performed. The same set of nodes were used for all searches. A query would
be created by selecting a set of random keywords within the interest field of the
node. A full P2P search would then be performed, without updating the simula-
tor state. The set of “relevant documents” for the query was then selected from
the database. The precision of the top 10 resources returned by a search could
then be calculated as

p@10 = RetrievedDocuments×100
RelevantDocuments

As illustrated by figure 2, the two semantic protocols follow each other closely.
They are very quickly able to provide 45% relevant results. As we have relatively
few resources in the system, the relevant set for each query is quite small. This
means that if only a very few resources are missing from the reply set, the value of
P@10 will drop significantly. The random routing performs very badly. A possible
explanation can be that as the neighbor cache grow, the random routing selects
between more neighbors. As we only perform searches with relatively few nodes,
we should see peaks when the routing was “lucky” and actually hit one or more
nodes with matching resources.

The semantic algorithms seek to be efficient by limiting the amount of for-
warded queries. In order to verify the protocols, we calculate the Query efficiency
by dividing the total number of queries in the network over the average retrieval
rate. This indicates how efficient each query is in triggering good replies. As
shown in figure 3, the random routing fares very badly. The retrieval rate is
poor at the same time as the number of queries in the system is high. The se-
mantic protocols have similar efficiency, with social routing performing slightly
better due to fewer messages being transmitted.

Social Topology Analyzed 233

Fig. 3. Efficiency of queries, logarithmic function. Lower is better.

Fig. 4. Placement of nodes, lower is better. A high value of “average position” indicate
that the node receive a bad rating.

Finally, we look at the ranking of nodes. Figure 4 shows the average rank
of malicious and free-riders nodes in the system. These are only available for
semantic and social routing, as random routing has no ranking of nodes. It is
evident that semantic routing slowly incorporates the malicious and free-riders
into the network. This is the expected behavior, as these nodes are regarded as
relatively passive nodes. Notice that semantic routing rate malicious nodes as
better than free-riders, due to their higher level of activity. The social routing
ranks these nodes as the least interesting neighbors, as these nodes are not
likely useful. Correctly, malicious nodes receive a worse rating than free-riders

234 N.T. Borch, A. Andersen, and L.K. Vognild

after only 200 cycles. By ranking malicious nodes and free-riders low, the social
routing should provide an efficient search infrastructure even in the presence of
such nodes.

6 Analysis

After the completion of the simulation, the topologies were kept for analysis. A
topology was built for the FileList.org data trace by selecting the 25 semantically
closest neighbors for each node. As all semantic routing is based on Small World
networks, we analyzed both the simulated and the FileList.org topologies for the
expected properties; grouping and separation level.

Node grouping is the presence of clustering of nodes based on semantic sim-
ilarity. Grouping was measured by counting the number of common neighbors,
the more common neighbors, the tighter the grouping. For every neighbor in a
node’s neighbor list, the lists were compared.

In figure 5 the number of common neighbors are shown. Grouping is very high
in the FileList.org topology, with a peak at 19 common nodes. On average, the
neighbor cache of two neighboring nodes are more than 50% equal (as only the
25 closest neighbors were calculated in the data trace).

The random topology is weakly grouped, which is to be expected. Semantic
topology maps very closely to the data trace, with a very high level of grouping.
The social topology is less grouped than the semantic topology. This is likely
an effect of nodes with many resources being preferred over pure semantically
close nodes due to node preference. Nodes with many resources likely have more
diverse interests, filling their neighbor caches with nodes from several different
interest groups. In other words, the “most popular” nodes in the network have
more diverse social networks.

Both the semantic and social topologies has a second peak with extremely
close nodes. This is likely nodes that have only very few interests, thus bonding
very strongly. The FileList.org topology does not have a second peak as only 25
neighbors were calculated, while the simulations allowed 75 neighbors in order
to build the network.

Finally, the level of separation of the topologies was calculated. The separation
level is a measure of the distance between nodes. If a node directly connects to
another node, they have separation 1. If an intermediate node must be used for
the nodes to reach each other, they have a separation of 2. An analogy is that
separation 1 is a “friend”, while separation 2 is a “friend of a friend”.

The separation level was calculated for each node by selecting 10 target nodes
with at least one common resource with the node in question. The number
of hops required to reach the target nodes was then found. This was done by
first searching for the target in the node’s own neighbor cache. If not present,
the level was increased by one and the search extended. For the social routing,
the top 10 neighbors were selected based on node preference. As semantic and
random routing has no node preference, 10 random neighbors were selected. Due

Social Topology Analyzed 235

Fig. 5. Number of common nodes in neighbor caches

Fig. 6. Separation of the different topologies

to the bad performance of random routing, we also tried “flooding”, which used
25 random neighbors in stead of 10. If the target node was within the neighbor
caches of any of the newly selected nodes, the search was successful and stopped.
Otherwise, the search was extended again and new neighbors selected from each
of the previously selected neighbors. This was repeated until either the node was
found or until the set of nodes in the search became constant. In the last case,
no route from the source to the target node was discovered.

Figure 6 shows the separation of the different topologies. Flooding clearly
fares better than randomly routing to only 10 neighbors. Both random routing

236 N.T. Borch, A. Andersen, and L.K. Vognild

approaches found all target nodes. Semantic and social routing fared even
better, with almost all target nodes only two jumps from the node itself. In
the Filelist.org topology only about 3% of the target nodes was located, and was
therefore not plotted. The Filelist.org topology is likely too “narrow minded”,
and is therefore comprised of many small islands. Allowing larger caches should
at least partially remedy this, and adding some random nodes to the routing
could assist in connecting the islands.

7 Concluding Remarks and Future Work

It is apparent that a very popular file sharing community, FileList.Org exhibit
small world network properties. During simulations, both semantic and social
routing fared well, with a short bootstrapping phase. Semantic and social rout-
ing are similar in most aspects, except that social routing rates malicious and
free-riding nodes lower than semantic routing. This should make it possible to
handle such nodes more gracefully. Note that social routing does not require
a global agreement of what “malicious” means. The Socialized.Net allows the
P2P overlay network to be directly influenced by the user’s personal preference
and background. Examples of personal preferences can be cultural differences
(local “pop” music) or technical requirements (file formats or video sizes). For
this paper, purely malicious nodes were used to make it easier to visualize how
preference handle nodes with conflicting agendas or quality demands. Allowing
all nodes to regard these nodes as malicious allows the analysis of their global
rating to validate the effect.

During our simulations, a recall rate of approximately 55% was observed after
300 cycles of simulation both for semantic and social routing. This means that
only half of the relevant resources are found. While this will likely improve as
the network is left to run, it still indicates that The Socialized.Net is likely
to miss some relevant resources during searches. However, the system is able to
handle both malicious and free-riding nodes efficiently without any global rating.
The efficiency, personalization and increased integrity might be of great value for
applications that do not depend upon guaranteed recall rates. The Socialized.Net
demonstrates that a fully decentralized social network can provide a powerful
platform for personalized content navigation.

Future work should include large scale testing of the social search infrastruc-
ture. Also validation of our findings for data sets containing larger amounts of
resources would be of great interest.

Acknowledgments

Thanks to the P2P group at Delft University, NL, specially Dr. Johan Pouwelse
and Jelle Roozenburg for performing and providing the Filelist.Org data trace.

Social Topology Analyzed 237

References

1. Knuth, D.E.: The Art of Computer Programming, vol. 3. Addison-Wesley, Reading
(1973)

2. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web, Tech. rep., Stanford Digital Library Technologies Project
(1998)

3. Oram, A. (ed.): Peer-to-peer: Harnessing the benefits of distruptive technologies,
pp. 94–122. O’Reilly &Associates (2001)

4. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the gnutella network: Properties of
large-scale peer-to-peer systems and implications for system design. IEEE Internet
Computing Journal 6(1)

5. Sigla, A., Rohrs, C.: Ultrapeers: Another step towards gnutella scalability, whitepa-
per, Lime Wire LLC

6. U. C. of Appeals for the Ninth Circuit, A&m records v napster, case number:
00-16401

7. Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Looking up
data in p2p systems. Commun. ACM 46(2), 43–48 (2003)

8. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: Proceedings of the
2001 ACM SIGCOMM Conference, pp. 149–160. ACM Press, New York (2001)

9. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based
on the xor metric (2002)

10. Gupta, I., Birman, K., Linga, P., Demers, A., van Renesse, R.: Kelips: Building
an efficient and stable P2P DHT through increased memory and background over-
head. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, Springer,
Heidelberg (2003)

11. Cohen, B.: Incentives build robustness in bittorrent
12. Pouwelse, J., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., Epema, D.,

Reinders, M., van Steen, M., Sips, H.: Tribler: A social-based peer-to-peer system.
In: Proceedings of the IPTPS 2006 (2006)

13. Joseph, S.: Neurogrid: Semantically routing queries in peer-to-peer networks. In:
Proceedings of the International Workshop on Peer-to-Peer Computing, Pisa, Italy
(2002)

14. Tempich, C., Staab, S., Wranik, A.: REMINDIN’: Semantic query routing in peer-
to-peer networks based on social metaphors. In: Proc. of the 13th World Wide Web
Conference, pp. 640–649. ACM, New York, USA (2004)

15. Borch, N.T., Vognild, L.K.: Searching in variably connected p2p networks. In: Proc.
of the Internation Conference on Pervasive computing and communications, Las
Vegas, Nevada, US, pp. 806–812 (2004)

16. Borch, N.T.: Improving semantic routing efficiency. In: Proc. of the Hot P2P topics
workshop, San Diego, US (2005)

17. Milgram, S.: The small world problem. Psychology Today 61 (1976)
18. Dodds, D.J.W.P.S., Muhamad, R.: An experimental study of search in global social

networks. Science 8,301, 827–829 (2003)
19. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Pro-

ceedings of the 32nd ACM Symposium on Theory of Computing, ACM Press, New
York (2000)

20. Daniel Hughes, G.C., Walkerdine, J., Gibson, S.: Is deviant behavior the norm on
p2p file-sharing networks?

R. Meersman, Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 238–252, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Conflict Resolution of Boolean Operations by
Integration in Real-Time Collaborative CAD Systems

Yang Zheng, Haifeng Shen, Steven Xia, and Chengzheng Sun

School of Computer Engineering, Nanyang Technological University,
Block N4, Nanyang Avenue, Singapore 639798

{zhen0042, ashfshen, stevenxia, czsun}@ntu.edu.sg

Abstract. Boolean operations are widely used in CAD applications to construct
complex objects out of primitive ones. Conflict resolution of Boolean
operations is a special and challenging issue in real-time collaborative CAD
systems, which allow a group of geographically dispersed users to jointly
perform design tasks over computer networks. In this paper, we contribute a
novel conflict resolution technique that can retain the effects of individual
conflicting Boolean operations by integrating them. This technique, named as
CRIBO (Conflict Resolution by Integration for Boolean Operations), is in a
sharp contrast to other ones that either desert the effects of some operations or
keep the effects of different operations in different versions of the design. It is
particularly good for collaborative CAD applications, where integration of
different mindsets is a main source of creation and innovation. This technique
lays a good foundation for resolving conflicting operations in design-oriented
collaborative applications that require collective wisdom and stimulus of
creation.

Keywords: CAD, Boolean operation, conflict resolution, real-time collabora-
tive system, creative design.

1 Introduction

Computer Aided Design (CAD) is the use of a wide range of computer-based tools to
assist engineers, architects and other design professionals in their design activities. In
general, a CAD system is used to design, develop and optimize products, which can
be goods used by end consumers or intermediate goods used in other products. It is
also extensively used in the design of tools and machinery used in the manufacturing
of components as well as in the drafting and design of all types of buildings, from
small residential types (e.g., houses) to large commercial and industrial structures
(e.g., hospitals and factories).

Collaboration has been increasingly needed in the CAD community since early
1990s. As design tasks are getting more and more complex, designers have to work
together more and more often as a team rather than individually. With the help of
computer networks and online collaboration tools, it is possible to effectively fill up
communication gaps among geographically dispersed designers and to significantly

 Conflict Resolution of Boolean Operations 239

reduce the time in both the design and the implementation phase in a product
development cycle. CAD designers/draftsmen may use a real-time collaborative CAD
system to clarify doubts quickly without leaving their desktops. Designers and the
project leader can track bugs and discuss changes in front of computers instead of
face-to-face. Engineers from different streams or departments can collaborate to work
around a conflicting situation. Furthermore, a collaborative CAD system can be used
to interactively demonstrate its main features to customers, or to train or get feedback
from customers.

Before the advent of real-time collaborative CAD systems, collaboration is mainly
facilitated by various online chatting applications such as ICQ [2] and MSN [10].
However, this kind of collaboration could hardly meet the specific needs of technical
discussions, in which verbal communication is not enough to express designers’ ideas
clearly and to represent graphical features accurately. Some designers use application-
sharing systems such as Microsoft NetMeeting [11] to share their CAD applications
for real-time collaboration. These systems, however, do not support concurrent work
and are not responsive in Wide Area Networking (WAN) environments.

To meet specific requirements in the CAD community, a few real-time
collaborative CAD systems have been developed, which allow designers to
manipulate the same design documents at the same time. To achieve high
responsiveness in a networking environment, shared documents are usually replicated
at each collaborating site so that editing operations can be performed at local sites
immediately and then propagated to remote sites.

Consistency maintenance is a fundamental issue in these real-time collaborative
CAD systems, especially in the presence of conflicting operations. In a distributed
environment, users may concurrently issue operations that semantically or
syntactically conflict with each other. For example, two “move” operations may
conflict with each other when two users concurrently try to move a particular object
to different positions.

Several strategies have been proposed to solve conflicting operations. One of those
strategies is to adopt a conflict prevention strategy based on pessimistic concurrency
control mechanisms such as locking and turn-taking. In these systems, a user has to
gain the “ownership” of the target objects before she/he can edit it, thus preventing
other users from generating conflicting operations on the same object. For example,
the TOBACO system [8] adopts a floor control mechanism; the Cooperative
ARCADE system [13] uses a locking mechanism. This means that at any moment in
time, only one active user (i.e., the one who holds the floor/lock on the particular
objects) is allowed to perform her/his design. This could significantly degrade the
system’s responsiveness and furthermore make a design process tedious.

Another alternative conflict resolution approach is by means of serialization, which
ensures that the effect of executing a group of concurrent operations be the same as if
these operations were executed in the same order at all sites. If there is any conflict
among concurrent operations, only the effect of the last operation (based on the total
ordering) will be kept. This approach was mostly used in early collaborative systems
such as GroupDesign [4] and LICRA [3]. However, as a design process is usually
complex, it is undesirable to keep the effect of only one operation while destroying
the effects of others.

240 Y. Zheng et al.

A more advanced conflict resolution technique is Multi-Versioning (MV) [9, 14].
The MV technique preserves all users’ work by keeping multiple versions of shared
artifacts. Such a strategy provides better feedback to the users, helps the users to
better understand the nature of the conflicts, and to better adjust and coordinate their
actions in the face of conflicts. However, MV is not suitable for design-oriented
collaborative systems because keeping conflicting operations in different versions of
shared objects does not help designers analyze conflicts as a whole or make use of
conflicts to stimulate creative design.

In this paper, we contribute a novel technique to resolve conflicting Boolean
operations. The technique, named as CRIBO (Conflict Resolution by Integration for
Boolean Operations), is able to retain the effects of individual conflicting Boolean
operations and integrate them as a whole. Compared with previous conflict resolution
techniques that either desert the effects of some conflicting operations or keep the
effects of different operations in different versions of the design, CRIBO provides
designers with a more comprehensive and straightforward view of the conflict. This is
particularly good for design-oriented applications as integration of different mindsets
is a main source of creation and innovation.

The rest of this paper is organized as follows. In Section 2, conflicting Boolean
operations are introduced and their special characteristics are analyzed. Section 3 then
explains how to resolve conflicting Boolean operations using CRIBO in detail. This
includes selecting proper techniques to support CRIBO and specifying rules on how
to determine the results for a group of conflicting Boolean operations. In Section 4,
we discuss how to use CRIBO to better support collaborative design scenarios that
involve Boolean operations and other typical CAD operations. Finally, major
contributions of this paper and the future work are summarized in Section 5.

2 Conflicting Boolean Operations

Consistency maintenance in the presence of conflicting operations is a challenging
issue in collaborative systems. Conflicts are domain-specific and application-specific.
Our investigation reveals that operations in the CAD domain have several special
characteristics that raise challenging but interesting issues in the face of conflicts. For
example, the process of performing a particular CAD operation takes relatively longer
time, as users have to interact with the system to specify parameters and select
options. In addition, a CAD operation may involve a considerable number of objects,
which significantly increases the possibility that concurrent operations have common
target objects and may consequently lead to potential conflicts.

This paper takes Boolean operations, a representative category of CAD operations,
as an example to illustrate the characteristics of conflicting CAD operations and to
devise an effective conflict resolution technique for CAD operations.

2.1 Boolean Operations

Nowadays, most off-the-shelf CAD systems (e.g., AutoCAD [1] and OneSpace
Modeling [12]) are object-based, in which geometrical objects such as rectangles,

 Conflict Resolution of Boolean Operations 241

circles, polygons and 3D solids can be created and modified. In these systems,
complex artificial objects can be constructed out of primitive ones using Boolean
operations. In this paper, Boolean operations refer to the three primitive ones Union,
Subtract and Intersect, which are supported by most CAD systems. The Union
operation, denoted as “∪”, is used to join two or more objects into one based on the
total geometry of all. The Subtract operation, denoted as “-”, is used to subtract one
or more objects from another to create an object based on the remaining geometry.
The Intersect operation, denoted as “∩”, is used to create a single object from two or
more objects based on the intersected geometry. For the good of presentation, we
express a Boolean operation with its target objects and its operator. That is, operation
O = A∪B is to Union two objects A and B; operation O = A - B is to Subtract object
B from A; and operation O = A∩B is to Intersect two objects A and B. Figure 1
illustrates the three primitive Boolean operations and their effects1.

Fig. 1. Primitive Boolean operations and their effects

2.2 Conflicting Boolean Operations

A Boolean operation has several target objects. In a real-time collaborative CAD
environment, when different designers concurrently issue their own Boolean
operations, it is possible that those Boolean operations have common target objects.
To illustrate this, let’s look at a collaborative design scenario. Assume two designers
are working together to mold a cubical diamond (marked as D in Figure 2 (a)). To get
a desirable shape, a cylinder (marked as C in Figure 2 (a)) and a box (marked as B in
Figure 2 (a)) are created. All the three objects are 3D solids. Suppose the two

1 It should be pointed out that there is a specific geometrical relationship between objects A and

B and they are actually overlapping with each other. However, this geometrical relationship is
not revealed explicitly in Figure1. This is done on purpose so that readers can get a clear idea
about the effects of Boolean operations.

242 Y. Zheng et al.

Fig. 2. Conflicting Boolean operations and their individual effects

designers concurrently issue Boolean operations that target at D, C and B. The first
designer’s operation is O1 = D ∩ C, whereas the second designer’s operation is O2 =
D – B.

Definition 1 Conflicting Boolean operations “ ⊗ ”. Two Boolean operations O1 and

O2
2 conflict with each other, denoted as “

1 2
O O⊗ ”, if and only if O1 || O2 (i.e., they

are concurrent) 3 and Target (O1) ∩ Target (O2) ≠ null; or there exists another

concurrent operation Ox, such that 1 x
O O⊗ and 2x

O O⊗ . Here, Target (O) denotes

the set of objects targeted by a Boolean operation O.

2 In this paper, we suppose O1 and O2 are always generated at the same document state.
3 Two operations are concurrent if they are generated without any knowledge of each other.

For the formal definition of concurrent operations, readers may refer to [6, 14].

 Conflict Resolution of Boolean Operations 243

For example, in Figure 2,
1 2

O O⊗ because O1 || O2 and Target (O1) ∩ Target (O2) =

{D} ≠ null.

3 Resolving Conflicting Boolean Operations by Integration

3.1 Resolving Conflicting Boolean Operations

In the face of conflicting Boolean operations, it is important to preserve operations’
intentions using appropriate techniques to resolve the conflicts. This implies several
requirements. First, after resolving the conflicts, only one version that has the effects
of all the operations should be produced. This allows designers to analyze the
conflicts as a whole and to make use of the conflicts to stimulate design innovation.
Second, for an arbitrary group of conflicting Boolean operations, rules should exist to
precisely determine the effects of the operations. These rules should be independent
of the execution order of those Boolean operations so that consistency can be
maintained [14]. Third, the produced effects should be understandable to users so that
they can assess the situation, react accordingly and make use of the effects in a
collaborative design environment.

We propose an innovative conflict resolution technique, which can retain the
effects of individual conflicting Boolean operations by integrating them. The biggest
challenge here is how to achieve the integration. To explain our solution, we will first
introduce some notations. First, given a Boolean operation O, its effect, denoted as E
(O), is the geometrical effect when O is successfully performed. Second, given a
group of conflicting Boolean operations 1 2 nO , O , ..., O , their Integrated Effect is

denoted as IE (1 2 nO O ... O⊕ ⊕ ⊕), where operator “ ⊕ ” is union, subtract or

intersect. In a collaborative environment, IE (1 2 nO O ... O⊕ ⊕ ⊕) defines the effect

after those operations are successfully performed. Third, given a Boolean operation
expression whose targeting objects are 1 2 mA , A , ..., A , its effect is denoted

as 1 2 mA A A⊕ ⊕ ⊕… , where operator “ ⊕ ” is union, subtract or intersect. It should

be pointed out that the definitions of E and IE are defined at the operation level
whereas “ ” is defined at the object level. Therefore, from users’ point of view, an

E or IE expression can always be mapped to an object expression with the format
of 1 2 mA A A⊕ ⊕ ⊕… , which provides a more straightforward way to understand the

effects of an E or IE expression.
We have investigated possible techniques to integrate a group of conflicting

Boolean operations. The results revealed that the most appropriate one is to use Union
to integrate those operations. For the example in Figure 2, after integrating O1 and O2
using Union, the result is () ()D C D B−∩ ∪ (as shown in Figure 3).

The advantages of selecting Union to resolve conflicting Boolean operations are as
follows. First, a single version can be obtained from the N individual versions that are
created by a group of conflicting Boolean operations 1 2 nO , O , ..., O . Based on the

semantics of Union, all individual operations’ effects (i.e., E (O1), E (O2), …, E (On))

244 Y. Zheng et al.

Fig. 3. The obtained effect after integrating O1 and O2

will be interpreted in the produced version and reflected to designers. It should be
pointed out that, on some occasions, the effects of the produced version could also be
achieved through a serializable execution (to be explained in Section 3.3). However,
compared with the serialized one in which the resultant effects can be expected, our
approach produces totally unexpected effects, which could well be the source of
creative design (to be explained in Section 4).

Second, by using Union, the produced version will be consistent at different sites.
This is because the Union operator conforms to the Commutative Law (i.e., O1∪O2 =
O2∪O1) and the Associative Law (i.e., (O1∪O2)∪O3 = O1∪(O2∪O3)). Therefore,
given an arbitrary group of conflicting Boolean operations 1 2 nO , O , ..., O , no matter in

which order the operations are executed at a particular site, the obtained geometrical
effect is always the same as IE (O1 ∪ O2 …∪ On).

Third, as Union is an operator that belongs to the CAD community, it is relatively
easy for users to understand the produced result as it is natural for them to analyze it
using their knowledge about the operator.

3.2 Rules

According to our solution, given a group of conflicting Boolean operations O1, O2,…,
On, the effect of the produced version is IE (O1 ∪ O2, …∪ On). As mentioned in the
previous section, Union conforms to both the Commutative Law and the Associative
Law. As a result, it can be drawn that O1 ∪ O2 …∪ On = (O1 ∪ O2, …∪ On-1)∪ On,
which means that the effect of Unioning N objects is equal to that of Unioning one
object with the other N - 1 objects. Assuming that there are two operations Oi and Oj,
where 1<= i < j <= n, if we can correctly determine IE (Oi∪Oj), then we can
correctly determine IE (O1 ∪ O2 …∪ On). Therefore, we only need to focus on how
to draw rules to determine IE (Oi ∪ Oj).

We first start from the simplest scenario, in which each of the two conflicting
Boolean operations targets at only two objects and one of the two objects is targeted
by both operations, e.g., Target (O1) = {A, B} and Target (O2) = {B, C}, and Target
(O1) ∩ Target (O2) = {B}. All possible results of IE (O1∪O2) are listed in Table 1.

 Conflict Resolution of Boolean Operations 245

Table 1. The effects of resolving conflicting Boolean operations

 O2
O1

B∩C B∪C B - C C - B

A∩B B∩(A∪C) B∪C (A∩B)∪(B - C) (A∩B)∪(C - B)
A∪B A∪B A∪B∪C A∪B A∪B∪C
A - B (A - B)∪(B∩C) A∪B∪C (A - B)∪(B - C) (A�C) - B

B - A (B - A)∪(B∩C) B∪C (B - A)∪(B - C) (B - A)∪(C - B)

The rules between two arbitrary conflicting Boolean operations start from the
above table and in the end four rules are drawn. In the following part of this section,
we will first introduce the four rules and then make an analysis on them.

For the good of presentation, we first define complex object sets A, B, C, D and E
as operands in conflicting Boolean operations. These object sets are

1
...

K
A A A= ∪ ∪ , 1

...
L

B B B= ∪ ∪ , 1
...

M
C C C= ∪ ∪ ,

 1
...

N
D D D= ∪ ∪ , and

1
...

P
E E E= ∪ ∪

where Ak (1 k K≤ ≤), Bl (1 l L≤ ≤), Cm (1 m M≤ ≤), Dn (1 n N≤ ≤) and Ep
(1 p P≤ ≤) are primitive objects that are the smallest units and not required to be

further split in the given Boolean operations.
For Boolean operators Union (∪), Intersect (∩), Subtract (−), we categorize

Union and Intersect as positive operators since these two operators conform to the
Commutative Law, whereas Subtract is considered as negative operator as it dose not
conform to the Commutative Law.

Given two conflicting Boolean operations Oi and Oj, where

iO A B= ∪ and jO B C= ∪ , based on Table 1, the effect of integrating Oi and Oj

is A B C∪ ∪ . If the two conflicting Boolean operations are Oi and Oj, where

iO A B= ∩ and jO B C= ∩ , the effect of integrating Oi and Oj is ()A C B∪ ∩ .

Based on these two results, we can derive Rule 1 as follows.

Rule 1. Conflicting Boolean operations with the same positive operators. Given two
conflicting Boolean operations Oi and Oj, where operator “ ” is either Union or

Intersect, if
i

O A B= and
j

O B C= , then the effect of integrating Oi and Oj

is ()B A C∪ .

Rule 2. Conflicting Boolean operations with different positive operators. Given two
conflicting Boolean operations Oi and Oj, where iO A B= ∪ and jO B C= ∩ , the

effect of integrating Oi and Oj is A B∪ , which is the same as E (Oi).

246 Y. Zheng et al.

Rule 3. Conflicting Boolean Operations with Union and Subtract. Given two

conflicting Boolean operations Oi and Oj, where
i

O A B= ∪ ,

1 2j S S
O C B D B= −∪ ∪ (1 2 1 2,S S S SB B null B B B= =∩ ∪)4 , the effect of integrating Oi

and Oj is ()A B C D−∪ ∪ .

Rule 4. Conflicting Boolean Operations with Intersect and Subtract. Given two
conflicting Boolean operations Oi and Oj, where

i 1 2X XO D C E C= −∪ ∪ (1 2 1 2,X X X XC C null C C C= =∩ ∪), and jO A B= ∩ or

1 2j Y YO A C B C−= ∪ ∪ (1 2 1 2,Y Y Y YC C null C C C= =∩ ∪), then the effect of

integrating Oi and Oj is E (Oi)∪E (Oj).

3.3 Rules Analysis

In the face of an arbitrary group of conflicting Boolean operations, the four rules can
preserve individual operations’ effects and integrate them as a whole. From designers’
perspective, the integrated effect is not a premeditated one and thus is new to them. In
a collaborative design environment, this new effect could be a great stimulus to
design innovation. That is, in a design process, when conflicting Boolean operations
are generated, it is usually because there is no obvious or pre-defined solution to those
commonly targeted objects (Otherwise, the designers would not target at the same
objects and instead, would perform operations on their “own” objects). In this case, it
is vital that a designer has a comprehensive and yet easy-to-understand way to learn
other designers’ ideas, which is provided by applying CRIBO. As a result, a designer
can easily analyze other designers’ ideas and thus achieve design efficiency.

It should be pointed out that the integrated effect may also be achieved in a single-
user design environment. To Rule 1, Rule 2 and the Rule 3, a target object appears
once and only once in the rule expression, which means that the resulted effect could
be achieved by sequentially performing a set of Boolean operations on the target
objects. Nevertheless, efficiency can be significantly increased by achieving parallel
computing in a collaborative design environment as individual operations are
performed at different sites.

4 Significance of the CRIBO Technique in Supporting Creative
Design

The conflict resolution technique CRIBO distinguishes itself from other techniques in
that it can retain the effects of individual conflicting operations by integrating them.
This characteristic could significantly benefit a design process, where integration of
different mindsets is a main source of creation and innovation. In this section, we

4 i.e., Bs1 and Bs2 are disjoint subsets of B, and all the elements of B belong to either Bs1 or Bs2

but not both.

 Conflict Resolution of Boolean Operations 247

provide concrete examples to show how CRIBO is applied to support collaborative
designs that involve Boolean operations and other typical CAD operations.

4.1 Obtain “Hard-to-Achieve” Effects

As mentioned in previous sections, Boolean operations have been widely used in
design representation, analysis and manufacturing. In these domains, the inherent
complexities of geometrical configuration require strong capability from the CAD
tools for the purpose of complex modeling. These applications, with specific
requirements in their respective domains [5, 15], require comprehensive and complex
modeling functionalities. As a result, the three basic Boolean operations are not
enough, and more complex and domain-specific Boolean operations are required.

Our investigation on the complex Boolean operations, however, reveals that those
operations are all based on the three basic Boolean operations and therefore can be
achieved with a proper combination of the basic Boolean operations. However, it is
non-trivial to implement complex Boolean operations by combining basic Boolean
operations in single-user design environment.

For example, the Combine operation is a widely-used complex Boolean operation
[16]. As shown in Figure 4, the Combine operation is like the Union operation but
removes the portions in common (e.g., the geometrically overlapping part), i.e.,
Combine (A, B) = (A – B) U (B – A). It is obvious that the Combine operation cannot
be achieved by sequentially executing Boolean operations as it requires a pair of A
and B. For example, to achieve this operation in AutoCAD, designers have to make a
copy of both A and B, locate them at exactly the same position, perform A – B and B
– A respectively, and in the end union them together.

Fig. 4. The Combine operation

Such a process is tedious and undesirable in a design session. However, this could
be easily solved in a collaborative design environment by purposely generating
conflicting Boolean operations and using our conflict resolution strategy to achieve
the desired effects. For example, given two users in a real-time collaborative design
session, one user performs A – B and the other performs B – A concurrently. Under
the well-defined rules of our conflict resolution strategy (actually based on Rule 4),

248 Y. Zheng et al.

we can immediately get the geometry of the required result (i.e., (A – B) U (B – A)),
which significantly saves design efforts and simplifies the design process.

4.2 Stimulate Design Innovation

Another significant contribution of our conflict resolution strategy is that it can not
only resolve conflicts, but also provide new effects based on the conflicting
operations. We believe that these effects could dramatically stimulate design
innovation and in the long run could significantly benefit the design of collaborative
systems.

To the best of our knowledge, previous conflict resolution strategies in the CAD
community consider a design process as purely a technical process, in which conflicts
are usually regarded as being abnormal and should be avoided as soon as possible.
However, a collaborative design process is not as simple as this and other factors,
especially social factors between different designers (who are usually from different
domains) should also be taken into account. As argued in [7], a collaborative design
process is mostly a socio-technical process, in which conflicts must be systematically
and explicitly dealt with as a resource to drive design innovations.

For example, consider a collaborative design scenario in Figure 5. Three users are
trying to get creative shapes based on the three primitive ones, which are represented
as A, B and C. At a particular time, they concurrently issue their own Boolean
operations as O1 = A ∩ B, O2 = A ∩ C and O3 = B ∩ C. Three effects are achieved
as A B∩ , A C∩ and B C∩ , but none has obvious meanings. However, these

operations conflict with each other and as a result, the underlying collaborative
system unions the three effects into a new one, which resembles a simple model of an
airscrew.

This example demonstrates that a collaborative CAD system can not only resolve
conflicts, but also achieve new effects based on conflicting operations. More
importantly, these new effects are not randomly generated, but are based on well-
defined rules. This ensures that the effects have relationships with all the individual
effects and thus could very likely stimulate designers’ ideas.

4.3 Applying CRIBO to Other CAD Operations

As proved in previous sections, CRIBO can resolve conflicting Boolean operations by
integration and provide new effects to stimulate design innovation. Our investigation
shows that this technique lays a good foundation for resolving other conflicting
operations in design-oriented collaborative applications. The key to achieving this,
however, is to select the most appropriate approach to integrate those conflicting
operations. Such a selection is non-trivial because the integration depends on several
aspects, such as the conflicting operations’ semantics and their working
environments. In the following section, we will explain how to find out the
appropriate approaches to resolving conflicts that involve other typical CAD
operations, including the rotate operation and the color operation.

 Conflict Resolution of Boolean Operations 249

4.3.1 Apply CRIBO to the Rotate Operation
Rotate is a typical CAD operation, which allows users to rotate an object around a
specified point based on a particular angle value. In a real-time collaborative design
environment, two rotate operations may conflict with each other if they concurrently
target at the same object but attempt to rotate it in different directions.

Fig. 5. Achieve the effects of an airscrew by resolving conflicts

Let’s look at a simple but interesting scenario. Suppose two designers are
collaborating to design the layout of a living room. At a time, they are to determine
where to arrange the bed, as shown in Figure 6 (a). Both designers have their own
arrangement criteria. The first designer wants the bed to be near the window so that it
can gain more sunshine whereas the second designer wants it to be opposite to the
door to avoid noise at the corridor. As a result, they concurrently issue their own
rotate operations and locate the bed according to their preferences, as shown in Figure
6 (b) and (c), respectively.

Obviously, the two designers’ intentions can coexist (as they are based on different
criteria) and therefore should both be reflected in the design. However, previous
collaborative design systems would consider them as a conflict as they rotate the same
objects to different positions and directions. As a result, designers may receive
messages about the conflicts, communicate to explain their intentions to each other
and then try to find another solution to satisfy both criteria.

This tedious process could be effectively shortened by using CRIBO. For example,
suppose a rotate operation is represented as Rotate (object, base-point, rotate-angle).

250 Y. Zheng et al.

In the face of two conflicting rotate operations, we can integrate both operations’
effects into one, in which the centroid of the object is the mid-point of the two base-
points and the new direction is an average of the rotate-angles. Based on this rule, we
can determine the arrangement of the bed by integrating both designers’ operations.
As shown in Figure 6 (d), the bed is located at a position that is opposite to the door
and not far from the window, which could satisfy both designers’ intentions.

4.3.2 Apply CRIBO to Color Operation
Color is a vastly-used CAD operation. It can fill a graphic object based on user
specified colors or texture patterns. In a real-time collaborative design environment,
two color operations may conflict with each other if they concurrently target at the
same object but fills it with different colors.

Fig. 6. Resolve conflicting rotate operations using CRIBO

To explicitly explain this scenario, let’s look at an example. Suppose three
designers are in a real-time design process to determine which colors should be filled
in to an object A, whose original color is black. For the good of presentation, we
assume a color operation is represented as Color (object, old-color, new-color).
Suppose the designers concurrently issue three color operations O1, O2 and O3. These
operations are O1 = color (A, black, red), O2 = color (A, black, green) and O3 = color
(A, black, blue). Obviously, the three operations conflict with each other as they are
trying to change the same object (i.e., A) to different colors.

 Conflict Resolution of Boolean Operations 251

This conflict can be resolved using CRIBO by integrating the three colors into
another based on classical color storage scheme in graphic design. That is, for three
operations O1, O2 and O3, suppose O1’s new color is represented as an RGB triple
<R1, G1, B1>, O2’s is represented as <R2, G2, B2> and O3’s is represented as <R3, G3,
B3>. Then the mixture of O1, O2 and O3’s new colors is equal to <(R1+R2+R3) mod
256, (G1+G2+G3) mod 256, (B1+B2+B3) mod 256>. Based on this rule, the integration
of O1, O2 and O3 in this scenario is filling the object A with the color of white, which
is “new” to all the three designers.

Furthermore, the white color is not the only possible “new” color achievable using
CRIBO. As shown in Table 2, we can altogether obtain eight colors from the three
original colors. To the best of our knowledge, existing conflict resolution strategies can
at most achieve the first four color effects (i.e., black, red, green and blue). However,
CRIBO can obtain not only these four colors but also four more colors (i.e., yellow,
purple, cyan and white) that could not directly be achieved by using any other strategies.
We believe that these new effects could greatly provide designers with collective
wisdom and stimulus of creation, especially in those complex design scenarios.

It should be pointed out that the aim of using CRIBO is to provide designers with
several options to resolve a conflict rather than to produce a specific result. By using
CRIBO, designers are able to have all the possible results (e.g., the eight resultant
colors in Table 2). After negotiation and discussion, they can inform the underlying
collaborative design systems about the selected effects. Such an approach ensures that
designers’ ideas are correctly realized in the design process and prevent potential
disputes and conflicts from happening

Table 2. Differnt color effects achieved by integration

Color Integrated operations
1. Black (no operation integrated)
2. Red (O1)
3. Green (O2)
4. Blue (O3)
5. Yellow (O1, O2)
6. Purple (O1, O3)
7. Cyan (O2, O3)
8. White (O1, O2, O3)

5 Conclusion

Real-time collaborative CAD systems allow a group of users to view and edit the
same design document at the same time from geographically dispersed sites
connected by networks. With several members working on a project collaboratively
and concurrently, it is possible to shorten design cycle, improve design quality and
reduce design cost. As those collaborative CAD systems adopt a replicated
architecture to achieve quick local responsiveness, consistency maintenance is a
fundamental issue, especially in the face of conflicting operations.

This article contributes a novel technique CRIBO to resolve conflicting Boolean
operations. CRIBO distinguishes itself from previous ones in that it can retain the

252 Y. Zheng et al.

effects of all the conflicting Boolean operations by integration. Our research shows
that such an approach could provide as much information as possible for users to
understand the conflicts. Additionally, the technique can be used to create new effects
that could significantly increase design efficiency and stimulate design innovation.
The paper also explicitly specifies how to obtain the desired effects in the face of a
group of conflicting Boolean operations.

Future work of this paper includes several aspects. The CRIBO technique is being
implemented in a collaborative AutoCAD system. We are moving towards making
the system publicly demonstrable. We plan to apply the technique to resolving other
conflicting operations in CAD applications and other domains such as graphic
systems and Word processing tools.

References

1. Autodesk Inc.: AutoCAD: AutoCAD products information, http://usa.autodesk.com/
adsk/servlet/index?siteID=123112

2. ICQ Inc.: ICQ Community people search and messaging service, http://www.icq.com
3. Kanawati, R.: LICRA: A replicated-data management algorithm for distributed

synchronous groupware applications. Parallel Computing 22(13), 1733–1746 (1997)
4. Karsenty, A., Tronche, C., Beaudouin-Lafon, M.: Groupdesign: Shared editing in a

heterogeneous environment. Usenix Journal of Computing Systems 6(2), 167–195 (1993)
5. Kumar, V., Dutta, D.: An approach to modeling and representation of heterogeneous

objects. Journal of Mechanical Design 120(4), 659–667 (1998)
6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21(7), 558–565 (1978)
7. Lu, S., Cai, J., Burkett, W., Udwadia, F.: A methodology for collaborative design process

and conflict analysis. CIRP Annals - Manufacturing Technology 49(1), 69–73 (2000)
8. Lukas, U.: Collaborative geometric modeling using CORBA services. In: Proceedings of

the ECSCW 1997 Workshop on Object-Oriented GroupWare Platforms OOGP 1997,
Lancaster, UK, pp. 91–92 (1997)

9. Moran, T., McCall, K., Van Melle, B., Pedersen, E., Halasz, F.: Some design principles for
sharing in Tivoli, a whiteboard meeting-support tool. In: Greenberg, S. (ed.) Groupware
for Real-time Drawings: A Designer’s Guide, pp. 24–36. McGraw-Hill International, UK
(1995)

10. Microsoft Corporation, M.S.N.: Windows Live Messenger, http://im.live.com/messenger/
im/home/?source=MSNTDLINK

11. Microsoft Corporation. NetMeeting Home, http://www.microsoft.com/windows/
netmeeting/

12. CoCreate Inc. OneSpace Modeling.: CoCreate OneSpace Modeling, http://www.cocreate.
com/designer_modeling.cfm

13. Stork, A., Jasonch, U.: A collaborative Engineering Environment. In: Proceedings of
TeamCAD 1997 Workshop on Collaborative Design, Atlanta, USA, pp. 25–33 (1997)

14. Sun, C., Chen, D.: Consistency maintenance in real-time collaborative graphics editing
systems. ACM Transactions on Computer-Human Interaction 9(1), 1–41 (2002)

15. Sun, W., Lin, F., Hu, X.: Computer-aided design and modeling of composite unit cells.
Composite Science and Technology 61, 289–299 (2001)

16. Microsoft Corporation. Visio Home – Microsoft Office Online, http://office.microsoft.com/
en-us/visio/default.aspx

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 253–271, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Trust Extension Device: Providing Mobility and
Portability of Trust in Cooperative Information Systems

Surya Nepal, John Zic, Hon Hwang, and David Moreland

ICT Centre PO Box 76 Epping NSW 1710 Australia
{Surya.Nepal, John.Zic, Hon.Hwang, David.Moreland}@csiro.au

Abstract. One method for establishing a trust relationship between a server and
its clients in a co-operative information system is to use a digital certificate. The
use of digital certificates bound to a particular machine works well under the
assumption that the underlying computing and networking infrastructure is
managed by a single enterprise. Furthermore, managed infrastructures are
assumed to have a controlled operational environment, including execution of a
standard set of applications and operating system. These assumptions are also
valid for recent proposals on establishing trust using hardware-supported
systems based on a Trusted Computing Module (TPM) cryptographic
microcontroller. However, these assumptions do not hold in today’s cooperative
information systems. Clients are mobile and work using network connections
that go beyond the administrative boundaries of the enterprise. In this paper, we
propose a novel technology, called Trust Extension Device (TED), which
enables mobility and portability of trust in cooperative information systems that
works in a heterogeneous environment. The paper provides an overview of the
technology by describing its design, a conceptual implementation and its use in
an application scenario.

1 Introduction

Traditional cooperative information systems enable interactions between clients and
servers within a controlled computing and networking infrastructure belonging to a
single enterprise. However, it is now possible to develop such systems that go beyond
a single enterprise’s administrative domain due to the availability of new architectural
approaches and software technologies (Web Services and Service Oriented
Architecture), networking (Internet) and mobile computing devices (e.g. laptops,
PDAs). As a result, we have seen a growing number of cooperative information
systems developed to run in heterogeneous, open and hostile environments. Though
such systems provide greater flexibility, they present a new set of challenges on three
critical issues of information systems: trust, security and privacy. Though these issues
are equally important, and related to each other, our focus in this paper is primarily on
trust-enhanced security.

In emerging internet-scale cooperative information systems, agents (or clients) on
behalf of their enterprises may connect to the enterprise system to access information
using a range of devices from personal digital assistant (PDA) to desktop computers

254 S. Nepal et al.

operating under a variety of platform configurations via the Internet. It is important to
ensure that the agents are genuine before the enterprise releases information held at its
controlled, managed environments. Without having a proper method in place for
establishing trust, some attackers may spoof “real” agents and perform certain actions,
that fool enterprise systems into believing that genuine agents/clients have performed
these actions. Our aim in this paper is to define a way of establishing trust between
enterprises and their agents that operate in an untrusted, hostile and heterogeneous
environment.

What is trust? Trust has been defined variously in a range of literature, from
philosophy to computing. One definition of trust is as follows [2].

“Trust is both an emotional and a logical act. Emotionally, it is
where you expose your vulnerabilities to people, but believing they
will not take advantage of your openness. Logically, it is where you
have assessed the probabilities of gain and loss, calculating expected
utility based on hard performance data, and concluded that the
person in question will behave in a predictable manner.”

We have adopted the logical part of the definition, where trust means being able to
predict what other people will do and what situations will occur. The working
definition of trust we have adopted in this paper is that “before I let you perform
certain important actions, you need to verify that you are who you say you are, and
that you are not going to do bad things to my information”.

Many different algorithms and protocols have been defined to establish trust
between two interacting parties. The establishment of trust using a public key
infrastructure is widely used in many applications [3]. However, this approach is not
reliable in the Internet environment because it is vulnerable to attacks from malicious
software [4]. Moreover, such approaches authenticate the user but not the
information. Use of digital certificates bound to a specific machine is a practice
industries have used to address this problem. That is, an enterprise issues a digital
certificate on a per machine basis so that the enterprise can verify the machine, and
indirectly, the person that is using the machine. This latter fact is based on an
assumption that the certified machine is allocated to a particular person. Stronger,
direct authentication of the user is possible through the use of PINs or two factor
authentication mechanisms. Though issuing digital certificates to a particular machine
has addressed the issue of authenticating the user, it still does not guarantee the
authentication of data produced or the operating environment due to possible attacks
from malicious software via the hostile operating environment. This issue has been
recognized and addressed by bodies such as the Trusted Computing Group (TCG) [1]
using a hardware-based solution. The TCG defined a Trusted Platform Module
(TPM), which is a cryptographic microcontroller system that enables the TPM to be a
root of trust for authenticating both the hardware and software configurations of the
host computer in which the TPM is installed. The TCG remote attestation protocol is
designed to establish a one-way trust relationship, where the sending host establishes
a trust relationship with a receiving host. As reported in other papers [5,6,7], we have
extended the TCG remote attestation protocol to allow mutual attestation of hosts in
our cooperative healthcare prototype system. We further refined and proposed a
session-based mutual attestation protocol to establish a trust relationship between

 Trust Extension Device: Providing Mobility and Portability 255

interacting hosts based on an application session rather than for each application
message exchanged [8].

The problem with all of these approaches is that the mechanism for establishing
trust is tightly coupled with the hardware of a specific machine and its associated
software environment. This hinders the portability and mobility of trust, as well as
presenting a management problem each time a new piece of software or hardware is
introduced into the host computer. For example, if an enterprise’s agent needs to visit
a customer’s office to work on their files, then the agent must only use the issued
“trusted” computer to work at the customer’s office. Ideally, the agent would like to
use any computer, including an untrusted customer’s machine, and yet still be able to
establish the strong trust relationship with the enterprise. Simple use of SSL tunnels
and data encryption are not sufficient for establishing the type of strong trust
relationship we envisage since the customer’s machine may be compromised, for
example, by malicious key-stroke logging malware or even recording the information
off line for later (malicious) decryption. Establishing strong trust relationships
requires that user’s machines, the enterprises and the users at both ends are known to
each other. Providing portability and mobility of trust and being able to use any
machine anywhere in the world is not possible with existing approaches. In order to
address this problem we have invented a novel technology called the Trust Extension
Device (TED) [9]. The TED uses three basic technologies to provide mobility and
portability of trust in hostile, open and untrusted environments.

• Small portable device, such as flash memory, is used to make the device
mobile and easily portable to any platform environment.

• Trusted Platform Module (TPM) microcontroller is used to provide
hardware-based keys for trust establishment.

• Virtual machine technology is used to provide an environment within an
untrusted host machine to create a trusted environment.

In this paper, we outline the technologies behind TED by describing its design, a
conceptual implementation using available technologies and its use in a financial
application.

The rest of the paper is organized as follows. We first present a motivating
scenario in the context of cooperative information systems in Section 2. In Section 3,
we describe the design of the TED and its component architecture. Section 4 presents
a conceptual implementation of the TED and describes its application using a
financial scenario. Section 5 describes the related work of different approaches for
establishing trust and then differentiates TED from them. The last section presents our
analysis of the proposed technology including its shortcomings and possible future
directions.

2 Context and Motivation

The motivation for this work is provided by our earlier work on eConsent where we
developed a demonstrator showing how Trusted Computing technologies can be used
to improve access to confidential information in a distributed healthcare environment
[7] whilst protecting privacy. Trusted systems, as specified by groups such as the

256 S. Nepal et al.

Trusted Computing Group (TCG), assume that computing environments are uniform
in terms of their operational environment, including hardware configuration,
execution of a standard set of applications, operating system and facilities and
procedures that allow the issue, revocation and maintenance of critical encryption
keys and authorization certificates. These assumptions are applicable to a single
managed enterprise infrastructure (as they need substantial care and maintenance
procedures). However, in situations where the users are mobile, the computing
environment is heterogeneous and the Internet provides the connectivity, management
of trust between enterprises becomes overwhelmingly difficult, if not impossible. As a
result, deployment and uptake of trusted secure systems based on TPM has not been
as successful as first envisaged.

Fig. 1. Illustration of the motivating scenario

Within the context of our work, these wider issues of trust management were first
raised at the CeNTIE1 Enterprise System Focus Group in September 2006 through a
practical real-life scenario [10]. Figure 1 shows the background to the motivating
scenario. An agent, working for a company, is issued a digital certificate (embedded
in software or hardware) against which the agent is authenticated. The certificate is
used to establish a level of trust between the agent and a company resource (e.g. a
server). When the client-server link has been authenticated, customized applications
and confidential client data are available for use by the agent. We discuss two
possible scenarios.

The first scenario involves the agent using the machine with a preset configuration
within the company’s managed network (scenario A in Figure 1). A digital certificate,
bound to a specific machine along with the attestation mechanism, can be used to
establish trust in a controlled environment such as this. The second scenario (B)
involves the agent working at the customer’s managed network and uses the Internet
to establish the trusted transactions with the company’s server. The digital certificate,
bound to a specific machine, can be used to establish the trust provided the company
presets the machine with the desired configurations. That is, the agent’s own machine
needs to be used (scenario B in Figure 1). However, a number of issues arise with this

1 CeNTIE is the Centre of Networking Technologies for the Information Economy, supported

by the Australian Government through the Advanced Networks Program of the Department
of Communications, Information Technology and the Arts.

 Trust Extension Device: Providing Mobility and Portability 257

scenario if the agent wants to use any other of the client’s machines (scenario C in
Figure 1):

1. The certificate is bound to a specific machine thus making it difficult for
the agent to work from any other client machine. It would be impossible,
for example, to use a client’s machine for accessing information if the
agent then tried to use the certificate issued to the agent’s machine on the
client’s machine.

2. When an agent uses their assigned certificate, on an untrusted host
machine, the security of the certificate is vulnerable to compromise by
malicious software that may be running on the host machine.

3. It is possible for certificate details to be compromised in other ways, such
as theft or loss. One way for a company to alleviate these potential
security risks is to periodically revoke old certificates and re-issue new
ones. However, this is a complex operation to manage with high
overheads and especially so for large numbers of agents operating in the
field.

4. Downloaded customized application’s and confidential data are
vulnerable to attack, since this software operates within an untrusted
environment, on the host machine.

The aforementioned problem space provided the motivation for devising a mobile,
portable device known as the Trust Extension Device (TED). The purpose of the TED
is not only to provide a digital certificate embedded in the microcontroller for
authentication, but also the trusted working environment that is bound to the issued
digital certificate and can be instantiated and executed on heterogeneous platforms.
This is critical to achieve the mobility and portability of trust on any untrusted host.

3 Trust Extension Device (TED)

TED is central to providing trust mobility, while not relying on having direct access to
a secure, trusted, and managed infrastructure. A user can, for example, plug a portable
device into any untrusted networked host machine to create his/her own trusted
working environment, which is isolated from the host machine’s environment. The
created client environment appears as a virtual machine to the agent, on which they
can do their work and through which they can communicate with the remote (home)
server. A key part of this work is that trust mechanisms are utilised to provide
attestation for all transactions between the created mobile client environment on the
host machine and the remote server. The novelty in this work is that it combines
trusted hardware and virtual machine mechanisms within a portable device. When an
agent terminates a working session, on the untrusted machine, no remnant of client
data or transactions will be traceable on the host, i.e. when the created virtual
environment is terminated all data associated with it disappears.

Figure 2 presents a typical scenario of use of the proposed trust extension device.
As can be seen, it involves four components: an enterprise including remote
application server, trust extension device, untrusted local machine, and untrusted
network connection between the local machine and remote server.

258 S. Nepal et al.

Linux

Windows

Fig. 2. A Typical TED Use-Case Scenario

We next describe a typical scenario of use for the TED. Consider an agent,
working on behalf of a bank, who needs to visit a client’s premises in order to clarify
some financial issues. On arrival, the agent plugs the TED into the client’s host
machine that is running an unknown and untrusted software configuration and
operating system. The TED is preconfigured so that when it is plugged into the
client’s machine, it automatically creates a trusted environment to deal in a
predictable manner with the bank. In an ideal scenario, the trusted environment
acquires control of the host machine’s resources (memory, storage, I/O, and
networking) for its own use in such a way that these resources, when used by the
trusted environment, are isolated from the host machine’s operational environment2.
To perform tasks on behalf of a client, the agent invokes a secure (customized)
application that is embedded on the TED. However, before the secure application is
used, the TED is attested as being trustworthy. This is achieved by a mechanism that
operates between an embedded trust entity on the TED and a trust verification entity
running on a remote host or server. This mechanism establishes a relationship that
may be understood in general terms as, verify that you are who you say you are and
that you aren’t going to do bad things to my information, before we start our
exchange. Once the trust relationship is established, each subsequent application-
related transactions may also be attested by this mechanism. Within this trusted
context, an agent may download confidential client data, from say the bank database,
operate on the data using the secure application, and then upload the modified client
data back to the database. To terminate the working session, the agent may either
remove the TED from the client’s machine, or quit the secure application and then
shutdown the TED’s virtual machine, and then remove the TED from the host
machine. In either case, when a session is terminated, all information exchanged
between the agent and the bank is destroyed, and all the acquired resources on the
untrusted host are released back to the host. It is important to note here that all
information exchanged are stored in TED that expires with the particular session. We
next describe the entities involve in issuing, managing, and operating TED.

2 The shortcomings of currently available virtual machine technologies in achieving a

completely isolated virtual environment are beyond the scope of the paper. This paper
assumes that virtualization technology provides complete isolation of the guest environment.

 Trust Extension Device: Providing Mobility and Portability 259

3.1 TED Architecture

Figure 3 presents the TED architecture. It includes the Trusted Platform Module
(TPM), virtualization software including Virtual Machine Operating System, and a
secure application within a portable device (e.g., flash memory). We briefly explain
these three components below and the reasons behind having them in TED.

Fig. 3. TED Architecture

Trusted Platform Module (TPM)
The purpose of TPM is to provide hardware-based digital certificates for establishing
trust since software-based solutions are vulnerable to malicious attacks. TPM is
gaining acceptance by the computing community as a technology for establishing
trust between entities (e.g. client-server) [1]. Essentially, TPM validation attests to the
trustworthiness of bona fide versions of software and hardware products operating on
a platform (in this case, the TED). We next review the important features of TPM in
the context of TED.

The TPM is a microcontroller system with cryptographic features and data (i.e.
digital keys and certificates) irrevocably “burnt” into the hardware. These features
allow certain cryptographic functions to be executed only within the TPM
microcontroller. Hardware and software entities outside of the TPM have restricted
access to the cryptographic data on the TPM microcontroller hardware, and can only
provide I/O to the TPM. Since information is burned into the TPM hardware, the
TPM is deemed to be more resilient to malicious attacks than an equivalent software
implementation. In brief, a TPM employs the following hardware cryptographic
capabilities for verifying trustworthiness:

An Endorsement Key (EK) that is a public/private key-pair. The private component of
the key-pair is never exposed outside the TPM. The EK is unique to the particular
TPM and is generated by an enterprise (TED Issuer) “squirting” an externally
generated EK into the TPM during the manufacturing process. Much of the trust
value associated with the TPM comes from the fact that the EK is unique and that
it is protected within the TPM at all times. This property is certified by an
Endorsement Certificate (or Credential).

An Endorsement Certificate (or credential) that contains the public key of the EK.
The purpose of the Endorsement Certificate is to provide attestation that the
particular TPM is genuine, i.e. that the EK is protected.

An Attestation Identity Key (AIK) that is used to provide platform authentication to a
service provider (or verifier). AIKs are created using certificates available within

260 S. Nepal et al.

the TPM. AIKs are always bound to the platform and can be used to provide
attestation to the platform’s identification and configuration. The verifier attests to
the TPM’s authenticity by proving facts about the TPM. Goals of the proof are
that the TPM is verified as the owner of the AIK and the AIK is tied to both a
valid EK Certificate and a valid Platform Certificate.

A Platform Certificate (or Credential) that is provided by the platform vendor and
provides attestation that the security components of the platform are genuine.

In Summary, the purpose of the TPM in the TED is to establish a trust relationship
between client-server entities where the goals of trust are to ascertain that:

• The TPM is the genuine owner of certain cryptographic keys and certificates, i.e.
the TPM has not been tampered with.

• The software operating within the (created) trusted environment is genuine;
which includes validating secure applications and the operating environment.

• If a TED is lost or stolen, then the issuer of the TPM revokes the manufacturers
TPM credentials.

Virtualization Software and VM OS
The purpose of virtualization software in TED is two-fold. First, the virtualization
software is the key to mobility and portability as it provides an operational
environment in any untrusted host machines running under different platforms.
Second, it is expected to provide a trusted environment by isolating the operational
environment of the TED from the host machine environment. We next review some
important features of Virtual Machines in the context of TED.

There is a recent trend of increasing use of Virtual Machines (VMs) operating on a
shared, common hardware platform [11,12]. A VM provides familiar functions and
services expected by computer programs (i.e. CPU, memory, I/O, networking), but
does so using software rather than hardware. When the state of a process or system is
virtualized, it is separated from a specific piece of physical hardware. This means that
a virtual process or virtual system can be temporarily associated with specific
physical resources and that this association can change over time. Motivations for
using VM technology in TED are that it:

• Decouples computer software design (e.g. application code) from the evolution
and diversity of the underlying computer hardware and operating systems.
Consequently, the same application code can be used on any system that
supports the appropriate VM.

• Allows applications to be ported on different computer platforms therefore
enabling programs to be easily taken by the user to different physical locations.

There are two types (Type I and Type II) of virtualization. A simple representation
of a Type I VM is shown in

Figure 4 (a), where virtualising software (the VM Monitor - VMM) is placed
between the underlying machine and conventional software. In this example, the
virtualising software translates the hardware Instruction Set Architecture (ISA) so that
the conventional software “sees” a different ISA from the one supported by the
hardware. The virtualisation process involves, (1) mapping virtual resources, e.g.,
registers and memory, to real hardware resources, and, (2) using real machine

 Trust Extension Device: Providing Mobility and Portability 261

Fig. 4. Virtual Machine Architectures: (a) Type I (b) Type II

instructions to emulate the virtual machine ISA. The underlying platform is known as
the “host” and the software that runs in the VM environment is the “guest”.

For TED, we utilize a Type II VM for the purpose of creating a secure trusted
environment as shown in shown in Figure 4 (b). This enables mobility of TED to
heterogeneous platforms. A brief outline of a full VM follows. There are some
limitations on TED while using a Type II VM, which we will discuss in a later
section.

In some important situations, the guest and host systems do not have a common
Instruction Set Architecture (ISA) and operating system. For example, the Apple
PowerPC-based systems and Windows PCs use different ISAs and different operating
systems. Because software systems are so closely tied to hardware systems, the
purchase of multiple platforms is required to support commonly used applications.
This situation motivates system VMs, where a complete software system, including
Operating System (OS) and applications, is supported on a host system that runs a
different OS and ISA. These are called Type II VMs because they virtualize the entire
host platform. Since the guest and host ISAs are different, both the guest OS and
guest application code require emulation; i.e. the virtualizing software must, 1)
emulate the entire hardware environment, 2), control the emulation of all the
instructions, and 3) convert the guest ISA operations to equivalent OS calls made to
the host OS.

For Type II VMs, the most common implementation method is to place the
virtualizing software and guest software on top of a conventional host OS that runs on
the host hardware, as shown in Figure 4 (b), i.e. a guest Linux system operating over a
host Windows system. It is as if the virtualizing software, the guest OS and guest
applications are one large application implemented on the host OS and host hardware.
At the same time, the host OS continues to run applications compiled for the native
ISA. The shortcoming of such a virtual machine, as we discussed earlier in a footnote,
is that it does not provide complete isolation of the guest environment as envisaged in
TED. We are investigating alternative approaches to overcome this shortcoming.

Secure Application
TED can be used in a range of applications, from financial transactions, to distributed
collaborations. The secure application is a thin client layer of the TED architecture
which is loosely coupled with underlying components. The secure application can be

262 S. Nepal et al.

developed using existing security technologies such as SSL. The TED is designed in
such a way that a developer can design and write an application that can be loaded
into the TED. The secure application is specially customised for use by a mobile user
(e.g. company agent). The trusted application utilises the TPM on the TED to
establish trust. Trust is established between a trusted application and a specific server
deployed by the issuer of the TED (the company). The detailed description of how a
secure application works is given in Section 3.3.

Fig. 5. Basic Components in an Enterprise Architecture

3.2 Enterprise System Architecture

An enterprise needs three basic components for TED to be operational as shown in
Figure 5.

TED Issuer and Manager that is responsible for generating digital keys,
manufacturing, issuing and revoking the TED.

Privacy Certifying Authority that is responsible for verifying the TED.
Application server that is responsible for deploying any related enterprise

applications.

It is important to note that these three tasks can be performed by three different
entities. For example, a bank can provide its own enterprise applications, but use a
trusted third party manufacturer and certifying authority to perform the other two
tasks. However, for our discussions in this paper, without loss of generality, an
enterprise is assumed to perform all these tasks. We next describe these three
components in detail.

TED Issuer and Manager
It is envisaged that the manufacture of the TED will be authorized by an enterprise
(such as a banking institution). The role of the enterprise in the manufacture of the
TED is to supply the necessary credentials as shown in Figure 6 that include
cryptographic keys for each TED, and in particular, the Endorsement Key pair for the
Endorsement Credential where the Endorsement Credential is embedded into the
TPM component of the TED. In our current architecture, we assume that the TED
issuer and manager within the enterprise will assume this role. That is, a single
enterprise can authorise many TEDs through the TED issuer and manager. The TED
manager will sign the credentials using its cryptographic private key. The TED
manager, therefore, will generate, for a single TED, the following data:

 Trust Extension Device: Providing Mobility and Portability 263

TED Credential containing data that identifies the person/client to whom the TED
is issued by the enterprise. The details of the client are signed by the
enterprise; in our enterprise architecture, this is done by the TED manager.

Endorsement Credential includes the public part of the endorsement key that is
unique to each TED. The TPM manufacturer signs the endorsement key. This
is done by the TED manager in our enterprise architecture.

Platform Credential includes the TED’s operating environment consisting of VM
software and VM OS. In our architecture, the TED manager signs the details of
the platform. It is possible to have an independent third party supplying the
platform description.

Validation Credential includes service component descriptions consisting of their
digests that are loaded into the TED. One could have an independent validation
manager. In our simple enterprise architecture this is also achieved by the TED
manager.

The TED Manager or issuer manufactures the TED with the credential details
explained above so that it can be used to establish the trust relationship as described in
a later section.

Privacy CA
The TCG uses a trusted third party, the privacy certification authority (Privacy CA),
to verify and authenticate the TPM. The same concept is used in TED which works as
follows. Each TED is issued with the credentials including an RSA key pair called the
Endorsement Key (EK). The Privacy CA is assumed to know the credential details
along with the public parts of the Endorsement Keys of all TEDs. That is, the TED
manager supplies the credential details to the Privacy CA. Whenever a TED needs to
communicate with the enterprise, it generates a second RSA key pair, called an
Attestation Identity Key (AIK), sends an identity key certification request to the
Privacy CA, which contains, (a) an identity public key, (b) a proof of possession of
identity for the private key, and (c) the endorsement certificate containing the TED's
endorsement public key as shown in Figure 7. The privacy CA checks whether a TED
issuer has signed the endorsement certificate. If the check is successful, the privacy
CA returns an identity certificate encrypted with the TED's endorsement public key.
The TED can then provide this certificate to the application server to verify and
authenticate itself with respect to the AIK. If the TED is reported as stolen or lost, the
Privacy CA can compute the corresponding public key and tag it as a rogue TED.

Application Server
The exact nature of the server application and its software architecture depends on the
specific application. We describe one such application server later on in our prototype
implementation section.

3.3 Trust Establishment Protocol

Trust is established by use of the TED’s Endorsement Credential of the TPM. The
Endorsement Credential contains the public part of a customized cryptographic key-
pair generated by the enterprise. The Endorsement Credential is obtained from the
trusted application of the TED's TPM as instances of Endorsement Certificates. In

264 S. Nepal et al.

Fig. 6. TED’s Credentials managed by TED issuer and manager

Attestation Identity Credential

Identity label,
Identity Public Key;
Trusted Third party,….

Privacy CA Signature

Fig. 7. Attestation Identity Credential

addition, the Endorsement Credential is digitally signed by the private part of the
enterprise's (TED manager’s) own cryptographic key-pair; this implies that the
Endorsement Certificate is also signed by the private part of the TED manager’s
cryptographic key-pair.

To establish trust, the trusted application initiates the generation of an Attestation
Identity Key (AIK); the AIK is generated inside the TED's TPM. The trusted
application then sends the public part of AIK, the Endorsement Credential to the
TED's TPM, and the TED’s credential to the trust verifier (i.e. Privacy CA). From this
data, the trust verifier can determine (a) whether the Endorsement Credential is as
expected and (b) the originating TED’s TPM that generated and sent the Endorsement
Certificate.

The trust verifier then generates an AIK Certificate, which is then sent back to the
trusted application. The AIK Certificate vouches for the genuineness of the TED’s
TPM, i.e. the AIK Certificate ensures that the AIK came from a particular TPM. The
AIK and AIK Certificate are used by the trusted application for all future enterprise
transactions. The AIK is necessary because the public part of the Endorsement Key
cannot be used to perform cryptographic operations on data outside of the TPM, but
the AIK can.

The trusted application can use the AIK and AIK Certificate in cryptographic
operations from this point onwards. Some examples include establishing a secure
connection with a server (via TLS, SSL or even possibly IPSec), or just to encrypt
data to send to the server. The trusted application can also send an integrity
measurement (cryptographic hash) of itself before performing any operations with the

 Trust Extension Device: Providing Mobility and Portability 265

TED#1 User

Privacy CA

TED #1 Endorsement
Credential

TED #1 Platform
Credential

TED#1 Attestation Identity
Credential

TED#1 Credential

TED #N Endorsement
Credential

TED #N Platform
Credential

TED#N Attestation Identity
Credential

TED#N Credential

Identity Request
Message

Attestation
Identity Key
Certificate

Fig. 8. Process of Issuing AIK Certificate to establish the trusted device

server. The TED manager then uses digests in validation credentials to validate the
service components.

The above process of generating the AIK, sending the AIK with credentials to the
server, obtaining an AIK Certificate and sending an integrity measurement itself is
known as remote attestation. The first three steps are related for establishing the
trusted device and the last step is for the trusted environment. This can be performed
either on a per-transaction basis [7] or a per-connection basis [8]. Per-transaction
refers to the process where for every operation the trusted application performs
remote attestation, or for every instance in which the trusted application needs to
communicate with the server, the trusted application performs remote attestation. Per-
connection attestation is where remote attestation is performed only once during the
start-up of the connection to the server. Figure 8 illustrates the concept of establishing
a trusted device for a single TED.

4 Prototype Implementation

We have developed a prototype system to demonstrate the concept of TED. Our
prototype implementation follows the enterprise architecture described earlier. Figure
9 shows the implementation architecture for TED. Following is a description of the

Fig. 9. Implementation Architecture

266 S. Nepal et al.

different components of the architecture, and how they work together in order to
enable mobility and portability of trust for a financial application.

TPM Emulation
There are a number of commercially available options for realizing the TPM in the
TED, any one of which is applicable for use. The actual TPM hardware can be either
TPM version 1.1 or TPM version 1.2. It is anticipated that the features required by the
TED from the TPM are accessible in both TPM version 1.1 and TPM version 1.2
hardware. Features of a TPM (after manufacture) required by the TED are: Obtaining
ownership of the TPM; Access to obtain the Endorsement Certificate; Generation of
an Attestation Identity Key (AIK); Generation of an Identity Request message;
Loading of an Attestation Certificate; and Generating and storing cryptographic
hashes.

Our prototype system utilized a TPM software emulator [13]. In order for the
trusted application to access the features listed above, the host operating system
requires a Device Driver of the TED’s TPM and APIs to access TPM features. The
device driver can either be supplied by the manufacturer of the TPM or it can be a
generic device driver (included in the guest operating system or from a third-party
supplier). Likewise, the APIs needed to access the TPM hardware can either be
supplied by the manufacturer of the TPM or from sources such as the guest operating
system or from a third party.

In our prototype, the TPM device driver and APIs are from a third-party supplier.
Specifically, the APIs are from IBM’s TrouSers TSS project (version 0.2.7) [14] and
jTssWrapper (version 0.2.1) [15].

QEMU
On plugging the TED into a host machine, the host machine's operating system will
sense the TED as a USB storage device which invokes the host machine to execute
the TED’s virtual machine. The TED’s virtual machine then instantiates an isolated
trusted environment on the host machine; this trusted environment is the virtual
machine that a user interfaces to. TED’s virtual machine is customized to obtain
certain types and amounts of host machine resources, such as specific amounts of
memory, general I/O (i.e. keyboard, mouse and video), and network access.

The benefit of having a virtual machine execute on connection is that it does not
require any installation of special software by the host machine; all the software
required for the virtual machine to execute is contained in the storage area of the
TED. In addition, the TED virtual machine directs all TPM related communications
and data from the trusted application and trusted environment to the TED’s TPM and
not the host machine's TPM, should it have one. Furthermore, the current
implementation of the TED’s virtual machine does not require re-booting of the host
machine; i.e. TED’s virtual machine and the host machine’s operating system can co-
exist in parallel but are isolated from each other.

In our prototype system, QEMU, version 8.2.0 for Microsoft’s Windows XP, [16]
is used as TED’s virtual machine. QEMU is an open source processor emulator. The
primary intention of the QEMU is to run one operating system on top of another, such
as Linux on Windows. QEMU has two operating modes, full system emulation and
user mode emulation. For our implementation, we only use the full system mode. Full

 Trust Extension Device: Providing Mobility and Portability 267

system emulation (of a PC) includes emulation of the processor and various
peripherals in order to launch a guest operating system. As a full system emulator
QEMU can run an unmodified guest operating system, such as GNU/ Linux or
Windows, and all its applications in a virtual machine. QEMU can also run on several
host operating systems such as Windows, Linux and Mac OS X where the host and
guest CPUs can be different. It is important to note here that such a virtual machine
does not provide complete isolation of the guest environment from the host machine.
This is a technological shortcoming in achieving the “trusted” guest environment as
envisaged in the concept of TED. This observation has led us to further work on
obtaining complete isolation of the guest environment from the host environment
without having any effect on the portability and mobility of trust.

Start

User plugs TED into
the host machine

Host machine
recognises

TED?

TED’s Virtual Machine
acquires and isolates

host machine
resources

No

Host machine
resources

acquired and
isolated?

END
No

User launches secure
application

TED performs remote
attestation using TPM

Yes

Yes

Remote
attestation

successful?

User communicates
with company server

via the secure
application

User quits secure
application

User quits TED’s
Virtual Machine

TED’s Virtual Machine
relinquishes host

machine’s resources

User removes TED
from host machine

Yes

END

No

Normal Termination

Fig. 10. The TED Runtime Flow Diagram

UBUNTU
In our prototype system, QEMU creates an isolated trusted environment in the host
machine’s Microsoft's Windows XP operating system. The guest operating system is
a customised Ubuntu 6.06 i386 GNU/Linux distribution.

The TED’s trusted environment, customised Ubuntu 6.06 i386 GNU/Linux and
application(s), are stored as a disk image file on the TED’s storage area. This
customised operating system is presented to the user, as the trusted environment, after
the QEMU has successfully acquired and isolated the resources from the host
machine. QEMU does not require the host machine to be re-booted; i.e. QEMU
allows for co-existence of both the host machine's operating system and its
applications, in parallel with the trusted environment.

268 S. Nepal et al.

NetBank Application
In our prototype system, we have developed a client for a web-based banking
application. The client application performs simple data retrieval from a server
(described earlier) across a TCP/IP network. Before data retrieval can begin, the client
application first performs remote attestation with a Privacy-CA server across the
network. The client application is only allowed to perform data retrieval when the
remote attestation operation is successful.

The client application was developed for the operating system of the TED; in this
case, the Ubuntu GNU/Linux distribution (version 6.06 for IA-32 architecture). The
client application used GTK+ for its GUI library and traditional UNIX network
sockets for its networking capabilities.

Host Operating
 System

(Windows)

Virtual Machine Monitor
Enterprise Components

(Privacy Certifying
Authority and Application

Server)

Attestation Process

Guest Application
Guest Operating System

(Linux)

Fig. 11. A screenshot of the running prototype

Application Server
We have implemented a multi-threaded bank server as a java application using
Eclipse 3.1 IDE and jdk 1.5 runtime environments. The bank server communicates
with bank clients via sockets. The multi-threaded bank server listens to the socket for
a bank client to make a connection request. The bank client knows the hostname
where the server is running and the port number on which the server is listening. After
a connection is established the bank server creates a thread that can receive client
requests and subsequently process them. The current bank server provides two
services. It can validate the bank client by checking username/password. It can also
return account balances of the authenticated bank clients. The bank server also
maintains a database for the list of valid bank clients and their account balances.

 Trust Extension Device: Providing Mobility and Portability 269

How does TED work?
An enterprise can issue one or many TEDs. Since the enterprise is involved during the
manufacturer of the TEDs, the enterprise has all the credential information of the
TEDs it issues. In addition, the enterprise has two additional components, the
Enterprise’s Application Server and the Enterprise’s Privacy Certificate Authority.

The Enterprise’s Server is used when a TED’s application requires a service from
the enterprise. The Enterprise’s Privacy Certificate Authority is used to perform
remote attestation whenever a TED connects to the enterprise’s network.

The flow diagram shown in Figure 10 captures the sequence of events (from the
point of view of a company agent) from the time that the TED is plugged into an
untrusted host to termination of a working session and removal of the TED. Figure 11
shows a screenshot capture while running the TED’s NetBank application in a
Windows XP host.

5 Related Work

One of the methods commonly used to establish trust is the use of public-key
infrastructure. In this approach, when a local host is challenged by a remote host, it
can verify the identity and trustworthiness of the local host by verifying the signature
on local host’s public key [23]. This method however does not take into account the
integrity of the operating environment. This shortcoming can be addressed by using a
software stack to measure and verify the integrity of co-operating systems [19, 20,
21]. However, one of the most critical disadvantages of using software-based
solutions is that the hardware which hosts the software stack can be stolen or the
hardware can be hacked to monitor the behavior of the stack.

In recent times, hardware-based techniques have gained popularity due to the fact
that hardware is relatively harder to hack than software. The hardware most relevant
to our work embeds TCG remote attestation [1] that allows distributed remote hosts to
verify each other by sending a snapshot of the current state of the platform
configuration. Several problems have been identified related to remote attestation due
to (a) the difficulty of measuring a platform’s configuration accurately in today’s
complex systems, and (b) the difficulty of architecting a trusted central authority
within this untrusted world, where totally independent systems communicate with
each other in an autonomous manner [22, 23]. These problems are driving further
research activities in remote attestation.

One of the approaches that use virtual machines is Terra [26]. The key premise that
Terra builds on is a trusted virtual machine monitor (TVMM) that allows Terra to
partition the platform into multiple isolated VMs. The TVMM provides a narrow
interface for attestation. It first generates a certificate that forms the basis of
attestation that contains the hash of a VM, TVMM’s public key and any other
application data used for authenticating the VM. The remote party retrieves this
certificate to check the validity of a VM. However, these techniques lack portability
and mobility of trust as the mechanism of establishing trust is attached to a specific
machine.

One of the commercially available mechanisms developed to address the mobility
and portability of trust is the eToken [17]. An eToken is a true reader-less smartcard

270 S. Nepal et al.

that can be taken from one workstation to another. Though eToken provides mobility
and portability of trust that includes secure storage and a robust file system, the
mechanism still uses a software-based mechanism but does not provide a trusted
environment like that of the TPM-based solution. On the other hand, SoulPad [18]
provides the portability of an operational environment without an underlying trust
mechanism. In many aspects, TED provides an integrated hardware-based solution for
portability and mobility of a trusted environment which encompasses the mobility and
portability of the digital certificate aspects of the eToken, the hardware-based trust
establishment mechanism of TPM, the portability and mobility of the operational
environment of SoulPad and the isolation of virtual machine of Terra. Therefore TED
enables the portability and mobility of isolated hardware-based trusted environments.

6 Conclusions

With TED we have provided a mechanism of providing mobility and portability of
trust so that users can create and use a trusted environment on any untrusted host
machine. Our approach uses the TPM for providing hardware-based digital
certificates and virtual machine technologies for providing an isolated environment.
We have implemented the concept on a financial application using the currently
available software technologies. The implementation also provides us insights into the
isolation requirements of the virtual machine in order to achieve the desired
environments for TED. We found that the level of isolation required for the virtual
machine, in the host machine, can be obtained only if the host machine or TED is
built for such proposes. However, the complete isolation of the guest environment
from the host environment on any host machine is not possible using the currently
available virtualization technologies. This observation has led into further work on
obtaining complete isolation of the guest environment from the host environment
without compromising on portability and mobility. Our initial work towards this
focuses on the development of secure I/O within TED using a bootable TED, which
provides the security at the cost of “flexibility” and “portability”. We also
demonstrated the realization of TED using TPM enabled laptops. Our future work
includes developing a security solution for TED without compromising the portability
and mobility of trust.

References

1. TCG specification v1.1, https://www.trustedcomputinggroup.org/specs/TPM/
2. http://changingminds.org/explanations/trust/what_is_trust.htm
3. Satizábal, C., Páez, R., Forné, J.: Relationships: from a Hybrid Architecture to a

Hierarchical Model. In: Proceedings of the First International Conference on Availability,
Reliability and Security (ARES 2006)

4. Yang, R., He, L., Yang, S., Gary, F., Liu, F., Chang, J., Guo, M.: The Value of Hardware-
Based Security Solutions and its Architecture for Security Demanding Wireless Services.
Security and Management , pp.509–514 (2006)

 Trust Extension Device: Providing Mobility and Portability 271

5. Nepal, S., Zic, J., Kraehenbuehl, G., Jaccard, F.: A trusted system for sharing patient
electronic records in autonomous distributed healthcare systems. International Journal of
Healthcare Information Systems and Informatics 2(1), 14–34 (2007)

6. Nepal, S., Zic, J., Jaccard, F., Krachenbuehl, G.: A Tag-based Data model for privacy-
preserving medical applications. In: Proceedings of EDBT IIHA Workshop, Munich,
Germany, pp. 77–88 (2006)

7. Nepal, S., Zic, J., Krachenbuehl, G., Jaccard, F.: Secure Sharing of Electronic Patient
Records, 1st European Conference on eHealth, pp. 47–58. Fribourg, Switzerland (2006)

8. Jang, J., Nepal, S., Zic, J.: Establishing a Trust Relationship in Cooperative Information
Systems. In: Meersman, R., Tari, Z. (eds.) Proceedings of Cooperative Information
Systems (CoopIS) 2006 International Conference. LNCS, vol. 4275, pp. 426–443.
Springer, Heidelberg (2006)

9. Nepal, S., Zic, J.: A Portable Trusted Device, Provisional Australian Patent, September
(2006)

10. http://www.ict.csiro.au/page.php?did=14
11. http://www.xensource.com/
12. http://www.vmware.com/
13. http://developer.berlios.de/projects/tpm-emulator/
14. http://trousers.sourceforge.net/
15. http://trustedjava.sourceforge.net/jtss/javadoc/
16. http://fabrice.bellard.free.fr/qemu/about.html
17. http://www.aladdin.com/eToken/
18. Caceres, R., Carter, C., Narayanaswami, C., Raghunath, M.T.: Reincarnating PCs with

Portable SoulPads. In: Proc of ACM/USENIX MobiSys, pp. 65–78 (2005)
19. Kennell, R., Jamieson, L.H.: Establishing the genuinity of remote computer systems. In:

Proceedings of the 11th USENIX Security Symposium, USENIX, August (2003)
20. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: SWAtt: SoftWare-based Attestation for

embedded devices. In: Proceedings of IEEE Symposium on Security and Privacy, (May
2004)

21. Monrose, F., Wyckoff, P., Rubin, A.D.: Distributed execution with remote audit. In: ISOC
Network and Distributed System Security Symposium, pp. 103–113 (1999)

22. Haldar, V., Franz, M.: Symmetric Behavior-Based Trust: A New Paradigm for Internet
Computing. In: New Security Paradigms Workshop (September 2004)

23. Reid, J., Juan, M., Nieto, G., Dawson, E., Okamoto, E.: Privacy and Trusted Computing.
In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, p.
383. Springer, Heidelberg (2003)

24. AMD platform for trustworthy computing. WinHEC 2003, http://www.microsoft.com/
whdc/winhec/papers03.mspx, Sept. 2003

25. Millen, J.K., Wright, R.N.: Reasoning about Trust and Insurance in a Public Key
Infrastructure, 13th IEEE Computer Security Foundations Workshop(CSFW), 2000, pp.
16–22 (2000)

26. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A virtual machine-
based platform for trusted computing. In: Proceedings of Symposium on Operating System
Principles (SOSP) (October 2003)

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 272–284, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Organizing Meaning Evolution Supporting Systems
Using Semantic Decision Tables

Yan Tang and Robert Meersman

Semantic Technology and Application Research Laboratory (STARLab),
Department of Computer Science,

Vrije Universiteit Brussel, Pleinlaan 2 B-1050 Brussels, Belgium
{yan.tang, robert.meersman}@vub.ac.be

Abstract. DOGMA-MESS (Meaning Evolution Support System) is a system
and methodology for supporting scalable, community-grounded ontology
engineering. It uses a socio-technical process of meaning negotiation to tackle
the scalability problems in ontology engineering. In order to improve the
effectiveness of DOGMA-MESS, we adopt the idea of Semantic Decision
Table (SDT). An SDT contains semantically rich decision rules that guide
DOGMA-MESS micro-processes. It separates the decision rules from
DOGMA-MESS. SDT with different decision rules results in different final
decisions, which can be evaluated. In this paper, we illustrate how SDTs are
used and apply our approach in the domain of Human Resource Management.

Keywords: ontology, Meaning Evolution Support System, Semantic Decision
Table, DOGMA-MESS.

1 Introduction

Nowadays, a vast amount of ontology capturing methodologies and tools are
available. However, scalable ontology engineering is hard to do in an
interorganizational setting, where there are many pre-existing organizational
ontologies and rapidly evolving collaborative requirements. A viable methodology
requires not building a single, monolithic domain ontology, but supporting many
domain experts in increasingly building ontologies. Accordingly, DOGMA-MESS
(Meaning Evolution Support System) methodology [4] is developed for scalable
community-grounded ontology engineering.

A core activity of DOGMA-MESS is to reach final consensus through a careful
and gradual process of meaning negotiation [3]. Reaching consensus on ontologies by
means of meaning negotiation tackles the scalability problem. As a key mechanism of
meaning evolution systems, meaning negotiation is integrated in the organizational
ontology alignment of DOGMA-MESS. In order to capture the behaviors of domain
expert community in a natural collaborative decision making manner, we adopt
Semantic Decision Tables (SDT, [16]), with which we try to improve the
effectiveness of MESS processes within a large community.

 Organizing Meaning Evolution Supporting Systems Using Semantic Decision Tables 273

SDT is not restricted to a specific system, such as DOGMA-MESS mentioned in
this paper. Instead, we use DOGMA-MESS as an example to demonstrate how SDT
can be used to support group decisions. There are two main advantages of applying
SDT in such systems. One is the flexibility of organizing group decision rules, for
SDT separates the formally agreed decision rules from the systems. The other is the
ability of analyzing different decision rules. The tabular reports generated by SDT are
easy for the non-technical users1 to choose the decision rules that meet their needs.

The paper is organized as follows: we introduce the notion of Semantic Decision
Table (SDT) in section 2. We give an overview of DOGMA-MESS using SDT
(section 3). The experiments on using different decision rules for SDT are
demonstrated in section 4. In section 5, we discuss and list related work. We conclude
and open future work in section 6.

2 Semantic Decision Tables

Semantic Decision Tables (SDT, [16, 17]), which contains semantically rich decision
rules, constitutes the kernel decision knowledge to reach consensuses in a large
community. More precisely speaking, it shares the most important decision
knowledge within a group decision session (e.g. a meaning negotiation process).

2.1 Decision Table and Semantic Decision Table

An SDT uses the tabular presentation as a decision table does. Following the de facto
international standard [2], three groups of information in a decision table are the basic
decision table elements: the conditions, the actions (or decisions), and the rules that
describe which actions might be taken based on the combination of conditions. A
condition stub contains a statement of a condition and each condition entry indicates
the relationship between the various conditions in the condition stub. Each action stub
has a statement of each action to be taken and the action entries specify whether (or in
what order) the action is to be performed for the combination of conditions that are
actually met in the rule column.

Table 1. A simple decision table example

Condition Column 1 … Column n
Driver’s license With … Without
… … … …
Action / Decision
a driver * …
not a driver ... *

Table 1 demonstrates a very simple decision table to check whether a person can
be a driver or not. The table element “Driver’s license” is a condition stub. The
condition entry “with”, together with “Driver’s license”, forms a condition. The table

1 In DOGMA-MESS, the users are the domain experts who contribute to the ontology

construction.

274 Y. Tang and R. Meersman

element “a driver” is an action stub. The action entry “*” and the action stub “a
driver” constitute an action (or decision). Column 1 is an example of a decision.

What makes SDT different from a traditional decision table is the semantics.
Unlike traditional decision tables, the concepts, variables and decision rules are
explicitly defined in an SDT. There are two kernel constituents in an SDT: 1) the
behavior of the community in the (external) collaborative environment(s); and, 2) the
semantics model designed by the group when observing the real-word of decision
making problems. To study the behavior of the community is beyond the paper focus.
Readers who are interested in it may read our recent papers [18, 19]. We focus on
how to model the semantics of an SDT in the next subsection.

2.2 Modeling Semantic Decision Tables

An ontology is a semiotic representation of agreed conceptualization in a subject
domain [7, 8]. We use ontologies to store the SDT semantics. Note that the ontologies
are used for two purposes in this paper. One is the result of the DOGMA-MESS
activities. The other is to store the group decision rules to guide the DOGMA-MESS
process. The ontology used to store SDT semantics is to serve the latter purpose.

SDT is modeled based on the DOGMA (Developing Ontology-Grounded Methods
and Applications) framework [15], which was designed as a methodological
framework inspired by the tried-and-tested principles of modeling conceptual
databases. In the DOGMA framework one constructs (or converts) ontologies by the
double articulation principle: the ontology base layer that contains a vocabulary of
simple facts called lexons, and the commitment layer that formally defines rules and
constraints by which an application (or “agent”) may make use of these lexons.

A lexon is a quintuple < γ, t1, r1, r2, t2>, where γ is a context identifier which is
assumed to point to a resource, and which serves to disambiguate the terms t1, t2 into
the intended concepts. r1, r2, which are “meaningful” in γ, are the roles referring to the
relationships that the concepts share with respect to one another. For example, a lexon
<γ, Driver’s license, is issued to, has, Driver>2 explains a fact that “a driver’s license
is issued to a driver”, and “a driver has a driver’s license”.

A commitment, which corresponds to an explicit instance of an intentional logical
theory interpretation of applications, contains a set of rules in a given syntax and
describes a particular application view of reality such as the use by the application of
the (meta-) lexons in the ontology base. This describing process is also called ‘to
commit ontologically’. The commitments need to be expressed in a commitment
language that can be interpreted, such as in [5].

Suppose we have a lexon <Driver’s license, is issued to, has, Driver>, which has
the constraints as “one driver’s license is accepted by at most one driver”. We apply
the uniqueness constraints UNIQ on the lexon written as below:

p1 = [Driver’s license, is issued to, has, Driver]:
UNIQ (p1).3

2 In this paper, we do not focus on the discussion of the context identifier γ, which is omitted in

other lexons. E.g. <γ, Driver’s license, is issued to, has, Driver> is thus written as <Driver’s
license, is issued to, has, Driver>.

3 The syntax of the formalized commitment and the examples can be found at: http://
www.starlab.vub.ac.be/website/SDT.commitment.example.

 Organizing Meaning Evolution Supporting Systems Using Semantic Decision Tables 275

Although an SDT contains SDT lexons and SDT commitments, SDT itself is not
an ontology. It is because each SDT is used for a specific application or task. The
SDT commitments can contain both static, ontological axioms and temporal,
changeable rules. Different algorithms used in DOGMA-MESS need to be committed
by a community, the result of which is a set of SDT commitments (section 4).

3 DOGMA-MESS

DOGMA-MESS (Meaning Evolution Support System) is a state-of-art system built for
scalable ontology engineering [4]. It helps the communities of practice consisting of
the stakeholders from different organizations to define the ontologies that are relevant
to their joint collaborative objectives. As the ontology grows when the collaborative
communities evolve and learn; it is necessary to have a systematic method of
ontology evolution and alignment.

DOGMA-MESS decomposes the macro-processes, such as ontology alignment,
ontology merging and ontology versioning, into a manageable combination of several
micro-processes. It uses the socio-techniques of meaning evolution support systems to
analyze formal concept definitions. The relevance of eliciting and applying the
ontological knowledge of evolution is at the heart of DOGMA-MESS.

During the evolution of an ontology, the number of the ontological definitions (i.e.
the concepts in a domain ontology) grows while the collaborative communities evolve
and learn. The process of modifying ontologies is very expensive because the domain
experts need to reach a final agreement for each new (or modified) concept. In order
to solve this problem, meaning negotiation, which is defined as “a mechanism for
reaching the appropriate amount of consensus on relevant conceptual definitions” in
[3], is designed as the key focus. With the help of the meaning negotiation techniques,
stakeholders in the community are able to define problems, analyze requirements and
analyze/refine communication patterns for the community-driven ontology evolution.

Dependant templates designed by the stakeholder communities are applied to
check the relevance between new concepts and concepts in an existing ontology
during each meaning negotiation process. In [13], authors use conceptual graphs [14]
to design these templates.

In the early papers, de Moor et al. [4, 5] address the questions of how to model the
process of DOGMA-MESS and how to integrate the techniques of meaning
negotiation into DOGMA-MESS processes. The issue of capturing the community’s
behavior during DOGMA-MESS processes was not yet covered. In this paper, we
focus on using SDT [16] to support building group consensuses for DOGMA-MESS.
More precisely speaking, we study the community’s behaviors during the DOGMA-
MESS process of defining new relevant concepts and specify them within an SDT. By
using such an SDT in a natural collaborative decision making manner, we try to
improve the effectiveness of DOGMA-MESS.

DOGMA-MESS, which is a collection of meaning evolution support systems,
distinguishes ontologies at several levels. This kind of hierarchical ontology structure
designates the dependencies between the concepts in layered ontologies. Recently,
modeling layered ontologies has been studied so far. The scalable ontology model we
will describe focuses on neither the typology of ontology nor the construction of

276 Y. Tang and R. Meersman

layered ontologies. Instead, we focus on the idea of how to gradually build ontologies
within layered ontologies. In the next subsection, we design the layered structure of
DOGMA-MESS using SDT.

3.1 Outline of SDT in the Meaning Evolution Support Systems

Based on the work in [20, 4], we model a scalable ontology into four layers: Meta-
Ontology (MO), Upper Common Ontology (UCO), Lower Common Ontology (LCO)
and Organizational/Topical Ontology (OTO) (Fig. 1). In [20], topical ontology
structure for scalable ontology engineering is introduced to represent the knowledge
structure of the domain experts (the stakeholders of a community) by involving
different view points of analysis and modeling. Later on, the interorganizational
ontology model is designed to match the requirements for the meaning evolution [4].
We try to integrate SDT into the topical ontology model and interorganizational
ontology model as illustrated in Fig. 1.

Fig. 1. Interorganizational Ontology Engineering Model in DOGMA-MESS (with the
Integration of SDT). The dotted lines with arrows indicate the specialization dependencies
between ontologies of different levels.

An interorganizational ontology evolves and creates different versions over time.
The starting point of each version is the current insight about the common interest and
common settings, i.e. the services or tasks that an interorganizational ontology is
going to be used. The end result of each version is a common ontology, which is a
point to reach the consensus from various individual interpretations of topical or
organizational ontologies.

 Organizing Meaning Evolution Supporting Systems Using Semantic Decision Tables 277

Within a version, four levels of ontologies need to be distinguished:

1) Meta-Ontology (MO) defines the abstract concept types, such as ‘Actor’,
‘Object’, ‘Process’ and ‘Quality’. Conceptualization at this level is not
allowed to be changed. The relations between these concept types fall into
two categories: i) the hierarchical relations reflected by the type hierarchical
construct. This kind of relations is also called subsumption ontological roles
(e.g. “subtype of” relationship in [14]). ii) Other Core Canonical Relations,
such as “part-of” merelogical relation in [8], “property-of” relation and
“equivalent” relation.

2) Each domain has its own Upper Common Ontology (UCO); the Upper
Common Concept Type Hierarchy organizes the (evolving) concept types
that are common to the domain. For example, ‘Actor’ at the Meta-Ontology
level can be translated into the concepts ‘employer’ and ‘employee’ at the
UCO level of the Human Resource Management domain. Domain experts
define domain canonical relations in terms of the domain. For example, the
domain canonical relation ‘hire’ can be applied between ‘employer’ and
‘employee’. When an ontology evolves, all the concepts in the UCO of
version N are lifted to the concepts in the UCO of version N+1. The core
domain experts are responsible to standardize the concept definitions at his
level.

3) Lower Common Ontology (LCO) is the most important and complex layer
for the meaning negotiation in DOGMA-MESS. The concept definitions at
this level are the organizational and topical specializations, which are
created at the Organizational Ontology or Topical Ontology (OTO) level,
are aligned and merged. This process happens within a version. The
candidate concepts are analyzed by an SDT, which contains the decisions of
whether a concept can be lifted (or merged) to the LCO or not. Once the
concept is not decided to be lifted, it will keep in the OTO and wait for the
next iteration of versioning process. In the next section, a concrete SDT
example with a lifting rule is demonstrated.

4) Organizational Ontology and Topical Ontology (OTO) seek to represent
systematically the knowledge structure the domain experts has on given
themes (or tasks) individually. A Topical Ontology “lays foundation for
application (or task) specific ontologies and conceptual models… its
semantic space covers multiple subjects and dynamic evolution of the core
concepts within a topic” [21]. Concepts within a topic represent terminology
of application structure, assumption and framework. Within a version, every
domain expert (or every enterprise-wise stakeholder group) is responsible to
build his own OTO based on the ontology models in UCO. For example, we
have a Conceptual Graph model that describes the definition of “Teacher”
and “Course” at the UCO level (Fig. 2). Based on it, a domain expert may
introduce a new relevant concept “Patience” by adding a conceptual relation
“has skill” to “Teacher” (Fig. 3). Similarly, a new relevant concept “Oral
comprehension” can be introduced at OTO level (Fig. 4).

278 Y. Tang and R. Meersman

Fig. 2. The concept “Teacher” designed in Conceptual Graph [14] at UCO level

Fig. 3. A new relevant concept “Patience” in Conceptual Graph at OTO level

Fig. 4. A new relevant concept “Oral comprehension” in Conceptual Graph at OTO level

When an ontology evolves, many early defined concepts at UCO level may need to
be revised. First, these concepts are degraded to OTO level. Then, the domain experts
redefine them and put them into the next lifting iteration.

Based on the discussion above, we argue that the lifting rule(s) are the kernel
decision rules in DOGMA-MESS. In the next section, we focus on this kind of
decision rules and store them as the SDT commitments.

4 Design SDT for DOGMA-MESS

In this section, we try to set up the SDT to assist lifting the concepts from OTO level
to UCO level. Different decision rules (the lifting algorithms) are respectively
formalized as different sets of SDT commitments (section 4.1 and 4.2). We evaluate
these lifting algorithms by analyzing the tabular reports generated by the system
(section 4.3).

4.1 Lift a Concept from OTO to LCO

When we lift a concept from OTO level to LCO level, we need to choose some
concepts at OTO level. Let Sc be the concept set at OTO level, and let Sl be the
resulting lifted concept set at LCO level. In order to compute this process
automatically, we hereby introduce two important condition stubs used to form SDT
condition lexons – the relevance score Rc and the interest point Ip.

A concept Ci at OTO level is considered as a relevant candidate concept when it
gets certain amount of relevance score Rc. Rc is set zero when a new concept is
defined at the first time. It increases when the concept is defined in other
organizational ontologies designed by different domain experts. For example, if we
get the concept “skill of safety” defined within the same context from two different
organizational ontologies, the Rc of this concept is increased by one.

Interest point Ip starts from zero. Ip is assigned to an existing concept at UCO level.
It increases by one when a new concept, which is connected to this existing concept,

 Organizing Meaning Evolution Supporting Systems Using Semantic Decision Tables 279

is introduced. For example, we have the concept definition of “Teacher” at UCO level
(Fig. 2). When a domain expert adds a new relevant concept “Patience” to “Teacher”
at OTO level (Fig. 3), Ip of “Teacher” is increased by one. Ip reflects the focusing
interests of the stakeholder community. We consider the concept “Patience” as a
candidate concept that will be lifted to UCO level only when Ip of its connected
concept “Teacher” meets a certain threshold value. When a new concept at OTO level
is connected to more than one concept at UCO level, we choose the biggest number of
Ip. Accordingly, we formalize a lift rule into the SDT commitments as illustrated in
Table 2.

Table 2. An example of SDT commitments and their explanations in the natural language

ID Commitment Verbalization
1 (P1 = [concept, has, is of, Ip],

P2 = [Ip, is of, has, concept])
: UNIQ (P1, P2).

Each concept has at most one interest point.
And each interest point is of at most one
concept.

2 (P3 = [concept , has, is of, Rc],
P4 = [Rc, is of, has, concept])
: UNIQ (P3, P4).

Each concept has at most one relevance
score. And each relevance score is of at most
one concept.

3 (P5 = [concept, has, is of, Rc],
P6 = [concept, has, is of, Ip],
P7 = [concept, is lifted to, contain, UCO level])
: IMP(AND(P5(Rc) >= T1, P6(Ip)>=T2), P7).

The fact that a concept is lifted to UCO level
depends on two conditions: 1. whether its
relevance score is more than T1 or not; And
2. Whether its interest point is more than T2
or not.

Commitment 1 in Table 2 uses the uniqueness constraint (‘UNIQ’) to express the
one-to-one relationship between ‘concept’ and ‘interest point’. So does commitment
2. Commitment 3 uses the propositional connectives ‘IMP’ (the implication
connective) and ‘AND’ (the conjunction connective) to express that: a candidate
concept can be lifted to UCO level if and only if its relevance point and interest point
meet their threshold (‘T1’ and ‘T2’).

Table 3. A tabular report generated based on the SDT, which contains the commitments in
Table 2 (T1=15, T2=20)

 Candidate concept
Condition

Patience Oral comprehension …

Super Type N/A Competence …
Relevance Score 30 20 …
Relevant concept at UCO Teacher Teacher …
Interest Point 30 30 …
... … … …
Action/Decision …
Keep for next MESS iteration *
Lift to LCO *

Based on Table 2, two concepts at the OTO level – ‘Patience’ and ‘Oral
comprehension’, which are considered as two candidate concepts, are analyzed in
Table 3. Table 3 contains the decision whether the concepts ‘Patience’4 and ‘Oral

4 Its concept is given by Fig. 3.

280 Y. Tang and R. Meersman

comprehension’5 at OTO level can be lifted to LCO level or not. The tabular report is
automatically generated by the SDT plug-in in the DOGMA-MESS tool6. As the
interest point (10) of the concept ‘Patience’ doesn’t reach the threshold (15), it is kept
at OTO level for next MESS iterations.

The resulting concept set is then provided to the core domain experts, who are
responsible for standardizing the concepts and merging them at UCO level. As the
concepts are defined and visualized in the Conceptual Graph models (e.g. Fig. 4), the
core domain experts can use many available conceptual graph matching manners,
such as in [12], to merge the new concepts automatically into the existing concepts.
During this merging phase, some extra links between new concepts and existing
concepts need to be constructed. For example, conceptually equivalent concepts need
to be linked with the “equivalent” canonical relation. The merging process results in
several reorganized conceptual graphs at UCO level.

Table 2 is as an example of a lifting rule. In practice, users are free to choose their
preferred lifting rules. In the next subsection, we will improve the lifting rule.

4.2 Improve the Lifting Algorithm

In the PoCeHRMOM7 project, we observe that not all the parameters used in SDT are
equally important. For example, the relevance score Rc is often considered more
important than the interest point Ip. In order to emphasize their importance, we use the
weights for Ip and Rc. We define a weight set - ω - as a set of real numbers [0, 1].

Let pIω be the weight of Ip, cRω be the weight of Rc, where ωωω ∈cp RI , .

Let T be a threshold value, ic be a concept and lS the resulting concept set. If
ic fulfills the following condition:

TRI cRpI cp ≥∗+∗ ωω (1)

Then, we say that li Sc ∈ .
As discussed in section 3.1, the concepts at the OTO level are developed within

different topics. We argue that the choice of a topic is not neutral. A topic reflects the
stakeholders’ motivations and the purpose of using an ontology, although it abstracts
away the application perspectives. Let 'C be a topic. We use the notion icC '. to

indicate that ic is defined within 'C . A concept ic can have several prefix 'C as its
topics can be layered. For example, the concept ‘oral comprehension’ can be defined
in both the topics of ‘the profile for a teacher’ and ‘the profile for a marketing
manager’. In this case, we use the notion in cCCC .'...'.' 21 .

In practice, we observe that the more topic prefixes are used to define a concept,
the more re-useful the concept becomes. Therefore, we use the number of the topic
prefixes of a candidate concept as the third criteria. Let cN be the number of the
topic prefixes of ic and topicω be the weight to adjust cN , where ωω ∈topic .

5 Its concept is introduced by Fig. 4.
6 The DOGMA-MESS tool currently developed in STARLab is a web portal to assist domain

experts to design ontologies: http://www.dogma-mess.org/
7 PoCeHRMOM project aims to establish semantic rich knowledge of human resource

management by means of ontology and Semantic Web technologies.

 Organizing Meaning Evolution Supporting Systems Using Semantic Decision Tables 281

Now the decision rule is modified into –
If ic fulfills the following condition:

() TNRI ctopiccRpI cp ≥∗+∗+∗ ωωω (2)

Then, we say that li Sc ∈ .

Table 4. The optimized lifting rule formalized as a SDT commitment.

(P5 = [concept, has, is of, Rc],
P6 = [concept, has, is of, Ip],
P7 = [concept, has, is of, Nc],
P8 = [concept, is lifted to, contain, UCO level])
: IMP((P5(Rc)*Wrc + P6(Ip)*Wip + P7(Nc)*Wtopic) >= T, P8).

Table 4 illustrates the SDT commitment for the improved decision rule. In the next
subsection, different decision rules are evaluated.

4.3 Evaluation of Different Decision Rules

We evaluate our lifting algorithms illustrated in section 4.1 and section 4.2 with the
selection rates. Let Ncan be the number of the candidate concepts, which resides at
OTO level. And let Nsel be the number of selected concepts that are lifted. The
concept selection rate Sr is defined as:

Sr =
can

sel

N

N

Concerning the decision rule in section 4.1, Sr is studied by setting up different
values of T1 and T2.

Fig. 5. Selection rates and their corresponding values of the parameters when applying the
algorithm in section 4.1

Fig. 5 illustrates Sr by applying the first algorithm (section 4.1). The selection rates
are initially calculated when we provide different threshold values T1 and T2. We
make two sets of experiments: First, the value of T1 is fixed and the value of T2 is
changeable; second, the value of T2 is fixed and the value of T1 increases every time.
Both experiments are performed five times. Fig. 5 is an example that takes the fixed
values of T2 and the dynamic values of T1. We observe that the value Sr gets smaller
when the threshold values T1 and T2 increase. At a certain moment, no concept can be

282 Y. Tang and R. Meersman

lifted as the threshold values are set too big. In practice, the values of T1 and T2 are
adjusted based on the real situations. For instance, the core domain experts raise T1
and T2 when there are two many candidate concepts and they don’t have a lot of time.

Fig. 6. Selection rates and their corresponding values of the parameters when applying the
algorithm in section 4.2

Fig. 6 illustrates the selection rates by applying the algorithm in section 4.3. We
experiment on three value sets of the parameters WIp, WRc and Wtopic. The balance
between these parameters reflects the preference of the core domain expert. As the
previous algorithm, the selection rate decreases when the threshold value is big. No
concept can be lifted when the threshold value meets the limitation.

Comparing these two sets of decision rules, we discuss that the first one is simple
and easy understandable. The second one is more complicated; however, it is more
useful and precise as it reflects the preference of the key domain experts. The two
algorithms shown in this paper are two examples. In practice, more decision rules
may be introduced by the key domain experts. For example, the parameter of
conceptual similarity may be added to the candidate concepts.

5 Related Work and Discussion

Nowadays, current ontology merging, versioning and alignment methods mainly
focus on how to integrate different ontologies, such as in [10]. Researches
concentrate on combining several (sub-) ontologies into one ontology by removing
inconsistency and reducing conflicts among them. DOGMA-MESS does not focus on
how to solve these problems, but to gradually build interoperable ontologies amongst
a large, knowledge-intensive community. One communicates with others’ needs,
trying to find the overlapping interests, with which we make interorganizational
ontologies.

Consensual knowledge base introduced in [6] and cooperative domain ontology
studied in [1] are promising related work in building consensus on ontology level.
However, authors in [4] discuss that those methodologies are lack of community
consideration although those methodologies work out some basic principles for
building ontological consensus.

In the Prolix project, we observe that there are several advantages and
disadvantages while applying SDT to DOGMA-MESS. By using SDT in DOGMA-
MESS, the effectiveness of DOGMA-MESS processes increases. Before, we used to

 Organizing Meaning Evolution Supporting Systems Using Semantic Decision Tables 283

hardcode the algorithms in the system. Now, the core domain experts only need to
create the SDT commitments while they want to apply new decision rules. During the
exercises, we observe that the tabular reports generated based on SDT’s are extremely
convenient and user-friendly for non-technical domain experts. Another advantage is
the flexibility. DOGMA-MESS using SDT is more flexible because the specifications
and decision rules are not hard coded in the system any more. The knowledge
engineers can create different algorithms and decision rules based on their needs.

A big disadvantage is the complexity. The knowledge engineers need to know how
to write the SDT commitments.

6 Conclusion and Future Work

In this paper, we focus on the discussion on the role of SDT (Semantic Decision
Table) in Meaning Evolution Support Systems for ontology engineering. SDT is used
to improve the effectiveness of such systems for a better design. In this paper, SDT
are explicitly used when new relevant concept need to be defined and lifted to the
domain level. The decision rules, with which the system decides to lift a certain
number concepts, are formalized as SDT commitments. We evaluate different
decision rules by analyzing the relations between some specific parameters of the
decision rules (the input) and the selection rates of concepts (the output).

We have developed a tool to support constructing SDT. The current version
supports some specific commitment types [16]. A web portal to support DOGMA-
MESS methodology has been developed [4]. A future work is to integrate SDT
modules to DOGMA-MESS methodology, and reason the SDT commitments.

Acknowledgments. The experimental data is collected from the IWT PoCeHRMOM
project. The research is partly supported by the EC Prolix project (FP6-IST-027905)
and the EC AmIE project (ITEA 2 - 06002). It’s author’s pleasure to thank Pieter De
Leenheer for the paper discussion.

References

[1] Aschoff, F.R., Schmalhofer, F., van Elst, L.: Knowledge mediation: a procedure for the
cooperative construction of domain ontologies. In: proc. of the ECAI 2004 workshop on
Agent-Mediated Knowledge Management, pp. 29–38 (2004)

[2] CSA, Z243.1-1970 for Decision Tables, Canadian Standards Association (1970)
[3] de Moor, A.: Ontology-Guided Meaning Negotiation in Communities of Practice. In:

Mambrey, P., Gräther, W. (eds.) C&T 2005. Proc. of the Workshop on the Design for
Large-Scale Digital Communities at the 2nd International Conference on Communities
and Technologies, Milan, Italy (2005)

[4] de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A Meaning Evolution
Support System for Interorganizational Ontology Engineering. In: Schärfe, H., Hitzler, P.,
Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 189–203. Springer,
Heidelberg (2006)

[5] De Leenheer, P., de Moor, A., Meersman, R.: Context Dependency Management in
Ontology Engineering. In: Spaccapietra, S., Atzeni, P., Fages, F., Hacid, M.-S., Kifer, M.,
Mylopoulos, J., Pernici, B., Shvaiko, P., Trujillo, J., Zaihrayeu, I. (eds.) Journal on Data
Semantics VIII. LNCS, vol. 4380, pp. 26–56. Springer, Heidelberg (2007)

284 Y. Tang and R. Meersman

[6] Euzenat, J.: Building consensual knowledge bases: context and architecture. In: Mars,
N.J.I. (ed.) Proc. of the KB&KS 1995. Towards Very Large Knowledge Bases, pp. 143–
155. IOS Press, Amsterdam (1995)

[7] Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. In: Guarino, N., Poli, R. (eds.) Workshop on Formal Ontology, book Formal
Ontology in Conceptual Analysis and Knowledge Representation, Padva, Italy, Kluwer
Academic Publishers, Dordrecht (1993)

[8] Guarino, N., Poli, R. (eds.): Formal Ontology in Conceptual Analysis and Knowledge
Representation. Special issue of the International Journal of Human and Computer
Studies 43(5/6) (1995)

[9] Halpin, T.: Information Modeling and Relational Database: from Conceptual Analysis to
Logical Design. Morgan-Kaufmann, San Francisco (2001)

[10] Madhavan, J., Bernstein, P., Domingos, P., Halevy, A.: Representing and reasoning about
mappings between domain models. In: AAAI 2002. Eighteenth National Conference on
Artificial Intelligence, Edmonton, Canada, pp. 80–86. American Association for Artificial
Intelligence (2002). ISBN:0-262-51129-0

[11] Meersman, R.: The Use of Lexicons and Other Computer-Linguistic Tools in Semantics,
Design and Cooperation of Database Systems. In: CODAS 1999. The Proceedings of the
Second International Symposium on Cooperative Database Systems for Advanced
Applications, pp. 1–14. Springer, Heidelberg (1999)

[12] Myaeng, S.H., Lopez-Lopez, A.: Conceptual graph matching: a flexible algorithm and
experiments. International Journal of Pattern Recognition and Artificial Intelligence 4,
107–126 (1992)

[13] Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Massachusetts (1984)

[14] Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks Cole Publishing, Pacific Grove (2000)

[15] Spyns, P., Meersman, R., Jarrar, M.: Data Modeling versus Ontology Engineering.
SIGMOD Record: Special Issue on Semantic Web and Data Management 31(4), 12–17
(2002)

[16] Tang, Y., Meersman, R.: Towards Building Semantic Decision Table with Domain
Ontologies. In: Man-Chung, C., Liu, N.K., Cheung, J., Zhou, R. (eds.) ICITM 2007.
proceedings of International Conference on Information Technology and Management,
pp. 14–22. ISM Press, Hong Kong (2007)

[17] Tang, Y., Meersman, R.: On Constructing Semantic Decision Tables. In: Wagner, R.,
Revell, N., Pernul, G. (eds.) DEXA 2007. proc. of 18th International Conference on
Database and Expert Systems Applications. LNCS, vol. 4653, pp. 34–44. Springer,
Heidelberg (2007)

[18] Tang, Y.: On Conducting a Decision Group to Construct Semantic Decision Tables. In:
OntoContent workshop, in proc. of OTM 2007 (this book)

[19] Tang, Y.: A Theoretic Foundation of Semantic Decision Tables and Decision Groups,
PhD report, VUB STARLab, 2007.

[20] Zhao, G., Meersman, R.: Architecting ontology for Scalability and Versatility. In:
Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2006:
CoopIS, DOA, GADA, and ODBASE. LNCS, vol. 4276, pp. 1605–1614. Springer,
Heidelberg (2006)

[21] Zhao, G., Meersman, R.: Towards a Topical Ontology of Fraud. In: Mizoguchi, R., Shi,
Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 566–572. Springer,
Heidelberg (2006)

Extending Online Travel Agency with Adaptive

Reservations

Yu Zhang1, Wenfei Fan2, Huajun Chen1, Hao Sheng1, and Zhaohui Wu1

1 College of Computer Science,
Zhejiang University, Hangzhou 310027, Zhejiang, China

{yzh,huajunsir,wzh}@zju.edu.cn
2 University of Edinburgh & Bell Laboratories

wenfei@inf.ed.ac.uk

Abstract. Current online ticket booking systems either do not allow
customers to reserve a ticket with a locked price, or grant a fixed reser-
vation timespan, typically 24 hours. The former often leads to false avail-
ability: when a customer decides to purchase a ticket after a few queries,
she finds that either the ticket is no longer available or the price has hiked
up. The latter, on the other hand, may result in unnecessary holdback:
a customer cannot purchase a ticket because someone else is holding it,
who then cancels the reservation after an excessively long period of time.
False availability and holdback routinely lead to loss of revenues, cred-
ibility and above all, customers. To rectify these problems, this paper
introduces a transaction model for e-ticket systems to support a reser-
vation functionality: customers can reserve tickets with a locked price,
for a timespan that is determined by the demands on the tickets, rather
than being fixed for all kinds of the tickets. We propose a method for
implementing the model, based on hypothetical queries and triggers. We
also show how to adjust the reservation timespan w.r.t. demands. We ex-
perimentally verify that our model and methods effectively reduce both
false availability and holdback rates. These yield a practical approach to
improving not only e-ticket systems but also other e-commerce systems.

1 Introduction

It is increasingly common for people to book travel packages online. A number
of online ticket booking systems (a.k.a. e-ticket systems or virtual travel agents)
have been launched by airlines [1] or Web service providers (e.g., Expedia [2],
Orbitz [3] and Priceline [4]). While these services allow customers to query airfare
and purchase tickets online, they provide very limited support for one to reserve
a ticket with a locked price.

It is evident that customers want to reserve a ticket before they are ready
to purchase it. For instance, Alice wants to book a ticket via an online service.
After finding a ticket with a reasonable price, she proceeds to build up the rest
of her travel plan by, e.g., issuing queries about hotels and car rental. After 5
minutes, she is happy with the package she found and decides to purchase the

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 285–299, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

286 Y. Zhang et al.

ticket. But she is frustrated to find that either the ticket she liked has already
been sold out, or the price has gone up. She has to start the process again from
scratch, and may get her travel package in place only after repeated failures. She
would certainly like it if the system had allowed her to reserve the ticket with
the price locked when she found it.

Existing e-ticket systems support reservations based on one of the following
approaches.

(a) On one end of the spectrum, reservations are treated as “purchases”: as
soon as tickets are reserved, they are blocked from other customers until they
are finally purchased or the reservation is canceled. The other customers cannot
view or query these tickets as if they were already sold. However, typically certain
percentage of the reservations will be canceled in the end. As a result, this
conservative approach inevitably incurs excessive and unnecessary rollbacks and
transaction management cost. Worse still, with this comes holdback of tickets:
other customers are denied the chance to purchase those tickets that are reserved
but finally not purchased. This often leads to loss of revenue, among other things.

(b) On the other end of the spectrum, reservations are treated as “queries”: no
reservation action is taken. This aggressive approach leads to false availability:
a customer finds tickets with a reasonable price; however, when she is ready to
commit to purchase, she is told that the tickets with the price are actually not
available. While this approach does not suffer from the holdback problem, it
leads to loss of credibility and eventually loss of customers.

(c) Compromising these two extreme approaches, some services allow one to re-
serve a ticket for a fixed period of time, typically 24 hours. That is, a reservation
will expire after 24 hours if no explicit purchase or cancellation is conducted.
This reduces holdback and false availability rates, but only to an extent: in a
travel season when certain tickets are highly demanded, a fixed 24-hour reserva-
tion timespan is often excessively long and may incur the same holdback problem
as approach (a) above. In practice the reservation timespan should be adaptive,
i.e., it should vary in accordance to the demands on the tickets. Furthermore,
it is common that customers decide to commit to purchase in a single session of
querying and purchasing; thus a fixed 24-hour timespan is often an overkill.

We have investigated 30 popular e-ticket systems, and found that all except
seven adopt approach (b), i.e., no reservation function is supported at all. The
seven services that support reservation all follow approach (c) (American Air-
line, Continental, Southwest, United, and US Airways [1], MakemyTrip.com and
Cfares.com): customers are allowed to hold the tickets for 24 hours or until the
midnight of the next day. In addition to the holdback problem with approach (c),
these services do not allow the price of a reserved ticket to be locked; thus al-
though a customer can reserve a ticket she is not guaranteed to get the ticket
with the price she found when making the reservation. In short, the reserva-
tion functionality supported by existing online ticket booking systems neither
rectifies the holdback problem nor reduces false availability.

Extending Online Travel Agency with Adaptive Reservations 287

Contributions. To this end we propose a transaction model for e-ticket systems
to support the reservation functionality while reducing both the holdback rate
and the false availability rate. In this model the customer is allowed to reserve a
ticket, with a locked price, for a timespan adjusted in accordance to demands on
the tickets. We also provide an efficient technique to support the model such that
the addition of the reservation function does not imply any drastic degradation
in performance for existing e-ticket systems.

The main contributions of the paper include the following:
1. A transaction model that supports queries, purchases and in addition, reser-

vations. It reduces the holdback and false availability rates by (a) adapting
reservation timespan based on demands, and (b) making a percentage of
reserved tickets available to other customers, determined by an estimate of
the reservations that eventually turn into purchases.

2. A combination of techniques, including hypothetical queries (see, e.g., [5,6])
and triggers (see, e.g., [7,8]), to efficiently support the transaction model.

3. A method for computing the reservation timespan based on demands on
different tickets.

4. A preliminary experimental study that verifies the effectiveness and efficiency
of our techniques.

These will provide online travel systems with a practical method to support
the reservation functionality. We should remark that although we focus on ticket
booking systems to simplify the discussion, the techniques proposed in this work
are generic enough to be applicable to other e-commerce systems such as finance
services.

Organization. We introduce our transaction model and implementation tech-
nique, as well as a method for computing reservation timespan in Section 2. Our
experimental results are presented in Section 3, followed by related work and
future work in Section 4.

2 A Transaction Model

In this section we first present the transaction model. We then present techniques
for efficiently implementing the model. Finally, we outline the architecture of an
e-ticket system based on this model.

2.1 Supporting Reservations

We propose an e-ticket system that allows customers to reserve tickets, in addi-
tion to querying and purchasing. A customer may reserve tickets with a locked
price, for a timespan s computed by the system based on demands on the tickets.
From the time when the reservation is granted until the end of the timespan s,
the customer may either (a) commit to purchase the tickets or (b) cancel the
reservation. A short while before the end of s, the system sends a reminder to

288 Y. Zhang et al.

res erv ed

av ailable
purchasedpurchased

reserv e

cancel

purchase

confirm

Fig. 1. FSM representation of transactions of e-Ticket System

the customer about the reservation; if no action is taken by the customer, the
system cancels the reservation at the end of s, i.e., when the reservation expires.

In the transaction model for the e-ticket system, each ticket is associated
with one of following states: available, reserved or purchased. The state of a ticket
changes from available to reserved when the ticket is reserved by a customer. It
in turn changes from reserved to purchased if the customer commits to purchase,
and to available if the reservation is canceled either by the customer or by the sys-
tem when the reservation expires. While transition may take place from available
to purchased, it cannot change from purchased to available or reserved. More for-
mally, this can be characterized in terms of a (deterministic) finite state machine
(FSM), which is commonly used in modeling Web services (see, e.g., [9,10]).

FSM=(Σ,S,s0,Δ,F), where:

– Σ = {reserve, cancel, confirm, purchase}
– S = {available, reserved, purchased}
– s0 = {available}
– Δ = S × Σ → S
– F = {purchased}

Figure 1 shows an abstract representation as FSM of the reservation process.
We refer to the set τ of tickets of each flight (train, car, etc) as tickets of type τ .

– We say that tickets of type τ are held-back if when a customer wants to
purchase or reserve a ticket of type τ , all tickets of τ are either purchased or
reserved at the moment, and moreover, some of those reserved tickets change
to available later on.

– We say that tickets of τ are falsely available if a customer is allowed to
reserve a ticket of τ but later on cannot purchase it (i.e., change its state
from reserved to purchased).

Let N denote the number of successful reservations made on tickets of τ that
eventually change from reserved to purchased, nh the number of failed reserva-

Extending Online Travel Agency with Adaptive Reservations 289

tions when tickets of τ are held-back, and nf the number of reservations on
tickets that are falsely available. We define the false availability rate and hold-
back rate to be nf/(N+nf) and nh/(N+nh), denoted by δ and γ, respectively.

We aim to reduce both δ and γ. Since it is not always possible to minimize
both the false availability rate and the holdback rate, we give higher prior-
ity to reducing the false availability rate since it typically inflicts more severe
damages when credibility and customers are concerned. Below we propose two
methods to reduce false availability rate δ while keeping the the holdback rate
γ low.

First, we introduce a parameter α in the range [0, 1], referred to as the purchase
rate, for the set of tickets of each type τ . The purchase rate indicates (an estimate
of) the percentage of the tickets of which the states change from reserved to
purchased. Intuitively, we make (1 − α) percent of reserved tickets available to
customers, so that not all “hot” tickets would be held back. Observe that the
smaller α is, the less the holdback rate is, but on the other hand, the higher the
false availability rate is.

Second, we assign different reservation timespan s to different types of tick-
ets. In Section 2.2, we shall present a method to compute s based on demands
on tickets of type τ . Intuitively, the smaller s is, the less the holdback rate is.
When it comes to the false availability rate δ, the story is a bit more compli-
cated. Making s larger may on one hand hold the ticket longer so that when the
customer decides to commit to the purchase, the ticket will still be available;
but on the other hand, if the purchase rate α is small, the chances are that
the reserved tickets become unavailable and thus it may leads to higher δ. As
will be seen in Section 3, making s larger may reduce δ only if α is sufficiently
large.

For the reservation approaches adopted by existing e-ticket systems surveyed
in Section 1, approach (b) adopts α = 0 and s does not exist, while approaches (c)
uses α = 1 and fixes s to be 24 hours. In our model, we set α to a value between
0 and 1, determined by statistical analysis and estimate, and will be seen in
Section 2.2, we compute s based on demands on tickets of type τ rather than
giving a fixed timespan for all types of tickets. As will be seen in Section 3,
we keep α and s sufficiently large so that the false availability rate remains low
while the holdback rate is reduced.

2.2 Implementation Techniques

A naive approach to implementing reservations is to create and maintain rela-
tions for storing information about available, reserved and purchased tickets, and,
whenever the state of a ticket changes from reserved to purchased (resp. available),
or the other way around, we modify both the reserved and the purchased (resp.
available) tables. This, however, incurs heavy transaction cost. In light of this, we
propose a technique based on hypothetical queries to reduce the overhead. We
also present a method to compute the reservation timespan based on demands
on different tickets.

290 Y. Zhang et al.

Relations for Reserved, Purchased and Available Tickets. Along the
same lines as existing e-ticket systems, we store information about tickets of
various states in fact tables:

– Ticket table T (id, �, price) keeps track of the number � of available tickets of
a specific flight id.

– Reservation table R (id, �, ts, price, info) stores reservations made so far. A
customer reserves � tickets on flight id with a locked price, where ts is a
timestamp specifying when the reservation expires, and info denotes some
basic information about the customer such as name, nationality, number of
tickets, etc.

– Purchase table P (id, �, price, info) stores the real purchases.
– Other tables store other information about the flight such as departure time,

arrival time and destinations, etc.

Hypothetical Queries. A hypothetical query is of the form Q when {{U}},
where U is an update (see [6]). It to find the value that query Q would return on
a database DB that would be obtained by executing update U on the original
DB, without actually updating DB.

We regard a reservation as a hypothetical purchase while final commitment to
purchase as a real purchase. Capitalizing on hypothetical queries, when a reserva-
tion is made, we only need to modify the reservation table R, without changing
either T or P . We modify T , R and P only when a reservation is converted
into a real purchase. This reduces the overhead of unnecessary transactions and
rollbacks.

To carry this out, for each query Q on T , we automatically rewrite it into a
hypothetical query QT = Q when {{U}} on both T and R, such that α percent
of the reservations in R are “taken out” from T during the process, where α is
the purchase rate given earlier. More specifically, the update U is of the form:

U ::= del(T, αR) delete α · � tickets of R from T

In a nutshell, for each occurrence of T in Q, we replace it with del(T, αR) by
taking out certain tickets already reserved. Thus

QT = Q when {{del(T, αR)}} (1)

As remarked earlier, we make (1 − α) tickets in R available to customers to
reduce the holdback rate, since typically only α percent of reservations will lead
to real purchases in the end.

A number of techniques have been developed for efficiently evaluating hypo-
thetical queries. Here we adopt the lazy approach of [6]. More specifically, we
first rewrite QT into an equivalent, non-hypothetical query Q

′

T by transforming
each U into an “explicit substitution”, and then applying the substitution and
obtaining a pure SQL query. We illustrate this by using a hypothetical query of
form (1), where Q is an SQL query for finding the number of tickets in stock for
flight k with price p, i.e.,

Q = π�(σid=k∧price=p T). (2)

Extending Online Travel Agency with Adaptive Reservations 291

We replace the update with explicit substitution:

π�(σid=k∧price=p T) when {{(T − αR)/T }}

Note that R is a bag of records since for each flight there may be several reserva-
tions for it by different customers. Thus to deduct the total number of reserved
tickets in R, we need to use aggregate function sum. Now we apply the substi-
tution to the query QT and get

Q
′

T ≡ π�(σid=k∧price=p T) − α sum(π�(σid=k∧price=pR))

This query is equivalent to QT . Similarly we can automatically rewrite other
queries, e.g., queries for finding airfare.

The use of hypothetical queries and automated query rewriting allows us not
to update T and P when making or canceling a reservation, and thus reduce the
overhead of transactions.

Making, Canceling and Committing Reservations. As remarked earlier,
there is no need to update the ticket and purchase tables T and P when a
reservation is made or canaled. Indeed, only the reservation table R needs to be
changed in response to these updates. In contrast, all three tables T, R and P
are updated when a user commits to purchase a reserved ticket.

Making a reservation. Upon receiving a customer request for reserving n tick-
ets for flight k with a locked price p, the system does the following, in one trans-
action. (i) It generates a query Q of form (2) given above, which is to find the
number of available tickets for flight k with price p. The query Q is rewritten into
a hypothetical query of form (1) above, and is evaluated on the ticket table T and
the reservation table R using the evaluation techniques described above. If the
result of the query Q is negative, then the customer request is denied. Otherwise
the following steps are taken. (ii) It computes the reservation timespan s and
based on s, timestamp ts = t + s, where t is the current time. We will show how
s is computed shortly. (iii) It inserts a tuple (id = k, � = n, price = p, info = i)
into the reservation table R, where i is the related customer information. Note
that neither table T nor table P is updated.

Canceling a reservation. When a customer requests to cancel a reservation
of n tickets for flight k, the systems finds the corresponding tuple from the
reservation table R, based on both the flight and customer information. It then
removes the tuple from R. No other tables are updated.

Committing to purchase a reserved ticket. When a customer commits to
purchase reserved tickets, the system does the following, in one transaction. (i) It
first identifies the corresponding tuple r = (id = k, � = n, price = p, info = i) from
the reservation table R, and removes r from R. (ii) It then forms and evaluates
query Q as in step (i) for making reservations. If the result of Q is negative,
then the tickets are falsely available and the transaction aborts. Otherwise the
system proceeds to do the following. (iii) It inserts r into purchase table P .

292 Y. Zhang et al.

(iv) It also updates ticket table T by removing n tickets of flight k from T . Upon
the completion of the transaction, the hypothetical purchase of this reservation
becomes a real purchase. Note that only at this stage all three tables T, R and
P need to be modified.

A subtle issue arises when the price of tickets for flight k in the ticket table T
is updated. To keep the price of the reserved tickets for flight k unchanged, the
system does the following. (i) It first finds the total number n of reserved tickets
for flight k in the reservation table. (ii) In the ticket table T , it keeps the price
of α · n tickets for flight k unchanged, while updating the price of the remaining
tickets for flight k, where α is the purchase rate.

Adapting Reservation Timespan. As remarked earlier, we determine the
reservation timespan for different tickets based on demands on the tickets. More
specifically, for tickets of each type τ , we characterize the demands on the tickets
using the following parameters.

– weight w in the range [0, 1], indicating the “popularity” of the flight; this is
determined by statistical analysis of the historical data of the flight, and may
vary in different travel seasons; indeed, the demand for flights to Orlando is
typically higher before Christmas than that during school terms;

– advance parameter d, which is the number d of days prior to the departure
of the flight when the reservation is made;

– the maximum timespan smax; here one may use 24 hours as the default value,
following the practice of most airlines.

We use the following simple formula to compute the reservation timespan s
based on these parameters:

s = (1 − w) · f(d) · smax, (3)

where f(d) is a function in which c is a constant in [0, 1]:

f(d) =
{

c · d/14 if d ≤ 14
c otherwise

Intuitively, the more popular the flight is, the less reservation timespan s is;
furthermore, the less days in advance the reservation is made, the less s is. In
function f(d) we choose constant 14 in accordance to the common practice of
most airlines: “penalty” is incurred if the reservation is made within two weeks
prior to the scheduled departure of the flight.

Triggers for Expiring Reservations. Shortly before a reservation expires,
the system sends the customer a reminder. Recall that when a customer reserves
a ticket, a reservation timespan s and a timestamp ts are computed and stored in
the corresponding tuple in the reservation table. That is, the reservation remains
valid for a period s of time until time ts. Meanwhile, a trigger is set up such that
shortly before the reservation expires, say 30 minutes before ts, action will be
triggered to generate the reminder and notify the customer. If the customer takes
no action before the reservation expires, the system performs the cancellation
operation at time ts, as described above.

Extending Online Travel Agency with Adaptive Reservations 293

Fig. 2. The Architecture of an e-Ticket System

2.3 The Architecture of a Ticket Booking System

Putting these together, we propose to develop a 3-tier ticket booking system
based on our transaction model, as depicted in Figure 2. The top layer is the
user interface for customers to book tickets, the bottom layer is the underlying
database storing fact tables, and the middle-tier processes customer queries,
reservation requests and purchase orders. More specifically, upon receiving a
customer query, the middle-tier converts it into an equivalent hypothetical query
and evaluates it following the strategy given in Section 2.2. Upon receiving a
request for making a reservation, the middle-tier starts a transaction to process
it as described in Section 2.2. In particular, it computes the reservation timespan
using the formula given in Section 2.2. The customer may succeed in making the
reservation if there are enough tickets available. Subsequently the customer may
cancel the reservation or commit to purchase the reserved tickets, which are
again processed using the strategies given in Section 2.2. Furthermore, when a
reservation is made, a trigger is set up, such that the customer will be notified
shortly before the reservation expires, as described in Section 2.2.

3 Experimental Study

Our experimental evaluation focuses on the effectiveness of our reservation model
in reducing the holdback and false availability rates δ and γ. We compare our
approach against the approaches adopted by existing e-ticket systems, namely,
approaches (b) and (c) described in Section 1, referred to as the no-hold and

294 Y. Zhang et al.

fully-hold approaches, respectively. We also investigate the impact of the pur-
chase parameter α and reservation timespan s on δ and γ.

3.1 Experimental Setting

We considered a flight with up to 350 seats initially available. We randomly
generated a set of reservations and subsequent confirmations or cancellations.
Each reservation requested n tickets, where n is a number randomly chosen
from [1,5]. We assumed that the flight was popular: there were sufficiently many
customers to query about and book tickets until all the tickets would be sold
out. In a duration of 30 days, we assumed that the arrival of customers followed
a Poisson process (see, e.g., [11]) and customer arrival rate is set to λ = 1
unless other specified. The intervals between successive customer arrivals were
treated as independent random variables. The latency between a reservation
and its subsequent confirmation or cancellation was also generated randomly
within time slot [0, s]; that is, we assumed that most of customers will inspect
their reservations within the timespan s offered by the e-ticket system. For each
reservation, we generated another random value to determine whether or not
the reservation is confirmed or canceled. Unless specified otherwise, we fixed the
confirmation rate to 70% and customer arrival rate to λ = 1.

The experiments were run on a machine with a 2.40GHZ Pentium IV processor
and 512MB of RAM. Each experiment was run 200 times and the average is
reported here.

3.2 Experimental Results

we study the impact of the purchase rate α and reservation timespan s on re-
ducing the false availability and holdback rates δ and γ. More specifically, with
s (resp. α) fixed to certain values we investigate the effect of varying α (resp. s).
The goal is twofold: first, we want to verify that the use of α and s indeed reduces
δ and γ; second, we want to study the behavior of different s and α, and find
out what values we should choose for them. For the reservation timespan s we
either use fixed values or vary its values from 0 to 24 hours, rather than using
formula (3) given in Section 2.2.

Recall notations N, nf and nh from Section 2.1. In each run, N records the
total number of reservations that lead to purchases, nh the total number of
held-back reservations and nf the total number of reservations on falsely avail-
able tickets (i.e., the reservations that will not turn into real purchases when
customers come back and inspect their reserved tickets, before or after the reser-
vations expire), in the entire life-cycle of ticket selling of the flight. The average
of 200 runs is reported.

The effect of varying the purchase rate α. Fixing reservation timespan s
to be 6, 12 and 24 hours, we vary the purchase rate α and study its effect on
the false availability and holdback rates δ and γ. Observe that when α = 0,
it characterizes the no-hold approach, and on the other hand, when α = 1, it
corresponds to the fully-hold approach. As Figures 3 and 4 show, as expected,

Extending Online Travel Agency with Adaptive Reservations 295

0.0%

0.5%

1.0%

1.5%

2.0%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
al

se
 A

va
ila

bi
lit

y
R

at
e

δ
(%

)

α

s=6h
s=12h
s=24h

Fig. 3. Effect of varying α on the false availability rate(s = 5, 12, 24 hours)

0.0%

4.0%

8.0%

12.0%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
ol

d
B

ac
k

R
at

e
γ

(%
)

α

s=6h
s=12h
s=24h

Fig. 4. Effect of varying α on the holdback rate (s = 5, 12, 24 hours)

when α increases the holdback rate increases while the false availability rate
decreases. It also tells us that while the no-hold approach does not have the
holdback problem, it incurs a rather high false availability rate. On the other
hand, while the fully-hold approach does not lead to false available reservations,
its holdback rate is rather high. In contrast, if we choose α ≥ 0.8, the false
availability rates reduce to a neglectable value when either s = 6, s = 12 or
s = 24, while their holdback rates are lower than the fully-hold counterparts.

The effect of varying the reservation timespan s. Fixing α to be 0, 0.5, 0.8
and 1, we vary s from 0 to 24 hours and measure the false availability and
holdback rates δ and γ for each s. As shown in Figures 5 and 6, when α increases,

296 Y. Zhang et al.

0.0%

0.5%

1.0%

1.5%

2.0%

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F
al

se
 A

va
ila

bi
lit

y
R

at
e

δ
(%

)

Time (hour)

α=0
α=0.5
α=0.8

α=1

Fig. 5. Effect of varying s on the false availability rate (α = 0, 0.5, 0.8, 1)

0.0%

4.0%

8.0%

12.0%

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

H
ol

d
B

ac
k

R
at

e
γ

(%
)

Time (hour)

α=0
α=0.5
α=0.8

α=1

Fig. 6. Effect of varying s on the holdback rate (α = 0, 0.5, 0.8, 1)

the holdback rate γ increases while the false availability rate δ decreases, as
expected. One might be tempted to reduce timespan s in order to minimize both
false availability rate and holdback rate. However, this is not a practical solution.
Reducing timespan means that the e-ticket system enforces an inadequate period
of time for customers to reserve tickets, who may then find that the reservations
expire after a short period of time, and cannot be very happy about it. Therefore,
any practical e-ticket system should not use a very small timespan s. On the other
hand, if the timespan is too large (which means customers are allowed to hold
tickets for a long time), the holdback rate goes up; it is more likely that more
customers are unable to purchase the tickets which are in fact available. This
highlights the need for making s adaptive to the demands on the tickets.

Extending Online Travel Agency with Adaptive Reservations 297

For the no-hold approach, i.e., when α = 0, γ becomes 0 but δ is high. For
the fully-hold approach, i.e., when α = 1, δ becomes 0 while γ gets rather
high. When α ≥ 0.8, the false availability rate δ is much lower than the no-
hold approach while the holdback rate is also greatly reduced compared to the
fully-hold counterpart.

Discussion. We have presented several results from our experimental study of
our reservation model. First, the results verify that our approach clearly out-
performs the no-hold and fully-hold approaches adopted by existing e-ticket
systems. With a lower holdback rate compared with fully-hold model, it has ne-
glectable false availability rate in contrast to the no-hold approach. Second, we
find that when α ≥ 0.8, the false availability rate is almost 0 in all cases. These
suggest how e-ticket systems may choose purchase rate α and adjust reservation
timespan s.

4 Concluding Remarks

We have investigated the false availability and holdback problems in connection
with existing online ticket booking systems. To rectify these we have proposed a
transaction model that supports adaptive customer reservations with neglectable
false availability and lower holdback rates. To efficiently implement the model we
have developed a combination of techniques such as the analysis of purchase rate,
hypothetical queries, triggers, and a method for computing reservation timespan
based on demands on tickets. As verified by our preliminary experimental study,
our model and methods significantly improve the existing e-ticket systems. To
the best of our knowledge, this work is the first effort for reducing both the
false availability and holdback rates. It yields a practical approach for providing
effective support for customer reservations in e-commerce systems, including but
not limited to e-ticket systems.

A large number of online ticket booking systems have been developed. We sur-
veyed 30 popular e-ticket systems, including Expedia [2], Orbitz [3], Priceline [4],
MakemyTrip.com, Amadeus.net as well as American Airline, Continental, South-
west, United, and US Airways [1]. As remarked in Section 1, these services only
support limited customer reservations. Different virtual travel agencies offer tick-
ets with substantially different prices and conditions for the same customer re-
quest. We found that ticket prices may vary by as much as 18% across these
agencies. Thus it is desirable for customers to make reservations with a locked
price beforehand.

There has been work on a variety of aspects of e-ticket systems. The need for e-
ticket systems to interact with airline, hotel and payment services was advocated
in [12]. An approach for building a virtual travel agency by composing “hotel
booking” and “flight booking” services was proposed in [13]. A prototype for
a virtual travel agency was developed in [14], based on ontology and semantic
web. An enhanced user interface for B2C booking systems was proposed in [15],
by means of a virtual intermediate travel agent. There has also been a host of
work on generic Web services, notably on Web service compositions (e.g., [10,9]).

298 Y. Zhang et al.

However, to our best knowledge, no prior work has studied the false availability
and holdback problems associated with existing e-ticket systems.

Airlines have to deal with reservation cancellations and no-show-ups at flight
departure on a daily basis. To avoid revenue loss, most airlines compromise
cancellations and no-show-ups by over-booking flights, i.e., booking excessive
seats above the physical airplane capacity. There has been previous work on
optimizing over-booking [16] [17] [18], which attempts to accurately estimate
the number of cancellations and no-show-ups. This differs from our work in
that our model provides an adaptive reservation timespan for customers to hold
the tickets with a fixed price. Although over-booking increases seat availability,
they do not allow the customers to purchase their tickets with the price they
agreed upon after various reservation timespans. Furthermore, our work aims to
facilitate the composition of web services for booking a travel package online.
Customers can hold (reserve) a ticket while inspecting successive components
or legs of the travel package. They can examine each component one by one,
reserving a ticket with a fixed price before proceeding to the next component;
and finally, they can “optimize” various picks, combine them to get a reasonable
composition of the entire package, without worrying about the availability of
tickets reserved for previous legs or the hiking-up of the price of those tickets. In
contrast, to the best of our knowledge no airlines provide such a functionality.
In essence, our reservation model is customer-oriented, i.e., to serve the best
interest of customers, while over-booking is airline-oriented, for the best interest
of airline business. The latter does not help with composition of online booking
web services.

Hypothetical queries have proven useful in a wide range of applications such as
decision support, version management, active databases, integrity maintenance
and recently XML updates [19,5,20,21,6]. In this work we leverage hypothetical
queries to reduce the overhead of transaction management incurred by customer
reservations, and capitalize on the implementation technique proposed by [6] to
efficiently support query evaluation (Section 2.2).

There is naturally much more to be done. First, to compute reservation times-
pan one might also want to take into account other information, such as pro-
motion and sale by airlines, beyond what we have considered in Section 2.2.
Second, more experiments should necessarily be conducted on real-world data,
e.g., real-life patterns of customer arrival and ticket booking. Third, transaction
control is far more intriguing and thus deserves a full treatment for e-ticket ser-
vices that are built via compositions of other services. Finally, it is interesting
and practical to investigate the specific need and requirements for providing the
reservation functionality for, e.g., finance services.

References

1. Mitchell, C., Newton, J., Willdorf, N., Bennett, A., Stellin, S.: A to z guide to travel
secrets you need to know (2007), http://www.travelandleisure.com/articles/
a-to-z-guide-to-travel-secrets-you-need-to-know

2. Expedia.com, http://www.expedia.com

http://www.travelandleisure.com/articles/a-to-z-guide-to-travel-secrets-you-need-to-know
http://www.travelandleisure.com/articles/a-to-z-guide-to-travel-secrets-you-need-to-know
http://www.expedia.com

Extending Online Travel Agency with Adaptive Reservations 299

3. Orbitz, http://www.orbitz.com/
4. Priceline.com, http://tickets.priceline.com
5. Bonner, A.J.: Hypothetical datalog complexity and expressibility. Theoretical

Computer Science 76, 3–51 (1990)
6. Griffin, T., Hull, R.: A framework for implementing hypothetical queries. In: SIG-

MOD (1997)
7. Sistla, A.P., Wolfson, O.: Triggers on database histories. IEEE Quarterly Bulletin

on Data Engineering, Special Issue on Active Databases 15, 48–51 (1992)
8. Ramakrishnan, R., Gehrke, J.: Database Management Systems, McGraw-Hill

Higher Education. McGraw-Hill, New York (2000)
9. Berardi, D., Calvanese, D., Giacomo, G.D., Hull, R., Mecella, M.: Automatic com-

position of transition-based semantic web services with messaging. In: VLDB,
Trondheim, Norway (2005)

10. Berardi, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Calvanese, D.: Synthesis
of underspecified composite e-services based on automated reasoning. In: ICSOC
(2004)

11. Willig, A.: A short introduction to queueing theory,
http://www.tkn.tu-berlin.de/curricula/ws0203/ue-kn/qt.pdf

12. Haas, H.: Web service use case: Travel reservation. W3C (2002)
13. Pistore, M., Roberti, P., Traverso, P.: Process-level composition of executable web

services: “on-the-fly” versus “once-for-all” composition. In: Gómez-Pérez, A., Eu-
zenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, Springer, Heidelberg (2005)

14. Zaremba, M., Moran, M., Haselwanter, T.: Applying semantic web services to
virtual travel agency case study. In: Sure, Y., Domingue, J. (eds.) ESWC 2006.
LNCS, vol. 4011, Springer, Heidelberg (2006)

15. Malizia, A.: Adding flexibility to b2c booking systems using a virtual intermediate
travel agent. In: HVL/HCC (2005)

16. Leder, K.Z., Spagniole, S.E., Wild, S.M.: Probabilistically optimized airline over-
booking strategies, or “anyone willing to take a later flight?!”. The UMAP Journal
(2002)

17. Klophaus, R., Pölt, S.: Airline overbooking with dynamic spoilage costs. Journal
of Revenue and Pricing Management (2007)

18. Lawrence, R.D., Hong, S.J., Cherrier, J.: Passenger-based predictive modeling of
airline no-show rates. In: KDD 2003. Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, ACM Press,
New York (2003)

19. Balmin, A., Papadimitriou, T., Papakonstantinou, Y.: Hypothetical queries in an
olap environment. In: VLDB (2000)

20. Fan, W., Cong, G., Bohannon, P.: Querying XML with update syntax. In: SIGMOD
(2007)

21. Gabbay, D.M., Giordano, L., Martelli, A., Olivetti, N.: A language for handling
hypothetical updates and inconsistency. Journal of IGPL 4, 385–416 (1996)

http://www.orbitz.com/
http://tickets.priceline.com
http://www.tkn.tu-berlin.de/curricula/ws0203/ue-kn/qt.pdf

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 300–317, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Multi-level Model for
Activity Commitments in E-contracts

K. Vidyasankar1,*, P. Radha Krishna2, and Kamalakar Karlapalem3

1 Department of Computer Science, Memorial University, St. John’s, Canada, A1B 3X5
vidya@cs.mun.ca

2 Institute for Development and Research in Banking Technology, Hyderabad, India
prkrishna@idrbt.ac.in

3 International Institute of Information Technology, Hyderabad, India
kamal@iiit.ac.in

Abstract. An e-contract is a contract modeled, specified, executed, controlled
and monitored by a software system. A contract is a legal agreement involving
parties, activities, clauses and payments. The goals of an e-contract include
precise specification of the activities of the contract, mapping them into
deployable workflows, and providing transactional support in their execution.
Activities in a contract are complex and interdependent. They may be executed
by different parties autonomously and in a loosely coupled fashion. They may
be compensated and/or re-executed at different times relative to the execution
of other activities. Both the initial specification of the activities and the later
verification of their executions with respect to compliance to the clauses are
tedious and complicated. We believe that an e-contract should reflect both the
specification and the execution aspects of the activities at the same time, where
the former is about the composition logic and the later about the transactional
properties. Towards facilitating this, we propose a multi-level composition
model for activities in e-contracts. Our model allows for the specification of a
number of transactional properties, like atomicity and commitment, for
activities at all levels of the composition. In addition to their novelty, the
transactional properties help to coordinate payments and eventual closure of the
contract.

1 Introduction

An electronic contract, or e-contract in short, is a contract modeled, specified,
executed, controlled and monitored by a software system. A contract is a legal
agreement involving parties, activities, clauses and payments. The activities are to be
executed by the parties satisfying the clauses, with the associated terms of payment.

Consider, for example, a contract for building a house. The parties of this contract
include a customer, a builder, a bank and an insurance company. The contract has
several parts: (a) The builder will construct the house according to the specifications

* This research is supported in part by the Natural Sciences and Engineering Research Council

of Canada Discovery Grant 3182.

 A Multi-level Model for Activity Commitments in E-contracts 301

of the customer. Some of the activities such as carpentry, plumbing and electrical
work may be sub-contracted; (b) The customer will get a loan for the construction
from the bank. He will apply for a mortgage, and work out details of payment to the
builder, directly by the bank, after inspection of the work at multiple intervals; and (c)
The house shall be insured comprehensively for the market value covering fire, flood,
etc. in the joint names of the bank and the customer. The activities of the customer
and the builder include the following.

- Customer: (i) submitting the loan application, (ii) setting up coordination between
bank and builder, (iii) receiving payments, and (iv) arranging monthly repayments.

- Builder: (i) scheduling different works involved in the construction and procuring
raw material, (ii) building the house as per the agreement, (iii) giving part of the
work to sub-contracts, if any, (iv) receiving the payments, (v) making payments to
its staff and sub-contract parties, if any, and (vi) handing over the constructed house
to the customer.

An example of a clause relating to payments can be, in verbatim, as follows.
“If the bank is of the opinion that the progress of work of construction of the said

house is unsatisfactory, the bank shall be at liberty to decline to make payment of any
undisbursed installment of the said loan or at its discretion postpone the payment
thereof until such time the bank is satisfied that the cause or causes for its
dissatisfaction with the progress and quality of work has or have been removed and
the bank shall incur no responsibility or liability to the borrower either in damage or
otherwise for declining to make payment or postponement of payment of any
undisbursed installment as aforesaid.”

Majority of contracts in real world are documents that need to be gleaned to come
up with e-contract specifications that are executed electronically. The execution can
also be fairly complex. The goals of the e-contract include precise specification of the
activities, mapping them into deployable workflows, and providing transactional
support in their execution.

1.1 E-contract Commitment

As seen above, contracts are complex in nature. Both the initial specification of the
requirements and the later verification of the execution with respect to compliance to
the clauses are very tedious and complicated. This is due, partly, to the complexity of
the activities. Typically, the (composite) activities are interdependent with other
activities and clauses. They may be executed by different parties autonomously, in a
loosely coupled fashion. They are long-lasting. Though the desirable outcomes of
their executions are stipulated in the contract specification, their executions may yield
unexpected results. This might result in re-design and even re-specification of the
contract.

Another major reason for the increased complexity is the variety in the “execution
states” of the activities. In database applications, atomicity is strived for in a (simple)
transaction execution. That is, a transaction is executed either completely or
(effectively) not at all. Partial execution is rolled back. On successful completion, the
transaction is committed. In multi-database and other advanced database applications,
transactions may be committed (locally) and then rolled back logically, by executing

302 K. Vidyasankar, P.R. Krishna, and K. Karlapalem

compensating transactions. This property is called compensatability. The property of
repeatedly executing a transaction until successful completion is also considered; this
is called retriability. In e-contract activities also, both compensatability and
retriability properties are encountered for the activities, and in fact, in more
sophisticated ways. For example,

(i) Both complete and partial executions may be compensated,
(ii) Both successful and unsuccessful executions may be compensated,

(iii) Even “committed” executions may be retried,
(iv) Retrying may mean, in addition to re-execution, “adjusting” the previous

execution, and
(v) Activities may be compensated and/or re-tried at different times, relative to the

execution of other activities.

Example 1: An instance of (iii) is the following. A pipe is fixed correctly as specified
in the contract. A month later, the pipe breaks while constructing a mini-wall in the
balcony. As per the clause stated in the contract ‘any damage or loss of
goods/material during construction of house is the responsibility of the builder and the
builder has to repair or replace at no additional cost’, the builder has to fix the pipe.
An instance of (iv) is, in the process of re-payment of a bank loan, if a check is
bounced for some reasons, the customer has to pay penalty in addition to the actual
amount.

We assert that a key to handle the complexity of a contract execution is adherence
to transactional properties. In this paper, we subscribe to the notion that the activities
should be specified in an e-contract such that their execution embodies transactional
properties. We start with basic activities and construct composite activities
hierarchically. In the first level, a composite activity consists of basic activities; in the
next level, a composite activity consists of basic and/or composite activities of level
one; etc. The highest level activity will correspond to the “single” activity for which
the contract is made. We call this the contract-activity. (We note that there could be
multiple contracts for a single activity. For example, for building a house, there could
be separate contracts between (i) customer and the builder, (ii) customer and the bank,
(iii) customer, bank and insurance company, etc. These contracts will be related. We
consider this set of contracts as a part of a single high level contract whose contract-
activity is building the house.) Then, our contention is that the execution of each
activity, at every level, should satisfy transactional properties. Towards facilitating
this, we propose a multi-level composition model for activities in e-contracts.

The two main properties that are relevant for our work are atomicity and
commitment. For atomicity, either a complete successful execution or an (effectively)
null execution should be obtained. Given a non-null, partial execution, the former is
obtained by forward-recovery and the latter by backward-recovery. The retriability
and compensatability properties relate to whether forward-recovery or backward-
recovery can be carried out. For activity at each level, we consider successful
execution, atomicity, compensatability, retriability, backward-recovery and forward-
recovery properties. We then define commitment of the activities based on these
properties. We do this uniformly, the same way irrespective of the level of the
activity.

 A Multi-level Model for Activity Commitments in E-contracts 303

Every activity in the contract must be closed at some time. On closure, no
execution related to that activity would take place. The closure could take place on a
complete or incomplete execution, and on a successful or failed execution. On closure
of the contract-activity, the e-contract itself can be closed. The e-contract closure is
mostly a human decision. It involves settlement, of payment and other issues, between
the parties. Our composition model helps to streamline closure of the e-contract also.

E-contract closure is also referred to as e-contract commitment. We use the term e-
contract commitment logic to refer to the entire logic behind the commitment of the
various activities of the e-contract, and the closure of the activities and the e-contract.

1.2 Related Work

Considerable work has been carried out on the representation of e-contracts and
developing e-contract architectures. We refer to some of them in the following. E-
ADOME [5] and CrossFlow [6] systems describe the workflow interfaces as activities
and transitions in e-contracts. In the same way, Chiu et al. [1] develop a framework
for workflow view based e-contracts for e-services. A rule-based approach is
presented in [4] to deal with exceptions raised during e-contract execution. Green and
Vonk [3] describe the relationship between transaction management systems and
workflows for transactional business process support.

Xu [14] proposes a pro-active e-contract monitoring system to monitor contract
violations. They represent constraints using propositional temporal logic in order to
provide formal semantics for contract computation at the contract fulfillment stage.
However, their formalism does not provide the execution level semantics of an e-contract
commitment. Business Transaction Framework based on Abstract Transactional
Constructs, developed by Wang et al [13], provides a specification language for
identifying and interpreting clauses in e-contracts. To the best of our knowledge, adequate
formalism for e-contract commitment does not exist in the literature.

1.3 Contributions and Organization of the Paper

In this paper, we propose a framework for e-contract commitment. We do this by
developing a multi-level specification model, also called composition model, of the
(composite) activities of a contract, and defining transactional properties for the
activities at every level. Transactional properties have been defined to suit the real
world, non-electronic, activities. The salient points are the following.

i. Transactional properties are defined for executions of activities rather than
activities themselves. This accounts for the fact that different executions of the
same activity might have different characteristics.

ii. Atomicity is defined for executions of composite activities of any level in spite of
the executions of even some basic activities being non-atomic. This helps in
dealing with backward- and forward-recoveries at each level independent of its
descendent levels.

iii. The scope of retriability is extended from executing the same activity again, or
executing some other substitute activity, to adjustments to the original execution.

iv. Two levels of commitment, weak and strong, are defined. On weak commitment,
the execution becomes non-compensatable, and on strong commitment it

304 K. Vidyasankar, P.R. Krishna, and K. Karlapalem

becomes non-retriable. Weak commitment is the commitment property of the
traditional database operations and the pivotal property of multi-database
operations. The strong commitment property definition is new.

Both (a) defining transactional properties for activities of a contract and (b)
influencing e-contract design with transactional properties are novel and have not
been done before.

The rest of the paper is organized as follows. Section 2 describes the e-contract
commitment aspects. We present the basic concepts related to our model in Section 3
and the model in Section 4. Section 5 presents the discussion and concludes the paper.

2 E-contract Commitment

Transactional semantics, workflow semantics, clauses and payment components of e-
contract need to be considered for addressing e-contract commitments. Workflow
semantics deals with the composition logic, namely, the semantics of the executions
of the individual activities that constitute the workflow. Transactional semantics deals
with the commitment logic, about atomicity, forward- and backward-recovery and
commitment of the executions, and closure of the activities and the e-contract. Both
clauses and payments influence, and are influenced by, both the workflow and
transaction semantics.

2.1 EREC Architecture

An EREC framework has been developed in [7, 8] for modeling and enactment of an e-
contract. It is shown in Figure 1. The EREC meta-schema constitutes the meta-layer
whereas the EREC data model, Activity Party Clauses (APC) and Activity Commit
Diagrams (ACDs) constitute the conceptual layer. The EREC data model and APC
constructs help in specifying the workflows for activities of an e-contract. The ACDs
facilitate monitoring workflow execution based on the specifications provided in the
contract, as well as the exceptions that may occur during the execution of the
workflows. All the components at the conceptual layer form the basis for arriving at
commitment specifications. They provide activity-commitment semantics based on
the contract document. Further execution level semantics are provided by workflow
instances. The commitment specifications facilitate specifying the semantics for
transactional support, activity commitment and workflow commitment, at the logical
level.

Commitment specifications were not addressed in our model described in [8] for e-
contracts. In that paper, Figure 1 was given without the commitment specifications
box.

2.2 Our Approach

Compensatability and retriability properties were first identified in the context of
atomicity of multi-database applications (for instance, [10]). To achieve atomicity (of
a global transaction) in autonomous execution (of the subtransactions), a multi-
database transaction is modeled to consist of a sequence of compensatable

 A Multi-level Model for Activity Commitments in E-contracts 305

CONTRACT DOCUMENT

EREC Meta Schema Meta Layer

Conceptual Layer

EREC Data
Model

Legend:

Input

Process Flow

Monitoring
& updation

Instantiation

APC
Constructs

Activity Commit
Diagrams

Logical Layer

Relation
Tables

Workflows Workflow
Instances

Commitment
Specifications

Fig. 1. EREC architecture for specification and execution of e-contract

transactions, followed possibly by a pivotal (that is, non-compensatable) transaction
and a sequence of retriable transactions. In particular, each multi-database transaction
can have at most one pivot. Schuldt et al. [9] extended this idea to transactional
processes by allowing multiple pivots. Clearly, with multiple pivots, atomic execution
may not be possible (when some pivots are executed but others cannot be executed).
They defined a property, called guaranteed termination, which formalized “graceful”
termination of the transaction after some pivots were executed. In addition, the pivots
in a guaranteed termination were executed in sequence. Further extension was done in
[11, 12], in the context of composition of Web Services. First, (i) the guaranteed
termination concept was extended to atomicity (of global transaction, or composite
activity or service), (ii) forward- and backward-recovery procedures for achieving
atomicity were given, and (iii) non-sequential, tree-like, execution of the pivots was
accommodated. Then the transactional properties (atomicity, compensatability,
retriability and pivot) were extended to hierarchically composed activities/services. It
was shown that the transactional properties can be considered at each level
independently of the properties of the other level activities.

The proposal in this paper is along the lines of [11, 12] but tailored to e-contract
environment.

The model in this paper will form a part of the commitment specifications.

3 Basic Concepts

In this section, we present the concepts and notations relevant for transactional
properties in the context of e-contracts, and in the next section we present our model.

306 K. Vidyasankar, P.R. Krishna, and K. Karlapalem

3.1 Basic Activities

We consider certain activities as basic in our model. Typically, these are the activities
which cannot be decomposed into smaller activities, or those that we want to consider
in entirety, and not in terms of its constituent activities.

In e-contract environment, whereas some basic activities may be executed
‘electronically’ (for example, processing a payment), most others will be non-
electronic (for example, painting a door). We desire that all basic activities are
executed atomically, that is, it is either not executed at all or executed completely.
However, incomplete executions are unavoidable and we consider them in our model.

3.2 Constraints

Each activity is executed under some constraints with respect to who can execute,
when it can be executed, which executions are acceptable, etc. The acceptability may
depend on whether the activity can be executed within a specified time period, cost of
execution, compensatability or other transactional properties, side-effects, etc.

A complete execution of an activity that satisfies all the constraints specified for the
execution of that activity at the time of its execution is called a successful termination,
abbreviated s-termination, of that activity. The constraints themselves are specified in
terms of an s-termination predicate, or simply, st-predicate. A complete execution
which does not satisfy the st-predicate is called a failed termination, abbreviated f-
termination. The s- and f-termination distinction is applied to incomplete executions
also, depending on whether the st-predicate is satisfied thus far.

Example 2: Consider the activity of painting a wall. The execution is incomplete
while the wall is being painted, and complete once the painting is finished. If the paint
job is good at the end (respectively, in the middle), the execution is a complete
(respectively, incomplete) s-termination. If the paint job is not satisfactory, we get a
complete or incomplete f-termination. The st-predicate specifying the goodness of the
job could be: (i) one undercoat and one other coat of paint and (ii) no smudges in the
ceiling or adjacent walls.

The constraints may change, that is, the st-predicate of an activity may change, as
the execution of the contract proceeds. (In the example above, two coats of paint may
be required in addition to undercoat.) Such changes may invalidate a previous
complete execution of that activity. When this happens, the execution needs to be
adjusted.

3.3 Compensatibility

One of the ways an execution can be adjusted is by compensation, that is, nullifying
the effects of the execution. We look at compensation as a logical roll back of the
original execution. Absolute compensation may not be possible in several situations.
In some cases, the effects of the original execution may be ignored or penalized and
the execution itself considered as compensated. Compensation may also involve
execution of some other, compensating, activity. Inability to execute a compensating
activity within a prescribed time limit may also make the original execution non-
compensatable.

 A Multi-level Model for Activity Commitments in E-contracts 307

It is possible that an execution can be compensated within a certain time, but not
afterwards. The time could be “real” time (for example, flight reservations can be
cancelled without penalty within 24 hours of booking, and vinyl flooring glued to the
floor can be removed before the glue sets) or specified relative to the execution of
some subsequent activities (for example, flight bookings can be cancelled until paid
for, and a (stolen) cheque can be cancelled before it is cashed).

Note that we do not attribute compensatability property to an activity, but only to
an execution of that activity. For the same activity, some executions may be
compensatable, whereas others may not be. For example, when we book flight tickets
we may find that some tickets are non-refundable, some are fully refundable, and
some others partially refundable. Purchasing a fully refundable ticket may be
considered to be a compensatable execution, whereas purchasing any other type of
ticket could be non-compensatable. Thus, compensatability of the execution
(purchasing a flight ticket) may be known only during execution, and not at the
specification time of the activity.

3.4 Retriability

Another way of adjusting an execution is by retrying. By retriability, we mean the
ability to get a complete execution satisfying the (possibly new) st-predicate. It is
possible that the original execution is compensated fully and new execution carried
out, or the original execution is complemented, perhaps after a partial compensation,
with some additional execution, for instance, the second coat of painting in Example 2.

Retriability may also be time-dependent. It may also depend on the properties of
execution of other preceding, succeeding or parallel activities. Again, in general,
some executions of an activity may be retriable, and some others may not be retriable.

We note that retriability property is orthogonal to compensatability. That is, an
execution may or may not be retriable, and, independently, may or may not be
compensatable.

3.5 Execution States

We assume that the state of a complete s-terminated execution changes in the
following sequence:

(a) It is both compensatable and retriable;
(b) It becomes non-compensatable, but is still retriable; and
(c) It becomes (non-compensatable and) non-retriable.

We note that in state (a) the execution may be compensated and/or retried several
times. Similarly, in state (b), the execution may be retried several times, before state
(c) is reached. It is also possible that an (un-compensated) execution remains in state
(a) and never goes to state (b), or it goes to state (b), but not to state (c).

We say that an execution is weakly committed if it is at state (b), that is, when it is
or has become non-compensatable, and is strongly committed if it is at state (c). We
note that both weak and strong commitments can be forced upon externally also. That
is, the execution can be deemed as (weakly or strongly) committed, for reasons
outside of that execution. An example is payment to a sub-contractor for execution of

308 K. Vidyasankar, P.R. Krishna, and K. Karlapalem

an activity, and the non-obligation and unwillingness of the sub-contractor to
compensate (in case of weak commitment) or retry (in case of strong commitment)
the execution after receiving the payment. We say also that an activity is weakly
(strongly) committed when an execution of that activity is weakly (strongly)
committed.

We allow compensatability and retriability properties to be applicable to
incomplete executions also. We assume the first two of the above state transition
sequences for partial
executions. That is, a
partial execution is both
compensatable and
retriable in the beginning,
and may become non-
compensatable at some
stage. Then, if it is
retriable, that is, a
complete s-termination is
guaranteed, then the
execution can be weakly
committed. Note that we
are simply allowing the
transition from
uncommitted to weakly
committed state to occur
even before the execution
of the activity is
complete. We do not
allow transition from weakly committed to strongly committed state until (or some
time after) the execution is completed.

Figure 2 depicts the execution stages (boxes) of an activity, and possible transitions
(arrows) between them. Some notable points are the following.

- Retry denotes re-execution possibly after partial or full backward-recovery.
- A full backward-recovery yields the null termination. If re-execution of the

activity is intended after the null termination, we take the backward-recovery as
part of retry; otherwise, it is taken as compensation.

- A complete s-termination may become an f-termination, with a change in st-
predicate. If this happens before weak commitment, the transitions of an f-
termination are followed. Otherwise, if the execution is already weakly committed,
then a retry that guarantees s-termination is assured.

- If the compensation succeeds we get the null termination. Otherwise, we get a
non-null f-termination.

The “final” state of execution of a basic activity is closure. The diagram shows three
possible states of closure: (i) null; (ii) non-null (incomplete or complete) f-
termination; and (iii) (complete) s-termination, which also corresponds to strong
commitment of the execution.

Complete or
incomplete

f-termination

Execution stopped

Execution in progress

Start

Compensate

Closed null
termination

Closed non-null
f-termination

Incomplete
weakly committed

s-termination

Complete weakly
Committed s-termination

Closed strongly
committed s-termination

Fig. 2. Execution stages of an activity

Retry Retry

Complete or
incomplete

s-termination

 A Multi-level Model for Activity Commitments in E-contracts 309

Complete and incomplete, and s- and f-terminations can be defined for composite
activities also, analogously. This is done in the model. We illustrate the different
categories with the following example.

Example 3: Let U be a composite activity consisting of (i) writing and printing a
letter, (ii) preparing an envelope, and (iii) inserting the letter in the envelope and
sealing it. Call the activity (ii) as C. Then C is composed of (a1) printing the
From and To addresses on the envelope, perhaps with a printer and (a2) affixing
a stamp on the envelope. Consider an execution of U. The following possibilities
arise.

- (i) is done but (ii) fails possibly because of printing a wrong address. Now we may
decide not to bother preparing a new envelope and sending the letter. This is an
incomplete f-termination.

- (i) and (ii) are done. (iii) is not done (yet). This is an incomplete s-termination.
- All the three activities are done, but we realize afterwards that the address is wrong,

that is, (ii) is not executed correctly. This is a complete f-termination.
- All activities have been done correctly. This is a complete s-termination.

Figure 2 is applicable to composite activities also. We explain this later.

4 Composition Model for Activities

In this section, we describe our multi-level composition model for the activities in an
e-contract. We start with a specification of one level, the "bottom" level.

4.1 Path Model

We start with a simple model, called the path model, to illustrate the various key
aspects. We will extend it to a general model later. Our description is in three parts –
composition, execution and transactional properties. We use bold font to denote
compositions, and italics to denote their executions, that is, the composite activities.

A. Composition
- Composition C is a rooted tree. It is a part of a higher level composition U.
- An st-predicate is associated with C. This will prescribe the s-terminations of C.

(We define s-terminations of a composition later.)
- Nodes in the tree correspond to basic activities. They are denoted as a1, a2, etc.
- With each node in the tree, an st-predicate and a children execution predicate,

abbreviated ce-predicate, are associated.
- The st-predicate specifies s-terminations of that activity. The ce-predicate specifies,

for each s-termination of that node, a set of children from which exactly one child
has to be executed next, the child being chosen according to a given partial order of
preferences. The ce-predicate for the leaf nodes of the composition is null.

- We assume that the st-predicate and ce-predicate of each of the nodes in C are
derived from the st-predicate of C.

310 K. Vidyasankar, P.R. Krishna, and K. Karlapalem

C2′ C2″C2

C1

I1

Fig. 3. A composition

I2

C0

Example 4: Figure 3 shows a composition where Ci’s are construction activities for a
product and Ij’s are Inspection activities. After the first two stages, C0 and C1, of the
construction, the inspection I1 is carried out. Depending on the result, say quality of
the product after C1, C2 is carried out if possible, and C2′ or C2″ otherwise, in that
order. This will be the ce-predicate at I1. Only the inspection I2 after C2 is shown. The
st-predicate for each Ci will be the guidelines to be followed for that construction. The
st-predicate for each Ii will be the acceptable results of the things to be checked in that
inspection.

B. Execution
- An execution of activity ai is denoted ai.
- An execution E of C yields a composite activity C. The execution consists of

execution of activities in a path from the root to a leaf. If all the activities in this
path have been executed completely, then E is a complete execution of C.
Otherwise, that is, if only the activities from the root to some non-leaf node have
been executed and/or the executions of some activities are not complete, then it is
an incomplete execution of C. If E is a complete (incomplete) execution and each
activity in E has s-terminated, then E is a complete (incomplete) s-termination of
C. A complete s-termination is usually called simply as an s-termination of C. An
f-termination of C is either a complete or incomplete execution in which
executions of some activities have f-terminated.

- In each s-termination C, at each non-leaf node ai, the selection of the child of ai
satisfies the ce-predicate currently specified for ai in C.

- Both the st-predicate and the ce-predicate at each node ai may be changing as the
execution of subsequent activities of C
proceeds.

- Partial execution of C will be represented
by a path from the root a1 to some node ai
in the tree, and will be denoted (a1, ..., ai),
and also as C[1,i]. Here, the part that is yet to
be executed to get a complete termination
of C is the subcomposition of C from ai,
called the suffix of C from ai, denoted C[i].
The subcomposition will contain the
subtree of C rooted at ai, with the st-
predicate and ce-predicate of ai adjusted
according to the execution C[1,i], and the st-
predicate and ce-predicate of all other
nodes in the subtree being the same as in C.

- Each activity ai in C may first be weakly
committed, and then strongly committed relative to C, some time after its s-
termination.

- Once ai is weakly committed, as stated earlier, it cannot be compensated, and once
it is strongly committed, it cannot be retried. Again, both compensatability and
retriability are relative to C. We elaborate this later.

- The activities in C are (both weakly and strongly) committed in sequence. That is,
when ai is weakly committed, all activities that precede ai in C and have not yet

 A Multi-level Model for Activity Commitments in E-contracts 311

been weakly committed are also weakly committed. Similarly, strong
commitments of the executions are also in sequence.

C. Transactional Properties
- Composition C assumes that each of its activities ai is executed atomically. Thus

an incomplete f-termination of ai is assumed to be compensatable, to get an
effective null execution, relative to C.

- The execution of the entire composition C is intended to be atomic in U.
Therefore, an execution of C should eventually yield a complete s-termination or
the null termination.

- Consider an execution E of C.
• If E is an incomplete s-termination, then forward-recovery is carried out by

executing the suffix of E in C or a different acceptable sub-composition, to get a
complete s-termination.

• If E is either incomplete or complete f-termination, then the executions of some
activities may have to be adjusted (partial backward-recovery) to get an
incomplete s-termination,
and a forward-recovery is
carried out.

• To get the null
termination, E has to be
compensated. This is the
full backward-recovery.

D. Implementation Issues
(a) Partial Backward-Recovery
It starts with re-executing aj,
for some j ≤ i, where ai is the
latest activity that has been or
being executed. If aj has to be
compensated, then all activities
in the execution following aj
are also compensated, and a
different child of aj-1 is chosen
with possibly an updated ce-
predicate at aj-1. If aj is retried,
then, after retrying, aj+1 may
need to be compensated or
retried. Continuing this way, we will find that for some k, k ≥ j, the activities in the
sequence (aj, …, ak-1) are retried and those in (ak, …, ai) are compensated. This is
illustrated in Figure 4.

We note that if m is the largest index such that am is strongly committed, then j >
m, and if n is the largest index such that an is weakly committed, then k > n. This
follows since, by the definitions of strong and weak commitments, executions of
activities up to am cannot be retried and those up to an cannot be compensated. In the
figure, an is not shown. It will be between am and ak.

a1

Re-execution point

Last strong
commitment point

Compensated
part

Re-tried
part

Adjusted
part

Fig. 4. Partial backward-recovery in the Path model

am

al

aj

ak

ai

Strongly Committed
part

Weakly Committed
part

312 K. Vidyasankar, P.R. Krishna, and K. Karlapalem

Similar to the abort, commit and other dependencies in [2], we can define
dependencies between activities ap and aq:

• If ap is compensated then aq must be compensated/retried; and
• If ap is retried then aq must be retried.

Then the re-execution point will be the earliest point in the execution based on the
transitive closure of these dependencies. We also note that dependencies of the type

• If ap is compensated/retried then aq must be weakly/strongly committed

might also exist. This would require some activities to be strongly committed and/or
some activities to be weakly committed (on re-execution of aj). This is also shown in
Figure 4.

The following example illustrates backward-recovery.

Example 5: In the composition of Figure 3, suppose C2 was executed after I1, and I2
fails. It may be decided that the product be sent back to C1 for some adjustment and
inspected, and the options C2′ and C2″ explored. This would amount to rolling back I2
and C2, and re-executing C1 and I1, each with adjusted st-predicate. Here the adjusted
ce-predicate for I1′ will have only C2′ and C2″ options. Also, retrying C1′ might
require strong commitment of C0.

(b) Point of Commitment
The execution of an activity ai can be weakly committed any time, and then, after an
s-termination, can be strongly committed any time. Weak commitment immediately
after the s-termination gives pivotal property in the traditional sense. Waiting until the
end of the execution of the entire composite activity will give the compensatability
and retriability options until the very end. The longer the commitment is delayed, the
more flexibility we have for adjustment on execution of the subsequent activities.
However, commitment of some subsequent activities may force the commitment of ai.

(c) Adaptivity
As mentioned earlier, the ce-predicate will keep changing as the execution proceeds.
Also, additional execution paths can be added, as descendents of a node, in the middle
of the execution of the composite activity. Some execution paths may be deleted too.
Thus, the composition could be adaptive and dynamic.

4.2 Tree Model

We now present an extension, called the tree model. Here, we consider compositions
that allow for more than one child to be executed at non-leaf nodes. Therefore, the
execution yields a tree, instead of just a path, as a composite activity. The features of
this model are essentially the same as in the path model. The difference is only in the
complexity of the details. We outline the details in the following.

A. Composition
Here also, a composition C is a tree and it is a part of a higher level composition U.
An st-predicate is associated with C. An st-predicate and a ce-predicate are associated

 A Multi-level Model for Activity Commitments in E-contracts 313

with each node. These will be derived from the st-predicate of C. The ce-predicate is
null for all leaves of C. The ce-predicate at non-leaf nodes may be sophisticated.

• More than one child may be required to be executed.
• In general, several sets of children may be specified with the requirement that one

of those sets be executed.
• These sets may be prioritized in an arbitrary way.
• Execution of children within a set may also be prioritized in an arbitrary way.

B. Execution
A composite activity C is a subtree of C such that

• it includes the root, some leaves of C, and all nodes and edges in the paths from
the root to those leaves in C, and

• the execution of each node
satisfies the st-predicate
prescribed for that node, and
the children of each non-leaf
node of the subtree satisfy
the ce-predicate specified in
C for that node.

A partial execution E of C
will be represented by a subtree
of C, called execution-tree,
consisting of all the nodes of C
that have been executed so far
and the edges between them.
The suffix of the execution E
can be defined similar to that in
the path model. It will consist of
sub-trees of C rooted at some of the leaves of the execution tree, with st- and
ce-predicates properly adjusted.

C. Transactional Properties
Again, the execution of the entire composition C is intended to be atomic in U.
Forward-recovery of E will consist of execution of the suffix of E. Partial backward-
recovery of E will again consist of retrying the executions of some of the activities of
the execution-tree, and compensating some others. This is illustrated in Figure 5.

4.3 Multi-level Model

So far, we have dealt with compositions at a single level, in fact, the bottom-most
level where all activities are basic activities. Now we extend the model by allowing
basic or composite activities in the compositions. This gives us a multi-level,
hierarchical, composition model. The highest level activity is the contract-activity. In
the previous sections, a composition C is described as a tree. An execution of C yields
a composite activity C, which is a path graph in the path model and a tree in the tree
model. We call (both of) them a composite activity tree, or c-tree in short.

Re-
execution
points

Re-tried part

Compensated
part

Fig. 5. Partial backward-recovery in the Tree model

314 K. Vidyasankar, P.R. Krishna, and K. Karlapalem

An outline of the multi-level model is the following.

A. Composition
A composition C is a tree as in the tree model. Nodes in the tree are
(sub)compositions of basic or composite activities. Compositions of composite
activities are, again, trees as in the tree model. Thus C is a “nested” tree. An st-
predicate is associated with C.

B. Execution
Execution of each subcomposition of C yields a c-tree. (For a basic activity, the c-tree
will have just one node.) To put these trees together, we use the following notation. A
c-tree is converted to a one source one sink acyclic graph by adding edges from the
leaves of the tree to a single (dummy) sink node. We call this a closed c-tree.

In the execution of a multi-level composition C, at the top level we get a closed c-
tree with nodes corresponding to the executions of activities in C. Each of the
activities will again yield a closed c-tree. Thus, the graph can be expanded until all the
nodes correspond to basic activities.

Partial execution is considered as in the tree model, level by level, in nested
fashion.

C. Transactional Properties
At each individual level, for each node, the transactional properties discussed with the
tree model are applicable. After the recovery of one node, the recovery efforts at the
parent level execution will continue.

We have already discussed s-terminations and f-terminations of composite
activities. We now consider compensatability and retriability of composite activities.
Compensation, in general, amounts to execution of a compensating activity, that is,
execution of a composition that corresponds to compensation. (For example, if the
original execution is building a garden shed in the backyard, the compensation might
be the demolition of that shed.) This compensation will also be specified as a tree with
suitable st-predicate. Retrying a composite activity involves, in the general case, a
possible backward-recovery followed by forward-recovery. The forward-recovery
part can be accommodated by adding additional subtrees at some nodes and
specifying the st- and ce-predicates for the nodes in them, and adjusting the ce-
predicates of other nodes appropriately.

Thus, in general, re-execution of a composite activity would require adjusting the
composition of that activity in terms of adding and/or deleting some nodes and
adjusting the st- and ce-predicate of the nodes. This can also be thought of as coming
up with a new composition for that activity, mapping the previous execution on the
new composition, identifying the s-terminated part, and doing a backward- and/or
forward-recovery. The re-execution and adjustments of the st- and ce-predicates will
then be top-down.

4.4 Multi-level Commitment and Closure

(a) Commitment
As we referred to earlier, suppose C is a composition corresponding to a composite
activity of U, and ai is the composition of an activity of C. Let ai, C and U be the

 A Multi-level Model for Activity Commitments in E-contracts 315

respective executions. We have defined the compensatability and properties of ai to be
relative to C. Similarly, compensatability and retriability of C will be relative to U.

Example 6: In Example 3, suppose the addresses are printed and the stamp glued, and
we find later that the To address is incorrect. If the affixed stamp cannot be removed,
the activity a2 is non-compensatable, but only relative to C. The activity C itself may
be compensatable relative to U, amounting to just tearing up the envelope and bearing
the loss of the stamp. Then, though a2 itself is not compensated the composite activity
containing a2 is compensated.

Similarly, the commitment properties at the two levels are also independent of
each other. We give two examples. (1) Activity ai could be strongly committed,
meaning that it cannot be compensated or re-executed in C, but C itself may be
weakly committed relative to U, meaning that it may be re-executed perhaps with
additional activities. C could be weakly committed even if some activities of C are not
executed yet, if retrying of C can be carried out by compensating the current
execution completely and re-executing it to get an s-termination. (2) An example of ai

being weakly committed and C being strongly committed is that of fixing (perhaps in
the warranty period) a broken pipe after the construction of the house is finished and
the builder paid fully. Thus our model allows, as mentioned in Section 1, re-executing
even a “committed” activity, by dealing with commitment in multiple levels.

(b) Closure of Composite Activities
A composite activity C also can be closed in three different states depicted in Figure
2, namely, null termination, (incomplete or complete) non-null f-termination, and
(complete) strongly committed s-termination. The null execution might be the result
of executing a compensating activity. Therefore, in any of these terminations of C, the
constituent activities of C might be closed in any of the three terminations. Now, C
may be closed either before or after some or all of the constituent activities of C are
closed. An example of the former would be not waiting for the closure, or even
termination, of some activities that compensate some other activities in the original
execution of C, that are guaranteed to succeed.

(c) Closure of E-contract
Some of the activities (usually high level ones) will correspond to parts of the contract
or subcontracts. As noted earlier, at the highest level, the composition is for the entire
contract-activity. On closure of such activities, the corresponding contracts
themselves might be closed. Closure of a contract intuitively refers to expiring the
“life” or validity of the contract. For example, a contract for building a house may
close after the warranty period during which the builder is responsible for repairs. A
sub-contract for maintaining an air-conditioning system installed in that house may
close at a different time. The transactional properties in our model can be used to
refine the conditions for closure of the contracts.

4.5 Implementation Issues

All the issues discussed in the path model section are applicable here also. We discuss
some additional issues in the following.

316 K. Vidyasankar, P.R. Krishna, and K. Karlapalem

We have associated an st-predicate and a ce-predicate with each activity in our
model. They are activity-dependent. We can expect that they can be expressed more
precisely for some activities than for some others. In fact, for some activities, what
constitutes s-termination may not be known until after an execution of that activity,
and even after the execution of many subsequent activities. We note also that the st-
predicate of a composite activity determines the st-predicate and the ce-predicate of
its constituent activities. Hence, specification of the st- and ce-predicates is crucial.
This will be the role of the (activity and) workflow semantics.

Whereas the semantic specification of ce-predicate would be application-
dependent, syntactic specification may be made more precise, with an appropriate
language. We can expect that such a language would have constructs for specifying
priorities and Boolean connectives. An example is booking an all (flight-hotel-food)
inclusive package, and if it is not available then booking flights and three-star hotels
separately, for a vacation.

The ce-predicate allows specifying preferences in the selection of the children
activities to be executed. Preferences may exist for s-terminations too. This may
depend on functional as well as non-functional aspects of the execution. Such
preferences can be incorporated in the model easily.

In a multi-level set up, the activities that are re-executed or rolled back would, in
general, be composite activities, that too executed by different parties autonomously.
Therefore, the choices for re-execution and roll back may be limited and considerable
pre-planning may be required in the design phase of the contract.

5 Discussion and Conclusion

In this paper, we have developed a framework for e-contract commitment by
considering transactional properties for executions of activities of the e-contract.
Accommodating the transactional properties can improve an e-contract design and, in
turn, help in the enactment of the underlying contract. Some important aspects are the
following.

i. Level-wise definitions of compensatability and retriability clarify the properties
and requirements in the executions of activities and sub-activities, in contracts
and sub-contracts. This helps in delegating responsibilities for satisfying the
required properties in the executions to relevant parties precisely and
unambiguously.

ii. Closure of the contract can be tied to closure of the activities and commitments.
Features such as “the life of a contract may extend far beyond the termination of
execution of the activities” are accommodated fairly easily.

iii. Terms of payments for the activities (including the contract-activity) can be
related to the execution states of the activities. (We omit the details for lack of
space.)

We believe that our transactional properties will be useful in other applications
also, irrespective of whether the activities are electronic, non-electronic or both.

In our multi-level model, we get composite activities in the form of a special type
of acyclic graphs. This structure may be sufficient for most activities. It contains

 A Multi-level Model for Activity Commitments in E-contracts 317

sequence, AND splits and joins, and OR splits and joins, for instance. However, the
model can be extended to get composite activities in arbitrary acyclic graph
structures. We omit the details for lack of space. In our on-going work, we are
looking into several issues that arise with the incorporation of our model in the EREC
framework.

References

1. Chiu, D.K.W., Karlapalem, K., Li, Q., Kafeza, E.: Workflow View Based E-Contracts in a
Cross-Organizational E-Services Environment. Distributed and Parallel Databases 12(2/3),
193–216 (2002)

2. Chrysanthis, P.K., Ramamritham, K.: A Formalism for Extended Transaction Models. In:
Proc. of the 17th Int. Conf. on Very Large Data Bases, pp. 103–112 (1991)

3. Green, P., Vonk, J.: A Taxonomy of Transactional Workflow Support. International
Journal of Cooperative Information Systems 15, 87–118 (2006)

4. Grosof, B., Poon, T.: SweetDeal: Representing Agent Contracts with Exceptions using
XML Rules, Ontologies and Process Descriptions. In: Proc. of the 12th WWW Conference
(2003)

5. Kafeza, E., Chiu, D., Kafeza, I.: View-based Contracts in an E-service Cross-
organizational Workflow Environment. In: Proc. of 2nd Int. Workshop on Technologies
for E-service (2001)

6. Koetsier, M., Grefen, P., Vonk, J.: Contract Model, Technical Report, Cross-
Organizational/Workflow, Crossflow ESPRITE/28635 (1999)

7. Radha Krishna, P., Karlapalem, K., Chiu, D.K.W.: An EREC Framework for E-Contract
Modeling, Enactment and Monitoring. Data and Knowledge Engineering 51, 31–58 (2004)

8. Radha Krishna, P., Karlapalem, K., Dani, A.R.: From Contracts to E-Contracts: Modeling
and Enactment. Information Technology and Management Journal 4(1), 363–387 (2005)

9. Schuldt, H., Alonso, G., Beeri, C., Schek, H.J.: Atomicity and Isolation for Transactional
Processes. ACM Transactions on Database Systems 27, 63–116 (2002)

10. Vidyasankar, K.: Atomicity of Global Transactions in Distributed Heterogeneous Database
Systems. In: Proc. of the DEXA-91, pp. 321–326 (1991)

11. Vidyasankar, K., Vossen, G.: A Multi-Level Model for Web Service Composition. In:
Proc. of the 3rd IEEE International Conference on Web Services, San Diego, U.S.A, pp.
462–469. IEEE Computer Society Press, Los Alamitos (2004)

12. Vidyasankar, K., Vossen, G.: Multi-Level Modeling of Web Service Compositions with
Transactional Properties, Technical Report, Memorial University, St. John’s, Canada
(2007)

13. Wang, T., Grefen, P., Vonk, J.: Abstract Transaction Construct: Building a Transaction
Framework for Contract-driven. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 434–439. Springer, Heidelberg (2006)

14. Xu, L.: A Multi-party Contract Model. ACM SIGecom Exchanges 5(1), 13–23 (2004)

Decentralised Commitment for Optimistic Semantic
Replication�

Pierre Sutra1, João Barreto2, and Marc Shapiro1

1 Université Paris VI and INRIA Rocquencourt, France
2 INESC-ID and Instituto Superior Técnico, Lisbon, Portugal

Abstract. We study large-scale distributed cooperative systems that use opti-
mistic replication. We represent a system as a graph of actions (operations) con-
nected by edges that reify semantic constraints between actions. Constraint types
include conflict, execution order, dependence, and atomicity. The local state is
some schedule that conforms to the constraints; because of conflicts, client state
is only tentative. For consistency, site schedules should converge; we designed a
decentralised, asynchronous commitment protocol. Each client makes a proposal,
reflecting its tentative and/or preferred schedules. Our protocol distributes the
proposals, which it decomposes into semantically-meaningful units called can-
didates, and runs an election between comparable candidates. A candidate wins
when it receives a majority or a plurality. The protocol is fully asynchronous: each
site executes its tentative schedule independently, and determines locally when a
candidate has won an election. The committed schedule is as close as possible to
the preferences expressed by clients.

1 Introduction

In a large-scale cooperative system, access to shared data is a performance and availabil-
ity bottleneck. One solution is optimistic replication (OR), where a process may read
or update its local replica without synchronising with remote sites [17]. OR decouples
data access from network access.

In OR, each site makes progress independently, even while others are slow, currently
disconnected, or currently working in isolated mode. OR is well suited to peer-to-peer
systems and to devices with occasional connectivity.

Some limited knowledge of semantics provides a lot of extra power and flexibility.
Therefore, we model the system as a graph, called a multilog, where each vertex repre-
sents an action (i.e., an operation proposed by some client), and an edge is a semantic
relation between vertices, called a constraint. Our constraints include conflict, ordered
execution, causal dependence, and atomicity. Each site has its own multilog, which con-
tains actions submitted by the local client, and their constraints, as well as those received
from other sites. The current state is some execution schedule that contains actions from
the site’s multilog, arranged to conform with its constraints. For instance, when actions
are antagonistic, at least one must abort; an action that depends on an aborted action

� This research is funded in part by the European project Grid4All, the French project Respire
and by FCT grant SFRH/BD/13859, Portugal.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 318–335, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Decentralised Commitment for Optimistic Semantic Replication 319

must abort too; non-commutative actions should be scheduled in the same order ev-
erywhere, etc. The site may choose any conforming schedule, e.g., one that minimises
aborts, or one that reflects user preferences.

For consistency, sites should agree on a common, stable and correct schedule. We
call this agreement commitment. Some cooperative OR systems never commit, such
as Roam [16] or Draw-Together [6]. Previous work on commitment for semantic OR
such as Bayou [20] or IceCube [15] centralises the agreement at a central site. Other
work decentralises commitment (e.g., Paxos consensus [11]) but ignores semantics. It
is difficult to reconcile semantics and decentralisation. One possible approach would
use Paxos to compute a total order, and abort any actions for which this order would
violate a constraint. However this approach aborts actions unnecessarily. Furthermore,
the arbitrary total order may be very different from what users expect.

A better approach is to order only non-commuting pairs of actions, to abort only
when actions are antagonistic, to minimise dependent aborts, and to remain close to
user expectations. We propose an efficient, decentralised protocol that uses semantic
information for this purpose. Participating sites make and exchange proposals asyn-
chronously; our algorithm decomposes each one into semantically-meaningful candi-
dates; it runs elections between comparable candidates. A candidate that collects a
majority or a plurality wins its election. Voting ensures that the common schedule is
similar to the tentative schedules, minimising user surprise. Our protocol orders only
non-commuting actions and minimises unnecessary aborts.

This paper makes several contributions:

– Our algorithm combines a number of known techniques in a novel manner.
– We identify the concept of a semantically-meaningful unit for election (which we

call a candidate).
– We propose an efficient commitment protocol system that is both decentralised and

semantic-oriented, and that has weak communication requirements.
– We show how to minimise user surprise, the committed schedule being similar to

local tentative schedules.
– We prove that the protocol is safe even in the presence of non-byzantine faults. The

protocol is live as long as a sufficient number of votes are received.

The outline of this paper follows. Section 2 introduces our system model and our
vocabulary. Section 3 discusses an abstraction of classical OR approaches that is later
re-used in our algorithm. Section 4 specifies client behaviour. Our commitment protocol
is specified in Section 5. Section 6 provides a proof outline and adresses message cost.
We compare with related work in Section 7. In conclusion, Section 8 discusses our
results and future work.

2 System Model

Following the ACF model [18], an OR system is an asynchronous distributed system of
n sites i, j, . . . ∈ J . A site that crashes eventually recovers with its identity and persistent
memory intact (but may miss some messages in the interval). Clients propose actions
(deterministic operations) noted α,β, . . . ∈ A. An action might request, for instance,
“Debit 100 euros from bank account number 12345.”

320 P. Sutra, J. Barreto, and M. Shapiro

A multilog is a quadruple M = (K,→,�,∦), representing a graph where the vertices
K are actions, and →, � and ∦ (pronounced NotAfter, Enables and NonCommuting
respectively) are three sets of edges called constraints. We will explain their semantics
shortly.1

We identify a state with a schedule S, a sequence of distinct actions ordered by <S

executed from the common initial state INIT. The following safety condition defines
semantics of NotAfter and Enables in relation to schedules. We define Σ(M), the set of
schedules S that are sound with respect to multilog M, as follows:

S ∈ Σ(M) def= ∀α,β ∈ A

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

INIT ∈ S
α ∈ S ⇒ α ∈ K
α ∈ S ∧α �= INIT ⇒ INIT <S α
(α→β)∧α,β ∈ S ⇒ α <S β
(α�β) ⇒ (β ∈ S ⇒ α ∈ S)

Constraints represent scheduling relations between actions: NotAfter is a (non-
transitive) ordering relation and Enables is right-to-left (non-transitive) implication.2

Constraints represent semantic relations between actions. For instance, consider a
database system (more precisely, a serialisable database that transmits transactions by
value, such as DBSM [13]). Assume shared variables x,y,z are initially zero. Two con-
current transactions T1 = r(x)0;w(z)1 and T2 = w(x)2 are related by T1 → T2, since T1

read a value that precedes T2’s write.3 T1 and T3 = r(z)0;w(x)3 are antagonistic, i.e., one
or the other (or both) must abort, as each is NotAfter the other. In the execution T1;T4

where T4 = r(z)1, the latter transaction depends causally on the former, i.e., they may
run only in that order, and T4 aborts if T1 aborts; we write T1 →T4 ∧T1 �T4. As another
example, Section 6.4 discusses how to encode the semantics of database transactions
with constraints.

Non-commutativity imposes a liveness obligation: the system must put a NotAfter
between non-commuting actions, or abort one of them. (Therefore, non-commutativity
does not appear in the above safety condition.) The system also has the obligation to
resolve antagonisms by aborting actions.

For instance, transactions T1 and T5 = r(y)0 commute if x,y and z are independent.
In a database system that commits operations (as opposed to commiting values), trans-
actions T6 =“Credit 66 euros to Account 12345” and T7 =“Credit 77 euros to Account
12345” commute since addition is a commutative operation, but T6 and T8 =“Debit 88
euros from Account 12345” do not, if bank accounts are not allowed to become nega-
tive. We write T6 ∦ T8.

1 Multilog union, inclusion, difference, etc., are defined as component-wise union, inclusion,
difference, etc., respectively. For instance if M = (K,→,�,∦) and M′ = (K′,→′,�′,∦′) their
union is M ∪M′ = (K ∪K′,→∪→′,�∪�′,∦∪∦′).

2 A constraint is a relation in A×A. By abuse of notation, for some relation R , we write equiv-
alently (α R β) ∈ M or α R β or (α,β) ∈ R . ∦ is symmetric and � is reflexive. They do not
have any further special properties; in particular, → and � are not transitive, are not orders,
and may be cyclic.

3 r(x)n stands for a read of x returning value n, and w(x)n writes the value n into x.

Decentralised Commitment for Optimistic Semantic Replication 321

Order, antagonism and non-commutativity are collectively called conflicts.4

Clients submit actions to their local site; sites exchange actions and constraints asyn-
chronously. The current knowledge of Site i at time t is the distinguished site-multilog
Mi(t). Initially, Mi(0) = ({INIT},∅,∅,∅), and it grows over time, as we will explain
later. A site’s current state is the site-schedule Si(t), which is some (arbitrary) schedule
∈ Σ(Mi(t)).

An action executes tentatively only, because of conflicts and related issues. However,
an action might have sufficient constraints that its execution is stable. We distinguish
the following interesting subsets of actions relative to M.

– Guaranteed actions appear in every schedule of Σ(M). Formally, Guar(M) is the
smallest subset of K satisfying: INIT ∈ Guar(M)∧ ((α ∈ Guar(M)∧β� α) ⇒ β ∈
Guar(M)).

– Dead actions never appear in a schedule of Σ(M). Dead(M) is the smallest subset
of A satisfying: ((α1, . . . ,αm≥0 ∈ Guar(M)) ∧ (β → α1 → . . . → αm → β) ⇒ β ∈
Dead(M))∧ ((α ∈ Dead(M)∧α�β) ⇒ β ∈ Dead(M)).

– Serialised actions are either dead or ordered with respect to all non-commuting con-

straints. Serialised(M) def= {α ∈ K|∀β ∈ K, α∦β ⇒ α→β∨β→α∨β ∈ Dead(M)∨
α ∈ Dead(M)}.

– Decided actions are either dead, or both guaranteed and serialised. Decided(M) def=
Dead(M)∪ (Guar(M)∩Serialised(M)).

– Stable (i.e., durable) actions are decided, and all actions that precede them by Not-

After or Enables are themselves stable: Stable(M) def= Dead(M)∪{α ∈ Guar(M)∩
Serialised(M)|∀β ∈ A (β →α∨β �α) ⇒ β ∈ Stable(M)}.

To decide an action α relative to a multilog M, means to add constraints to the M,
such that α ∈ Decided(M). In particular, to guarantee α, we add α� INIT to the multi-
log, and to kill α, we add α → α; to serialise non-commuting actions α and β, we add
either α→β, β →α, α→α, or β →β.

Multilog M is said sound iff Σ(M) �= ∅, or equivalently, iff Dead(M)∩Guar(M) =
∅. An unsound multilog is definitely broken, i.e., no possible schedule can satisfy all
the constraints, not even the empty schedule.

Referring to the standard database terminology, a committed action is one that is
both stable and guaranteed, and aborted is the same as dead.

The standard correctness condition in OR systems is Eventual Consistency: if clients
stop submitting, eventually all sites reach the same state. We extend this definition by
not requiring that clients stop, by requiring that all states be correct, and by demanding
decision.

Definition 1. Eventual Consistency. An OR system is eventually consistent iff it satisfies
all the following conditions:

– Local soundness (safety): Every site-schedule is sound: ∀i, t Si(t) ∈ Σ(Mi(t))

4 Some authors suggest to remove conflicts by transforming the actions [19]. We assume that, if
such transformations are possible, they have already been applied.

322 P. Sutra, J. Barreto, and M. Shapiro

α < β < γ Decision
β ∦ γ (Serialise) β → γ

guar. ← β (Kill β) β →β
dead � β (β is dead)

β � γ (Kill β) β →β
β not dead by above rules (Guarantee β) β � INIT

Fig. 1. AConservative(<): Applying semantic constraints to a given total order

– Mergeability (safety): The union of all the site-multilogs over time is sound:

Σ(
⋃

i,t

Mi(t)) �= ∅

– Eventual propagation (liveness): ∀i, j ∈ J ∀t ∃t ′ : Mi(t) ⊆ Mj(t ′)
– Eventual decision (liveness): Every submitted action is eventually decided:

∀α ∈ A ∀i ∈ J ∀t ∃t ′ : Ki(t) ⊆ Decided(Mi(t ′))

We assume some form of epidemic communication to fulfill Eventual Propagation. A
commitment algorithm aims to fulfill the obligations of Eventual Decision. Of course,
it must also satisfy the safety requirements.

3 Classical or Commitment Algorithms

Our proposal builds upon existing commitment algorithms for OR systems. Generally,
these either are centralised or do not take constraints into account. We note A(M) some
algorithm that offers decisions based on multilog M ; with no loss of generality, we
focus on the outcome of A at a single site. Assuming M is sound, and noting the result
M′ = A(M), A must satisfy these requirements:

– A extends its input: M ⊆ M′.
– A may not add actions: K′ = K.
– A may add constraints, which are restricted to decisions:

α→′ β ⇒ (α→β)∨ (α ∦ β)∨ (β = α)
α�′ β ⇒ (α�β)∨ (β = INIT)

∦′ = ∦

– M′ is sound.
– M′ is stable: Stable(M′) = K.

A could be any algorithm satisfying the requirements.
One possible algorithm, AConservative(<), first orders actions, then kills actions for

which the order is unsafe. It proceeds as follows (see Figure 1). Let < be a total
order of actions and M a sound multilog. The algorithm decides one action at time,

Decentralised Commitment for Optimistic Semantic Replication 323

varying over all actions, left to right; call the current action β. Consider actions α and
γ such that α < β < γ: α has already been decided, and γ has not. If β ∦ γ, then seri-
alise them in schedule order. If β → α, and α is guaranteed, kill β, because the sched-
ule and the constraint are incompatible. If γ � β, conservatively kill β, because it is
not known whether γ can be guaranteed. By definition, if α � β and α is dead, then
β is dead. If β is not dead by any of the above rules, then decide β guaranteed (by
adding β� INIT to the multilog). The resulting Σ(AConservative(<)(M)) contains a unique
schedule.

It should be clear that this approach is safe but tends to kill actions unnecessarily.
The Bayou system [20] applies AConservative(<), where < is the order in which actions

are received at a single primary site. An action aborts if it fails an application-specific
precondition, which we reify as a → constraint.

In the Last-Writer-Wins (LWW) approach [7], an action (completely overwriting
some datum) is stamped with the time it is submitted. Two actions that modify the same
datum are related by → in timestamp order. Sites execute actions in arbitrary order and
apply AConservative(<). Consequently, a datum has the state of the most recent write (in
timestamp order).

The decisions computed by the above systems are mostly arbitrary. A better way
would be to minimise aborts, or to follow user preferences, or both. This was the ap-
proach of the IceCube system [15]. AIceCube is an optimization algorithm that min-
imises the number of dead actions in AIceCube(M). It does so by heuristically comparing
all possible sound schedules that can be generated from the current site-multilog. The
system suggests a number of possible decisions to the user, who states his
preference.

Except for LWW, which is decentralised but deterministic, the above algorithms cen-
tralise commitment at a primary site.

To decentralise decision, one approach might be to determine a global total order <,
using a decentralised consensus algorithm such as Paxos [11], and apply AConservative(<).
As above, this order is arbitrary and AConservative(<) tends to kill unnecessary. Instead,
our algorithm allows each site to propose decisions that minimises aborts and follows
local client preferences, and to reach consensus on these proposals in a decentralised
manner. This is the subject of the rest of this paper.

4 Client Operation

We now begin the discussion of our algorithm. We start with a specification of client
behaviour.

4.1 Client Behaviour and Client Interaction

An application performs tentative operations by submitting actions and constraints to
its local site-multilog; they will eventually propagate to all sites.

We abstract application semantics by postulating that clients have access to a sound
multilog containing all the semantic constraints: M = (A,→M ,�M ,∦M). For an ex-
ample M , see Section 6.4.

324 P. Sutra, J. Barreto, and M. Shapiro

Algorithm 1. ClientActionsConstraints(L)
Require: L ⊆ A

1: Ki :=Ki ∪L
2: for all (α,β) ∈ Ki × Ki such that α→M β do
3: →i :=→i ∪{(α,β)}
4: for all (α,β) ∈ Ki × Ki such that α�M β do
5: �i :=�i ∪{(α,β)}
6: for all (α,β) ∈ Ki × Ki such that α ∦M β do
7: ∦i :=∦i ∪{(α,β)}

As the client submits actions L to the site-multilog, function ClientActionsConstraints
(Algorithm 1) adds constraints with respect to actions that the site already
knows.5

To illustrate, consider Alice and Bob working together. Alice uses their shared cal-
endar at Site 1, and Bob at Site 2. Planning a meeting with Bob in Paris, Alice submits
two actions: α =“Buy train ticket to Paris next Monday at 10:00” and β =“Attend
meeting”. As β depends causally on α, M contains α →M β ∧ α �M β. Alice calls
ClientActionsConstraints({α}) to add action α to site-multilog M1, and, some time
later, similarly for β. At this point, Algorithm 1 adds the constraints α → β and α � β
taken from M .

4.2 Multilog Propagation

When a client adds new actions L into a site-multilog, L and the constraints computed by
ClientActionsConstraints, form a multilog that is sent to remote sites. Upon reception,
receivers merge this multilog into their own site-multilog. By this so-called epidemic
communication [3], every site eventually receive all actions and constraints submitted
at any site.

When Site i receives a multilog M, it executes function ReceiveAndCompare (Al-
gorithm 2), which first merges what it received into the local site-multilog. Then, if
any conflicts exist between previously-known actions and the received ones, it adds the
corresponding constraints to the site-multilog.6

Let us return to Alice and Bob. Suppose that Bob now adds action γ, meaning
“Cancel the meeting,” to M2. Action γ is antagonistic with action β; hence, β →M
γ ∧ γ→M β. Some time later, Site 2 sends its site-multilog to Site 1; when Site 1 re-
ceives it, it runs Algorithm 2, notices the antagonism, and adds constraint β → γ ∧
γ→β to M1. Thereafter, site-schedules at Site 1 may include either β or γ, but not
both.

5 In the pseudo-code, we leave the current time t implicit. A double-slash and sans-serif font
indicates a comment, as in // This is a comment.

6 ClientActionsConstraints provides constraints between successive actions submitted at the
same site. These consist typically of dependence and atomicity constraints. In contrast,
ReceiveAndCompare computes constraints between independently-submitted actions.

Decentralised Commitment for Optimistic Semantic Replication 325

Algorithm 2. ReceiveAndCompare(M)
Declare: M = (K,→,�,∦) a multilog receives from a remote site

Mi :=Mi ∪M
for all (α,β) ∈ Ki × Ki such that α→M β do

→i :=→i ∪{(α,β)}
for all (α,β) ∈ Ki × Ki such that α ∦M β do

∦i :=∦i ∪{(α,β)}

5 A Decentralised Commitment Protocol

Epidemic communication ensures that all site-multilogs eventually receive all informa-
tion, but site-schedules might still differ between sites.

For instance, let us return to Alice and Bob. Assuming users add no more actions,
eventually all site-multilogs become ({INIT,α,β,γ},{α→β,β→γ,γ→β},{α�β},∅).
In this state, actions remain tentative; at time t, Site 1 might execute S1(t) = INIT;α;β,
Site 2 S2(t) = INIT;α;γ, and just INIT at t + 1. A commitment protocol ensures that
α, β and γ eventually stabilise, and that both Alice and Bob learn the same outcome.
For instance, the protocol might add β � INIT to M1, which guarantees β, thereby both
guaranteeing α and killing γ. α, β and γ are now decided and stable at Site 1. M1 even-
tually propagates to other sites; and inevitably, all site-schedules eventually start with
INIT;α;β, and γ is dead everywhere.

5.1 Overview

Our key insight is that eventual consistency is equivalent to the property that the site-
multilogs of all sites share a common well-formed prefix (defined hereafter) of stable
actions, which grows to include every action eventually. Commitment serves to agree
on an extension of this prefix. As clients continue to make optimistic progress beyond
this prefix, the commitment protocol can run asynchronously in the background.

In our protocol, different sites run instances of A to make proposals; a proposal being
a tentative well-formed prefix of its site-multilog. Sites agree via a decentralised elec-
tion. This works even if A is non-deterministic, or if sites use different A algorithms.
We recommend IceCube [15] but any algorithm satisfying the requirements of Section 3
is suitable.

In what follows, i represents the current site, and j,k range over J .
We distinguish two roles at each site, proposers and acceptors. Each proposer has a

fixed weight, such that ∑k∈J weightk = 1. In practice, we expect only a small number
of sites to have non-zero weights (in the limit one site might have weight 1, this is a
primary site as in Section 3), but the safety of our protocol does not depend on how
weights are allocated. To simplify exposition, weights are distributed ahead of time and
do not change; it is relatively straightforward to extend the current algorithm, allowing
weights to vary between successive elections.

An acceptor at some site computes the outcome of an election, and inserts the corre-
sponding decision constraints into the local site-multilog.

326 P. Sutra, J. Barreto, and M. Shapiro

Each site stores the most recent proposal received from each proposer in array
proposalsi, of size n (the number of sites). To keep track of proposals, each entry
proposalsi[k] carries a logical timestamp, noted proposalsi[k].ts. Timestamping en-
sures the liveness of the election process despite since links between nodes are not
necessarily FIFO.

Algorithm 3. Algorithm at Site i
Declare: Mi: local site-multilog
Declare: proposalsi[n]: array of proposals, indexed by site; a proposal is a multilog

1: Mi :=({INIT},∅,∅,∅)
2: proposalsi :=[(({INIT},∅,∅,∅),0), . . . ,(({INIT},∅,∅,∅),0)]
3: loop // Epidemic transmission
4: Choose j �= i;
5: Send copy of Mi and proposalsi to j
6: ||
7: loop // Epidemic reception
8: Receive multilog M and proposals P from some site j �= i
9: ReceiveAndCompare(M) // Compute conflict constraints

10: MergeProposals(P)
11: ||
12: loop // Client submits
13: Choose L ⊆ A
14: ClientActionsConstraints(L) // Submit actions, compute local constraints
15: ||
16: loop // Compute current local state
17: Choose Si ∈ Σ(Mi)
18: Execute Si

19: ||
20: loop // Proposer
21: UpdateProposal // Suppress redundant parts
22: proposalsi[i] :=A(Mi ∪proposalsi[i]) // New proposal, keeping previous
23: Increment proposalsi[i].ts
24: ||
25: loop // Acceptor
26: Elect

Each site performs Algorithm 3. First it initialises the site-multilog and proposals
data structures, then it consists of a number of parallel iterative threads, detailed in
the next sections. Within a thread, an iteration is atomic. Iterations are separated by
arbitrary amounts of time.

5.2 Epidemic Communication

The first two threads (lines 3–10) exchange multilogs and proposals between sites.
Function ReceiveAndCompare (defined in Algorithm 2, Section 4.2) compares actions

Decentralised Commitment for Optimistic Semantic Replication 327

Algorithm 4. UpdateProposal

1: Let P = (KP,→P,�P,∦P) = proposalsi[i]
2: KP :=KP \ Decided(Mi)
3: →P :=→P ∩KP × KP

4: �P :=�P ∩KP × KP

5: ∦P :=∅
6: proposalsi[i] :=P

newly received to already-known ones, in order to compute conflict constraints. In Al-
gorithm 6 a receiver updates its own set of proposals with any more recent ones.

5.3 Client, Local State, Proposer

The third thread (lines 12–14) constitutes one half of the client. An application submits
tentative operations to its local site-multilog, which the site-schedule will (hopefully)
execute in the fourth thread. Constraints relating new actions to previous ones are in-
cluded at this stage by function ClientActionsConstraints (defined in Algorithm 1).

The other half of the client is function ReceiveAndCompare (Algorithm 2) invoked
in the second thread (line 9).

The fourth thread (lines 16–18) computes the current tentative state by executing
some sound site-schedule.

The fifth thread (20–23) computes proposals by invoking A . A proposal extends the
current site-multilog with proposed decisions. A proposer may not retract a proposal
that was already received by some other site. Passing argument Mi ∪proposalsi[i] to A
ensures that these two conditions are satisfied.

However, once a candidate has either won or lost an election, it becomes redundant;
UpdateProposal removes it from the proposal (Algorithm 4).

The last thread is described in the next section.

5.4 Election

The last thread (25–26) conducts elections. Several elections may be taking place at any
point in time. An acceptor is capable of determining locally the outcome of elections.
A proposal can be decomposed into a set of eligible candidates.

Eligible candidates. A candidate cannot be just any subset of a proposal. Consider, for
instance, proposal P = ({INIT,α,γ},{α → γ,γ → α,α → α},{γ � INIT},∅), and some
candidate X extracted from P. If X could contain γ and not α, then we might guarantee
γ without killing α, which would be incorrect. According to this intuition, X must be a
well-formed prefix of P:

Definition 2. Well-formed prefix. Let M = (K,→,�,∦) and M′ = (K′,→′,�′,∦′) be

two multilogs. M′ is a well-formed prefix of M , noted M′ wf
� M, if (i) it is a subset of M ,

(ii) it is stable, (iii) it is left-closed for its actions, and (iv) it is closed for its constraints.

328 P. Sutra, J. Barreto, and M. Shapiro

M′ wf
� M

def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M′ ⊆ M
K′ = Stable(M′)

∀α,β ∈ A β ∈ K′ ⇒

⎧
⎨

⎩

α→β ⇒ α→′ β
α�β ⇒ α�′ β
α ∦ β ⇒ α ∦′ β

∀α,β ∈ A (α→′ β ∨α�′ β ∨α ∦′ β) ⇒ α,β ∈ K′

A well-formed prefix is a semantically-meaningful unit of proposal. For instance, if a
→ or � cycle is present in M , every well-formed prefix either includes the whole cycle,
or none of its actions.

Unfortunately, because of concurrency and asynchronous communication, it is pos-
sible that some sites know of a → cycle and not others; or more embarassingly, that
sites know only parts of a cycle. Therefore we also require the following property:

Definition 3. Eligible candidates. An action is eligible in set L if all its predecessors by
client NotAfter, Enables and NonCommuting relations are in L. A candidate multilog M

is eligible if all actions in K are eligible in K: eligible(M) def= ∀α,β ∈ A × K (α →M
β ∨α ∦M β ∨α�M β) ⇒ α ∈ K.

To compute eligibility precisely would require local access to the distributed state,
which is impossible. Therefore acceptors must compute a safe approximation (i.e., false
negatives are allowed) of eligibility. For instance, in the database example, a sufficient
condition for transaction T to be eligible at Site i is that all transactions submitted (at
any site) concurrently with T are also known at Site i. Indeed, all such transactions have
gone through either ClientActionsConstraints or ReceiveAndCompare; hence according
to Table 1, T is eligible.

Computation of votes. We define a vote as a pair (weight,siteId). The comparison

operator for votes breaks ties by comparing site identifiers: (w, i) > (w′, i′) def= w >

w′ ∨ (w = w′ ∧ i > i′). Therefore, votes add up as follows: (w, i) + (w′, i′) def= (w +

w′,max(i, i′)). Candidates are compatible if their union is sound: compatible(M,M′) def=
Σ(M∪M′) �= ∅. The votes of compatible candidates add up; tally(X) computes the total
vote for some candidate X :

tally(X) def= ∑
k:X

wf
�proposalsi[k]

(weightk,k)

An election pits some candidate against comparable candidates from all other sites.
Two multilogs are comparable if they contain the same set of actions:

comparable(M,M′) def= K = K′. The direct opponents of candidate X in some election
are comparable candidates that X does not prefix:

opponents(X) def= {B|∃k : B
wf
� proposalsi[k] ∧ comparable(B,X)∧X

wf
�� B)}

However, we must also count missing votes, i.e., the weights of sites whose proposals
do not yet include all actions in X. Function cotally(X) adds these up:

cotally(X) def= ∑
k:KX �⊆Kproposalsi[k]

(weightk,k)

Decentralised Commitment for Optimistic Semantic Replication 329

Algorithm 5. Elect
1: Let X be a multilog such that:

∃k ∈ J : X
wf
� proposalsi[k]

∧ X �⊆ Mi

∧ eligible(X)
∧ tally(X) > max

B∈opponents(X)
(tally(B))+ cotally(X)

2: if such an X exists then
3: Choose such an X
4: Mi :=Mi ∪X

Algorithm 6. MergeProposals(P)
1: for all k do
2: if proposalsi[k].ts < P[k].ts then
3: proposalsi[k] :=P[k]
4: proposalsi[k].ts :=P[k].ts

Algorithm 5 depicts the election algorithm. A candidate is a well-formed prefix of
some proposal. We ignore already-elected candidates and we only consider eligible
ones. A candidate wins its election if its tally is greater than the tally of any direct
opponent, plus its cotally. Note that, as proposals are received, cotally tends towards
0, therefore some candidate is eventually elected. We merge the winner into the site-
multilog.

5.5 Example

We return to our example. Recall that, once Alice and Bob have submitted their ac-
tions, and Site 1 and Site 2 have exchanged site-multilogs, both site-multilogs are
equal to ({INIT,α,β},{α→β,α→γ,γ→α},{α�β},∅). Now Alice (Site 1) proposes
to guarantee α and β, and to kill γ: proposals1[1] = M1 ∪ {β � INIT}. In the mean-
while, Bob at Site 2 proposes to guarantee γ and α, and to kill β: proposals2[2] =
M2 ∪{γ � INIT,α � INIT}. These proposals are incompatible; therefore that the com-
mitment protocol will eventually agree on at most one of them.

Consider now a third site, Site 3; assume that the three sites have equal weight 1
3 .

Imagine that Site 3 receives Site 2’s site-multilog and proposal, and sends its own pro-
posal that is identical to Site 1’s. Sometime later, Site 3 sends its proposal to Site 1. At
this point, Site 1 has received all sites’ proposals. Now Site 1 might run an election,
considering a candidate X equal to proposals1[1]. X is indeed a well-formed prefix of
proposals1[1]; now suppose that X is eligible as all sites have voted on KX ; tally(X) = 2

3
is greater than that of X’s only opponent (tally(proposals1[2])= 1

3); and cotally(X)= 0.
Therefore, Site 1 elects X and merges X into M1. Any other site will either elect X (or

some compatible candidate) or become aware of its election by epidemic transmission
of M1.

330 P. Sutra, J. Barreto, and M. Shapiro

6 Discussion

6.1 Safety Proof Outline

Section 1 states our safety property, the conjunction of mergeability and local sound-
ness. Clearly Algorithm 3 satisfies local soundness; see lines 16–18. We now outline a
proof of mergeability.

We say that candidate X is elected in a run r at time t, if some acceptor i executes

Algorithm 5 in r at t, and elects a candidate Y such that X
wf
� Y . Given a run r of Algo-

rithm 3, we note Elected(r,t) the set of candidates elected in r up to time t (inclusive),
and Elected(r) the set of candidates elected during r. Observe that, since M is sound,
Algorithm 3 satisfies mergeability in a run r if and only if the acceptors elect a sound
set of candidates during r (

⋃
X∈Elected(r) X is sound).

Suppose, by contradiction, that during run r, this set is unsound. As M is sound, by
A candidates are sound. Consequently there must exist an unsound set of candidates
C ⊆ Elected(r). Let us now consider the following property:

Definition 4. Minimality. A multilog M is said minimal iff: ∀M′ ⊆ M M′ wf
� M ⇒ M′ =

M.

As candidates are eligible, there must exist two candidates X and X ′ in C such that: (i)
X and X ′ are non-compatible, and (ii) X and X ′ are minimal.

We define the following notation. Let i (resp. i′) be the acceptor that elects X
(resp. X ′) in r. t is the time where i elects X in r (resp. t ′ for X ′ on i′). For a proposer k,
tk (resp. t ′k) is the time at which it sent proposalsi[k](t) to i (resp. proposalsi′ [k](t ′) to
i′). Q (resp. Q′) is the set of proposers that vote for X at t on i (resp. for X ′ at t ′ on i′);

formally Q = {k|X
wf
� proposalsi[k](t)} and Q′ = {k|X ′ wf

� proposalsi′ [k](t ′)}.
Hereafter, and without loss of generality, we suppose that: (i) t < t ′, (ii) X is the first

candidate non-compatible with X ′ elected in r, and (iii) Elected(r, t ′ − 1) is sound.
Since i′ elects X ′ at t ′, at that time on Site i′:

tally(X ′) > max
B∈opponents(X ′)

(tally(B))+ cotally(X ′) (1)

Equation 1 defines an upper bound for tally(X) on i at t, as follows. Consider some
k ∈ Q. If tk < t ′k then from Algorithm 4, and the fact that Elected(r, t ′ −1) is sound, we

know that X
wf
� proposalsi′ [k](t ′).

If now tk > t ′k, then as tally(X ′), opponents(X ′) and cotally(X ′) define a partition of
J , either:

1. k has not yet voted on KX ′ at t ′ on i′ and its weight is counted in cotally(X ′).
2. Or, if its vote already includes KX ′ , it is counted in opponents(X ′) as X is the first

candidate non-compatible with X ′ elected in r, X
wf
� proposalsi[k](t), and

¬ compatible(X ,X ′).

From these reasonnings (if tk < t ′k and if t ′k < tk), and Equation 1, we derive:

tallyi′(X
′)(t ′) > tallyi(X)(t) (2)

Decentralised Commitment for Optimistic Semantic Replication 331

where tallyk(Z)(τ) means the value of tally(Z) computed at time τ on Site k.
Now consider some k ∈ Q′.
If tk > t ′k then X being the first candidate non-compatible with X ′ elected in r, from

Algorithm 4, we have X ′ wf
� proposalsi[k](t).

If tk < t ′k, now either

1. X ′ wf
� proposalsi[k](t)

2. or k has not yet voted on X .K on i at t.

The reasoning here is similar to k ∈ Q: we use the minimality of X and X ′, the fact
that they are non-compatible, and that X is the first candidate non-compatible with X ′

elected in r.
From the above, it follows that:

tallyi′(X
′)(t ′) < tallyi(X

′)(t)+ cotallyi(X)(t) (3)

Now, combining equations 2 and 3, we conclude that, at site i at time t:

tally(X) < max
B∈opponents(X)

(tally(B))+ cotally(X) (4)

X cannot be elected on i at t. Contradiction.

6.2 Message Cost

Interestingly, the message cost of our protocol varies with application semantics, along
two dimensions.

First, the degree of semantic complexity, i.e., the complexity of the client constraint
graph M , influences the number of votes required. To illustrate, consider an applica-
tion where all actions are mutually independent, i.e., M contains no constraints. Then,
all actions commute with one another, and no action never needs to be killed. Every
candidate is trivially eligible, and trivially compatible with all other candidates.

Second, call degree of optimism d the size of a batch, i.e., the number of actions that
a site may execute tentatively before requiring commitment. This measures both that
replicas relax consistency and that clients propose to the same replica, concurrent com-
mutative actions. It takes a chain of n

2 messages to construct a majority. A candidates
may contain up to d actions. Therefore, the amortised message cost to commit an action
is n

2 × 1
d .

A more detailed evaluation of message cost is left for future work.

6.3 Implementation Considerations

Our pseudo-code was written for clarity, not efficiency. Many optimisations are possi-
ble. For instance, a site i does not need to send the whole proposalsi [i]. When sending
to j, it suffices to send the difference proposalsi[i]\ proposalsi[j].

Conceptually, a multilog grows without bound. However, a stable action, and all its
constraints, can safely be deleted.

332 P. Sutra, J. Barreto, and M. Shapiro

Table 1. MSER-DB-after: Constraints for a serialisable database that transmits after-values

T ≺ T ′ T ‖ T ′ T ′ ≺ T

RS(T)∩WS(T ′) �= ∅ T →T ′ T →T ′ T ′ →T ∧T ′ �T

WS(T)∩WS(T ′) �= ∅ T →T ′ T ∦ T ′ T ′ →T

Conceptually, our algorithm executes all actions everywhere. A practical implemen-
tation only needs to achieve an equivalent state; in particular actions that do not have
side-effects do not have to be replayed. For instance, in a database application, read
operations do not to be replayed.7

6.4 Example Application

We illustrate the application of our algorithm to a replicated database. The semantic
constraints between two transactions depend on several factors: (i) Whether the trans-
actions are related by happens-before or are concurrent. (ii) Whether their read- and
write-sets intersect or not. (iii) What consistency criterion is being enforced (for in-
stance, constraints differ between serializability and snapshot isolation [2]). (iv) How,
after executing a transaction on some initial site, the system replicates its effects at a
remote site: by replaying the transaction, or by applying the after-values computed at
the initial site.

Table 1 exhibits semantic constraints between transactions, where (a) the system
replicates a transaction by writing its after-values, and (b) transactions are strictly serial-
isable.8 Supporting a different semantics, e.g., (a’) replaying actions, or (b’) SI, requires
only some small changes to the table.

7 Related Work

In previous OR systems, commitment was often either centralised at a primary site
[15,20] or oblivious of semantics [7,17]. It is very difficult to combine decentralisation
with semantics.

Our election algorithm is inspired by Keleher’s Deno system [8], a pessimistic sys-
tem, which performs a discrete sequence of elections. Keleher proposes plurality voting
to ensure progress when none of multiple competing proposals gains a majority. The
VVWV protocol of Barreto and Ferreira generalizes Deno’s voting procedure, enabling
continuous voting [1].

The only semantics supported by Deno or VVWV is to enforce Lamport’s happens-
before relation [10]; all actions are assumed be mutually non-commuting. Happens-
before captures potential causality; however an event may happen-before another even

7 Formally, we need to generalise the equivalence relation between schedules, which currently
is based only on ∦ [18]. The definition of consistency now becomes that every pair of sites
eventually converges to schedules that are equivalent according to the new relation.

8 T ≺ T ′ denotes T happens-before T [10]. T ‖ T ′ denotes concurrency, i.e., neither T ≺ T ′, nor
T ′ ≺ T . RS(T) and WS(T) denote T ’s read set and write set respectively.

Decentralised Commitment for Optimistic Semantic Replication 333

if they are not truly dependent. This paper further generalizes VVWV by considering
semantic constraints.

Holliday et al. depict a family of epidemic algorithms to ensure serializability in
replicated datbase systems [5]. The three algorithms consider that concurrent conflict-
ing transactions are antagonistic. Two of them abort concurrent conflicting transactions,
and the last one (quorum-based) can only commit one transactions among a set of con-
current conflicting ones. Our algorithm consider that concurrent conflicting transactions
are not necessarily antagonistic, it tries to optimize the number of committed transac-
tions, computing a best-effort proposal , and electing them with plurality.

ESDS [4] is a decentralised replication protocol that supports some semantics. It
allows users to create an arbitrary causal dependence graph between actions. ESDS
eventually computes a global total order among actions, but also includes an optimisa-
tion for the case where some action pairs commute. ESDS does not consider atomicity
or antagonism relations, nor does it consider dead actions.

Bayou [20] supports arbitrary application semantics. User-supplied code controls
whether an action is committed or aborted. However the system imposes an arbitrary
total execution order. Bayou centralises decision at a single primary replica.

IceCube [9] introduced the idea of reifying semantics with constraints. The IceCube
algorithm computes optimal proposals, minimizing the number of dead actions. Like
Bayou, commitment in IceCube is centralised at a primary. Compared to this article,
IceCube supports a richer constraint vocabulary, which is useful for applications, but
harder to reason about formally.

The Paxos distributed protocol [11] computes a total order. Such total order may be
used to implement state-machine replication [10], whereby all sites execute exactly the
same schedule. Such a total order over all actions is necessary only if all actions are mu-
tually non-commuting. In Section 3 we showed how to combine semantic constraints
with a total order, but this approach is clearly sub-optimal. Howover, Paxos remains live
even if f < n

2 sites crash forever, whereas the other systems described here (including
ours) block if a site crashes forever. We assume that a site stores its multilogs and its
proposals in persistent memory, and that after a crash it with its identity and persistent
store intact. This is a fairly reasonable assumption in a well-managed cooperative sys-
tem. (For instance, each site might actually be implemented as a cluster on a LAN, with
redundant storage, and strong consistency internally.)

Generalized Paxos [12] and Generic Broadcast [14] take commutativity relations into
account and compute a partial order. They do not consider any other semantic relations.
Both Generalized Paxos [12] and our algorithm make progress when a majority is not
reached, although through different means. Generalized Paxos starts a new election
instance, whereas our algorithm waits for a plurality decision.

8 Conclusion and Future Work

The focus of our study is cooperative applications with rich semantics. Previous ap-
proaches to replication did not support a sufficiently rich repertoire of semantics, or
relied on a centralized point of commitment. They often impose a total order, which is
stronger than necessary.

334 P. Sutra, J. Barreto, and M. Shapiro

In contrast, we propose a decentralized commitment protocol for semantically-rich
systems. Our approach is to reify semantic relations as constraints, which restrict the
scheduling behavior of the system. According to our formal definition of consistency,
the system has an obligation to resolve conflicts, and to eventually execute equivalent
stable schedules at all sites.

Our protocol is safe in the absence of Byzantine faults, and live in the absence of
crashes. It uses voting to avoid any centralization bottleneck, and to ensure that the
result is similar to local proposals. It uses plurality voting to make progress even when
an election does not reach a majority.

There is an interesting trade-off in the proposal/voting procedure. The system might
decide frequently, in small increments, so that users quickly know whether their tenta-
tive actions are accepted or rejected. However this might be non-optimal as it may cut
off interesting future behaviors. Or it may base its decisions on a large batch of tentative
actions, deciding less frequently. This imposes more uncertainty on users, but decisions
may be closer to the optimum. We plan to study this trade-off in our future work.

Another future direction is partial replication. In such a system, a site receives only
the actions relative to the objects it replicates (and their constraints). A site votes only
on the actions it knows. Because constraints might relate actions known only by distinct
sites, these sites must agree together; however we expect that global agreement is rarely
necessary. By exploiting knowledge of semantic constraints, we hope to limit the scope
of a commitment protocol to small-scale agreements, instead of a global consensus.

References

1. Barreto, J., Ferreira, P.: An efficient and fault-tolerant update commitment protocol for
weakly connected replicas. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS,
vol. 3648, pp. 1059–1068. Springer, Heidelberg (2005)

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading (1987)

3. Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J.: Epidemic algorithms for repli-
cated database maintenance. In: Symp. on Principles of Dist. Comp. (PODC), pp. 1–12,
Vancouver, BC, Canada (August 1987). Also appears Op. Sys. Review 22(1), 8–32 (1988)

4. Fekete, A., Gupta, D., Luchangco, V., Lynch, N., Shvartsman, A.: Eventually-serializable
data services. Theoretical Computer Science 220(Special issue on Distributed Algorithms),
113–156 (1999)

5. Holliday, J., Steinke, R., Agrawal, D., Abbadi, A.E.: Epidemic algorithms for replicated
databases. IEEE Transactions on Knowledge and Data Engineering 15(5), 1218–1238 (2003)

6. Ignat, C.-L., Norrie, M.C.: Draw-Together: Graphical editor for collaborative drawing. In:
CSCW. Int. Conf. on Computer-Supported Cooperative Work, Banff, Alberta, Canada, pp.
269–278 (November 2006)

7. Johnson, P.R., Thomas, R.H.: The maintenance of duplicate databases. Internet Request for
Comments RFC 677, Information Sciences Institute (January 1976)

8. Keleher, P.J.: Decentralized replicated-object protocols. In: Symp. on Principles of Dist.
Comp. (PODC), Atlanta, GA, USA, pp. 143–151. ACM Press, New York (1999)

9. Kermarrec, A.-M., Rowstron, A., Shapiro, M., Druschel, P.: The IceCube approach to the rec-
onciliation of divergent replicas. In: Symp. on Principles of Dist. Comp. (PODC), Newport,
RI, USA ACM SIGACT-SIGOPS, ACM Press, New York (2001)

Decentralised Commitment for Optimistic Semantic Replication 335

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (1978)

11. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems 16(2), 133–
169 (1998)

12. Lamport, L.: Generalized consensus and Paxos. Technical Report MSR-TR-2005-33, Mi-
crosoft Research (March 2005)

13. Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach. J. of Dist. and
Parallel Databases and Technology 14(1), 71–98 (2003)

14. Pedone, F., Schiper, A.: Handling message semantics with generic broadcast protocols. Dis-
tributed Computing Journal 15(2), 97–107 (2002)

15. Preguiça, N., Shapiro, M., Matheson, C.: Semantics-based reconciliation for collaborative
and mobile environments. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003,
DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 38–55. Springer, Heidelberg (2003)

16. Ratner, D., Reiher, P., Popek, G.: Roam: A scalable replication system for mobile computing.
In: Int. W. on Database & Expert Systems Apps (DEXA), pp. 96–104. IEEE Comp. Society,
Los Alamitos, CA, USA (1999)

17. Saito, Y., Shapiro, M.: Optimistic replication. Computing Surveys 37(1), 42–81 (2005)
18. Shapiro, M., Bhargavan, K.: The Actions-Constraints approach to replication: Definitions

and proofs. Technical Report MSR-TR-2004-14, Microsoft Research (March 2004)
19. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence, causality preserva-

tion, and intention preservation in real-time cooperative editing systems. Trans. on Comp.-
Human Interaction 5(1), 63–108 (1998)

20. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser, C.H.: Man-
aging update conflicts in Bayou, a weakly connected replicated storage system. In: 15th
Symp. on Op. Sys. Principles (SOSP), Copper Mountain, CO, USA, pp. 172–182 ACM
SIGACT-SIGOPS, ACM Press, New York (1995)

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 336–352, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Coordinate BPEL Scopes and Processes
by Extending the WS-Business Activity Framework

Stefan Pottinger2, Ralph Mietzner1, and Frank Leymann1

1 University of Stuttgart
Institute of Architecture of Application Systems

Universitätsstraße 38
70569 Stuttgart

Germany
{mietzner, leymann}@iaas.uni-stuttgart.de

2 IPL Information Processing Ltd
Eveleigh House, Grove Street

Bath
BA1 5LR

United Kingdom
stefan.pottinger@ipl.com

Abstract. In a Web service world, the Web Services Business Process
Execution Language (WS-BPEL) is the standard used to compose Web services
into business processes. These processes are often long-running. Therefore WS-
BPEL employs a long-running transaction model to handle the internal
transactions of a WS-BPEL process. WS-Business Activity (WS-BA) is a set of
mechanisms and protocols to coordinate a set of Web Services into a long-
running compensation-based transaction. Up to now, it was not possible to let
parts of a WS-BPEL process participate in a WS-BA coordination. We show
how WS-BA needs to be extended to allow parts of a WS-BPEL process to
participate in a WS-BA coordination, which is supervised by an external
coordinator. In addition our approach allows external partners to participate in
these modified internal WS-BA transactions initiated by a WS-BPEL process
and also allows for easy incorporation of BPEL sub-processes into the proposed
coordination model. The architecture of a prototype implementing our approach
is sketched.

Keywords: WS-BA, BPEL, coordination, long-running transactions, sub-
processes.

1 Introduction and Motivation

Web Services enable interactions between heterogeneous business domains based on
a common set of specifications. These specifications are part of the Web Service stack
[17] and are used to put Web Services into action. The Web Services Business
Process Execution Language (WS-BPEL or BPEL for short) [14] is located on top of
the Web Service stack. BPEL enables the composition of Web Services into business

 Coordinate BPEL Scopes and Processes 337

processes, which are in turn provided as new Web Services. A BPEL process thus
orchestrates the Web Services it uses. Besides constructs to define navigation in a
process and constructs used for interactions with Web Services, BPEL also provides a
long-running transaction model. This transaction model is based on compensation-
based recovery. In BPEL4WS [2] this transaction model is described in terms of WS-
Business Activity (WS-BA) [15].

WS-BA makes use of the Web Services Coordination (WS-Coordination)
Framework [16], which defines basic elements such as a coordinator and a
coordination context that can be leveraged by applications built on top of WS-C.
From a general point of view, WS-BA defines protocols to support long-running
business transactions in a Web Service environment. Thus, WS-BA can be used for
any application needing long-running transactions. On the other hand, BPEL, as a
specific application domain, uses one specific variant of WS-BA, WS-BA’s Business
Agreement with Participant Completion coordination protocol, to describe
interactions between nested BPEL scopes, BPEL’s construct to group activities. But
no WS-BA based interaction between a process and the services it uses is assumed.

In this paper we present an approach on how to externalize the coordination
between BPEL scopes from a BPEL engine in order to use an external coordinator to
manage BPEL’s internal transactions. Using an external coordinator has the
advantage that external partners of a BPEL process can now participate directly in the
transactions of a BPEL process using a standardized coordination framework, namely
that of WS-Coordination and the protocols of WS-Business Activity. This has the
advantage that no separate compensation activities need to be defined in the process
model but the invoked service itself is in charge of undoing its work. Additionally, we
extract proprietary implementations of BPEL long-running transactions from BPEL
engines and thus provide a more modular approach.

In externalizing the transaction protocol, we show that WS-BA’s Participant
Completion coordination protocol is only suitable to describe the most important steps
in the lifecycle of a BPEL scope but that it cannot be used by a coordinator to
coordinate the interactions between nested BPEL scopes without altering BPEL’s
transaction semantics; the reason is that the coordination protocol lacks states needed
for fault and compensation handling. Hence, we extend WS-BA’s Participant
Completion coordination protocol and show how an external coordinator can manage
both, BPEL scopes using the extended coordination protocol and external partners
using the standard WS-BA protocol. We will call the extended WS-BA framework
WS-Business Activity for BPEL (or WS-BA4BPEL for short). We base our work on
the Web Services Business Process Execution Language Version 2.0 standard [14],
therefore the term “BPEL” denotes WS-BPEL Version 2.0 in this paper.

Figure 1 shows an example travel booking process. At some point in the process
two external partner services, namely the flight booking service and the hotel
reservation service, are invoked in parallel in order to book a flight and a hotel.

In case the hotel reservation service fails, we also do not want to book a flight. This
scenario can be modeled with normal BPEL. The two invoke activities, book flight
and book hotel are placed in one scope (the “Reservation-Scope”) and a fault handler
is modeled that sends a “cancel hotel booking” message to the hotel reservation

338 S. Pottinger, R. Mietzner, and F. Leymann

service, if the flight booking threw a fault and a “cancel flight reservation” message to
the flight booking service if the hotel reservation service threw a fault. However the
flight booking service must support a cancel operation and the semantics and syntax
of this operation must be known to the process modeler at design time.

Our approach overcomes these limitations by including the external partners in the
internal transactions of a BPEL process. A BPEL engine supporting WS-BA4BPEL
will start a new long-running transaction when the scope is started that contains the
book flight and book hotel invoke activities. Upon invocation of the external partners,
the transaction context is submitted to the partners and subsequently the external
partners register as participants of the transaction. In case one of the external partners
fails, the partner sends a failure message specified in the transaction protocol to the
coordinator, which then aborts the other partner using transaction protocol specific
messages. Hence, the modeler of the travel booking service does not need to know the
syntax or semantic of the cancel operations of the external partner; all that is
important is that the external partners conform to WS-BA as they will receive a
coordination context and need to know how to register their WS-BA ports with the
coordinator.

Book flight Book hotel
Flight booking

service
Hotel reservation

service

More activities...

Reservation-Scope

Some activities...

Travel booking process

Fig. 1. Example travel booking process

Our paper is organized as follows: We begin with a short overview of BPEL, its
transaction model and the basics of WS-Coordination and WS-Business Activity.
Afterwards we describe the impacts of using WS-BA including the underlying WS-
Coordination framework in order to drive WS-BA4BPEL: The information needed by
a WS-BA4BPEL-coordinator to drive BPEL’s transaction model with as little
overhead as possible will be explained. We continue by introducing the extensions to
WS-BA’s Business Agreement with Participant Completion protocol, so that BPEL’s
transaction model for scopes and processes can be managed by a WS-BA4BPEL
coordinator. Afterwards we discuss WS-BA4BPEL with respect to sub-processes,
transactions not initiated by a BPEL process and partners of a BPEL process included
in BPEL’s transaction model. Finally, we present a prototype, related work and topics
for future research.

 Coordinate BPEL Scopes and Processes 339

2 BPEL and Its Long-Running Transaction Model

Business processes typically take a long time to complete, e.g. if complex
asynchronous interaction patterns are involved or if services are called that take a
longer period of time to respond. Therefore ACID transactions can only be applied to
work units, which execute fast [7]. ACID transactions are too strong for a business
process as it might not be possible to lock resources for an entire business process
lasting days. Furthermore, it is not feasible to undo all changes of a business process
in case an error occurs shortly before its end [5].
BPEL uses a long-running transaction model based on compensation. This long-
running transaction model is defined using the Participant Completion coordination
protocol of WS-BA. However, extensions of BPEL may allow ACID transactions [3].

BPEL uses scopes to group activities and to define transactional boundaries. Such
scopes are the base of BPEL’s transaction model. Besides grouping activities,
handlers can be attached to scopes in order to provide actions for particular situations.
These handlers are: Event handlers, fault handlers, a termination handler, and a
compensation handler. Event handlers react to timing or message events and fault
handlers cope with faults occurring inside a scope. A termination handler is called
upon forced termination of a scope. If a scope has completed successful, its
compensation handler is installed. This compensation handler can be called from the
enclosing scope if the enclosing scope is confronted with a fault or is compensating
itself. The compensation handler is called using the compensate or compensateScope
activity. A compensate activity specifies the compensation of all nested scopes that
have completed where compensateScope activities specify one nested scope that has
to be compensated through its target attribute. It is important for our approach to
emphasize that a compensation handler of a scope can only be called out of a fault or
compensation handler of its directly enclosing parent scope. While the behavior of a
fault and compensation handler can be explicitly modeled in a BPEL process, BPEL
also provides default behavior definitions. In default mode fault and compensation
handlers compensate all successfully completed directly nested scopes. After
compensation, the default fault handler rethrows the caught fault into the enclosing
scope.

BPEL’s transaction model defines that whenever a scope is confronted with a fault,
all running nested scopes that are not completed and have not seen any fault are
terminated. After successful completion, the transaction model defines that a nested
scope can be closed, if its enclosing scope is closed as the nested scope can expect not
to receive any more messages in the coordination protocol. The BPEL specification
[14] lists all possible paths through the life-cycle of scopes. A detailed overview
about the BPEL 1.1 transaction model, which did not change in the parts relevant to
the discussion in WS-BPEL 2.0, can be found in [4].

2.1 WS-Coordination and WS-Business Activity

WS-Coordination [8][16] provides two main building blocks: Activities and
participants. Activities of WS-Coordination define units of work that participants can
take part in. WS-Coordination defines a set of messages that allow applications to
create new activities and allow participants to register for these activities.

340 S. Pottinger, R. Mietzner, and F. Leymann

Once a participant has registered with a WS-C activity it is coordinated by the
coordinator using the messages described in a coordination protocol. Upon
registration the participant must specify which coordination protocol is used between
the participant and the coordinator.

WS-Business Activity [15] specifies two such coordination protocols. Both
protocols specify messages needed for the coordination of long-running
compensation-based transactions. The coordinator completion protocol is used for
participants for which the coordinator decides when they have finished performing
their work, while the Participant Completion protocol is used by participants that
“know” when they have completed their work.

Active

Canceling

Cancel

Canceled

Ended

Exiting

Exited

Exit

Failing
Fail Faulted

Completed
Completed

Compensating
Compensate

Fail

Closing
Close

Compensated

Closed

Coordinator generated
Participant generated

Messages sent by coordinator , which are
triggered out of scope dependencies

Messages sent by coordinator, which are
ACKs for a message from a participant

Fail

NotCompleting

CannotComplete
NotCompleted

Fig. 2. Business Agreement with Participant Completion Coordination Protocol of WS-BA,
states of a participant

Figure 2 shows the states and messages sent and received by a participant using the
business agreement with Participant Completion coordination protocol of WS-
Business Activity.

3 An External Coordinator to Drive BPEL’s Transaction Model

In order to coordinate scope interactions externally, we use a coordinator based on
WS-Coordination and an extended WS-Business Activity protocol. WS-Coordination
is used to create activities and to register scopes with these activities, thus making
them manageable by the external coordinator. Once scopes have been registered as
participants of an activity they are coordinated using the messages and states defined
in the extended WS-Business Activity as shown in Figure 3. We will show why WS-
BA needs to be extended to coordinate BPEL scopes in section 3.2.

 Coordinate BPEL Scopes and Processes 341

BPEL Engine

BPEL InstanceBPEL InstanceBPEL Instance
BPEL Process

Instances

WS-BA4BPEL
Coordinator

WS-BA /
extended WS-BA

Coordinator

WS-C
Coordinator extended WS-BA

messages
(coordination of

registered BPEL scopes)

Instances of BPEL
process models are
executed using WS-

BA4BPEL

 WS-C
messages

(registration of BPEL scopes)

Fig. 3. BPEL-Engine, external coordinator and messages sent

3.1 Mapping of BPEL Scopes to WS-Coordination

An external coordinator coordinating the internal transactions in a BPEL process must
be aware of a set of information regarding the process it is coordinating.
First of all, the coordinator must be aware of the parent-child relations of the different
scopes. In order to being able to send termination and compensation requests to all
nested scopes in case of a fault, the coordinator must be aware which scopes are the
children of the scope that just faulted. Additionally, if a fault needs to be rethrown,
the coordinator must be aware of the parent of the faulted scope

From the perspective of a WS-Coordination (WS-C) participant, its outcome can
depend on the outcome of the WS-C activity it registered with, i.e., WS-C activities
might be used to control the outcome of their participants. In a similar way, a BPEL
scope takes part in the work of its enclosing scope and can also be controlled by it
(that means, the enclosing scope can terminate or compensate it). We therefore
propose to create a WS-C activity for every scope that has child scopes. All directly
nested scopes of a scope register as participants with that WS-C activity.
Additionally we introduce the concept of a root WS-C activity for every process
instance. A root WS-C activity is necessary in order to register the BPEL engine as
participant representing the top level scope, i.e. the process element. This is valid
since a process can be implicitly regarded as a scope [14].

WS-Coordination’s activity-participant relation is binary. Participants of a WS-C
activity representing a scope can therefore be only the scope’s directly nested scopes.
However, BPEL allows for arbitrary nesting of scopes. In order to reflect this
arbitrary scope nesting, we propose the following solution: We use WS-
Coordination’s nestedCreate-mechanism to represent the necessary scope nesting
in WS-Coordination. Each scope that is both a nested scope and a scope containing
other nested scopes registers as a participant with it’s enclosing scope’s WS-C
activity and also as a nested WS-C activity of it’s enclosing scope’s WS-C activity. In
order to correlate the participant and the activity representing the same scope, we
submit a unique identifier for the scope with every creation of an activity and the
registration as a participant. A state change of a scope, which has consequences for

342 S. Pottinger, R. Mietzner, and F. Leymann

nested scopes, can therefore be pushed down the hierarchies of scopes to the right
participant solely by the coordinator itself. Hence, all coordination logic for BPEL’s
transaction model can be modularized into the coordinator – thus execution logic and
the corresponding transaction model is separated between a BPEL engine and a
coordinator driving WS-BA4BPEL. In addition, using the nestedCreate-
mechanism and unique identifiers connecting activities and participants, the overhead
of the coordinated WS-BA4BPEL is reduced, as interactions between a BPEL engine
and a coordinator are kept to a minimum.

In case a BPEL long running transaction also includes partners of a BPEL process,
which must participate in the transaction of the process, WS-C activities also have to
exist for the scopes surrounding the invoking activities even if they are leaf scopes.
We discuss the inclusion of partners of a BPEL process in BPEL’s transaction model
in section 4.

Regarding the flight booking example in section 1, the whole flight-booking
process registers with a root activity. Since the process also has child scopes (namely
the “reservation-scope”) another WS-C activity (the “process-activity”) for the
process is created. The “reservation-scope” registers as a participant of the “process-
activity”. Since it contains invocations of external partners, the “reservation-scope-
activity” has to be created. When the external partners are invoked, the coordination
context of the “reservation-scope-activity” is included in the invocation message. The
external partners are expected to register as participants of the “reservation-scope-
activity”. The endpoint, which indicates where they can register as participants for
this transaction, is submitted with the coordination context. Possible child-scopes of
the “reservation-scope” also register as participants of the “reservation-scope-
activity”.

Figure 4 shows the WS-C activity-participant tree for the travel booking example
after the external partners have been invoked.

WS-BA offers two different coordination types for an activity: AtomicOutcome
and MixedOutcome. One of those has to be specified upon creation of a new WS-C
activity. We propose to create WS-C activities using the mixed outcome
coordination type allowing different outcomes among the participants of a WS-C
activity. Mixed outcome is used since compensation, fault, and termination handlers
containing compensateScope activities can compensate only a subset of the
participants of a nested scope, resulting in an activity that has both, completed and
compensated participants which corresponds to mixed outcome of WS-C. However
there are two exceptions to this rule. The first exception is the root activity. Since
this activity only contains one participant which represents the process itself, it is
always atomic so it can be created using atomic outcome. The second exception
occurs when a scope does not have any defined fault, compensation or termination
handlers. If no such handler is contained in the definition of a scope, either all
nested scopes complete successfully or all nested scopes are terminated or
compensated. This behavior corresponds to atomic outcome of WS-BA. As a result
such scopes without defined fault, compensation and termination handlers are
created using atomic outcome.

 Coordinate BPEL Scopes and Processes 343

Process participant

Root activity
(AtomicOutcome)

Reservation scope
participant

Process activity
(MixedOutcome)

Flight booking service
participant

Reservation
scope activity
(MixedOutcome)

Hotel reservation
participant

Nested relationship
between two activities

Fig. 4. WS-Coordination activity-participant tree for the travel booking example

Using atomic or mixed outcome does not make any difference in the behavior of
the coordinator in our case, since we will see in section 3.2.2 that compensation in
WSBA4BPEL is triggered by participants not by the coordinator. However, using
atomic and mixed outcome provides additional information about the behavior of the
transaction to external partners that participate in the transaction.

3.2 Modifying WS-BA to Enable Coordinated WS-BA for BPEL

After registration, a scope is coordinated as a participant using our extended Ausiness
Agreement with Participant Completion coordination protocol. Participant
Completion is used instead of coordinator completion, because a participant
representing a BPEL scope knows by itself when it has completed all necessary work.
A scope contains all the information to decide whether all of its nested activities have
finished and it thus has completed all its work. Upon registration for an activity, the
participant indicates that it wants to be coordinated by the extended Business
Agreement with Participant Completion protocol by providing a protocol identifier
pointing to the extended Business Agreement with Participant Completion protocol.
Participants (such as external partners) that need to be coordinated using one of the
standard WS-BA protocols can specify those. Therefore we allow participants being
coordinated with the extended protocol as well as the standard protocol in the same
activity. As illustrated in the original Participant Completion coordination protocol of
WS-BA [15] shown in Figure 2, a coordinator can send Cancel, Close and
Compensate messages to the participant and respond to Fail, CannotComplete
and Exit messages of the participant with the acknowledgements Failed,
NotCompleted and Exited.
Cancel, Close and Compensate messages are triggered by events in the

lifecycle of an enclosing scope. Therefore the coordinator must have enough
information about the state of enclosing scopes to send corresponding messages to the
nested scopes.

Regarding the lifecycle of a BPEL scope, the scope itself (or the engine executing
the scope instance) must be able to notify the external coordinator of various events in
the life-cycle of the scope. Table 1 shows the life-cycle events of a scope that trigger

344 S. Pottinger, R. Mietzner, and F. Leymann

actions in the coordinator and events that are triggered by the coordinator.
Additionally, the third column shows the WS-BA messages that correspond to the
respective state changes in the lifecycle of a scope.

Table 1. Life-Cycle events of a BPEL scope

Event Direction WS-BA Message
Started scope execution Scope to coordinator Handled by WS-C
Scope completed normal
processing

Scope to coordinator Completed

Scope failed Scope to coordinator Not Available
Terminate scope Coordinator to scope Cancel
Scope terminated Scope to coordinator Canceled
Execute fault handler Coordinator to scope Not Available
Fault handler completed Scope to coordinator CannotComplete
Fault handler failed Scope to coordinator Fail
Compensate scope Coordinator to scope Compensate
Compensation completed Scope to coordinator Compensated
Compensation failed Scope to coordinator Fail
Parent scope has
completed

Coordinator to Scope Close

Table 1 shows that not all state changes can be reflected in the Participant
Completion coordination protocol of WS-BA. We will show in the following sections
how to add the necessary messages and states to this protocol in order to being able to
fully control a scope’s lifecycle by an external coordinator.

3.2.1 Handling Faults and Canceling Scopes
The original Participant Completion coordination protocol of WS-BA differentiates
between three scenarios, which are triggered when a participant is not willing or not
able to complete its work successfully. A participant can notify the coordinator
through three different messages: Exit, CannotComplete and Fail. An Exit
message denotes that the participant is no longer willing to participate in the
transaction. A CannotComplete message denotes that a fault has occurred but that
this fault has been handled. In case a scope registered as a participant, a
CannotComplete message from that participant indicates that the scope has seen a
fault but has handled that fault using a fault handler. In the third case, the internal
fault handling was not successful and the participant leaves the coordination protocol
using the message Fail. Which scenario is taken, is not visible for the coordinator
until Exit, CannotComplete or Fail is sent. The coordinator has no knowledge
about an already occurred fault, until it receives a message from the participant. But a
coordinator driving BPEL’s transaction model depends on this knowledge as in BPEL
active nested scopes must be canceled in the case a fault occurs in their parent scope
[14]. Therefore, we introduce the message CancelSubScopes, which is directly
sent after a fault occurred in the state Active and therefore before sending one of the
messages CannotComplete or Fail. Having received CancelSubScopes, the

 Coordinate BPEL Scopes and Processes 345

coordinator cancels all active nested scopes. The participant is now in state
SubScopesGetCanceled. After having canceled all active sub-scopes the
coordinator responds with a CanceledSubScopes message which puts the
participant in state HandlingFault where it executes its fault handler.

Coordinator generated
Participant generated

new states and messages relevant for fault handling
within the extended Business Agreement With Participant Completion-CP

states and messages of the original
Business Agreement WithParticipant Completion-CP

Active Ended

Failing
Fail Faulted

NotCompleting
CannotComplete NotCompleted

SubScopes
GetCanceled

HandlingFault

CancelSubScopes

Canceled
SubScopes

Active
Ended

Failing

Faulted

NotCompleting

NotCompletedCannotComplete

Fail

Original protocol messages for fault handling :

Extended protocol messages for fault handling :

Fig. 5. Extended WS-BA participant completion coordination protocol: Additional participant
states and messages required for fault handling

The described fault handling applies to faults occurring during normal processing
of a scope, i.e. scopes in the state Active. This behavior does not apply to faults
occurring in fault or compensation handlers. A fault occurring in one of these
handlers must be signaled to the coordinator and all active nested scopes of the
handler will be aborted by the coordinator.

The message Fail is sufficient in this case: It is not possible to associate a fault
handler directly to a fault or compensation handler, thus making the
CancelSubScopes message unnecessary. So we use the message Fail out of the
states HandlingFault and Compensating similar to the message
HandlingFault out of the state Active – the abnormal termination of the current
processing is signaled.

Figure 5 shows the extensions to WS-BA’s Participant Completion coordination
protocol with regard to fault handling. States and messages not relevant for fault
handling are excluded from Figure 4 for readability.

Regarding the travel booking example introduced in section 1, the message
exchange would be the following: During the invocation of the book hotel service an
error occurs, the enclosing “reservation scope” sees this error and notifies the
coordinator through a CancelSubScopes message. We assume that the book flight

346 S. Pottinger, R. Mietzner, and F. Leymann

Web service is still being executed. The coordinator now sends a Cancel message to
the book flight service which eventually responds with Canceled. The coordinator,
seeing that all active nested scopes of the “reservation scope” have been canceled,
notifies the BPEL engine executing the travel booking process with a
CanceledSubScopes message. The engine can now execute the fault handler for
the “reservation scope”. In our case this is the default fault handler which
compensates all nested completed scopes. Since none has completed the engine can
now notify the coordinator through a CannotComplete message of the
completion of the fault handler. Having received the confirmation from the
coordinator the control flow can move on to the activities succeeding the reservation
scope.

3.2.2 Compensate
The second type of messages and states introduced by our extended coordination
protocol is needed for compensation of nested scopes. Figure 6 shows these messages
and states, all other messages and states have been omitted from Figure 6 for
readability.

The original WS-BA Participant Completion coordination protocol defines the
message Compensate to instruct a participant that it needs to compensate. That
participant answers with Compensated or Fail depending whether the
compensation has completed successfully or not. There is no message in the original
WS-BA Participant Completion protocol allowing a participant to notify the
coordinator that other participants should be compensated. In BPEL compensate and
compensateScope activities can be used by fault or compensation handlers of a scope
to compensate all or one specific nested scope. To reflect this behavior in our
extended coordination protocol we introduce the message RequestSubScope-
Compensation. This notification message from a participant to the coordinator has
to contain the scopes to be compensated. Some of the scopes requested to be
compensated may have not finished successfully and thus no compensation handler is
installed. Thus the message has the nature of a request and we call the message
RequestSubScopeCompensation.
HandlingFault and Compensating are the states of a scope executing a

fault or a compensation handler. Scopes nested in a fault or compensation handler
may also request compensation of scopes nested in the scope to which the handler
belong. The scopes nested in the handlers are in the state Active. Therefore the
message RequestSubScopeCompensation may be sent in the states
HandlingFault, Compensating, and Active. To reflect the behavior of
BPEL’s compensate activities, the scope requesting compensation has to be notified
by the coordinator that the coordinator has compensated the requested scopes. This
leads to RequestSubScopeCompensation messages being answered by
Finished SubScopeCompensation messages.
RequestSubScopeCompensation messages requesting an already

compensated scope do not have to be considered by the engine, because BPEL 2.0
does not define repeated compensation as an erroneous situation.

Again, we take a look at the travel booking process. Now the scenario is the
following. The book flight Web service has completed successfully and has notified

 Coordinate BPEL Scopes and Processes 347

Active

new states and messages relevant for fault handling
within the extended BusinessAgreementWithParticipantCompletion-CP

SubScopes
GetCanceled

HandlingFault

Ended

NotCompleting

NotCompleted

CannotComplete

FaultingFault

Faulted

SubScopesGet
Compensated (NPM)

FinishedSubScope
Compensation

RequestSubScope
Compensation

Completed
Completed

Compensating

Compensate

RequestSubScope
Compensation

Fault

SubScopesGet
Compensated (CH)

FinishedSubScope
Compensation

RequestSubScope
Compensation

SubScopesGet
Compensated (FH)

FinishedSubScope
Compensation

ClosingClose

Compensated

Closed

Coordinator generated
Participant generated

new states and messages relevant for compensation within the modified
BusinessAgreementWithParticipantCompletion-CP

states and messages of the original
BusinessAgreementWithParticipantCompletion-CP

CancelSubScopes

Canceled
SubScopes

Fig. 6. Extended WS-BA participant completion coordination protocol: Additional states and
messages required for compensation and fault handling

the coordinator through a Completed message of this fact. The book hotel service
invocation throws a fault and the fault handler of that service failed, so the
coordinator is notified via a fault message. The engine then sees that a fault occurred
in the “reservation scope” and sends a CancelSubScope message to the
coordinator that responds with a CanceledSubScopes message (since no active
sub-scopes exist at that point). The engine now starts to execute the default fault
handler which is specified to compensate all completed nested scopes. The engine
must therefore send a RequestSubScopeCompensation message to the
coordinator which then sends a Compensate message to the book flight web-service
that responds eventually with a Compensated message and now leaves the
transaction. The coordinator now tells the reservation scope that all nested scopes
have been compensated through a CompensatedSubScopeMessage. Then the
“reservation-scope” can leave the transaction through an CannotComplete
message.

3.2.3 Close
A scope is closed if its enclosing scope reaches the state Ended. Since compensate
activities can only be sent by an enclosing scope, it is certain that the nested scope
will not receive a Compensate message anymore. The coordinator is informed
when the state of a participant changes to Ended by a Closed message, we need not
introduce new messages in order to trigger the sending of Close.

As an example, we take a look at the travel booking process. After both, the flight
and the hotel booking services have been invoked successfully, the “reservation
scope” and the whole have also completed successfully, the coordinator can now
notify all the scopes in the process and the external partners that the process has

348 S. Pottinger, R. Mietzner, and F. Leymann

completed and that they can exit from the transaction by sending a Close message to
the participants of the root scope, i.e., the process participant who then notifies the
process activity that it can close, which in turn sends Close messages to it’s
participants and so on until all participants have left the transaction.

4 Discussion and Related Work

So far, we described a modified Participant Completion coordination protocol of WS-
BA that can be used to coordinate BPEL’s transaction model by an external
coordinator. In this section we take a look at our approach in context of partners of a
BPEL process, sub-processes [6] and externally initiated WS-BA transactions, discuss
interposition of coordinators and present related and future work.

4.1 Including Partners of a BPEL Process in BPEL’s Transaction Model

Using a coordinator to drive BPEL’s transaction model enables partners of a BPEL
process to be incorporated into the process’s transactions. They can use the already
existing coordinator to register for an activity. Such partners of BPEL processes can
choose between the original two coordination protocols of WS-BA, as the changes
proposed here only apply to participants that are BPEL scopes. Therefore it makes no
difference to a partner of a BPEL process if the process or any other Web Service
invites it to join a transaction. A Web Service that is a partner of a BPEL process is
not restricted in its behavior if it receives a context for an activity out of a BPEL
process compared to an invitation to a WS-BA transaction by a simple Web Service.

In order to provide a partner of a BPEL process with a context, partner links have
to be enhanced to define which partners to include in a transaction. This approach has
been described in [10] and [12]. While [10] and [12] focus on the inclusion of
partners of a BPEL process in transaction models that are not directly connected to
BPEL’s own transaction model and may be different from it (e.g. WS-Atomic
Transaction [13]), our work gives the opportunity to share already existing contexts
for BPEL’s transaction model with partners of a BPEL process – thus including
partners of BPEL processes in BPEL’s own transaction model. A different approach
to include partners of a BPEL process in a transaction has been made in [11]. The idea
is to replace existing compensation handlers with so called coordination handlers that
are basically WS-BA coordinators attached to BPEL scopes. These coordination
handlers can in turn be used to register partners of processes and participate in
BPEL’s transaction model. However, replacing every compensation handler with a
WS-BA coordinator produces a high overhead compared to the approach discussed in
this paper.

4.2 Sub-processes and Externally Initiated WS-BA Transactions

In the preceding sections standalone BPEL process were taken into account. If a
BPEL process is executed using WS-BA4BPEL and is also incorporated as a
sub-process in another process, this can be also modeled using the approach of
WS-BA4BPEL. Instead of the root activity, the activity of the calling scope of the
parent process is used. The sub-process then acts as a nested scope of the calling

 Coordinate BPEL Scopes and Processes 349

scope. Note that a BPEL engine still has to know when a process is executed as a
sub-process so that it can send additional information to the parent process, e.g. “sub-
process encountered a terminate activity” as proposed in [6]. If a BPEL process is
invited to join a WS-BA transaction, it has to use an already existing context, too.
Sub-processes and externally initiated WS-BA transactions share the characteristics
that a context is sent to a BPEL process along with the message that kicks off the
process. The reused WS-C activity, which is identified by this context, expresses the
dependency of the outcome of a BPEL process on the initiator of the BPEL process.

4.3 Implicit Transaction Termination for Root Activity

As just discussed, a BPEL process that depends on the outcome of its initiator is given
a context along with its firstly received message. In contrast, an independent BPEL
process uses a root activity, which is not nested in another activity, for registration of
the top level scope. This knowledge can be used by a coordinator: A standalone BPEL
process can be closed successfully by a coordinator in case the process element
reaches the state Completed. In this case the root activity can not be compensated
as no parent activity exists, i.e. a compensation handler of a standalone process that
does not take part in an externally initiated transaction can never be invoked. A
coordinator driving WS-BA4BPEL can assume that an activity not nested and
belonging to a BPEL process, can be closed if the only participant of this activity, i.e.
the process, is completed. In this case no explicit termination protocol for the
transaction will be necessary. However, in order to make this scenario work, a
coordinator needs to be sure that such an activity was created for a BPEL process,
which possibly results in new coordination types for WS-BA or in additional
information that has to be provided during the creation of a root activity.

4.4 Proof of Concept

We have implemented a prototype based on BPEL 1.1 that demonstrates the approach
described above. The open source ActiveBPEL [1] BPEL engine has been modified to
support externally coordinated BPEL transactions [9].

External Coordinator

Generic scope
 life-cycle messages

BPEL Engine

BPEL InstanceBPEL InstanceBPEL Instance
BPEL Process

Instances

WS-BA4BPEL
Coordinator

WS-BA /
extended WS-BA

Coordinator

WS-Coordination
Coordinatorextended WS-BA Business

Agreement with
participant completion
coordination protocol

messages

Instances of BPEL
process models are
executed using WS-

BA for BPEL

Translator component

Plug-in for
WS-BA4BPEL

WS-Coordination
messages

Fig. 7. Components and messages involved in the prototype

In order not to limit the prototype to the extended WS-BA coordination protocol,
the external coordinator is split into two components, as shown in Figure 7. The first
component is a WS-BA4BPEL coordinator that drives the extended Participant
Completion coordination protocol. The second component is a translator component

350 S. Pottinger, R. Mietzner, and F. Leymann

that communicates with the BPEL engine through generic messages and translates
these messages from and to the coordination protocol messages in order to exchange
them with the WS-BA4BPEL coordinator. Both components are implemented as
BPEL processes, allowing the communication between the modified BPEL engine
and the external coordinator components to be done via SOAP messages, using
common bindings, such as a JMS binding in this prototype.

The BPEL engine is modified to send out life cycle messages on the various events
during the execution of a BPEL process that need to be communicated to the external
coordinator. These events cover the whole life cycle of scopes and their attached
handlers. Life cycle messages are sent on the beginning of the execution of a scope,
on faulting or completion of a scope as well as execution, faulting and ending of fault
and compensation handlers. Having sent out such a life cycle message the modified
BPEL engine stops the execution of the scope the event occurred in, and waits for a
response from the external coordinator. The modifications in the BPEL engine
therefore include the waiting for messages from the external coordinator.

Certain events, namely the rethrowing of a fault into an enclosing scope and the
termination and compensation of a scope, are triggered by the external coordinator.
They therefore require the ability to trigger events in the life cycle of a scope inside
the BPEL engine’s navigator from the outside. These events are also supported in the
prototype and can be invoked via a Web service interface from the external
coordinator. Additionally a monitoring tool has been developed that displays the
coordination messages send between the BPEL engine, and the components of the
external coordinator.

4.5 Future Work

Our future work involves analyzing the extraction of BPEL’s transaction model. In
addition, we will revisit WS-BA4BPEL, as e.g. snapshots of variables that are
specified for compensation in BPEL 2.0 have not been addressed. While it can be
assumed that complex operations, such as snapshots, that heavily depend on a
concrete implementation of a BPEL engine, should be implemented in a BPEL engine
itself, it will be considered to let a coordinator decide when to take snapshots and
where to use them. As a result we would give a coordinator full control over BPEL’s
transaction model and complete the separation of execution and transaction logic.

In the discussion above, we assumed implicitly that a coordinator processes a
RequestSubScopeCompensation message, where no scope to be
compensated is specified by simply compensating all completed scopes in reverse
order of their completion. However, optimizations such as compensating scopes in
parallel have not been taken into account [14], since the coordinator is not aware of
the control flow between scopes. A possible solution to this problem is to provide a
coordinator with a process or scope definition. Nonetheless, as message exchanges
between a coordinator and a BPEL engine should be kept to a minimum, we will
investigate how much information is needed by a coordinator to fully control WS-
BA4BPEL in these cases.

 Coordinate BPEL Scopes and Processes 351

5 Conclusions

BPEL processes can be long-running and provide a transaction model that fits the
needs of such long-running business processes. This transaction model is based on
compensation and can be described to a certain extend with WS-BA’s Business
Agreement with Participant Completion coordination protocol.

In this work we demonstrated how to extend WS-BA’s Participant Completion
protocol so it can be used by a coordinator building on top of WS-Coordination and
an extended Participant Completion protocol to manage WS-BA for BPEL. We
presented a coordinator that controls the dependencies between scopes, which are
introduced by BPEL’s transaction model. Thus we clarified the relationship of WS-
BA and BPEL and explained the actions a coordinator has to take to coordinate a
BPEL process in such a way that the mechanisms of BPEL compensation still apply.
In this context we also described the relationship of BPEL scopes and activities of
WS-Coordination, discussed when and how WS-C activities have to be created and
thus provided an efficient way a coordinator can drive coordinated WS-BA for BPEL
without unnecessary overhead.

As our approach builds on modular standards of the Web Service stack, such as
WS-Coordination and WS-BA, we showed that it can also be easily integrated with
additional scenarios a BPEL process can be found in: Inclusion of external partners,
the relationship to sub-processes and the link to WS-BA transactions that are not
initiated by a BPEL process are scenarios, which benefit from the approach described
in this work.

Acknowledgements

We gratefully acknowledge the valuable input of Oliver Kopp and Dieter Roller for a
detailed review of an earlier version of this paper.

References

1. ActiveEndpoints LLC, ActiveBPEL Engine, http://www.activebpel.org/
2. Andrews, T., et al.: Business Process Execution Language for Web Services Version 1.1

(2003), http://www.ibm.com/developerworks/library/ws-bpel/
3. Blow, M., Goland, Y., Kloppmann, M., Leymann, F., Pfau, G., Roller, D., Rowley, M.:

BPELJ: BPEL for Java Technology, BEA Systems and IBM Corporation (2004),
http://www.ibm.com/developerworks/library/specification/ws-bpelj/

4. Curbera, F., Khalaf, R., Leymann, F., Weerawarana, S.: Exception Handling in the
BPEL4WS Language. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.)
BPM 2003. LNCS, vol. 2678, pp. 276–290. Springer, Heidelberg (2003)

5. Gray, J.: The transaction concept: Virtues and limitations (invited paper). In: Proceedings
of the VLDB, pp. 144–154. IEEE Computer Society, Los Alamitos (1981)

6. Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A., von Riegen, C.,
Schmidt, P., Trickovic, I.: WS-BPEL Extension for Subprocesses (BPEL-SPE), IBM
Corporation and SAP AG (2005)

352 S. Pottinger, R. Mietzner, and F. Leymann

7. Leymann, F., Roller, D.: Production Workflow. Prentice Hall, Upper Saddle River, New
Jersey (2000)

8. Leymann, F., Pottinger, S.: Rethinking the Coordination Models of WS-Coordination and
WS-CF. In: IEEE ECOWS 2005. Proceedings of the 3rd IEEE European Conference on
Web Services, Vaxjö, Sweden (2005)

9. Mietzner R.: Extraction of WS-BA from BPEL 1.1, University of Stuttgart, Diploma
Thesis (2006), http://elib.uni-stuttgart.de/opus/volltexte/2006/2864/

10. Mikalsen, T., Khalaf, R., Tai, S.: Composition of coordinated Web Services. In:
Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware
(2005)

11. Sauter, P., Melzer, I.: A Comparison of WS-BusinessActivity and BPEL4WS Long-
Running Transaction. In: KIVS 2005, Kaiserslautern, Germany (2005)

12. Tai, S.: Composing Web Services Specifications: Experiences in Implementing Policy-
driven Transactional Processes. In: Proceedings of GI BTW 2005, Karlsruhe, Germany
(2005)

13. Organization for the Advancement of Structured Information Standards (OASIS), Web
Services Atomic Transaction (WS-AtomicTransaction) Version 1.1 (2007)

14. Organization for the Advancement of Structured Information Standards (OASIS), Web
Services Business Process Execution Language Version 2.0 (2007)

15. Organization for the Advancement of Structured Information Standards (OASIS), Web
Services Business Activity (WS-Business Activity) Version 1.1 (2007)

16. Organization for the Advancement of Structured Information Standards (OASIS), Web
Services Coordination (WS-Coordination) Version 1.1 (2007)

17. W3C Working Group Note, Web Services Architecture (2004), http://www.w3.org/TR/
ws-arch/

All links last followed on 2007-06-26.

Verifying Composite Service Transactional Behavior
Using Event Calculus�

Walid Gaaloul1, Mohsen Rouached2, Claude Godart2, and Manfred Hauswirth1

1 DERI-NUIG
IDA Business Park, Galway, Ireland

{walid.gaaloul,manfred.hauswirth}@deri.org
2 LORIA-INRIA-UMR 7503

BP 239, F-54506 Vandœuvre-les-Nancy Cedex, France
{rouached,godart}@loria.fr

Abstract. A key challenge of Web service (WS) composition is how to ensure re-
liable execution. The lack of techniques that support non-functional features such
as execution reliability is widely recognized as a barrier preventing widespread
adoption. Therefore, there is a growing interest for verification techniques which
help to prevent WS composition execution failures.

In this paper, we propose an event driven approach to validate the transactional
behavior of WS compositions. Using the Event Calculus to formally specify and
check the transactional behavior consistency of WS composition, our approach
provides a logical foundation to ensure recovery mechanisms consistency at de-
sign time and report execution deviations after runtime.

1 Introduction

Service oriented architecture is gaining prominence as a key architecture to support
BPM (Business Process Management) and integrate applications in diverse and het-
erogeneous distributed environments. Enterprises are able to outsource their internal
business processes as services and make them accessible via the Web. Then, they can
dynamically combine individual services to provide new value-added WS composi-
tions or composite services (CS). It is widely recognized that one of the barriers pre-
venting widespread adoption of this technology is a lack of products that support non-
functional features of applications, such as execution reliability. Due to the inherent
autonomy and heterogeneity of Web services, the guarantee of correct CS executions
remains a fundamental problem issue. Service execution reliability is a challenging
aspect of service composition that has not been deeply investigated so far despite its
importance.

In order to ensure a correct and reliable CS execution, our interest is on analysing
and checking Web service transactional behavior consistency. An execution is correct

� The work presented in this paper was supported by the EU funding under the SUPER project
(FP6-026850) and by the Lion project supported by Science Foundation Ireland under Grant
No. SFI/02/CE1/I131.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 353–370, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

354 W. Gaaloul et al.

if it reaches its objectives or fails (properly) according to the designers requirements. In
this paper, we propose a formalism based on the Event Calculus (EC) [1] for specifying
CS failure handling policies and formally validate the transactional behavior of the CS
model, and for checking and analyzing CS execution consistency. EC is interesting
because it supports the direct representation of events that are used in such policies,
and the advantage of such a formalism is that it facilitates a common representation for
transactional behavior and supports the same logical foundation for verification at both
design time and after execution time.

The transactional behavior verification can be done either a-priori, i.e., at design
time, or a-posteriori, i.e., after runtime to test and repair design errors, and formally
verify whether the process design does have certain desired properties. For the a-priori
part of the work, we must be able to express CS using a formalism we can reason
on. For the a-posteriori part of the verification, CS execution should be auditable by
providing functionalities to collect execution logs. In our approach, WS logs are used
not for mining but for a-posteriori verification of CS transactional behavior.

Fig. 1. CRB illustrative example

In the following, we introduce a scenario to illustrate our approach. Let us consider
a Car Rental Broker (CRB) application (Figure 1). This CS acts as a broker offering
its customers a set of choices during the Customer Requirements Specification (CRS)
service. The CIC service checks the customer ID while the Car Checking Availability
(CCA) service provides available cars information and the respective car rental compa-
nies. Afterwards, the customer makes his choice and agrees on rental terms in the CA
service. Finally, the customer is requested to pay either by credit card (CC), by check
(CH), or cash (SH). To deal with failures, the designers of the composite service may
augment this control flow with a set of transactional requirements. For instance, they
may require to compensate CCA and CRS if CIC fails. Also, they may specify CH
as an alternative if CC fails and SH should be re-executed until success in case of
failure. Failure handling mechanisms are not provided for the other services that are
supposed to never fail. The main problem is how to ensure that the specified CS model
is consistent or valid and guaranties reliable executions.

In this paper, we introduce in Section 2 our transactional CS model. In Section 3,
we present how we specify the transactional behavior using the EC. The validation of
our model is explained in section 4. Section 5 is dedicated to implementation issues.
Finally, section 6 outlines some related works before concluding.

Verifying Composite Service Transactional Behavior Using Event Calculus 355

2 Transactional Behavior in Composite Web Services

In the loosely coupled environment represented by Web services, long running appli-
cations will require support for recovery and compensation, because machines may
fail, processes may be cancelled, or services may be moved or withdrawn. Web ser-
vices transactions also must span multiple transaction models and protocols native to
the underlying technologies onto which the Web services are mapped. However, han-
dling failures using the traditional transactional model for long running, asynchronous,
and decentralized activities has been proven to be unsuitable. Advanced Transaction
Models (ATMs) [2] have been proposed to manage failures, but, although powerful and
providing a nice theoretical framework, ATMs are too database-centric, limiting their
possibilities and scope [3] in this context (e.g. their inflexibility to incorporate different
transactional semantics as well as different behavioural patterns into the same struc-
tured transaction). In the same time, workflow has became gradually a key technology
for business process automation [3], providing a great support for organizational as-
pects, user interface, monitoring, accounting, simulation, distribution, and heterogene-
ity. In our transactional CS model, we propose to combine workflow flexibility and
transactional reliability to specify and orchestrate reliable Web services compositions.

In this section, we show how we combine a set of transactional services to formally
specify the transactional CS model in Event calculus. We illustrate in particular how we
model the composed services scheduling at various levels of abstraction. At the begin-
ning, we show how a transactional CS defines axioms on the transitions of its composing
services (Section 2). Then, we show how these axioms enable to express services de-
pendencies on a higher level of abstraction (Section 2.3). These dependencies define the
control flow (workflow flexibility) and the transactional flow (transactional reliability).

2.1 Event Calculus

Our approach uses the Discrete EC proposed by Mueller [4] as an extension of the clas-
sic EC, to declaratively model event based requirements specifications. The approach,
that we present, adopts an EC reasoning to verify CS transactional behavior. This ap-
proach is defined by the specification of the axioms describing the transitions carried
out and their effects on the services states during CS instance executions. Compared to
other formalisms, the choice of EC is motivated by both practical and formal needs, and
gives several advantages. From a formal point of view we have three major advantages:
First, in contrast to pure state-transition representations, the EC ontology includes an ex-
plicit time structure. This helps managing event-based systems where a number of input
events may occur simultaneously. Second, the EC ontology is close enough to popular
standards like WSBPEL support automatic into the logical representation. Thus, we use
the same logical foundation for verification at design time (a-priori analysis) and after
runtime (a-posteriori analysis). Third, the semantics of non-functional requirements can
be represented in EC, so that verification is once again straightforward.

We adapt a simple classical logic form of the EC, whose ontology consists of (i) a
set of time-points isomorphic to non-negative integers, (ii) a set of time-varying prop-
erties called fluents, and (iii) a set of event types. The logic is correspondingly sorted,
and includes the predicates Happens, Initiates, Terminates and HoldsAt, as well

356 W. Gaaloul et al.

as some auxiliary composite predicates defined in terms of these. Happens(a, t) indi-
cates that event a actually occurs at time-point t. Initiates(a, f, t) (resp. Terminates
(a, f, t)) means that if event a were to occur at t it would cause fluent f to be true
(resp. false) immediately afterwards. HoldsAt(f, t) indicates that fluent f is true at t.

2.2 Transactional Web Service Model

Definition 1 (Transactional Service). A transactional service, ts, is a triplet ts = (ID ∈
Object, E ⊂ States, T ⊂ T ransition) where ID is an object designating service ID, E is
the set of its states and T is the set of transitions performing the changes between states. We
denote T WS as the set of all transactional Web services.

By Web service we mean a self-contained modular program that can be discovered and
invoked across the Internet. Each service (Definition 1) can be associated to a life cycle
statechart. A set of of states (initial, active, cancelled, failed, compensated, completed)
and a set of transitions (activate(), cancel(), fail(), compensate(), complete()) are used to
describe the service status and the service behavior. A transition1 is performed through
two predicates: The first predicate initializes a new state e2 (initiates (ts.tr(),e2(ts),
t1)) and the second predicate finishes another state e1 (terminates (ts.tr(), e1(ts), t2));
t2<t1. For instance, the transition cancel() initializes a new state cancelled by the pred-
icate (initiates (ts.cancel(),cancelled(ts), t1)) and finishes another state by the predi-
cate active by the predicate (terminates (ts.cancel(), active(ts), t2)); t2<t1.

Fig. 2. State transitions diagrams of transactional Web services properties

We distinguish between internal (intra-service) transitions (complete(), fail(), and
retry()) and external (inter-services) transitions (activate(), cancel(), and compensate()).
External transitions are fired by external entities (other services, human actor, etc.).
Typically they allow a service to interact with the outside and to specify composite
services orchestration. The internal transitions are fired by the service itself (the service
agent) and are invariably defined. The internal service behavior is refined to express the
service transactional properties. The main transactional properties [5] of a Web service
we are considering are retriable, compensatable and pivot (see Figure 2). A service ts

1 ts.tr() denotes the execution of the transition tr() on the service ts and e(ts) indicates the state
e of ts.

Verifying Composite Service Transactional Behavior Using Event Calculus 357

is said to be retriable (tsr) if it is sure to complete after finite activations. ts is said to be
compensatable (tsc) if it offers compensation policies to semantically undo its effects.
ts is said to be pivot(tsp) if once it successfully completes, its effects remain and cannot
be semantically undone. Naturally, a service can combine properties, and the set of all
possible combinations is {r; cp; p; (r, cp); (r, p)}.

Table 1 specifies the predicates of the transactional service properties. tsp’s pred-
icates show that the completed state is a persistent state. tsc’s predicates describe a
transition from the completed to compensated states. This transition is performed as a
part of an other service recovery process. tsr’s predicates ensure that the retry() transi-
tion brings the service to active state each time it fails. Consequently the failed state is
not a persist state and cannot be a final state for the service.

Table 1. Transactional service properties predicates

Properties Predicates

tsp �(a() ∈ T ransitions(tsp)) | (terminates(tsp .a() ,complete(tsp), t))←
HoldsAt(complete(tsp),t) ∧Happens(tsp .a(),t)

tsc

∃(sf ∈ TWS ∧ sf �= tsc | (Happens(tsc .compensate(), t2) ←
HoldsAt(fail(sf), t1))) ∧t1 < t2∧ (initiates(tsc .compensate(), compensated(ts), t1)
∧ terminates(tsc .compensate()(), completed(ts), t1) ← HoldsAt(completed(tsc),t)∧
Happens(ts.compensate(), t)) ∧t<t1

tsr Happens(tsr .retry(), t1)←HoldsAt(failed(tsr), t)∧t<t1

2.3 Transactional Composite Service Model

A composite service is a conglomeration of existing Web services working in tandem
to offer a new value-added service [6]. It orchestrates a set of services, as a composite
service to achieve a common goal. A transactional composite (Web) service (TCS) is a
composite service composed of transactional services. Such a service takes advantage
of the transactional properties of component services to specify failure handling and
recovery mechanisms. Concretely, a TCS implies several transactional services and de-
scribes the order of their invocation, and the conditions under which these services are
invoked.

Definition 2 (Transactional Composite Service: TCS). A Transactional Composite service tcs

is tuple tcs = (WA ⊂ T WS , Ax ⊂ Predicate) where WA is the set of its component trans-
actional services and Ax is the set of predicates defined by the function Axm which defines for
each inter-services transition tr() of a service s, the related invoking predicate:
Axm: T rsItr −→ Predicatetcs

a.tr() �−→ Axm(a.tr()) = (happens(a.tr(),t) ← ∧i=1..nPi); Pi is an EC predicate.
where T rsItr is the set of inter-services transitions of tcs’s composing services and
PredicateInter is the set of predicates relating only on transitions produced by tcs compos-
ing services. We define the function Pdct(a.tr()) that returns the Pi set.

A TCS defines a set of predicates on each component service’s external transition in
order to define the orchestration. These predicates specify for each component ser-
vice when it will be activated, cancelled, or compensated. More formally we define

358 W. Gaaloul et al.

a TCS as the set of its composing services and the set of predicates defined on their
external transition (see Definition 2). The function Axm defines for each component
service’s external transition t() the predicates that induce the event reporting the enact-
ment of this transition. For example, the CRB service specifies that CA will be acti-
vated after the completion of CIC and CCA. That means that Axm((CA.activate()) =
happens(CA.activate(),t3) ← happens(CIC.complete() t2) ∧ happens(CCA. com-
plete(),t1) ∧ t1 < t3 ∧ t2 < t3.

Predicates express at a higher abstract level relations between component services in
form of dependencies (cf. Definition 3). These dependencies express how services are
coupled and how the behavior of certain component service(s) influences the behavior
of other one(s).

Definition 3 (Services dependency). Let cs be a TCS, s1 and s2 two component services of cs,
s1.t1() an transition of s1, and s2.t2() an external transition of s2, a dependency from s1.t1()
to s2.t2(), denoted dep(s1.t1(), s2.t2()), exists if the activation of s1.t1() may fire the activation
of s2.t2(). More formally:

∃dep(s1.t1, s2.t2()) ⇔ happens(s1.t1(), t1) ∈ Pdct(s2.t2()) ∧t < t1
Definition2
<===> Axm(s2.t2()) = (happens(s2.t2(),t) ← happens(s1.t1(), t1)∧ (∧i=1..n−1Pi))

∧t < t1

We distinguish between “normal” execution dependencies and “exceptional” or “trans-
actional” execution dependencies which express the control flow and the transactional
flow respectively. The control flow defines a partial services activations order within a
composite service instance where all services are executed without failing, cancelled
or suspended. Formally, we define a control flow as TCS whose dependencies are only
“normal” execution dependencies (cf. Definition 4). For example, CRB service defines
a “normal” activation dependency from CIC and CCA, to CA such that CA will be
activated after the completion of CIC and CCA. That means there are two normal
dependencies: depNrm(CIC, CA) and depNrm(CCA, CA)

Definition 4 (Control flow). A control flow of a TCS tcs = (WA,Axm) is the 2-tuple fctcs

= (AFC,Axmcf) inheriting from Definition 2. AFC ⊆ WA and Axmcf ⊆ Axm are re-
spectively the services set and related predicates that define only normal execution dependencies
between tcs services. A normal execution dependency, denoted depNrm(s1, s2), from s1 to s2

exists iff the completion of s1 may fire the activation of s2. More formally :
depNrm(s1, s2)

def
= dep(s1.complete(),s2.activate()).

The transactional flow describes the transactional dependencies which specify the re-
covery mechanisms applied following services failures (i.e. after fail() transition). We
distinguish between different transactional dependencies types (compensation, cancela-
tion and alternative dependencies) (cf. Definition 5). Alternative dependencies allow to
define a forward recovery mechanisms. A compensation dependency allows to define
a backward recovery mechanism by compensation. A cancelation dependency allows

Verifying Composite Service Transactional Behavior Using Event Calculus 359

to signal a service execution failure to other service(s) being executed in parallel by
canceling their execution. For instance the CRB composite service shown in Figure 1
defines an alternative dependency from CC to CH such that CH will be activated when

CC fails. That formally means depAlt(CC, CH) def= dep(CC.fail(),CH .activate()) ⇔
∃happens(CC.fail(),t1) ∈ Pdct(CH .activate()) ∧t < t1.

Definition 5 (Transactional Flow). A transactional flow of a TCS tcs = (WA,Axm) is the 2-
tuple fttcs = (AFC,Axmtf) inheriting from Definition 2. AFC ⊆ WA and Axmtf ⊆ Axm
are respectively the services set and related predicates that define only transactional execution
dependencies between tcs services which is subdivided are four types:

1. Alternative dependency: depAlt(s1, s2)
def
= dep(s1.fail(),s2.activate())

2. Compensation dependency depCps(s1, s2)
def
= dep(s1.fail(),s2.compensate()) ∨

dep(s1.compensate(),s2.compensate()).

3. Cancelation dependency depCnl(s1, s2)
def
= dep(s1.fail(),s2.cancel()).

3 Transactional WS Patterns

The use of workflow patterns [7] appears to be an interesting idea to compose Web ser-
vices. However, current workflow patterns do not take into account the transactional
properties (except the very simple cancellation patterns category [8]). It is now well es-
tablished that the transactional management is needed for both composition and coordi-
nation of Web services. That is the reason why the original workflow patterns were aug-
mented with transactional dependencies, in order to provide a reliable composition [9].

In this section, we use workflow patterns to describe TCS’s control flow model as
a pattern composition. Afterwards, we extend them in order to specify TCS’s transac-
tional flow, in addition to the control flow they are considering by default. Indeed, the
transactional flow is tightly related to the control flow. The recovery mechanisms (de-
fined by the transactional flow) depends on the execution process logic (defined by the
control flow). For example, regarding the CRB composite service, it is possible to define
CH as an alternative to CC because (according to the XOR-split control flow operator)
they are defined on exclusive branches. Similarly, it is possible to define a compensa-
tion dependency from CIC to CCA because (according to the AND-join control flow
operator) the failure of CIC requires the compensation of the work already done in the
executed service CCA.

Thus, the transactional flow should respect some consistency rules given a control
flow. In the following we formally specify these patterns and related transactional con-
sistency rules using EC. These rules are inspired from [9] which specify and prove the
potential transactional dependencies of workflow patterns. Due to the lack of space, we
put emphasis on the following three patterns AND-split, AND-join and XOR-split (see
Figure 3) to explain and illustrate our approach, but the concepts presented here can be
applied to other patterns2.

2 Our approach also considers the following list of patterns: sequence, ANDsplit, OR-split,
XOR-split, AND-join, OR-join, XOR-join and m-out-of-n.

360 W. Gaaloul et al.

Fig. 3. Studied patterns

An AND-split pattern defines a point in the process where a single thread of control
splits into multiple threads of control which can be executed in parallel, thus allowing
services to be executed simultaneously or in any order (Definition 7). Our motivating
example illustrates the control flow result of the application of AND-split pattern to the
set of services {CRS, CIC, CCA}. The consistency transactional rules (see Table 2)
of the AND-split pattern support only compensation dependencies from si (1 ≤ i ≤ n)
(rule 1), as the compensation dependencies can be applied only over already activated
services. The consistency transactional rules support also cancellation dependencies
(rule 2) between only the concurrent services si (1 ≤ i ≤ n) , as the cancellation
dependencies can exist only between parallel services. Any other cancellation or al-
ternative or compensation dependencies between the pattern’s services (rule 3, 4) are
forbidden.

Definition 6 (AND-split pattern). We define the AND-split pattern as the function:
AND-split: P(WT S) −→ fctcs

{s0, s1, s2, . . . , sn} �−→ fcANDsplit = (S,AxmANDsplit) such as
– S = {s0, s1, s2, . . . , sn},
– ∀i, 1 ≤ i ≤ n depNrm(s0, si)
– Predicates of s0: Axm(s0.activate()) = predicates outside fcANDsplit

– Predicates of {s1, s2, . . . , sn}: ∀i, 1 ≤ i ≤ n Axm(si.activate()) =
happens(si.activate(),t2) ← happens(s0.complete(),t1) ∧ t1 < t2.

Definition 7 (AND-join pattern). We define the AND-join pattern as the function:
AND-join: P(WT S) −→ fctcs

{s1, s2, . . . , sn, s0} �−→ fcANDjoin = (S, AxiomeANDjoin) such that
– S = {s1, s2, . . . , sn, s0},
– ∀i, 1 ≤ i ≤ n depNrm(si, s0)
– Predicates of s0: Axm(s0.activate()) = happens(s0.activate(),t2) ←

∧
i=1...n

happens(si.complete(),t1) ∧ t1 < t2
– Predicates of {s1, s2, . . . , sn}: ∀i, 1 ≤ i ≤ n Axm(si.activate()) = predicates outside

fcANDjoin.

An AND-join pattern defines a point in the process where multiple parallel subpro-
cesses/services converge into one single thread of control, thus synchronizing multiple

Verifying Composite Service Transactional Behavior Using Event Calculus 361

Table 2. Transactional consistency rules of patterns

Patterns Transactional consistency rules

AND-split

1. (∀si ∈ S|0 ≤ i ≤ n Pdct((si .compensate())) ⊂ { happens(sj .compensate(),t1),
happens(sj .fail(),t2) |1 ≤ j ≤ n; i �= j } ∧t1 < t, t2 < t;)
2. (∀si ∈ S|1 ≤ i ≤ n Pdct((si .cancel())) ⊂ { happens(sj .fail(),t1) |1 ≤ j ≤ n ; i �= j }
∧t1 < t;)
3. (�s ∈ S|happens(s.fail(),t1) ∈ Pdct((si .activate())) ∧t1 < t; 0 ≤ i ≤ n)
4. (�s ∈ S|happens(s.fail(),t1) ∈ Pdct((s0 .cancel())) ∧t1 < t;)

AND-join

1. (∀si ∈ S|1 ≤ i ≤ n Pdct((si .compensate())) ⊂ { happens(sj .compensate(),t1),
happens(sj .fail(),t2) |0 ≤ j ≤ n; i �= j } ∧t1 < t, t2 < t;)
2. (∀si ∈ S|1 ≤ i ≤ n Pdct((si .cancel())) ⊂ { happens(sj .fail(),t1) |1 ≤ j ≤ n }
∧t1 < t;)
3. (�s ∈ S|happens(s.fail(),t1) ∈ Pdct((si .activate())) ∧t1 < t 0 ≤ i ≤ n)
4. �s ∈ S|happens(s.compensate(),t1) ∨happens(s.fail(),t1) ∈ Pdct((s0 .compensate())),
t1 < t
5. �s ∈ S|happens(s.fail(),t1) ∈ Pdct((s0 .cancel())), ∧t1 < t

XOR-split

1. ∀si ∈ S|1 ≤ i ≤ n Pdct((si .activate())) ⊂ { happens(s0 .completed(),t),
happens(sj .fail(),t) |1 ≤ j �= i ≤ n }
2. (Pdct(s0 .compensate())⊂ { happens(sj .compensate(),t1), happens(sj .fail(),t2) |0 ≤ j ≤
n } ∧t1 < t, t2 < t;)
3. (�s ∈ S|happens(s.fail(),t1) ∈ Pdct((si .cancel())) ∧t1 < t: 0 ≤ i ≤ n)
4. (�s ∈ S|happens(s.fail(),t1) ∨happens(s.compensate(),t1) ∈ Pdct((si .compensate()))
∧t1 < t ∧1 ≤ i ≤ n)
5. (�s ∈ S|happens(s.fail(),t1) ∈ Pdct((s0 .activate())) ∧t1 < t)

threads (Definition 8). Our example illustrates the control flow result of the applica-
tion of AND-join pattern to the set of services {CIC, CCA, CA}. The consistency
transactional rules (see table 2) of the AND-join pattern support only compensation
dependencies for si (1 ≤ i ≤ n) (rule 1). Indeed, s0 can not be compensated by si

(1 ≤ i ≤ n) as they are executed after. The consistency transactional rules support also
cancellation dependencies (rule 2) between only the concurrent services si (1 ≤ i ≤ n),
as the cancellation dependencies can exist only between concurrent services. Any other
cancellation or alternative or compensation dependencies between the pattern’s services
(rule 3, 4, 5) are forbidden.

Definition 8 (XOR-split pattern). We define the XOR-split pattern as the function:
XOR-split: P(WT S) −→ fctcs

{s0, s1, s2, . . . , sn} �−→ fcXORsplit = (S,AxiomeXORsplit) such that
– S = {s0, s1, s2, . . . , sn},
– ∀i, 1 ≤ i ≤ n depNrm(s0, si)
– Predicates of s0: Axm(A.activate()) = predicates outside fcXORsplit

– Predicates of {s1, s2, . . . , sn}: ∀i, 1 ≤ i ≤ n Axm(si.activate()) =
happens(si.activate(),t2) ← happens(s0.complete(), t1) ∧ t1 < t2 ∧ happens(ci,t) |
there is always only one condition cj (1 ≤ j ≤ n) evaluated to true after s0 termination.

An XOR-split pattern defines a point in the process where, based on a decision or
control data, one of several branches is chosen (Definition 8). Our example illustrates
the control flow result of the application of XOR-split pattern to the set of services
{CA, CC, CH, SH}. The consistency transactional rules (see table 2) of the XOR-
split pattern support alternative dependencies (rule 1) between only the services si

(1 ≤ i ≤ n) , as the alternative dependencies can exist only between parallel and

362 W. Gaaloul et al.

non concurrent flows. The consistency transactional rules support also compensation
dependencies (rule 2) from (si, 1 ≤ i ≤ n) to s0. Any other cancellation or alter-
native or compensation dependencies between the pattern’s services (rule 3, 4, 5) are
forbidden.

4 Event-Based Transactional Behavior Validation

In the previous section, we showed how to formally specify a TCS using Event Calculus
predicates. The objective of this section is to show how we support reasoning about a
TCS represented as a set of EC formulas in order to check its transactional consistency
in two cases (see Figure 4): The first case is an a-priori checking using the transactional
patterns consistency rule before running the TCS. The second case is an a-posteriori
checking after TCS instance execution using TCS logs gathered in the set of termination
states.

Fig. 4. Validation overview

4.1 A-Priori Checking

The need for a-priori verification is important for TCSs because they can be very com-
plex processes, and therefore we need to check if the transactional behavior is consis-
tent, which is not a trivial task as soon as a TCS process manages complex service
dependencies. Indeed, TCS processes expect to enforce some high-level transactional
policies which we have defined in a set of consistency transactional WS patterns rules.
Our interest is to use these rules specified formally in EC to check process transactional
consistency. Transforming TCS into EC predicates gives the opportunity to formalize
these transactional policies by embedding logical predicates and to model-check if the
TCS’s transactional design complies with these policies, with respect to temporal con-
straints.

For instance, the designer can initially specify, as CS transactional behavior, that
CCA and CRS will be compensated if CIC fails, CH is executed as alternative of
CC failure, SH will be cancelled if CH fails, CA is pivot and SH is retriable. The
EC formalisation of our motivating example (including the control and tehe transac-
tional flow) is given in Table 3 using TCS patterns and transactional flow definitions
from sections 2 and 3. Once it is rewritten using EC predicates, we propose to verify

Verifying Composite Service Transactional Behavior Using Event Calculus 363

Table 3. Example of EC formulas extracted from transactional WS patterns

Example’s transactional WS patterns
1.AND-split(CRS, CIC, CCA)
2.AND-join(CIC, CCA, CA)
3.XOR-split(CA, CC, CH, SH)
4.depAlt(CC,CH)
5.depCnl(CH,SH)
6.depCps(CIC,CCA)
7.depCps(CIC,CRS)
8. CAp

9. SHr

EC formulas
1. happens(CCA.activate(),t2) ∧ happens(CIC .activate(),t2)← happens(CRS.complete(),t1) ∧ t1 < t2.
2. happens(CA.activate(),t3)← happens(CCA.complete(),t1) ∧ happens(CIC .activate(),t2)∧ t1<t3∧ t2<t3.
3. happens(CC .activate(),t2) ← happens(CA.complete(), t1) ∧ t1 < t2 ∧ happens(cCC ,t) ∧
¬happens(cCH ,t) ∧ ¬happens(cSH ,t), happens(CH.activate(),t2) ← happens(CA.complete(), t1) ∧
t1 < t2 ∧ happens(cCH ,t) ∧ ¬happens(cCC ,t) ∧ ¬happens(cSH ,t), happens(SH.activate(),t2) ←
happens(CA.complete(), t1) ∧ t1 < t2 ∧ happens(cSH ,t) ∧ ¬happens(cCH ,t) ∧ ¬happens(cCC ,t)
4. happens(CH.activate(),t2)← happens(CC.fail(),t1) ∧ t1 < t2.
5. happens(SH.cancel(),t2)← happens(CH.fail(),t1) ∧ t1 < t2.
6. happens(CCA.compensate(),t2)← happens(CIC.fail(),t1) ∧ t1 < t2.
7. happens(CRS.compensate(),t2)← happens(CIC.fail(),t1) ∧ t1 < t2.
8. �(a() ∈ T ransitions(CAp) | (terminates(CAp .a() ,complete(CAp), t)← HoldsAt(complete(CAp),t) ∧
Happens(CAp .a(),t))).
9. Happens(SHr .retry(),t)←HoldsAt(failed(SHr),t)∧t1<t1.

the designed transactional behavior consistency against the transactional constraints in
Table 2.

For example, by checking the cancellation dependency between SH and CH re-
ported in the predicates of line 5 in Table 3 against transactional consistency rules of
the XOR-split pattern (rule 6), we observe an erroneous transactional dependency. These
rules forbid cancellation dependencies between the composing services of the XOR-
split pattern. Indeed, cancellation dependencies exist only between concurrent services,
and in our example SH and CH are not concurrent. This basic example shows how it
is possible to formally check and validate the consistency of TCS’s transactional flow
using the EC predicates.

4.2 A-Posteriori Checking

Our work attempts to apply Web service log-based analysis and process model check-
ing techniques to provide knowledge about discrepancies between process models and
related instances using a-posteriori verification. More precisely, given an event log, we
want to verify a TCS’s transactional properties after runtime, to provide knowledge
about the context of and the reasons of discrepancies between process models and re-
lated instances.

This kind of verification is necessary since some interactions between Web services
that constitute a process may be dynamically specified at runtime, causing unpredictable
interactions with other services, and making the a-priori verification method insufficient
as it only takes into account static aspects. To provide this verification, we use again
logical predicates of the TCS model (see Table 3), but we compare these predicates

364 W. Gaaloul et al.

Table 4. WS Event log example

instance 1 instance 2 instance 3
happens(CIC.fail(),1) happens(CRS.complete(),8) happens(CRS.complete(),30)

happens(CRS.compensate(),3) happens(CCA.complete(),11) happens(CRS.complete(),32)
happens(CCA.cancel(),4) happens(CIC.complete(),12) happens(CCA.complete(),33)
InitiallyP (initial(CA)) happens(CA.complete(),18) happens(CA.complete(),36)
InitiallyP (initial(CC)) InitiallyP (initial(CC)) happens(SH .fail(),42)
InitiallyP (initial(SH)) happens(CH .fail(),19) InitiallyP (initial(CC))
InitiallyP (initial(CH)) happens(SH .complete(),20) InitiallyP (initial(SH))

with the events that occur during the process execution. When one or several predicates
are unsatisfied, this means that we have wrong transactional behavior in the execution.
Thus, it is possible to exactly pin down what happened.

In [10] it is demonstrated that the set of last or termination service state reports
its transactional behavior. We distinguish two types of service termination states. The
first one corresponds to the termination states reached after normal executions (with-
out failures). The second kind of termination states corresponds to the ones reached
in case of failure(s) of certain component service(s). Such a kind of termination states
keeps track of failure(s) produced during the execution and the applied recovery mech-
anisms. For our a-posteriori verification approach, we propose to monitor only the fi-
nal transition of each composing service that induces its termination state. Table 4 re-
ports related final transitions of our motivating example. For instance, the predicate
happens(CIC.fail(),t) of instance 1 indicates that the termination state of the CIC is
failed. This table reports respectively in the instances 1, 2 and 3 the failure of CIC,
CH and SH services.

The key idea of the a-posteriori verification approach is to compare after the exe-
cution of a TCS instance its set of termination states (i.e table 4) to TCS’s initially
designed model to monitor whether it is coherent with the initial design and to de-
tect potential discrepancies that can express incoherences or potential “new” process
evolution requirements. For instance using the deduction algorithms in [10], we can
deduce that the instance 1 in the table 4 reports two transactional dependencies after
CIC failure: a compensation dependency from CIC to CRS and a cancellation de-
pendency from CIC to CCA. Although the compensation dependency from CIC to
CRS was reported in the initial design (see line 7 in Table 3), the cancellation depen-
dency from CIC to CCA was not specified, only a compensation dependency from
CIC to CCA is described. The designers predict only compensation dependency as
recovery mechanism for CCA in case of CIC failure. But the compensation depen-
dency can be applied only if the service state is completed. However, in this instance
CCA is still executed as the only possible recovery mechanism applied was a cancella-
tion dependency. Thus we can conclude through this monitoring phase that the designer
miss to add this recovery mechanism. Similarly, the instance 2 in table 4 reports a
“new” alternative dependency between CH and SH which is not reported by the initial
design where designers do not predict CH failure. When such conditions occur, ser-
vices monitoring has to fix this evolution requirement at runtime by updating the initial
design.

Verifying Composite Service Transactional Behavior Using Event Calculus 365

In some cases, a recovery mechanism initially designed and a-priori verified can gen-
erate execution errors due unpredictable external factors (e.g. failures in the execution
engine or system). For example, the instance 3 in Table 4 reports that our motivating
example finishes its execution in incoherent way. In fact, after the failure of SH , the
retriable property of this service which represents its recovery mechanism was not ful-
filled. So the user should intervene to enforce the system to resume the execution by
calling a retry() transition on SH until SH reaches completed as termination state.

As we have shown through this example, monitoring the “effective” transactional be-
havior allows us to detect design gaps and to improve the application reliability. Some
deviations from the expected behavior may be highly desirable to detect process evolu-
tion and execution anomalies showing initially hardly foreseeable process parameters,
constraints and needs.

5 Implementation

In this section, we describe the implementation work that we have done in order to vali-
date our proposition. The first issue is related to the web service log collecting facilities.
The present implementation uses the engine bpws4j3 and log4j4 to generate logging
events. The choice of this engine was motivated by the fact that is a open source BPEL
engine that can be customized to enable business recoverability and its use of Log4j
that provides a robust, reliable, fully configurable, easily extendible, and easy to imple-
ment framework for logging Java applications for debugging and monitoring purposes.
We have also specified regular expressions [11] to convert Log4j logging events to the
required EC events.

The transformation of a TCS model to its EC specification is built as a parser that
can automatically transform a given set of transactional WS patterns into EC formulas
according to the definitions and dependencies so far explained, and represented in an
XML-based language that we have defined to represent EC formulas.

The patterns editor, shown in Figure 5, offers to service providers the different types
of events and fluent initiation predicates that have been identified in the composition
process and supports the specification of rules as logical combinations of these event
and fluent initiation predicates. Service providers may also use the editor to define ad-
ditional fluents or transitions to represent services, service states, and relevant initiation
and holding predicates. When a pattern is specified, the editor can check its syntactic
correctness.

The TCS consistency checker proposes a graphical user interface. This interface in-
corporates a tool that supports the specification of the TCS policies including a patterns
editor that the user can use to specify the predicates and rules of each pattern and an
interface of TCS consistency checker that displays the deviations from the specifica-
tions to check. A screenshot of the graphical interface of the TCS consistency checker
is shown in Figure 6.

The user must load the TCS specification before the check consistency button can
be enabled.Then he has to choose and select the patterns to be used. Following this, he

3 http://alphaworks.ibm.com/tech/bpws4j
4 http://logging.apache.org/log4j/docs/

366 W. Gaaloul et al.

Fig. 5. A screenshot of the patterns editor

Fig. 6. The graphical interface of the TCS consistency checker

can select component services and edit the domain definition of each one (transactional
properties). When both the TCS specification and the patterns specifications are loaded,
the verification process is ready to be executed. Results of the process verification can
be saved in a file and therefore the deviations specifications can be analyzed and used
to create queries to locate services that could substitute malfunctioning or unavailable
services.

As The verification back-end, we have used the induction-based theorem prover
SPIKE [12]. SPIKE was chosen for : (i) its high automation degree, (ii) its ability

Verifying Composite Service Transactional Behavior Using Event Calculus 367

on case analysis, (iii) its refutational completeness (to find counter-examples), (iv) its
incorporation of decision procedures (to automatically eliminate arithmetic tautologies
produced during the proof attempt).

SPIKE proof method is based on cover set induction. In the first step, SPIKE en-
codes EC and TCS model ontology (Events, Fluents, Axioms, Log, Transactional WS
patterns). Then, it computes induction variables to apply induction terms which ba-
sically represent all possible values that can be taken by the induction variables. Fi-
nally, it builds an algebraic specification from EC specification. with this specification,
it can check all transactional properties by means of the powerful deductive techniques
(rewriting and induction).

Given a conjecture (EC rule) to be checked, the prover selects induction variables
and substitute them in all possible way by induction terms. This operation generates
several instances of the conjecture which are then simplified by rules, lemmas, and
induction hypotheses. Then, when SPIKE is called, either the consistency proof suc-
ceeds, or SPIKE ’s proof-trace is used for extracting all scenarios which may lead to
potential deviations. There are two possible scenarios. The first scenario is meaningless
because conjectures are valid but it comes from a failed proof attempt of SPIKE . Such
cases can be overcome by simply introducing new lemmas. The second one concerns
cases corresponding to real deviations. The trace of SPIKE gives all necessary infor-
mation (events, fluents and timepoints) to understand the origin of the inconsistency.
Consequently, these information help designers to detect and manage transactional in-
consistencies in a composite Web service.

6 Discussion

Generally, formal previous approaches develop, using their modeling formalisms, a set
of techniques to analyze the composition model and check related properties. [13] pro-
poses a formal framework for modeling, specifying and analyzing the global behavior of
Web services compositions. This approach models web services by mealy machines (fi-
nite state machines with input an output). Based on this formal framework, the authors
illustrate the unexpected nature of the interplay between local and global composite
Web services. In [14], the authors propose a Petri net-based algebra for composing Web
services. This formal model enables the verification of properties and the detection of
inconsistencies both between and within services.

Although powerful, the above formal approaches may fail, in some cases, to ensure
CS reliable executions even if they formally validate their composition models. This is
because the properties specified in the studied composition models may not coincide
with the reality (i.e., effective CSs executions). To the best of our knowledge, there
are no approaches to transactional web services correction based on event-based logs,
and in general there are very few contributions in this area. To deal with these issues,
we described in this paper a combined a approach that describes a formal framework to
check the transactional behavior of Web service composition before and after execution.
Our approach provides a logical foundation to ensure transactional behavior consistency
at design time and report recovery mechanisms deviations after runtime.

368 W. Gaaloul et al.

Firstly, we propose to formally specify Web service composition using transactional
WS patterns (step 1). Transactional WS patterns can be seen as a convergence con-
cept between workflow systems and transactional models to easily define flexible and
reliable composite Web services by combining workflow flexibility and transactional
processing reliability. Indeed, we can classify the current related Web service compo-
sition technologies in two classes, workflow based like WSBPEL [15] and WS-CDL
[16] and transactional based like WS-AtomicTransaction [17], WS-BusinessActivity
[18] and WS-TXM (Acid, BP, LRA) [19]. We can say that these technologies are stan-
dardized versions of the workflow approach or ATM adapted to work in a peer to peer
environment. Consequently, they inherit the limitation of these two approaches: ensure
reliability on behalf of process adequacy or the opposite. We believe that transactional
patterns can complement these efforts.

Basically, WSBPEL and WS-CDL follow a workflow approach to define services
compositions and services choreographies. Like workflow systems these two language
meet the business process need in term of control structure. However, they are unable to
ensure reliability especially according to the designers specific needs. Transactional WS
patterns can be used on top of them to define reliable compositions. Then the defined
model can be described either using WSBPEL or WS-CDL. WS-AtomicTransaction,
WS-BusinessActivity and WS-TXM rely on ATM to define transactional coordination
protocols. Like ATM these protocols are unable in most cases to model Business pro-
cess due to their limited control structure. Transactional WS patterns allow to extend
these protocols to support complex structure while preserving reliability. A composition
of transactional WS patterns can be considered as a transactional protocol. Indeed, this
approach allows for reliable, more complex, and more flexible compositions. In addi-
tion, it can coordinate services implemented with different technologies since we use
only services transactional features (and not interested in how they are implemented).

The transactional WS patterns formally specified (using EC) as a set a logical for-
mulas are used thereafter in our paper to support reasoning about a TCS to check its
transactional consistency before (step 2) and after runtime (step 3). EC was chosen
as an appropriate basis for formalising transactional composite Web services as both
the properties and the transactional behaviour we are modelling are event driven. Com-
pared to other formal languages, the EC Ontology offers a complete and efficient formal
support for checking CS transactional behavior. Indeed, the types considered (fluents,
events, time points) are enough to express all the data used for WS composition [20].
In addition the language includes a number of base predicates (initiates, terminates,
holdsAt, happens, ...) which are used to define some auxiliary predicates; and domain
independent axioms. These axioms are very important to reduce the computational com-
plexity of the proof procedure

In a-priori checking approach (step 2), transactional WS patterns are initially ex-
tracted from TCS specification and transactional consistency rules are defined in EC.
These rules are used in an EC checker to ensure model transactional consistency. In
the a-posteriori checking approach (step 3), the main focus has put on verification.
This means that given the designed TCS and the collected event log, we check whether
the observed behavior matches the (un)expected/(un)desirable transactional behavior
to ensure service execution reliability. EC supports deductive, inductive and abdicative

Verifying Composite Service Transactional Behavior Using Event Calculus 369

reasoning. Deduction uses the description of the process behaviour to derive the fluents
that will hold at a particular point in time. The deduction approach was used in our
a-priori checking approach. Given the descriptions of the behaviour of the model, ab-
duction can be used to determine the sequence of events that need to occur such that a
given set of fluents will hold at a specified point in time. Therefore, it is possible to de-
tect conflicts when the applicability of the properties is constrained on the runtime state
of the system and the analysis can be performed even with partial specifications of the
system state. The deduction approach was used in our a-posteriori checking approach.
Finally, induction aims to derive the descriptions of the process behaviour from a given
event history and information about the fluents that hold at different points of time. This
skill is used actually in our current work [11] to enable the verification of behavioral
properties in web service composition using findings in the fields of process mining.

In our future work, we are working on providing a tool which uses the recorded devi-
ations to generate queries for discovering services that could substitute for malfunction-
ing services. We are also trying to enhance the capabilities of the transactional behavior
monitoring techniques by enriching TCS logs and extracting data flow dependencies.
We aim also to adapt/combine workflow mining techniques to the web services related
fields. A first work was validated in [21,22] where we applied mining techniques to
discover and improve composite Web service transactional behavior. We are also work-
ing to discover more complex patterns by enriching collected TCS log by Data flow
information for instance.

References

1. Kowalski, R., Sergot, M.J.: A logic-based calculus of events. New generation Comput-
ing 4(1), 67–95 (1986)

2. Elmagarmid, A.K. (ed.): Database transaction models for advanced applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1992)

3. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: models, methods and tools.
In: Cooperative Information Systems, MIT Press, Cambridge (2002)

4. Mueller, E.T.: Event calculus reasoning through satisfiability. J. Log. and Comput. 14(5),
703–730 (2004)

5. Mehrotra, S., Rastogi, R., Korth, H.F., Silberschatz, A.: A transaction model for multi-
database systems. In: ICDCS, pp. 56–63 (1992)

6. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A.H.H., Elmagarmid, A.K.: Business-
to-business interactions: issues and enabling technologies. The VLDB Journal 12(1), 59–85
(2003)

7. van der Aalst, W.M.P., Barros, A.P., ter Hofstede, A.H.M., Kiepuszewski, B.: Advanced
Workflow Patterns. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS, vol. 1901,
pp. 18–29. Springer, Heidelberg (2000)

8. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow language. Inf.
Syst. 30(4), 245–275 (2005)

9. Bhiri, S., Godart, C., Perrin, O.: Transactional patterns for reliable web services composi-
tions. In: Wolber, D., Calder, N., Brooks, C., Ginige, A. (eds.) ICWE, pp. 137–144. ACM,
New York (2006)

10. Bhiri, S., Perrin, O., Godart, C.: Ensuring required failure atomicity of composite web ser-
vices. In: WWW, pp. 138–147 (2005)

370 W. Gaaloul et al.

11. Rouached, M., Gaaloul, W., van der, A.W.M.P., Bhiri, S., Godart, C.: Web service mining
and verification of properties: An approach based on event calculus. In: Meersman, R., Tari,
Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 408–425. Springer, Heidelberg (2006)

12. Stratulat, S.: A general framework to build contextual cover set induction provers. Journal of
Symbolic Computation 32(4), 403–445 (2001)

13. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and
analysis of e-service composition. In: WWW, pp. 403–410 (2003)

14. Hamadi, R., Benatallah, B.: A petri net-based model for web service composition. In: AD-
CDT, pp. 191–200 (2003)

15. IBM BEA and Microsoft. Business process execution language for web services (bpel4ws)
(2003)

16. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web services choreography description
language version 1.0. (2004), http://www.w3.org/TR/ws-cdl-10

17. Cabrera, L.F., et.al.: Web services atomic transaction (ws-atomictransaction) (September
2003)

18. Cabrera, L.F., et al.: Web services business activity framework (ws-businessactivity) (January
2004)

19. Arjuna, Fujitsu, IONA, Oracle, and Sun. Web services composite application framework
(ws-caf), http://www.arjuna.com/standards/ws-caf/

20. Rouached, M., Perrin, O., Godart, C.: Towards formal verification of web service compo-
sition. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp.
257–273. Springer, Heidelberg (2006)

21. Bhiri, S., Gaaloul, W., Godart, C.: Discovering and improving recovery mechanisms of com-
positeweb services. In: ICWS, pp. 99–110. IEEE Computer Society, Los Alamitos (2006)

22. Gaaloul, W., Bhiri, S., Haller, A.: Mining and re-engineering transactional workflows for
reliable executions. In: ER 2007. 26th International Conference on Conceptual Modeling
(November 2007)

http://www.w3.org/TR/ws-cdl-10
http://www.arjuna.com/standards/ws-caf/

Matching Cognitive Characteristics of Actors

and Tasks

S.J. Overbeek1, P. van Bommel2, H.A. (Erik) Proper2, and D.B.B. Rijsenbrij2

1 e-office B.V., Duwboot 20, 3991 CD Houten, The Netherlands, EU
Sietse.Overbeek@e-office.com

2 Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU

{P.vanBommel,E.Proper,D.Rijsenbrij}@cs.ru.nl

Abstract. Acquisition, application and testing of knowledge by actors
trying to fulfill knowledge intensive tasks is becoming increasingly impor-
tant for organizations due to trends such as globalization, the emergence
of virtual organizations and growing product complexity. An actor’s man-
agement of basic cognitive functions, however, is at stake because of this
increase in the need to acquire, apply and test knowledge during daily
work. This paper specifically focusses on matchmaking between the cog-
nitive characteristics supplied by an actor and the cognitive characteris-
tics required to fulfill a certain knowledge intensive task. This is based on
a categorization and characterization of actors and knowledge intensive
tasks. A framework for a cognitive matchmaker system is introduced to
compute actual match values and to be able to reason about the suit-
ability of a specific actor to fulfill a task of a certain type.

1 Introduction

The importance of an actor’s abilities to acquire, apply and test already applied
knowledge increases due to e.g. growing product complexity, the move toward
globalization, the emergence of virtual organizations and the increase in focus on
customer orientation [1]. A knowledge intensive task is a task for which acqui-
sition, application or testing of knowledge is necessary in order to successfully
fulfill the task. When the pressure to acquire, apply and test more knowledge
increases, actors struggle to manage their basic cognitive functions like e.g. the
willpower to fulfill a task or maintaining awareness of the requirements to fulfill
a task. These cognitive functions are also referred to as volition and sentience
respectively in cognitive literature [2,3]. Difficulties to control basic cognitive
functions influences practice and potentially threatens the success of task ful-
fillment [4]. Research in cognitive psychology has demonstrated that individual
knowledge processing is negatively influenced when experiencing an overload of
knowledge that needs to be processed. A burden of knowledge processing events
may cause actors to underrate the rate of events [5] and to be overconfident [6].

In [7] we have discussed several types of knowledge intensive tasks, each char-
acterized by their characteristics. These task types consist of an acquisition task,

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 371–380, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

372 S.J. Overbeek et al.

a synthesis task and a testing task. An acquisition task is related with the elic-
itation of knowledge. A synthesis task is related with the actual utilization of
the acquired knowledge. Lastly, a testing task is related with the identification
and application of knowledge in practice inducing an improvement of the spe-
cific knowledge applied. The characteristics belonging to each task type indicate
the cognitive requirements necessary for an actor to successfully fulfill an in-
stance of a specific task type. Based on this earlier work, the research reported
in this paper is specifically concerned with the matching of cognitive character-
istics required to fulfill a certain task instance with the cognitive characteristics
actually possessed by an actor. The ambition of this paper, however, is not to
come up with a tool that will be concerned with cognitive matchmaking. Instead,
the emphasis is on developing a framework which includes the aspects of such a
matchmaking process and to acquire insight in how these aspects can be tackled.

2 Cognitive Actor Settings

Before elaborating on matching cognitive characteristics possessed by an actor
with the cognitive characteristics required when fulfilling a task instance, a char-
acterization of possible actor types is needed.

2.1 Actor Types

Actor types may draw from a pool of basic cognitive characteristics an actor
might possess, such as sentience, volition and causability [8]. No one actor type
necessarily has all of these characteristics and some have more than others. Using
a series of linguistic diagnostics, Dowty [8] has shown that each of these char-
acteristics can be isolated from the others and so should be treated as distinct.
The following characteristics can thus be distinguished that can be utilized to
generate cognitive settings of possible different actor types.

The volition characteristic is concerned with an actor’s willpower to fulfill
some knowledge intensive task instance. Sentience expresses that an actor has
complete awareness of required knowledge to fulfill some task instance. The
causability characteristic expresses that an actor has the ability to exert an
influence on state changes of knowledge involved during fulfillment of some task
instance. During fulfillment of certain knowledge intensive task instances an
actor should be able to improve its own cognitive abilities. This is indicated by
the improvability characteristic. The independency characteristic is necessary to
be able to determine if an actor is able to fulfill some task instance on its own.

Having determined possible cognitive characteristics an actor may have it is
now appropriate to distinguish several actor types. The combination of an actor
type with the cognitive characteristics belonging to a type forms a cognitive
actor setting. This characterization is shown in table 1. The five distinguished
actor types are based on a classification of knowledge worker types [9] and on
linguistic literature [2]. The set of actor types can be represented as:

{experiencer, collaborator, expert, integrator, transactor} ⊆ AT (1)

Matching Cognitive Characteristics of Actors and Tasks 373

Table 1. Cognitive actor settings characterized

CC
AT Volition Sentience Causability Improvability Independency

Experiencer – × – – –
Collaborator × – × × –
Expert × × × × ×
Integrator × – × – –
Transactor × × – – ×

The set of cognitive characteristics can be represented as:

{volition, sentience, causability, improvability, independency} ⊆ CC (2)

An important remark to make here is that the actor types as well as the cog-
nitive characteristics are not limited to five actor types and five cognitive char-
acteristics. However, in this paper we restrict ourselves to the above mutually
independent cognitive actor settings. The actor types as shown in table 1 can
now be introduced.

The experiencer actor type has the sentience characteristic only. An experi-
encer is thus only aware of all the knowledge requirements to fulfill some task
instance. Consider for example the following sentence: John thoroughly reads an
article about balanced scorecards before joining a meeting about balanced score-
cards. This indicates that John, as an experiencer, probably understands that
reading an article about balanced scorecards is enough to successfully prepare
himself for a meeting about that topic. The collaborator actor type possesses
the volition, causability and improvability characteristics. A collaborator has
the ability to exert an influence on state changes of knowledge involved during
fulfillment of a task instance. During fulfillment of a knowledge intensive task
instance a collaborator is also able to improve its own cognitive abilities. How-
ever, a collaborator does not have complete awareness of all required knowledge
to fulfill a task instance and requires others to fulfill a task instance. Consider
the following example: John works at a hospital and requires knowledge about a
patient’s history. Therefore, he acquires the most recent patient log from a col-
league. This indicates that John, as a collaborator, understands that in order to
acquire knowledge about a patient’s history he must collaborate with another
actor. After that John is able to update the patient’s log with recent changes.
An expert possesses all characteristics depicted in table 1. Suppose that John
is an assistant professor working at a university and he would like to solve a
difficult mathematical problem when developing a theory. He then uses his own
knowledge about mathematics to solve the problem. John is also able to combine
and modify his own knowledge while solving the problem and he can also learn
from that. An integrator is able to fulfill a knowledge intensive task instance
by working together and is able to initiate state changes of knowledge involved
during task instance fulfillment. An integrator primarily wishes to acquire and
apply knowledge of the highest possible quality. An engineer contributing to the
construction of a flood barrier is an example of an integrator. Volition, sentience

374 S.J. Overbeek et al.

and independency are the characteristics belonging to the transactor actor type.
A transactor can fulfill a task instance without collaborating with others and is
not required to cause modifications in the knowledge acquired and applied during
task fulfillment. A customer support employee working at a software company
is an example of a transactor.

A specific instantiation of an actor type is expressed by AType : AC → AT ,
where AC is a set of actor instances. The example AType(a) = experiencer for
instance expresses that an actor a can be classified as an experiencer. We can
view the actor that is specifically fulfilling a task instance i ∈ TI as a function
Fulfillment : AC → ℘(TI). Here, TI is a set of task instances. An actor a that fulfills
a task instance i can be expressed as Fulfillment(a) = {i}. A specific instantiation
of a task type is expressed by TType : TI → TT , where TT is a set of task types
that can be instantiated by a specific task instance. The expression TType(i) =

acquisition can be used to assert that a task instance i is characterized as an
acquisition task.

3 Cognitive Matchmaker System

In this section a framework for a cognitive matchmaker system is introduced
that is able to compute a match between cognitive characteristics required for
a specific task type and cognitive characteristics that are provided by a specific
actor type. As a running example, we use the matchmaker system to match the
cognitive characteristics offered by the transactor actor type with the required
cognitive characteristics of a synthesis task. Figure 1 shows the architecture of
the system on a conceptual level, which is translated into the formalisms through-
out this section. In section 2, a function ACharj(a) = C indicated the cognitive

Fig. 1. Cognitive matchmaker system

characteristics that characterized an actor instance of a certain type, where j is a
task type belonging to the set of task types TT , a is an actor instance belonging
to the set of actor instances AC and C is a set of cognitive characteristics that
is a subset of or equal to CC. Recall from section 2 that the corresponding actor
type can be found by using the actor type function: AType(a) = j. With this in
mind, a supply function can be modeled that returns a value expressing to what
extent an actor type offers a certain cognitive characteristic:

Supply : AT → (CC → CRN) (3)

Matching Cognitive Characteristics of Actors and Tasks 375

The expression Supplytransactor(s) = 10 shows that an actor characterized by the
transactor type offers the sentience characteristic and is at least capable to per-
form this characteristic at level 10. Note that for readability reasons the word
‘sentience’ has been abbreviated to the letter ‘s’. The resulting value ‘10’ is part
of a characteristic rank domain CRN which contains integer values within the
range [0, 10]. The hard values as part of a domain of values can be found using
the following function:

Numerical : ℘(RN) → R (4)

Here, the set RN contains rank values and CRN ⊆ RN . Formally, the character-
istic rank domain includes the following hard values: Numerical(CRN) = [0, 10]. A
value of 0 means that an actor is not able to offer a certain characteristic, a value
of 5 means that an actor is able to offer a characteristic at an average level and
a value of 10 means that an actor is able to offer a characteristic at the highest
level. So, in the case of the example, the transactor is able to offer the sentience
characteristic at the highest level.

Besides modeling a supply function, a demand function is needed that returns
a value expressing to what extent a cognitive characteristic is required for a
certain task type:

Demand : TT → (CC → CRN) (5)

The expression Demandsynthesis(s) = 10 indicates that a sentience characteristic is
required at the highest level in order to fulfill a synthesis task. The supply and
demand functions can now be utilized to compute the characteristic match.

3.1 Characteristic Match

In this section, a characteristic match function is defined to compare the resulting
values from the supply and demand functions. This comparison provides insight
in the way supply and demand of cognitive characteristics are matched with each
other. In order to model a characteristic match function, an actor type as well
as a task type are required as input, together with a cognitive characteristic:

CharMatch : AT × TT → (CC → MRN) (6)

As can be seen in figure 1, the characteristic match function returns a value from
the match rank domain, where MRN ⊆ RN . The match rank domain includes
the following values: Numerical(MRN) = [0, 10].

To compute the actual characteristic match value, a proximity function is
necessary to be able to define the characteristic match function. This proximity
function computes the proximity of the level an actor offers a certain cognitive
characteristic related to the level that is required in order to fulfill a task of a
certain type. The values that are used as input for the proximity function are
part of the characteristic rank domain. The resulting proximity value is then a
value that is part of the match rank domain:

Proximity : CRN × CRN → MRN (7)

376 S.J. Overbeek et al.

A normalization function can be introduced that calculates the numerical
proximity of demand and supply when a cognitive characteristic is concerned:

Normalize : R → [0, 1] (8)

The normalization function can be defined by using the supply and demand
functions and two additional constants min and max:

Normalize(Supplyi(c) − Demandj(c)) � Supplyi(c) − Demandj(c) + max − min

2 · (max − min)
(9)

Here, i is an actor type of the set AT , j is a task type of the set TT and c
is a cognitive characteristic of the set CC. The values of the constants min and
max can be determined by interpreting the minimum and the maximum values
of a specific ranking domain. So, in the case of the running example min = 0
and max = 10 when the characteristic rank domain is concerned. The minimum
value that can be returned by the normalization function is 0. This occurs if
there is absolutely no supply (i.e. an incapable actor is concerned) but there is
a maximum demand of a certain cognitive characteristic in order to fulfill a task
of a certain type. This situation is depicted below:

Normalize(0 − 10) =
0 − 10 + max − min

2 · (max − min)
= 0

In the case of an overqualified actor that is more capable to perform a cognitive
characteristic than is required, the normalization function returns 1:

Normalize(10 − 0) =
10 − 0 + max − min

2 · (max − min)
= 1

This means that the normalization function normalizes the proximity of supply
and demand between 0 and 1. Using the normalization function, the proximity
function can now be defined as follows:

Proximity(Supplyi(c), Demandj(c)) � Normalize(Supplyi(c) − Demandj(c)) (10)

For the running example the proximity function as defined above results in:

Proximity(10, 10) = Normalize(10 − 10) = 0.5

Now with the introduction of a proximity function the characteristic match
can be defined by computing the proximity of demand and supply in the context
of a given characteristic:

CharMatch(i, j) � λc∈CC · Proximity(Supplyi(c), Demandj(c)) (11)

Recall from section 3 that an actor of the transactor type is able to perform
the sentience characteristic at level 10, which equals the level to what extent a
sentience characteristic should be offered for a synthesis task type. In the case
of our example the characteristic match results in:

CharMatch(transactor, synthesis) =

λs∈CC · Proximity(Supplytransactor(s), Demandsynthesis(s)) =

Proximity(10, 10) = 0.5

Matching Cognitive Characteristics of Actors and Tasks 377

This example shows that for the transactor / synthesis task combination the
eventual proximity value is 0.5. However, this proximity value is only related
to the demand and supply of one specific cognitive characteristic. To compute
a total match of the required cognitive characteristics for a task type and the
characteristics offered, a weighed suitability match can now be introduced.

3.2 Weighed Suitability Match

The cognitive matchmaker system is completed by introducing a weighed suit-
ability match, as is shown in the rightmost part of figure 1:

Match : AT × TT → SRN (12)

This function returns a value from the suitability rank domain, where SRN ⊆
RN . The suitability rank domain includes the following values: Numerical(SRN) =
[0, 10]. This means that an actor of a certain type can have suitability levels
ranging from 0 to 10. To determine the suitability of the transactor fulfilling the
synthesis task, the calculated proximity of demand and supply of a cognitive
characteristic c ∈ CC can be weighed:

Weigh : (CC → MRN) → (CC → SRN) (13)

To define the weigh function several other functions are necessary, though. As
can be seen in figure 1 the weigh function uses the input from the characteristic
match function and returns a value from the suitability rank domain as output.
To construct the weigh function, a function is needed that has a match rank
metric (i.e. the proximity value) as its input and a suitability rank metric as its
output:

Metric : MRN → SRN (14)

For instance, Metric(0.5) = 0.5 shows that the value 0.5, which is the proximity
value, equals the value 0.5 which is a suitability rank metric. A characteristic
weigh function is needed to actually weigh the importance of a certain cognitive
characteristic to fulfill a task of a certain type:

CharWeigh : CC → SRN (15)

So, CharWeigh(s) = 1.5 means that a weigh factor of 1.5 is given to indicate the
importance to offer the sentience cognitive characteristic (for a certain task).
Finally, the ⊗ operator is also needed to define a definite weigh function:

⊗ : SRN × SRN → SRN (16)

The ⊗ operator is necessary to multiply the metric value with the characteristic
weigh value. Multiplying the values mentioned above results in: 0.5 ⊗ 1.5 = 0.75.
The weigh function can now be defined as:

Weigh(c, CharMatch(i, j)) � λc∈CC · Metric(CharMatch(i, j)) ⊗ CharWeigh(c) (17)

Here, c ∈ CC, i ∈ AT and j ∈ TT . Continuing the running example, we would like
to calculate the suitability of the transactor that is fulfilling a synthesis task.
Considering the sentience characteristic only, this can be computed as follows:

Weigh(s, CharMatch(transactor, synthesis)) =

λs∈CC · Metric(0.5) ⊗ CharWeigh(s) =

0.5 ⊗ 1.5 = 0.75

378 S.J. Overbeek et al.

In order to calculate the suitability match of the transactor related to the syn-
thesis task, it is mandatory to determine the cognitive characteristics supplied
by the actor and demanded by the task. The transactor actor type supplies
the volition, sentience and independency characteristics as is shown in table 1.
The synthesis task type can be characterized by the applicability and correct-
ness characteristics [7]. These characteristics are explained as follows. An actor
should provide the applicability characteristic to be able to apply knowledge
during task fulfillment and to make sure that the applied knowledge has a useful
effect on successfully completing the task. An actor should provide the correct-
ness characteristic to be able to judge the usefulness of applied knowledge in a
task and to be sure that applied knowledge meets its requirements.

The set CC contains the following characteristics in the case of the running
example: {volition, sentience, independency, applicability, correctness} ⊆ CC.
For all these characteristics a weigh value needs to be determined as in the ex-
ample expression of function 17. This is necessary to compute a final suitability
match resulting in one suitability rank value. Assume that the actual character-
istic weigh values (each assigned to one cognitive characteristic as part of the set
CC) are: 2, 1.5, 0.5, 3 and 3. Note that these characteristic weigh values always
summate to one and the same total value. In the case of our example the char-
acteristic weigh values summate to 10. Thus, no matter how the weigh values
are divided across the cognitive characteristics, they should always summate to
a total of 10.

The results of the weighed characteristic matches have to be summated to
generate a single suitability match value. To summate these values a ⊕ operator
is required:

⊕ : SRN × SRN → SRN (18)

Now the final match function can be defined using the aforementioned functions:

Match(i, j) �
⊕

c∈CC
Weigh(c, CharMatch(i, j)) (19)

In the match function i ∈ AT , c ∈ CC and j ∈ TT . For the running example this
means that the suitability match value of the transactor fulfilling a task instance
of the synthesis type is computed as follows:

Match(transactor, synthesis) = 1 ⊕ 0.75 ⊕ 0.5 ⊕ 0.75 ⊕ 0.75 = 3.75

As a result of the suitability match it can be concluded that the suitability of
an actor characterized by the transactor type fulfilling a task instance of the
synthesis type is 3.75. Remember that the lowest suitability value is 0 and the
highest suitability value that can be reached is 10. The lowest value is reached
if the supply of every characteristic is 0 and the demand of every characteristic
is 10. The highest value is reached in the case of complete overqualification, i.e.
if the supply of every characteristic is 10 and the demand of every characteristic
is 0. At this point a decision can be made whether or not the specific actor
is suitable enough to fulfill this task or if another actor is present who should
be more suitable, i.e. has a better suitability match value. The suitability of

Matching Cognitive Characteristics of Actors and Tasks 379

Metric

CharWeigh

Weigh

ActorType
(name)

Match

Supply

Proximity

Cognitive
Characteristic

(name)

Demand

TaskType
(name)

MatchRank

CharMatch

SuitabilityRank

Characteristic
Rank

Rank

(RealNumber)

{‘acquisition’,‘synthesis’,‘testing’}

 {‘experiencer’,
 ‘collaborator’,

 ‘expert’,
 ‘integrator’,
 ‘transactor’}

Suitability
Rank

Domain

Numerical

=

Ranking
Domain

Value
(number)

[0,1]
Normalize

Fig. 2. Object-Role Modeling (ORM) model of the cognitive matchmaker system

an actor to fulfill a certain task is best if the resulting suitability value is 5.
Underqualification as well as overqualification are both considered undesirable.

A certainty function can now be introduced to make sure how certain it is
that an actor is suitable to fulfill a task:

μ : R → [0, 1] (20)

A linear certainty function can be defined as follows:

μ(u) �
{ 2

min+max · u min ≤ u ≤ min+max
2

−2
min+max

· u + 2 min+max
2 ≤ u ≤ max

(21)

For the running example, where min = 0 and max = 10, the following expression
shows that the certainty that the transactor is suitable to fulfill the synthesis
task is 0.75:

μ(3.75) =
2

0 + 10
· 3.75 = 0.75

This can be interpreted as being 75% sure that the transactor is suitable enough
to fulfill the synthesis task. It might be a good choice to let the transactor
fulfill the synthesis task, unless an available actor characterized by another type
provides a better match. In order to also have a graphical representation of

380 S.J. Overbeek et al.

the discussed definitions throughout section 3, an Object-Role Modeling (ORM)
model is presented in figure 2. For details on Object-Role Modeling, see e.g. [10].

4 Conclusion

This paper describes a categorization and characterization of actors that are able
to fulfill knowledge intensive tasks, illustrated by cognitive characteristics indi-
cating actor abilities for task fulfillment. Proceeding from these characteristics
a running example, in which a match is determined of an actor characterized by
the transactor type wishing to fulfill a synthesis task, shows how the theory can
be materialized.

References

1. Staab, S., Studer, R., Schnurr, H.P., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems 16(1), 26–34 (2001)

2. Kako, E.: Thematic role properties of subjects and objects. Cognition 101(1), 1–42
(2006)

3. Weir, C.R., Nebeker, J., Bret, L., Campo, R., Drews, F., LeBar, B.: A cognitive task
analysis of information management strategies in a computerized provider order
entry environment. Journal of the American Medical Informatics Association 14(1),
65–75 (2007)

4. Meiran, N.: Modeling cognitive control in task-switching. Psychological Re-
search 63(3–4), 234–249 (2000)

5. Hertwig, R., Barron, G., Weber, E., Erev, I.: The role of information sampling in
risky choice. In: Fiedler, K., Juslin, P. (eds.) Information Sampling and Adaptive
Cognition, pp. 72–91. Cambridge University Press, New York, NY, USA (2006)

6. Koehler, D.: Explanation, imagination, and confidence in judgment. Psychological
Bulletin 110(3), 499–519 (1991)

7. Overbeek, S., van Bommel, P., Proper, H., Rijsenbrij, D.: Characterizing knowledge
intensive tasks indicating cognitive requirements - Scenarios in methods for specific
tasks. In: Ralyt, J., Brinkkemper, S., Henderson-Sellers, B. (eds.) Proceedings of
the IFIP TC8/WG8.1 Working Conference on Situational Method Engineering:
Fundamentals and Experiences, Geneva, Switzerland. IFIP, vol. 244, pp. 100–114.
Springer, Boston, USA (2007)

8. Dowty, D.: Thematic proto-roles and argument selection. Language 67(3), 547–619
(1991)

9. Davenport, T.: Thinking for a Living – How to get Better Performances and Results
from Knowledge Workers. Harvard Business School Press, Boston, MA, USA (2005)

10. Halpin, T.: Information Modeling and Relational Databases, from Conceptual
Analysis to Logical Design. Morgan Kaufmann, San Mateo, CA, USA (2001)

The OpenKnowledge System:
An Interaction-Centered Approach to Knowledge

Sharing

Ronny Siebes1, Dave Dupplaw2, Spyros Kotoulas1, Adrian Perreau de Pinninck3,
Frank van Harmelen1, and David Robertson4

1 Vrije Universiteit Amsterdam
{ronny,kot,frankh}@few.vu.nl

2 University of Southampton, UK
dpd@ecs.soton.ac.uk

3 Artificial Intelligence Research Institute (IIIA - CSIC)
adrianp@iiia.csic.es

4 The University of Edinburgh, Edinburgh, UK
dr@inf.ed.ac.uk

Abstract. The information that is made available through the semantic web will
be accessed through complex programs (web-services, sensors, etc.) that may in-
teract in sophisticated ways. Composition guided simply by the specifications of
programs’ inputs and outputs is insufficient to obtain reliable aggregate perfor-
mance - hence the recognised need for process models to specify the interactions
required between programs. These interaction models, however, are traditionally
viewed as a consequence of service composition rather than as the focal point for
facilitating composition. We describe an operational system that uses models of
interaction as the focus for knowledge exchange. Our implementation adopts a
peer to peer architecture, thus making minimal assumptions about centralisation
of knowledge sources, discovery and interaction control.

1 Introduction

The pool of potentially available knowledge on the Internet is immeasurably large. It is
fed by the traditional Web: by application programs feeding data onto the Web, by Web
services accessed through various forms of application interface, by devices that sense
the physical environment, and so on. It is consumed in a wide variety of ways and by
diverse mechanisms (and of course consumers may also be suppliers). The aspiration
of OpenKnowledge is to allow knowledge to be shared freely and reliably, regardless of
the source or consumer. Reliability here is interpreted as a semantic issue. The Internet
is in the fortunate situation that physical and syntactic reliability have been solved to
satisfactory degrees, making semantic reliability the main challenge. Semantic reliabil-
ity means that we want the meaning ascribed to knowledge that is fed into the pool, to
be preserved adequately for the purposes of consumers.

Of course such “open knowledge sharing” is an aspiration that we know to be
unattainable, in the strong sense where all knowledge supplied can be consumed with

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 381–390, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

382 R. Siebes et al.

perfect freedom and reliability. Globally consistent common knowledge is impossible
to guarantee in an asynchronous distributed system1.

Interaction-specific knowledge sharing: The good news is that only a small propor-
tion of the pool of available knowledge will be of use to any given consumer, since each
must have an upper limit on how much knowledge it can process. A pragmatic aim of
open knowledge sharing, then, is to obtain knowledge appropriate to the activities in
which each consumer wants to engage, while maintaining free and (adequately) reliable
connections between suppliers and consumers.

The standard way in which activities (and their sequencing) are described is via pro-
cess languages like BPEL [2] or LCC [14], since no complex activity can be represented
formally without modeling its temporal structure. In principle, we could use (models of)
these activities to limit the scope of knowledge that we attempt to share. There is a prob-
lem however: activity models are themselves knowledge that must be shared. In other
words, when an item of knowledge is openly shared in the context of some common
activity it is necessary for the supplier and consumer to have knowledge of that context,
otherwise there is no benefit (in terms of reliable knowledge sharing) from the activity
focus.

For this reason the OpenKnowledge project has at its core a mechanism for sharing
models of activities that require interaction across the Internet. We refer to such models
as interaction models [14]. We expect that communities of practice will naturally form
around collections of interaction models and that these communities can be stabilized
by a mechanism for their rapid sharing across peer groups. Notice that this is explicitly
an interaction-centered approach to knowledge sharing, as opposed to the traditional
data-centered approach.

By building a system, we demonstrate that sharing interaction models at very low
cost to consumers and suppliers is possible. The novelty of this system is that each
interchange of knowledge is made in the context of the (shared) interaction model.
The system is completely distributed using P2P technology. Each peer that participates
in the OK system will at least run a piece of code that we call the OpenKnowledge
Kernel [4] enabling the base functionality to find these interactions and the code or
peers that enable to run the services.

2 Relevant Literature

Clearly, many others have previously identified the goals of reliably sharing knowledge
freely and reliably, regardless of the source or consumer. In this paper, we will not dis-
cuss the plethora of work in the dominant data-oriented attempts at solving this problem,
such as data-integration [10], schema and ontology mapping [15], data-mediators [7],
etc. Instead, in this section we discuss some of the approaches that have also taken an
interaction-oriented approach: web-services, grid-services and multi-agent systems. Al-
though typically data-centric, we also include P2P systems in our comparison, because
the OpenKnowledge architecture has strong P2P characteristics

We do not aim to provide a full-scale literature study here. Instead, we identify the
key ideas behind each of these approaches, and argue why OpenKnowledge occupies a
unique niche in this landscape.

1 Even if it were a philosophically and culturally coherent notion.

The OpenKnowledge System 383

Web Services. Perhaps the most closely related effort to OpenKnowledge is the work
on web-services [3]. The aim of web-services is to enable invoking and executing of
services in a distributed, scalable and interoperable manner. The work on semantic web-
services [19] adds to this the goals to automatically locate and compose such services
in an open and heterogeneous environment like the Web.

Both approaches (web-services and OpenKnowledge) use the principle that if the
services are formulated into information objects (web-service descriptions either purely
syntactic, such as WSDL [5] or semantic such as WSDL-S [17] and OWL-S [11]), then
they can also be the subject of reasoning tasks for search and composition.

The OpenKnowledge approach is in some ways more flexible than the web-services
approach, but in other ways more restricted. Semantic web-service work aims at auto-
matic on-line composition of simple services into complex services, by means of intel-
ligent algorithms (e.g. based on configuration [20] or planning [21]), whereas, Open-
Knowledge restricts itself to executing predefined “work-flows” of services (the “inter-
action models” to be discussed later in this paper). The only decision that OpenKnowl-
edge makes at run-time is which instance of a service is executed; that is, which agent
providing the service will be used (i.e. “recruiting”, not composition).

This recruiting aspect of OpenKnowledge is more general than the web-service ar-
chitecture because it separates the advertising of a service from the execution of a
service. In the web-service architecture, it is generally assumed that advertisements
of service functionality are accompanied with the name of the executor of the ser-
vice. In short: the matching goals of both approaches are the same (finding a service
that matches a given functionality), while the composition goals of both approaches
are different: OpenKnowledge aims to recruit peers to execute predefined work-flows,
whereas semantic web-services aims to automatically compose complex work-flows
out of atomic services.

Furthermore, OpenKnowledge explicitly acknowledges the need for approximate
matching of service requests with advertisements, whereas this is only marginally the
case in the semantic web-service world [1], and entirely absent in regular web-services.

Finally, OpenKnowledge aims explicitly for a distributed storage model for the work-
flows and service descriptions, whereas all the dominant web-service architectures
(UDDI [12] for regular web-services, WSMX [8] for semantic web-services) assume
a centralised architecture.

Grid-Services. The general area of grid-services is even less well circumscribed than
web-services, hence it is more difficult to make a crisp comparison. Literature on Grids
[6] often align their approaches to the service-oriented architecture (SOA). In contrast
to web-services, grid-services are typically organized in fixed work-flows. This makes
them more similar to the OpenKnowledge approach, however, grid-services emphasise
various aspects that are ignored in OpenKnowledge: long-term stability of services,
provenance, quality of service and resource monitoring. Similar to web-services, grid-
services differ from Open Knowledge by advertising a service functionality together
with the identification of the service-provider; OpenKnowledge decouples these two
and hence allows for a separate “recruiting” step. Finally, and perhaps most importantly,
most grid-systems provide only a centralized mechanism for advertising services and
work-flows, while OpenKnowledge aims for a fully distributed mechanism.

384 R. Siebes et al.

In particular, the myGrid project [18] is in many respects close to the goals of
OpenKnowledge in its use of pre-configured work-flows and its approach to manual
composition of such work-flows. However, it relies on centralized storage of such work-
flow patterns, which is in sharp contrast with the fully distributed architecture of Open-
Knowledge.

Peer-to-peer systems. Obviously, OpenKnowledge is close in spirit to the work on
peer-to-peer (P2P) systems. The central P2P ideas of distributed storage, lack of cen-
tralized address registers and the symmetric roles of every peer as both provider and
requester, are fully adopted by OpenKnowledge. Nevertheless, OpenKnowledge makes
two important deviations from most P2P systems. First, most P2P systems aim at data
sharing, whereas OpenKnowledge aims at service sharing. Of course, data sharing is
simply a special case of service sharing (namely sharing a data-access service), making
the OpenKnowledge system more generic. Secondly, OpenKnowledge is in the small,
but rapidly growing, family of semantic P2P systems [16], which use rich descriptions
of the content that each peer has to offer for purposes of routing queries through the
network.

Agents. A final class of closely related systems is that of multi-agent systems. In gen-
eral, there is a superficial similarity between multi-agent and P2P systems: distributed
sets of autonomous processes exchanging information. However, on closer inspection,
there are rather significant differences. In particular, agent systems often have highly
structured architectures inside each agent often relying on cognitive metaphors for their
architectural constructs (such as the Believes, Desires and Intentions (BDI) architec-
ture [13]). P2P systems typically treat their peers as atomic. Finally, agent-systems em-
phasize their pro-active nature (autonomously reacting on their changing environment),
while P2P systems, including OpenKnowledge, assume more classical reactive stance.

The differences and similarities described above are all summarized in Table 1. This
table shows that OpenKnowledge inherits many aspects from other approaches but also
occupies a particular niche, having features not fully explored by others.

3 An Extensive Example Describing the Functionality of the
OpenKnowledge System

In this section we provide an extensive example how our system can be used. The
architecture of the system is described in another paper [4]. From a user perspective,
the OpenKnowledge system is a software bundle that allows a user to find, compose and
execute tasks. Those tasks can be executed by users and/or software components. The
tasks are described by Interaction Models (IM), where each IM is a formally described
set of roles together with the process-flow between those roles. Users subscribe their
peer to play roles within an interaction. For example, the task of buying an item requires
at least the seller and buyer roles, and perhaps a payment service role. We call instances
of these roles (e.g. a particular seller or a particular buyer) OK-Components (OKCs).
An OKC, for example a creditcard service, may play a role in many IMs. If the roles
are constrained by some external functionality, then services provide that functionality.
Much of the functionality of the OK system relies on the Discovery and Team formation
Service (DTS), which is a distributed storage and retrieval system over a P2P network.
Its main responsibilities being the following:

The OpenKnowledge System 385

Web-Services similarities: service-oriented,
distributed,
automated search
based on semantic descriptions

differences: Web-Services OpenKnowledge
composition of atomic services predefined workflows
fixed link to executing party dynamic recruiting
centralised advertising distributed
equivalence matching approximate matching

Grid-Services similarities: service-oriented,
fixed workflows
distributed

differences: Grid-Services OpenKnowledge
provenance absent
QoS reputation mechanisms
resource monitoring absent
centralised advertising distributed
fixed link to executing party dynamic recruiting

Peer-to-Peer Systems similarities: distributed,
scalable,
symmetric roles of each peer

differences: P2P Systems OpenKnowledge
aimed at data-sharing service sharing
independent of content exploit semantics

Multi-Agent Systems similarities: distributed,
symmetric roles of each peer

differences: Multi-Agent Systems OpenKnowledge
cognitive architecture none
central brokers scalable discovery
pro-active behaviour reactive

Fig. 1. OpenKnowledge compared to other approaches

– IM Discovery - the DTS is used to publish, discover and retrieve IMs.
– OKC Discovery - the DTS is also used to publish, discover and retrieve OKCs. This

enables reusability thus providing scalable functionality. OKCs can be discovered
either in the context of an already known IM or independently.

– Role subscription - peers can subscribe a locally stored OKC to play a role in an IM.
Additional information such as annotations and restrictions concerning the other
participants can be given along with the subscription.

– Coordinator subscription - peers may also subscribe to act as interaction
coordinators.

– Team formation and interaction initialization - the DTS uses subscription informa-
tion to form teams of OKCs, which will, potentially, participate in an interaction,
and finds a subscribed coordinator to orchestrate them.

The system is based on previous work where the algorithms are simulated and imple-
mentations are emulated in order to see the performance of them [9]. More about the
DTS can be read in the architecture paper [4]. Now we will explain the functionality of
the first OpenKnowledge system by going through an example where we show how a
dictionary service can be created and used.

3.1 Writing and Publishing an IM

In figure 2 user A uses the OpenKnowledge System to develop an IM for the dictionary
service, by describing an interaction between two roles. One role is used to query the

386 R. Siebes et al.

service, called the inquirer, and the oracle role provides the answer. In this example,
the IM is written in the LCC language [14]. Current work in the project is to also have
support to other languages like BPEL. The LCC model can be read as follows:

Fig. 2. User interface showing an IM editor (LCC as the language in this example) and a button
to publish the IM on the OpenKnowledge network

1. r(inquirer,initial). This line states that the ’inquirer’ role is the one that starts the
interaction.

2. r(oracle,necessary,1). Statement indicating that at least 1 peer needs to play the
oracle role.

3. a(inquirer,ID2)::. A statement giving the ’inquirer’ role an identifier ’ID2’ and the
’::’ means that the definition of the role starts after it.

4. ask(W) => a(oracle,ID) <- toknow(W). If the user wants to know a definition
for a word ’W’ it can start the interaction by fulfilling the constraint toknow(W). In LCC
the ‘<-’ symbol is used to indicate that after it a constraint is defined. When the constraint
is satisfied (i.e. the user provided ‘W’), a message ’textttask(W)’ is sent to the ’oracle’ role
identified by ’ID’ (note that a(oracle,ID) relates the role to an identifier). In LCC the
‘=>’ symbol is used to indicate that a message (in this case ask(W)) is sent from the current
role to another role (in this case the ‘oracle’).

5. definition(W,D) <= a(oracle,ID). In this line the ‘inquirer’ waits for the ora-
cle role (a(oracle,ID)) to send a message with the definition as content (definition
(W,D)). In LCC the ‘<=’ symbol is used to indicate that a message (in this case
definition(W,D)) should be expected from another role (in this case the ‘oracle’ role).

6. null <- show(W,D). When the ‘oracle’ sent the message to this role, this statement
shows the answer to the user. In this case show is a special constraint which is understood
by the system to show a message (in this case with the query: W and the answer: D) in the user
interface. null means that nothing happens after the constraint show(W,D) is fulfilled.

7. a(oracle,ID)::. Gives the ‘oracle’ role identifier ‘ID’ and starts to give its definition.
8. ask(W) <= a(inquirer,ID2). This line makes the ‘oracle’ role wait for a message

ask(W) from the ‘inquirer’.
9. definition(W,D) => a(inquirer,ID2) <- define(W,D). When the

‘oracle’ got the ‘ask’ message (previous line is executed), it will try to fulfill the ‘define
(W,D)’ constraint, and if that is true, a message with the content definition(W,D) is
sent to the ‘inquirer’.

The OpenKnowledge System 387

Now that a user A wrote down the IM, they should provide some keywords to
describe the functionality of the IM. In the system we provide automated mapping
and similarity algorithm to relate similar keywords during search.These keywords are
needed by the DTS to index them in order to be retrieved by other peers. In this case,
A decides to give the keywords ‘oracle, wordnet, dictionary, words’. Our current work
tries to extend the ways to describe the functionality of an IM, for example by providing
concepts from ontologies instead of keywords. Now that the IM is ready and the key-
words are provided, the user can decide to publish it on the OpenKnowledge network
by connecting to the network and pressing the ‘Publish Interaction Model’ button. The
DTS will make sure it is scalably stored and indexed by the provided keywords.

3.2 Creating and Publishing OKC’s

Besides writing the IM in the previous section, user A also writes the OKCs that imple-
ment both roles in the IM respectively. Currently, the user A has to implement their OKC
by writing some code to a specific Java API. In simple terms, the methods in the Java
source code should match the names and the arguments of the constraints in the roles,
which are toknow(W) and show(W,D) for the ‘inquirer’ role and define(W,D)
for the ‘oracle’ role. Note that here we assume W and D are of type STRING, where in
the extended LCC language also types are supported, meaning that the definitions would
be something like show(W:STRING,D:STRING). After user A has implemented the
interfaces, (s)he opens the window from the OpenKnowledge Kernel software where it
can wrap the code into OKC’s (the figure is not shown here due to space constraints).

The user loads its IM and attaches the java implementations of the role constraints via
the user interface of the kernel. Also the OKCs may be described by a set of keywords,
because they can be used as role implementations for other IMs and therefore need to
be indexed so that they can be retrieved by the DTS. The intuition behind this is that
an OKC implementing a credit-card payment service can be used in many IMs. Also
these keywords can be used in the OKC selection process that allows a user to select
their preferred OKCs after multiple matches have been found to an IM. For example, it
can be that two OKCs exactly match the same ‘oracle’ role but one delivers results in
English and the other in Spanish.

By clicking the ’Create OpenKnowledge Component’ button, the OKC is created
and ready to be used. By sending a ’subscribe’ message to the DTS (not shown in the
figures), it tells the network that it is able to execute the role of ‘oracle’ for the given
IM. Given that the user used Wordnet as the underlying implementation, it annotates
the OKC with the keywords ‘dictionary, english, wordnet,lookup’ (not shown in the
figures). Besides this, A decides to publish the ‘inquirer’ OKC to the network, so that
other users also may download it and run it on their own machines.

3.3 Searching for IMs and OKCs

Peer B wants to find a service that will allow it to find definitions of words in Span-
ish. It opens the search window from the OpenKnowledge Kernel (not shown due to
space constraints). In this case, in the beginning (s)he searches for IMs matching to the
word ‘oracle’. The system starts searching and shows the found IMs together with their
roles to the user. Assume that user B finds the IM together with the roles ’orcale’ and

388 R. Siebes et al.

’inquirer’. The user wants to play the role of the inquirer written by user A and therefore
decides to download it and tells the DTS that it is willing to play the role.

3.4 Team Formation and Execution

Given that in the previous steps A and B have both told the DTS that by subscribing their
OKCs that they are willing to play the roles of ‘oracle’ and ‘inquirer‘ respectively, the
DTS knows that all roles are instantiated meaning that there are enough peers to start
the interaction. Now imagine that another user C also published an OKC that is able
to fulfill the role of ‘oracle’, but has annotated its OKC with the keywords dictionary,
spanish. So now there are three peers ready to play. The DTS selects a coordinator peer
from the pool of peers. This is currently selected randomly (but current ongoing work
is to make it reputation-based). This coordinator receives a message from the DTS with
the three peers, their OKC descriptors and the IM. The coordinator now can start the
team formation process.

The coordinator sends each peer the list of peers willing to play together with their
OKC descriptions. Now the peers can select, automatically or with the user in the loop
(depends on the OKC implementation), with whom to play. Assume that both the Span-
ish and English oracles have automatic selection process saying that they always like
to play with whomever. However, the inquirer has user B in the loop, where the user
selects the peer from user C, because its OKC description matches its wishes and sends
its preferences back to the coordinating peer. Now that the coordinator has (within a
certain time-out) received enough replies to start the interaction, its starts executing it.
The coordinator sends a message to Peer B which solves the constraint by asking the
user (using a visualizer showing the constraint to the user). The word is sent back to
the coordinator which continues parsing the IM and reaches a constraint that must be
satisfied by the dictionary role to give the word definition. The coordinator sends the
constraint to Peer C which solved it and returns the definition in a message. The co-
ordinator continues parsing and finds a constraint in which the querier role must show
the user the word definition. It sends Peer B a message with this constraint and it is
solved by showing the query results to the user. The IM is finished at this point, so the
coordinator sends a message to each peer so they can stop the OKC instances.

As said, this example demonstrates the functionality of the system, but it is very
simple. The interface presented is only one of the many possible interfaces, because we
have designed the architecture to be as independent as possible from the user presenta-
tion system.

3.5 Other Examples

Some interesting examples can be made within the trade domain, like an interaction
model for a transaction of goods. Somebody may publish an IM that contains the
process-flow between a seller, a buyer and a payment service. Peers can subscribe
themselves to these roles and when all roles are instantiated the interaction starts. The
Coordinator initiates the interaction and coordinates it. Especially in this case, all role-
players may want to have a trustworthy controller, and can specify the requirements for
a coordinator when subscribing to an OKC.

Another example comes from a case study that we undertook in the bio-informatics
domain [22]. In that paper we present a system that can be used to analyse real data

The OpenKnowledge System 389

of relevance to the structural bio-informatics community where comparative models of
yeast protein structures from different resources are analysed for consistency between
them. The interaction model described in that paper, written in the LCC language, de-
scribes the interaction between the roles of data collector, receiver and source, that
together perform the task.

4 Summary

Much of the information that might be accessed in semantic webs is accessible through
complex programs (web-services, sensors, etc.) that may interact in sophisticated ways.
Composition guided simply by specifications of programs’ input-output behaviours is
insufficient to obtain reliable aggregate performance - hence the recognised need for
process models to specify the interactions required between programs. These interac-
tion models, however, are traditionally viewed as a consequence of service composition
rather than as the focal point for facilitating composition. We have described an opera-
tional system that uses models of interaction as the focus for knowledge exchange. Our
implementation adopts a peer to peer architecture, thus making minimal assumptions
about centralisation of knowledge sources of interaction control. The direct contribution
of this paper is to present the first operational system of this kind. The secondary con-
tribution of this paper is to provide a new angle on service orchestration and ontology
matching that re-interprets traditional methods for these tasks in a dynamic context.

Acknowledgements. This work has been supported by the FP6 OpenKnowledge
project2. A. Perreau de Pinninck is supported by a CSIC predoctoral fellowship under
the I3P program, which is partially funded by the European Social Fund.

References

1. Akahani, J., Hiramatsu, K., Kogure, K.: Coordinating Heterogeneous Information Services
based On Approximate Ontology Translation. In: AA MAS 2002. First International Joint
Conference on Autonomous Agents & Multiagent Systems (2002)

2. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language
for web services, version 1.0. Technical report (2004)

3. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the
Web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput-
ing 6(2), 86–93 (2002)

4. de Pinninck, A.P., Dupplaw, D., Kotoulas, S., Siebes, R.: The openknowledge kernel. In:
Proceedings of the IX CESSE conference, Vienna, Austria (2007)

5. Meredith, G., Weerawarana, S., Christensen, E., Curbera, F.: Web services description lan-
guage (wsdl) 1.1. Technical report (2001)

6. Foster, I., Kesselman, C.: The grid: blueprint for a new computing infrastructure. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1998)

7. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.,
Vassalos, V., Widom, J.: The TSIMMIS Approach to Mediation: Data Models and Lan-
guages. Journal of Intelligent Information Systems 8(2), 117–132 (1997)

2 http://www.openk.org/

390 R. Siebes et al.

8. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX-a semantic service-
oriented architecture. In: Proceedings IEEE International Conference on Web Services, 2005.
ICWS 2005, pp. 321–328. IEEE Computer Society Press, Los Alamitos (2005)

9. Kotoulas, S., Siebes, R.: Adaptive routing in structured peer-to-peer overlays. In: 3rd Intl.
IEEE workshop on Collaborative Service-oriented P2P Information Systems (COPS work-
shop at WETICE07), Paris, France, IEEE Computer Society Press, Los Alamitos (2007)

10. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 233–
246. ACM Press, New York (2002)

11. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., et al.: OWL-S: Semantic Markup for Web Services.
W3C Member Submission 22 (2004)

12. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the Semantic Web in UDDI.
Web Services, E-Business and Semantic Web Workshop (2002)

13. Rao, A.S., Georgeff, M.P.: Modeling rational agents with a BDI-architecture. Readings in
agent, 317–328 (1997)

14. Robertson, D.: A lightweight coordination calculus for agent systems. In: Leite, J.A.,
Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 183–
197. Springer, Heidelberg (2005)

15. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal on Data
Semantics IV, 146–171 (2005)

16. Siebes, R., Kotoulas, S.: proute: Peer selection using shared term similarity matrices. Web
Intelligence and Agent Systems 5(1), 89–107 (2007)

17. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web Services
Standards. In: Proceedings of the International Conference on Web Services, pp. 395–401
(2003)

18. Stevens, R., Robinson, A., Goble, C.A.: mygrid: Personalised bioinformatics on the informa-
tion grid. In: proceedings of 11th International Conference on Intelligent Systems in Molec-
ular Biology, Brisbane, Australia (2003)

19. Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction
and composition of semantic web services. J. Web Sem. 1(1), 27–46 (2003)

20. ten Teije, A., van Harmelen, F., Wielinga, B.: Configuration of web services as parametric
design

21. Traverso, P., Pistore, M.: Automated Composition of Semantic Web Services into Executable
Processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, Springer, Heidelberg (2004)

22. Gerloff, D., Sharman, J., Quang, X., Walton, C., Robertson, D.: Peer to Peer Experimentation
in Protein Structure Prediction: an Architecture, Experiment and Initial Results. In: Interna-
tional Workshop on Distributed, High-performance and Grid Computing in Computational
Biology, Eilat, Israel (2007)

Ontology Enrichment in Multi Agent Systems

Through Semantic Negotiation

Salvatore Garruzzo and Domenico Rosaci

DIMET, Università Mediterranea di Reggio Calabria
Via Graziella, Località Feo di Vito

89122 Reggio Calabria, Italy
{salvatore.garruzzo,domenico.rosaci}@unirc.it

Abstract. Ontologies play a key role in the development of Multi-Agent
Systems (MASs) for the Semantic Web, providing conceptual description
of the agents’ world. However, especially in open MASs, agents use differ-
ent ontologies and this often leads to communication failures. Semantic
negotiation is a recent framework which provides an effective solution to
such a problem, but it is a too heavy framework to be implemented in
large agent communities. In this paper, we deal with the inefficiency in
semantic negotiations, and we show how a possible solution is to build
a common representation of the different terms used by the agents. We
argue that a reasonable compromise to use a common ontology consists
of combining it with semantic negotiation and we propose an algorithm
which implements this idea in the recent HISENE semantic negotiation
framework. Moreover, the semantic negotiation is exploited, in our pro-
posal, to dynamically enrich the global ontology.

1 Introduction

Nowadays, we can observe a growing use of MASs in different applications on the
Semantic Web, since software information agents make possible the widespread
acquisition of machine understandable data, opening myriad opportunities for
automated information processing. In this context, the notion of ontology plays
a prominent role. On one hand, ontologies drastically enhance the possibility to
make the Web being really “semantic”. On the other hand, in order to make
both effective and efficient the use of ontologies, two main problems, strongly
related to the intrinsical heterogeneity of the Semantic Web, arise.

Problem A: Heterogeneity between agents. Ontologies are often advo-
cated as a complete solution for knowledge sharing between agents, giving the
possibility to assign a meaning to terms contained in the exchanged messages.
However, such a possibility exists only in the case each agent of the system knows
the ontology of other agents; on the contrary, an agent that receives a message
from another one that uses a different ontology is not able to understand the
content of the message. A solution to such a problem is represented by the use
of a common ontology [4,6], shared by all the agents. However, this is a solution

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 391–398, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

392 S. Garruzzo and D. Rosaci

that appears unlikely in open MASs, since it would imply all the agents agree
to adopt a standard ontology, about which it is necessary to reach consensus.

Problem B: Necessity of a unique representative ontology. An agent
has the necessity to know the content of the other ontologies, in order to choose
the most suitable terms for a correct communication. In other words, the agent
would desire to have a “global ontology” which allows him to interact with the
community. Moreover, such a global ontology would be also very useful for the
new agents that join with the community. However, for the same reason, it is
worth to point out that the global ontology cannot be “a priori” fixed and static,
since it must reflect the possible introduction of new terms and the possibility
of use of new meanings of the same term.

Recently, a new framework suitable to face the problem of semantic hetero-
geneity has been developed, which seems promising to solve the problem A. This
framework, called semantic negotiation [3,5,6], is a process by which the agents
of a MAS try to reach mutually acceptable definitions (i.e., mutually acceptable
agreements on terms). In this context, in [1] we have introduced the idea that
two agents involved in a communication can require the help of other agents in
order to solve possible understanding problems. On the basis of this idea, we
have proposed the HIerarchical SEmantic NEgotiation (HISENE), that is suit-
able to be applied for implementing such a semantic negotiation in the standard
Java Agent DEvelopment Framework (JADE) [2]. HISENE gives a solution to
the problem A since its semantic negotiation protocol provides a framework to
allow the agents of a MAS to understand each other, without constraining the
agents to adopt a unique, fixed ontology. However, if a new agent joins with the
system, he cannot access to a global view of the existing terms, but he needs
to activate a semantic negotiation to gradually learn the personal “language” of
each other agent. This obviously leads to significant inefficiencies in the commu-
nication process of the entire system. The present work gives a contribution to
the problem B. In particular, we propose an algorithm, called Hisene Ontology
Enrichment (HOE), to derive a global ontology from the personal ontologies of
different agents. The global ontology generated by our algorithm contains all the
terms used by each agent and, for each term, the set of all the different meanings
exploited for that term. Moreover, the global ontology so derived can be con-
tinuously enriched during the evolution of the system, giving the possibility to
add new terms and new meanings of the same term. Using HOE in combination
with HISENE, each agent of a MAS can autonomously enrich his own ontology
by using the semantic negotiation protocol and, at the same time, access to the
global ontology to have a synoptical view of the terms used by all the other
agents. Each term of the global ontology is associated with a set of meanings,
and each meaning is associated, in its turn, with the agents that have used it in
the past. This allows an agent, that desires to send a message to another agent,
to choose the most suitable term with the most appropriate meaning from the
global ontology. Only in the case the agent does not find in the global ontology
the necessary term, he will use a new, personal term that is not contained in the
global ontology and that probably will lead to a semantic negotiation process.

Ontology Enrichment in Multi Agent Systems 393

This way, the use of the semantic negotiation, which is a significantly onerous
task, is limited to the strictly necessary cases. The plan of the paper is as follows:
Section 2 deals in detail with the HISENE protocol, while Section 3 describes
the HOE algorithm. Finally, Section 4 draws some conclusions.

2 HISENE2: A Protocol to Support Semantic Negotiation

In this section, we briefly describe the protocol HISENE2, expressly conceived
to support semantic negotiation between agents that exploit different ontologies
in an open MAS. HISENE2 has been implemented under the JADE framework,
that is an agent development environment fully compliant with FIPA specifi-
cation. In JADE, an ontology is a set of schemas defining the structure of the
concepts that are pertinent to the domain of interest. We refer below to the
JADE ontology in order to define our Extended Ontology, which is formed by a
set of elements. Each element can be either a traditional JADE ontology schema,
that here we simply call concept, or an explained element. More in detail, an ex-
plained element is a set of explanations, where the new notion of explanation can
be considered as a description of an element based on other elements. In other
words, we introduce a different way of representing the reality of an agent with
respect to a classical JADE ontology. In fact, a JADE ontology contains only
concepts (classes, object schemas), where each concept has a unique meaning
expressed by both its class name (the lexical component) and its class structure
(the structural component) and thus does not need any further explanation. Dif-
ferently, an extended ontology contains also explained elements, that can have
several meanings. Moreover, we consider that in the ontology of an agent i, each
explanation is associated with a set of agents, that we call context, for which this
explanation is understandable. Furthermore, we associate with each explanation
the explainer agent that has provided it to i and the confidence that i assigns to
the explanation. Communications between agents in JADE are held by means of
messages having a format specified by the ACL language, defined by the FIPA
international standard. In our framework, agents performing semantic negotia-
tion activities need to (i) express the content of the message using the extended
ontology, and (ii) exchange more other information (e.g. the list of the unknown
elements). In order to satisfy the issue (i), we introduce the concept of semantic
ordinary message that extends the message format described below, by using
only explained elements in its content. Moreover, to satisfy also the issue (ii),
we define the semantic negotiation message that further extends the semantic
ordinary message.

Definition 1 (Semantic negotiation message). A semantic negotiation
message is a tuple 〈i, j, ia, p, T, C〉 where i, j are the sender and receiver agents,
respectively, ia is the agent interested in the understanding process, p is the
performative, T is the understanding timeout determined by ia, and C is the
content of the message.

Our protocol is composed by six performatives, namely:

394 S. Garruzzo and D. Rosaci

1. SN QUERY : the agent i requires the help of the agent j to understand some
unknown elements. For this purpose i specify in the content C a list unun-
derstood of explained elements (el1, el2, . . .).

2. SN RESPONSE : after receiving a SN QUERY message from the agent j, the agent
i replies giving some explanations. In this performative, the content C is a
list of explained elements containing their explanations.

3. SN ACCEPT : after receiving a SN RESPONSE message from the agent j, the
agent i indicates the understood explanations. In this performative, the con-
tent C is a list of explained elements containing the accepted explanations.

4. SN UNKNOWN : the agent i is unable to give an answer to a previous SN QUERY
message sent by the agent j. The message’s content is void.

5. SN ALREADY ANSWERED : as previously described in Section 1, an agent receiv-
ing a SN QUERY message can start, in its turn, another semantic negotiation;
as a consequence, an agent can receive the same SN QUERY message from dif-
ferent agents. In this scenario, after receiving a SN QUERY message from the
agent j, the agent i replies that it has already answered to the same request
previously received. The message’s content is void.

6. SN FEEDBACK : the agent i is unable to understand a semantic ordinary mes-
sage even after a semantic negotiation. In this scenario, i replies indicating
the not understood explanations specified in the content C.

An agent supporting the semantic negotiation can perform three different
behaviours, namely:

A request behaviour is started when an agent i needs to understand un-
known explained elements. This happens when i receives: (i) a semantic or-
dinary message that i does not understand. The agent i creates the message
〈i, j, i, SN QUERY, T, C〉, where j is the generic receiver agent, i itself is the in-
terested agent and C is the list ununderstood of unknown explained elements; (ii)
a SN QUERY message having in its content C some explained elements that i is un-
able to explain. Thus, i creates the message 〈i, j, ia, SN QUERY, T, C∗〉 where j
is the generic receiver agent, the interested agent is the same of the received mes-
sage, and C∗ ⊆ C is the list ununderstood. A function createPartitions reads
the expertise and reputation coefficients and, on the basis of the partition weights
set by the agent owner, determines the agent partitions. Then, SRequest and
SReceive behaviours are executed. SRequest is a OneShotBehaviour that, for
each partition level k, sends a SN QUERY message to each agent contained in the
k-th partition, until either the list ununderstood becomes empty or the message
timeout is reached. SReceive is a CyclicBehaviour in which i waits for answers
from the contacted agents. Each received SN RESPONSE message has as content
a list of explained elements (el1, el2, . . . , elh) where elm contains the explanations
{e1

m, e2
m, . . . , el

m}. Therefore, the function solveSemanticUnunderstanding
(eg

m), g = 1, 2, . . . , l is called for each received explanation eg
m. This function

performs a schema matching between the i’s ontology and the set of elements
contained in eg

m. For each accepted explanation e relative to an explanation
element el, the agent i (i) stores e inside the element el in its ontology and
(ii) replies a SN ACCEPT message indicating the understood explanation.

Ontology Enrichment in Multi Agent Systems 395

An answer behaviour is started when an agent i receives a request message
(SN QUERY). There are three possibilities: (i) i has previously answered to the
same message. In this case, i replies with a SN ALREADY ANSWERED message; (ii)
i understands the message. In this case i replies with a SN RESPONSE message
containing the list of explained elements as described above; (iii) i does not un-
derstand the whole message. In this case, i starts in its turn a request behaviour
(i.e. a new semantic negotiation). After that, if the message is partially or com-
pletely understood (resp. not understood), i replies with a SN RESPONSE (resp.
SN UNKNOWN) message.

A feedback behaviour is started when an agent k receives a semantic or-
dinary message containing some unknown explained elements from an agent i.
The agent k begins a semantic negotiation in order to understand all the un-
known explanations. After having concluded this negotiation, k sends to i a
SN FEEDBACK message containing the list of all the explanations that remained
already unknown. The agent i, for each explanation e learnt from the agent j
that is contained in a SN FEEDBACK message updates the explanation confidence.
and both the reputation and expertise coefficients of j.

3 The HISENE Ontology Enrichment (HOE) Algorithm

In this section we describe the HOE algorithm, which exploits the result of the
semantic negotiation to construct and incrementally enrich the global agent on-
tology of the whole system. To informally describe the idea underlying HOE,
we propose an example of how this algorithm works. Consider the simple MAS
graphically depicted in Figure 1, composed by the three agents A, B and C.
Each agent has its own ontology, which is continuously enriched by performing
semantic negotiation activities: we have denoted by OA, OB and OC the ontolo-
gies associated with A, B and C, respectively. In particular, Figure 1-(a) shows
an initial situation, in which the agents A, B and C have only unexplained ele-
ments in their associated ontologies, since no semantic negotiation process has
yet been performed. In such an initial situation, as shown by the Figure 1-(a),
the global ontology of the MAS, denoted by OMAS is simply the union of the
three personal agent ontologies OA, OB and OC . Now, as a first situation, sup-
pose that C sends to B a query message, asking if B has a plant of Rome (see
Figure 1-(b)). Unfortunately, B does not have in his ontology the element plant.
As a consequence, we suppose that B begins a semantic negotiation with C, by
asking him to explain what is a plant. We assume that C is able to explain plant
by using another element of his ontology, namely map. This way B understands
the meaning of plant since he has the element map in his own ontology, and he
is able to answer C. Consequently, both B and C now adds to their ontologies
the new explanation of plant in term of map, by also recording that B is the
explainer. We also suppose that both B and C will use in the future the new
explanation of plant, and since they will presumably obtain good results in most
of the cases, the confidence of the explanation will remain equal to 1. Consider
now a second situation. Suppose that C sends to A a message which contains

396 S. Garruzzo and D. Rosaci

agent

A

agent

B

agent

C

O

plant(order, family, species)

map(city)

A

product(name, category)

particle({product},{A,B}, A, 0.2)

O

{B,C}, C, 1

map(city)

product(name, category)

particle({product},{A,B}, A, 0.3)

B

plant({map},)

O

{B,C}, C, 1

map(city)

plant(city)

particle(name, charge, mass)

C

plant({map},)

O

plant(order, family, species)

plant({map},{B,C}, C, 1)

plant(city)

map(city)

particle(name, charge, mass)

product(name, category)

MAS

agent

A

O

plant(order, family, species)

map(city)

A
O

map(city)

product(name, category)

B
O

map(city)

particle(name, charge, mass)

plant(city)

C

O

plant(order, family, species)

map(city)

plant(city)

particle(name, charge, mass)

product(name, category)

MAS

(a)

(b)

1. "Do you have a plant of

Rome? "

2. "What is a ?"plant

3. "A is a "plant map

5. "Do you have some information about a called neutron?"particle

6. "What is a ?"particle

7. A is a "particle product

particle({product},{A,B}, A, 0.25)

4. "Yes, I have this plant

Fig. 1. The state of the ontologies (a) before and (b) after the semantic negotiation

the element particle. This element is not present in the ontology of A, that tries
to understand it by performing a semantic negotiation task. Suppose that B,
that is involved in the semantic negotiation, gives an explanation of particle in
terms of another element of his ontology, i.e. product. Obviously, this is a wrong
explanation, probably due to a misunderstanding of particle (for example, the
human owner of the agent B might have confused particle with the element arti-
cle and consequently associated it with product). The new explanation of particle
in terms of product is then added in the ontology of both A and B, recording
B as explainer. Now, we can easily suppose that in the future A and B will
use this explanation of particle, obviously having bad results. Consequently, we
argue that the confidence in this explanation will rapidly decrease in time (in
Figure 1-(b) we have supposed the values 0.2 and 0.3 in the ontologies of A
and B, respectively). The two situations described above are two examples of
how the semantic negotiation leads to an enrichment to the personal ontologies
of the agents. As a natural extension of the approach described above, we now

Ontology Enrichment in Multi Agent Systems 397

propose to add the new explanations, derived by semantic negotiation, in the
global ontology of the MAS, such that the global ontology is always the union of
the elements present in the personal ontology. However, we point out that it is
not suitable to add in the global ontology those explanations which have a small
confidence, since they should be considered as bad explanations. In order to eval-
uate what value of confidence to assign to an explanation that is present at the
same time in different ontologies, we associate to it, as confidence coefficient, the
average of the corresponding confidence coefficients in the personal ontologies.
For instance, the confidence coefficient associated to particle({product},{A,B},
A, 0.25), is computed as the average of the confidence 0.2 relative to the ontol-
ogy of the agent A and the confidence 0.3 relative to the ontology of the agent
B, and thus it is equal to 0.25. In the example of Figure 1, we have decided
to add to the global ontology only those explanations which have a confidence
greater than or equal to 0.5, therefore the explanation particle({product},{A,B},
A, 0.25) is discarded, as graphically represented in Figure 1-(b). The enrichment
of the global ontology allows to introduce a significant improvements in the se-
mantic negotiation protocol. Indeed, in the new version of the protocol that we
here propose, when an agent x desires to send a message to another agent y,
first he examines the global ontology to find possible explanations of elements
that contains y in their context. This avoids the use of elements that y cannot
understand and will reduce the use of semantic negotiation. On the other hand,
when an agent x receives a message from another agent y, and that message
contains some elements which do not belong to the ontology of x, then x ex-
amines the global ontology for finding possible explanations of these elements,
that he is able to understand. Only in the case the exam of the global ontology
does not success, x performs a semantic negotiation task. Now we describe the
behaviour of an agent a which receives a message and uses the HOE approach.
If the agent does not understand the message, then he firstly calls the function
GlobalOntologySearch. This function receives as input the ontology Oa of the
agent a, the global ontology OMAS of the MAS and the set U which contains
all the elements of the message m which a does not understand. The function,
for each ununderstood element u which belongs to U , checks if u belongs to the
global ontology OMAS . Here we assume that u belongs to OMAS if OMAS con-
tains an element named u, without considering the content of u. In the positive
case, it examines each explanation e of the element u contained in OMAS . We
remember that the explanation e is a tuple 〈E, C, ea, c〉 where E is the set of
ontology elements constituting e, C is the context, i.e. the set of the agents which
are able to understand eu, ea is the explainer agent that provided e, and c ∈ [0, 1]
is the explanation confidence. If the set E is also contained in the ontology Oa of
the agent a, then the agent a understands the explanation e and consequently e is
added, by using the function add, to the element u in the ontology Oa. After the
execution of GlobalOntologySearch, if the message has been understood, the
HOE behaviour ends, without performing any semantic negotiation. Otherwise,
if some elements e1, e2,..,ek are yet ununderstood, then the answer behaviour is
executed relatively to only these elements. When this behaviour is terminated,

398 S. Garruzzo and D. Rosaci

the function GlobalOntologyUpdate is called. This function receives as input
the set U which contains the elements which has been involved in the previ-
ous Answer behaviour, and the global ontology OMAS . If the generic element
u is not present in OMAS , the function simply adds u to OMAS , by using the
function addElement. Otherwise, if u is already present in OMAS , the function
updates the set of the explanations of u in OMAS . The update is performed as
follows. If the element u belonging to U contains an explanation e which is not
also contained in the corresponding element of OMAS , and the confidence of e,
say ce, is greater than the threshold σ, then this explanation is added to OMAS .
Otherwise, if the element u belonging to U contains an explanation which is also
already contained in the corresponding element of OMAS , then the confidence
coefficient of the explanation in OMAS is updated. In order to describe how the
update of the confidence coefficient is done, let cU

e be the confidence associated
with the explanation e in the list U , and let cMAS

e be the confidence associated
with the same explanation in the global ontology OMAS . The new value of cMAS

e

is computed as the average between the old value of cMAS
e and the value cU .

4 Conclusions

In conclusion, we have highlighted that the main reason of inefficiency in seman-
tic negotiation is that the knowledge acquired through the negotiation activities
is not suitably shared among the agents. To overcame this limitation, we propose
to construct a global ontology of the MAS, that can be dynamically enriched
exploiting the results of the semantic negotiation. The HOE algorithm for the
global ontology enrichment introduces a relatively little cost for updating the
ontology elements, being its execution distributed on the whole community. On
the other hand, the combined use of the semantic negotiation and the global
ontology generates a drastically reduction of the communication cost.

References

1. Garruzzo, S., Rosaci, D.: HISENE2: A Reputation-based Protocol for Supporting
Semantic Negotiation. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275,
pp. 949–966. Springer, Heidelberg (2006)

2. http://jade.tilab.com (2005)
3. Soh, L., Chen, C.: Balancing ontological and operational factors in refining multia-

gent neighborhoods. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2005.
LNCS (LNAI), vol. 3394, pp. 745–752. Springer, Heidelberg (2005)

4. van Diggelen, J., Beun, R.-J., Dignum, F., van Eijk, R.M., Meyer, J.-J.Ch.: Opti-
mal communication vocabularies and heterogeneous ontologies. In: van Eijk, R.M.,
Huget, M.-P., Dignum, F.P.M. (eds.) AC 2004. LNCS (LNAI), vol. 3396, Springer,
Heidelberg (2005)

5. van Diggelen, J., Beun, R.-J., Dignum, F., van Eijk, R.M., Meyer, J.-J.C.: An effec-
tive minimal ontology negotiation environment. In: AAMAS Int. Conf. ACM (2006)

6. Williams, A.B.: Learning to Share Meaning in a Multi-Agent System. Autonomous
Agents and Multi-Agent Systems 8(2), 165–193 (2004)

http://jade.tilab.com

A Relaxed But Not Necessarily Constrained Way from
the Top to the Sky

Katja Hose1, Christian Lemke1, Kai-Uwe Sattler1, and Daniel Zinn2

1 Dept. of Computer Science and Automation, TU Ilmenau
2 Dept. of Computer Science, University of California, Davis

Abstract. As P2P systems are a very popular approach to connect a possibly
large number of peers, efficient query processing plays an important role. Ap-
propriate strategies have to take the characteristics of these systems into account.
Due to the possibly large number of peers, extensive flooding is not possible.
The application of routing indexes is a commonly used technique to avoid flood-
ing. Promising techniques to further reduce execution costs are query operators
such as top-N and skyline, constraints, and the relaxation of exactness and/or
completeness. In this paper, we propose strategies that take all these aspects into
account. The choice is left to the user if and to what extent he is willing to relax
exactness or apply constraints. We provide a thorough evaluation that uses two
types of distributed data summaries as examples for routing indexes.

1 Introduction

One of today’s challenges in data integration and distributed data management is to cope
with large-scale dynamic environments. A promising solution are Peer Data Manage-
ment Systems (PDMS), which combine the peer-to-peer (P2P) paradigm and its char-
acteristics such as self-organization, robustness, scalability, and the absence of global
knowledge with ideas from classical federated databases. In a PDMS, each peer pro-
vides its own data with its own schema and in this way preserves the sovereignty over
its data. Furthermore, each peer can answer and process queries and is linked to a small
set of neighbors via mappings representing schema correspondences.

However, an inherent problem of large-scale dynamic data management systems is
to guarantee complete and exact query answers. In principle, this requires querying
all the peers in the system (e.g., by exhaustive flooding) or to know all peers holding
relevant data (i.e., to have global knowledge). This is mostly impossible simply due to
the mere size of the system. A possible improvement to avoid expensive flooding is
the usage of routing indexes [2]. In their original sense they index files by means of
keywords. A slightly different understanding of routing indexes came up later [9, 5].
These indexes use summarizing data structures to describe numerical attributes of data
records. In accordance to [5] we call such routing indexes Distributed Data Summaries
(DDS). Figure 1 illustrates the two variants (QTree-based [5, 11], histogram-based) we
are using in this paper.

Because of the heterogeneity of the data as well as the autonomy and dynamicity ex-
pecting exact or complete results often makes no sense: mappings are incomplete, peers
can join or leave the system at any time, data is dirty, etc. Thus, we argue that relaxing

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 399–407, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

400 K. Hose et al.

exactness/completeness expectations is a key for efficient query processing in PDMS.
Such relaxations can be achieved on more than just one level. First of all, ranking query
operators such as skyline and top-N by definition do not aim at providing a complete
and detailed answer to a query. They provide an overview over the data in the system.
Skyline queries [1] are the logical consequence of top-N queries, where the user is not
only allowed to define one single ranking function but an arbitrary number of them.
These user-defined ranking functions may differ substantially from one query to the
next, so that any kind of preprocessed results would not help. Sometimes, however, the
user is not interested in the whole data space but only in a subspace that he can specify
with constraints. This leads to constrained skylines [3] and constrained top-N queries
that only consider records in a subspace of the whole data space. Still, there is another
option to reduce execution costs: relaxing the completeness/exactness requirements by
allowing fuzziness. A representative of a fuzzy area may represent several result records
clustered in one region.

In this paper, we build upon previous work [11,5,6,4] that discusses the use of DDS
and relaxation for processing skyline queries. We present a strategy that adopts and
enhances these techniques such that not only skyline but also top-N queries benefit from
the application of a fuzzy parameter. We additionally introduce constraints and examine
the benefits that we gain from two different types of DDS (QTree-based, histogram-
based). The remainder of this paper is structured as follows. After having sketched
related work in Section 2, Section 3 presents a strategy for processing relaxed queries
in PDMS. In Section 4 we extend this strategy to constraints. Section 5 shows the results
of our evaluation and Section 6 concludes this paper.

15

15

16

1

0 0

0 0

0

ROOT

1

1

A B

15 15 15

A
1

A
2 A

B

C

B
1

B
2

Qtree

Multidimensional Histogram

Raw Data Topology Graph View

Fig. 1. Base Structures for DDS Illustrated at the Example of a Two-Dimensional Data Set. Left:
Original Data, Center: Topology View with Regions/Buckets Representing the Data, Right: Graph
View (QTree: Inner Nodes Depicted as Ellipses, Statistic Nodes as Rectangles; Histogram: Re-
gions with the Number of Represented Records Corresponding to Statistic Nodes in the QTree)

2 Related Work

In contrast to the skyline operator, which came up in database research only a few years
ago [1], the top-N operator had already played an important role in RDBMS before.

A Relaxed But Not Necessarily Constrained Way from the Top to the Sky 401

Later on, when distributed systems gained more importance, the Threshold Algorithm
(TA) [8] and algorithms based on it have been developed. However, all approaches
based on TA have some severe drawbacks: first, the vertical distribution of data and the
specialized network structure, where the processing node has direct access to all other
nodes. Second, TA requires sorted lists of all objects that we cannot assume to exist in
P2P environments.

Already before [1] introduced the skyline operator into database research, the prob-
lem had been known as the maximum vector problem [7] before. However, most of the
works published have been designed for centralized systems and only a few approaches
consider computing skylines in distributed environments. Some exploit the TA princi-
ple of sorted lists for processing skylines. The same reasons as stated above make them
hardly applicable to PDMS. Another recent work that considers skyline processing in
distributed environments is DSL [10]. Although this approach works well for struc-
tured overlays, we focus on a more general solution that is able to process skylines in
unstructured P2P networks, where we cannot influence the data a peer holds.

3 Distributed Query Processing

In this section we present our algorithm for processing relaxed rank-aware queries in a
completely decentralized fashion using the information provided by DDS. Let us first
give a formal definition of relaxation:

Given a set D of data objects, a top-N or skyline query T, a distance function d :
D × D → R, and a limit ε ∈ R, then any subset R of D for that

∀t ∈ T(D) ∃r ∈ R : d(t, r) ≤ ε (1)

holds, is called a relaxed top-N /skyline result. Furthermore, if for r, t ∈ D: d(r, t) ≤ ε
holds, r is called a representing record of t. A representative is the combination of such
a representing record and the region that is represented. Thus, a relaxed top-N /skyline
result can be defined as a set R that contains a representative for each result record
t ∈ T(D). Note that there are usually many R for a data set D that fulfill Equation 1.
Furthermore, several records can be represented by one single representative.

The guarantee that is output to the user for such a result is an inherent part of any
representative. It guarantees that all records that are represented by the representative
are situated within the region that is part of its definition. The maximum distance be-
tween the representing record and any point in the region never exceeds ε with respect
to distance function d.

Algorithm. Since the ε value limits the maximum approximation error that the algo-
rithm is allowed to make,ε and d have to be specified by the user and added to the
query definition. The algorithm for relaxed rank-aware queries can be summarized by
the following steps that need to be executed at each peer that receives the query:

1. Compute the query locally – considering local data, DDS regions, constraints, and
if provided data received along with the query.

2. Try to find representatives for all regions that are part of step 1’s result – using
distance function d and the maximum distance ε received along with the query.

3. Forward the query to all neighbors whose regions could not be represented.

402 K. Hose et al.

4. After all queried neighbors have answered: determine the result over the union of
their answer data and the local result – both may include representatives.

5. Try to minimize the number of representatives.
6. Forward the result to the query’s sender - data records as well as the remaining

representatives.

In the following, we at first describe how to determine representatives for regions. Next,
we discuss how to compute rank-aware queries over representatives and finally we dis-
cuss how to minimize the number of representatives. Due to limited space we focus
on processing top-N queries.1 All techniques including the application of constraints
presented in Section 4 can be used for processing skyline queries as well.

Determining Representatives. Finding representatives for the data that is relevant to
the query and provided by neighboring peers reduces execution costs. In the best case
all regions that are part of the query result over regions (resulting from step 1) can be
represented by known data records such that the query does not have to be forwarded
at all. More precisely, choosing representatives means: Given a region B, a distance
function d, and a distance ε we have to find a set of records Dloc that represents B
with respect to the given query specification such that for any point p ∈ B there exists
a local data record l ∈ Dloc for that d(p, l) ≤ ε holds. The problem we encounter is
to find a minimal set of representatives that correctly represents a region. As a simple
solution to this problem our implementation represents regions only if it is possible
to represent them with one single representative, i.e., a region is represented if it is
completely enclosed in the region defined by d, ε, and the representing data record.

Top-N Computation over DDS Regions. Without loss of generality let us assume that
the score value, which is assigned to a data record by the ranking function, has to be
minimized. Let smax(B) and smin(B) denote the maximum and minimum scores that
any point in region B might have. Furthermore, let count(B) denote the number of data
records contained in B. Finally, let Ball be the union of the set of all regions provided
by the DDS (only statistic nodes of the QTree) and all local data records – treated as
regions with no extensions and a statistics value of 1.

Then, a peer has to determine a set Bsuff ⊆ Ball such that the worst score s is
minimized and the following equation holds:

∑

Bi∈Bsuff

count(Bi) ≥ N , s := max
Bi∈Bsuff

smax(Bi) (2)

Based on the worst score s the peer determines all regions Badd ⊆ Ball \ Bsuff that
might contain data records that have a better score than s:

Badd := {Bj ∈ Ball \ Bsuff | smin(Bj) < s} (3)

Finally, the peer determines the set of relevant regions BtopN as:

BtopN := Bsuff ∪ Badd (4)

1 The full version of this paper is available at http://mordor.prakinf.tu-ilmenau.de/papers/
dbis/2007/CoopIS07full.pdf

A Relaxed But Not Necessarily Constrained Way from the Top to the Sky 403

The additional information that is forwarded along with the query is pworst. It is the
coordinates of the worst record that might be contained in the result set defined by
Bsuff . A peer that receives pworst along with the query only considers regions and local
data records that are ranked better than pworst.

Top-N Computation over Representatives. Let us consider each representative R
to be a pair (r, B) where B is the represented region and r denotes the record that
represents B. Remember that the basic algorithm for processing top-N queries needs
to determine a best and a worst score for each region – smin and smax. We can do
the same for each representative by considering the boundaries of the region that it
represents. Thus, we can use the same algorithm.

Minimizing the Number of Representatives. Finally, we need to minimize the number
of representatives that remained in the result. For this purpose, we split up the repre-
sentatives into two lists: R for the data records that represent the regions and B for the
regions that are represented. Given these two lists we try to find a minimal subset of R
that still represents all regions B:

After having split up the representatives, R is sorted in descending order by the
number of regions the entries could represent. We start with an empty set of chosen
representatives. For each region B ∈ B we try to find an already chosen pair of (r′, B′)
where r′ can represent the merged region B ∪ B′ without violating the approximation
constraints defined by d and ε. If such a pair is found we merge the two regions and
obtain a larger region that is represented by r′. If there is no such pair that has already
been chosen we choose an element from R that could represent B. Since we have sorted
R, those r ∈ R that could represent the most regions are considered first and therefore
favored. The algorithm ends after all regions of B are represented.

4 Introducing Constraints

Let A be the set of all attributes, then we define the set of user-defined constraints C as:

C := {(a, nl, nu)|a ∈ A, nl, nu ∈ R} (5)
where nl and nu define the interval [nl, nu] that constrains attribute a. Of course, we
also support single-sided constraints by using negative and positive infinity as default
for non-defined values.

In order to adapt the algorithm of Section 3 to work with constraints we have to
preprocess the input data set Ball for local query processing, we obtain Bcon:

Bcon :=
{

Bi ∈ Ball| ∀
c∈C

overlaps(Bi, c)
}

(6)

This is the set of all regions and local data records that at least partially overlap with the
data space defined by the constraints. In other words, all those records and regions are
discarded that at least contradict one of the constraints.

5 Evaluation

To evaluate the algorithms presented in this paper we used the two DDS variants illus-
trated in Figure 1: one based on multidimensional equi-width histograms (HDDS) and

404 K. Hose et al.

one on the QTree (QDDS). We used three different setups, each is based on the same
cycle-free topology of 100 peers with each peer having at most 4 neighbors. We also
ran tests with other network sizes and found the same tendencies. Thus, in the follow-
ing we only present our results for the network of 100 peers, where each peer provides
50 four-dimensional data records (all values restricted to [0, 1000]). Figure 2 shows the
two-dimensional projection of the data sets. For the first setup “Random Data, Random
Distribution” the attribute values of each data record and for all dimensions are chosen
randomly from the interval [0, 1000]. In the second setup “Clustered Data, Clustered
Distribution” the data of each peer is organized in a cluster. Each cluster has a diameter
of 20 and is assigned randomly to a peer. For the third setup “Anti-correlated Data, Ran-
dom Distribution” data records are chosen randomly on the line defined by the points
p1(1000, 0, 0, 1000) and p2(0, 1000, 1000, 0) and offset by [−10, 10].

Fig. 2. Data Sets: Random (left), Clustered (middle), and Anti-Correlated (right)

In all tests the DDS are defined on all 4 attribute dimensions. QDDS use a maximum
number of statistic nodes of 50 or 100 and 4 as the maximum fanout of inner nodes.
HDDS use 5 or 10 buckets per dimension (i.e., 625 or 10000 for each neighbor). In
all our tests we varied ε from 0 to 1100, applied the Euclidean distance as distance
function, and evaluated the same test query with the same peer as initiator. In order to
make use of our multidimensional index structures the top-N test query is defined on 2
attributes by the following ranking function: attribute1 + attribute2.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution
anti−correlated data, random distribution

clustered data, clustered distribution
flooding

(a) Number of Messages, QDDS 50

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution
anti−correlated data, random distribution

clustered data, clustered distribution
flooding

(b) Number of Messages, HDDS 625

Fig. 3. Distributed Processing of Relaxed Top-N Queries

Results. With respect to relaxation of top-N queries let us first discuss Figure 3(a) in
that we used QDDS with 50 statistic nodes. As the general reduction in the number
of messages for all setups indicates, in accordance to our intention the application of

A Relaxed But Not Necessarily Constrained Way from the Top to the Sky 405

fuzziness reduces query execution costs: the higher ε the more cost reduction. Apart
from this general tendency we can also infer the cost reduction that originates from the
mere use of DDS as an ε of 0 means that relaxation is not used. In the case of clustered
data in a clustered distribution the number of messages necessary to answer a query is
reduced to less than 15%. The reason for this effect is that this is the best case scenario
for DDS since clusters can be represented easily with low approximation error.

Figure 3(b) shows the corresponding results for HDDS. In these experiments the data
of each neighbor was described by a histogram with 625 buckets. Remember that the
QDDS were only allowed 50 statistic nodes for all neighbors altogether. In comparison
to Figure 3(a) we see that for all setups the general tendency of message reduction with
increasing ε is the same for both DDS types. In situations with little relaxation QDDS
are clearly the best choice for almost all setups. But there are some situations where
HDDS are the better choice: “random data, random distribution” in conjunction with
higher relaxation. The reason is that in this setup there are no clusters that could easily
be described by QDDS regions and this is their strength. Due to the higher number
of buckets HDDS approximate the data more accurately which in turn enables a more
efficient pruning and thus leads to the reduction in the number of messages. However,
we still consider this a fair comparison between QDDS (50 statistic nodes) and HDDS
(625 statistic nodes) because although the respective number of buckets (statistic nodes)
is considerably different, their memory consumption is almost the same. As Figure 4
shows, increasing the number of statistic nodes for QDDS counteracts this problem.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

N
um

be
r

of
 M

es
sa

ge
s

Disk Space in kByte

no index
QDDS 50

QDDS 100
HDDS 625

HDDS 10000

(a) Anticorrelated Data, Random Dist.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

N
um

be
r

of
 M

es
sa

ge
s

Disk Space in kByte

no index
QDDS 50

QDDS 100
HDDS 625

HDDS 10000

(b) Clustered Data, Clustered Dist.

Fig. 4. Cost Benefit Analysis using a Skyline for Top-N Query Processing, ε = 400

Figure 4 shows the dependency of execution costs (i.e., the number of messages) on
the disk space that is required to manage DDS. It shows some examples for QDDS and
HDDS in two of our three setups. But what is the best choice? We have two dimensions
that we want to minimize: disk space and execution costs. Thus, a skyline might help to
discover the “good” choices: the black points in Figure 4 represent the skylines using
an ε of 400. In both skylines QDDS dominate HDDS.

Finally, let us answer the question what happens when we additionally apply con-
straints. The constraints we applied restricted each queried attribute to [500, 1000]. One
might expect that reducing the query space to a quarter might reduce execution costs
as well since there is less relevant data in the network. Our results presented in Fig-
ures 5(a) and 5(b) teach us otherwise. In comparison to the full space queries, execution
costs increase or stay more or less the same for 2 of 3 test scenarios and for both DDS.

406 K. Hose et al.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution
anti−correlated data, random distribution

clustered data, clustered distribution
flooding

(a) Number of Messages, QDDS 50

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution
anti−correlated data, random distribution

clustered data, clustered distribution
flooding

(b) Number of Messages, HDDS 625

Fig. 5. Distributed Processing of Constrained and Relaxed Top-N Queries

Only in the anti-correlated data setup with use of QDDS costs are reduced. The reason
is that in the other 2 setups the result set of top-N records changes for our queries (in
fact, it might be very different from the full space result) and new regions and records
that have not been relevant before suddenly become interesting and have to be evalu-
ated. This is different for the anti-correlated setup. In that case the algorithm can safely
discard half of the data space without having to investigate new regions. This results
in the cost reduction that we have found astonishing in the first place. As QDDS have
already a rather good performance for the full space, we see this effect more clearly in
Figure 5(a) than in Figure 5(b). Of course, if we reduced the data space to a very small
portion of the original one, we would find a cost reduction for all setups.

6 Conclusion

In this paper, we have discussed efficient processing of rank-aware query operators in
distributed environments. One of the key concepts is the use of Distributed Data Sum-
maries (DDS) as DDS enable an efficient query routing to only those peers that are most
likely to contribute to the final result. Apart from the basic strategy we have proposed
the use of fuzziness such that the result does not only consist of data records but also
contains representatives. Our evaluation results show that this in conjunction with DDS
is an effective possibility to reduce query execution costs. Another concept that we
introduced are constraints. As the evaluation shows this is only a severely limited possi-
bility to reduce costs. The application of such constraints in general leads to a task that
is not easier than the original one. However, relaxation is not restricted to distributed
environments. Since the benefit was very good especially for the anti-correlated data
set, future work will consider combining this technique with centralized algorithms for
that especially anti-correlated data means the worst case scenario.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE 2001, pp. 421–
432 (2001)

2. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: ICDCS 2002,
pp. 23–32 (2002)

A Relaxed But Not Necessarily Constrained Way from the Top to the Sky 407

3. Dellis, E., Vlachou, A., Vladimirskiy, I., Seeger, B., Theodoridis, Y.: Constrained Subspace
Skyline Computation. In: CIKM 2006, pp. 415–424 (2006)

4. Hose, K., Karnstedt, M., Koch, A., Sattler, K., Zinn, D.: Processing Rank-Aware Queries in
P2P Systems. In: DBISP2P 2005, pp. 238–249 (2005)

5. Hose, K., Klan, D., Sattler, K.: Distributed Data Summaries for Approximate Query Process-
ing in PDMS. In: IDEAS 2006 (2006)

6. Hose, K., Lemke, C., Sattler, K.: Processing Relaxed Skylines in PDMS Using Distributed
Data Summaries. In: CIKM 2006, pp. 425–434 (2006)

7. Kung, H.T., Luccio, F., Preparata, F.P.: On Finding the Maxima of a Set of Vectors. Journal
of the ACM 22(4), 469–476 (1975)

8. Lotem, A., Naor, M., Fagin, R.: Optimal Aggregation Algorithms for Middleware. In: PODS
2001 (2001)

9. Petrakis, Y., Koloniari, G., Pitoura, E.: On Using Histograms as Routing Indexes in Peer-
to-Peer Systems. In: Ng, W.S., Ooi, B.-C., Ouksel, A.M., Sartori, C. (eds.) DBISP2P 2004.
LNCS, vol. 3367, pp. 16–30. Springer, Heidelberg (2005)

10. Wu, P., Zhan, C., Feng, Y., Zhao, B., Agrawal, D., Abbadi, A.E.: Parallelizing Skyline
Queries for Scalable Distribution. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F.,
Hatzopoulos, M., Boehm, K., Kemper, A., Grust, T., Boehm, C. (eds.) EDBT 2006. LNCS,
vol. 3896, pp. 112–130. Springer, Heidelberg (2006)

11. Zinn, D.: Skyline Queries in P2P Systems. Master’s thesis, TU Ilmenau (2005)

Collaborative Filtering Based on Opportunistic

Information Sharing in Mobile Ad-Hoc Networks

Alexandre de Spindler, Moira C. Norrie, and Michael Grossniklaus

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{despindler,norrie,grossniklaus}@inf.ethz.ch

Abstract. Personal mobile devices and mobile ad-hoc networks can sup-
port interesting forms of opportunistic information sharing in user com-
munities based on spatio-temporal proximity. We show how this could be
used to realise a novel decentralised collaborative filtering (CF) approach
in a mobile environment.

1 Introduction

The issue of information sharing in mobile ad-hoc networks is often seen as the
problem of how to ensure that users can access remote data in networks without
a fixed topology and with possible disconnections. However, the ad-hoc nature of
establishing network connections between personal mobile devices can be viewed
as a means of sharing information opportunistically among members of a user
community based on spatio-temporal proximity.

Although projects such as AIDE [1] and TRACE [2] have investigated the use
of physical copresence as a means of forming social networks and opportunis-
tic sharing of information, they have not considered how collaborative filtering
algorithms could be adapted to base user similarity on shared social contexts.
Our goal was to do exactly that and investigate the use of peer-to-peer architec-
tures to allow users to exchange data automatically and unobtrusively based on
spatio-temporal proximity.

We motivate our approach in Sect. 2 and then present our collabortaive fil-
tering algorithm in Sect. 3. In Sect. 4, we show how our approach is equivalent
to existing collaborative filtering techniques based on centralised servers. Con-
cluding remarks are given in Sect. 5.

2 Motivation

Recommender systems based on collaborative filtering (CF) have become well-
known through their use in on-line stores. The underlying assumption is that
users who bought the same items in the past are likely to do so in the future. One
of the first approaches developed was user-based CF [3], in which the opinions of a
set of users judged to be similar to the current one are aggregated. The similarity

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 408–416, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Collaborative Filtering Based on Opportunistic Information Sharing 409

between users is measured in terms of the extent to which their opinions about
other items correlate. User-based CF has been deployed in a wide variety of
application domains such as music, video and web page recommendations [4,5,6].
There are three main shortcomings of user-based CF. Firstly, the set of opinions
given by a user is usually sparse and so the number of commonly rated items will
be small leading to an inaccurate similarity measure. Secondly, the complexity
of selecting a set of similar users grows with the number of users and items as
O(|users| × |items|) leading to problems of scalability. Thirdly, when new users
or items are introduced there is a lack of data on which to base recommendations.

A number of approaches address the shortcomings of user-based CF while
retaining its advantages. Sarwar et al. [7] introduced the idea of item-based
CF where recommendation is based on the similarity of items rather than users.
User- and item-based CF are the best known representatives of so called memory-
based approaches which perform filtering based on the raw data. In contrast,
model-based approaches compute intermediate representations of the set of the
tuples such as clusters, probability distribution functions or singular value de-
compositions. Model-based approaches effectively resolve the sparsity issue and
render predictions more efficient and supposedly accurate.

Most collaborative filtering systems have been designed to be deployed in client-
server architectures whereas only a few approaches [8,9,10] have tackled the chal-
lenges of decentralised environments. Distributed filtering research has mainly
been concerned with the availability of data on client devices where network con-
nectivity cannot be guaranteed and opinions need to be predicted. Mobile envi-
ronments introduce additional challenges as limitations of size and power capacity
place restricitions on computational power and human computer interface facili-
ties. Despite the advantages of model-based CF in comparison with memory-based
approaches, computing the intermediary representation emerges as a new bottle-
neck, in particular with regard to the limited computational power available on
mobile devices. Further, although wireless connectivity is increasingly available
within restricted areas such as restaurants and airports as well as public areas by
means of 3G networks, area-wide connectivity is still bound to expensive com-
munication costs, high power consumption and prone to disconnections. In con-
trast, devices may connect to each other in an ad-hoc peer-to-peer fashion based on
short range connectivity technology such as Wi-Fi and Bluetooth. Consequently,
a CF protocol for mobile environments must respect the following requirements.
All computation and storage must be decentralised since a connection to a central
server may not be available. Due to restricted computational and storage capac-
ities of mobile devices, local computation must be kept simple and the required
data small. Ideally, the protocol should rely on ad-hoc peer-to-peer connections
only. This transient connectivity requires data exchange to be short and to con-
sume little bandwidth. Additionally, the protocol must be delay tolerant since
other peers may not always be available. Finally, since mobile devices typically
feature reduced interaction facilities, user interaction should be minimal.

We believe that the notion of shared social contexts can be exploited to estab-
lish a similarity relationship between users. For example, if two users attend the

410 A. de Spindler, M.C. Norrie, and M. Grossniklaus

same music concert, it is likely that they have similar musical tastes. Our initial
studies carried out at an international arts festival show that this can be taken
further since users who share music preferences often share preferences for other
items such as festival events, films and books. As we will show in the following
section, this fact can be used to reduce computing costs of CF as well as to
render CF suitable for ad-hoc connectivity available in mobile environments.

3 Spatio-temporal Collaborative Filtering

The application domain of CF contains users consuming items and expressing
opinions about these items. Based on these, a collaborative filtering system pre-
dicts their opinion about items unknown to them. Opinions are tuples of the form
(user, item, value) which can be seen as a directed weighted edge in a graph,
pointing from a user node to an item node and weighted with a rating value.
Thus, a set of tuples defines a directed graph G = (U ∪ I, E) where U is the set
of nodes representing users, I the set of item nodes and E the set of directed
weighted edges pointing from nodes in U to nodes in I.

User-based CF processes a fundamental query by first computing similarities
among users and selecting those judged to be similar. Then the ratings of target
items by these users are aggregated. In order to include user similarities, we aug-
ment the previously defined graph with undirected edges connecting two users
and weighted with their similarities. Thus, the set of edges E is now composed
of Er ∪ Es where Er contains the rating edges and Es the similarity edges. As
proposed by Mirza et al. [11], Gs = (U, Es) represents a social network graph
while Gr = (U ∪ I, Er) refers to the rating graph.

Fig. 1. Social- and rating graph

Figure 1 shows an example graph composed of a social and rating graph.
The vertices on the bottom layer represent users and the ones on the top layer
items. Edges connecting users are weighted with the similarity of the adjacent
users. For clarity, we omit the weights of the edges connecting a user to an item
representing the rating value.

In our approach, the selection of users is performed implicitly and without
any prior similarity computations. We introduce the concept of spatio-temporal

Collaborative Filtering Based on Opportunistic Information Sharing 411

proximity which forms the basis for our selection of similar users. In the case of
social contexts formed around consumable items, user consumption of an item
means that their location matches the location of the item for a specific period of
time. Some items such as restaurants or bars can be consumed at any time within
predefined opening hours and the duration of consumption can be anything from
the time to drink a glass of wine up to eating a dinner. In contrast, items such
as comedy shows or theatre plays can be consumed only during a specific time
period and the duration is usually well defined. We will refer to these two kinds
of items as location and event items, respectively. Note that event items may
happen only once or be repeated periodically. All items have in common the fact
that if users meet while consuming them, they stay in each other’s vicinity for
longer than if they would pass each other in the street by chance.

The history of item consumption of a particular user ua can be regarded
as a set of item consumption tuples of the form (loci, [tk, tl]) where each tu-
ple contains two entries. The first entry identifies a location loci particular to
an item. This location represents an area in which the item can be consumed.
The second one delimits a period of time [tk, tl] during which the item was con-
sumed. Consequently, the history H(ua) of a user ua can be written as H(ua) =
{(loc1, [t1, t2]), (loc2, [t3, t4]), . . .}. The condition for item consumption tuples to
be equal is (loci, [tk, tl]) = (locj , [tm, tn]) ⇐⇒ (loci = locj)∧([tk, tl]∩t [tm, tn] ≥
p) where we define ∩t as a temporal intersection of two time periods. The con-
dition [tk, tl] ∩t [tm, tn] ≥ p holds if the time periods overlap for a duration of at
least p. The first component (loci = locj) accounts for spatial proximity while
the temporal intersection accounts for temporal proximity.

The user similarity Ploc,t resulting from spatio-temporal proximity between
two users ua and ub can be expressed as

P N
loc,t(ua, ub) =

{
1 if H(ua) ∩ H(ub) �= ∅
0 else.

This is a binary similarity measure in the sense that users are evaluated to be
similar only if they have at least one tuple of their consumption history in com-
mon. We use P N

loc,t(ua, ub) as a condition for the users ua ∈ U and ub ∈ U to be
connected by a similarity edge (ua, ub) ∈ Es in the social graph Gs. The resulting
social graph corresponds to a copresence community used by Lawrence et al. [1]
to disseminate information since spatio-temporal proximity is a necessary and
sufficient condition for users to have their devices connected.

We can refine this similarity taking into consideration the level of spatio-
temporal proximity among users. Based on the fact that users consuming the
same items are similar, it is obvious that the more often users consume the
same item, the more similar they are. This calls for a continuous similarity
measure P R

loc,t that takes into account the number of common simultaneous item
consumptions as opposed to the binary measure proposed before.

P R
loc,t(ua, ub) =

{ |H(ua)∩H(ub)|
max(|H(ua)|,|H(ub)|) if H(ua) �= ∅
0 else

412 A. de Spindler, M.C. Norrie, and M. Grossniklaus

This measure allows us to assign a weight to a similarity edge created based on
the binary measure. Note that if it evaluates to zero, the respective users are not
connected in the graph while it never evaluates to zero if they are connected.

We now describe our CF approach in terms of a formal description of the
algorithm running on a single mobile device as shown in Figure 2. For this
discussion, we assume the existence of three library functions. Wait(p) causes
the algorithm to pause for a time period of p, Transmit(Peer, M) transmits a
set of edges M to a remote peer Peer. This transmission will be translated to
a call of the function Receive(M) on the remote peer where M corresponds
to the second argument of the transmission function. Increase-Weight(Peer)
retrieves the edge (ulocal, uremote) ∈ Es where uremote denotes the user node
representing the argument Peer and increases its weight in order to update the
respective continuous proximity value.

Main-Loop()
1 N ← ∅
2 while run = �
3 do Ncurrent ← Scan()
4 Nnew ← Ncurrent − N
5 for ∀ Peer ∈ Nnew

6 do Send(Peer)
7 Increase-Weight(Peer)
8 N ← Ncurrent

Send(Peer)
1 M ← ∅
2 for ∀ (ulocal, i) ∈ Er

3 do M ← M ∪ {(ulocal, i)}
4 Wait(p)
5 Transmit(Peer,M)

Receive(M)
1 for ∀ (uremote, i) ∈ M
2 do Er ← Er ∪ {(uremote, i)}

Fig. 2. Collaborative filtering algorithm

While a peer is active, i.e. run = �, the main loop simply scans the envi-
ronment periodically and maintains a set N of peers in the vicinity. For every
remote peer Peer in the vicinity, the method Send(Peer) is called to send all
ratings made by the local user to the remote peer. This method runs as a thread
per remote peer in order to be non-blocking. Note that these ratings will only be
sent after a delay of length p, the parameter introduced above to determine the
equality of two rating consumption tuples. If the remote peer has left the vicin-
ity of the local peer during this time period, the tuples will not be sent by the
Transmit(Peer, M) function to avoid exchanges during a transient encounter.
Once the rating tuples have been sent to all new peers in the vicinity, the set
of peers in the vicinity is updated to remove peers that have left. Whenever a
local peer receives a set of tuples from a remote peer, Receive(M) is called and
these tuples are added to the set of tuples stored locally.

Finally, rating values from similar users about the target item are aggregated.
The most common approach is to compute the average. To do so, we select all
incoming edges of the node representing the target item and compute the average
of their weights. We also take into account the degree of similarity as expressed
by the continuous proximity measure. P R

loc,t(ua, ub) establishes a ranking of the
users according to their similarity to the user denoted by the first argument. A

Collaborative Filtering Based on Opportunistic Information Sharing 413

user ua is more similar to a user ub than to another user uc if P R
loc,t(ua, ub) >

P R
loc,t(ua, uc). Consequently, if we are to predict a rating value for a requesting

user ur about a target item itt, we compute the average of the rating values
contained in Gr, each weighted with the respective edge weights in Gs. When
computing this weighted average, we only need the continuous proximity values
for the rating user to all other users in the local graph. The similarity between
other users does not affect the aggregation and thus no continuous proximity
information needs to be passed on when ratings are exchanged.

4 Equivalence to Existing Algorithms

As explained in the previous section, users of our recommender system exchange
tuples when they are in spatio-temporal proximity. Each user maintains a graph
Glocal where the nodes in U represent users previously met and the nodes in I
represent all items rated by these users or the local user. In this section we first
explain why such a local graph is sufficient to perform user-based collaborative
filtering. Secondly, we show that the resulting algorithm resolves scalability issues
for which user-based approaches have frequently been criticised.

We first look at a simple form of traditional user-based CF where rating
values are set to 1 if a user has consumed an item and 0 otherwise. For example,
the Amazon online store interprets the purchase of an item as an expression
of a binary opinion about it. Thus, each user is represented by a binary vector
containing entries for all items. A server maintains the set of user vectors based
on which ratings are predicted. The similarity between two users is computed as
the number of vector entries both have set to 1. The prediction is the result of
aggregating the ratings of all users about the target item, each weighted with the
similarity between the requesting and rating user. Consequently, the prediction
is based on the set of users that have consumed at least one item which the
requesting user has also consumed. All other users are not included because
their ratings are weighted with a zero-valued similarity.

A user vector is a set of rating tuples where the user entry contains the
represented user. The tuples stored on the server define a graph Gglobal which,
in contrast to a local graph, includes all participating users and items consumed
by any user. Therefore, a local graph is a subgraph of the global graph while the
global graph is a union of all local graphs. In fact, a local graph belonging to
a particular user ui can be extracted from the global graph as follows. We use
superscript notations g and l to indicate that a node or edge set belongs to the
global or local graph, respectively. An edge is denoted as (p, q) where p and q
are the adjacent nodes. Finally, w(p,q) refers to the weight of an edge (p, q).

U l = {u | u ∈ Ug ∧ (ui, u) ∈ Eg
s ∧ w(ui,u) > 0} ∪ ui (1)

I l = {i | i ∈ Ig ∧ (u, i) ∈ Eg
r ∧ u ∈ U l} (2)

El
r = {(u, i) | (u, i) ∈ Eg

r ∧ u ∈ U l ∧ i ∈ I l} (3)
El

s = {(ui, u) | (ui, u) ∈ Eg
s } (4)

414 A. de Spindler, M.C. Norrie, and M. Grossniklaus

Equation 1 states that we take all users in Ug which are connected to ui by a
similarity edge with a weight greater than zero. Equation 2 selects all items that
are connected to a user selected in Eq. 1. Equation 3 selects all rating edges
whose adjacent user and item have been selected by the previous two equations.
Finally, Eq. 4 accounts for the fact that similarity edges are not exchanged.
Thus, only similarity edges between ui and the other users are selected. In Fig. 3,
we highlight the local graph as part of the global graph. Nodes and edges not
belonging to the local graph are drawn with a dashed line.

Fig. 3. Local graph as a subgraph of the global graph

Simple traditional CF outlined above predicts a rating for a requesting user
ur about a target item it as

1
|(u, it) ∈ Eg

r : (ur, u) ∈ Eg
s |

∑

(u,it)∈Eg
r

w(u,it) · w(ur ,u) (5)

where the aggregation is a weighted average of the ratings. Now we want to show
that all rating and social edges included in the aggregation also exist in the local
graph belonging to ur. The underlying intuition is that users from whom ratings
are aggregated have in common the fact that they consumed items also consumed
by the requesting user. Hence, if users exchange their own ratings whenever they
consume the same item, the set of users from whom opinions are collected and
thus are available in the local graph is equivalent to the set of users selected in
the global graph by traditional user-based CF. In order to prove this equivalence,
we have to show that all rating and social edges included in the sum in Eq. 5 also
exist in the local graph. This is obvious for the social edges because all edges
w(ur ,u) ∈ Eg

s have been selected by Eq. 4 and, since we are considering the local
graph belonging to ur, it holds that ui = ur. In order to simplify this proof of
equivalence, we can now leave out the weighting of each rating. Therefore we
rewrite Eq. 5 as

1
|(u, it) ∈ Eg

r : (ur, u) ∈ Eg
s |

∑

(u,it)∈Er:(ur ,u)∈Eg
s∧w(ur,u)>0

w(u,it) (6)

Collaborative Filtering Based on Opportunistic Information Sharing 415

where the condition of the sum ensures rating edges are included only from rating
users that have a non-zero similarity to the requesting user. Now it is apparent
that the rating edges included in the aggregation are also contained in the local
graph since El

r is extracted from Eg
r by applying Eq. 1, 2 and 3 consecutively,

while the selection criteria of the sum is equivalent to Eq. 1.
Since a local graph contains all edges used by traditional user-based CF for

rating predictions based on the global graph, the same results can be obtained
from the local graph alone thereby eliminating the need for a central server to
store all user vectors to compute similarities between users which is considered
the main bottleneck in traditional CF.

5 Conclusions

We have presented a technique for user-based collaborative filtering that exploits
an opportunistic mode of information sharing resulting from ad-hoc peer-to-peer
networking. Only users in spatio-temporal proximity are able to exchange ratings
and we have shown how this provides a natural filtering based on social contexts.
The resulting selection of similar users renders the computation of similarities
and selection of most similar users unnecessary which resolves sparsity and scal-
ability issues frequently associated with user-based collaborative filtering.

References

1. Lawrence, J., Payne, T.R., Roure, D.D.: Co-presence Communities: Using Perva-
sive Computing to Support Weak Social Networks. In: Proc. Intl. Workshop on
Distributed and Mobile Collaboration (2006)

2. Counts, S., Geraci, J.: Incorporating Physical Co-presence at Events into Digi-
tal Social Networking. In: Extended Abstracts on Human Factors in Computing
Systems (2005)

3. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open
Architecture for Collaborative Filtering of Netnews. In: Proc. Conf. on Computer
Supported Cooperative Work (1994)

4. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating
“Word of Mouth”. In: Proc. Intl. Conf. on Human Factors in Computing Systems
(1995)

5. Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and Evaluating
Choices in a Virtual Community of Use. In: Proc. Intl. Conf. on Human Factors
in Computing Systems (1995)

6. Terveen, L.G., Hill, W.C., Amento, B., McDonald, D., Creter, J.: Building Task-
Specific Interfaces to High Volume Conversational Data. In: Proc. Conf. on Human
Factors in Computing Systems (1997)

7. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based Collaborative Filtering
Recommendation Algorithms. In: Proc. Intl. Conf. on World Wide Web (2001)

8. Wang, J., Pouwelse, J., Lagendijk, R.L., Reinders, M.J.T.: Distributed Collabora-
tive Filtering for Peer-to-Peer File Sharing Systems. In: Proc. Symp. on Applied
Computing

416 A. de Spindler, M.C. Norrie, and M. Grossniklaus

9. Miller, B.N., Konstan, J.A., Riedl, J.: PocketLens: Toward a Personal Recom-
mender System. ACM Trans. Inf. Syst. 22(3), 437–476 (2004)

10. Tveit, A.: Peer-to-peer Based Recommendations for Mobile Commerce. In: Proc.
Intl. Workshop on Mobile Commerce

11. Mirza, B.J., Keller, B.J., Ramakrishnan, N.: Studying Recommendation Algo-
rithms by Graph Analysis. J. Intell. Inf. Syst. 20(2), 131–160 (2003)

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 417–426, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Policy-Based Service Registration and Discovery*

Tan Phan1, Jun Han1, Jean-Guy Schneider1, Tim Ebringer2, and Tony Rogers2

1 Faculty of ICT, Swinburne University of Technology, 3122 Hawthorn, Australia
{tphan, jhan, jschneider}@ict.swin.edu.au

2 CA Labs, CA (Pacific), Building 10, Level 2, 658 Church Street, 3121 Richmond, Australia
{Tim.Ebringer, Tony.Rogers}@ca.com

Abstract. The WS-Policy framework has been introduced to allow policy to be
expressed and associated with Web Services thereby enabling organizations to
manage the quality of their services. How the specified polices are kept
consistent with the organization’s regulations, and how to match service and
client policies requirements for effective service discovery, are issues yet to be
addressed. In this paper, we present a new approach that allows for the
automatic verification and matching of policies, using a service registry that
serves as a policy storage and management facility, a policy checkpoint during
service publication and as a policy matchmaker during service discovery. We
extend WS-Policy with a policy conformance operator for policy verification
and use WS-Policy Intersection for policy matching. We develop a policy
information model and policy processing logics for the registry. An
implementation of a policy-enabled service registry is also introduced.

1 Introduction

Requirements for quality and standard compliance are often specified in the form of
policies about the non-functional requirements of various components in an
organization’s IT infrastructure. In the Web Services context, the WS-Policy [1]
framework provides a way to describe the policies regarding Web Services in a
machine readable form; this allows for automatic policy enforcement via policy-
aware clients. At present, policies are associated with Web Services in various ways
and there is no automatic mechanism to guarantee that the policies specified are
consistent with the organization or application’s specific requirements. There is,
therefore, a need for reliable techniques to evaluate policies on a large number of
services and a final check point for policy conformance before the services are
published and made available to the clients.

Another concern is service discovery which, at present, focuses more on functional
and less on non-functional aspects of the services. WS-Policy allows a service to
advertise its capabilities and specify its requirements. Unfortunately, there is no easy
way for the client to have access to the policy information; this typically requires
some out of band communication. Other approaches such as WS-MetadataExchange

* This work is supported by the Australian Research Council and CA Labs.

418 T. Phan et al.

[4] have suggested ways of adding service meta-data such as policy information into
service endpoint description but this still requires the client to know the service
endpoint’s address.

In this paper, we present an approach to address these issues using a service
registry that holds policy information. We argue that a verification unit should reside
inside the service registry to verify the services for policy conformance when they are
published. We also propose that service clients should be able to indicate their policy
requirements as part of the service query. We thus present a management model and
techniques to enable automatic policy verification and matching. A prototype tool has
also been implemented to demonstrate the approach.

2 Background

The WS-Policy framework comprises a set of specifications that together offer
“mechanisms to represent the capabilities and requirements of Web Services as
policies” [15]. The framework includes the WS-Policy language [4], which provides a
simple and extensible notation to combine the various kinds of policy assertions and
form policy descriptions, and the WS-PolicyAttachment specification [3] which
specifies how to associate a policy with Web Services entities (services, endpoints,
operations, and messages). Various domain-specific standards have also been defined
to allow for the expression of policy assertions in individual domains like WS-
SecurityPolicy [12], WS-ReliableMessagingPolicy [5], and MTOM [10]. Policy-
aware tools such as WSE [13] can generate code to perform policy enforcements
automatically. WS-Policy is by itself a simple declarative language with the following
normalized structure.

<wsp:Policy> <wsp:ExactlyOne>
 (<wsp:All> (<Assertion> … </Assertion>)* /wsp:All>)*
</wsp:ExactlyOne> </wsp:Policy>

Effectively, in its normal form a WS-Policy policy is a logical XOR of the
contained policy alternatives with each policy alternative being a logical AND of the
assertions contained as seen in the following expression:

1

((,...,),..., (,...,))
11 1 1 n

P XOR AND A A AND A A
m n nm

= : Where P is a policy

expression; Aij (0 ,0i n j m≤ ≤ ≤ ≤) is the jth policy assertion in the ith policy alternative
of the expression. Any WS-Policy policy expressions can be normalized into the
above form. Therefore, for the sake of simplicity, and without losing generality, in
this paper we treat all WS-Policy policy expressions as if they are in their normal
form.

A service registry holds service metadata for the registration and discovery of Web
services. Registries are characterized by rich metadata management and rich query
capabilities. There are two popular registry specifications: UDDI [7] and EbXML
Registry [9]. The two specifications were originally created for standardizing inter-
organizational service registry products. They are now adopted more for intra-
organizational registries due to the trust and privacy issues related to service

 Policy-Based Service Registration and Discovery 419

registration and discovery spanning multiple organizations. At present, neither UDDI
nor EbXML Registry has direct support for policy processing.

3 Enabling Policy-Based Service Registration and Discovery

We advocate the use of a service registry to support policy verification and policy-
based discovery. A service registry is where all service metadata is registered and
stored making it suitable for capturing and processing policy information. Existing
service metadata management mechanisms in the registry can be leveraged to support
the creation, publication, modification and removal of policy.

In our approach, a typical service registry’s data model is enhanced with a policy
information model to represent policy information. Two additional units, the
PolicyValidator for service policy verification at publishing time and the
PolicyEnabledQueryManager for policy matching at the service discovery
time, are added to the registry as can be seen in Figure 1.

Fig. 1. A registry-based model for policy registration and discovery

Contexts are defined within a registry to represent organizations, applications or
development projects. Policy can be specified per context to represent all the common
requirements, such as those about security like authentication, authorization, message
encryption and signing, that any entity under that context must follow. When a service
is published into a context with a policy, that policy must be verified against the
policy requirements of the context. The service will only be stored in the registry
when the policy conforms to the requirements. When the service policy or context
policy is updated, policy will be revalidated. This guarantees that only the services
with appropriate policies are made available for consumption by clients.

When a service client looks for a service in a registry, the client may only be
interested in a set of services that, apart from satisfying the functional requirements,
also support certain policy requirements. Client side policy requirements are
conveyed by sending the registry a description of the desirable policy as part of the
selection criteria of the service discovery. Only services that support the desired client
policies are returned. With the use of a policy-aware registry non-functional (policy-
based) and functional discovery can be achieved at the same time.

420 T. Phan et al.

3.1 Policy Information Model

To support the storage and matching of service policy information inside the registry,
we use the abstract information model presented in Figure 2.

Fig. 2. UML Class diagram for policy information model

This model depicts the relationship between Web Services entities, the context that
the entities are deployed to, and the policies that are specified for the entities and the
context. Web Services entities are modeled following WSPolicy-Attachment [3].
Essentially, a service consists of one or many physical endpoints, with each endpoint
consisting of a collection of operations, and each operation in turns containing a
collection of messages. They are all referred to as WebServicesEntity.
Context models an aggregation of RegistryEntities with some common

settings and typically represents an organization, an application, or a development
project. A Service must exist under one context, which is also the context of the
service’s endpoints, operations, and messages. A context is associated with one
policy description (called the StandardPolicy) which encapsulates all the policy
requirements that objects to be deployed into the context must conform to. Policy
represents a policy description, which might be the (WS-Policy) merge [4] of multiple
(WS-Policy) policy documents. The association between a Web Services entity and a
policy is the association between the entity itself and its effective policy. The effective
policy of a given Web Services entity is a merge of the policy that is attached to the
entity itself and any policies that the entity inherited from its container entities,
following the mechanism specified in WS-PolicyAttachment [3].

3.2 Enabling Policy-Based Service Registration

A service published into the registry must have an associated context which is
indicated in the service publishing message. Context policy represents policy
requirements that apply to every entity deployed under the context. The service
provider might have different policy requirements for each of the endpoints,
operations or messages in the service he publishes so different policies might be
specified for the services, endpoints, operations, and messages themselves. In this
case, the effective policy of each of these entities must conform to the
StandardPolicy for the service to be considered conforming to the requirements
of the context.

 Policy-Based Service Registration and Discovery 421

Policy conformance: Policy conformance verification has a non-commutative nature.
That is, the fact that a policy P1 conforms to another policy P2 does not imply that P2
conforms to P1. Currently, WS-Policy Intersection [4] is referred to as the WS-
Policy’s operator for policy conformance checking [15]. Being a commutative
operator, WS-Policy-Intersection is unsuitable for the checking. Below, we propose a
WS-Policy Conformance operator which is non-commutative and asymmetric. We
first start with a general definition for policy conformance

Definition 1: A policy P1 is said to conform to a policy P2 when the fact that one entity
satisfies P1 implies that the entity also satisfies P2. This implies that P1 specifies equal
or more stringent requirements and/or equal or more capabilities than P2 does.

Policy conformance for WS-Policy: Because, in normal form, a WS-Policy policy is
an XOR of different policy alternatives, Definition 1 can then be refined as follows.

Definition 2: In their normal form, a WS-Policy expression P1 is said to conform to
another WS-Policy expression P2 when the fact that an entity satisfies/supports an
alternative in P1 implies that the entity satisfies/supports one alternative in P2.

Definition 3: A WS-Policy policy alternative PA1 is said to conform to another policy
alternative PA2 when the fact that one entity satisfies PA1 implies that the entity also
satisfies PA2. A WS-Policy alternative is a logical AND of policy assertions, therefore
the support for any assertion in PA2 above is implied by the support of all the
assertions in PA1. At the assertion level, we rely on a domain-specific conformance
function to determine whether a set of policy assertions collectively satisfy another
assertion.

The following is an algorithm for verifying policy conformance in WS-Policy derived
from the definitions given above. The algorithm assumes the presence of a domain-
specific conformance function for any assertions within each of the policy. In the
absence of the domain-specific conformance function, the default rule, which is an
assertion conforms to and only to itself, is applied.

Policy conformance algorithm: Given two normalized policies P1, the policy that
needs to be verified, and P2, the standard policy:

1. If P1 is empty (P1 has no alternative, meaning the set of behaviors accepted by
P1 is empty) then P1 conforms to P2 regardless of P2’s structure

2. If P2 is empty then P1 does not conform to P2 unless P1 is also empty
3. P1 conforms to P2 when each alternative in P1 conforms to one alternative in P2.
4. Given a policy alternative A1 of P1 and a policy alternative A2 of P2

a. If A2 is empty (A2 has no assertion meaning it can accept any behavior) then
A1 always conforms to A2

b. If A1 is empty then A1 does not conform to A2 unless A2 is also empty
c. A1 conforms to A2 when each policy assertion in A2 is satisfied by all

assertions in A1 collectively, using a predefined domain-specific
conformance function

Domain-specific conformance function: We assume that policy assertion authors
(such as the WS-SecurityPolicy committee members) supply, together with the
assertions, the domain-specific policy conformance function. The conformance

422 T. Phan et al.

function for a domain should be able to determine, within the domain, whether a
logical AND of a set of assertions conforms to an arbitrary assertion; this is required
because sometimes an individual assertion might not conform to another one while a
logical AND of assertions might. For example, if we have a policy assertion S1
requiring the encryption of the entire SOAP message (i.e. encrypting the envelop
element), an assertion S2 requiring header encryption, and an assertion S3 requiring
body encryption, then neither S2 nor S3 alone conforms to S1, but S2 and S3

collectively would conform to S1.

Policy verification processing: The PolicyValidator unit of the registry
extracts the service’s context from the service publication message and, based on the
context, retrieves the context’s StandardPolicy. It also extracts the service’s
attached OriginalServicePolicy and forwards the two policies to the
PolicyConformanceChecker for verification using the presented algorithm.

In case separate policies are specified for endpoints, operations, and messages, the
registry will first calculate the effective policies for each of the entities. The calculated
effective policies of the endpoints, operations and messages of the published service
are then verified against the StandardPolicy. Only when they all conform to
StandardPolicy is the service allowed to be published under the context.

3.3 Enabling Policy-Based Service Discovery

Client side policy requirements are indicated as part of the service discovery query,
which can span multiple contexts. Also, the client might have specific policy
requirements for service, endpoint, operation, or message levels. In this case, it can
supply separate policies and uses the mechanisms specified in WSPolicyAttachment
[3] to apply the policies to the endpoint, operation or message scope as needed.

Policy matching is based on the compatibility of the client policy and the service
policy. To determine policy compatibility we use the Policy Intersection algorithm
defined in WS-Policy. WS-Policy’s Policy Intersection is designed to check whether
one side of the interaction will support the conditions indicated by the other side and
what is the policy that will be mutually manifested on the wire during the interaction.
This logic is thus suitable for policy discovery as the client can use WS-Policy
Intersection to determine whether a target service supports its own policy
requirements. We introduce in brief the policy compatibility logics defined in WS-
Policy Intersection.

Policy compatibility: According to Policy Intersection, two policies P1 and P2 are
said to be compatible when they have a non-empty intersection, meaning that there
exists at least an alternative in P1 that is compatible with an alternative in P2 and vice
versa. A policy alternative A1 is compatible with a policy alternative A2 when, for
each assertion in A1, there exists a compatible assertion in A2 and vice versa. Two
policy assertions are said to be compatible with each other if the presence of one
implies (in a domain-specific way) the support for the other. In the absence of a
domain-specific assertion compatibility function, a policy assertion S1 is said to be
compatible with a policy assertion S2 when they specifies the same type of capability
or requirement (having the same Qualified Name) and if one assertion has a nested
policy then the other must also have the same nested policy.

 Policy-Based Service Registration and Discovery 423

Policy matching processing: For each functionally matched service found, the
PolicyEnabledQueryManager resolves the service’s associated policy
description (the service’s EffectivePolicy) and forwards it to the
PolicyIntersector to perform the intersection. If the intersection policy is non-
empty, meaning the service and client policies are compatible, the service is then
added to the returned set. In case separate policy requirements are specified for the
service, endpoint, operation, and message levels, the registry, upon receiving the
client policies, will perform the calculation for the effective policies for each level of
the client requirements. For each target service, it also calculates the effective policies
for the service, its endpoint, operations and messages and then performs the policy
matching at these levels accordingly. Only when matching is achieved at all the
specified levels, is the service considered having a policy that matches client’s
requirements.

3.4 Example

A bank creates the following standard policy for the CorporateContext in its
internal registry, which requires SOAP body encryption for every Web Services
message

<wsp:Policy…> <wsp:ExactlyOne> <wsp:All> <sp:EncryptedElements>
 <sp:XPath>/S:Envelope/S:Body</sp:XPath>

</sp:EncryptedElements> </wsp:All> </wsp:ExactlyOne> </wsp:Policy>

A developer X developed a service named InterestRateQuote. He believes the
service is critical and thus requires the encryption of the entire SOAP message
envelope:

<wsp:Policy…> <wsp:ExactlyOne> <wsp:All> <sp:EncryptedElements>
 <sp:XPath>/S:Envelope</sp:XPath>

</sp:EncryptedElements> </wsp:All> </wsp:ExactlyOne> </wsp:Policy>

For another service ExchangeRateQuote, X believes the service can function
properly with no further requirements so a policy with only one empty alternative
(meaning any behavior is accepted) is supplied:

<wsp:Policy…>
 <wsp:ExactlyOne> <wsp:All/> </wsp:ExactlyOne>
 </wsp:Policy>

When the two services InterestRateQuote and ExchangeRateQuote are
published into the CorporateContext of the registry, only
InterestRateQuote is accepted because the services’ policy, which requires
SOAP envelop encryption, is stronger than and thus conforms to the standard
requirement of SOAP body encryption while ExchangeRateQuote’s policy
requirements is weaker than that of the context.

Another developer Y wants to query the registry to find a live base-interest-rate
quote service that supports SOAP header encryption as indicated in his desirable
policy:

424 T. Phan et al.

<wsp:Policy…> <wsp:ExactlyOne> <wsp:All> <sp:EncryptedElements>
 <sp:XPath>/S:Envelope/S:Header</sp:XPath>

</sp:EncryptedElements> </wsp:All> </wsp:ExactlyOne> </wsp:Policy>

When Y submits a query to the registry with this desired policy, the registry returns
InterestRateQuote because the service’s and Y’s policy are compatible (SOAP
envelop encryption implies the support for SOAP header encryption and vice versa).

4 Implementation

We have implemented (in Java) the support for policy on top of the CA eTrust UDDI
3.0. We implemented an initial mapping of the policy information model to UDDI
version 3 data structures as shown in the following figure.

Fig. 3. Mapping Registry Information Model to UDDI data structures

A high-level architecture of the software is depicted in Figure 4 below. In this
figure, the components colored in grey are the added/modified components and the
rest are those existing in the current CA eTrust UDDI. Specifically we have modified
the saveServiceImpl and findServiceImpl components of the registry,
which are responsible for registering and discovering services respectively, to
accommodate the support for policy processing following the logics described in
Section 3. We added the implementation for the policy conformance and WS-Policy
intersection algorithm (Section 4) to the open source Apache WS-Policy library –
Apache Neethi [1] and use the library as the PolicyIntersector and
ConformanceChecker.

Fig. 4. eTrust UDDI’s support for policy

 Policy-Based Service Registration and Discovery 425

To enable the attachment of policy descriptions to UDDI service publishing and
querying messages we define a UDDI tModel key for policy information. When the
service publisher publishes a service or when the service client queries for a service,
they supply the URI to the associated policy description as the value in a key-value
pair entry – the UDDI keyedReference, with the key of the entry being the predefined
policy tModel, in the UDDI categoryBag of the service.

5 Related Work

There has been a body of work in the area of enhancing service discovery with non-
functional matching. UDDIe [14] attempts to extend UDDI with the notion of ‘blue
pages’ for enabling service discovery based on user-defined properties like Quality of
Service (QoS) that a service can provide, or the methods available within a service.
Similarly, WSLA framework in [11] provides the support for a Service-Level
Agreement between a service provider and a potential requestor which allows clients
to be able to find services that satisfy their QoS requirements. The main difference
between our work and these works is none of the works above discusses how to
ensure the properties specified for a service are valid and conforms to the
organization’s requirements.

The Ponder framework, which includes a specification language, a management
model [8] allows for the policy-based management of distributed systems. However,
the work focuses more on transport-level access control and QoS management for
telecommunication networks rather than for application-level management of SOA
systems. Another policy language based on decision tree has been defined in [16] but
only limited to specifying QoS parameters for SOA components. This work also
advocates the use of a service registry as the storage mechanism for policy
information, but the work does not provide any information on how the policy is to be
stored in registry and how the parties involved in policy verification and management
can interact with the registry.

6 Conclusion and Future Work

In this paper, we have presented a registry-based framework and the associated
techniques to enable the automatic verification of service policy information when a
service is registered and the automatic matching of service and client policy
information when the service clients query for a service respectively. Verification and
match making can be done at the endpoint, operation or message levels of the service.
Policy verification is based on a conformance operator we developed for WS-Policy,
while policy matching is based on WS-Policy Intersection. In future work, we plan to
define a framework for policy-based runtime service and application management
using registry.

426 T. Phan et al.

Reference

1. The Apache Software Foundation (2007). Apache Neethi 2.0. (June 2007), http://
ws.apache.org/commons/neethi/index.html

2. Bajaj, S., et al.: Web Services Policy Framework 1.2. W3C (April 2006)
3. Bajaj, S., et al.: Web Services Policy Attachment 1.2. W3C (April 2006)
4. Ballinger, K., et al.: Web Services Metadata Exchange 1.1. IBM, BEA Systems,

Microsoft, SAP, AG, CA, Sun Microsystems, and webMethods (August 2006)
5. Bilorusets, R., et al.: Web Services Reliable Messaging Protocol 1.0. IBM, BEA Systems,

Microsoft, and TIBCO Software (Febuary 2005)
6. Box, D., et al.: Web services addressing (WS-Addressing). W3C (August 2004)
7. Clement, L., et al.: Universal Description, Discovery, and Integration 3.0. OASIS (October

2004)
8. Damianou, N.: A Policy Framework for Management of Distributed Systems. PhD Thesis,

Imperial College, London (2006)
9. Fuger, S., et al.: EbXML Registry Information Model 3.0 and EbXML Registry Service

and Protocol 3.0. OASIS (May 2005)
10. Gudgin, M., et al.: SOAP Message Optimization Transmission Mechanism 1.0. W3C

(January 2005)
11. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level

Agreement for Web Services. J. of Network and Systems Management (2003)
12. Lawrence, K., et al.: Web Services Security Policy 1.2. OASIS (2005)
13. Microsoft (2005). Web Services Enhancement 3.0. Released in (July 2005), http://

msdn2.microsoft.com/en-us/webservices/aa740663.aspx
14. ShaikhAli, A., Rana, O.F., Ali-Ali, R., Walker, D.V.: UDDIe: an extended registry for

Web Services. In: Proc. Application and Internet Workshop 2003, Orlando, FL, USA
(2003)

15. Vedamuthu, A., et al.: Web Services Policy 1.5 - Primer. W3C (June 2007)
16. Wang, C., Wang, G., Chen, A., Wang, H., Pierce, Y., Fung, C., Uczekaj, F.: A Policy-

Based Approach for QoS Specification and Enforcement in Distributed Service-Oriented
Architecture. In: SCC 2005. Proc. 2005 IEEE Int’l Conf. on Services Computing, FL,
USA, IEEE Computer Society Press, Los Alamitos (2005)

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 427–434, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Business Process Quality Metrics: Log-Based
Complexity of Workflow Patterns∗

Jorge Cardoso

Department of Mathematics and Engineering,
University of Madeira, Funchal, Portugal

jcardoso@uma.pt

Abstract. We believe that analysis tools for BPM should provide other
analytical capabilities besides verification. Namely, they should provide
mechanisms to analyze the complexity of workflows. High complexity in
workflows may result in poor understandability, errors, defects, and exceptions
leading processes to need more time to develop, test, and maintain. Therefore,
excessive complexity should be avoided. The major goal of this paper is to
describe a quality metric to analyze the complexity of workflow patterns from a
log-based perspective.

Keywords: workflow, process log, workflow complexity, business process
quality metrics, business process analysis.

1 Introduction

Workflow verification tools such as Woflan [1] are indispensable for the current
generation of WfMS. Yet, another desirable category of tools that allows building
better workflows are tools that implement workflow quality metrics. In the area of
software engineering, quality metrics have shown their importance for good
programming practices and software designs. Since there are strong similarities
between software programs and business process designs, several researchers have
recognized the potential of quality metrics in business process management [2-5].

In [6], Vanderfeesten et al. suggest that quality metrics to analyze business
processes can be classified into four distinct categories: coupling, cohesion,
complexity, modularity and size. In this paper we focus our attention on developing
quality metrics to evaluate the complexity of workflow models [7].

Workflow complexity should not be confused with algorithmic complexity
measures (e.g. Big-Oh “O”-Notation), whose aim is to compare the performance of
algorithms [7]. Workflow complexity can be defined as the degree to which a
workflow is difficult to analyze, understand or explain. It can be characterized by the
number and intricacy of task interfaces, transitions, conditional and parallel branches,
the existence of loops, roles, task categories, the types of data structures, and other
workflow characteristics.

∗ This work was partially funded by FCT, POCTI-219, and FEDER.

428 J. Cardoso

In this paper, we present a metric to calculate the Log-Based Complexity (LBC) of
workflow patterns [8]. Since our analysis of complexity is based on flow descriptions,
we devise complexity metrics for each workflow pattern. The idea of this metric is to
relate complexity with the number of different log traces that can be generated from
the execution of a workflow. If a workflow always generates the same entries (i.e., the
same task ID) in the process log then its complexity is minimal. On the other hand, if
a workflow can generate n! distinct log entries (where n is the number of tasks of a
workflow) then its complexity is higher.

This paper is structured as follows. The second section presents the related work.
In section 3, a new complexity metric for workflow patterns is presented. We start
giving a brief overview of what workflow patterns are and explain the reasons why
four patterns have not been included in our metric. In section 4, we give a practical
example showing how the metric presented is to be applied to workflows. Finally, the
last section presents our conclusions.

2 Related Work

The concept of process metrics has first been introduced in [7] to provide a
quantitative basis for the design, development, validation, and analysis of business
process models. Later the concept has been re-coined to Business Process Quality
Metrics (BPQM).

The first metric presented in literature was the control-flow complexity (CFC)
metric [7]. It was inspired by McCabe’s cyclomatic complexity. The CFC metric was
evaluated according to Weyuker’s properties and an empirical study has been carried
out by means of a controlled experiment [9] to validate it. In [10], Mendling proposes
a density metric inspired by social network analysis in order to quantify the
complexity of an EPC. In [11], the author presents a data flow complexity metric for
process models. Reijers and Vanderfeesten [12] also present a metric that computes
the degree of coupling and cohesion in a BOM (Bill of materials) model by analyzing
data elements. Gruhn and Laue [5] use the notion of cognitive weights as a basic
control structure to measure the difficulty in understanding control structures in
workflows. Finally, in [6], the authors show how the ProM framework implements
some of the quality metrics that have been developed so far.

3 Log-Based Complexity of Workflow Patterns

Today, many enterprise information systems store relevant events in a log. The
importance of event logs makes them of value and interest to study and to evaluate the
complexity of the workflows that generates them. The main idea is to compute the
number of distinct logs a specific workflow can generate. The higher the number of
distinct logs that can be generated, the more complex the workflow is.

To have an idea on the distinct process logs that can be generated from the
execution of a workflow, let us consider the following two examples. A sequential
workflow with tasks A, B, C, and D can only generate one type of process log entry.
Fro example, A12-B32-C37-D67. But, if the workflow model defines two sequences:

 Business Process Quality Metrics: Log-based Complexity of Workflow Patterns 429

1) A and B, and 2) C and D, and places these two sequences in parallel then the
number of different process log entries that can be generated is 6. For example, the
entries A23-B34-C45-D56, A23-C45-B34-D56, A23-C45-D56-B34, C45-D-A23-B34,
C45-A23-D56-B34, and C45-A23-B34-D56. Intuitively, the second workflow is more
complex from a process log perspective since it can have more “mutations”. The first
workflow, in our example, is predictable, while the second workflow is unpredictable.
As more distinct process log entries can be generated from a workflow, the more
unpredictable the workflow is considered to be.

3.1 Workflow Patterns

Aalst et al. [13] have identified a number of workflow patterns that describe the
behavior of business processes and identify comprehensive workflow functionality.
The advantage of these patterns lies in the ability for an in-depth comparison of a
number of commercially available workflow management systems based on their
capability of executing different workflow structures and their behavior. As we have
discussed previously, the log-based complexity is a particular type of control-flow
complexity which is influenced by elements such as splits, joins, and loops.
Therefore, our first task was to identify the relevant workflow patterns for log-based
complexity analysis. We concluded that all patterns, except four, were relevant for the
metric we proposed to develop. The Implicit Termination, Multiple Instances without
Synchronization, and Cancellation Patterns were not captured by our metric since
they are implemented by a very few number of WfMS, the support can lead to an
unexpected behavior, or they no not affect the log-based complexity of processes.

3.2 Log-Based Complexity Metrics for Workflow Patterns

Since it is a well known language, we have used BPMN (Business Process Modeling
Notation) to illustrate the log-based complexity of workflow patterns. Of course, we
could have used other languages, such as XPDL (XML Process Definition Language),
or we could have taken a more formal approach using Petri nets. But we consider that
BPMN is a simple and easy language to understand which facilitates readers to
comprehend the number of traces introduced by a workflow pattern. To make this
paper concise, we will only address a sub-set of workflow patterns. These patterns are
representative and explain the rational of our approach to develop the LBC metric.

The simplest element that can generate a log entry is the execution of a task (i.e. an
activity). Figure 1 illustrates the representation of a task in BPMN. Please note that the
dashed line is not part of the BPMN. We use it to specify the scope of the workflow. In
Figure 1, the dashed line specifies that workflow wf is composed of task A.

A

wf

Fig. 1. A task

430 J. Cardoso

Since an activity only generates one entry in the process log, its log-based complexity
is simply 1, i.e.:

() 1TLBC wf =

Sequence pattern (P1). The sequence pattern is defined as being an ordered series of
tasks, with one task starting after a previous task has completed (Figure 2). Please not
that BPMN graphically define a sub-workflow using a rounded box with the plus sign
(+) inside.

wf2wf1 wf3 wfn

wf

+ + + +

Fig. 2. The sequence pattern

The behavior of this pattern can be described by the use of a token that travels down a
sequence from sub-workflow wf1, to sub-workflow wf2... and finally reaches sub-
workflow wfn. Since the execution of this pattern always generates the same trace in
the process log, the log-based complexity of this pattern is simply given by the
following formulae:

1
1

() ()
i

n

P x i
i

LBC wf LBC wf
=

= ∏

For example, a sequential workflow wf with two sub-workflows wf1 and wf2, where
wf1 can generate 4 different traces and wf2 can generate 3 different traces has a
complexity of LBC(wf) = 4·3 = 12.

Exclusive Choice and Deferred Choice (P4, P16). The exclusive choice pattern (P4,
XOR-split) is defined as being a location in the workflow where the flow is split into
two or more exclusive alternative paths and, based on a certain condition, one of the
paths is taken (Figure 3). The pattern is exclusive since only one of the alternative
paths is taken. The deferred choice pattern (P16, a XOR-split abstraction) is very
similar to the exclusive choice pattern. In contrast to the exclusive choice pattern, the
deferred choice transition selection is based on external input while the exclusive
choice relies on information being part of the workflow. Once a transition is activated,
the other alternative transitions are deactivated. The moment of choice is delayed until
the processing in one of the alternative transitions has actually started.

condition1

conditionn

Exclusive
choice

wf
p1

pn

wf1

wfn

+

+

...

Fig. 3. The exclusive choice pattern

 Business Process Quality Metrics: Log-based Complexity of Workflow Patterns 431

The behavior of these patterns can be described by the use of a token that follows
only one of the outgoing transitions of the exclusive choice pattern. Since only one
path of the n paths present can be followed, the log-based complexity is the sum of
the individual complexity of each workflow wf1 … wfn. Thus, the LBC for these two
patterns is:

4 16
1

() () ()
i

n

P P i x i
i

LBC wf LBC wf p LBC wf
=

= = ×∑

Since workflows are non-deterministic, LBCP4 and LBCP16 are weighted functions,
where pi is the probability of following a specific path at runtime.

Arbitrary Cycles Loop pattern (P10). The arbitrary cycle pattern is a mechanism
for allowing sections of a workflow where one or more activities can be done
repeatedly (i.e. a loop). Figure 4 shows an example of the use of the arbitrary cycle
pattern.

Exclusive
choice

wf3
+

wf1
+

wf2
+

p

Fig. 4. The arbitrary cycle pattern

At runtime, one of the following scenarios can occur:

wf1-wf3 P0=1-p
wf1-wf2-wf3 P1=p(1-p) * 1* LBCx(wf2)
wf1-wf2-wf2-wf3 P2=p2(1-p) * 2 * LBCx(wf2)
wf1-wf2-wf2-wf2-wf3 P3=p3(1-p) * 3 * LBCx(wf2)
...
wf1-wf2-…-wf2-wf3 PL-1=pL-1(1-p) * (L-1) * LBCx(wf2)
wf1-wf2-…-wf2-wf3 PL=(pL(1-p)+pL+1)* L * LBCx(wf2)

The variable Pj (for 0≤j≤L, L=maximum number of iterations) indicates the
probability of a specific case to occur at runtime when the probabilities of repeating
and escaping the loop are p and (1-p), respectively, in every iteration (0<p<1). It is
assumed to force a compulsorily escape from the loop after L iterations (the
probability of such a case is pL+1). Therefore, we can calculate the log-based
complexity of the loop as follows:

1
1

10 2 2
0

() (1) () ((1)) ()
L

j L L
P x x

j

LBC wf p p j LBC wf p p p L LBC wf
−

+

=

⎛ ⎞
= − × × + − + × ×⎜ ⎟
⎝ ⎠
∑

Interleaved parallel routing pattern (P17). In this pattern, a set of activities is
executed with no specific order. The performers of the activities will decide the order

432 J. Cardoso

of the activities. Each task in the set is executed and no two activities are executed at
the same moment. It is not until one task is completed that the decision on what to do
next is taken.

 wf

wf1
+

wfn
+

wfe
+

wfs
+

Fig. 5. The interleaved parallel routing pattern

Figure 5 illustrates the interleaved parallel routing pattern. Once sub-workflow wfs is
completed, a token is transferred to the set of sub-workflow wf1, …, wfn. The token
will be assigned to one of the sub-worklfows wf1, wf2,…, or wfn and then transferred to
another sub-workflow until all the sub-workflows are completed. This is done
sequentially. Since all sub-workflows will be activated at some point in time in any
order, we have n! permutations for the sub-workflows, therefore the log-based
complexity is:

17
1

() ! ()
i

n

P x i
i

LBC wf n LBC wf
=

= ×∏

4 Aggregating the Complexity of Workflow Patterns

Having devised custom metrics for each workflow pattern, we can calculate the LBC
of workflows. Our approach to calculate the overall log-based complexity of a
workflow consists in the stepwise collapsing of the workflow into a single node by
alternately aggregating workflow patterns. The algorithm that we use repeatedly
applies a set of workflow transformation rules (based on the workflow patterns that
we have analyzed) to a workflow until only one atomic task remains. Each time a
transformation rule is applied, the workflow structure changes. After several iterations
only one task will remain. When this state is reached, the remaining task contains the
complexity corresponding to the initial workflow under analysis.

Figure 6 illustrates the set of transformation rules that are applied to an initial
workflow to compute the log-based complexity. To the initial process, illustrated in
Figure 12.a), we apply patterns LBCT and LBCP13. The resulting process is illustrated
in Figure 12.b). To this new process we apply patterns LBCT, LBCP1, LBCP5, and
LBCP13. The process suffers various transformations as shown in Figures 12.c) and
Figure 12.d). Finally, after the last transformation, only one task remains (Figure 12.e)
and this task (ABCDEnEF) contains the overall complexity of the workflow which is
5.75. This indicates that the initial workflow can generates, on average (since the
workflow is non-deterministic) 5.75 distinct process logs.

 Business Process Quality Metrics: Log-based Complexity of Workflow Patterns 433

B1 B2

D1 D2

E1

condition1

conditionn

A

B3

C

E2

n

F

B

D

E1

p1

p2

A

C

nE2

F

B

DEnE

A

C

F

BCDEnEA F ABCDEnEF

LBCP13=n!=6

LBCP2

LBCP1(CDEnE)=4.75

LBCP2=(4.75+1)!/4.75!+1!
=5.75!/4.75!
=5.75!/4.75! = 5.75

c)

d)

b)

a)

e)

LBCP5=0

LBCP3=0

LBCP1(D)=1·1=1

LBCT(B3)=1

Let us assume n=3

+

LBCP1(B)=1·1·1=1

LBCT(B1)=1 LBCT(B2)=1

LBCT(D1)=1 LBCT(D2)=1

LBCT(E1)=1

LBCP13(nE2)=n!=6

LBCP4(DEnE)=0.75·6+0.25·1=4.75

LBCT(C)=1

LBCP1(EnE)=1·6=6

LBCT(A)=1 LBCT(F)=1

LBCP1(ABCDEnEF)
=5.75

Let us assume
p1=0.25
p2=0.75

+

+

+

+ +

Fig. 6. Log-based complexity computation

5 Conclusions

Recently, a new approach to workflow analysis has been proposed and targets the
development of Business Process Quality Metrics (BPQM) to evaluate workflow
models. One particular class of quality metrics has the goal of analyzing the
complexity of workflow models. This analysis enables to identify complex workflows
that require reparative actions to improve their comprehensibility. To enlarge the

434 J. Cardoso

number of approaches available to analyze workflows, in this paper, we presented the
log-based complexity (LBC) metric to calculate the complexity of workflows. Our
approach consisted of devising a complexity metric based on the number of process
logs that are generated when workflows are executed. Our complexity metric is a
design-time measurement and can be used to evaluate the difficulty of producing a
workflow design before its implementation.

References

1. Verbeek, H.M.W., Basten, T., Aalst, W.M.V.d.: Diagnosing workflow processes using
woflan. The Computer Journal 44(4), 246–279 (2001)

2. Gruhn, V., Laue, R.: Adopting the Cognitive Complexity Measure for Business Process
Models. In: 5th IEEE International Conference on Cognitive Informatics, Beijing, China,
IEEE Computer Society, IEEE Computer Society (2006)

3. Latva-Koivisto, A.M.: Finding a complexity measure for business process models,
Helsinki University of Technology, Systems Analysis Laboratory: Helsinki (2001)

4. Cardoso, J., et al.: A Discourse on Complexity of Process Models. In: BPI 2006. Second
International Workshop on Business Process Intelligence, In conjunction with BPM 2006,
Vienna, Austria, Springer, Heidelberg (2006)

5. Gruhn, V., Laue, R.: Complexity Metrics for Business Process Models. In: 9th
International Conference on Business Information Systems, Klagenfurt, Austria: GI (2006)

6. Vanderfeesten, I., et al.: Quality Metrics for Business Process Models. In: Fischer, L. (ed.)
Workflow Handbook 2007, pp. 179–190. Future Strategies Inc., Lighthouse Point, FL,
USA (2007)

7. Cardoso, J.: Evaluating Workflows and Web Process Complexity. In: Fischer, L. (ed.)
Workflow Handbook 2005, pp. 284–290. Future Strategies Inc., Lighthouse Point, FL,
USA (2005)

8. Aalst, W.M.P.v.d., et al.: Workflow Patterns. Distributed and Parallel Databases 14(3), 5–
51 (2003)

9. Cardoso, J.: Process control-flow complexity metric: An empirical validation. In: IEEE
SCC 2006. IEEE International Conference on Services Computing, Chicago, USA, IEEE
Computer Society, Los Alamitos (2006)

10. Mendling, J.: Testing Density as a Complexity Metric for EPCs, Technical Report JM-
2006, 11-15. 2006, Vienna University of Economics and Business Administration, Austria
(2006)

11. Cardoso, J.: About the Data-Flow Complexity of Web Processes. In: 6th International
Workshop on Business Process Modeling, Development, and Support: Business Processes
and Support Systems: Design for Flexibility, Porto, Portugal (2005)

12. Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and Coupling Metrics for Workflow
Process Design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080,
pp. 290–305. Springer, Heidelberg (2004)

13. Aalst, W.M.P.v.d., et al.: Advanced Workflow Patterns. In: Seventh IFCIS International
Conference on Cooperative Information Systems, Eilat, Israel (2000)

Distributed Objects and Applications (DOA)
2007 International Conference

DOA 2007 PC Co-chairs’ Message

Welcome to the Ninth International Symposium on Distributed Objects, Mid-
dleware and Applications (DOA 2007), held in Vilamoura, Portugal, November
25–30, 2007.

The DOA conferences provide a forum for exchanging the latest research re-
sults on distributed objects, components, services, middleware and applications.
To emphasize the increasing importance and proliferation of higher-level software
abstractions and the associated general-purpose middleware, the term ‘middle-
ware’ was added to the title of DOA this year. Research in objects, middleware
and their application establishes new principles that open the way to solutions
that can meet the requirements of tomorrow’s applications. Conversely, practical
experience in real-world projects drives this same research by exposing new ideas
and posing new types of problems to be solved. With DOA 2007 we explicitly in-
tended to provide a forum to help this mutual interaction occur, and to trigger
and foster it. Submissions were therefore welcomed along both these dimen-
sions: research (fundamentals, concepts, principles, evaluations, patterns, and
algorithms) and practice (applications, experience, case studies, and lessons).
Contributions attempting to cross over the gap between these two dimensions
were particularly encouraged. Toward this goal, we accepted both research and
experience papers.

The resulting high-quality program would not have been possible without
the authors who chose DOA as a venue for their publications. All papers were
submitted to a rigorous reviewing process with three reviews per paper, and con-
siderable discussion took place among the Program Committee before decisions
were taken. Out of 52 submitted papers, we finally selected 20 full papers and
4 posters. Our congratulations and thanks to the successful authors, who came
from many parts around the globe to present their work in Vilamoura.

Rounding up this excellent program, Mark Little, Director of Engineering
at Red Hat, was our keynote speaker discussing “Transaction Processing in a
Service Oriented Architecture.”

We are grateful for the dedicated work of the experts in the field from all over
the world who served on the Program Committee, and whose names appear in
this volume. Special thanks go to the external referees who volunteered their
time to provide additional reviews. Finally, we are indebted to Kwong Yuen Lai,
who was immensely helpful in facilitating the review process and making sure
that everything stayed on track.

August 2007 Pascal Felber
Calton Pu

Aad van Moorsel

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 439–453, 2007.
© Springer-Verlag Berlin Heidelberg 2007

WS-CAF: Contexts, Coordination and Transactions for
Web Services

Mark Little

Technical Development Manager, Red Hat

Abstract. As Web services have evolved as a means to integrate processes and
applications at an inter-enterprise level, traditional transaction semantics and
protocols have proven to be inappropriate. Web services-based transactions,
colloquially termed Business Transactions, differ from traditional transactions
in that they execute over long periods, they require commitments to the
transaction to be “negotiated” at runtime, and isolation levels have to be
relaxed. A solution to this problem has to work over HTTP and include existing
transaction processing technologies of all types: database management systems,
application servers, message queuing systems and packaged applications. In this
paper we’ll look at the WS-CAF standardization effort and show how it is
attempting to address this important and difficult subject. We’ll also consider
how the architecture defined by WS-CAF fits into the evolving architecture of
Web services

1 Introduction

It is often said that Web services are immature and missing some features compared
to other distributed computing development environments such as CORBA, DCOM,
and J2EE, but exactly what needs to be added is the subject of considerable debate.
Many proposals have surfaced in the form of Web services specification drafts and as
the number of proposals and specifications grows, confusion often grows rather than
shrinks.

However, a common foundation exists underneath many of these missing pieces:
context management (essentially the ability to associate disparate entities within the
same unit of distributed work). This fact, and the problem that no such facility exists
in Web services, came to light soon after SOAP 1.1 was submitted to W3C, when we
first started work on mapping the Transaction Internet Protocol (TIP) to SOAP back
in mid-2000. Transactioning is often mentioned as one of the major features for
distributed computing environments and CORBA, DCOM/.NET, and J2EE all
provide it, so it is a fairly obvious requirement for Web services. However, we
quickly realized we had a larger problem than simply adding a transaction context to
the SOAP header and we had to suspend the effort.

TIP was dependent on a session-oriented communication protocol for exchanging
two-phase commit commands. Like most distributed transaction protocols, TIP
required a persistent transaction context to be shared among the communicating
parties in the transactional operation so that a two-phase commit protocol can be

440 M. Little

executed reliably. An abort (or rollback) can be triggered automatically when a
communication connection is dropped. It is too risky to the health of the resource
managers being coordinated not to rollback when communication is lost, but without
a persistent session mechanism, the client (the transaction root) is unable to detect
connection loss.

Unfortunately this type of behavior is in fact impossible to define for a
communication system based on HTTP, where sessions are maintained only long
enough to transfer an HTML page and are dropped immediately afterward. This
behavior is tremendously helpful to support a system of the scale of the World Wide
Web, but it is not so helpful when you need to support a classic transactioning
protocol such as two-phase commit.

Many other typical features and functions of distributed systems also depend upon
persistent sessions, including secure sessions, conversations, and load balancing and
failover mechanisms. The way to think about the use of what we are calling persistent
sessions in general is the ability to get back to the same place where you left off in a
remote program on a subsequent call. In the specific cases of transactions, or secure
conversations, for example, this is the ability to maintain the context of the first
operation while waiting for the next to arrive.

As we shall see in the following sections, the OASIS Web Services Composite
Application Framework [2] attempts to solve this problem by defining core support in
the Web services architecture for context management. It also builds upon this to
provide the necessary transaction functionality that we were unable to accomplish
back in 2000.

2 An Overview of WS-CAF

In general, composite applications are increasing in importance as companies
combine off-the-shelf and homegrown Web services into new applications. Various
mechanisms are being proposed and delivered to market daily to help improve this
process. New “fourth generation” language developments tools are emerging that are
specifically designed to stitch together Web services from any source, regardless of
the underlying implementation.

A large number of vendors are starting to sell business process management,
workflow and orchestration tools for use in combining Web services into automatic
business process execution flows. In addition, a growing number of businesses find
themselves creating new applications by combining their own Web services with Web
services available from the Internet supplied by the likes of Amazon.com and
Google.com.

These types of composite applications represent a variety of requirements, from
needing a simple way to share persistent data to the ability to manage recovery
scenarios that include various types of transactional software. Composite applications
therefore represent a significant challenge for Web services standards since they are
intended to handle complex, potentially long-running interactions among multiple
Web services as well as simple and short-lived interactions.

 WS-CAF: Contexts, Coordination and Transactions for Web Services 441

The WS-CAF suite includes three specifications that can be implemented
incrementally to address the range of requirements needed to support a variety of
simple to complex composite applications:

• Web Service Context (WS-CTX), a lightweight framework for simple context
management.

• Web Service Coordination Framework (WS-CF), which defines the behavior of a
coordinator with which Web services can register for context augmentation and
results propagation, and on top of which can be plugged various transaction
protocols.

• Web Services Transaction Management (WS-TXM), comprising three distinct
protocols for interoperability across multiple transaction managers and supporting
multiple transaction models (two phase commit, long running actions or
compensation, and business process flows).

The overall aim of the combination of the parts of WS-CAF is to provide a
complete solution that supports various transaction processing models and
architectures. Implementations of WS-CAF can start small and grow to include more
functionality over time. WS-CAF specifications are designed to compliment Web
services orchestration and choreography technologies such as WS-BPEL [3] and
WSCI [4] and are compatible with other Web services specifications. The emphasis of
WS-CAF is to define supporting services required by Web services used in
combination, including other specifications.

The parts of WS-CAF comprise a stack, starting from WS-CTX, adding WS-CF,
and finally WS-TXM to deliver the complete features and functionality required by
composite applications. An implementation of WS-CAF can start with WS-CTX for
simple context management, and later add WS-CF for its additional context
management features and context message delivery guarantees, and finally add WS-
TXM for managing a variety of recovery protocols.

In the following sections we shall examine each of these specifications in more
detail and show how they support the development of composite Web Service
applications.

2.1 Context Management

The ability to scope units of work (known as activities) is a requirement in a variety
of aspects of distributed applications. In order to correlate the work of multiple Web
Services within the same activity, it is necessary to propagate additional information
called the context to each participating service. The context contains information such
as a unique ID that allows a series of operations to share a common outcome, and is
propagated in a SOAP header block whenever application messages are transmitted
between component services. The reliable management of the contexts that provide
distributed application scope is addressed by the WS-Context specification.

The purpose of a context is to allow multiple individual Web Services to enter a
relationship by sharing certain common attributes as an externally modeled entity.
Typical reasons for Web Services to share context include common security domains
where multiple Web Services execute within the scope of a single authorized session,

442 M. Little

or common outcome negotiation where each party within the activity needs to know
whether or not each of the other participants successfully completed their work.

Through the use of shared context Web services from different sources can
effectively become part of the same application because they share common system
information. A classic example is a single sign-on mechanism that allows a user or an
application to present authentication credentials to access to a set of cooperating Web
services. Application level context, such as a shared document, can also benefit from
a generic context management service.

In general terms, a context defines basic information about the activity structure.
The context contains information necessary for multiple Web Services to be
associated with the same activity that may be dynamically updated by services as the
application or process makes progress.

WS-Context defines a context data structure that can be arbitrarily augmented. By
default, all the context defines is a unique context identifier, the type of the context
(e.g., transaction or security) and a timeout value (how long the context can remain
valid). Like SOAP headers, which WS-Context can replace or combine for easier
management, the context data structure includes an attribute requiring the context to
be understood and/or propagated. For example:

<ContextType> MyContext </ContextType>

 <context-identifier>

 www.webservicestransactions.org/example/ContextExample

 </context-identifier>

. . .

. . . mustUnderstand=true

. . . mustPropagate=true

. . .

 <child-contexts>

 <child-context>

 <user-name> HomerSimpson </user-name>

 <password> ******** </password>

 </child-context>

 <child-context>

 <database-name> SQL-DB </database-name>

 <file-name> Index-S-file </file-name>

 <display-address> PocketPc25 </display-address>

 </child-context>

 <child-context>

 <transaction-type> BusinessProcess </transaction-type>

 <transaction-mode> Required </transaction-mode>

 </child-context>

 </child-contexts>

The context structure shown above includes “children” that can be used to share
information needed to process a request on behalf of the user of a composite Web
service. In this case, the context includes the mustUnderstand attribute set to true
to indicate that the context must be understood in order to process the request, since it

 WS-CAF: Contexts, Coordination and Transactions for Web Services 443

contains information necessary for successful completion of the request. The context
has also been marked as mustPropagate=true, meaning that each Web service in
the composite must receive or be able to access the context to ensure proper execution.

The example illustrates user information that obtains a security token and passes
the token as a single sign-on feature for the composite application. In other words, the
context could be provided as input to the first Web service in a WS-BPEL defined
flow. The first Web service in the flow then could check the username and password
(the asterisks are used to indicate opaque data in the example) and retrieve an
authentication token to use in checking whether the user is authorized to access each
subsequent Web service in the flow. Such an authentication token would be placed
back into the context data structure as an augmentation to the original structure. For
example:

 <child-context>

 <user-name> HomerSimpson </user-name>

 <password> ******** </password>

 <AuthToken> ******** </AuthToken>

 </child-context>

The AuthToken is added by the security system at the end of the username and
password information upon execution of the initial Web service in the flow. The
context is a living data structure; the results of a security sign on (or other operation
pertinent to the contents of the context) would typically be added for propagation to
the next Web service in the flow. For example, a single sign on system bridging
multiple security domains would add another token to the context.

Web Services sessions
It has long been recognized that the World Wide Web is probably the most successful
distributed system created. It is inherently loosely coupled (clients and servers
frequently interact across the globe) and highly scaleable (many thousands of Web
sites). There are a number of factors that can be attributed to the Web’s success, but
two of the most important are:

• Sessions between clients and servers are maintained only long enough to transfer
an HTML page and are dropped immediately afterward. This means that costly
resources (e.g., TCP/IP connections, threads, processes) are not maintained for
long durations, particularly when there are many users interacting with a service.

• Server interactions are either stateless, meaning that any instance of a Web server
offering a particular service, e.g., airline reservation, can field the request, or
information required to identify a previous user (and possibly state) is propagated
with the invocation, e.g., the cookie.

Both of these factors mean that clusters of servers can relatively easily be used to
distribute the load and provide improved availability/fault-tolerance to users. Web
servers offering critical services are typically deployed over a cluster of machines. A
locally distributed cluster of machines with the illusion of a single IP address and
capable of working together to host a Web site provides a practical way of scaling up
processing power and sharing load at a given site. Commercially available server
clusters rely on a specially designed gateway router to distribute the load using a

444 M. Little

mechanism known as network address translation (NAT). The mechanism operates by
editing the IP headers of packets so as to change the destination address before the IP
to host address translation is performed. Similarly, return packets are edited to change
their source IP address. Such translations can be performed on a per session basis so
that all IP packets corresponding to a particular session are consistently redirected.

Most proponents of Web Services agree that it is important that its architecture is
as scalable and flexible as the Web. As a result, the current interaction pattern for
Web Services is based on coarse-grained services or components. The architecture is
deliberately not prescriptive about what happens behind service endpoints: Web
Services are ultimately only concerned with the transfer of structured data between
parties, plus any meta-level information to safeguard such transfers (e.g., by
encrypting or digitally signing messages). This gives flexibility of implementation,
allowing systems to adapt to changes in requirements, technology etc. without directly
affecting users. Furthermore, most businesses will not want to expose their back-end
implementation decisions and strategies to users for a variety of reasons.

In distributed systems such as CORBA, J2EE and DCOM, interactions are
typically between stateful objects that resided within containers. In these
architectures, objects are exposed as individually referenceable entities, tied to
specific containers and therefore often to specific machines. Because most Web
Services applications are written using object-oriented languages, it is natural to think
about extending that architecture to Web Services. Therefore a service exposes Web
Services resources that represent specific states. The result is that such architectures
produce tight coupling between clients and services, making it difficult for them to
scale to the level of the World Wide Web.

Right now, there are two primary models for the session concept that are being
defined by companies participating in defining Web services: the WS-Addressing
EndpointReference with ReferenceProperties [12] and the WS-Context explicit
context structure. The WS-Addressing session model provides coupling between the
web service endpoint information and the session data, which is analogous to object
references in distributed object systems. WS-Context provides a session model that is
an evolution of the session models found in HTTP servers, transaction, and MOM
systems, allowing a service client to more naturally bind the relationship to the
service dynamically and temporarily [11]. The client’s communication channel to the
service is not impacted by a specific session relationship.

If a session-like model based on WS-Addressing were to be used when interacting
with stateful services, then the tight coupling between state and service would impact
on clients. As in other distribution environments where this model is used (e.g.,
CORBA or J2EE), the remote reference (address) that the client has to the service
endpoint must be remembered by the client for subsequent invocations. If the client
application interacts with multiple services within the same logical session, then it is
often the case that the state of a service has relevance to the client only when used in
conjunction with the associated states of the other services. This necessarily means
that the client must remember each service reference and somehow associate them
with a specific interaction; multiple interactions will obviously result in different
reference sets that may be combined to represent each sessions.

For example, if there are N services used within the same application session, each
maintaining m different states, the client application will have to maintain N*m

 WS-CAF: Contexts, Coordination and Transactions for Web Services 445

reference endpoints. It is worth remembering that the initial service endpoint
references will often be obtained from some bootstrap process such as UDDI. But in
this model, these references are stateless and of no use beyond starting the application
interactions. Subsequent visits to these sites that require access to specific states must
use different references in the WS-Addressing model.

This obviously does not scale to an environment the size of the Web. However, an
alternative approach is to use WS-Context and continue to embrace the inherently
loosely coupled nature of Web Services. As we have shown, each interaction with a set
of services can be modeled as a session, and this in turn can be modeled as a WS-
Context activity with an associated context. Whenever a client application interacts
with a set of services within the same session, the context is propagated to the services
and they map this context to the necessary states that the client interaction requires.

How this mapping occurs is an implementation specific choice that need not be
exposed to the client. Furthermore, since each service within a specific session gets
the same context, upon later revisiting these services and providing the same context
again, the client application can be sure to return to a consistent set of states. So for
the N services and m states in our previous example, the client need only maintain N
endpoint references and as we mentioned earlier, typically these will be obtained from
the bootstrap process anyway. Thus, this model scales much better.

2.2 Coordination

A coordinator is a software entity responsible for ensuring consensus is achieved
between multiple parties. Coordinators exist in CORBA, .NET, J2EE, and other
distributed computing environments to coordinate the classic two-phase commit
transaction protocol across multiple data resources. However, coordination is a more
fundamental requirement: it is used in security, replication, caching and other areas.

Therefore, the definition of a coordinator in WS-CAF is extended for use with Web
services by using a plug in mechanism that supports multiple coordination protocols
such as the classic two-phase commit protocol, long running actions with
compensation, and complex business process and orchestration flows.

Web services are designed to be multi-protocol and therefore to map to multiple
underlying technologies. Instead of tying the coordinator to the two-phase commit
protocol, which is the way current coordinators are defined, the WS-CF specification
creates a general-purpose coordinator capable of driving a variety of context types
and transaction protocols (such as those defined in WS-TXM and others).

<env:Envelope xmlns:env="http://www.w3.org/2002/12/soap-envelope">

 <env:Header>

 <n:Composite xmlns:n=”http://example.org/CompositeApplication”>

 <n:Coordinator>

 http://www.webservicestransactions.org/example/CoordinatorURI

 </Cooordinator>

 </n:Composite>

 </env:Header>

 <env:Body> ...

</env:Envelope>

446 M. Little

In the above example, the coordinator URI points to a Web service interface that
defines the SOAP message pattern for interactions between the coordinator and the
Web service execution. The coordinator then manages any user defined context and
generates and propagates any context for use within the operations of the composite
and includes each registered Web service in the recovery protocol. When multiple
Web services register with the coordinator to use the same context type, the message
exchange pattern includes all Web service executions within the composite. In other
words, the scope for a given context type is determined by the Web services that
register with the coordinator to share it.

The message exchange pattern described for the Web services in the application
isn’t changed. By registering with the coordinator, however, a separate message
exchange pattern is established as a secondary, system-level interaction to handle the
context propagation and recovery operations. The two message exchange patterns are
linked using the context ID passed in the SOAP header and given to the coordinator
upon registration.

2.3 Transactions

Distributed systems pose reliability problems not frequently encountered in
centralized systems. A distributed system consisting of a number of computers
connected by a network can be subject to independent failure of any of its
components, such as the computers themselves, network links, operating systems, or
individual applications. Decentralization allows parts of the system to fail while other
parts remain functioning, which leads to the possibility of abnormal behavior of
executing applications.

Consider the case of a distributed system where the individual computers provide a
selection of useful services, which can be utilized by an application. It is natural that
an application that uses a collection of these services requires that they behave
consistently, even in the presence of failures. A very simple consistency requirement
is that of failure atomicity: the application either terminates normally, producing the
intended results, or is aborted, producing no results at all. This failure atomicity
property is supported by Atomic transactions, which have the following familiar
ACID properties:

• Atomicity: The transaction completes successfully (commits) or if it fails (aborts)
all of its effects are undone (rolled back);

• Consistency: Transactions produce consistent results and preserve application
specific invariants;

• Isolation: Intermediate states produced while a transaction is executing are not
visible to other transactions. Furthermore transactions appear to execute serially,
even if they are actually executed concurrently. This is typically achieved by
locking resources for the duration of the transaction so that they cannot be acquired
in a conflicting manner by another transaction;

• Durability: The effects of a committed transaction are never lost (except by a
catastrophic failure).

A transaction can be terminated in two ways: committed or aborted (rolled back).
When a transaction is committed, all changes made within it are made durable (forced

 WS-CAF: Contexts, Coordination and Transactions for Web Services 447

on to stable storage such as disk). When a transaction is aborted, all changes made
during the lifetime of the transaction are undone. In addition it is possible to nest
atomic transactions; where the effects of a nested action are provisional upon the
commit/abort of the outermost (top-level) atomic transaction.

Why ACID transactions may be too Strong
Traditional transaction processing systems are sufficient to meet requirements if an
application function can be represented as a single top-level transaction. However,
this is frequently not the case. Top-level transactions are most suitably viewed as
short-lived entities, performing stable state changes to the system; they are less well
suited for structuring long-lived application functions that run for minutes, hours,
days, or longer. Long-lived top-level transactions may reduce the concurrency in the
system to an unacceptable level by holding on to resources (usually by locking) for a
long time. Furthermore, if such a transaction aborts much valuable work already
performed will be undone.

Given that the industry is moving towards loosely coupled, coarse-grained B2B
interaction model supported by Web services, it has become clear that the semantics
of traditional ACID transactions are unsuitable for Web scale deployment. Web
services-based transactions differ from traditional transactions in that they execute
over long periods, they require commitments to the transaction to be negotiated at
runtime, and isolation levels have to be relaxed.

The WS-TXM Approach
Given that we have already seen that traditional transaction models are not
appropriate for Web services, we must pose the question, “what type of model or
protocol is appropriate?” The answer to that question is that that no one specific
protocol is likely to be sufficient, given the wide range of situations that Web service
transactions are likely to be deployed within. Hence the WS-TXM specification
proposes three distinct models, which support the semantics of a particular kind of
B2B interaction.

WS-ACID
An atomic transaction or WS-ACID is similar to traditional ACID transactions and
intended to support short-duration interactions where ACID semantics are
appropriate.
Within the scope of a WS-ACID transaction, services typically enroll transaction-
aware resources, such as databases and message queues, indirectly as participants
under the control of the transaction. When the transaction terminates, the outcome
decision of the WS-ACID transaction is then propagated to each enlisted resource via
the participant, and each takes the appropriate commit or rollback actions.
This protocol is very similar to those employed by traditional transaction systems that
already form the backbone of an enterprise. It is assumed that all services (and
associated participants) provide ACID semantics and that any use of atomic
transactions occurs in environments and situations where this is appropriate: in a
trusted domain, over short durations.

448 M. Little

Long Running Activities
The long running action model (LRA) is designed specifically for those business
interactions that occur over a long duration. Within this model, an activity reflects
business interactions: all work performed within the scope of an application is
required to be compensatable. Therefore, an application’s work is either performed
successfully or undone. How individual Web services perform their work and ensure
it can be undone if compensation is required, are implementation choices and not
exposed to the LRA model. The LRA model simply defines the triggers for
compensation actions and the conditions under which those triggers are executed.

There is a caveat to this model though, where application services may not be
compensatable (e.g. an application-level service that prints and mails cheques), or the
ability to compensate may be transient. The LRA model allows applications to
combine services that can be compensated with those that cannot be compensated.
Obviously by mixing the two service types the user may end up with a business
activity that will ultimately not be undone by the LRA model, but which may require
outside (application specific) compensation.

The LRA model defines a protocol actor called a Compensator that operates on
behalf of a service to undo the work it performs within the scope of an LRA. How
compensation is carried out will obviously be dependant upon the service;
compensation work may be carried out by other LRAs which themselves have
Compensators.

When a service performs work that may have to be later compensated within the
scope of an LRA, it enlists a Compensator participant with the LRA coordinator. The
coordinator will send the Compensator one of the following messages when the
activity terminates:

• Success: the activity has completed successfully. If the activity is nested then
compensators may propagate that outcome to the enclosing LRA.

• Fail: the activity has completed unsuccessfully. All compensators that are
registered with the LRA will be invoked to perform compensation in reverse order.
The coordinator forgets about all compensators that indicated they operated
correctly. Otherwise, compensation may be attempted again or alternatively a
compensation violation has occurred and must be logged.

LRAs may be used both sequentially and concurrently, where the termination of an
LRA signals the start of some other unit of work within an application. However,
LRAs are units of compensatable work and an application may have as many such
units of work operating simultaneously as it needs to accomplish its tasks.
Furthermore, the outcome of work within LRAs may determine how other LRAs are
terminated.

An application can be structured so that LRAs are used to assemble units of
compensatable work and then held in the active state while the application performs
other work in the scope of different (concurrent or sequential) LRAs. Only when the
right subset of work (LRAs) is arrived at by the application will that subset be
confirmed; all other LRAs will be told to cancel (complete in a failure state).

As we have seen, in the LRA model each application is bound to the scope of a
compensation interaction. For example, when a user reserves a seat on a flight, the
airline reservation centre may take an optimistic approach and actually book the seat

 WS-CAF: Contexts, Coordination and Transactions for Web Services 449

and debit the users account, relying on the fact that most of their customers who
reserve seats later book them; the compensation action for this activity would
obviously be to un-book the seat and credit the user’s account. Work performed
within the scope of a nested LRA must remain compensatable until an enclosing
service informs the individual service(s) that it is no longer required.

Let’s consider another example of a long running business transaction. The
application is concerned with booking a taxi, reserving a table at a restaurant,
reserving a seat at the theatre, and then booking a room at a hotel. If all of these
operations were performed as a single transaction then resources acquired during
booking the taxi (for example) would not be released until the top-level transaction
has terminated. If subsequent activities do not require those resources, then they will
be needlessly unavailable to other clients.

Figure 1 shows how part of the night-out may be mapped into LRAs. All of the
individual activities are compensatable. For example, this means that if LRA1 fails or
the user decides to not accept the booked taxi, the work will be undone automatically.
Because LRA1 is nested within another LRA, once LRA1 completes successfully any
compensation mechanisms for its work may be passed to LRA5: this is an
implementation choice for the Compensator. In the event that LRA5 completes
successfully, no work is required to be compensated, otherwise all work performed
within the scope of LRA5 (LRA1 to LRA4) will be compensated.

Fig. 1. LRA example

Business Process
The Business Process (BP) protocol is significantly different from any of the other
transaction models we have seen to-date (and there is no directly comparable model in
Web Services transactions specifications). This model is specifically aimed at tying
together heterogeneous transaction domains into a single business-to-business

450 M. Little

transaction. So, for example, with the BP model it is possible to have a long-running
business transaction span messaging, workflow and traditional ACID transactions,
allowing enterprises to leverage their existing IT investment.

In the business process transaction model (BP model) all parties involved in a
business process reside within business domains, which may themselves use business
processes to perform work. Business process transactions are responsible for
managing interactions between these domains. A business process (business-to-
business interaction) is split into business tasks and each task executes within a
specific business domain. A business domain may itself be subdivided into other
business domains (business processes) in a recursive manner.

Each domain may represent a different transaction model if such a federation of
models is more appropriate to the activity. Each business task (which may be modeled
as a scope) may provide implementation specific counter-effects in the event that the
enclosing scope must cancel. In addition, periodically the controlling application may
request that all of the business domains checkpoint their state such that they can either
be consistently rolled back to that checkpoint by the application, or restarted from the
checkpoint in the event of a failure.

An individual task may require multiple services to work. Each task is assumed to
be a compensatable unit of work. However, as with the LRA model described earlier,
how compensation is provided is an implementation choice for the task.

For example, consider the purchasing of a home entertainment system example
shown in Figure 2. The on-line shop interacts with its specific suppliers, each of
which resides in its own business domain. The work necessary to obtain each
component is modeled as a separate task, or Web service. In this example, the HiFi
task is actually composed of two sub-tasks.

Fig. 2. Business processes and tasks

 WS-CAF: Contexts, Coordination and Transactions for Web Services 451

In this example, the user may interact synchronously with the travel agent to build
up the details of the holiday required. Alternatively, the user may submit an order
(possibly with a list of alternate requirements, such as destinations, dates, etc.) to the
agent who will eventually call back when it has been filled; likewise, the travel agent
then submits orders to each supplier, requiring them to call back when each
component is available (or is known to be unavailable).

Business domains are instructed to perform work within the scope of a global
business process. The business process has an overall manager that may be informed
by individual tasks when they have completed their work or it may periodically
communicate with each task to determine its current status. In addition, each task may
make checkpoints of its progress such that if a failure occurs, it may be restarted from
that point rather than having to start from the beginning. A business process can either
terminate in a confirmed (successful) manner in which case all of the work requested
will have been performed, or it will terminate in a cancelled (unsuccessful) manner, in
which case all of the work will be undone.

If it cannot be undone, then this fact must be logged.

3 Comparison with Other Specifications

The WS-CAF specifications are designed to work with and complement other Web
services specifications, including WS-Security, WS-Reliability, WS-BPEL, and
others. The WS-CAF specifications define the SOAP message exchange patterns and
WSDL interfaces necessary to accomplish the context management, coordination, and
transaction processing capabilities needed to support composite application
executions.

The question of compatibility with other Web services specifications is a difficult
one since so many specifications are under progression at various standards bodies
and through private consortia. It’s often hard to know where any particular Web
services specification fits within the overall picture. The W3C is producing a Web
Services Architecture specification on this topic [5], while IBM and Microsoft have
produced a whitepaper to reflect their own view [6]. At this point in time neither
seems definitive, which is understandable given the rate of change still occurring in
Web services and the fact that no single standards body is in control, and that so many
specifications remain under private copyright.

An important consideration with respect to Web services specifications is the issue
of intellectual property rights and copyright ownership. The WS-Interoperability
organization [7] for example has debated to what extent their profiles can or should
reference private specifications. The WS-I Basic Profile references SOAP 1.1, WSDL
1.1, and UDDI V2, all of which were produced by private consortia but have since
been submitted to a standards body.

Some specifications under private copyright ownership require royalty fees to be
paid to the copyright owners for the right to implement and sell software based upon
them. Web services vendors who are not copyright holders on a given specification
may be concerned about implementing a specification that their competitors control,
especially when they are not allowed to participate in its definition or evolution.

452 M. Little

When a specification is not under the control of a single vendor of group of vendors,
it’s said to be “open,” meaning that anyone can participate in its definition and
evolution.

With respect to other Web services specifications, both private and open, the WS-
Context specification is unique. No other specification exists that defines a generic
context management mechanism for Web services.

The OASIS WS-Coordination Framework specification shares a common
derivation with the OASIS WS-Coordination specification – both are based on the
Object Management Group’s (OMG) extended transaction specification called
Additional Structuring Mechanisms for the OTS [8]. This specification was developed
as an extension of the Object Transaction Specification (OTS) [9], which defines how
coordination works for both the CORBA and J2EE worlds.

The Additional Structuring Mechanisms specification, sometimes called the
Activity Specification since it defines generic activities, pioneered the concept of a
pluggable coordinator. The specification includes an example of an open nested
transaction model to validate the design of a coordinator as a generic state machine
capable of supporting multiple transaction protocols, rather than tying the coordinator
to the two-phase commit protocol (as it is in the base OTS specification). WS-CF, like
WS-C, is derived from this pioneering OMG work.

The base OTS specification also contains a precedent for WS-CAF because it
defines how multiple coordinators can work together. The concept is called
interposition, and it means that a coordinator can act as a resource to another
coordinator on behalf of a set of local resources. The idea was included in the OTS
specification as a network optimization, but it turns out to be useful for
interoperability as well.

In IONA’s Orbix Mainframe product [10], for example, an interposed coordinator
bridges the standard OTS two-phase commit protocol from a CORBA object or EJB
on Unix or Windows to the proprietary Resource Recovery Management Services
(RRMS) two-phase commit protocol on the mainframe. Bi-directional transactional
interoperability with CICS and IMS is achieved using an interposed coordinator on
the mainframe to map the standard OTS two-phase commit commands into and out of
their RRMS equivalents. The standard OTS protocol is used over the wire.

The OASIS WS-AtomicTransaction and WS-BusinessActivity specifications,
which share some of the same authors as WS-CAF, have recently reached OASIS
standards. They are roughly equivalent to WS-ACID and WS-LRA. They also share
the common ancestry of the CORBA Activity Service.

4 Conclusions

Specifications such as the Business Process Execution Language (BPEL) and the Web
Services Choreography Interface (WSCI) focus on tying multiple Web services
together to create multi-step applications, such as filling a purchase order or resolving
an insurance claim. Therefore these applications have the requirement to share
context across the steps.

The WS-CAF specifications define a standard framework for use by a set of
cooperating Web services so that:

 WS-CAF: Contexts, Coordination and Transactions for Web Services 453

• Each Web service knows what application it’s included in (or how many and
which one it’s currently in).

• The Web services in a composite have a way to obtain results of another Web
service’s operations.

• A standard mechanism is available to share needed system data such as security
tokens, file and device handles, or network addresses.

• The application can set rules and policies for recovering from the failure of one or
more of the services.

While specifications such as BPEL and WSCI provide the mechanism for
extending the WSDL layer to identify a series or sequence of execution for multiple
Web services, WS-CAF defines the complementary system layer necessary to ensure
that the multiple Web services achieve the desired results of the application, and that
the cooperation of multiple Web services from whatever source (local or remote)
produces predictable behavior despite system failure and leaves the system in a
known state.

As with most aspects of standardization, the value in WS-CAF is derived from the
potential for its features and functions to be provided by Web services vendors,
therefore helping application developers solve composite application problems more
easily. Once adopted and implemented, the functionality contained within WS-CAF
will not only be available as part of the platform (and therefore not have to be coded
as part of the application) but also it will be available in a standard way across
platforms, allowing Web services from multiple environments to interoperate more
easily, efficiently, and effectively than if the developers had to code all of the
equivalent features and functionality themselves in a non-standard way.

References

[1] RFC 237, 1998 http://www.faqs.org/rfcs/rfc2371.html
[2] OASIS Web Services Composite Application Framework Technical Committee,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
[3] OASIS Web Services Business Process Execution Language Technical Committee,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
[4] The Web Services Choreography Interface, August 2002, W3C Note,

http://www.w3.org/TR/2002/NOTE-wsci-20020808/
[5] W3C Architecture Committee, see http://www.w3.org/2002/ws/arch/
[6] http://www-306.ibm.com/software/solutions/webservices/pdf/

SecureReliableTransactedWSAction.pdf
[7] See http://www.ws-i.org/Documents.aspx for background on WS-I and information on

WS-I working group charters
[8] http://www.omg.org/technology/documents/formal/add_struct.htm
[9] http://www.omg.org/technology/documents/formal/transaction_service.htm

[10] http://www.iona.com/products/appserv-mainframe.htm
[11] Session Modeling for Web Services, Hal Hildebrand et al, Proceedings of ECOWS

(2005)
[12] W3C WS-Addressing Working Group, http://www.w3.org/2002/ws/addr/

Resilient Security for False Event Detection

Without Loss of Legitimate Events in Wireless
Sensor Networks

Yuichi Sei1,2 and Shinichi Honiden1,3

1 Graduate School of Information Science and Technology
The University of Tokyo

731 Hongo, Bunkyoku Tokyo, Japan
2 Research Fellow of the Japan Society for the Promotion of Science (JSPS)

3 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

{sei, honiden}@nii.ac.jp

Abstract. When large-scale wireless sensor networks are deployed in
hostile environments, the adversary may compromise some sensor nodes
and use them to generate false sensing reports or to modify the reports
sent by other nodes. Such false events can cause the user to make bad
decisions. They can also waste a significant amount of network resources.
Unfortunately, most current security designs have drawbacks; they either
require their own routing protocols to be used, or lose legitimate events
stochastically and completely break down when more than a fixed thresh-
old number of nodes are compromised. We propose a new method for de-
tecting false events that does not suffer from these problems. When we
set the probability of losing legitimate events to 1%, our proposal method
can detect more false events than related method can. We demonstrate
this by mathematical analysis and simulation.

Keywords: wireless sensor network, false event, security, en-route filter-
ing, node compromise.

1 Introduction

A core function of wireless sensor networks is to detect and report events. Such
networks are suitable for tasks such as military surveillance and forest fire moni-
toring and deploy a large number of sensor nodes over a vast region. Sensor nodes
detect events of interest and deliver reports to the sink over multihop wireless
paths. However, an adversary may capture and compromise several sensors. He
can obtain the secret keys stored in the compromised nodes, and these nodes can
then pretend to have detected a nearby event or forward a report supposedly
originating from a remote location (Fig. 1).

Several studies [1,2] have proposed mechanisms to enable message authenti-
cation in sensor networks. However, these mechanisms can only prevent false

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 454–470, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Resilient Security for False Event Detection 455

sink

compromised node

False
event

Fig. 1. Compromised node can be used by an attacker to report a false event

reports by outside attackers. They cannot block false reports by compromised
nodes.

Work that addresses insider attacks can be classified by mechanism into two
types: randomized key distribution mechanisms [3,4,5] and location-based key
distribution mechanisms [6,7].

The common goal of these works is to detect false events in networks as
quickly as possible. Detection in the early stages is important because multihop
transmission wastes the finite resources of sensor nodes.

However, the current mechanisms have drawbacks. Randomized key distri-
bution mechanisms lose legitimate events stochastically and exhibit a threshold
behavior. This design is secure against T or less compromised nodes, where T is
a fixed threshold, but when more than T keys are leaked, the mechanism cannot
detect false events created by using the arbitrary T keys.

Location-based key distribution mechanisms, in contrast, specify the routing
protocol of events. A lot of research has been done on routing protocols for
wireless sensor networks. The best protocol should be chosen based on various
measures such as density of nodes and energy consumption and not simply on
the basis of ability to detect false events.

We propose a method for detecting false events that neither loses legitimate
events nor specifies routing protocols. We also seek to overcome the threshold
limitation of randomized key distribution algorithms. To this end, we introduce
a novel notion: detecting sensor group (DSG). The nodes within a DSG coop-
erate and generate keys for each node. Our method also manages the possible
combinations of keys attached to a legitimate event to increase the tolerance
threshold for number of compromised nodes. Our goal is illustrated in Table 1.

When we set the probability of losing legitimate events to 1%, our method
is able to detect more false events than related methods (which do not specify
routing protocols) can. We demonstrate this with mathematical analysis and
simulations.

The rest of the paper is organized as follows. Section 2 presents a model of false
events and sensor networks. Section 3 discusses related methods and their prob-
lems. Section 4 presents the design of our algorithm. Section 5 discusses parame-
ter setting and the analyses of our algorithm’s effectiveness through mathematical
analysis. Section 6 presents the results of simulations of our design. A number of
practical issues are discussed in Section 7, and Section 8 concludes the paper.

456 Y. Sei and S. Honiden

Table 1. Current methods

xxxOur method

xxLocation-based key
distribution

xRandomized key
distribution

Tolerant of more
than T compromised
nodes

Not specifying
routing protocols

Not losing legitimate
events

xxxOur method

xxLocation-
distribution

xRandomized key
distribution

Tolerant of more

nodes

Not specifying
routing protocols

Not losing legitimate
events

Characteristics

Method

2 System Models

In this section, we define our assumed sensor network model and the model of
false event attacks.

2.1 Sensor Network Model

We assume a sensor network composed of a large number of small sensor nodes
deployed at high density. By detecting an event using several nodes, such a net-
work can improve accuracy detection and adapt to node failures. Each of the
detecting nodes reports the signal it senses, and one of them is chosen as the
center-of-stimulus node (CoS). The CoS gathers and summarizes all the received
detection results. The message from the CoS to the sink, which is called the event
message, travels to the sink over a multihop route. The sink is a data collection
center with large computation and storage capabilities that protects itself us-
ing advanced security solutions. Because they are designed to be inexpensive,
we assume that the sensor nodes are not equipped with tamper-resistant hard-
ware. Once deployed, each node can determine its geographic location using a
localization scheme [8,9].

2.2 False Event Attack

An attacker may compromise multiple sensor nodes in the network. Once a
sensor node is compromised, all secret keys, data, and code stored on it are
exposed to the attacker. The attacker can load a compromised node with secret
keys obtained from other nodes. The compromised nodes can pretend to have
detected an event nearby. Such bogus reports can cause the user to make bad
decisions and cause the failure of mission-critical applications. They can also
induce congestion, and waste a significant amount of network resources (e.g.,
energy and bandwidth), along data delivery paths.

The compromised nodes can launch many other attacks. However, these
threats are addressed in other related work [10,11] and are beyond the scope
of this paper.

Resilient Security for False Event Detection 457

3 Related Work

Although many researchers address the method of distributing keys to nodes in
safety, these methods [12,13] do not consider situations where sensor nodes are
compromised and the information stored in them is leaked.

There are several studies on the similar topic of secured data aggregation
[14,15]. These methods presented in these studies can detect false events at the
sink but cannot detect them in-network.

Research on false event detection in-network has devised a way to distribute
secret keys to sensors [3,4,5,6,7]. The basic idea is allowing every node have
symmetric keys. In a randomized key distribution mechanism, every node is
preloaded with them. In a location-based mechanism, key are generated after
deployment based on each node’s location. When an event occurs, multiple sur-
rounding sensors collectively generate a report that carries multiple message
authentication codes (MACs) [16]. MAC(K, M) is the MAC of message M us-
ing key K. A MAC is generated by a node using one of its symmetric keys and
represents the node’s agreement on the report. As a report is forwarded toward
the sink over multiple hops, each forwarding node probabilistically verifies the
correctness of the MACs carried in the report. Reports with inadequate numbers
of MACs are not delivered.

These methods have the drawbacks of losing legitimate events stochastically
or needing to use their own routing protocols.

There are several studies that have expanded on these researches. For example,
some researchers [17,18] have applied a re-keying technique to the existing de-
tection mechanism [3]. F. Li [19] addresses a fabricated report with a false MAC
attack. The relationship between the false event detection methods and the re-
keying techniques is shown in Figure 2. Re-keying and false MAC techniques
use false event detection mechanism without modification and add additional
functions. Re-keying and false MAC techniques add functions to the unmodified
false event detection mechanism. In the figure, the reference relationships are
represented as arrows. We propose a detection mechanism that we can combine
with the re-keying or the unmodified false MAC techniques.

3.1 Problems of a Randomized Key Distribution Mechanism

F. Ye et al. [3] and H. Chan et al. [4] distribute keys to the sensor nodes randomly.
Sensor nodes need to collect more than T discrete MACs to create a legitimate
event. However, they may fail to collect them even if more than T legitimate
nodes detect an event. In Fig. 3, which shows an example where T=3, sensors
are represented as hexagons. The center-of-stimulus nodes can collect only two
types of MACs although the system needs more than three MACs. In this case,
the event message to the sink will be dropped by an intermediate node.

Moreover, a randomized key distribution mechanism exhibits a threshold be-
havior. False events cannot be detected when the attacker has more than T keys.
A false event could appear either where nodes are compromised or at arbitrary
locations.

458 Y. Sei and S. Honiden

False event detection

Re-keying

F. Ye, at al, 2004

H. Chan, et al, 2003

H. Yang, et al, 2005 W. Zhang, et al, 2005

Handling false MAC

F. Li, et al, 2006 W. Li, et al, 2006

S. Zhu, et al, 2004

C. Kraub, et al, 2007

Randomized key distributionLocation-based key distribution

Fig. 2. Work related to false event detection

1, a

2, a

3, b

4, b

MAC(a, E)

MAC(b, E)

MAC(b, E)

Fig. 3. Losing a legitimate event (Numbers represent node IDs, and letters represent
ID of key held by node)

3.2 Problems of a Location-Based Key Distribution Mechanism

H. Yang et al. [5], S. Zhu et al. [6], and C. Kraub et al. [7] distribute keys to
each sensor node based on its location. The methods described in these papers
restrict the routing path of an event message to boost the probability of false
event detection.

However, there has been a lot of research on the routing protocols of wireless
sensor networks, which enables designers to choose the best protocol based on
various measures (density of nodes, energy consumption, and so on). Choosing
a routing protocol simply to detect false events ignores these other benefits.

4 Design

4.1 Definition of Novel Concepts and Notations

Four concepts form the basis of our method: detecting sensor group (DSG),
minimum sensor group (MG), legitimate combination of keys (LCK), and event
circle region (ECR). Sensor nodes are represented as ni, where of ni’s node ID
is i.

Resilient Security for False Event Detection 459

1, a

2, b

3, c

4, d

5, e

6, b

7, c

DSG1

DSG2

DSG3

Fig. 4. Detecting sensor group (DSG) where T=3

Detecting Sensor Group (DSG). We assume ideal sensing within sensing
range Rd for each sensor. In ideal sensing, targets are detectable if the sensors
are within a certain range of the target and no signal is received by a sensor
outside this range [20].

A DSG is:

1. A combination of more than T sensors included in a circle with radius rd

2. Not a subset of any other DSG

Figure 4 shows an example where T = 3 and each sensor is assigned an ID.
The circles in the figure have radius rd. The set of sensors in a given circle is
a DSG. Let the node whose ID is i be ni. DSG1 is {n1, n2, n3, n4}, DSG2 is
{n2, n3, n4, n5}, and DSG3 is {n5, n6, n7}.

If n1 does not exist, the three nodes included in DSG1 are all included in
DSG2. In this case, the set of nodes {n2, n3, n4} is not a DSG because it does
not meet the second definition of DSGs.

The number of nodes in a DSG must be larger than T to create a legitimate
event. Sensor nodes in the same DSG must have different keys so as not to lose
a legitimate event.

Minimum Sensor Group (MG) and Legitimate Combination of Keys
(LCK). A minimum sensor group (MG) is defined as the combination of T
nodes in the same DSG. For example, in Fig. 4, there are eight MGs: MG1 =
{n1, n2, n3}, MG2 = {n2, n3, n4}, MG3 = {n3, n4, n1}, MG4 = {n4, n1, n2},
MG5 = {n3, n4, n5}, MG6 = {n4, n5, n2}, MG7 = {n5, n2, n3}, MG8 =
{n5, n6, n7}.

Each legitimate combination of keys (LCK) is associated with an MG. Let the
ID of ni’s key be k(ni). For example, LCK1, which is associated with MG1, is
{k(n1), k(n2), k(n3)} = {a, b, c}. The key IDs of an LCKs are potential legitimate
combinations of key IDs of legitimate events. For example, it is possible for an
event message to have T MACs created by key IDs a, b, and c, but it is not
possible for it to have MACs created by key IDs a, c, and e.

Event Circle Region (ECR). Each MG has its event circle region (ECR).
Figures 5(a) and 5(b) show example of ECRs. The x represents the location of

460 Y. Sei and S. Honiden

1, a

2, b

3, c

(a) Possible detect-
ing location 1

1, a

2, b

3, c

(b) Possible detect-
ing location 2

1, a

2, b

3, c

ECR1
MG1

(c) Entire possible
detecting location
(ECR)

Fig. 5. Event circle region associated with MG1

an event, and the circle’s radius is rd. Only the nodes in the circle can detect the
event. MG1 = {n1, n2, n3} can detect an event only in the region named ECR1

in Fig. 5(c).

4.2 Overall Operations

In our method, as in other current methods, we let each node have a key. How-
ever, we also let each node in the same DSG have a different key so as not to
lose legitimate events. We assume that sensor nodes’ locations are not known a
priori. Since they may have been dropped by vehicles or aircraft, their locations
must be determined before reports can be processed. Positive determination of
a node’s location is required in all applications used in a hostile environment.
A number of proposals [8,9] have started to address this problem. After their
locations have been determined, sensor nodes need to recognize what DSGs they
are in. We introduce an efficient way for the system to determine this.

However, we also need a mechanism by which we can detect a false event even
if more than T nodes are compromised. To do this, we use LCKs, i.e., potential
legitimate combinations of key IDs of legitimate events.

For example, for the configuration shown in Fig. 4, let the attacker compromise
three keys ka, kb, and kc and create a false event using the keys. Here, ki is the
key whose ID is i. If we use a randomized key distribution mechanism, the false
event may appear both where nodes are compromised, and at arbitrary locations.
However, if the sink knows all ECRs and corresponding LCKs, it can detect a
false event that occurred in an ECR not associated with the reporting LCK.

Deriving Keys in an Efficient Fashion. We preload each node with the
number of entire keys M , a master secret key K̂, and a secure one-way hash
function H(·) [21] before it is deployed. M is determined based on its power
to detect false events and its tolerance of compromising nodes. We discuss this
further in Section 5.

Once deployed, a node ni first determines its geographic location Li through a
localization scheme [8,9]. Then ni broadcasts information about i, and Li within

Resilient Security for False Event Detection 461

Radius is Rd

Radius is 2Rd

ni

One of
DSGs of ni

Fig. 6. DSGs that may include ni must be within a circle of radius 2 · Rd

a 2 · Rd radius using the method described in [11]. The DSGs in which ni can
possibly be included are within the circle with a 2·Rd whose center is Li (see Fig.
6). Assume the node nj obtained information from ε nodes. DSGs that include
nj potential are limited to the combinations of those ε nodes. Therefore, each
node can determine the DSGs it belongs to using the ε information.

In each DSG, the node with the largest node ID will be the leader of the DSG.
Each leader sends the information to the sink. The sink can determine locations
of all nodes and DSGs. Then the sink can calculate all MGs, LCKs, and ECRs.
It stores all the information.

Each node ni follows the procedure below:

– If ni is not a leader of a DSG, it deletes the master secret K̂.
– It finds the leader with the largest node ID among the leaders of all of its

DSGs (The leader maybe ni itself).
– ni requests a key from the leader with the largest node ID and receives a

key ID and a corresponding key from the leader.
– It then registers the key ID with the leaders of its other DSGs.

Each DSG leader node also executes the above procedures. The additional
procedures for each leader node nl are as follows:

– It receives a key ID request from each node in the same DSG.
– If nl receives the requests or key registrations from all nodes in one DSG (nl

may belong to several DSGs), it determines each key ID. Let the number of
nodes in the DSG be s. Node nl calculates kid = �M ×random()� repeatedly
until it gets s different results. The function random() returns a value with a
positive sign greater than or equal to 0.0 and less than 1.0. Then it calculates
k = HK̂(kid) from each kid.

– nl then sends each key ID kid and the corresponding key k to the nodes that
requested keys in the DSG.

– When nl finishes giving key IDs to the nodes that requested keys in DSGs
where it is a leader, it deletes the master secret K̂ immediately.

As a result, all sensor nodes in the same DSG are assigned different key IDs.

462 Y. Sei and S. Honiden

Event Generation. When an event occurs, a center-of-stimulus node is elected
using the method proposed in [11]. Then, all surrounding nodes that detect the
signal will prepare an event report in the form of {LE, t, E}. LE is the location
of the event, t is the time of detection, and E is the type of event. Although the
report may also contain other information, we only list these three, as described
in [3] to simplify presentation. Then a node ni generates:

MACi = MAC(k(ni), LE ||E) (1)

where || denotes stream concatenation. k(ni) represents the key ni has.
The node ni then sends {kid(ni), MACi}, the key index of k(ni) and the

MAC, to the center-of-stimulus node. The center-of-stimulus node collects all
the {kid(ni), MACi} from detecting nodes. The final report sent out by the
center-of-stimulus node to the sink is

{LE, t, E, kid(ni1), MACi1 , ..., kid(niT), MACiT }.

En-Route Filtering. This phase is similar to current methods, such as that
presented in [3]. We give each sensor node a simple additional task. The task of
an intermediate node is as follows.

When a node receives an event message, it first examines whether there are
T key IDs and T MACs in the message. Messages with less than T key IDs or
less than T MACs are dropped. Then the node executes an additional task: it
examines whether the IDs of T keys are between 0 and M − 1. If any of them
are not in the range, the event message is dropped. This examination must be
done to prevent an attacker from attaching non-existing values to the message
as IDs. In current methods sensor nodes do not do this examination.

Then, if the node has any of the T keys indicated by the key IDs, it reproduces
the MAC using its own key and compares the result with the corresponding MAC
attached in the message. The message is dropped if the attached one differs from
the reproduced one. If they match exactly, or this node does not possess any of
the T keys, the node passes the message to the next hop.

Sink Verification. When the sink receives an event message, it can check the
correctness of every MACij because it has all the keys. Any forged MAC that
chances to get behind the en-route filtering will be caught. If the message is
considered a false event, it is discarded.

Then, the sink examines whether or not the set of key IDs in the message is
one of the legitimate combinations of keys (LCKs). If the examination failed, it
can be concluded that the message was created by an attacker who had gathered
T keys from discretely located nodes.

Then, the sink examines whether or not location information Lt in the mes-
sage is included in the corresponding event circle region (ECR). If the examina-
tion failed, it can be concluded that the location information was forged by an
attacker. Therefore, the message is discarded.

Handling of Node Movement. If a sensor node moves from its location, the
sink should know this. The process for the sink to discover this is illustrated in
Fig. 7 (where the leader node of each DSG is colored in gray) and is as follows.

Resilient Security for False Event Detection 463

1. Move
2. Inform

2. Inform

4. Broadcast

Radius is Rd

Radius is 2Rd

sink

3. Inform
2. Inform

5. Store information

Fig. 7. Process for handling node movement

– Moved node ni informs the leader nodes of its previous DSGs and the sink
of it’s new location.

– ni’s previous DSG leader nodes check whether their DSGs have still enough
nodes to create legitimate events. If not, they inform the sink of this problem.
The sensor network manager may want to add a sensor node to that location.

– Moved node ni broadcasts its ID and new location within a 2 · Rd radius
circle.

– ni’s new DSG leader nodes store the ID and the location.

ni does not need a new key because the DSGs that contain ni already have
enough keys to create legitimate events even if ni’s key overlaps with other nodes’
keys.

5 Analysis

We start the analysis of the performance of our design by examining the filtering
power of our design against compromised nodes. Then, we analyze its resiliency
as more and more nodes are compromised.

5.1 Filtering Effectiveness

We first consider how many keys are compromised if an attacker compromises
Nc nodes (even if Nc sensor nodes are compromised, the number of leaked keys
is less than Nc, because some nodes share keys). Let the number of leaked keys
be Nk.

The relationship between Nc and Nk is shown as:

Nc = M

(
1
M

+
1

N − 1
+ · · · +

1
M − Nk

)

≈ M ln
(

M

M − Nk

)

, (2)

where M represents the number of keys.

464 Y. Sei and S. Honiden

1

2

3

4

Nc
10

20

30

40

50

M
0

20
40
60
80

100

1

2

3Nc

(a) T = 5

1

2

3

4

Nc
5

6

7

8

9

10

T
0

20
40
60
80

100

1

2

3Nc

(b) M = 30

Fig. 8. Number of hops traveled

We can get from Equation 2:

Nk = M · e−Nc/M ·
(
eNc/M − 1

)
(3)

The probability that a node can detect a false event when the attacker ob-
tained Nk(Nk < T) keys, denoted by p1 is

p1 =
T − Nk

M
(4)

The average hop count until the false event is detected, denoted by ph is

ph =
H∑

i=1

i · (1 − p1)i−1 · p1

=
1 − (1 − p1)H

p1
, (5)

where H represents the max hop count from the center-of-stimulus node to the
sink.

Figure 8 shows the results of the analysis. Consider an example of H = 500.
Nc is the number of compromised nodes, T is the number of MACs carried in
an event message, and M is the number of keys.

Figure 8(a) shows that the filtering power grows as M decreases. We know
that most false events are dropped within ten hops if the attacker has one key
when M is 30 and T is 5 in the example in Fig. 8(b). In the worst case, where
only one MAC is incorrect , the false events travel an average of 24 hops. Note
that the filtering power does not depend on the number of sensor nodes.

Next we analyze the filtering power of SEF [3]. SEF is one of the methods
that use a randomized key distribution mechanism. Many recent methods use
the SEF algorithm without modification (and add extra functions to it). We

Resilient Security for False Event Detection 465

1

2

3

4

Nc
5

6

7

8

9

10

T
0

20
40
60
80

100

1

2

3Nc

(a) Probability of losing legitimate events
is 1%

1

2

3

4

Nc
5

6

7

8

9

10

T
0

100

200

300

1

2

3Nc

(b) Probability of losing legitimate events
is 0.1%

Fig. 9. Number of hops traveled in SEF

think we should compare our work with SEF. Note that the methods that use
the SEF algorithm can also use our algorithm without modification instead of
SEF.

We used parameters of T and H and set the number of nodes in each DSG
to T + 1. When using SEF, we need to determine the number of key partitions.
If this parameter is small, filtering power increases but the probability of losing
legitimate events also increases. We set it based on the target probability of losing
legitimate events. In regard to other parameters, we followed [3]. The results are
shown in Fig. 9. In Fig. 9(a) we set the probability of losing legitimate events
at 1%, and in Fig. 9(b) we set it at 0.1%. We know that SEF is of limited use if
we do not want to lose legitimate events. Even when the probability is 1%, our
method is more effective than SEF as shown in Fig. 8(b) and Fig. 9(a).

5.2 Resiliency to Compromising Many Nodes

Now we consider the resiliency of our method to attacks where an increasing
number of nodes are compromised. We consider a case where the attacker com-
promises Nc nodes and fabricates event messages on bogus events happening in
an arbitrary location. To fabricate events without being detected, the attacker
must collect T keys of one LCK.

Let the ratio of the geographical region where we cannot detect false events
when an attacker compromised Nc sensor nodes be �. If the attacker obtained
Nk keys, he can create Nk

CT combinations of legitimate T keys. If the number
of all keys is M , the number of the possible combinations of legitimate keys is
MCT . There are many minimum sensor groups in the network and each group
is associated with one LCK. Therefore, � is shown as follows:

� = Nk
CT

MCT
(6)

466 Y. Sei and S. Honiden

10
20

30
40

50

Nc
10

20

30

40

50

M
0

20
40
60
80

100

10
20

30
40Nc

(a) T = 5

10
20

30
40

50

Nc
5

6

7

8

9

10

T

0

10

20

30

10
20

30
40

Nc

(b) M = 30

Fig. 10. Relationship between number of compromised nodes and corresponding min-
imum sensor groups

Figure 10 shows the analysis results for �. As can be seen in Fig. 10(a), �
decreases as M increases. When M is 30, � is only 30%, even if the number of
compromised nodes is 50. Note that in SEF, � is almost 100% when T is 5 and
there are only five compromised nodes.

6 Simulation Evaluation

We use simulations to further verify our analysis. We developed our own simu-
lation platform, mainly because other simulators scale poorly to large numbers
of nodes. Our simulator implemented basic geographic forwarding [22]. We used
a field size of 1000 × 100m in which 10,000 nodes were uniformly distributed.
There are six nodes in an event circle region, and T is 5. There was one station-
ary sink and one stationary source at opposite ends of the field, with about 500
hops between them.

Figure 11(a) shows the percentage of dropped false reports as a function of
number of traveled hops, for 0 and 1 compromised nodes, respectively. The source
generates 1,000 false events in each run. When the attacker mimics wireless
transmission to inject traffic, about 80% of false events are dropped within ten
hops. With one compromised node, about 70% are dropped within ten hops.

Figure 11(b) shows the relationship between the number of compromised
nodes and the corresponding minimum sensor groups, i.e., the ratio of the ge-
ographical region in which we cannot detect false events when an attacker has
compromised Nc sensor nodes. In the simulation, T was set to 5 and M was set to
30. The attacker randomly picked up Nc nodes. We checked the number of min-
imum sensor groups that the attacker can mimic from the obtaining keys. Then
we divided the resulting value by the number of all minimum sensor groups. We
ran 1,000 simulations. We know that the percentage of corresponding minimum
sensor groups is only 37% even if there are 50 compromised nodes.

Resilient Security for False Event Detection 467

(a) Number of hops (b) Relationship between number of compro-
mised nodes and corresponding minimum sen-
sor groups

Fig. 11. Simulation results

7 Discussion

In addition to sensing data, each event message carries T key IDs and MACs.
To reduce the MAC size, we can use data structures named Bloom Filter [23]
or Ringed Filter [24] in the same way [3] does. These are space-efficient prob-
abilistic data structures used to test whether or not an element is a member
of a set.

Currently our work does provide no key update or revocation mechanism.
Recent work [17,18] has started to address sensor re-keying, so we can update
or revoke the keys either periodically or when there are security breaches.

We assume ideal sensing within a sensing range for each sensor. In practice,
sensing is noisy. A sensor can detect an event outside its nominal range or may
fail to detect an event inside its range. Our approach to such non-idealities
uses a sensing model in which the event is always detected within an inner
disk of radius rd, called the detection region and is detected with some nonzero
probability in an annulus between the inner disk and an outer disk of radius r′d
called the uncertain region. Events outside the outer disk are never detected.
This uncertainty has an effect on creation of detecting sensor groups (DSGs).
At this time, each node ni needs to broadcast for creating DSGs within a 2 · R′d
radius rather than 2 ·Rd radius. Note that this does not influence the en-routing
filtering power of our algorithm.

Currently, our design does not address identifying compromised sensor nodes,
which may be necessary for the continuous operation of a network. To identify the
compromised nodes, each node can use the watchdog mechanism [25] to monitor
its neighbors and identify the compromised nodes when observing misbehavior.
The collaborative intruder identification scheme [26] can also be used to improve
accuracy.

468 Y. Sei and S. Honiden

8 Conclusion

Compromised nodes present severe security threats in sensor networks. Current
solutions either require their own routing protocols to be used or lose legiti-
mate events stochastically and completely break down when more than a fixed
threshold number of nodes is compromised. In this paper, we introduced new
notations: detecting sensor groups and possible legitimate combinations of keys.
We proposed an efficient way of creating node keys in the same detecting sensor
group to avoid losing legitimate events. We also proposed a way of detecting false
events by managing possible legitimate combinations of keys, even if an attacker
has compromised many nodes. When we set the probability of losing legitimate
events to 1%, our proposal method can detect more false events than related
methods can. We could also limit the region where the attacker can create un-
detectable false events by compromising many sensor nodes. In future work, we
plan to implement our algorithm in sensor nodes.

Acknowledgments

We thank our colleagues in X-Aware Computing (XAC) at the National Institute
of Informatics for their constructive criticism.

References

1. Perrig, A., Szewczyk, R., Wen, V., Culler, D.E., Tygar, J.D.: SPINS: security pro-
tocols for sensor networks. In: Mobile Computing and Networking (MobiCom), pp.
189–199 (2001)

2. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: CCS 2002. Proceedings of the 9th ACM conference on Computer
and communications security, pp. 41–47. ACM Press, New York, NY, USA (2002)

3. Ye, F., Luo, H., Lu, S., Zhang, L.: Statistical en-route filtering of injected false data
in sensor networks. IEEE Journal on Selected Areas in Communications, Special
Issue on Self-organizing Distributed Collaborative Sensor Networks 23(4), 839–850
(2005)

4. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor
networks. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy,
pp. 197–213. IEEE Computer Society Press, Washington, DC, USA (2003)

5. Yang, H., Ye, F., Yuan, Y., Lu, S., Arbaugh, W.: Toward resilient security in
wireless sensor networks. In: Proceedings of the 6th ACM international symposium
on Mobile ad hoc networking and computing, pp. 34–45. ACM Press, New York,
NY, USA (2005)

6. Zhu, S., Setia, S., Jajodia, S., Ning, P.: An interleaved hop-by-hop authentication
scheme for filtering false data injection in sensor networks. In: Proceedings of IEEE
Symposium on Security and Privacy, pp. 259–271. IEEE Computer Society Press,
Los Alamitos (2004)

7. Kraub, C., Schneider, M., Bayarou, K., Eckert, C.: Stef: A secure ticket-based en-
route filtering scheme for wireless sensor networks. In: ARES 2007. The Second
International Conference on Availability, Reliability and Security, pp. 310–317.
IEEE Computer Society Press, Los Alamitos, CA, USA (2007)

Resilient Security for False Event Detection 469

8. Bruck, J., Gao, J., Jiang, A.A.: Localization and routing in sensor networks by local
angle information. In: MobiHoc 2005. Proceedings of the 6th ACM international
symposium on Mobile ad hoc networking and computing, pp. 181–192. ACM Press,
New York, NY, USA (2005)

9. Stoleru, R., Vicaire, P., He, T., Stankovic, J.A.: Stardust: a flexible architecture
for passive localization in wireless sensor networks. In: SenSys 2006. Proceedings
of the 4th international conference on Embedded networked sensor systems, pp.
57–70. ACM Press, New York, NY, USA (2006)

10. Wood, A.D., Stankovic, J.A.: Denial of service in sensor networks. Com-
puter 35(10), 54–62 (2002)

11. Ye, F., Zhong, G., Lu, S., Zhang, L.: Gradient broadcast: a robust data delivery
protocol for large scale sensor networks. Wirel. Netw. 11(3), 285–298 (2005)

12. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: CCS
2003. Proceedings of the 10th ACM conference on Computer and communications
security, pp. 52–61. ACM Press, New York, NY, USA (2003)

13. Du, W., Deng, J., Han, Y.S., Chen, S., Varshney, P.K.: A key management scheme
for wireless sensor networks using deployment knowledge. In: INFOCOM (2004)

14. Yang, Y., Wang, X., Zhu, S., Cao, G.: Sdap: a secure hop-by-hop data aggregation
protocol for sensor networks. In: MobiHoc 2006. Proceedings of the seventh ACM
international symposium on Mobile ad hoc networking and computing, pp. 356–
367. ACM Press, New York, NY, USA (2006)

15. Chan, H., Perrig, A., Song, D.: Secure hierarchical in-network aggregation in sen-
sor networks. In: CCS 2006. Proceedings of the 13th ACM conference on Com-
puter and communications security, pp. 278–287. ACM Press, New York, NY, USA
(2006)

16. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message au-
thentication IETF - Network Working Group, RFC2104 (February 1997)

17. Zhang, W., Cao, G.: Group rekeying for filtering false data in sensor networks: a
predistribution and local collaboration-based approach. In: INFOCOM, pp. 503–
514 (2005)

18. Li, W., Zhang, Y., Yang, J.: Dynamic authentication-key re-assignment for reli-
able report delivery. In: IEEE International Conference on Mobile Adhoc and Sen-
sor Systems (MASS), pp. 467–476. IEEE Computer Society Press, Los Alamitos
(2006)

19. Li, F., Wu, J.: A probabilistic voting-based filtering scheme in wireless sensor net-
works. In: Proceeding of the 2006 international conference on Communications and
mobile computing, pp. 27–32. ACM Press, New York, NY, USA (2006)

20. Shrivastava, N., Madhow, R.M.U., Suri, S.: Target tracking with binary proximity
sensors: fundamental limits, minimal descriptions, and algorithms. In: SenSys 2006.
Proceedings of the 4th international conference on Embedded networked sensor
systems, pp. 251–264. ACM Press, New York, NY, USA (2006)

21. Tsudik, G.: Message authentication with one-way hash functions. SIGCOMM Com-
put. Commun. Rev. 22(5), 29–38 (1992)

22. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless net-
works. In: Mobile Computing and Networking (MobiCom), pp. 243–254 (2000)

23. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

470 Y. Sei and S. Honiden

24. Sei, Y., Matsuzaki, K., Honiden, S.: Ringed filters for peer-to-peer keyword
searching. In: ICCCN. IEEE 16th International Conference on Computer Com-
munications and Networks, IEEE Computer Society Press, Los Alamitos (to ap-
pear, 2007)

25. Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile
ad hoc networks. In: MobiCom 2000. Proceedings of the 6th annual international
conference on Mobile computing and networking, pp. 255–265. ACM Press, New
York, NY, USA (2000)

26. Wang, G., Zhang, W., Cao, G., Porta, T.: On supporting distributed collaboration
in sensor networks. In: IEEE Military Communications Conference (MILCOM)
(2003)

Formal Verification of a Group Membership

Protocol Using Model Checking

Valério Rosset, Pedro F. Souto, and Francisco Vasques

Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias s/n
4200-465 Porto, Portugal

vrosset@fe.up.pt, pfs@fe.up.pt, vasques@fe.up.pt

Abstract. The development of safety-critical embedded applications in
domains such as automotive or avionics is an exceedingly challenging in-
tellectual task. This task can, however, be significantly simplified through
the use of middleware that offers specialized fault-tolerant services. This
middleware must provide a high assurance level that it operates correctly.
In this paper, we present a formal verification of a protocol for one such
service, a Group Membership Service, using model checking. Through
this verification we discovered that although the protocol specification is
correct, a previously proposed implementation is not.

1 Introduction

Safety critical applications in the avionics and in the automotive domains, have
extremely demanding reliability requirements that are increasingly being ad-
dressed through the adoption of distributed and fault-tolerant architectures.
These architectures are usually built on top of specialized middleware that is
often integrated with the communications services themselves. For this reason,
this middleware is frequently referred to as a bus [1]. This is somewhat misleading
as it offers rather complex and sophisticated services such as clock synchroniza-
tion, reliable broadcast and group membership.

Recently, a new bus, FlexRay [2], has been proposed for the automotive do-
main. FlexRay was specified by a consortium of automobile and automotive
electronics manufacturers and is likely to become the de facto standard of next
generation automotive-buses. FlexRay is a minimalist bus in that it provides
only communication services and clock synchronization. In a previous paper [3],
we presented a new group membership protocol, which we will refer to as the
GMP, that takes advantage of the dual scheduling ability of the class of TDMA
protocols used by FlexRay and argued informally its correctness.

However, fault-tolerant distributed protocols are very subtle and informal ar-
guments are prone to error making them clearly insufficient for safety-critical
1 Sponsored by scholarship from FCT foundation under reference number SFRH/BD

19302/2004

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 471–488, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

472 V. Rosset, P.F. Souto, and F. Vasques

applications, which require a high level of assurance that they operate correctly.
This holds especially for middleware that is supposed to be used in the develop-
ment of safety critical applications. Ideally, mathematical proofs, either manual
or automatic, of its correctness should be provided. An alternative formal method
is model checking.

Model checking is a technique for verifying properties of a system through ex-
haustive and automatic exploration of all the system states. One problem with
model checking is the state space explosion, i.e. the exponential growth of the
number of system states when the number of components or the number of vari-
ables and their possible values increases. A well known technique to address this
problem is symmetry reduction [4], which tries to explore the structural symme-
try of the model. This technique is particularly effective in models composed by
identical components, such as in distributed protocols.

In this paper we focus on the use of symmetry reduction in verifying the
GMP. The GMP is particularly challenging in this respect, because its behavior
is somewhat “irregular”. This is compounded by our desire in keeping the model
close to the GMP, in order to ensure a high confidence level on the verification
results. Therefore, the model we have developed includes an implementation of
the GMP that could be used almost verbatim in an executable implementation
of the protocol. This allowed us to detect an error in the outline of an imple-
mentation of the protocol that we previously proposed in [3].

The remainder of this paper is organized as follows. In the next section we
provide some background information including an informal description of the
GMP protocol and a very quick review of Uppaal, the model checker we use.
In Section 3, we describe an Uppaal model of the GMP. The techniques used
to reduce the state space size are described in Section 4. Section 5 presents the
correctness properties, and in Section 6 we present and discuss the verification
results. Finally, we conclude in Section 7.

2 Background

2.1 Group Membership Protocol

We consider a system composed of a set of nodes, N , that are connected via a
broadcast network, in which a node receives every message it broadcasts.

We assume that the broadcast network uses a dual scheduled TDMA protocol
such as FlexRay. A dual scheduled TDMA protocol is a variant of the classic
TDMA protocol in which the communications cycle is split in two rounds: one
whose slots are statically scheduled like in conventional TDMA, and another in
which slots are allocated dynamically to nodes. Furthermore, we assume that
each node in N has one slot assigned to it in the statically scheduled round, and
may be assigned one slot in the dynamically scheduled round, if it so wishes.

Nodes can fail by experiencing one of three types of faults: a crash fault, i.e.
a node enters a halting state and takes no further action; a receive fault, i.e. a
fault on reception, that prevents a node from receiving a message broadcasted
by another node in that step; a send fault, i.e. a fault on broadcasting, that

Formal Verification of a Group Membership Protocol 473

prevents a node from broadcasting a message to the network. Note that receive
and send faults do not need to be persistent, e.g. a node may have a receive fault
in a round, but be able to receive a message in a subsequent round. We say that
a node is non-faulty if it has not experienced any fault since the beginning of
the execution, or since it resumed execution, after a fault.

Finally, it is assumed that the communications network is reliable, i.e. it
neither looses nor creates/modifies messages.

GMP Overview. Group membership comprises essentially two sub-problems
[5]: 1) failure detection; and 2) set agreement. The GMP was designed to keep the
solutions to these sub-problems mostly decoupled, and comprises two phases: 1)
a failure-detection phase (FD-phase), in which a node determines the operational
state of other nodes in the system, and 2) a set agreement phase (SA-phase),
in which the non-faulty nodes reach agreement on the operational state of all
nodes in the system. (In [3], the SA-phase was called Group Membership.)

In the GMP, each node keeps, among other state, two sets: the M-SET and the
M-set. The former is the set of group members and is updated at the end of every
SA-phase. The latter is the candidate group membership that is determined by
the node during the execution of both GMP phases. In the FD-phase, every
group member is required to broadcast a heartbeat message, and receives the
heartbeat messages broadcasted by other nodes. If a group member does not
receive the heartbeat message from another group member it removes the latter
from its M-set. In the SA-phase, every group member is required to broadcast
a vote message containing the M-set it computed. Then, each group member
applies a majority vote on the set of M-sets received during the SA-phase to
determine the M-SET.

In order to ensure that the operational state of the nodes in the system is
tracked in a timely fashion, the FD-phase is executed in every TDMA cycle. On
the other hand, the SA-phase is executed only when events that may lead to a
change in the group membership are observed by group-members. This allows
the GMP to take advantage of dual-scheduled TDMA protocol: whereas the
FD-phase uses the statically scheduled round of the TDMA cycle, the SA-phase
uses the dynamically scheduled round of the TDMA cycle, only when events
that may lead to group membership change are observed by group members. In
a quiescent state, the network bandwidth required for agreement can be used by
other aperiodic traffic.

Figure 1 illustrates one possible execution of the GMP for a configuration
with 3 nodes, which are assumed to be members of the group at the beginning
of the first TDMA cycle, c. In that cycle, the 3 nodes execute only the FD-phase,
i.e. only send their heartbeat messages. As no event that might lead to a change
in the membership is observed by any of the 3 nodes, there is no execution of the
SA-phase (equivalently, we say that the SA-phase has no messages). However, in
the following TDMA cycle, node 3 has a receive fault on the heartbeat message
sent by node 2. As a result, it sends a vote message in the following round (round
n+3). The other nodes do not observe any event that might lead to a change in
the membership and therefore do not send any vote.

474 V. Rosset, P.F. Souto, and F. Vasques

Fig. 1. Possible execution of the GMP, illustrating the execution of the SA-phase only
when membership-related events are observed

P1 P2P0 b!r: int[0,N]
n = r

Q1Q0 b?
m = n

Fig. 2. Simple Uppaal model composed of two timed-automata

Although the main ideas behind the GMP are simple, the possibility of faults
makes the protocol details, that we have omitted, rather subtle. In Annex A,
we provide the full protocol for reasons of completeness. A detailed explanation
of the protocol, including informal arguments of its correctness, can be found
in [3].

2.2 UPPAAL

The Uppaal model checker [6] is a toolbox for the verification of real-time sys-
tems modeled as non-deterministic timed automata. A timed automata [7] is
a finite-state machine containing a set of clocks that advance synchronously.
Uppaal supports a number of extensions to timed automata such as integer
variables, structured data-types and channel synchronization, that make it suit-
able to model more than just the temporal behavior of a system.

Uppaal models comprise a set of timed-automata that execute concurrently
and that may synchronize with each other through broadcast or binary channels.
Figure 2 shows a simple model with two automata, P and Q, of three and two
locations respectively, i.e. P0 to P2 and Q0 and Q1. P0 and Q0 are the initial
locations of the respective automata and are represented as a double circle.
Location P1, represented as a circle with a C inside, is a committed location,
which means that time is not allowed to advance while such a location is active.
The model includes channel b and integer variables m, n and r.

Initially, the two automata are in their respective initial location, i.e. P0 and
Q0, and all integer variables values are zero. In this state, automaton Q cannot
take the transition from Q0 to Q1 because it is blocked waiting on channel b.
Therefore, progress is possible only by automaton P taking the transition from
location P0 to location P1. The edge from location P0 to location P1 has a

Formal Verification of a Group Membership Protocol 475

select, r:int[0,N], and an assignment, n=r, labels. The select label binds iden-
tifier r to a random value in the range [0,N]. This value is then assigned to
variable n in the assignment label. Therefore, when P takes transition P0 to
P1, variable n is assigned a random value in the range [0,N]. Because location
P1 is a committed location, automaton P takes transition P1 to P2 immedi-
ately after. Simultaneously, automaton Q takes transition Q0 to Q1, because
both transitions have matching synchronization labels on channel b. Note that
Uppaal also supports the synchronization of multiple automata on a single
broadcast channel, i.e. if multiple automata are waiting on a broadcast channel,
they will all be unblocked if another automata signals that channel.

A more detailed, and formal, description of Uppaal can be found, for example,
in [8].

3 Verification Model

The Uppaal model of the GMP comprises two types of automata, or templates:
Node and Scheduler. The Scheduler automaton controls the evolution of the
protocol by initiating each of the GMP phases. The Node automaton models
the behavior of one node and is the core of the model. A GMP Uppaal model
comprises one Scheduler automaton and N Node automata, where N is the
number of nodes in the system.

3.1 Basic Model

In order to simplify the presentation of the model we first present a model that
does not consider the occurrence of faults.

Global Variables and Synchronization Channels. Variables in Uppaal

may be either local or global. Local variables are private to a particular automa-
ton. Global variables in Uppaal can be accessed by all the automata in the
model, i.e. they are shared, and they play an important role in the communi-
cation between automata. This is because synchronization channels in Uppaal

are strictly for synchronization; it is not possible to pass data through a channel
in Uppaal.

The following table shows some global variables used in the model:

typedef struct{
bool el[N];

} Set;
// GLOBAL State
Set MSETo, Joinable;
// Schedule for GM events: joins
Set Joining;

// Info sent in heartbeat messages
Set SAreqH;
// Info sent in the vote messages
meta Set Mset[N];
meta int[0,N] gsubV[N];
meta int[0,MaxGId] gidV[N];

In the GMP model there are two classes of global variables. The first class
comprises variables that are updated only by the Scheduler and that are in-
tended to control the behavior of the Node automata. Two variables of this class

476 V. Rosset, P.F. Souto, and F. Vasques

B4SA_phase

Init

Ver

B4FD_phase

startPhase!

startProc!

startPhase!

join!

terminateCycle!
updateMSEToX()

startPhase!
SAreq=SAreqH

jr: int[0,rangeBin(N-2)]
initSched(jr)

jr: int[0,rangeBin(N-2)]
genSchedule(jr)

Fig. 3. Scheduler automaton for the model without faults

HLT

B4SA_phase

B4FD_phase

setIsIn(Joinable,Id)
clearState(Id)

not setIsIn(Joinable, Id)
initNode(Id)

not setIsIn(MSET[Id], Id)
terminateCycle?
clearState(Id),
setAdd(Joinable,Id)

setIsIn(Joining,Id)
join?
initJoin(Id)

setIsIn(MSET[Id], Id)
terminateCycle?

startPhase?
genVote(Id)

setIsIn(SAreq,Id)
startProc?
processSAphase()

not setIsIn(SAreq, Id)
startProc?

setIsIn(Valid[Id],Id)
startPhase?
processFDphase()

startPhase?

Fig. 4. Node automaton for the model without faults

are the sets MSETo and Joining. The former keeps track of the group member-
ship as determined by an omniscient observer, whereas the latter keeps track
of the nodes that try to join the group. The second class comprises variables
that contain information that a node sends in the messages of the GMP. Two
variables of this class are the set SAreqH and the array of sets Mset. The former
contains the nodes that have requested to execute the SA-phase, i.e. each ele-
ment of this array represents the SA-req bit of the heartbeat message sent by
the corresponding node, whereas each element of the latter contains the group
membership sent by each node in their vote message.

In addition to global variables the model comprises four broadcast synchro-
nization channels: join, startPhase, startProc and terminateCycle. The lat-
ter two are not strictly necessary, but are used to eliminate intermediate states
that are not relevant, thus reducing the size of the model’s state space. (A de-
tailed discussion on the use of synchronization is presented in Subsection 4.3.)

Automata. Figures 3 and 4 show the Scheduler and the Node automata for
the basic model. In addition to the two phases of the GMP that are repeated
one after the other indefinitely, the model includes an initialization phase. We

Formal Verification of a Group Membership Protocol 477

briefly describe the base model considering each phase in turn. As stated above
the Scheduler automaton controls the model by initiating the phases.

Model Initialization. This phase comprises the initialization of the variables of
the model. It simplifies the verification of configurations with different number of
nodes. In this phase, the Scheduler initializes itself and determines which nodes
start as group members and those that do not.

Failure Detection Phase. Just before the FD-phase begins the Scheduler au-
tomaton is in location B4FD_phase and the Node automata are either in location
B4FD_phase or in location HLT. Initiation of the FD-phase by the Node automata
is controlled by the Scheduler automata.

At the beginning of the FD-phase, the Scheduler determines, with the help
of a selection label, which of the nodes that can join the group will attempt
it and initializes the Joining set with these nodes. After that it signals the
selected nodes on broadcast channel join, so that they move from HLT to the
B4FD_phase and therefore become ready to initiate the FD-phase. At this point,
the nodes that will execute the FD-phase in this execution of the GMP are in
the B4FD_phase state waiting on the startPhase broadcast channel.

Immediately after, the Scheduler signals on that channel, triggering the ex-
ecution of the FD-phase by the nodes. The actions taken in this transition are
specified inside function processFDphase(), which is executed by the Node au-
tomata and does the processing of the FD-phase of the GMP. In this processing,
each Node automaton updates its Mset variable and the SAreq variable, as de-
scribed in Annex A. In addition to its local state, each Node uses all messages it
received in the FD-phase as input to processFDphase(). This information can
be found by looking up sets MSETo, Joining and SAreqH.

Set Agreement Phase. The pattern of the set agreement phase (SA-phase) is
very similar to that of the other phases.

Before executing the SA-phase the Scheduler and the Node automata that
execute the GMP are all in their B4SA_phase location. Execution of the SA-phase
by the Node automata is driven by the Scheduler.

When the Scheduler takes the transition out of location B4SA_phase, it sig-
nals on the startPhase broadcast channel, unblocking all the Node automata
executing the GMP in this cycle. At this point each Node sends its vote, if any,
by executing function genVote().

Sending of a vote consists in updating global meta variables gsubV and gidV,
with the values of the corresponding local variables, as described in the protocol
shown in Annex A. The value of the Mset sent in the vote message, can be found
directly in meta array variable Mset.

After that step, the Scheduler signals on broadcast channel startProc trig-
gering the processing of the SA-phase. If a node is not in SAreq, i.e. the node has
not observed any event that might lead to the change of the group membership,
then it does not send any message in this phase and ignores all messages sent
by other nodes, moving directly to location B4FD_phase. On the other hand,

478 V. Rosset, P.F. Souto, and F. Vasques

nodes in SAreq, must process the votes they receive. This is done in function
processSAphase(), which implements the processing of the SA-phase of the
GMP, described in Annex A. In this processing, a Node uses its own state vari-
ables, such as the MSet and the MSET sets, the meta variables with the votes sent,
the SAreq set, which indicates which votes were actually sent, and the global
variable Joining, which indicates which of those votes were sent by nodes joining
the group.

In the absence of faults, this function is executed only when a node requests
to join the group, and the outcome is the update of the state variables associated
with the group, namely MSET, gid and gsub. However, in the presence of faults,
a node may find out that its view of the group membership is different from that
of the majority, or even that it is not able to determine the view of the majority.
Under our fault assumptions, both cases indicate the occurrence of a fault in the
Node and the protocol determines that the node must halt. To allow testing of
this outcome, a node removes itself from its MSET if it must halt.

Thus, when the Scheduler signals on the terminateCycle broadcast channel,
if a node is not a member of its MSET it moves to location HLT and is added to
the set of nodes that can join the group(Joinable). Otherwise, the node moves
to state B4FD_phase and becomes ready to execute the FD-phase again.

3.2 Modeling of Faults

In the previous section we have presented an Uppaal model for the GMP in the
absence of faults. In this subsection we describe how we model faults. The basic
idea is to use fault schedules for each phase of the GMP execution. These fault
schedules specify the fault events, i.e. send faults and receive faults, that each
node will experience in the corresponding phase.

Generation of the fault schedules is done at two levels. At a system-wide level,
the Scheduler determines which nodes have send faults and which nodes have
receive faults. At a local level, each Node designated to have receive faults gener-
ates its own receive faults, i.e. determines on which messages it will experience a
receive fault. Generation of the global fault schedule by the Scheduler makes it
easier to ensure that the GMP fault assumptions are not violated. On the other
hand, the generation of local receive fault schedule by nodes leads to a more
structured approach and makes it easier to change the receive fault assignment
policy.

Fault schedules are implemented as sets. The following state variables were
added with that purpose:
// Global state variables
Set Faulty;
Set TxFaults;
Set RxFaults;
// Per node state variables - Scheduler needs to access them
Set NFaultsFD[N]; // Faults in the FD-phase
Set NFaultsSA[N]; // Faults in the SA-phase

In order to generate all fault schedules of interest in a compact way, we use
select labels. The random integers generated by these labels are used either as

Formal Verification of a Group Membership Protocol 479

B4SA_phase

Init

Ver

B4FD_phase

genLocalSched!

genLocalSched!

startProc!startPhase!

mrxf: int[0, N-2],
jrxf: int[0, N-2]
updateRxFaults(mrxf, jrxf, true)

mrxf: int[0, N-2],
jrxf: int[0, N-2]
join!
updateRxFaults(mrxf, jrxf, false)

terminateCycle!
updateMSEToX()

fr : int[0,rangeBin(N-2)]
updateTxFaults(fr, true)

startPhase!
SAreq=SAreqH

startPhase!
initSched()

fr : int[0,rangeBin(N-2)]
updateTxFaults(fr, false)

fmr : int[0,(N-1)/2],
jr: int[0,N-2],
fjr: int[0,(N-1)/2]
genSchedule(jr, fmr, fjr)

Fig. 5. Scheduler automaton for the model with faults

the number of nodes that fail, or as an encoding, with one bit per element, of a
set of nodes that fail.

Figure 5 shows the Scheduler automaton that generates the fault schedules
as described above.

To generate the global fault schedule, the Scheduler automaton determines
which nodes fail in a GMP execution, at the beginning of each execution. I.e.,

HLT

B4SA_phase

B4FD_phase

not setIsIn(Joining, Id)
join?
clearNFaults(Id)

not setIsIn(SAreq,Id)
genLocalSched?
setEmpty(Valid[Id]),
updateNFaults(NFaultsSA[Id],0,Id)

not setIsIn(MSET[Id], Id)
terminateCycle?
clearState(Id),
setAdd(Joinable,Id)

setIsIn(SAreq,Id) and not setIsIn(RxFaults,Id)
genLocalSched?
setIntersection(Valid[Id], Valid[Id], SAreq),
updateNFaults(NFaultsSA[Id],0,Id)

not setIsIn(RxFaults,Id)
genLocalSched?
setUnion(Valid[Id], MSET[Id], Joining),
updateNFaults(NFaultsFD[Id],0,Id)

fr: int[0,rangeBin(N-1)]
setIsIn(SAreq, Id) and setIsIn(RxFaults,Id)
genLocalSched?
setIntersection(Valid[Id], Valid[Id], SAreq),
updateNFaults(NFaultsSA[Id],fr,Id)

setIsIn(Joining,Id)
join?
initJoin(Id)

setIsIn(MSET[Id], Id)
terminateCycle?

startPhase?
genVote(Id)

setIsIn(Valid[Id],Id)
startProc?
processSAphase()

not setIsIn(Valid[Id], Id)
startProc?

setIsIn(Valid[Id],Id)
startPhase?
processFDphase()

startPhase?
initNodeID(Id)

fr: int[0,rangeBin(N-1)]
setIsIn(RxFaults,Id)
genLocalSched?
setUnion(Valid[Id], MSET[Id], Joining),
updateNFaults(NFaultsFD[Id],fr,Id)

Fig. 6. Node automaton for the model with faults

480 V. Rosset, P.F. Souto, and F. Vasques

now function genSchedule() not only determines which nodes will attempt to
join the group, but also which nodes may fail. Then, before starting each phase,
the Scheduler selects which nodes experience send faults and which nodes may
experience receive faults.

Figure 6 shows the new Node automaton. Like in the Scheduler automa-
ton, the structural changes concern only the generation of local schedules at
the beginning of each phase. In addition, we had to make some changes to both
processFDphase()and processSAphase(), because faults will affect which mes-
sages are received, and consequently processed, by each node.

We terminate our description of the modeling of faults with a reference to
crash-faults, a kind of fault the GMP is supposed to tolerate but that we have
ignored so far. It turns out that the model we have developed for receive and
send faults subsumes the case of crash-faults. A crash-fault is a fault in which a
node enters a halting state and takes no further action. To the other nodes an
execution with such a fault is equivalent to an execution in which a node does not
send any message, from some instant onwards. This behavior can be exhibited
by this model, indeed a node that has send and receive faults from some point of
its execution onward, moves to the HLT state and stays there indefinitely behaves
like a crashed node.

4 Limiting the Size of the State Space

Modeling of faults makes the model inherently more complex. For example, in our
fault model we consider that a node may fail in one of three ways: by crashing,
by omitting to send a message or by omitting to receive a message. Given that
each GMP execution has 2 phases that are not identical, each node may fail
in 25 different ways. (Actually, this number is a lower bound as it considers
only whether or not a node experiences at least one receive fault in a phase,
disregarding the number of receive faults and on which messages these faults
occur.)

In principle, one might argue that the number of receive faults in each phase
is irrelevant and, in addition, that it does not matter in which phase of the
GMP execution one node has a given fault. It turns out that none of these
observations hold for the GMP, as some subtle fault scenarios that we described
in [3] illustrate. We call these scenarios masked faults, as they correspond to
cases in which a receive fault of one node is masked by another fault in the same
or in the subsequent cycle. We have identified the following 3 cases:

1. SFn in FD-phase; RFm,n in SA-phase.
2. RFm,n in SA-phase; SFn in FD-phase.
3. RFn,o in FD-phase; RFm,n in SA-phase.

where SFn means a send fault in node n, and RFm,n means the receive fault in
node m on a message sent by node n. Thus, in the first two cases, the receive
fault in m is effectively masked by a send fault in n, and therefore node m is not
removed from the group. In the third case, the receive fault by m is masked by
n’s receive fault, and therefore node m is not removed from the group.

Formal Verification of a Group Membership Protocol 481

It is clear that if, e.g. in case 1 or 2, node m had a receive fault on all
the messages sent, no masked fault would occur. This is because, for that to
happen, all senders would have to fail, but such a fault scenario violates the
fault assumptions of the GMP. It is also clear that if, e.g. in case 3, node m had
its fault in the same phase as node n, then it would detected as faulty by the
good nodes. These examples show that general principles [9] for model checking
fault tolerant systems must be applied with care.

Still we can apply some general techniques to reduce the size of the state
space. This is particularly important for model-checking the GMP because the
state kept by each node is relatively large and we want to verify the protocol
for configurations with a sufficiently large number of nodes to exhibit interesting
behavior. We have found the following three techniques particularly useful in
reducing the size of the state space of the model: 1) symmetry reduction; 2)
priorities; 3) synchronization.

4.1 Symmetry Reduction

This technique is particularly effective for distributed algorithms, such as the
GMP, where a set of identical components executes the same algorithm. Es-
sentially, the idea is to take advantage of the fact that, for the GMP, it is not
relevant which nodes are members or which of those are faulty, but rather how
many nodes are group members or how many of those are faulty.

Uppaal itself provides support for symmetry reduction through scalarset types.
They provide a way to tell the model checker about symmetries. Scalarset types
can be seen as a bounded integer type with restricted operations, namely assign-
ment and equality testing. Scalars may also be used as indices of arrays. Because of
these restrictions, we found no clean way to model the GMP without using arrays
indexed by scalarsets and whose elements contain scalarsets. However, for models
with arrays indexed by scalarsets that contain elements of scalarsets the algorithm
used by Uppaal for symmetry reduction is unlikely to provide any benefit [10].
Some preliminary experiments with simplified models with patterns of usage of
scalarsets that would allow to model the GMP confirmed that. We have therefore
implemented symmetry reduction directly in the model.

As stated above, for the GMP what is important is the number of nodes that
fail, and not which nodes fail. Therefore, to eliminate “redundant states”, the
fault schedules are generated such that faults are assigned to nodes with higher
identifiers. For example, in a configuration of 5 nodes, N0 to N4, in an execution
where N4 is in location HLT and the remaining nodes are members of the
group, the GMP tolerates one additional fault. In that event, which is generated
randomly, the fault will be always assigned to node N3. This eliminates states
where each of the remaining members fail instead of N3. Note that this technique
does not eliminate all the redundant states. E.g., if instead of node N4 the node
in HLT were node N3, in the event of a fault, that fault will be assigned to
node N4. Although, such a state is equivalent to the state above, basically it
can obtained by swapping the states of N3 and N4, our model is not able to
eliminate it.

482 V. Rosset, P.F. Souto, and F. Vasques

However, the number of these redundant states can be reduced, by adopting
a consistent policy to select the nodes that join: the model generates randomly
the number of nodes that will join, and then selects those that can join with
lower identifiers. This policy, together with the one described in the previous
paragraph, makes it highly probable that the group is composed by the members
with lower identifiers, and that only nodes with higher identifiers will fail. In
particular, it ensures that nodes N0 and N1 will never fail, whatever the number
of nodes in the system, because the GMP requires at least two nodes, and the
generation of faults in the model is such that it does not violate the GMP fault
assumptions.

Selection of the faulty nodes that experience receive faults follows the same
approach as that of the assignment of faults. For example, if nodes N4 and N5
are both selected as faulty, and the model determines randomly that one of
them will have a receive fault in the FD-phase, then node N5 will be selected.
On the other hand, selection of faulty nodes that experience transmission faults
is done in a completely random way using select labels with a range from 0 to
2(N−2) − 1. The number selected is then used as an encoding of a set of N-2
elements and the latter is intersected with the set of faulty nodes. The reason
for generating transmission faults in a completely random way is to allow all
relevant combinations of send and receive faults. This approach is particularly
effective for N smaller than 7, i.e. for at most 2 faulty nodes, in that it generates
only 2 redundant pairs of receive faulty and send faulty node sets, in a total of
17, but the effectiveness of this policy decreases as the N increases.

Finally, we have also tried to explore symmetry reduction in the local receive
fault schedules of nodes that are supposed to experience receive faults. Rather
than generate completely random fault schedules, the receive fault schedules are
only random with respect to messages sent by faulty nodes. With respect to mes-
sages sent by non-faulty nodes, we ensure that nodes will loose only the message
sent by N0, which is guaranteed to be always a group member as explained
above. This policy has two additional benefits. First, it ensures that all faulty
nodes “collude” to remove a non-faulty node. Second, it does not eliminate fault
schedules with multiple and reciprocal faults that may lead to subtle protocol
behaviors. Again, this approach is particularly effective for N smaller than 7, in
that it prevents redundant states, but for larger values of N redundant states
will be generated.

4.2 Priorities

Another well-known technique to reduce the state space size of the model is
to remove uninteresting interleavings. For example, in the GMP the order in
which nodes execute the processing pertaining to each phase is not relevant.
I.e., it does not matter whether node 0 executes before node 1 or the other
way around. Uppaal allows reducing these interleavings by means of process
priorities. Using this feature, one can specify the order by which automata will
take transitions when more than one transition is enabled at the same time,
essentially inhibiting the transitions of automata with lower priority.

Formal Verification of a Group Membership Protocol 483

4.3 Synchronization

However, the use of priorities does not remove all the intermediate states. For
example, considering that the higher the Id of a node the higher its priority,
although node 1 will always take a transition before node 0, if both of them
have enabled transitions, the intermediate state that occurs after node 1 taking
its transition and before node 0 takes its transition will still be considered. One
technique to remove these uninteresting states is to add synchronization, as we
have done with the startProc and the terminateCycle broadcast channels. By
adding the additional synchronization, all nodes take the transition simultane-
ously, and none of the otherwise intermediate states will be considered (unless
it occurs in some other way).

It should be noted that although removing intermediate states is interesting
for the sake of reducing the size of the state space, it may have adverse effects
on the time for model checking. For example, we might reduce the size of the
state space for about 30% for 5 nodes, by generating the schedules for send faults
and receive faults on the same transition in Scheduler. However, verification of
the properties described in the next section with such a model takes more than
twice the time. The reason is that although the number of states is smaller, the
number of transitions in the model is much larger, and therefore Uppaal spends
a lot of time testing transitions that in the end lead to the same state.

5 Correctness Properties

In [3], we have stated the Group Membership Problem in terms of the set of group
members (M-SET) maintained by every node, and specified two properties:

Agreement: All non-faulty group members compute the same M-SET.
Validity:

1. A faulty node will be removed from the M-SET of a non-faulty group
member in a bounded time interval;

2. A non-faulty node attempting to be reintegrated will be added to the
M-SET of a non-faulty group member in a bounded time interval.

And we have also stated that the GMP ensured a bound of two TDMA cycles
for removing a faulty member and one TDMA cycle for a non-faulty node to be
reintegrated. The latter bound considers that the delay is measured starting on
the instant the node sends a joining request.

Uppaal allows the specification of the properties that a model must satisfy in
a simplified version of CTL [6]. In particular it allows to specify safety properties
like Agreement and Validity, using the A� modal operator as follows:

Agreement: A[] Sched.B4FD_phase imply Agreement()
Validity1: A[] Sched.B4FD_phase forall(i: int[0,N-1]) FDdelay[i]<3
Validity2: A[] Sched.B4FD_phase imply Validity2()

where Agreement(), Validity2() are predicates that check the corresponding
properties, and are as follows:

484 V. Rosset, P.F. Souto, and F. Vasques

bool Agreement() {
return

forall (i: int[0,N-1])
((setIsIn(MSETo, i)

and not setIsIn(MSEToF,i))
imply MSET[i]==MSETo);

}

bool Validity2() {
return

forall(i: int[0,N-1])
setIsIn(Joining, i) imply

(setIsIn(MSETo, i)
or not setIsEmpty(NFaultsFD[i])
or not setIsEmpty(NFaultsSA[i]));

}

Essentially, these expressions state that the corresponding properties hold after
every execution of the GMP.

Actually, both Validity properties are bounded liveness properties and could
have been checked using the leads to operator (�), also supported by Uppaal.
However, we found it more efficient to augment the model with some state vari-
ables and with the appropriate code. This augmentation concerned only Valid-
ity1. In particular, we added array FDdelay of integer variables that counts the
number of GMP executions it takes for good members to remove faulty members
from the group.

6 Verification Results

We verified both Agreement and Validity for configurations with three, four
and five nodes. Table 1 shows the number of states stored and visited, as well
as the time taken in checking each of the properties presented in the previous
paragraph. For the case of 5 nodes, we present also the results we have obtained
using an option provided by Uppaal that reduces the memory requirements by
not storing committed states, i.e. states in which at least one automaton is in
a committed location. For the latter case, the table shows both the number of
states stored and the number of states explored. When no memory reduction
technique is used, only one value is shown because both numbers are equal.

The figures clearly show that the state space size increases exponentially with
the number of nodes in the system, in spite of our efforts to explore symmetry at
the level of the model. Although, the use of Uppaal’s memory reduction option
allowed us to reduce the memory requirements for about one order of magnitude,
the verification of these properties for configurations with more than 5 nodes
leads to an exhaustion of memory resources.

Table 1. State Space Size (in thousand states) and approximate time execution for
the different models and properties verified

Model Agreement Validity1 Validity2

No.Nodes Mem.Red. No.States Time(s) No.States Time(s) No.States Time(s)

3 N 5.3 0.5 5.3 0.5 5.6 0.6

4 N 220 56 220 56 221 57

5 N 14,237 28,920 14,232 29,640 14,870 30,060

5 Y (stored) 1,367 51,780 1,367 56,200 1,389 54,000
Y (explored) 67,324 67,276 69,094

Formal Verification of a Group Membership Protocol 485

Nevertheless, to be able to check the GMP for 5 nodes gives us a high confi-
dence level in its correctness, because with 5 nodes we are able to generate rather
subtle fault scenarios, such as the masked faults, that arise with the simultaneous
fault of two nodes, which may be either members of the group or attempting to
join. Although checking the correctness of the GMP for 7 nodes would provide
an even higher confidence, because with that many nodes we could consider sce-
narios with 3 simultaneous faults, we believe that the change from 2 to 3 nodes
does not lead to very different fault scenarios. Furthermore, to be able to verify
the correctness of the GMP for a higher number of nodes in Uppaal is likely to
require the use of abstraction, another well known technique of addressing the
state space explosion problem.

However, the use of abstraction usually leads to models that are significantly
different from the system being checked and consequently the level of confidence
will be lower than if a model like the one we have developed were used. Indeed,
our model includes an implementation of the GMP, except for the use of commu-
nication primitives such as send or receive, i.e. we abstract the communications
layer. Given that Uppaal uses a syntax very close to C, it is straightforward to
convert that model to a C implementation of the protocol.

Including an implementation of the GMP in the model allowed us to find a bug
in the implementation outlined in [3] that is related to the fact that the number
of group identifiers in an implementation must be bounded. In the GMP, shown
in Annex A, the group id is incremented in step 9 of the SA-phase. At the level of
abstraction of the specification, we considered that this variable is unbounded.
However, in an implementation, as well as in model-checking, this variable has
to be bounded. In [3], we have argued that an integer with a range from 0 to 3
is enough, and stated that the GMP did not require any other change. Although
we were right with respect to the minimal range of group ids, we were wrong
with respect to the need to change the GMP. The problem is in steps 1 to 3
of the SA-phase, where the maximum group id is determined and is then used
to compute the majority set. With bounded group ids, these must be recycled,
and therefore an id of 0 may be larger than an id of 3. Thus determining the
maximum id is not straightforward, especially because joining nodes always send
votes with a group id of 0, and faulty nodes may send any value, if they do not
execute the SA-phase a number of times. The group ids of joining nodes can be
easily fixed by ignoring the group id sent in their votes. The group ids sent by
faulty nodes can be filtered by group members, taking into account the state
of the GMP. However, joining nodes lack this state, and may compute a wrong
group id. This may lead to an erroneous computation of the majority set in step
3. One way to fix this problem is to change the GMP so that joining nodes check
that the majority they compute is consistent with the votes received (every node
must consider itself a group member, and non-joining group members must agree
on the group id). If it is not, they will cycle through all the group ids until a
consistent majority is found, or they have tried all the ids. In the latter case, the
joining node will consider itself faulty, and will halt.

486 V. Rosset, P.F. Souto, and F. Vasques

7 Conclusion

We presented a formal verification of GMP, a protocol designed to provide a
Group Membership Service for FlexRay, a minimalist middleware for the de-
velopment of safety critical applications, that is likely to become the de facto
standard bus for automotive applications.

The results obtained show that the GMP satisfies its specification for con-
figurations of up to 5 nodes, providing us further assurance on its correctness.
The fact that the model developed includes an implementation of the GMP
contributes significantly to our confidence in its correctness, but also limits the
number of nodes of the configurations that we are able to check. However, we
strongly believe that we did the right choice, as it allowed us to detect a bug in
the outline of an implementation we proposed in [3]. The alternative would be
to use abstraction, which might lead to a model far removed from the GMP, and
a doubt of whether the abstraction used was correct would always linger. Now
that we have made a rather careful evaluation of the protocol correctness for
configurations of up to 5 nodes, we plan to develop models based on abstraction
to model check configurations with a larger number of nodes.

References

1. Rushby, J.M.: Bus Architectures for Safety-Critical Embedded Systems. In: Hen-
zinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 306–323.
Springer, Heidelberg (2001)

2. Makowitz, R., Temple, C.: FlexRay - A Communication Network for Automotive
Control Systems. In: WFCS. 6th IEEE International Workshop on Factory Com-
munication Systems (2006)

3. Rosset, V., Souto, P., Vasques, F.: A Group Membership Protocol for Communi-
cation Systems with both Static and Dynamic Scheduling. In: WFCS. 6th IEEE
International Workshop on Factory Communication Systems, Torino, Italy, pp.
28–30 (2006)

4. Ip, C., Dill, D.: Better Verification through Symmetry. In: International Conference
on Computer Hardware Description Languages, pp. 87–100 (April 1993)

5. Schiper, S., Toueg, A.: From Set Membership to Group Membership: A Separation
of Concerns. IEEE Transactions on Dependable and Secure Computing 3(1), 2–12
(2006)

6. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal — a Tool
Suite for Automatic Verification of Real–Time Systems. In: Alur, R., Sontag, E.D.,
Henzinger, T.A. (eds.) Hybrid Systems III. LNCS, vol. 1066, pp. 232–243. Springer,
Heidelberg (1996)

7. Yovine, S.: Model Checking Timed Automata. In: Lectures on Embedded Sys-
tems, European Educational Forum, School on Embedded Systems, pp. 114–152.
Springer, London, UK (1998)

8. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems. LNCS,
vol. 3185, Springer, Heidelberg (2004)

9. Bernadeschi, C., Fantechi, A., Gnesi, S.: Model checking fault tolerant systems.
Software Testing, Verification and Reliability 12, 251–275 (2002)

Formal Verification of a Group Membership Protocol 487

10. Hendriks, M., Behrmann, G., Larsen, K.G., Niebert, P., Vandraager, F.: Adding
Symmetry Reduction to Uppaal. In: Larsen, K.G., Niebert, P. (eds.) FORMATS
2003. LNCS, vol. 2791, Springer, Heidelberg (2004)

A GMP Protocol

The following is the GMP. It is specified considering the round execution model,
commonly adopted in synchronous systems. I.e. each node begins its execution
in its start state and then repeatedly executes, in lock-step with the other nodes,
a round that comprises:

Communication step, in which each node generates a message, if any, that
depends on the node’s state, broadcasts it on the network, and receives the
messages broadcasted in this step by all the nodes.

Processing step, in which each node generates the new state, by processing the
messages received in the communication step of that round.

Group Membership Protocol

State
P the set of all processors
M-SET the set of group members, initially set to P
M-set the set of candidate group members, initially set to P
u upper bound of the group’s size, initially set to |P|
group-id integer with group id, initially set to 0
SA-req boolean indicating whether execution of the SA-phase should be per-

formed, initially set to false
FD-phase

Communication step:
If processor is group member
Then broadcast hearbeat message,

with SA-req determined in the previous SA-phase
Else if wishing to join group
Then broadcast a join-req messsage.

Processing step:
1. Remove from the M-set every processor from which no heartbeat message

was received.
2. For every join-req message received

add its sender to the M-set.
3. If received a message with SA-req set

or modified the M-set in 1 or 2
Then set SA-req.

SA-phase
If SA-req is set, then
Communication step:

Broadcast message with the M-set, the group’s size upper bound, u, and the
group-id.

Processing step:

488 V. Rosset, P.F. Souto, and F. Vasques

1. Let max-id be the maximum of the group ids received.
2. If the processor is joining

Then set the group-id to max-id
Else if its group-id is different from max-id
Then halt

3. Let Maj-set be the result of applying the majSet function to P, the set of
all the M-set’s received from non-joining processors with a group-id equal
to max-id, and to the minimum of all u’s received in the same messages.

4. If the Maj-set
(a) is undefined, or
(b) is different from the M-set the processor broadcasted and the processor

is a member of the group, or
(c) is not a subset of the M-set the processor broadcasted and the pro-

cessor is joining the group, or
(d) does not contain the processor
then halt.

5. Remove from the M-set
(a) every group member from which an M-set different from the Maj-set

was received;
(b) every joining processor whose M-set is not a superset of the Maj-set;

6. Set u to the size of the M-set.
7. Remove from the M-set every processor from which no message was re-

ceived in this phase.
8. If removed some processor from M-set in 7

Then set the SA-req
Else reset the SA-req.

9. Set the M-SET to the M-set and increment the group-id.

majSet function

Set majSet(Set S, SetofSet R, int n)
begin

Set M to the ∅
for every p in S do

if p is an element of �n/2� or more sets in R
then add p to M
else if p is not an element of �n/2� or more sets in R
then continue
else return undefined
end

end
return M

end

Revisiting Certification-Based Replicated Database
Recovery�

M.I. Ruiz-Fuertes1, J. Pla-Civera1, J.E. Armendáriz-Iñigo2,
J.R. González de Mendı́vil2, and F.D. Muñoz-Escoı́1

1 Instituto Tecnológico de Informática, 46022 Valencia, Spain
{miruifue,jpla,fmunyoz}@iti.upv.es

2 Universidad Pública de Navarra, 31006 Pamplona, Spain
{enrique.armendariz,mendivil}@unavarra.es

Abstract. Certification-based database replication protocols are a good means
for supporting transactions with the snapshot isolation level. Such kind of repli-
cation protocol does not demand readset propagation and allows the usage of a
symmetric algorithm for terminating transactions, thus eliminating the need of
a final voting phase. Recovery mechanisms especially adapted for certification-
based replication protocols have not been thoroughly studied in previous works.
In this paper we propose two recovery techniques for this kind of replication
protocols and analyze their performance. The first technique consists in divid-
ing the recovery in two stages, reducing the certification load and the amount
of information to be recovered in the second stage. The second technique scans
and compacts the set of items to transfer, sending only the latest version of each
item. We show that these techniques can be easily combined, reducing thus the
recovery time.

1 Introduction

Data replication is a technique used to increase the fault tolerance, availability and
performance of distributed systems. In the context of database replication it is well
known that eager update-everywhere techniques are the best approach when consistency
and performance are the goals [1]. Recently, some performance studies [2] have shown
that certification-based replication protocols provide the best performance, although at
the cost of a non-negligible abortion rate with heavy loads due to their optimistic nature.

If these replication protocols are implemented in a middleware architecture, the re-
sulting system becomes easily portable to different DBMSs. Additionally, it does not
depend on the current version of a specific DBMS; i.e., new releases of the same DBMS
could be used as the underlying persistence layer without needing any change in the
middleware code.

But all this machinery is useless without a complementary recovery strategy ade-
quately tailored to the data replication protocols being used. It is worth noting that a
database, either replicated or not, holds a lot of persistent state and its recovery is quite

� This work has been partially supported by the EU FEDER and Spanish MEC under grants
TIN2006-14738-C02 and BES-2007-17362.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 489–504, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

490 M.I. Ruiz-Fuertes et al.

difficult. In the non-replicated case, periodical backups or checkpoints are used. In the
replicated case, the same approaches could be used as a starting point if no activity
were allowed during the failure interval, but such solution is immediately discarded if
availability is an aim. Another easy solution consists in transferring the full database
to the recovering replica, but this raises problems since the amount of information to
be transferred would be huge. So, the regular approach consists in remembering which
was the state of the faulty replica before crashing, transferring only its missed updates.
Despite this, if the failure interval is long, once again the full database transfer could be
a valid option [3].

So, recovery is an important problem in database replication, which has been mostly
overlooked so far. Studying efficient ways of doing recovery is an important step toward
a complete solution to middleware-based database replication.

Although there are some recovery works for replicated databases [3,4,5,6,7,8], none
of them has presented a performance study of the proposed solution, nor a comparison
with previous works. The aim of this paper is to tailor two general solutions to the
particular case of a certification-based replication protocol, and to study the recovery
time of such proposals in a real database replication middleware system. Additionally,
these two recovery techniques try to optimize two different steps of the recovery process
and can be easily combined in a single recovery protocol, providing a highly reduced
recovery time (at least, when compared with the other single techniques presented in
this paper).

So, the contributions of this paper are: (a) to adapt some recovery techniques to
certification-based replication protocols, (b) to propose a new recovery technique that
combines two different optimizations, (c) to analyze the performance of different recov-
ery protocols using a simple benchmark, and (d) to show that our new recovery proposal
is able to improve the results of the other compared approaches.

The rest of this paper is structured as follows. Section 2 describes the assumed sys-
tem model. Section 3 explains certification-based replication protocols, and how they
manage historic information that can be also used for helping the recovery tasks. Sec-
tion 4 describes the recovery strategies that will be benchmarked in this paper. Later,
Section 5 presents the performance study, which is followed by an analysis of related
work in Section 6, and a final Section 7 where the conclusions can be found.

2 System Model

We assume a partially synchronous distributed system where message propagation time
is unknown but bounded. Such system is composed by N nodes and each one of them
holds a complete copy of a given database. So, full replication is being assumed.

Database replicas may fail and recover, according to the crash-recovery with partial
amnesia failure model [9]. Note that once a transaction has been committed, the un-
derlying DBMS guarantees its persistence, but on-going transactions are lost when a
replica fails. This provides a partial amnesia effect.

The recovery solutions explained in the following sections assume that the underly-
ing database provides the snapshot [10] isolation level (SI, for short). This generates a
GSI (Generalized SI) level [11] when a certification-based [2] replication protocol is

Revisiting Certification-Based Replicated Database Recovery 491

Initialization: Ti.WS ∩ Tj .WS �= ∅
1. lastvalidated tid := 0 a. release wsmutex
2. lastcommitted tid := 0 b. if Ti is local then abort Ti at Rk else discard
3. ws list := ∅ 3. else
4. tocommit queue k := ∅ a. Ti.end := ++lastvalidated tid

I. Upon operation request for Ti from local client b. append Ti to ws list and tocommit queue k
1. If select, update, insert, delete c. release wsmutex
a. if first operation of Ti III. Ti := head(tocommit queue k)
- Ti.start := lastcommitted tid 1. if Ti is remote at Rk

- Ti.priority := 0 a. begin Tik at Rk

b. execute operation at Rk and return to client b. apply Ti.WS to Rk

2. else /* commit */ c. ∀ Tj : Tj is local in Rk ∧ Tj .WS ∩ Ti.WS �= ∅
a. Ti.WS := getwriteset(Tik) from local Rk ∧ Tj has not arrived to step II
b. if Ti.WS = ∅, then commit and return (this is analyzed by our conflict detector,
c. Ti.priority := 1 concurrently with the previous step III.1.b)
d. multicast Ti using total order - abort Tj

II. Upon receiving Ti in total order 2. commit Tik at Rk

1. obtain wsmutex 3. ++lastcommitted tid
2. if ∃ Tj ∈ ws list : Ti.start < Tj .end ∧ 4. remove Ti from tocommit queue k

Fig. 1. SIR-SBD algorithm at replica Rk

used. Our recovery strategies could also be extended to stricter isolation levels, like the
serializable one –or even to more relaxed ones, like read committed [12]–, but support-
ing such stricter levels with a certification-based replication protocol requires readset
propagation, and there are better replication approaches for those levels; e.g., the weak-
voting [2] one.

In order to implement a certification-based replication strategy, a group communica-
tion system [13] is being assumed, providing a safe total-order multicast, and same view
delivery [13]. If network partitions arise, the system uses a primary component model;
i.e., a single isolated component (or subgroup) is able to progress, if and only if it holds
a majority of the preconfigured system nodes.

3 Certification-Based Replication Protocols

There have been many replication protocols supporting the SI level. Most of them have
used a certification-based replication architecture. In this paper, we take as the basis for
our recovery approaches the SIR-SBD (certification-based) replication protocol already
presented in [14] (See Figure 1). Certification approaches follow these rules (for the SI
level):

1. Each transaction is initially executed in a single replica: the delegated [2] one.
2. When the transaction requests its commitment (for simplicity, we do not consider

aborted transactions), its writeset is locally collected and sent to all replicas using
a reliable total-order broadcast with safe delivery [13]. This is shown in step I.2 in
Fig. 1.

3. All replicas maintain a log of delivered writesets (variable ws list in our proto-
col), and using a given validation technique (step II.2 in Fig. 1), are able to certifi-
cate such incoming transaction. If the validation succeeds, the incoming writeset is
added to the log, and the transaction is committed. If not, the writeset is discarded
and the transaction is aborted in all replicas (indeed, only its delegate replica needs
to roll-back it).

492 M.I. Ruiz-Fuertes et al.

This validation/certification process is completely symmetrical in all replicas, since
all replicas have identical copies of the same writeset log. No additional message is
needed for deciding whether each transaction should be committed or aborted.

This also makes possible that transactions use a global identifier in all replicas.
For instance, in our sample replication protocol the end logical timestamp is used
as such identifier, and only the committed transactions receive such an ID (step
II.3.a).

The writeset log being used in each replica for certification purposes should be pruned
in order to prevent an endless size increase. In practice, the oldest writeset can be re-
moved from such log as soon as the local node knows that every node has successfully
applied such writeset. Note that the successful application of a writeset implies that all
local conflicting transactions –i.e., those that might block such writeset application–
should be aborted, since otherwise a deadlock might arise –if such blocking local trans-
actions are blocked in subsequent accesses–, and the writeset application gets uselessly
blocked. Anyway, once a certified writeset has been applied in a given replica, it is
guaranteed that no local conflicting transaction that would have been certified against
such writeset exists in such replica (since the underlying DBMS concurrency control
ensures this). Aborting such local conflicting transactions as soon as possible increases
the performance of certification-based replication protocols, as it has been shown in
[14].

However, when a node fails it can not apply any subsequent writesets and this might
prevent log trimming. On the other hand, this fact can be taken as the basis for designing
a basic recovery protocol, since the information to be provided to the faulty node when
it recovers is precisely the one already contained in the writeset log. Note however that
the writeset log can also be pruned in these cases, but this leads to the adoption of
another recovery strategy, using other mechanisms to find out which is the information
to be transferred to the recovering replica.

4 Recovery Strategies

There have been several works [3,5] that propose general recovery approaches for repli-
cated databases. This section describes a basic recovery approach, and complements it
with two optimizations, showing that both optimizations can be easily combined and
that such combination provides the best results (at least, the best results among all ap-
proaches being considered here).

4.1 Basic Recovery

The basic recovery approach consists in exploiting the writeset log being used for certi-
fication purposes. Once at least one of the replica nodes has crashed, the writeset log is
not pruned and the missed writesets (i.e., those that have not been applied by the crashed
replica) can be taken from this log when the failed node recovers. In practice, this is al-
most equivalent to propagating the missed messages to the recovering replica. A little
difference exists: those writesets belonging to transactions that finally aborted are not

Revisiting Certification-Based Replicated Database Recovery 493

propagated, since they were not stored in the writeset log. So, the recovering node does
not need to repeat the whole validation process, and as a result of this, the work to be
done is less than in the case of a regular replica that performed all the certification steps
in order to manage each incoming writeset.

The detailed recovery procedure is the following: a recovering replica Ri joins the
group, triggering a view change. As part of this procedure, the recovering protocol
instance running in Ri multicasts an ask-for-help message indicating the versioni of
its last applied writeset –this version corresponds to the commit timestamp of the last
transaction applied in that node. No message activity in the recovering node is done
–all messages delivered are ignored– until this message is delivered. At this moment,
the recovering node starts to enqueue the total order delivered messages –with writeset
information about other transactions in the system sent by the rest of the replicas– to be
processed later.

In parallel to this process, a deterministic procedure takes place to choose a recoverer
re pli ca. The recoverer replica (Rj), after receiving the ask-for-help message, starts a
recovery thread that sends a point-to-point message with all the missed writesets starting
from versioni + 1, i.e., the recoverer node sends the portion of its ws list that covers
from versioni + 1 to the end of the ws list at that moment.

When this point-to-point recovery message is delivered to the recovering replica,
it stores this information in both the ws list and the tocommit queue, as all these
writesets were already certified in the recoverer node. Then, the recovering replica is
ready to directly apply in the database the writesets in the tocommit queue and to start
certifying its own enqueued total order messages –delivered after the ask-for-help mes-
sage. Note that the certification of the enqueued messages must wait for the recovering
information to be stored in the ws list, as this structure is used in the certification
process, but it is not necessary to wait for the application of these missed writesets in
the database. In other words, just after the storage of the transmitted writesets in both
data structures, the recovering node can act as in normal mode.

It is worth to note that the transmitted writesets are all applied in the context of a
single transaction. This principle is maintained in the rest of recovery proposals, since
it reduces the recovery time. On the other hand, if a second failure arises during the
recovery, all the recovery process can be lost (but, hopefully, this is not the common
case).

Such applied missed writesets can be pruned from the writeset log of all other repli-
cas (if no more crashed replicas exist). Note that the recovering replica can start imme-
diately new local transactions, but such transactions can not be certified until the whole
sequence of missed writesets is transferred from the recoverer replica and appropriately
inserted in the recovering writeset log.

This approach only makes sense for short-term outages; i.e., when the number of
writesets missed by the recovering replica is small, independently of the real time length
of such crash. Once the number of missed writesets exceeds a given threshold, such
logged writesets needed only for recovery should be written to disk and read from
there when the recovery is being done; i.e., they do not need to be maintained in main
memory.

494 M.I. Ruiz-Fuertes et al.

4.2 Two-Stage Recovery

The first proposed optimization on the basic recovery strategy described in the previ-
ous section consists in delaying the acceptance of the newly received writesets in the
recovering replica; i.e., the writesets being delivered after the ask-for-help message in
the view [13] Vk, that is the first one that re-includes the recovering replica (let’s say,
replica Rj). We refer to such writesets as pending writesets. Instead of delivering such
pending writesets, and holding them until all missed writesets have been appended to
the log, the pending writesets are momentarily discarded. A second stage is initiated
when the recovering replica sends a message to the recoverer communicating that it has
successfully applied all missed writesets. Then, the recoverer sends the successfully
certified writesets that were discarded by the recovering replica.

Using this second transfer round has several advantages. Firstly, instead of hold-
ing and certifying all pending writesets, the recovering replica receives them already
certified. Secondly, the amount of writesets that should be enqueued waiting for the
certification process in the recovering replica is reduced. Moreover, all second-stage
pending writesets are applied in a single transaction.

4.3 Compacting Recovery

The second optimization consists in compacting the sequence of missed writesets that
was used in the basic recovery strategy. To this end, only a single version (the latest
one) of each item being found in the original sequence of missed writesets is held in the
compacted writeset list. Instead of transferring the full missed writeset sequence, only
the compacted list is sent to the recovering replica.

Its appropriateness for SI certification-based replication protocols is easily justifiable
[11]. Note that SI needs the start and end timestamps for each certifying transaction and
the end timestamp for all writesets stored in the log in order to complete the certification
process. Thus, when a SI transaction Ti is being certified, it gets aborted if any logged
writeset Wk has an end timestamp in the [start,end] interval of Ti and Ti’s writeset
and Wk have a non-empty intersection. The compacted writeset list can be expanded if
the original writeset timestamp was stored for each of its data items. It is worth noting
that this generates a writeset log that does not contain the complete original informa-
tion, but all items that have been removed from such rebuilt writeset log still maintain
their newest version in the list; i.e., only the “old” repetitions of a given item have been
removed, and its newest instance was still present in the compacted log. Since all trans-
actions that need to be certified in the recovering replica have a [start,end] interval that
terminates with an end timestamp that is trivially newer –since such transactions have
multicast their writesets once the missed writeset sequence was computed and com-
pacted in the recoverer– than any of the original missed writesets, there is no problem
in discarding older repetitions of the compacted items.

The main advantages of this second optimization are the following ones. First, the
amount of information to be transferred from the recoverer replica and applied in the
recovering one can be reduced. Second, and as in the basic strategy, the recovering
replica can start new local transactions immediately and they still have a non-negligible
probability of success if they do not access any of the items updated during the failure

Revisiting Certification-Based Replicated Database Recovery 495

interval. Third, and most important, this optimization is compatible with the one dis-
cussed in Section 4.2 and each one complements the other, as will be seen in the next
subsection.

4.4 Combined Recovery

This last strategy combines the two previous optimizations. The two-stage solution dis-
cussed in Section 4.2 reduces the amount of writesets being processed by the recovering
replica in the second recovery stage, whilst the compacting approach presented in Sec-
tion 4.3 reduces the size of the writeset list to be transferred in the first (or single, if
both optimizations are not combined) stage. So, there is no incompatibility between
both approaches, and once combined they are able to further reduce the recovery time
of any of such strategies, as shown in Section 5.

5 Performance Evaluation

In this section we intend to measure several aspects of our recovery strategies. Firstly,
how long does it take the recovery depending on different parameters: crash interval,
overall load, and new local transactions service in the recovering replica. Secondly, the
impact of each optimization on the recovery time. Thus, Section 5.2 shows the results
for short crash intervals varying the load and allowing as soon as possible new local
transactions in the recovering replica. Section 5.3 repeats part of the latter experiments
with the heaviest load and preventing new transactions from starting in the recovering
replica. Finally, Section 5.4 analyzes the results for long crashes and a medium overall
load.

In these tests we have varied several parameters –system load, number of clients,
amount of missed writesets, . . . –, but several others that are also important remain fixed:
e.g., number of nodes, and performance of the group communication system. It is worth
noting that variations in these latter parameters would provide also variations in system
load that also varies the number of missed writesets in a given crash interval. So, the
effects of such unvaried parameters can be simulated varying the other ones.

Note also that these experiments have chosen a non-favorable test-case for the recov-
ery strategies described above. Firstly, the test load consists only of read-write transac-
tions; i.e., there are no read-only transactions, since they are not significant for the
recovery analysis. As a result, with an apparent light load, the system is almost over-
loaded. Note, however, that the recovery time would be the same with a load five times
greater and an –quite common in some kinds of applications– 80% of read-only trans-
actions. Secondly, the duration of the crash intervals is not very long, and this is unfa-
vorable for the compacting optimization since the longer the crash interval, the greater
number of times items have been updated by the alive replicas; i.e., the compacting ra-
tio would also be greater. Thirdly, these tests have generated an abortion rate below 5%
in all cases, and this reduces a lot the benefits of the two-stage recovery strategy (Note
that with a bigger abortion rate, the amount of non-transferred writesets in the second
stage would have also been bigger). Our aim is to show that even in these unfavorable
scenarios, the tested approaches can improve the results of the basic recovery strategy.

496 M.I. Ruiz-Fuertes et al.

Perhaps a detailed analysis varying the abortion rate would have been welcome, but
certification protocols are optimistic and an abortion rate below 5% for a write-intensive
load is difficult to achieve. Additionally, as already commented above, a bigger abortion
rate would improve the results of both the two-stage and the combined recoveries.

These tests have been done using our MADIS [15] middleware. MADIS mecha-
nism that collects transaction writesets is implemented using standard SQL constructs.
Also, only standard SQL mechanisms are used in order to apply these writesets. This
enhances portability as no particular modification is made in the DBMS core, but penal-
izes performance. Additionally, it uses also standard mechanisms to deal with writeset
collision detection, as already described in [14]. Such mechanisms are able to slightly
enhance the performance of middleware replication protocols.

We have used a MADIS cluster composed by 4 replica nodes. Each node has an
AMD Athlon(tm) 64 Processor at 2.0 GHz with 2 GB of RAM running Linux Fedora
Core 5 with PostgreSQL 8.1.4 and Sun Java 1.5.0. They are interconnected by a 1 Gbit/s
Ethernet. In each replica, there is a varying number of concurrent clients (from 4 to 12).

Each client executes an endless stream of sequential transactions, each one accessing
a fixed number of 20 random items for writing, with a fixed pause of 500 ms between
each pair of consecutive transactions. Each test begins with the execution of 500 glob-
ally committed transactions, after that, a failure occurs in a random replica (the failure
of a replica consists in killing its process). Clients previously served by the failed node
are not redistributed among the rest of nodes. The failure lasts for a period in which a
varying number of global transactions is executed by the other replicas. After this time,
the failed node restarts and begins the recovery process until it reaches the state of any
of the other replicas. The test continues once the recovery ends, until the commitment
of 500 more transactions, and then the experiment finishes.

To accomplish the comparison, we use a database schema with a single table with
two columns and 10,000 rows (400,000 rows in Section 5.4). One column is declared
as primary key, containing natural numbers as its values. This is a very simple database
schema, but the usage of a standard performance-related schema (e.g., that of TPC-C or
TPC-W) will not significantly vary the obtained results, since the original transactions
need not be re-executed in the recovery steps. Instead of this, only their writesets need to
be applied and the time needed to accomplish such task does not depend on the original
transaction SQL sentences, but on the amount of updated objects.

Each result depicted in Figures 3-5 shows three different curves. Two correspond to
the recovering and recoverer replicas, showing how many transactions have been com-
mitted in each of them (Recall the last committed tid variable in Fig. 1). The third one
corresponds to another alive replica; i.e., a non-faulty replica that does not collaborate
in the recovering process. The aim of this third curve is to show whether the recovering
tasks introduce a significant load in the recoverer replica. If so arises, its curve is below
that of the other non-faulty replica until the recovery overload disappears.

To better illustrate the meaning of such curves, let us concentrate in a particular fig-
ure. For instance, the results shown in Fig. 3.1.a. Note that in such figure, one of the
three plotted replicas crashes at time 46 seconds, once it already committed 510 trans-
actions. Until this moment, all the replicas perform similarly so their curves overlap.
Note that until then, the system was able to serve transactions at a rate of 510/46 TPS

Revisiting Certification-Based Replicated Database Recovery 497

(i.e., 11.08 TPS). Later, such replica is restarted at time 86 seconds; i.e., the crash in-
terval has lasted 40 seconds in this example. Then, such a recovering replica sends a
message to the recoverer one in order to start the recovery process, and waits for the
arrival of such sequence of missed writesets. The complete sequence is received and its
application is finished at time 104 seconds. However at such time there is still a gap
between the number of successfully committed transactions at the recovering replica
and the number of committed transactions at other replicas. But the recovering replica
is able to progressively reduce such gap and finally terminates its recovery at time 120,
once 1,529 transactions have been committed in the whole system. Note that in this
example with a minimal system load, the final performance has been better once the re-
covery terminated (1,529/120=12.74 TPS) than prior to the replica failure (11.08 TPS).
Note also that in this example, the recovery process has needed 120-86=34 seconds in
order to heal a crash that lasted 40 seconds. These time measures may seem too long,
but it has to be considered that our MADIS system is not a commercial prototype, so
general performance is not our main goal. This way, presented measures have to be
observed in order to study relative improvements between different techniques whilst
absolute values should not be considered.

In spite of this, it may seem that the transactions per second obtained at each phase of
a test have an evolution slightly different from expected. In the graphs, the TPS achieved
during a period of time is obtained as the slope of the curve in that period. From the
beginning of each test, it can be seen that the slope grows progressively before the
crash time as the clients are started in the system. In spite of the fact that the crash is
done after 500 transactions, it still occurs before the system has reached its maximum
performance –this would explain that the TPS after the complete recovery of the node
is, in some cases, greater than that before the failure–. However, this should not have
impact on the recovery time, that is, in fact, what we are analyzing in this paper.

5.1 Statistical Comments

When a performance analysis is made, usually the average values are shown in the
plots, and each experiment is repeated many times, until the obtained standard deviation
ensures that at least the 95% of the results are close enough to that mean. This approach
is not appropriate for plotting the recovery graphs, since we are not only interested in the
recovery time, but also in the trend followed by the recovering and recoverer replicas.
Plotting the average number of committed transactions in the recovering and recoverer
replica at any time will not provide easily readable graphs.

As a result, we have taken a single representative curve for each kind of experiment.
In order to choose such graph, we have repeated each experiment at least fifty times and
we have selected its median value. To show the appropriateness of such median values,
Figure 2 plots the box-and-whisker diagrams in all test cases. These results will be ex-
plained in Sections 5.2 and 5.3. A diagram of this kind plots a box that starts with the
first quartile value and ends with the third one. The median value is also depicted into
the box. Finally, the “whiskers” are continuously plotted until the minimum or max-
imum value if such extreme values do not exceed 1.5 times the interquartile interval;
otherwise, all the exceeding values are considered as outliers and plotted as dots.

498 M.I. Ruiz-Fuertes et al.

 20

 25

 30

 35

 40

 45

CombinedCompactingTwo-stageBasic

re
co

ve
ry

 ti
m

e
(s

)

 40

 60

 80

 100

 120

 140

 160

 180

CombinedCompactingTwo-stageBasic

re
co

ve
ry

 ti
m

e
(s

)

a) Light load, with clients b) Medium load, with clients

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

CombinedCompactingTwo-stageBasic

re
co

ve
ry

 ti
m

e
(s

)

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

CombinedCompactingTwo-stageBasic

re
co

ve
ry

 ti
m

e
(s

)

c) Heavy load, with clients d) Heavy load, without clients

Fig. 2. Box-and-whisker plots for all tests

5.2 Evaluation with Clients

In this first set of tests, all recovery strategies accept new local transactions in the re-
covering node as soon as possible. Three different experiments have been designed,
varying the system load and the crash interval. Their parameters are summarized in the
following table:

System load Crash length
Light 4 cl/node 500 trans.
Medium 8 cl/node 1,000 trans.
Heavy 12 cl/node 2,000 trans.

Despite considering the third test as a “heavy” load and a “long” crash interval, it is
worth noting that all these three cases can be managed holding the whole writeset log
in memory. In practice all these test cases should be considered as examples of short
outages.

Figure 3.1 shows the results for the basic recovery strategy. The three graphs ob-
tained for the light, medium and heavy load experiments show that with a light load this
strategy is not much worse than any of the other optimized strategies. However, with a
medium or heavy load, things change a lot. Indeed, when transactions are immediately

Revisiting Certification-Based Replicated Database Recovery 499

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(86, 510)

(120, 1529)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

a) Light load - short crash

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(108, 518)

(203, 3182)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

b) Medium load - medium crash

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(151, 491)

Recovering node
Recoverer node

Other node
Recovery start

c) Heavy load - long crash

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(80, 516)

(114, 1441)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

a) Light load - short crash

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(103, 528)

(173, 2765)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

b) Medium load - medium crash

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(146, 535)

(296, 5222)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

c) Heavy load - long crash

1. Basic recovery 2. Two-stage recovery

Fig. 3. Basic and two-stage recoveries

accepted in the recovering replica, it is not able to cope with its work in the heavy load
case and can not complete its recovery, as shown in Figure 3.1.c. Note that such load
almost overloads our regular replicas, and the recovering replica needs also to apply
all its missed writesets. This also explains why no box was plotted for this recovery
technique in Figure 2.c.

Figure 3.2 shows the results for the two-stage recovery strategy. It needs 34 sec-
onds to complete the recovery in the light-load case, i.e., an identical median time to
that needed by the basic approach. Note, however (see Figure 2), that its mean time
is slightly lower (in the basic recovery, the second-to-third interquartile box is bigger

500 M.I. Ruiz-Fuertes et al.

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(87, 505)

(118, 1483)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

a) Light load - short crash

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(103, 516)

(171, 2700)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

b) Medium load - medium crash

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(149, 545)

(257, 4522)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

c) Heavy load - long crash

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(87, 526)

(118, 1501)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

a) Light load - short crash

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(103, 532)

(165, 2588)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

b) Medium load - medium crash

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(149, 515)

(235, 3913)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

c) Heavy load - long crash

1. Compacting recovery 2. Combined recovery

Fig. 4. Compacting and combined recoveries

than in the two-stage recovery, and this generates a greater average); i.e., the two-stage
recovery is a bit better than the basic approach, even with light load. With medium
load, this approach completes its recovery in 70 seconds, whilst the basic one needs
95 seconds; i.e., the two-stage one is 26.3% better. Finally, in the heavy-load case, this
strategy is the first one able to recover and completes its work in 150 seconds.

Better results have been provided by the compacting recovery (Figure 4.1). In the
light-load case, compacting recovery is able to terminate its tasks in 31 sec. (a 8.8%
improvement, since it lasts 34 sec. with the two-stage strategy). In the intermediate
load, it needs 68 sec., achieving only a 2.8% of improvement. Finally, in the heavy-load

Revisiting Certification-Based Replicated Database Recovery 501

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(151, 525)

(221, 3681)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(150, 511)

(212, 3484)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

a) Basic recovery b) Two-stage recovery

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(152, 515)

(194, 3225)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200

la
st

 c
om

m
itt

ed
 ti

d

time (s)

(148, 509)

(183, 3105)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

c) Compacting recovery d) Combined recovery

Fig. 5. Results without new local transactions in the recovering site

case needs 108 sec., 42 less than the two-stage approach (i.e., 28% better). Additionally,
the overhead in the recoverer replica during the compacting step is negligible since no
gap appears between the recoverer and other-node curves in Figure 4.1.

Finally, the combined recovery provides the best results (see Figure 4.2). It com-
pletes the recovery in 31, 62, and 86 seconds, for the light, medium, and heavy loads,
respectively. This implies 0%, 8.8% and 20.3% respective improvement against the
light, medium and heavy results in the best strategy previously analyzed (the compact-
ing one). Note that the results get better when heavier loads are introduced. Indeed, in
the light-load case, no benefit is observed.

5.3 Evaluation Without Clients

In this second kind of test, we analyze the behavior of the four recovery strategies pre-
venting new local transactions from starting in the recovering replica. This reduces the
load in the recovering replica, but delays a bit its service provision to the client appli-
cations. Nonetheless, the global effects to clients are not very important, since some
of the transactions admitted in the previous tests were finally aborted in the recovering
replica. For instance, with a heavy load and the combined recovery strategy, 75 transac-
tions were admitted and terminated in the recovering replica during the recovery phase,
and only 20 were committed.

502 M.I. Ruiz-Fuertes et al.

The results of this second experiment are shown in Figure 5. In this case only the
heavy-load case has been used, since it is the scenario where the differences among the
strategies could be significant.

In such setting, the basic strategy is already able to cope with the recovery work and
it provides non so bad results. It is able to terminate the recovery in 70 seconds. The
two-stage recovery provides better results (it needs 62 seconds, being 11.4% better).

The compacting and combined strategies provide the best results. Thus, the com-
pacting approach (shown in Figure 5.c) is able to terminate the recovery in 42 seconds
(i.e., 40% better than the basic strategy, and 32.2% better than the two-stage one). Note
that with this crash length, it is highly probable that many items were written several
times and that the transferred information was much smaller than in the basic approach.
Finally, the combined strategy still reduces a bit such recovery time and completes its
tasks in 35 seconds, improving in a 16.6% the results of the compacting approach. Note
that this final strategy is able to combine the best characteristics of both optimizations:
fast application time of a reduced set of item values due to the compacting approach,
and a pre-processing of the certification tasks in the second stage.

5.4 Long-Term Outages

Finally, we have also tested all recovery approaches with a long crash interval of 20,000
lost transactions on a 400,000-item database with 8 clients per replica (and with 4 repli-
cas, as above) and without accepting transactions in the recovering replica. In these
cases, the failure interval lasts around 200 minutes whilst the recovery time ranges be-
tween 966 and 1,418 seconds. We have analyzed also the impact of the abortion rate on
the two-stage strategy. To this end, we have defined two different hot-spot sizes (1,000
and 10,000 items) and 40% of the transactions accessed to only items in such a hot-spot,
whilst the other 60% uniformly accessed to the whole database.

Mean results are summarized in Table 5.4. In this case, each experiment has been
repeated 30 times and the standard deviation was lower than 2% of the mean value.
As it can be seen, the two-stage strategy depends a lot on the abortion rate. With an
abortion rate of almost 1% (hot-spot of 10,000 items), its recovery time is almost 41%
bigger than that of the compacting approach. Moreover, combining the two-stage with
the compacting does not provide any benefit.

However, with an abortion rate close to 6% (small hot-spot) the recovery time is
decreased in the two-stage case 36.5 seconds, whilst in the compacting case it only de-
creases 31.21 seconds. Additionally, combining both optimizations the overall recovery
time is the lowest one among all the obtained results.

Table 1. Recovery times for long-term crashes (in seconds)

Hot-spot Recovery Protocol Abortion
size 2-stage Compact. Combined rate

1,000 1,381.29 979.73 966.73 5.89%
10,000 1,417.79 1,010.94 1,018.55 0.94%

Revisiting Certification-Based Replicated Database Recovery 503

6 Related Work

Some papers have proposed recovery techniques for replicated databases assuming
replication protocols using reliable broadcast mechanisms [3,4,5,16,6,17,18,8], but –
up to our knowledge– only a few of them [16,6] have presented a performance study
of their recovery time. Additionally, none of them is centered on certification-based
replication protocols, the focus of this paper.

The two-stage strategy has been proposed for certification-based replication proto-
cols providing the GSI [11] isolation level in [8] where only its correctness was out-
lined. Such strategy was inspired by some details of the recovery protocol proposed in
[5] for a primary copy [2] replication protocol. But such solution was also an evolu-
tion of that initially presented as an N-stage proposal in the lazy data transfer algo-
rithm of [3]. None of those three papers [3,5,8] measured the recovery time of such
approaches.

The other two papers [16,6] that presented performance results of recovery proto-
cols are not directly comparable with this one –they are not intended for certification-
based replication protocols–. Irún [16] proposes a lazy recovery solution for a hybrid
replication protocol that may be configured either with eager or lazy behavior. Lazy
solutions usually have a bad impact on the abortion rate, but his solution overcomes
such problem with an outdatedness estimation function. Castro [6] proposed also a
combined mechanism that switches between a log-based recovery (similar to the basic
recovery strategy discussed here) and a version-based one (similar to our compacting
strategy) depending on the crash length. At a glance, it shares some of the characteris-
tics of our combined approach, but there are important differences. Its solution should
choose a given approach for achieving recovery, whilst ours is able to combine the two-
stage and the compacting strategies at once. Its performance study was mainly oriented
to prove that its combination of two different recovery strategies was able to provide
the best results in a given range of crash lengths. Our performance study, besides do-
ing something similar, also compares our combined solution with three other recovery
strategies.

7 Conclusions

This paper has analyzed the performance –i.e., recovery time– of four different recovery
strategies for certification-based database replication protocols. To this end, these four
recovery approaches have been implemented in a middleware system and have been
tested with different loads and crash intervals. The results show that a basic recovery
approach can be easily optimized with two different techniques: two-stage recovery and
compacting. Additionally, we propose a fourth strategy that combines these two com-
patible optimizations and show that it is able to further improve the recovery times of
the other analyzed approaches. Up to our knowledge, this is the first paper that com-
pares actual implementations of multiple recovery approaches for certification-based
replication protocols.

504 M.I. Ruiz-Fuertes et al.

References

1. Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., Alonso, G.: Database replication tech-
niques: A three parameter classification. In: SRDS, pp. 206–215 (2000)

2. Wiesmann, M., Schiper, A.: Comparison of database replication techniques based on total
order broadcast. IEEE Trans. Knowl. Data Eng. 17(4), 551–566 (2005)

3. Kemme, B., Bartoli, A., Babaoǧlu, O.: Online reconfiguration in replicated databases based
on group communication. In: DSN, Washington, DC, USA, pp. 117–130 (2001)

4. Holliday, J.: Replicated database recovery using multicast communication. In: NCA, pp.
104–107. IEEE Computer Society, Los Alamitos (2001)

5. Jiménez-Peris, R., Patiño-Martı́nez, M., Alonso, G.: Non-intrusive, parallel recovery of repli-
cated data. In: SRDS, pp. 150–159 (October 2002)

6. Castro, F., Esparza, J., Ruiz, M.I., Irún, L., Decker, H., Muñoz, F.D.: CLOB: Communication
support for efficient replicated database recovery. In: 13th Euromicro PDP, Lugano, Sw, pp.
314–321 (2005)

7. Armendáriz, J.E., Garitagoita, J.R.: Muñoz, F.D., de Mendı́vil, J.R.G.: MADIS-SI: A
database replication protocol with easy recovery. Technical Report ITI-ITE-06/05, Instituto
Tecnológico de Informática, Valencia, Spain (July 2006)

8. Armendáriz, J.E., Muñoz, F.D., Juárez, J.R., de Mendı́vil, J.R.G., Kemme, B.: A recovery
protocol for middleware replicated databases providing GSI. In: ARES, Vienna, Austria
(April 2007)

9. Cristian, F.: Understanding fault-tolerant distributed systems. Comm. ACM 34(2), 56–78
(1991)

10. Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A critique of
ANSI SQL isolation levels. In: SIGMOD Conf., pp. 1–10. ACM Press, New York (1995)

11. Elnikety, S., Zwaenepoel, W., Pedone, F.: Database replication using generalized snapshot
isolation. In: SRDS, Orlando, FL, USA, pp. 73–84 (October 2005)

12. Salinas, R., Bernabé, J.M., Armendáriz, J.E., Muñoz, F.D.: SIRC-Rep: A multiple isolation
level protocol for middleware-based data replication. Technical Report ITI-ITE-07/03, Insti-
tuto Tecnológico de Informática, Valencia, Spain (February 2007)

13. Chockler, G., Keidar, I., Vitenberg, R.: Group communication specifications: a comprehen-
sive study. ACM Computing Surveys 33(4), 427–469 (2001)

14. Muñoz, F.D., Pla, J., Ruiz, M.I., Irún, L., Decker, H., Armendáriz, J.E., de Mendı́vil, J.R.G.:
Managing transaction conflicts in middleware-based database replication architectures. In:
SRDS, Leeds, UK, pp. 401–410 (October 2006)

15. Irún, L., Decker, H., de Juan, R., Castro, F., Armendáriz, J.E.: MADIS: A slim middleware for
database replication. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648,
pp. 349–359. Springer, Heidelberg (2005)

16. Irún, L., Castro, F., Garcı́a, F., Calero, A.: Lazy recovery in a hybrid database replication
protocol. In: XII JCSD, Ávila, Spain, pp. 295–307 (June 2004)

17. Castro, F., Irún, L., Garcı́a, F., Muñoz, F.: FOBr: A version-based recovery protocol for
replicated databases. In: 13th Euromicro PDP, Lugano, Sw, pp. 306–313 (2005)

18. Armendáriz, J.E., Muñoz, F.D., Decker, H., Juárez, J.R., de Mendı́vil, J.R.G.: A protocol
for reconciling recovery and high-availability in replicated databases. In: 21st International
Symposium on Computer Information Sciences, Springer, Heidelberg (2006)

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 505–521, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Survey of Fault Tolerant CORBA Systems

Muhammad Fahad1, Aamer Nadeem1, and Michael R. Lyu2

1 Department of Computer Science
Mohammad Ali Jinnah University, Islamabad, Pakistan
mhd.fahad@gmail.com, aamern@acm.org
2 Department of Computer Science and Engineering

Chinese University of Hong Kong, Hong Kong S.A.R., China
lyu@cse.cuhk.edu.hk

Abstract. CORBA is an OMG standard for distributed object computing; but
despite being a standard and wide scale acceptance in the industry it lacks the
ability to meet high demands of quality of service (QoS) required for building a
reliable fault tolerant distributed system. To tackle these issues, in 2001, OMG
incorporated fault tolerance mechanisms, QoS policies and services in its
standard interfaces as mentioned in its Fault Tolerant CORBA (FT-CORBA)
specification. FT-CORBA Architecture used the notion of object replication to
provide reliable and fault tolerant services. In this paper, we surveyed the dif-
ferent approaches for building FT-CORBA based distributed systems with their
merits and limitations. We gave an overview of FT-CORBA specification; its
requirements and limitations, and FT-CORBA Architecture. We have also re-
vised the existing categorization of FT-CORBA systems by incorporating a
fourth approach, i.e., Reflective Approach, in the categorization taxonomy. A
comparison between different types of replication and FT-CORBA based
systems is conducted to achieve quick insight on their features.

Keywords: CORBA Middleware, Object Replication Styles, Fault Tolerant
CORBA Specification, Fault Tolerant CORBA systems.

1 Introduction

Distributed systems are used in a variety of application domains in which services are
provided by independent components working together as a single transparent system.
In distributed systems, CORBA is accepted as a standard because of its inherent loca-
tion transparency, portability, interoperability and language independence [1]. With
these features, CORBA was made a standard for distributed object computing by the
Object Management Group (OMG) [2]. In CORBA, Interface Definition Language
(IDL) defines interfaces to objects. Clients have to implement IDL interfaces to ac-
cess server functionality and this makes CORBA language independent. By location
transparency, clients can invoke server objects without worrying about the location of
the server objects. Portability makes CORBA independent of specific ORB and the
system can be implemented and used on top of any CORBA-compliant ORB. This is
achieved by the Portable Object Adaptor (POA), a component of CORBA, which is
responsible for making server-side functionality appear as CORBA object to clients.

506 M. Fahad, A. Nadeem, and M.R. Lyu

Interoperability of CORBA ensures the system to be used by the clients and servers,
running on ORBs from different vendors. Despite these benefits, CORBA does not
address partial failures and does not provide totally ordered multicast of messages
while building distributed systems [2], which are the key factors of fault tolerance.

To provide fault tolerance in distributed CORBA based systems, Fault Tolerant
(FT) CORBA specification defines interfaces, QoS policies, associated fault tolerance
mechanisms and services to enhance the reliability of CORBA applications [3]. Exist-
ing fault tolerant CORBA systems provide fault tolerance through replication of
CORBA objects. By replicated objects, fault tolerant services are provided even if one
of individual entities fails. A replicated object is implemented by a set of distinct
CORBA objects called an object group, i.e., an abstraction to provide replication
transparency and failure transparency [4]. These systems differ mostly at the level at
which the replication mechanism support is introduced. Felber and Narasimhan cate-
gorize the FT CORBA systems on this basis into three categorizes: integration, inter-
ception and service [1] and discuss the experiences and lessons learnt in building their
two distinct FT CORBA systems.

This paper presents the overview of Fault Tolerant CORBA Specification; its ar-
chitecture, requirements and limitations. We surveyed the FT-CORBA systems based
on their FT properties and highlighted their prominent features and limitations. We
analyzed the several different approaches that implement FT-CORBA and revised the
existing categorization of FT-CORBA systems by incorporating a fourth approach
called Reflective Approach in the existing categorization taxonomy. Moreover we
compared the working of individual systems on different criteria and provide analysis
matrix to achieve quick insight on their infrastructures.

The rest of this paper is organized as follows: Section 2 covers the approaches of
building the fault tolerant CORBA system with their merits and limitations. Section 3
throws light on replication styles and comparison of these styles. Section 4 gives the
overview of Fault Tolerant CORBA Specification; its requirement, architecture and
limitations. Section 5 covers the Fault Tolerant CORBA systems with a critical look
on their features. Section 6 shows our analysis about the FT-CORBA systems. Sec-
tion 7 concludes the paper.

2 Fault Tolerant Approaches

According to the built-in support of replication logic, various fault tolerant systems
are categorized into four approaches, which are termed as Integration approach, Inter-
ception approach, Service approach and Reflective approach. Taxonomies of the first
three approaches can be found in [5,6,7]. With the passage of time new FT-CORBA
Systems were built introducing fourth approach, i.e., Reflective approach. So here we
incorporate the fourth approach in the existing (old) categorization taxonomy. Sum-
marized features of these approaches are represented in Table 1.

2.1 Integration Approach

In this approach, support for replication is integrated transparently into the ORB. It
integrates necessary fault tolerant replication by proprietary mechanisms in the ORB.

 A Survey of Fault Tolerant CORBA Systems 507

This is the most efficient approach but modification in the ORB makes this approach
non-compliant with the CORBA standard, i.e., does not enable off-the-shelf ORBs to
be used. In this approach, modified ORB gets a message from application objects,
passes it to the adapter object that multicasts it by using underlying toolkit. Fault
tolerance mechanisms and replication strategies are transparent to the client as these
are integrated into the ORBs. Portability is not achieved but interoperability can be
achieved depending on the support for IIOP invocations (Internet Inter-ORB Protocol,
a CORBA Standard for invocations).

2.2 Interception Approach

In this approach, support for replication is provided underneath the ORB, which
makes the replication logic transparent to the users. Messages from client and server
are intercepted transparently, externally to the ORB by using low level (OS-level)
interceptor and then multicast by the group communication toolkit. The use of low-
level interceptor makes this approach non-portable. Moreover as there is no need of
modification in ORB, thus systems built using this approach are ORB compliant.
Interoperability can be achieved by writing an interception layer of each distinct OS.

2.3 Service Approach

In this approach, support for replication is provided through a collection of CORBA
objects that reside above the ORB. As there is no need to modify the ORB, the sys-
tems built exploiting this approach are CORBA compliant, interoperable and portable.
To use service objects that provide the policies and mechanisms for achieving fault
tolerance, application objects require knowledge of these service objects and hence
application code needs modifications to use their functionality. Each request from
application objects to service objects passes through the underlying ORB, which in-
creases performance overheads. Service objects are defined as IDL interfaces so they
are independent of language constructs. Service objects can be made distributed by
locating them on different hosts on the network.

Table 1. Comparison between Fault tolerant Approaches

System Features Integration Interception Service Reflective
ORB Compliance No Yes Yes Yes
Transparency Yes Yes Depends on service

implementation
Yes

OS dependence No Yes No No
Portability No Can

be achieved
Yes Yes

Interoperability Depends on
IIOP invocation

Yes

Yes

yes

Performance Most efficient Efficient Good Good

System Example Electra, PPF,
Orbix+Isis

Eternal,
CARRIGE

OGS, DOORS,
AQuA, Newtop,
FTS, IRL, Aquarius

FRIENDS,
FT-MOP

508 M. Fahad, A. Nadeem, and M.R. Lyu

2.4 Reflective Approach

Reflection approach separates the concerns between the application and the fault
tolerance mechanisms and enables off-the-shelf ORBs to be used. It employs
metalevel architecture to integrate fault tolerance in CORBA systems and provides a
means to develop transparent fault tolerance software as any CORBA software with
different object-oriented languages. In this approach the replication necessarily in-
volves creating a single point of failure outside the client’s failure domain, thus par-
tially defeating the purpose of the replication (no single failure is visible to the client).
The use of Metaobjects Protocol (MOP) and restricted reflective features of some
object-oriented languages makes this approach different from other approaches. Using
this approach MOP can be implement as compile time or runtime. But the integration
of runtime and compile-time MOPs enables more efficient functionality for fault
tolerance. This MOP is CORBA compliant which enables the execution and the state
evolution of CORBA objects to be controlled. Metaobjects are not only used for the
purpose of fault tolerance but can also be used for security purposes. Interoperability
can be achieved with the engagement of Metaobjects protocol.

All these approaches support different types of object replication styles in which
they replicate their constituent objects. The need for object replication is to increase
the reliability and performance of the system. Failure of a replica does not affect the
services provided, as other replicas are there to give the required services. Perform-
ance issues arise when distributed systems need to scale in number and geographical
area [4]. Fault tolerance benefits can be achieved only when object replication main-
tains strong replica consistency. Strong replica consistency means that all the repli-
cated objects should have the same state and they perform the same behavior. There
are many issues which should be analyzed while maintaining strong replica consis-
tency [7,8]. First, all the replicas perform the same sequence of operations in the same
order. Second, to perform a single invocation multi-replicated client objects initiate a
request to replicated server objects, thus each of server objects receive multiple re-
quests made by each of the client object. Therefore, the system should be capable
enough to detect duplicate requests. Third, systems which support multithreading
should carefully analyze different threads and the functions they perform. Fourth, in
case of failure of replicated objects, recovery mechanisms should be transparently
managed to provide the reliable fault tolerant services.

3 Replication Styles

The replication logic is a set of protocols, mechanisms and services that allow a
CORBA system to handle object replication [9]. There are many styles of object rep-
lication but the main ones are Active replication and Passive replication [5,6,7]. Un-
derlying mechanisms for both are the same but their role to provide strong replica
consistency is different. Some of the FT-CORBA systems rely on proprietary group
toolkit for replication logic implementation but others provide either centralized repli-
cation logic in its core or completely distributed above the ORBs [9]. A comparison
between replication styles is represented in Table 2.

 A Survey of Fault Tolerant CORBA Systems 509

3.1 Active Replication

In Active Replication, all replicated objects are active and independently handle client
requests and return the responses to the client. Duplicate responses should be detected
and suppressed to provide client transparency. One of these active replica objects is
called primary, while others act as backup. The crash failure of single primary is
masked by the presence of other active replica by providing fault tolerant services;
thus this style provides better fail-over time, and state transfer and recovery mecha-
nisms are provided to regain the use of the crashed node. To ensure replica consis-
tency, it consumes a lot of computational resources and totally ordered multicast of
messages is needed to maintain the same state and to achieve same behavior by active
replicas, i.e., it needs operations on the replicated objects to be deterministic. It
shields fastest recovery from faults.

3.2 Passive Replication

In Passive Replication only one operational replica is active, termed as primary, to
fulfill client request. It requires less memory and processing costs, and shields slower
recovery from faults. On the basis of recovery mechanisms it has two variations:

Warm Passive. Only one server replica (primary) is active in each object group and
remaining replicas are preloaded into the memory and are synchronized periodically
to handle state transfer while crash faults. To achieve this state synchronization,
totally ordered multicast as well as deterministic operations are needed. Only active
replica is operational to fulfill client request, while backups are running for the sake
of state storage and state transfer in case of primary failure. When primary fails, new
primary is selected from the backup replicas.

Table 2. Comparison between Replication Styles

Analysis Parameters Active Warm Passive Cold Passive
Number of operational replica All Only primaries One
Fail-over time Very low Medium Very high
Computational resources High Medium Low
Duplicate message detection and
suppression required

Yes Yes No

Totally ordered multicast required Yes Yes No
Operations on replicated objects Deterministic Deterministic Non-

deterministic
Recovery from faults Fastest,

very Rapid
Rapid Slower

Cold Passive. Only one server replica is active and the remaining replicas are not
even preloaded into the memory. State of the primary is logged into the storage for
recovery mechanisms. If the primary fails, new primary is created and state is
transferred from logged storage to the new primary, which increases the fail-overtime.
This approach uses less resources and non-deterministic operations, as only one
replica is operational at a time.

510 M. Fahad, A. Nadeem, and M.R. Lyu

4 Overview of FT-CORBA

In 1998, Object Management Group (OMG) felt the need of making fault tolerant
standard properties for CORBA Architecture for adding availability and reliability in
CORBA applications. Hence issued a Request For Proposal (RFP) that results the
Fault Tolerant CORBA specifications in early 2000 [3]. FT-CORBA specification
addressed the issues of entity redundancy, fault detection, and fault recovery. This
section throws a light on FT-CORBA Specification.

4.1 FT-CORBA Architecture

The Fault Tolerant CORBA Architecture [3] is achieved by handling issues of object
replication transparently, fault detection and recovery mechanisms in CORBA Archi-
tecture as shown in the Fig. 1. Major components with their functionality are:

Replication Manager. Replication Manager has three components; Property Man-
ager, Generic Factory, and Object Group Manager. Property Manager allows ap-
plication developer to choose and set object group properties i.e. replication style,
consistency style, membership style etc according to requirements. Generic Factory
creates objects and makes object groups. Object Group Manager adds or deletes
members.

Fig. 1. The Architecture of Fault Tolerant CORBA [7]

 A Survey of Fault Tolerant CORBA Systems 511

Fault Detector and Fault Notifier. Fault Detector supports Pull Model and Push
Model based fault monitoring [3]. In Pull Monitoring, crash faults are detected by
invoking an isAlive() method of monitored object asking about its aliveness. If
monitored object does not reply within some time interval then it is assumed that
object has crashed. By this approach, application checks the status of objects when it
is needed [10]. In Push Monitoring, crash faults are detected on the basis of
I_am_Alive() messages sent by monitored object who tells about its aliveness. Crash
fault of monitored object is assumed when it does not send message telling about its
aliveness. By this approach fast detection of the crash failure is achieved [10].
Whenever a fault is detected, Fault Detector reports the fault to Fault Notifier, which
diverts it to Replication Manager to take necessary actions. There should be separate
Fault Detector and Fault Notifier components according to standard Fault tolerant
CORBA specification.

Logging and Recovery. FT-CORBA defines a logging and recovery mechanisms by
two IDL interfaces (Checkpointable and Updateable). The logging mechanism peri-
odically stores object related information on the log, and recovery mechanism
retrieves log information to restore valid state to the crashed replica.

4.2 Requirements of FT-CORBA Specification

According to FT-CORBA specification [3], system build on CORBA middleware
should preserve CORBA object model for the infrastructure-controlled consistency
style, and extended format of Interoperable Object Reference (IOR) should be used
for the individual replicas so that legacy ORBs that does not support fault tolerance
can invoked methods on ORBs that support fault tolerance and vice versa. Each com-
ponent should be replicated to avoid single point of failure; moreover creation and
deletion of objects, fault detection, and recovery mechanisms should be invisible to
client to achieve transparency. In case of failure of replica, client’s request should be
transparently redirected to other available replica and client ORB systematically
re-initiate the request until the request fulfills.

4.3 Limitations of FT-CORBA Specification

FT-CORBA specification [3] has many limitations that are: i) Clients running on non-
FT-CORBA can invoke methods/operations on an object group, supported by the
fault tolerant infrastructure without taking the benefits of its fault tolerant properties.
ii) To achieve interoperability and full fault tolerance, the hosts with in a domain
should use fault tolerant infrastructure and ORBs from the same vendor. iii) To
achieve strong replica consistency, specification addressed that application objects
should have deterministic behavior. iv) There is no support for partitioned systems,
and Network-Partitioning faults, Commission faults (wrong results generated by the
objects), and Correlated faults (Design Faults, and Programming Logic Errors) are
not addressed in the specification.

512 M. Fahad, A. Nadeem, and M.R. Lyu

5 Existing Fault Tolerant CORBA Systems

Many FT-CORBA systems were developed to address the issues of secure group
based communication for embedding fault tolerance by the notion of object replica-
tion. The evolution of FT-CORBA systems starts with the integration of fault tolerant
properties in the ORB, but later on different approaches were introduced to build
replication for ease of use and customization purpose to provide fault tolerance in
CORBA based distributed systems. The following sub-sections present the brief
introduction to various Fault Tolerant Systems.

5.1 Electra

The Electra [4] is one of the earliest implementation of fault tolerant CORBA sys-
tems, developed at the University of Zurich which exploits the integration approach.
It was the first time using the strengths of CORBA model and improving the weak-
nesses of CORBA model with group communication for consistent ordering of
distributed events and transactions, handling of partial failures and support of asyn-
chronous communication.

The first research based CORBA object request broker, Electra, combines the
benefits of CORBA object model and virtual synchrony with reliable group commu-
nication as part of an ORB to achieve fault tolerance. As the replication logic is em-
bedded into the ORB, it neither is ORB compliant nor maintains interoperability of
CORBA architecture. Also we cannot achieve interoperability using Electra. The key
focus of Electra is to enable ORB with build-in fault tolerant capabilities. All the
special features of adding fault tolerance are enhanced by two C++ interfaces Basic
Adaptor Object (BOA) Interface and Environment Interface, so C++ is the only target
language for building fault tolerant CORBA based application using Electra proto-
type. Underlying toolkit, which is built on the model of virtual synchrony, provides
reliable multicast. BOA provides active replication and Environment Interface is
responsible for synchronous, asynchronous and deferred-synchronous communica-
tion. Adaptor object has the code specific to the toolkit so application developer can
use another toolkit by simply relinking the application with the appropriate Adaptor
Object. Basic Adaptor Object, which is hooked into the ORB, is responsible for repli-
cation services and mechanisms like creation and deletion of objects and object
groups, and state transfer when primary replica fails. It also allows application devel-
opers to select the ordering protocol given by the toolkit according to requirements.
Group communication is achieved by the subsystems (Horus, Isis) that are built on the
model of virtual synchrony to maintain replica consistency.

5.2 Orbix+Isis

First commercially available Fault Tolerant CORBA system [11] developed by the
IONA Technologies was Orbix+Isis, which exploits the integration approach. Isis
developed by the Isis Distributed Systems was the first commercial toolkit built upon
the model of virtual synchrony to provide high performance, totally ordered multicast
and fault monitoring. Orbix is the C++ development environment to work on distrib-
uted CORBA objects.

 A Survey of Fault Tolerant CORBA Systems 513

It modifies ORB to use Isis toolkit which provides totally ordered multicast reliable
communication, object groups and failure monitoring, whereas Orbix provides the
object oriented environment to work on distributed objects and supports point-to-
point communication. Fault tolerant replication mechanisms are implemented by
using two base classes ActiveReplica and Stream Event. ActiveReplica provides trans-
parent Active and hot-passive replication, and Event Stream (supports asynchronous
requests using publish/subscribe paradigm) makes object groups and used for load
balancing. Orbix+Isis allows application developers to select the object replication
execution style. Transparent replications of server objects and filter mechanisms are
provided by the Orbix specific smart proxies. Active replica execution style also gives
an option to select the replication style. In Event Stream style, Event Streams are
replicated which keep event history and Event Log. Servers registered to specific
events are invoked by Event Stream when it receives the event from the client. Fault
monitoring is based on two functions _newMember() and _memberLeft(). The former
is called when an object joins group and latter one is called when the object leaves.

5.3 Eternal

Eternal [1,7], a FT CORBA standard, was developed at the University of California,
Santa Barbara, which exploits the interception approach to provide transparent fault
tolerance to ORB and application as well. It employs Totem toolkit for totally ordered
multicast.

Eternal has an ORB compliant architecture but does not maintain interoperability
of CORBA because when request came, it is captured by OS-level interceptor and
then propagated to ORB, thus making Eternal OS dependant. Interoperability can still
be achieved by writing a separate interception layer for every different ORB. It sup-
ports active and different types of passive replication (e.g. cold passive, warm pas-
sive) and logging-recovery mechanisms to provide reliable consistent replication.
Active replication allows the Eternal to work, when single replica fails as this is
masked by the presence of other active replicas and during recovery phase. For pro-
viding consistent replication it maintains three types of states; application level state,
ORB/POA level state and Infrastructure state, and this distinguishes Eternal from
other fault tolerant CORBA systems. It provides fault detection service based on
user-defined timeouts to identify crash faults. It allows developers to select configura-
tion management properties of fault tolerance, and employs mechanisms to overcome
the non-determinism inherent in multithreaded CORBA applications.

5.4 DOORS

The Distributed Object Oriented Reliable Service (DOORS) [6] is an application-level
framework developed at Lucent Technologies as an experimental middleware so that
lessons learned during its implementation are integrated into the FT-CORBA standard.
DOORS exploits the service approach to provide fault tolerance and follows an ORB
compliant architecture which maintains interoperability of CORBA. The proposed
architecture supports active and passive replication, but prototype implementation
only provides passive replication. Both pull and push methods of fault monitoring are
supported to provide fault detection and employs libraries for the transparent

514 M. Fahad, A. Nadeem, and M.R. Lyu

checkpointing of applications. Fault detection and fault notification are merged into
fault detector component. It provides transparently fault detection and fail-over to the
client. The prototype does not support recovery and logging mechanisms, and dupli-
cate detection and suppression of messages for reliable fault tolerance. Replication
Manager is responsible for configuration management and replication mechanisms by
allowing application developer to choose and set object group properties i.e. replication
style and consistency style, according to requirements. Fault Detector detects the faults
and reports them to super fault detector that diverts them to replication manager to take
necessary actions. There is no separate Fault Notifier component thus it violates the
standard fault tolerant CORBA specification. All these component services act as
CORBA objects above the ORB.

5.5 AQuA

The BBN Technologies and University of Illinois, developed the AQuA’s gateway
architecture to provide adaptive fault tolerance to CORBA systems [12]. Its architec-
ture consists of Quality Objects, Proteus, Maestro/Ensemble and gateways. It replaces
the ORB IIOP implementation with proprietary gateway which propagates IIOP calls
to other CORBA objects by using Maestro/Ensemble toolkit. The gateway and the
group toolkit employ the replication logic. Due to replacement of only IIOP module
of ORB with gateway, it is regarded to exploit integration approach [9]. But as the
gateway captures the initial request by client object which acts as an OS-level inter-
ceptor, it is regarded to exploit interception approach [6]. We classified AQuA
exploiting service approach, as it provides replication via a collection of CORBA
objects above the ORB [1]. Nevertheless, interoperability is achieved by implement-
ing gateway for each different OS and ORB. The configuration management regard-
ing fault tolerance properties can be set during runtime. Push-based or heartbeat fault
monitoring is supported for fault detection. Different types of active and passive rep-
lication schemes are supported to tolerate crash and value faults. The application
developer can set the level of dependability by Quality Objects according to desired
application requirements and state of the distributed system during execution of the
system. Proteus, a flexible infrastructure, has replicated dependability manager, gate-
way handler and object factory. The replication dependability manager makes deci-
sions on reported faults, manages configuration properties, and replicas are created
and deleted by the object factories.

5.6 FTS

FTS [13] as a lightweight CORBA fault tolerance service was developed at Israel
Institute of Technology that maintains the portability and interoperability of CORBA
ORBs. It aims to support transparent client-side replication and embeds fault toler-
ance in CORBA by utilizing the standard CORBA’s Portable Object Adaptor (POA).

It provides fail-over transparency and reliable transparent fault tolerance by redirect-
ing a client’s requests during processing. It supports two types of fault detection; proc-
ess-based which is monitoring of Group Object Adaptor (GOA) and object-based in
which all the objects are monitored which are connected with GOA by push
fault monitoring model. Active replication of server objects is supported. A set of

 A Survey of Fault Tolerant CORBA Systems 515

components, which provide reliable functionality for fault tolerance, are merged into
group object adaptor, which is built on the top of POA. FTS Interceptors detect faults
during client-server replica communication and redirects a client’s request to other
replicas when they receive an indication of faults during request processing, thus add-
ing reliable transparent fault tolerance to client applications. It partially supports
network partitioning by imposing a primary component model.

5.7 IRL

IRL was developed by the University La Sapienza, Roma, Italy, which exploits the
service approach [9]. It maintained the CORBA’s interoperability and was built with
supports of passive centralized replication logic. Later on, a distributed design was
proposed to give more reliable fault tolerant properties [14].

With its replication logic implemented as CORBA objects above the ORB, IRL
offers interoperable ORB compliant architecture in which all the components are
deployed distributedly to avoid single point of failure, thus adding more reliable fault
tolerant ways to handle client’s request in a more transparent manner. Adding support
of the client-side replication and the server-side replication to system makes IRL
more reliable while achieving good performance. Object Replicas are distributed in
different host domains for balancing loads and achieving high fault tolerance. To
handle object creation and deletion, replication style and its management, Object
Group Handler (OGH) and Object Group (OGs) Components were designed. Fault
detector and fault notifier detect faults and provide fail-over transparency to clients.
Host-specific IRL components as well as domain-specific IRL components handle
failure management activities. Local failure detectors monitor crash faults by pull
fault tolerant technique. Recovery mechanisms are carried out by Object Group com-
ponent, which ensures strong replica consistency in a group.

5.8 OGS

Object Group Service (OGS) [5] developed at the Swiss Federal Institute of Technology,
Lausanne, exploits the service approach as the first time in the history to provide fault
tolerance in a CORBA system. It maintains interoperability and provides distributed
replication support in building more reliable fault tolerance.

OGS supports a set of independent generic IDL specified interfaces, which pro-
vides transparent group invocations. It preserves portability of CORBA ORBs, and
provides both reliable (for read-only client requests) and unreliable multicast of mes-
sages, and mechanisms for duplicate detection and suppression. Furthermore, it sup-
ports active and warm passive replication techniques, as well as fault monitoring by
push and pull methods. Group Service component manages work related to objects
and group membership and provides client transparency. The consensus service en-
sures the total ordered multicast and replica consistency, crash fault detection is done
by monitoring service, and messaging service transmits client server invocations onto
the transport layer. Replication service employs the user to select replication style and
other fault tolerant properties. Clients implement IDL interfaces to use a set of ser-
vices of known replicated server so it does not maintain replication transparency.

516 M. Fahad, A. Nadeem, and M.R. Lyu

Furthermore, recovery services are used incase of failures of object replicas and for
the transfer of application-level state.

5.9 Newtop

 Newtop [15] was developed by the University of Newcastle, which exploits the ser-
vice approach. It follows the similar approach as being implemented by OGS but it
provides more group management facilities. It embeds the support for objects belong-
ing to multiple groups and handling the failures due to partitioning. Newtop Service
Object (NOS), provides the distributed mechanisms and handles client requests in a
fault tolerant way. It achieves its functionality by three services implemented as an
object, i.e., Group management service object, Invocation/multicast service object and
Membership service object. Group management service is responsible for creation
and deletion of objects from groups. Invocation/multicast service provides synchro-
nous and asynchronous communication facilities and information about the object is
kept by the Membership service. However it does not employ consistent remerging of
the subgroups once communication is reestablished. Membership service is also held
responsible for checking crash faults on the bases of a timeout protocol.

5.10 Aquarius

Aquarius was developed at the Hebrew University of Jerusalem, Israel [16]. It ex-
ploits the service approach and is based on Quorum Object Adaptor Architecture [17].
It provides the data-centric approach to build fault tolerance in CORBA.

Aquarius embeds server-side replication support by using the object adaptor ap-
proach like FTS. But it modifies the adaptor by adding an ordering protocol’s algo-
rithm. It employs proxies (stateless servers), which act as middle tier between client
and server. These proxies propagate client requests to server and help to achieve effi-
cient client-server invocation and transparency. It consists of two parallel threads of
execution, one is responsible for propagating client requests to all replica servers and
other is responsible for creating a total order of all client requests. Its architecture is
similar to that of IRL but the middle tier of Aquarius uses independent entities that are
not aware of each other and do not run any kind of distributed protocols among them.
It applies the ordering protocol to maintain strong replica consistency. It utilizes RPC
mechanisms that support asynchronous invocations for delivery of client requests to
all replicas.

5.11 Pluggable Protocol Framework (PPF)

PPF was developed at the University of California, Santa Barbara, which utilizes the
pluggable protocols framework to provide fault tolerance in CORBA [18]. It is an FT
standard CORBA compliant infrastructure and achieves performance to maintain
strong replica consistency, similar to DOORS or Eternal.

There is no need for any modification in CORBA ORB but PPF requires minimal
modification in the application to run. It engages totem toolkit for totally ordered
multicast of messages, fault detection and fault notification. FT protocol plug-in pro-
vides the fault tolerance on the server-side and client-side failover mechanisms. The
Fault Detector, a component of FT protocol plug-in, detects the faults. Interoperability

 A Survey of Fault Tolerant CORBA Systems 517

is achieved by passively replicated gateways, which provide access of un-replicated
clients to replicated servers. Active and semi-active replication styles are supported
for strong replica consistency. Smart duplicate mechanisms are provided for duplicate
message detection and suppression. This scheme is similar to the interception ap-
proach as it employs an underlying toolkit for message delivery but in fact it is closer
to the integration as fault tolerant mechanisms are embedded inside the ORB. But it
differs from the integration-based systems as no need modification in ORB is required
and it can be ported from one ORB to another.

5.12 CARRIAGE

CARRIAGE [19] is a fault tolerant CORBA system developed at the Southeast Uni-
versity of China, which employs portable interceptors to integrate ORBUS and EDEN
to achieve fault tolerant services in CORBA. ORBUS is a CORBA implementation,
and EDEN is a fault tolerant framework provided by IRISA/INRIA, France. Both of
these were combined together on the basis of standardized Portable Interceptor
mechanisms.

EDEN uses active replication style to enhance fault tolerance services. It consists
Replication Manager, which handles all activities related to object replication, and
Total Order Component, which is responsible for totally ordered multicast of mes-
sages. ORBUS, an OMG CORBA specification implementation that supports C++
and JAVA programming environments to work with distributed CORBA objects.
ORBUS supports ClientRequestInterceptor for client-side and ServerRequest- Inter-
ceptor for server-side request processing. The approach followed is similar to the
integration approach, as interceptors are hooked into the ORB; but differs from it as
CARRIGE maintains inherent features of CORBA (i.e., language transparency, loca-
tion transparency, portability and interoperability), which plays a vital role in its suc-
cess. Moreover, it fully follows the standard specification and application programs
do not require any modification to use this framework.

5.13 Lightweight Fault Tolerance (LW-FT)

Felber introduced a lightweight approach of embedding fault tolerance in existing
CORBA system [20]. It employs replicated gateways for client-server interactions and
uses semantic repository for achieving fault tolerance in CORBA. Use of gateways
enables two fault tolerant CORBA frameworks to bridge that are supported by different
mechanisms and QoS.

The proposed architecture uses client-side FT mechanisms and keeps semantic re-
pository about server objects for fault tolerant request processing. The client request is
propagated through replicated Gateway, which uses semantic repository for request
processing. Semantic repository helps to choose optimal protocols for component
interactions, replica management, automatic request redirection in case of failure,
cache management to avoid unnecessary invocations to the servers, and load balanc-
ing of client requests. However, this approach cannot be applied to passively repli-
cated or non-deterministic servers, and does not address the issues of maintaining
strong replica consistency.

518 M. Fahad, A. Nadeem, and M.R. Lyu

5.14 FRIENDS

FRIENDS stand for Flexible and Reusable Implementation Environment for your
Next Dependable System [21]. FRIENDS, a meta-object protocol developed at
LAAS-CNRS, Toulouse, provides libraries of meta-objects for fault tolerance, secure
communication and group-based distributed applications. It exploits the reflective
approach as the first time to build fault tolerance in CORBA systems. It aims to pro-
vide flexibility through object-oriented libraries of meta-objects and enhance
non-functional requirements such as security by using the meta-objects.

FRIENDS system engages separate meta-objects for providing fault tolerance in
CORBA. The system is composed of three layers, Kernel layer, System layer and
User layer. System layer is responsible for providing fault tolerance by detecting
crash faults, stable storage, secure communication, and replication management. User
layer is responsible for controlling application objects and remote object interactions.
System layer is built on the top of the Kernel layer, which is either a UNIX kernel or a
micro kernel. Due to being kernel specific, it does not maintain portability. It uses
time-outs to detect crash faults and both replication styles (active and passive) to
maintain strong replica consistency. By applying FRIENDS, non-fault tolerant appli-
cations do not invoke functions on fault tolerant applications. The drawback of
FRIENDS is that it is not CORBA compliant and fault tolerance properties cannot be
configured dynamically as the link between objects and meta-objects cannot be
changed at runtime.

5.15 FT-MOP

A Reflective fault tolerant CORBA system was developed at LAAS-CNRS, which
uses a Fault Tolerant Meta-Object Protocol (FT-MOP) to build fault tolerance in
CORBA [22]. By FT-MOP, desirable fault tolerance properties can be attached to
CORBA objects as CORBA Meta Objects and enables off-the-shelf ORBs to be used.
Its architecture is an extension of FRIENDS with the elimination of its drawbacks,
which is based on a general-purpose runtime meta-object protocol. FT-MOP provides
more efficient functionality by using a general-purpose compile-time MOP to imple-
ment a runtime MOP, than by using only a runtime MOP as in the FRIENDS system.

FT-MOP controls the behavior and the state of application level CORBA objects.
FT-MOP handles the creation, deletion and invocation of CORBA objects. The client
sends a request to the server by using the stub to invoke the server’s services, which
are implemented as IDL interfaces. The request is propagated to Metaobjects through
the Metastub. Metaobjects controls the behavior and state of the server. FT-MOP is
ORB compliant and it maintains interoperability of ORBs. FT-MOP is C++ language
dependant, but the reuse ability of this system in many application domains with
different object-oriented languages distinguishes it from other systems.

6 Comparative Analysis

Table 3 shows a comparative analysis of the existing FT-CORBA systems, which
provides a quick insight on the features of these systems. Analysis parameters are:
Approach, Interoperability, ORB compliance, OS dependence, Fault detection and

 A Survey of Fault Tolerant CORBA Systems 519

notification, Replication transparency, Replication style, Replication implementation,
Portability, Transparency to application, and FT-CORBA standard compliance. Val-
ues and meanings of these parameters are discussed above along with the systems.

Most of the FT-CORBA such as OGS, Eternal, DOORS, etc. provide fault moni-
toring based on non adaptive fault detectors [10], but their performance can be im-
proved by using adaptive fault monitoring approaches, i.e., Discard Past Consider
Present (DPCP) [23], or ADAPTATION [10] algorithms.

Table 3. Comparison among FT-CORBA Systems

Eternal Isis+Orbix Electra CARRIGE PPF Friends FT-MOP
interception integration integration interception integration reflective reflective
no no no yes yes no yes
yes no no yes yes yes yes
yes yes yes no no yes no
separate combined combined separate separate separate separate
yes yes yes yes yes yes Yes

both both passive active
active,
semi-active

metaobject
protocol

metaobject
protocol

by totem by Isis
by Isis,
Horus EDEN Totem

Open to
programmer

open to
programmer

no no no yes yes no yes
yes yes yes yes yes yes yes
yes no no yes yes no no

Analysis Parameter DOORS FTS IRL OGS Newtop AQuA Aquarius
Approach service service service service service service service
Interoperability yes yes yes yes yes no yes
ORB Compliance yes yes yes yes yes yes yes
OS dependence no no no no no yes no
Fault detection and
notification combined separate separate combined combined separate separate
Replication transparency yes yes yes no no yes yes

ordering protocol Replication style passive both passive both both both

Replication implementation centralized centralized both distributed distributed
By Maestro
/Ensemble data-centric

Portability yes yes yes yes yes no yes
Transparency to application not always not always yes no no not always yes
FT-CORBA standard
compliance yes No no no no no no

7 Conclusion

Traditional CORBA-based middleware cannot meet the demanding quality of service
(QoS) for dependable systems, thus OMG fault tolerant CORBA specification
addressed many of the QoS and fault tolerant mechanisms while maintaining
CORBA’s transparency, interoperability and simplicity of application programming.
FT CORBA is not a replacement of fault tolerant infrastructure that were deployed
before this specification, FT CORBA complements fault tolerant infrastructures by
defining QoS policies, associated fault tolerance mechanisms and services to enhance
the reliability of CORBA applications. This paper presents an overview of FT-
CORBA specification; its architecture, requirements and limitations. We discussed
the existing approaches for building CORBA based distributed systems, and evaluated
the various fault tolerant CORBA systems by analyzing their prominent features and

520 M. Fahad, A. Nadeem, and M.R. Lyu

limitations. We have discussed the various styles of replicating the objects of the
application that provides fault tolerance for CORBA applications.

Acknowledgement. The work described in this paper was partially supported by a
grant from the Research Grants Council of the Hong Kong Special Administrative
Region, China (Project No. CUHK4150/07E).

References

1. Felber, P., Narasimhan, P.: Experiences, Strategies, and Challenges in Building Fault-
Tolerant CORBA Systems. IEEE Transactions on Computers 53(5) (May 2004)

2. Object Management Group: The Common Object Request Broker: Architecture and Speci-
fication, 2.6(edn.) OMG Technical Committee Document, formal/02-01-02 (January 2002)

3. Object Management Group: Fault Tolerant CORBA (Final Adopted Specification), OMG
Technical Committee Document, formal/01-12-29 (December 2001)

4. Maffeis, S.: Run-Time Support for Object-Oriented Distributed Programming, PhD thesis,
Univ. of Zurich (February 1995)

5. Felber, P.: The CORBA Object Group Service: A Service Approach to Object Groups in
CORBA, PhD thesis, Swiss Federal Inst. of Technology, Lausanne (1998)

6. Natarajan, B., Gokhale, A., Yajnik, S., Schmidt, D.C.: Doors: Towards High-Performance
Fault Tolerant CORBA. In: DOA 2000. Proceedings of the Second International Sympo-
sium on Distributed Objects and Applications, pp. 39–48 (February 2000)

7. Narasimhan, P.: Transparent Fault Tolerance for CORBA, PhD thesis, Dept. of Electrical
and Computer Engineering, University of California, Santa Barbara (December 1999)

8. Narasimhan, P., Moser, L.E., Smith, P.M.: State Synchronization and Recovery for
Strongly Consistent Replicated CORBA Objects. In: Proceedings of the 2001 International
Conference on Dependable Systems and Networks, Goteborg, Sweden, pp. 261–270
(2001)

9. Marchetti, C., Mecella, M., Virgillito, A., Baldoni, R.: An Interoperable Replication Logic
for CORBA Systems. In: DOA. Proceedings of the Second International Symposium on
Distributed Objects and Applications, Belgium, pp. 21–23 (September 2000)

10. Sotoma, I.: ADAPTATION - Algorithms to ADAPTive fAulT monItOriNg and Their Im-
plementation on CORBA. In: DOA. Proceedings of the Third International Symposium on
Distributed Object and Applications, pp. 219–228. IEEE, Los Alamitos (2001)

11. IONA and Isis: An Introduction to Orbix+Isis, IONA Technologies Ltd. and Isis Distrib-
uted Systems, Inc. (1994)

12. Cukier, M., Ren, J., Sabnis, C., Sanders, W.H., Bakken, D.E., Berman, M.E., Karr, D.A.,
Schantz, R.: AQuA: An Adaptive Architecture that Provides Dependable Distributed Ob-
jects. In: Proceedings of the 17th IEEE International Symposium on Reliable Distributed
Systems, pp. 245–253 (October 1998)

13. Friedman, R., Hadad, E.: FTS: A high performance CORBA fault tolerance service. In:
Proceedings of the IEEE Workshop on Object-Oriented Real-Time Dependable Systems,
pp. 61–68. IEEE Computer Society Press, Los Alamitos (2002)

14. Marchetti, C., Virgillito, A., Baldoni, R.: Design of an Interoperable FT-CORBA Compli-
ant Infrastructure. In: ERSADS 2001. Proceedings of the 4th European Research Seminar
on Advances in Distributed Systems Dependable Systems, Bertinoro, Italy, pp. 14–18
(May 2001)

 A Survey of Fault Tolerant CORBA Systems 521

15. Morgan, G., Shrivastava, S., Ezhilchelvan, P., Little, M.: Design and Implementation of a
CORBA Fault-Tolerant Object Group Service In:Proceedings of the Second IFIP WG 6.1
International Working Conference on Distributed Applications and Interoperable Systems
(June 1999)

16. Chockler, G., Malkhi, D., Merimovich, B., Rabinowitz, D.: Aquarius: A Data-Centric ap-
proach to CORBA Fault-Tolerance. In: DOA. The workshop on Reliable and Secure Mid-
dleware, in the 2003 International Conference on Distributed Objects and Applications,
Sicily, Italy (November 2003)

17. Chockler, G., Malkhi, D., Dolev, D.: Quorum Based Approach to CORBA Fault-
Tolerance. In: ERSADS 2001. University Residential Center of University of Bologna,
Bertinoro (Forlì), Italy, pp. 14–18 (May 2001)

18. Zhao, W., Moser, L.E., Melliar-Smith, P.M.: Design and implementation of a pluggable
fault tolerant CORBA infrastructure. In: Proceedings of the International Parallel and Dis-
tributed Processing Symposium, Fort Lauderdale, pp. 35–44 (April 2002)

19. Goncalves, F., Greve, P., Hurfin, M., Narzul, J.-P.L.: OPEN EDEN: a Portable Fault Tol-
erant CORBA Architecture. In: Proceedings of the Second International Symposium on
Parallel and Distributed Computing, p. 88. IEEE Computer Society Press, Los Alamitos
(2003)

20. Felber, P.: Lightweight Fault Tolerance in CORBA. In: DOA 2001. Proceedings of the In-
ternational Symposium on Distributed Objects and Applications, pp. 239–247 (September
2001)

21. Fabre, J.C., Pérennou, T.: A Metaobject Architecture for Fault Tolerant Distributed Sys-
tems: The FRIENDS Approach. IEEE Transactions on Computers, Special Issue on De-
pendability of Computing Systems 47(1), 78–95 (1998)

22. Killijian, M.O., Fabre, J.C., Ruiz-García, J.-C., Chiba, S.: A Metaobject Protocol for Fault-
Tolerant CORBA Applications. In: 17th IEEE Symp. on Reliable Distributed Systems,
West Lafayette, Indiana, USA, pp. 127–134 (1998)

23. Sotoma, I.: DPCP (Discard Past Consider Present) - A Novel Approach to Adaptive fault
Detection in Distributed Systems. In: FTDCS 2001. Proceedings of the Eight IEEE Work-
shop on Future Trends of Distributed Computing Systems, IEEE C.S, Los Alamitos (2001)

Flexible Reuse of Middleware Infrastructures in
Heterogeneous IT Environments

Ralf Wagner and Bernhard Mitschang

University of Stuttgart
{ralf.wagner, bernhard.mitschang}@ipvs.uni-stuttgart.de

Abstract. Middleware systems and adapters integrate remote systems and pro-
vide uniform access to them. Middleware infrastructures consist of different types
of middleware systems, e.g. application servers or federated database systems,
and different types of adapters, e.g. J2EE connectors or SQL wrappers. Different
adapter technologies are incompatible to each other, which requires to write new
adapters where existing ones should be reused instead. Therefore, we introduce a
virtualization tier that allows to uniformly handle and access adapters of different
middleware platforms and that reuses existing adapter deployments, which avoids
redundant administration tasks. Moreover, the virtualization tier can also reuse
complete middleware infrastructures such that adapter deployments and adapter
execution remains in the respective middleware system. This allows to flexibly
reuse middleware infrastructures and facilitates the realization of new integration
scenarios at reduced expense.

1 Introduction

Middleware infrastructures are commonly used in heterogeneous IT environments. A
middleware system can integrate diverse remote systems and offers applications uni-
form access to them. The integration part is realized by adapters that natively access
remote systems. Adapters are plugged into a middleware system to enable the interop-
eration between middleware system and remote systems.

There are different middleware platforms and different adapter technologies. They
range from research prototypes to commercial off-the-shelf (COTS) products or in-
house integration platforms. Prominent examples of COTS are IBM WebSphere Mes-
sage Broker, Microsoft Biztalk or SAP Netweaver. Such COTS middleware systems
often support industry standards, e.g. the J2EE connector architecture [21], SQL Man-
agement of External Data (SQL/MED) [10] or the Web Services Architecture [3]. Well-
known research prototypes are TSIMMIS [5], Information Manifold [12] or Garlic [20]
to mention just a few of them.

Today, the tasks and processes of a company usually are tightly coupled with its
IT infrastructure. These tasks and processes often change over time, which requires
to reengineer the involved applications and IT infrastructure. Reengineering means to
modify, extend or differently arrange and interconnect applications, middleware sys-
tems and other back-end systems. Such reengineering processes usually are complex
and costly and therefore it would be beneficial to reuse the existing middleware in-
frastructure as far as possible instead of buying, installing and maintaining additional
middleware infrastructure and re-implementing similar tasks over and over again.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 522–539, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reuse of Middleware Infrastructures 523

Federated Database System

OODBS SQL

Wrapper

OODBS

DBS Engine

PDM SQL

Wrapper

PDM System

(a) Federated DBS Using
SQL Wrappers to Integrate
Remote Systems.

J2EE Application Server

???

Enterprise Java Bean

OODBSPDM System

(b) J2EE Application
Server Demanding Access
to Remote Systems.

Fig. 1. Integration Scenario

Therefore, we introduced a virtualization tier for reusing adapters of different mid-
dleware platforms [25]. However, this approach needs to additionally deploy adapters
into the virtualization tier and it can only reuse adapters, but does not consider whole
middleware systems. In this paper, we provide an approach that directly reuses adapters,
which avoids additional deployments, and that allows to reuse complete middleware
systems, which avoids the use of redundant middleware infrastructure.

In the next section we motivate why reuse of middleware infrastructures and espe-
cially of adapters is necessary and we give an example that shows how this can be
achieved. In Section 3 we give a short overview of the virtualization tier and how it
works in general. Section 4 analyzes different means of reusing adapters and middle-
ware systems and evaluates the characteristics and applicability of these approaches.
Section 5 discusses related work and Section 6 concludes the paper.

2 Motivation

The example scenario we discuss in this paper consists of two middleware systems used
in different departments of a fictitious company. The first middleware system is shown
in Figure 1(a). It is a federated database system (FDBS) that integrates a product data
management (PDM) system and an OODBS by means of SQL wrappers. The second
middleware system used by the company in a different application scenario is a J2EE
application server that already integrates some other remote systems.

Business changes, which requires the second application scenario to be extended to
adapt to these changes: the application server has to additionally integrate the PDM sys-
tem and the OODBS. The question is how to access the remote systems (see Figure 1(b)).

2.1 Conventional Integration Solutions

The application server needs adapters to bridge the heterogeneities between application
server and remote systems. J2EE application servers employ J2EE connectors to access
remote systems, but they are not able to employ SQL wrappers of federated database
systems. This is due to the differences in data model, processing model, programming
model, APIs, etc. Thus, we cannot reuse the existing PDM SQL wrapper and OODBS

524 R. Wagner and B. Mitschang

J2EE Application Server

Enterprise Java Bean

OODBS J2EE

Connector

OODBS

PDM J2EE

Connector

PDM System

Fig. 2. Possible Integration Solution: Writing new J2EE Connectors

SQL wrapper, but we have to use suitable J2EE connectors, which are not available
yet. A possible solution for this problem could be to write two new J2EE connectors, a
PDM J2EE connector to integrate the PDM system and an OODBS J2EE connector to
integrate the OODBS (see Figure 2).

However, in a previous paper we argued that writing a new adapter usually is an ex-
pensive, lengthy and error-prone task because the adapter programmer needs substantial
knowledge about the involved middleware system and the integrated remote system, and
especially about the adapter programming framework [25]. This knowledge comprises
the data models, processing models, programming models, error models, quality of ser-
vice requirements, etc. of the middleware platform and of the remote system as well as
the adapter technology and the adapter programming framework.

In contrast, an existing adapter has already been written and can be used as is. An
additional advantage is that the adapter has been tested and maintained in productive
use and now works properly.

2.2 Reuse Issues

This means that we would like to reuse the PDM SQL wrapper and the OODBS SQL
wrapper of Figure 1(a) instead of writing a new PDM J2EE connector and a new
OODBS J2EE connector (cf. Figure 2). However, different adapter technologies usu-
ally are incompatible and thus the PDM SQL wrapper and the OODBS SQL wrapper
do not work with the J2EE application server. We need some multiplexer functional-
ity so that different middleware platforms can use different kinds of adapters. This is
what we introduced with the virtualization tier (VT), which employs different kinds of
adapters in the same way as the respective middleware platforms do and which addi-
tionally provides uniform access to these adapters [25].

3 Virtualization Tier

The solution of our integration problem in Figure 1(b) is shown in Figure 3: the existing
PDM SQL wrapper and OODBS SQL wrapper are deployed into the VT and now are
ready to execute requests issued by other middleware systems. In our example, the ap-
plication server uses the VT J2EE connector to access the virtualization tier and thereby
gains access to the PDM SQL wrapper and the OODBS SQL wrapper, which in turn

Reuse of Middleware Infrastructures 525

Virtualization Tier

Object Layer VT Object

SQL Wrapper

Manager

J2EE

Connector M.

......

...

PDM SQL

Wrapper

VT Object

PDM System

OODBS SQL

Wrapper

OODBS

J2EE Application Server

VT J2EE

Connector

Enterprise Java Bean

Fig. 3. Integration Solution Using the Virtualization Tier

access the PDM system and the OODBS, respectively. There is no need for writing a
new PDM J2EE connector or a new OODBS J2EE connector.

3.1 VT Architecture

Figure 4 shows the architecture of the virtualization tier (VT). Adapter managers are
responsible for handling and accessing adapters in the VT. For example, if a J2EE con-
nector is deployed into the VT, the J2EE connector manager registers the J2EE connec-
tor in the VT and employs it during a VT request to access the corresponding remote

AdapterAdapter

Adapter

Manager

Adapter

Manager

Virtualization Tier

Object Layer VT Object

Adapter

Repository

Remote System

Remote Data

Remote Data

...

Remote System

Remote Data

Remote Data
...

Remote System

Remote Data

Remote Data

...

VT Object

...

...

...

......

Fig. 4. Architecture of the Virtualization Tier

526 R. Wagner and B. Mitschang

system. The SQL wrapper manager analogously registers and employs SQL wrappers
and other adapter managers do the same for their adapters.

The object layer consists of VT objects that contain attributes and methods. They
uniformly represent data and operations of remote systems. Client systems only need
to access VT objects, which are resolved by the VT via the corresponding adapter man-
agers, adapters and finally remote systems.

The object model of the VT has to support the needs of different adapter technolo-
gies. This means that it has to be able to represent data and operations and it has to
be able to execute operations and access single data items as well as whole data sets,
preferably in a set-oriented, declarative way. Therefore, we used the ODMG object
model [4] to realize the VT object model and we also used the associated set-oriented,
declarative object query language (OQL) to realize the VT access language. Hence, re-
mote operations can be represented as VT object methods, and set-oriented queries in
remote systems, e.g. SQL queries, can be represented as OQL queries in the VT.

3.2 Object Configurations

A VT object is defined by means of an object configuration, which consists of four con-
figuration chapters. The chapters define the VT object and information about the adapter
and the remote system. The VT stores the configuration chapters in its repository and
uses them during runtime to resolve requested VT objects from remote systems. An
object configuration comprises the following configuration chapters:

– The Adapter Information Chapter represents information about an adapter. An
adapter manager uses an adapter information chapter to deploy an adapter and to
access it during runtime.
For example, a VT administrator deploys the PDM SQL wrapper into the VT by
specifying the file path of the wrapper library, the file path of the PDM system
client API library, and some other adapter configuration parameters.

– The System Information Chapter represents any information about a remote system.
An adapter needs a system information chapter to access the remote system.
For example, a VT administrator specifies the IP address and the port number of
the PDM system daemon, the version of the PDM system, and some other remote
system information.

– The Object Information Chapter correlates a VT object with a remote entity, e.g. a
data structure or a procedure in a remote system.
For example, a VT administrator specifies metadata about screw data structures
in the PDM system: the struct name is screw, the fields are len, dia, man, mat,
etc., the types of the attributes, the methods of the screw class, some access-related
information, and how the screw class and its attributes and methods are mapped to
VT object VTScrew.

– The Object Definition Chapter defines the attributes and methods of a VT object
according to the ODMG object definition language (ODL) [4].
For example, a VT administrator defines a VT object that is correlated to the screw
object information chapter: VT object VTScrew with attributes length, diameter,

Reuse of Middleware Infrastructures 527

manufacturer, material, etc. and with some methods. The correlation between the
PDM screw class and VT object VTScrew is completely specified in the object
information chapter.

3.3 VT Processing

The VT client API allows to issue OQL requests to the VT as well as to directly ac-
cess single VT objects. In both cases the VT retrieves the object configuration of the
requested VT objects from the repository and determines the adapter managers that
are responsible for resolving the VT objects. The VT tells the adapter managers which
VT objects they have to resolve so that they can load the necessary adapters. Each
adapter manager then issues adapter technology-specific requests to its adapters and the
adapters in turn access the data and execute the operations in the remote systems.

The adapter technology-specific requests can be quite different. For example, the
SQL wrapper manager transforms an OQL query into an SQL query for an SQL wrap-
per, the J2EE connector manager transforms an OQL query into a connector interaction
and suitable input parameters and output parameters and executes the interaction on
a J2EE connector, and a message broker manager transforms an OQL request into a
business object request and issues it to a message broker adapter.

The example scenario in Figure 3 now works in the following way: if the Enterprise
Java Bean (EJB) wants to access some screw objects in the PDM system, it has to
access VT object VTScrew in the VT, which is representing the screw class in the PDM
system. The EJB issues an OQL request to the VT via the VT J2EE connector. The
VT determines that VTScrew is accessed and issues a corresponding request to the SQL
wrapper manager, which in turn uses the PDM SQL wrapper to retrieve screw objects
from the PDM system. The screw objects are transformed by the SQL wrapper manager
into VTScrew object instances and finally returned to the application server. More details
about the architecture of the VT and the execution of OQL requests can be found in [25].

4 Reuse of Adapters and Middleware Systems

The disadvantage of the solution shown in Figure 3 is that both adapters have to be
deployed into the VT (adapter information chapters), that both remote systems have to
be configured for proper access in the VT (system information chapters), and that the
data and the operations in the remote systems that have to be accessed must be specified
in the VT (object information chapters). This is additional work that should be avoided
because the same deployments and definitions have already been provided for the SQL
wrappers in the FDBS scenario in Figure 1(a). Moreover, if the same information is
provided in the VT again, it is available in two places and also has to be maintained in
two places.

Another point is that the VT must provide the same adapter deployment functionality
and the same adapter execution functionality that the respective middleware system
already contains. Providing the same functionality twice incurs higher costs, requires
more computing power and leads to additional administration tasks and maintenance
overhead. Therefore, we extend the VT approach to directly reuse existing middleware

528 R. Wagner and B. Mitschang

systems, adapters, deployments of adapters and definitions of remote systems, remote
data and remote operations. Basically, there are two different kinds of direct reuse. The
first one is reuse of adapters and adapter deployments (see Section 4.1) and the second
one is reuse of middleware systems (see Section 4.2).

4.1 Reuse of Adapters and Adapter Deployments

Object configurations are used for properly resolving VT objects from remote systems
by means of adapters. A VT administrator is responsible for creating object configu-
rations. This task could be performed by corresponding middleware administrators as
deployment tasks in a middleware system resemble deployment tasks in the VT.

Adapter Deployments. For example, an FDBS administrator deploys the SQL wrap-
pers in the federated DBS scenario shown in Figure 1(a) and defines other information
about the remote systems and their data and operations. The FDBS administrator is
most suitable to act as an SQL wrapper deployer in the VT scenario where he has to
specify the same information as in the federated DBS scenario, i.e. he deploys the SQL
wrappers into the VT (adapter information chapters) and defines information about the
remote systems (system information chapters) and the data and operations correlated
with VT objects (object information chapters). The VT object definitions (object defi-
nition chapters) can be automatically derived from the object information chapters and
further customized by the administrator if desired.

The information that is used for an adapter deployment in the VT, i.e. an object
configuration, is the same as the information that is used for an adapter deployment in
the respective middleware system. For example, the information that is used to define
the configuration chapters for deploying the PDM SQL wrapper and the OODBS SQL
wrapper into the VT (cf. Figure 3) is the same as the information that is used in the
federated DBS scenario (cf. Figure 1(a)) to deploy the two wrappers into the FDBS.
Hence, an adapter deployment in the VT depends on an adapter deployment in the
respective middleware system, i.e. the same information is separately represented twice.
But the best solution would be to have only one adapter deployment and the other one
automatically generated based on the first one.

Automatic Extraction & Transformation. Let us come back to the scenario in Figure
1(b) where the application server has to access the PDM system and the OODBS. There
are only SQL wrappers, the necessary J2EE connectors are not available. The originally
proposed solution shown in Figure 3 requires that the federated DBS administrator de-
ploys the PDM SQL wrapper and the OODBS SQL wrapper a second time, i.e. into
the VT (cf. first adapter deployments in 1(a)). However, we do not want to do the same
work a second time, we just want to take the deployments from the FDBS and transfer
them in a suitable manner to the VT such that all necessary configuration chapters are
automatically created.

The general process of transferring adapter deployments is shown in Figure 5 where
the deployment information is extracted from the FDBS, transformed into configuration
chapters, i.e. adapter information chapters, system information chapters, object infor-
mation chapters, and one automatically generated object definition chapter for each

Reuse of Middleware Infrastructures 529

Federated Database System

OODBS SQL

Wrapper

OODBS

DBS Engine

PDM SQL

Wrapper

PDM System

Virtualization Tier

Object Layer VTScrew

SQL Wrapper

Manager

J2EE

Connector M.

......

...

PDM SQL

Wrapper

...

PDM System

OODBS SQL

Wrapper

OODBS

J2EE Application Server

VT J2EE

Connector

Enterprise Java Bean

SQL Wrapper

Deployment

Information

Extract

VT

Configuration

Chapters

Transform

Apply

Fig. 5. Reusing Adapter Deployments

object information chapter representing data and operations in the PDM system or in
the OODBS. Finally, the created configuration chapters are applied to the VT result-
ing in proper adapter deployments of the PDM SQL wrapper and of the OODBS SQL
wrapper

The dashed box on the left side of Figure 5 represents the original deployment infor-
mation of the SQL wrappers, remote systems and SQL tables. The dashed box on the
right side represents the configuration chapters in the VT, which are derived from the
original deployment information on the left side. This basically allows the application
server to access the same entities in the PDM system and in the OODBS as the FDBS
does when the application server uses the VT and the SQL wrappers that are deployed
in the VT.

Deployment Transformation Wizards. The deployment transformation process is re-
alized by means of deployment transformation wizards. An adapter manager provides a
generic plug-in API so that deployment transformation wizards can be associated with
the adapter manager. The VT repository stores all registered wizards and a VT admin-
istrator can choose among them to start a transformation process. In our example, an
FDBS deployment transformation wizard is associated with the SQL wrapper manager.
The transformation process here works as follows:

530 R. Wagner and B. Mitschang

Fig. 6. Example Dialog Windows of the FDBS Deployment Transformation Wizard

– A VT administrator starts the wizard, enters the IP address and the port number of
the FDBS, a login name and a password, and some other information which are
necessary for accessing the FDBS (see left wizard dialog window in Figure 6).

– The wizard then connects to the FDBS, looks up the FDBS catalog and displays
the SQL wrappers deployed in the FDBS as well as the registered remote systems
and the tables that represent data and operations of the remote systems (see right
wizard dialog window in Figure 6).

– The VT administrator selects the entries of the PDM SQL wrapper and of the
OODBS SQL wrapper, the entries of the PDM system and of the OODBS as well
as the entries of some tables that represent data and operations in the PDM system
and in the OODBS.

– The wizard retrieves the deployment information of the two SQL wrappers, the
deployment information of the two remote systems and the deployment information
of the selected tables from the FDBS catalog.

– The wizard transforms the retrieved FDBS catalog data into suitable configuration
chapters (see Section “Example Transformation Process” below).

– The wizard transfers the wrapper libraries of the two SQL wrappers and other re-
sources that are required for proper SQL wrapper execution, e.g. remote system
API libraries, to the VT host.

– The wizard deploys the configuration chapters into the VT. This deploys the two
SQL wrappers into the VT, registers the two remote systems in the VT and defines
VT objects analogous to the tables in the FDBS.

Example Transformation Process. Figures 7 to 9 give an example of the transforma-
tion process. Several FDBS objects (represented as SQL statements) are transformed
into corresponding VT information chapters. The definition of an SQL wrapper is
shown in the upper part of Figure 7. There is a foreign wrapper named PDM WRAPPER
that uses a library called db2qgjava.dll and the hook class pdm.UnfencedPDMWrapper
specified via a statement option. The adapter information chapter in the lower part of
Figure 7 is automatically derived by the FDBS deployment transformation wizard from

Reuse of Middleware Infrastructures 531

CREATE FOREIGN WRAPPER PDM_WRAPPER
LIBRARY 'db2qgjava.dll'
OPTIONS (
 UNFENCED_WRAPPER_CLASS 'pdm.UnfencedPDMWrapper'
)

foreign wrapper

Adapter Information

options
UNFENCED_WRAPPER_CLASS:
pdm.UnfencedPDMWrapper

library: db2qgjava.dll
name: PDM_WRAPPER

Transformation

Fig. 7. SQL Create Statement of SQL Wrapper and Transformed SQL Wrapper Information
Chapter

the foreign wrapper SQL statement. The adapter information chapter contains the same
information as it is provided by the SQL statement.

The SQL statement in the upper part of Figure 8 defines a foreign server for the
foreign wrapper of Figure 7. The foreign server is named PDM SERVER and has two
further properties, IP ADDRESS and PORT, that tell the FDBS to which host it must
connect to access the specified remote system. The FDBS deployment transformation
wizard automatically transforms the foreign server SQL statement into the system in-
formation chapter shown in the lower part of Figure 8. The system information chapter
contains the same information as the foreign server SQL statement provides.

Finally, the SQL statement in the upper part of Figure 9 creates a foreign table
named PDM SCREW, which represents screws information in the PDM system. The
foreign table options in the second part of the SQL statement determine the API oper-
ation of the PDM system (OPERATION) and the parameters (PARAMS) that must be
used to retrieve the screws information. The TYPE option specifies the data structure
that holds the returned screws information and the column options of the foreign table
columns specify the fields of the data structure that are correlated with the columns.
The FDBS deployment transformation wizard automatically transforms the foreign ta-
ble SQL statement into the object information chapter shown in the lower part of Figure
9, which contains all the information about the foreign table.

Usage of Adapter Deployments. If an SQL query requests foreign table PDM SCREW,
the FDBS accesses the PDM system using the wrapper functionality specified by the
foreign wrapper SQL statement in Figure 7 and using the information about the PDM
system specified by the foreign server SQL statement in Figure 8. Then the FDBS
retrieves the data structure specified by the foreign table SQL statement of PDM Screw
in Figure 9.

532 R. Wagner and B. Mitschang

CREATE FOREIGN SERVER PDM_SERVER
WRAPPER PDM_WRAPPER
OPTIONS (
 IP_ADDRESS '129.69.255.255',
 PORT '12345'
)

foreign server

System Information

options
IP_ADDRESS: 129.69.255.255
PORT: 12345

name: PDM_SERVER

Transformation

Fig. 8. SQL Create Statement of Foreign Server and Transformed System Information Chapter

The VT works analogously: it accesses the PDM system using the wrapper function-
ality specified by the adapter information chapter in Figure 7 and using the informa-
tion about the PDM system specified by the system information chapter in Figure 8.
Then the VT retrieves the data structure specified by the object information chapter of
PDM Screw in Figure 9.

The result of this transformation process is that redundant adapter deployments are
automatically generated and that they do not need to be manually created any longer.
A VT administrator only uses the corresponding deployment transformation wizard
to derive VT object definitions for the desired remote data and remote operations. In
contrast to the automatic transformation process, the solution in Figure 3 requires new
adapter deployments even if corresponding deployments already exist in a middleware
system.

4.2 Reuse of Middleware Systems

If an adapter is automatically deployed into the VT based on an automatic adapter de-
ployment transformation (cf. Section 4.1), still two adapter instances of the same adapter
are available in the IT infrastructure, one adapter instance in the original middleware
and one adapter instance in the VT. That is, the VT must incorporate functionality for
executing the adapter in the VT, which is the same functionality that is required for
executing the adapter in the middleware system. Put in other words: we use redundant
middleware infrastructure, one in the original middleware system and one in the VT.

Redundant Middleware Infrastructure. For example, the scenario in Figure 5 al-
lows to access a PDM SQL wrapper instance via the FDBS (shown on the left), but it
also allows to execute the other PDM SQL wrapper instance via the VT (shown on the
right). The same holds for the OODBS SQL wrapper. This kind of redundant middleware

Reuse of Middleware Infrastructures 533

CREATE FOREIGN TABLE PDM_SCREW (
 LENGTH SMALLINT OPTIONS (ATTRIBUTE 'len'),
 DIAMETER SMALLINT OPTIONS (ATTRIBUTE 'dia'),
 MANUFACTURER VARCHAR(20) OPTIONS (ATTRIBUTE 'man'),
 MATERIAL VARCHAR(20) OPTIONS (ATTRIBUTE 'mat'),
) FOR SERVER PDM_SERVER
OPTIONS (
 TYPE 'struct screw',
 OPERATION 'showUnitData',
 PARAMS 'char[],char[]'
)

foreign table (1)

Object Information

name: PDM_SCREW
columns

LENGTH (2)
type: SMALLINT
options

ATTRIBUTE: length
DIAMETER (3)

type: SMALLINT
options

ATTRIBUTE: diameter
...

options
TYPE: 'struct screw'
OPERATION: showUnitData
PARAMS: char[],char[]

Transformation

Fig. 9. SQL Create Statement of Foreign Table and Transformed Object Information Chapter

infrastructure is not always intended from a global viewpoint. Intended redundant mid-
dleware infrastructure is used for purposes such as high availability, replication or distri-
bution of computation, which is not the case here. The usage of redundant middleware
infrastructure in cases like the given integration scenario leads to some disadvantages:

– higher software costs since functionality is implemented twice,
– higher hardware costs since more hardware is needed for executing the additional

software,
– higher maintenance costs since this software and hardware must also be maintained.

Hence, it would be beneficial to reuse the existing middleware infrastructure for
executing adapters. For example, we would like to use the FDBS for executing the
PDM SQL wrapper and the OODBS SQL wrapper. In Figure 10, the VT uses the FDBS
manager to access the FDBS and to execute the PDM SQL wrapper and the OODBS
SQL wrapper indirectly since they are deployed in the FDBS, but no longer in the VT.
In contrast, Figure 5 shows the former solution where the VT uses the SQL wrapper
manager to execute the PDM SQL wrapper and the OODBS SQL wrapper directly, i.e.
in the VT.

534 R. Wagner and B. Mitschang

Federated Database System

OODBS SQL

Wrapper

OODBS

DBS Engine

PDM SQL

Wrapper

PDM System

Virtualization Tier

Object Layer VTScrew

FDBS

Manager

J2EE

Connector M.

......

...

...

J2EE Application Server

VT J2EE

Connector

Enterprise Java Bean

Extract

SQL Table

Definitions

Apply

VT

Configuration

Chapters

Transform

Fig. 10. Reusing Middleware Infrastructure

Different Adapter Deployments. This leads to differences in adapter deployments in
both scenarios: the FDBS manager uses different configuration chapters than the SQL
wrapper manager does. The FDBS manager does not need to know about how SQL
wrappers are executed because the FDBS is executing the SQL wrappers. Thus, the
adapter information chapter is no longer needed and can be completely omitted.

MyFDBSInstance

System Information (FDBS)

ip-address: 129.69.0.0
port: 54321

name: MyFDBSServer

database-name: sample

(a) System Information Chapter of
FDBS.

table

Object Information (FDBS)

name: PDM_SCREW
columns

LENGTH: SMALLINT
DIAMETER: SMALLINT
MANUFACTURER: VARCHAR(20)
MATERIAL: VARCHAR(20)

(b) Adapted Object Information Chapter for
foreign table PDM SCREW.

Fig. 11. FDBS Information Chapters

Reuse of Middleware Infrastructures 535

The PDM system and the OODBS as well as the data and the operations of the PDM
system and of the OODBS are no longer visible to the VT, but only to the FDBS, which
is responsible for properly accessing them via the SQL wrappers. Therefore, the system
information chapters and object information chapters of the scenario in Figure 5 are not
applicable here. Instead, the FDBS is the only remote system directly accessed by the
VT so that we need only the FDBS system information chapter shown in Figure 11(a).

Thus, the VT only deals with the SQL-related part of the table definitions in the
FDBS, but does not have to consider remote system-specific information specified in
the options part of the foreign table SQL statements (cf. adapted object information
chapter for foreign table PDM SCREW in Figure 11(b)).

4.3 Homogenizing Middleware Infrastructure

Now we can reuse adapter deployment information in the VT and we can even reuse
whole middleware systems so that we have only one adapter execution infrastructure
and not any longer redundant infrastructure parts. An adapter is only deployed into
the corresponding middleware system, but not into the VT. The VT only holds the
information that is necessary for accessing the suitable middleware system and its data
and operations.

Let us extend our integration scenario a bit further. In the next step the application
server also has to integrate a supply chain management (SCM) system and a customer
relationship management (CRM) system that are already integrated into a message bro-
ker (MB) by means of the SCM MB adapter and the CRM MB adapter, respectively
(see dashed box in Figure 12). If we apply the middleware infrastructure reuse pattern
of Section 4.2, we would come up with a message broker manager in the VT analogous
to the FDBS manager. The message broker manager accesses the message broker and
translates VT requests into message broker requests.

Middleware Adapters. However, the FDBS manager and the message broker manager
contain identical functionality. For example, both managers have to access and deal with
deployment information from the VT, they have to provide the plug-in mechanism for
deployment transformation wizards, they need connection management functionality to
handle server connections, etc.

Consequently, we put the functionality that is common to managers that are accessing
middleware systems into a separate component, the middleware adapter manager (see
Figure 12). The middleware adapter manager drives middleware adapters that contain
the functionality required to access a specific middleware system and that translates VT
requests into middleware-specific requests. For example, Figure 12 shows the FDBS
middleware adapter and the message broker middleware adapter, which comprise the
functionality that is left from the aforementioned FDBS manager and message broker
manager, i.e. the parts that are required to properly access the middleware systems.

Deployment transformation wizards are then plugged into the middleware adapter
manager and no longer directly into a middleware adapter, e.g. the FDBS deployment
transformation wizard and the message broker deployment transformation wizard are
plugged into the middleware adapter manager. The message broker deployment trans-
formation wizard works analogous to the FDBS deployment transformation wizard: it

536 R. Wagner and B. Mitschang

Federated Database System

OODBS SQL

Wrapper

OODBS

DBS Engine

PDM SQL

Wrapper

PDM System

Virtualization Tier

Object Layer VTScrew

MW Adapter

Manager

J2EE

Connector M.

......

...

...

FDBS MW

Adapter

J2EE Application Server

VT J2EE

Connector

Enterprise Java Bean

Message Broker

CRM MB

Adapter

CRM System

Broker Engine

SCM MB

Adapter

SCM System

Message

Broker MW A.

Extract

Business

Object

Definitions

Apply

VT

Configuration

Chapters

Transform

Fig. 12. Uniformly Handling Middleware Infrastructure

extracts the business object definitions from the message broker, transforms them into
corresponding object information chapters and deploys them into the VT. Object defi-
nition chapters are automatically derived from the object information chapters and can
be further customized by the VT administrator.

Middleware Adapter Deployment. Each middleware adapter needs an adapter infor-
mation chapter so that the middleware adapter manager can properly access the mid-
dleware adapters. The VT administrator creates an adapter information chapter for a
middleware adapter and thereby deploys the middleware adapter into the VT. Figure 13
shows the adapter information chapter for our FDBS.

MyFDBSType

Adapter Information (FDBS)

library: db2java.zip
name: MyFDBSAdapter

driver-name: db2.jcc.DB2Driver

Fig. 13. Adapter Information Chapter for the FDBS

Reuse of Middleware Infrastructures 537

Finally, the application server can access the four remote systems via the VT (cf.
Figure 12). The SQL wrappers and the MB adapters remain in their respective mid-
dleware system and any required deployment information about them is extracted by
deployment transformation wizards. The middleware infrastructure, i.e. the FDBS, the
message broker and the deployed adapters, is reused as much as possible so that redun-
dant middleware infrastructure and adapter deployments are completely avoided.

5 Related Work

Software reuse aims at using existing software artifacts during the software develop-
ment process [24,7]. Software reuse is a wide field ranging from reuse of assembly
language patterns to reuse of software system design structures [11].

Adapters are software components that can be reused in middleware systems of the
same platform, e.g. J2EE connectors in application servers of different vendors. There
have been many achievements in reusing software components in middleware sys-
tems, e.g. CORBA [15], CORBA Components [16], J2EE [23], Enterprise Java Beans
[22], .NET/CLI [18,6], COM/DCOM [19]. However, reuse of software components,
especially of adapters, in diverse middleware system has not been investigated so far.
Adapters are based on specific integration technologies. They are inherently restricted
to their respective middleware platform and cannot be directly reused in another mid-
dleware platform. This is the reason why systematic reuse of adapters and middleware
infrastructure has not been investigated so far. However, this paper provides an approach
that shows how this can be achieved.

Additionally, our approach is more promising than the generation of adapters, which
is an attempt to flexibly deal with adapters. Such approaches aim at providing a high-
level specification of an adapter’s functionality so that the desired adapter code is gen-
erated or existing adapter libraries are suitably parameterized, e.g. see [1,2,8,9,13,17].
Adapter frameworks and adapter generation approaches inherently can handle only that
parts of an adapter that are common to all adapters or that are at least similar for a
group of adapters. The heterogeneity of remote systems would require generation ap-
proaches to flexibly deal with different access paradigms, request processing styles, data
structures, data models, programming languages, APIs, etc. However, this complex task
cannot be solved just by parameterizing a library or by specifying a set of declarative,
high-level rules to generate the necessary code. Adapter generation only works if the
targeted remote systems are restricted to a specific type so that their characteristics and
properties are known in advance and can be considered in common libraries, rule sets
or high-level scripting languages.

The recent evolution of universal metadata-driven generation approaches such as
OMG’s model-driven architecture (MDA) [14] could lead to techniques applicable to
the generation of adapters, too. But there are no results for this kind of problem so far
nor do we see any progress for that in the next time.

In contrast, the VT allows to systematically and dynamically reuse adapters and mid-
dleware infrastructures without affecting existing applications and without modifying
existing middleware infrastructures.

538 R. Wagner and B. Mitschang

6 Conclusion and Future Work

The use of different middleware platforms and different adapter technologies leads to
incompatibilities and repeating programming efforts, i.e. writing adapters and usage of
additional middleware infrastructure. Writing a new adapter is a costly task. Therefore,
we proposed a virtualization approach for reusing existing adapters, adapter deploy-
ments and whole middleware infrastructures to reduce inconsistencies and additional
costs.

In this paper, we showed how existing middleware infrastructure and adapter deploy-
ments can be directly reused in the VT. The VT approach allows to uniformly handle
and access adapters of different middleware platforms without providing redundant de-
ployments. Moreover, the VT approach can also reuse complete middleware infrastruc-
tures. This avoids the use of additional, redundant middleware infrastructure.

Important is that the VT can be smoothly used with existing IT infrastructures: their
operation is not affected by the VT. Additionally, the VT approach provides for more
flexibility in integration tasks. It leverages existing IT infrastructures the better the more
middleware systems use the VT and the more adapters and middleware systems are
reused by the VT.

Next, we want to automatically maintain correlated adapter deployments so that an
adapter deployment in the VT that has been extracted from an adapter deployment in
a middleware system is automatically changed if the adapter deployment in the mid-
dleware system is changed. The adapter deployment in the VT then needs not to be
explicitly maintained by a VT administrator, but is automatically synchronized with the
adapter deployment in the middleware system. We also want to automatically maintain
the correlation between middleware systems and their reuse in the VT. If a middleware
system configuration is changed, the corresponding configuration chapters in the VT
have to be automatically adjusted to conform to the changes in the middleware system.

References

1. Ashish, N., Knoblock, C.A.: Semi-Automatic Wrapper Generation for Internet Information
Sources. In: COOPIS 1997, pp. 160–169 (1997)

2. Baru, C., Gupta, A., Ludäscher, B., Marciano, R., Papakonstantinou, Y., Velikhov, P., Chu,
V.: XML-Based Information Mediation with MIX. In: SIGMOD 1999, pp. 597–599 (1999)

3. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.
(eds.): Web Services Architecture. World Wide Web Consortium, W3C Working Group Note
(February 2004)

4. Cattell, R.G.G., Barry, D.K., Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow, O.,
Stanienda, T., Velez, F. (eds.): The Object Data Standard: ODMG 3.0. Morgan Kaufmann,
San Francisco (2000)

5. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman,
J.D., Widom, J.: The TSIMMIS Project: Integration of Heterogeneous Information Sources.
In: 16th Meeting of the Information Processing Society of Japan, pp. 7–18 (1994)

6. Ecma: Standard ECMA-335: Common Language Infrastructure (CLI), 6th edn. Ecma Inter-
national (2006)

7. Freeman, P.: Software Reusability. IEEE, Los Alamitos (1987)

Reuse of Middleware Infrastructures 539

8. Gruser, J.-R., Raschid, L., Vidal, M.E., Bright, L.: Wrapper Generation for Web Accessible
Data Sources. In: COOPIS 1998, pp. 14–23 (1998)

9. Hammer, J., Garcia-Molina, H., Nestorov, S., Yerneni, R., Breunig, M., Vassalos, V.:
Template-Based Wrappers in the TSIMMIS System. In: SIGMOD 1997, pp. 532–535 (1997)

10. ISO. Information technology – Database languages – SQL – Part 9: Management of External
Data (SQL/MED). International Organization for Standardization, 2nd edn., ISO/IEC 9075-
9:2003 Published Standard (December 2003)

11. Krueger, C.W.: Software reuse. ACM Comput Surv. 24(2), 131–183 (1992)
12. Levy, A.Y.: The Information Manifold Approach to Data Integration. IEEE Intelligent Sys-

tems 13(5), 12–16 (1998)
13. Liu, L., Pu, C., Han, W.: XWRAP: An XML-Enabled Wrapper Construction System for Web

Information Sources. In: ICDE 2000, pp. 611–621 (2000)
14. Miller, J., Mukerji, J. (eds.): MDA Guide Version 1.0.1. Object Management Group Inc (June

2003)
15. OMG. Common Object Request Broker Architecture: Core Specification. Object Manage-

ment Group Inc. (March 2004)
16. OMG. CORBA Compnent Model Specification. Object Management Group Inc. (April

2006)
17. Raposo, J., Pan, A., Álvarez, M., Hidalgo, J., Viña, Á.: The Wargo System: Semi-Automatic

Wrapper Generation in Presence of Complex Data Access Modes. In: Hameurlain, A., Ci-
cchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 313–317. Springer,
Heidelberg (2002)

18. Richter, J.: Applied Microsoft. In: NET Framework Programming, Microsoft Press, Wash-
ington (2002)

19. Rogerson, D.: Inside COM. Microsoft Press, Washington (1997)
20. Roth, M.T., Schwarz, P.M.: Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy Data

Sources. In: VLDB 1997, pp. 266–275 (1997)
21. Sun. J2EE Connector Architecture Specification, Version 1.5. Sun Microsystems Inc.

(November 2003) (final release)
22. Sun. Enterprise JavaBeans, Version 3.0. Sun Microsystems Inc. (May 2006) (final release)
23. Sun. Java Platform, Enterprise Edition (Java EE) Specification, v5. Sun Microsystems Inc.

(April 2006)(final release)
24. Tracz, W.: Software Reuse: Emerging Technology. IEEE, Los Alamitos (1988)
25. Wagner, R., Mitschang, B.: A Virtualization Approach for Reusing Middleware Adapters.

In: ICEIS (2007)

Self-optimization of Clustered Message-Oriented
Middleware

Christophe Taton1, Noël De Palma1, Daniel Hagimont3, Sara Bouchenak2,
and Jérémy Philippe1

1 Institut National Polytechnique de Grenoble, Grenoble, France
2 Université Grenoble I, Grenoble, France

3 Institut National Polytechnique de Toulouse, Toulouse, France
{Christophe.Taton,Noel.Depalma,Sara.Bouchenak,
Daniel.Hagimont,Jeremy.Philippe}@inrialpes.fr

Abstract. Today’s entreprise-level applications are often built as an assembly of
distributed components that provide the basic services required by the application
logic. As the scale of these applications increases, coarse-grained components
will need be decoupled and will use message-based communication, often helped
by Message-Oriented Middleware or MOMs.

In the Java world, a standardized interface exists for MOMs: Java Messag-
ing Service or JMS. And like other middleware, some JMS implementations use
clustering techniques to provide some level of performance and fault-tolerance.
One such implementation is JORAM, which is open-source and hosted by the
ObjectWeb consortium.

In this paper, we describe performance modeling of various clustering config-
urations and validate our model with performance evaluation in a real-life cluster.
In doing that, we observed that the resource-efficiency of the clustering methods
can be very poor due to local instabilities and/or global load variations.

To solve these issues, we provide insight into how to build autonomic capabil-
ities on top of the JORAM middleware. Specifically, we describe a methodology
to (i) dynamically adapt the load distribution among the servers (load-balancing
aspect) and (ii) dynamically adapt the replication level (provisioning aspect).

Keywords: MOM, JMS, Autonomic management, Self-optimization.

1 Introduction

With the emergence of the internet, multiple applications require to be integrated with
each other. One common glue technology for distributed, loosely coupled, heteroge-
neous software systems is Message-Oriented Middleware (MOM). MOMs are based
on messages as the single structure for communication, coordination and synchroniza-
tion, thus allowing asynchronous execution of components. Reliable communication is
guaranteed by message queueing techniques that can be configured independently from
the programming of software components. The Java community has standardized an
interface for messaging (JMS). The use of MOMs in the context of internet has evi-
denced a need for highly scalable and highly available MOM. This paper analyses the

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 540–557, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Self-optimization of Clustered Message-Oriented Middleware 541

performance of a MOM and proposes a self-optimization algorithm to improve the per-
formance of the MOM infrastructure. This mechanism is based on a queue clustering
solution : a clustered queue is a set of queues each running on different servers and
sharing clients.

We will show that in some cases this mechanism can effectively provide a linear
speedup but in other cases this mechanism is completely inefficient. We analyse that the
efficiency of this mechanism depends on the distribution of client connections to MOM
queues. We describe a solution that will improve the efficiency of this mechanism by
optimizing the distribution of client connections in the cluster queue. Furthermore, an
important aspect of this clustering policy is the selection of the level of clustering, i.e.
the number of queues in the clustered queue. A commonly used solution is to select a
fixed number of queues in the clustered queue. However, this static solution has some
drawbacks. Let N be the (fixed) number of replicas. If N is too large, resources are
wasted; if N is too small, performance may be compromised. In any case, the choice is
problematic if the expected load of a queue is difficult to predict. Human administrators
can monitor the load of the queuing system using adequate tools. However if a queue is
underloaded or overloaded, an administrator cannot react as quickly as required.

This paper targets the optimization of these clustering mechanisms. This optimiza-
tion will take place in two parts: (i) the optimization of the clustered queue load-
balancing and (ii) the dynamic provisioning of a queue in the clustered queue.

The first part allows the overall improvement of the clustered queue performance
while the second part optimizes the resource usage inside the clustered queue. Thus the
idea is to create an autonomic system that:

– fairly distributes client connections among the queues belonging to the clustered
queue,

– dynamically adds and removes queues in the clustered queue depending on the
load. This would allow us to use the adequate number of queues at any time.

This paper is organized as follow: Sections 2 and 3 present the context of this work.
Section 4 details the different cases that may occur with a clustered queue. Sections 5
and 6 present the control rules and the control loop. Section 7 shows performance eval-
uation. Finally section 8 presents related work and section 9 draws a conclusion and
outlines future work.

2 Background: Java Message Service (JMS)

JMS is part of Sun’s J2EE platform. It provide a programming interface (API) to inter-
connect different applications through a messaging middleware. The JMS architecture
identifies the following elements:

– JMS provider: an implementation of the JMS interface for a Message Oriented
Middleware (MOM). Providers are implemented as either a Java JMS implementa-
tion or an adapter to a non-Java MOM.

– JMS client: a Java-based application or object that produces and/or consumes mes-
sages.

542 C. Taton et al.

– JMS producer: a JMS client that creates and sends messages.
– JMS consumer: a JMS client that receives messages.
– JMS message: an object that contains the data being transferred between JMS

clients.
– JMS queue: a staging area that contains messages that have been sent and are

waiting to be read. As the name queue suggests, the messages are delivered in the
order they are sent. A message is removed from the queue once it has been read.

– JMS topic: a distribution mechanism for publishing messages that are delivered to
multiple subscribers.

– JMS connection: A connection represents a communication link between the ap-
plication and the messaging server. Depending on the connection type, connections
allow users to create sessions for sending and receiving messages from a queue or
topic.

– JMS session: Represents a single-threaded context for sending and receiving mes-
sages. A session is single-threaded so that messages are serialized, meaning that
messages are received one-by-one in the order sent.

For our experiments we chose JORAM (Java Open Reliable Asynchronous Messag-
ing). It is open source software released under the LGPL license which incorporates a
100% pure Java implementation of JMS. JORAM adds interesting extra features to the
JMS API such as the clustered queue mechanisms. The following section describes the
mechanism of queue clustering.

3 Clustered Queues

The clustered queue feature provides a load balancing mechanism. A clustered queue is
a cluster of queues (a given number of queue destinations knowing each other) that are
able to exchange messages depending on their load.

Each queue of a cluster periodically reevaluates its load factor and sends the result to
the other queues of the cluster. When a queue hosts more messages than it is authorized

Fig. 1. A queue cluster

Self-optimization of Clustered Message-Oriented Middleware 543

to do, and according to the load factors of the cluster, it distributes the extra messages to
the other queues. When a queue is requested to deliver messages but is empty, it requests
messages from the other queues of the cluster. This mechanism guarantees that no queue
is hyper-active while some others are lazy, and tends to distribute the work load among
the servers involved in the cluster. The figure above shows an example of a cluster
made of two queues. An heavy producer accesses its local queue (queue 0) and sends
messages. The queue is also accessed by a consumer but requesting few messages. It
quickly becomes loaded and decides to forward messages to the other queue (queue 1)
of its cluster, which is not under heavy load. Thus, the consumer on queue 1 also gets
messages, and messages on queue 0 are consumed in a quicker way.

4 Clustered Queue Load-Balancing

We present in this section the key parameters that influence the behavior and the per-
formance of a clustered queue. In the first part, we show the impact of the distribution
of clients connections on the performance; in the second part, we provide some details
about resource provisioning.

4.1 Configuration of Clients Connections

Standard queue. A standard single queue Qi is connected to Ni message producers
that induce a message production rate pi, and to Mi message consumers that induce
a message consumption rate ci. The queue length li denotes the number of messages
waiting to be read in the queue; li is always positive and obeys to the law :

Δli = pi − ci

Fig. 2. Standard JMS queue Qi

Depending on the ratio between message production and message consumption,
three cases are possible:

– Δli = 0: message production and message consumption annihilate themselves and
queue length li is constant. Queue Qi is said to be stable.

– Δli > 0: there is more message production than message consumption. Queue Qi

will grow and eventually saturate as the queue length li gets too big. Queue Qi is then
unstable and is said to be flooded. Once the queue saturates, the message production
rate of producers will be limited. The queue then stabilizes with Δli = 0.

544 C. Taton et al.

– Δli < 0: there is more message consumption than message production in the queue.
Queue length li decreases down to 0; the queue is unstable and said to be draining.
Once queue Qi is empty, message consumers will have to wait and become lazy, Qi

will stabilize with Δli = 0.

The message production and consumption rates are in direct relationships with the
number of message producers and consumers:

pi = f(Ni)
ci = g(Mi)

Thus the stability of a standard single queue is controlled by the ratio between the
number of message producers and the number of message consumers.

Clustered queue. Clustered queues are standard queues that share a common pool
of message producers and consumers, and that can exchange message to balance the
load. All the queues of a clustered queue are supposed to be directly connected to each
other. This allows message exchanges between the queues of a cluster in order to empty
flooded queues and to fill draining queues.

Fig. 3. Clustered queue Qc

The clustered queue Qc is connected to Nc message producers and to Mc message
consumers. Qc is composed of standard queues Qi(i ∈ [1..k]). Each queue Qi is in
charge of a subset of Ni message producers and of a subset of Mi message consumers:

{
Nc =

∑
i Ni

Mc =
∑

i Mi

The distribution of the clients between the queues Qi is described as follows: xi (resp.
yi) is the fraction of message producers (resp. consumers) that are directed to Qi.

{
Ni = xi · Nc

Mi = yi · Mc
,

{∑
i xi = 1∑
i yi = 1

The standard queue Qi to which a consumer or producer is directed to cannot be
changed after the client connection to the clustered queue. This way, the only action
that may affect the client distribution among the queues is the selection of an adequate
queue when the client connection is opened.

Self-optimization of Clustered Message-Oriented Middleware 545

The clustered queue Qc is characterized by its aggregate message production rate
pc and its aggregate message consumption rate cc. The clustered queue Qc also has a
virtual clustered queue length lc that aggregates the length of all contained standard
queues:

lc =
∑

i

li = pc − cc,

{
pc =

∑
i pi

cc =
∑

i ci

The clustered queue length lc obeys to the same law as a standard queue:

– Qc is globally stable when Δlc = 0. This configuration ensures that the clustered
queue is globally stable. However Qc may observe local unstabilities if one of its
queues is draining or is flooded.

– If Δlc > 0, the clustered queue will grow and eventually saturate; then message
producers will have to wait.

– If Δlc < 0, the clustered queue will shrink until it is empty; then message con-
sumers will also have to wait.

We now suppose that the clustered queue is globally stable, and we list various sce-
narios that illustrate the impact of client distribution on performance.

Optimal client distribution of the clustered queue Qc is achieved when clients are fairly
distributed among the k queues Qi. Assuming that all queues and hosts have equivalent
processing capabilities and that all producers (resp. consumers) have equivalent mes-
sage production (resp. consumption) rates (and that all produced messages are equiva-
lent : message cost is uniformly distributed), this means that:

{
xi = 1/k
yi = 1/k

,

{
Ni = Nc

k ,

Mi = Mc

k

In these conditions, all queues Qi are stable and the queue cluster is balanced. As a con-
sequence, there are no internal queue-to-queue message exchanges, and performance is
optimal. Queue clustering then provides a quasi-linear speedup.

The worst clients distribution appears when one queue only has message producers
or only has message consumers. In the example depicted on Figure 3, this is realized
when:

{
x1 = 1
y1 = 0 ,

{
x2 = 0
y2 = 1 ,

{
N1 = Nc

M1 = 0 ,

{
N2 = 0
M2 = Mc

Indeed, this configuration implies that the whole message production is directed to
queue Q1. Q1 then forwards all messages to Q2 that in turn delivers messages to the
message consumers.

Local instability is observed when some queues Qi of Qc are unbalanced. This is
characterized by a mismatch between the fraction of producers and the fraction of con-
sumers directed to Qi:

xi �= yi

546 C. Taton et al.

In the example showed in Figure 3, Qc is composed of two standard queues Q1

and Q2. A scenario of local instability can be envisioned with the following clients
distribution:

{
x1 = 2/3
y1 = 1/3 ,

{
x2 = 1/3
y2 = 2/3

This distribution implies that Q1 is flooding and will have to enqueue messages, while
Q2 is draining and will see its consumer clients wait. However the queue cluster Qc

ensures the global stability of the system thanks to internal message exchanges from
Q1 to Q2.

A stable and unfair distribution can be observed when the clustered queue is globally
and locally stable, but the load is unfairly balanced within the queues. This happens
when the client distribution is non-uniform.

In the example presented in Figure 3, this can be realized by directing more clients
to Q1 than Q2:

{
x1 = 2/3
y1 = 2/3 ,

{
x2 = 1/3
y2 = 1/3

In this scenario, queue Q1 processes two third of the load, while queue Q2 only
processes one third. Suc situation can lead to bad performance since Q1 may saturates
while Q2 is lazy.

It is worthwhile to indicate that these scenarios may all happen since clients join and
leave the system in an uncontrolled way. Indeed, the global stability of a (clustered)
queue is under responsability of the application developper. For instance, the queue can
be flooded for a period; we then assume that it will get inverted and draining after, thus
providing global stability over time.

4.2 Provisioning

The previous scenario of stable and non-optimal distribution raises the question of the
capacity of a queue.

The capacity Ci of standard queue Qi is expressed as an optimal number of clients.
The queue load Li is then expressed as the ratio between its current number of clients
and its capacity:

Li =
Ni + Mi

Ci

– Li < 1: queue Qi is underloaded and thus lazy; the message throughput delivered
by the queue can be improved and ressources are wasted.

– Li > 1: queue Qi is overloaded and may saturate; this induces a decreased message
throughput and eventually leads to thrashing.

– Li = 1: queue Qi is fairly loaded and delivers its optimal message throughput.

Self-optimization of Clustered Message-Oriented Middleware 547

These parameters and indicators are transposed to queue clusters. The clustered
queue Qc is characterized by its aggregated capacity Cc and its global load Lc:

Cc =
∑

i

Ci , Lc =
Nc + Mc

Cc
=

∑
i Li · Ci∑

i Ci

The load of a clustered queue obeys to the same law as the load of a standard queue.
However a clustered queue allows us to control k, the number of inside standard

queues, and thus to control its aggregated capacity Cc =
∑k

i=1 Ci. This control is
indeed operated with a re-evaluation of the clustered queue provisioning.

– When Lc < 1, the clustered queue is underloaded: if the clients distribution is op-
timal, then all the standard queues inside the cluster will be underloaded; however,
as the client distribution may be non-optimal, some of the single queues may be
overloaded, even if the cluster is globally lazy. If the load is too low, then some
queues may be removed from the cluster.

– When Lc > 1, the clustered queue is overloaded: even if the distribution of clients
over the queues is optimal, there will exist at least one standard queue that will be
overloaded. One way to handle this case is to re-provision the clustered queue by
inserting one or more queues into the cluster.

5 A Self-optimizing Clustered Queue

In this section, we present the design of an autonomic ability which targets the opti-
mization of a clustered queue. The optimization takes place in two steps : (i) the optimal
load-balancing of a clustered queue, and (ii) the dynamic provisioning of queues in a
clustered queue.

The first part allows the overall improvement of the clustered queue performance
while the second part optimizes the queue resource usage inside the clustered queue.
Thus the idea is then to create an autonomic system that :

– fairly distribute client connections to the pool of server hosts in the clustered queue,
– dynamically adds and removes queues in a clustered queue depending on the load.

That would allow us to use the adequate number of queues at any time.

The implementation of these optimizations relies on the model of clustered queue
performance which has been presented in the previous sections.

5.1 Control Rules

The global clients distribution D of the clustered queue Qc is captured by the fractions
of message producers xi and consumers yi. The optimal clients distribution Dopt is
realized when all queues are stable (∀i xi = yi) and when the load is fairly balanced
over all queues (∀i, j xi = xj , yi = yj). This implies that the optimal distribution is
reached when xi = yi = 1/k.

D =

⎡

⎢
⎣

x1 y1

...
...

xk yk

⎤

⎥
⎦ , Dopt =

⎡

⎢
⎣

1/k 1/k
...

...
1/k 1/k

⎤

⎥
⎦

548 C. Taton et al.

Local instabilities are characterized by a mismatch between the fraction of message
producers xi and consumers yi on a standard queue. The purpose of this rule is the
stability of all standard queues so as to minimize internal queue-to-queue message
transfert.

(R1) xi > yi: Qi is flooding with more message production than consumption and
should then seek more consumers and/or fewer producers.

(R2) xi < yi: Qi is draining with more message consumption than production and
should then seek more producers and/or fewer consumers.

Load balancing rules control the load applied to a single standard queue. The goal is
then to enforce a fair load balancing over all queues.

(R3) Li > 1: Qi is overloaded and should avoid accepting new clients as it may de-
grade its performance.

(R4) Li < 1: Qi is underloaded and should request more clients so as to optimize
resource usage.

Global provisioning rules control the load applied to the whole clustered queue. These
rules target the optimal size of the clustered queue while the load applied to the system
evolves.

(R5) Lc > 1: the queue cluster is overloaded and requires an increased capacity to
handle all its clients in an optimal way.

(R6) Lc < 1: the queue cluster is underloaded and could accept a decrease in capacity.

5.2 Algorithm

This section presents an algorithm for the self-optimization of queue clustering systems.
As a first step we do not allow the modification of the underlying middleware. This
constraint restricts the control mechanisms that we can use to implement the autonomic
behaviour.

System events and controls. Without modification, the underlying JMS middleware
does not provide facilities such as session migration that would allow us to migrate
clients from one queue to another. However clustered queue systems allow the control
of the queue that will handle a new message producer (resp. consumer). This control
translated in the model terms means that some xi (resp. yi) will be increased, and we
have the choice for i.

On the contrary, a message producer (resp. consumer) that leaves the system induces
an unavoidable and uncontrolled decrease in some xi (resp. yi).

Thus a clustered queue system generates 4 types of events that we can use to control
and optimize the system:

join(Producer) join(Consumer)
leave(Producer, Qi) leave(Consumer, Qi)

Self-optimization of Clustered Message-Oriented Middleware 549

Algorithm 1. Client joining algorithm
on join(ClientType ∈ {Producer, Consumer}, Qc)
if (Lc ≥ 1) then

// Queue cluster will be overloaded
// An additional queue is required
Qk+1 ← NewQueue()
AddQueue(Qc, Qk+1)

end if
Qi = ElectQueue(Qc, ClientType)
return CreateSession(ClientType,Qi)

Algorithm 2. Client leaving algorithm
on leave(ClientType ∈ {Producer, Consumer}, Qi ∈ Qc)
if (IsMarked(Qi, “to be removed”) and IsEmpty(Qi) then

RemoveQueue(Qc, Qi)
DestroyQueue(Qi)

end if
if (Lc < 1) then

Qi = ElectRemovableQueue(Qc)
if Qi �= null then

Mark(Qi, “to be removed”)
end if

end if

The control rules must then be implemented as handlers to these events. The algo-
rithms that control the distribution of clients and the queue cluster provisioning are
depicted in Algorithms 1 and 2.

The ElectQueue(ClientType) function chooses the queue that is most far away from
the targeted client distribution. The elected queue Qi then maximizes the gap to the
optimal. When considering a new client that is a message producer (resp. consumer),
the gap is evaluated with 1/k − xi (resp. with 1/k − yi). Thus Qi satisfies:

{
xi = minj xj (when ClientType = Producer)
yi = minj yj (when ClientType = Consumer)

The ElectRemovableQueue(Qc) chooses one queue that can be removed from the
queue cluster. A queue cannot be removed on demand since it may still have clients con-
nected to it: a queue can only be removed when its last client decides to leave. Thus the
removal of a queue Qi will need two steps: (1) Qi is marked “to be removed” and no more
clients will be addressed to it; (2) when Qi’s last client leaves, Qi can then be removed
from the cluster. Moreover, even if Qc is underloaded, queue Qi should not be removed
if its removal let Qc be overloaded. Thus the condition to allow Qi’s removal is:

Ci ≤ Cc − (Nc + Mc)

The following section gives implementation details about these algorithms.

550 C. Taton et al.

6 Implementation Details

6.1 Requirements

To implement a self-managed queue cluster using the autonomic computing design
principles require the following management capabilities:

– to know the current number of message producers and consumers,
– to know where the servers are deployed, where the queues are deployed and what

is their configuration,
– to route a new client connection to the best queue to reach the optimal,
– to detect the overload or the underload of a queue cluster,
– to allocate a new server to create a new queue,
– to add and remove a queue in a server.

6.2 The Control Loop

To simplify, we will consider that clients create only one session by connection. By
doing this we assimilate the creation of sessions and the creation of connections. As-
suming this, the first prototype is achieved by wrapping the standard JMS Connection-
Factory by a ”LBConnectionFactory” (where LB stands for Load Balancing).

LBConnectionFactory. As the client gets the connection factory through JNDI, it gets
the LBConnectionFactory instead. This is the main non-functionnal hook in the system
that allows to control the distribution of producers and consumers among servers. This
component offers the following methods:

createConnection(...) takes the type of the client as a parameter (Producer or Con-
sumer). To create the connection with the right server, it requests a component
called “ClusterManager” which provisions (“resizes”) the cluster and elects a server
according to the current state of the system (the servers, the load of each queue in
terms of producers and consumers).

closeConnection(...) effectively closes the connection to the server and notifies the
ClusterManager so it can decrease the number of queues in the cluster if necessary.

ClusterManager. This component stores the state of the global system, i.e. the number
of servers currently used, the number of clients connected to each server, their type.
The state changes as client requests are received from the LBConnectionFactory. The
different requests are:

– a consumer wants a connection;
– a producer wants a connection;
– a consumer wants to close a connection on server Qi;
– a producer wants to close a connection on server Qi.

In the first two cases, the ClusterManager elects a server taking into account the capac-
ities in terms of clients. If the cluster is evaluated to be full of producers or consumers,
the LBClusterManager uses the procedures NewQueue() and AddQueue() to launch a
JORAM server on a free host and to create a queue linked to the cluster on that server.
Of course, the cluster manager will update its internal image of the global system ac-
cording to this.

Self-optimization of Clustered Message-Oriented Middleware 551

7 Evaluation

A series of experiments was run to assess the performance of JORAM. Rather than
finding an absolute maximum, these experiments were aimed at finding the relevant
factors impacting the performance of JORAM queues. The focus was on assessing the
usefulness of using queue clusters instead of single queues.

Environment. The experiments presented below were run on a cluster of Mac Mini
computers with the following specifications:

– Mac OS X 10.4.7, Intel Core Duo 1.66 GHz, 2 GB SDRAM DDR2 (667 MHz frontal
bus)

– Java J2SDK1.4.2 13, JORAM 4.3.21
– Ethernet Gigabit network

In each experiment, the measurements were taken with JMX probes located on a
computer outside the cluster. Each JORAM queue ran a JMX server which was accessed
by one of the JMX probes. The monitored attributes on the queue were NbMsgsDeliv-
erSinceCreation which is the number of messages read by consumers on the queue since
its creation and MessageCounter which is the number of messages presently waiting in
the queue. The JMX probes were reading these attributes every second.

In the following experiments, each JORAM queue was located on a distinct node.
The queues were running in a non persistent configuration. The producers and con-
sumers were transactional with a commit between each message. The Java Virtual
Machine hosting each queue was able to use 1536 MBytes of memory. The Garbage
Collector was disabled to prevent random hits on performance. The size of the JMS
messages used was 1 KBytes. The network was not considered to be meaningful factor
in these experiments.

To obtain meaningful results, each experiment was run three times. The charts were
constructed using the average of the three tests. The average throughput was calculated
excluding the first five and last five seconds as a way to only account for the stable part
of the process.

The number of waiting messages factor. This experiment shows the impact the number
of messages waiting in the queue on the performance. Producers were writing mes-
sages in a single queue for a duration of 60 seconds then consumers were reading these
messages from the queue until it was empty.

Figure 4 shows this experiment. We observe that the number of messages waiting in
the queue has a strong impact on the performance: the message processing rate of the
queue decreases as the queue length grows.

Single queue limit. In order to assess the interest of having a cluster queue instead of a
single queue, we need to measure the highest throughput a single queue can reach with
the previously described parameters. We made multiple measurements with a varying
number of producers and consumers accessing a single queue. For a given number of
producers, the ratio to obtain the best throughput was always 1 producer for 2 con-
sumers. These measurements are summed up on Figure 5.

552 C. Taton et al.

Fig. 4. Impact of the Waiting Messages on the Performance

Fig. 5. Capacity of a stantard single queue

It is apparent that the increase in throughput is not a linear function of the num-
ber of producers and consumers. As well, when the maximum throughput is reached
(with 4 producers), adding more producers and consumers can only reduce the average
throughput.

Figure 6 presents the chart of the throughput and the numbers of messages waiting in
the queue for the optimal setting for a single Joram queue. This optimal setting delivers
the maximal throughput for a single queue of 1.77 message/ms. The throughput showed
is stable at nearly 1.8 message/ms.

Self-optimization of Clustered Message-Oriented Middleware 553

Fig. 6. Maximum Throughput of a Single Joram Queue

Fig. 7. Throughput of a stable queue cluster

Stable and balanced queue cluster. The goal of the next experiment was to find whether
the increase in performance of a stable and properly balanced cluster queue was linear.
In theory, a stable cluster queue should not exchange messages between the queues
which are in the cluster. This experiment consisted of a cluster queue composed of
2 internal queues. On each queue, there were 4 producers and 8 consumers - i.e. the
optimal configuration for the maximum throughput of a single queue.

Figure 7 shows the overall throughput and number of waiting messages of the cluster
queue. The average throughput of the cluster queue (3.55 messages/ms) is about twice
the maximum throughput of the single queue. The increase in throughput is linear and
shows that the cost of managing a cluster without exchanging messages between the
internal queues is negligible.

554 C. Taton et al.

Fig. 8. Strong local instabilities in a queue cluster

Fig. 9. Slight local instabilities in a queue cluster

Unbalanced cluster queue. The following figures demonstrate the strong impact of un-
balance on the performance of a JORAM cluster queue. The same number of producers
and consumers as the previous experiment were used but unbalance was introduced on
the ratio of producer/consumer on the internal queues.

The experiment illustrated by Figure 8 had 7 producers and 2 consumers on the
first internal queue and 1 producer and 14 consumers on the second one. The overall
throughput shows a drastic decrease on the performance of the cluster queue. In fact,
with an average throughput of 1.74 message/ms, it is better to use a single queue in this
case. It would give a better throughput as well as costing less resources.

The instability is less pronounced in the experiment showed by the Figure 9. The first
internal queue had 5 producers and 6 consumers. The second queue had 3 producers
and 10 consumers. As can be seen on the chart, the overall throughput is only 2.12

Self-optimization of Clustered Message-Oriented Middleware 555

messages/ms. It is much better than the previous one but it is still vastly inferior to the
one presented in the Figure 7.

Conclusion for the measurements. These measurements show some interesting points.
In a single queue, the critical factor impacting the performance is the number of mes-
sages waiting in the queue. Increasing the number of producers and consumers on a
single queue leads to an increase in performance which is not linear. Furthermore a
ceiling throughput is reached with (in our case) 4 producers and 8 consumers.

In a cluster queue, the balance of the cluster and the stability of the internal queues
are extremely important. Even a slight instability between the queues strongly decreases
the overall throughput. The instability seems to lead to an increase in the number of
messages waiting in the queues. In contrast of a single queue, adding queues in a stable
and well-balanced cluster leads to a linear increase in performance.

7.1 Algorithm Evaluation

We present here some results obtained by simulating the optimization algorithm. The
aim is to demonstrate the efficiency of our algorithm in comparison to the original
clients distribution scheme that is used in queue clusters.

The simulation runs a queue cluster composed of two queues Q1 and Q2 that share
40 message producers and 40 message consumers. The clients distribution is initially
forced to the worst case: all producers are assigned to Q1 (x1 = 1) while all con-
sumers are assigned to Q2 (y2 = 1). Clients are configured to join and leave with equal
probabilities, which ensure the global stability of the queue cluster.

Figure 10 presents the evolution of the clients distribution when using the original
round-robin algorithm and Figure 11 shows the behaviour of the distribution when using
the optimized algorithm. We observe that the original algorithm is unable to enforce a fair
balancing of the clients: the unbalance is still roughly 0.3/0.7 after 500 events, while our
algorithm converges to the optimal distribution in less than 200 events. This concludes
on the improvements expected by the use of the algorithm presented in this paper.

Fig. 10. Simulation with the original Round-Robin clients distribution algorithm

556 C. Taton et al.

Fig. 11. Simulation with the optimizing clients distribution algorithm

8 Related Work

We describe a self-optimization mechanism in the case of a queue clustering tech-
nique. Some projects only analyse JMS performance whereas others target the self-
optimization of J2EE infrastructure but do not focus on MOM self-optimization.

Regarding JMS performance, [1] provides an analysis of the throughput performance
of JMS Using Websphere-MQ. [2] analyses a specific performance problem: The Mes-
sage Waiting Time for the Fiorano-MQ Server. [3] describes a QoS Evaluation of JMS,
it examines the impact of JMS attributes on performance.

About self-optimization, several projects which have addressed the issue of element
management in a cluster of machines. In these projects, the software components re-
quired by any application are all installed and accessible on any machine in the cluster.
Therefore, allocating additional resources to an application can be implemented at the
level of the protocol that routes requests to the machines (Neptune [4] and DDSD [5]).
Some of them (e.g. Cluster Reserves [6] or Sharc [7]) assume control over the CPU al-
location on each machine, in order to provide strong guarantees on resource allocation.

9 Conclusion and Future Work

Providing a scalable and efficient Message Oriented Middleware is an important topic
for today’s computing environments. This paper analyses the performance of a Mes-
sage Oriented Middleware and proposes a self-optimization algorithm to improve the
efficiency of the MOM infrastructure. We describe (i) the key parameters impacting
the performance of the MOM and (ii) the rules that control these parameters for opti-
mal prformances. This paper also presents an evaluation that shows the impact of these
parameters on the MOM.

Currently, the control loop has a very basic actuator to lead a client connection to
a specific queue. The advantage of this actuator is its simplicity. However, the control
loops cannot reconfigure the client connection during a session. Part of our future work

Self-optimization of Clustered Message-Oriented Middleware 557

is about providing a more powerful actuator. This actuator will provide the control
loop with the ability to migrate a client connection when necessary. This requires a
mechanim to move session data on other queue.

Acknoledgement. We would like to thank Sylvain Gonzalez (from the Sardes team) and
André Freyssinet (from the Scal’Agent team) for their invaluable help. This work could
not have been done without their support in setting up the experiments and providing
insightful comments on the results.

References

1. Henjes, R., Menth, M., Zepfel, A.C.: Throughput performance of java messaging services
using websphereMQ. In: DEBS. 5th International Workshop on Distributed Event-Based Sys-
tems, Lisboa, Portugal (July 2006)

2. Menth, M., Henjes, R.: Analysis of the message waiting time for the fioranoMQ JMS server.
In: ICDCS. 26th International Conference on Distributed Computing Systems, Lisboa, Portu-
gal (July 2006)

3. Chen, S., Greenfield, P.: Qos evaluation of jms: An empirical approach. In: HICSS 2004. Pro-
ceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS’04)
- Track 9, p. 90276.2. IEEE Computer Society Press, Washington, DC, USA (2004)

4. Shen, K., Tang, H., Yang, T., Chu, L.: Integrated resource management for cluster-based in-
ternet services. In: OSDI-2002. 5th USENIX Symposium on Operating System Design and
Implementation (December 2002)

5. Zhu, H., Ti, H., Yang, Y.: Demand-driven service differentiation in cluster-based network
servers. In: INFOCOM-2001. 20th Annual Joint Conference of the IEEE Computer and Com-
munication Societies, Anchorage, AL, IEEE Computer Society Press, Los Alamitos (2001)

6. Aron, M., Druschel, P., Zwaenepoel, W.: Cluster Reserves: a mechanism for resource man-
agement in cluster-based network servers. In: International Conference on Measurement and
Modeling of Computer Systems (ACM SIGMETRICS-2000), Sant Clara, CA (2000)

7. Urgaonkar, B., Shenoy, P.: Sharc: Managing CPU and network bandwidth in shared clusters.
IEEE Transactions on Parallel and Distributed Systems 15(1) (2004)

Minimal Traffic-Constrained Similarity-Based

SOAP Multicast Routing Protocol

Khoi Anh Phan, Peter Bertok, Andrew Fry, and Caspar Ryan

RMIT University, School of Computer Science and Information Technology
GPO Box 3476V, Melbourne, VIC 3001, Australia

{thikhoi, pbertok}@cs.rmit.edu.au, andrew.fry@spotless.com.au,
caspar@cs.rmit.edu.au

Abstract. SOAP, a de-facto communication protocol of Web services,
is popular for its interoperability across organisations. However, SOAP
is based on XML and therefore inherits XML’s disadvantage of hav-
ing voluminous messages. When there are many transactions request-
ing similar server operations, using conventional SOAP unicast to send
SOAP response messages can generate a very large amount of traffic [7].
This paper presents a traffic-constrained SMP routing protocol, called
tc-SMP, which is an extension of our previous work on a similarity-based
SOAP multicast protocol (SMP) [11]. Tc-SMP looks at the network opti-
mization aspect of SMP and proposes alternative message delivery paths
that minimize total network traffic. A tc-SMP algorithm, based on an
incremental approach, is proposed and compared for its efficiency and
performance advantages over SMP. Simple heuristic methods are also im-
plemented to improve results. From extensive experiments, it is shown
that tc-SMP achieves a minimum of 25% reduction in total network traf-
fic compared to SMP with a trade-off of 10% increase in average response
time. Compared to conventional unicast, bandwidth consumption can by
reduced by up to 70% when using tc-SMP and 50% when using SMP.

1 Introduction

SOAP brings extensibility and interoperability to the communication and in-
vocations of services among remote hosts. In contrast to its interoperability
advantages, SOAP’s major limitation is that its communication produces con-
siderably more network traffic compared to its counterpart technologies such as
CORBA and Java-RMI [15, 6]. This issue has drawn great interest from many
studies to propose techniques enhancing SOAP’s performance. In the past, ap-
proaches for improving the network bandwidth performance of SOAP focused
on the optimization of differential SOAP compression [15] and differential SOAP
deserialization [1, 13] techniques.

SOAP messages sent from the same server to multiple clients are generally
have some similarity. It is important to emphasize that most SOAP messages
have similar byte representations. SOAP messages created by the same imple-
mentation generally have the same message structure. Specifically, a SOAP mes-
sage is surrounded by a large amount of non-domain-related XML data such as

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 558–576, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Minimal Traffic-Constrained Similarity-Based SOAP 559

name space, encoding specifications and many other XML element names. More-
over, SOAP responses for the same SOAP request (with the same or different
parameter values) will share the same XML document template. Even when the
response messages are targeted for different operations of the same service, the
response messages may have many similar data type structures.

Bandwidth is expensive in some environments such as mobile and wireless en-
vironments and sensor networks. At the same time, there has been an increased
demand in the delivery of personalized information such as list of stock quotes,
sports scores, weather forecasts and travel information to users, especially mo-
bile users. If the number of receivers for a service is large and there is sufficient
commonality in their interests, multicast will be an efficient way of delivering
information. This is because network resources are used more efficiently by mul-
ticasts than broadcasts and replicated unicasts.

To reduce traffic caused by SOAP in low bandwidth environments, earlier
we proposed a multicast technique, called SMP [11] (similarity-based SOAP
multicast protocol), that is based on the similarity between SOAP messages and
uses the shortest path first routing algorithm. SMP can reduce network traffic
47% more than SOAP unicast. To improve the performance, here we propose a
new routing algorithm that can offer a higher reduction in network traffic than
SMP.

We take an example of a real-time stock quote service to illustrate SMP’s
approach. The stock quote service allows users to request the prices and market
information of a list of stocks. If there is news that will influence the price
of a particular stock considerably, there would be enormous requests on that
day for the stock’s value. High numbers of requests will lead to high traffic
volume. To avoid traffic congestion, SMP protocol can be used to replace unicasts
because with SMP, instead of generating many messages with duplicated parts
for different clients, the duplicated parts are sent only once for multiple clients —
thus reducing the network traffic.

SMP relies on the Open Shortest Path First (OSPF) for routing which routes
a message using the shortest path from a source to a destination. Therefore,
the routing path selected by such an algorithm may not be the best in terms
of traffic optimization. The more similar SOAP messages can be combined over
specific links the more network bandwidth can be saved. However when OSPF
is used, some SOAP messages that are very similar in content and follow the
shortest paths, there may not be many common links shared by these messages.
By restricting ourselves to the OSPF routing paths, we may miss other feasible
paths that may result in further reduction in the total traffic. Using other paths
may permit the aggregation of SOAP messages with a higher level of similarity
and their transmission along more common links.

In this paper, we present an extension of SMP, called tc-SMP, which is a new
routing algorithm for delivering SMP messages along paths such that there are
more shared links between the deliveries of highly similar messages. Simulations
have shown that tc-SMP can reduce network traffic, when compared to SMP,
by more than 25% at the small cost of a 10% increase in response time. In

560 K.A. Phan et al.

addition, tc-SMP can reduce the traffic by up to 70% compared to unicast, and
40% compared to traditional multicast, the corresponding results for SMP are
60% and 30% respectively.

We will discuss SMP routing mechanisms and related work on QoS-based
routing in the next two sections. Tc-SMP routing algorithm will be presented in
Section 4. The performance experiments and results will be detailed in Section 5.
We will then analyze the strengths and weaknesses of tc-SMP in the Discussion
section. The paper will be concluded with final remarks and future work.

2 SMP Overview

We will present an overview of SMP’s basic operations in this section to allow
better understanding of tc-SMP. More details about SMP can be found in [11].

SMP was designed to deal with SOAP performance issues by exploiting the
similar structure of SOAP messages. The goal is to reduce the total traffic gener-
ated over a network when sending SOAP responses from servers to clients. SMP
allows similar SOAP messages that share some parts of the SOAP template to
be sent in one customised SMP message instead of being sent as multiple copies.

Clients’ addresses are represented as strings and stored in the SMP header,
which is encapsulated inside the SOAP message body. The SMP body is also em-
bedded inside the SOAP message body. There are two sections in the SMP body:
(1) the <Common> section containing common values and structures of all mes-
sages addressed to clients encoded in the SMP header; (2) the <Distinctive>
section containing individual different parts for each response message. The out-
ermost envelope is referred to as an SMP message. The destination of an SMP
message, which is specified in the SOAP header, is the next router in a network
when the message is forwarded to all clients given in its SMP header.

Figure 1 explains the operations of SMP through a sample network of 1 source
and 5 clients. Two SMP messages are sent out from the source s to its two
next-hop routers r1 and r2. At r2, the SMP message header is parsed to find
out what clients the message is addressed to. The client addresses are then
partitioned into a group of (c4, c5) and client c3 alone based on the clients’ next-
hop routers. Since at r2 the message targeting to client c3 are sent independently,
a unicast SOAP message, m1, is used for responding to the getStockQuote()
request. On the other hand, an SMP message targeting c4 and c5 is replicated
from the incoming SMP message at r2. In the new SMP message, the common
part contains the content of the full m2 message for the getQuoteAndStatistic()
request and there is no distinctive section because both c4 and c5 request the
same service operation.

Despite its advantage of saving network traffic, SMP has a disadvantage of
using a conventional routing protocol (OSPF) to deliver messages to clients.
Since OSPF uses Dijkstra’s algorithm, SMP messages are routed along their
shortest paths to destinations. Two nodes of a network are often connected with
multiple paths. Therefore, sending messages just along least hop paths does not
maximize the saving of traffic resulted from the similarity of messages.

Minimal Traffic-Constrained Similarity-Based SOAP 561

Fig. 1. A sample network illustrating how SMP routing works

In addition, SMP has a user-configured time frame. During this time period,
outgoing SOAP response messages will be lined in a queue if their similarity level
falls within a threshold limit. When a new request message arrives at the server,
the server generates its corresponding SOAP response message and computes
its similarity against existing on-queue messages. If the computed similarity
satisfies the threshold then it is inserted into the queue. If not, the messages
that already reside in the queue are sent out as an aggregated SMP message. As
a result, the queue is empty for new requests and the above aggregation steps can
be repeatedly carried out again. Messages in the queue can also be dispatched
automatically after the defined time period.

It is important to note that to deploy SMP in a real network, all routers in
the network need to be SMP-compatible. This can be done by installing an SMP
software, which is an implementation of the proposed SMP, on each router to
enable it to interpret SMP messages. The SOAP header in an SMP message
specifies the next hop router as the message’s destination. Therefore, when an
intermediary router receives an SMP message, it processes the message as if it is
the final destination of the message. Since an SMP-compatible router operates
on the application layer, it has full access to the message’s envelope and parses
the SOAP body to get the list of clients encoded in the SMP header and the
actual payload in the SMP body.

562 K.A. Phan et al.

3 Related Work

In this section we present an overview of how routing trees are built in different
QoS-based routing algorithms. Such information is important to understand the
extension of SMP.

3.1 QoS-Based Routing Overview

The problem of finding a minimum cost multicast tree for sending similar SOAP
messages can be categorized as a QoS-based routing problem. The main objec-
tive of QoS routing is to select paths that satisfy multiple QoS requirements
in a network, while contributing to improved network resource utilization. QoS
requirements are given as a set of constraints which can be link constraints, path
constraints or tree constraints. Chen and Nahrstedt [4] define a link constraint
as a restriction on link usage such as link bandwidth, while a path constraint is
an end-to-end requirement on a single path such as end-to-end delay bounds or
delay jitter. A tree constraint specifies a QoS requirement for an entire multicast
tree, for example total traffic over the network or loss ratio. Resource utiliza-
tion is often computed by an abstract cost metric [4]. The optimal QoS routing
problem is then formulated as the lowest-cost path among all the feasible paths.

3.2 QoS Multicast Routing

Here we consider, in more detail, how a multicast tree which is rooted at a source
and spans multiple destinations is actually built. There are several well-known
multicast routing problems: Steiner tree and constrained Steiner tree problems.
The Steiner tree problem (also called the least cost multicast routing problem) is
to find the tree that spans a set of destinations with the minimum total cost over all
links [8]. The constrained Steiner tree problem (often called the delay-constrained
least-cost routing problem) is to find the least cost tree with bounded delay.

Multicast routing algorithms often belong to one of two categories: source
routing and distributed routing. Source routing is a strategy that requires each
node to maintain the global state of the network topology, as well as the link state
information. Feasible paths to each destination are computed at the source node,
based on the global state information. Routing decisions are then communicated
to intermediate nodes via a control message. Contrasting to source routing, in
distributed (or hop-by-hop) routing each node maintains state information for
nearby nodes, exchanged via control messages. Each packet contains the address
of its destination, and every node maintains a forwarding table that maps each
destination address into transmitting-neighbor nodes. Forwarding decisions are
made by each node, upon the receipt of a packet, after considering the destination
of the packet but not its source. Some examples of QoS source and hop-by-hop
routing algorithms are described in detail in subsequent sections.

The class of QoS multicast routing problems has been shown to have high
computational complexity and to be NP-hard [16]. Hence these algorithms usu-
ally use heuristics to reduce the complexity of the path computation problem, at
the expense of not achieving an optimal solution but just a feasible solution [10].

Minimal Traffic-Constrained Similarity-Based SOAP 563

3.3 QoS-Constrained Multicast Source Routing

Some important work on source routing algorithms for multi-constrained multi-
casting is discussed. Chakraborty, et al. [3] proposed QoS-based Dynamic Multi-
cast (MQ-DMR) algorithm which builds a dynamic multicast tree which satisfies
multiple QoS requirements and efficiently distributes traffic throughout the net-
work. It operates when adding a new node to the existing multicast tree. The
two objectives of MQ-DMR are to minimize the overall network traffic when
connecting a new receiver, and to connect a new node to the source so that QoS
constrains are satisfied. A link cost is the inverse of the available bandwidth on
that link. They aim to use part of the existing multicast tree to share the same
path from the source to a newly added client, such that the additional traffic is
minimized. A model is proposed to dynamically assign a cost to a link based on
the duration for which it would be in use. MQ-DMR operates in a similar way
to the Bellman-Ford shortest path algorithm [2]. In the first iteration, it finds
one-hop least cost paths to all destinations. In the next iteration, two-hops least
cost paths are found with a tendency to select links that are already in use in
the multicast tree. Subsequent iterations are similar. The maximum number of
iteration steps can be determined based on the pre-defined allowable delay jitter.

3.4 Hop-by-Hop Routing Algorithms

Though many proposed source routing algorithms (to solve QoS-constrained
multicast routing problems) provide promising results, they have a common
lack of scalability. This weakness stems from the fact that frequent updates of
global states need to be made at the source to cope with the dynamics of the
network and that means high computation overhead at the source [10]. To avoid
this overhead, there have naturally been attempts to solve the QoS-constrained
multicast problems in a distributed manner.

Shaikh and Shin [12] presented a destination-driven multicast routing algo-
rithm (DDMC) that optimizes total tree cost. Most of the proposed heuristics
that solve the minimum multicast tree problem assume the use of global cost
information by the source, but DDMC uses only cost information from nearby
nodes. The DDMC algorithm uses a greedy strategy based on Dijkstra’s short-
est path and Prim’s minimal spanning tree algorithms. In DDMC, the costs at
destination nodes are reset to zero to encourage the selection of paths that go
through destination nodes. Any node reached from another destination node ex-
periences only an incremental additional cost, thus the total tree cost can be
reduced. However this method may result in a tree with long paths connecting
multiple destination nodes, so it may not meet the end-to-end delay constraint.
Additionally, in their tree model, cost is not associated with any specific net-
work parameter. However different cost metrics may have different meanings and
implications on the overall performance of an algorithm. Shaikh and Shin did
not provide results about the algorithm’s performance on different cost metrics
such as link capacity, hop distance, inverse of link bandwidth, or congestion rate;
which makes it hard to have a clear idea about the advantage of their approach.

564 K.A. Phan et al.

4 Traffic-Constrained SMP Routing

This section formally defines the optimization problem that the tc-SMP algo-
rithm aims to solve and outlines preliminary models and concepts.

4.1 Problem Definition and Notations

The objective of tc-SMP is to find routing paths linking the source to a set of
clients while simultaneously minimizing the total traffic cost (related to the
construction of the tc-SMP tree). We formulate this problem as the traffic-
constrained similarity-based SOAP multicast routing problem (tc-SMP). A
graph based formulation of tc-SMP is given here.

Let G(V, E) be a network graph, where V is the set of nodes and E is the
set of edges, s is the source node, C = {c1, c2, c3, ...cN} is the set of clients (or
destinations) in the network, so s ∪ C ⊆ V . A tree T (s, C) ⊆ G originates at
s and spans all members in C. Let PT (ci) ⊆ T be the set of links in T that
constitutes the path from s to client ci ∈ C. tr(e), e ∈ E is a function that gives
the number of bytes transmitted through link e. The total traffic generated in the
tree T , denoted by Traffic(T), is defined as the sum of the traffic transmitted on
all links in the tree, given by the expression Traffic[T] =

∑

e∈T

tr(e). The objective

of the tc-SMP problem is to construct an tc-SMP tree T (s, C) such that the
tree’s network traffic, Traffic[T], is minimized.

The traditional multicast routing tree problem (which sends identical mes-
sages to multiple receivers from a source while simultaneously minimizing some
cost function) is an NP-hard problem [9]. The tc-SMP problem is also NP-hard.

Definitions of a tc-SMP routing tree and a branching node, used in the tc-SMP
algorithms, are defined now.

Definition 1. [tc-SMP Tree]: A tc-SMP tree is a tree of tc-SMP nodes. A tc-
SMP rj node is a data structure in the form of [rj .router, rj .clients, rj.cost]
where:

1. rj .router: corresponds to a physical router in the network topology,
2. rj .clients: a set of clients that this node forwards SMP messages to, and
3. rj .cost: total traffic already generated in the network when the SMP message

arrives at rj.

Definition 2. [Branching Node]: A node B is a branching node of a client C
with respect to an tc-SMP tree T if the following conditions are met:

• B ∈ T .
• C is connected to the tree through B and the connection introduces minimal

additional traffic to the total tree cost.

Minimal Traffic-Constrained Similarity-Based SOAP 565

4.2 The Algorithm

The incremental tc-SMP algorithm iteratively examines a branch connecting to
each client in the SMP tree and determines if the branch can be replaced by a
substitute path in the network to reduce traffic load created when transmitting
a message to the client. If such a substitute branch does not exist, the shortest
path to the client from the SMP tree will be added to the tc-SMP tree. Therefore,
in the worst scenario, incremental tc-SMP performs as well as SMP.

The following notations and assumptions are made for the proposed incre-
mental improvement tc-SMP routing algorithm:

• Let Ttc−SMP be the set of routers in the tc-SMP spanning tree.
• Let Ttemp be a temporary tree built during the path finding process for each

client.
• Let Ti be a tree resulted after each iteration of adding a new client to the

tc-SMP spanning tree.
• Let CK = {c1, c2, c3, ..., cK} be a group of clients that have requested for

|MK | SOAP messages that have a similarity level greater or equal to the
required threshold and can be aggregated into one SMP message.

• Let MK = {m1, m2, m3, ..., mK} be the set of SOAP response messages to
be sent to all clients. mi is the response message for client ci.

• Let Cost(T) be a function to compute the total traffic cost of the whole tree
T based on maximizing similarity.

Algorithm 1 shows various steps for incrementally building a tc-SMP tree.
The steps can be grouped into three main phases as presented in the following
list. The details of each phase are elaborated in the subsequent paragraphs.

1. Phase 1: Setting up an SMP tree based on shortest paths (Line 1 of Algo-
rithm 1).

2. Phase 2: Finding alternative paths connecting to each client (Lines 15-16
of Algorithm 1).

3. Phase 3: Building a temporary tree, Ttemp, which includes the newly found
alternative path to the client (Lines 18-19 of Algorithm 1 and Algorithm 2).

4. Phase 4: Selecting the branch that connects to the client with the least
traffic to add to the tc-SMP tree (Lines 20-23 of Algorithm 1).

In the first phase, the source establishes a routing tree, called TSMP , where
every path from the source to each client is based on Dijkstra’s shortest path first
algorithm as being done in the original SMP algorithm. This phase can easily be
completed by using the OSPF routing protocol deployed in most networks. Each
node rj in the TSMP also has the properties rj .router, rj .clients and rj .cost as
defined in Definition 1.

The tc-SMP tree, Ttc−SMP , is initially empty. Each client is added to the
tc-SMP tree one after another. In the first iteration, among K clients, a ran-
dom client crand is chosen as the first client to be added to the Ttc−SMP . The first

566 K.A. Phan et al.

Algorithm 1. Incremental tc-SMP algorithm

TSMP = {rk, rk+1, ..}: an SMP tree1

Ttemp ← TSMP ; Ttc−SMP ← ∅2

foreach ci ∈ CK do3

if Ttc−SMP = ∅ then4

foreach rj ∈ ps,ci do5

{ps,ci is the shortest path from s to ci }6

Ttc−SMP ← Ttc−SMP ∪ rj7

Ti ← TSMP8

continue9

else10

{pmin
s,ci

is a path from s to ci that introduces the least traffic in the tree}11

pmin
s,ci

← ps,ci , where ps,ci ∈ Ti−112

Ti ← Ti−113

foreach rj ∈ Ttc−SMP do14

if rj �= s AND rj /∈ Ck AND rj /∈ ps,ci then15

R = FindSP(rj , ci)16

if R �= ∅ then17

Ttemp ← RemoveClientFromTree(Ttemp, ci)18

Ttemp ← Ttemp ∪ R ∪ ps,rj19

if Cost(Ttemp) < Cost(Ti) then20

pmin
s,ci

← ps,rj ∪ prj,ci21

Ti ← Ttemp22

Ttc−SMP ← Ttc−SMP ∪ pmin
s,ci

23

client is a special case where the tc-SMP path to crand is the same as the SMP
path to crand (see Lines 4–9 of Algorithm 1).

In subsequent iterations, the algorithm attempts to find an alternative path
for another client, say ci, as illustrated in Lines 12–23 of Algorithm 1). We denote
Ttemp a temporary tree which is built during the process of finding an alternative
path for client ci. The tc-SMP algorithm examines if there exists a path from
a node (excluding the source and the clients), rj , that is already in Ttc−SMP

for ci−1, to the next client ci. Also, the algorithm ignores rj if it resides on the
original shortest path ps,ci from the previous tree.

If there is a path from rj to ci that meets the requirement in Line 15 of the
main algorithm, the Ttemp is then built based on Ti−1, the resulted tree from
the previous iteration, but excluding the path spanning to ci (see Line 18 of
Algorithm 1 and Algorithm 2). Subsequently, the path prj ,ci is added to Ttemp.
The total cost of Ttemp is then calculated as a result of this and compared to
the Ti−1’s cost. If Cost(Ti−1) is greater than Cost(Ttemp), Ti will be assigned
to Ttemp. This process continues until all the clients in the list are examined for
alternative paths.

Minimal Traffic-Constrained Similarity-Based SOAP 567

Algorithm 2. RemoveClientFromTree Procedure: Remove nodes spanning to a

client from a tree
Input: T : the input tree
c: The client to be removed from T
Output: T : The resulted tree after removing c

procedure RemoveClientFromTree do1

foreach ri ∈ ps,c do2

if |ri.clients| = 1 then3

{There is only c passing through this router }4

T ← T \ ri5

(a) The initial SMP tree (b) A temporary tree

(c) The final tc-SMP tree

Fig. 2. The initial SMP tree, a temporary tree and the final tc-SMP tree built by the
incremental tc-SMP algorithm in a sample network

568 K.A. Phan et al.

4.3 Example Illustration

The diagrams in Figure 2 show an example of how the incremental tc-SMP algo-
rithm operates. In this example, there are 4 clients c1, c2, c3 and c4 all requesting
the same SOAP message. Let ω denote the size of each SOAP response message.
For simplicity, the size of an aggregated SMP message comprising any number
of original SOAP messages (based on similarity) is still ω1. First, an SMP tree,
denoted by TSMP , is built by using the OSPF protocol. TSMP roots at the source
s and spans all four clients on the shortest paths, as shown in solid lines in Fig-
ure 2(a). The cost in terms of the total traffic created if SMP messages are sent
following the paths in TSMP is then computed (Cost(TSMP) = 10ω). Next, a
tc-SMP tree, denoted by Ttc−SMP , will be built gradually by adding the clients
to the tree one after another. The first client, c1, is added to the tc-SMP tree
through the shortest path, therefore, the source s, routers r1 and r4 and client
c1 are included in the Ttc−SMP tree.

To add client c2 to Ttc−SMP , the algorithm examines if there exists a path
from a node, that resides in Ttc−SMP and satisfies the criteria on Line 15 of
Algorithm 1, to c2. Routers r1 and r4 both have paths to c2. Let us consider r4

as the branching node for linking c2 as r4 is closer to c2 than r1 is. A temporary
tree, denoted by Ttemp, is built by removing the single path spanning c2 in
the TSMP tree and adding the new path connecting r4 to c2. This Ttemp tree
is depicted in Figure 2(b) (in solid lines). The cost of this temporary tree is
computed and equal to 11ω which is higher than the cost of the initial TSMP

tree (10ω). Therefore, in this iteration the shortest path from the source to client
c2 is added to Ttc−SMP .

Client c3 can be added to Ttc−SMP easily because there is only one path from
the source to c3. There are two paths spanning client c4, and it is trivial to
realize that c4 will be added to Ttc−SMP via r5. The final incremental tc-SMP
tree is illustrated in Figure 2(c) along solid lines.

4.4 Heuristic Methods

We have described the basic functionalities of the two tc-SMP routing algorithms
without using any heuristics. Here two simple methods, which can be applied to
Algorithm 1 to determine the order of clients in the distribution list to be added
to the tree, are proposed.

• Message size-based Heuristic Approach (MHA): This approach is based
on the sizes of the response messages. First the K SOAP response messages
are sorted in a descending order according to their sizes. Clients are added
to the tree in order of their descending message size. Using this method,
large messages are sent out first along the least hop paths, thus less traffic
is generated.

• Similarity-based Heuristic Approach (SHA): This heuristic method is
based on the similarities between the response messages. The first client to

1 In practice, additional several bytes are required for storing clients’ addresses.

Minimal Traffic-Constrained Similarity-Based SOAP 569

be added to the tree is the one that has the largest message size. Then subse-
quent clients are added to the tree in order of descending message similarity
with existing clients’ messages in the tree. With this method, messages with
higher similarity tend to be sent along more shared links, thus more network
bandwidth can be saved.

4.5 Complexity Analysis

We will analyze the time complexity of the proposed algorithm to build the
tc-SMP routing tree. We show that the computation time for the algorithm is
polynomial by proving the following theorem.

Lemma 1. The time complexity of the incremental algorithm to build a traffic-
constrained SMP routing tree is O(n(m+nlogn)) where m is the number of edges
and n is the number of nodes in a network.

Proof. The worst case for this algorithm is when building a tc-SMP tree that
spans all N clients. Considering the main for-loop, Lines 3–23 of Algorithm 1.
This for-loop is executed once for each client and hence a total of N times.
As explained above, N is considered as a constant in this analysis as there is
often an upper bound on the number of clients that can be aggregated in an
outgoing SMP message from the server. Inside this loop, the algorithm runs
through all the nodes that already exist in the tc-SMP tree, which in the worst
case would have n nodes. Finding the shortest path from a node to a client
(as presented in Line 16 of Algorithm 1) requires O(m + nlogn) time using a
Fibonacci heap implementation [5]. Line 18 calls the RemoveClientFromTree
procedure, described in Algorithm 2, which requires O(L) time where L is the
largest number of hops from the source to any client in the network. The time
complexity required to measure the cost of a temporary tree, Line 20, is O(n).
Therefore, the for-loop of Lines 3–23 takes O(n(m+nlogn)+L+n), simplified to
O(n(m + nlogn)), to complete. In conclusion, execution time of the incremental
tc-SMP algorithm is of the order O(n(m + nlogn)) time.

The proposed algorithm is more complex than the OSPF algorithm because the
OSPF problem finds the optimal path for each destination independently. In
contrast, our traffic-constrained SMP problem involves path optimizations for
multiple destinations the paths of which are dependent on each other and there
is a common constraint of reducing overall network traffic.

5 Tc-SMP Performance Evaluation

To test the effectiveness of tc-SMP over SMP, we evaluated its performance
and compared it to SMP, traditional multicast and unicast communications.
Details of the experimental setup and simulation results are described in this
section.

570 K.A. Phan et al.

5.1 Experimental Setup

We used OMNeT++ [14] as the simulation program to randomly generate dif-
ferent hierarchical network topologies to carry out our experiments. In these
topologies, the maximum number of hops for the shortest paths from the source
to any client is 10. The propagation delay, which is the time that a network
message takes to travel from one node to another is constant at tprop = 5ms.
The topologies generated such that there were always multiple paths to route
a message from the source to most of the clients. The number of clients in the
network ranged from 10 to 200. For each network topology, we performed six
tests: incremental tc-SMP without heuristic, incremental tc-SMP with the simi-
larity based heuristic, incremental tc-SMP with the message-size based heuristic,
SMP, traditional multicast and unicast. For each test, 20 experimental runs were
performed and the result given are the average of these runs.

Clients make requests to the Web service operations followed a Zipf distri-
bution [17] with a skewness factor of α = 1. In our experiments, there were
10 operations defined in the Web service’s description document. These opera-
tions correspond to 10 SOAP response messages (denoted by m1, m2, . . . , m10) in
which m1 is the most frequently requested message and mi is the ith frequently
accessed one. The size of the messages ranged from 20Kb to 50Kb. The similar-
ity threshold used for SMP and tc-SMP methods is 0.6. The similarity between
messages depends on requested service operation and its input parameters. The
simulated bandwidth available on each link was 1.5Mbps.

5.2 Experimental Results

Total network traffic and average response time for each client are the two met-
rics used to examine the performance of the tc-SMP algorithm and to compare
with SMP, multicast and unicast. The network load is the total size of all mes-
sages passing through all links in the routing tree when sending responses to all
the clients. The average response time is the average time it takes from when
the server to send a response message out until the message reaches the des-
tined client. It is computed by dividing the sum of the delays that each client
experiences by the number of clients. The response time includes propagation
and transmission delays on each link and processing delays at the server and at
intermediary nodes.

A) Total Network Traffic: Figure 3 shows the total network traffic for the in-
cremental tc-SMP algorithm compared to SMP, multicast and unicast schemes.
As expected, unicast produces the greatest volume of traffic, that is proportional
to the number of receivers. Traditional multicast protocol represents an improve-
ment of around 30% over unicast, while SMP and tc-SMP can reduce traffic by
up to 50% and 65% respectively. With a small network of under 50 clients, the
reduction in traffic between tc-SMP and SMP over unicast are quite small, with
little difference between them (around 15%). With larger networks (100 to 200
clients) tc-SMP’s and SMP’s performance gain over unicast in traffic is more
significant — over 60% for tc-SMP and over 45% for SMP. Comparing tc-SMP

Minimal Traffic-Constrained Similarity-Based SOAP 571

Fig. 3. Total network traffic comparisons between different routing protocols

to SMP, the difference in bandwidth consumption is not noticeable with small
networks of 10 or 20 clients. When the client numbers increase to 50, 100 and
200, tc-SMP outperforms SMP by around 10%, 20%, and 25% respectively.

Figure 4 compares the total network traffic for the tc-SMP algorithm with and
without heuristics. In general, there is no significant difference between the net-
work traffic results with or without tc-SMP heuristics. A close look reveals that
the similarity-based heuristic method presents an improvement of approximately
3% over its message size-based heuristic method counterpart. For example, with
a network of 150 clients, the incremental tc-SMP algorithm with message-size
based heuristic and similarity based heuristic generate 21.9Mb and 19.23Mb
traffic respectively. It is evident that the incremental tc-SMP algorithm with the
similarity-based heuristic method produces least traffic of the tc-SMP variations
by a margin of around 5%.

B) Average Response Time: The average response times observed in the
experiment is shown in Figure 5. The unicast method has the lowest average
response time at approximately 59ms for networks with 10 clients and 116ms for
networks with 200 clients. The traditional multicast protocol is about 1.5 times
slower than unicast. SMP performs slightly slower than multicast with about
10% higher average response time. The response time for the tc-SMP method
is about 2.0 to 2.5 times higher than the unicast method. This represents an
average increase of 15% in response time over multicast.

572 K.A. Phan et al.

Fig. 4. Total network traffic comparisons between different heuristics and non-heuristic
tc-SMP algorithms

SMP and tc-SMP have significant processing overhead at the server required
to measure the similarity between messages and to aggregate the similar ones.
Small additional processing time at intermediate nodes is required because mid-
way routers need to split incoming SMP messages into multiple outgoing mes-
sages for next-hop routers. Similar overhead also occurs in traditional multicast
routing but is slightly smaller at transitional routers.

The performance penalty of tc-SMP over SMP is primarily its overhead in
setting up the routing tree initially at the server. However, the difference in the
average delays is not significant. For tc-SMP without heuristic, the average delay
a client experiences ranges from 60ms to 195ms for networks of 10 clients to 200
clients. The corresponding results for SMP are 59.5ms to 175ms. On average,
using the tc-SMP algorithm raises the average response by around 10% compared
to SMP.

Figure 6 shows the response times for the tc-SMP algorithms with and with-
out heuristics. Between the two heuristics used for selecting the order in which
clients are added to a tc-SMP tree, the method that is based on the similarity
between response messages takes a longer time. In the similarity-based heuristic
method, the largest message is found first, then subsequent messages that have
the greatest similarity with the first message will join a tc-SMP tree. Therefore,
it is reasonable to expect that the similarity based heuristic will have higher
response time than the message-size based heuristic as observed in Figure 6.

Minimal Traffic-Constrained Similarity-Based SOAP 573

Fig. 5. Average response time comparisons between different routing protocols

6 Discussion

Using tc-SMP, the traffic load is close to 4 or 5 times smaller than the traffic
generated when the individual original SOAP response messages are sent as uni-
casts. Tc-SMP reduces network bandwidth consumption of around 30 percent
compared to SMP. A disadvantage of tc-SMP over SMP is that it requires ad-
ditional time to build the routing tree, which leads to an average response time
increase of less than 10 percent.

As shown in Section 4.5, the tc-SMP routing algorithms can be performed in
polynomial time, so the additional computation time is acceptable. The use of tc-
SMP can be justified by traffic reduction whenever the increased response time
is acceptable — from 3.5 up to 5 times reduction in traffic compared to under
2.5 times increase in average response time. Of course, results vary depending
on the configuration of the network.

This amount of delay is tolerable for many Web service applications, for exam-
ple wireless communication among Intranet users, and personalized information
retrieval over mobile networks. Tc-SMP represents a method for compressing size
of messages in a network, thus it may be suitable for sensors network applications
where bandwidth is limited and devices are constrained in power and battery
life. Reducing the bandwidth consumption also benefits other applications by
reducing traffic which is sent across those same links. The tc-SMP algorithm is

574 K.A. Phan et al.

Fig. 6. Average response time comparisons between different heuristics and non-
heuristic tc-SMP algorithms

particularly suitable in cases where the underlying networks are known to have
multiple paths between nodes.

In addition, in high-speed wide-area networks, the link transmission delay is
usually in microseconds, while the propagation delay may be close to milliseconds
(much more greater) — so given a powerful processor, the trade-off in higher
server processing overhead using tc-SMP over SMP is negligible. In wide-area
networks propagation delay contributes the majority of the total delay.

7 Conclusion and Future Work

This paper outlined a method to reduce SOAP traffic in low bandwidth networks
by using similarity-based multicasting. Tc-SMP represents an improvement over
SMP, an earlier proposed algorithm, for SOAP multicast traffic. Tc-SMP is dif-
ferent from SMP in a way that a new source-routing algorithm is used in tc-SMP
for delivering aggregated messages along paths to introduce the minimal traffic
in the network, instead of using the OSPF routing method which is widely used
on the Internet.

The problem of building a traffic-constrained similarity-based SOAP multi-
cast tree is NP-complete. The proposed algorithm provides a good solution and
operate in polynomial time with a complexity of O(n(m + nlogn)). The algo-
rithm is based on sending combined messages to clients along shared paths by
selecting a path to each client that introduces minimal cost increment.

Minimal Traffic-Constrained Similarity-Based SOAP 575

Simulations have proven that tc-SMP algorithm reduces traffic generated in
the network even further by around 30% when compared to SMP. The perfor-
mance trade-off of tc-SMP over SMP is an increase of less than 10% in average
response time. As the number of clients increases, the network traffic caused by
tc-SMP is considerably less than that caused by SMP, while the performance
penalty is comparatively small. We also implemented a heuristic method for
the tc-SMP algorithm. The heuristic based on the similarity between messages
to new clients and messages to existing clients gives a gain of around 3% over
tc-SMP without any heuristic. The heuristic based on message size achieves
negligible performance gain.

Future work will involve in researching better heuristic algorithms to further
improve performance. Considerations of other quality of service parameters such
as delay bounds and bandwidth requirements for each client may also be incor-
porated into the tc-SMP routing algorithm.

Acknowledgment

The authors would like to thank the Australian Research Council for support-
ing this project, entitled “Designing an Efficient and Scalable Infrastructure for
Mobile Web Services.” under grant No. LP0455234.

References

1. Abu-Ghazaleh, N., Lewis, M.: Differential deserialization for optimized soap perfor-
mance. In: Proceedings of the 2005 ACM/IEEE Conference on Super-Computing,
Seattle, WA, USA, pp. 21–31 (November 2005)

2. Bellman, R.: On a routing problem. Quarterly of Applied Mathematics 16(1), 87–90
(1958)

3. Chakraborty, D., Chakraborty, G., Shiratori, N.: A dynamic multicast routing
satisfying multiple QoS constraints. International Journal of Network Manage-
ment 13(5), 321–335 (2003)

4. Chen, S., Nahrstedt, K.: An overview of quality-of-service routing for the next
generation high-speed networks: Problems and solutions. IEEE Networks Maga-
zine, Special Issue on Transmission and Distribution of Digital Video 12(6), 64–79
(1998)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
vol. 2, pp. 595–601. MIT Press and McGraw-Hill (2001)

6. Elfwing, R., Paulsson, U., Lundberg, L.: Performance of SOAP in Web service
environment compared to CORBA. In: Proceedings of the 9th Asia-Pacific Software
Engineering Conference, Gold Coast, Australia, pp. 84–94. IEEE Computer Society
Press, Los Alamitos (2002)

7. Govindaraju, M., Slominski, A., Chiu, K., Liu, P., van Engelen, R., Lewis, M.J.:
Toward characterizing the performance of SOAP toolkits. In: Proceedings of the
5th IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA,
pp. 365–372. IEEE Computer Society, Los Alamitos (2004)

8. Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problem. Elsevier, North-
Holland (1992)

576 K.A. Phan et al.

9. Oliveira, C., Pardalos, P., Resende, M.: Optimization problems in multicast tree
construction. In: Handbook of Optimization in Telecommunications, pp. 701–733.
Kluwer, Dordrecht (2005)

10. Paul, P., Raghavan, S.: Survey of QoS routing. In: Proceedings of the 15th In-
ternational Conference on Computer Communication, Mumbai, India, pp. 50–75.
International Council for Computer Communication (August 2002)

11. Phan, K.A., Tari, Z., Bertok, P.: Optimizing Web services performance by using
similarity-based multicast protocol. In: Proceedings of the 4th European Confer-
ence on Web Services, Zurich, Switzerland, pp. 119–128 (December 2006)

12. Shaikh, A., Shin, K.: Destination-driven routing for low-cost multicast. IEEE Jour-
nal of Selected Areas in Communications 15(3), 373–381 (1997)

13. Suzumura, T., Takase, T., Tatsubori, M.: Optimizing Web services performance by
differential deserialization. In: Proceedings of the IEEE International Conference
on Web Services, Orlando, Florida, USA, pp. 185–192. IEEE Computer Society
Press, Los Alamitos (2005)

14. Varga, A.: OMNet++ Discrete Event Simulation System, URL (2006),
http://www.omnetpp.org

15. Werner, C., Buschmann, C., Fischer, F.: WSDL-driven SOAP compression. Inter-
national Journal of Web Services Research 2(1), 18–35 (2005)

16. Yuan, X.: Heuristics algorthims for multiconstrained quality-of-service routing.
IEEE/ACM Transactions on Networking 10(2), 244–256 (2002)

17. Zipf, G.K.: Human Behaviour and the Principle of Least-Effort. Addison-Wesley,
Cambridge MA (1949)

http://www.omnetpp.org

Implementing a State-Based Application Using

Web Objects in XML

Carlos R. Jaimez González and Simon M. Lucas

Department of Computer Science, University of Essex,
Wivenhoe Park, Colchester CO4 3SQ, UK

{crjaim,sml}@essex.ac.uk

Abstract. In this paper we introduce Web Objects in XML (WOX) as
a web protocol for distributed objects, which uses HTTP as its transport
protocol and XML as its format representation. It allows remote method
invocations on web objects, and remote procedure calls on exposed web
services. WOX uses URIs to represent object references, inspired by the
principles of the representational state transfer (REST) architectural
style. Using URIs in this way allows parameters to be passed, and values
returned, either by value or by reference. We present a case study, in
which an existing chart application is exposed over the Internet using
three different technologies: RMI, SOAP, and WOX. WOX proves to be
the simplest way to implement this application, requiring less program
code to be written or modified than RMI or SOAP. Furthermore, as a
consequence of its REST foundations, WOX is particularly transparent,
since any objects that persist after a WOX call may be inspected with
any XML-aware web browser. It is also possible to invoke methods of
persistent objects through a web browser.

1 Introduction

Exposing applications over the Internet has become essential for many areas,
due to the potential advantages of accessing data and objects from any place in
the world. For this purpose, there are many existing distributed object technolo-
gies such as the Remote Method Invocation (RMI) [6] and the Common Object
Request Broker Architecture (CORBA) [2], and web service technologies such
as XML-RPC [7] and the Simple Object Access Protocol (SOAP) [5]. Both dis-
tributed object and web service technologies allow applications to be remotely
accessible and allow more complex systems to be composed of components resid-
ing on geographically distributed machines. There are, however, some important
differences between these two technologies, which can affect their suitability for
specific types of applications.

Distributed object technologies base their functionality on two concepts: the
object’s reference, which allows a client application to refer to an existing object
and execute operations on it; and the object’s state, which is maintained between
operation calls that can modify it. On the other hand, web service technologies
in their current state do not have any of the concepts of distributed object pro-
gramming and consequently have significant limitations. They do not support

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 577–594, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

578 C.R. Jaimez González and S.M. Lucas

access to remote objects, but instead they provide standalone services through
the web by exchanging eXtensible Markup Language (XML) [3] messages, and
attempt to solve the interoperability problem that exists with distributed ob-
ject technologies. Although existing distribute object systems such as CORBA
and RMI can work on the web by tunneling their requests through HTTP, this
decreases their performance, and can be a technically demanding task.

The suitability of every technology to implement a given application and
expose it over the web depends on a series of aspects that need to be considered,
such as the importance of interoperability between languages, the encoding of
messages, the maintenance of object references (object state), the efficiency in
the transfer of data, the support and extensibility of data types, the ease of use
and implementation, among others. To explore the issues, we present a case study
based on a simple state based data charting application, which was originally
implemented in Java. The original application is stateful, and allows data to
be incrementally added to a chart object. A user creates a chart object with a
title, and can then successively add data-points; this incremental style makes the
chart application very easy to use for a client program. For our case study, the
application needs to be exposed over the Internet, preserve the state of objects,
and have access to remote objects. The use of XML as the encoding format
for objects provides a simple text representation of any kind of data, which is
machine and human readable, and it also provides a standard format to transfer
data, which could lead to language independence. With the existing distributed
object and web service technologies, it would be possible to implement such an
application, but considerable extra programming effort would be required.

Web Objects in XML (WOX) is a web distributed object protocol that of-
fers features from distributed object programming and web services to expose
applications over the Internet. WOX allows the creation of remote objects, the
invocation of methods on remote web objects and the invocation of remote pro-
cedure calls on exposed web services, among other operations. WOX uses HTTP
as its transport protocol, XML as its format representation, and makes objects
available through their own Uniform Resource Identifier (URI) [8], inspired by
the principles of the Representational State Transfer (REST) [9] architectural
style. WOX is simple and light-weight.

This paper is organized as follows. Section 2 introduces the WOX architecture,
the set of client operations supported, and the format of the XML messages
exchanged. A case study is presented in section 3, in which RMI, SOAP and
WOX are evaluated to implement a chart application and deploy it over the
web. Finally, conclusions and future work are given in section 4.

2 Web Objects in XML (WOX)

This section presents the WOX architecture, the operations allowed from a
client application, the web browser interface to invoke operations on web ob-
jects, and the format of the XML messages exchanged between a WOX client
and a WOX server. WOX is a working prototype that can be downloaded from

Implementing a State-Based Application 579

http://algoval.essex.ac.uk/wox/Downloads.html. It is straightforward to
install and use. It is also accompanied of a set of client example programs.

2.1 WOX Design

We based the design of WOX on standard object-oriented concepts, distributed
object programming and resource-oriented (REST) web services.

The WOX architecture is based on interfaces, which separates two important
notions in distributed systems: the definition of behaviour given by the inter-
face, and the implementation of that behaviour. A WOX server will have the
implementation of the service, and a WOX client will have only an interface of
that service in order to create objects, access them, and execute operations.

The nature of WOX required a strong object-oriented language, which fulfilled
all of our requirements. We decided to implement it in Java [4] because it is
a platform independent language (although we are also implementing a WOX
serializer, and WOX client libraries in C#), which makes our system runnable on
a variety of platforms; it is free and not restricted to the use of any commercial
tool; and it highlights the concept of an interface, which makes it ideal for a
distributed system.

It is important to note that RMI [6] also uses interfaces to allow access to
remote objects, but in a very different way, which can be somewhat tedious in
practice. We provide in our case study an explanation of the set of steps and
changes required in order to implement the chart application using RMI. In this
respect, a WOX client only needs a simple interface of the service.

A WOX client makes method invocations on a proxy that is created dynam-
ically for the interface. A dynamic proxy is basically a class that implements a
list of interfaces provided at runtime, such that method invocations through one
of the interfaces on an instance of the class will be dispatched to another object
[16]. The proxy translates the method invocation to XML and sends it to the
WOX server. This mechanism uses the proxy design pattern [1].

One of the main ideas behind WOX is to expose remote objects through their
own URI [8] and allow clients to have access to them. URIs are used to identify
objects inspired by the principles of the REST architectural style. The notion of
URI has been widely and successfully used by the web, and it is also a standard
way to identify resources. Proponents of REST [10,11,12] argue that objects
should be identified through their own URI, because this is how the web works.

Remote references in WOX are URIs, so that a client can refer to a remote
object by specifying its URI. The XML encoding of a WOX object can be viewed
by typing the URI into the address bar of a standard XML-aware web browser.

The concept of remote reference in WOX is widely used because a client can
request a remote reference to a specific object, pass remote references as param-
eters, and also receive results from method invocations as remote references. A
basic example of the mechanism used by WOX in a method invocation is shown
in Figure 1, and the detailed steps carried out are described in the following list.

580 C.R. Jaimez González and S.M. Lucas

1. The WOX client program invokes a method on a remote reference (the way
in which the client invokes a method on a remote reference is exactly the
same as that on a local object, as far as the client program is concerned).

2. The WOX dynamic proxy takes the request, serializes it to XML, and sends
it through the network to the WOX server.

3. The WOX server takes the request and de-serializes it to a WOX object.
4. The WOX server loads the object and executes the method on it.
5. The result of the method invocation is returned to the WOX server.
6. The WOX server serializes the result to XML and either the real result or a

reference to it is sent back to the client. The result is saved in the server in
case a reference is sent back.

7. The WOX dynamic proxy receives the result and de-serializes it to the ap-
propriate object (real object or remote reference).

8. The WOX dynamic proxy returns the result to the WOX client program.

From the WOX client program’s point of view it just makes the method
invocation and gets the result back in a transparent way. WOX can refer to
remote objects that reside in the same WOX server as that of the object (a
relative URI can be used), or to remote objects located anywhere on the Web.

Client
program

Dynamic
Proxy

Method
invocation

Return
result

WOX
server

Web
object

Actual method
invocation

Return
result

Serialize
to XML

Serialize
result to XML

Desearilize to
WOX object

Desearilize
result

Internet

1 2 3 4

5678

Fig. 1. A remote method invocation in WOX

2.2 WOX Client Operations

This subsection introduces the fundamental operations supported in WOX, and
those not covered here are described in [14]. A set of client code examples can
be found at http://algoval.essex.ac.uk/wox/Examples.html.

Creation of a new object. When a WOX client program requests the creation
of an object, the WOX server creates the object and stores it. The WOX server
returns to the client, based on the policy chosen, either the actual object or a
remote reference to it. The remote reference is specified by a URI that points to
the actual object. Once the WOX client program holds the actual object or the
remote reference, it can invoke instance methods on it.

Implementing a State-Based Application 581

Chart chart = (Chart) WOXProxy.newObject
(serverURL, className, args, policy);

The code above creates a chart object of type Chart, which is a user-defined
interface to hold either a real object or a remote reference to it. WOXProxy is a
class provided by the WOX client libraries to allow the execution of WOX oper-
ations like newObject that takes four parameters: serverUrl, which represents
the URL where the WOX server can be contacted to create the object (e.g.
http://csres109:8080/WOXServer/WOXServer.jsp); className is the pack-
age qualified class name of the object to be created; args are the set of arguments
used to construct the object; and policy is an integer number that represents
whether a real object or a remote reference must be returned. The policy param-
eter also specifies the default mode in which WOX operates for future method
invocations on the object (whether it returns real objects or remote references).

Request for a remote reference. A remote reference is requested by a WOX
client program to invoke instance methods on the object to which the remote
reference refers to, or simply to use it as a parameter in another method invo-
cation. In this type of request, the WOX server looks for the specific object and
returns a reference to it. The code example below gets a remote reference to a
Chart object. The objectUrl parameter is the URL where the object is located.
A WOXException will be thrown if there is no object at the URL specified.

Chart chart = (Chart) WOXProxy.getReference(objectUrl);

Static Method Invocation. A static method invocation is similar to a web ser-
vice remote procedure call (like in SOAP[5], XML-RPC[7], or JSON-RPC[19]),
in the sense that the WOX client requires no access to a particular object stored
in the WOX server. When a static method invocation is requested, the WOX
client invokes the invokeService method of WOXProxy class, in which it is spec-
ified the particular method to be executed (methodName), the class to which it
belongs (className), the set of parameters received by the method (args), and
the mode of operation (policy). The WOX server executes the method and re-
turns the result. A WOXException will be thrown if the WOX server cannot find
the method with the signature specified.

An important difference between web service remote procedure calls and WOX
static method invocations is that a WOX client can also specify using the policy
parameter, whether the result returned is the actual result, or a reference to it.
Moreover, SOAP does not handle remote references, XML-RPC has a limited
set of data types, and JSON-RPC does not support marshalling of objects with
circular references.

An example of a WOX static method invocation is shown below, in which its
return type is the user-defined interface Manager. The interface Manager is used
in this example, but it could be used any other interface or concrete class, as
long as it is consistent with the return type of the method invocation and the
policy chosen in the WOX operation.

582 C.R. Jaimez González and S.M. Lucas

Manager manager = (Manager) WOXProxy.invokeService (serverUrl,
className, methodName, args, policy);

Instance Method Invocation. When a WOX client holds a remote reference,
it can invoke instance methods on it in the same way as if it was a local object.
The WOX mechanism will redirect the call through the network to the WOX
server, which will in turn execute the method on the specific object. Once the
method has been executed, the WOX server returns the result to the client. It
should be noticed that a remote reference is actually a dynamic proxy on which
the WOX client invokes methods. In the code below the client gets a remote
reference to a Chart object, and then invokes its getImage instance method.

Chart chart = (Chart) WOXProxy.getReference(objectUrl);
byte[] graph = chart.getImage();

Destruction of an object. When a client does not require a remote object
any more, it should be destroyed and garbage collected. Our current prototype
of WOX includes an operation to explicitly destroy an object by providing its
URI. However, in a future release, we could also allow clients to specify how long
the object’s life should be, and when the time for the destruction was reached
then the object would be destroyed (i.e. removed from persistent storage). We
appreciate that one of the reasons that SOAP does not allow object references is
to eradicate any problems with distributed garbage collection, but believe that
for many problem domains, object references are essential. We predict that for
particular application areas and user communities, sensible usage policies will
evolve given a suitably flexible framework.

2.3 Web Browser Interface

This subsection describes another way of executing WOX operations. As part
of its REST foundations, WOX objects can be inspected by an XML-aware web
browser. Furthermore, methods can be invoked on persistent objects using a web
browser interface. This mode of operation allows clients to execute methods on
a specific object without needing a Java client program.

Inspecting a web object. Every object that is persisted after a WOX call is
stored in XML and can be inspected by a web browser. Below is the XML repre-
sentation of a Manager object, which was used in one of our previous examples.

<object type="company.Manager" id="0">
<field name="name">
<object type="String" id="1">Robin Dyson</object> </field>

<field name="age" type="int" value="35" />
<field name="department">
<object type="String" id="3">Finance</object> </field>

</object>

Implementing a State-Based Application 583

Invoking methods on a web object. Since every object can be identified
uniquely, it is also possible to invoke methods on persistent objects through a
web browser. A method invocation on a Manager object is as follows.

http://csres109:8080/WOXServer4/invokeMethod.jsp?
objectId=Manager645313585&method=getName

The method invocation shown above would invoke the getName method of
the Manager645313585 object. The result of the method invocation would be
returned as XML, which is the default mode of operation for WOX answers, but
it can also be returned as html (by specifying mode=html in the query string),
in which case only the string would be returned. There is a special case in which
WOX can also return an image (mode=image) when the return type of a method
is an array of bytes. This mode of operation will be presented in the case study.

Using a web browser, WOX is also capable of invoking methods with pa-
rameters of primitive data types, but not with parameters of other data types,
like user-defined classes. This way of operation through the browser is similar
to the way in which Apache Axis [13] allows to invoke methods of classes. The
main differences are that Axis, which is SOAP based, does not have the con-
cept of an object, thus the methods are invoked as if they were static methods.
Another important difference in this mode of operation is that Axis does not
support package qualified classes. In this respect, WOX enables the invocation
of methods on any web object, and methods of any package qualified class.

Alternatively, WOX provides a user interface with all the possible methods to
invoke on a specific web object. This can be accessed by typing the same URL
presented before, but omitting the method parameter. WOX will present all the
methods available for invocation on that object. Figure 5 in subsection 3.4 shows
this web user interface with some of the methods available for a Chart object.

When clicking the Invoke Method button of the desired method, a query string
is built with all the information needed for the method invocation. The request
is made to the WOX server, which will send an answer via an XML message
with the result of the method invocation.

2.4 XML Messages in WOX

An XML message in WOX is a request from a WOX client or the response sent
back from a WOX server. A request can be any of the operations described in the
previous section, while the response could be a real object, a remote reference,
or an exception generated by the WOX server.

Since our system is based on object-oriented programming, the XML messages
are generated by serializing objects of different classes according to the request
made by a client, or the result or exception generated by the server. Some of these
classes are shown in Figure 2, which contain attributes with all the information
required to accomplish the request made. For example, the WOXConstructor
class represents a request of object creation, where the className attribute
specifies the name of the class of the object to be created, types and args are
arrays that contain the parameters needed to construct an instance of the class,

584 C.R. Jaimez González and S.M. Lucas

- className: String
- types: String[]
- args: Object[]
- returnType: String

WOXConstructor

className: String

types: String[]
args: Object[]
returnType: String

WOXMethod

methodName: String
- objectUrl: String

- interfaces: String[]

WOXReference

- className: String

- objectUrl: String

WOXInstanceMethodWOXStaticMethod

Fig. 2. Some WOX classes

and returnType indicates whether a remote reference or a real object must be
returned. The WOXMethod, WOXStaticMethod and WOXInstanceMethod classes
represent method invocations; and WOXReference remote references.

In addition to the classes shown in Figure 2, there are some other classes
to represent all of the operations described in the previous section, such as
WOXDestructor, WOXUpdate, WOXUpload, etc. Similarly there are classes to rep-
resent exceptions thrown by a WOX server, which inherit from WOXException.

The XML message shown below represents a static method invocation (an
object of the WOXStaticMethod class). Although our WOX prototype (WOX
serializer, WOX client libraries, and WOX server) is only implemented in Java
(we are implementing a WOX serializer, and part of our WOX client libraries in
the C# programming language), the XML messages should be appropriate for
any other object-oriented programming language.

<object type="server.WOXStaticMethod" id="0">
<field name="className">
<object type="String" id="1">problems.test.MathClass</object>

</field>
<field name="methodName">
<object type="String" id="2">returnArrayInt</object> </field>

<field name="types">
<array type="String" length="1" id="3">
<object type="String" id="4">int</object> </array> </field>

<field name="args">
<array type="Object" length="1" id="5">
<object type="Integer" id="6">5</object> </array> </field>

<field name="returnType">
<object type="String" id="7">Copy</object> </field>

</object>

2.5 WOX Server Operation

Every request of a WOX client is received by the WOX server as an XML
message, it is de-serialized to a WOXAction object, and its doAction method is

Implementing a State-Based Application 585

+ doAction(): Object

WOXConstructor WOXMethod

+ doAction(): Object

WOXReference

+ doAction(): Object

WOXInstanceMethod

+ doAction(): Object

WOXStaticMethod

+ doAction(): Object

WOXAction

+ doAction(): Object

Fig. 3. WOXAction hierarchy diagram

executed. Figure 3 illustrates the hierarchy diagram for the WOXAction class.
WOXConstructor, WOXInstanceMethod, WOXStaticMethod and WOXReference
extend WOXAction. This mechanism allows a WOXAction object to invoke the
doAction method of the appropriate class, which is coded differently, based on
the type of request. This design is very flexible in the sense that there can be
any other types of new requests without modifying the existing code. New types
of requests would be represented as classes that extend the WOXAction class.

2.6 Limitations

WOX in its current state has also limitations, that somewhat can be seen as
features not included in this release. A list is presented along with an explanation:

- Language independence: Although all the messages are represented in XML,
WOX server and WOX client libraries have been only developed using the Java
programming language, but we believe that the XML messages generated by
WOX are appropriate to be implemented in any other class-based object-oriented
programming language, such as C#, C++, Ruby, or Smalltalk. Our initial ap-
proach has been to develop our WOX serializer in C#.

The main issue to be considered when implementing WOX in other object-
oriented programming languages is the serialization process, which is actually
how objects will be represented in XML. This leads to consider multiple in-
heritance, and other programming language-specific features, which would be
represented in the XML message.

- Security and ownership of objects: WOX does not support the concept of
ownership of an object nor security policies for accessing web objects. Any client
can have access to any objects created previously by another client. There is no
restriction on who is executing what method of what object. It is just necessary
for a client to have the URL to be able to access the object. For most practical
applications, this would be a severe limitation, but at the prototype stage we
did not want to be distracted by these considerations. However, since WOX is
layered over HTTP, any HTTP-based security mechanism could be used.

586 C.R. Jaimez González and S.M. Lucas

- Asynchronous processes: All the operations in WOX are synchronous, which
means that a result is immediately sent back to the caller. Asynchronous oper-
ations would allow clients to submit their jobs or processes and wait for results.
Results would be returned to the caller normally via a callback operation.

- Object navigation: All the objects that persist after a WOX call can be
inspected through an XML-aware web browser. An additional feature in WOX
would allow clients to navigate through object graphs and be able to request spe-
cific nodes (objects). The use of an object-oriented db as the persistent storage
for objects, such as db4o[17], could facilitate the implementation of this feature.

3 Case Study

This section presents a case study, in which a chart application is exposed
through the Internet using three different technologies: RMI as a distributed
object technology; SOAP as a web service technology; and finally our WOX pro-
totype as a technology with features from both paradigms. The next subsections
describe the chart application, and focus on the set of steps needed to implement
it in the three different technologies. A different case study, describing a pattern
recognition application, can be found in [15]. The case study presented in this
section shows how best to deploy this chart application over the web with exist-
ing technologies and WOX. We chose this simple case study to introduce WOX,
but we are already working on a more realistic application (the development
of a game server) to demonstrate our ongoing work, which covers some of the
limitations described in the subsection 2.6.

3.1 The Chart Application

The chart application we want to expose through the Web is used to input the
data we collect from our experiments, get a statistical summary of the data,
and get an image with a line graph of the data provided. The way in which the
chart application works is very simple. We generate a new Chart object for every
experiment, which will collect all the data for that particular experiment. The
following line of code would create a LineChart object labeled WOX Experiment.

Chart chart = new LineChart("WOX Experiment");

Every time a new result from an experiment is ready it can be added to the
chart object. The following code gets a new result from an experiment and adds
it to the previously created Chart object. Since this is only for demonstration
purposes we are using the getResult static method of the Experiment class
(which returns a randomly generated double value), but this could be easily a
method of any object which actually returns a result.

double x = Experiment.getResult();
chart.addValue(x);

Implementing a State-Based Application 587

Values are added to a chart object as results come from an experiment. Once
the experiments have finished we can invoke the getImage method to get an
array of bytes representing a line chart image.

byte[] image = chart.getImage();

In this simple application, the chart object would be created once, and ex-
periments could be run over the world and use the chart object to add new
results to it. This would also allow you to get a graph with the results at any
point in time. This application is clearly state-based, because it needs to do the
data collection, which will serve to do the statistical summary and generate the
graph. The application consists of the Chart interface and the LineChart class.

The aim of the case study is to evaluate how well the deployment of the
chart application is supported in the three different technologies: RMI, SOAP,
and WOX. The deployment of this application through the Internet will allow
clients ideally to refer remotely to chart objects that were created previously. In
that way, clients do not need to hold chart data objects in their own computers,
and they can also eventually save time by requesting a reference to an existing
chart object. They can also add new values to the chart object and request an
updated graph. A more realistic example would also allow chart styles to be set
up and referenced. The implementation of this application will need to maintain
the state of the objects and some mechanism to handle remote references.

3.2 Implementation Using RMI

In order to implement the chart application in RMI, several changes must be
made to the original java source files, and follow a list of steps to make the objects
remotely accessible to client applications. Since this is a very simple application
the changes required will be only to the Chart interface and the LineChart class.

Modifying the original classes. The set of modifications to the classes in the
chart application are described in the following list.

- Select the interface that clients will be using to access remote objects on the
server. In this case the Chart interface would be used for this purpose.

- The Chart interface must extend the java.rmi.Remote interface provided
in the Java API. The java.rmi.RemoteException exception must be thrown
by all its method signatures.

- The LineChart class also needs to throw the java.rmi.RemoteException
exception in every one of its methods and constructors.

- Those classes that will be traveling through the network must implement
the java.io.Serializable interface. This is the case for the LineChart class.

- In order to expose chart objects remotely it is necessary either to extend
the java.rmi.server.UnicastRemoteObject class or to specify that in the con-
structor of the class, when the object is created. In this case LineChart class
must extend the UnicastRemoteObject class.

An alternative solution to implement this application using RMI could be to
provide wrapper classes for every class or interface that requires modifications.

588 C.R. Jaimez González and S.M. Lucas

Those new wrapper classes would contain the modifications described in this
section, and the original source classes would not be affected.

Deploying and running the application. Once the source files have been
changed as described,the following steps must be carried out:

- Generate the stub for the remote interface Chart, by executing the rmic
stub compiler (even though this is no longer required in Java 5 or later version,
as dynamic proxies are generated). A client application will need the remote
interface and the stub generated in order to access the remote objects.

- On the server side computer it will be required to copy all the classes and
interfaces modified and start up the Object Registry (this is where client appli-
cations will find the remote objects). A server program needs to be written to
create and register some objects in the Object Registry. In this case, the server
program will have to create LineChart objects. These objects will actually be
the remote objects available to the clients. It must be noticed that this server
program creates some objects, which will be available for clients to access. Some
extra methods would have to be provided in the LineChart class in order to
allow clients to create their own objects.

- Client applications require the interface Chart, in addition to the stub gen-
erated by the rmic compiler (stubs are not required for Java 5). A sample code
for a client application that uses RMI is shown below. The code gets a remote
reference to a chart object, which has been created by the server program in
the Object Registry. The client application can work with the remote reference
as if it was a local object. It adds a new value to the chart object and then it
gets an updated image with the line graph. One restriction as stated before is
that clients are not able to create their own remote chart objects directly, even
though extra methods could be provided to do so.

Chart chart = (Chart) Naming.lookup("chart01");
double x = Experiment.getResult();
chart.addValue(x);
byte[] image = chart.getImage();

Extra work would be needed to expose those objects over the Web, in which
RMI tunnels its requests through HTTP. We could also have chosen to implement
the entire chart application with Enterprise JavaBeans (EJB) Technology[20]
(which is a more powerful technology that communicates through RMI) and an
application server, such as JBOSS[21]; but we know that EJBs introduce many
more unnecessary steps for this simple type of application. We would have had
to deal additionally with EJB and home objects, home and local interfaces, and
deployment descriptors.

3.3 Implementation Using SOAP

The implementation of the chart application using SOAP needs many more
changes than those in RMI, because the application requires maintenance of the
state of the objects between method calls, which SOAP does not support. In

Implementing a State-Based Application 589

order for SOAP to refer to remote objects a considerable extra programming
effort is required, which leads to changes in the source classes or the creation
of wrapper classes to encapsulate the instantiation and maintenance of remote
objects. We prefer the latter method.

Creating wrapper classes. Following the idea of writing wrapper classes,
there must be a mechanism to maintain the objects created by the client, and
to refer to them. Figure 4 illustrates a class diagram that shows how to wrap up
the original classes in the chart application in order to be able to expose chart
objects remotely. The following changes are needed:

Fig. 4. Wrapper classes for the chart application

- A ChartWrapper interface that represents the SOAP interface of the ser-
vice, which wraps up the Chart interface. ChartWrapper takes each instance
method of the original Chart interface, and adds an id parameter to them. An
example is illustrated below, where the signature of the addValue method in the
ChartWrapper interface has now an additional parameter.

public void addValue(String id, double x);

- A ChartWrapperImpl class which is an implementation of ChartWrapper
interface, and maintains a map of chart objects. The map can be maintained
in memory or persistent storage. This implementation of the service will allow
maintaining the state of chart objects on the server.

- A LineChartWrapper class that implements the Chart interface and provides
a wrapper for LineChart class on the client side. It will be the interface of
the service to the client. Clients will create chart objects of LineChartWrapper
class instead of LineChart class, as can be seen from the code below. The class
LineChartWrapper contains the logic to maintain the state of a chart object
on the client side by keeping track of the id sent by the server to identify a
specific chart object. LineChartWrapper class uses a proxy mechanism to send
the requests from the client to the appropriate web service on the server.

Chart chart = new LineChartWrapper("WOX Experiment");
double x = Experiment.getResult();

590 C.R. Jaimez González and S.M. Lucas

chart.addValue(x);
byte[] image = chart.getImage();

- A Proxy class that receives the request from the client, extracts from it
the web service name to be executed and the set of input parameters needed to
invoke it. Each parameter must be mapped to the appropriate XML data type
by using the serializers provided in SOAP, which can only serialize primitive
data types, arrays, vectors, and user-defined classes that follow the Java Bean
conventions. If there are other classes in the application to be serialized, then it
would be also required to provide serializers for them. Those provided in SOAP
require the classes to be modified to follow certain conventions in order to work
properly. For example if a bean serializer is used, then the class to be serialized
must follow the Java Bean conventions. On the other hand, one can write its
own custom serializers, though it is a demanding and time-consuming task.

- The classes in the original chart application were modified to provide set and
get methods for all their attributes, in order for them to be serialized properly.

Deploying and running the application. The deployment of the SOAP-
version of this chart application involves the following steps.

- Copy to the server all those classes of the original application, in addition
to ChartWrapper and ChartWrapperImpl, which define the SOAP service.

- Write a deployment descriptor to actually deploy the chart service on the
server. The deployment descriptor specifies the name of the web service, the java
class to be used for the service, the methods that can be invoked by clients, the
scope of the web service, and the type mappings, which define the serializers to
be used for user-defined classes.

- On the client side it will be required the classes of the original application,
in addition to the Proxy class and the LineChartWrapper class, which will be
the interface of the service to the clients.

- Running the application involves creating a chart object, adding some values
to it, and getting the image with the line chart.

Despite the application is functional after all the modifications made and
the lengthy procedure, it still has some drawbacks in the serialization efficiency.
SOAP lacks of an efficient way for serializing arrays of primitive datatypes. Table
1 in subsection 3.4 shows a comparison in time and storage space between WOX
and SOAP when they serialize an array of a primitive data type.

3.4 Implementation Using WOX

The implementation of this chart application in WOX is straightforward. For this
application there is no need to create stubs for clients, rewrite classes to extend
or implement interfaces, change method signatures to throw remote exceptions,
write wrapper classes, or any extra programming effort, as long as the services
to be exposed have an interface and an implementation.

The Chart interface and the LineChart class will reside on the server side,
with no modifications. The client application will need the Chart interface in

Implementing a State-Based Application 591

order to create new remote chart objects, access them, and invoke methods on
them. Note that there could be more Chart implementations added to the server,
and there would be no need to edit any configuration files, or recompile any
classes. The only requirement is that the WOX server can locate the necessary
classes to execute the implemented methods. However if methods were added to
the interface, the client would need the new interface in order to invoke the new
methods. A WOX client would use the fragment of code shown below to use the
chart application.

Chart chart = (Chart)WOXProxy.newObject(serverUrl,classN,args,pol);
double x = Experiment.getResult();
chart.addValue(x);
byte[] image = chart.getImage();

The first statement creates a Chart object. The serverUrl is the URL of the
WOX server; classN is the class of the object to be created (stats.LineChart
in this case); args are the set of arguments used to construct the object; and
pol is an integer value that represents whether the real object or a reference to
it must be returned from the WOX server (we specify that a remote reference
must be returned, since we want the chart objects on the server side).

Requesting a remote reference of a chart object is particularly useful in this
application that needs to preserve the state of the object, which is modified by
adding values to the chart. In cases such as this the ability of WOX to allow
clients to create and manipulate objects on the server becomes essential. While
it is possible to do the same with SOAP with considerable extra programming
effort, as we have shown in the previous subsection, the difference is that WOX
actively supports this stateful style of interaction.

The process of creating a remote object continues when the WOX server
receives the request, creates the chart object and returns the remote reference
to the client. When the WOX client receives the remote reference to the new
object, it creates a proxy that implements the Chart interface. This proxy will
be used to make the subsequent method invocations on the remote object. The
third and fourth code statements from the code above are adding a new value
to the chart and getting an image with a line graph.

Since adding values to a chart object and getting an image with a graph are
method invocations on a chart object, they can also be executed through the
web browser user interface that WOX provides. Figure 5 shows the user interface
provided by WOX to invoke methods on the chart object previously created.
The getImage method has 3 different modes of operation: xml to return the
array of byte serialized in xml, html to get the plain array of byte, and image
to get the actual image shown in the web browser. This mode of interaction is
only possible in the web browser interface. It actually uses the image/jpeg MIME
type [18] to decode the array of byte when it is sent to the web browser. The
possibility to include other MIME types to a WOX server would allow to decode
array of bytes into specific formats that can be displayed by a web browser (e.g.
audio and image files, text documents, etc.).

592 C.R. Jaimez González and S.M. Lucas

Fig. 5. Web browser interface to invoke methods on a Chart object

Fig. 6. Method invocations through the web browser

It can also be possible to build a URL with a query string specifying the
method to be invoked, the parameters needed, and the mode of operation. Fig-
ure 6 shows three different invocations of the getImage method using the image
mode. Clients can access the chart object either via a Java client program,
through this web browser interface, or simply by building a URL with an appro-
priate query string.

A fragment of the XML message returned from the WOX server with the
array of byte is shown below. It is encoded using base64.

<array type="byte" length="3023" id="0">
iVBORw0KGgoAAAANSUhEUgAAAQ4AAAC0CAIAAADq9VVVAAAIg0lEQVR42
<!-- rest of array omitted -->

</array>

WOX serialization process transfers data in XML in a more optimized way
than SOAP. By default, SOAP uses an XML element for each element of an array
of primitive elements (such as int for example). This means that SOAP-encoded
arrays can be over 40 times the size of their binary encoding. The exception to
this are byte arrays like the one illustrated above, which are encoded efficiently
using base-64 (which WOX also uses for byte arrays). Given the speed of modern
computers, and the fact that many of us have access to high bandwidth Inter-
net connections, this difference in encoding efficiency might seem unimportant.
However, Table 1 emphasizes how significant this difference is, both in time and
space usage. For arrays of more than 30,000 int, the SOAP server (Apache Axis)
crashed with an out of memory error.

Using WOX to implement the chart application allows other clients to have
access to chart objects remotely through their own URI, either by using a Java
client program or the web browser user interface. Client applications are also
able to create their own chart objects, and add new values to existing ones.

Implementing a State-Based Application 593

Table 1. Time and space usage for passing an array of 20,000 int in WOX and SOAP

Method Time (ms) Size (KB)

WOX 80 106
SOAP 3,300 4,200

4 Conclusions and Future Work

In this paper we introduced WOX (Web Objects in XML), which is a web dis-
tributed object protocol that allows remote method invocations on web objects,
and remote procedure calls on exposed web services. WOX uses HTTP as its
transport protocol and XML to encode the messages exchanged between client
and server. WOX exposes object references as URIs, inspired by the principles
of the Representational State Transfer architectural style. Using URIs in this
way allows parameters to be passed, and values returned, either by value or by
reference. WOX objects can also be accessed through a web browser interface,
from which methods invocations can be executed. We described the WOX ar-
chitecture, the set of client operations supported, the web browser interface, the
format of the XML messages, and the WOX operation modes.

We also presented a case study, in which a state-based chart application is
described and exposed over the Internet using three different technologies: RMI,
SOAP and WOX. WOX proves to be the most straightforward system for im-
plementing this type of application. Applications like the one presented in this
paper, which has some special features such as being accessible remotely over the
Internet, maintaining the state of objects, having access to remote objects, stor-
ing them in a standard text format (XML), among others, can be implemented
using WOX. The possibility to inspect the object through an XML-aware web
browser and execute method invocations on web objects via a web browser are
also built-in features of WOX. The ease of use to implement this type of appli-
cations is another of its advantages over the other technologies discussed.

The limitations or features not included in WOX have also been discussed.
They include the language independence given by the XML messages generated
by WOX; the security and ownership of objects; the support for asynchronous
processes; and the possibility to navigate through web objects. Even in its current
state, however, we are already putting WOX to good use, and find it to be a
simple, easy to use, and robust protocol.

References

1. Gamma, E., Halm, R., Johnson, R., Vlissides, J.: Design Patterns: elements of
reusable object-oriented software. Addison-Wesley, Reading (1995)

2. Common Object Request Broker Architecture (CORBA) Object Management
Group (2000), available at http://www.omg.org

http://www.omg.org

594 C.R. Jaimez González and S.M. Lucas

3. Extensible Markup Language (XML), World Wide Web Consortium, available at
http://www.w3.org/TR/REC-xml/

4. Java Technology Sun Microsystems (1994), available at http://java.sun.com
5. Latest SOAP Versions, World Wide Web Consortium (2003), available at

http://www.w3.org/TR/soap/
6. Wollrath, A., Waldo, J.: The Java Tutorial, Trail: RMI Sun Microsystems, available

at http://java.sun.com/docs/books/tutorial/rmi/
7. Winer, D.: XML-RPC Specification, available at http://www.xmlrpc.com/spec
8. Berners-Lee, T.: Universal Resource Identifiers - Axioms of Web Architecture,

World Wide Web Consortium, available at http://www.w3.org/DesignIssues/
Axioms.html

9. Fielding, R.: Architectural Styles and the Design of Network-based Software Archi-
tectures, available at http://www.ics.uci.edu/~fielding/pubs/dissertation/
top.htm

10. Costello, R.: Building Web Services the REST Way, xFront, available at
http://www.xfront.com/REST-Web-Services.html

11. Prescod, P.: Second Generation of Web Services, available at
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html

12. He, H.: Implementing REST Web Services: Best Practices and Guidelines, available
at http://www.xml.com/pub/a/2004/08/11/rest.html

13. Web Services - Axis, available at http://ws.apache.org/axis/ ASF, 2004
14. Jaimez González, C., Lucas, S.: Web Objects in XML: a Web Protocol for Dis-

tributed Objects, Technical Report, University of Essex (2005)
15. Jaimez González, C., Lucas, S.: Implementing a Pattern Recognition Application

Using RMI, SOAP and WOX, Technical Report, University of Essex (2005)
16. Dynamic proxy classes, Sun Microsystems (1999), available at

http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html
17. db4o database (2006), available at http://www.db4objects.com/,db4objects
18. MIME Media Types, Internet Assigned Numbers Authority (1999), available at

http://www.iana.org/assignments/media-types/
19. JSON-RPC 1.1 Specification Working Draft (2006), available at

http://json-rpc.org/wd/JSON-RPC-1-1-WD-20060807.html
20. Enterprise JavaBeans Technology, Java Platform, Enterprise Edition (Java EE)

(2007), available at http://java.sun.com/products/ejb/
21. JBoss Application Server (2007), http://www.jboss.org/products/jbossas

http://www.w3.org/TR/REC-xml/
http://java.sun.com
http://www.w3.org/TR/soap/
http://java.sun.com/docs/books/tutorial/rmi/
http://www.xmlrpc.com/spec
http://www.w3.org/DesignIssues/Axioms.html
http://www.w3.org/DesignIssues/Axioms.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.xfront.com/REST-Web-Services.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://www.xml.com/pub/a/2004/08/11/rest.html
http://ws.apache.org/axis/
http://java.sun.com/j2se/1.3/ docs/guide/reflection/proxy.html
http://www.db4objects.com/, db4objects
http://www.iana.org/assignments/media-types/
http://json-rpc.org/wd/JSON-RPC-1-1-WD-20060807.html
http://java.sun.com/products/ejb/
http://www.jboss.org/products/jbossas

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 595–612, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Experience with Dynamic Crosscutting in Cougaar

John Zinky, Richard Shapiro, Sarah Siracuse, and Todd Wright

BBN Technology
Cambridge, MA USA

{JZinky, RShapiro, SSiracuse, TWright}@bbn.com
http://Cougaar.org, http://quo.bbn.com

Abstract. Component-based middleware frameworks that support distributed
agent societies have proven to be very useful in a variety of domains. Such
frameworks must include support for both agents to implement business logic
and runtime adaptation to overcome the inherent limitations of unreliable, re-
source-constrained environments. Regardless of how any particular middleware
framework is organized into components, the business logic and adaptation
support will inevitably require some crosscutting of the dominant decomposi-
tion. In this paper, we discuss a spectrum of dynamic crosscutting techniques in
support of runtime adaptation that we have implemented in Cougaar, a compo-
nent-based service-oriented architecture. We describe these crosscutting tech-
niques and show how they can be used to enhance the flexibility and survivabil-
ity of agent-based applications.

Keywords: Aspect-Oriented Programming, Component-Based Middleware,
Distributed Agents.

1 Introduction

Writing distributed applications would be simple if programmers only had to imple-
ment the input and output behaviors of the domain functionality (or "business logic").
However, the majority of the code written for real-world distributed applications is in
service of systemic issues, such as security, reliability, performance, and deployabil-
ity, and not domain issues. Ideally, a distributed applications framework should hide
the systemic issues altogether. This ideal isn’t currently feasible, but a next-best alter-
native is separating the systemic code from the application code so that each can be
developed and tested independently. The systemic support would be the responsibility
of the framework, leaving the application developer free to concentrate on the busi-
ness logic.

The key difficulty in creating such a framework is that the systemic concerns
crosscut the application's domain-specific decomposition. In particular, systemic code
can't be written as fully self-contained components, but must instead be inserted at
multiple places in domain components. Further, several independent system concerns
might need to insert code at the same place in a given domain component. For exam-
ple, an access-control concern needs to add a check to each of an object's methods to
determine if the caller has the privilege to execute that method, while a performance

596 J. Zinky et al.

concern might want to limit the rate of method execution so that underlying resources
will not be over-utilized. Both of these concerns need to attach systemic behavior at
the same points in the domain code, in this case before domain method calls.

Many available techniques enable middleware frameworks to support both sys-
temic concerns and application concerns by opening up the application execution in
order to allow system code to run. Two important distinctions among these ap-
proaches are, first, when in the application life-cycle this code insertion occurs, and,
second, how much burden the techniques put on the application programmer and the
runtime environment. In this paper we focus on our experience using dynamic tech-
niques for inserting systemic behavior at runtime.

Specifically, we will describe our experiences in making the Cougaar distributed
agent framework survivable. Our goal was not to create new Aspect-Oriented Pro-
gramming (AOP) mechanisms or new software patterns, but rather to use both disci-
plines together to create techniques for meeting the runtime-adaptability of Cougaar
agent societies. We present several small case studies to show the uses of these dy-
namic AOP mechanisms and how they interact. These examples show non-trivial uses
of dynamic AOP techniques in the context of large-scale runtime-adaptive distributed
systems.

Cougaar is a Java-based middleware framework for the construction of large-scale
distributed agent-based applications [7]. A large logistics planning society was devel-
oped using Cougaar, with more than 1000 agents running on more than 100 hosts. To
test the feasibility of fielding such a large system in an unreliable and resource-
constrained environment, DARPA started the Ultralog project in 2001 to add surviv-
ability features to Cougaar. The goal of the Ultralog project [20] was for the distrib-
uted application to continue operating with up to 45% information infrastructure loss
with minimal loss in functional capabilities or performance degradation.

A component-based framework and most of the dynamic AOP techniques de-
scribed later in this paper were added to the Cougaar framework to meet this require-
ment. Among the significant enhancements was a Service-Oriented Architecture
(SOA) similar to Java Enterprise Beans [12], but extended to allow crosscutting
among infrastructure components and their services. With Cougaar augmented as
described below, the goals of Ultralog were met: experimental runs continued to per-
form their logistics planning function as the agent society reconfigured itself on the
remaining infrastructure after 45% of the hosts failed [19].

This paper will address only the underlying Cougaar framework mechanisms that
supported the development and execution of the systemic survivability code, rather
than the algorithms or the agent societies that implemented them. The survivability
mechanisms themselves are addressed elsewhere [19]. More specifically, we will
address the use of dynamic crosscutting techniques at the component level to enable
survivability. These survivable behaviors adapt at runtime to meet the system re-
quirements of the agent-based logistics application, within the resource constraints of
the underlying physical infrastructure. The crosscutting mechanisms described here
were used by multiple programming groups, tested in large-scale experiments, and are
the basis for the deployment of a distributed logistics application which runs in an
unreliable resource-constrained environment [19].

This paper is organized into the following sections. Section 2 describes Cougaar’s
requirements for dynamic crosscutting using the lens of dynamic AOP. Section 3

 Experience with Dynamic Crosscutting in Cougaar 597

describes techniques Cougaar uses to address the dynamic crosscutting requirements.
Each technique has power and restrictions on when and where crosscutting advice can
be inserted into the Cougaar Framework. Section 4 describes small case studies of using
dynamic crosscutting to insert adaptive-behavior into the framework. Section 5 de-
scribes the relative overhead of adding crosscutting mechanisms to distributed systems.
Section 6 describes how other distributed system frameworks address the dynamic
crosscutting requirements. Finally, we conclude with a summary of our experience.

2 Requirements for Dynamic Crosscutting

Typically the core concern of any application framework is the application’s business
logic, while a secondary concern is systemic behavior. But in some situations, a sys-
temic concern is the core decomposition and the business functionality is woven into
the system decomposition. For example, hard real-time systems are primarily con-
cerned with ensuring that all events happen within prescribed deadlines [28]. A real-
time framework consists of tasks with known execution times; at runtime these tasks
are meticulously scheduled so that no deadline is missed. The application functional-
ity cuts across these tasks: the application’s natural structure is obscured in favor of
guaranteeing the real-time systemic concern. Regardless of which concern is domi-
nant, other concerns will need to crosscut behavior at multiple locations in the domi-
nant concern’s execution. Aspect-Oriented Programming (AOP) [1,2,3,4,5] was
created to address these crosscutting issues. We will use AOP terminology to describe
the Cougaar crosscutting requirements and techniques.

AOP can be understood as the desire to make quantified statements about the
behavior of programs, and have the quantification hold over programs written by
programmers who are unaware of this additional behavior [29]. AOP defines the fol-
lowing concepts [30]. A join point is a specific well-defined event in the control flow
of the executed program. Advice is behavior that is triggered by a certain event and
that can be inserted into the control flow when a specific join point is reached. A point
cut is a declaration that tells the aspect composition framework which advice to apply
at which join point. So in the context of AOP, crosscutting requirements can be cate-
gorized by the kinds of quantifications allowed (join point), the kind of behavior that
can be asserted (advice), and the mechanisms for combining the base behavior with
the asserted behavior (point cut). Dynamic crosscutting adds another dimension: when
the quantifications are calculated.

The systemic concerns of the Cougaar framework include security, robustness,
storage management, bandwidth management, load balancing, and interoperability.
Many of these concerns were developed in parallel, by different groups, for different
runtime environments.

To allow these concerns to be combined at runtime, the Cougaar framework
needed to support the following dynamic crosscutting requirements:

Configuration Flexibility: Cougaar needs to run over a wide variety of infra-
structures and host a wide variety of applications. The framework should be flexible
enough to allow only the necessary services and extensions to be loaded. In AOP
terms, different concerns should be instantiated and woven together at load time at the

598 J. Zinky et al.

earliest. For example, an application that will only run inside a firewall does not need
certain security extensions that would be essential for an application running on the
unprotected Internet, and should not be forced to pay the price of those unnecessary
extensions.

Exposing Join Points: Framework concerns should not be implemented as black
boxes. They should expose join points, i.e., points at which new functionality can be
added [9]. The framework should allow new services to be added and old services to
be overridden, for example by adding a MIME plug-in to a browser. In addition,
complicated services should be decomposed to allow new functionality to be added at
key times in the service’s life-cycle and usage pattern.

Wrappers: The basic framework services should allow extensions to their imple-
mentations. The simplest form of extension is the Decorator pattern [15], in which the
original implementation of a service stays intact, but can be wrapped with additional
functionality. A service can be viewed as a join point at which the wrapper adds
advice. For example, a name lookup service could be wrapped with a cache that
remembers the results of previous queries.

Chain of Responsibility: Multiple concerns might want to wrap the same service.
The Chain of Responsibility Pattern [13,15] allows a chain of delegates to execute
before and after each method call to a service. Multiple concerns should be able to
add advice to the same join point. For example, the name lookup service could add
delegates to handle caching, authorization, and usage monitoring.

Data-flow interception: Some concerns need access to multiple points in a service’s
internal data flow. The Interceptor Pattern [14] allows a component to subscribe to
multiple events exposed by a service implementation. This implies that a concern has
state and processing that can be accessed by advice bound to various join points. For
example, the name service could expose internal listener interfaces that are invoked
when it sends a message to a remote name server or receives an error message from
the remote name server.

Runtime Adaptation: Some concerns are designed to change their behavior based on
changes in Quality of Service (QoS) requirements or changes in the constraints on
resources. The Cougaar framework should include services for obtaining information
about the status of applications and resources, as well as the ability to inject advice
dynamically based on an evaluation of this information. For example, a concern might
decide whether or not to compress a message based on the bandwidth of the path
between the source and destination and the amount of available CPU at the end-
points.

3 Spectrum of Crosscutting Techniques

The standard spectrum of Cougaar-based crosscutting techniques are implemented as
extensions to Cougaar’s component model and Service-Oriented Architecture. Join

 Experience with Dynamic Crosscutting in Cougaar 599

points are defined in the context of the life-cycle of components and their inter-
component services. For example, the techniques described in this section allow
advice to be inserted when services are registered, resolved, or invoked. These cross-
cutting techniques gave the Cougaar framework additional power vis-a-vis standard
SOA techniques and allowed us to separate independently developed concerns into
components that were composed into an adaptive runtime system.

Additional crosscutting techniques, such as the use of AspectJ [6] and byte code
manipulation [22, 31], can be used in Cougaar but are not addressed in this paper.
These other techniques were immature at the time when we began adding the runtime
adaptation enhancements to Cougaar, so we were restricted to traditional Object-
Oriented techniques. Further, we wanted to explore crosscutting techniques within the
bounds of our service-oriented component-based architecture. A discussion of other
AOP tools can be found in Section 6.

An application built on the Cougaar framework is a collection of components that
are composed at load-time. XML files specify which components to load and in what
order to load them. The application’s business logic is implemented by agent-internal
components, called plugins, which interact through service APIs. Agents interact with
each other through services advertised by the Cougaar runtime environment, which is
likewise created out of components. Each systemic concern is also implemented as a
component and can offer services to other concerns. This mesh of components con-
nected by services defines the dataflow of the system. Crosscutting techniques allow
additional components to add advice to this mesh dynamically, primarily by intercept-
ing service calls. This section briefly describes each of the crosscutting techniques in
turn, using AOP terminology.

3.1 Service-Oriented Architecture and Components

Cougaar exposes join points using the life-cycle features of a component model and
the service registry and the lookup features of Service-Oriented Architecture (SOA).
The Cougaar component model is closely related to Java beans [5], with some novel
extensions. The core of the component model is the usual container/component tree
structure: each component belongs to exactly one container, which may contain any
number of components. The basic Cougaar process (called a Node) defines a set of
insertion points, which define the structure of the Cougaar middleware components
and Agents. For example, each Agent has an insertion point, as well as each sub-
system in the runtime environment (some examples of subsystems are message trans-
port and thread management). A Cougaar application is defined at configuration time
as a set of components to load into specific insertion points. Adding or removing
components can change the middleware’s QoS adaptive behavior, as well as the
Agent’s business behavior.

Inter-component communication happens via services. The SOA implementation
of a service is provided by a service provider, which registers its services with a ser-
vice broker at any level of the component hierarchy. A container controls which
services are offered at its layer; it can propagate inherited services from its parent
container, override them, block them entirely, or define local services that are un-
available elsewhere.

600 J. Zinky et al.

 Client
Component

Server
Component

Service
Instance

Service
Provider

Register
Service()

Service
Broker

Get Service()

Invoke Service()

Get Service()

Container

Business Function Service

Fig. 1. Cougaar Component Model supports Service-Oriented Architecture

Simple SOA-based adaptation can choose which component will implement a given
service. For example, Cougaar has different implementations for whole subsystems,
such as the Thread Management Service or the Message Transport Service. At compo-
nent load time, the choice of implementation is based on the expected environment in
which the society will run. In other cases, multiple implementations are loaded and
registered, and the decision of which to use is deferred until service lookup time.
Finally, a client could bind to both service instances and make the choice at invocation
time. Effective adaptation depends on the availability of multiple ways of performing a
given service and criteria for choosing the best way in a given situation.

Each interface in the component model is a potential join point. Since the inter-
faces are not bound until runtime, component instantiation, service registry, service
lookup, and service invocation are all opportunities for adding advice. The following
techniques allow advice to be added at these join points.

3.2 Binders

Cougaar extends the basic component model by placing intermediaries called binders
between a container and its components. Components access service brokers indi-
rectly through their binder. Binders can restrict access to services, offer their own
services, or modify the services offered by the container. Binders are added when the
component is attached to its container. Figure 2 shows that binders can add proxies to
both the client and the server sides of a service invocation. Server-side binders im-
plement the Decorator pattern directly, by creating a composed object that imple-
ments the behavior for both the component and the binder. A binder offers a form of
service delegation to the component it binds. The Service Broker provided by a binder
can transparently replace a service reference with a proxy that will delegate to that
reference only under certain circumstances. Such proxies also provide a natural point
at which systemic information can be gathered and systemic control effected.

A binder can dynamically add advice to the join points associated with a service in-
terface. When the service is resolved the binder can decide whether or not to add the
service proxy, based on the binder’s point cut specification. If the proxy is added, it
can make further restriction on when to run its advice at invocation time. For exam-
ple, binders can be used to implement security concerns either by restricting the

 Experience with Dynamic Crosscutting in Cougaar 601

Fig. 2. Cougaar Binder supports the wrapping of a component with additional behavior

component's access to external services (since all service lookups by the component
must go through the service broker supplied by the binder) or by restricting access to
services the component itself provides (since service registrations made by the com-
ponent must likewise go through the service broker supplied by the binder).

3.3 Nested Binders

If several concerns need to add advice to a given component, the combined behavior
of the component and the concerns must be composed into a new component. The
Chain of Responsibility pattern accomplishes this by placing multiple delegates
between the client and server components. Binders offer a convenient mechanism for
constructing such a chain of delegates, since they can be stacked to insert multiple
concerns. A binder can be added to a container to form a systemically controlled envi-
ronment in which to instantiate a component. Likewise, a binder can be put around a
component to create a wrapped component. The stack of binders can be arbitrarily
deep, composing multiple concerns.

Wrapped

Component

QoS Binder

Container

Component

ContainerWrapped Container

QoS Binder

Component

QoS Binder

QoS Binder

QoS Binder

Fig. 3. Nested Cougaar Binders support wrapping a component with multiple behaviors

Cougaar uses nested binders to enforce configurable and dynamic security policies.
Binders were created for multiple security concerns, such as access control, denial of
service protection, and security logging. For example, if a read-only client attempts to
resolve a security-wrapped service, a proxy could be added to throw exceptions if the
client tries to access the service’s write methods. No proxy would be added for other

602 J. Zinky et al.

clients, which has the side benefit of avoiding any per-invocation overhead for the
security concern.

3.4 Aspect Interceptors

Some concerns need to coordinate advice inserted at multiple join points. The inter-
ceptor pattern allows a subsystem to expose multiple interfaces to add advice to its
internal data-flow. The Aspect Interceptor Pattern [10, 36] extends the interceptor
pattern to explicitly allow the crosscutting of multiple interfaces. Aspects are compo-
nents with their own state and access to services offered by its peers. Since Aspects
are implemented as components, they inherit all the benefits of the component model.
An Aspect has the ability to create delegates for given interfaces when asked to do so.
Interface Factories, which create default instances of particular interfaces, will request
delegates from the set of Aspects, chaining the delegates together in series. The result-
ing wrapped instance will have combined behavior (in the form of a delegate) given
by multiple Aspects. Likewise, an Aspect will contribute behavior to multiple inter-
face instances (Figure 4). The choice of Aspects is made dynamically and, when nec-
essary, sent to remote processes.

This is a simple but powerful and dynamic form of AOP. The methods in the inter-
faces define collections of join-points while any specific Aspect instance implicitly
defines a point-cut, depending on which interfaces it chooses to offer delegates for, as
well as advice for each relevant join-point (the actual code in the delegate classes).
The enclosing Aspect instance provides state as well as dynamic control over the
delegation. When a call sequence crosses a host or virtual machine boundary the cur-
rent list of relevant Aspects can be passed as meta-data to the remote process.

Fig. 4. Aspect Interceptor Pattern crosscuts across multiple service interfaces

Cougaar uses interceptor patterns to open the implementation of several large sub-
systems, such as the Thread Service and the Metric Service. In addition, the Cougaar's
Message Transport System (MTS) has an open implementation, based on the Aspect
Interceptor Pattern. The MTS is a set of services designed to allow Agents to commu-
nicate via message-passing. The MTS is structured as a predefined series of stations
through which messages pass on their way from sender to receiver. Each station is

 Experience with Dynamic Crosscutting in Cougaar 603

defined by an explicit interface and instantiated using a Factory pattern. [15]. MTS
Aspect components can attach delegates to one or more station instances at runtime;
effectively a simple form of runtime weaving. The MTS Aspect components them-
selves maintain the state of the collection of delegates they instantiate. This provides
the equivalent of a point cut. Finally, by adding meta-data to the messages being
passed through the MTS, much like an extensible header [25,26], Aspect behavior can
be shared across a distributed system, again at runtime. Section 4 describes several
examples of systemic adaptation that use MTS Aspects.

4 Examples of Dynamic Crosscutting

The crosscutting techniques described above were used to add multiple systemic con-
cerns to the Cougaar runtime environment. Most concerns needed to add advice to
multiple join points based on the SOA lifecycle and thus one concern could be made
up of multiple components, multiple services, and crosscut advice to multiple join
points. While many Cougaar subsystems can be extended using the crosscutting tech-
niques, we will concentrate on a single subsystem (MTS), without loss of generality.
Over 20 different MTS Aspects have been created to help Cougaar infrastructure
handle system concerns for transferring messages over low reliability communication
networks. The MTS Aspects can insert behavior at many places along the message
processing workflow. Figure 5 shows the base MTS implementation as a series of
stations where advice can be added. When a station is created all MTS Aspects are
informed and interested Aspects can add a delegate to intercept messages as they pass
through the workflow. So the chain of delegates is different between each station.
This section describes example systemic concerns that were implemented in Cougaar.
Some concerns consist of a single component that inserts advice in several places;
others consist of multiple components that work together.

Agent

B
B

Message Transport Server Impl

Link Protocol Impl

RouteSend

Receive Deliver

L
P

M
M

S
e
n
d
Q

R
o
u
t
e

D
e
s
t
Q

Dest
Link

B
B

L
P

M
M

R
e
c
v
L

R
e
c
v
Q

MTImpl

Hold

Forward

Deliver

M
T
S
P
r
x

Statistic Signature TopologyOrder

Name
Support

Compress

Fig. 5. MTS Aspect can insert advice at many places in the message processing workflow

604 J. Zinky et al.

4.1 Multicast

The multicast example illustrates how a concern needs to insert advice at multiple join
points and coordinate between them. The Multicast concern detects the multicast
message type and forwards it to all agents in a society. Multicast messages are copied
at multiple levels. First the message is sent to all the nodes in the society and then to
each agent in the node. Thus, the Multicast concern has to insert itself at multiple
MTS stations, to convert message types, to copy messages, look up the addresses of
remote nodes at the sender-side and lookup local agents on the receiver-side. Some of
these tasks happen when Multicast messages are sent and others when agents register
with its node or move to another node. Thus, the Multicast concern crosscuts the
station decomposition. On the one hand, multicast is a single, fairly simple, concept.
One would expect a good software design for multicast to be implemented in a single
class. On the other hand, a typical message-handling system would be decomposed
with sending in one class and receiving in another, for all the usual OOP reasons.
Since multicast requires changes both on the sender side and receiver side, we can't
use traditional OOP to implement it unless we're willing to violate the first point (i.e.,
keeping the multicast code as a self-contained unit). The Aspect Interceptor technique
(Section 3.4) resolves this difficulty. By implementing multicast as an MTS Aspect
component, the core message handling code remains simple and stable, while all the
multicast code lives in a single place where it's easy to maintain.

4.2 Traffic Masking

The Traffic Masking example illustrates how a concern’s advice needs to change
based on the runtime situation. The traffic masking concern adds fake traffic between
agents to hide the true traffic pattern for security reasons. Traffic Masking must add
behavior at multiple MTS stations. Fake messages must be injected at the source
agent and thrown away at the destination agent. Also, the traffic between agents must
be monitored so that the fake traffic does not overload the connection or interfere with
normal traffic. In addition, traffic masking is only enabled under certain situations,
based on the type of communication path between agents and security threat level. An
example traffic-masking policy may be: under normal security threat level, traffic
masking should only be used for communication between nodes that are distributed
internationally; but when an insider threat is discovered, traffic masking should also
be used on internal LAN traffic. The traffic management functions were implemented
using an MTS Aspect that inserted three delegates to generate, monitor, and sink
traffic.

One interesting crosscutting interaction happened between the generation and
monitoring functions. If the monitor detected that the traffic to an agent was over-
loaded, the generator would stop generating traffic. The feedback between the moni-
tor and the generator was done through state held within the aspect. When the monitor
delegate detected overload, it would set an overload flag. Before sending fake traffic,
the generator delegate would check the overload flag and not generate a message if it
was set. The traffic generation advice was only executed when enabled by the point
cut’s dynamic evaluation function.

 Experience with Dynamic Crosscutting in Cougaar 605

4.3 Compression

The Compression concern shows how advice needs to be added or removed dynami-
cally based on external factors. Compression of messages is an example of trading off
CPU resources for network resources. When the network bandwidth is low, for exam-
ple from heavy traffic or from using mobile networking links, CPU resources can be
used to compress the size of the messages to reduce the amount of data that is being
sent. In a sufficiently low-bandwidth environment, a compressed message will be
delivered sooner than an uncompressed message, even accounting for the time it takes
to compress the message. But in the case of high network bandwidth, compressing the
message will make the message be delivered later than an uncompressed message,
because compressing takes longer than transmitting the raw message. The status of
three external resources must be known in order to determine if compression is useful:
the bandwidth of the inter agent communication path, and the CPU capacity of the
local and remote hosts.

The join point and the advice are interesting for the Compression concern. Com-
pression itself is done by adding an OutputStream to Message serialization. A series
of OutputStream filters is allowed to transform the message. For example, one Aspect
can add an OutputStream to count the bytes in the raw message, while another en-
crypts the message. The order in the serialization pipeline is important. If the byte
counting is put last instead of first, it will count the length of the message being sent
on the wire instead of the length of the raw message. Also, compression must come
before encryption, because an encrypted stream has no patterns that can be com-
pressed. Decompression is likewise added as an InputStream in the message de-
serialization pipeline.

The problem with adding compression dynamically is that input filters must match
the output filters. Given that the sender is dynamically changing the output filters,
how does the receiver know which input filters to apply? For example, if the receiver
adds a de-compress filter but the sender did not add a compress filter, the resulting
messages will be garbled. The solution is to send order of the filters with the message
attributes, so that de-serialization can be performed in the proper order at the receiver.
The InputStream filters are in reverse order of the OutputStream, e.g., decrypting
before uncompressing. When the message de-serialization join point occurs, the inter-
ested MTS Aspects check if their filter is on the list. If it is, they add their Input-
Stream filter to the stream processing chain.

4.4 Gossip

We close our examples with a concern that is implemented as multiple Cougaar com-
ponents, which must coordinate among themselves and hook into multiple join points.
The Gossip concern allows Metrics collected on one Node to be disseminated to other
Nodes in the society. The Metrics are transferred by piggybacking Gossip objects as
attributes of ordinary messages being sent between Nodes. Gossip takes two forms:
requests for Metrics from a neighbor Node, and responses to those requests. Requests
are only made for Metrics used within the Node. Also, Gossip is sent only when the

606 J. Zinky et al.

value of requested Metrics change. So if no Metrics are requested or the Metrics do
not change, no Gossip is sent.

The Gossip implementation takes advantage of special characteristics of both the
MTS and the Metrics service. Figure 6 shows the data flow between components that
make up the Gossip subsystem. The double-line arrows are the flow of Key Requests
and the single-line arrows are Metric Value replies. The Gossip concern consists of
four components. The Gossip Aspect handles piggybacking the gossip requests on the
inter-node messages. The Gossip DataFeed is a plugin to the Metric service and pub-
lishes metrics into the local metrics service. The other two Aspects set thresholds on
which metrics to gossip and how often.

Notice that some Gossip components add new services to the system (Value Quali-
fier Aspect, Key Qualifier Aspect, and Gossip Data Feed). Other Gossip components
can lookup these services at load time to integrate the components. The Gossip As-
pect adds delegates to the MTS stations to gain access to messages flowing between
agents. Gossip components are added at multiple insertion points in the Cougaar con-
figuration. A configuration rule for the Gossip concern specifies which Gossip com-
ponent to load and in what order.

The Gossip concern shows the power of the Cougaar crosscutting techniques. The
whole subsystem can be added or removed based on a single rule at load-time. Advice
is added at different subsystems, such as the Metric service and the Message transport
service. The concern has access to join points as low-level as intercepting messages
and as simple as adding or requesting a service.

Gossip Requests

Model DS

Integrator DS

Trivial
Data
Feed

Gossip
Data Feed

Dispatch Forward

Forward Dispatch

Neighbor
Requests

Local
Requests

Neighbor
Requests

Propagated
Requests

K V

K V

K V

Changes

Grab Keys Add Key

Subscribe Key

Metric
Update

Key

Gossip
Update
Value

Local
Sensors

Add
Key

·

Gossip Value

Path

Gossip Aspect

Gossip
Integrator DS

Local
Sensors

Gossip
Data Feed

Add Key

Key
Qualifier
Aspect

Value
Qualifier
Aspect

Local Remote
Metric Subscription

Trivial
Data
Feed

Fig. 6. Gossip system disseminates Metrics data between Cougaar Nodes, by piggybacking the
data and request on normal message traffic

 Experience with Dynamic Crosscutting in Cougaar 607

5 Relative Overhead of Crosscutting

The following experiment illustrates the relative cost of using Cougar crosscutting
techniques to add adaptive behavior to an application. The experiment consists of
running a simple application under different configurations, varying the amount of
adaptive code loaded and the configuration of hardware resources. Note, we do not
show explicit measurements of the overhead associated with the crosscutting mecha-
nisms described in Section 3. This overhead is trivial and only adds a delegated call to
each service interaction. We do show the overhead relative to the adaptive behavior
and the application behavior. That is, what is the cost of checking if adaptive advice
should be added and the cost of executing that advice, verses the cost of executing the
application behavior. The conclusion is that the relative cost of the overhead is more
important than the absolute cost. The situations in which crosscutting overhead is
problematic are also the situations in which adaptive behavior is not needed, and
crosscutting is therefore not used.

To understand the performance of the application we must look at a total system
view. The application business behavior is the functional purpose of the system and it
must run in all configurations. The adaptive advice depends on the situation: it will
run in some configurations but not others. Since Cougaar is adapting at runtime, we
must also consider the cost of point cut evaluation. Usually, the time to evaluate the
point cuts is much smaller than the time to run the adaptive advice: when the advice
runs, the point cut evaluation is relatively small. The problematic case is when the
point cut evaluation selects no advice [33]. Cougaar gets around this problem implic-
itly in most cases by performing runtime point cut evaluations only for join points that
potentially will have advice. The reason is that Cougaar AOP techniques limit poten-
tial join points to life-cycle events of service interfaces. In addition, the point cut
evaluation is phased across several life-cycle events. For example, concerns add dele-
gates at service resolution time only if they plan to add advice.

The benefit and overhead of an individual service depends on the overall configu-
ration of a Cougaar society. For example, a service in one configuration could offer
little benefit and have a high overhead relative to other components. This service is a
candidate for performance improvement, or even removal from the configuration.
Conversely, in another configuration, the same service may have a high benefit, with
only a small overhead relative to other components, making the service critical to the
society. Node-level QoS-adaptation services tend to have the following overhead
behavior: high benefit in a certain situation, but not in others. Local vs. distributed
configurations are good examples of this. A major feature of Cougaar is that QoS-
adaptation can be removed for local configurations and added back for distributed
configurations. (Processing in a local situation does not usually need QoS-adaptation
because the network and host resources do not change.)

We will use a Ping society to illustrate the effect of adaptive code on the perform-
ance of an application. The Ping society consists of two agents that transfer objects
between their blackboards. The Source agent writes an object onto its blackboard after
which the Cougaar infrastructure makes a copy of the object on the Sink’s
blackboard. The Sink agent is triggered by a callback when the object appears on its
blackboard, after which it writes a new object back to the Source. In a real world
application, business logic would run after the ping is received at the Source and Sink.

608 J. Zinky et al.

But for the sake of the illustration, the ping application has zero business logic proc-
essing. If there was more business processing, the relative overhead of the crosscut-
ting mechanisms would be even less.

For the single ping loop, all processing associated with the ping is executed seri-
ally. When a systemic component is added, any point cut overhead and advice proc-
essing will add latency to the ping loop. The performance impact can readily be
measured, simply by measuring the rate of pings per second.

Table 1. Relative Overhead of Node-Level Services (Single Ping, 3Ghz Processor)

Configuration Performance (Pings/second)

Serial RMI 2 Hosts Standard Minimal %

 1061 3229 304%

X 306 466 152%

X X 139 165 121%

X X X 179 210 117%

In local configurations, the overhead for a QoS-adaptive code is relatively high.
Table 1 illustrates the differences in societal configuration overhead. The first row
shows the relative cost of standard node-level services. The standard Ping society uses
adaptive Metric and Thread services. When these services are removed in the minimal
Ping Society, the performance increases by a factor of three. If the Metrics Service
and Thread Management are unnecessary, these services can and should be removed
at configuration time.

In distributed configurations, message serialization dominates overall society per-
formance. QoS-adaptation services become necessary to react to changes in the net-
worked resources, such as device failure, competing network traffic, and security
attacks. The relative overhead of these QoS services is small. Table 1 presents the
overhead associated with message serialization in the context of performance. Row 2
of Table 1 shows a performance decline associated with serialization alone. These
results reflect an additional test component in our minimal Ping society, one which
forced the serialization of messages even when sent locally. This resulted in a per-
formance decrease of more than a third. Row 3 shows the combined overhead of us-
ing RMI and serialization, when the source and sink agents were separated onto two
nodes running on the same host. Notice that there is almost a factor of ten drop in
performance when sending pings between node processes. Despite this, the relative
performance increase of removing the metric and thread services is a trivial 21%.
Since the benefit of these services is high and the relative overhead is low, this simple
test suggests that these QoS-adaptive services should be installed in distributed con-
figurations.

The last row of Table 1 illustrates how the performance actually increases slightly
when the nodes are run on two hosts connected by a high-speed network. The increase
is due to the fact that some of the society processing (e.g. Metric Service statistics
processing) can be done in parallel with the ping loop.

 Experience with Dynamic Crosscutting in Cougaar 609

6 Related Works

Cougaar is one of many distributed system frameworks that support runtime adapta-
tion. Most major frameworks now recognize the usefulness of component-based ar-
chitecture and some are even supporting AOP techniques. We describe in this section
a variety of such frameworks, which meet similar crosscutting requirements and com-
pare their approaches with those of Cougaar. The frameworks can be divided into
three broad classes. Extensions to CORBA-based middleware, such as CORBA Com-
ponent Model (CMM) [8] and OIF [11], allow end-users adaptation only between
clients and servers that use CORBA to intercommunicate. Component-based middle-
ware, such as IONA ACT [24], use components and services to build up higher level
communication schemes within the middleware framework itself. Object-based AOP
frameworks, such as JBoss AOP [17, 22] and JAC [32], Aspectwerkz [34] and Spring
[35] allow end-users to add fine grain advice anywhere inside the middleware imple-
mentation.

6.1 CORBA Based Middleware

CORBA 3.0 extends the CORBA 2.0 distributed object model to define a CORBA
Component Model (CCM). The CCM specification provides a standard way of de-
signing components, configuring the connections of these components and their de-
fault attributes at assembly time, packaging these components as distributable units,
and deploying them over the network. The QuO framework was extended to work
with CCM by encapsulating QoS adaptive behaviors as CCM components [18]. These
adaptive components, called a qosket components, can be developed separately from
functional components, can be configured with the application components using
CCM tools, and can adapt the behavior of the system at runtime. A qosket component
implements QoS-adaptation and is inserted into data-flow between two components
using a specification, creating a chain of responsibility pattern. The specification of
this chain is statically defined in the deployment configuration. Point cut evaluation
happens at both deployment-time and interface invocation-time. At deployment time
the deployment spec determines which qosket components to load and the contracts
contained in those qoskets determine which advice to assert based on system condi-
tions. A qosket component is limited to wrapping a single interface between CMM
components, and does not support Cougaar’s Aspect interceptor technique.

Object Infrastructure Framework (OIF) [11] has a similar idea of injecting behav-
ior between clients and servers in a CORBA-based system. OIF is based on CORBA
2.0, so does not benefit from the CMM. OIF can generate proxies for both the client
and server sides. OIF can compose multiple “-ilities” concerns into a chain of respon-
sibility pattern which is code generated into a single pair of proxies. The internals of
the proxies can have adaptive behavior, but OIF lacks the structured assessment of the
current situation as supported in QuO contracts and System Condition evaluators.

6.2 IONA Adaptive Runtime Technology

IONA’s Adaptive Runtime Technology (ART) is a low-level infrastructure on which
several middleware frameworks are built, such as CORBA POA, J2EE EJB and

610 J. Zinky et al.

servlet containers [24]. IONA ART consists of a set of communication and storage
services implemented as components. The Chain of Responsibility Pattern [13] is
used extensively to interconnect the components. Interceptors are also exposed so that
developers can extend the framework. ART does not have a mechanism similar to
Cougaar Binders, but wrapper delegates can still be added using the interceptor
mechanisms.

6.3 Byte-Code Manipulation

Several JAVA frameworks [17, 22, 32, 34, 35] have integrated in byte-code manipu-
lators that allow AOP to be applied at the object-level, without extending the Java
language [30]. Aspects can be deployed and un-deployed at runtime, and use Java
classes as aspects. For example, JBoss is a J2EE web-services framework and comes
with a prepackaged set of aspects that are applied via annotations, point cut expres-
sions, or dynamically at runtime [22]. These frameworks work by overriding class
implementations at load-time, specifying ‘Interceptor’ classes that wrap around
classes and use reflection access to method behavior [30]. In addition JBoss can form
a chaining mechanism between these Aspects, analogous to the Cougaar Aspect Inter-
ceptor Pattern (Section 3.4). These AOP frameworks can override any class in the
system, hence offers a finer granularity of join points than Cougaar, which has course
grain join points based on the service life-cycle of the SOA. AOP frameworks have
the advantage of being able to access the internal structure of components and add
advice, whereas Cougaar can only offer advice at explicitly exposed interfaces to its
services. The advantage of Cougaar’s service-boundary crosscutting is that it is de-
fined at the natural boundary between Cougaar components, the service interface, and
can be selectively enabled and disabled on a per-component basis instead of a per-
class basis.

7 Conclusions

Cougaar supports a spectrum of crosscutting techniques that can be used to implement
runtime adaptation. These techniques were successfully used to create a survivable
infrastructure composed of independently developed systemic concerns, such as secu-
rity, robustness, bandwidth management, and storage management. These survivabil-
ity concerns can be both statically configured at society load time and dynamically
configured, enabled, and disabled at runtime. Although Cougaar’s crosscutting tech-
niques are restricted to join points defined by component life-cycle and service
method boundaries, our experience has shown that these join points were sufficient to
meet our target application’s complex configuration and adaptation requirements.

References

1. Bergmans, L., Aksit, M.: Composing Multiple Concerns Using Composition Filters,
Communications of the ACM, special issue on AOP (October 2001)

2. Lieberherr, K., Ovlinger, J., Mezini, M., Lorenz, D.: Modular Programming with Aspec-
tual Collaborations. College of Computer Science, Northeastern University, Tech report
NU-CCS-2001-04 (March 2001)

 Experience with Dynamic Crosscutting in Cougaar 611

3. Ossher, H., Tarr, P.: Using Multidimensional Separation of Concerns to Reshape Evolving
Software. Communications of the ACM, 43–50 (October 2001)

4. Ossher, H., Kaplan, M., Katz, A., Harrison, W., Kruskal, V.: Specifying Subject-Oriented
Composition. Theory and Practice of Object Systems 2(3) (1996)

5. Kiczales, G., Lamping, J., et al.: Aspect-oriented programming. In: Aksit, M., Matsuoka,
S. (eds.) ECOOP 1997. LNCS, vol. 1241, Springer, Heidelberg (1997)

6. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Grisold, W.: Getting Started
with AspectJ. In: CACM, p. 59 (October 2001)

7. Cougaar Distributed Agent System, open source at http://cougaar.org
8. Zinky, J., Bakken, D., Schantz, R.: Architectural Support for Quality of Service for

CORBA Objects. Theory and Practice of Object Systems (April 1997), http://quo.bbn.com
9. Kiczales, G.: Beyond the Black Box: Open implementation. IEEE Software (January

1996)
10. Shapiro, R., Zinky, J., Rupel, P.: The Aspect Pattern. In: OOPSLA 2002 Workshop on Pat-

terns in Distributed Real-time and Embedded Systems, Seattle, Washington (November
2002)

11. Filman, R., Stuart, B., Lee, D., Linden, T.: Inserting Ilities By Controlling Communica-
tion. Communications of the ACM (January 2002)

12. Cable, L.: Extensible Runtime Containment and Server Protocol for JavaBeans Version
1.0. JavaBeans Glasgow Specification (December 1998)

13. Vinoski, S.: Chain of Responsibility, IEEE Internet Computing (November/December
2002)

14. Schmidt, D., et al.: Pattern-Oriented Software Architecture: Patterns for Concurrency and
Distributed Objects, vol. 2. John Wiley and Sons, New York (2000)

15. Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Software. Ad-
dison-Wesley, Reading Mass (1995)

16. Schweisguth, D.: Second-generation aspect-oriented programming, Java World (July
2004)

17. Yuan M: On the the Road to simplicity: JBoss 4.0 simplifies middleware development,
Java World (February 2005)

18. Sharma, P., Loyall, J., Heineman, G., Schantz, R., Shapiro, R., Duzan, G.: Component-
Based Dynamic QoS Adaptation in Distributed Real-time and Embedded Systems

19. Helsinger, A., Kleinmann, K., Brinn, M.: A Framework to Control Emergent Survivability
of Multi Agent Systems. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) Adaptive Agents
and Multi-Agent Systems II. LNCS (LNAI), vol. 3394, Springer, Heidelberg (2005)

20. Ultralog Project, http://dtsn.darpa.mil/ixodarpatech/ixo_PrintFeatureDetail.asp?id=61
21. Quality Objects Project (QuO), http://quo.bbn.com
22. JBoss AOP Users Guide, http://labs.jboss.com/jbossaop/docs
23. JBoss AOP Reference Manual, http://labs.jboss.com/jbossaop/docs
24. Orbix 6.0 Introduction Manual, http://www.iona.com/
25. Braden, R., Faber, T., Handley, M.: From Protocol Stack to Protocol Heap – Role-based

Architecture, HotNets I, Princton NJ, USA (October 2002)
26. Filman, R.: Injectors and Annotations. In: Magnusson, B. (ed.) ECOOP 2002. LNCS,

vol. 2374, Springer, Heidelberg (2002)
27. Bers, J., Redi, J.: Supporting Robot Teams with CougaarME over Wireless Ad-hoc Net-

works, 1st Open Cougaar Conference, New York, NY (July 2004)
28. Roll, W: Towards Model-Based and CCM-Based Applications for Real-Time Systems. In:

ISORC 2003. Proceedings Sixth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, IEEE Computer Society Press, Los Alamitos (2003)

612 J. Zinky et al.

29. Filman, R., Friedman, D.: Aspect-Oriented Programming is Quantification and Oblivious-
ness. In: OOPSLA 2000. Proceedings of workshop on Advanced Separation of Concerns
(2000)

30. Zdun, U.: Pattern language for the design of aspect languages and aspect composition
frameworks. IEE Proceedings Software (April 2004)

31. Zinky, J., Loyall, J., Shapiro, R.: Runtime Performance Modeling and Measurement of
Adaptive Distributed Object Applications. In: DOA. Proceeding of International Sympo-
sium on Distributed Object and Applications (October 2002)

32. Pawlak, R., Seinturier, L., Duchien, L., Florin, G.: JAC: a flexible framework for AOP in
Java. In: Yonezawa, A., Matsuoka, S. (eds.) Metalevel Architectures and Separation of
Crosscutting Concerns. LNCS, vol. 2192, Springer, Heidelberg (2001)

33. Hanenberg, S., Hirschfeld, R., Unland, R.: Morphing aspects: incompletely woven aspects
and continuous weaving. In: Proceedings of the 3rd international conference on Aspect-
oriented software development (March 2004)

34. Aspectwerkz, http://aspectwerkz.codehaus.org/
35. Spring AOP Framework, http://www.springframework.org/
36. Filman, R., Lee, D.: Redirecting by Injector. In: International Conference Distributed

Computing Systems Workshop (April 2001)
37. Zinky, J., Shapiro, R.: The Aspect-Oriented Interceptors Pattern for Crosscutting and

Separation of Concerns using Conventional Object Oriented Programming Languages. In:
The 2nd AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Soft-
ware (ACP4IS), part of International Conference on Aspect-Oriented Software Develop-
ment, Boston (March 2003)

Property-Preserving Evolution of Components

Using VPA-Based Aspects�

Dong Ha Nguyen and Mario Südholt

OBASCO project; EMN-INRIA, LINA
Dépt. Informatique, École des Mines de Nantes

4 rue Alfred Kastler, 44307 Nantes cédex 3, France
{Ha.Nguyen, Mario.Sudholt}@emn.fr

Abstract. Protocols that govern the interactions between software com-
ponents are a popular means to support the construction of correct
component-based systems. Previous studies have, however, almost ex-
clusively focused on static component systems that are not subject to
evolution. Evolution of component-based systems with explicit interac-
tion protocols can be defined quite naturally using aspects (in the sense
of AOP) that modify component protocols. A major question then is
whether aspect-based evolutions preserve fundamental correctness prop-
erties, such as compatibility and substitutability relations between soft-
ware components.

In this paper we discuss how such correctness properties can be proven
in the presence of aspect languages that allow matching of traces satisfy-
ing interaction protocols and enable limited modifications to protocols.
We show how common evolutions of distributed components can be mod-
eled using VPA-based aspects [14] and be proven correct directly in terms
of properties of operators of the aspect language. We first present several
extensions to an existing language for VPA-based aspects that facilitate
the evolution of component systems. We then discuss different proof tech-
niques for the preservation of composition properties of component-based
systems that are subject to evolution using protocol-modifying aspects.

1 Introduction

Interaction protocols are a popular means to construct correct component-based
systems and document them (see, e.g., [8,17,23]). A major question for the evo-
lution of component-based systems is whether evolution preserves compositional
properties of these systems, in particular compatibility and substitutability of
components, two fundamental notions that are typically defined in terms of subset
relationships of trace sets (and sometimes failure sets) admitted by the
original and evolved versions of a system [15,23]. Currently, almost all component-
based systems with interaction protocols have used finite-state protocols, includ-
ing all of the previously cited ones. Recently, however, approaches using more
expressive non-regular protocols have been proposed [3,19].
� Work partially supported by AOSD-Europe, the European Network of Excellence in

AOSD (www.aosd-europe.net).

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 613–629, 2007.
� Springer-Verlag Berlin Heidelberg 2007

614 D.H. Nguyen and M. Südholt

If software components are equipped with interaction protocols, evolution
of component-based systems can frequently be expressed in a concise manner
using aspects that modify executions that have to conform to such protocols. In
the last couple of years different researchers have considered protocol-modifying
aspect languages, notably [4,6,14,22]. However, none of these approaches has
explored the preservation of compositional properties of software components
in the context of aspects modifying such interaction protocols. Among the very
few that have touched on this question, Faŕıas [7] proposes the extension of the
language of regular aspects by protocol-modifying operators and considers proof
techniques for the resulting finite-state based aspects.

We consider how compositional properties can be defined and verified in the
context of the evolution of components that are equipped with a more ex-
pressive brand of interaction protocols, protocols defined in terms of Visibly
Pushdown Automata (VPA) [2]. VPA allow to define protocols that include
well-formed nested contexts, such as correct nesting of recursive calls to and
returns from a server. VPAs are strictly more expressive than finite-state au-
tomata (which generate regular languages) but strictly less so than pushdown
automata (which generate context-free languages). In contrast to finite-state
based systems, VPA-based protocols allow (some) nested terms of, e.g., call and
returns, to be correctly matched without having to restrict the nesting depth. In
contrast to pushdown automata, VP languages are closed under all basic oper-
ations, including intersection and complement, and all basic decision problems
are decidable.

In this paper, we present two main contributions. First, we present four ex-
tensions to the language of VPA-based aspects [14] that are useful in the context
of component evolution for distributed applications: a more general definition
of sequence pointcuts, a new pointcut operator that allows nested contexts to
be matched if their depths exceed a threshold, a permutation for well-balanced
contexts and a new advice construct that allows to close an open nested context,
e.g., for error handling purposes. We motivate how these extensions can be used
in the context of the evolution of software components for the implementation
of distributed search algorithms typical, e.g., for P2P applications. Second, we
show how compatibility and substitutability properties of component-based ap-
plications can be proven if interaction protocols are subject to evolution using
VPA-based aspects. We present, in particular, how some composition properties
can be handled fully in terms of the properties of protocol-operators even in the
presence of aspects.

The paper is structured as follows. Sec. 2 motivates using VPA-based aspects
to define evolution of distributed components with explicit protocols and to
verify the preservation of compositional properties for those systems. Sec. 3
presents the VPA-based aspect language and defines the four extensions to the
language. Sec. 4 presents the proof techniques for the preservation of composition
properties in the presence of aspects. In Sec. 5 we discuss related work before
concluding in Sec. 6.

Property-Preserving Evolution of Components Using VPA-Based Aspects 615

2 Motivation

The large majority of component-based systems is based on components whose
interfaces define sets of (method or function) signatures that correspond to ser-
vices provided by the component. Furthermore, signatures that correspond to
services that a component requires to be provided from other components are
also frequently declared as part of component interfaces. Such interfaces do not,
however, specify any information about the semantics of provided and required
services. With such a notion of components, component evolution therefore has
to be defined essentially on the level of component implementations and compo-
nent properties, such as compatibility (that ensures that two components com-
municate correctly) and substitutability (that ensures that a component can be
substituted without problems for another one in arbitrary usage contexts), can
only be defined in terms of service signatures, i.e., not including any guarantees
on the effective behavior of the components.

Protocols that govern component interactions and that are explicit in com-
ponent interfaces have been proposed as a means to overcome these limita-
tions. Changes to interaction protocols allow modelling component evolution
in terms of modifications because they enable the specification of new restric-
tions on previously enabled communications between components. Furthermore,
compatibility and substitutability properties can be formally based on the in-
teraction protocols. Interaction protocols have mostly been defined in terms of
finite-state automata (e.g., [8,17,23]), only a few have considered more expres-
sive non-regular protocol languages (e.g., [3,19]). None of these approaches, have
considered component properties in the context of dependencies involving recur-
sive computations, which are, however, crucial to a large class of application
domains.

In order to motivate the special requirements of such application domains,
let us consider a quite typical representative, P2P algorithms, in particular, the
approach to unstructured P2P networks proposed by Lv et al. [13]. A central
proposal of this work is a particular algorithm to search a decentralized and
unstructured P2P network. The basic algorithm can be summarized as follows.
When a peer initiates a search to find a document, it sends a corresponding
query message to (some of) its neighbors in some order. When a peer receives
a query message it first checks its local store and replies to the query with the
corresponding file if it is found locally. Otherwise, it forwards the request to its
neighbors. To ensure termination, this search protocol makes use of a time-to-
live (TTL) value in order to limit the search space. This value is decremented
at each peer that is visited and the search is stopped when 0 is reached.

From a component point of view the behavior on a node we consider can be
characterized by the incoming and outgoing communication events as shown in
Fig. 1 that can be seen as defining its signature-based interface. The P2P algo-
rithm most basically consists of nodes sending out query messages and receiving
reply messages from its neighbors. Furthermore a node may abort on-going
queries if requested to do so (abortRequest). Finally, a node may join or quit
the P2P network.

616 D.H. Nguyen and M. Südholt

Fig. 1. Component interface (service part) for P2P algorithms

All of the (regular or non-regular machine based) approaches to interaction
protocols cited above do not permit to express (many) fundamental protocols
that involve the recursive nature of the search algorithm in the above P2P con-
text. Furthermore, none of those allow to reason about the properties underlying
such protocols. VPA-based protocols allow to directly define many of such pro-
tocols and enable formal reasoning about correctness properties for components
defined in terms of them. Finally, aspects over interaction protocols allow com-
ponent evolution to be expressed naturally; VPA-based aspects enable evolutions
including modifications to such recursive behaviors to be defined and the verifi-
cation of the preservation of composition properties in such cases.

To illustrate the basic advantage of VPA-based aspects over regular aspects,
consider the (regular) protocol for aborting queries that is shown in Fig. 2. If
an abort request occurs a query should be aborted and new queries only be
enabled after abortion has been performed. With aspects, abort requests can be
performed by triggering an advice abort when the execution event abortRequest
occurs: we note such a basic aspect as abortRequest � abort. The (complete)
regular aspect shown in the figure allows these interactions; however, it does
not enforce the restriction that abort requests should only be allowed if there
is at least one on-going query. This is a reasonable constraint if abortion is
an operation which might consume much time or other resources. Moreover, the
protocol in Fig. 2 also allows the number of replies occurring at state 1 to exceed
the number of queries (which is obviously an unreasonable situation).

0 1 2

join

quit

query

reply

abortRequest � abort

aborted

Fig. 2. Aborting on-going queries (regular)

In contrast to finite-state automata, VPA have a stack which can be used
to distinguish different calls to the same method. This way, the constraint of
allowing abort requests only if there are on-going queries can be expressed, e.g.,
using the VPA shown in Fig. 3. The main characteristics of VPA is that calls

Property-Preserving Evolution of Components Using VPA-Based Aspects 617

and returns are distinguished by well-distinguished push and pop symbols on a
stack, and a return transition can only be performed if the symbol of a matching
call is on top of the stack. Call and return operations in the protocol are indexed
with symbols which are pushed or popped on the VPA stack; furthermore return
operations are underlined. In the VPA example in Fig. 3, the stack symbols allow
to distinguish the first query operation from the remaining ones and the VPA
behavior thus ensures that in state 2 only a number of replies can be performed
that equals the number of queries done at state 2 (i.e., with index q), while
the query with index fst performed between states 1 and 2 remains on the
stack: therefore in state 2 there is always at least one query on the stack and
abort requests are always made in an appropriate state. Basically, the example
illustrates that VPA allow to “count” calls and allow to require that the number
of returns match the number of calls.

0 1 2 3

join

quit

queryfst

replyfst

queryq

replyq

abortRequest � abort

aborted

Fig. 3. Aborting on-going queries (VPA)

Finally, note that typical modifications to such recursive algorithms, such as
stopping a recursive algorithm at a given call depth, cannot be directly expressed
using regular structures: they can only be expressed using finite-state structures
by fixing the maximum number of open recursive calls. Such a constraint is,
however, (i) unpractical in application contexts such as P2P networks where the
recursive depth to which a network is to be explored may be rather large and (ii)
signifies that no general composition properties, i.e., that do not include such
limits on the recursion depth, can be proven for regular aspects. VPA-based
aspects provide a solution for these two problems for a large set of recursive
interaction protocols.1

3 Extending VPA-Based Aspects for Component
Evolution

In this section we present the VPA-based aspect language that we propose for
component evolution. After presenting the main characteristics of the language
by a small example, we first introduce the pointcut and advice operators that
we have introduced to cope with component evolution; this part focuses on
the four operators that are new compared to our previous proposal [14]. We
then present the formal definition of the complete aspect language and give an
informal account of the semantics of the language.
1 Since VPA are less expressive than pushdown automata not all context-free protocols

can be represented, though.

618 D.H. Nguyen and M. Südholt

3.1 VPA-Based Aspects by Example

In the motivation, we have presented an aspect to abort search queries after an
abortRequest message has been received. The VPA-based aspect that ensures
that aborts are only performed if at least one search query is active, can be
defined using our language as follows:2

join ; μb. queryfst ; μc.(replyfst ; b)

� (queryq�replyq ; c)

� (abortRequest � abort ; c)

As common for aspect languages, the above aspect definition essentially con-
sists of a pointcut definition, which defines the sequences of execution events
the aspect matches, and an advice definition, which defines the actions to be
executed once a match occurs.

In the above aspect definition, the pointcut specifies sequences of events of
interest for components providing services for P2P search protocol as illustrated
in Fig. 1. Repetitions in a pointcut are defined using the ‘μ’ operator, bind
a recursion variable (b in the outermost repetition above) and extend to the
next occurrence of the recursion variable. Sequences of events are formed using
the sequencing operator ‘;’. A choice among two or more matching events is
expressed by operator ‘�’. For instance, “μc. queryq � replyq ; c” presents
a pointcut that repeatedly matches query or reply events. Furthermore, VPA
call as well as return events are indexed with stack symbols; VPA returns are
underlined. For example, queryfst and replyfst will match only the first query
and its corresponding last reply of the search process.

The above aspect contains only one advice, the call to abort in the final branch
of the choice that contains the basic aspect abortRequest � abort consisting of a
single event triggering the advice.

3.2 Pointcut and Advice Operators for Component Evolution

Calls and corresponding returns that are used in pointcuts of VPA-based aspects
enable well-balanced contexts to be used in interaction protocols, matched during
program execution and statically analyzed, e.g., for conflicts with other VPA-
based aspects. Such aspects may be concisely defined in terms of operators that
are specialized to well-balanced contexts. In the following, we introduce four
operators (three pointcut operators and one advice operator) that extend our
previous language and show how these operators benefit component evolution
in the context of P2P systems.

2 Note that this language is not intended for programming at the user-level but rather
a means to support the formal definition of its semantics and property analysis for
aspects and components. The integration into mainstream programming languages
as well as corresponding implementation support is discussed in [14].

Property-Preserving Evolution of Components Using VPA-Based Aspects 619

Depth-dependent operators. In addition to restricting the depth of recursion as
above, evolution of P2P distributed algorithms often aims at the optimization of
the underlying traversal strategy through heuristics to perform a more superficial
but faster search on nodes whose distance from the root node exceeds a certain
threshold. Since VPA faithfully allow to define the depth of nested terms, such
heuristics can be directly expressed using a pointcut operator D>k

m that matches
only calls to m that occur at a depth larger than k. For example, the following
aspect caches queries at depth greater than 5 (where μa. . . . ; a denotes recursion
in VPA-based aspects):

μa. D>5
queryq

� getCacheV alue ; a

General sequencing operator. Aspect languages for protocols typically include a
sequence operator ; on the pointcut level. Sequences of events in pointcuts may,
however, match executions according to different semantics. Most frequently,
the sequence a; b matches an execution trace that contains the event a followed
by a sequence of arbitrary events except b followed by the event b. Using this
semantics — which has been pioneered by the approach of stateful aspects [4]
and used in numerous others (e.g., JAsCo [21] as well as our previous approach
to VPA-based aspects [14] — the aspect

join ; μa. queryq � saveContext ; a

waits for the current node to join a network and then repeatedly saves the local
context (e.g., on a backup server) if a query occurs.

This sequencing operator does not fit some common situations in evolution
scenarios. Consider the two following cases:

– Components are extended by a backup operation that makes superfluous
the (potentially costly) context saving but only if the backup is executed
immediately after the query operation.

– General query operations must not be performed in certain cases, e.g., if an
erroneous situation occured or a certain neighbor has to be excluded from
the search.

These scenarios are instances of two general problems: the sequence operator
introduced above does not allow us to define that occurrences of events have
to immediately follow a particular event (even if the pointcut language includes
a negation operator). Furthermore, it is tedious to exclude traces by excluding
specific sets of individual events that are not allowed to occur.

In order to allow the concise definition of evolutions of the such kind, i.e., by
arbitrary interleaving as well as through the (mandatory) absence of interleaving
we propose a general sequencing operator ;I where I specifies the set of events
that may be interleaved between the argument events (I may be ∅ to exclude
any interleaving or the set of all events to allow arbitrary interleaving).

Permutation operator for well-balanced contexts. Permutation operators are fre-
quently used for the construction of protocols that allow the arbitrary inter-
leaving of sets of events. In the presence of well-balanced contexts, interleavings

620 D.H. Nguyen and M. Südholt

of calls as well as calls and corresponding returns are subject to restrictions
that cannot be modeled simply using the standard permutation function that
generates all permutations.

In P2P networks, for instance, a query on one node that triggers a query on
a neighbor, e.g., q1 followed by q2 , must be followed by replies in the reverse
order r2 , r1 . The permutation q1 , q2 , r1 , r2 is not valid.

An advice operator to close open calling contexts. One major characteristics of a
P2P network is the dynamism of peers. They can come and go unpredictably and
thus it is common to have queries without corresponding replies. Subnetworks
may be disconnected or messages lost. Error handling for those situations may
involve the introduction of events that close a number of open recursive calls
in order to skip the traversal of part of the underlying distributed network in
which an error occured. Using VPA-based aspects such error handling strategies
can be expressed using the advice-level operation closeOpenCallm that closes
the open call to m: pointcuts matching on nested contexts can then be used
to restrict the application of such advice to appropriate parts of the network.
The following example illustrates the use of a closing operator to add a number
of “fake” replies to queries when the query exceeds a given connection timeout
(where � denotes the choice between alternatives):

μa. queryf ; (replyf � (connectionT imeOut � closeOpenCallqueryf
)) ; a

3.3 Syntax

Figure 4 presents the complete syntax of VPA-based aspects. (The operators
introduced above that extend the language of [14], are marked by boxes.)

A represents aspects which are defined by VPA-based expressions over basic
aspects P � Ad where P is a pointcut, and Ad is an advice action.

A pointcut P is constructed from terms T denoting method calls or returns
or local operations (that may not influence the stack) as well as conjunctions
and complements of terms. As discussed above, the sequencing operator ;I
is the general sequencing operator where I specifies the type of events allowed
to interleave between two other events. Furthermore, pointcuts allow regular
expressions of events to be matched (remember that VPA are strictly more
expressive than finite-state automata). A pointcut can also be defined using
depth-dependent operators (non-terminal D). Three different such operators are
provided: Dint

M (nested execution to a specific depth), D≤int
M (nested execution for

with depths inferior to an integer value) and D>int
M (nested execution for depths

greater than an integer value). Finally, pointcuts may be constructed using the
two permutation operators permsnested(lst)andpermsflat (lst) that, respectively,
allow to express concisely permutations concerning nested and flat pairs of calls
and corresponding returns. These two constructors have been shown because its
frequent use as a building block for VPA-based protocols. Other permutation
operators specific for well-balanced contexts can be defined but are less useful.

Property-Preserving Evolution of Components Using VPA-Based Aspects 621

A ::= μa.A

| P � Ad ;I A

| P � Ad ;I a

| A � A

P ::= T | D | Perms

| P ;I P | P [] P | P{int} | P+ | P∗
T ::= T l | !T | T and T
T l ::= M | MId | MId

D ::= Dint
M | D≤int

M | D>int
M

Perms ::= permsnested (lst) | permsflat (lst)

Ad ::= send(M, Id) | closeOpenCall(M , int) | Ad ; Ad

M ::= const | var // method names
Id ::= const | var // stack, component ids
lst ::= list[M] //list of methods

Fig. 4. Syntax of aspects over VPA-based protocols

Advice Ad consists of finite sequences constructed from the operator for clos-
ing call contexts closeOpenCall and calls to services of named components. An
application of the operator closeOpenCall(m, n) inserts n calls to the return
instruction corresponding to the call m.

3.4 Semantics

In this section, we informally present how the language extensions introduced
in this paper can be integrated in the formal framework for the definition of
small-step operational semantics for VPA-based aspects introduced in [14]. To
this end, we first give a brief overview of that framework and then explain how
to define the four new operators using this framework. Here in this paper, we will
mainly discuss the semantics of the new extensions introduced in the previous
subsection.

Overview of formal framework. The formal framework introduced in [14]
defines the semantics of VPA-based aspects as a small-step semantics of the ex-
ecution of woven program. Aspects (non-terminal A in Figure 4) are interpreted
by repeatedly matching events of the execution of the base program with ba-
sic aspects p � a. If the pointcut p matches, the advice a is executed and the
next basic aspect defined using the repetition, sequence and choice operators is
determined.

Pointcut declarations are translated into a pointcutVPA (in the sense as defined
by Alur and Madhusudan [2]). This pointcut VPA is then used during application

622 D.H. Nguyen and M. Südholt

of basic aspects to decide matching of, in particular, stack-manipulating calls and
returns. Complex pointcuts that do not match individual execution events, such
as regular expression pointcuts, correspond to paths in the pointcut VPA. As part
of the operational semantics, program configuration containing the state of the
pointcut VPA that evolves along with the base program execution.

Advice is inserted once the corresponding pointcut has matched by inserting
the advice body — sequences of stack-manipulating return operations defined
using the advice operator closeOpenCall or calls to component services — before,
after or instead of the matched base execution event.

Definition of language extensions. In the remainder of this section we
present how the extensions of the VPA-based language introduced in this paper
can be defined using this formal framework.

Permutation operators. The two permutation constructors generate sequences
of pairs of well-balanced pairs of calls and corresponding returns.

– The constructor permsnested (lst) generates nested pairs of call and return
events. permsnested(querya, queryb), e.g., generates

(querya ; queryb ; replyb ; replya) � (queryb ; querya ; replya ; replyb)

– The constructor permsflat (lst) generates flat sequences of pairs of call-return
events. permsflat(querya, queryb), e.g., generates

(querya ; replya ; queryb ; replyb) � (queryb ; replyb ; querya ; replya)

The two permutation constructors have straightforward formal definitions, for
instance, in terms of suitable restrictions of the standard permutation function.
The resulting permutation defining functions can then be used during pointcut
matching to recognize traces of events corresponding to well-balanced permuta-
tions.

General sequence operator. The pointcut VPA is constructed bottom-up by
starting from nodes representing basic pointcuts that match single execution
events and link them through transitions according to the sequencing, repeti-
tion and choices used in a pointcut expression. That is, depending on the type
of aspect composition operator used in the pointcut expression, we apply ap-
propriate VPA operations such as adjunction of paths (for choice operator) and
concatenation (for sequencing and repetition operators) to build the correspond-
ing composed VPA.

The general sequence operator ;I can be formally defined as follows:

– Modify the matching semantics of the pointcut VPA, so that no interleav-
ing of events is allowed between two consecutive matched events, i.e., that
transitions formalize compositions using the sequence operator ;∅. More for-
mally, if a pointcut p1 matches the current execution event and if the VPA
transition (p1, p2) has to be taken next, the next execution event must match
p2. (This is in contrast to the semantics used in [14,4] that allow such inter-
leaving.)

Property-Preserving Evolution of Components Using VPA-Based Aspects 623

– Define the variants of the general sequence operator that allow interleaving,
i.e., ;I , i �= ∅, by inserting appropriate paths in the pointcut VPA.

Depth-dependent pointcuts. The pointcut VPA for Dn
m, which represents con-

texts starting with n open calls of m, can be easily constructed by n transitions
representing m that may be interleaved with arbitrarily deep well-balanced con-
texts involving m and m. Then the pointcut VPA for the other two depth con-
structors D≤n

m , D>n
m are built from the VPA for Dn

m based on the following
definitions:

D≤n
m := []

1≤i≤n
Di

m

D>n
m :=!D≤n

m

Hence, the VPA for D≤n
m is the result of the concatenation of individual VPA

with depth value from 1 to n and the VPA for D>n
m is the complement of that

for D≤n
m , which is well-defined because VPA are closed under complement.

Call-closing advice. Advice application formally corresponds to the insertion of
transitions corresponding to the advice body into base execution steps. In the
small-step semantics, the program then produces the next base execution event
and makes the pointcut VPA (and thus the aspect) evolve to the next state.
The advice action closeOpenCall(m, n) is no different: its effect simply is the
insertion of n return operations corresponding to the call m.

4 Preservation of Compositional Properties

In this section we address the problem of whether compositional systems that
are subjected to evolution by VPA-based aspects can be proven to preserve fun-
damental composition properties. Our main point is that, in contrast to general
aspect languages such as AspectJ, VPA-based aspect programs are amenable to
formal correctness proofs.

We use standard trace-based notions of compatibility and substitutability [23]
in this paper. Two protocols are compatible if they do not give rise to any conflict
during execution, i.e., no unexpected message is received during collaboration
of two components according to their respective protocols. As a simple exam-
ple consider two nodes that both join the file sharing system and employ two
following protocols:

– The first uses the protocol shown in Fig. 3 that allows queries to be aborted
when an abortRequest is sent in state 2.

– The second uses a protocol that may issue abort requests at any time.

In this case the two protocols are not compatible because the protocol of the
first node only allows abort requests to be handled in a specific state not all
states.

624 D.H. Nguyen and M. Südholt

Substitutability enables a protocol to be used instead of another one in ar-
bitrary contexts. Substitutability of components is typically defined in terms of
trace set inclusion: protocol p1 is substitutable for p2 if its trace set is a superset
of the trace set generated by protocol p2. For example, assume that p1 is the
protocol that includes nested calls to query and reply and p2 is the protocol that
consists of only non-nested calls to query and reply. Then p1 is substitutable for
p2 since the trace set of p1 covers that of p2. Instead of in terms of trace sets
only, more precise definitions of both notions can be defined by also taking into
account failures over sequences of service requests, see [15].

C1
p1

C2
p2

C3

p3

Is compatibility or substitutability

preserved ?

apply aspect A

compatibility or substitutability
holds

evolved component p3 = A(p2)

Fig. 5. Checking for preservation of compatibility/substitutability

Figure 5 illustrates the underlying model of component evolution and the
compositional properties we consider. Starting from two protocols p1, p2 that
constrain the interactions of two collaborating components C1, C2 a VPA-based
aspect A is applied to p2 yielding the protocol p3 that defines the interactions of
the component C3 after evolution. As indicated in the figure we are interested
in two fundamental correctness properties for components, compatibility and
substitutability (see, e.g., [15]).

Generally, e.g., if Turing-complete pointcut and advice languages are used
for component evolution (as in AspectJ where arbitrary Java methods may be
called in if-pointcuts and advice), such component properties cannot be proven
formally. Furthermore, even in specific cases where a proof is possible, it can
typically be performed only in terms of the woven program and not simply in
terms of the aspects themselves. VPA-based aspects, however, support formal
proofs of such properties because of their limited expressiveness and allow some
important properties be proven simply by considering properties of the aspect
language only. To this end we propose to exploit the “domain specific” char-
acteristics of VPA-based aspects: proofs over nested contexts as well as regular
structures can be performed directly in terms of corresponding features of our
pointcut (indexed calls) and advice language (closeOpenCall).

Concretely, we demonstrate in the following three different types of proofs of
property preservation that are supported by VPA-based aspects:

P1) Proofs that depend only on the properties of the aspect language, i.e., that
can be performed in terms of the evolution aspect A only.

Property-Preserving Evolution of Components Using VPA-Based Aspects 625

P2) Proofs that can be performed in terms of A and properties of classes of
protocols to which p1 and p2 belong.

P3) Proofs that require full knowledge of A and p1–p2.

In the following we will present three examples that illustrate the different
proof types introduced above.

P1: supporting evolution of error handling. VPA-based aspects are unique (in
particular compared to finite-state based approaches) in being able to handle
a large class of traversals of distributed recursive algorithms, such as P2P al-
gorithms. Frequently, error handling in such algorithms consists in terminating
the exploration of some part of the network and search elsewhere. The action
closeOpenCall(m, n) that we have introduced in the advice language directly
supports such error strategies by allowing to close n nested calls of the method m.

We can exploit the precisely defined semantics and limited effect of the action
closeOpenCall to prove some corresponding properties simply in terms of its
definition. For example:

If p1,p2 are protocols that recurse using m, p2 is substitutable for p1 and
aspect A employs closeOpenCall to add returns of m at the end of the
execution of protocol p2, then the adapted protocol p3 is substitutable
for p1.

Imagine that p1 is the protocol consisting of recursive calls to query and p2 is an
extension of p1 but explicitly requires one reply in its definition (i.e., there can be
more than one query but only one reply for the protocol to be complete). Since
the trace set generated by p2 is the superset of that of p1, p2 is substitutable
for p1 according to the definition of substitutability. Now assume that protocol
p2 evolves through an aspect that uses the closeOpenCall to add a number of
reply to close all open query so that p2 can work well with another protocol
which requires an equal number of replies to the number of queries should be
available. The new protocol p3 resulting from that aspect-based evolution is still
substitutable for p1 since the trace set of p1 is included in the trace set of p3.

P2: proving compatibility for depth-cutting heuristics. Recursive distributed al-
gorithms frequently do not unconditionally stop traversals at the top level, but
typically do so only in specific contexts. A common example are heuristics that
are formulated in terms of the traversal depth from the node where the search has
been initiated. Since VPA-based aspects allow the explicit definition of aspects
in terms of the nesting depth using the pointcut operator D>k

mc
, corresponding

compositional properties can be proven in terms of properties of this operator
and classes of protocols to which it is applied. For example:

If
– p1 belongs to the class of recursive protocols that repeatedly allows

recursive remote calls and returns in m: μa.mc � mc ; a,
– p2 belongs to the class of protocols that include a remote call to m,

626 D.H. Nguyen and M. Südholt

– p1, p2 are protocol compatible and
– aspect A employs a depth-defining operator D>k

mc
applying over p2

Then p1 and p3 = A(p2) are also compatible.

This property holds because the aspect may only cut calls to m from traces
of p2: the resulting traces remain compatible with those admitted by p1.

Hence, knowing the specific classes of protocols of p1, p2 and class of the as-
pect modifying them, one can use the above rule to conclude that compatibility
is preserved. Let us consider a more intuitive example as illustrated in Figure
6. Fig. 6(a) shows protocol p1 which provides basic implementation for a recur-
sive query including sequences of queries and replies. Fig. 6(b) illustrates the
protocol p2 that implements an advanced recursive query which allows to cache
results. (Note that we use the ’?’ character to denote remote calls to services
provided by another component). According to the definition of protocol com-
patibility, p1 and p2 are compatible. To adapt protocol p2, an aspect is employed
to dynamically skip the calls to query for depths greater than k, which is shown
in Fig.6(c). We can prove that in this context, p1 and p3 are protocol compatible
regardless of the change caused by the aspect.

replyq

queryq

�

��� �����	�
 p1�

���	 �����

��

queryq?

replyq?

cache

���� 	�	��

��� �����	�
 p2� �������� �����

��

replyq?

cache

D≥k
queryq

? � skip

�� p2 �� ���	�

�	� �����	�
 p3� ������� �����	�

Fig. 6. Aspect-based evolution implemented by depth-defining operator

P3: proving substitutability in terms of p1,p2 and A. In this example, the classes
of protocols and aspect are not sufficient to prove the preservation of compatibil-
ity and we need more information on the real values of p1,p2 to prove component
properties.

Let us reconsider protocols p1,p2 as in the first example, i.e., p1,p2 involve
recursive calls to query and p2 is substitutable for p1. Assume that now we would
like to adapt protocol p2 in order to cut the depth of queries to k using an aspect
with a depth-defining operator D>k

mc
. In this case the resulting protocol p3 is in

general not substitutable for p1, since p1 may admit calls of depth deeper than
k. By an analysis of p1, we may find that the depth limit of p1 is q and q ≤ k:
we can then prove that p3 is actually substitutable for p1.

Property-Preserving Evolution of Components Using VPA-Based Aspects 627

5 Related Work

There is few related work on aspect-based evolution for component-based systems
that considers the preservation of correctness properties for those systems after
being changed by aspects. As to the best of our knowledge, this approach is the
first exploiting formal methods to investigate the preservation of compositional
properties such as compatibility and substitutability for component-based sys-
tems that are subject to evolution by protocol-modifying aspects. However, our
work still shares common interests with a large body of work covering aspects,
components, and applications of formal methods on analysis and verification.

There are some approaches which consider aspect languages that support pro-
tocols, most notably [1,5,22]. Approaches [1,5] feature regular aspect languages
and a framework for static analysis of interaction properties. The language in-
troduced by Walker and Viggers[22], one of the very few approaches providing
non-regular (but not Turing-complete) pointcut languages, proposes tracecuts
which provide a context-free pointcut language. However, all of the above ap-
proaches do not use the language for an integration of aspects and components
or explore the problem of property-preserving for systems that have protocols
being modified by aspects. Faŕıas [9] has proposed a regular aspect language for
components that admits advice modifying the static structure of protocols and
considered proof techniques for the resulting finite-state based aspects.

There exist a large number of proposals that aim at applying AOP over
component-based systems, e.g., [10,16,20]. However, the aspect languages in
those approaches do not provide explicit support for component protocols. Some
of these approaches consider component compatibility, however, in a limited
sense to our work: aspects are usually employed in such work to transparently
introduce adaptation to components and thus preserve component compatibility.
Our approach, in contrast, focuses on preserving protocol compatibility even if
aspects have visible effects on interaction protocols.

Few work on evolution of component protocols seems relevant to our work.
Braccialia et al. [3] present a formal methodology for automatically adapting
components with mismatching interacting behaviors i.e., conflicts at the protocol
level. Protocols considered there are expressed by using a subset of μ−calculus.
They do not consider how component properties can be proved in terms of proof
methods that exploit properties of modification operators. Ryan and Wolf [18]
investigate how applications can accommodate protocol evolution. However, this
approach concerns mainly syntactic changes on protocols.

Another category of related work is the application of formal methods to anal-
yse aspect systems, such as [11,12]. Our approach differs from those approaches
in that we exploit the protocol-based specificities of our aspect language to prove
composition properties of software components.

6 Conclusion

In this paper we have motivated the use of aspects to define the evolution of com-
ponents with explicit interaction protocols. We have motivated and introduced

628 D.H. Nguyen and M. Südholt

four extensions to our previously defined VPA-based aspect language that are
useful in the context of component evolution for distributed applications: a
depth-dependent operator, a general sequencing operator, two permutation op-
erator for well-balanced contexts, and an advice operator to close open calling
contexts. The first three extensions improve the expressiveness of the pointcut
language and make it possible to express common evolution aspects more pre-
cisely. The last extension enables aspects to modify interaction protocols in a
limited manner, e.g., to support error correction strategies.

Furthermore, we have addressed the problem of preserving compositional
properties such as compatibility and substitutability for components that are
subject to aspect-based evolution. The main innovation in our approach to han-
dle this problem consists in the exploitation of the aspect language features
to reason about properties of components modified by aspects. Concretely, we
have shown that our VPA-based aspect language of limited expressiveness ad-
mit formal proofs of fundamental compositional properties in the presence of
aspect-based evolutions directly in terms of the aspect languages.

With respect to future work, we plan to advance in two directions: language
design and proof techniques for property preservation. We strive at the definition
of a larger set of VPA-based pointcut constructors for distributed components;
furthermore a more powerful advice language for protocol modifications should
be included. Moreover, property analysis should take into account modifications
made by aspect advice.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., et al.: Adding trace matching with free
variables to AspectJ. In: Gabriel, R.P. (ed.) ACM Conference on Object-Oriented
Programming, Systems and Languages (OOPSLA), ACM Press, New York (2005)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC 2004. Proceed-
ings of the thirty-sixth annual ACM Symposium on Theory of Computing, June
13–15, 2004, pp. 202–211. ACM Press, New York (2004)

3. Braccialia, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
Journal of Systems and Software (2005)

4. Douence, R., Fradet, P., Südholt, M.: A framework for the detection and resolution
of aspect interactions. In: Batory, D., Consel, C., Taha, W. (eds.) GPCE 2002.
LNCS, vol. 2487, pp. 173–188. Springer, Heidelberg (2002)

5. Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction analysis of
stateful aspects. In: AOSD 2004. Proc. of 3rd International Conference on Aspect-
Oriented Software Development, pp. 141–150. ACM Press, New York (2004)

6. Douence, R., Fradet, P., Südholt, M.: Trace-based aspects. In: Akşit, M., Clarke, S.,
Elrad, T., Filman, R.E. (eds.) Aspect-Oriented Software Development, Addison-
Wesley Professional, Reading (2004)

7. Faŕıas, A.: Un modèle de composants avec des protocoles explicites. PhD thesis,
École des Mines de Nantes/Université de Nantes (December 2003)

8. Faŕıas, A., Südholt, M.: On components with explicit protocols satisfying a notion
of correctness by construction. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS
2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 995–1006. Springer,
Heidelberg (2002)

Property-Preserving Evolution of Components Using VPA-Based Aspects 629

9. Faŕıas, A., Südholt, M.: Integrating protocol aspects with software components to
address dependability concerns. Technical Report 04/6/INFO, École des Mines de
Nantes (November 2004)

10. Göbel, S., Pohl, C., Röttger, S., Zschaler, S.: The COMQUAD component model —
enabling dynamic selection of implementations by weaving non-functional aspects.
In: Proceedings of AOSD 2004, ACM Press, New York (2004)

11. Katz, S., Sihman, M.: Aspect validation using model checking. Verification: Theory
and Practice, 373–394 (2003)

12. Krishnamurthi, S., Fisler, K.: Foundations of incremental aspect model-checking.
ACM Trans. Softw. Eng. Methodol. 16(2), 7 (2007)

13. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstruc-
tured peer-to-peer networks. In: ICS, pp. 84–95 (2002)

14. Nguyen, D.H., Südholt, M.: VPA-based aspects: better support for AOP over pro-
tocols. In: SEFM 2006. 4th IEEE International Conference on Software Engineering
and Formal Methods, IEEE Press, Los Alamitos (2006)

15. Nierstrasz, O.: Regular types for active objects. In: Nierstrasz, O., Tsichritzis, D.
(eds.) Object-Oriented Software Composition, ch. 4, pp. 99–121. Prentice-Hall,
Englewood Cliffs (1995)

16. Pessemier, N., Seinturier, L., Coupaye, T., Duchien, L.: A model for developing
component-based and aspect-oriented systems. In: Löwe, W., Südholt, M. (eds.)
SC 2006. LNCS, vol. 4089, pp. 259–273. Springer, Heidelberg (2006)

17. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans-
actions on Software Engineering 28(9) (January 2002)

18. Ryan, N.D., Wolf, A.L.: Using event-based translation to support dynamic pro-
tocol evolution. In: ICSE 2004. Proceedings of the 26th International Conference
on Software Engineering, pp. 408–417. IEEE Computer Society, Washington, DC,
USA (2004)

19. Südholt, M.: A model of components with non-regular protocols. In: Gschwind, T.,
Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS, vol. 3628, Springer, Heidelberg
(2005)

20. Suvée, D., Vanderperren, W., Jonckers, V.: JasCo; an aspect-oriented approach
tailored for component-based software development. In: AOSD 2003. Proc. of 2nd
International Conference on Aspect-Oriented Software Development, pp. 21–29.
ACM Press, New York (2003)

21. Vanderperren, M., Suvee, D., Cibran, M.A., De Fraine, B.: Stateful aspects in
JAsCo. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS,
vol. 3628, Springer, Heidelberg (2005)

22. Walker, R.J., Viggers, K.: Implementing protocols via declarative event patterns.
In: FSE-12. Proceedings of the ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pp. 159–169. ACM Press, New York (2004)

23. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Transactions of Programming Languages and Systems 19(2), 292–333 (1997)

Multi-stage Aspect-Oriented Composition of
Component-Based Applications

Bert Lagaisse, Eddy Truyen, and Wouter Joosen

Dept. of Computer Science, K.U.Leuven
Celestijnenlaan 200A, 3001 Heverlee, Belgium

{bertl, eddy, wouter}@cs.kuleuven.be

Abstract. The creation of distributed applications requires sophisticated compo-
sitions, as various components — supporting application logic or non-functional
requirements — must be assembled and configured in an operational application.
Aspect-oriented middleware has contributed to improving the modularization of
such complex applications, by supporting a component model that offers aspect-
oriented composition alongside the traditional composition of provided and re-
quired interfaces. One of the recent advances in AO middleware is the ability to
express dynamic compositions that depend on the evaluation of available context
information — some of this information may only be available at deployment time.

The search for high level composition mechanisms is an ongoing track in the
research community, yet the composition logic of a real world application re-
mains complex and it would greatly pay off if composition logic — traditionally
encoded in monolithic deployment descriptors — could be reused over ranges of
applications and even be gradually refined for specific applications.

This paper presents M-Stage, an AO component and composition model that
supports the reuse and adaptation of compositions in distributed applications that
are built on AO middleware. We illustrate the power of M-Stage by applying
the model in a realistic distributed application where we analyze the reuse and
adaptation potential of the M-Stage model.

1 Introduction

Distributed applications are typically built on middleware that offers a component
model and execution environment for these applications. Practical middleware plat-
forms nowadays have to support complex composition of application components and
have to support a broad range of services that deal with the non-functional concerns in
a distributed application.

Aspect-Oriented middleware (AO middleware, AOM) has contributed to improving
the modularization of such complex applications, by supporting an aspect-component
model that offers aspect-oriented composition (AO composition) alongside traditional
composition of provided and required interfaces [7,8,14,17,18]. The core concept in
AO composition is the aspect[3]: a coherent abstraction that encapsulates one specific
(often crosscutting) concern in a separate software module. An aspect defines behav-
ior that can be executed and defines composition logic to describe where and when
this behavior should be executed. AO middleware typically separates aspect behavior

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 630–647, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multi-stage Aspect-Oriented Composition of Component-Based Applications 631

and composition logic from each other. The composition logic is specified externally
in a deployment descriptor while the aspect behavior is represented within traditional
components as methods. Composition logic in AOM is thus specified in the form of
Whenever event X in the application occurs, execute method behavior Y of component
Z. An example of such composition logic can be: whenever a component operation is
executed, execute the enforcement method of the Authorization component. One of the
recent advances in AO middleware is the ability to express dynamic compositions that
depend on the evaluation of available context information about the distributed infras-
tructure. This context information may include for example the component names of
involved components (e.g. caller and callee of an operation), their container, the ap-
plication they belong too, the hosts they are deployed on, etc. As a result complex
composition with remote events can be expressed more concisely and at a higher-level
of abstraction. An example of a such powerful composition logic can be Whenever a
client in the ATM-network calls a component on the application server, the Kerberos
authentication scheme must be applied.

The search for high level composition mechanisms is an ongoing track in the research
community, yet the composition logic of a real world application remains complex and
it would greatly pay off if composition logic — traditionally encoded in monolithic
deployment descriptors — could be reused over ranges of applications and even be
gradually refined for specific applications. Before elaborating on this problem we will
first define the concept of AO composition more rigorously.

Basic concepts of AO Composition. A key element in the specification of the compo-
sition logic is the concept of a pointcut which is a description of a set of join points
where aspects should execute. Join points represent dynamic, runtime conditions that
arise during program execution. The occurrence of such a condition is an event that can
trigger the execution of aspect behavior. Advice specifies what aspect behavior should
be executed and when the aspect behavior should be executed (typically before, after or
around the event) [4]. Pointcuts select join points by declaratively specifying the kind
and context of join points. The kind of a join point refers to the type of instruction be-
ing executed. For example, two different kinds of join points are method call and field
access. The context of joint points refers to additional information that can be made
available to constrain the pointcut such as the method signature, type and identity of the
caller or callee of a method, and various distributed infrastructure properties as men-
tioned above. Which kind of context and which available context that are supported by
an AOM, are defined by the AOM’s join point model. In general, the richer the join
point model, the more complex compositions can be supported.

1.1 Problem Statement

In this section, we set up the scene for the rest of the paper. The goal is to identify
shortcomings of current AO middleware with respect to supporting the development of
reusable composition logic for late integration in various applications and deployment
environments. In the following subsections we will illustrate these shortcomings using
a pedagogical example in the context of the AO middleware DyMAC [9]. DyMAC has
one of the richest join point models and therefore serves as a good example to illustrate

632 B. Lagaisse, E. Truyen, and W. Joosen

these shortcomings. After this illustration we will shortly summarize the general
problem statement of this paper.

The thread of the examples in this paper is the construction of a family of banking
applications. To illustrate the shortcomings in this section and to illustrate the basic
solution in the next section, we use a pedagogical, more concise example in that appli-
cation domain. For the validation of the solution in section 3 we define a more elaborate
case study, based on the example defined in this section.

Problem 1: Reuse of composition logic across applications. Consider the construction
of a family of banking applications from a set of components using AO composition
and traditional composition. One of these components is the Authorization component
which verifies the application-level rights of authenticated users when a banking trans-
action is executed. Another component is the Account component which is a generic
software module that can be reused for different banking products such as a basic check-
ing account service, for custody accounts in an investment application, or to keep track
of loan balances in a loan application. Consider in particular two specific banking prod-
ucts, a basic banking service and an investment application that use the Account and
the Authorization component. Each application has a facade component that uses the
Account entity: BasicBanking and Investment. The interfaces of Account, BasicBank-
ing and Investment are as follows:

i n t e r f a c e I B a s i c B a n k i n g {
vo id Crea t eAccoun t (s t r i n g id , s t r i n g owner) ;
vo id D e p o s i t (s t r i n g id , doub le amount) ;
vo id Withdraw (s t r i n g id , doub le amount) ;
vo id T r a n s f e r (s t r i n g from , s t r i n g to , doub le amount) ;
Accoun t In fo G e t I n f o (s t r i n g i d) ;}

i n t e r f a c e I I n v e s t m e n t {
vo id Crea t eAccoun t (s t r i n g id , s t r i n g owner) ;
vo id D e p o s i t (s t r i n g id , doub le amount) ;
vo id Withdraw (s t r i n g id , doub le amount) ;
vo id BuyStock (s t r i n g accoun t , s t r i n g StockId , i n t amount , doub le maxpr i ce) ;
Accoun t In fo G e t I n f o (s t r i n g i d) ;}

i n t e r f a c e IAccoun t {
s t r i n g Ge t Id () ;
doub le Ge tBa lance () ;
vo id D e p o s i t (doub le amount) ;
vo id Withdraw (doub le amount) ;
L i s t<T r a n s a c t i o n > G e t T r a n s a c t i o n s () ;}

As authorization is a crosscutting concern it is composed using AO composition de-
scriptors of DyMAC, which is illustrated in Figure 1. The AO composition of authoriza-
tion with the basic banking application specifies for example that the authorize method
of the Authorization component should be executed around the execution of the Deposit
and WithDraw operation of Account, but also around the execution of the Transfer op-
eration of BasicBanking. Figure 1 also shows the AO composition descriptor that com-
poses the Authorization component in the investment application. Notice that large part
of this composition logic is the same as in the basic banking application. Yet currently,
the developer has no option then to duplicate this common composition logic in two
separate descriptors. This is obviously problematic in the presence of maintenance and
evolution. A preferable solution is to modularize this common part in a separate AO

Multi-stage Aspect-Oriented Composition of Component-Based Applications 633

ao−c o m p o s i t i o n{
p o i n t c u t {

k i nd : execution ;
s i g n a t u r e : void Deposit(..) OR void WithDraw(..)
| | vo id T r a n s f e r (. .) ;

C a l l e e{
Component : Account OR Bas icBank ing ;}

C a l l e r{
Host : NOT *.intranet.bank.com}}

a d v i c e{
adv ice−component : Authorization;
adv i ce−method : authorize;}}

ao−c o m p o s i t i o n{
p o i n t c u t {

k ind : execution ;
s i g n a t u r e : void Deposit(..) OR void WithDraw(..)
| | vo id BuyStock (. .) ;

C a l l e e{
Component : Account OR I n v e s t m e n t ;}

C a l l e r{}
a d v i c e{

adv ice−component : Authorization ;
adv i ce−method : authorize ;

}}

Fig. 1. AO composition of Authorization with the basic banking application and the investment
application respectively. The underlined specifications are the same in both AO composition de-
scriptors. Deployment-specific composition logic is tangled into the composition logic of basic
banking. The specification in bold indicates the evaluation of deployment-specific context info.

composition descriptor, reuse it for a particular application, and non-invasively refine it
to needs of the specific application.

Problem 2: Reuse across deployment environments. Similarly, AO composition logic
cannot easily be reused across multiple deployment environments. The composition of
authorization may also depend on deployment-specific information in order to enforce
a deployment-specific policy. For example in Figure 1, a security policy is superim-
posed that authorization should not be performed when the call originates from the
trusted intranet zone. However, this distributed context information is specific to the
concrete deployment environment of basic banking. Encoding this deployment-specific
composition logic at the same level of abstraction will cause difficulties when trying to
reuse the common composition logic for another deployment environment. To support
reusability of the common composition logic, it should be possible to non-invasively
extend pointcuts with evaluation of deployment-specific context information. Further-
more, if specifying reusable composition logic is the goal, the aspect-component model
should enforce the developer to abstract from context information that is specific to a
particular application or deployment environment. For example, a component builder
who has to create a reusable secure account component (by composing Account and
Authorization) should not be permitted to specify pointcuts that evaluate the host name
of calling components. This context information should not be made inaccessible for
the developer; rather it should be made irrelevant at a certain level of abstraction.

Summary of the problem. One of the recent advances in AO middleware is the ability to
express complex AO compositions with remote events. This strength, however, is also
a weakness: when common composition logic in a family of applications must be du-
plicated in separate deployment descriptors, issues of reuse arise. All AO middleware
that use a monolithic representation of pointcuts have difficulty defining reusable com-
position logic because they do not provide modularization and gradual refinement of
composition logic. Furthermore, the ability to abstract from context information when
possible, but provide access where necessary, is particularly important for AO middle-
ware with a rich join point model. Although a rich join point model allows to express

634 B. Lagaisse, E. Truyen, and W. Joosen

complex composition logic with remote events, the monolithic representation of point-
cuts causes the tangling of the evaluation of various context information. Some of this
information may only be available during application construction or at deployment
time. This causes additional difficulties with reuse of composition logic.

1.2 The M-Stage Solution

This paper presents M-Stage, an aspect-component model that supports the reuse and
gradual refinement of AO composition logic on top of AO middleware. An essential el-
ement of our solution is that M-Stage integrates AO composition with the hierarchical
and phased approach of Component-Based Software Development (CBSD). State-of-
the art component models in middleware such as J2EE [23] and CCM [22] typically
organize software deployment in multiple subsequent stages. These stages include hier-
archical component aggregation first, then application assembly and finally application
deployment. M-Stage supports specification and gradual refinement of AO composi-
tion logic across these multiple stages. We call this multi-stage composition. The major
contributions of M-Stage are:

– Support for hierarchical modularization of AO composition logic in separate ag-
gregation, assembly and deployment descriptors.

– Support for gradual refinement of AO composition logic across these multiple
stages.

– A join point model that abstracts from certain context types during the early stages
of aggregation and assembly. These details are thus made irrelevant for the devel-
oper at a certain stage to ensure reusability of common composition logic across
multiple applications and deployment environments. We call this a multi-stage join
point model, which is graphically depicted in Figure 2.

Fig. 2. Multi-stage joinpoint model

The rest of the paper is structured as follows. In section 2 we describe the M-Stage
aspect-component model. In section 3 we illustrate M-Stage by means of a case study
and evaluate the overall approach. Section 4 summarizes related work. We conclude in
section 5.

Multi-stage Aspect-Oriented Composition of Component-Based Applications 635

2 M-Stage

The development of a distributed component-based application involves multiple com-
position and configuration activities. These activities can be classified in four stages:

1. The specification of elementary components, which specifies the provided and re-
quired interfaces of elementary components and their implementation.

2. The aggregation of composite components, which consists of repetitive, hierarchic
composition of elementary and composite components.

3. Assembling the application, which includes composing the different (aggregate)
elements of the application and defining an abstract architecture for it.

4. The deployment specification of the application, which maps the software compo-
nents to their concrete deployment location.

Each stage leads to specific artifacts, such as elementary components, composite
components, application assemblies and deployment specifications. These artifacts are
produced by different stakeholders : component providers, application assemblers and
application deployers. Composition of components occurs in three stages: hierarchical
component aggregation first, then application assembly and finally application deploy-
ment. M-Stage supports modular specification and gradual refinement of AO composi-
tion logic across these multiple stages. Refinement of an AO composition can occur (re-
peatedly) within one stage, and also across stages. The M-Stage AO composition model
offers a multi-stage joinpoint model, in such way that it supports contextual properties
specific to each stage. The model also restricts the visibility of those properties to the
appropriate stages.

First, we define the basic component model of M-Stage. We define what kind of arti-
facts are created in each of the different stages. Second, we define the multi-stage join-
point model, multi-stage AO composition and the support for composition refinement.

2.1 The M-Stage Component Model

We define the basic component model with the four different stages and we explain
which information is specified in the different kinds of artifacts in each stage.

Elementary Components. The elementary components are object-based entities with
well-defined interfaces. An elementary component can have multiple interfaces. It can
also have a set of dependencies that specify the required interfaces of the component.
The specification (or descriptor) of an elementary component defines (1) the component
name, (2) the provided interfaces, (3)the implementation file and (4) the dependencies
of the component. A dependency is defined by a dependency name and an interface that
is expected to be bound to the dependency.

As an example we describe the Account component in the next listing. It provides
the IAccount interface as defined in section 2. It has a dependency tx for the required
ITransaction interface. The implementation is defined in AccountImpl. The numbered
labels in comment refer to the enumeration of the elements as introduced in the previous
paragraph.

636 B. Lagaisse, E. Truyen, and W. Joosen

Composite components. A composite component is a hierarchical composition of a
set of components. The components that are part of the composite component can be
elementary or composite components. The specification of a composite component de-
fines (1) a name for the composite, (2) the set of components it contains, and (3) com-
position specifications. These compositions can be normal dependency - component
mappings or AO compositions. AO compositions are further discussed in detail in the
next subsection.

An example of a composite component is illustrated in the next listing. We define the
bank’s generic account component: SecureAccount, an aggregation of Account, Trans-
action and Authorization. We define the dependency-component mapping of Account
with Transaction. The AO composition of Authorization in this composite is discussed
later.

component Account { / / 1
p r o v i d e s : IAccoun t ; / / 2
i m p l e m e n t a t i o n : AccountImpl ; / / 3
dependency t x : I T r a n s a c t i o n ; / / 4

}

compos i t e SecureAccoun t {
c o n t a i n s : Account , T r a n s a c t i o n ,

A u t h o r i z a t i o n ;
c o m p o s i t i o n{

dependency : Account . t x ;
component : T r a n s a c t i o n ;}

ao−c o m p o s i t i o n { . . .}}

Application assemblies. Application assemblies define distributed component-based ap-
plications that are deployable to multiple environments. They consist of a set of com-
ponents (elementary or composite), similar to composite components. The assembly
specification contains reusable architectural information about the application by spec-
ifying an abstract deployment topology. This is a set of abstract hosts on which the
components are allocated. A possible architecture that could be included is a multi-tier
architecture or a simple client-server architecture. Concretely, the specification of an
application assembly contains (1) a name for the application, (2) the set of components
it contains, (3) definitions of abstracts hosts, (4) mappings of components to abstract
hosts and (5) composition specifications specific to the application.

The example in Figure 3 illustrates an abstract architecture for a banking applica-
tion: SecureAccount and BasicBanking are located on the abstract appserver, Employ-
eeClient on the workstations and ATMClient on the ATM machines.

Deployment specification. A deployment specification of an application specifies (1)
the application it deploys, (2) unique deployment names for the public accessible com-
ponents, (3) mappings of abstract hosts to concrete hosts, (4) mappings of a component
to a container on a concrete host, (5) a set of already deployed components it uses and
(6) compositions specific to the deployment environment.

The deployment example in Figure 3 deploys the banking application defined above.
It maps the abstract host appserver to the concrete host appserver1.mybank.net, and
deploys the BasicBanking component with the unique name MyBasicBanking on a
concrete container on the application server. It also declares that it uses an already
deployed component in the environment : runtime monitor, which will monitor and log
the distributed execution trace of all sessions on the application server’s containers. We
illustrate the deployment-specific compositions further on.

Multi-stage Aspect-Oriented Composition of Component-Based Applications 637

a p p l i c a t i o n BasicbankApp { / / (1)
c o n t a i n s : SecureAccount , Bas icBanking ,

EmployeeCl ien t , ATMClient ; / / (2)
a b s t r a c t h o s t : atm , w o r k s t a t i o n ,

a p p s e r v e r ; / / (3)
l o c a t e { / / (4)

component : Bas icBanking , SecureAccoun t ;
a b s t r a c t h o s t : a p p s e r v e r ;}

l o c a t e {
component : E m p l o y e e C l i e n t ;
a b s t r a c t h o s t : w o r k s t a t i o n ;}
. . .
/ / (5) : c o m p o s i t i o n s

}

dep loyment MyBank{
c o n t a i n s : BasicbankApp ; / / (1)
map{ / / (3)

a b s t r a c t h o s t : BasicbankApp . a p p s e r v e r ;
h o s t : a p p s e r v e r 1 . mybank . n e t ;}

d e p l o y{ / / (4)
component : BasicbankApp . Bas i cBank ing ;
deploymentname : MyBasicBanking ; / / 2
h o s t : a p p s e r v e r 1 . mybank . n e t ; / / 4
c o n t a i n e r : c o n t a i n e r 1 ;}

u s e d e p l o y e d : Runt imeMoni tor ; / / (5)
/ / (6) c o m p o s i t i o n s
}

Fig. 3. Application assembly and deployment specification

2.2 AO Composition Model

Composition of components is supported in three stages: (a) composite component ag-
gregation, (b) application assembly and (c) deployment. We continue the description of
the composition model by focusing on AO composition. We first explain the multi-stage
joinpoint-model. Then we elaborate on the multi-stage AO compositions with support
for composition refinement.

Multi-stage joinpoint model. The joinpoint model defines the kind and context of join-
points. The kind of the joinpoint can be either a call or an execution of a method. The
contextual information available about the calling and called component depends on
the stage in which the AO composition is defined. For each stage we define a set of
contextual properties in the joinpoint model that can be evaluated in that specific stage.
The joinpoint model enforces that a stakeholder specifying a certain AO composition
in a certain stage only has to reason over the contextual information that is relevant at
that stage. A definition of the contextual properties in each stage is explained next, and
is also depicted in Figure 2.

In the composite aggregation stage, the contextual properties about the calling com-
ponent are the component name and the dependency that is used. Contextual properties
about the called component are the component name and the interface on which the
method invocation is done. In the application assembly stage, the application name
and abstract host of caller and callee become available, next to the already available
properties of the composite aggregation station. The contextual properties that become
available in the deployment stage are the component’s deployment name, host, and con-
tainer.

Multi-stage AO composition. AO compositions can be specified in each stage that sup-
ports composition of components. Such an AO composition consists of three parts: (c1)
a name for the AO composition, (c2) a pointcut expression and (c3) a set of advices.
Figure 4 shows the high-level grammar, which is the same for all stages. We discuss the
details of a pointcut expression and an advice next.

A pointcut expression evaluates over the kind and context of the joinpoints. The kind
of the joinpoint can be either a call or an execution of a method invocation. Pointcuts
can further evaluate over the contextual properties of the joinpoint. As defined in the

638 B. Lagaisse, E. Truyen, and W. Joosen

ao−c o m p o s i t i o n <name>{ / / (c1)
P o i n t c u t <name>{ / / (c2) , (p1)

Kind : [c a l l | e x e c u t i o n] ; / / (p2)
S i g n a t u r e : <method−p a t t e r n >; / / (p3)
C a l l e r{

[<p r o p e r t y >: <s t r i n g−p a t t e r n >;]∗} / / (p4)
C a l l e e{

[<p r o p e r t y >: <s t r i n g−p a t t e r n >;]∗}} / / (p5)
[Advice <name>{ / / (c3)

Advice−Component : <component−name>;
Advice−Type : [b e f o r e | a f t e r | a round] ;
Advice−Method : < i n t e r f a c e >.<adv ice−method >;

}]∗
}

Fig. 4. Grammar for AO compositions

grammar, a pointcut expression consists of (p1) a name for the pointcut and evaluates
over (p2) the kind of joinpoint, (p3) the method signature, (p4) caller properties (con-
textual properties about calling component) and (p5) callee properties (contextual prop-
erties about the called component). The available contextual properties about caller and
callee depend on the stage in which the pointcut is specified. Furthermore, if pointcuts
do not specify a value for a certain property, it has a default value. This default value
is the least restricting value for that contextual property. Furthermore, an advice is de-
scribed by (1) the component that provides the aspect behavior, (2) an advice method
of the advising component and (3) an advice type (before, after or around).

A first example is SecureAccount’s AO composition, specified in the aggregation
stage. It illustrates the use of joinpoint properties that are only visible in the aggre-
gation stage. A second example is RuntimeMonitor’s AO composition, defined in the
deployment stage. It illustrates the modularization of deployment specific composition
logic: the pointcut as well as the advice are deployment-specific.

compos i t e SecureAccoun t{
c o n t a i n s : Account , T r a n s a c t i o n ,

A u t h o r i z a t i o n ;
. . .
ao−c o m p o s i t i o n aoc1{

P o i n t c u t s e n s i t i v e {
Kind : e x e c u t i o n
S i g n a t u r e : vo id D e p o s i t (. .)

OR void Withdraw (. .) ;
C a l l e e{

Component : Account ;}}
/ / a d v i c e s o f A u t h o r i z a t i o n t o c a l l .
Advice c h e c k r o l e{

Advice−Component : A u t h o r i z a t i o n ;
Advice−Method :

I A u t h o r i z a t i o n . V e r i f y R o l e ;
. . .

}}}

dep loymen t MyBank{
. . .
ao−c o m p o s i t i o n m o n i t o r{

P o i n t c u t m o n i t o r t r a c e {
Kind : e x e c u t i o n
S i g n a t u r e : ∗ ∗ (. .) ;
C a l l e e{

Host : a p p s e r v e r 1 . mybank . n e t ;}}
Advice l o g t r a c e {

Advice−Component : Runt imeMonito r ;
. . .

}}

Refining AO compositions. When a composition artifact is used in an other artifact, of
possibly another stage, it might be necessary to further refine the pointcuts. This re-
finement can be a different evaluation of an existing contextual property or the use of
a newly available property in the actual stage. The with directive allows to refine the

Multi-stage Aspect-Oriented Composition of Component-Based Applications 639

pointcut in an AO composition or in parts of it. The old keyword allows to refer to the
previous pointcut definition. The refined pointcut is expressed by referring to the point-
cut name within its naming path. First we define the structure of the naming path, then
we define the specification of a refinement.

<namingpath> =
<a r t i f a c t >[.< c o n t a i n i n g a r t i f a c t >]∗.<ao−compos i t ion >

<a r t i f a c t t y p e > <name> {
. . .
w i th <namingpath >.<p o i n t c u t > {

S i g n a t u r e = <new va lue >;
w i th C a l l e r {

/ / r e f i n e m e n t o f p r o p e r t i e s
}

wi th C a l l e e{
/ / r e f i n e m e n t o f p r o p e r t i e s
}}}

As an illustration of reuse and refinement we reconsider the examples from the intro-
duction. SecureAccount’s AO composition of Account and Authorization has already
been defined earlier. The stepwise refinement of the AO composition for the basic bank-
ing application is defined in the Figure 5. The AO composition of authorization is refined
in the definition of the basic banking application assembly, so that it is applied to Ba-
sicBanking too, and not applied to Account when the calls come from BasicBanking.
In the deployment specification of the basic banking application, the authorization is re-
fined so that it is never enforced when the calls originate from the trusted intranet zone.

A p p l i c a t i o n Bas icbankingApp{
c o n t a i n s : SecureAccoun t ;
c o n t a i n s : Bas i cBank ing ;
wi th SecureAccoun t . aoc1 . s e n s i t i v e {

S i g n a t u r e : o l d . S i g n a t u r e | | vo id T r a n s f e r (. .)
w i th C a l l e e{

Component : o l d . C a l l e e . Component | | Bas icBank ing ;}
wi th C a l l e r{

Component : ! Bas i cBank ing ;}}}}

dep loyment MyBank{
. . .
w i th BasicBankingApp . SecureAccoun t . aoc1 . s e n s i t i v e {

wi th C a l l e r{
Host : !∗ . i n t r a n e t . bank . com;}}}}

Fig. 5. Refinement of Authorization

3 Validation

In this section, we validate the power of M-Stage by applying the model in a family of
e-finance applications. Figure 6 depicts the core assets of this family, which are (1) a
set of reusable elementary components, which can be reused for different e-finance ap-
plications, (2) a set of reusable composite components encoding reusable composition

640 B. Lagaisse, E. Truyen, and W. Joosen

Fig. 6. Multi-stage AO composition

logic, and (3) reusable application assemblies encoding reusable architectures that are
deployable to multiple deployment environments.

We illustrate how M-Stage1 supports this and how a concrete family instance is built,
using multi-stage composition and gradual refinement. We evaluate against the reuse
potential of DyMAC’s own component model.

3.1 The Elementary Components

Three elementary components are typical business components: CustomerRegister, Ba-
sicBanking and Account. The CustomerRegister and BasicBanking components are re-
motely accessible services that offer the core business operations to manage customers,
create new accounts and execute transactions. The BasicBanking component uses the
Account component, which is an entity that contains the basic information about ac-
counts: a unique account id, a balance, and a record of transactions executed on the
account. The account component is a generic account that offers two operations: de-
posit and withdraw. The interfaces of the three core business components are defined in
Figure 7.

The employees at the branch offices of the bank use the EmployeeClient component
at their workstations to manage the customers’ accounts and to handle customer re-
quests. The customers can also use an ATM to withdraw money from their accounts.
The CashWithdrawal component on the ATM terminals as well as the EmployeeClient
component uses the BasicBanking component to execute the transactions. The different
components in the application are depicted in Figure 8. Figure 8 also describes the set
of elementary aspect-components.

There are four collaborating aspect-components for authentication in the application.
First, a client-side component, EmployeeCredentials, asks the employees for creden-
tials, before the EmployeeClient component starts up. A second component, which is
a local component on the ATM, ATMCredentials, asks the ATM-users for credentials

1 We use the M-Stage component model implementation on top of the DyMAC runtime envi-
ronment.

Multi-stage Aspect-Oriented Composition of Component-Based Applications 641

i n t e r f a c e I B a s i c B a n k i n g {
vo id Crea t eAccoun t (s t r i n g id , s t r i n g owner) ;
vo id D e p o s i t (s t r i n g id , doub le amount) ;
vo id Withdraw (s t r i n g id , doub le amount) ;
vo id T r a n s f e r (s t r i n g from , s t r i n g to , doub le amount) ;
Accoun t In fo G e t I n f o (s t r i n g i d) ;}

i n t e r f a c e I C u s t o m e r R e g i s t e r {
vo id Crea teCus tomer (s t r i n g id , s t r i n g name , . . .) ; }

i n t e r f a c e IAccoun t {
s t r i n g Ge t Id () ;
doub le Ge tBa lance () ;
vo id D e p o s i t (doub le amount) ;
vo id Withdraw (doub le amount) ;
L i s t<T r a n s a c t i o n > G e t T r a n s a c t i o n s () ;}

Fig. 7. Interfaces of BasicBanking, CustomerRegister and Account

Fig. 8. Application overview

when they want to withdraw cash. Third, a server-side component EmployeeAuthenti-
cationService authenticates the credentials of the employees and generates an employee
authentication token. Forth, the ATMAuthenticationService authenticates the credentials
of atm users and generates an atm authentication token. Both authentication services are
located at the central authentication server and are called after the client has provided
his credentials. The returned authentication token is stored in the client side credential
components. Each time a call is made from the clients to the application server, an ad-
vice in the client side credential components will push the stored authentication token
along with the call. A fifth aspect-component is the Authorization component that ver-
ifies the application-level rights associated with the authenticated user when a banking
transaction is executed. Employees can only do transactions during office hours. ATM-
users can only withdraw from their own account, with a maximum of 5000 Euro. The

642 B. Lagaisse, E. Truyen, and W. Joosen

sixth aspect-component is the SecureLogger component at the central audit server. It
keeps track of all authentication and authorization attempts and of the results.

The interfaces of the advising components in the example are defined as follows.
EmployeeCredentials and CustomerCredentials provide the interface ICredentials. It
defines an operation to get the credentials of the user, an operation to store the authen-
tication token after it is returned by the authentication service and an operation to push
the authentication token with every call that is made to the application server.

i n t e r f a c e I C r e d e n t i a l s {
vo id G e t C r e d e n t i a l s (R u n t i m e J o i n P o i n t r j p) ;
vo id Sto reT oken (R u n t i m e J o i n P o i n t r j p) ;
vo id PushToken (R u n t i m e J o i n P o i n t r j p) ;}

i n t e r f a c e I A t m A u t h e n t i c a t i o n S e r v i c e{
vo id V e r i f y A t m C r e d e n t i a l s (R u n t i m e J o i n P o i n t r j p) ;}

i n t e r f a c e I E m p l o y e e A u t h e n t i c a t i o n S e r v i c e{
vo id V e r i f y E m p l o y e e C r e d e n t i a l s (R u n t i m e J o i n P o i n t r j p) ;}

i n t e r f a c e I A u t h o r i z a t i o n{
vo id V e r i f y R o l e (R u n t i m e J o i n P o i n t r j p) ;
vo id Ver i fyT ime (R u n t i m e J o i n P o i n t r j p) ;
vo id VerifyOwner (R u n t i m e J o i n P o i n t r j p) ;
vo id VerifyAmount (R u n t i m e J o i n P o i n t r j p) ;

i n t e r f a c e I S e c u r e L o g g e r{
vo id Log (R u n t i m e J o i n P o i n t r j p) ;}

3.2 Composition and Deployment of the Basic Banking Application

The composition of the basic banking application, as depicted in Figure 6, defines
11 AO compositions (9 definitions + 2 refinements) across the composite components
(5+1), the application assembly (2+0) as well as the deployment specification (2+1).

Composite components. The composite components in the systems are SecureAccount,
BusinessLogic and DistributedAuthentication. The composite component SecureAc-
count contains Authorization and Account. It specifies one AO composition enforcing
the authorization rules on the transaction operations of Account.

compos i t e SecureAccoun t{
c o n t a i n s : Account , A u t h o r i z a t i o n ;
ao−c o m p o s i t i o n aoc1{

P o i n t c u t s e n s i t i v e {
Kind : e x e c u t i o n
S i g n a t u r e : vo id D e p o s i t (. .) | | vo id Withdraw (. .) ;
C a l l e e{

Component : Account ;}}
/ / a d v i c e s o f A u t h o r i z a t i o n t o c a l l .
Advice c h e c k r o l e{

Advice−Component : A u t h o r i z a t i o n ;
Advice−Type : b e f o r e ;
Advice−Method : I A u t h o r i z a t i o n . V e r i f y R o l e ;}

. . . }}

BusinessLogic is a composite component containing SecureAccount and BasicBank-
ing. When the SecureAccount composite is reused in the BusinessLogic composite, the
AO composition is refined to also enforce authorization on the basic banking service.
Security checks need to be verified as early as possible in the call-chain. Calls com-
ing from BasicBanking to SecureAccount then need no authorization. Concretely, the

Multi-stage Aspect-Oriented Composition of Component-Based Applications 643

Signature property will be broadened with the Transfer method, and the component
name of the callee will be broadened with the BasicBanking component name. The
component name of the caller will be restricted from its default value (*) to !BasicBank-
ing because authorization would not occur twice.

compos i t e B u s i n e s s L o g i c{
c o n t a i n s : Secu reAccoun t ;
c o n t a i n s : Bas icBank ing ;
wi th SecureAccoun t . aoc1 . s e n s i t i v e {

S i g n a t u r e : o l d . S i g n a t u r e | | vo id T r a n s f e r (. .)
w i th C a l l e e{

Component : o l d . C a l l e e . Component | | Bas icBank ing ;}
wi th C a l l e r{

Component : ! Bas i cBank ing ;}}}}

DistributedAuthentication is a composite component containing the authentication
components in the application. This component encapsulates four AO compositions
specifying the following internal interactions between the authentication components.
First, after gathering the credentials of the employee, the employee authentication ser-
vice is called to verify the credentials and return an employee authentication token.
Second, after the authentication token is returned it is stored in the employee credential
component at the client side. In the next listing, we define these two AO compositions of
EmployeeCredentials and EmployeeAuthentication in DistributedAuthentication. The
other two AO compositions for ATM authentication are similar.

compos i t e D i s t r i b u t e d A u t h e n t i c a t i o n {
c o n t a i n s : E m p l o y e e C r e d e n t i a l s , E m p l o y e e A u t h e n t i c a t i o n S e r v i c e , . . . ;
ao−c o m p o s i t i o n checkEmployee{

P o i n t c u t c r e d e n t i a l s {
Kind : e x e c u t i o n
S i g n a t u r e : ∗ G e t C r e d e n t i a l s (. .) ;
C a l l e e{

Component : E m p l o y e e C r e d e n t i a l s ;}}
Advice {

Advice−Component : E m p l o y e e A u t h e n t i c a t i o n S e r v i c e ;
Advice−Type : a f t e r ;
Advice−Method : I E m p l o y e e A u t h e n t i c a t i o n S e r v i c e . V e r i f y C r e d e n t i a l s ;}}

ao−c o m p o s i t i o n s to reE mployeeT oken{
P o i n t c u t v e r i f y{

Kind : c a l l ;
S i g n a t u r e : ∗ V e r i f y C r e d e n t i a l s (. .) ; }

Advice s t o r e T o k e n{
Advice−Component : E m p l o y e e C r e d e n t i a l s
Advice−Type : a f t e r ;
Advice−Method : I E m p l o y e e C r e d e n t i a l s . S to reT oken ;}}

ao−c o m p o s i t i o n checkAtmUser { . . . }
ao−c o m p o s i t i o n s toreAtmToken { . . .}}

Application Assembly. The application BankingApplication assembles 4 components:
BusinessLogic, CashWithdrawal, EmployeeClient and DistributedAuthentication. The
two AO compositions between DistributedAuthentication and the other application
components are defined in the application assembly. Concretely, the two advices that
get the credentials, defined in ATMCredentials and EmployeeCredentials, are composed
as before advice on the entry-methods of the client components (e.g. the main method of

644 B. Lagaisse, E. Truyen, and W. Joosen

EmployeeClient). We define the composition in BankingApplication of DistributedAu-
thentication with the employee client and BusinessLogic: the employee authentication
token is pushed along with all calls leaving a workstation towards the appserver. The
other AO composition to push the atm token is similar.

a p p l i c a t i o n B a n k i n g A p p l i c a t i o n {
c o n t a i n s : D i s t r i b u t e d A u t h e n t i c a t i o n , . . .

E mployeeCl i en t , ATMClient ;
a b s t r a c t h o s t : atm , w o r k s t a t i o n ,

a p p s e r v e r ;
l o c a t e{

component : B u s i n e s s L o g i c ;
a b s t r a c t h o s t : a p p s e r v e r ;}

l o c a t e{
component : E mployeeCl ien t ;
a b s t r a c t h o s t : w o r k s t a t i o n ;}

ao−c o m p o s i t i o n pushEmployeeToken {
P o i n t c u t e m p l o y e e C a l l s{

Kind : c a l l
S i g n a t u r e : vo id ∗ (. .) ;
C a l l e r{

a b s t r a c t h o s t : w o r k s t a t i o n ;}
C a l l e e{

a b s t r a c t h o s t : a p p s e r v e r ;}}
/ / Advice push employee t o k e n . . .
}
ao−c o m p o s i t i o n pushATMToken { . . .}}

dep loymen t MyBank{
. . .
w i th B a n k i n g A p p l i c a t i o n . B u s i n e s s L o g i c

. Secu reAccoun t . aoc1 . s e n s i t i v e {
wi th C a l l e r{

Host : ! a p p l i c a t i o n s e r v e r ;}}
ao−c o m p o s i t i o n a u t h e n t i c a t i o n a u d i t {

P o i n t c u t o p e r a t i o n s t o a u d i t {
Kind : e x e c u t i o n
S i g n a t u r e : ∗ ∗ (. .) ;
C a l l e e{

Host : a u t h e n t i c a t i o n s e r v e r ;}}
/ / Advice : l o g a f t e r e x c e p t i o n
}
ao−c o m p o s i t i o n a u t h o r i z a t i o n a u d i t {
}

Deployment specification. In the deployment specification above, the secure logger at
the audit server of a specific deployment environment is composed with the authentica-
tion services and with the authorization component. A failed credential verification or
authorization will be recorded in the audit trail by the secure logger. The host name of
the authentication server is used in the pointcut in stead of enumerating all authentica-
tion services. Failures of any authentication service on the host will then be logged.

The refinement of the authorization pointcut in the deployment specification is a re-
finement based on new contextual information: all components in BusinessLogic are
deployed on the same container on the applicationserver. Therefor, if an invocation
comes from within the applicationserver, authorization should not be applied. The host
property of the caller will therefore be restricted from its default value * to !applica-
tionserver.

3.3 Evaluation

The goal of this section is to quantify to which extent M-Stage improves reusability of
AO composition logic. To achieve this goal we have measured how many AO compo-
sitions in the above banking application can be reused in another hypothetical usage
context (for example, the investment application) and we have compared this with com-
position descriptors in DyMAC. We have used the following metrics in particular:

A The total number of AO compositions defined.
B The number of lines of code defined.
C The number of AO compositions that can be reused across multiple applications.
D The number of AO compositions that can be reused across multiple deployment

environments.

Multi-stage Aspect-Oriented Composition of Component-Based Applications 645

The table below gives an overview of our results of this comparison. For this relatively
small configuration (83 LOC), M-Stage allows to reuse 55% of the AO composition
logic across applications, and 72% across deployment environments. This gain of reuse
comes at the cost of 22% more AO compositions that must be specified due to the
gradual refinement, and an increase of 18% in total lines of code. We have achieved the
increase of reuse because of four main points:

1. Pointcuts in the application assembly per definition do not contain deployment host
information and thereforedon’t tie theapplication toafixed deploymentenvironment.

2. Deployment-time AO compositions do not need to be defined in the application
assembly.

3. Reusable AO compositions that should already be defined in a reusable composite
component can be localized in a separate descriptor.

4. It is possible to refine existing AO compositions.

with refinement necessary A B C D
DyMAC 9 83 n/a n/a
M-Stage 11 (9+2) 98 6 (5+1) out of 11 8 (7+1) out of 11

Relative increase +22% +18% n/a n/a

4 Related Work

Three categories of related work are considered: AO middleware, stepwise refinement
models and model-driven middleware.

AO middleware (AOM). The general relation between M-Stage and AOM platforms
has already been discussed in the motivation of this paper. Summarized, M-Stage aug-
ments existing AOMs with multi-stage composition, which modularizes AO composi-
tions across multiple stages, and with a multi-stage join point model, which enables ab-
straction of certain context information during the early stages. Multi-stage composition
pays off for all AOMs, whereas the multi-stage join point model only pays off for AOMs
with a rich join point model. For example, JBoss AOP [8], AspectWerkz [15], Spring
AOP [14], Prose [17], CAM/DAOP [10], DADO [18], FAC [28] and GlueQoS [19] only
benefit from multi-stage composition because these platforms do not support the eval-
uation of context properties concerning the application architecture or deployment. On
the other hand platforms such as JAC [7], DJCutter [20], AWED [11] and DyMAC [9]
also benefit from a multi-stage joinpoint model because they do support the evaluation
of distributed context and application architecture.

Stepwise refinement. Batory et al. presents a software composition model and associated
tool set, called AHEAD [16], that supports large-scale refinement of aspect-like mod-
ules in a product family. Atkinson and Kühne present the concept of stratified architec-
tures [21] for gradually refining and introducing aspect behavior across multiple levels of
abstraction in the design of a distributed application. There are two important differences
between these works and M-Stage. First M-Stage has a more focused goal: it supports
stepwise refinement of aspect composition logic, not aspect behavior. Furthermore, M-
Stage supports stepwise refinement across multiple development stages and not across

646 B. Lagaisse, E. Truyen, and W. Joosen

multiple levels of abstraction in the design of a software system. Finally, the AHEAD
tool set does not target AO middleware. Having said this, it should be noted that AHEAD
supports a uniform compose operation that also targets non-code artifacts. As such it is
possible that AHEAD can also be used to express stepwise refinement of composition
descriptors. Exploring this interesting idea is however subject to further research.

ADL-driven and Model-driven middleware. CAM/DAOP [10] is an AO middleware
that specifies the composition of components and aspects using an architectural descrip-
tion language (ADL) [29], named DAOP-ADL [27]. This ADL-based approach provides
an interesting complement to M-Stage. After all, using an ADL, application deployers
are able to comprehend the overall aspect-component composition, facilitating a better
understanding and easier verification of the application. This is of course an important
software engineering quality that improves the safety and robustness when deploying
aspects. M-Stage could also be nicely complemented by model-driven middleware (e.g.
[25,26,24] In model-driven middleware, multiple design models of aspects and appli-
cations can be specified, composed and possibly verified. Once composed, these mod-
els can be automatically synthesized to deployment descriptors for a specific (non-AO)
middleware platform of choice [25] or to middleware implementations itself [26]. An
approach with similar goals to M-Stage in this context is the CoSMIC and the DAnCE
toolsets [25]. These toolsets specifically address crosscutting deployment and configu-
ration concerns of distributed real-time and embedded systems. The difference between
M-Stage and CoSMIC/DAnCE is that the latter targets system life-cycle challenges in
standard middleware, while M-Stage addresses reuse problems in AO middleware.

5 Conclusion

M-Stage is an aspect-component model that offers reuse and refinement of compositions
in distributed applications that are built on AO middleware. Key elements in M-Stage
are its support for multi-stage composition and its multi-stage join point model. Multi-
stage composition supports modularization and refinement of AO composition logic
across multiple composition and deployment stages. The multi-stage join point model
enables abstraction of certain context information during the early composition stages.
We have illustrated the power of M-Stage by applying the model in a realistic distributed
application where we analyzed the reuse and adaptation potential of the M-Stage model.

References

1. Szyperski, C.: Component software: beyond object-oriented programming, 2nd edn. ACM
Press/Addison-Wesley

2. Heineman, G., Councill, W.: Component-based Software Engineering. Addison-Wesley
3. Kiczales, G.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP

1997. LNCS, vol. 1241, Springer, Heidelberg (1997)
4. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An Overview of

AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, Springer, Heidelberg (2001)
5. Hilsdale, E., Hugunin, J.: Advice Weaving in AspectJ. In: Proc. AOSD 2004
6. Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Development.

Addison-Wesley, Reading (2004)

Multi-stage Aspect-Oriented Composition of Component-Based Applications 647

7. Pawlak, R., Seinturier, L., Duchien, L., Florin, G.: JAC: A Flexible Solution for Aspect-
oriented Programming in Java. In: Yonezawa, A., Matsuoka, S. (eds.) Reflection 2001.
LNCS, vol. 2192, Springer, Heidelberg (2001)

8. Fleury, M., Reverbel, F.: The JBoss extensible server. In: Endler, M., Schmidt, D.C. (eds.)
Middleware 2003. LNCS, vol. 2672, Springer, Heidelberg (2003)

9. Lagaisse, B., Joosen, W.: True and Transparent Distributed Composition of Aspect-
Components. In: van Steen, M., Henning, M. (eds.) Middleware 2006. LNCS, vol. 4290,
Springer, Heidelberg (2006)

10. Pinto, M., Fuentes, L., Troya, J.M.: A Dynamic Component and Aspect-Oriented Platform.
The Computer Journal (2005)

11. Navarro, L.D.B., Südholt, M., Vanderperren, W., De Fraine, B., Suvée, D.: Explicitly dis-
tributed AOP using AWED. In: Proc. AOSD 2006 (2006)

12. Cohen, T., Gil, J.Y.: AspectJ2EE = AOP + J2EE: Towards an Aspect Based, Programmable
and Extensible Middleware Framework. In: Odersky, M. (ed.) ECOOP 2004. LNCS,
vol. 3086, Springer, Heidelberg (2004)

13. JBoss AOP homepage, http://labs.jboss.com/jbossaop
14. Spring website, http://www.springframework.org/
15. AspectWerkz homepage, http://aspectwerkz.codehaus.org/
16. Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. In: Proc. ICSE

2003, pp. 187–197 (2003)
17. Nicoara, A., Alonso, G.: Dynamic AOP with PROSE. In: ASMEA 2005. Proc. of Interna-

tional Workshop on Adaptive and Self-Managing Enterprise Applications (June 2005)
18. Wohlstadter, E., Devanbu, P.T.: Aspect-Oriented Development of Crosscutting Features in

Distributed, Heterogeneous Systems. In: Transactions of Aspect-Oriented Software Devel-
opment II, pp. 69–10 (2006)

19. Wohlstadter, E., Tai, S., Mikalsen, T.A., Rouvellou, I., Devanbu, P.: GlueQoS: Middleware
to Sweeten Quality-of-Service Policy Interactions. In: ICSE 2004, pp. 189–199 (2004)

20. Nishizawa, M., Chiba, S., Tatsubori, M.: Remote pointcut: a language construct for dis-
tributed AOP. In: AOSD 2004, pp. 7–15 (2004)

21. Atkinson, C., Kühne, T.: Aspect-Oriented Development with Stratified Frameworks. IEEE
Software 20(1), 81–89 (2003)

22. Wang, N., Schmidt, D.C., O’Ryan, C.: Overview of the CORBA Component Model.
Component-based software engineering: putting the pieces together, pp.557–571 (2001)

23. Monson-Haefel, R.: Enterprise JavaBeans, 3rd edn. O’Reilly (September 2001)
24. Gray, J., Bapty, T., Neema, S., Schmidt, D.C., Gokhale, A., Natarajan, B.: An approach for

supporting aspect-oriented domain modeling. In: Pfenning, F., Smaragdakis, Y. (eds.) GPCE
2003. LNCS, vol. 2830, pp. 151–168. Springer, Heidelberg (2003)

25. Deng, G., Schmidt, D.C., Gokhale, A.S.: Addressing crosscutting deployment and configura-
tion concerns of distributed real-time and embedded systems via aspect-oriented and model-
driven software development. In: Proc. ICSE 2006, pp. 811–814 (2006)

26. Zhang, C., Gao, D., Jacobsen, H.: Generic Middleware Substrate Through Modelware. In:
Alonso,G. (ed.)Middleware2005.LNCS,vol. 3790,pp.314–333.Springer,Heidelberg (2005)

27. Pinto, M., Fuentes, L., Troya, J.M.: DAOP-ADL: An architecture description language for
dynamic component and aspect-based development. In: Pfenning, F., Smaragdakis, Y. (eds.)
GPCE 2003. LNCS, vol. 2830, pp. 118–137. Springer, Heidelberg (2003)

28. Pessemier, N., Seinturier, L., Coupaye, T., Duchien, L.: A Model for Developing Component-
based and Aspect-oriented Systems. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS,
vol. 4089, Springer, Heidelberg (2006)

29. Shaw, M., Garlan, D.: Software Architecture: Perspective on an Emerging Discipline.
Prentice-Hall, Englewood Cliffs (1996)

http://labs.jboss.com/jbossaop
http://www.springframework.org/
http://aspectwerkz.codehaus.org/

An Eclipse-Based Tool for Symbolic Debugging

of Distributed Object Systems�

Giuliano Mega and Fabio Kon

Department of Computer Science, University of São Paulo, Brazil
{giuliano, kon}@ime.usp.br

http://god.incubadora.fapesp.br

Abstract. After over thirty years of distributed computing, debugging
distributed applications is still regarded as a difficult task. While it could
be argued that this condition stems from the complexity of distributed
executions, the fast pace of evolution witnessed with distributed com-
puting technologies has also played its role by shortening the life-span
of many useful debugging tools. In this paper we present an extensible
Eclipse-based tool which brings distributed threads and symbolic de-
buggers together, resulting in a simple and useful debugging aid. This
extensible tool is based on a technique that is supported by elements that
are common to synchronous-call middleware implementations, making it
a suitable candidate for surviving technology evolution.

1 Introduction

After over thirty years of distributed computing, debugging distributed applica-
tions is still a difficult task. While it is true that this could be partially blamed
on the fact that distributed executions are complex and difficult to handle, a
major contributing factor to this situation has been the fast pace at which new
distributed computing technologies (including hardware, middleware, and oper-
ating systems) have emerged, making the life-span of debugging tools somewhat
short. Be as it may, the net result is the noticeable lack of a set of effective,
widely adopted debugging tools, even on mainstream middleware platforms.

We are not the first ones to identify heterogeneity as a major contributor to
the slow progress witnessed with mainstream debugging tools. Cheng had al-
ready identified it in 1994 [2], and so had Pancake [15], as well as many other
researchers and industry specialists. This points out to the fact that portability
- not just among hardware platforms, but also among middleware and operating
systems - is of paramount importance if a tool is to be useful within today’s
highly heterogeneous environments, and also if this tool is to remain useful for
more than a couple of seasons. One way to achieve portability is through stan-
dardization. In the High-Performance computing arena, there have been some
rather important efforts - like the High Performance Debugging (HPDF) forum,

� This work was partially supported by a grant from CAPES-Brazil, by an Eclipse
Innovation Grant, and by a Google Summer of Code grant.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 648–666, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Eclipse-Based Tool for Symbolic Debugging 649

the OMIS project, and the Parallel Tools Consortium - which attempted to push
the development of a set of standards for debugging and performance analysis
tools. These efforts were mainly targeted at the needs of the high performance
computing community, however, and, to the best of our knowledge, no such ef-
forts have ever been attempted within the distributed object community. This
puts distributed object application developers in a difficult situation as far as
compatibility, longevity and, by consequence, availability and usability of debug-
ging tools is concerned.

In this paper, we present a new framework for distributed debugging that
can be applied to multiple middleware platforms and programming languages.
The framework has been developed as an Eclipse plugin, which allowed us to
reuse the rich debugger user interface provided by the platform. This framework
is validated through a Java/CORBA instantiation that supports features such
as distributed application launching, breakpointing, distributed stack and state
inspection, multiple extended stepping modes, and distributed deadlock and
stack overflow detection, among other features.

Motivation: Distributed Object Middleware and Symbolic Debugging

From a historical perspective, one of the most popular abstractions for inter-
process communication in distributed systems has been that of the remote pro-
cedure call (RPC) [13]. RPCs have been widely employed for over two decades,
either in a procedure-oriented fashion or, somewhat more recently, as remote
method invocations in object-oriented middleware systems such as CORBA,
DCOM, Java/RMI and .NET/Remoting.

In an equal ground as far as popularity is concerned, we have the symbolic or
source-level debuggers (like GDB [17], for instance). Symbolic debuggers have
been around for almost as long as higher-level languages themselves, and still
constitute one of the most widely used and accepted tools for helping program-
mers remove bugs from programs. We believe that this popularity can be ex-
plained by the fact that symbolic debuggers are the only kind of debugging tool,
apart from the print statement, that is available for almost every language, run-
time environment, operating system, and hardware currently in existence. In a
sense, we could say there is a standard at work here - albeit not a formal one.
Distributed applications (including Distributed Object Applications) are, in fact,
frequently debugged with symbolic debuggers capable of operating remotely.

Our approach to the distributed debugging problem attempts to unite the
essence of what makes synchronous calls and symbolic debuggers so convenient.
At the same time, we try to augment the latter with functionality so that they
can become more useful in the context of multithreaded, distributed object ap-
plications (DOAs), while keeping in mind the goals of extensibility, portability
and simplicity. The philosophy that actually backs this whole work is already
quite simple - we want to bring symbolic debugging of distributed object ap-
plications as close as possible to the debugging of centralized, multithreaded
applications. We also want to support the user of Distributed Object Comput-
ing (DOC) middleware in accomplishing debugging tasks that result from the

650 G. Mega and F. Kon

insidious complexities of synchronous calls; that is, we wish to help the user
of DOC middleware to overcome some of its inherent complexities. That said,
symbolic debuggers are convenient for the following reasons:

1. Ubiquity: it is very rare to see a language development toolkit shipping with-
out a symbolic debugger – this is even more true with mainstream languages. It
is therefore not unreasonable to take for granted that the languages and runtime
environments on top of which a heterogeneous distributed object system will be
built on will have symbolic debuggers available for them.
2. Cognitive appeal: the visualization mechanism used by symbolic debuggers
- animation over the source code - is quite intuitive, and matches the (low-level)
mental images that the programmer produces while coding. Although this visu-
alization mechanism does not scale particularly well, it is something developers
are familiarized with, and it is definitely helpful. Synchronous-call DOC middle-
ware present the distributed system as a collection of virtual threads that are
capable of spanning multiple machines. We will call these distributed threads (or
DTs). Symbolic debuggers and the underlying execution environment, including
its libraries, however, are myopic to such high-level constructs. This brings on a
number of issues (some of which are discussed in [10]), which we present in the
following paragraphs:

1. Abstraction mismatch: middleware platforms allow developers to treat re-
mote and local objects similarly. Middleware implementations accomplish this
transparency by replacing the implementation of remote object references ac-
cessible from clients with code that is generated automatically, either during
compilation or at runtime. The problem happens when such an application is
subjected to the eye of a symbolic debugger, as all of this automatically gener-
ated code will be exposed to the user, together with the code of the middleware
platform, defeating the benefits of transparency. Not only that, but the user will
also not be able to track the flow of control of his application (by stepping)
into remote objects like he does with local objects, simply because symbolic
debuggers are not aware of this arrangement. In other words, the view of the
underlying execution environment that is provided by the debugger does not
match the abstract view provided by the DOC middleware.
2. Causal relationships are not properly captured: capturing causality
[16] is a task that is out of scope of most symbolic debuggers. For DOC mid-
dleware, this means that users will not be able to see the order in which events
have happened. Also, they will not be able to see which local threads participate
in which distributed threads.
3. Distributed and self-deadlocks: Like with multithreaded applications,
distributed threads can deadlock when acquiring the same locks in different or-
ders. Distributed deadlocks can be tough to spot with plain symbolic debuggers.
Also, although a distributed thread logically represent a single thread, it is ac-
tually composed of multiple, “local” threads. Since the concurrency mechanisms
of the underlying execution environment are normally oblivious to the existence

An Eclipse-Based Tool for Symbolic Debugging 651

of distributed threads, this may lead to situations where a distributed thread
deadlocks with itself (we call that a self-deadlock).

Besides the issues already mentioned, there are a number of other issues that
constitute classical problems in distributed debugging [7]. For the sake of com-
pleteness, we outline these as follows:

1. Non-determinism and the probe effect: distributed executions are in-
trinsically non-deterministic due to their partially ordered nature [12]. The inter-
leaving of instrumentation code with application code for gathering of run-time
information may lead to timing distortions which affect (and bias) the partially
ordered, distributed execution. This is known as the probe effect [5] and may
lead to “heisenbugs” (erroneous behavior that disappear under observation).
2. Maze effect: the maze effect [4] manifests itself whenever the user of a debug-
ging tool is overwhelmed with information. Representations of the distributed
execution that are too fine grained are one common cause. Tools that are unable
to selectively display execution information using some relevance criteria, thus
overwhelming the user with data, are another cause. We believe synchronous
calls and symbolic debuggers to be a good starting point for three main reasons:
their popularity among developers, their pervasiveness among middleware plat-
forms/programming languages, and because the resulting tool – a distributed
symbolic debugger – is something most developers will be familiar with, even
though they might have never seen or used one. The source code for all imple-
mentation efforts described in this article can be obtained as free software at
http://god.incubadora.fapesp.br.

2 Debugging with Distributed Threads

This section begins by attempting to describe in more precise terms what are
distributed threads (DTs), and by laying a formal framework that tells how we
expect them to behave. We then proceed by describing how DTs can help us
cope with a number of debugging issues, and present a general idea of how a
tool that explores them works.

Before that, however, we would like to reach an informal agreement on what
a non-distributed – i.e., a “local” – thread is. A local thread is a “regular”
thread. Local threads are restricted to a single addressing space and to a single
processing node. Examples of local threads include traditional lightweight pro-
cesses, such as those implemented at the kernel level in operating systems like
GNU/Linux and Microsoft Windows, for instance, as well as heavyweight pro-
cesses and “green” (non-OS, usually non-preemptive) thread implementations.
This informal definition should be enough for our purposes.

For the sake of simplicity, we assume time to be a continuous and linear set of
instants that is isomorphic to the set of real numbers R (i.e., we represent time
instants as real numbers). For every distributed computation C, we assume that
there are two real-valued instants tsC , tdC that represent the instants in which C
begins and ends, respectively. We say that [tsC , tdC] is the lifetime interval of C.
We call LC the set of all local threads that ever took part in C. Since C has a

h

652 G. Mega and F. Kon

lifetime interval, all local threads in LC also have lifetime intervals. Therefore,
we can assign a pair of real-valued time instants tsl and tdl to each local thread
l ∈ LC , such that these values represent the instants when local thread l starts
and dies, respectively, and [tsl , t

d
l] ⊆ [tsC , tdC].

Definition 1 (Distributed Thread Snapshot). A distributed thread snap-
shot over a distributed computation C is defined to be a sequence s = {l1, ..., lm}
of local threads, where li ∈ LC (i ∈ N and 1 ≤ i ≤ m).

By analogy to LC , we will define SC to be the set of all snapshots that can be
formed with threads drawn from LC . We are now ready to define a distributed
thread.

Definition 2 (Distributed Thread). Let C be a distributed computation. A
distributed thread T is a sequence of snapshots {st1 , ..., stn}, where each ti (1 ≤
i ≤ n, i ∈ N) represents a real-valued time instant (ti ∈ R), and all sti are drawn
from SC . Also, if i < j, then ti < tj; that is, T is totally ordered with respect
to time. For every distributed thread T = {st1 , ..., stn}, the following properties
must hold:

1. There exists a local thread l1 ∈ LC such that st1 = {l1}, and l1 is the first
element of sti , for all i. We will say that l1 is the base of distributed thread
T .

2. Let i ∈ N and 1 < i ≤ n, and let sti−1 = {l1, ..., lm}. Then, in the absence of
failure, exactly one of the following must hold:
(a) sti = {l1, ..., lm, lm+1}, where lm+1 ∈ LC. In this case, lm have initiated

a remote request at instant ti−1 + δ ≤ ti (where δ ∈ R and δ > 0), and
thread lm+1 have begun handling this remote request at instant ti.

(b) sti = {l1, ..., lm−1}. In this case, thread lm has finished handling, at
instant ti, the remote request that had been previously initiated by lm−1.

3. Let tsT and tdT be the instants in which T starts and dies, respectively. Then
t1 = tsl1 = tsT and tn < tdl1 = tdT .

Let sti = {l1, ..., lm} ∈ T . We say lm is the head of T at instant ti. We also
say that the threads l1, ..., lm participate in T at instant ti. Definition 2 has a
number of interesting implications. First, for every local thread l ∈ LC , we have a
distributed thread T such that (1) T starts and dies with l, and (2) l is the base
of T . Second, DT snapshots can be interpreted as follows. Let sti = {l1, ..., ln},
(1) if 1 < i ≤ n, then li is handling a request that has been initiated by li−1,
and (2) if i < n, then li is blocked in a remote call that is being handled by li+1.

We shall call a snapshot that contains a single local thread a trivial snapshot.
All distributed threads begin with a trivial snapshot, and may contain several
trivial snapshots (all identical) along its snapshot set. Fig. 1(a) shows a DT and
part of its snapshot set (relevant state shifts) as it progresses through a three-
node call chain. Lastly, our notion of a valid set of DTs shall be bound by a rule
we call “the single participation rule”. This rule, as we will see, shall constrain
the class of middleware implementations that our technique applies to. In order
to make the definition less complicated, we will define two auxiliary concepts,

An Eclipse-Based Tool for Symbolic Debugging 653

node 1 node 2 node 3

2

n
o

d
e

1

n
o
d
e

2

n
o
d
e

3

st1
= { }l

1

st2
= { , }l l

1 2

st3
= { , }l l

1 2
, l

3

l
1

l
1

l
3

l
2

l
1

l
2

t
2

t
3 t

4

st4
= { , }l l

1 2 st5
= { }l

1

l
2

l
1

(a)

t
5

l
1

(b)

l
1

l
2

l
3

1

3

Fig. 1. (a) DT and its sequence of snapshots during part of a three-node call chain.
(b) Assembly of the virtual stack from a snapshot.

expressed in Def. 3 and Def. 4. What Def. 3 says is that the state of a distributed
thread T , at an arbitrary instant x, is either empty (if x falls off the lifetime
interval [tsT , tdT] of T) or it corresponds to the last snapshot of T up to instant x.

Definition 3 (State of a Distributed Thread). Let DC be the set of all
distributed threads that ever existed in C and let T = {st1 , ..., stn} ∈ DC be one
of these distributed threads. Also, let SC be defined as before. The state of a
distributed thread T at instant x ∈ R is given by the function f : DC × R → SC

where:

f(T, x) =

⎧
⎨

⎩

sti , if ti ≤ x < ti+1 and 1 ≤ i < n, or
ti ≤ x < tdT and i = n

∅, otherwise

Definition 4. Let s1 and s2 be two distributed thread snapshots. We say that
s1 is a subsnapshot of s2, or that s1 → s2, if and only if s1 is a suffix of s2.

The “single participation rule” attempts to establish the situations in which it is
valid for a local thread l to participate in the state of more than one distributed
thread, simultaneously. Mainly, we would like to express that a local thread
l cannot simultaneously participate in the state of more than one distributed
thread, except under some very special circumstances. These circumstances will
be characterized with the help of the following remark:

Let sti = {l1, l2, ..., ln} be a nontrivial snapshot of a distributed thread T .
Then sti can be expressed as {l1} ∪ f(T ′, ti), where T ′ is the distributed thread
whose base is l2. That is f(T ′, ti) → f(T, ti).

To give a more concrete example of the meaning of this remark, let T be a
distributed thread, and suppose f(T, t) = {l1, l2, l3} at some instant t ∈ R. The
remark shows that, if we take a local thread l2 ∈ f(T, t), then this local thread
participates – simultaneously – in the states of all distributed threads that can
be formed by removing prefixes of size less than 2 from f(T, t). In our example, l2
will participate in f(T, t) = {l1, l2, l3} and in f(T ′, t) = {l2, l3}, where T ′ is the
distributed thread whose base is l2 – hence l2 participates in the state of more

654 G. Mega and F. Kon

than one distributed thread simultaneously. Those will be the only situations
where it will be allowable for a local thread to participate in the state of more
than one distributed thread simultaneously. Therefore:

“Single Participation Rule”: Let {s1, ..., sn} be the set of snapshots in which
a local thread l participates at an instant t. The single participation rule is obeyed
if we can find a permutation π of {1, ..., n} such that sπ(1) → ... → sπ(n).

The work described in this paper applies, in general, to distributed compu-
tations whose set of DTs conform to the single participation rule. Though most
middleware implementations do produce compliant executions, some real-time
ORBs [8] may not – but then again, symbolic debuggers are usually regarded as
being far too intrusive for real-time systems. DTs play an important role in the
achievement of our goal, because they make the necessary link between RMI-
based distributed object systems and symbolic debuggers. The whole idea behind
a symbolic debugger that leverages DTs is that it may present the execution as
a collection of states on DTs, instead of on loosely-coupled local threads.

A more practical view of a distributed thread – as it is displayed by our
debugger – is shown in Fig. 1(b). The depicted snapshot (1) is composed of
three local threads (l1, l2, and l3), which are represented along with their call
stacks (2). The darker stack frames represent calls into middleware code, whilst
the lighter frames represent calls into user code. The debugger strips out the
darker frames, assembling and presenting to the user a virtual stack (3), which
is composed of user code only. The debugger then allows the user to interact
with this “virtual” thread as he does with regular threads – stepping, resuming,
suspending, inspecting, etc. – in debuggers such as GDB [17].

3 A Distributed-Thread-Based Debugger

Now that we have presented our motivation and characterized in precise terms
how the distributed threads we intend to deal with should behave, we will present
the actual tool we have built, that leverages them for debugging.

3.1 Representing and Tracking Distributed Threads

The first step to presenting the distributed system as a collection of distributed
threads is being able to track them. There are a multitude of possible approaches
to the problem, but those mostly vary between how much of the distributed
thread representation will stay at the debugger side (meta-level) and how much
will stay at the debuggee side (base-level). Our approach begins by constructing
a representation of the distributed threads that is accessible at the base-level.

This representation is inspired on the way distributed transactions are typ-
ically identified, and also by the work of Li [9]. In our approach, each local
thread that participates in a distributed computation is uniquely identified by
a two-part, 48 bit id. The first 16-bits uniquely identify the node to which the
local thread belongs to. The remaining 32-bits are drawn from a local sequen-
tial counter. 48 bit ids allow us to identify enough nodes/local threads while

An Eclipse-Based Tool for Symbolic Debugging 655

(b)(a)

node 1 node 2 node 3

1.0 2.0
1.0

3.0
1.0

distributed
thread id

local
thread id

1.0 1.0

1.0

Stage 1:
Server Receive

Remote Object

Client

Proxy

middleware

Stage 2:
Server Return

Server

Fig. 2. (a) Propagation of the id of a local thread, tainting subsequent threads and
characterizing a distributed thread. (b) Two-stage tracking protocol.

keeping overhead small, but the actual id length can be tuned. Whenever a lo-
cal thread that is part of a single trivial snapshot initiates a chain of remote
calls, its id is propagated, “tainting” all subsequent threads in this call chain,
as shown in Fig. 2(a). As for the actual tracking of distributed threads, we just
have to remember that for each snapshot, there is always a single head. The
remaining threads are all blocked, and, if we assume a failure-free scenario (we
will lift this restriction in a moment) we can expect that these blocked threads
will not produce any “interesting” changes until they become heads again – that
is, until the current head finishes handling the remote request that has been ini-
tiated by the local thread that immediately precedes it in the current snapshot.
More precisely speaking, local thread “starts handling a remote request” when
the middleware calls into the remote object code for the first time during the
handling of this remote request, causing a frame, which we will call the entry
frame, to be pushed into the call stack of the server-side, local thread. Based
on this information, it is not hard to come up with a simple tracking protocol
that can be used to reconstruct the trajectory of a distributed thread. Our pro-
tocol, shown in Fig. 2(b), is composed of two stages: (1) Server Receive and
(2) Server Return, which are triggered when an entry frame is pushed, and
popped, respectively. Both stages capture the id of the distributed thread, and
the id of the local thread.

3.2 Interactivity and Synchronicity

Our intention is to extend a symbolic debugger so that it may handle distributed
threads as naturally as it handles local threads. Symbolic debuggers are on-line
[7], interactive debuggers by nature, and their ability to operate (e.g., view,
suspend, step, resume, inspect) on threads is amongst the most fundamental
ones. The problem with interactive operations is that they operate on “live”
entities. Debuggers, however, act as observers of computations – they will merely
reconstruct an approximation of the state of the application based on information
that is sent from instrumentation probes (local agents in Fig. 3(a)) that are
deployed with the application. Therefore, there is always the chance that the
state of the execution as observed by the debugger will not correspond to the
actual state of the application, either due to network latency, or because the state

656 G. Mega and F. Kon

Server Receive
notificationsA B

distributed
thread

Debug probe (local agent)

application
process

Observer
(global agent)

node 1
node 2

node 3

)b()a(

Fig. 3. (a) High-level architectural view of our distributed debugger. (b) Causally
related events in a single call chain.

change cannot be immediately detected/reported (as when the entire machine
that contains the debuggee crashes). This kind of situation is, for obvious reasons,
much more common in scenarios where debugger and debuggee are separated by
a network. From our experience, debugger implementations may handle these
situations in one of two ways: (1) allow state drift to go unbounded, knowing
that interactive operations might fail because the “live” entity at which the
operation is directed may no longer exist, or may transition to a state where
the operation is no longer allowed; or, (2) bound the drift by synchronizing
debugger and debuggee at certain key state transitions, therefore eliminating
operation failures that arise from the sort of race condition described in (1).

Alternative (2) is accomplished by having the debug probes halt the execu-
tion of the local processes at some key state transitions to make sure that the
debugger (global agent in Fig. 3(a)) has registered these transitions before pro-
ceeding. This does not help, however, in cases where the operation fails because
the remote node died unexpectedly – in fact, node death due to crashes is one of
the only kinds of state changes that cannot, ever, be reported in a synchronous
fashion. Basic guidelines for scalable distributed systems dictate that we should
take the first option whenever possible, reducing the amount of synchronous
reports to a minimum. The particular issue we faced was how to support user
controlled suspend operations on distributed threads reliably. A precondition to
being able to suspend a distributed thread at an arbitrary instant is knowing
the exact position of its head, also at an arbitrary instant – therefore this re-
lates directly to how we may consume the information produced by the protocol
described in Sec. 3.1. The problem lies in the fact that, if we track the head
asynchronously, then we have no way of knowing if the knowledge of the global
agent with respect to the current head of a given distributed thread is stale or
not. This could lead to a situation where the debugger is constantly behind the
actual state for a given distributed thread, making support for suspend inefficient
and unreliable. Therefore, in order to provide adequate support for suspend, we
opted for synchronously tracking the head; that is, the reporting of Server Re-
ceive and Server Return events will cause the ongoing request to halt until the
global agent is known to have updated its knowledge about the new head.

An Eclipse-Based Tool for Symbolic Debugging 657

One useful consequence of capturing these state changes in a synchronous
fashion is that if two events are causally related (like events A and B in Fig. 3(b))
then the global agent will never observe an inconsistent ordering, simply because
B can not happen while A is not allowed to complete. Therefore, we can get away
without timestamping, and still trust that the results will be correct.

3.3 Node and Link Failures

So far we have been discussing how to track distributed threads in the absence
of failures. When failures are introduced (link failures and node crashes) it is
possible that threads which were known to be in the middle of a snapshot begin
unblocking and producing snapshot-changing events, thus violating the expected
behavior (as by Def. 2) for distributed threads. To deal with such situations, we
will introduce an extension to Def. 2 which allows distributed threads to be
“split” under certain circumstances. Before that, however, we must define what
we consider to be a “normal” unblocking for a local thread.

Definition 5 (Normal Unblocking of a Local Thread). A local thread li
that is blocked in a remote call is said to have unblocked normally if its unblocking
results from the processing of a reply message, that has been sent by the server
which contained the thread that handled the request initiated by li, informing that
this remote request has completed (either successfully or unsuccessfully).

Therefore, a blocked local thread unblocks non-normally whenever its unblocking
can not be causally traced to a reply message from the server. Now let f(T, t) =
{l1, ..., ln} be the state of a distributed thread T at instant t. Also, let T ′ be the
distributed thread whose base is li+1, where li+1 ∈ f(T, t), and let ε ∈ R, ε > 0.
We shall establish that:

– If thread li unblocks non-normally at instant t + ε, then f(T, t + ε) =
{l1, ..., li}, and f(T ′, t + ε) = {li+1, ..., ln}.

– If thread li is known to be dead at instant t+ε, then f(T, t+ε) = {l1, ..., li−1}
and f(T ′, t + ε) = {li+1, ..., ln}.

In both cases, we say that T has been “split”. Thread splits are enough for
us to reorganize information whenever a node or link fails for whatever reason,
leaving broken distributed threads behind. The user will be notified whenever
a split occurs (as these are always errors), and the debugger will do its best
to relate the split to its cause (mainly by checking whether the node that is
adjacent to the split is still alive).

3.4 Debugger Architecture and Implementation

So far we have discussed our debugger at a fairly high and conceptual level. In
this section we discuss its architecture, and some key aspects of its implemen-
tation. A general layout of the architecture has already been given in Fig. 3(a).
The debugger can be roughly decomposed into two types of participants – the

658 G. Mega and F. Kon

global agent, which is the module responsible for assembling execution infor-
mation, presenting them to the user, and accepting interactive commands, and
the local agents, or debug probes, which are responsible for collecting runtime
information and interacting with the distributed system processes on behalf of
the global agent (or any other client). This centralized architecture is a natural
result of the fact that at some point there must be one single observer, who has
a global view of the distributed computation.

The Local Agents are composed of a combination of standard symbolic
debuggers and custom instrumentation code that is injected by our extensions.
This custom instrumentation code implements the thread id propagation scheme
described in Sec. 3.1, the tracking protocol, and other assorted functionalities
required by the debugger. As shown in Fig. 4(a), local agents use two distinct
wire protocols – one that is specific to the symbolic debugger in use (which will
be used for setting breakpoints, controlling local threads, getting local state in-
formation, etc.), and another one, which is language-independent, that will be
used to convey the information required by the thread tracking protocol of Sec.
3.1 (we call this protocol DDWP, or Distributed Debugging Wire Protocol). A
simplified schematic view of the actual tracking mechanism, in its Java/CORBA
version, is presented in Fig. 4(b). The Java tracking mechanism of Fig. 4 (b) is

PICurrent (request’s
context object)

id

id

client-side
CORBA
interceptor

instrumentation
interceptor (1)

instrumentation
interceptor (2)

id
id

id

server-side
CORBA
interceptor

instrumentation
interceptor (3)

thread local
storage

metadata

(b)

remote symbolic
debugger

application
process

in-process
debug library

DDWP

symbolic debugger
wire protocol

(a)

Fig. 4. (a) Anatomy of the local agent. (b) Tracking mechanism for Java/CORBA.

implemented through a combination of thread-local storage, CORBA portable
interceptors, and custom instrumentation interceptors, which are inserted at
runtime with the help of a Java transformation agent, and the Bytecode Engi-
neering Library [1]. The first custom interceptor is inserted at the beginning of
each Runnable#run() method, and is responsible for assigning the unique two-
part id described in Sec. 3.1 to each local thread as soon as it is started, as well
as for enrolling the local threads in a registration protocol which is required for
the mapping of numeric ids to ThreadReference mirrors provided by the Java De-
bug Interface (JDI) [18]. The second (inserted at each CORBA stub) and third

An Eclipse-Based Tool for Symbolic Debugging 659

(inserted at each CORBA servant) instrumentation interceptors will bridge the
thread-local storage and the CORBA portable interceptors, allowing us to pass
on the required ids which each request.

Apart from its use in the tracking mechanism, the CORBA and Instrumenta-
tion interceptors are also used for the detection of non-mediated recursive calls,
and abnormal unblockings of blocked local threads (Sec. 3.3). For the detection
of recursive calls, we simply insert a token in the PICurrent object whenever a
request passes through a CORBA interceptor. The instrumentation interceptors
inserted at the remote objects (3) will always test for the presence of this token.
If it is found, the interceptor will remove it, generate a Server Receive event, and
initialize a thread-local counter to zero. Subsequent calls to remote object imple-
mentations that are not mediated by the ORB will trigger the instrumentation
interceptors which, failing to see the token, will just increment the thread-local
counter, without generating further Server Receive events. Whenever one of these
instrumented methods return (either due to a normal return, or due to an ex-
ception), the instrumentation interceptor (3) will be activated again, and the
thread-local counter will be decremented. When the counter reaches zero, the
interceptor will know that the current stack frame is an entry frame, and will
generate a Server Return event to signal that the current head has changed.

The mechanism for testing for abnormal unblockings is also token-based. Re-
call from Def. 5 that unblockings occur whenever a given thread li unblocks
due to a reason other than the client-side middleware getting a regular re-
ply message. The two most common causes behind abnormal unblockings are
link and node failures, which are not distinguishable from the point of view of
the client. We detect abnormal unblockings by sending a single-bit token with
each reply. This single-bit token is inserted into the request service context by
the server-side CORBA interceptor shortly before the reply is sent, and loaded
into the PICurrent object by the client-side CORBA interceptor when the re-
ply is received. If there is no reply message, however, the token will never get
to the instrumentation interceptor (1), indicating that an abnormal unblock-
ing has occurred. Whenever that happens, the instrumentation interceptor (1)
will (synchronously) notify the global agent, which will perform the appropriate
distributed thread split and notify the user of the erroneous behavior.

The Global Agent: has many responsibilities. It has to control and manage
the distributed processes, it has to combine the partial state information provided
by each of the local agents, and it has to handle user interaction. According to the
notions on computational reflection laid down by Maes [11], symbolic debuggers
can be seen as meta-systems whose domain are the execution environments of the
debugged processes. Among other things, this means that debuggers should have
access to structures that represent (aspects of) the execution environments of such
debugged processes. In order to keep things simple, we decided to take the JDI [18]
approach and reify distributed threads at the symbolic debugger level. There were,
however, many other issues we needed to resolve.

The elements that compose the execution environment of a distributed ap-
plication may come from many environments. Reifying the environment of the

660 G. Mega and F. Kon

distributed object system means coming up with an object model capable of
accommodating this heterogeneity. Also, since we are worried with extensibility,
we would like to have a model that is capable of accommodating new environ-
ments with relative ease. Coming up with such a model from the ground up,
however, requires time and experience. Fortunately there is already one mature,
open source and widely developed debug model which has proven to accom-
modate heterogeneity, and which would be a perfect fit for our own debugger:
the Eclipse debug model [19]. Eclipse is a well-known, extensible environment
for building Rich Client Applications. Its debug model has successfully accom-
modated reified versions of the main elements of Java, C++, Python, Ruby
and many other execution environments. Based on that observation, we decided
to implement our distributed-thread-based debugger as a set of extensions to
the Eclipse debug framework. Our extensions are depicted as the grey areas
in Fig. 5. Our main contribution to the Eclipse debug framework has been a

extended interfaces

Eclipse debug framework

standard interfaces

DDWP

standard interfaces

distributed-thread-based debugger

language-specific debugger client

network layer

debugger-specific wire protocol

language-
independent

portion

Fig. 5. Layered architecture of the global agent

language-independent, distributed thread debugger, and set of extensions to the
regular Eclipse IThread interface. The contribution of the Eclipse platform to our
project, however, has been also very rich – a collection of ready-to-use debugging
solutions that could be realistically adapted to work with our debugger. Adapt-
ing an existing Eclipse debugging client amounts to implementing our extended
interfaces.

Applicability – middleware, language, and debugger requirements:
Now that we have discussed some of the key aspects of our implementation,
we are in position to make an assessment on some of the requirements imposed
by the technique. This should point us toward some answers to the question that
matter the most: how difficult it is to actually port our debugging machinery to
other languages/runtime environments, as well as other middleware systems:

1. Application must be based on distributed objects. To take advantage of the
distributed thread abstraction, it should also use synchronous calls. Asyn-
chronous calls are supported, but benefits are less clear.

2. The target middleware should allow context information (metadata) to be
passed with each request. This is the only requirement imposed on the mid-
dleware apart from the use of distributed objects.

An Eclipse-Based Tool for Symbolic Debugging 661

3. There must be a “standard” symbolic debugger available for the language,
and we should be able to operate it remotely.

4. Object proxies (stubs) and remote objects(servants)must be instrumentable.
5. There must be a way to assign identifiers to each of the local threads that

will take part in distributed threads.
6. For distributed deadlock detection, there must be a way for the global agent

to know which locks are being held by which local threads.

Requirement 1 is actually a restatement of the type of systems that are the
target of this work. Requirement 2 is fulfilled by almost every middleware imple-
mentation in use today. Also, it is not a hard requirement – we could get away
with 2 by modifying the stub/skeleton generator to include an extra parameter,
as in [9]. This would be, however, much more cumbersome. Requirement 3 is also
rather reasonable, at least with mainstream languages. A “standard” symbolic
debugger is, roughly speaking, a debugger that supports at least line breakpoints,
step into, step over, step return, and source mapping capabilities – a feature set
that is common to all symbolic debuggers we know of. Also, there must be a way
to operate the symbolic debugger remotely, as with GDB [17], or the JPDA [18]
debugger, for example. Requirements 4 through 6 are highly language-dependent.
In Java – which could hardly be described as a language with strong reflective
capabilities – we were able to implement the instrumentation mechanisms rather
easily, thanks to Apache BCEL [1] and the Java instrumentation agents. In lan-
guages with more sophisticated reflective capabilities such as Python, Ruby, or
Smalltalk, this should be even more straightforward. In a language like C++,
the task would be made easier with software like OpenC++ [3].

3.5 More on Scalability and Correctness

There are two main sources of concern when the word “scalability” is applied
to a distributed debugger: performance scalability (how many nodes can be de-
bugged simultaneously before performance becomes an issue?), and visualization
(how many nodes can be debugged simultaneously, before the maze effect takes
over?). Our information visualization and navigation mechanism – based on the
distributed thread abstraction – scales better than plain local threads. It allows
the user to selectively focus his/her attention into what matters the most – the
flow of control of his own application – while complementing this stripped down
information with other kinds of error information, like detection of distributed
deadlocks, node, and link failure. Therefore, from this point of view, our debug-
ger has been built to scale better than conventional symbolic debuggers.

Performance scalability, on the other hand, has been one of our main sources
of preoccupation from the start, due to our centralized architecture. This turned
out to be less of an issue than initially thought, however, due to the dynamics of
the updates produced by the local agents. The global agent keeps an internal ta-
ble, where each entry contains state information for a distinct distributed thread.
As we mentioned before, notifications are always synchronous. This means that,
unless there is a thread split going on, updates to a single distributed thread

662 G. Mega and F. Kon

thread table in
the central agent

Server Receive

notifications

entry 1

entry 2

A B

A’

B’

distributed
thread

distributed
thread

update queue

I/O
thread
pool

global state
update threads
(per-processor)

response queue

DDWP

Process
manager events

(b)(a)

JDWP

Java (JDI)
debugger

Process
Monitor

Fig. 6. (a) Dynamics of “regular” updates. (b) Processing in the global agent.

(table entry) will be performed one at a time. A hypothetical update scenario
is shown in Fig. 6(a). Since these entries are disjoint, the updates can be per-
formed concurrently, as long as we keep one updater thread per processor/core
(Fig. 6(b)). Also, since updates are performed one at a time, contention on a
single entry is non-existent in the absence of failure. Fig. 6(b) shows that the
DDWP server is not the only source of state update events – the Java debugger
(and other language debuggers), and the process monitor may also contribute
with information. This information is related to thread and process lifecycle,
and might be used by the updater threads to anticipate the occurrence of thread
splits. Although we have not performed any conclusive tests on server scalability,
we expect that its capacity to handle more nodes will increase as more processors
are added, due to its simple design and due to the small amount of thread-shared
state it contains. So far, the DDWP server has been capable of handling more
than two dozen nodes without any noticeable performance degradation.

3.6 One-Click Launch, and Debugger for Testing

Most symbolic debuggers are capable of either instantiating or attaching to run-
ning processes with almost no burden on the user. In fact, with “modern” GUI-
based debuggers, instantiating or attaching to running processes (either remote
or local) can be, in most cases, a simple one-click operation (after previous con-
figuration, of course). This is yet another point where centralized and distributed
systems differ fundamentally: while centralized processes can be in one of two
states – running or not running – distributed systems can be in many, partially
running states, not all of which may work equally well. Take as example the in-
stantiation of a simple client-server application, where the client makes a single
request to the server. If the client is started before the server, then it is very
likely that it will attempt to perform its request before the server has had the
opportunity to properly initialize, resulting in failure. Simply ensuring that the
server is started first, however, is not enough – the startup time for the client is
probably much smaller than for the server, and the end results will be similar.

Keeping in line with our philosophy of making distributed debugging easier,
we have developed a one-click instantiation facility that works with distributed

An Eclipse-Based Tool for Symbolic Debugging 663

systems as well. Taking our example and generalizing it a little, ensuring success-
ful launching equals ensuring that certain processes are not launched until we are
sure that all other processes it depends on are in a certain state (ready to take
incoming communication). Defining proper state without getting application-
specific could be a difficult matter. Fortunately, however, we have some powerful
instrumentation and state inspection machinery at our disposal – the symbolic
debugger itself. With that in mind, we developed a simple launch constraint lan-
guage, which alleviates this issue by leveraging the knowledge obtainable by the
symbolic debuggers. Mainly, this language allows the user to enter declarative
statements like:

when <Name Srv> reaches org.jacorb.ORB:1278 launch <Srv1>,<Srv2>
when <SomeServer> reaches module1.Type2.line=‘‘ready to go’’ &
(module1.Type1.state=1 | module1.Type1.state=2) launch <Client>

These dependencies are mapped at runtime into edges in a DAG, which has
all of the distributed system processes represented as vertices. The single-click
run operation causes all processes with fan-in zero to be started. The remaining
processes are launched as local predicates are satisfied. Something we quickly
noticed is that this mechanism is very useful for writing automated distributed
tests. It is a small part of the puzzle, of course, as it ensures only a deterministic
launch sequence. That did not prevent it from being very useful, however, as we
were writing distributed, automated integration tests for the debugger itself.

4 Related Work

There is a very vast body of literature on the subject of debugging (and testing)
of concurrent programs, but most of this research has been directed at parallel
systems. We have therefore selected three works which we consider to be most
representative as far as the topics of debugging of distributed object applications
and portable debugging are concerned.

OCI’s OVATION: The Object Viewing & Analysis Tool for Integrated Ob-
ject Networks [14] is an extensible debugging tool for CORBA-based distributed
object systems. It is comprised of an extensible analysis and visualization en-
gine, and by a collection of probes, which are accompanied by a probe frame-
work. Among other features, it is capable of replaying execution traces off-line.
It provides a set of probes for monitoring common CORBA and distributed
object application events, like client and servant pre-invoke and post-invoke, ex-
changed messages, request processing time, and others. Instrumentation may be
automatic (as with the message exchange probes), or manual (for user-defined
probes, as well as for some OVATION-provided probes). Unlike our tool, OVA-
TION is a monitoring and analysis system. This means that it is not possible to
use it to interact with the running distributed system, at least not with the rich-
ness attainable with a symbolic debugging tool. Also, as with all monitoring and
analysis tools, instrumentation must be thought up-front. And finally, its probe
framework (including instrumentation macros) is written in C++, which leads

664 G. Mega and F. Kon

us to believe that, at the time of this writing, no other languages are supported
for applications.

IBM’s Object Level Trace: Object Level Trace (OLT)[6] is an extension to the
IBM distributed debugger. Unlike other debugging tools targeted at distributed
object systems, IBM’s Object Level Trace incorporates a symbolic debugging
service and, like our tool, it allows the user to follow the flow of control of his
application from client to server, abstracting middleware details away. The con-
cepts are similar, but OLT does not try to be a symbolic debugger – there are
no explicit distributed threads, only message tracking. We are also not quite
sure about how extensible OLT is, as it is a closed-source implementation. As
far as the authors knowledge go, OLT is restricted to IBM’s own technology,
like WebSphere and the Component Broker. Also, neither OLT nor IBM’s dis-
tributed debugger seem to be concerned with application instantiation, at least
not beyond providing a simple facility for firing remote processes.

P2D2: The Parallel and Distributed Program Debugger[2] (P2D2) aimed at be-
ing a portable debugger for parallel and distributed (cluster) applications based
on middleware such as PVM and MPI, as well as runtime environments like
HPF. Our approach is based on many of the principles of P2D2, such as a de-
coupled client-server architecture, the use of a standard, language-independent
wire protocol, and the leveraging of existing symbolic debuggers. The difference
lays in the fact that we are counting on being able to adapt existing Eclipse-
based symbolic debuggers so they can be integrated into our implementation,
whereas P2D2 attempted to provide a standardized foundation all by itself. This
means our implementation is much simpler. Also, P2D2 attempted to provide
a debugger-neutral layer on top of existing symbolic debuggers at the server-
side, meaning that all of its wire protocol is standardized. We adopt a different
approach with our two-protocol local agent, again trying to facilitate reuse of
existing Eclipse-based debugger clients. On the other hand, we require remote-
debugging-enabled symbolic debugger clients. Regarding process management,
P2D2 delegates the responsibility for process creation to the underlying infras-
tructure, whereas our implementation takes this responsibility upon itself. While
this means we had to develop our own infrastructure, it also meant we did not
have to think about interfacing with existing infrastructures.

5 Conclusions and Future Work

This paper presented a simple technique and an extensible Eclipse-based tool for
symbolic debugging of distributed object applications. Our rationale for the devel-
opment of this work has followed two principles: portability and usefulness. Our
tool is portable because the tracking technique is simple, and based on elements
that are common to synchronous-call middleware platforms. It is also portable
because instrumentation requirements are not demanding, and because we can
leverage existing, open source debugging clients. The conclusion that it is a

An Eclipse-Based Tool for Symbolic Debugging 665

suitable candidate for surviving technology evolution draws from these character-
istics. Our tool is useful because it helps the user fight the maze effect by bringing
debugger abstractions on par with middleware abstractions, because it helps
detecting failures and distributed deadlocks, and also because it streamlines the
workflow with its process management and instantiation infrastructure. There are
many issues we did not attempt to address in this work, and which could be of
value. Integration of more scalable visualization mechanisms (like event and call
graphs), and automatic analysis tools [7] would be two examples. Addressing per-
turbations to the underlying execution with a replay facility would be another
avenue. We are currently not, however, any close to having portable execution re-
play in multithreaded environments. A demonstration screencast, and the source
code for our tool, can be obtained at http://god.incubadora.fapesp.br.

References

1. Apache BCEL website, http://jakarta.apache.org/BCEL
2. Cheng, D., Hood, R.: A portable debugger for parallel and distributed programs.

In: Proc. of the 1994 ACM/IEEE conf. on Supercomputing, pp. 723–732 (1994)
3. Chiba, S.: A Metaobject Protocol for C++. In: Proc. of the ACM OOPSLA 1995,

pp. 285–299. ACM Press, New York (1995)
4. Damodaran-Kamal, S.K.: Testing and Debugging Nondeterministic Message Pass-

ing Programs. PhD thesis, Univ. of Southwestern Louisiana (1994)
5. Gait, J.: The Probe Effect in Concurrent Programs. Soft.: P & E 16(3), 225–233

(1986)
6. IBM. Object Level Trace, http://publib.boulder.ibm.com/infocenter/

wasinfo/v4r0/topic/com.ibm.websphere.v4.doc/olt content/olt/index.htm
7. Kranzlmueller, D.: Event Graph Analysis for Debugging Massively Parallel Pro-

grams. PhD thesis, Johannes Kepler University, Linz, Austria (September 2000)
8. Krishnamurthy, Y., et al.: The Design and Implementation of Real-Time CORBA

2.0: Dynamic Scheduling in TAO. In: Proc. of 10th IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 121–129. IEEE Computer Society
Press, Los Alamitos (2004)

9. Li, J.: Monitoring and Characterization of Component-Based Systems with Global
Causality Capture. In: Proc. of the 23rd ICDCS, pp. 422–433 (2003)

10. Lima, A., et al.: A case for event-driven distributed objects. In: Proc. of DOA 2006.
LNCS, pp. 1705–1721. Springer, Heidelberg (2006)

11. Maes, P.: Concepts and experiments in computational reflection. In: Proc. of the
OOPSLA 1987, pp. 147–155 (1987)

12. Mittal, N., Garg, V.K.: Debugging Distributed Programs Using Controlled Re-
execution. In: Proc. of the 2000 ACM PODC, pp. 239–248. ACM Press, New York
(2000)

13. Nelson, B.J.: Remote Procedure Call. PhD thesis, Carneggie Mellon University,
Pittsburg, PA (1981)

14. OCI. OVATION Website, http://www.ociweb.com/products/ovation
15. Pancake, C.: Establishing Standards for HPC System Software Tools,

http://nhse.cs.rice.edu/NHSEreview/97-1.html

http://jakarta.apache.org/BCEL
http://publib.boulder.ibm.com/infocenter/wasinfo/v4r0/topic/com.ibm.websphere.v4.doc/olt_content/olt/index.htm
http://publib.boulder.ibm.com/infocenter/wasinfo/v4r0/topic/com.ibm.websphere.v4.doc/olt_content/olt/index.htm
http://www.ociweb.com/products/ovation
http://nhse.cs.rice.edu/NHSEreview/97-1.html

666 G. Mega and F. Kon

16. Schwarz, R., Mattern, F.: Detecting Causal Relationships in Distributed Compu-
tations: In Search of the Holy Grail. Distributed Computing 7(3), 149–174 (1994)

17. Stallman, R.M.: GDB Manual: The GNU Source Level Debugger. FSF, Cambridge,
Massachusetts (1987)

18. Sun Microsystems. The Java Platform Debug Architecture (2007),
http://java.sun.com/prhttp://java.sun.com/products/jpda/index.jsp

19. Wright, D., Freeman-Benson, B.: How To Write an Eclipse Debugger,
http://www.eclipse.org/articles/Article-Debugger/how-to.html

http://java.sun.com/prhttp://java.sun.com/products/jpda/index.jsp
http://www.eclipse.org/articles/Article-Debugger/how-to.html

A Bluetooth-Based JXME Infrastructure�

Carlo Blundo and Emiliano De Cristofaro

Dipartimento di Informatica e Applicazioni, Università degli Studi di Salerno
Via Ponte Don Melillo - I-84084 Fisciano (SA), Italy

{carblu, emidec}@dia.unisa.it

Abstract. Over the last years, research efforts have led the way to em-
bed computation into the environment. Much attention is drawn to tech-
nologies supporting dynamicity and mobility over small devices which
can follow the user anytime, anywhere. The Bluetooth standard particu-
larly fits this idea, by providing a versatile and flexible wireless network
technology with low power consumption.

In this paper, we describe an implementation of a novel framework
named JXBT (JXME over Bluetooth), which allows the JXME infras-
tructure to use Bluetooth as the communication channel. By exploiting
the JXME functionalities we can overcome Bluetooth limitations, such
as the maximum number of interconnectable devices (7 according to the
Bluetooth standard) and the maximum transmission range (10 or 100
meters depending on the version). To test the lightness of JXBT, we de-
signed and evaluated BlueIRC, an application running on top of JXBT.
This application enables the set up of a chat among Bluetooth-enabled
mobile devices, without requiring them to be within transmission range.

1 Introduction

In the last years, much effort has been placed on developing services for mo-
bile devices. Smartphones are nowadays small and powerful enough to turn into
fundamental working instruments. Technology advances also involved mobile
communication technologies, as with the growth of Bluetooth [12]. This tech-
nology is a versatile and flexible short-range wireless network technology with
low power consumption. It operates in a license-free frequency, so that user is
not charged for accessing the network nor he needs an account with any com-
pany, thus allowing a relevant decrease of communication costs. Furthermore, it
provides the possibility of automatically discovering other devices (and services
exposed by them) within their communication range, thus allowing a dynamic
set up of an ad-hoc network. For more details about this technology, we refer to
the extended version of this paper [11].

Moreover, the evolution of smartphones drove researchers to develop collab-
orative protocols targeted to mobile devices. These protocols, can be used as
the underlying technologies for complex distributed applications. In particular,
� This work has been partially supported by the European Commission through the

IST program under contracts FP6-1596 (AEOLUS).

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 667–682, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

668 C. Blundo and E. De Cristofaro

much attention has been placed on peer-to-peer protocols fitting mobile envi-
ronments where devices have limited resources. In this paper, we focus on one
of the most diffused Java-based peer-to-peer protocol, JXTA and in particular
on its version for the mobile environment, JXME.

The JXTA technology is a set of open protocols that allows any connected
device on the network to communicate and collaborate in a peer-to-peer style
[8,22]. Its main features are: (i) interoperability, overcoming the problem of bind-
ing each peer-to-peer system to a single service and to a single infrastructure;
(ii) platform and programming language independence; (iii) ubiquity, being im-
plementable on every device ranging from mobile devices, PDAs, to PCs and
servers. JXTA provides several features, such as: discovering other peers in the
network; self set-up in peer groups; exposing and discovering network services;
communicating in a direct way through pipes ; monitoring other peers’ activities.

The JXME project [10] is aimed to bring JXTA functionality to mobile devices
with limited resources within the Java 2 Micro Edition. In fact, JXTA cannot
be ported on the J2ME environment as it is. First, JXTA messages are XML-
structured and require a parser, whose installation on a J2ME device is not
straightforward. Then, maintenance of caches is too memory-consuming. Finally,
JXTA peers are always in listening mode and this might not be achievable within
J2ME environment.

Because of resource limitations, the JXME architecture heavily relies on JXTA
relays. Relays are JXTA peers, which are able to manage pipes, advertisements,
groups, routing. They act as access points to the JXTA network for mobile
peers. These mobile peers communicate with the relay through a binary HTTP
connection, using messages compliant to JXTA ones. Relay peers are in charge
of creating resources, searching resources, messages sending and receiving. The
JXME architecture is presented in Figure 1 [23]. This version of JXME is called
Proxy-based, since a relay peer is needed to enter an existing JXTA network.
On the other hand, the need of a proxyless version has become more and more
insistent in order to achieve a full ad-hoc P2P scenario. However, to the best of
our knowledge, no version of Proxyless JXME has been released for the J2ME
Connected Device Limited Configuration (CLDC) [16], but only for the J2ME
Connected Device Configuration (CDC) [16], thus restricting peers to run over
relatively powerful devices, such as PDAs. In our work, we focus on CLDC in
order to allow the creation of JXME networks among smartphones, which are

Fig. 1. The JXME Architecture

A Bluetooth-Based JXME Infrastructure 669

nowadays in widespread use. More details on the JXTA, J2ME, and JXME
technologies can be found in the extended version of the paper [11].

From the synergy of the JXME and the Bluetooth technologies, we want
to achieve a twofold goal. First, we want to provide JXME with the required
support to use Bluetooth as the communication channel. Second, we want to
exploit JXME functionalities in order to overcome Bluetooth limitations, such as
the maximum number of interconnectable devices (7 according to the Bluetooth
standard) and the maximum transmission range (10 or 100 meters depending
on the version). Hence, we developed a novel framework, JXBT (JXME over
Bluetooth). The JXBT infrastructure allows us to interconnect more piconets1

in a transparent way. As a result, users can exploit all the classical Bluetooth
features (such as file exchanging or chat services) without requiring peers to be
within transmission range.

In order to provide a proof-of-concept for testing the lightness of JXBT, we
designed and evaluated BlueIRC, an application running on top of JXBT. This
application enables the set up of a chat among Bluetooth-enabled mobile devices,
without requiring them to be within the range. More details are presented in
Section 4. We evaluated the performances and usability of our framework on
devices nowadays available on the market at average costs. Indeed, JXBT and
BlueIRC have been tested on real mobile devices such as Nokia N70 and Nokia
N73 smartphones. Our performance evaluation (presented in Section 5) shows
that JXBT is efficient and stable. It can used as the underlying technology for
developing complex and useful applications which can be released for final users
owning standard Bluetooth-enabled mobile phones.

2 The JXBT Project

Bluetooth standard suffers of some constraints as maximum number of intercon-
nectable devices (seven according to the Bluetooth standard) and limited trans-
mission range (i.e., 10 or 100 meters). To this aim we provided the JXTA-JXME
infrastructure with the Bluetooth’s support as the communication channel en-
abling interactions over a P2P infrastructure. For this goal, we implemented
a dedicated framework that we named JXBT (JXME over Bluetooth). Using
JXBT, we are able to extend Bluetooth functionalities by providing a trans-
parent middleware, which allows users to overcome the above mentioned lim-
itations. Hence, users can exploit all the classical Bluetooth features (such as
file exchanging or chat services) without requiring peers to be within the trans-
mission range. Actually, the Bluetooth standard defines scatternets, i.e., sets of
piconets connected through sharing devices, but it does not specify a scatternet
formation algorithm. Although much effort is being put in the research of an
optimal algorithm (see for instance [26], [20]), scatternet features are not yet
well-developed in practice and to the best of our knowledge, there is no support
for scatternet formation within J2ME.

1 A piconet is the network formed by devices within each other’s Bluetooth range.

670 C. Blundo and E. De Cristofaro

Fig. 2. The JXBT Framework Architecture

2.1 Design

The JXME technology allows to instaurate communications based on TCP and
UDP, within the J2ME environment. While porting JXME to use Bluetooth as
the communication channel, several issues have to be considered. TCP and UDP
are widely supported for Bluetooth connections, but not within J2ME environ-
ment which is the programming environment of the JXTA/JXME framework.
Furthermore, neither IP addresses nor domain names can be used to identify
and address peers. As a consequence, we had to implement the required support
for the dynamic discovering of peers and to handle point-to-point connections
between peers and the relay. To this aim, we used the JAWBT API [7], defined by
the JSR-82, to support Bluetooth connections in J2ME devices.

As shown in Figure 2, the JXBT framework architecture recalls the JX-
TA/JXME one. It contains the JXTA network and the relay peers, the JXME
networks and the mobile peers. However, the Bluetooth layer has to be inserted
in order to support transmissions. This layer lies both on the relay peer and on
the mobile peer, it is implemented by a Bluetooth stub in a J2ME class using
the JSR-82 API.

A Bluetooth-Based JXME Infrastructure 671

The physical communication is carried out by the Bluetooth stubs in the
classical master/slave way. To this aim, two dedicated classes have been imple-
mented, namely BTMaster and BTSlave. In our implementation, mobile peers
act as masters (i.e., they generate and expose a Bluetooth service), while, relay
peers act as slaves (i.e., they perform the Bluetooth inquiry and instaurate the
connection). This choice is driven by efficiency: we tried to move the maximum
amount of workload from mobile peers (which usually have limited resources) to
the relay peers (which can be a standard non-mobile computer). Therefore, we
let the relay peer periodically perform the inquiry to discover new peers or peers
that have recovered after a fault. In fact, inquiry operation is a quite expensive
task, especially if it has to be performed periodically. Furthermore, in order to
forward messages, the relay peers has to know which mobile peers are within
its range, and, for all of them, it has to keep track on the group to which they
belong. The relay peer can read this information when discovering the mobile
peer. Moreover, our choice supports peers’ mobility: peers can move and change
the reference relay peer and the infrastructure takes care of the synchronization.
On the other hand, the choice of implementing the relay peer as master would
slow down the computation, requiring relay peers to ask mobile peers to send a
special message containing all the needed information (e.g., peer identity and/or
group identity).

The main task of the JXBT framework is to provide to the core JXME
class, PeerNetwork, the support for using Bluetooth as communication channel.
To this aim, we had to implement an intermediate layer, represented by the
BTPeerNetwork class. The resulting software structure is presented in Figure 3.
The class BTPeerNetwork extends the PeerNetwork class in order to implement
I/O operations on a Bluetooth channel, addressing either the BTMaster or the
BTSlave class, according to the role of the peer. This strategy has been borrowed
from Jadabs’ implementation [4], more details can be found in Section 3. We have
reused some utility classes of Jadabs to handle queues and to parse received mes-
sages. However, although a different thread was generated for each queue, no
synchronization was provided in [4]. Therefore, we had to manage the synchro-
nization of the multithreaded programming. Furthermore, we had to implement
classes for groups and pipes management, as required by JXME: PeerGroup
and Pipe (groups and pipes creation and searching), PeerGroupHandle and
PipeHandle (management of queues for users joining some groups or listen-
ing on some pipes). These classes are needed to maximize the standardization
and the compatibility with the JXME specification. In such way, the P2P devel-
oper is not required to know all implementation details about JXME requests
addressed to the relay peer and about result retrieval.

We also remark that this design supports mobility because it allows a mobile
peer to disconnect from a relay peer and re-connect to another. Pipes and groups
memberships remain unaltered and allows the peer to recover messages not re-
ceived while disconnected, thanks to the use of pipes and acknowledgments.

In our implementation, relay peers hold a pool of Bluetooth connections and
periodically perform inquiry to check whether a new mobile peer has come within

672 C. Blundo and E. De Cristofaro

Fig. 3. The PeerNetwork abstraction over Bluetooth within JXBT

range. Whenever a mobile peer is discovered, the relay peer recovers and stores
information about its identity and the group to which it belongs. Then, it sends
to the new peer the state of available groups and pipes. In this way, mobile peers
are not loaded by any computation: in order to use Bluetooth to communicate
with other peers, mobile peers just have to generate a service and wait to be dis-
covered. As for the relay peer, the Bluetooth stub is to be implemented not only
to support Bluetooth interactions. In fact, it also has to provide a proxy mech-
anism to convert Bluetooth raw messages traveling in the JXBT environment
into HTTP-formed messages traveling in JXTA network over HTTP and vicev-
ersa. Moreover, since for the JXTA network only the relay peer is connected, the
relay peer is in charge of associating peers to pipes and groups.

We remark that after a mobile peer has been discovered, it is logically con-
nected to other peers as they were within the Bluetooth transmission range,
though belonging to other piconets. In fact, more JXBT networks are intercon-
nected to each other through the use of JXTA, allowing mobile peers to ignore
whether other peers are within transmission range (see Figure 2). Moreover, ap-
plication developers that want to use JXBT do not have to take care of any
implementation detail related to the use of the Bluetooth channel, since all the
work is performed by our API. Programmers develop their application as for the
standard JXME architecture but they can exploit the Bluetooth facilities in a
transparent way. The only difference is to instantiate BTPeerNetwork objects,
rather than PeerNetwork ones.

2.2 Mobile Peer Implementation

Whenever a mobile peer wants to enter a JXBT network, it has to initialize the
connection, start a new thread, and perform the connection. The main classes
needed to initialize the connection are:

1. PeerNetwork. When creating an instance of it, the user specifies the name of
the peer, the group id, the inquiry maximum timeout, the URL, and whether
the peer is the relay.

2. BTPeerNetwork. It is contained in the PeerNetwork. It uses the Messenger
utility class to perform communications. The role of the peer (relay or mo-
bile) is also to be specified together with the URL.

A Bluetooth-Based JXME Infrastructure 673

3. BTEndPoint. It is contained in the BTPeerNetwork, together with a con-
nection pool and a message queue. It implements all the physical details of
the Bluetooth communications. It is in charge of maintaining the Bluetooth
connections, implementing the messenger mechanisms, and above all sending
and receiving actual data.

Once the connection has been initialized, the main steps needed to create the
connection are:

1. Adding a message listener on the Bluetooth channel, through the
BTPeerNetwork object.

2. Performing the connection on the Bluetooth channel, through the
BTEndpoint object.

3. Instantiating a PeerGroup object for the groups and a Pipe object for the
pipes.

As a result, JXBT mobile peers have to run simple and short portions of
code in order to connect themselves to the network. The Java fragment which
has to be written is showed in Figure 4.

try {
// open a service
_service = (StreamConnectionNotifier) Connector.open(_serviceURL);

} catch (IOException e) {
e.getLocalizedMessage();

}
while(true) {

try {
localDevice = LocalDevice.getLocalDevice();
// accept connections
StreamConnection conn = _service . acceptAndOpen();
...
synchronized(this) {

_newConnection = true;
this.notifyAll();

}
}

}

Fig. 4. Java code for mobile peer service generation and to wait for discovering

2.3 Relay Peer Implementation

Whenever a relay peer is started, as for the mobile peer, it has to initialize the
connection, start a new thread, and perform the connection in order to boot as
JXME relay peer.

The main classes needed to initialize the connection from the relay side are:

1. PeerNetwork. When creating an instance of it, the user specifies the identity
of the peer, the inquiry maximum timeout, the URL, and that the peer is
going to be the relay.

2. BTPeerNetwork. As for mobile peers, it is contained in the PeerNetwork
object and uses a Messenger utility class to perform communications. The
role of the peer is to be specified, together with the URL.

674 C. Blundo and E. De Cristofaro

public void connect () throws
NoPeerAvailableException, IOException {
// JXME peers discovering
...
_agent .startInquiry(DiscoveryAgent.GIAC , this);
// wait for discovering peers - service discover
for(int index = 0; index <_deviceCounter; index ++){

...
int transactionId = _agent.searchServices

(_attrSet , _uuids, _devices [index], this);
...

}
// open a connection on the discovered service
for(index = 0; index < _serviceCounter; index ++) {

...
// try to connect
try {

...
StreamConnection conn = (StreamConnection)Connector.open(_services[

index]);
RemoteDevice remoteDevice = RemoteDevice.getRemoteDevice(conn);
BTConnectionHandle handle = new BTConnectionHandle(conn ,

remoteDevice);
_connectionPool.addConnection(handle);
...

}
}

}

Fig. 5. Java code for connection of a relay peer to a discovered mobile peer

3. BTEndPoint. As for mobile peers, it is contained in the BTPeerNetwork ob-
ject. This object handles all details about Bluetooth communication.

The main steps carried out during the connection creation are:

1. Adding a message listener on the Bluetooth channel, through the
BTPeerNetwork object.

2. Performing the connection on the Bluetooth channel, through the
BTEndpoint object.

3. Instantiating a PeerGroup object for the groups and a Pipe object for the
pipes.

4. Setting the peer ID.

As a result, the relay peer has to inquiry and connect to available mobile
peers. This operation is straightforward, thanks to the Bluetooth standard and
the JSR-82 API. The Java code showed in Figure 5 is devoted to such task.

More details about our implementation can be found in the extended version
of this paper [11].

3 Related Work

Both P2P and ubiquitous computing are actual topics in the scientific commu-
nity. Therefore, researchers have put a lot of effort on designing P2P protocols
which are suitable for mobile wireless devices.

In [14] it has been presented Jadabs, a dynamic lightweight architecture for
resource constrained device, Jadabs allows to build a distributed peer to peer

A Bluetooth-Based JXME Infrastructure 675

infrastructure similar to JXTA. However, Jadabs cannot run on CLDC/MIDP
because of the limitations imposed by CLDC (reflection and dynamic class load-
ing are not supported). Therefore, the Jadabs-CLDC project [3] was carried out
in order to overcome this limit. Such a project is based on the synergy between
Jadabs and JXME. The project Jadabs-JXME-BT [4] was aimed to provide
Bluetooth support to Jadabs-CLDC. However, this project cannot be considered
as a real implementation of JXME over Bluetooth. In fact, Jadabs-JXME-BT
only implements the JXME messaging system, it does not provide mechanisms
to create and handle pipes and groups. Finally, it lacks of the management of
modules and advertisement. As a result, Jadabs-JXME-BT does not provide a
full JXME-compliant interface.

Other research is targeted to achieve a synergy between MANET and P2P
in mobile environment. For instance, PROEM [17] is a mobile middleware for
ad-hoc networks based on WLAN within J2ME. Mobile Chedar [19] is similar
to PROEM, but it provides support for peers with fixed P2P network connec-
tions. It uses Bluetooth as the underlying communication channel for supporting
Chedar P2P protocol (see [18]).

The Java Community Process released the JSR-259 Ad-Hoc Networking API
[5] to support communication between nodes in an ad-hoc network implemented
in J2ME, allowing developers to deploy P2P application over mobile phones.
However, no implementation is available yet.

Other interesting works are targeted to cooperative peer-to-peer applications
running on mobile phones. For instance, issues related to development of peer-
to-peer games in J2ME using Bluetooth has been deeply investigated in [24].
A peer-to-peer framework to support rapid development of mobile collaborative
applications has been presented in [25]. It uses Bluetooth as the communication
channel. Both papers rely on the P2P framework Peer2ME [21] which is targeted
to Bluetooth-enabled mobile devices.

However, none of the cited projects achieves our goal of providing JXME
with the required support to use Bluetooth as the communication channel. The

Properties
Peer2
ME

Mobile
Chedar

Jadabs-
JXME-BT

JXBT

Lightweight Yes Yes Yes Yes

Full compliance to JXME No No No Yes

Support for groups Yes No No Yes

Support for pipes No No No Yes

Support for synchronized
multithreaded queues

No No No Yes

Open-Source No No Yes Yes

Based on standard protocol No No Yes Yes

Overcome piconet range
constrain

No Yes Yes Yes

Fig. 6. Differences between JXBT and related projects

676 C. Blundo and E. De Cristofaro

JXBT framework fulfills our requirements. In Figure 6, we summarize the main
differences among JXBT and some related projects.

4 The BlueIRC Application

In order to provide a proof-of-concept of the applicability of our framework in
a real world scenario, we developed an application, named BlueIRC working on
top of the JXBT framework. BlueIRC is essentially an application enabling the
creation of a chat among Bluetooth-enabled mobile devices, without requiring
them to be within Bluetooth’s transmission range. This application has been
tested both in a simulation environment and by using real smartphones.

As we have shown in Figure 2, peers within the Bluetooth’s range (piconet)
are interconnected through the JXBT infrastructure. Then, relay peers provide
access to the JXTA networks, thus allowing piconets to interconnect to each
other. In this way, mobile devices network using Bluetooth are not bounded to
the range of the Bluetooth layer. Furthermore, peers do not even need to know
whether interacting peers are effectively within their transmission range. Figure
7 gives an overview of how BlueIRC works; Message 1 is exchanged within the
same JXME network; while, Message 2 is handled by the framework and it is
sent in a transparent way to a peer belonging to a different JXME network. As
we can see in Figure 7, even when two mobile peers are in the same piconet,
messages have to be processed by the relay peer. This limitation is due to the
fact that the JXME proxyless version, as yet, only supports devices using CDC,

Fig. 7. How BlueIRC works

A Bluetooth-Based JXME Infrastructure 677

Fig. 8. BlueIRC in the One-on-One Chat modality

not CLDC, eliminating mobile phones. However, as soon as an implementation
will be released, we plan to release the updated version of JXBT.

The BlueIRC chat provides two different chat modalities: the One-on-One
Chat and the Public Chat Room. In the first case the user interacts with a
single user of a group; while, in the second case, the user interacts with all the
users of a group. The BlueIRC application provides users with several features,
such as: selection of groups, selection of the chat modality (single or multicast),
sending and receiving of messages and/or files, management of files and directory,
contacts, and personal agenda.

Once the BlueIRC application has been started, the user has to confirm the
connection to the system. As stated in Section 2, any peer entering the networks
has to wait to be discovered from the JXTA relay peer. At this stage, the relay
peer contacts via Bluetooth the new peer, which sends an identifying JXME
message and gets the list of available groups. Now, the peer is connected to the
JXTA network and he can choose a group sending a request to join it. As a
response, it gets the list of all the peers in the group, both the ones in the same
piconet and the ones reachable through the JXTA middle layer. At this point, the
user can exploit all the BlueIRC’s features. As an example, the Figure 8 shows
a screenshot of BlueIRC running in the One-on-One Chat modality. Whenever
a user sends a message, a JXME message is sent to the relay peer. This checks
whether the receiver is in the list of local (in-the-range) mobile devices. In this
case, it delivers the message (see Message 1 of Figure 7), otherwise it has to
route the message in the JXTA network over a pipe, so that the correspondent
relay peer can appropriately deliver the message (see Message 2 of Figure 7).

Figure 9 shows an example of the Public Chat Room modality. The relay peer
receiving the message broadcasts the message to local (in-the-range) peers of the
group. It also sends the message on the JXTA network over the pipe to allow
other relay peers to spread the message to other peers of the group. BlueIRC

678 C. Blundo and E. De Cristofaro

Fig. 9. BlueIRC in the Public Chat Room modality

is designed to handle the two chat modalities simultaneously allowing users to
easily switch between them. In fact, the BlueIRC user interface presents two
windows, a bigger one with the active chat modality and a smaller one for the
not active one. Moreover, if the application is in the One-on-One Chat modality
and a broadcasted message is received (i.e., the message is sent in the Public
Chat Room modality), then it will not be discarded but it will be prompted in
the smaller window. The same happens in the opposite situation.

Using the BlueIRC application, users can send and receive files. In fact, it
has been implemented the support to access and manage devices’ filesystem.
Users can also browse files, see and edit their properties, or delete them. This
feature was realized through the use of the JSR-75 API [6], which nowadays it
is supported by almost all J2ME-powered smartphones.

5 Performance Evaluation

In this section, we analyze the performance of JXBT and BlueIRC in order to
evaluate their lightness and usability in real world scenarios. To this aim we set
up the following test bed:

– JXTA network: 2 PCs IBM ThinkCentre 50, Pentium 4 2,6 GHz with 760
MB RAM, running Windows XP Professional SP 2, acting as relay peers for
the JXME networks. The two PC were equipped with Bluetooth TrendNet
TBW-102UB USB dongles. We used the BlueCove [2] implementation of the
JSR-82 Bluetooth API for J2ME.

– Peer 1: Nokia N73 mobile phone running Symbian OS 9.1, compliant with
MIDP 2.0, JSR-82, and JSR-75 standards.

– Peer 2: Nokia N70 mobile phone running Symbian OS 8.1a, compliant with
MIDP 2.0 and JSR-82 standards.

A Bluetooth-Based JXME Infrastructure 679

The first test was run to evaluate the overhead taken by our framework to send
a file within the BlueIRC application. We have compared times to send files for
the following applications:

1. BlueIRC in One-on-One modality.
2. A simple J2ME midlet sending files over Bluetooth.

Actually, only using BlueIRC it is possible to exchange files over Bluetooth with-
out requiring devices to be within Bluetooth transmission range. However, we
wanted to evaluate the overhead required by the JXBT infrastructure, so we
restricted this test to a scenario where two devices were within range and were
using the same relay peer to enter the JXTA/JXME network. We remark that
JXBT suffers from the limitation of requiring all communications to be routed
through the relay peer. However, this limitation is related to the lack of a prox-
yless JXME implementation for the CLDC. As soon as it will be released, we
plan to update JXBT so that it will use the proxyless JXME rather than the
proxy-based version. Figure 10 shows times required to send files of size rang-
ing from 1 KB to 55 KB with an incremental step of 1 KB. Times show that
BlueIRC performs around 2.2 times slower than the simple J2ME application
which exchanges data directly without the use of an intermediate device (relay
peer). However, to use J2ME, devices must be within Bluetooth transmission

Fig. 10. Times for sending a file

range; while, in our framework this is not required. With the introduction of a
proxyless version of JXME for CLDC, the differences in Figure 10 will be drasti-
cally reduced. The 2.2 factor is what we have to pay to overcome the Bluetooth
transmission range limitation. In order to allow two Bluetooth device to com-
municate even though they are not within transmission range, we should add to
times of Figure 10 the delay of the JXTA network, but this is independent from
our JXBT framework. All JXTA-based applications incur in such a delay. Ac-
tually, several works evaluating JXTA performance have been published during
last years, such as [15], [13], and [9].

680 C. Blundo and E. De Cristofaro

Fig. 11. Times for sending a message

The second test was aimed to evaluate the efficiency in exchanging messages
within chat applications. We have compared times to exchange messages for the
following applications:

1. BlueIRC in One-on-One modality.
2. BlueChat [1], the most famous chat application for J2ME and Bluetooth-

enabled mobile phones.

BlueChat does require two devices to be within Bluetooth transmission range to
exchange a message, while BlueIRC does not. As for the first test, also in this
test we do not consider the transmission delay induced by the JXTA framework.
Figure 11 shows times required to send a simple Hello message. Tests were
repeated 50 times in order to compute a significant average. Times show BlueIRC
performs around 3 times slower than BlueChat, which exchanges data directly
without the use of an intermediate device (relay peer).

6 Conclusions and Future Works

In this paper, we have presented JXBT a Bluetooth-based implementation for
a JXME infrastructure. We also proposed a useful chat application, namely
BlueIRC, running on top of JXBT. We notice that using JXBT results in a
performance degradation compared to other available chat applications. But,
this is due to the JXME proxyless constrain for CLDC that, instead of allowing
devices to communicate directly, forces to route all communications through the
relay peer. We will easily overcome this limitation as soon as a proxyless imple-
mentation of JXME for the CLDC will be released. We remark that, only using
JXBT users can interconnect more piconets and exploit all Bluetooth features
beyond Bluetooth transmission range. It would be possible to interconnect more
piconets to form a scatternet. But, to our knowledge, only theoretical results
are available, no real implementation has been deployed yet. In Figure 12, we

A Bluetooth-Based JXME Infrastructure 681

Limitation Midlet
Blue
Chat

BlueIrc Solution

Textual message
exchange

Yes Yes No None

No broadcast/groups
support

Yes Yes No None

Communication
within piconet range

Yes Yes No
Use scatternets if a formation
algorithm is released for J2ME

Message routed
through a relay peer

No No Yes
Update JXBT with J2ME
proxyless version for CLDC

Fig. 12. Limitations of analyzed applications and possible solutions

summarized the limitations of the three applications we analyzed in this paper
as well as possible solutions.

As future works, we will release a new version of JXBT as soon as the
JXME proxyless version for CLDC will be available. Moreover, we plan to set
up a simulation environment in order to test the framework scalability both in
the number of supported relay peers and in the number of connected mobile
peers. We also want to tune all parameters and timeouts in order to improve
performance. Finally, we would deploy more mobile peers in order to compare
simulation results against real world devices in noisy or crowded environments.

References

1. BlueChat, http://www.getjar.com/products/7545/BluetoothChat
2. BlueCove, http://sourceforge.net/projects/bluecove/
3. Jadabs-CLDC, http://jadabs.berlios.de/jadabs-cldc/
4. Jadabs-JXME-BT, http://jadabs.berlios.de/jadabs-cldc/multiproject/

jxme-bt-j2me/
5. JSR 259: Ad-Hoc Networking API, http://jcp.org/en/jsr/detail?id=259
6. JSR 75: PDA Optional Package for the J2ME Platform, http://jcp.org/en/jsr/

detail?id=75
7. JSR 82: Java APIs for Bluetooth, http://www.jcp.org/en/jsr/detail?id=82
8. The JXTA Project, http://www.jxta.org
9. Antoniu, G., Hatcher, P., Jan, M., Noblet, D.A.: Performance evaluation of JXTA

communication layers. In: CCGrid 2005. Proceedings of the Fifth IEEE Interna-
tional Symposium on Cluster Computing and the Grid, vol. 1, pp. 251–258 (2005)

10. Arora, A., Haywood, C., Pabla, K.S.: JXTA for J2ME – Extending the Reach of
Wireless With JXTA Technology. In: JavaOne Conference (2002)

11. Blundo, C., Cristofaro, E.D.: JXBT: JXME over Bluetooth. Technical re-
port, Università di Salerno, http://www.dia.unisa.it/dottorandi/emidec/
JXBT-Extended.pdf

12. Chatschik, B.: An overview of the Bluetooth wireless technology. IEEE Communi-
cation Magazine 39, 86–94 (2001)

13. Dai, Z., Fang, Z., Han, X., Xu, F., Yang, H.: Performance Evaluation of JXTA
Based P2P Distributed Computing System. In: CIC 2006. Proceedings of the 15th
International Conference on Computing, pp. 391–398 (2006)

http://www.getjar.com/products/7545/BluetoothChat
http://sourceforge.net/projects/bluecove/
http://jadabs.berlios.de/jadabs-cldc/
http://jadabs.berlios.de/jadabs-cldc/multiproject/jxme-bt-j2me/
http://jadabs.berlios.de/jadabs-cldc/multiproject/jxme-bt-j2me/
http://jcp.org/en/jsr/detail?id=259
http://jcp.org/en/jsr/detail?id=75
http://jcp.org/en/jsr/detail?id=75
http://www.jcp.org/en/jsr/detail?id=82
http://www.jxta.org
http://www.dia.unisa.it/dottorandi/emidec/JXBT-Extended.pdf
http://www.dia.unisa.it/dottorandi/emidec/JXBT-Extended.pdf

682 C. Blundo and E. De Cristofaro

14. Frei, A., Alonso, G.: A dynamic lightweight Platform for Ad-Hoc Infrastructures.
In: PerCom 2005. Proceedings of the Third IEEE International Conference on
Pervasive Computing and Communications, pp. 372–382. IEEE Computer Society
Press, Los Alamitos (2005)

15. Halepovic, E., Deters, R.: The jxta performance model and evaluation. Future
Gener. Comput. Syst. 21(3), 377–390 (2005)

16. Keogh, J.E.: J2ME: The Complete Reference. McGraw-Hill, New York (2003)
17. Kortuem, G.: PROEM: A Middleware Platform for Mobile Peer-to-Peer comput-

ing. SIGMOBILE Mob. Comput. Commun. Rev. 6(4), 62–64 (2002)
18. Kotilainen, N., Vapa, M., Weber, M., Töyrylä, J., Vuori, J.: P2PDisCo - Java Dis-

tributed Computing for Workstations Using Chedar Peer-to-Peer Middleware. In:
IPDPS 2005. Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium, pp. 182–185 (2005)

19. Kotilainen, N., Weber, M., Vapa, M., Vuori, J.: Mobile Chedar - A Peer-to-
Peer Middleware for Mobile Devices. In: PERCOMW 2005. Proceedings of the
Third IEEE International Conference on Pervasive Computing and Communica-
tions Workshops, pp. 86–90 (2005)

20. Law, C., Mehta, A.K., Siu, K.-Y.: A new Bluetooth scatternet formation protocol.
Mobile Networks and Applications 8(5), 485–498 (2003)

21. Lund, C.-H.W., Norum, M.S.: The Peer2Me Framework - A Framework for Mobile
Collaboration on Mobile Phones. Master’s thesis, Department of Computer and
Information Science - Norwegian University of Science and Technology (2005)

22. Schollmeier, R.: A Definition of Peer-to-Peer Networking for the Classification of
Peer-to-Peer Architectures and Applications. In: P2P 2001. Proceedings of the
First International Conference on Peer-to-Peer Computing, pp. 101–102. IEEE
Computer Society Press, Los Alamitos (2001)

23. Tomarchio, O.: Progetto IS-MANET: JXTA Middleware for Mobile Ad-Hoc
Networks. Technical report, http://zeus.elet.polimi.it/is-manet/Documenti/
bo20040721-diit.ppt

24. Wang, A.I., Norum, M.S., Lund, C.-H.W.: Issues related to development of wireless
peer-to-peer games. In: AICT-ICIW 2006. Proceedings of the Advanced Interna-
tional Conference on Telecommunications and International Conference on Internet
and Web Applications and Services, pp. 115–120 (2006)

25. Wang, A.I., Norum, M.S., Lund, C.-H.W.: A peer-to-peer framework for mobile
collaboration. In: SEA 2006. Proceedings of the 10th IASTED International Con-
ference on Software Engineering and Applications (2006)

26. Zaruba, G.V., Basagni, S., Chlamtac, I.: Bluetrees-Scatternet Formation to En-
able Bluetooth-Based Ad Hoc Networks. In: ICC2001. Proceedings of the IEEE
International Conference on Communications, vol. 1, pp. 273–277 (2002)

http://zeus.elet.polimi.it/is-manet/Documenti/bo20040721-diit.ppt
http://zeus.elet.polimi.it/is-manet/Documenti/bo20040721-diit.ppt

Agreements and Policies in Cooperative Mobile

Agents: Formalization and Implementation

Fuyuki Ishikawa, Nobukazu Yoshioka, and Shinichi Honiden

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

Abstract. Organization of mobile agents into a group has appeared as
a new paradigm for dynamic deployment of composite services. How-
ever, it has not been discussed how multiple mobile agents cooperate
with each other, handling conflicts in their requirements. In response
to this problem, this study proposes a model for cooperative mobil-
ity based on the notion of agreements. Agent behavior defined in the
proposed model involves agreement establishment and enforcement for
cooperative mobility. Such behavior can be customized only by speci-
fying requirements/constraints of each agent, eliminating the necessity
to write down the whole behavior to handle agreements. The model is
described in a formal way, using Event Calculus, and it is proved the
model leads to no occurrence of defined inconsistency. The model has
been implemented on an existing agent framework, Freedia, combined
with its dynamic partner management mechanism.

1 Introduction

The mobile-agent paradigm has opened up great possibilities for new applications
[1,2]. A mobile agent is a software component that has the ability to move from
one host to another with its state, allowing for local interaction with distributed
components and/or selection of resources for its use. Mobile agents have therefore
been utilized in various fields such as information retrieval, mobile computing,
and dynamic resource allocation. In most use cases, agent migration is driven
by each agent’s requirements, and agents do not recognize migration behavior of
other agents. Recently, several studies have proposed new models for cooperative
migration where a group of mobile agents migrate together keeping locality with
each other [3,4,5]. These models allow for dynamic delivery and deployment of
composite services provided through combination of multiple agents. Coopera-
tive migration has been used for composition of multimedia contents managed by
agents [6,7,8] and for desktop transportation [9]. Cooperative mobility has been
implemented by embedding commands like “follow AgentA”, in agent behavior
description, indicating the agent starts to follow migration of AgentA. The run-
time platform then activates migration accordingly upon migration of AgentA
(the followed one). Multiple agents are thus connected by “follow” relationships,
leading to composite agents that migrate together.

However, such follow commands are included only in follower agents and just
activate their following migration, without regard to the intention or state of

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 683–700, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

684 F. Ishikawa, N. Yoshioka, and S. Honiden

the counterparts (followed agents). The implementation model thus assumes
incorporation of interaction behaviors among agents for decision and mutual
understanding between agents on how cooperative mobility is conducted. Such
behaviors are necessary for effective cooperative behavior of each agent to ful-
fill requirements of other agents as well as its own. On the other hand, it is
a heavy burden for each application developer to design and implement some
global protocols and each agent’s behavior to exchange requirements on mobil-
ity, determine and agree how to cooperate, and act accordingly. In addition, the
resulting agent behavior also can be very complex, with behavior for cooper-
ative mobility woven discretely into the application logic. The lack of support
for decision and mutual understanding processes thus limits broader adoption
of the emerging models of cooperative mobility, especially to service-oriented
computing where agents discover and cooperative with each other at runtime
[10]. Our objective in this study is thus to provide patterns of cooperative mo-
bility including decision and mutual understanding processes and facilitate their
implementation.

In general, the notion of agreements has been used to denote mutual under-
standing of interaction participants [11,12]. Agreements are established through
explicit exchange of requirements of each participant in order to determine be-
havior of each participant that satisfies all of their requirements. However, it is
heavy burden for application developers to specify behavior to establish agree-
ments and act in complying with them. Especially, there is a significant issue
in handling agreements, that is, assurance of consistency between terms in an
agreement, between an agreement and behavior of its participant, and between
agreements of an agent with different partners.

In response to these problems, this study proposes a model for cooperative
mobility based on the notion of agreements. Agent behavior defined in the pro-
posed model involves agreement establishment and enforcement for cooperative
mobility. Such behavior can be customized only by specifying requirements and
constraints of agents, eliminating the necessity to write down the whole behavior.
The model is described in a formal way, using Event Calculus, and it is proved
the model leads to no occurrence of defined inconsistency.

The proposed model has been implemented in an agent framework, Freedia
[7,8], for development of agents that discover and cooperate with each other
possibly while conducting cooperative migration. Besides common functionalities
for agent execution and management, the Freedia framework provides mechanism
for dynamic partner management [13]. The mechanism is combined with the
proposed mechanism for cooperative mobility to handle failure in cooperative
mobility that may lead to rebinding of partners.

2 Background and Motivation

2.1 Cooperative Mobility

In most mobile agent systems, each agent determines migration strategies
(i.e., when and to where to migrate) according to its own requirements, not

Agreements and Policies in Cooperative Mobile Agents 685

recognizing migration of other agents. Recently, different models have been pro-
posed for cooperative migration of multiple mobile agents.

A model of hierarchical mobile agents first discussed cooperative mobility of
multiple agents [3,4]. The model introduced inter-agent migration where an agent
becomes contained by another agent and then carried by the containing agent.
Figure 1 illustrates the model. Agent2 migrates into and interacts with Agent1
(Step 1, 2 in the figure). When Agent1 migrates into a host or an agent, Agent2
migrates to the same host (Step 3, 4). In this way, the model leads to a “mobile
composite agent” that consists of multiple agents migrating together as a unit.
Existing studies have provided frameworks to implement this model by using a
command to “enter into” an agent.

One of attractive applications of cooperative migration is composition of mul-
timedia contents managed by agents [6,7,8]. Services providing multimedia con-
tents with related functions are composed by combining existing contents and
functions. Each component content or function is encapsulated and managed
by agents so that its provision is controlled according to the provider’s policy.
Upon such combination, mobility can be used to reduce communication cost,
avoiding exchange of large data between distributed agents. Cooperative mobil-
ity allows handling the mobile composite service that consists of multiple mobile
agents.

Although the metaphor of inter-agent migration is intuitive and often used
to explain the model, the essence of the hierarchical model is establishment of
a logical relationship where one agent keeps following another’s migration. The
relationship is very strong as a group of agents always migrates to the same host,
which makes it difficult to satisfy host requirements of all the group members. A
model of loosed cooperative mobility has proposed to relax the constraint [5]. In
the model, an agent follows another’s migration similarly, however, the migration
target need not to be exactly the same. Instead, agents in a group migrate to
hosts located nearby in some definition, for example, hosts in the same physical
domain defined by the platform [14]. In Figure 2, Agent2 follows migration of
Agent1, migrating to a host in the same domain as Agent1. This loosed model of
cooperative mobility is generalization of the hierarchical model, and still keeps

Agent1
Agent3

Agent2

1. Migration

2. Interaction

3. Migration

Agent1

Agent2

4. Interaction

Host1 Host2

Migration

Interaction

Fig. 1. Hierarchical Cooperation Model for Mobile Agents

686 F. Ishikawa, N. Yoshioka, and S. Honiden

1. Migration

2. Interaction

3. Migration

Domain1 Domain2

Host1-1 Host1-2 Host2-1 Host2-2

Agent1Agent2

5. Interaction

4. Following Migration

Migration

Interaction

Agent1Agent2

Fig. 2. Loosed Cooperation Model for Mobile Agents

locality of agents, enabling to reduce communication costs in long-running in-
teraction. Existing studies have considered to implement this model by using a
command to “follow” an agent.

2.2 Problems

Existing platforms for cooperative mobility have provided commands for agents
to follow (or enter into) another agent. Although such commands have enabled
cooperative mobility, they are too primitive in a sense decision and mutual un-
derstanding processes are not supported, especially for cooperation of agents
provided by different organizations. It is necessary to facilitate to introduce
agent behaviors to exchange requirements on mobility, determine and agree how
to cooperate, and act accordingly. Such behaviors are often considered with a no-
tion of agreements/contracts. In our context of cooperative mobility, agreements
should be introduced so that:

– A follower agent, which delegates decision of migration to another, can be
sure that its requirements/constraints on migration target hosts are satisfied.

– A followed agent, which often wants agents providing component services to
follow it, can be sure that they actuality follow its migration.

– Agents can understand how to handle failures in cooperative migration.

When agreement-based cooperative behavior is developed, it is generally nec-
essary to determine how to denote agreements, how to establish agreements be-
tween agents, and how to act in complying with established agreements (possibly
with monitoring of counterparts). As this study focuses on a specific domain,
that is, cooperative mobility, this study aims to facilitate such development by
defining vocabularies and behaviors specific to the domain, as follows.

Vocabulary. Agreement vocabulary is defined so that implementation of typ-
ical patterns in cooperative mobility is facilitated, e.g., handling failure in
migration.

Establishment. Vocabulary for requirements/constraints (or policies) ex-
changed to establish agreements is defined together with their matching
mechanism so that agent behavior to establish agreements is implemented
only by specifying requirements/constraints.

Agreements and Policies in Cooperative Mobile Agents 687

Enforcement. Runtime platform is provided that enforces established agree-
ments so that behavior to comply with agreements is conducted properly
with little implementation effort of developers.

In addition, consistency is one of the most significant properties upon imple-
menting agreement-based cooperation. Consistency between defined behavior of
an agent and its agreement should be ensured. For example, there should not
be a situation where an agent prohibited from migration, the agent requires to
achieve its goals. Similarly, consistency between multiple agreements an agent
establishes with different partners should be ensured. For example, an agent
should not agree to follow multiple agents as it is generally impossible.

In this study, semantics of the proposed agreements and related agent behav-
iors are defined in a formal way (using Event Calculus [15]) so that it can be
proved that there can be no occurrence of defined types of inconsistency.

3 Agreements on Cooperative Mobility

This section describes a model for agreements regarding cooperative mobility
as well as policies, requirements/constraints exchanged to establish agreements.
In other words, this section describes the proposed global protocols or possible
patterns of cooperative mobility.

3.1 Approach

In general, permission and obligation have been handled as typical constraints
(policies or agreements) in distributed systems, and often expressed in a formal
model of Event Calculus [16,19,20]. Event Calculus is a well-known formal no-
tation for expression and reasoning about effects of actions [15]. Event Calculus
considers predicates called fluents whose boolean value can change as effects
of actions or time passage, and provides definitions and axioms to specify and
reason about how fluent values change. For example, Initiate(act1, flu, t) de-
notes the fact occurrence of action act1 at time t makes fluent flu to start to
hold (such declaration often accompanies a universal quantifier on time, i.e., for
all time t). With such notations, it is possible to specify how permissions and
obligations are initiated or terminated upon occurrence of various actions or
events.

This study follows such general approaches and introduces obligation of fol-
lowing migration, initiated upon migration of the followed agent, in order to
denote cooperative mobility. Such obligation and prohibition may conflict with
each other when they are given to one agent by multiple agreements, each of
which thus should be carefully analyzed. This study therefore expresses cooper-
ative migration as combination of permission (prohibition) and obligation.

Due to the space limitation, the proposed agreement model are described in-
formally in this section, and only an example of the formal notations is described
in Appendix A.

688 F. Ishikawa, N. Yoshioka, and S. Honiden

<HostAgreement agent=”a1” host=”h1”>
<Timeout>touth</Timeout>
<Resources>hCond1</Resources>
<TerminateEvents>ev</TerminateEvents>

</HostAgreement>

Fig. 3. Agreement for Host Usage

3.2 Agreements for Host Usage

Agreement Specification. Figure 3 shows an XML expression of agreements
between hosts and agents, containing the following variables.

a1, h1 Denote agent and host that participate in the agreement, respectively.
touth Denotes time span within which a1 has to migrate to h1. If a1 does not

migrate within this time span, the agreement is discarded.
hCond1 Denotes resources provided to a1 by h1. Actual expressions include a

set of descriptions of each resource such as CPU. Detailed notations are not
given here as they are very general and implementation-dependent.

ev Denotes a set of events that lead to obligation on a1 to exit of h1. Such
events can be defined by application developers, and may include various
events such as security incidents.

Establishment of an agreement initiates permission and obligation to enter a
host. The permission and obligation are terminated upon successful migration or
discard of the agreement. When the agreement is effective, specified resources are
provided and specified events lead to obligation to exit of the host. When initial
migration is timed out or the agent exits of the host, the agreement is discarded.

Agreement Establishment. To establish agreements, an agent and a host
exchange requirements and constraints, or policies, of each other. Currently,
only policies on host resources are exchanged and matched. Events leading to
obligation of outgoing migration are determined by each host, and timeout span
is defined as a constant value.

An agent requests an agreement by sending resource conditions it requires to
a host. Resource conditions consist of conjunction of inequality conditions on
each resource, such as CPU, memory, and so on. On the other hand, each host
has its acceptable conditions. If the host accepts the requirements sent by the
agent, an agreement is established between them.

3.3 Agreements for Cooperative Mobility

Agreement Specification. In agreements between agents, for cooperative mo-
bility, it is specified whether cooperative migration is conducted or not, and if
so which agent follows the other. It is also necessary to include conditions for
targethosts and behavior to handle faulty situations. Cooperative mobility con-
siders migration of agents to hosts that are located “locally”. The meaning of

Agreements and Policies in Cooperative Mobile Agents 689

<MobilityAgreement agent=”a1 a2”>
<FollowType>type</FollowType>
<Follower>follower</Follower>
<FollowerHostConstraints>hCond1</FollowerHostConstraints>
<Timeout>touta</Timeout>

</MobilityAgreement>

Fig. 4. Agreement for Cooperative Migration

“being local” depends on the implementation, and here is not limited to a specific
definition.

Figure 4 shows XML expressions of agreements for cooperative mobility, con-
taining the following variables.

a1, a2 Denote agents that participate in the agreement.
type Denotes type of cooperative migration and is any of strong, weak, or none.

When the value is strong or weak, cooperative migration is conducted. Co-
operative migration can fail, when a1 can not follow migration of a2 due to
lack of adequate hosts. In such a case, the agreement is discarded if the value
of type is strong. Interaction is continued without locality if the value of type
is weak. When the value is none, cooperative migration is not conducted.

follower Denotes the agent that becomes the follower (a1 or a2) when cooper-
ative migration is conducted.

hCond1 Denotes host requirements of the follower, a1.
touta Denotes time span within which a1 has to migrate following migration of

a2 (when type is strong or weak).

Suppose type is not none and a1 is the follower. In the following situations,
a1 becomes obliged to move to a host that is local to the current host of h2.

– When an agreement is established and a1 and a2 is not nearby.
– When migration of a2 occurs and locality becomes lost.
– When a1 has to move to another host due to forced-out events in the agree-

ment with the current host.

When a1 is imposed such obligation on, it should try to find and migrate to a host
that satisfies the locality condition to a2 as well as its own resource requirements.
Implementation of such enforcement behavior will be described later in Section
4. If such following migration is not conducted within touta, the agreement is
discarded when type is strong. After such migration is successfully conducted, a1
becomes inhibited to try to migrate to another host that is not local to the host
of h2. When an agreement is finally discarded, given obligation and prohibition
are terminated. Concrete description of these semantics, in Event Calculus, is
shown as an example in Appendix A.

Agreement Establishment. To establish agreements for cooperative mobil-
ity, agents exchange requirements and constraints, or policies, of each other, as

690 F. Ishikawa, N. Yoshioka, and S. Honiden

Table 1. Policy Matching for Cooperative Mobility

nearby1, nearby2 canfollow1 canfollow2 locality follower

strong is committed (any) yes strong a2
at least by one agent yes no strong a1

strong is not committed
by any agent, and

(any) yes weak a2

weak is at least by one
agent

yes no weak a1

none is committed by
both agents

(any) (any) none unnecessary

strong or weak is com-
mitted at least by one
agent

no no — (fail)

in agreements between agents and hosts. This exchange is actually part of in-
teraction to establish a partnership between agents. Agents may exchange other
application-level requirements or negotiate with each other. Here only interac-
tion for cooperative mobility is described, which is merged into more general
binding behavior.

Requirements and constraints each agent has contains the following items.

nearby Denotes which kind of cooperative migration is preferred. Value of this
element is any of strong, weak, or none, as in the type element in agent agree-
ments. type element in the established agreement becomes the “stronger” one
of values given by the two agents. If at least one of the agents requires strong,
the resulting type is strong. If any does not require strong and at least one
requires weak, type is weak. If both require none, type is none

canfollow Denotes whether the agent can follow migration of the other or not.
Value of this element is yes or no. This element does not affect if type is
none. If both the agents have yes, the agent that waited for and received a
request becomes the follower. If only one agent has yes, the agent becomes the
follower. When type is not none but both the agents have no, an agreement
is not established.

hCond Denotes host requirements of each agent.

According to the matching rules described above, all the possible patterns of
agreements are shown in Table 3.3.

3.4 Behavior of Each Agent

In addition to agreements and policies described in the previous section, abstract
and general models have been defined in Event Calculus. Due to space limitation,
intuitive descriptions are given for them.

– Common behavior of agents to comply with established agreements is defined
so that agents always try to migrate accordingly when they become obliged
to follow migration of a partner.

Agreements and Policies in Cooperative Mobile Agents 691

– Each agent has its own requirements on host resources, which activates (non-
cooperative) mobility. Requirements on host resources may change along
an agent’s execution, depending on the current task. This characteristic is
expressed in Event Calculus by introducing a fluent that denotes the current
host requirements and events initiating/terminating it (events that denote
change in host requirements).

– Design-time constraints and runtime modifications of policies are introduced
in order to avoid establishing agreements inconsistent with existing agree-
ments with other agents or the agent’s own migration behavior. Intuitively,
they prevent an agent from following one of its partners if the agent already
has agreed to follow another partner or if the agent requires unique hosts
rather than general host resources.

In Section 4, these models are discussed in detail through mapping to our
implementation models.

4 Implementation

4.1 Freedia Framework

The proposed models are implemented on an existing agent framework, Free-
dia [7,8]. The Freedia framework was developed in the Smartive project, which
aims for flexibly controlled distribution and provision of multimedia contents.
For the purpose, the project has considered flexible and dynamic composition,
deployment and provision of multimedia services by (possibly mobile) agents.
The Freedia framework has the following features:

Service-Oriented. The main logic of an agent is specified in the same way as
process descriptions for services such as BPEL [17], that is, interaction with
partners are described without specifying their concrete binding information.
Control- and data-flow among activities (action units) are described in a
graph-oriented or a procedural way.

Policy-based. Given such a process description, an agent can run as an ordi-
nary service-composing/providing/consuming agent with partner references
statically given in advance. Flexible and dynamic (often complex) behaviors
can be gradually introduced by incorporating policy descriptions provided
for each aspect. For example, policies for customization of runtime discov-
ery/selection strategies and rebinding upon events (e.g., user movement)
have been provided [7,13]. A notion called partner scope is introduced, intu-
itively, a set of activities where interaction with a partner can occur.

Below policies to control non-cooperative and cooperative mobility of agents
are described, respectively.

4.2 Migration Policy Descriptions

Migration Policy descriptions are given to an agent to specify the agent’s own
requirements on Places, or host resources. As effectiveness of migration depends

692 F. Ishikawa, N. Yoshioka, and S. Honiden

<migrate block=”activities”>
<Target>target</Target>

</migrate>

Fig. 5. Entry in Migration Policy Descriptions

on surrounding environments, separated policy descriptions are given to control
migration behavior. Figure 5 illustrates the structure of an entry in Migration
Policy descriptions.

Execution Block. In Migration Policy Descriptions, migration behavior is as-
sociated with an execution block (the block attribute in Figure 5). An execution
block is intuitively a set of activities that are executed in succession. An execu-
tion block is defined as a set of activities that make a connected graph, of control
links, that starts from one activity. This activity is called the start activity of
the block, and is always executed first in the block because a graph of control
links is acyclic. A block can nest in another block recursively but not cross the
boundary of another block.

Migration is conducted just before execution of the start activity of the block.
A notable point here is that an execution block is associated with migration, not
a point to insert a migration action. Constraints can be explicitly specified that
an agent wants to stay on the target host, after migration, until it finishes some
task that should be done on the host.

Migration Target. The Target element in Figure 5 indicates how to determine
target of the migration, and includes either of the following descriptions.

Host Requirements. Specify requirements on hosts. The agent migrates to
a Place that satisfies the specified requirements upon entering the execu-
tion scope, only if the current Place does not satisfies the requirements. The
provided vocabulary currently includes CPU, memory, disk space, and pro-
vided services. Vocabularies for security requirements, such as trust value,
are under discussion.

Static References. Specify an ordered list of references to specific Places. The
agent tries to migrate to one of the specified Places, one by one in the order
of the list.

Reference to Decision Mechanism. Specifies a reference to a Java class or
another agent that implements complex decision mechanism by using query
API to DFs and returns an ordered list of references to Places. Optimiza-
tion methods can thus be incorporated, especially, it is possible to introduce
global methods that consider requirements of multiple agents when an agent
is referred to as implementation of decision mechanism. Regarding implemen-
tation of decision mechanism as a Java class, an abstract class is provided
and API can be used to query DFs and to obtain requirements of all the
follower agents obliged to follow the agent directly or indirectly (through
chain of obligation). Regarding implementation of decision mechanism as

Agreements and Policies in Cooperative Mobile Agents 693

<InteractionStyle>
<Nearby>strong/weak/none</Nearby>
<CanFollow>yes/no</CanFollow>

</InteractionStyle>

Fig. 6. Policy Descriptions for Cooperative Mobility

another agent, abstract classes are provided to implement query behavior of
the migrating agent and reply behavior of the decision agent.

4.3 Cooperative Mobility Policy

For each partner, policies for cooperative mobility are given, combined with poli-
cies for discovery, selection and negotiation proposed in the authors’ previous
study [13]. They include just descriptions of the nearby and canfollow param-
eters defined in Section 3.3. The default values are none for Nearby and no for
CanFollow, that means, agents never migrate for partners by default.

4.4 Policy Constraints

Requirements of type (strong, weak, or none) should be determined according to
effects of defined locality in the application domain. If locality defined physically
or logically leads to availability of resources or services, locality is required for
effective interaction (type should be strong). If locality leads to optional improve-
ment of performance, it can be optional (weak). On the other hand, decision of
which agent follows the other should be analyzed carefully, as involved obligation
and prohibition can conflict with those given by other agreements or agents’ own
requirements.

An agent may have such conflicts may in situation where multiple agreements
are effective or when migration by its own requirements is conducted while some
agreement(s) are effective. Agent policies should thus be adjusted to avoid con-
flicts, as described below.

– In agreements between agents (Section 3.3), host requirements of follower
agents are included so that the followed agents are aware of them. However,
as the requirements are declared statically upon establishment of agreements,
an agent should declare not to be the follower of a partner if it has change in
host requirements during interaction with the partner. In the current imple-
mentation, this constraint is checked by alerting upon input of policies, if:

• A partner scope includes a start activity of execution block,
• The start activity is not always executed first in the partner scope,
• And CanFollow for the partner is set as yes.

– When host requirements of agents are general, they can be satisfied together
with locality requirements given by agreements, e.g., hosts that can pro-
vide specified amount of CPU and memory. However, some agents may have

694 F. Ishikawa, N. Yoshioka, and S. Honiden

specific requirements that cannot be satisfied together with locality require-
ments, e.g., direct indication of IP addresses, including “never move from
the current host”. If an agent have such specific requirements, it should de-
clare not to be the follower. In the current implementation, this constraint
is checked by alerting upon policy input, if:

• An activity is included both in a partner scope and in an execution block,
• Migration target for the block is given not by host requirements,
• And CanFollow for the partner is set as yes.

– In general, it is impossible for an agent to be local with multiple agents.
An agent should thus avoid being the follower in multiple agreements. In
the current implementation, when an agent establishes an agreement where
it follows another agent, policies with the other partners are overridden by
setting CanFollow as no until the agreement is discarded.

With these constraints on policies, there is no occurrence of conflicts in per-
mission and obligation managed for cooperative mobility. Especially, there is no
situation where an agent try to migrate, according to its own Migration Policy or
obligation given by established migration, but is prohibited to do so. Such consis-
tency properties have been discussed and proved on the formal models specified
in Event Calculus, which is not described due to the space limitation, though.

5 Discussion

In the proposed framework, agreements are introduced to handle cooperative
mobility. Necessity of agreements has already been discussed in Section 2.2.
Below decrease in development burden is discussed.

Cooperative migration is programmed by specifying requirements and con-
straints of each agent. Here an example scenario is described.

– The requester agent sends a message in order to request the counterpart to
follow its migration.

– The responder agent waits for such a request, determines whether to accept
or not, and replies to the request. If agreed, the responder agent activates
follow commands.

– When the (followed) requester agent migrates, migration of the other is ac-
tivated by the platform as implementation of the commands. However, a
runtime error may occur due to migration failure or lack of hosts satisfying
the follower’s requirements. The two agents should catch such an error to
handle it.

In the existing programming model, these behaviors are implemented by com-
bination of primitive functions for messaging as well as follow commands. This
study has extracted common behavior in such a flow and allowed developers
only to describe customization parameters, eliminating the necessity for each
developer to implement such a flow.

Below it is discussed how heavy loads the Freedia framework decreases in
design and implementation of agreement-based cooperative mobility.

Agreements and Policies in Cooperative Mobile Agents 695

Strategies for Agreement Establishment. It is necessary to determine
strategies for agreement establishment, or policies for cooperative mobil-
ity. This study has proposed and implemented constraints in such policies to
avoid inconsistency in agreements so that application developers can avoid
considering the consistency problem and concentrate on strategy selection
itself. In this study, design using a formal model has required discussion on
about 80 statements in Event Calculus. Such design is a heavy load when
it is imposed on every application developers. Formal design of agreement-
related behaviors is thus one of significant contributions of this study. On
the other hand, once strategies of policy modification to avoid inconsistency
are clarified, it is not so difficult to implement them. Their implementation
has required about 50 lines of Java codes in Freedia, which is not so heavy
a load even if imposed on each application developer.

Interaction for Agreement Establishment. It is necessary to implement
interaction for agreement establishment through policy matching. Although
the Freedia framework has implemented the behavior, the decreased load is
not so heavy. The behavior corresponds to about 150 lines of Java codes in
Freedia.

Agreement Enforcement. It is necessary to implement behavior to comply
with established agreements, or behavior for cooperative mobility. It has re-
quired about 400 lines of Java codes in Freedia, which is quite a heavy burden
if imposed on each application developer. In addition, the implementation
codes appear in various parts in agent behavior, leading to very complex
codes, due to necessity of state management in weak mobility 1. Implemen-
tation of migration behavior in complying with agreements is thus one of
significant contributions of this study.

Agreement Monitoring. If enforcement of agreements is not conducted by
the underlying platform, each agent needs to monitor whether other agents
is acting in complying with established agreements. In the case of cooperative
mobility in this study, a followed agent checks its partner actually follows
it and does not get away. A following agent, on the other hand, checks it
is not obliged to move to a host that does not satisfy the agent’s require-
ments. Although these monitoring actions are not actually in the Freedia
framework, implementation for evaluation required about 200 lines of Java
codes. Although implementation task is not so hard, it changes the back-
ground greatly in a sense application developers need to consider possibility
of agreement violation at any time.

As discussed above, the approach in this study decreases loads in design and
implementation of supported patterns for cooperative mobility. However, this
approach limits flexibility in behavior, supported behavior should continue to be
discussed.

1 It is necessary to preserve/restore states on instance variables in Java mobile agents
as program counters cannot be preserved upon migration.

696 F. Ishikawa, N. Yoshioka, and S. Honiden

6 Related Work

6.1 Cooperative Mobility

SyMPA [3] and MobileSpaces [4] are agent platforms that support the hierarchi-
cal model of cooperative mobility (Section 2.1). They provide API with which
an agent can enter into or exit out of another agent. Although the metaphor is
intuitive, that command directly supports only situations where cooperative mi-
gration is initiated by the following (contained) agent. However, an agent often
asks another to follow, as discussed in Section 2.2. This study has considered
agreements between agents, which are essentially established by reflecting each
of their policies. MobileSpaces also introduces strong controls on a contained
agent by the containing agent. However, as no coordination mechanism is pro-
vided, it is difficult to make use of such controls when agents are provided by
different parties. This study has considered agreements on such strong controls
so that agents can expect controls they impose or receive.

The loosed model of cooperative mobility is introduced in [5]. It only provides
commands to “follow” migration of another agent. There are the same problems
as in SyMPA and MobileSpaces.

Many studies have considered composition of services by combining multiple
services, especially in the recent activity on service-oriented computing [18].
However, composition of mobile agents by combining multiple agents has not
investigated so much.

Multimedia application, including exchange of large amount of data, is orig-
inally one of attractive application areas for mobile agents. Naturally, cooper-
ative mobility has been used for composition of multiple multimedia contents.
MobileSpaces has also been adopted to multimedia application [6]. Agents en-
capsulate multimedia contents and form a hierarchy, which corresponds to the
hierarchy of the multimedia contents, e.g. images included and managed by a
word processor document. The agents provide to users, customized functions to
operate on multimedia objects (play, edit, etc.). In addition, required services
can be added at runtime as contained agents, e.g. streaming functions.

6.2 Agreements

The notion of agreements/contracts has been investigated in Service-Oriented
Computing and Multi-Agent Systems communities. Most of their studies has
considered permissions and obligations, often together with their state transi-
tion by modeling them in Event Calculus[19,20,21]. In most cases in Service-
Oriented Computing, Service Level Agreements (SLA) are just declared by ser-
vice providers, and it has been discussed how service implementation enforce the
agreements [19,20]. On the other hand, there is a study in multi-agent system
that handles agreements as knowledge that can be used for reasoning to achieve
agent’s goals [21]. There flexible vocabularies are handled such as agreements
that will be activated in a certain future time point and clarification of the sub-
ject that is responsible to change the state of predicates (fluents). Such flexibility
remains as future work in our study for cooperative mobility.

Agreements and Policies in Cooperative Mobile Agents 697

In generally, it is necessary for each application developer to define targets
of permission and obligation, events/actions that cause changes in permission
and obligation, and so on, according to the target domain. This study has fo-
cused on the domain of cooperative mobility, and provided vocabularies, axioms,
and theorems (though omitted), eliminating the necessity for each application
developer to do that. Another unique point is that this study has covered the
whole lifecycle of agreements: from establishment to enforcement and discard,
considering both sides of the participants in agreements.

7 Summary

This study has proposed a model for agreement-based cooperative mobility in
mobile agents and incorporated it into the Freedia framework for development of
service-oriented agents that discover and cooperate with each other at runtime.
Agent behavior defined in the proposed model involves agreement establishment
and enforcement for cooperative mobility, and can be customized only by speci-
fying requirements and constraints of agents, eliminating necessity to write down
the whole behavior to handle agreements. The model is defined in Event Calcu-
lus, and is proved to have no occurrence of defined inconsistency. The Freedia
framework is being adopted to various scenarios and refined continuously.

References

1. Milojicic, D.: Mobile agent applications. IEEE Concurrency 7(3), 7–13 (1999)
2. Chess, D., Harrison, C., Kershenbaum, A.: Mobile agents: Are they a good idea?

Technical Report RC 19887, IBM TJ Watson Research Center (1994)
3. Suna, A., Fallah-Seghrouchni, A.E.: A mobile agents platform; architecture, mo-

bility and security elements. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni,
A.E.F. (eds.) Programming Multi-Agent Systems. LNCS (LNAI), vol. 3346,
Springer, Heidelberg (2005)

4. Satoh, I.: Mobilespaces: A framework for building adaptive distributed applications
using a hierarchical mobile agent system. In: ICDCS 2000. The 20th International
Conference on Distributed Computing Systems, pp. 161–168 (April 2000)

5. Satoh, I.: Organization and mobility in mobile agent computing. In: Bordini, R.H.,
Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) Programming Multi-Agent Sys-
tems. LNCS (LNAI), vol. 3862, pp. 187–205. Springer, Heidelberg (2006)

6. Satoh, I.: Mobile agent-based compound documents. In: ACM Symposium on Doc-
ument Engineering 2001, pp. 76–84. ACM Press, New York (2001)

7. Ishikawa, F., Yoshioka, N., Honiden, S.: Smartive: Agreement-based mobile com-
posite agents for multimedia services. In: IAWTIC 2006. International Conference
on Intelligent Agents, Web Technologies and Internet Commerce (November 2006)

8. Smartive project: Smartive.jp. (February 2007 (Last Access)),
http://smartive.jp/eng/index.htm

9. Satoh, I.: Bio-inspired deployment of distributed applications. In: Barley, M.W.,
Kasabov, N. (eds.) PRIMA 2004. LNCS (LNAI), vol. 3371, pp. 243–258. Springer,
Heidelberg (2005)

10. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes,
Agents. John Wiley and Sons, England (2005)

http://smartive.jp/eng/index.htm

698 F. Ishikawa, N. Yoshioka, and S. Honiden

11. Forum, G.G.: Web services agreement specification (ws-agreement) (September
2004),
www.gridforum.org/Meetings/GGF11/Documents/draft-ggf-graap-agreement.
pdf

12. Jin, L.j., Machiraju, V., Sahai, A.: Analysis on service level agreement of web
services. Technical Report HPL-2002-180, HP Labs (July 2002)

13. Ishikawa, F., Yoshioka, N., Honiden, S.: Policy-based runtime partner management
in process-based services. In: ICWS 2007. 2007 IEEE International Conference on
Web Services (2007)

14. Bellavista, P., Corradi, A., Stefanelli, C.: Mobile agent middleware for mobile com-
puting. Computer 34(3), 73–81 (2001)

15. Shanahan, M.: The event calculus explained. Artificial Intelligence Today, 409–430
(1999)

16. Bandara, A.K., Lupu, E.C., Russo, A.: Using event calculus to formalise policy
specification and analysis. In: 4th IEEE international workshop on policies for
distributed systems and networks, pp. 26–39 (2003)

17. Thatte, S., et al.: Business process execution language for web services, version
1.1 (May 2003), http://www.ibm.com/developerworks/library/specification/
ws-bpel/

18. Haas, H.: Web services (June 2004) (Access: May 2005),
http://www.w3.org/2002/ws/

19. Farrell, A.D.H., Sergot, M.J., Salle, M., Bartolini, C.: Performance monitoring of
service-level agreements for utility computing using the event calculus. Technical
report, HP Labs (November 2004)

20. Paschke, A., Dietrich, J., Kuhla, K.: A logic based sla management framework. In:
ISWC Semantic Web and Policy Workshop (November 2005)

21. Knottenbelt, J., Clark, K.: Contract-related agents. In: Computational Logic in
Multi-Agent Systems, 6th International Workshop (CLIMA VI), pp. 226–242 (June
2005)

A Example of Formal Model in Event Calculus

Here one example of the formal model in Event Calculus is described to give an
intuition. Figure 7 shows EC expressions of agreements for cooperative mobility
(corresponding to Figure 4 in Section 3.3). Actions to establish and discard an
agreement are defined as agreea and discarda, respectively. A state where an
agreement is effective is defined as fluent agreeda (aINIT1, aFIN1). Arguments
in these actions and fluents are the same as those in Section 3.3, as follows.

a1, a2 Denote agents that participate in the agreement. When cooperative mi-
gration is conducted, a1 (the first argument) becomes the follower.

type Denotes type of cooperative migration and is any of strong, weak, or none.
hCond1 Denotes host requirements of the follower, a1.
touta Denotes time span within which a1 has to migrate following migration of

a2 (when type is strong or weak).

In Figure 7, an event followEvent(a1, h2) is introduced to denote occurrence
of any event leading to obligation on a1 to migrate to a host nearby h2 (aFE).
The followEvent events happen in the following situations, when type is not
none.

http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.w3.org/2002/ws/

Agreements and Policies in Cooperative Mobile Agents 699

(aINIT1) Initiates(agreea(a1, a2, type, hCond1, touta),
agreeda(a1, a2, type, hCond1, touta), τ)

(aINIT2) Happens(agreea(a1, a2, type, hCond1, touta), τ) ∧ type �= none
∧ HoldsAt(stayAt(a1, h1), τ) ∧ HoldsAt(stayAt(a2, h2), τ)
∧ ¬ HoldsAt(local(h1, h2), τ)

⇒ Happpens(followEventi(a1, h2), τ + 1)
(aINIT3) Happens(agreea(a1, a2, type, hCond1, touta), τ) ∧ type �= none

∧ HoldsAt(stayAt(a1, h1), τ) ∧ HoldsAt(stayAt(a2, h2), τ)
∧ HoldsAt(local(h1, h2), τ)

⇒ Happpens(constrain(a1, h2), τ)
(aFE) Happens(followEventi(a1, h2), τ)

∨ Happens(followEvent1(a1, h2), τ)
∨ Happens(followEvent2(a1, h2), τ)

⇔ Happens(followEvent(a1, h2), τ)
(aOBL) Initiates(followEvent(a1, h2),

obliged(a1, a1, bindh(hCond1&localT o(h2))), τ)
(aPER1) Happens(followEvent(a1, h2), τ) ⇒ Happens(constrain(a1, h2), τ)
(aPER2) HoldsAt(local(h1, h2), τ)

⇒ Initiates(constrain(a1, h2),
permitted(a1, h1, requestAgreeh(hCondr)), τ)

(aPER3) ¬ HoldsAt(local(h1, h2), τ)
⇒ Terminates(constrain(a1, h2),

permitted(a1, h1, requestAgreeh(hCondr)), τ)
(aFIN1) Terminates(discarda(a1, a2, type, hCond1, touta),

agreeda(a1, a2, type, hCond1, touta), τ)
(aFIN2) Initiates(discarda(a1, a2, type, hCond1, touta),

permitted(a1, h1, requestAgreeh(hCondr)), τ)
(aFIN3) Terminates(discarda(a1, a2, type, hCond1, touta),

obliged(a1, a1, bindh(hCond)), τ)
HoldsAt(agreeda(a1, a2, type, hCond1, touta), τ) ∧ type �= none
⇒

(aFE1) Happens(migrate(a2, h2s, h2d), τ)
∧ HoldsAt(stayAt(a1, h1s), τ)
∧ ¬ HoldsAt(local(h1s, h2d), τ)

⇒ Happpens(followEvent1(a1, h2d), τ)
(aFE2) Happens(forcedOut(a1, h1s), τ) ∧ HoldsAt(stayAt(a2, h2), τ)

∧ ¬ Happens(migrate(a2, h2s, h2d), τ)
⇒ Happpens(followEvent2(a1, h2), τ)

(aTIME) type = strong ∧ Happens(followEvent(a1, h2d), τ)
∧ HoldsAt(stay(a1, h1), τ + touta)
∧ ¬ HoldsAt(local(h1, h2d), τ + touta)

⇒ Happens(discarda(a1, a2, type, hCond1, touta), τ + touta)

Fig. 7. Formal Model of Agreement for Cooperative Migration

– When an agreement is established and a1 and a2 is not nearby (aINIT2).
– When migration of a2 occurs and locality becomes lost (aFE1).
– When a1 has to move to another host due to forcedOut events in the agree-

ment with the current host (aFE2).

700 F. Ishikawa, N. Yoshioka, and S. Honiden

The event followEvent(a1, h2) leads to obligation of a1 to invoke bindh so
that a1 discovers a host that satisfies its own requirements hCond1 as well as
locality requirements(aOBL). Invocation of bindh leads to establishment of an
agreement with a host and then obligation to enter the host (defined in the
description of host agreements in Event Calculus). If such following migration
is not conducted within touta, the agreement is discarded when type is strong
(aT IME).

In addition, the event constrain(a1, h2) occurs together with followEvent(a1,
h2). The event constrain(a1, h2) also happens when an agreement is established
if type is not none and the agents already stay nearby. The event constrain(a1,
h2) adjusts permission of a1 so that a1 can migrate only to hosts nearby h2
(aINIT3, aPER1, aPER2, aPER3).

When an agreement is discarded, given obligation and prohibition are termi-
nated (aFIN2, aFIN3).

An Adaptive Coupling-Based Algorithm for Internal
Clock Synchronization of Large Scale Dynamic

Systems�

Roberto Baldoni1, Angelo Corsaro2, Leonardo Querzoni1, Sirio Scipioni1,
and Sara Tucci-Piergiovanni1

1 Dipartimento di Informatica e Sistemistica “A. Ruberti”
Sapienza - Università di Roma

Rome, Italy
{baldoni,querzoni,scipioni,tucci}@dis.uniroma1.it

2 PrismTech
4, Rue Angiboust, 91460

Marcoussis, France
angelo.corsaro@prismtech.com

Abstract. This paper proposes an internal clock synchronization algorithm
which combines the gossip-based paradigm with a nature-inspired approach com-
ing from the coupled oscillators phenomenon. The proposed solution allows a
very large number of clocks to self-synchronize without any central control, de-
spite node departure and arrival. This addresses the needs of an emergent class of
large-scale peer-to-peer applications that have to operate without any assumptions
on the underlying infrastructure. Empirical evaluation shows extremely good con-
vergence and stability under different network settings.

1 Introduction

Clock synchronization is a fundamental building block for many distributed applica-
tions. As such, the topic has been widely studied for many years, and several algorithms
exist which address different scales, ranging from local area networks (LAN), to wide
area networks (WAN). For instance, the Network Time Protocol (NTP) [23,24], has
emerged as a standard de facto for external clock synchronization in both LAN and
WAN settings. The work presented in this paper is motivated by an emergent class of
applications and services, operating in very challenging settings, for which the problem
synchronizing clocks is far from being solved. These applications are required to (1) op-
erate without any assumption on deployed functionalities, pre-existing infrastructure, or
centralized control, while (2) being able to tolerate network dynamism, due to crashes
or to node joining or leaving the system, and (3) scaling from few hundred to tens of
thousands of nodes. For instance, publish/subscribe middleware, such as the data distri-
bution service [1] requires synchronized clocks, however in several relevant scenarios,

� The work described in this paper was partially supported by CINI-Finmeccanica and the EU
Project Resist.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 701–716, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

702 R. Baldoni et al.

due to security issues, or limited assumptions on the infrastructure, it cannot assume
that members of the system, either have access to an NTP server, or are equipped with
an NTP daemon.

A promising approach to tackle this kind of problems is to embrace a fully decen-
tralized paradigm in which peers implement all the required functionalities, by running
so called gossip − based algorithms. In this approach, due to the large scale and ge-
ography of the system, each peer is provided with a neighborhood representing the part
of the system it can directly interact with. The algorithm running at each peer com-
putes local results by collecting information from this neighborhood. These results are
computed periodically leading the system to gradually compute the expected global
result. In this paper, in order to obtain clock synchronization, we combine this gossip-
based paradigm with a nature-inspired approach coming from the coupled oscillators
phenomenon. This phenomenon shows enormous systems of oscillators spontaneously
locking to a common phase, despite the inevitable differences in the natural frequencies
of the individual oscillators. Examples from biology include network pacemaker cells
in the heart, congregations of synchronously flashing fireflies and crickets that chirp
in unison. A description of the phenomenon was pioneered by Winfree [2]. He mathe-
matically modeled a population of interacting oscillators and discovered that assuming
nearly identical individual frequencies and a certain strength of the coupling (which is
a measure of the sensitivity each oscillator has to interactions with others), a dramatic
transition to a globally entrained state, in which oscillators freeze into synchrony, oc-
curs. A valuable contribution has been subsequently introduced by Kuramoto [3] who
simplified the Winfree model by considering the coupling strength constant for all os-
cillators and depending only on their phase difference. Both Winfree’s and Kuramoto’s
work was done assuming that each oscillator is coupled directly and equally to all oth-
ers, which means assuming a fully connected oscillators network. However a consider-
able amount of work has been done also on so called “non-standard topologies”. Satoh
in [5] performed numerical experiments comparing the capabilities of networks of os-
cillators arranged in two-dimensional lattices and random graphs. Results showed that
the system becomes globally synchronous much more effectively in the random case.
In fact, Matthews et al. in [6] note that the coupling strength required to globally syn-
chronize oscillators in a random network is the same as the one required in the fully
interconnected case.

In this paper we adapt the Kuramoto model to let a very large number of computer
clocks synchronize over a random graph. The first issue we tackle is how to artificially re-
produce the physical phenomenon in a network of computer clocks in which every clock
can be influenced by other clocks only by exchanging messages reporting local values.
In our approach, each clock (process) explicitly asks clock values from neighboring pro-
cesses in order to calculate their difference in phase. Then, following our Kuramoto-like
model, these differences in phase are combined and multiplied by a so-called coupling
factor, expressing the coupling strength, in order to adjust the local clock.

As the coupling factor has a key role in regulating the dynamics of coupling, we
study thoroughly its impact on the performance of the proposed solution. First, we
consider a time-invariant coupling factor identical for all oscillators. Different constant
coupling factors are then evaluated to investigate their effect on system perturbations

An Adaptive Coupling-Based Algorithm for Internal Clock Synchronization 703

specific to target settings (basically deployed on a wired computer network): (1) er-
rors on the phase difference estimates due to network delays and (2) neighborhoods
possibly changing over time. As a general result, low coupling factors lead to better
synchronization regardless of system perturbations–all clocks lock to a value such that
their differences are negligible. On the other hand, higher coupling factors lead to a
faster locking at the cost of more dispersed values. This phenomenon depends on the
fact that a higher coupling factor augments the sensitivity a clock has with respect to
other clocks but it also increases the influence of system perturbations.

Another fundamental aspect this approach revealed is its unprecedented scalability:
the time to converge to a common value remains the same considering both a few dozen
nodes and thousands nodes, with even a small reduction in the latter case.

Even though these observations are really encouraging per se, we further improve the
system behaviour by using an adaptive coupling factor, with the objective of reducing
the impact of system perturbations while still keeping the time to converge small. This
new approach has been revealed really successful, both in the case of errors phase esti-
mates due to network delays and in the case of changing neighbors. The idea is simple:
the local coupling factor reflects the age of a node (expressed by the number of ad-
justments already performed); a young node will have a high coupling factor to absorb
soon values from other nodes, while an old node will have a small coupling factor to
limit its sensitivity to system perturbations. The rationale behind this mechanism comes
from the observation that an old node is more aligned to the values of other clocks than
a new one. With this adaptive coupling factor, a young node, supposed to have a value
generally far from other clock values, will rapidly align its value to others since the sys-
tem perturbations have a small impact when the relative clock differences are still huge.
Then, when nodes reach good values, i.e. their relative differences are small, a lower
coupling factor lets to maintain these differences small despite system perturbations.
This strategy reveals to be particularly useful in case of a dynamic system. Consid-
ering a network which starts and locks to some clock value, the perturbation caused
by a massive entrance of new nodes (generally not synchronized with the ones which
already reached a synchronization inside the network) could be dramatically reduced
when compared to a constant coupling factor. In other words, the adoption of adaptive
coupling leads the system to maintain its stability, a property strongly needed in face
of network dynamism. The rest of the paper is organized as follows: Section 2 presents
the clock coupling model along with the algorithm. The experimental evaluation is pre-
sented in Section 3. Section 4 discusses related works, while Section 5 concludes the
paper.

2 Clock Coupling Model

Every computer is equipped with a hardware clock consisting of an oscillator and
a counting register that is incremented at every tick of the oscillator. Depending on
the quality of the oscillator, and the operating environment, its frequency may drift.
Manufacturers typically provide a characterization for ρ – the maximum absolute value
for oscillator drift. Ignoring, for the time being, the resolution due to limited pulsing

704 R. Baldoni et al.

frequency of the oscillator, the hardware clock implemented by the oscillator can be
described by Equation 1:

C(t) = ft + C0; (1)

where: (1 − ρ) ≤ f ≤ (1 + ρ) This clock model is assumed by all clock synchroniza-
tion algorithms described in literature, thus we will also adopt it, and we won’t go in
further details in characterizing its properties. In the remainder of this Section we will
describe mathematical principles governing the coupling of different clocks in order to
synchronize them.

2.1 Time Continuous Clock Coupling

Let us consider a system composed by N distinct clocks, with each clock Ci being
characterized by a frequency fi ∈ [1 − ρ, 1 + ρ], and characterized by equation (1).
Clocks are initially non synchronized, meaning that they might show different time
readings at the same real-time.

Thanks to a continuous coupling of these clocks over time, they will lock to a so-
called stable point: each clock will show the same value, without changing the value
once reached.

Even though our coupling resembles the model proposed by [3,4], it is worth noting
that Kuramoto modeled a non-linear oscillator coupling which is not directly applica-
ble to our problem. In fact, the non-linear oscillator used by Kuramoto to model the
emergence of fireflies flashing synchrony, models intentionally a phenomenon which is
characterized by several stable points (which arise due to the sinusoidal coupling), i.e.,
the system does not converge to a unique point, but it can partition in subsystems each
with a different stable point. On the other hand, for synchronizing clocks in a distributed
system it is highly desirable that a single point of synchronization exists. This leads to
consider a linear coupling equation of the form:

Ċi(t) = fi +
φi

N

N∑

j=1

(Cj(t) − Ci(t)), i = 1..N (2)

The intuition behind Equation 2 is that a clock has to speed up if its neighboring clocks
are going faster, while it has to slowdown when they are going slower. The coupling
constant φi provides a measure of how much the current clock rate should be influenced
by others. It can be shown analytically that Equation 2 has a single stable fixed point,
and thus converges, in the case in which all the clocks are connected to each other. An
empirical evaluation of the convergence of Equation 2, under different topologies, can
be found in [28].

2.2 Time Discrete Coupling with Imperfect Estimates

The coupling model described in Equation 2 is not directly applicable to distributed
systems as (1) it is based on differential equations, and thus continuous time, and (2)
it assumes that the underlying topology is a fully connected graph. As shown below,

An Adaptive Coupling-Based Algorithm for Internal Clock Synchronization 705

Equation 2 can be made applicable to distributed systems by (1) considering its discrete
counterpart, and (2) explicitly introducing a dependency on the underlying communi-
cation graph.

Ci(n + 1) = Ci(n) + fiΔT+

+
Ki

Ni

Ni∑

j=1

[(Cj(n) − Ci(n)) ∗ edge(i, j)],

i = 1..N

(3)

Where Ki = φifΔT , Ni is the number of neighbors for clock Ci, and edge(i, j) is

1 when the underlying communication graph has an edge (i, j), 0 otherwise. When
applying Equation 3 in real distributed systems, the clock difference (Cj(n) − Ci(n))
will be estimated with an error ε which depends on the mechanism used to perform the
estimation. In this paper we assume that the difference between neighboring clocks are
estimated as NTP does [23,24] (see Figure 1). Under this assumption, the real offset
between Ci and Cj is such that the error is (δ1 − δ2)/2. Note that, if the two delays
are equal (channel symmetry) the error is zero. Moreover, it has been shown that the
maximum error is bounded by ±(δ1 + δ2)/2 ≈ ±RTT/2, where RTT is the round trip
time. Thus, we can now rewrite Equation 3 by considering the error which affects the
(Cj(n) − Ci(n)) estimation:

Ci(n + 1) = Ci(n) + fiΔT+

+
Ki

Ni

Ni∑

j=1

[(Cj(n) − Ci(n)) ∗ edge(i, j)]+

+
Ki

Ni

Ni∑

j=1

[(
δi,j − δj,i

2
) ∗ edge(i, j)], i = 1..N

(4)

Equation 4 shows how Ki < 1 helps reducing the sensitivity of the coupling model on

the estimation error. On the other hand, Ki close to 1 provides faster convergence time,
as we will see later in the paper, while values greater than 1 make the system diverge.
As a final remark, it is worth pointing out that Ki could be made time dependent, and
as we will see in the reminder of the paper, this could be very useful for making the
solution more robust and performant.

Fig. 1. NTP offset estimation

706 R. Baldoni et al.

Finally, if we consider the worst case bound on estimate error, it is worth pointing
out that slow channels (high RTT) may introduce more noise than fast channels (low
RTT), however, it is important to keep in mind that the source of error is not the RTT
per se, but the asymmetry, i.e., the difference between δ1 and δ2.

2.3 The Clock Coupling Algorithm

In order to translate Equation 4 into an algorithm, we should note that the value Ci is
computed periodically, every ΔT . As a result, the coupling-based clock synchronization
algorithm proceeds in synchronization rounds, performing at each round the following
steps:

1. Evaluate the difference with every neighboring clock, using a request-reply pattern
of messages.

2. Sum the differences and multiply by Ki(n)
Ni

.
3. Update the value of Ci, and the value of Ki, in the case in which it is time depen-

dent.

In the following we provide the results of an extensive experimental study which high-
lights the behaviour, convergence time, synchronization error, and stability, of the pro-
posed algorithm.

3 Empirical Evaluation

The aim of this section is to show the behaviour of the proposed coupling algorithm
when the different clocks are connected by a communication graph obtained through
a peer-sampling service [26]. The mechanism evaluation is performed defining a set
of metrics and then studying, through simulations1, their evolution in a set of scenarios
each defined with the aim of isolating some specific aspects. In the reminder of this Sec-
tion we will first describe the details of the simulation settings used for our evaluation,
and then the final performance results.

3.1 Simulation Settings

The proposed algorithm is evaluated against the metrics and the scenarios described
below and summarized in Table 3.1.

Table 1. Summary of evaluated scenarios, with metrics measured against which parameters

Static Symmetric Static Asymmetric Dynamic Symmetric
Convergence Time K, N – –

Synchronization Error – K, Asymmetry K, Stable Core%
Stability - – K, Injected nodes%

1 Tests were run on Peersim, a simulation software specifically designed to reproduce large-scale
scenarios. The simulator code for the coupling mechanism is available for download at the fol-
lowing address: http://www.dis.uniroma1.it/∼midlab/clocksync sim.zip

http://www.dis.uniroma1.it/~midlab/clocksync_sim.zip

An Adaptive Coupling-Based Algorithm for Internal Clock Synchronization 707

Evaluation Metrics. The metrics used to evaluate the proposed algorithm are its con-
vergence time, synchronization error, and stability. A precise definition, for each metric,
is provided below.

Convergence Time. The convergence time metric is defined as the number of synchro-
nization rounds (SR) taken to converge to a desired standard deviation of clocks. More
specifically, in our tests we will measure the number of synchronization rounds taken
to reach a standard deviation equal to 10μsec. It should be noticed that we consider SR
as the only convergence time metrics as, once the duration ΔT of a synchronization
round has been fixed, the time to reach a predefined clock dispersion only depends on
the number of synchronizations.

Synchronization Error. The synchronization error (SE) is defined as the minimum stan-
dard deviation the algorithm can achieve. This metric will not be considered in the static
scenario with symmetric channels, as for symmetric channels the estimation error on
clock differences is zero, and thus the synchronization error (see Equation 4). On the
other hand this metric will be evaluated in both scenarios which include system pertur-
bations: static with asymmetric channels and the dynamic scenario.

Stability. Once all clocks converge to some value, the stability metric measures how
much these clocks are sensitive to the injection of new nodes. A perfectly stable al-
gorithm should not allow these clocks to significantly change the convergency value
already reached.

Simulation Scenarios. Below are described the scenarios in which the metrics, defined
above, will be evaluated. These scenarios were defined so to isolate aspects relevant to
the metrics under exam.

Static with Symmetric Channels. This scenario corresponds to a system in which
the network is static (no nodes are added/removed during the simulation) and (1) the
network delay is bounded but unknown, (2) communication channels are symmetric
δ1 = δ2 and thus no estimation error occurs, (3) processes execute the algorithm
periodically every ΔT time units, but not in a lock step mode. The round-trip time
(RTT) is modeled by means of a Gaussian distribution whose mean and standard
deviation have been derived, as described in [27] by fitting several round-trip data
set measured over the Internet. To be more precise, in this scenario we consider two
different kind of channels, slow and fast. Slow channels are characterized by an average
round trip delay of 180msec, while fast channels are characterized by an average
round trip delay of 30msec. When generating a communication graph links between
nodes are randomly chosen to be of one kind or another. ΔT is the third quartile of the
slow channels RTT Gaussian distribution. This model is worth considering as it closely
matches the model underlying Equation 3.

Static with Asymmetric Channels. This simulation scenario adds to the previous one
communication channel asymmetry. Channel asymmetry defines how the round-trip
time is distributed between the two ways of a channel (i.e. given a channel connecting
A to B, which is the ratio between the transfer delay of a message from A to B and the
delay back from B to A). The asymmetry is modeled by means of a Gaussian distri-
bution with mean 0.5 (i.e., symmetric channel). The parameters of this distribution are

708 R. Baldoni et al.

used in order to explore the sensitivity of the algorithm to channel asymmetry, and thus
to estimate clock difference errors.

Dynamic with Symmetric Channels. The last scenario considered in our tests takes
into account network dynamics, and thus considers the evolution of a network under
the continual addition/removal of nodes. In order to characterize only the dependency
of the proposed algorithm under dynamics, we ignore the estimation errors on clock
differences, thus assuming symmetric channels.

Simulation Parameters. Tests have been conducted varying both the number of clocks
N , and the coupling factor K . In order to test our approach under different system
scales, ranging from very small to very large, we will be considering values of N
in the set of {8, 16, . . . , 64K}. To show the dependency with respect to a constant
coupling factor K we will consider values in the set {0.1, 0.2, . . . , 1}. Tests aimed at
evaluating the adaptive coupling factor will consider the following local coupling fac-
tor Ki behaviour: initially Ki assumes the 1 value, then it undergoes an exponential
decay up to the point it reaches the 0.1 value. Specific tests aimed at evaluating the
dependency of the synchronization error on channel asymmetry have been conducted
varying the amount of asymmetry, either using a fixed value in the set {0.1, . . . , 0.5},
or varying the variance of the Gaussian distribution used to model it within the set
{10−3, . . . , 10−11, 0}. Tests for the dynamic symmetric scenario have been conducted
varying either the size of the stable core, i.e. the amount of nodes that remain in the
system from the beginning to the end of the test, or the amount of replaced nodes for
a single time unit. In all our tests we assume that the initial value assumed by a clock,
referred as X0, is a uniform random number in the interval [0, 60] sec.

3.2 Static Scenario with Symmetric Channels Results

Assuming as a deployment scenario a static network with symmetric communication
channels, we show how the convergence time, of the proposed algorithm, depends
on the scale N , and on the coupling factor K–the case of K adaptive is also con-
sidered.

Convergence Time. Figure 2(a), shows how the synchronization rounds SR depend on
the size of the system N , and on the coupling factor K . As it can be seen from the
plot, given a value of N , there is negative exponential dependence K and SR. This
dependence, can roughly be approximated an inverse dependence between K and SR,
as (see Figure 2(a)) doubling K almost halves SR. On the other hand, if we fix the
value of K we can see how SR grows slightly with N when K ≥ 0.5, while it remains
constant, or slightly diminishes with N when K > 0.5.

Figure 2(b) compares the effect of K adaptive on the convergence time. To this end, it
shows the dependence of SR on the network size for K = 1, K = 0.1 and K adaptive.
From this plot it is easy to see how K adaptive provides a performance improvement
with respect to the convergence time that is close to that of K = 1, while, as shown
later in the paper, retaining error mitigation properties similar to that of K = 0.1 (see
Equation 4).

An Adaptive Coupling-Based Algorithm for Internal Clock Synchronization 709

Synchronization Error. As the communication channels are symmetric, and thus the
neighboring clock estimate is perfect, the synchronization error will tend to zero as a
negative exponential (this comes from Equation 2).

Scalability. Most distributed algorithms tend to degrade their performance as the scale
of the systems grows, when this happens, the scale of a system can practically exclude
certain algorithmic solutions. Thus, it is extremely important to characterize what hap-
pens to a distributed algorithm as the number of nodes involved in the computation
grows. To this end Figure 2(a) and Figure 2(b) show how the synchronization rounds
SR change over a very wide set of network sizes. Contrarily to many existing clock
synchronization solutions, the proposed algorithm scales extremely well, and in some
cases, namely for K > 0.5, its performance slightly improve with N . This is a very im-
portant property which makes this solution appealing for applications that need to scale
to a very large number of nodes. While the behaviour might seem counter-intuitive at
first, it has a simple explanation. As the scale of the system grows, so does the average

 0

 20

 40

 60

 80

 100

 120

 140

10.90.80.70.60,50.40.30.20.1

64K
32K

16K
8K

4K
2K

1K
512

256
128

64
32

16
8

 0

 20

 40

 60

 80

 100

 120

 140

SR

Synchronization Round

K

N

SR

(a) Static K

 0

 20

 40

 60

 80

 100

 120

 140

64K32K16K8K4K2K1K5122561286432168

S
R

N

Synchronization Rounds, K=0.1
Synchronization Rounds, K=1

Synchronization Rounds, K adaptive

(b) Adaptive K

Fig. 2. Convergence dependency on N and K

710 R. Baldoni et al.

rank of a node, i.e., number of links, with the result that its random sample of neighbors
has an increasingly higher probability of being closer to the system clock average, thus
reducing the number of rounds taken to converge.

3.3 Static Scenario with Asymmetric Channels Results

Assuming as a deployment scenario a static network with asymmetric communica-
tion channels, we investigate how the asymmetry impacts on the synchronization er-
ror within which clocks synchronize. For this scenario we won’t show results for the
convergence time as these are analogous to what is described in the previous Section.

Synchronization Error. Figure 3 reports results obtained using a fixed value of asymme-
try for all communication channels. The system size N is fixed to 64K for this plot. As
the plot shows there is (1) a linear dependency between the channel asymmetry and the
synchronization error, and (2) the value of K , as predicted by the Equation 4 behaves as
scaling factor on the synchronization error. The results obtained with the use of K adap-
tive, are not shown as completely overlap with those found for K = 0.1. This should
come at no surprise as the K after a transitory assumes definitively the value 0.1–the
only relevant difference is that, as shown in Figure2(b), the use of K adaptive leads to
shorter convergence times. The specific scenario used for the previous plot is far from
being realistic, as it assumes a fixed value for asymmetry. Thus, to better model realis-
tic channel asymmetry, we used a Gaussian distribution with mean 0.5 and studied how
systems with variable sizes behave with respect to synchronization error, varying the
variance of the distribution. Results for slow and fast channels are reported respectively
in Figures 4(a) and 4(b), where the clock standard deviation (expressed in seconds) is
reported. As the graphs show, the more channels are “symmetric”, i.e., the more the
asymmetry variance is low, the lower is the synchronization error with a clear exponen-
tial dependency. It is interesting to point out that the error difference between slow and
fast channels quickly becomes negligible as soon as we consider fairly symmetric chan-
nels. These plots therefore confirm that the impact of RTT on synchronization error is
not straight, but it strongly depends on channel asymmetry.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
E

 (
se

c)

Asymmetry

Synch. std, K=0.1
Synch std, K=1

Fig. 3. Synchronization error varying channel asymmetry

An Adaptive Coupling-Based Algorithm for Internal Clock Synchronization 711

 0

 1

 2

 3

 4

 5

 6

64K32K16K8K4K2K1K51225612864320
10E-11

10E-10
10E-9

10E-8
10E-7

10E-6
10E-5

10E-4
10E-3

 0

 1

 2

 3

 4

 5

 6

SE (sec) Slow Channel Synch. Error

N

Variance

SE (sec)

(a) Slow Channels

 0

 1

 2

 3

 4

 5

 6

64K32K16K8K4K2K1K51225612864320
10E-11

10E-10
10E-9

10E-8
10E-7

10E-6
10E-5

10E-4
10E-3

 0

 1

 2

 3

 4

 5

 6

SE (sec) Fast Channel Synch. Error

N

Variance

SE (sec)

(b) Fast Channels

Fig. 4. Synchronization error for slow and fast Channels with a Gaussian asymmetry distribution

3.4 Dynamic Scenario with Symmetric Channels Results

Assuming as a deployment scenario a dynamic network with symmetric communica-
tion channels, we investigate how the dynamicity impacts on the synchronization error
within which clocks synchronize, as well as on the stability of the clock value.

Synchronization Error. First we evaluated the resilience of our solution with respect to
a continuous addition/removal of nodes. In this test we built a system with 64K nodes
and considered a fixed core made up of nodes that remain in the system for the whole
simulation. Dynamics is modeled substituting 1% of the system at each time unit. Then
we evaluated how standard deviation of clocks residing in these nodes varies when the
remaining part of the system keeps changing. The evaluation was done for two extreme
values of the coupling factor K (i.e. K = 0.1 and K = 1), and also using an adaptive
K value. Curves reported in Figure 5(a) show that the core size has a relevant impact
on synchronization error as long as we consider a fixed K value. Intuitively, the larger
is the core, the less nodes pertaining to it are prone to change their clock due to reads

712 R. Baldoni et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

7550251051

S
E

 (
se

c)

Stable Core %

Synch. Error under churn with K=1.0
Synch. Error under churn with K=0.1

Synch. Error under churn with K adaptive

(a) Synchronization error dependency on core network size
and K value.

 0

 5

 10

 15

 20

 25

 30

5025105

C
lo

ck
 A

vg
. V

ar
ia

tio
n

(s
ec

)

New Nodes %

Clock variation under churn with K=1.0
Clock variation under churn with K adaptive

(b) Stability versus the number of new injected nodes and K
value.

Fig. 5. System behavior under dynamics

done on newly joined nodes. In this case, by adopting a small value for the coupling
factor, nodes belonging to the fixed core are more resilient to node dynamics. More
interesting is the behavior of the system when we adopt the adaptive K strategy. In this
case, new nodes enter the system using a large K value and therefore rapidly absorb
timing information from nodes in the core, while these are slightly perturbed.

Stability. Figure 5(b) shows the stability of the system to a perturbation caused by
the injection of a huge number of new nodes. In order to better show this behavior
we introduced during the simulation in a network made up of 64K nodes, all with
clocks synchronized on a specific value, a set of new nodes (expressed in the graph
as a percentage of the original network size). Newly injected nodes start with a clock
value that is distant 60 seconds from the synchronization value of nodes in the original
system. The plot shows how the synchronization value varies from the original one (the

An Adaptive Coupling-Based Algorithm for Internal Clock Synchronization 713

distance between the synchronization values is reported in seconds on the y axis) when
the new network converges again. If we assume K = 1 the system is prone to huge
synchronization value variation, that, intuitively, is larger if a larger number of nodes
is injected. However, the introduction of K adaptive mechanism drastically reduces
this undesired behavior, limiting the variation of synchronization value, even when the
amount of nodes injected is close to 50% of the original system.

These results justify the introduction of an age-based adaptive mechanism for the
coupling factor value tuning as an effective solution to improve the stability of systems
in face of dynamism.

4 Related Work

We can divide clock synchronization algorithms in two main classes: deterministic and
probabilistic. Deterministic clock synchronization algorithms [9,12,13,14,15,18,19,20]
guarantee strict properties on the accuracy of the synchronization but assumes that a
known bound on message transfer delays exists. Lamport in [12] defines a distributed
algorithm for synchronizing a system of logical clocks which can be used to totally
order events, specializes this algorithm to synchronize physical clocks, and derives a
bound on how far out of synchrony the clocks can become. Following works of Lamport
and Melliar-Smith analyze the problem of clock synchronization in presence of faults,
defining Byzantine clock synchronization [13,14]. Some deterministic solutions, such
as those proposed in [7,8,14,17], prove that, when up to F reference time servers can
suffer arbitrary failures, at least 2F+1 reference time servers are necessary for achiev-
ing clock synchronization. In this case, these solutions can be fault-tolerant also for
Byzantine faults. Currently, we do not analyze byzantine-tolerant behavior of our solu-
tion. The deterministic approach, normally tuned to cope with the worst case scenario,
assures a bounded accuracy in LAN environments but loses its significance in WAN
environments where messages can suffer high and unpredictable variations in trans-
mission delays. Several works of Dolev et al. [7,8,9,10] propose and analyze several
decentralized synchronization protocols applicable for WAN but that require a clique-
based interconnecting topology, which is hardly scalable with a large number of nodes.

Clock synchronization algorithms based on a probabilistic approach were proposed
in [11,22]. The basic idea is to follow a master-slave pattern and synchronize clocks in
the presence of unbounded communication delays by using a probabilistic remote clock
reading procedure. Each node makes several attempts to read a remote clock and, after
each attempt, calculates the maximum error. By retrying often enough, a node can read
the other clock to any required precision with a probability as close to 1 as desired. This
implies that the overhead imposed by the synchronization algorithm and the probability
of loss of synchronization increases when the synchronization error is reduced. The
master-slave approach and the execution of several attempts are basic building blocks
of the most popular clock synchronization protocol for WAN settings: NTP [23,24].
NTP works in a static and manually-configured hierarchical topology. In this hierarchy,
the primary time servers are directly connected to an external reference time source
(GPS, atomic clock, etc.) and are the roots of the spanning tree used to diffuse clock

714 R. Baldoni et al.

values. Secondary time servers are represented by inner nodes in the hierarchy, and
they synchronize their clock communicating with one or more primary time servers.
Clients of the system resides in the hierarchy leaves. NTP requires complex analysis on
samples, support from kernel and a controlled network between primary and secondary
servers. A work proposing solutions close to NTP is CesiumSpray [25] that is based on
a hierarchy composed by a WAN of LANs where in each LAN at least a node has a GPS
receiver. This node acts as leader and “sprays” inside the local network its clock. These
solutions require static configuration and the presence of some nodes directly connected
with a external time reference in order to obtain external time synchronization.

A probabilistic solution based on a gossip-based protocol to achieve external clock
synchronization is proposed in [16]. The presence of a source node perfectly synchro-
nized with real-time clock is assumed. Each node uses a peer sampling service to select
another node in the network and to exchange timing information with. If the time read
from the contacted node is of higher quality than its own time (e.g. the contacted node
is the source), then the reading node will adopt the clock setting of the other one. The
quality of timing information is evaluated using a dispersion metric like the one pro-
vided by NTP.

5 Concluding Remarks

Clock synchronization for distributed systems is a fundamental problem that has been
widely treated in the literature. Today’s large scale distributed applications, deployed
on WANs like Internet, pose new issues that are hardly addressed by existing solutions.
These systems thus require the development of new approaches able to reach satisfying
level of synchronization while providing the desired level of scalability.

In this paper we proposed a novel algorithm for clock synchronization in large scale
dynamic systems in absence of external clock sources. Our algorithm stems from the
work on coupled oscillators developed by Kuramoto [3], adequately adapted to our
purposes. Through theoretical analysis backed up by an experimental study based on
simulations we showed that our solution is able to converge and synchronize clocks in
systems ranging from very small to very large sizes, achieving small synchronization
errors that strictly depend on the quality of links used for communication (with respect
to delay and symmetry). Our solution, thanks to the employment of an adaptable cou-
pling factor, is also shown to be resilient to network dynamics, i.e. to the continuous
arrival and departure of nodes in the system.

The approach to clock synchronization presented in this paper showed interesting
properties, but is nevertheless susceptible to further improvements. There are mainly
four points we plan to address in the next future. The K adaptive strategy employed in
the current proposal (based on an exponentially decaying value) is only one of various
possible solutions; we therefore plan to further investigate this aspect to, possibly, iden-
tify the best strategy to adapt K at run-time. Moreover, the adaptive mechanism could
also be applied to ΔT : the basic idea is that stable nodes, whose clocks have possi-
bly converged to a stable value, should “delay” further synchronization adopting larger
values for ΔT . System adaptiveness can be also pushed one more step ahead, trying to
rearrange node links in the interconnecting application-level network to favor neighbors
connected to links that are more symmetric and that will therefore induce lower errors

An Adaptive Coupling-Based Algorithm for Internal Clock Synchronization 715

in clock readings. Finally, we plan to quickly implement a prototypical version of our
algorithm to move our tests to the realistic testbed offered by PlanetLab. To this end,
initial empirical evaluations [28] performed in our labs on a mid sized LAN confirm
what predicted by the simulation presented in this paper.

References

1. Object Management Group. Data distribution service for real-time systems specication v1.2,
ptc/2006-04-09

2. Winfree, A.T.: J. Theoret. Biol. 16, 15 (1967)
3. Kuramoto, Y.: Chemical oscillations, waves and turbulence, ch. 5. Springer, Berlin (1984)
4. Strogatz, S.H., Mirollo, R.E.: Phase-locking and critical phenomena in lattices of coupled

nonlinear oscillators with random intrinsic frequencies. Physica D 31, 143–168 (1988)
5. Satoh, K.: Computer Experiment on the Cooperative Behavior of a Network of Interacting

Nonlinear Oscillators. J. Phys. Soc. Jpn. 58, 2010 (1989)
6. Matthews, P.C., Mirollo, R.E., Strogatz, S.H.: Dynamics of a large system of coupled non-

linear oscillators. Physica D 52, 293 (1991)
7. Daliot, A., Dolev, D., Parnas, H.: Linear Time Byzantine Self-Stabilizing Clock Synchro-

nization, Technical Report TR2003-89, Schools of Engineering and Computer Science, The
Hebrew University of Jerusalem (December 2003)

8. Daliot, A., Dolev, D., Parnas, H.: Self-Stabilizing Pulse Synchronization Inspired by Biolog-
ical Pacemaker Networks. In: Proc. Of the Sixth Symposium on Self-Stabilizing Systems,
pp. 32–48 (2003)

9. Dolev, S.: Possible and Impossible Self-Stabilizing Digital Clock Synchronization in General
Graph. Journal of Real-Time Systems 12(1), 95–107 (1997)

10. Herman, T., Ghosh, S.: Stabilizing Phase-Clock. Information Processing Letters 5(6), 585–
598 (1994)

11. Cristian, F.: A probabilistic approach to distributed clock synchronization. Distributed Com-
puting 3, 146–158 (1989)

12. Lamport, L.: Time, clocks and ordering of events in a distributed system. Commun
ACM 21(7), 558–565 (1978)

13. Lamport, L., Melliar-Smith, P.M.: Byzantine clock synchronization. In: Proc. 3rd Ann. ACM
Symp. Principles of Distributed Computing, pp. 68–74. ACM Press, New York (1984)

14. Lamport, L., Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults. Journal of
the ACM 32(1), 525278 (1985)

15. Lundelius-Welch, J., Lynch, N.: A new fault-tolerant algorithm for clock synchronization.
In: Proc. 3rd Ann. ACM Symp. Principles of Distrib. Computing, pp. 75–88 (1984)

16. Iwanicki, K., van Steen, M., Voulgaris, S.: Gossip-based Synchronization for Large Scale
Decentralized Systems (2006)

17. Cristian, F., Fetzer, C.: Integrating Internal and External Clock Synchronization. Journal of
Real Time Systems 12(2) (March 1997)

18. Cristian, F., Fetzer, C.: Lower bounds for convergence function based clock synchroniza-
tion. In: Proceedings of the fourteenth annual ACM symposium on Principles of distributed
computing, August 20-23, pp. 137–143 (1995)

19. Cristian, F., Aghili, H., Strong, R.: Clock synchronization in the presence of omission and
performance faults, and processor joins. In: Proc. Int. Conf. Fault-Tolerant Computing, pp.
218–223 (1986)

20. Halpern, J., Simons, B., Strong, R.: Fault-tolerant clock synchronization. In: Proc. 3rd Ann.
ACM Symp. Principles of Distrib. Computing, pp. 89–102 (1984)

716 R. Baldoni et al.

21. Kopetz, H., Ochsenreiter, W.: Clock synchronization in distributed real-time systems. IEE
Trans. Comput. 36(8), 933–940 (1987)

22. Arvind, K.: Probabilistic Clock Synchronization in Distributed Systems. IEEE Trans. on
Parallel and Distrib. Systems 5(5) (May 1994)

23. Mills, D.L.: Network Time Protocol (Version 1) specification and implementation. Network
Working Group Report RFC-1059. University of Delaware (July 1988)

24. Mills, D.L.: Network Time Protocol Version 4 Reference and Implementation Guide. Elec-
trical and Computer Engineering Technical Report 06-06-1, University of Delaware, p.83
(June 2006)

25. Verissimo, P., Rodrigues, L., Casimiro, A.: CesiumSpray: a Precise and Accurate Global
Time Service for Large-scale Systems. Journal of Real-Time Systems 12(3), 243–294 (1997)

26. Jelasity, M., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: The peer sampling service:
experimental evaluation of unstructured gossip-based implementations. In: Proceedings of
the 5th ACM/IFIP/USENIX international conference on Middleware (2004)

27. Baldoni, R., Marchetti, C., Virgillito, A.: Impact of WAN Channel Behavior on End-to-end
Latency of Replication Protocols. In: Proceedings of European Dependable Computing Con-
ference (2006)

28. Baldoni, R., Corsaro, A., Querzoni, L., Scipioni, S., Tucci-Piergiovanni, S.: An Adaptive
Coupling-Based Algorithm for Internal Clock Synchronization of Large Scale Dynamic Sys-
tems, MidLab Technical Report (February 2007),
http://www.dis.uniroma1.it/∼midlab

http://www.dis.uniroma1.it/~midlab

Reviewing Amnesia Support in Database Recovery
Protocols�

Rubén de Juan-Marı́n, Luis H. Garcı́a-Muñoz,
J. Enrique Armendáriz-Íñigo, and Francesc D. Muñoz-Escoı́

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

{rjuan, lgarcia, armendariz, fmunyoz}@iti.upv.es

Abstract. Replication is used for providing highly available and fault-tolerant
information systems, which are constructed on top of replication and recovery
protocols. An important aspect when designing these systems is the failure model
assumed. Replicated databases literature last trends consist in adopting the crash-
recovery with partial amnesia failure model because in most cases it shortens the
recovery times. But, despite the large use of such failure model we consider that
most of these works do not handle accurately the amnesia phenomenon. There-
fore, in this paper we survey some works, analyzing their amnesia support.

1 Introduction

Database replication has become a key factor in providing fault tolerance, high avail-
ability and for increasing the performance of information systems. On one hand, per-
formance can be improved when clients access the closest replica to them [1,2,3], or
by using load-balancing algorithms [4,5,6]. On the other hand, replicas may fail or may
disconnect; therefore, fault tolerance and high availability are reached forwarding client
requests to non-failed nodes in a transparent way.

Latest trends in full database replication techniques –managed by replication proto-
cols [1,2,3,4,5,6]– make use of a Group Communication System (GCS for short) [7]
as it is detailed in [8]. These GCSs offer different services to the systems built atop
of them. They provide several communication primitives, such as the atomic broadcast
[9] allowing a more efficient implementation of replication protocols. Moreover, GCSs
make use and provide membership mechanisms. The membership service keeps track of
the active and connected nodes. Hence, reporting changes on the system configuration
(i.e. failure or join of a replica). Being useful for determining if the replicated database
progress condition is fulfilled: a majority of alive replicas –primary partition [7]–.

An important aspect in replicated database systems is how they manage crash node
occurrences –which degrade their performance, fault tolerance and high availability
support– and node connections or reconnections in order to maintain their original
support. These systems have a special component named recovery component which
deals with these situations –in a coordinated way with the consistency management
performed by the replication protocol–, and the way it handles them depends on the

� Work supported by FEDER and the Spanish MEC grant TIN2006-14738-C02.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 717–734, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

718 R. de Juan-Marı́n et al.

adopted failure model. The most commonly used failure models in replicated databases
are fail-stop and crash-recovery with partial amnesia, as defined in [10].

The first one makes replicated systems discard crashed replicas, substituting them
with new ones. Thus, when connecting a new or recovering node to the replicated sys-
tem, the recovery protocol must first transfer the whole database to the recovering node
before becoming fully operational, but this is impractical for large databases.

In order to avoid such drawback, last replicated database proposals [11,12] have
adopted the crash-recovery with partial amnesia failure model. In this case crashed
nodes are not discarded. The replicated system waits for their reconnection in order to
start the recovery process. In this case the recovery protocol transfers to each recovering
node only the database information lost during its disconnection. Once the recovering
node has updated all its lost information, it becomes a fully operational node. So, in this
approach the recovery process does not need to transfer the whole database but only the
subset lost by the recovering node, shortening the recovery process and diminishing its
associated problems.

But when assuming this second failure model, another problem appears: the amnesia
phenomenon [13]. In this case, the problem relies on the difficulty that some protocols
have to establish the correct subset of information to transfer when recovering. It ap-
pears because in some protocols the last assumed state in the recovering node is not
really the last one, since such recovering replica may have lost some information that
other replicas propagated to it before crashing.

In this paper, we briefly describe some database recovery protocols proposed in the
literature [11,12,14,15,16,17,18] and surveyed in [19] emphasizing how they face the
amnesia phenomenon. This study also gives special importance to the database repli-
cation protocols they are designed for, because as it was depicted in [19], the recovery
protocols are very dependant from the characteristics of the replication protocols used,
and the information that these replication protocols store.

The rest of the paper is structured as follows. In Section 2 we detail some important
GCS aspects from the recovery point of view that will be used later. Section 3 presents
the amnesia phenomenon, how it is manifested and how it can become a problem. Sec-
tion 4 outlines the recovery protocols, and how they support the amnesia phenomenon,
while in Section 5 we categorize the analyzed recovery techniques commenting if they
provide basic amnesia support, or how they can be improved to support it when they do
not. Finally, section 6 concludes the paper.

2 Group Communication System Issues

Before surveying the recovery protocols and the replication protocols they are designed
for, we will present some issues dealing with replication aspects that would be used
later in the study.

First of all, it must be introduced the group communication system. GCS provides
some communication primitives that are used by replication protocols to perform their
work. Primitives can vary from a point-to-point communication to total order broadcast.

This GCS also provides a membership monitor which informs group members about
membership events –node connections, disconnections, network partitions, etc.–

Reviewing Amnesia Support in Database Recovery Protocols 719

Additionally, some GCSs provide virtual synchrony [7,20] (or view-synchronous
multicast according to [21]) since it ensures that all replicas have delivered the same
sequence of messages before any replica fails or any replica is added. According to [7],
the most relaxed property related to multicast delivery that provides virtual synchrony
is same view delivery; i.e., that all destinations of each multicast deliver each message
when they belong to the same view (a view change arises when one process fails or
rejoins the group). Virtual synchrony provides a replicated work way that facilitates the
implementation of recovery protocols.

3 The Amnesia Phenomenon

At the beginning, database replication systems adopted the fail-stop failure model [10].
The reasons for adopting this failure model were: (a), it was the failure model mainly
used in distributed systems; (b), its simplicity. In fact, when a replica crashes it is not
recovered but substituted by a new one –transferring to it the whole state–. Therefore,
the system must not generate and maintain special information for recovery purposes.

However, assuming this failure model implies some drawbacks when the replicated
state information to be transferred is large –a common situation in replicated databases.
Hence, the larger the information to be transferred the longer it takes to make a replica
become active. This will imply, in the replicated system, the following consequences
(already commented in [13]):

– Longer periods with decreased fault tolerance support. Only fully updated replicas
can be used to guarantee the correct and consistent state evolution in the replicated
system.

– Higher times of unavailability if the replicated system does not fulfill the progress
condition (i.e. systems based on primary partitions).

In order to avoid all the above presented issues in replicated databases, researchers
have opted for assuming the crash-recovery with partial amnesia failure model [10]. In
this case, when a crashed replica reconnects the system recovers it transferring only
the state it has missed; thus, transferring less information and minimizing the previous
issues.

With the assumption of this failure model, the system is forced to determine cor-
rectly the subset of information that must be transferred to the recovering node. If it is
not correctly determined, the state reached in the recovered node can diverge from the
real consistent replicated state, leading to an undesired situation. In [13,22] we have
already described this situation naming it as amnesia phenomenon, which manifests at
two different levels:

– Transport level, at this level, it implies that the replica does not remember which
messages have been received. Actually, the amnesia implies that received messages
non-persistently stored are lost when the node crashes, generating a problem when
they belong to transactions that the replicated system has committed but which have
not been already committed in the crashed node, because message delivery does not
really imply correctly processed as demonstrated in [23].

720 R. de Juan-Marı́n et al.

– Replication level, the amnesia is manifested here in the fact that the node “forgets”
which were the really committed transactions. Usually, the internal log used by the
underlying databases can be used for solving this.

3.1 A Generic Solution

We have also proposed a generic solution for overcoming this in [13,22]. The proposed
solution consists in forcing each replica to enqueue persistently the broadcast messages
as soon as they are delivered, removing them from this queue as soon as they are cor-
rectly processed. Then, when a crashed node reconnects, before asking about its missed
changes to an updated replica it will check its queue of received and not applied mes-
sages (i.e. a log-based solution [18]). Obviously, this is not the unique solution that
can be adopted for solving this problem, being possible also to apply version-based
techniques [15].

3.2 Amnesia Formalization

Before surveying the considered works, we will first formalize the amnesia problem.
To do so, we consider a replicated database system, N = {n1, n2, ..., nn}, compound
by n replicas, being n > 2 (primary partition assumption [7]). It uses an eager update
everywhere protocol based on a GCS which provides an atomic broadcast primitive for
spreading messages and virtual synchrony. It also uses constant interaction, broadcast-
ing each transaction in a single message.

In this system, we identify each installed view –working view– as Vx, being x the view
identifier. Tx = {Tx,1, Tx,2, ..., Tx,m} are the transactions delivered (and not aborted in
this view –aborted transactions are not considered because they are not relevant for re-
covering purposes–). As the system uses the atomic broadcast primitive [9] for spreading
transactions, all alive nodes deliver the broadcast transactions in the same order, using
this order at execution time. This order is being reflected by the second subindex.

∀ ny ∈ Vx we denote as T D
x,ny

the transactions subset of Tx really delivered to ny

and, respectively, T C
x,ny

the transactions subset of Tx really committed in ny; fulfilling
T C

x,ny
⊆ T D

x,ny
. Virtual synchrony [7] ensures that T D

x,ny
= Tx. Transition views are

represented as Vx → Vx+1.
Then ∀ Vi → Vi+1 triggered by a node crash, it will be at least one node nl : nl ∈

Vi \ Vi+1.
Considering that Ti = {Ti,1, Ti,2, ..., Ti,m} is the transactions set delivered and com-

mitted in the replicated system during Vi, it can be assumed that ∀ nk ∈ Vi ∩ Vi+1:

Ti = T D
i,nk

= T C
i,nk

= {Ti,1, Ti,2, ..., Ti,m}

While ∀ nl ∈ Vi \ Vi+1, due to [23] it might happen the following:

Ti = T D
i,nl

�= T C
i,nl

, where:

T C
i,nl

= {Ti,1, Ti,2, ..., Ti,m−s}, being s ∈ {0, .., m}

Reviewing Amnesia Support in Database Recovery Protocols 721

In spite of assuming that s ∈ {0, .., m} for simplicity reasons in this paper, it is also
possible sometimes that s > m due to workload reasons.

When nl reconnects to the system, it triggers a new view Vi+x, being x > 1. Later,
the system must update it through the recovery process, transferring to it its lost trans-
actions, which are:

– Transactions forgotten from its last seen view, Vi: T F
i,nl

= Ti,m−s+1, ..., Ti,m

– Transactions missed during its disconnection: T M
nl

= Ti+1 ∪ ... ∪ Ti+x−1

Then, for solving the amnesia phenomenon –forgotten state– when recovering nl the
two following properties must be provided:

– Prop. FS1: nl must remember its last committed transaction, Ti,m−s;
– Prop. FS2: the replicated system must maintain and provide a way for obtaining

the transactions subset T F
i,nl

or their associated updates.

Once this forgotten state has been updated in the recovering replica, the recovery
protocol can start with the recovery process itself, transferring missed data: T M

nl
.

Notice that our generic solution, outlined in Section 3.1 and presented in [13,22], ful-
fils both properties. This is due to the fact that the persisted queue contains the messages
associated to T F

i,nl
.

It exists another way for solving the amnesia phenomenon in nl which consist in
transferring to the recovering node the whole state. We denote it as property Prop.
CS1 being an alternative to the previous ones. Obviously, this solution –the one used
when adopting the fail-stop failure model– is not interesting when talking about systems
managing large states.

4 Considered Recovery Protocols

In this section we briefly describe the recovery protocols considered in this study, high-
lighting only the details that are important from the amnesia support point of view.
When detailed, we also include for each recovery protocol some remarks for our study
about the replication protocols to which they are associated. For other details we en-
courage readers to look at the original papers. Note that in most cases the replication
and recovery protocols were originally described in different papers (or even no repli-
cation protocol was described). As a result, a solution for the amnesia problems was not
the target of such papers.

For determining if these recovery protocols provide accurate amnesia support we
will study if they fulfill either the two properties FS or the property CS presented in
Section 3.2.

4.1 Protocols by Kemme, Bartoli and Babaoǧlu

Five different recovery protocols for replicated databases are presented in [14]. All of
them are proposed for database replication protocols sharing the following characteris-
tics: update everywhere protocol –ROWAA approach [24]–, based on total order broad-
cast –without a terminating phase– propagating a message per transaction –constant

722 R. de Juan-Marı́n et al.

interaction [8]– and virtual synchrony. Moreover, replicated data objects are tagged
with version numbers. The provided correctness criterion is one-copy-serializability.

These recovery protocols fulfil the following issues:

1. Single Site Recovery. The recovering node first brings its own database into a
consistent state. To do so the underlying database maintains a log of performed
writes during the normal processing, storing the initial and resulting values for each
changed data object. Then, once it reconnects it checks this log in order to store in
the database the changes of committed transactions that were not already applied
in the database.

2. Data Transfer. An operating site –recoverer node– must provide the current
database state to recovering nodes. Different techniques can be used, from transfer-
ring the full database to transferring only the set of updated objects.

3. Determination of a Synchronization Point. If transaction processing is allowed dur-
ing the recovery process it must be ensured that the recovering node will reflect the
updates performed by these transactions. This synchronization process can be done
in different ways but it depends strongly on the data transfer technique.

On the sequel we describe the recovery protocols proposed in [14], focusing on the
data transfer and synchronization points.

Database State Transfer Checking Version Numbers. In this protocol global trans-
action identifiers are used, marking each data object with the identifier of the last trans-
action that updated it –allowing later the system to determine the information set to
transfer in recovery processes–. The recovering node informs to the recoverer node
about its cover transaction, (i.e. the transaction with the highest global identifier that
successfully committed, Ti,m−s). Thus, the recoverer can determine the updates lost
by the recovering node –information that must be transferred–, including the updates
associated to T F

nl
. The recovering node can easily determine its cover transaction by

reviewing its single site recovery log.
The amnesia phenomenon is avoided with this replication protocol because the re-

covering node tells to the recoverer node which is its last real committed transaction,
Ti,m−s. Thus, the recovery process transfers all data objects that were modified by
transactions delivered between the last real committed transaction in the recovering
node and the first transaction propagated after it become alive. These lost updates are
transferred using a DT. In properties terms:

– Prop. FS1: It is fulfilled because the recovering node remembers its last really com-
mitted transaction.

– Prop. FS2: Data modified by T F
i,nl

are marked with the associated transaction iden-
tifier, so they will be later transferred in the recovery process. Notice that it is pos-
sible that these data are included when recovering T M

nl
and not by T F

i,nl
, because

these have been modified also during the node disconnection.

This recovery protocol presents the drawback of scanning the entire database when
checking for the database subset to transfer, then the following proposal was designed
to overcome it.

Reviewing Amnesia Support in Database Recovery Protocols 723

Restricting the Set of Objects to Check. In order to avoid the full scan on the entire
database, and with this the overhead and long locking time that it may cause, the use
of a so-called “reconstruction table” is proposed. A record in this table consists of an
object identifier and a global identifier informing about the last transaction that updated
the object. Each update is recorded in the reconstruction table, unless all sites have
successfully performed the update.

In contrast to the previously discussed protocol options, this one only needs to set
a single lock on the entire database. Once the incremental data set to be transferred is
determined, that lock is replaced by fine-grained object level locks on the respective
data items.

This proposed optimization does not handle correctly the amnesia phenomenon. This
is because the reconstruction table only is generated when there are failed nodes. Then,
only those objects modified in a view with failed nodes are included in this table. It
implies that if a failed node has not been able to process correctly a message deliv-
ered before crashing –in a view with no failed nodes–, when it reconnects it will have
not applied the associated updates. And the reconstruction table will have not stored
these updates because they have been performed in a view without failed replicas, be-
ing unable the recovery system to transfer the correct information set. Expressing it in
properties terms:

– Prop. FS1: It is fulfilled because the recovering node remembers its last really com-
mitted transaction.

– Prop. FS2: It is not always fulfiled because data modified by T F
i,nl

is only stored
in the reconstruction table and marked with the associated transaction identifier if
there are failed nodes. Therefore, the system will not have the T F

i,nl
changes in the

reconstruction table when a replica crashes in a replicated system where there were
not any crashed node.

Therefore, this recovery protocol must be modified in order to support the amnesia
phenomenon. One possibility consists in generating the recovery information in the
reconstruction table either with or without the presence of failed nodes, ensuring always
the Prop. FS2. Other possibility consists in using our proposed solution in [13] ensuring
then always Prop. FS2.

Filtering the Log. In the previously discussed optimization, locking of non-relevant
data is reduced, but locks on relevant data may still last long. To avoid locks, multiple
versions of data can be used, e.g., the use of multi-version concurrency control, as in
PostgreSQL, or Oracle. In that case, transactions can continue to update the database
while earlier versions that have been missed by the recovering site are transferred to it.

This recovery technique must be combined with one of the previous ones, that will
be used for generating the recovery information and determining the subset to transfer,
for working. Therefore, its amnesia support depends on the support provided by the
combined technique. Hence, if the last one –Restricting the Set of Objects to Check–
is selected in its original description the amnesia phenomenon will not be managed
accurately.

Lazy Data Transfer. Up to this point, all mentioned solutions use view changes as syn-
chronization points. Then any recovering node enqueues all new broadcast transactions

724 R. de Juan-Marı́n et al.

for applying them once it has recovered its lost views. This approach, despite being
simple, has several drawbacks (detailed in [14]) leading the authors to decouple the
synchronization point from the view change.

In this new approach any recovering site discards the messages delivered –instead of
enqueuing them–. After the view change –triggered by its reconnection–, the recoverer
site starts the transfer. When the transfer is about to complete, the recoverer and the re-
covering sites agree a delimiter transaction –one of the transactions broadcast in the new
view– as synchronization point. Then, the recoverer site transfers all changes performed
by transactions with lower identifier than the delimiter transaction one. Concurrently,
the recovering site starts enqueuing transaction messages with greater identifier than the
delimiter transaction one, for applying them once the data transfer is completed.

This recovery proposal differs from the others in the synchronization point, but de-
pends on the previous ones for obtaining the recovery information. Then, it will sup-
port the amnesia phenomenon depending on the recovery information generation policy
used.

4.2 Protocols by Holliday

The recovery protocols proposed by J. Holliday in [12], were designed for the repli-
cation protocols Broadcast Writes, Delayed Broadcast and Single Broadcast described
in [25]. According to the classification in [26], these are eager update everywhere and
non-voting protocols. Concurrency control is performed by the DBMS with Strict 2PL.
These replication protocols make also use of a GCS which provides atomic broadcast,
virtual synchrony and a membership monitor. They provide the one-copy serializability
correctness criterion.

These replication protocols differ in the number of messages used for propagating
transactions. Single Broadcast only spreads a message per transaction, Delayed Broad-
cast propagates two messages per transaction –writeset and commit messages–, while
Broadcast Writes sends a message per write transaction operation –linear interaction–.

On the sequel we will summarize the recovery approaches presented in [12].

Single Broadcast Recovery. This recovery approach is designed for replication proto-
cols which broadcast a single message per transaction as [3]. Another author criterion
design is to avoid to transfer the whole database in the recovery process if possible,
and the selected mechanism for doing so consists in reapplying in outdated nodes the
messages that they have lost.

Therefore, this recovery protocol relies on a GCS which provides a log of delivered
messages. If the GCS does not provide this log, the recovery protocol must designate
some replicas as loggers. These loggers will have a log where they will store persis-
tently the delivered messages, i.e., those notifying view changes and those broadcasting
update transactions –keeping only those associated to committed transactions, deleting
aborted ones–.

Then, when a node reconnects –a view change is triggered– it requests a logger to
be brought up-to-date, informing about its last view –last view in which the recovering
node was alive. Thus, the logger transfers to the outdated node the messages broadcast
during the views it was crashed –maintaining their original order. Sometimes the logger

Reviewing Amnesia Support in Database Recovery Protocols 725

will not have, due to log storing policies, all the messages necessary in the recovery,
thus it will transfer the whole database. It must be remarked that as long as a node is
being recovered the replicated system can not work, starting only when the recovery
process has been completed.

This protocol does not support the amnesia phenomenon accurately, because when
a crashed node reconnects, the system starts to transfer the messages broadcast in the
views it was failed. Then, this information does not include messages delivered in the
crashed node before crashing but not processed correctly. In properties terms:

– Prop. FS1: It is not fulfilled because the recovering node only remembers its last
seen view, i.e., it does not maintain nor propagate the Ti,m−s identifier.

– Prop. FS2: This property is not fulfilled because messages –recovery information–
are stored by view. But it can be easily overcome using messages as basic recovery
information unit.

One possibility for handling accurately the amnesia phenomenon in this recovery
protocol would be to use message or transaction identifiers –which are equivalent in this
replication protocol. Then the recovery protocol can be modified forcing each replica
to mark which is its last really committed transaction. Therefore, when a replica re-
connects after a crash, it can inform about its last committed transaction to the Logger
–instead of using the identifier of its last seen view– for the recovery. Then both prop-
erties are ensured.

Another possibility would consist in giving the Loggers role to all the replicated
system members. Therefore when a node reconnects, it will perform a local recovery
step consisting in checking if some of the persisted messages in its local log have not
been correctly processed, applying them in this step. In this case both properties are
also ensured.

In both cases, notice that it is necessary that Loggers store persistently the broadcast
messages even when there are no failed nodes. In the second approach, the messages
that have been seen by all nodes –because there are not any failed nodes– can be re-
moved from the log –of a replica– as soon as they are correctly processed in this replica.
While, in the first approach, these messages can only be removed view per view. And
the messages broadcast in a view where there were not failed nodes, only can be re-
moved if in the subsequent view there are not any failed nodes –which is a non sense–
or when the nodes whose crash triggered this view change are recovered and the system
ensures that they have correctly processed all the messages broadcast when there were
not failed nodes.

The second solution provides better recovery support as all replicated members are
Loggers, and provides a more simple way for managing messages that have been seen
by all nodes. Therefore, we encourage its use.

Delayed Broadcast Recovery. The Delayed Broadcast replication protocol decouples
the writeset broadcast from the commit broadcast for any transaction –weak voting tech-
nique [27]–. This behavior raises some problems when recovery is being considered. It
might happen that the recovering site was able to deliver the writeset for a particular
transaction, but not its commit or rollback message. So, that writeset was lost when the
site failed and should be retransmitted now by the recoverer site if its commit message

726 R. de Juan-Marı́n et al.

was delivered whilst the recovering site was crashed. Two possible solutions for the
problems caused by the writeset-commit decoupling are presented:

1. Log Update Method. In this approach, at each view change, loggers must examine
their logs or the database state for determining if there exist on progress transactions
in the nodes without failure. If there are, the logger must mark these transactions
in order to copy their writeset message in the log associated to the view when their
commit was broadcast. So, when a previously failed node rejoins to the group,
the logger begins transferring writesets of in progress transactions when the node
failed, following with messages of transactions originated and committed while the
node was failed. The commit order is the same for all non-aborted transactions. The
operations of the aborted transactions are not included in the log since their effects
are undone in the nodes without failure.

2. Augmented Broadcast Method. This second method gives additional process for
managing on-going transactions and requires a change in the lock policy for recov-
ering nodes during the global recovery. The new replication protocol forces to in-
clude the writeset in the broadcast commit message for these transactions that have
delivered the writeset in a previous view. The nodes that have already seen the first
broadcast writeset message ignore the writes included in the commit message, and
loggers store the augmented commit message. The existence of augmented mes-
sages obliges global recovery to change its lock policy as it is described in [12].

In this case, as the policy for determining the start point recovery is the same one as
before –the identifier of the last view in which the crashed node was alive–, an accurate
amnesia phenomenon support is not provided. Explained in properties terms:

– Prop. FS1: As before, it is not fulfilled because the recovering node only remembers
its last seen view.

– Prop. FS2: This property is not fulfilled because messages –recovery information–
are stored by view.

Therefore, the modifications proposed in the previous recovery protocol are also
valid for this one. Anyway, it must be pointed out that in this case handling delivered
messages correctly is more difficult because the system broadcasts two messages per
transaction –writeset and commit or rollback– with its associated complexities.

If the second solution –all nodes are Loggers– is selected, when the recovering node
performs the additional local recovery step –checking if some of the persisted messages
in its local log have not been correctly processed for applying them– it must discard the
messages belonging to transactions whose commit message is not also stored in the log.
This is because these messages would be later applied in the Global Recovery process.

Broadcast Writes Recovery. The Augmented Broadcast global recovery method pre-
sented for the Delayed Broadcast replication protocol could be used also for the Broad-
cast Writes one –which broadcasts a message for each write operation, in other words
linear interaction–. Then all writes must be attached to the commit message to be broad-
cast for on-going transactions, as it does the Augmented Broadcast. But in this recovery

Reviewing Amnesia Support in Database Recovery Protocols 727

protocol loggers must take special care for removing the logged messages of aborted
transactions due to deadlocks, in order to not reapply them in recovering nodes.

As the two other recovery protocols proposed by Hollyday it does not handle cor-
rectly the amnesia phenomenon problem, because the underlying mechanism for deter-
mining the recovery information set to transfer is the same one –to send the identifier
of the last view seen by the crashed node–. In properties terms:

– Prop. FS1: As in two previous ones, it is not fulfilled because the recovering node
only remembers its last seen view.

– Prop. FS2: This property is not fulfilled because messages –recovery information–
are stored by view.

Anyway, the proposed solutions for the previous recovery protocol will also work
for this one.

4.3 Parallel Recovery by Jiménez, Patiño and Alonso

In [11] the authors presented a recovery protocol whose main goal was to avoid stopping
the replicated system work when performing recovery processes.

The replication protocol for which it was designed used a GCS that provided strong
virtual synchrony, reliable multicast and a membership monitor. The replicated database
was divided into disjoint partitions,and the system forced transactions to access only
single partitions. Each partition had a master site –which processed the transactions
accessing this partition– and the rest of replicas worked as backups –which only applied
updates–, therefore it is a passive replication protocol per partition. And transactions
are broadcast using only one message –constant interaction–. The transactional system
supports Strict 2PL, providing one-copy serializability.

Each node has a log –one per partition– which contains the committed updates in the
same order they were applied. Updates are only logged once their commit is confirmed.
When a crashed node reconnects to the system it informs about the LSN –log sequence
number, a global number– of its last committed transaction on each partition. Then
the selected recoverer for each partition will collect and transfer from its log the set
of messages needed to recover this partition in the outdated node. In order to limit
the recovery duration –interesting for long failure times– some form of checkpointing
is assumed. Therefore, if it is necessary, the recovering site will first receive a recent
checkpoint of the database and later can start applying messages from this checkpoint.

The combination of these two techniques, or the use of the LSN of the last commit-
ted transaction in the node being recovered allows the protocol to overcome the amnesia
problem. The problem of this solution depends on the way in which the checkpoint pro-
cess is performed, because if the whole data state is transferred the benefits of adopting
the crash-recovery with partial amnesia failure model are lost. Expressed in properties
terms:

– Prop. FS1: It is fulfilled with the use of LSN.
– Prop. FS2: This property is fulfilled because nodes store committed updates and

combines this with a checkpointing technique when necessary.

728 R. de Juan-Marı́n et al.

4.4 The COLUP Recovery Protocol

A configurable eager/lazy replication protocol with a lazy recovery protocol is proposed
in [17]. The replication protocol can be categorized as an update everywhere approach
with voting technique, using constant interaction. This protocol defined and provided
its own correctness guarantees: transaction and checkout consistency. These correctness
guarantees are somewhat equivalent in some circumstances to snapshot isolation and
read committed respectively.

In this replication protocol each data object is owned by the replica where it was
created. For any object, a set of nodes will maintain synchronous copies, while other
replicas constitute the set of asynchronous copies. In these last nodes object updates
will be eventually received, once they have been committed in synchronous replicas.
The owner is responsible of managing object accesses and coordinating the propagation
of their last versions.

Conflict transactions are solved in the processing node in an optimistic way, using
object versions. To do so, for each accessed object –for those the node does not have
a synchronous copy– it calculates the probability of having an outdated version. If the
obtained value is higher than an established threshold the node assumes that its object
version is obsolete, obtaining from the owner node the last version. Later, in the commit
phase it checks for possible conflicts. Aborting the transaction if it has read obsolete
values that were updated by other concurrently committed transactions.

In a node crash the ownership of its objects is assumed by an alive and synchronized
replica. Then, alive nodes inform the new owner about previous grants conceded to
these objects by the previous owner. Thus, the new owner can process the requests as if
it was the original owner node of the object.

When a node recovers from a failure, it sends a message to the node that managed
its owned objects in order to synchronize the activity in both nodes. In this process, the
recovering node updates in a version-based way the state either of its owned objects and
the objects for which it is a synchronized replica. During this process, the recovering
node may receive requests for objects that were updated during the failure interval. In
order to handle this situation, the recovering node must consider each object of which
it is owner like an asynchronous replica until it is updated by a synchronous replica.

This recovery protocol provides accurate amnesia support because as soon as a node
reconnects it starts to obtain the last state of its owned and synchronized objects in a
version-based way. The objects that are maintained in this replica asynchronously are
updated using the basic mechanism provided by the replication protocol. This proto-
col fulfils the Prop. CS1, because all the state is transferred: synchronized objects are
transferred inmediately in the recovering process, and non-synchronized ones are up-
dated using the replication mechanism. Therefore, the other properties are not needed.
It must be noticed that in spite of adopting the crash-recovery with partial amnesia fail-
ure model this recovery protocol transfers the whole state instead of sending only the
missed information during the disconnection period.

4.5 CLOB: Short-Term Failure Recovery

CLOB (Configurable LOgging for Broadcast protocols) described in [18] is defined
as a framework for reliable broadcast protocols that are used as a basis for database

Reviewing Amnesia Support in Database Recovery Protocols 729

replication. Its aim is to log messages in the broadcast protocol core, providing with this
automatic recovery for short-term failures, but discarding the log and using a version-
based recovery protocol (e.g. [15]) for long-term outages.

In order to do so the recovery protocol has two logs: one for missed messages, an-
other for received messages. In the first one, each node stores any message it delivers
when there are failed nodes, maintaining them as long as there is any failed node that
has not received them. In the second one, each node stores any received message, re-
moving it as soon as it is correctly processed. So, when a crashed node reconnects –and
the system uses the log recovery–, it first checks the log of received messages in order
to process its last received messages that were not correctly processed before crashing.
Later, it asks for its missed messages, and applies them.

Notice that if the outage period exceeds a given threshold, the reliable broadcast
service will notify the replication protocol about that, and the logs will not be used.

The CLOB recovery protocol manages accurately the amnesia phenomenon because
it considers a persistent log where each replica stores its delivered messages as soon
as they are received. And these messages are only deleted once they are correctly pro-
cessed. Then, when a crashed node reconnects, only needs to check this log and reapply
the messages it contains. Talking about properties:

– Prop. FS1: It is fulfilled in an indirect way. All messages maintained in the queue
represent delivered transactions non correctly processed, so instead of knowing its
last really committed transaction it has the T F

i,nl
.

– Prop. FS2: As it has been said above, each node stores persistently its own T F
i,nl

.

4.6 Protocol by Armendáriz

In [16] three replication protocols are considered –BRP, ERP and TORPE –, and a re-
covery protocol that can be applied on ERP and TORPE is proposed. These two replica-
tion protocols are categorized for being eager update everywhere and sending a constant
number of messages per transaction. They make use of a GCS which provides reliable
broadcast, a membership monitor and virtual synchrony. The correctness guarantees
provided by these protocols were one-copy serializability, provided thanks to the use of
underlying DBMS which ensured serializability.

The main idea for the recovery protocol proposed in [16] is to store in a database
table –in all alive replicas– the identifiers of objects modified when there are failed
nodes, grouping them per views. Then, when a failed node reconnects, it informs about
the last view in which it was alive. Later, a recoverer node transfers to the recovering
node the identifiers of modified objects during its disconnection, and later transfers their
values.

The recovery protocol proposed by Armendáriz for the replication protocols ERP
and TORPE can not manage accurately the amnesia problem. In this case, the problem
resides in the fact that this recovery protocol assumes that any delivered message is
correctly processed, but this assumption, as demonstrated in [23], is not correct. So,
all generated recovery information does not contain all the information that would be
needed for supporting amnesia. Expressing all this in properties terms:

730 R. de Juan-Marı́n et al.

– Prop. FS1: It is not fulfilled because the recovering node only remembers its last
seen view.

– Prop. FS2: This property is not fulfilled because the recovery information is grou-
ped by view. And either it presents the problem of being generated only when there
are failed nodes.

In [28] it is provided amnesia support to this recovery protocol. The adopted solution
is the same one as we propose in Section 3.1, to log persistently the delivered messages.

5 Amnesia Support Recovery Observations

We have seen in the study how a correct amnesia support depends on the combination of
an adequate recovery information generation policy and an accurate way for notifying
the last really committed changes in the node that must be recovered.

On the sequel, we will present some observations obtained from the performed
study. These observations are grouped first by the used technique –version-based or
log-based–, and secondly by the granularity used for managing the recovery informa-
tion.

We will not consider the recovery solution consisting in transferring the whole state,
because the original goal of adopting the crash-recovery with partial amnesia failure
model in replicated systems is to avoid its use.

5.1 Version-Based Techniques

Version-based recovery protocols can overcome this problem in different ways, depend-
ing on the basic way used for performing the recovery processes.

Transaction identifier. The first one will consist in storing for each object the identifier
of the last transaction that modified it. But, this must be done even if there are not failed
nodes as it does the Database State Transfer Checking Version Numbers presented in
[14], because if it is not done the amnesia support is not provided as it happens with
Restricting the Set of Objects to Check presented also in [14]. Thus, in this case the
recovering node only has to inform the recoverer node about the identifier of its last
committed transaction. Therefore, properties Prop. FS1 and Prop. FS2 are ensured.

An alternative for this strategy will be to combine it with our amnesia generic solu-
tion approach described in Section 3. In this case it would not be necessary to generate
this information even when there are not failed nodes. And, then this approach does not
need the transaction granularity being enough with the view identifier granularity. It is
due to the fact that in this case each replica maitains its own T F

i,nl
, being only necessary

to inform the recoverer node about the last seen view in the recovering node.

View identifier. Another possibility is to store for each object the identifier of the
last view in which it was modified. The problem of this solution is that the recovery
protocols that follow this approach start the recovery process from the first view lost
by the recovering node, being impossible then to solve the amnesia problem, associated
to the forgotten state –T F

i,nl
– because even if Prop. FS1 is ensured, Prop. FS2 is not

ensured. It happens in Protocol by Armendáriz [16]. This can be solved as follows:

Reviewing Amnesia Support in Database Recovery Protocols 731

– One option for overcoming this would consist in including in the transfer recovery
process the changes performed in the last view seen by the recovering node. So,
this solution forces the system to generate recovery information even when there
are not failed nodes. But, this approach presents some drawbacks. On one hand,
it forces to transfer all the performed changes in a view –most of which will have
been already seen by the recovering node– for solving the amnesia problem that
will affect usually a very small subset of changes done in such view. On the other
hand, it is possible that in very special cases transferring only the changes done in
the last view seen by the recovering node is not enough for solving the amnesia
problem (e.g. a sequence of very short views in time terms).

– Discarding the previous option, another strategy will consist in combining this strat-
egy with our generic approach –using in each replica a persistent log of delivered
messages– as it is done in [28], fulfilling then the properties Prop. FS1 and Prop.
FS2. In this case, it is not necessary for the version-based strategy to generate in-
formation when there are not failed nodes, because it is already maintained in the
queue.

5.2 Log-Based Techniques

In these techniques, recovery protocols use as recovery information the broadcast mes-
sages during the replication work. Therefore, the only way for solving the amnesia
problem is to maintain in the system the messages that can be affected by the amnesia
problem.

Transaction identifier. In this technique, stored messages –all replicas store messages–
are not grouped by views, then when a crashed node reconnects it informs about the
message corresponding to its last committed transaction. Then, the recoverer node sends
to the recovering node the set of messages it has not correctly processed and it has lost.
Notice that this policy will overcome the amnesia phenomenon in all cases, only if logs
store messages even when there are not failed nodes. If this behavior is not provided
the Prop. FS2 is not ensured when a replicated system transits from a view where all
replicas were alive to another where there are failed nodes.

An important aspect of this technique is when messages or updates are stored in the
log. If messages are persisted as soon as they are delivered, crashed nodes will have
at recovering time the messages they have delivered but not processed correctly –those
associated to T F

i,nl
–. Then, they do not have to ask updated replicas for these messages,

only for those they have not seen. On the contrary, if messages –or updates– only are
logged when they are really committed, crashed nodes will not have the messages nec-
essary for overcoming the amnesia problem at recovering time. So, in this case the
information for solving the amnesia phenomenon must be looked for in the recoverer
replica.

This is the case of the Parallel Recovery by Jiménez, Patiño and Alonso [11] proto-
col. This protocol also combines this technique with checkpointing for log shortening
reasons. It must be noticed that this protocol stores updates once they are committed
and not at delivery time, so crashed replicas must ask updated replicas for messages
delivered but not correctly processed.

732 R. de Juan-Marı́n et al.

View identifier. In this strategy broadcast messages are stored when they are delivered
–in the same order delivery– being grouped by views –when there are crashed nodes–.
Then, when a crashed node reconnects it informs to the system about its last seen view.
At this point, the system starts to send to the recovering node the messages broadcast
during the view it was crashed. Therefore, the amnesia problem is not solved as it occurs
in all recovery protocols proposed in [12], because it will not contain messages seen by
the crashed node but non correctly applied, in other words the recovery process does not
transfer the messages corresponding to the transactions set T F

i,nl
. In fact, neither Prop.

FS1 nor Prop. FS2 are ensured. For solving this problem, two different approaches can
be adopted:

– A first proposal for avoiding the amnesia problem in this technique can consist in
transferring in the recovery process the messages broadcast during the last view
where the crashed node was alive. Then, this solution needs to store broadcast mes-
sages even if there are not failed nodes. But, it can be optimized if the recovering
node informs about the identifier of the message associated to its last correctly pro-
cessed transaction. Moreover, it must be noticed that if all nodes store broadcast
messages the own crashed node will contain the messages it has received and not
correctly applied, obtaining then the second approach.

– The second one consists in applying our proposed generic solution, that in fact is the
solution already applied in [23,18]. In [23], authors proposed the “successful deliv-
ery” approach. A successfully delivered message implies that it has been correctly
processed. Therefore, they proposed that the used GCS has to deliver the same mes-
sage to a replica until it is successfully delivered in this replica. In [18], each node
stores persistently all its delivered messages, being only removed when they are
correctly processed. Obviously, if there are failed nodes, correctly processed mes-
sages are not removed but maintained in another log for recovering failed nodes
during this view.

6 Conclusions

In this survey we have analyzed how some recovery solutions for replicated databases,
which have adopted the crash-recovery with partial amnesia failure model –in order
to avoid to transfer the whole database–, manage the introduced amnesia phenomenon
problem.

This problem appears because some works assume that all delivered messages are
correctly processed, fact that as it is demonstrated in [23] is not true. Then, in most
cases their provided recovery solutions do not handle correctly this problem. Among
the studied papers only the recovery protocols proposed in [11,17,18] and two of [14]
manage accurately this problem.

Moreover, for those studied recovery protocols which do not provide accurate amne-
sia support we have proposed solutions for overcoming this situation.

Later, we have categorized the analyzed recovery techniques commenting if they
provide accurate amnesia support, and how they can be improved to support when they
do not in their original definition.

Reviewing Amnesia Support in Database Recovery Protocols 733

References

1. Muñoz-Escoı́, F.D., Pla-Civera, J., Ruiz-Fuertes, M.I., Irún-Briz, L., Decker, H., Armendáriz-
Iñigo, J.E., de Mendı́vil, J.R.G.: Managing transaction conflicts in middleware-based
database replication architectures. In: SRDS, pp. 401–410. IEEE-CS, Los Alamitos (2006)

2. Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Middle-r: Consistent
database replication at the middleware level. ACM Trans. Comput. Syst. 23, 375–423 (2005)

3. Lin, Y., Kemme, B., Patiño-Martı́nez, M., Jiménez-Peris, R.: Middleware based data repli-
cation providing snapshot isolation. In: Ozcan, F. (ed.) SIGMOD Conf. pp. 419–430. ACM,
New York (2005)

4. Plattner, C., Alonso, G.: Ganymed: Scalable replication for transactional web applications.
In: Jacobsen, H.A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 155–174. Springer, Heidel-
berg (2004)

5. Elnikety, S., Dropsho, S., Zwaenepoel, W.: Tashkent+: Memory-aware load balancing and
update filtering in replicated databases. In: Proc. EuroSys 2007, pp. 399–412 (2007)

6. Amza, C., Cox, A.L., Zwaenepoel, W.: A comparative evaluation of transparent scaling tech-
niques for dynamic content servers. In: ICDE, pp. 230–241. IEEE Computer Society Press,
Los Alamitos (2005)

7. Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication specifications: A compre-
hensive study. ACM Computing Surveys 4, 1–43 (2001)

8. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding replication in
databases and distributed systems. In: ICDCS, pp. 464–474. IEEE Computer Society Press,
Los Alamitos (2000)

9. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In: Mullender, S.
(ed.) Distributed Systems, pp. 97–145. ACM Press, New York (1993)

10. Cristian, F.: Understanding fault-tolerant distributed systems. Communications of the
ACM 34, 56–78 (1991)

11. Jiménez, R., Patiño, M., Alonso, G.: An algorithm for non-intrusive, parallel recovery of
replicated data and its correctness. In: SRDS, pp. 150–159 (2002)

12. Holliday, J.: Replicated database recovery using multicast communication. In: NCA, pp.
104–107. IEEE Computer Society Press, Los Alamitos (2001)

13. de Juan-Marı́n, R., Irún-Briz, L., Muñoz-Escoı́, F.D.: Supporting amnesia in log-based re-
covery protocols. In: EATIS. Euro American Conference on Telematics and Information
Systems, Faro, Portugal (2007)

14. Kemme, B., Bartoli, A., Babaoǧlu, O.: Online reconfiguration in replicated databases based
on group communication. In: Intl.Conf.on Dependable Systems and Networks, Washington,
DC, USA, pp. 117–130 (2001)

15. Castro, F., Irún, L., Garcı́a, F., Muñoz, F.: FOBr: A version-based recovery protocol for
replicated databases. In: 13th Euromicro PDP, Lugano, Sw, pp. 306–313 (2005)

16. Armendáriz, J.E.: Design and Implementation of Database Replication Protocols in the
MADIS Architecture. PhD thesis, Univ. Pública de Navarra, Pamplona, Spain (2006)

17. Irún, L., Castro, F., Garcı́a, F., Calero, A., Muñoz, F.: Lazy recovery in a hybrid database
replication protocol. In: XII Jornadas de Concurrencia y Sistemas Distribuidos, pp. 295–307
(2004)

18. Castro, F., Esparza, J., Ruiz, M., Irún, L., Decker, H., Muñoz, F.: CLOB: Communication
support for efficient replicated database recovery. In: 13th Euromicro PDP, Lugano, Sw, pp.
314–321. IEEE Computer Society, Los Alamitos (2005)

19. Garcı́a-Muñoz, L.H., Armendáriz-Íñigo, J.E., Decker, H., Muñoz-Escoı́, F.D.: Recovery pro-
tocols for replicated databases - a survey. In: Workshop FINA-07, in the AINA-07 Confer-
ence, pp. 220–227. IEEE-CS Press, Los Alamitos (2007)

734 R. de Juan-Marı́n et al.

20. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. In: 11th ACM
Symposium on Operating Systems Principles, pp. 123–138. ACM Press, New York (1987)

21. Guerraoui, R., Schiper, A.: Software-based replication for fault tolerance. IEEE Com-
puter 30, 68–74 (1997)

22. de Juan-Marı́n, R., Irún-Briz, L., Muñoz-Escoı́, F.D.: Recovery strategies for linear replica-
tion. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA
2006. LNCS, vol. 4330, pp. 710–723. Springer, Heidelberg (2006)

23. Wiesmann, M., Schiper, A.: Beyond 1-Safety and 2-Safety for replicated databases: Group-
Safety. In: 9th International Conference on Extending Database Technology, pp. 165–182
(2004)

24. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In:
ACM SIGMOD International Conference on Management of Data, pp. 173–182. ACM Press,
New York (1996)

25. Agrawal, D., Alonso, G., El Abbadi, A., Stanoi, I.: Exploiting atomic broadcast in replicated
databases. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300,
pp. 496–503. Springer, Heidelberg (1997)

26. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Database replication tech-
niques: a three parameter classification. In: SRDS, pp. 206–215 (2000)

27. Wiesmann, M., Schiper, A.: Comparison of database replication techniques based on total
order broadcast. IEEE Trans. Knowl. Data Eng. 17, 551–566 (2005)

28. Garcı́a-Muñoz, L.H., de Juan-Marı́n, R., Armendáriz, J.E., Muñoz-Escoı́, F.D.: Improving
Recovery in Weak-Voting Data Replication. In: 7th International Symposium on Advanced
Parallel Processing Technologie, Guangzhou, China (2007)

The Conceptualization of a Configurable

Multi-party Multi-message Request-Reply
Conversation

Nataliya Mulyar1, Lachlan Aldred2, and Wil M.P. van der Aalst1,2

1 Department of Technology Management, Eindhoven University of Technology
GPO Box 513, NL5600 MB Eindhoven, The Netherlands

{n.mulyar, w.m.p.v.d.aalst}@tue.nl
2 Faculty of Information Technology, Queensland University of Technology

GPO Box 2434, Brisbane QLD 4001, Australia
{l.aldred}@qut.edu.au

Abstract. Organizations, to function effectively and expand their boun-
daries, require a deep insight into both process orchestration and chore-
ography of cross-organization business processes. The set of requirements
for service interactions is significant, and has not yet been sufficiently re-
fined. Service Interaction Patterns studies by Barros et al. demonstrate
this point. However, they overlook some important aspects of service in-
teraction of bilateral and multilateral nature. Furthermore, the definition
of these patterns are not precise due to the absence of a formal semantics.
In this paper, we analyze and present a set of patterns formed around the
subset of patterns documented by Barros et al. concerned with Request-
Reply interactions, and extend these ideas to cover multiple parties and
multiple messages. We concentrate on the interaction between multiple
parties, and analyze issues of a non-guaranteed response and different
aspects of message handling. We propose one configurable, formally de-
fined, conceptual model to describe and analyze options and variants of
request-reply patterns. Furthermore, we propose a graphical notation to
depict every pattern variant, and formalize the semantics by means of
Coloured Petri Nets. In addition, we apply this pattern family to eval-
uate WS-BPEL v2.0 and check how selected pattern variants can be
operationalized in Oracle BPEL PM.

1 Introduction

It has been several years since Service-Oriented Architectures (SOAs) started
gaining enormous popularity within organizations aiming to extend their bound-
aries by integrating software applications and external services into their business
processes. To coordinate the interaction between service providers and consumers
a set of standards and technologies were proposed which contributed in evolu-
tion of the Web-services paradigm. Standards like SOAP [1], WSDL [2], UDDI
[3], etc. were proposed to interconnect independently developed web-services.
A number of standardization proposals (XLang, BPML, and WSCI) [4,5,6,7]

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 735–753, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

736 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

were discontinued, however they have served as a basis for an ongoing standard-
ization initiative: the Business Process Execution Language for Web-Services
(BPEL4WS, BPEL, WSBPEL) [8]. The developed technologies successfully han-
dle simple interaction scenarios, however when it comes to interactions involving
large numbers of participants many issues remain open.

A business process can be defined as a set of activities executed according to a
defined set of rules in order to achieve a specific goal. When two or more organi-
zations wish to embed long-running interactions within their business processes,
the focus shifts from the inside of a process to interactions of this process with an
external environment. What aspects of service interaction have to be explicitly
modeled? How to classify a given interaction scenario? What standard supports
a desirable interaction scenario, and which system to select for the realization
of the cross-organizational interaction? Answering these questions is significant
for understanding of the requirements for service interaction.

To specify requirements in service interaction more extensively than it is done
in BPEL4WS and to assess emerging web standards, thirteen Service Interac-
tion Patterns [9] covering bilateral, multilateral, competing, atomic and causally
related interactions were identified. A systematic review of the thirteen Service
Interaction Patterns presented in [9] has revealed that the scope of the patterns
is limited to simple interaction scenarios and that they suffer from an ambigu-
ous interpretation due to their imprecise definition. In this paper, we address
these gaps by exploring additional possibilities for request-response interactions
and by providing a precise formal semantics in the form of Coloured Petri Nets
(CPNs) [10,11].

Instead of listing all patterns identified, we propose a framework that allows
for a multitude of pattern variants to be generated by configuring a conceptual
model of a generic service interaction scenario. The framework is built upon two
concepts: a pattern variant and a pattern family. Every pattern family combines
a set of pattern variants that are generated by assigning different values to every
aspect of a generic service interaction scenario. Note that the original Service In-
teraction Patterns correspond to pattern variants belonging to different pattern
families we identified. We also propose a notation which can be configured to rep-
resent different pattern variants graphically. The CPN models designed to formal-
ize the semantics of the pattern family are also configurable and can be used to
simulate the behavior of every pattern variant from the given pattern family.

We have identified five pattern families related to different aspects of message
handling in the multi-party conversation (Multi-party Multi-message Request-
Reply Conversation), publish-subscribe scenarios (Renewable subscriptions) and
correlation on the low- and high-level of abstraction (Message Correlation, Bi-
partite Message Correlation and Tripartite Message Correlation) [12]. Due to
the space limit, in this paper we describe only one pattern family Multi-party
Multi-message Request-Reply Conversation. The pattern family presented can
be used as a tool for evaluation of web services standards and tools. We imple-
ment some of the pattern variants from this family in Oracle BPEL PM and
analyze the support of different pattern variants by WS-BPEL v2.0.

The Conceptualization of a Configurable Conversation 737

The remainder of the paper is organized as follows. Section 2 gives an overview
of the related work. Section 3 presents the conceptual background and introduces
the format for describing of pattern variants. The Multi-party Multi-message
Request-Reply Conversation pattern family is described in Sec. 4. Section 5
shows the implementation of a selected pattern variant in Oracle BPEL PM.
Evaluation of WS-BPEL v2.0 is performed in Sec. 6. This paper concludes with
Conclusions described in Sec. 7.

2 Related Work

The Service Interaction Patterns documented by Barros et al. in [13,9] describe
a collection of scenarios, where a number of parties, each with its own internal
processes, need to interact with one another according to pre-agreed rules. These
scenarios were consolidated into 13 patterns and classified based on the maximal
number of parties involved in an exchange, the maximum number of exchanges
between two parties involved in an interaction and whether the receiver of a
response is necessarily the same as the sender of a request. Based on this classi-
fication four groups were identified: (1) single transmission bilateral interactions
(i.e. one-way and round-trip bilateral interactions where a party sends and/or
receives a message to another party); (2) single transmission multilateral non-
routed interactions (i.e. a party sends/receives multiple messages to different
parties); (3) multi transmission bilateral interaction (i.e. a party sends/ receives
more than one message to/from the same party); (4) routed interactions.

Since the Service Interaction Patterns of Barros et al. [9] lacked a formal
semantics, their formalization by means of the π-calculus has been proposed in
[14]. Decker and Puhlmann formalized the patterns based on their descriptions,
and did not take into account issues which were related to the patterns but
which were incorporated into the pattern descriptions. Thus, they showed the
possibility to formalize certain aspects of service interaction, but in fact did
not make the definition of patterns less ambiguous. For example, the pattern
Racing Incoming Messages specifies: A party expects to receive one among a set of
messages. These messages may be structurally different (i.e. different types) and
may come from different categories of partners. The way a message is processed
depends on its type and/or the category of partner from which it comes. This
pattern does not specify what happens if the party receives multiple messages
at once, i.e. it is not clear how many of the received messages will be consumed
and whether the rest of the messages will be discarded.

In [15] Zaha et al. formulate requirements for a service interaction modeling
language, in addition to the ones covered by Barros et al. in [13]. The authors
use these requirements for modeling behavioral dependencies between service
interactions. In [16] Barros et al. introduce a set of correlation patterns that
were used for evaluation of standards WS-addressing and BPEL. However, the
framework presented by the authors does not cover relationships between differ-
ent process instances. In [17] Barros et al. propose a compositional framework
for service interaction patterns and interaction flows. They provide high-level

738 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

models for eight service interaction scenarios using ASM, illustrating the need
for distinguishing between different interpretations of the patterns.

In [18] Cooney et al. proposed a programming language for service interaction,
which has been used to describe implementations of One-to-Many Send-Receive
and Contingent Requests service interaction patterns [9].

Aldred et al. have performed a detailed analysis of the notion of (de-)coupling
in communication middleware using three dimensions of decoupling, e.g. synchro-
nization, time and space, and documented coupling integration patterns [19].

This work is also related to contracting workflows and protocol patterns of van
Dijk [20], who proposed a number of protocol patterns for the negotiation phase
on a transaction. Work of Hohpe and Woolf on Enterprise application integration
[21] covers various messaging aspects that can be encountered during application
integration.

Furthermore, this work relates to the Workflow Patterns initiative [22,23],
where a set of 43 Control-flow patterns [24], a set of 40 Data patterns [25] and
a set of 43 Resource patterns [26] are proposed. In addition, a Workflow Pat-
tern Specification Language (WPSL) [27] has been defined which allows various
pattern variants to be described in a language-independent way. In particular,
the control-flow patterns have had a considerable influence on the development
of new languages, the adaptation of the existing ones and all kinds of standard-
ization efforts. This paper should be seen as a part of the Workflow Patterns
initiative.

Our work, presented in this paper, differs from the described related work in
the following aspects. We broaden up the scope of the original Service Interaction
Patterns and systematically describe various pattern variants along with offering
a graphical notation that is suitable for representing every pattern variant. To
avoid ambiguous interpretation we formalize the patterns by means of CPNs.

3 Conceptual Background

In this section we describe concepts central to the pattern family considered and
present the format for describing the pattern variants.

Instead of listing the whole set of patterns identified, we underline the dif-
ferences between the pattern variants belonging to the same pattern family. We
introduce the key concepts used in the pattern description by means of a UML
Data Object diagram. The attributes that influence the detailed semantics of
each pattern variant are described separately. To clarify the semantics of the
pattern we apply the formalism of CPNs. We designed a (set of) CPN model(s)
and tested them using the simulator facilities of CPN Tools. Declarations used
within CPN models are based on the set of the concepts introduced in the UML
diagram. We depict a generic service-interaction scenario belonging to a given
pattern family with an icon graphically representing a set of attributes. By set-
ting the attributes a specific variant of a pattern family is selected.

The Conceptualization of a Configurable Conversation 739

Pattern attributes (also referred to as parameters) represent the orthogonal
dimensions for classifying different aspects of the service interaction within the
context of the given pattern family. All possible combinations of the attribute
values result in a large set of pattern variants, each of which can be easily derived
from the generic service-interaction scenario and is depicted by a corresponding
icon.

For the purposes of this paper a Conversation is defined as the communication
of a set of contextually related messages between two or more parties. A Party
is an entity involved in communication with other parties by means of send-
ing/receiving messages. A party may represent a process, a service, a business
unit, etc. A Message is a unit of information that may be composed of one or
more data fields. A message may represent a request or a reply.

We describe the pattern family using the following format:

• Description of a generic pattern variant belonging to a given pattern family.
• Examples illustrating the application of the given pattern variant in practice.
• UML meta-model describing concepts specific to a given pattern family.
• Visualization: a graphical notation representing a generic pattern variant and

the description of variation points that can be used for tuning the graphical
notation to represent pattern variants.

• CPN semantics : the semantics of a generic pattern variant illustrated in the
form of CPN models and their corresponding description.

• Issues that can be encountered when applying a pattern variant from the
given pattern family in practice.

4 Pattern Family: Multi-party Multi-message
Request-Reply Conversation

In this section, we present the Multi-party Multi-message Request-Reply Con-
versation pattern family using the format described earlier.

Description. A Requestor posts a compound request consisting of N sub-
requests to a set of M parties and expects a reply message to be received for
every sub-request. There exists the possibility that some parties will not respond
at all and the possibility that a Responder will not reply on some sub-requests.
The Requestor queues all incoming messages in a certain order. The enabling
of the Requestor for consumption of reply messages depends on the fulfillment
of activation criteria. The Requestor should be able to, optionally, consume a
subset of the responses and even process a subset of the consumed set - hence al-
lowing for business use cases where only the best or fastest responses are needed.
The number of times the Requestor may consume messages from the queue can
be specified explicitly.

Example

• A request to submit an abstract and to submit a paper is issued by an editor
to a list of people registered for participation in a workshop. Only papers and

740 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

abstracts submitted before a deadline would be reviewed. If a large amount
of papers arrive, only the first 50 would be reviewed and only 10 best papers
out of the reviewed ones would be published.

UML meta-model. An object diagram illustrating the pattern on the concep-
tual level is presented in Fig. 1. A Conversation consists of a set of messages (see
a composition relation between Conversation and Message). A conversation in-
volves an initiating process (e.g. Requestor), and at least one following process
(e.g. Responder processes), depicted by associations requestor and responder.
Any process may be or may not be involved in multiple conversations (see the
multiplicity of the association involves). The Requestor generates at least one
Request, while the Responder returns one or more Replies or does not react at
all. The relation between request and reply messages is depicted by corresponds
to association, and sending of request and reply messages by a party is illustrated
by the dependency relations is sent by and is produced by. Requests issued
by a Requester can be composite meaning that the Requestor may send several
sub-requests in a single message concurrently to a single or multiple parties.

Request Reply

1 0..*1 0..*

corresponds to

Message

Party

0..*

is produced by
Conversation

1..*1..*

0..*

0..*

0..*

0..*

responder

0..*

1

0..*

1

requestor
2..*

0..*

2..*

0..*

involves

0..*

is sent by

Fig. 1. UML meta-model of Multi-party Multi-message Request-Reply Conversation

Visualization. The graphical notation of the generic pattern variant is given
in Fig. 2. The parties are visualized as rectangles. Directed arrows represent
the direction in which a party sends a message. A message containing a single
request is visualized as a black token, while a compound request is represented by
multiple overlapping tokens. Parameters specific to a given party are visualized
as icons residing within the boundaries of a rectangle representing a party. This
graphical notation has the following set of variation points :

• N - a parameter denoting a list of sub-requests sent by a Requestor to a
Responder in a single message.
Range of values : size(N)≥1.

The Conceptualization of a Configurable Conversation 741

Default value: size(N)=1.
Visualization: This parameter is depicted by the dots on the arc from Re-
quester to Responder. If size(N)>1 or size(N)=1 the graphical notations
depicted in Fig. 3 (1a) and (1b) are used respectively.

• M - a parameter denoting a list of Responders involved in the conversation.
Range of values : size(M)≥1.
Default value: size(M)=1.
Visualization: if size(M)>1 or size(M)=1 the graphical notations depicted
in Fig. 3 (2a) and (2b) are used respectively.

C
FIFO

U

 M

?

?

List of
Responders

Sorting algorithm of
messages in the
queue

Number of messages
consumed from queue

Consumption
frequency

Enabling condition
for message
consumption

Number of used
messages
from the consumed
ones

List of sub-
requests

Possibility
of missing
replies

Possibility of
non-responding
parties

Requestor

Reply
Message

F

E

Fig. 2. Graphical notation: Multi-party Multi-message Request-Reply Conversation

 M

?

? ?

?

 (4a) (4b) (4c) (4d)

K B

 (2a) (2b)

(1a) (1b)

 FIFO LIFO PRIO NOQUEUE

 (3a) (3b) (3c)

(5a) (5b) (5c) (5d)

Fig. 3. Variants of graphical notation: Multi-party Multi-message Request-Reply Con-
versation

742 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

• Possibility of non-responding parties - a parameter specifying whether some
of the Responders will ignore the request issued by the Requestor.
Range of values :

◦ No: all M Responders will reply at least something (for example, a re-
quest to report the level of income to the tax-office obliges all receivers
to reply);

◦ Yes: some Responders may not reply anything (for example, only inter-
ested parties react on the invitation to participate in a social event).

Default value: No.
Visualization: Fig. 3 depicts the graphical representation of four variations,
where: in (4a) and(4b) all M Responders will produce at least some replies;
in (4c) and(4d) some Responders may not reply on the requests received.

• Possibility of missing replies - a parameter specifying whether the Responder
will not reply on some of the sub-requests (i.e. it is a choice of the Responder
to engage in the conversation or not, and respectively to reply on all or only
some of the received requests).
Range of values :

◦ No: Responders reply on all sub-requests (for example, the Responder
answers on all questions in the tax declaration);

◦ Yes: Responders reply only on some sub-requests (for example, a client
subscribes only for two out of five journal offers received).

Default value: No.
Visualization: Fig. 3 depicts the graphical representation of four variations,
where: in (4a) and (4c) no replies will be lost; in (4b) and (4d) some replies
may not reach the Requestor.

• Sorting of the queued messages - a parameter specifying an ordering disci-
pline according to which response messages queued by the sender are sorted.
Range of values :

◦ FIFO: oldest message is queued first;
◦ LIFO: newest message is queued first;
◦ PRIO: sorting based on some criterion (for instance, the price);
◦ NOQUEUE: messages are not queued and consumed upon arrival if the

sender is ready to process them, otherwise they are lost.
Default value: FIFO.
Visualization: Fig. 3 (5a)-(5d) depicts the graphical notation of different
policies applied for sorting messages in the queue.

• Enabling condition - a parameter specifying the condition that has to be
fulfilled to enable the Requestor to consume replies.
Range of values :

◦ a timeout (for example, requests for purchase on discount basis are ac-
cepted only until the expiration of the discount period);

◦ a boolean condition, examining the properties of the queued messages
(for example, at least three low-cost offers are required to select the best
of them);

The Conceptualization of a Configurable Conversation 743

◦ a specified number of messages K (0<K≤N).
Default value: K=1.
Visualization: The icon E residing at the Requestor’s side in Fig. 1 substi-
tuted with one of the graphical notations presented in Fig. 3 (3a), (3b) and
(3c) which denote the enabling condition based on a timeout, availability of
specific number of messages and boolean expression respectively.

• Consumption index - a parameter specifying the number of reply messages
to be consumed by the Requestor from the queue.
Range of values :

◦ 0: none of the messages are removed from the queue (for example, mes-
sages must have enabled the process to receive, but it may need to leave
them on the queue for another process to use);

◦ S: S messages are removed from the queue such that 0≤S<K, where K is
a number of replies sufficient for activation of the requester (for example,
only messages selected by a boolean expression based on the property
values are consumed);

◦ All: all messages contained in the queue are removed.
Default value: All.
Visualization: The icon C residing at the Requestor’s side in Fig. 2 substi-
tuted with a suitable value.

• Utilization index - a parameter specifying a number of messages from the
consumed ones used by the Requestor for the processing.
Range of values :

◦ 0: no messages are used for processing (for example, if no messages were
consumed, or if none of the consumed messages are required by the
receiving process);

◦ 1: one message is used for processing (for instance, a best offer from the
available ones is selected);

◦ UN: a number of messages used for the processing such that 1<UN<C,
where C is a number of messages consumed (for example, a boolean
condition chooses only messages that pass the boolean constraint);

◦ All: all consumed messages are used for the processing.
Default value: All.
Visualization: The icon U residing at the Requestor’s side in Fig. 2 substi-
tuted with its value.

• Consumption Frequency - a parameter specifying the number of times the
sender performs the consumption of messages from the queue.
Range of values :

◦ 1: the sender is activated only once, after this all remaining and arriving
messages are destroyed;

◦ FN: the sender consumes messages FN number of times, 1<FN, after
which all remaining and arriving messages are destroyed;

◦ ∞: the sender consumes messages as long as they arrive.

744 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

Default value: 1.
Visualization: The icon F residing at the Requestor’s side in Fig. 2 substi-
tuted with its value.

The pattern variant representing a scenario in which every parameter is set
to the default value is presented in Fig. 4. A party A sends a single request to a
party B, who sends a reply back. The party A queues the messages in the FIFO-
order, and as soon as one message is received from the party B, it is consumed
and processed. The presented notation may be used to represent Broadcast Re-
mote Procedure Calls (RPC) [28], which expects one or more answers from each
responding machine and treats all unsuccessful responses as garbage by filtering
them out.

FIFO
All

1

A B

All

1

1

Fig. 4. Notation for the default pattern variant

CPN semantics. To avoid an ambiguous interpretation of the pattern variants
related to Multi-party Multi-message Request-Reply Conversation we formalize
the semantics by means of CPNs. Figure 5 depicts the top view of the CPN
diagram representing the pattern.

Message

request

reply

Requestor

Requestor

Responder

ResponderResponder
Requestor

Message

Fig. 5. CPN diagram: The main
view

Receive response

Receive response

Send request

Send request

Conv

"X"

Party

running

Proc

Message

Reply
In

Message
In

Send request

Receive response

Request
OutOut

Process
instances

process instancesprocess instances

Conversations Requestor
ID

Fig. 6. CPN diagram: The Requestor page

The Conceptualization of a Configurable Conversation 745

Requestor and Responder are represented as substitution transitions which
can be unfolded to the nets depicted in Fig. 6 and Fig. 7(c) respectively. In every
given conversation the parties exchange requests and replies of type Message.

The Requestor (whose behavior is shown in Fig. 6) can send requests and re-
ceive response messages using substitution transitions Send request and
Receive response whose decomposition is presented in Fig. 7(b) and Fig. 8. A
Requestor process may have multiple process instances, whose lifecycle is shown
in Fig. 7(a). Process instances available for participation in a conversation are
stored in place enabled. When for a given process instance a conversation is
started, a conversation identifier cid is coupled with a process instance. The
uniqueness of identifiers is ensured by incrementing of a counter whose value
is stored in place Conversation counter. A process instance chosen for con-
versation is stored in place running. Transitions activate, deactivate and

Table 1. Data types used in Figs. 5-8

colset Party = string;
colset Request = string;
colset Requests = list Request;
colset Reply = string;
colset Replies = list Reply;
colset ConvId = int;
colset Content = union Req:Requests + Repl:Replies; a

colset Message = product ConvId * Party * Party * Content; b

colset Count = int;
colset MTime = int;
colset Status = with active|inactive|enabled|completed; c

colset ConvRequest = product Parties * Requests;
colset ConvRequests = list ConvRequest;
colset ConvReply = product Parties * Replies;
colset ConvReplies = list ConvReply;
colset Pr = product ConvRequests*ConvReplies*Status;

colset Proc = product ConvId*Pr; d

colset ConvInfo = record start time: MTime * last act:MTime
* nof unique messages: Count * nof parties: Count * total nof messages: Count;

colset Conv = product ConvId * ConvInfo * Status;

a The content of a message is either a list of requests or a list of replies. The CPN
union type is used to specify this.

b A message is a tuple (cid,P1,P2,c) where cid is a conversation identifier, P1 is
the requestor, P2 is the responder, and c is the content. Such a message is of type
Message.

c The lifecycle of a process instance starts with activation of an enabled instance. An
active instance can become inactive through deactivation, or completed when the
instance lifecycle ends.

d Process instances of type Pr contain a list of requests sent, replies received and a
status of the instance. When a conversation starts, a process instance is coupled with
a conversation identifier.

746 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

complete control the status of a process instance during its lifecycle. When an
enabled process instance is activated, it gets the status active and may partici-
pate in sending and receiving of messages. Meanwhile the active process instance
can become inactive through deactivation or can become completed. The life-
cycle of a process instances ends upon completion and the process instance is
placed to place completed.

The Requestor’s Send Request sub-page in Fig. 7(b) shows that the Re-
questor, whose identifier is stored in place Requestor ID, on the moment of send-
ing a request message creates a new conversation. Function create messages()
takes a list of conversation requests crqs of type ConvRequests, which contains
a list of parties to whom a request should be sent, and a list of sub-requests that
should be sent to each party, and creates as many messages as there are parties
in the list. This function directly corresponds to the variation point specifying
that messages with N sub-requests are sent to M parties.

When request messages are created, a new conversation is created by means
of the function create conversation(). This function records the information
about the conversation identifier, conversation-specific parameters (the start
time of the conversation, the time of the last activation, a total number of

cid+1

cid

(cid,(crqs,crps,completed))

(cid,(crqs,crps,completed))

(cid,proc)

proc

end

complete

complete

deactivate

deactivate

activate

activate

start conversation
counter

1

ConvId

running

I/O
Proc

enabled

InitProc

Pr

completed

Proc

I/O

activate

deactivate

complete

(a) A Process instances
sub-page

requestor
send

[crqs<>[]]
Message

Party

"X"

Conv

running
I/OI/O

(cid,(crqs,crps,active))

Proc

(cid,(tl(crqs),crps,active))

Requestor
ID

I/OI/O

Variation point:
messages with N requests
are sent to M parties

request

OutOut

create_messages(cid,requestor,crqs)

conversations
OutOutcreate_conversation(cid,requestor,crqs)

(b) The Requestor’s Send Request sub-page

m

responder
(cid,requestor,
responder,con) Receive

request

Message

Message

Request
In

Message
In

1`"A"++1`"B"++1`"C"

ready to return

if uniform(0.0,1.0)>
 prob_all_lost_for_party
then unpack(cid,requestor,
 responder,con)
else empty ************

Variation point:
possibility that
some parties
won't reply

self

Party

Variation point:
possibility that
party replies only
on some requests

Send
replyReply

OutOut

if uniform(0.0,1.0)>
prob_individual_message_lost
then 1`m
else empty

(c) The Responder page

Fig. 7. CPN diagrams

The Conceptualization of a Configurable Conversation 747

messages sent, a number of parties to whom the requests have been sent, and a
number of unique messages (i.e. a number of sub-requests contained in the sin-
gle message)), and the status of the process instance. The recorded conversation
information is used later on for the purpose of correlating response messages
received with the requests sent and for identifying how many times the received
messages can be consumed for processing.

The Responder page shown in Fig. 7(c) illustrates the behavior of Respon-
ders involved in the conversation. The identifiers of the Responders are stored in
place self. They are used to relate incoming requests to a right party, based on
the party identifier. When a Responder receives a request message, it unpacks
the composite requests into separate messages each containing a separate sub-
request. The parameter prob all lost for party corresponds to a variation
point specifying the probability that the Responder will ignore a received com-
posite request or will process it. If the Responder decides to reply on the request,
the parameter prob individual message lost is used as a variation point to
define the probability that a reply will be sent for every unpacked sub-request.

The Requestor’s Receive response sub-page presented in Fig. 8 illustrates
the mechanism of queueing and processing of incoming responds by the Re-
questor. The Requestor processes only messages addressed to it (for this purpose,
a Requestor ID is used). The response messages received are queued according
to the QueueingDiscipline() function, which corresponds to a variation point
that can be set to any of the queueing disciplines, i.e. LIFO, FIFO or PRIO.

Variation point:
a number of times
the sender is activated
for consumption

Variation point:
immediate consumption
or not

Variation point:
enabling condition
for activating the
consumption of
messages

Variation point:
sorting of the messages

(cid,(crqs,crps,sp))

mss

filter(mss,cid,sc,sp,NoQueue)

(cid,ci,i,sc)

(cid,(crqs,crps,active))

responder
(cid,requestor,responder,con)

(cid,ci,i,active)

(cid,upd(ci),i+1,
if i<MaxAct
then active
else completed)

QueueingDiscipline((cid,requestor,responder,con),mss)

mss

mss

destroy messages

[mss<>filter(mss,cid,sc,sp,NoQueue)]

receivepull

[Activated(cid,ci,mss)]

Responder
 ID

I/O

"X"

Party

Reply
In
Message

running
I/O Proc

Conversations
I/O Conv

queue

[]

Messages

I/O

I/O

In

I/O

Consume(cid,ci,mss)

Variation point:
a number of consumed
messages

(cid,(crqs,crps^^Use(cid,ci,mss),active))

Variation point:
a number of messages
used from the
consumed ones

Fig. 8. CPN diagram: The Requestor’s Receive Response sub-page

748 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

Function Consume() corresponds to a variation point specifying how many
messages from the queued ones have to be consumed. One, several, or all avail-
able in the queue messages can be consumed. The consumption of messages
happens upon the satisfaction of an enabling condition (which is a variation
point) encoded as a guard of transition Pull. Function Activated() can be
tuned to specify the enabling upon the availability of one or several messages in
a queue, upon the satisfaction of a certain condition, or upon a timeout.

From the messages consumed only a number of messages defined by the func-
tion Use() are actually used by the Requestor for the processing. This variation
point can be set for using either one, several or all consumed messages.

The parameter MaxAct corresponds to the variation point specifying how many
times the Requestor may consume the messages from the queue for the given
conversation. If the messages have been consumed the specified number of times,
the process instance receives the status completed and the messages left in
the queue are removed from it by means of the function filter(). Transition
destroy messages is used to retrieve messages from the place queue if the
incoming response messages do not need to be sorted and have to be consumed
immediately upon arrival.

Issues. When applying pattern variants belonging to the Multi-party Multi-
message Request-Reply Conversation pattern family an issue of the message
correlation may arise while matching replies received with the requests sent.
This issue can be solved by applying a suitable pattern variant from the Message
Correlation family. If a Multi-message Multi-Party Request-Reply Conversation
pattern variant has to be applied in the context of a long-running conversation,
where a series of requests have to be sent one after another, the given pattern
variant can be combined with a suitable pattern variant from the family of
Bipartite Conversation Correlation.

5 Oracle BPEL PM: A Default Scenario in Action

In this section, we illustrate an implementation of the default pattern variant
in Oracle BPEL PM v.10.1.3.1.0 (which is a tool supporting design of BPEL
processes).

Figure 9(a) illustrates an asynchronous process which upon an initiation by a
client performs the invocation of a synchronous service ResponseProcess pre-
sented in Fig. 9(b) using an invoke activity SendRequestToResponder.

The content of the request sent, enclosed in the RequestorInputVariable,
is specified by the <assign> activity AssignInputData in Fig. 9(a). The Re-
sponder process ResponseProcess is initiated by a message received from the

The Conceptualization of a Configurable Conversation 749

Fig. 9. Implementation of default pattern variant in Oracle BPEL PM

Requestor process. The request received is processed by an <assign> activity
ProcessRequest in Fig. 9(b) and a response is sent back to the Requestor pro-
cess using a replyOutput activity. The response message is assigned to an out-
put variable ObtainedOutputVariable of the SendRequestToResponder invoke
activity. Note that <invoke> activity has no attribute for message queueing,
therefore response messages are not queued and are consumed and processed
as soon as they arrive. We discuss the support of other pattern variants by
WS-BPEL v.2.0 in the next section.

6 Evaluation of WS-BPEL v2.0

In this section we analyze what pattern variants of Multi-party Multi-Message
Request-Reply Conversation are supported by WS-BPEL v2.0 by defining what
values each variation point can take.

• Number of sub-requests in a message: an <invoke> activity in WS-BPEL is
used to call an operation on a service. To realize a request-reply conversation
a correlation pattern of the <invoke> activity has to be set to “request-
response” and both an inputVariable and outputVariable of certain data
types have to be specified. Since WS-BPEL is XML-based, a complex data

750 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

types can be defined, thus allowing to compose message from multiple sub-
requests.

• Number of Responders involved in a conversation: many parties can be in-
volved in a conversation with a given Requestor. A message can be sent by a
Requestor to a set of Responders in parallel if every Responder is defined as
a separate PartnerLink and a separate <invoke> activity is placed for every
partner either in the body of the <flow> construct or in the <forEach> con-
struct that operates in parallel mode. Therefore WS-BPEL can implement
this, albeit clumsily.

• Possibility of non-responding parties : an <invoke> activity is used to call
(an operation on) a service. Such an invocation can be one-way or request-
response. When a request-response invocation is performed by the Requester,
the <invoke> activity stays open until the response is received. This however
does not guarantee that the service invoked will respond.

• Possibility of missing replies: in WS-BPEL inbound message activities (IMA)
(i.e. <receive>, <pick>, <onEvent>) may complete only after they have re-
ceived a matching message. However, in some situation an orphaned IMA
occurs when an inbound message activity remains to be open. In this case,
the standard fault bpel:missingReply is thrown and the orphaned IMA is
not considered to be orphaned anymore.

• Sorting of queued messages: messages received by a process instance are
not queued (NOQUEUE). WS-BPEL defines that a receiving activity needs
at most one message to proceed. However, in the situation when a receiving
activity is not ready for consumption and multiple messages arrive at a time,
a race condition occurs. WS-BPEL does not mandate any specific mechanism
for handling race conditions and leaves this decision to the BPEL engine
designers.

• Enabling condition: an inbound message activity becomes enabled as soon as
a matching message has been received by a process instance (i.e. a message
of a specific type). However, it is also possible to use a <wait> construct in
order to enable an activity for message receival after a given time period or
after a certain deadline has been reached.

• Consumption index : only one message at a time can be consumed by an
inbound message activity.

• Utilization index : since inbound message activities can consume only one
message at at a time, therefore the message consumed is also the one used
for processing.

• Consumption Frequency: in WS-BPEL it is possible to specify that a party
may consume messages multiple times if IMA is placed in a <while> or
<repeatUntil>. The consumption frequency in this case is defined by the
evaluation of the boolean condition defined in these repetitive constructs.

The mapping of the pattern attributes to the WS-BPEL is not straightfor-
ward, since WS-BPEL does not have concepts able to capture the meaning of
all pattern attributes or these concepts are not explicitly defined. By definition,
all inbound message activities in WS-BPEL are executed as soon as a suitable

The Conceptualization of a Configurable Conversation 751

message arrives. Selection of such a behavior as a default results in quite lim-
ited capabilities of WS-BPEL to support different variants of message handling.
Since WS-BPEL intentionally does not specify a mechanism for handling of
the race conditions, systems supporting BPEL-processes may employ different
implementations and thus support distinct pattern variants. In this case, the
pattern attributes can be used to assist in selecting an appropriate system.

7 Conclusions

The approach presented in this paper shows that a multitude of pattern variants
can be derived by assigning different values to variation points identified as a
result of the systematic analysis of service interaction scenarios. This approach
is applicable for describing other problems in the form of the configurable frame-
work, given that all dimensions of the problem analyzed are clearly delineated
and well understood. The main benefit of presenting patterns by means of a con-
figurable pattern family is that it allows various variants of multi-dimensional
complex problems to be described and referenced in a uniform way. The com-
plexity of the Multi-party Multi-message Request-Reply Conversation pattern
family is characterized by 6912 pattern variants (this number is calculated as
multiplication of total number of values each of the variation points may take).
The variation points identified can be used for the evaluation of tools and web-
service composition standards as it has been done for Oracle BPEL PM and WS-
BPEL v2.0. The analysis of WS-BPEL has shown that many pattern variants
related to processing of multiple messages are not supported. Such an analysis
forces us to deeply think about the requirements in service interaction and may
trigger a revision of current best practices in order to capture all variation points
and support more pattern variants. Furthermore, the pattern family presented
can be used as a solution selection instrument, or even as a set of requirements
for new languages in the area. In the future, we plan to use the pattern families
as a benchmark for classification of complex service interaction scenarios.

References

1. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.,
Thatte, S., Winer, D.: Simple Object Access Protocol (SOAP) 1.1. (2000),
http://www.w3.org/TR/soap

2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1 (2001), http://www.w3.org/TR/wsdl

3. Belwood, T., et al.: UDDI Version 3.0 (2000), http://uddi.org
4. Arkin, A., Askary, S., Fordin, S., Jekel, et al.: Web Service Choreography Interface

(WSCI) 1.0. Standards proposal by BEA Systems, Intalio, SAP, and Sun Microsys-
tems (2002)

5. Arkin, A., et al.: Business Process Modeling Language (BPML), Version 1.0 (2002)
6. Thatte, S.: XLANG Web Services for Business Process Design (2001)
7. Peltz, C.: Web services orchestration: a review of emerging technologies, tools and

standards. Hewlett Packard, Co. (2003)

http://www.w3.org/TR/soap
http://www.w3.org/TR/wsdl
http://uddi.org

752 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

8. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, Version 1.1. Standards proposal
by BEA Systems, International Business Machines Corporation, and Microsoft
Corporation (2003)

9. Barros, A., Dumas, M., Hofstede, A.: Service Interaction Patterns: Towards a Refer-
ence Framework for Service-based Business Process Interconnection. QUT Techni-
cal report, FIT-TR-2005-02, Queensland University of Technology, Brisbane (2005)

10. CPN Group University of Aarhus, Denmark: CPN Tools Home Page
http://wiki.daimi.au.dk/cpntools/

11. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. In: EATCS monographs on Theoretical Computer Science, Springer, Berlin
(1992)

12. Mulyar, N., Aldred, L., Aalst, W., Russell, N.: Service interaction patterns: A
configurable framework. BPM Center Report BPM-07-07, BPM Center, BPMcen-
ter.org (2007)

13. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In: Proceed-
ings of the 3rd International Conference on Business Process Management, Nancy,
France, vol. 3716/2005, pp. 302–318 (2005)

14. Decker, G., Puhlmann, F., Weske, M.: Formalizing service interactions. In: Dust-
dar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp. 414–419.
Springer, Heidelberg (2006)

15. Zaha, J., Barros, A., Dumas, M., ter Hofstede, A.: Let’s Dance: A Language for
Service Behavior Modeling. In: OTM Conferences (1), Vienna, Austria, pp. 145–
162 (2006)

16. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-
Oriented Architectures. In: FASE. Proceedings of the 9th International Conference
on Fundamental Approaches to Software Engineering, Braga, Portugal (2007)

17. Barros, A., Borger, E.: A Compositional Framework for Service Interaction Pat-
terns and Interaction Flows. In: Lau, K.K., Banach, R. (eds.) ICFEM 2005. LNCS,
vol. 3785, pp. 5–35. Springer, Heidelberg (2005)

18. Cooney, D., Dumas, M., Roe, P.: GPSL: A Programming Language for Service Im-
plementation. In: Proceedings of the 8th International Conference on Fundamental
Approaches to Software Engineering, Vienna, Austria (2006)

19. Aldred, L., Aalst, W., Dumas, M., Hofstede, A.: Understanding the Challenges
in Getting Together: The Semantics of Decoupling in Middleware. BPM Center
Report BPM-06-19, BPMcenter.org (2006)

20. van Dijk, A.: Contracting Workflows and Protocol Patterns. In: Business Process
Management, pp. 152–167. Springer, Heidelberg (2003)

21. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley Profes-
sional, Reading (2003)

22. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns. Dis-
tributed and Parallel Databases 14(1), 5–51 (2003)

23. WPHP: Workflow Patterns Home Page, http://www.workflowpatterns.com

24. Russell, N., Hofstede, A., Aalst, W., Mulyar, N.: Workflow Control-Flow Patterns:
A Revised View. BPM Center Report BPM-06-22, BPMcenter.org (2006)

25. Russell, N., Hofstede, A., Edmond, D., Aalst, W.: Workflow Data Patterns. QUT
Technical report, FIT-TR-2004-01, Queensland University of Technology, Brisbane
(2004)

http://wiki.daimi.au.dk/cpntools/
http://www.workflowpatterns.com

The Conceptualization of a Configurable Conversation 753

26. Russell, N., Hofstede, A., Edmond, D., Aalst, W.: Workflow Resource Patterns. In:
WP 127, Eindhoven University of Technology, Eindhoven. BETA Working Paper
Series (2004)

27. Mulyar, N., Aalst, W., ter Hofstede, A.H.M., Russell, N.: Towards a WPSL: A
Critical Analysis of the 20 Classical Workflow Control-flow Patterns. Technical
report, Center Report BPM-06-18, BPMcenter.org (2006)

28. Broadcast RPC: Programming with Remote Procedure Calls.
http://ou800doc.caldera.com/en/SDK netapi/rpcpC.bcast.html

http://ou800doc.caldera.com/en/SDK_netapi/rpcpC.bcast.html

Building Adaptive Systems with Service

Composition Frameworks

Liliana Rosa, Lúıs Rodrigues, and Antónia Lopes

Faculty of Sciences, University of Lisbon, Portugal
lrosa@lasige.di.fc.ul.pt, {ler,mal}@di.fc.ul.pt

Abstract. Frameworks that support the implementation and execution
of service compositions are a fundamental component of middleware in-
frastructures that support the design of adaptive systems. This paper
discusses the requirements imposed by adaptive middleware on service
composition frameworks, and discusses how they have been addressed by
previous work. As a result, it describes the design of a novel adaptation-
friendly service composition framework that takes into consideration the
requirements at three different levels: service programming model level,
adaptation-friendly services level, and kernel mechanisms level.

1 Introduction

Today’s applications need to be designed to operate in a wide range of het-
erogeneous devices, including servers, PCs, PDAs, or mobile phones. Given this
diversity, it is fundamental to be able to design and deploy adaptive applications.
An adaptive application is able to change its behavior to better match the (func-
tional and non-functional) expectations of the user. For instance, by adjusting
the multimedia quality exchanged among different participants, according to the
available network bandwidth.

Unfortunately, building distributed applications that can monitor changes in
their execution environment, as well as in the user requirements, and react to
those changes by adapting their behavior is an inherently complex task. A task
that can be greatly simplified by the use of appropriate adaptive middleware.
A key component of a middleware platform to support the construction and
execution of adaptive applications is a software framework that facilitates the
composition of services. By allowing services to be composed in different man-
ners, and supporting the dynamic reconfiguration of service compositions, it
becomes easier to adapt the behavior of applications that are built in a modular
manner.

Network protocols have been specified for a long time in a modular way, using
the layer abstraction. Typically, a communication system is built from a vertical
composition of multiple protocols layers. Therefore, it comes as no surprise that
many software frameworks to build configurable communication services have
been designed, implemented, and used in different contexts. Some of the most
relevant protocol composition frameworks are x-kernel [1], Cactus [2], Horus [3],

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 754–771, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Building Adaptive Systems with Service Composition Frameworks 755

Ensemble [4], Appia [5], Eva [6], and Samoa [7]. Given the significant amount of
experience that has been gathered with these systems, they become obvious
candidates to inspire the construction of a service composition framework to
include as part of a middleware platform to support adaptive applications.

This paper looks at existing protocol composition frameworks from the point
of view of their adequacy to support the implementation of adaptive services.
Based on our experience in building a generic architecture to support adapta-
tion [8], we identify a number of requirements that need to be satisfied by any
service composition framework. We then analyze how existing protocol compo-
sition frameworks address these requirements. The contribution of this paper is
the identification of a set of features, lacked by many of the existing protocol
composition frameworks, that are key to support the dynamic reconfiguration
of service compositions. Moreover, we describe how we have addressed these re-
quirements in the implementation of an adaptation-friendly service composition
framework named RAppia.

The rest of the paper is structured as follows. Section 2 introduces protocol
composition frameworks. Section 3 identifies a set of requirements imposed by
adaptive middleware on composition frameworks, and Section 4 analyses how
these are addressed by existing frameworks. The design and implementation of
RAppia is described in Section 5. Finally, Section 6 concludes the paper.

2 Protocol Composition Frameworks

Protocol composition and execution frameworks aim at simplifying the design,
implementation, and configuration of communication protocols. One of the main
goals of such frameworks is to promote the design of communication services in a
modular way, by encouraging communication functionality fragmentation in dif-
ferent modules, that can be composed in several ways. As a result, the designer
has the opportunity to compose communication services that exactly match the
application needs. A second important goal of these frameworks is to provide
an efficient execution environment for protocol compositions, by providing run-
time services that support the exchange of data and control information among
components, time management services, buffer management services, etc.

The reader should be aware that there are similarities among composition
frameworks and general purpose operation systems. Typically, an operation sys-
tem includes a kernel, services that can be implemented partially in the kernel
and partially in user level (such as windows management), a number of user
level services (for instance, the command interpreter and system utilities), and a
programming model (processes, file system interface, synchronization primitives,
etc). In some sense, a service composition framework is a specialized operating
system (in fact, one of the first protocol composition services was even called a
“kernel” [1]). Thus, in this paper, when we refer to service composition frame-
works we analyze them taking a global perspective, considering both the kernel
functionality, the services typically provided with the framework, and the pro-
gramming model enforced by it.

756 L. Rosa, L. Rodrigues, and A. Lopes

Multiple protocol composition frameworks have been built [1,2,3,4,5,6,7]. Al-
though all of these frameworks aim at achieving similar goals and are based on
the same foundations, inspired by the original work of x-kernel [1], there are
some significant differences among them.

In x-kernel, Horus, Ensemble, Cactus, and Appia, communication among pro-
tocols is performed by the exchange of events. With the exception of Cactus,
all frameworks support vertical protocol compositions, i.e., events are processed
in order by all the protocols in the stack. In Cactus, events can be processed
in parallel. In x-kernel and Horus events are delivered to all protocols (which
may process them or just forwards them in the stack). Ensemble proposed some
offline tools to extract fast-paths for most common events. Appia and Cactus
allow each protocol to subscribe only the events it is interested in processing.
On the other hand, both Samoa framework [9] and Bast [10] protocol library
follow different approaches. Samoa also relies in protocol compositions but with
a service-based design. Therefore, the framework kernel is particularly different
from the remaining frameworks. In this case, the interaction between protocols
is achieved using remote method invocations. In this approach, each module ex-
ports a set of executers, listeners, and interceptors, each being responsible for a
different service: requests, replies, and notifications. In Bast each protocol is an
object, thus, interaction relies in method invocation, and the composition model
is not strictly vertical.

Among these frameworks, only Cactus [11], Ensemble [12], and Samoa [9] have
addressed the problem of dynamic adaptation, supporting the runtime reconfig-
uration of protocol compositions. However, these efforts have considered only a
limited set of protocols (for instance, group communication, in the case of En-
semble) and specific reconfiguration strategies. As we will discuss later in the
text, none of these frameworks can claim to provide generic support for multiple
reconfiguration strategies.

3 Adaptation Requirements

Our previous work on the development of a generic architecture to support the
adaptation of service compositions [8,13], gave us insight on the needs, challenges,
and goals that adaptation brings. The highlights of adaptation are related to con-
text monitoring, to detect changes that will trigger adaptation, and adaptation
management, that conducts and performs all the process of reconfiguring the
composition. Our experience allowed to identify several requirements that have
to be satisfied by composition frameworks. We note that different requirements
impact different aspects of the composition framework: some require changes to
the runtime support provided by the framework (also known as the framework
kernel), some can be satisfied by adding additional services to the framework,
others affect the programming model enforced by the framework. These require-
ments are identified and described in detail in the following sections.

Building Adaptive Systems with Service Composition Frameworks 757

3.1 Context Monitoring

The context information characterizes the execution context. Since the execution
context may change with time, this information has a dynamic nature. Thus,
given that the execution context is dynamic, a particular configuration of the
application, that was adequate in given context may become inadequate later on,
and require adaptation. Therefore, it is of utmost importance to maintain the
context under constant monitoring, such that the context information reflects
the current state of the environment.

The context information may include information from different sources, rang-
ing from user preferences to hardware characteristics of devices hosting the ap-
plication [14]. This information can be generated by the services themselves, or
captured from other origins, such as the operating system or the device. The
information itself can be used to infer other context properties, i.e. higher level
context information, such as system stability, based on low-level context infor-
mation such as network error rate, connectivity information, etc. Context in-
formation capture can be performed on-demand, or continuously, in a periodic
manner [15]. Moreover, services can produce notifications that signal infrequent
occurrences, such as the failure of a component, or that some control variable
exceeded a predefined threshold. From these observations on context capture,
the following requirements can be identified:

Requirement 1: The composition framework should support a program-
ming model that makes easier for sources of context information to make
this information easily accessible (in particular when these sources are the
composable service implementations themselves).

Requirement 2: The composition framework should provide the mecha-
nisms to support the capture of context information, both continuously or
on-demand, as well as mechanism to handle notifications generated by con-
text sources.

To perform adaptation is not enough to gather context information; it is also
necessary to analyze the collected information in order to detect relevant changes.
The analysis can be directly embedded in the mechanisms used to collect the
context information or may be performed by an external component. In either
way, the following requirement can be identified:

Requirement 3: The composition framework should include, or be aug-
mented with, services that are able to analyze the context information and
report relevant changes.

3.2 Reconfiguration Actions

In this paper, we are concerned with the construction of adaptive distributed
systems whose adaptation logic can be separated form the core application logic.
In this way, it is assumed that the structure of the application is organized into

758 L. Rosa, L. Rodrigues, and A. Lopes

two discrete layers, with the core application logic built on the top of a compo-
sition of domain-specific and general middleware services. Adaptiveness results
from the dynamic reconfiguration of this composition of services, in reaction to
changes in the users’ preferences or in the execution context.

There are two main ways in which the application may be adapted. To start
with, the behavior of each individual service may be adapted, usually by setting
predefined configuration parameters [16,17]. Furthermore, when an appropriate
composition framework is used, one may also change the services included in the
service composition and the way these services are composed [18,19]. When we
restrict ourselves to communication services, reconfiguration of the composition
boils down to the addition, removal, or exchange of protocols. Therefore, we
identify the following requirement:

Requirement 4: The composition framework has to provide support for
dynamic reconfiguration, including mechanisms to perform parameter con-
figuration, and mechanisms to perform the addition, removal, and exchange
of services to a given composition.

When applying a reconfiguration action, the correctness of the service compo-
sition has to be preserved. To achieve this goal, several issues need to be ad-
dressed during the reconfiguration process. A first issue is related to the amount
of required synchronization among the nodes involved in the reconfiguration.
For instance, in some cases, each node may perform the local reconfiguration of
the service composition without explicit coordination with other nodes; in other
cases, a node may not be allowed to proceed with the local reconfiguration until
it becomes aware that all the other nodes are also ready to reconfigure. Another
issue is related to the state information that may have to be transferred from
one system configuration to the other. The third issue is related to the dynam-
ics of each individual service during reconfiguration. Namely, in some cases, a
service may be required to be placed in a quiescent state before reconfiguration
is performed. Note that different services impose different constraints on the
way issues above are handled and, for any given service, different reconfigura-
tion actions may also impose different constraints [13]. Thus, the mechanisms
enumerated should be rich enough to satisfy a wide range of constraints, such
that the reconfiguration may be performed with the minimal interference on
the execution of the services in the composition. This results in the following
requirement:

Requirement 5: The composition framework should provide, either em-
bedded in its kernel or as a set of additional services, a comprehensive set
of mechanisms to support the coordination among nodes, to transfer ser-
vice state information between services, and to enforce a quiescent state of
a service.

3.3 Selection of Adaptation Targets

We are interested in building distributed adaptive applications. Therefore, service
compositions will be executed in multiple nodes of the system. As a result, when

Building Adaptive Systems with Service Composition Frameworks 759

a reconfiguration needs to be performed, it may need to affect all nodes or just
a subset of the nodes involved in the application. Furthermore, only a subset of
the service composition may be affected by the reconfiguration.

When specifying the adaptation logic of a system, it is very hard to specify
it in a generic and reusable manner if one is required to explicitly name each
individual instance of every service that is affected by the adaptation. On the
contrary, it is much more powerful to specify the adaptation target indirectly,
for instance, using service type hierarchies or using meta-information [20] to tag
all services with their properties. The service composition framework may con-
tribute to simplify the implementation of an adaptive system if it provides the
programming abstractions and the runtime mechanisms that allow to map these
high level abstractions (such as service type hierarchies) in run-time artifacts,
for instance, using a reflective approach. Thus:

Requirement 6: The composition framework should provide mechanisms
to reason or obtain information on the system.

4 Adaptation Support in Existing Composition
Frameworks

To understand the suitability of protocol composition frameworks for adapta-
tion, it is important to analyze how each of the requirements identified in the
previous section already is, or can be satisfied, by existing protocol composition
frameworks.

4.1 Addressing the Requirements

Requirement 1: The composition framework should support a program-
ming model that makes easier for sources of context information, in partic-
ular when these sources are the composable service implementations them-
selves, to make this information easily accessible.

Most composition frameworks that have been developed to support protocol
composition are event-based, i.e., different services communicate by exchanging
events. Thus, the preferable method to make context information available is via
the exchange of context events. The event model simplifies the implementation
of context notifications: a service that wants to provide a notification about a
relevant change in the context information needs simply to create and trigger
a new ContextNotification event. When context information needs to be read
on demand, each service must be ready to process ContextQuery events and
respond with ContextAnswer events.

At first sight, it may seem that every protocol composition framework is
equally fitted to satisfy this requirement. However, there are a number of im-
plementation and modelling issues that have a significant impact on how this
support is provided. To start with, context information is often service specific.
Thus, the programmer will likely need to refine the base events provided by the

760 L. Rosa, L. Rodrigues, and A. Lopes

framework. Thus, the composition framework cannot limit the set of events ex-
changed among services to a set of fixed events defined a priori (as, for instance,
the Horus system). Furthermore, when context is read on-demand, a Contex-
tQuery event needs to be delivered to all services that can potentially answer
the query. To avoid the event to be delivered to every service of the composition
and avoid a performance overhead, the framework should allow each service to
explicitly list which events it is interested in (to our knowledge, only Cactus
and Appia support this feature). Finally, the framework should encourage pro-
grammers to proactively provide support for context gathering in the service
implementations. Thus, the events such as ContextNotification, ContextQuery,
and ContextAnswer should make part of the service implementation model. To
our knowledge, none of the existing protocol composition frameworks provides
this feature explicitly.

Requirement 2: The composition framework should provide the mecha-
nisms to support the capture of context information, both continuously or
on-demand, as well as mechanism to handle notifications generated by con-
text sources.

When building distributed adaptive applications the adaptation policy typically
depends on the global context, i.e., of the aggregate context information col-
lected from the different participants in the system. Therefore, it is not enough
to support the local gathering of information. Each node should provide support
for exporting context information to other nodes. To support on-demand read-
ing of context information, each node must accept remote invocation from other
nodes. To disseminate context information, nodes should be connected to a con-
text dissemination bus. This type of support can be added to any of the existing
composition frameworks, given that it may be implemented as a set of additional
services. Still, to our knowledge, no composition framework includes such ser-
vices in their distributions, although a fairly detailed pattern language [21] could
be used to provide the necessary support.

Requirement 3: The composition framework should include, or be aug-
mented with, services that are able to analyze the context information and
report relevant changes.

As soon as it is possible to gather and distribute local context information,
it becomes possible to analyze and interpret this information to extract the rel-
evant information for the adaptation. Although the analysis can be potentially
executed in a single central location, that collects all the context information
gathered from all the nodes in the system, in some cases this approach may
introduce inefficiencies in the system. For instance, consider that, for adaptation
purposes, one is concerned with the average value of a context variable measured
in a specific node in the system. The average could be computed at a central
location, based on multiple remote readings of the context variable. However,
it is possible to save signaling traffic, if the average is computed directly at the

Building Adaptive Systems with Service Composition Frameworks 761

source node of the context information. To support the later approach, it is re-
quired that the context gathering and dissemination subsystem can be built as a
composition of services itself. This is possible to achieve with any of the existing
protocol composition frameworks.

Requirement 4: The composition framework has to provide support for
dynamic reconfiguration, including mechanisms to perform parameter con-
figuration, and mechanisms to perform the addition, removal, and exchange
of services to a given composition.

Although all existing protocol composition frameworks support offline con-
figuration of the service compositions, only a few support the modification of
the composition in runtime. From those that support dynamic reconfiguration,
some severely restrict the way a composition may be reconfigured in runtime.
For instance, Ensemble only supports the replacement of a vertical composi-
tion (a protocol stack) to another (even when both stacks have several layers
in common), avoiding the problems caused by having part of the composition
operational while the rest is being changed. From this point of view, Cactus is
the most flexible of all existing composition framework, as it allows for services
to be added and removed in runtime without restrictions.

The reconfiguration process can be also simplified if the addition, removal,
and exchange of services to a given composition can be controlled from a remote
node (for instance, a reconfiguration manager). This means that the composition
framework should include a monitor able to interpret reconfiguration commands
that may be activated, for instance, via remote invocations. To our knowledge,
none of the existing frameworks supports such interpreter.

Requirement 5: The composition framework should provide, either em-
bedded in its kernel or as a set of additional services, a comprehensive set
of mechanisms to support the coordination among nodes, to transfer service
state information between services, and to enforce a quiescent state of a ser-
vice.

Several protocol composition frameworks, such as Ensemble, Cactus, or Samoa,
have implemented concrete instances of the mechanisms enumerated above. How-
ever, these mechanisms are usually designed with the goal of implementing a
small number of predefined reconfiguration strategies, i.e, a particular sequence
of operations such as coordination, enforce quiescent state, state transfer, etc.
For instance, Ensemble implements a reconfiguration strategy that requires the
composition of each node to reach a quiescent state; the state is then captured;
a new composition is instantiated and the state loaded into the configuration at
every node; finally, the new composition is restarted. Cactus and Samoa offer
more efficient strategies but, in practice, the mechanisms supported only serve
the predefined, built-in, strategies, and are only applicable in a limited number
of situations. To our knowledge, no composition framework as attempted to offer
a library of mechanisms required to support the coordination among nodes, to
transfer service state information between services, and to enforce a quiescent

762 L. Rosa, L. Rodrigues, and A. Lopes

state of a service that can be combined in different manners to implement mul-
tiple strategies.

Requirement 6: The composition framework should provide mechanisms
to reason or obtain information on the system.

Some existing protocol composition frameworks offer these mechanisms. These
mechanisms can be based on reflection techniques, provided by the meta-level
architectures offered by the language in which they are implemented. Although
well developed reflective mechanisms are used in different contexts [22,23], some
even involving protocol compositions [24], their use is rudimentary in protocol
composition frameworks, due to complex issues, s.a. protocol composition consis-
tency and dependencies, or event flow. Ensemble, Cactus, and Appia frameworks
allow to identify the protocols based on their names. Samoa framework supports
the separation between the notion of protocol specification and protocol imple-
mentation but this is not enough when adaptation is not limited to the exchange
of protocol implementations of the same protocol specification (the single adap-
tation action that is currently supported in Samoa).

4.2 Discussion

When discussing how the requirements are addressed by existing protocol compo-
sition frameworks, we have also identified that each requirement can be satisfied
at a different level of abstraction. Some requirements may require specific sup-
port from the protocol composition framework runtime (for instance, the ability
to change the composition in runtime). Other requirements can be satisfied by a
number of complementary services that can be implemented on top of an existing
composition frameworks. Finally, other requirements are better satisfied by en-
forcing a particular service programming model. We have observed that, although
most of these requirements have been previously addressed by different frame-
works, none of the existing composition framework satisfies completely the full
set of requirements. Moreover, some of these requirements identified in the context
of protocol composition frameworks also apply to component-based frameworks.
However, these requirements have to be address in a different manner.

5 An Adaptation-Friendly Composition Framework

As a result of the previous analysis, we have implemented a service composition
framework, named RAppia, that fulfills the set of requirements we have iden-
tified. This service composition framework has been built as an extension to
one of the protocol composition framework surveyed: the Appia [5]. In the next
paragraphs we describe the design and implementation of RAppia.

5.1 RAppia Basics

RAppia is a service composition framework implemented in the Java program-
ming language. It inherits the composition model from the Appia protocol com-
position framework, that is common to many other similar frameworks (such as

Building Adaptive Systems with Service Composition Frameworks 763

x-kernel, Horus, and Ensemble). In RAppia services can be composed in a layered
manner, creating stacks of services. Typically, services at the bottom of a service
composition offer more basic functionality (such as reliable multicast communi-
cation) and services at the top of the service composition support higher level ab-
stractions (such as distributed shared object, publish-subscribe, etc).

An instance of a service composition is named a service channel. Each layer
of a service channel is an instance of the corresponding service in the service
composition. Thus, a service channel consists of a stack of service instances. Each
instance maintains the state required to provide the desired service. Note that
an application may create multiple service channels with the same composition
(for instance, to maintain multiple shared objects).

Service instances interact through the exchange of events. Events in RAppia
are object-oriented data structures. The Event class has two fundamental at-
tributes: channel, and direction. The first is a reference to the service channel
where the event will flow, and the second indicates in which direction the event
is flowing along the service stack. Note that a session just forwards an event
up or down in a channel, without having explicit knowledge of the concrete ser-
vice that is executed above and below in the stack. This allows the stack to be
reconfigured without changing the code of each service implementation.

When building distributed applications, many services are distributed. Fur-
thermore, many services require the exchange of messages among different nodes.
The information that needs to be sent over the wire is included in a special field
of the events used for inter-service communication called a Message.

In RAppia, two or more service channels that share a given service may opt
to share the same instance of that service. A shared service implementation may
correlate events exchanged in different service channels with the help of locally
maintained state.

Grounded on these basic mechanisms, the adaptation support is built consid-
ering three different aspects: the service programming model, adaptation-friendly
services, and kernel mechanisms. These aspects are described next.

5.2 Service Programming Model

The adaptation requirements have been taken into consideration in the program-
ming model used to implement services for RAppia. This has been reflected into
three separate aspects: the set of events that need to be taken into considera-
tion by each service implementation (which address requirements 1 and 5), how
service properties are exposed (which addresses requirement 6), and how ser-
vice implementation may exchange control information in a distributed setting
(which is related to requirement 5).

Event Processing. In RAppia a service is implemented as a set of event han-
dlers. In runtime, when events are delivered to a service, the appropriate handler
is called. Typically, a handler does some processing and forwards the event to
the next service in the composition. The framework does not restrict the type
hierarchy of events that can be triggered and exchanged in the system. Still

764 L. Rosa, L. Rodrigues, and A. Lopes

RAppia defines a number of “system” events that should be handled by any
service implementation. These include events to provide easy access to context
information produced by the protocols (see requirement 1), events to handle
state transfer and to place the service in a quiescent state (see requirement 5).
More precisely, the following events are defined by RAppia:

– ContextQuery, ContextAnswer, and ContextNotification events. The first
event is used to query a service for specific context information (such as
the available bandwidth of a node at the present time), the second to reply
to the query event(the reply with the bandwidth reading), and the later to
allow a service to provide an asynchronous notification of context informa-
tion (for instance, a drop in the bandwidth to zero). It is interesting to notice
that although many composition frameworks define a number of mandatory
events (for instance, an Init event used to initialize a service), to the best of
our knowledge, no previous framework has been concerned with this sort of
functionality, even if this is extremely relevant as these are basic services of
any manageable object (from a systems’ management perspective).

– SetParameter event. This event is used to update configuration parameters
in runtime such as, for instance, timeout values.

– MakeQuiescent and Resume events. The first event is used to request a
service to reach a quiescent state (as we have noted, often reconfiguration
can only be performed if the service is in a quiescent state). This event is
propagated in the channel in the Down direction. When the event reaches
the bottom of the channel, its direction is reversed and when it reaches the
top of the channel, the entire channel is in a quiescent state (as depicted in
part of Figure 1). The second event, Resume, is used to resume the service
after reconfiguration.

– GetState and SetState events. These events allow to transfer the service state
from one instance to another, whenever the reconfiguration requires instances
to be swapped (for instance, to install a software update). As illustrated in
Figure 1, GetState event is propagated in the channel in the Down direction.
When the event is received, each session adds a state object to the event,
which includes all the state information to be transfered. The SetState event
is propagated in the channel in the Up direction, after reconfiguration. Each
session reads the corresponding state object and initializes its state variables
accordingly.

Type Hierarchies. The definition of adaptation targets meta-information,
namely for individual services and service channels, can be achieved through
type hierarchies. The meta-information from services is defined based on the
properties of the services such as: group communication, ordering, reliable, etc.
Each service is tagged with the properties that it offers, from a well known set.
The association of meta-information with service channels cannot be based in
the same principle since channels with the same composition can be used for
different purposes. Therefore, the meta-information is based on the type of task
they perform, for example: control, audio, text, video, etc.

Building Adaptive Systems with Service Composition Frameworks 765

Service A Service A

Service B

Service C

Service X

Service C

Following configurationPrevious configuration

GetState
Event

1

2

3 4

MakeQuiescent
Event

SetState
Event

Fig. 1. Replacing service B by X: reaching quiescence and state transfer

The association of meta-information with services and service channels allows
to define type hierarchies, based on the tag hierarchy. Therefore it will exist a
hierarchy of service types and another of service channel types. These hierarchies
are domain dependent, in the sense that applications with different domains may
require different hierarchies. Further details on service type specification and
hierarchies can be found in [25].

Message Headers. Most composition frameworks support a message abstrac-
tion that can be used by service implementations to exchange data with remote
peers. In a service channel, each service may add/remove its own data to/from
the message. The information added/removed by each service layer is typically
called the service header.

There are two main approaches to manage service headers that have been im-
plemented in existing protocol composition frameworks. One approach models
the message as a stack of headers, exporting a push/pull interface to add/remove
headers. This is the approach most widely adopted. Unfortunately, this solution
is not very adaptation-friendly as it requires a strong coordination during re-
configuration (for instance, a header cannot be pushed unless the corresponding
service is active in the remote node to perform the matching pull). Another ap-
proach, adopted in the Cactus [2] framework, consists in modelling the message
as a pool of headers. This approach is more flexible, given that the header can
be add/removed in different orders. RAppia adopted this approach.

Each header in the pool is identified by a textual label. The methods available
to handle headers are “addHeader(label,header)”, “getHeader(label)”, “remove-
Header(label)”, and “hasHeader(label)”.The method“addHeader(label,header)”
adds a header associated with the given label; “getHeader(label)” reads the
contents of the header associated with the given label; “removeHeader(label)”
removes from the pool the header associated with the given label, and “has-
Header(label)” checks if the message contains the header with the given label.
The management of the label namespace is orthogonal to the RAppia operation.
However, RAppia requires each protocol to declare the labels of the headers
it produces and requires, which mimics the Appia conventions to received and

766 L. Rosa, L. Rodrigues, and A. Lopes

produced events. Therefore, the runtime can detect clashes in the header label
namespace.

5.3 Adaptation-Friendly Services

RAppia includes two adaptation-friendly services: a generic and configurable
context sensor (that addresses requirement 2) and a reconfiguration monitor
(that addresses requirements 4 and 5). These services are described in the next
paragraphs. Note that these services could also be adapted to be integrated in
other composition frameworks, for instance, to Cactus.

Context Sensor. The context sensor is a service that is able to locally handle
the capture of context information from running service compositions (as de-
scribed in requirement 2). The context sensor is depicted in Figure 2, and works
as follows.

The context sensor belongs to multiple service channels: a remote invocation
channel, a context notification dissemination channel, and one or multiple sensed
service channels, whose purpose is described below.

– The remote invocation channel is used to allow remote nodes to query con-
text information on the sensed service channels. The context sensor receives
context queries from this channel and forwards it to all sensed service com-
positions. Subsequently, it collects the correspondent context answers and
sends back a reply on the sensor invocation channel.

– The context notification dissemination channel is used to disseminate to one
or more remote nodes context notifications generated by any of the sensed
compositions. The generic sensor simply intercepts any notification gener-
ated by one of the sensed compositions and forwards it to the notification
dissemination channel. The sensor is oblivious to the composition of the
notification dissemination channel. By selecting an appropriate dissemina-
tion channel, notification can be sent point-to-point to a centralized context
monitor, in multicast to multiple nodes, or injected in a publish-subscribe
infrastructure.

– The sensed service compositions channels are one or more channels whose
context is locally monitored by the generic sensor.

Furthermore, the sensor can be also requested to perform periodic readings of
on-demand readable context information and autonomously generate notification
with a configurable period. Therefore, the sensor is prepared to, upon request,
generate context notifications for variables that otherwise, would have to be read
using explicit polling.

Finally, by carefully composing the notification dissemination channel, the
programmer may easily introduce local processing at the sensed node to reduce
network traffic. For instance, by adding a filter service to notification dissem-
ination channel, one can prevent notifications, whose value is below a given
threshold, to be disseminated to the network. In a similar manner, it is possible
to include more sophisticated services in the notification channel, for instance,
to compute the average of multiple notifications.

Building Adaptive Systems with Service Composition Frameworks 767

Application

Context Sensor

Sensed Channel 1

Service Y Service X

Service A Service W

Service B

Service C

Service D

Service Z

Service L

Service K

Sensed Channel 2

Remote
Invocation
Channel

Context
Notification
Dissemination
Channel

Fig. 2. Context sensor

Reconfiguration Monitor. The reconfiguration monitor is a service that in-
teracts directly with the kernel of the composition service framework and exports
a control channel through which it receives multiple reconfiguration commands.
The reconfiguration monitor is depicted in Figure 3. Each reconfiguration com-
mand instructs the monitor to take one or more particular steps of a given re-
configuration sequence. The commands exported by the reconfiguration monitor
are as follows.

– MakeQuiescent : this command instructs the monitor to put one or more
services in a quiescent state, using the MakeQuiescent event.

– Resume: this command instructs the monitor to resume the activity of a
service that was previously put in a quiescent state.

– Store/LoadState: these commands determine the capture of state informa-
tion, and the loading in the end of the reconfiguration. For this purpose the
monitor uses the GetState and SetState events.

– Reconfigure: this command instructs the monitor to reconfigure the compo-
sition of a given service channel. The reconfiguration involves one or more
of the following actions: remove a service from the service channel, to add
a service to a service channel, or to replace an instance of a service by an
instance of an alternative service.

For more details on the reconfiguration monitor and the commands please
refer to [13].

5.4 Kernel Mechanisms

To address requirement 4, the kernel of the RAppia composition framework
includes two adaptation-friendly mechanisms that, to our knowledge, are not
supported by any other composition framework: automatic buffering of events
addressed to services in a quiescent state and automatic update of event routes,
as described below.

768 L. Rosa, L. Rodrigues, and A. Lopes

Application

Reconfiguration Monitor
Service Y Service X

Service A Service W

Service B

Service C

Service D

Service Z

Service L

Service K

Reconfigurable
Channel 2

Reconfigurable
Channel 1

Control
Channel

Fig. 3. Reconfiguration monitor

Event Buffering. As we have discussed previously, in order to reconfigure a
service one may be required to put that service in a quiescent state. Typically,
when in a quiescent state, the service is unable to process new events. Therefore,
the RAppia kernel is able to recognize when a service is in a quiescent state and
buffer all events addressed to that service. As soon as the service is resumed, the
RAppia kernel restarts the delivery of events to the service. This functionality
allows a service to be reconfigured without forcing the entire service channel to
be put in a quiescent state.

Dynamic Update of Event Routes. The RAppia kernel is able to use infor-
mation about which events are handled by each service to optimize the flow of
events in a service composition. In particular, for each type of event, an event
route is created. This ensures that an event is only delivered to the services that
are interested in handling that event.

In an adaptive setting, the composition of a service channel may change in
runtime. Furthermore, RAppia does not require the entire composition to be
set in a quiescent state in order to perform the reconfiguration. Therefore, the
RAppia kernel is built such that event routes are automatically recomputed
when a reconfiguration occurs.

5.5 Discussion

We have implemented a prototype of the RAppia framework with the described
features. This prototype is currently being used to build middleware systems for
mobile networks, whose dynamic settings demand adaptation support. In this
middleware, the RAppia adaptation-friendly services play an important role.
Sensors can be configured to capture different context information, and the re-
configuration monitor allows to develop several different strategies to apply the
reconfiguration actions, that are tailored to the service being reconfigured. More-
over, these mechanisms allowed us to build both a context monitor (to reason

Building Adaptive Systems with Service Composition Frameworks 769

about context information), and an adaptation manager to control the adapta-
tion process. A detailed description of these additional middleware components
is outside the scope of this paper (the interested reader is referred to [13]).

6 Conclusions

Service composition frameworks are a significant component of any adaptive
middleware infrastructure. Given the large experience in the design and imple-
mentation of composition frameworks oriented for communication protocols, it is
interesting to use them as the basis for a adaptation-friendly service composition
framework. This paper has identified a set of requirements imposed by adaptive
middleware on composition frameworks. Subsequently, we have analyzed how
these requirements have already been addressed in the context of protocol com-
position frameworks. Based on this analysis we propose an adaptive friendly
service composition framework that has been obtained by extending an existing
protocol composition framework with an augmented programming model, new
adaptive services and a set of adaptation-friendly kernel mechanisms.

Acknowledgments

The authors are grateful to the anonymous referees for their comments on a
previous version of this paper. This work was partially funded by FCT project
MICAS – Middleware for Context-aware and Adaptive Systems – (POSI/EIA/
60692/2004) through POSI and FEDER.

References

1. Hutchinson, N.C., Peterson, L.L.: The x-kernel: An architecture for implementing
network protocols. IEEE Trans. Softw. Eng. 17(1), 64–76 (1991)

2. Hiltunen, M.A., Schlichting, R.D., Ugarte, C.A., Wong, G.T.: Survivability through
customization and adaptability: The cactus approach. discex 01, 294 (2000)

3. van Renesse, R., Birman, K.P., Maffeis, S.: Horus: a flexible group communication
system. Communications ACM 39(4), 76–83 (1996)

4. Cadot, S., Kuijlman, F., Langendoen, K., van Reeuwijk, K., Sips, H.: Ensemble:
A communication layer for embedded multi-processor systems. In: LCTES 2001.
Proceedings of the ACM SIGPLAN workshop on Languages, compilers and tools
for embedded systems, pp. 56–63. ACM Press, New York (2001)

5. Miranda, H., Pinto, A., Rodrigues, L.: Appia, a flexible protocol kernel supporting
multiple coordinated channels. In: ICDCS-21. Proceedings of The 21st Interna-
tional Conference on Distributed Computing Systems, pp. 707–710. IEEE Com-
puter Society Press, Los Alamitos (2001)

6. Brasileiro, F., Greve, F., Tronel, F., Hurfin, M., Narzul, J.P.L.: Eva: An event-
based framework for developing specialized communication protocols. In: NCA
2001. Proceedings of the IEEE International Symposium on Network Computing
and Applications, pp. 108–120. IEEE Computer Society Press, Los Alamitos (2001)

770 L. Rosa, L. Rodrigues, and A. Lopes

7. Wojciechowski, P., Rütti, O., Schiper, A.: SAMOA: A Framework for a
Synchronisation-Augmented Microprotocol Approach. In: IPDPS 2004. 18th In-
ternational Parallel and Distributed Processing Symposium, vol. 01, pp. 64–74.
IEEE Computer Society, Los Alamitos (2004)

8. Rosa, L., Rodrigues, L., Lopes, A.: Building adaptive services for distributed sys-
tems. Technical report, Dept. Informatics, University of Lisbon (2007)

9. Rütti, O., Wojciechowski, P.T., Schiper, A.: Service interface: a new abstraction
for implementing and composing protocols. In: SAC 2006. Proceedings of the 2006
ACM symposium on Applied computing, pp. 691–696. ACM Press, New York
(2006)

10. Garbinato, B., Guerraoui, R.: Flexible protocol composition in bast. In: ICDCS
1998. Proceedings of the The 18th International Conference on Distributed Com-
puting Systems, pp. 22–30. IEEE Computer Society Press, Los Alamitos (1998)

11. Chen, W.K., Hiltunen, M.A., Schlichting, R.D.: Constructing adaptive software in
distributed systems. In: ICDCS 2001. Proceedings of the The 21st International
Conference on Distributed Computing Systems, pp. 635–643. IEEE Computer So-
ciety Press, Los Alamitos (2001)

12. van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., Karr, D.: Building adap-
tive systems using ensemble. Softw. Pract. Exper. 28(9), 963–979 (1998)

13. Rosa, L., Rodrigues, L., Lopes, A.: A framework to support multiple reconfiguration
strategies. Technical report, Dept. Informatics, University of Lisbon (2007)

14. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Tech-
nical report, Hanover, NH, USA (2000)

15. Acharya, A., Ranganathan, M., Saltz, J.H.: Sumatra: A language for resource-
aware mobile programs. In: Tschudin, C.F., Vitek, J. (eds.) MOS 1996. LNCS,
vol. 1222, pp. 111–130. Springer, Heidelberg (1997)

16. Kwon, Y., Fang, Y., Latchman, H.: Performance analysis for a new medium access
control protocol in wireless lans. Wirel. Netw. 10(5), 519–529 (2004)

17. Kwon, Y., Fang, Y., Latchman, H.: Improving transport layer performance by using
a novel medium access control protocol with fast collision resolution in wireless
lans. In: MSWiM 2002. Proceedings of the 5th ACM international workshop on
Modeling analysis and simulation of wireless and mobile systems, pp. 112–119.
ACM Press, New York (2002)

18. Ketfi, A., Belkhatir, N., Cunin, P.Y.: Automatic adaptation of component-based
software: Issues and experiences. In: PDPTA 2002. Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications,
pp. 1365–1371. CSREA Press (2002)

19. Liu, H.: A component-based programming model for autonomic applications. In:
ICAC 2004. Proceedings of the First International Conference on Autonomic Com-
puting, pp. 10–17. IEEE Computer Society Press, Los Alamitos (2004)

20. Crawley, S., Davis, S., Indulska, J., McBride, S., Raymond, K.: Meta information
management. In: FMOODS 1997. Proceeding of the IFIP TC6 WG6.1 International
Workshop on Formal Methods for Open Object-based Distributed Systems, pp.
193–202. Chapman & Hall, Ltd, Sydney (1997)

21. da Silva e Silva, F.J., Kon, F., Yoder, J., Johnson, R.: A pattern language for
adaptive distributed systems. In: SugarLoafPLoP 2005. Proceedings of the 5th
Latin American Conference on Pattern Languages of Programming, Campos do
Jordäo, Brazil, pp. 19–48 (2005)

22. Chiba, S., Masuda, T.: Designing an extensible distributed language with a meta-
level architecture. In: Nierstrasz, O. (ed.) ECOOP 1993. LNCS, vol. 707, pp. 482–
501. Springer, Heidelberg (1993)

Building Adaptive Systems with Service Composition Frameworks 771

23. Fabre, J., Nicomette, V., Perennou, T., Stroud, R., Wu, Z.: Implementing fault-
tolerant applications using reflective object-oriented programming. Technical re-
port (1995)

24. Agha, G., Frølund, S., Panwar, R., Sturman, D.: A linguistic framework for dy-
namic composition of dependability protocols. In: Dependable Computing and
Fault-Tolerant Systems VIII, IFIP Transactions, pp. 345–363. Springer, Heidel-
berg (1993)

25. Rosa, L., Lopes, A., Rodrigues, L.: Policy-driven adaptation of protocol stacks. In:
ICAS 2006. Proceedings of the International Conference on Autonomic and Au-
tonomous Systems, pp. 5–12. IEEE Computer Society Press, Los Alamitos (2006)

Invasive Patterns for Distributed Programs�

Luis Daniel Benavides Navarro, Mario Südholt,
Rémi Douence, and Jean-Marc Menaud

OBASCO project; EMN-INRIA, LINA
Dépt. Informatique, École des Mines de Nantes

4 rue Alfred Kastler, 44307 Nantes cédex 3, France
{lbenavid, sudholt, douence, jmenaud}@emn.fr

Abstract. Software patterns have evolved into a commonly used means
to design and implement software systems. Programming patterns, ar-
chitecture and design patterns have been quite successful in the context
of sequential as well as (massively) parallel applications but much less so
in the context of distributed applications over irregular communication
topologies and heterogeneous synchronization requirements.

In this paper, we propose a solution for one of the main issues in
this context: the need to complement distributed patterns with access to
execution state on which it depends but that is frequently not directly
available at the sites where the patterns are to be applied. To this end
we introduce invasive patterns that couple well-known computation and
communication patterns like pipelining and farming out computations
with facilities to access non-local state. We present the following con-
tributions: (i) a motivation for such invasive patterns in the context of
a real-world application: the JBoss Cache framework for transactional
replicated caching, (ii) a proposal of language support for such invasive
patterns, (iii) a prototypical implementation of this pattern language us-
ing AWED, an aspect language for distributed programming, and (iv)
an evaluation of our proposal for refactoring of JBoss Cache.

1 Introduction

Software patterns have proven a versatile tool for program development, be it
for the development of application designs [15], architecture descriptions [24]
or program implementations [14]. Design patterns have been very successful in
the domain of sequential, in particular object-oriented applications. Similarly,
pattern-based development methods have been extensively applied in the par-
allel domain for the derivation and implementation of massively parallel al-
gorithms [24,21,9]. However, pattern-based approaches have been much less
successful in the domain of distributed programming, in particular, if they are de-
fined over irregular communication topologies and subject to heterogeneous syn-
chronization constraints. Consequently, patterns for distributed programming

� Work partially supported by AOSD-Europe, the European Network of Excellence in
AOSD (www.aosd-europe.net)

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 772–789, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Invasive Patterns for Distributed Programs 773

(see, for instance, patterns for distributed enterprise information systems and
grid applications [20,10,14]) are often expressed as mere programming recipes
that are not backed up by concrete architecture or implementation entities that
can be used and reused as building blocks for applications.

In this paper we investigate a major reason for the difficulty in applying
programming patterns, that embody common computation and communication
patterns, to distributed applications: frequently, applications of such patterns
in realistic contexts depend on information on the execution state that is not
directly available when the pattern is to be applied. This is, for instance, the
case in two frequent cases: (i) in legacy contexts where patterns could be used
to improve the application structure but in which instructions for communi-
cation instructions and manipulation of related execution state are frequently
scattered over numerous places and (ii) distributed applications that have been
designed using less flexible abstractions than provided by communication and
computation patterns.

In this paper we introduce invasive patterns for distributed programming.
Such patterns essentially provide well-known regular computation and commu-
nication patterns but provide a built-in abstraction for access to non-local exe-
cution state whose access is required to enable pattern applications. We provide
evidence that techniques from Aspect-Oriented Programming (AOP) [1] can be
harnessed to augment patterns by structure access to such non-local state.

Concretely we present the following contributions. First, we present a de-
tailed motivation for invasive patterns and corresponding aspect-oriented sup-
port based on a detailed analysis of the use of patterns in a real-world distributed
application: the JBoss Cache strategy for replication in the context of trans-
actions. Second, we introduce a pattern language that allows to concisely de-
fine invasive variants of well-known patterns for distributed applications. Third,
we briefly sketch a prototypical implementation of invasive patterns using the
AWED system for explicit distributed aspect-oriented programming. Fourth, we
give an evaluation of our approach by discussion how invasive patterns can be
used to improve the structure of JBoss Cache.

The paper is structured as follows. In Sec. 2, we introduce the notion of inva-
sive patterns and motivate it in a real-world application. Our pattern language
is introduced in Section 3. In Sec. 4, we describe our prototypical implementa-
tion of this pattern language using AWED. Sec. 5 presents the evaluation of our
approach. Related work is discussed in Sec. 6. Finally, Sec. 7 gives a conclusion
and discusses future work.

2 Motivation

In this section we first present modularization problems of pattern-like compu-
tations in JBoss Cache [17], a large-scale real-world framework for transactional
replicated caching. We then introduce the notion of invasive patterns that we
propose as a means to resolve such modularization problems.

774 L.D. Benavides Navarro et al.

2.1 Pattern-Like Structures in JBoss Cache

We have analyzed the occurrences of pattern-like computation structures and the
dependencies of such pattern-like structures on the underlying execution state in
JBoss Cache, an open source implementation of a replicated transactional cache
over an J2EE-based communication infrastructure. In the following we briefly
describe the JBoss Cache framework and the results of our analysis of software
patterns that are used implicitly in this infrastructure.

JBoss Cache is a large object-oriented framework implemented in Java that
consists of more than 50 thousand lines of code. Basically the JBoss Cache
implementation consists of two main parts: (i) a main class TreeCache that
represents the main data structure, a tree with a hash table on each leaf, that is
replicated on each node (host) in the cache cluster and (ii) a set of filters that is
used to implement the major part of the behavior of non-functional requirements,
mainly transactions and data replication. An interception mechanism is used to
transfer control between the classes implementing the data structure and the
filters. Concretely, each call to the TreeCache API is first transformed into a
method call object using a reflection mechanism. Once this object is created, it
is passed to a chain of filters where each filter adds some behavior, e.g., optimistic
locking is added by the transaction filter. Eventually, the filtered method call is
performed.

The current production version (1.4) of JBoss Cache conceptually uses an
architecture that can be expressed nicely in terms of patterns using, e.g., a
pipeline pattern for transaction control and a farm pattern for replication actions
(Here and in the rest of the paper we assume the cache to be configured for
transactions with pessimistic locking and a two phase commit protocol). Figure 1
presents a high-level pattern-based view of the corresponding system structure
of JBoss Cache. In the figure, a transaction is triggered by a specific method
call represented by the first node in the pattern. Then successive calls to get,
remove or put methods on the cache are executed and the information is stored
for further replication. When a particular value is not present in the cache, the
cache looks for the value in a group of selected neighboring nodes, its so-called
buddies, illustrated by the three edges starting in the second node of the figure.
Once the end of a transaction is reached, the originating cache engages a two
phase commit protocol. In such a protocol the originating cache sends a prepare
message with the transaction control information (edges numbered 1 in the right
part of the figure), followed by answers from all buddies confirming agreement
or non agreement (edges numbered 2). Finally, the originating cache sends a
final commit or a rollback message depending on the answers it received (edges
numbered 3). Note that in this interaction we can identify, at least, two well
separated groups of hosts, one for the search of values at buddy nodes and the
other for the replication behavior from a node to other nodes.

In previous work [6] we have analyzed the complexity of the code structure of
the (non-pattern based) implementation of the JBoss Cache framework: we have
shown that replication and transaction instructions are, in particular, widely

Invasive Patterns for Distributed Programs 775

Fig. 1. Architecture of transaction handling with replication in JBoss Cache

scattered over the code base and tangled with one another in numerous places.1

Even though JBoss Cache conceptually is characterized by a pattern-based struc-
ture as shown in Fig. 1, the current implementation does not allow conventional
patterns for distributed systems to be applied due to the scattering and tangling
of code these functionalities are subject to. The TreeCache class consists of 3802
lines of code (LOC), of which more than 280 LOC are relevant for transactions.
The interceptor package exhibits similar quantitative characteristics: the pack-
age consists of 5099 LOC and more than 137 LOC are related to transactional
behavior and are not included in the dedicated transaction interceptor. A de-
tailed qualitative analysis of such code leads to the identification of three basic
problems:

1. Transactional and replication behavior depends on state that is stored in dif-
ferent classes. Such state is modified in scattered pieces code that, e.g., reify
the current transactional state as mentioned above so that it can later be
tested in another class in order to decide which replication action to perform.

2. The relationships governing the interplay between the main concerns, trans-
actions and replication, are not made explicit anywhere in the code. Instead,
scattered pieces of code implicitly coordinate these concerns, thus generating
tangled code and breaking the modularization aimed at by the JBoss Cache
filter mechanisms.

3. JBoss cache includes several distribution-related concerns (e.g., replication,
cache loaders and buddy lookup) that require communication between dif-
ferent groups of hosts. Group overlapping and interactions between different
groups generate additional tangling.

2.2 Source Code Representation of Pattern-Like Structures

These problems are clearly apparent in the source code of JBoss Cache. In ab-
stract terms, a cache behaves as follows. A chain of interceptors for the support
1 This analysis has been conducted on JBoss Cache version 1.2 but remains valid for

the current production version 1.4 as shown in [23].

776 L.D. Benavides Navarro et al.

of transactional and replication behavior is created when the cache is initialized.
When a transaction-related action occurs, a method-call object of a correspond-
ing type is created using the JAVA reflection framework, which is then passed
through the chain of interceptors. A ”get” request, for example, may be processed
by filter to check its buddies if a specific data is in their cache, by the transactions
interceptor to control transactional behavior, and by the locking interceptor to
lock the tree cache data structure accordingly. The so-called replication inter-
ceptor, finally, performs (most of) the two-phase commit protocol among caches
by first sending a prepare message, followed by a rollback or commit message
depending on the result of the prepare phase. This code architecture is problem-
atic because the manipulation of state that is relevant for replication operations
as well as the protocols governing transactional and replication behavior is de-
termined by scattered pieces of code whose joint effects during execution, i.e.,
the correct implementation of transactional behavior and replication, are very
difficult to apprehend from the code structure.

Figure 2 shows a piece of code of the main filter method invoke of the
DataGravitationInterceptor class that is responsible for the so-called data
gravitation concern, i.e., buddy lookup. This method clearly exhibits the prob-
lems stated above, providing evidence of tangling of three concerns: replication,
transactions and buddy lookup. The code uses a common idiom to address trans-
actions control inside a switch instruction (lines 7 to 21). The right branch in
the switch statement is taken depending on static information on the execution
state, e.g., a configuration-time choice between optimistic and pessimistic lock-
ing, and dynamic information about the execution state, e.g., the dynamic type
of the current processed method call. There, in order to calculate the method id
(see line 5) the application relies on an ad-hoc mapping that is defined in the
class MethodDeclarations. Similarly, the choice between optimistic and pes-
simistic locking is made at configuration time inside the TreeCache class as well
as part of the class InterceptorChainFactory (this choice in turn affects at
runtime the configuration of the dynamically created chain of filters).

Note that the corresponding piece of code is found inside the filter class
DataGravitation and uses data that is calculated in many different places,
thus expliciting the problem 1 above. The kind of idiom involving switch state-
ments (that clearly represent a mismatch between the conceptual pattern-based
architecture and its concrete implementation) is scattered over multiple places
in the implementation. We have found 93 places where such a switch action is
used and more than 29 places where it occurs in the context of replication oper-
ations implying a one to many communication between caches (thus providing
testimony for the problems 1 and 2 introduced above).

Furthermore, the DataGravitation class plays an unexpected role in the two
phase commit protocol. A method of type commitMethod is processed in order to
send a commit message on those caches that are not part of the current buddy
group, see line 37 in the docommit method (i.e., being subject to problem 3
above). Remember that the DataGravitation class was supposed not to con-
trol the transactional behavior or the replication of transactions which, should
normally, be performed by the transactions and replication filters.

Invasive Patterns for Distributed Programs 777

1 //----- Piece of code in the invoke method of
2 //----- DataGravitationClass
3 ���

4 {
5 ������ (m.getMethodId())
6 {
7 �	�
 MethodDeclarations.prepareMethod_id:
8 �	�
 MethodDeclarations.optimisticPrepareMethod_id:
9 Object o = ���
�.invoke(m);

10 doPrepare(getInvocationContext().getGlobalTransaction());
11 �
��� o;
12 �	�
 MethodDeclarations.rollbackMethod_id:
13 transactionMods.remove(
14 getInvocationContext().getGlobalTransaction());
15 �
��� ���
�.invoke(m);
16 �	�
 MethodDeclarations.commitMethod_id:
17 doCommit(getInvocationContext().getGlobalTransaction());
18 transactionMods.remove(
19 getInvocationContext().getGlobalTransaction());
20 �
��� ���
�.invoke(m);
21 }
22 }
23 �	��� (Throwable throwable)
24 {
25 transactionMods.remove(
26 getInvocationContext().getGlobalTransaction());
27 ����� throwable;
28 }
29

30 //---- The docommit method in DataGravitation class
31 ����	�
 ���� doCommit(GlobalTransaction gtx) ������ Throwable
32 {
33 �� (transactionMods.containsKey(gtx))
34 {
35 �� (log.isTraceEnabled())
36 log.trace("Broadcasting commit for gtx " + gtx);
37 replicateCall(getMembersOutsideBuddyGroup(),
38 MethodCallFactory.create(
39 MethodDeclarations.commitMethod,
40
� Object[]{gtx}),
41 syncCommunications);
42 }
43
��

44 {
45 �� (log.isTraceEnabled())
46 log.trace(
47 "Nothing to broadcast in commit phase for gtx " + gtx);
48 }
49 }

Fig. 2. Tangled code of a two phase commit (2PC) protocol inside the invoke method
of the DataGravitationInterceptor class

2.3 Invasive Patterns in a Nutshell

Dependencies as those motivated above for JBoss Cache between transaction-
related actions and replication operations cannot simply be modularized using
standard patterns for workflow-related computations, such as pipelining, farm-
ing out or gathering computations as illustrated in Fig. 3, where circles denote
calculations that possibly take place on different hosts and edges denote commu-
nication. In fact, taking scattering and tangling of transactions and replication

778 L.D. Benavides Navarro et al.

Fig. 3. Basic patterns

into account requires does not fit the common interpretation of such patterns in
which each circle denotes a well-defined entity, in our motivating example some
nicely modularized piece of code within JBoss Cache.

In such cases effective support for a pattern-based programming style should
allow the definition of patterns to include accesses to the data it depends on but
that is defined at other places in the underlying distributed program and allow
such patterns to be applied possibly at numerous places in a program. Because
crosscutting of non-local execution state that enables such pattern applications is
at the heart of such effective support, Aspect-Oriented Programming [18,1] seems
a promising approach for the modularization of patterns and the corresponding
data accesses.

We pursue this idea in this paper on the programming level by extending
patterns with a notion of aspects to modularize such crosscutting accesses. The
resulting notion of invasive patterns is illustrated in Fig. 4 for the case of a
gather pattern. On the three nodes on the left hand side, different pointcuts
(represented by dashed lines) are used to access information that is then prepared
by “source” advice (represented by the filled rectangles) to be sent to the right
hand side node. Once all relevant data has been passed to the right hand side

Fig. 4. Invasive patterns

Invasive Patterns for Distributed Programs 779

node, a “target” advice is used to integrate the transmitted data with an existing
or new computation on the target node. In order to support the declarative
definition of such crosscutting accesses, we leverage results on so-called stateful
pointcut languages [13] that enable matching of sequences of execution events
to be defined using expressive languages, in particular finite-state automata.

Besides a definition of basic invasive patterns a suitable notion of pattern com-
position is needed. Reconsider the (abstract) architecture of transaction handling
with replication in JBoss Cache, see Fig. 1: this architecture can naturally be
expressed in terms of compositions of the three basic patterns introduced above,
where the steps denoted 1–3 in the figure correspond, for instance, to two ap-
plications of the farm pattern and one application of the gather pattern. Our
approach supports the compositional construction of such architectures from the
basic patterns on the programming and the implementation level. As discussed
in Sec. 2.1, this architecture is essentially hidden in the actual JBoss implemen-
tation. Our approach can therefore be seen as a means to make explicit such
architectures, and thus help program understanding and maintainability.

3 Pattern Language

A crucial issue concerning invasive patterns as motivated before is how the differ-
ent activities (pointcut matching, local and remote advice) are synchronized with
one another. In this section, we first discuss corresponding design choices and
then present our language for the definition of invasive architectural patterns.

3.1 Design Choices

The definition of distributed algorithms using patterns over a state-based pro-
gramming paradigm essentially depends on the correct synchronization on the
different parts of invasive patterns and between different invasive patterns. Pat-
tern-based computations can be synchronized roughly at three different levels:

1. Synchronization within an invasive pattern. Most basically, target advice is
executed only after a rendez-vous synchronization of all source computations.
In the case of the gather-pattern shown in Fig. 4, the target computation
is started only after the three target hosts have “agreed” to trigger it.
Second, target advice may be executed in a synchronous or asynchronous
fashion. Synchronous execution of parts of the pipe pattern of Fig. 3a cor-
responds to a fully sequential (a.k.a. batch) computation, while its asyn-
chronous execution corresponds to a pipelined computation. We support
both behaviors.

2. Computations involving consecutive executions of patterns may be synchro-
nized with one another. The gather pattern may, for instance, be synchro-
nized with the execution of the following pattern that is represented in the
right hand side node by the pointcut (the dotted lines), the source advice
(the small rectangle) and the arrow leaving the node to the right. Execution
of a follow pattern on a node n must obviously start after control of the pre-
vious pattern has entered n (otherwise the two pattern executions could not

780 L.D. Benavides Navarro et al.

be said to be consecutive) but may be reasonably started either when the
target advice of the previous pattern is started or when it terminates. In this
paper we only consider the synchronous case, i.e., execution of follow pat-
terns start when the target advice finishes. Our prototype implementation
already supports both options, though.

3. Most generally, synchronization constraints may be imposed on arbitrary
segments of pattern compositions. Such general constraints are interesting,
e.g., because computations may be executed on the same host and therefore
give rise to problems, such as race conditions. Such synchronization strate-
gies cannot, however, be defined simply in terms of individual patterns as
considered here.

Summarizing, we provide in this paper explicit support for intra-pattern syn-
chronization and synchronization between consecutive pattern executions. We
do not, however, provide general synchronization strategies over pattern com-
positions because they are difficult to comprehend and may easily lead to per-
formance bottlenecks or even deadlocks. We envision that specific properties
over pattern compositions can be analyzed and enforced in terms of the more
restricted means for synchronization we introduce here. This issue is, however,
beyond the scope of the present paper.

3.2 Syntax and Informal Semantics

We are now ready to introduce the pattern language we have designed that real-
izes the above design choices. Figure 5 shows the syntax of our pattern language
(we have omitted details for the sake of simplicity).

The pattern constructor patternSeq takes as argument a list G1 A1 G2 A2

. . . Gn of alternating group and aspect definitions. Each triple Gi Ai Gi+1 in
this list corresponds to a pattern application that uses the aspect Ai to trigger
the pattern in a source group Gi and realize effects in the set of target hosts
Gi+1. A group G is either defined as a set of host identifiers H or through
a pattern constructor term itself. In the latter case, the group is defined as
the source or target group of the constructor term depending on the argument
position the term is used in. This constructor enables to define the basic patterns
shown in Fig. 3: pipe as a patternSeq from a single host to another, farm as
a patternSeq from a single host to several hosts and gather as a patternSeq
from several hosts to a single one. Pattern compositions can be defined with more
complex patternSeq terms. For instance, the left hand side of Figure 6 defines a

P ::= patternSeq G1 A1 G2 A2 . . .Gn

G ::= H G | P G | ε
A ::= aspect { around((H , Id*)*): PCD SourceAdvice [sync] TargetAdvice }
PCD ::= call(MSig) | target(Id) | args(Id+)

| PCD && PCD | PCD || PCD | !PCD
| Seq

Fig. 5. Pattern language

Invasive Patterns for Distributed Programs 781

Fig. 6. Pattern Compositions

composition pipe then farm, and its right hand side defines a composition pipe,
farm then gather. These examples make clear it is easy to define sophisticated
compositions akin to the architecture of transaction handling in JBoss Cache
(cf. Fig. 1).

Aspects A that define the behavior of invasive patterns specify a pointcut PCD
that allows to modularize crosscutting code that triggers a pattern, and define a
source advice and a target advice executed respectively on the source and target
groups of a pattern. Advice can be parametrized by source hosts H and bound
values (see args below). An advice is a standard block for code, but a source
advice can call the matched base call with the proceed keyword. Otherwise, the
base call triggers the aspect but the execution of the corresponding base method
is skipped. When a sync annotation is used to qualify target advice, the base
program execution on source hosts is not resumed before the end of the target
advice. The default behavior is asynchronous execution.

We consider pointcut definitions that, for presentation purposes, are essen-
tially restricted to matching of method call joinpoints, may extract target ob-
jects with target and arguments of calls with args and use logical compositions
of pointcuts. Following the paradigm of stateful pointcuts [13,6] (and unlike As-
pectJ [4,19]) pointcuts may match sequences (non-terminal Seq) of calls in the
base program execution. We omit the syntax of sequences for now, but they are
basically defined in terms of a finite-state automaton by declaring its states and
by labelling state transitions with pointcuts.

Let us consider a small example. The aspect in Figure 7 profiles session cre-
ation. When the method login is called the local advice performs it (through a
call to proceed()) and the target advice increments the integer counter defined
within the aspect. This aspect can be applied using patternSeq to two hosts so
that sessions on the first host are counted on the second.

1 	��
�� Profiling {
2 �� sessions=0;
3 	����(): �	��(* *.login()) { ����

�(); } { sessions++; }
4 }

Fig. 7. A Session Profiling Aspect

782 L.D. Benavides Navarro et al.

4 Implementation

In order to implement the pattern language presented in the previous section,
support for three main mechanisms is necessary: (i) aspects providing a modular
abstraction for invasive access on the source hosts and triggering activities on
target hosts, (ii) flexible means for synchronization within individual patterns
and between consecutive pattern executions, and (iii) the concise definition of
the communication topologies of patterns.

Mainstream sequential AOP languages, in particular AspectJ [19], do not
fit well these requirements because they do not include any specific support for
distribution and concurrency and are therefore subject to well-known deficiencies
if used for the modularization of distribution concerns (as exposed, e.g., by Soares
et al. [22]). Concretely, with regard to invasive patterns such aspect languages
would require to split the definition of patterns into different, at the application-
level unrelated aspects that have to be manually deployed on different hosts.

We have implemented invasive patterns using a recent approach to AOP for
distributed applications, Aspects with Explicit Distribution (AWED) [6,5], which
provides direct support for most of the necessary features and allows to ac-
commodate the remaining ones based on its native abstractions. The AWED
language has been designed as an aspect language for the modularization of
crosscutting concerns in distributed systems. In general terms, AWED allows to
define pointcuts that match sequences of execution events on different hosts in a
distributed systems that trigger advice that is executed on potentially different
hosts.

Figure 8 illustrates the two main features of the language: remote pointcuts
and advice. Pointcuts essentially allow to match sequences of execution events
that occur on different hosts. Hosts can be referred to using absolute addresses
but can also be defined relative to the host on which an aspect is deployed
(term localhost, in the figure the host colored in gray). Remote advice can be
triggered on other hosts using the on specifier. Besides the host specifications
available for pointcut definitions, advice execution can also be specified to take
place on the host where the pointcut has been matched (term jphost). Pointcuts

Remote pointcut

on(localhost)

on
(j
ph
os
t)

on(123.34.7.9)

on(group1)

Fig. 8. Remote pointcuts and advice in AWED

Invasive Patterns for Distributed Programs 783

and remote advice execution may depend on explicitly defined groups of hosts.
In pointcuts, such groups may limit matching of execution events to sets of hosts;
as to advice executions, groups allow to execute advice on several hosts. Further-
more, AWED allows to execute pieces of advice synchronously or asynchronously
with the execution of the base application and with other aspects.

A farm pattern can be mapped to an AWED aspect having a pointcut expres-
sion as

call(* *.login()) && host(”sources”) && on(”targets”),

there, the call pointcut matches calls to login method. The pointcut host(”sour-
ces”) matches the join points (events) that appear in a host that belongs to
the sources group. Finally the pointcut on(”targets”) triggers the execution of
the advice in hosts that belong to the targets group. AWED also supports the
Seq pointcut that allows to specify finite-state automata that permit to match
sequences of join points in distributed applications. The sequence constructor
is used to map direct uses of Seq pointcuts of our pattern language and to
implement rendez-vous synchronization in gather-like patterns. We have devel-
oped a formally-defined transformation from our aspect language into executable
AWED programs.2 More information on the concrete translation of programs
expressed using the pattern language into AWED programs can be found along
with substantial examples in the following evaluation section.

5 Evaluation

In this section we evaluate our approach by presenting how invasive patterns
can be used to restructure transaction handling and replication in JBoss Cache
We first how to implement these concerns using the proposed pattern language,
thus making explicit their pattern-based structure. We then briefly discuss the
resulting implementation in AWED. Third, we qualitatively evaluate the result-
ing pattern-based implementation by discussion the difference in conciseness of
the original and new implementation. Finally, we briefly discuss first bench-
marking results we have performed by executing the refactored implementation
of JBoss Cache using the current AWED implementation [5].

5.1 JBoss Cache Revisited

Invasive patterns allow to concisely express the essentials of the pattern-based
architecture for transaction handling and replication in JBoss Cache as shown
in Fig. 1. Concretely, we have implemented support for transactions with pes-
simistic locking and the two phase commit protocol using invasive patterns.

The corresponding solution is formulated in terms of a nested composition
involving four pattern expressions, see Fig. 9. First, we apply a pipe pattern to
be able to relate the start of transactions with the replication operations, i.e., the
2 Note to reviewers: this formal transformation, that cannot be described here because

of lack of space, is available on request.

784 L.D. Benavides Navarro et al.

1 gCaches = {H1, H2, H3}
2 ���
([h],
3 Atransac,
4 �	��(
5 �	��
�(
6 �	��([h], Aprepare, ��� gCaches-[h]),
7 Apresp,
8 [h]),
9 Acommit,

10 gCaches-[h])
11);

Fig. 9. Pattern-based definition of the JBoss Cache two phase commit

start node and the final replication group, respectively, of Fig. 1. Once a commit
is encountered, a farm pattern is used to farm-out the prepare phase of the two
phase commit protocol. Then, a gather pattern is used to collect the answers
from the involved buddy caches. Finally, after all answers have been received we
use again a farm pattern to distribute the final decision of commit or rollback.
The code in the figure defines this algorithm for three replicated caches. Note
that replication can be triggered from any of the three caches. Once the triggering
node (h in the algorithm) is selected the expression gcaches-h represents the
group of caches without the triggering one.

Figure 10 shows the pattern-defining aspect Aprepare that farms out the
prepare information of the two phase commit protocol. Occurences of calls to the
preparemethod are matched and executed (because of the call to proceed in the
source advice). On the target hosts, the target advice executes the prepare phase
followed by the invocation of an agreement or disagreement method, depending
of the answer of the target caches. The aspect takes care of transactions that

1 	��
�� Aprepare {
2 org.jboss.cache.TreeCache tc = CacheRegistry.getInstance().getCache();
3

4 	����(DataStorage d, String txId):
5 �	��(* PrepareHelper.send(..)) && 	���(d,s) &&
6 !�����(�	��(TransactionManager.prepare(..)))
7

8 // Source advice
9 { ����

�(); }

10

11 // Target advice
12 { TransactionManager tm = TransactionManager.getInstance();
13 PrepareHelper ph =
� PrepareHelper();
14 ���{
15 tm.prepare(d, txId, tc);
16 ph.respAgree(txId);
17 } �	���(Exception e) {
18 ph.respNotAgree(txId);
19 }
20 }
21 }

Fig. 10. 2PC invasive aspect Aprepare

Invasive Patterns for Distributed Programs 785

1 	�� 	��
�� Aprepare_AWED {
2 org.jboss.cache.TreeCache tc = CacheRegistry.getInstance().getCache();
3

4 Group[] targetGs = {
� Group("h1"),
� Group("h2"),
� Group("h3")};
5

6 ������� sourcePrepareCall(TransactionData d, String txId):
7 �
�(init:�	��(* Atransac.triggerNext()),
8 pcd: �	��(* PrepareHelper.send(..)));
9

10 ������� targetPrepareCall(Transaction tx)(TransactionData d, String txId):
11 �	��(* PrepareHelper.send(..));
12

13 // source advice
14 	����(TransactionData d, String txId): sourcePrepareCall(d, txId) && ����(���	�����) {
15 ����

�();
16 }
17

18 // target advice
19 	��
�(TransactionData d, String txId): targetPrepareCall(tx) && �(targetGs) {
20 TransactionManager tm = TransactionManager.getInstance();
21 PrepareHelper ph =
� PrepareHelper();
22 ���{
23 tm.prepare(Tx.getTransacData(), Tx.getId(), tc);
24 ph.respAgree(txId);
25 } �	���(Exception e) { ph.respNotAgree(txId); }
26 ���� triggerNext() {};
27 }

Fig. 11. 2PC invasive AWED aspect for the creation of the transactional behavior

perform nested calls in the prepare method using the cflow pointcut construct:
this constructs forbids new replication actions within the dynamic extent of an
open call to the prepare method.

Implementation using AWED. The result of the transformation3 of the pattern
program shown in Fig. 9 is a set of AWED aspects that implement the replication
under pessimistic locking. Each aspect of the pattern-based solution is translated
into an AWED aspect that modularizes source and target parts of a pattern
expression. Figure 11 presents the resulting implementation of the Aprepare
pattern-level aspect. In this case the generated source pointcut uses a sequence
to explicitly relate the relevant transaction-related event to the call send that
initiates replication, i.e., farming out of the prepare action. The target advice
executes the prepare method in the target caches and calls an respAgree or
respNotAgree method to yield the answer.

5.2 Qualitative and Quantitative Evaluation

In Section 2 we have motivated that the current implementation of JBoss Cache
is subject to problems concerning modularization, in particular, scattered and
tangled code for the control of the transaction and replication concerns. Our so-
lution improves the implementation in all those respects. First, each crosscutting
3 We have applied the transformation manually for this evaluation but its automation

is unproblematic.

786 L.D. Benavides Navarro et al.

concern is now modeled as an aspect and the choreography and interaction is de-
fined without crosscutting by means of the pattern language (and AWED aspects
on the implementation level). Second, distribution issues, coordination and com-
position of patterns are easily identifiable and modifiable in our solution. These
advantages appear clearly in the Aprepare aspect: the source pointcut clearly
defines the exact context (the sequence of method calls matched in the source
pointcut) required to trigger the replication; furthermore, the related actions
relevant to replication on different hosts are modularized in the aspect. Overall,
our solution facilitates understanding and is easier to extend.

We have measured how our refactored version of JBoss Cache compares quan-
titatively to the plain JBoss Cache solution. For the corresponding experiments,
we have considered transactions with pessimistic locking in JBoss cache. In the
original code, there are more than 2674 LOC in 17 classes related to this concern.
In our solution, the code consists of 532 LOC in 11 well-modularized aspects and
classes: roughly a reduction of 80% of complexity (in terms of LOC). Most to
this reduction is due to the fact that the transaction and communication proto-
col that is scattered and duplicated in switch structures is now re-factorized in
well modularized entities.

6 Related Work

As to the best of our knowledge there is no directly related work that considers
extensions to standard communication and computation patterns to accommo-
date crosscutting data accesses using AOP techniques. However, there are many
approaches that are related in a weaker sense, in particular, approaches that use
AOP for support for pattern implementations, sequential AOP systems that have
been used with distributed infrastructures and more generally pattern-based ap-
proaches in distributed systems. We consider these groups of approaches in the
following.

There have been several recent articles on support for the implementation
of patterns using AOP. Hannemann and Kiczales in [16], in particular, show
that several quality attributes, such as locality of definition and code reusability,
of GoF pattern implementations can be improved through usage of AspectJ.
Technically, these improvements are achieved by representing some roles in the
pattern more concisely using AO abstractions. This is quite a different endeavor
from ours that focuses on AOP as a support technology for the definition of
an extended notion of patterns. However, the results on sequential pattern im-
plementations using AOP should have analogues for distributed patterns and
should be applicable to some extent to the invasive patterns we advocate.

A number of approaches have been put forward that use sequential AOP sys-
tems like AspectJ for the modularization of crosscutting functionalities in dis-
tributed and concurrent applications. These approaches — such as Eric Tanter’s
work on ReflexD [25], recent work on implementations of concurrency opera-
tors [11] and the approach of Concurrent Event-Based AOP [12] — while in
principle be able to express invasive patterns as we have proposed, can only do

Invasive Patterns for Distributed Programs 787

so by modularizing crosscutting functionalities using separate aspects for each
node in a distributed system. Our approach, through its pattern language but
also on the implementation level through transformation into AWED, is much
more declarative by directly expressing distribution-relevant relationships within
single aspects, thus resulting in more concise programs that facilitate program
understanding.

In the domain of distributed applications, several pattern catalogues have been
proposed [7,20,2]. Such patterns are particularly widespread in component-based
systems, e.g., the CORBA and J2EE platforms [8,2]. These component systems
provide communication and concurrency mechanisms that are used to implement
patterns, e.g., for the implementation of asynchronous broadcast services. How-
ever, these programming abstractions are not made explicit in the architectural
description that defines the interconnection properties and, in contrast to our
approach, no explicit means for the embedding of pattern-like interconnection
structures in crosscutting contexts is provided.

In the more specific domain of (massively) parallel applications architectural
and programming patterns are also quite popular. Much work has been done, for
instance, on so-called skeletons following Cole’s seminal work [9]. Recent work
has focused on the application of such pattern-based parallelism to larger-scale
imperative applications (see, e.g., [24,21]). Most of these approaches essentially
rely on an underlying regular communication topology and use of a homogeneous
synchronization model, two properties that do not hold for the applications we
are targeting. Furthermore, crosscutting accesses to execution state on which
pattern applications are not addressed explicitly in such approaches.

Finally, several authors have proposed configurable frameworks to address the
implementation of complex communication protocols by composition of simpler
protocol entities (see, e.g., [26]). However such approaches address protocol
composition at a much lower level of abstraction (e.g., TCP, UDP connections)
than we consider.

7 Conclusion and Future Work

Software patterns have proven a versatile tool for program development. They
facilitate application development and maintenance by raising the abstraction
level of descriptions for software artifacts. Patterns have been very successful
for sequential object-oriented applications, as well as for massively parallel algo-
rithms. However, pattern-based approaches have been much less successful in the
domain of distributed programming that are defined on irregular topologies and
subject to inhomogeneous synchronization requirements. In this papers we have
identified a major reason for the difficulty in applying programming patterns
to distributed applications: applications of such patterns frequently depend on
information that is not locally available where the pattern is to be applied.

In this paper we have proposed a solution: invasive patterns. Such patterns
provide well-known computation and communication patterns (e.g., pipe, farm
and gather) but also offer a built-in abstraction based on AOP for access to

788 L.D. Benavides Navarro et al.

non-local state. We have motivated our approach in the context of JBoss Cache,
a real-world infrastructure for transactional replicated caching. We have intro-
duced a language for defining and composing invasive patterns that has been
implemented by a translation into AWED, a system for explicitly distributed
AOP. Finally, we have evaluated our approach qualitatively and quantitatively
by presenting a non-trivial pattern-based refactoring of parts of JBoss Cache.

Our proposal provides a solid basis for numerous future work. First, invasive
patterns currently support static only topologies, but AWED supports groups of
hosts that evolve dynamically. Our language could easily be extended to benefit
from this mechanism. Second, our semantics is a simple translation to AWED so
it offers many optimization opportunities (e.g., aspects deployment on specific
hosts, pattern composition specialization). Finally, patterns raise abstraction
level of software and are prime candidates for formal methods (properties to
be analyzed include communication protocol compliance, absence of deadlock,
topology invariants, fault tolerance).

References

1. Akşit, M., Clarke, S., Elrad, T., Filman, R.E. (eds.): Aspect-Oriented Software
Development. Addison-Wesley Professional, Reading (2004)

2. Alur, D., Malks, D., Crupi, J., Booch, G., Fowler, M.: Core J2EE Patterns (Core
Design Series): Best Practices and Design Strategies. Sun Microsystems Inc., Moun-
tain View, CA (2003)

3. AOSD 2006. Proceedings of the 5th ACM Int. Conf. on Aspect-Oriented Software
Development ACM Press (March 2006)

4. AspectJ home page, http://www.eclipse.org/aspectj
5. Awed home page, http://www.emn.fr/x-info/awed
6. Navarro, L.D.B., Südholt, M., et al.: Explicitly distributed AOP using AWED. In:

AOSD 2006 (2006)
7. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-

Oriented Software Architecture: A System of Patterns. John Wiley and Sons Ltd.,
Chichester (1996)

8. Open Management Group (OMG). CORBA components, version 3
9. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.

MIT Press, Cambridge (1989)
10. IBM Corp. IBM Patterns for e-business Resources,

http://www-128.ibm.com/developerworks/patterns/library
11. Cunha, C.A., Sobral, J.L., Monteiro, M.P.: Reusable aspect-oriented implementa-

tions of concurrency patterns and mechanisms. In: AOSD06 AOSD (2006)
12. Douence, R., Le Botlan, D., Noyé, J., Südholt, M.: Concurrent aspects. In: Proc.

of GPCE 2006, ACM Press, New York (2006)
13. Douence, R., Fradet, P., Südholt, M.: A framework for the detection and resolution

of aspect interactions. In: Batory, D., Consel, C., Taha, W. (eds.) GPCE 2002.
LNCS, vol. 2487, pp. 173–188. Springer, Heidelberg (2002)

14. Easton, J., et al.: Patterns: Emerging Patterns for Enterprise Grids. IBM Redbooks
(June 2006), http://publib-b.boulder.ibm.com/abstracts/sg246682.html

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading (1994)

http://www.eclipse.org/aspectj
http://www.emn.fr/x-info/awed
http://www-128.ibm.com/developerworks/patterns/library
http://publib-b.boulder.ibm.com/abstracts/sg246 682.html

Invasive Patterns for Distributed Programs 789

16. Hannemann, J., Kiczales, G.: Design pattern implementation in java and aspectj.
In: Proceedings of OOPSLA 2002, pp. 161–173. ACM Press, New York (2002)

17. JBoss Cache home page, http://labs.jboss.com/jbosscache
18. Kiczales, G.: Aspect oriented programming. In: Cointe, P. (ed.) ECOOP 1996.

LNCS, vol. 1098, Springer, Heidelberg (1996)
19. Kiczales, G., Hilsdale, E., et al.: An overview of AspectJ. In: Knudsen, J.L. (ed.)

ECOOP 2001. LNCS, vol. 2072, Springer, Heidelberg (2001)
20. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software

Architecture: Patterns for Concurrent and Networked Objects. John Wiley and
Sons Ltd., Chichester (2000)

21. Siu, S., De Simone, M., Goswami, D., Singh, A.: Design patterns for parallel pro-
gramming. In: Proc. of PDPTA 1996, vol. I, pp. 230–240. C.S.R.E.A. Press, Uni-
versity of Waterloo, Canada (1996)

22. Soares, S., Laureano, E., Borba, P.: Implementing distribution and persistence as-
pects with AspectJ. In: Norris, C., Fenwick Jr, J.B. (eds.) Proceedings of OOPSLA
2002, ACM SIGPLAN Notices, vol. 37(11), pp. 174–190. ACM Press, New York
(2002)

23. Südholt, M.: Towards expressive, well-founded and correct Aspect-Oriented Pro-
gramming. Habilitation thesis, University of Nantes (July 2007),
http://www.emn.fr/sudholt/hdr/thesis.pdf

24. Tan, K., Szafron, D., et al.: Using generative design patterns to generate parallel
code for a distributed memory environment. In: Proc. of PPOPP 2003 (June 2003)

25. Tanter, É., Toledo, R.: A versatile kernel for distributed AOP. In: Eliassen, F.,
Montresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, Springer, Heidelberg (2006)

26. Wong, G.T., Hiltunen, M.A., Schlichting, R.D.: A configurable and extensible
transport protocol. In: INFOCOM 2001. Proceedings of the 20th Annual Con-
ference of IEEE Communications and Computer Societies, pp. 319–328. IEEE, Los
Alamitos (2001)

http://labs.jboss.com/jbosscache
http://www.emn.fr/sudholt/hdr/thesis.pdf

NSLoadGen–

A Testbed for Notification Services

Diego Palmisano and Mariano Cilia

Argentina Software Development Center - Intel Corp.
Cordoba, Argentina

firstname.lastname@intel.com

Abstract. During the past years a lot of work on Notification Services
has been focused on features like scalability, transactions, persistence,
routing algorithms, caching, mobility, etc. However, less work has been
invested on how to evaluate or compare such systems. The selection of
the most appropriate Notification Services for a particular application
scenario is crucial and today available tools are bound to a particular
implementation. If the Notification Service under test does not fulfill the
application requirements then a new try with other Notification Service
needs to be started from scratch: the description of the workload char-
acterization and its injection cannot be reused.

In this paper we introduce NSLoadGen (Notification Services Load
Generator), a testbed platform that supports the definition of real-life
scenarios, the simulation of these scenarios against notification services,
and finally generating vast data that can be used to precisely evaluate
it. NSLoadGen is not targeted at any specific Notification Services,
but rather is generic and adaptable. It has been designed to support a
wide variety of Notification Services characteristics, hiding the many
differences among messaging products/specifications (e.g. Java Message
Service [1]) and, at the same time, it is easily extensible to support
new implementations. This paper covers the different steps the tool
follows (scenario definition, scenario simulation and result collection), the
proposed approach, as well as relevant design and implementation details.

Keywords: Message-Oriented Middleware, Notification Services, Pub-
lish/Subscribe, JMS, Benchmarking, Distributed Testing, Simulation.

1 Introduction

Message-Oriented Middleware (MOM) refers to the software layer, between ap-
plications and the network protocols, that supports software engineers in de-
veloping distributed applications. Historically, MOM has been used to address
issues related to heterogeneity, communication, and distribution of software com-
ponents, relieving software engineers from the burden of solving low-level, net-
work issues, such as lower-level communication protocols, concurrency control,
transaction management, distributed object location, among others.

Notification Services are a kind of MOM that implement the publish/subscribe
paradigm: a message is published by a producer in the Notification Services.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 790–807, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

NSLoadGen– A Testbed for Notification Services 791

Consumers express their interest by issuing subscriptions. The Notification
Services is responsible for the transportation of the published messages to the
matching consumers. Normally, Notification Services platforms provide several
QoS alternatives/dimensions such as reliability, security, delivery order, trans-
actions, and so on. In spite of the availability of standardized solutions such as
CORBA-NS (CORBA Notification Service) [2] or JMS (Java Message Service)
[1], new kind of these infrastructures continue to be developed to address the
needs of novel applications.

In the past years a lot of work has been focused on Notification Services
features like scalability, transactions, persistence, routing algorithms, caching,
mobility, etc. However, less work has been invested on how to evaluate or com-
pare such systems. When surveying the existing implementations of standards
(such as JMS) and publish/subscribe infrastructures, we found that they have
several differences in the way they communicate with the client applications and
the features they support. The selection of the most appropriate Notification
Services for a particular application is crucial for its success. First of all, the
workload characterization needs to be described and, afterwards, injected into
the Notification Services under test. Unfortunately, available tools for this pur-
pose are restricted in functionality and/or bound to a particular Notification
Services. Consequently, if the Notification Services in question does not fulfill
the application requirements, then a new try with another needs to be started
from scratch.

In this paper we briefly introduce NSLoadGen (Notification Services Load
Generator), a testbed platform that supports the definition of real-life scenarios
for Notification Services, the simulation of these scenarios against notification
services, and finally generating vast data that can be used to precisely evaluate
it. NSLoadGen is not targeted at any specific Notification Services, but rather
is generic and adaptable. It has been designed to support a wide variety of No-
tification Services characteristics, hiding the many differences among messaging
products (even the many differences among JMS implementations) and, at the
same time, it is easily extensible to support new Notification Services. NSLoad-
Gen allows a high level definition of scenarios, independent of the Notification
Services under test: a scenario can be described and conducted against different
notification services. Moreover, it supports distributed simulation making it pos-
sible to assign injection of messages and subscriptions to different Notification
Services where all the NSLoadGen instances will be coordinated among them.

The rest of the paper is organized as follows: related work is presented in
section 2, focusing on Notification Services features relevant to NSLoadGen,
benchmarking and testing of NSs. The proposed approach is described in more
detail in section 3, presenting a brief description of the three steps supported
by the platform. The main design decisions are sketched in section 4: how No-
tification Services independence was achieved, the architecture of producers and
consumers and finally a description about the NSLoadGen distributed environ-
ment. Relevant implementation details are presented in section 5. Section 6
presents conclusions, open issues and areas of future work.

792 D. Palmisano and M. Cilia

2 Related Work

Since this work deals with various issues, like Notification Services platforms,
distributed testbed, and benchmarking, this section serves as an introduc-
tion/overview of these topics including related work.

2.1 Notification Services

Our work relates to a subset of the features available in a Notification Services
that are relevant in the context of load generation and injection. This features
are:

– Interface between Notification Services and Client Applications: a Notifica-
tion Services offers services to client applications by means of functions. At
least it exposes two functions: (i) subscribe allowing consumers express their
interest; (ii) publish allowing producers inject messages. Several Notifica-
tion Services platforms extend this interface with additional functions called
advertise, which a producer uses to inform the messages it will generate,
unsubscribe and unadvertise. Subscriptions can be matched repeatedly until
they are canceled by a call to unsubscribe. Advertisements remain in effect
until they are canceled by a call to unadvertise.

– Addressing Models: Subscribers are usually interested in particular messages
and not in all messages. The different ways of specifying the messages of
interest have led to several distinct addressing models: channel-based ad-
dressing where the subscriber receives all messages that are posted to the
channel; subject-based addressing [3] which is based on the notion of “top-
ics” or “subjects” that represents a hierarchical organization of keywords
to which participants can publish notifications and subscribe to; content-
based addressing which allows consumers to express interest on the content
of the messages; and concept-based addressing [4] that allows consumers in
an heterogeneous environment to express their interest considering their lo-
cal context thus delivering to them as a result ready-to-process data which
does not require further conversions.

– Architecture: There are two major architectural alternatives:
1. Centralized: The Notification Services has one point where the matching

of messages with subscriptions is evaluated,
2. Distributed: cooperating components (called brokers) evaluate the

matching in a distributed way building a network of brokers.
The centralized approach is simple to implement but it has a single point
of failure and it could be a bottleneck. The distributed approach is more
complicated to implement since a single global view on all subscriptions
needs to be supported, but it scales much better.

Actually, there are several research projects involving Notification Ser-
vices (e.g. REBECA [5], JEDI [6], SIENA [7], HERMES [8], GRYPHON [9],

NSLoadGen– A Testbed for Notification Services 793

standard specifications (e.g. CORBA-NS [10], JMS [1]) and commercial products
(e.g. TIB/Smartsockets and TIB/Rendezvous) that focus on different aspects of
data dissemination, like efficient routing algorithms, optimal filter placement,
minimization of resources usage, etc.

Examples of JMS providers are FiornaoMQ and SoniqMQ (commercials prod-
ucts) and ActiveMQ, OpenJMS, JBossMQ, and Presumo (open source projects).

2.2 Benchmarking of MOM

Benchmarking Notification Services is a process that involves two main goals:
validation of the service interface, and performance evaluation [11]. The choice
of applications, configurations, and workloads is clearly crucial for the formula-
tion of the benchmark. Part of the benchmark must be an expression of real,
current applications. In addition, configurations and workloads must reflect real
computing environments and actual use scenarios. Under the same scenario, the
test system could be executed over several notification services, allowing to know
how well they perform under the scenario in question. The results can be used
to compare performance of different Notification Services solutions, helping in
the selection process of a messaging system.

Key areas in Notification Services benchmarking definitions are deployment
topology (definition of distributed scenarios of consumers and producers), mes-
saging domain (point-to-point or publish-subscribe systems1), duration, behavior
of producers and consumers (how many messages, the distribution of injections),
messages data and type, and so on. Furthermore, related to consumers, which
messages they want to receive (i.e., subscription) and if they must be active at
the moment of receiving messages are key points.

In the literature there are research projects in the field of load injection in
Notification Services, which are mainly focusing on specific Notification Services
rather than general. Further, they almost do not provide a way to describe real-
life scenarios.

Sonic Software Test Harness [12] presents a simple test application that allows
to create simple scenarios and test it over any JMS implementation. The behavior
of TestHarness can be influenced by means of command-line parameters such as
where is the JMS implementation running, number of producers and consumers
to be created, number of connections to be used by producers and consumers,
messages’ length and test duration. Beside that, producer or consumer behavior
can not be defined at all.

KOM ScenGen [13] relies on different steps in generating a scenario: topology
creation, properties setting, network load or workload creation, plausibility check
(where several things critical for the scenario can be checked for plausibility),
scenario exportation to a collection of scripts and configuration files that are
used to setup the scenario in a testbed, simulation and evaluation. Even thought
it covers most of the necessary steps to follow a testing, the user has to have a
deep understanding about the used technologies and settings.

1 Point-to-point products are built around the concept of message queues.

794 D. Palmisano and M. Cilia

Kuo and Palmer present a test harness that automates the testing of JMS
implementations for correctness and performance [14]. The paper describes a
methodology for black-box testing of a JMS provider. A test harness exercises
the JMS server and a model of the expected behavior of this server is built;
the model can then be compared against the actual behavior of the provider.
However, like Sonic Software Test Harness, the user has not the possibility of
setting producer/consumer behavior and workload characterization.

The idea behind Service Integration Test Tool (SITT) [15] is to test services and
their workflow by analyzing the message flows. In this way, message injections and
receptions are logged in a standardized manner. As the previous JMS test harness,
SITT supports distributed testing and the execution is managed by a master node.
Further, it allows to define scenarios by means of writing XML scripts. However, it
falls in the same deficiencies: no description of producers and consumers behavior,
no characterization of workload, lack of using data services to fill messages out.

The scenario descriptions of the tools mentioned above do not provide enough
characteristics to be defined properly and, as a consequence, it is difficult to set
up real-life behaviors. In addition, sometimes they can be defined with reduced
power of expression, via command line arguments or directly hard coded in the
application, having to recompile it every time a change is produced in the sce-
nario. Besides that, producers are limited to simply inject messages as quick as
possible with no chance to describe a pattern nor distribution of message injec-
tion. Messages are filled out with constant or even without data. Most commonly,
consumers are restricted to subscribe to all messages and, as a consequence, the
evaluation of the subscription functionality is left out.

Regarding the result presented during the test execution, most of the test tools
generate a fixed number of metrics without allowing to create new ones. Even, the
results are represented as plain numbers in the execution console. Consequently,
the evaluation/comparison of Notification Services becomes very difficult.

3 Proposed Approach

This section presents the approach followed by NSLoadGen. The idea is to pro-
vide users the ability to (quickly and easily) express their specific scenarios and,
as result, obtain information related to important events carried out during the
simulation of the scenario. An experiment (a.k.a., test run) can be simply for-
mulated as a three-phase process that is described in detail below.

3.1 Scenario Definition

NSLoadGen supports the definition of scenarios by means of a description lan-
guage. The scenario definition and the platform functionality has been separated
and, thereby, behavior of producers and consumers is user-defined and indepen-
dent of the logic of the platform. To adjust the scenario, the user only has to
modify the scenario description and not the code of the platform. The tool al-
lows the definition of a wide range of properties related to producers (where and
when to inject messages), consumers (where and when to inject subscriptions)

NSLoadGen– A Testbed for Notification Services 795

Fig. 1. Load Description, Run Description and Configuration File

and messages (types, data and sizes), and assignment of them to distributed
nodes in a distributed environment. Therefore, the scenario definition was sep-
arated into three parts, each of them containing related data that, together,
shapes a real-life scenario.

An example of the general structure of these three sections is depicted in
figure 1. The first section defines data and behavior, containing producer, con-
sumer and message definition, and how these three parts relate to each other.
The second set up how producers and consumers are assigned to distributed
nodes, i.e., binding information, and the last one is related to the configuration
of the platform.

The idea behind dividing the scenario description in three parts is not only
to make its definition clearer and easier, but it is also founded in the fact that
normally only the data and behavior is modified during several test runs un-
der the same binding setup. For instance, once the network location of pro-
ducers/consumers is defined, they are likely to be maintained unchanged while
messages structure and its assignment to producers and consumers may vary to
evaluate different executions. Conversely, if the test goal is to use the same load but
creatingmore producers and consumers along different tests, data and behavior in-
formation will be maintained unmodified and the binding part would be modified.
With respect to the configuration part, it is usually stable across test runs. This
section will change only if a different Notification Services is going to be tested.

3.2 Scenario Simulation

One of the most important requirements related to the simulation of the sce-
nario is that it can be driven in a distributed environment. This is one of the
characteristics that allows to create realistic scenarios for real-world application
deployments. When multiple distributed producers and consumers are active at

796 D. Palmisano and M. Cilia

Fig. 2. Example deployment diagram

the same time, the notification service will be stressed from multiple directions,
potentially causing the server to behave differently.

NSLoadGen allows to deploy a test across a number of distributed machines.
According to the scenario description, a group of NSLoadGen instances are
started in these computers, each of them simulating the part of the scenario
that correspond to it. Figure 2 shows an example deployment diagram.

The experiment is coordinated by a Master node, responsible to start, stop
and synchronize the set of NSLoadGen instances. Each NSLoadGen instance
has assigned the instantiation of producers that inject messages (also adver-
tisements/unadvertisements depending on the Notification Service) and/or the
consumers that inject subscriptions (and unsubscriptions). These events are reg-
istered for later evaluation.

3.3 Result Collection

Commonly, users want to analyze different metrics of test runs, such as producer
injection, message latency or even which was the injection distribution of a set
of producers during a time windows. They may even want to have the same
results using different charts. Thereby, instead of presenting specific metrics,
NSLoadGen provides a very convenient way to catch events containing the most
important actions carried out during the test run. This information can be used
later to analyze in deep the behavior of the System Under Test (SUT).

4 Architecture and Design

This section sketches the principal architectural design presenting a brief de-
scription of the main building blocks.

4.1 High Level Architecture

The NSLoadGen platform is intended to be a testbed for notification services,
maintaining it abstract enough to test different Notification Services. In this

NSLoadGen– A Testbed for Notification Services 797

Fig. 3. Logical view of NSLoadGen

way, it can be seen as an independent piece of software that instantiates NS-
independent (Notification Services independent) producers, consumers and in-
ject messages and subscriptions. At the moment of interacting with the SUT,
these pieces are transformed from NS-independent to NS-dependent (Notifica-
tion Services dependent). Users only have to declare the scenario. NSLoadGen
will simulate it and transform involved components (producers, consumers, mes-
sages, and so on) to communicate with the underlying Notification Services.

In this way, the architecture of NSLoadGen is logically split into two layers
as can be seen in figure 3. The upper layer stays unaware of any concrete No-
tification Services functionality, while the lower one is in charge of interacting
with the SUT. The idea was to encapsulate common functionality, needed for
every Notification Services, to be used by the core of NSLoadGen, but letting
specific functionality to be implemented by NS-dependent components. This is
achieved by well-known pieces of software called adapters. The platform has
specific interfaces defined as an integral part of its core. A library of adapters
for several notification services is available in NSLoadGen. Additionally, users
can write adapters for those Notification Services not supported yet.

At the producer side, producer adapters are responsible for issuing ad-
vertisements, unadvertisements and injecting messages. All of them are NS-
independent activities. Only at the moment of carrying out some NS-dependent
task, the platform will involve the respective dependent component. In the same
way, NSLoadGen is also split into two parts at the consumer side; consumer
adapters are in charge of making subscriptions, receiving messages and unsub-
scriptions. This component will call to specific consumers when necessary.

Additionally, there is a third kind of adapters called administer adapter
and, as its name suggests, it has the responsibility of carrying out management
activities like creating connections, message destinations2 or queues.

Producer. Producers are mainly in charge of injecting messages according to
an injection distribution specified by the user in the scenario description. As a
2 A Destination is an abstract name used to mean “subject” or “topic”.

798 D. Palmisano and M. Cilia

consequence, several steps have to be carried out to generate ready-to-send mes-
sages. The producer component design follows a pipeline architecture: Message
Factory → Message Filled Out → Message Transformer → Injection. Producers
have a behavior assigned, as defined in the scenario, that drives the message in-
jection. In addition to this behavior, they have set up specific messages to inject.
When the inject distribution demands the injection of a message several steps
that are described later take place to get a ready-to-send message.

First, the Message Factory creates a new message according to the message
structure and the message type to be injected (name-value pairs, a XML message
or a serialized object). A single message structure can be linked with any of these
types: a single producer can be assigned to inject the same message structure but
with different types or even data. The Message Factory creates cleaned messages,
that is, messages without data, and are NS-independent, that is, messages that
are not specific to any notification service.

Created messages are the input to the Message Filled Out component. This
component makes an analysis of the information the message should have, fetches
the corresponded data from the source specified by the user in the scenario and
fills the message out. Afterwards, a Message Transformer is needed to transform
messages from NS-independent to NS-dependent in the third step. Fourth, the
filled NS-dependent message is received by the Producer Adapter that finally,
as it was previously explained in section 4.1, it has encapsulated common func-
tionality needed for every Notification Services. This last component injects the
messages into the Notification Services, delegating this task to the NS Interface
component that contains functionality specific to the SUT.

Although this approach gains in Notification Services independence it has an
important drawback: every time a message has to be injected a three-step process
take place: message creation → fill it out with data → transformation. What is
worse, these steps are executed after test run start up. As a consequence, it may
become a bottleneck on NSLoadGen side and its performance can be seriously
affected. In order to improve the performance of producer component, a Pool of
ready-to-send messages was added to the previous solution. Figure 4 shows how
the previous approach was adapted to support this pool. Note that messages are
defined by means of a called message structure that is sketched with a tree.

Fig. 4. Producer component: proposed approach

NSLoadGen– A Testbed for Notification Services 799

Fig. 5. Consumer component: proposed approach

As in the previous solutions, the producer component activates itself to inject
a message. However, instead of starting the three-step sequence, it only picks
a ready-to-send message from the pool. Once the pool returns a message, the
producer gives it to the adapter that injects it into the SUT, always relying on
the Notification Services Interface.

The pool acts as an active component that runs at background, when the
system is not overloaded. A mark is used to maintain this pool with a minimal
number of instances during runtime. When this mark is reached the pool will asks
for new fresh message instances to the factory, triggering the three-step process.
Notice that messages stored in the pool are ready-to-send. The producer only
has to pick one and deliver it to the adapter. Additionally, NSLoadGen provides
also configuration mechanisms to skip the step of filling out messages with data,
becoming the three-step process in only two steps. This is very useful when
message data is not important in the evaluation.

Consumer. Consumers are mainly in charge of issuing subscriptions and re-
ceiving messages. Each consumer has a filter3 that was assigned by the user in
the scenario. Like messages, filters go through a sequence of steps to convert it
into subscriptions that the consumer can issue. Figure 5 shows the architecture
of the consumer component.

The Filter Factory component creates a NS-independent filter according to
the Filter Structure. The platform supports the dynamic creation of filter data,
i.e., the user can express the filter structure and the source of data to fill it out,
and NSLoadGen will create it. In this way, once the filter has been created it is
moved to the Filter Filled Out component, which returns a filter with data, but
still Notification Services independent. After that, the filter is transformed to a
subscription and assigned to the consumer. During simulation and according to
its specified behavior, a consumer will give the subscription to the Consumer
Adapter, who relies on the NS Interface component to issue it. Later, the noti-
fication service will deliver messages to that consumer when matching messages
are published.

Notice that filter steps are similar and different to message steps presented in
the producer section. A filter has to traverse several components to become a
3 A filter is an abstract name used to mean NS-independent subscription.

800 D. Palmisano and M. Cilia

subscription. But in contrast to producers, this is not a cyclic process. Filters,
and as a consequence subscriptions, are created once during the initialization of
the test run. The same approach is used for advertisements on the producer side.

4.2 Distributed Testbed

NSLoadGen was designed to allow automated testing of notification services
across a number of machines connected by a network. A test run is related to
three primary concepts: the System Under Test), one Master node and, com-
monly, several Slave instances. Test runs are coordinated by the Master node,
who starts, stops and synchronizes the set of Slave instances. The Slave is in
charge of instantiating producers that inject messages, and/or consumers that
issue subscriptions. Its purpose is to wait for Master high-level commands and
to trigger activities (start producers, consumers, collect data, etc.). The Master
node has the ability to collect run-time data from all slave instances. This is
done by simply sending a command after execution.

Figure 2 in section 3.2 shown an example deployment diagram of a test run.
At the moment of starting the simulation, the input scenario (composed by the
three parts presented in section 3.1) is received by the Master instance and sent
to the Slave instances. Once it has been received, the Salve instance loads it
and, after an initialization process where producers, consumers and the pool
of messages are created, the Master is responsible for coordinating the Slave
instances acting as initiator of the test run.

At this time, the Slave(s) begin processing their part of the scenario: pro-
ducers will begin sending advertisements, messages and unadvertisements; and
consumers will issue subscriptions, consume messages and unsubscriptions. As
each message is sent or received, these events are registered with relevant in-
formation such as a unique message ID and timestamp4. Individual producers
and consumers can be configured with different message production, persistence,
durability, subscriptions and other characteristics, as well as connection and dis-
connection behavior, for every Slave instance.

At the end of the execution the Master node triggers the “stop” signal to the
Slave instances, stopping producers and consumers.

4.3 Logging Approach

During the test run all significant events inside the platform are registered. This
information can be obviously used to analyze the notification services under
test, not only performance conclusions but also producer and consumer behav-
ior, exception conditions, etc. The user has the possibility of defining which are
the events that should be registered along the test run, as well as, the amount
of information for every event (debug, info or minimal). Significant events are
advertisements, unadvertisements and injections (in the producer side) and sub-
scriptions, unsubscriptions and received messages (in the consumer side).
4 In case of performance analysis want to be considered, NSLoadGen is dependent on

all system clocks being synchronized.

NSLoadGen– A Testbed for Notification Services 801

However, it is clear that registering important events of an application is a
well-known crosscutting concerns. We use aspect-oriented programming (AOP)
to flexibly store relevant events during the experiment. Since the evaluation
step is carried out relying on this data, supporting a configurable recording of
it was very important. This approach allows maintaining independence between
NSLoadGen and the tools to analyze the log. Aspects can be configured to manip-
ulate the data and with different alternatives to store/disseminate it. For exam-
ple, these events can be sent to files, or stored in a database, or sent them directly
to a monitoring application that presents real-time results about the test run.

Furthermore, the user can decide which events to register. Depending on the
metrics of interest, not all events are necessary. For example, if throughput is
going to be analyzed, then only message injections and receptions should be
caught, but not producer and consumer connections and disconnections. Also,
the user can modify the format of the events. As an example, the user could
define a XML format, a plain-string format, or SQL sentences, by means of
extending the components that are in charge of event logging.

Additionally, the user can deactivate the logging module altogether if these
events are not important. For example, Salvucci+ [16] rely on NSLoadGen as the
load generation tool. This particular project focused on analyzing the internal
of Notification Services at runtime where NSLoadGen logging features where
disabled.

5 Implementation

NSLoadGen has been implemented in Java and also uses XSLT transformations.
This section introduces the steps of scenario definition and scenario emulation
in more detail, focusing on the implementation view.

5.1 Scenario Definition: Meta Language

As presented in section 3.1, a NSLoadGen scenario is composed by three parts.
To describe it, a Meta Language in XML was defined where each scenario issue
was assigned to a separated XML file: Load Description contains data and behav-
ior, Run Description contains binding information and Configuration contains
information to configure NSLoadGen and the SUT.

Fig. 6. Testbed steps

802 D. Palmisano and M. Cilia

5.2 Scenario Simulation

In this step the defined scenario is simulated and the SUT is put under pressure.
Along this step NSLoadGen passes through a two-phase process: initialization
time where the platform is set to simulate the defined scenario, and run time
where the simulation itself takes place.

Initialization Time. One of the main activities carried out in the initializa-
tion step is the conversion from {Message Structures,Message Type} to Message
Factories. The Load Description part of the scenario contains information about
the message structure, the source and data that the messages have to be filled
out, and the message type that every producer should inject. Figure 7 illustrates
the idea with an example.

In the example there are three producers, P1, P2 and P3 and three message
structures declared. The message structures are declared as a tree, and, within
every element of the tree there are information about how it has to be filled out
with data (for example, node c must be a 20-length string). NSLoadGen allows
different sources of data, such as from a data base, a custom source defined by
the user, CVS files, or fixed data, to fill out a message. Furthermore, NSLoadGen
has a library of functions that return common data used in different domains,
such as city names, country names, zip code numbers, to name a few.

Additionally, the figure shows that producer P1 is assigned to generate name-
value pair messages according to the structure M2, producer P2 is assigned
to create XML messages following the structure M3 and, finally, producer P3
should generate messages M1 and M3 of types XML and serialized, respectively.
By means of separating the message structure from the assignation of them to
producers, the same kind of message can be transformed to different types. In
the example, producer P2 and P3 should generate messages according to the
structure M3 but with type XML and serialized, respectively.

The activity of transforming a message structure with an assigned type to a
real NS-independent message is carried out by specifics Message Factorys, as
explained in subsection 4.1. Therefore, and following the previous example, the
platform should create four Message Factory, one for each {message type,message
structure} pair, such as “LoadGeneratorFactoryMessage XML Message1” and
“LoadGeneratorFactoryMessage NVP Message2”.

Fig. 7. Load declaration

NSLoadGen– A Testbed for Notification Services 803

Other activities that take place at initialization time are producers and con-
sumers creation, message pool creation and subscriptions creation.

Run Time

Message Transformer. The system uses a generic message type along the
test execution but, at specific times, it transforms this NS-Independent mes-
sage to NS-Dependent message. This activity is carried out by a component
called Message Transformer. In case a new notification service should be sup-
ported by NSLoadGen, the MessageTransformer interface has to be imple-
mented. One of the pre-defined message transformer provided by NSLoadGen is
JMSMessageTransformer which transform from NSLoadGen to JMS messages,
and vice versa.

Message Types. NSLoadGen supports three types of messages: XML, Map and
Serializable (See figure 8). These three types cover most of the message types
used in Notification Services.

LoadGeneratorMessage is the message superclass and contains a set of prop-
erties. As was previously explained, these messages are created by factories. In
this way, LoadGeneratorFactoryMessage is the superclass of the factories con-
taining an abstract method getMessage that returns a LoadGeneratoreMessage.

Notification Service Independence. In order to fulfill with the requirement of
Notification Services independence, NSLoadGen was desgined and implemented
using the Abstract Factory Design Pattern [17]. This pattern allows to create
families of related or dependent objects without specifying their concrete classes,
which in turn, will be NS-dependent classes.

As can be seen in figure 9, the AdapterAbstractFactory provides the meth-
ods to create the adapter entities (e.g., LoadGeneratorProducer, LoadGen-
eratorConsumer or LoadGeneratorAdminister). This factory is created at
initialization time and is NS-dependent, so it knows what kind (subclasses) of
entities will be needed to interact with the SUT. It is in charge of creating NS-
dependent entities. NSLoadGen interacts with these components without even
knowing which Notification Services are they communicating with. In order to
extend the platform to support new notification services, specializations of these
classes should be written.

Fig. 8. Message class diagram

804 D. Palmisano and M. Cilia

Fig. 9. Adapter abstract factory class diagram

Distributions to Simulate Behavior. Distributions are a way that the user can
use to vary the producer and consumer behavior. At the producer side, they
have the ability to connect to and disconnect from the system, or, in other
words, they can issue an advertisement, inject messages for a while, and then
disconnect from the system issuing an unadvertisement. As a consequence, they
only can inject messages when their state is active. During this state, producers
can emit messages following, probably different, inject distribution. For instance,
let’s suppose that a producer was assigned to a loop where it maintains enable
during 20 seconds and disable for 10 seconds. In addition, when enable, it has
an inject distribution that corresponds with the “sine” function.

To cope with this requirement, producer components have been designed with
two clocks, one to drive the enable/disable function distribution, and the other
to follow the injection rate. Obviously, the second clock only works when the first
is active, so enable/disable timer is the “master” of the injection timer. Figure
10 (a) shows both timers and the events carried out by a producer, i.e., enable,
inject and disable.

This important feature in producers of enabling and disabling (or advertise-
ments and unadvertisements) is given by a distribution function that the user
defines in the Load Description part of the scenario. A library of pre-defined
functions are available but, additionally, users can define their own functions.
Besides that, sometimes there are NSs that do not support advertisements and
unadvertisements. In these cases, NSLoadGen has a default timer that wakes up
the injection timer at the beginning of the test run, and sleeps it at the end.
An important example of such systems is the JMS specification, which does not
define the advertisement behavior.

NSLoadGen– A Testbed for Notification Services 805

Fig. 10. Distribution timers: (a) producer side, (b) consumer Side

At the consumer side, among the main parameters is the rate of subscriptions
and unsubscriptions. Unlike producers, consumers only have one timer associated
that drives this rate. Figure 10 (b) shows the main concepts.

This enable/disable (subscription/unsubscription) clock drives the complete
consumer’s life-cycle. Like producers, this timer uses a enable/disable (sub-
scribe/unsubscribe) distribution which is given by a function defined in the Load
Description part. There are a library of pre-defined functions but, additionally,
users can define their own function. In case the user does not want a subscrip-
tion/unsubscription behavior for some consumer, the platform has a default
timer that wakes up the consumer at the beginning of the test run, and sleeps
it at the end.

6 Conclusions and Future Work

This paper presented NSLoadGen, a testbed for notification services that
automates the process of stimulating a Notification Services. In other words,
NSLoadGen is in charge of injecting load according to a scenario description
with multiple purposes:

1. supporting the selection of the most appropriate Notification Services for a
specific application (scenario);

2. analyzing a Notification Services under stress conditions for code optimiza-
tion;

3. analyzing a Notification Services under typical and peak conditions for tun-
ing purposes.

For doing so, we first concentrated on defining a language to describe the sce-
nario to be simulated, covering as many Notification Services features as possible
and demonstrating how that representation can be done easier by splitting it in
three parts: one for the load characterization, one for running the experiments
and one to configure the platform and Notification Services. After the scenario
is specified, it is then taken and simulated in order to evaluate the characteristics

806 D. Palmisano and M. Cilia

of the Notification Services under test. Detailed data during simulation is gen-
erated for later analysis.

In this way, the platform covers scenario description, as well as load genera-
tion, deployment, execution and data collection during the experiment. NSLoad-
Gen was constructed with the idea to be generic, meaning with this that it should
be independent of the Notification Services under test. NSLoadGen has been suc-
cessfully used with several JMS implementations and also with other NSs that
do not provide a JMS interface [18]. Furthermore, the platform provides sev-
eral facilities in which new messaging systems can be rapidly tested by only
specializing a small set of classes.

The scenario description language was founded on XML . From the point of
view of the end user, the interaction with the platform through the use of XML
can be cumbersome, even more when complex scenarios have to be represented.
Hence, in future versions a graphical editor will be provided to specify the sce-
nario with a graphical (easy to use) interface generating as a result at the end
the language already defined.

One interesting direction to be investigated is to extend NSLoadGen to stress
Web Services and other SOA-related technologies. We are also analyzing the
possibility to incorporate the notion of mobility of consumers and producers
into the platform. Besides, studies on more complex scenarios are needed to
validate the scenario description language, extending it if necessary.

References

[1] Inc. Sun Microsystems. The Java Message Service Specification. Technical report,
Sun Microsystem Technical Report (2002)

[2] Object Management Group. Notification service specification (July 1999)
[3] Oki, B., Pfluegl, M., Siegel, A., Skeen, D.: The Information Bus - An Architecture

for Extensible Distributed Systems. In: Proceedings of SIGOPS, pp. 58–68 (1993)
[4] Cilia, M., Antollini, M., Bornhövd, C., Buchmann, A.: Dealing with heterogeneous

data in pub/sub systems: The Concept-Based approach. In: DEBS 2004,
[5] Mühl, G., Fiege, L.: The REBECA Notification Service (2001)
[6] Cugola, G., Di Nitto, E., Fuggetta, A.: Exploiting an event-based infrastructure

to develop complex distributed systems. In: ICSE 1998
[7] Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area

event notification service. ACM Transactions on Computer Systems (2001)
[8] Pietzuch, P.R., Bacon, J.: Hermes: A distributed event-based middleware archi-

tecture. In: ICDCSW 2002
[9] Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R.E., Sturman,

D.C.: An efficient multicast protocol for content-based publish-subscribe systems.
In: ICDCS 1999

[10] Object Management Group. Common Object Request Broker Architecture spec-
ification

[11] Carzaniga, A., Wolf, A.L.: A benchmark suite for distributed publish/subscribe
systems. Technical report, Department of Computer Science, University of Col-
orado (2002)

NSLoadGen– A Testbed for Notification Services 807

[12] Sonic Software. Benchmarking e-business messaging providers. Technical report,
Sonic Software (2004)

[13] Heckmann, O., Pandit, K., Schmitt, J., Steinmetz, R.: KOM ScenGen - The Swiss
Army Knife For Simulation And Emulation Experiments. In: Ventre, G., Canon-
ico, R. (eds.) MIPS 2003. LNCS, vol. 2899, Springer, Heidelberg (2003)

[14] Kuo, D., Palmer, D.: Automated analysis of java message service providers (2001)
[15] Dustar, S., Haslinger, S.: Testing of Service Oriented Architecture - A practical

approach (2004)
[16] Salvucci, S., Cilia, M., Buchmann, A.: A Practical Approach for Enabling Online

Analysis of Event Streams. In: DEBS 2007
[17] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of

Reusable Object-Oriented Software. Addison Wesley Longman, Inc, Redwood
City (1998)

[18] Palmisano, D., Cilia, M.: NSLoadGen, a testbed for Notification Services. In:
partial fulfillment of the requirement for the degree of Systems Engineer (August
2006)

Ontologies, Databases and Applications of
Semantics (ODBASE) 2007 International

Conference

ODBASE 2007 PC Co-chairs’ Message

As in recent years, the focus of the ODBASE conference lies in addressing
research issues that bridge traditional boundaries between disciplines such as
databases, artificial intelligence, networking, data extraction, or mobile comput-
ing. There has been an increasing focus on semantic technologies in ODBASE.
The work on semantic modeling technologies is being progressively scaled up
to handling millions of triples which permit adoption of semantic applications
within a few days. The envelope is being progressively pushed out to enable
even faster, wider and broader enterprise-wide and Web-scale applications. Also,
ODBASE 2007 encouraged the submission of papers that examine the infor-
mation needs of various applications, including electronic commerce, electronic
government, mobile systems, or bioinformatics.

We had a very good response to the call for papers and 81 papers were sub-
mitted for ODBASE this year. The papers were rigorously reviewed and each
of the papers had to have three peer reviews. The selection of papers was diffi-
cult because of the high quality of papers submitted. The final selection had 18
full and 4 short papers, and 10 posters. The accepted papers cover the themes
of ontology mapping, semantic querying, ontology development, learning, text
mining, annotation, metadata management and finally ontology applications.

For the papers in ontology mapping, Web semantics are used as background
knowledge and a discovery methodology for semantic mappings between ontolo-
gies. Current implementations and future directions of ontology and database
mappings are discussed and the interoperability of XML schema and OWL is also
discussed. In addition methodologies for interpreting queries beyond their use
for semantic interoperability which use SPARL++ for mapping RDF vocabular-
ies, and language for retrieving ontology fragments are discussed in the semantic
querying area. To assist with the development and evolution of the ontologies,
papers are included which address a taxonomy construction methodology us-
ing similarity measures, an ontology for reactive rules, heuristics for Bayesian
network-based geospatial ontologies, a pattern-based ontology construction ap-
proach, evolution of community-based knowledge intensive systems, and seman-
tic Web methodology for managing image archives.

Learning methodologies for studying ontology mappings from human interac-
tions and for search applications are also presented. Moreover, approaches for
automatic feeding of knowledge bases using semantic representation of knowl-
edge are demonstrated. Approaches for accessible browsing annotating unstruc-
tured metadata, matching of ontologies with XML schemas, and labeling of data
extracted from the Web are discussed for metadata management.

Lastly, papers which consider various applications of ontologies for enhancing
data quality of databases using ontologies, Web service-based annotation appli-
cations for marketing, categorization in eGovernment, and semantic matching
in enterprises are presented.

812 Preface

These papers provided timely and stimulating discussions at the conference.
We hope the readers find them stimulating, too.

August 2007 Tharam Dillon
Michele Missikoff

Steffen Staab

Towards Next Generation Value Networks

York Sure

SAP AG
york.sure@sap.com
http://www.sap.com

Abstract. We are moving towards a services economy where more and
more value in an economy is created through services. A key enabler for
such an economy is the transformation of services themselves into trad-
able goods similar to products. As organizations are focusing on core
competences we will see (i) focused organizations will provide more spe-
cialized services (service providers), (ii) composition and coordination of
services provided by different service providers into value-added services
will become important business opportunity (service broker / coordina-
tor), and (iii) organizations will be willing to “buy” more services from
service providers and integrate them into their business operations (ser-
vice consumers). This leads to longer and deeper service value chains
consisting of a large number of services. A value chain may consist of
services provided by a diversity of service providers, thus resulting in
an increased complexity in coordinating services provided by multiple
service providers.

The German funded TEXO project runs under the umbrella of the
THESEUS research programme and addresses the challenges imposed by
next generation value networks. The interdisciplinary TEXO consortium
is coordinated by SAP and includes a number of partners having techni-
cal, economical and legal competencies. In this talk I will give examples
of existing value networks, present the vision of the TEXO project for
next generation value networks, present the interdisciplinary approach
to address the technical, economical and legal challenges, and illustrate
scenarios in which the TEXO solution adds value.

Speaker-Bio

Dr. York Sure is a Senior Researcher at SAP Research in Karlsruhe, working as Tech-

nical Coordinator for the Theseus/TEXO project. Previously he worked as Assistant

Professor at the Institut AIFB of the Universität Karlsruhe (TH) in Germany where

he lectured master and bachelor courses on Semantic Web and Computer Science. At

the AIFB he was project leader for the EU IST FP6 Integrated Project SEKT, the

EU IST FP6 Thematic Network of Excellence Knowledge Web where he was also ap-

pointed as research area manager, and the Vulan Inc. funded multi-stage international

project Halo - Towards a Digital Aristotle (phase 2). After graduating in December

1999 in Industrial Engineering he received in May 2003 his PhD in Computer Science.

From June to September 2006 York was appointed as a Visiting Assistant Professor at

Stanford University. In 2006 he was awarded with the IBM UIMA Innovation Award

and in 2007 with the doIT Software Award.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, p. 813, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Combining the Semantic Web with the Web as

Background Knowledge for Ontology Mapping

Ruben Vazquez and Nik Swoboda

Facultad de Informática, Universidad Politécnica de Madrid,
Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, Spain

ruben.vazquez.sanchez@alumnos.upm.es,
nswoboda@clip.dia.fi.upm.es

Abstract. We combine the Semantic Web with the Web, as background
knowledge, to provide a more balanced solution for Ontology Mapping.
The Semantic Web can provide mappings that are missed by the Web,
which can provide many more, but noisy, mappings. We present a com-
bined technique that is based on variations of existing approaches. Our
experimental results in two real-life thesauri are compared with previous
work, and they reveal that a combined approach to Ontology Mapping
can provide more balanced results in terms of precision, recall and con-
fidence measure of mappings. We also discover that a reduced set of 3
appropriate Hearst patterns can eliminate noise in the list of discovered
mappings, and thus techniques based exclusively in the Web can be im-
proved. Finally, we also identify open questions derived from building a
combined approach.

Keywords: Ontology Mapping, Background Knowledge, Semantic Web,
Web.

1 Introduction

The feasibility of the Semantic Web, as the Web of automated-agents and web-
services cooperating together1, greatly relies on the idea of integrating a variety
of ontologies [6]. This is a problem known as Ontology Mapping, which is seen
by many as the Achilles Heel of the Semantic Web (van Harmelen in [21]).

Ontology Mapping is a basic operation not only in the Semantic Web but also
in a number of different areas. A few examples of Ontology Mapping applica-
tions are Catalog Integration, P2P Databases, Agent Communication and Web
Services Integration. As a result, a great deal of work in Ontology Mapping has
been done recently. Some surveys appear in [10], [7], [13] and [19].

A definition for Ontology Mapping, or Ontology Matching, is the following.
It takes as input two schemas/ontologies, each consisting of a set of discrete
entities (e.g., tables, XML elements, classes, properties, rules, predicates), and

1 See [5] for an original idea behind the Semantic Web, and [11] for a number of
different meanings with which the Semantic Web is linked.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 814–831, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Combining the Semantic Web with the Web as Background Knowledge 815

determines as output the relationships (e.g., equivalence, subsumption) holding
between these entities [19].

Ontology Mapping can either be considered as a problem where basic structure
(taxonomy) between terms exist, or as a task for automatizing the discovery of
semantic links between flat, without hierarchy, lists of terms, being the later
a case that has been little studied at the time of writing (see [19] for an in-
depth survey of different views on Ontology Mapping). Therefore, if current
term-matchers take, as input, lists of terms, in place of structured models, then
they will probably fail. However, many ontologies are lightweight, i.e., they have
a hierarchy with less than two or three levels, and thus structure can not be
much exploited for Ontology Mapping [15]. Consequently, the complexity of the
problem increases.

The problem we address in this paper is that of dealing with flat lists of terms
taken as input to discover mappings among pairs belonging to different lists.
Particularly, we limit our searches to subsumption relations (�), since the gold
standards we use only include this type of relation between terms.

We make four contributions. First, we design a framework that combines the
Semantic Web with the Web for Ontology Mapping, test it, and analyze it in
terms of precision, recall and confidence measure of mappings. The combined
model is based on variations of techniques presented in [18] and [22]. Second, we
compare our experiments with previous related work. Third, we find a small set
of 3 Hearst patterns that yields better results for Ontology Mapping, in terms
of precision, recall and confidence measure. By reducing a set of Hearst pat-
terns from 6 to 3 appropriate ones, many wrong mappings can be left out, and
many correct mappings can be uncovered. Fourth, we also point out open ques-
tions that require a great deal of effort in order to build a more solid combined
approach for Ontology Mapping. Specifically, compound names, contradictions
between derived mappings, quality of tools to search and the growth of both
Webs in different domains are revealed as open questions.

This paper is organized as follows. Section 2 presents a brief state-of-the-art
of solutions for Ontology Mapping based on Background Knowledge. Section
3 presents the data set used in the experiments, as well as the experiments.
Sections 4 presents the architecture of the model we have designed. Section 5
provides results, jointly with an analysis and open questions. Conclusions are
given in section 6.

2 Related Work

Many approaches to Ontology Mapping search directly for mappings between
strings and structures. These approaches have a limitation: ontologies slightly
different sintactically may be difficult to map. A less rigid solution is to use
background knowledge for finding mappings [12], [18], [20], [22].

In [20], background knowledge is presented as an in-advance, manually, se-
lected ontology that then acts as a bridge between input ontologies. The posi-
tive side of selecting ontologies manually is that a good choice, a complete and

816 R. Vazquez and N. Swoboda

proper ontology for ontology mapping, can contribute to discovering mappings.
On the other hand, a manual selection is too expensive in terms of time, and
some applications do not allow previous selection of ontologies, instead, many
applications in the Semantic Web need to find mappings automatically.

In [12] and [18], the Web is used as background knowledge by exploiting so-
called Hearst linguistic patterns [1] (e.g., 〈concept-1〉 such as 〈concept-2〉) in
order to discover relations between concepts. The weakness of this approach is
that, in general, automatic knowledge extraction approaches lead to high lev-
els of noise. Many mappings can be obtained, and thus finding both right and
wrong links also increases. On the other hand, the strong point of using the
Web as background knowledge for Ontology Mapping is that finding the right
background knowledge does not need human intervention, but instead, it is done
on the fly.

In [22], the Semantic Web is taken as background knowledge for Ontology
Mapping. The advantage of this approach over manual selection methods is that
ontologies are selected at run-time. The disadvantage of this approach is that it
is totally dependent of the Semantic Web size, which is still highly limited in a
number of different domains.

3 Experimental Set-Up

In this section we present the data set we used, and the experiments performed.
The data set was provided by van Hage. The experiments were carried out with
an application we developed in JAVA.

3.1 Dataset

Table 1 includes a short sample of 3 meat-food and 3 animal-meat mappings from
gold standards. Particularly, the gold standards we used consist of 32 mappings
from meat products to food types (meat-food), and 31 mappings from animal
products to meat products (animal-meat).

Table 1. Sample of Gold Standards

Mappings

meat-food animal-meat

Ham � Foods Pork � Meat Products
Chicken � Foods Dove � Meat Products

Turkey Patties � Processed Foods Turkey Patties � Minced Meat

Both the terms and the manually established mappings were obtained from
the same dataset used in [18]. They compared a subset of two thesauri: the UN
FAO’s AGROVOC2, and the USDA Nutrient Database for Standard Reference,
2 http://www.fao.org/agrovoc

Combining the Semantic Web with the Web as Background Knowledge 817

release 16 (SR-16)3, particularly, two modules from AGROVOC (on food types
with 21 concepts, and animal products with 88 concepts) against one module of
USDA SR-16 (on meat products with 24 concepts).

3.2 Experiments

In running the experiments, pairs from meat-food and animal-meat lists are
taken as input, and mappings are searched. In order to contrast our results with
those from the gold standards, we limit our searches to subsumption relations
(�), since the gold standards only include this kind of relations between pairs of
terms. We also calculate a confidence measure for each mapping, following the
work in [16] and [17], where a mapping element is defined as a 5-tuple consisting
of: id, entity one, entity two, confidence measure, and a relation.

Using the Web. Table 2 shows a series of experiments we ran taking the Web
as background knowledge. We followed the technique described by Cimiano and
Staab in [12], and then replicated by van Hage, Katrenko and Schreiber in [18],
as one of their four ontology-mapping techniques. This method is described in
Section 4. In van Hage et al’s technique 6 Hearst patterns were used. In contrast
to van Hage, Katrenko and Schreiber’s method, we ran experiments by using 6
Hearst patterns, as well as with only 3 Hearst patterns.

Table 2. Experiments Using the Web

Experiment Data set # Hearst patterns

1 meat-food 6
2 meat-food 3
3 animal-meat 6
4 animal-meat 3

Another difference with van Hage, Katrenko and Schreiber’s technique was
that they used the Google API. By contrast, we use the Yahoo API, which
makes it harder to compare, but sheds some light on differences between Yahoo
and Google APIs. The reason why we decided to use the Yahoo API is that
the Google API keys needed to run the experiments were no longer issued as of
December 5, 20064.

In our experiments, we searched subsumption relations both ways for each
pair of terms. For example, given the pair of terms (Bacon,Pork), we searched
both Bacon � Pork and Bacon � Pork.

Using the Semantic Web. Table 3 shows a series of experiments we ran
with the Semantic Web as background knowledge. We followed variations of two
strategies proposed by Sabou, d’Aquin and Motta in [22], so-called S1 and S3. S1

3 http://www.nal.usda.gov/fnic/foodcomp/Data/SR16/sr16.html
4 http://code.google.com/apis/soapsearch/reference.html

818 R. Vazquez and N. Swoboda

is a method based on one single ontology to discover mappings. S2 is a technique
performing cross-ontology mapping searches. We used Swoogle API as they did
too. Further details and examples on both strategies are given in Section 4.

Table 3. Experiments Using the Semantic Web

Experiment Data set Strategies

1 meat-food S1
2 meat-food S1, S3
3 animal-meat S1
4 animal-meat S1, S3

Combining the Webs. We designed an extremely simple algorithm to combine
results derived from both Webs, and infer mappings. In particular, we designed
an in-parallel approach, in which Web-based and Semantic Web-based matchers
were run independently, and then results were combined. Results of the combined
approach were derived manually. Details on this algorithm are provided in the
next section.

3.3 Measures

Note that in our experiments we used three measures to analyze the quality of
the results. Particularly, we take into account precision, recall, and confidence
measure of mappings. We describe how confidence measure is defined in Sec-
tion 4. Mapping precision and mapping recall are defined as follows:

Mapping Precision =
|correct mappings discovered|
|total mappings discovered| (1)

Mapping Recall =
|correct mappings discovered|

|mappings in reference Golden Standards| (2)

4 Architecture of the Model

In this section, we justify the architecture of our combined approach, describe
the two elemental models that we take as starting building blocks, as well as vari-
ations we have introduced on them, and present the architecture of the combined
approach.

4.1 Motivation

We built a combined approach on the assumption that each Web can contribute
its own advantages, and the hypothesis that an effect of positive balance may
emerge when merging the Web and the Semantic Web as sources to discover
mappings. Consequently, we expected to create a new technique able to exhibit

Combining the Semantic Web with the Web as Background Knowledge 819

advantages from each single method, as well as able to avoid disadvantages, in
terms of precision, recall and confidence measure of mappings at the same time,
specifically:

– assumption, the Web can find many more mappings than the Semantic Web,
it is better in terms of recall;

– assumption, the Semantic Web can discover mappings with a maximum de-
gree of confidence measure (100%), and precision may be very high too;

– hypothesis, an appropriate combined approach may increase the number of
discovered mappings (recall) of the Semantic Web based approach, make
the precision of the Web-based approach higher, and provide mappings with
higher confidence than those obtained from the Web-based technique.

4.2 Using the Web as Background Knowledge

Algorithm 1 represents an iterative process that ends after considering all pairs
of terms. For each pair of terms from meat-food or animal-meat, depending on
what list of terms is being processed, the following steps are repeated:

1. Initialize to zero the number of hits for each subsumption relation.
2. For each Hearst pattern, send queries to Yahoo to add number of hits for

each subsumption relation.
3. Draw a subsumption relation between the pair of terms, based on number

of subsumption relations hits.

Table 4 shows the set of 6 Hearst patterns, and the set of 3 Hearst patterns
we considered to run the experiments. Note that patterns marked with * were
included in the set of 3 Hearst Patterns (H3).

Algorithm 1. Using the Web for OM with Hearst Patterns

Input: LP List of pairs pi; LHP List of Hearst patterns hpj

Output: LSR List of subsumption relations sri

1: for all pi in LP do
2: n� := 0
3: n� := 0
4: for all hpj in LHP do
5: n� := n� + #hits for Yahoo query (pi, hpj , �)
6: n� := n� + #hits for Yahoo query (pi, hpj , �)
7: end
8: if n� > n� then
9: sri := �

10: else if n� < n� then
11: sri := �
12: else
13: sri := null
14: fi
15: end

820 R. Vazquez and N. Swoboda

Table 4. Hearst patterns used in the experiments

〈concept-1〉 such as 〈concept-2〉 *
〈concept-1〉 including 〈concept-2〉 *
〈concept-1〉 especially 〈concept-2〉 *

such 〈concept-1〉 as 〈concept-2〉
〈concept-1〉 and other 〈concept-2〉
〈concept-1〉 or other 〈concept-2〉

Below are two particular examples of results obtained with the approach based
on the Web, with both 6 and 3 Hearst patterns.

Example 1. Given the pair (beef, foods), with 6 Hearst patterns, 5637 hits are
returned to derive beef � foods, and 914 hits are returned to derive that beef �
foods. Consequently, our technique concluded that beef � foods was the correct
mapping, with a confidence measure of 86%, (5637 / (5637 + 914)) x 100.

Example 2. Given the pair (beef, foods), with 3 Hearst patterns, 5468 hits are for
drawing beef � foods, and 0 hits are for concluding beef � foods. Our techniques
concluded that beef � foods was the correct mapping, with a confidence measure
of 100%, (5468 / (5468 + 0)) x 100.

Note that to decide what mapping (or subsumption relation) to derive, � or
�, our method simply selected the one with a higher number of hits. For example,
given the pair of terms (beef, foods), with 6 Hearst patterns, the number of hits
to derive beef � foods was 5637, and the number of hits to derive beef � foods
was 914, then our technique derived beef � foods, because 5637 is greater than
914. This is how we dealt with contradictions in the Web-based technique: by
selecting the subsumption relation with a higher number of hits.

4.3 Using the Semantic Web as Background Knowledge

The algorithm grounded on the Semantic Web is simple: for each pair of terms,
ontologies containing them are searched by using Swoogle, and for each of those
ontologies, subsumption relations are searched.

Algorithm 2. Using the SW for OM

Input: LP List of pairs pi; recursivity rec (true, false)
Output: LSR List of subsumption relations sri

1: nmaxOnto := 10
2: for all pi in LP do
3: LOnto := Swoogle query (pi, nmaxOnto)
4: while LOnto not empty and sri not found do
5: sri := search subsumption relation (pi, LOntoj , rec)
6: end
7: end

Combining the Semantic Web with the Web as Background Knowledge 821

More formally, the following steps are executed:

1. Initialize the maximum number of Ontologies to retrieve, nmaxOnto. We ran
experiments with nmaxOnto = 10, retrieving 10 ontologies, at most.

2. For each pair of terms, obtain nmaxOnto ontologies at most, by querying
Swoogle.

3. For each pair of terms and each ontology, search subsumption relations, until
one of them is found, or no more ontologies left.

This algorithm is inspired by Sabou et al’s Strategy One (S1). The idea of this
strategy is to find mappings within one single ontology, given a pair of terms.
To do that, given a term t1, a list of superclasses is obtained. Then, it is checked
whether the other term t2 belongs to the list of superclasses. If so, the mapping
t1 � t2 is derived. If no mappings are found in this search, a simmilar search
is peformed for subclasses of term t1, and a parallel reasoning is carried out to
infer the mapping t1 � t2.

Note also that we have included the recursivity parameter rec, which allows
varying S1, and performing a cross-ontology mapping discovery. The idea be-
hind recursive cross-ontology search is the following. If a mapping cannot be
discovered in a single ontology, more than one ontology can be considered to
discover a mapping between a pair concepts. For example, if we are searching
for the subsumption relation cat � animal, we could find: 1, cat � mammal
in ontology OC−M ; 2, mammal � animal in ontology OM−A. Then, we could
draw the mapping cat � animal by considering the two ontologies OC−M and
OM−A. This so-called Strategy Three (S3) by Sabou et al gave us inspiration to
build our cross-ontology approach.

Sabout et al also proposed a Strategy Two (S2), extending Swoogle’s coverage
by making more flexible the process of finding names. In particular, they pro-
pose to perform: 1, string normalization; 2, dealing with compound names; 3,
exploiting semantic relations between terms. The work we present is focused on
developing techniques that exploit metadata in the Semantic Web, rather than
dealing with terminological algorithms. Therefore, we left out an implementation
of S2 in our approaches.

Two different strategies can be distinguished at this point to find mappings:
S1 and S3, which involve two different algorithms, so-called Algorithm 3 and Al-
gorithm 4 respectively. Algoritm 3 searches for mappings in one single ontology.
Algorithm 4 is a recursive version that discovers mappings grounded in several
ontologies.

Algorithm 3 searches for superclasses of t1 within one ontology, and if term
t2 is included in that list, then it is concluded that t1 � t2. If the search of
superclasses fails, a new search of subclasses is started for t1, and if the term t2
is included in the list of subclasses, it is derived that t1 � t2.

Algorithm 4 searches for superclasses of t1 within one ontology, and starts
recursively Algorithm 2 with parameters: Lsuperj, t2, false. Consequently, a
mapping between Lsuperj and t2 is searched in one sole ontology, stopping
recursivity (rec = false). If a subsumption relation Lsuperj � t2 is discovered,
then it is derived the mapping t1 � t2. If the search of superclasses fails, a new

822 R. Vazquez and N. Swoboda

Algorithm 3. Searching for subsumption relations in one ontology (rec = false)

Input: Pair pi with terms t1, t2; O Ontology
Output: Subsumption relation sri

1: if sri not found then
2: Lsuper : = search superclasses (t1, O)
3: if t2 in Lsuper then sri := t1 � t2
4: fi
5: if sri not found then
6: Lsub : = search subclasses (t1, O)
7: if t2 in Lsub then sri := t1 � t2
8: fi

search of subclasses is started for t1, and if it is discovered Lsuperj � t2, then
it is derived the mapping t1 � t2.

Note that we only introduced one level of recursivity in our experiments.
However, cross-ontology searches can be more complex, including higher levels
of recursivity. Finally, we actually ran a variation of Algorithm 4, in which su-
perclasses and subclasses of t2 were searched too, and then followed a reasoning
parallel to that of t1 to derive mappings.

Algorithm 4. Searching for subsumption relations in several ontologies (rec = true)

Input: Pair pi with terms t1, t2; O Ontology
Output: Subsumption relation sri

1: if sri not found then Lsuper : = search superclasses (t1, O)
2: while Lsuper not empty and sri not found do
3: temp-sr := Algorithm 2 (Lsuperj , t2, false)
4: if temp-sr == (Lsuperj � t2) then sri := t1 � t2
5: end
6: if sri not found then Lsub : = search subclasses (t1, O)
7: while Lsub not empty and sri not found do
8: temp-sr := Algorithm 2 (Lsubj , t2, false)
9: if temp-sr == (Lsubj � t2) then sri := t1 � t2

10: end

4.4 Combining the Semantic Web with the Web as Background
Knowledge

State-of-the-art ontology-mapping systems are not made of a single elementary
matcher, but of combinations proposed to provide a more robust solution [19].
A possible classification of combined techniques is the following: 1, in-sequence
elementary matchers, called hybrid matchers in [4], with examples available in [2]
and [3]; 2, in-parallel matchers, called composite matchers in [4], which combine
the results, e.g., taking average or maximum values from indepedently executed
matchers (see [8], [9] and [14]). In this paper, we build an in-parallel approach
to combine results obtained from both Webs.

Combining the Semantic Web with the Web as Background Knowledge 823

Algorithm 5. Combining the SW with the Web for OM

Input: LP List of pairs pi; recursivity rec
Output: LMC List of pairs (mapi, confi)

1: mappings-web := Algorithm 1 (pi)
2: mappings-sw := Algorithm 2 (pi, rec)
3: for all pi in LP do
4: if mappings-webi not null and mappings-swi not null then
5: if mappings-webi == mappings-swi then
6: mapi := mapping-webi

7: confi := 100%
8: fi
9: else if mappings-webi not null and mappings-swi null then

10: mapi := mappings-webi

11: confi := confidence(pi)
12: else if mappings-webi null and mappings-swi not null then
13: mapi := mappings-swi

14: confi := 100%
15: else
16: mapi := null
17: confi := null
18: fi
19: end

We have designed an extremely simple algorithm grounded on the Semantic
Web and the Web to infer mappings. Its main steps are the following:

1. Get mappings for pairs of terms grounded in both the Semantic Web and
the Web

2. For each pair, if both Webs have found mappings, and they are not contra-
dictory, derive that mapping with 100% confidence.

3. For each pair, if only the Web returns a mapping, derive it with a degree of
confidence based on the number of hits of the mapping.

4. For each pair, if only the Semantic Web has discovered a mapping, derive
that mapping with a maximum degree of condifence, 100%.

Note that contradictions between both Webs may appear. We did not have
to deal with contradictions in our experiments. However, contradictions have to
be tackled to provide a more robust solution.

5 Results

In this section we present the results of our experiments and analyze them. This
section is divided into four sub-sections: 5.1, combining the semantic web with
the web; 5.2, comparing Hearst patterns; 5.3, comparing new experiments with
previous work; 5.4, open questions.

824 R. Vazquez and N. Swoboda

Table 5. Mappings grounded on both single techniques and a combined approach

Data set Method Precision Recall Confidence

meat-food Yahoo (H3) 95% (18/19) 56% (18/32) 99%
meat-food Swoogle (S1,S3) 100% (7/7) 21% (7/32) 100%
meat-food Combined approach 95% (18/19) 56% (18/32) 100%

animal-meat Yahoo (H3) 79% (15/19) 48% (15/31) 79%
animal-meat Swoogle (S1,S3) 100% (6/6) 19% (6/31) 100%
animal-meat Combined approach 81% (17/21) 55% (17/31) 81%

5.1 Combining the Semantic Web with the Web

Table 5 shows that mapping results grounded on both Webs differ in terms of
precision, recall and confidecene measure. The Semantic Web provides the best
results in terms of precision because all of the mappings found at the Semantic
Web in our experiments are correct. The fact that our technique stops after
finding the first mapping probably avoids adding noise, or more wrong mappings.
On the other hand, the Web-based technique is also able to provide high precision
when the appropriate Hearst patterns are selected. A further discussion on how
to increase precision by using particular Hearst patterns is given in Section 5.2.
The combined approach benefits from two new mappings found in the Semantic
Web (dove � meat, and duck � meat) in order to increase the precision of the
Web-based approach, in the animal-meat data set (see Table 5). By contrast,
when the combined approach is applied to the meat-food data set, all of the
mappings found at the Semantic Web have already been found by the Web-based
technique. As a result, precision degree of the combined approach remains the
same as that of the Web-based method, in the meat-food data set (see Table 5).

The Web provides better results in terms of recall than the Semantic Web
for Ontology Mapping. Many more mappings can be drawn when using the
Web currently, and Hearst patterns provide a good way to exploit this fact.
The Web can be seen as the big brother of the Semantic Web, in the sense
that it was created around 1990 while the Semantic Web is still taking off. A
practical consequence of that is the amount of available data in each Web, the
Web having much data from which to extract relations between pairs of terms,
and the Semantic Web still lacking. As a result, the number of mappings found
in the Web is simply much higher.

The combined approach takes advantage of considering all of the mappings
discovered from both sources, the Web and the Semantic Web. Therefore, in
terms of recall, the combined technique always provides equal or better results
than the best single method. In particular, the combined approach equals the
level of recall (56%) provided by the Web-based technique when applied over
the meat-food data set (see Table 5); and, the recall degree of the Web-based
technique (48%) is exceeded by the combined approach (55%) in the animal-meat
data set (see Table 5), because two mappings that are discovered by the Semantic
Web, and therefore included in the results given by the combined approach, are
missed by the technique grounded only on the Web.

Combining the Semantic Web with the Web as Background Knowledge 825

The confidence measure of mappings discovered in the Semantic Web is al-
ways the maximum, 100%, by our definition. We conceded this top degree based
on the assumption that these mappings are built on purpose, which is an impor-
tant distinction with the technique based on the Web where mappings emerge
automatically by counting number of correct hits, out of total ones, returned by
searches with Hearst patterns. The Web-based technique provides a quite high
level of confidence for mappings, because many wrong hits (in the sense that
those mappings are not correct according to the gold standards) returned by the
Web are removed when considering only 3 particular Hearst patterns.

The combined approach increases the average confidence measure of mappings
with respect to the Web-based technique. The combined technique gets the max-
imum confidence measure for every mapping, so that it is expected to maintain
or increase the average confidence measure from the Web-based technique. For
example, the mapping poultry � food has a 99% confidence according to the
Web approach, however, since this mapping is also discovered by the Semantic
Web approach, it gets a 100% confidence, i.e., the maximum between both con-
fidence degrees (max{99%, 100%}), in the combined approach. In this way, the
average confidence measure of the combined approach increases up to a 100%
level in the meat-food data set (see Table 5).

5.2 Comparing Hearst Patterns

Table 6 shows that three Hearst patterns clearly yield much better results in
terms of precision, as well as an increase in the level of recall, and a decrease of
the number of wrong mappings, in both data sets. To explain this, we show how
many hits returned each Hearst pattern in each data set on average, for both
correct (�) and wrong (�) mappings (see Table 7).

Table 6. Mappings with 6 and 3 Hearst patterns

Data set Method Precision Recall # Wrong mappings

meat-food Yahoo (H6) 56% (17/30) 53% (17/32) 1
meat-food Yahoo (H3) 95% (18/19) 56% (18/32) 0

animal-meat Yahoo (H6) 29% (10/35) 32% (10/31) 10
animal-meat Yahoo (H3) 79% (15/19) 48% (15/31) 1

Table 7 shows that two Hearst mappings are clearly not good for Ontology
Mapping: 〈c-1〉 and other 〈c-2〉, and 〈c-1〉 or other 〈c-2〉. These two Hearst pat-
terns do not return many desirable (correct) mappings on average, e.g., 〈c-1〉 or
other 〈c-2〉 provides 0 correct mappings on the meat-food data set, and also, they
discover many undesirable mappings, e.g., 〈c-1〉 or other 〈c-2〉 finds 115 wrong
mappings on average in the meat-food data set.

Table 7 shows that the remaining 4 Hearst patterns may be good enough for
discovering mappings. However, a more detailed analysis exhibits the following
particular feature on this set of patterns. 〈c-1〉 such as 〈c-2〉, and 〈c-1〉 includ-
ing 〈c-2〉 are both clearly good candidates to include within a definitive set of

826 R. Vazquez and N. Swoboda

Table 7. Average # of hits for correct (�) and wrong (�) mappings

Data set Hearst Pattern # Correct hits # Wrong hits

meat-food 〈c-1〉 such as 〈c-2〉 680.03 0.00
meat-food 〈c-1〉 including 〈c-2〉 161.40 0.46
meat-food 〈c-1〉 especially 〈c-2〉 19.46 0.00
meat-food such 〈c-1〉 as 〈c-2〉 27.18 0.18
meat-food 〈c-1〉 and other 〈c-2〉 1.46 115.00
meat-food 〈c-1〉 or other 〈c-2〉 0.00 19.40

animal-meat 〈c-1〉 such as 〈c-2〉 383.93 0.06
animal-meat 〈c-1〉 including 〈c-2〉 67.19 0.38
animal-meat 〈c-1〉 especially 〈c-2〉 7.45 0.00
animal-meat such 〈c-1〉 as 〈c-2〉 4.09 0.96
animal-meat 〈c-1〉 and other 〈c-2〉 1.00 72.67
animal-meat 〈c-1〉 or other 〈c-2〉 0.03 12.96

Hearst patterns, since the difference between the number of correct and wrong
mappings is tremendous. With respect to the two remainder Hearst patterns,
〈c-1〉 especially 〈c-2〉, and such 〈c-1〉 as 〈c-2〉, the difference between number of
correct and and wrong mappings is not that significant, and a particular detail
leads us to include 〈c-1〉 especially 〈c-2〉 in our final set of best Hearst patterns,
and to leave out the other pattern. Specifically, the main difference between
these two patterns is that one of them does not draw wrong mappings in our
experiments, and the other one does derive wrong mappings. This is the reason
we included 〈c-1〉 especially 〈c-2〉, and did not include the other one.

Going back to the analysis of Table 6, we have clearly shown in Table 7
that there exists a direct relation betwen what Hearst patterns are selected for
Ontology Mapping and the number of correct/wrong hits. Therefore, a good
choice of Hearst patterns may decrease number of wrong mappings, and may
provide both a higher recall, and a higher precision, since noise is removed, i.e.,
wrong mappings are left out, and correct mappings are uncovered.

5.3 Comparing New Experiments with Previous Work

Table 8 shows a significant difference between the Google and Yahoo APIs in
terms of precision. If 6 Hearst patterns are used, the number of wrong mappings
is decreased by the Yahoo API with respect to the Google one. As a result, the
level of precision is higher in Yahoo.

In the meat-food data set, Google’s precision is 30%, which is lower than
Yahoo’s precision, 56%. In the animal-meat data set, Google’s precision, 17%,
is again lower with respect to that of Yahoo’s 29%. Note that recall degree is
the same for both APIs in each different data set, 53% in meat-food and 32% in
animal-meat.

Table 9 shows levels of recall for Sabou et al’s and Vazquez’s methods to be
dissimilar from each other. To explain that difference, we can observe where those
discovered mappings come from. In meat-food data set, Sabou et al’s method

Combining the Semantic Web with the Web as Background Knowledge 827

Table 8. Mappings discovered with the Web

Data set Method Precision Recall Source

meat-food Google (H6) 30% (17/56) 53% (17/32) van Hage et al
meat-food Yahoo (H6) 56% (17/30) 53% (17/32) Vazquez
meat-food Yahoo (H3) 95% (18/19) 56% (18/32) Vazquez

animal-meat Google (H6) 17% (10/58) 32% (10/31) van Hage et al
animal-meat Yahoo (H6) 29% (10/35) 32% (10/31) Vazquez
animal-meat Yahoo (H3) 79% (15/19) 48% (15/31) Vazquez

Table 9. Mappings discovered with the Semantic Web

Data Set Method Precision Recall Source

meat-food Swoogle (S1,S3) 100% (8/8) 25% (8/32) Sabou et al
meat-food Swoogle (S1,S3) 100% (7/7) 21% (7/32) Vazquez
meat-food Swoogle (S1,S2,S3) 100% (11/11) 34% (11/32) Sabou et al

animal-meat Swoogle (S1,S3) 100% (1/1) 3% (1/31) Sabou et al
animal-meat Swoogle (S1,S3) 100% (6/6) 19% (6/31) Vazquez
animal-meat Swoogle (S1,S2,S3) 100% (4/4) 12% (4/31) Sabou et al

mappings have been found in three ontologies, while results from Vazquez’s
method come from two ontologies (see Table 10). In animal-meat data set, Sabou
et al’s technique only discovered one ontology, while Vazquez’s method found
mappings in three different ontologies (see Table 10). Note that both series of
experiments were run at different points in time (i.e., variations in lists of top on-
tologies returned for a given pair of terms could be introduced by Swoogle), and
with different implementations (i.e., different maximum numbers of ontologies
in which to search for mappings).

As pointed out by Sabou et al, results also show that techniques based on
the Semantic Web may enhance results in terms of precision (and confidence
of mappings), but cannot be used in isolation, because recall is still too low
(see Table 9). On the other hand, the Web-based technique provides precisely
what the Semantic Web based approach lacks of: a high recall. Therefore, a
complementary approach, based on several techniques seems to be a good way
to follow when searching for a more balanced method in overall terms.

5.4 Open Questions

Compound Names. Table 11 shows that precision is high without considering
compound names, in both data sets. It also exhibits a number of irregular results
regarding precision with compound names, and recall regardless of compound
5 http://morpheus.cs.umbc.edu/aks1/ontosem.owl
6 http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf
7 http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml
8 http://reliant.teknowledge.com/DAML/Mid-level-ontology.daml
9 http://reliant.teknowledge.com/DAML/SUMO.owl

828 R. Vazquez and N. Swoboda

Table 10. Mappings discovered with the Semantic Web

Data set Strategy Sabou et al Vazquez

meat-food S1 Beef6, P ork6 � Food Beef5, P ork6 � Food
Poultry6 � Food Ham5, P oultry6 � Food

meat-food S3 Ham9, Duck8,6, Goose8,6 � Food Chicken5,6, Duck5 � Food
Turkey8,6, Chicken8,6 � Food Ostrich5 � Food

animal-meat S1 Bacon6 � Pork Bacon6, Beef5 � Pork
Ham5, Chicken7 � Meat

Dove7, Duck7 � Meat

Table 11. Mappings with and without compound names

Data set Method Precision Recall Compound

meat-food Yahoo (H3) 93% (14/15) 100% (14/14) excluded
meat-food Yahoo (H3) 100% (4/4) 22% (4/18) only

animal-meat Yahoo (H3) 79% (11/14) 44% (11/25) excluded
animal-meat Yahoo (H3) 57% (4/7) 66% (4/6) only

names. Precision with compound names is variable depending on the data set
(100% in meat-food, and 57% in animal-meat). Recall with compound names is
also variable (22% in meat-food, and 66% in animal-meat); the same is true of
recall without compound names (100% in meat-food, and 44% in animal-meat).
Consequently, we consider that more experiments are needed to draw conclusions
regarding compound names and Web-based techniques. We also note that the
Semantic Web based technique did not return mappings between compound
names. Therefore, compound names in the Semantic Web are particularly hard
to be dealt with currently.

Contradictions. In order to decide what subsumption relation to draw, our
Web-based techniques select the subsumption relation with a higher number of
hits. In contrast, the Semantic Web technique stops after discovering the first
mapping, given a pair of terms. In this way, no contradictions may appear in
the Semantic Web based method. However, if the Semantic Web based tech-
nique does not stop searching for mappings after the first one is discovered,
contradictory mappings may arise. In this case, an strategy able to deal with
contradicitions in the approach based on the Semantic Web has still to be devel-
oped. It remains an open question. Sabou et al have already shed some light on
how to tackle it. They consider that: 1, contradictory mappings can coexist in a
contextualized form, i.e., by connecting mappings to the ontologies that they be-
long to; 2, why not to rely only on context-similar ontologies to derive mappings?
In this way, contradictions are likely to disappear by considering only right on-
tologies, given a particular context; in this case, more advanced techniques to
choose ontologies become crucial, and Swoogle’s features (or those from other
Semantic Web search engines) play a crucial role in this issue.

Combining the Semantic Web with the Web as Background Knowledge 829

We did not have to deal with contradictions between Web-based and Se-
mantic Web-based mappings in our experiments. However, we envisage it as
a potential line of work, for building a more robust algorithm, to automati-
cally provide coherent answers when contradictions between both Webs appear.
One potential solution, extending ideas proposed by Sabou et al and applying
them to both Webs, involves finding contextualized mappings in both the Web
and the Semantic Web, and consequently contradictions would be likely to not
appear.

Quality of tools to search and Growth of the Webs. If Yahoo, Google,
Swoogle, or other search engines that may arise are able to provide more sophis-
ticated options for automatic search, such as searches based on context, deal-
ing with contradictions can become much easier as pointed out above. In this
way, we find a direct relation between quality of mappings discovered, in terms
of precision, and capability of search tools to do searches based on contexts.
The confidence measure of mappings is likely to benefit too from contextual-
ized searches, in the sense that many wrong mappings may disappear, and thus
quality of mappings may increase.

Another interesting aspect to remark is the the growth of the Webs in many
varied domains, which is also likely to provide more data that can be used to
find more mappings, thus increasing the level of recall.

6 Conclusions

In this paper, we have designed, tested and analyzed a framework for On-
tology Mapping based on the idea of combining the Semantic Web with the
Web as background knowledge. We have performed experiments on real-life
datasets and have compared our results with previous related work. We dis-
covered that Web-based techniques that use Hearst patterns can provide bet-
ter results, in terms of precision, recall and confidence measure of mappings,
by selecting three appropriate Hearst patterns. We have also identified as open
questions that require more study: performing experiments and analyzing results
with compound names, dealing with contradictions between derived mappings,
improving quality of tools to search, and growing of both Webs in different
domains.

Finally, we have provided evidence to support our initial hypothesis that a
combined approach may exhibit a more balanced solution in general terms. Par-
ticularly the combined approach benefits from advantages provided by partial
techniques, and avoids disadvantages in terms of precision, recall and confidence
measure of mappings.

Acknowledgments. Thanks to Marta Sabou for her comments; and to Willem
van Hage for providing his experimental data set.

830 R. Vazquez and N. Swoboda

References

1. Hearst, M.: Automatic Acquisition of Hyponyms from Large Text Corpora. Pro-
ceedings of the 14th International Conference on Computational Linguistics (1992)

2. Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured
and structured data sources. SIGMOD Record 28(1), 54–59 (1999)

3. Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with Cupid. In:
VLDB. Proceedings of the Very Large Data Bases Conference, pp. 49–58 (2001)

4. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
The International Journal on Very Large Data Bases (VLDB) 10(4), 334–350 (2001)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5), 34–43 (2001)

6. Hendler, J.A.: Agents and the Semantic Web. IEEE Intelligent Systems, 30–37
(March/April 2001)

7. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hübner, S.: Ontology-Based Integration of Information A Survey of Existing
Approaches. In: IJCAI 2001. Workshop: Ontologies and Information Sharing (2001)

8. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In: VLDB. Proceedings of the Very Large Data Bases Conference, pp.
610–621 (2001)

9. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map ontologies on
the semantic web. In: WWW. Proceedings of the International World Wide Web
Conference, pp. 662–673 (2003)

10. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The
Knowledge Engineering Review 18(1), 1–31 (2003)

11. Marshall, C.C., Shipman, F.M.: Which semantic web? In: HYPERTEXT 2003.
Proceedings of the fourteenth ACM conference on Hypertext and hypermedia, pp.
57–66. ACM Press, New York (2003)

12. Cimiano, P., Staab, S.: Learning by Googling. SIGKDD Explor. Newsl. 6(2), 24–33
(2004)

13. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. In: SIG-
MOD Record, ACM Press, New York (2004)

14. Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In: Bussler, C.J.,
Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 76–91.
Springer, Heidelberg (2004)

15. Schlobach, S.: Semantic clarification by pinpointing. In: Gómez-Pérez, A., Euzenat,
J. (eds.) ESWC 2005. LNCS, vol. 3532, Springer, Heidelberg (2005)

16. Bouquet, P., Euzenat, J., Franconi, E., Serafini, L., Stamou, G., Tessaris, S.: D2.2.1:
Specification of a common framework for characterizing alignment. Technical re-
port, NoE Knowledge Web project delivable, (2004)
http://knowledgeweb.semanticweb.org/

17. Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D.,
van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Hei-
delberg (2004)

18. van Hage, W., Katrenko, S., Schreiber, G.: A Method to Combine Linguistic
Ontology-Mapping Techniques. In: Proc. of ISWC (2005)

19. Shvaiko, P., Euzenat, J.: A Survey of Schema-based Matching Approaches. Journal
on Data Semantics IV (2005)

http://knowledgeweb.semanticweb.org/

Combining the Semantic Web with the Web as Background Knowledge 831

20. Aleksovski, Z., Klein, M., ten Katen, W., van Harmelen, F.: Matching Unstructured
Vocabularies using a Background Ontology. In: Staab, S., Svátek, V. (eds.) EKAW
2006. LNCS (LNAI), vol. 4248, Springer, Heidelberg (2006)

21. van Harmelen, F.: Semantic Web Research anno 2006: main streams, popular fal-
lacies, current status and future challenges. In: Klusch, M., Rovatsos, M., Payne,
T.R. (eds.) CIA 2006. LNCS (LNAI), vol. 4149, Springer, Heidelberg (2006)

22. Sabou, M., dAquin, M., Motta, E.: Using the Semantic Web as Background Knowl-
edge for Ontology Mapping. In: Sabou, M. (ed.) Proceedings International Work-
shop on Ontology Matching (OM-2006), collocated with ISWC 2006 (2006)

Discovering Executable Semantic Mappings

Between Ontologies

Han Qin, Dejing Dou, and Paea LePendu

Computer and Information Science
University of Oregon

Eugene, OR 97403, USA
{qinhan, dou, paea}@cs.uoregon.edu

Abstract. Creating executable semantic mappings is an important task
for ontology-based information integration. Although it is argued that
mapping tools may require interaction from humans (domain experts) for
best accuracy, in general, automatic ontology mapping is an AI-Complete
problem. Finding matchings (correspondences) between the concepts of
two ontologies is the first step towards solving this problem but match-
ings are normally not directly executable for data exchange or query
translation. This paper presents an systematic approach to combining
ontology matching, object reconciliation and multi-relational data min-
ing to find the executable mapping rules in a highly automatic manner.
Our approach starts from an iterative process to search the matchings
and do object reconciliation for the ontologies with data instances. Then
the result of this iterative process is used for mining frequent queries.
Finally the semantic mapping rules can be generated from the frequent
queries. The results show our approach is highly automatic without los-
ing much accuracy compared with human-specified mappings.

1 Introduction

The emergence of the Semantic Web has emphasized the need for systems that
are able to query, integrate and exploit data from multiple, disparate sources
which may use different ontologies, but are about the same domain. Research
involving the Semantic Web is experiencing huge gains in standardization in that
OWL becomes the W3C standard for ontological definitions in web documents.
However, it is extremely unreasonable to expect that ontologies used for similar
domains will be few in number [5]. As the amount of data collected in the fields
of Biology and Medicine grows at an amazing rate, it has become increasingly
important to model and integrate the data with ontologies that are biologically
meaningful and that facilitate its computational analysis. Hence, efforts such as
the Gene Ontology (GO) [16] in Biology and the Unified Medical Language Sys-
tem (UMLS) [19] in Medicine are being developed and have become fundamental
to researchers working in those domains. However, different labs or organizations
may still use different ontologies to describe their data.

Some ontology-based information integration systems have been developed to
process queries and exchange data from data resources with different ontologies.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 832–849, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Discovering Executable Semantic Mappings Between Ontologies 833

A survey can be found in [32]. For example, the InfoSleuth [4] project provides an
agent and ontology based infrastructure for information gathering and analysis
in distributed environments such as the Web. In OBSERVER [23] the informa-
tion sources are described by domain ontologies, and user queries are rewritten
by using the inter-ontology matchings. In our own previous work, we used Onto-
Engine (an inference engine) and our expressive Web-PDDL ontology language
to translate Semantic Web documents and answer queries [13] between ontolo-
gies. We enhanced these tools with the ability to handle relational databases in
addition to Semantic Web documents in OntoGrate [11,12].

Ontology matching and mapping is the key step to enable ontology-based in-
formation integration. The goal of ontology matching is to generate correspon-
dences between the concepts from different but related ontologies. In most cases,
formal mapping rules with clear semantics need to be generated for information
integration systems. The problem of finding matchings and mappings between
information resources has been extensively studied by different research commu-
nities. To be clear, we distinguish between matching (correspondence) and map-
ping. Matching pairs related concepts. One matching example is “both property
phone and property work at in one ontology are matched to property workphone
in another.” However, mapping not only pairs concepts but also formally defines
the relationships between them. For example, “for all Office which has a phone
number, all People who work at that office must have workphone as the same
number” is a mapping between property phone, work at and workphone.

Research in discovering and representing semantic mappings is still in very
preliminary stages. Indeed, the ideal choice of the mapping language, one care-
fully balancing expressivity with scalability, is an open question. Current map-
ping languages, such as Datalog, F-Logic, DLR, KIF or LOOM, are more or
less subsets of first order logic [31]. In this paper, we mainly use general first
order logic syntax to represent mapping rules, such as the above mapping we
mentioned:

∀x, y, z, People(x) ∧ Office(y) ∧ String(z)
∧work at(x, y) ∧ phone(y, z) → workphone(x, z)

Our OntoEngine takes these kinds of rules in Web-PDDL1 for information inte-
gration. The rules also can be represented as Datalog, SWRL [1] or other logic
languages which some tools can process. Therefore, we call them executable map-
pings. It is similar as that Clio [24,17] calls operational mappings for database
schemas.

In general, automatic ontology mapping is an AI-Complete problem. Many
challenges remain. For example, although it is argued that mapping tools may
require interaction from domain experts for best accuracy [29], it is not clear
what kind of interaction between the system and domain experts should be
supported. In this paper, we propose to combine ontology matching, object

1 Web-PDDL is also a subset of first order logic. We call mapping rules in Web-PDDL
syntax bridging axioms in our previous work [13,11,12].

834 H. Qin, D. Dou, and P. LePendu

reconciliation and multi-relational data mining to find the executable mapping
rules as automatically as possible. Our approach starts from an iterative pro-
cess to search the matchings and do object reconciliation for the ontologies with
data instances. Then the result of this iterative process could be used for mining
frequent queries. Finally the semantic mapping rules can be generated from the
frequent queries. The results show our approach is highly automatic without
losing much accuracy compared with human-specified mappings.

The rest of the paper is organized as follows. We first give some background
and related work in Section 2. Then we demonstrate our general framework for
ontology mapping in Section 3. We elaborate our iterative approach for ontology
matching and object reconciliation in Section 4. In Section 5, we show our ex-
tension to a well-known multi-relational data mining tool (i.e., FARMER [25])
for supporting mapping rules discovery. We show some promising results by case
studies with real ontologies in Section 6. We conclude the paper and discuss the
future directions in Section 7.

2 Related Work

In this section we first give background and more detail of some existing schema
or ontology matching and mapping systems. We also introduce an object recon-
ciliation system and several Multi-Relational Data Mining systems.

Not surprisingly, the database community was one of the first to invest con-
siderable effort in developing systems that match different database schemas
(see [29] for a survey). Most schema matching systems, such as LSD [8], CU-
PID [20], iMap [7] and COMA [14], focus on retrieving correspondences between
attributes using a variety of similarity or correlation heuristics. Similarly, re-
search in knowledge engineering and the Semantic Web has resulted in tools
for ontology matching that are absolutely critical in ontology-based information
integration. These tools also show promising applications in the database arena
(see [26] for a survey). Chimaera [22], Protégé [27], GLUE [9] and MAFRA [21]
are some examples of such systems. GLUE [9] employs machine learning and
exploits data instances to find matchings between concepts. It uses domain
knowledge and domain-independent constraints to increase matching accuracy.
Chimaera [22] provides a ontology editor to allow user to merge ontologies. It
suggests potential matchings based on the names of properties but needs users
to verify them. The disadvantage of this system is that it leaves what to do
entirely to users. Protégé [27] gives initial ontology alignments by plugging in
one of existing matching algorithms and focuses on guiding users to refine align-
ments. This system updates its suggestions based on the input of user and gives
new alignments to user. MAFRA [21] is an interactive, incremental and dynamic
framework, which builds a semantic bridging ontology for distributed ontologies.
These semantic bridges specify how to translate entities from source ontology
to target ontology. BMO [18] can generate block matchings using a hierarchical
bipartition algorithm. This system builds a virtual document for each ontol-
ogy and compares each pair of concepts with the information in the virtual

Discovering Executable Semantic Mappings Between Ontologies 835

document. This algorithm is efficient but it does not figure out how two blocks
are matched, however these matching blocks still can be very helpful for finding
mappings.

Clio [24,17] is a schema mapping system that can generate operational (i.e.,
executable) mappings in different formats such as SQL and XQuery for database
integration. This system uses semantic information to find matchings first and
allows the user to modify them or add new matchings. Then it produces mapping
rules based on matchings. It is semi-automatic since it needs human interactions.
The research by An, Borgida and Mylopoulos [3,2] provides very interesting
methods to construct complex mapping rules between relational tables or XML
data and ontologies when given an initial set of correspondences between the
concepts in the schemas and ontologies. They offer the mapping formalisms
to capture the semantics of XML or relational schemas by constructing the
semantic trees from them. Their generated rules will be useful to domain experts
for further refinement, as well as to applications. Our approach is to combine
ontology matching, object reconciliation and multi-relational data mining to find
executable mapping rules in a highly automatic manner.

The object reconciliation problem is studied for determining whether two
different objects of data sets refer to the same real-world entity. Xing Dong
et al [10] propose to reconcile the object references in three steps. The first
step is constructing the dependency graph, which describes the relationships
between object pairs. One object pair (i.e., a reconciliation decision) needs to
be decided as reconciled or not. The next step is an iteratively re-computing
process, which computes the similarity scores of reconciliation decisions. Since
the similarity score of one reconciliation decision can both affect and be affected
by the similarity score of its neighbors, the algorithm sets a fixed point to stop
the process. Finally, transitive closure is computed for the final reconciliation
results.

Multi-relational mining techniques are already applied in many research ar-
eas such as subgraph mining. FOIL [28] is a first-order learning system which
can generate Horn rules for target predicates by examining both positive and
negative examples. WARMER [6] is designed for frequent pattern mining in re-
lational databases. This system is built on the foundations of Inductive Logic
Programming (ILP) and does not need negative examples. FARMER [25] is also
a frequent pattern mining system, it takes object identity as the starting point
and introduces several optimizations, and thus it has better performance than
WARMER. In this paper, we will borrow some ideas from FARMER for gen-
erating ontology mapping rules. We will give more detail of our algorithm in
Section 5.

3 Framework

In this section, we first introduce our general framework for mapping discovery,
then we illustrate our idea with some simple examples. Given a source ontology
and a target ontology which model the same domain, ontology matching can

836 H. Qin, D. Dou, and P. LePendu

find that some of their concepts (e.g., classes and properties in OWL ontologies)
are matched to each other. Object reconciliation can find that some instances
from both ontologies represent the same real world entities. Our final goal is to
generate executable mapping rules based on that information.

3.1 System Architecture

Figure 1 shows the architecture of our system. There are five main components.

1. Matching Generator 2. Object Reconciliation
 Processor

 4. Multi-Relation
Data Mining System 5. Rules Refiner

Source ontology
with data instances

Target ontology
with data instances

A set of 1-1 matchings

Data instances

Merged data instances

A set of groups of
classes and properties
with reconciled data

Sets of frequent queries
Executable
mapping rules

A set of 1-1 matchings
with reconciled data

3. Group Generator

Fig. 1. System Architecture

1. Matching Generator (MG): It takes the source and target ontologies with
their data instances as input. Different matching system could be plugged in
this component. The output of MG is 1-1 matching pairs between classes and
properties. If no new matchings can be found, MG will pass this information
to the next component, Object Reconciliation Processor. It also passes the
data instances.

2. Object Reconciliation Processor (ORP): This component is designed to rec-
oncile instances which refer to the same real world entities. If there are new
matchings from Matching Generator, ORP will try to reconcile more in-
stances. Otherwise it passes the 1-1 matchings and the reconciled data to
the next component, Group Generator.

3. Group Generator (GG): The matchings are not always 1-1 matchings. GG
combines close related 1-1 property matching pairs, class matching pairs and
their instances together as a group. For every group, GG generates a set of
input data for multi relation data mining system.

4. Multi-Relation Data Mining System (MRDMS): We borrow some ideas of
FARMER system to mine frequent queries. This system requires certain in-
put format and it can find interesting frequent queries. Since every group
generated by GG is comparably small, the search space is not a concern.

Discovering Executable Semantic Mappings Between Ontologies 837

5. Rules Refiner (RR): Generating executable mapping rules from frequent
queries is a natural extension. However, it is not suitable to set a fixed
threshold for support and confidence. The threshold can be different for dif-
ferent cases. RR will filter out the rules which are distinctly incorrect and
keep the rest.

3.2 Approach Overview with a Simple Example

We give the overview of our approach with a simple mapping example based
on the People Ontology2 from UMD and the Person & Employee Ontology3

from CMU. And we also use these two ontologies to illustrate our system in the
following sections.

The first step of our approach is to find corresponding classes and proper-
ties. Currently we use a string matching algorithm [30] to get 1-1 matchings.
For example, two properties name(Person, String) (from the People Ontology)
and name person(Person, String) (from the Person& Employee Ontology) have
similar names and are considered matched. Before finding (mining) the seman-
tic mapping of these two concepts, there is one problem that must be solved.
Instances from different ontologies may represent the same object but have dif-
ferent names. For example, both of the instance “person001” described by the
People Ontology and the instance “p001” described by the Person& Employee
Ontology may actually refer the same person (e.g., Han Qin). Therefore we have
to reconcile them by renaming “p001” to “person001” or vice-versa. This is ac-
tually an object reconciliation problem. Giving the matchings we can use some
mature object reconciliation algorithm to reconcile the instances. The reconcili-
ation result can help find new matchings. Therefore this is an iterative process
between ontology matching and object reconciliation.

In the next step, we generate matching groups of classes and properties. Then
we generate the input for the data multi-relational data mining (MRDM) sys-
tem. Finally MRDM system will mine the frequent queries based on the input
data. A query is a logical expression of the form ? − P1, ..., Pn, which contains
an atom key used for counting. For one query if the number of answers of atom
key exceeds the threshold, we call this query as frequent query. For this example,
one frequent query could be:

?- @UMD:Person(x), @UMD:name(x,y), @CMU:name person(x,y)

where Person is the atom key and we use “@UMD:” and “@CMU:” to represent
prefixes of the People and Person& Employee ontologies respectively. Since we
are interested in the frequent queries related to name and name person, we will
derive one rule from this frequent query:

∀x, y @UMD:Person(x)∧@UMD:name(x, y) → @CMU:Person(x) ∧
@CMU:name person(x, y)
2 http://www.cs.umd.edu/projects/plus/DAML/onts/personal1.0.daml
3 http://www.daml.ri.cmu.edu/ont/homework/atlas-cmu.daml

838 H. Qin, D. Dou, and P. LePendu

4 Matching and Object Reconciliation

In this section, we introduce an iterative process between the Matching Gen-
erator and Object Reconciliation Processor. We still use some examples based
on the People and Person&Employee ontologies to help demonstrate how this
process works.

4.1 Basic Name Matching

We begin from finding class matching pairs and property matching pairs based
on their names. We make use of “Iterative SubString Matching Algorithm” [30]
to calculate the similarity of names of each pair. We basically examine every pair
of classes and properties from both ontologies. For example, if N is the number
of classes in the source ontology and M is the number of classes in the target
ontology, there are N ∗ M potential class matching pairs. For each pair we can
get a similarity score and we also set a threshold for name similarity to get class
matching pairs. Similarly we find some property matching pairs. Other existing
matching approaches (e.g., synonym-based approaches by using Wordnet[15])
can also be used in this step to help find more matchings.

4.2 Datatype Property Matching

There are some property matching pairs which can strengthen our confidence
about potential class matching pairs. For example, one kind of OWL properties
is datatype properties and the range is a data type, such as string and num-
ber. Datatype property matching pairs can support our system to match a class
pair with higher confidence. We can use the types of property arguments to find
them. Given the datatype property pair p(X, Y) and q(U, V), where X and U
are classes and Y and V are data types, if there is a class matching pair X � U
and Y is the same data type as V , we consider p(X, Y) � q(U, V) as one po-
tential datatype property matching related to the class matching pair X � U .
Not only the name similarity of p and q is needed to make more confidence of
X � U , but also the data value similarity of p and q. One potential datatype
property matching will be verified by data value similarity which will be fur-
ther discussed in Section 4.3. An example is that @UMD:name(Person, String)
� @CMU:name person(Person, String) is one potential datatype property
matching based on class matching pair @UMD:Person � @CMU:Person. The
higher the similarity of datatype property matching pairs are, the more confi-
dence this class matching pair has. Support of class matching pair is calculated
according to the following equation:

Support(X � U) = ΣDatatypePropertyPairSimilarity (1)

Datatype property pair similarity is the sum of name similarity and data simi-
larity, which will be further discussed in Section 4.3.

Discovering Executable Semantic Mappings Between Ontologies 839

Another problem we should cope with is that two classes may have totally
unrelated names, but they represent the same concept. One clue to handle this
case is actually from datatype property matchings. If several property matching
pairs indicate that class X and class U should be a pair, we can assume X � U
is one class matching pair and add those property matching pairs as its datatype
property matchings.

4.3 Data Similarity of Datatype Property Pairs

Having a similar name does not necessarily mean that two properties definitely
represent the similar concept. Therefore, calculating data similarity of property
matching pairs is necessary. Note that data similarity is based on the assump-
tion that the data instances of two ontologies overlap at a relatively high level,
otherwise we can not benefit from data level examination. The data similarity
can help verify both property matching pairs and those class matching pairs that
they are related to. For an existing property matching pair p(X, Y) � q(U, V),
we can calculate the data similarity of p and q by using the following formula:

DataSimilarity(p(X, Y) � q(U, V)) =
2 ∗ |same pairs(Y, V)|
|p(X, Y)| + |q(U, V)| (2)

where |same pairs(Y, V)| is the number of the instance pairs which have the
same integer value or very similar string value, and |p(X, Y)| and |q(U, V)| stand
for the number of instances of property p(X, Y) and q(U, V).

Then we can calculate the total similarity of each class matching pair. For one
class matching pair X � U , the similarity is the sum of name similarity and its
support. If both clues show that this matching pair is not correct, we remove it
from the class matching pair list.

4.4 Object Reconciliation

After we get the selected class matching pairs, we adopt an object reconcilia-
tion algorithm developed by Dong, Halevy and Madhavan in [10] to reconcile
the instances of classes from two ontologies. The original algorithm considers
the relationship of matching pairs and determines whether two data objects in
different databases represent the same real-world entity. We successfully use the
idea in our ontology mapping examples.

We do not want to repeat the detail algorithm since it can be found in the
paper [10]. In a summary, for all the possible instance pairs, we can draw a
similarity graph and calculate the similarity between them. The formula we
use is a simple aggregation of the similarity of datatype matching pairs. For
example, Figure 2 shows one positive example and one negative example for
People and Person&Employee ontology mapping. Node (person001, p001) has
a high similarity and is considered as reconciled. Node (person002, p003) has a
comparably low similarity and is considered as not reconciled.

840 H. Qin, D. Dou, and P. LePendu

person001

25

MaleHan Qin

p001

Qin, Han

person002

34

MaleDejing Dou

p003

Male

31

LePendu,
 Paea

Male

25

Fig. 2. Positive and negative object reconciliation examples

4.5 Object Property Matching

In OWL, object properties represent the relationships between two classes, such
as the property alumnus(Organization, Person) from the UMD People ontol-
ogy. Similar to datatype property matching pairs, the object property matching
pairs may have similar property name or not. However, it is harder to find
object property matchings because their data instances can not help before
object reconciliation process is performed. Therefore, only after we reconcile
some data instances we can calculate the data similarity of object property
matching pairs. Note that this kind of matching pairs have two ways to match:
given p(X, Y) � q(U, V), the first matching is X � U, Y � V while the other
is X � V, Y � U . When we calculate the data similarity of object property
matchings, whether it is cross matched should be labeled. Similar to data prop-
erty matching pairs, we give the following formula:

DataSimilarity(p(X,Y) � q(U,V)) =
|same pairs(X,U)| + |same pairs(Y, V)|

|p(X, Y)| + |q(U, V)|
(3)

After Object Reconciliation Processor executes in each iteration, the Match-
ing Generator tries to create new object property matching pairs based on
the object reconciliation results. Figure 3 shows an example of this iterative
process: after the first time Object Reconciliation Processor executed based
on @UMD:Person � @CMU:Person, the system found that “person001” is
the same entity as “p001”. Given this result, Matching Generator will find a
new object property matching pair @UMD:alumnus (Organization, Person)
� @CMU:has employes(Organization, Person), since there exists two class
matching pairs @UMD:Organization � @CMU:Organization and
@UMD:Pe− rson � @CMU:Person and the data similarity of this property
matching pair also shows these two properties should be matched. This new
property matching pair will be returned to the system to suggest reconcile more
data instances related to @UMD:Organization � @CMU:Organization, such
as “uo cs” and “CS dept”. This reconciliation result may help Matching Genera-
tor to find more object property matching pairs related to @UMD:Organization
and @CMU:Organization. The process will be end if no new object property
matchings can be found. At the end we have the complete graph of class match-
ing pairs and property matching pairs as shown in Figure 4.

Discovering Executable Semantic Mappings Between Ontologies 841

person001

25

MaleHan Qin

p001

Male

25

Qin, Han

person001
 uo_cs

 p001
 CS_dept

uo_cs CS_dept

person001

25

MaleHan Qin

person001

Male

25

Han Qin

person001
 uo_cs

person001
 CS_dept

uo_cs CS_dept

person001

25

MaleHan Qin

person001

Male

25

Han Qin

person001
 uo_cs

person001
 CS_dept

uo_cs CS_dept

person001

25

MaleHan Qin

person001

Male

25

Han Qin

person001
 uo_cs

person001
 uo_cs

uo_cs uo_cs

State 1 State 2

State 3State 4

@UMD:Organization -
 @CMU:Organization

@UMD:alumnus -
 @CMU:has_employes

@UMD:Person-
 @CMU:erson

@UMD:name -
 @CMU:name_person

@UMD:sex -
 @CMU:sex

@UMD:age - @CMU:age

@UMD:Organization -
 @CMU:Organization

@UMD:alumnus -
 @CMU:has_employes

@UMD:Person-
 @CMU:erson

@UMD:name -
 @CMU:name_person

@UMD:sex -
 @CMU:sex

@UMD:age - @CMU:age

@UMD:Organization -
 @CMU:Organization

@UMD:alumnus -
 @CMU:has_employes

@UMD:Person-
 @CMU:erson

@UMD:name -
 @CMU:name_person

@UMD:sex -
 @CMU:sex

@UMD:age - @CMU:age

@UMD:Organization -
 @CMU:Organization

@UMD:alumnus -
 @CMU:has_employes

@UMD:Person-
 @CMU:erson

@UMD:name -
 @CMU:name_person

@UMD:sex -
 @CMU:sex

@UMD:age - @CMU:age

Fig. 3. The Iterative Process Of the People and Person&Employee Ontol-
ogy Mapping Example: After Matching Generator creates new matchings in each
iteration, Object Reconciliation Processor can reconcile more data instances and then
help MG to find more new matchings. This process will terminate when MG can not
find any new matchings.

alumnus

Person

age

sexname

Person

sexname_person

age

Organization Organization

has-employes workFor employer

Employee Employee

emailAddress email

Fig. 4. The Graph Of Class Matching Pairs and Property Matching Pairs

842 H. Qin, D. Dou, and P. LePendu

5 Semantic Mapping Rule Mining

Based on the matching and object reconciliation results, we first generate group
matchings and then use data mining techniques to discover final mapping rules.

5.1 Matching Groups

In this step, we tackle the problem of reducing the search space of the MRDM
systems by generating groups based on 1-1 matchings. The simplest case is to
put some of them together as a group based on related classes or properties, such
as that @UMD:name(Person, String) � @CMU:name person(Person, String),
@UMD:Person � @CMU:Person compose one group. The basic grouping rule
we have used is:

Basic Grouping Rule: For one property matching pair @source:p(X,Y) �
@target:q(U,V), if there are class matching pair @source:X � @target:U and
@source:Y � @target:V, we generate one group which includes all these three
matchings.

Note that if @source:Y � @target:V is a pair of string or number, we do
not have to really put them in. This rule can cover most of the 1-1 property
matching pairs, especially datatype property matching pairs.

p(X , Y)

q(U , V)

Source Ontology

Target Ontology

Matching Group

Fig. 5. Matcha ming Group Based On One Property Matching Pair

A complex case is that when we check @source:p(X,Y) � @target:q(U,V)
we only know that one class matching pair (i.e., @source:X � @target:U or
@source:Y � @target:V) exists. Suppose that @source:X � @target:U ex-
ists, then obviously this group is not complete yet. Therefore, we have to include
other properties in this group to make it complete. The basic idea is: assume we
can find @source:Z � @target:V and in the source ontology there is one prop-
erty @source:r(Y,Z), then we can make the guess and include @source:r(Y,Z) in

Discovering Executable Semantic Mappings Between Ontologies 843

this group. Another possible solution is try to find @target:t(W,V) if @source:Y
� @target:W exists. To sum up, we have to find some connection between
@source:Y � @target:V. One example in Figure 6 is @UMD:workphone
(Person, String) � @CMU:phone(Office, String). In the source ontology (i.e.,
CMU), we can find one related property @CMU:office(Employee, Office), which
connects @UMD:Person with @CMU:Office since @CMU:Employee is a subclass
of @CMU:Person and @UMD:Person � @CMU:Person is a class matching
pair. Thus this group contains three properties.

For more general cases, we should find connections between both @source:X
� @target:U and @source:Y � @target:V. Figure 5 shows what a complete
group is. The dashed line refers to zero or several predicates, super-sub class
relationships or class matching pairs. Based on this, we can draw the general
group rule:

General Grouping Rule: For one property matching pair, such as @source:
p(X,Y) � @target:q(U,V), if we do not have class matching pair @source:X �
@target:U (or @source:Y � @target:V), we can search among the properties and
class matching pairs to find a connection path from @source:X to @target:U (or
from @source:Y to @target:V). In the path there must exist one class matching
pair that connects the source and target ontologies.

Discovering the path is the key step for finding group matchings. And the
class matching pair that connects the source and target ontologies is the key
class matching pair. To find the path from @source:X to @target:U , if we can
find the key class matching pair @source:A � @target:B, the path contains
the path from @source:X to @source:A, @source:A � @target:B and the path
from @target:B to @target:U . And we propose Algorithm 1 to find the key class
matching pair:

Algorithm 1. Searching Key Class Matching Pair
Input: class X from source ontology, class U from target ontology, properties of both

ontologies except p(X, Y) and q(U, V), class matching pair set, super-sub class
relationship in two ontologies.

Output: the key class matching pair
Initialize source class set with X
Initialize target class set with U
while There does not exist class matching pair A � B, where A belongs to source
class set and B belongs to target class set. do

For all t(H, K), t(K, H), superclass(H, K) and subclass (H, K) where H is in source
class set, add K into source class set.
For all r(N, M), r(M, N), superclass(M, N) and subclass (M, N) where M is in
target class set, add N into target class set.
If no new classes is added, return No pair.

end while
Return A � B

844 H. Qin, D. Dou, and P. LePendu

5.2 Generating Mapping Rules

The first step of this part is to discover frequent queries. The algorithm should
take a set of predicates and data instances as input, build the search space and
finally output a set of queries with high support. We consider classes and proper-
ties of ontology as unary or binary predicates. FARMER [25] system can be used
for this goal. However, FARMER requires users to specify the input/output type
of each argument of the predicates. To make the whole process as automatically
as possible we borrow some ideas of FARMER but create a new algorithm (see
Algorithm 2) instead in our implementation.

Algorithm 2. Generating frequent queries
Input: A matching group G. Data instances of all the predicates in G.
Output: Frequent queries with their support.

Create the first query with the key class matching pair of G.
while Not all predicates of the source ontology is added to the first query. do

Suppose the type of last argument of the first query is T. Then find predicate P
(in the source ontology) which has first argument type T. Add P to the end of the
first query.

end while
Calculate the support of the first query.
Create the second query as a copy of the first query.
while Not all predicates of the target ontology is added to the second query. do

Suppose the type of last argument of the second query is V. Then find predicate
Q (in the target ontology) which has first argument type V. Add Q to the end of
the second query.

end while
Calculate the support of the second query.
Return two queries with their support.

The next step of rule generation is a natural extension from frequent queries.
The Rule Refiner can generate mapping rules based on frequent queries and class
matching pairs. For example, the output of matching group G is:

? - Person(V0N0),name(V0N0,V1N0) support: 100
? - Person(V0N0),name(V0N0,V1N0),name_person(V0N0,V1N0) support: 95

With class matching pair @UMD:Person � @CMU:Person, a rule like
∀x, y @UMD:Person(x)∧@UMD:name(x, y) → @CMU:Person(x)∧
@CMU:name person(x, y) can be generated.

This process is similar to a typical multi-relational data mining process. The
main difference is that the information of each matching group helps to reduce
the search space of query searching. We consider rules with extremely low sup-
port and confidence as distinctly incorrect. Thus we set a very low threshold and
keep the rest rules.

Discovering Executable Semantic Mappings Between Ontologies 845

6 Case Study

6.1 People vs. Person and Employee Ontology

The first case we test is the complete UMD People Ontology and CMU Person &
Employee Ontology mapping example. The partial examples we give in previous
sections are from this case. Figure 6 shows part of two ontologies and some
human labeled matchings. Dotted lines refer to property matchings and dashed
lines refer to class matchings.

Person Empolyee

Address Organization

emailAddress

age

sex

title

birthday

homephone

workphone

name

alumnus workFor

address_state

address_zip address_street

address_city

workAddress

Person Employee

sex

name_person

age

job-title

expertise

has-employes

employer

office

start-date

end-date

email

Mission

name_organization

address

phone

building

lab

Organization Office

photo

Image

subclass subclass

Fig. 6. UMD and CMU person ontology

The Matching Generator and Object Reconciliation Processor gives three class
matching pairs and 21 property matching pairs. For some matching pairs, we
cannot find any complete group. Group Generator actually outputs 17 matching
groups. Finally, our system generates 8 rules. With human observation, we can
get 9 rules manually. Therefore, the performance of our system in this case
is satisfying as 8 out of 9. We can represent the mapping rules in first order
logic syntax, such as: ∀x, y Employee(x) ∧ worksfor(x, y) → Employee(x) ∧
employer(x, y). Also we can represent these rules in our Web-PDDL or different
potential standard mapping languages. For example, we can represent rules with
Datalog:

emailAddress(A, B) :- Person(A), email(A,B).

Or we can represent rules with SWRL as following:

<ruleml:imp>
<ruleml:_rlab ruleml:href="#Rule2"/>

846 H. Qin, D. Dou, and P. LePendu

<ruleml:_body>
<swrlx:classAtom>
<owlx:Class owlx:name="&UMD;Person" />
<ruleml:var>x</ruleml:var>

</swrlx:classAtom>
<swrlx:individualPropertyAtom swrlx:property="&UMD;name">
<ruleml:var>x</ruleml:var>
<ruleml:var>y</ruleml:var>

</swrlx:individualPropertyAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:individualPropertyAtom swrlx:property="&CMU;name_person">
<ruleml:var>x</ruleml:var>
<ruleml:var>y</ruleml:var>

</swrlx:individualPropertyAtom>
</ruleml:_head>

</ruleml:imp>

The reason we missed one rule is: our system can find the matchings
which contain @UMD:address state, @UMD:address city, @UMD:address zip,
@UMD:address steet and @CMU:address. However, data mining system can-
not introduce functions, therefore we do not derive any rule for these matchings
successfully. This missing rule needs a concatenation function to
combine @UMD:address state, @UMD:address city, @UMD:address zip, @UMD:
address steet to @CMU:address.

Customer

 customerid
 customercontactname
 customercompany
 customeraddress
 customercity
 customerregion
 customerpostalcode

Order

 orderid
 ordercustomerid
 orderdate
 ordershippeddate
 orderemployeeid
 orderrequireddate
 ordershipvia

OrderDetail

 orderdetailorderid
 orderdetailproductid
 orderdetailunitprice
 orderdetaildiscount

Product

 productid
 productname
 productquantityperunit
 productunitprice
 productsupplierid
 productcategoryid

Shipper

 shipperid
 shippercompany
 shipperphone

Supplier

 supplierid
 suppliercompany

Category

 categoryid
 categoryname
 categorydescription
 categorypicture

Employee

 employeeid
 employeelastname
 employeefirstname
 employeeaddress
 employeecity
 customerregion

Customer

 customernumber
 customerfname
 customerlname
 customercompany
 customeraddress1
 customeraddress2
 customercity
 customerstatecode
 customerzip

Order

 ordernumber
 ordercustomernumber
 orderdate
 ordershipweight
 ordershipcharge
 ordershipinfo

Item

 itemnumber
 itemordernumber
 itemstocknumber
 itemquantity
 itemtotalprice
 itemmanufacturercode

Manufacturer

 manufacturercode
 manufacturername
 manufacturerleadtime

Call

 callcustomernumber
 calldatetime
 calluserid
 calldescription
 calltypecode CallType

 calltypecode
 calltypedescription

Catalog

 catalognumber
 catalogstocknumber
 catalogmanufacturercode
 catalogdescription
 catalogpicture

State

 statecode
 statename

Stock

 stocknumber
 stockdescription
 stockunit
 stockunitprice
 stockunitdescription
 stockmanufacturercode

Stores7 Nwind

Fig. 7. Stores7 and Northwind schema

6.2 Online Sale Databases

Our approach can also be applied to databases. Our previous research [11,12]
demonstrates a way to convert database schemas to ontologies. In this case, we
consider two database schemas: Stores7 from IBM Informix44 and Northwind
from Microsoft. Both of them are from online sales domain and have related
concepts, such as Customer, Order and etc. Figure 7 shows the schemas of two
4 http://www.ibm.com/software/data/informix/

Discovering Executable Semantic Mappings Between Ontologies 847

databases. We have used these two databases to test our OntoGrate system but
we used human-specified mappings in [11,12].

Humans can find 18 rules for these two database schemas. And our system
discovers 4 class matching pairs and 201 property matching pairs. Then finally
16 rules are obtained by our system. Two rules of our output are incorrect.
The reason of incorrectness is also that the MRDM system does not introduce
functions, same as the address matching group problem addressed in section 6.1.

7 Conclusion and Future Work

We present a highly automatic approach which combines ontology matching,
object reconciliation and multi-relational data mining to discover the executable
mapping rules between given source and target ontologies from same domain.
Our main novel contributions are:

1. We propose an iterative process: basic matchings can be used to guide
object reconciliation and the result of object reconciliation can guide to find
new matchings. This process also help verify existing matchings.

2. We propose a way to combine matching pairs to form matching groups,
which is used to generate queries and mapping rules.

3. We use a data mining approach to find frequent queries and then convert
them to mapping rules. We use group matchings to reduce the search space.

Our approach relies on both data instances and ontologies, and thus a con-
straint is that we must need ontologies with related data instances. Our system
cannot guarantee 100% accurately generated rules. If users need 100% perfect
results, human effort is surely needed. There are still a lot of interesting prob-
lems we cannot solve yet. The first problem we are going to solve is to discover
mappings with new functions, such as ∀x, y, zPerson(x) ∧ city address(x, y) ∧
street address(x, z) → address(x, concatenate(y, z)). Then we will consider how
to automatically evaluate an ontology mapping system without human-specified
results and how to manage the mapping rules in the scenario that ontologies or
database schemas keep changing.

References

1. Semantic Web Rule Language, http://www.w3.org/Submission/SWRL/
2. An, Y., Borgida, A., Mylopoulos, J.: Constructing complex semantic mappings

between XML data and ontologies. In: International Semantic Web Conference,
pp. 6–20 (2005)

3. An, Y., Borgida, A., Mylopoulos, J.: Inferring complex semantic mappings between
relational tables and ontologies from simple correspondences. In: OTM Conferences
(2), ODBASE, pp. 1152–1169 (2005)

4. Bayardo, R.J., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal, A., Kashyap,
V., Ksiezyk, T., Martin, G., Nodine, M., Rashid, M., Rusinkiewicz, M., Shea,
R., Unnikrishnan, C., Unruh, A., Woelk, D.: InfoSleuth: Agent-based semantic
integration of information in open and dynamic environments. In: SIGMOD 1997.
Proceedings of the 1997 ACM SIGMOD international conference on Management
of data, pp. 195–206. ACM Press, New York (1997)

http://www.w3.org/Submission/SWRL/

848 H. Qin, D. Dou, and P. LePendu

5. Bruijn, J.D., Polleres, A.: Towards an Ontology Mapping Specification Language
for the Semantic Web. Technical report, Digital Enterprise Research Institute (June
2004)

6. Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Min.
Knowl. Discov. 3(1), 7–36 (1999)

7. Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., Domingos, P.: iMAP: Discover-
ing Complex Mappings between Database Schemas. In: Proceedings of the ACM
Conference on Management of Data, pp. 383–394. ACM Press, New York (2004)

8. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling Schemas of Disparate Data
Sources: A Machine-Learning Approach. In: Proceedings of the ACM Conference
on Management of Data, ACM Press, New York (2001)

9. Doan, A., Madhavan, J., Domingos, P., Halevy, A.Y.: Learning to Map Between
Ontologies on the Semantic Web. In: WWW. International World Wide Web Con-
ferences, pp. 662–673 (2002)

10. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex infor-
mation spaces. In: SIGMOD 2005. Proceedings of the 2005 ACM SIGMOD inter-
national conference on Management of data, pp. 85–96. ACM Press, New York
(2005)

11. Dou, D., LePendu, P.: Ontology-based Integration for Relational Databases. In:
SAC 2006. Proceedings of the 2006 ACM symposium on Applied computing, pp.
461–466. ACM Press, New York (2006)

12. Dou, D., LePendu, P., Kim, S., Qi, P.: Integrating Databases into the Semantic
Web through an Ontology-based Framework. In: SWDB 2006. Proceedings of the
third International Workshop on Semantic Web and Databases, p. 54 (2006)

13. Dou, D., McDermott, D.V., Qi, P.: Ontology Translation on the Semantic Web.
Journal of Data Semantics 2, 35–57 (2005)

14. Dragut, E., Lawrence, R.: Composing mappings between schemas using a reference
ontology. In: ODBASE. Proceedings of International Conference on Ontologies,
Databases and Application of Semantics (2004)

15. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

16. T. Gene Ontology Consortium. Creating the Gene Ontology Resource: Design and
Implementation. Genome Research, 11(8), 1425–1433 (2001)

17. Haas, L.M., Hernandez, M.A., Ho, H., Popa, L., Roth, M.: Clio Grows Up: From
Research Prototype to Industrial Tool. In: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, pp. 805–810. ACM Press, New
York (2005)

18. Hu, W., Qu, Y.: Block matching for ontologies. In: Cruz, I., Decker, S., Allemang,
D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 5–9. Springer, Heidelberg (2006)

19. Lindberg, D., Humphries, B., McCray, A.: The Unified Medical Language System.
Methods of Information in Medicine 32(4), 281–291 (1993)

20. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid.
In: Very Large Data Bases (VLDB) Conference, pp. 49–58 (2001)

21. Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA - A MApping FRAmework
for Distributed Ontologies, pp. 235–250 (2002)

22. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: The Chimaera Ontology Envi-
ronment. In: Proceedings of the National Conference on Artificial Intelligence, pp.
1123–1124 (2000)

Discovering Executable Semantic Mappings Between Ontologies 849

23. Mena, E., Kashyap, V., Sheth, A.P., Illarramendi, A.: Observer: An approach for
query processing in global information systems based on interoperation across pre-
existing ontologies. In: CoopIS, pp. 14–25 (1996)

24. Miller, R.J., Hernández, M.A., Haas, L.M., Yan, L.-L., Ho, C.T.H., Fagin, R., Popa,
L.: The clio project: Managing heterogeneity. SIGMOD Record 30(1), 78–83 (2001)

25. Nijssen, S., Kok, J.N.: Efficient frequent query discovery in farmer. In: Lavrač, N.,
Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI),
vol. 2838, pp. 350–362. Springer, Heidelberg (2003)

26. Noy, N.F.: Semantic Integration: A Survey Of Ontology-Based Approaches. SIG-
MOD Record 33(4), 65–70 (2004)

27. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. In: Proceedings of the National Conference on Artificial
Intelligence, pp. 450–455 (2000)

28. Quinlan, J.R., Cameron-Jones, R.M.: Foil: A midterm report. In: Brazdil, P.B.
(ed.) ECML 1993. LNCS, vol. 667, pp. 3–20. Springer, Heidelberg (1993)

29. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. VLDB J. 10(4), 334–350 (2001)

30. Stoilos, G., Stamou, G.B., Kollias, S.D.: A string metric for ontology alignment.
In: International Semantic Web Conference, pp. 624–637 (2005)

31. Stuckenschmidt, H., Uschold, M.: Representation of semantic mappings. Semantic
Interoperability and Integration (2005)

32. Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hubner, S.: Ontology-based integration of information: A survey of existing
approaches. In: IJCAI 2001. Workshop: Ontologies and Information Sharing, pp.
108–117 (2001)

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 850–869, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Interoperability of XML Schema Applications with OWL
Domain Knowledge and Semantic Web Tools

Chrisa Tsinaraki and Stavros Christodoulakis

TUC/MUSIC, Technical University of Crete Campus, 73100 Kounoupidiana, Crete, Greece
{chrisa, stavros}@ced.tuc.gr

Abstract. Several standards are expressed using XML Schema syntax, since the
XML is the default standard for data exchange in the Internet. However, several
applications need semantic support offered by domain ontologies and semantic
Web tools like logic-based reasoners. Thus, there is a strong need for interop-
erability between XML Schema and OWL. This can be achieved if the XML
schema constructs are expressed in OWL, where the enrichment with OWL
domain ontologies and further semantic processing are possible. After semantic
processing, the derived OWL constructs should be converted back to instances
of the original schema. We present in this paper XS2OWL, a model and a sys-
tem that allow the transformation of XML Schemas to OWL-DL constructs.
These constructs can be used to drive the automatic creation of OWL domain
ontologies and individuals. The XS2OWL transformation model allows the
correct conversion of the derived knowledge from OWL-DL back to XML con-
structs valid according to the original XML Schemas, in order to be used trans-
parently by the applications that follow XML Schema syntax of the standards.

Keywords: Interoperability, Standards, XML Schema, OWL, Ontologies.

1 Introduction

The development of the Web and the emergence of advanced network infrastructures
that allow the fast and efficient information delivery allow the end-users to access
Web documents and Web applications. In such an open environment, the applications
developed by different vendors interoperate on the basis of the emergent standards.
The default standard for data exchange in the Internet today is the eXtensible Markup
Language (XML) [3], which allows the representation of structured Web documents.
The classes of the Web documents are described using the XML Schema Language
[6], which uses XML syntax and supports very rich structures and datatypes for XML
documents. Due to its structural capabilities and the central role in the data exchange
in the Internet, many standards in different application areas are directly specified in
XML Schema. Examples include several important standards in multimedia, like
MPEG-7 [5] and MPEG-21 [15], in e-learning, like IEEE LOM [11] and SCORM [1],
in Digital Libraries, like METS [10], and many others.

However, several Web applications that utilize XML-based standards would bene-
fit from advanced semantic support. These applications typically need to integrate

 Interoperability of XML Schema Applications with OWL 851

domain ontologies and do further semantic processing including reasoning within the
constructs that the standards provide. For example, consider the MPEG-7 applica-
tions. MPEG-7, which is described using XML Schema syntax, provides rich lan-
guage constructs for describing the structure and the content of multimedia data such
as video. Retrieval, browsing, personalization and delivery applications in MPEG-7
would benefit from the use of domain knowledge, and MPEG-7 includes general-
purpose constructs that could be used for describing domain knowledge, albeit in a
rather cumbersome way [18]. Programmers that are going to introduce domain knowl-
edge in MPEG-7 are much more likely to be familiar with the ontology description
mechanisms of the Web Ontology Language (OWL) [14] than those of MPEG-7. In
addition, some MPEG-7 applications, like, for example, knowledge acquisition from
video streams, may significantly benefit from the use of logic-based reasoners such as
the ones available for OWL. There is then a strong motivation for some MPEG-7
applications to be able to work with the semantics of MPEG-7 expressed in OWL and
integrated with OWL domain ontologies. This way, additional acquired knowledge
expressed in OWL such as metadata acquired during knowledge acquisition from
video streams can be encoded using the semantics of the standard. The resulting
knowledge should be converted back to standard MPEG-7/XML constructs in order to
be used transparently by applications that follow the standard.

We present in this paper XS2OWL, a model and system software that allow appli-
cations using XML Schema based standards to use the Semantic Web methodologies
and tools while maintaining the compatibility with the XML schema versions of the
standards. With XS2OWL we express each XML Schema based standard in OWL-
DL as a Main Ontology so that the constructs of the standard become Semantic Web
objects. The main ontology allows integrating the constructs of the standard with
domain knowledge expressed in the form of OWL domain ontologies. It also allows
all the OWL-based Semantic Web tools, including reasoners, to be used with
the standard-based descriptions. The integration of the domain ontologies and the
utilization of the OWL-based Semantic Web tools may result in deriving additional
knowledge useful to the applications, expressed as OWL individuals. The XS2OWL
transformation model also supports the conversion of the OWL constructs back to the
XML Schema based constructs of the standard for use by all the applications that are
compatible with the original XML Schemas. This is achieved through a Mapping
Ontology that systematically captures the semantics of the XML Schema constructs
that cannot be directly captured in the main ontology.

Very limited research has been reported in the literature in this area. We had first
observed the need for such methodology and software in conjunction with MPEG-7
[16, 17, 18]. For the use of some MPEG-7 applications we developed a manual meth-
odology for expressing the MPEG-7 semantics in OWL. An Upper OWL-DL ontol-
ogy capturing the MPEG-7 Multimedia Description Schemes (MDS) [13] and the
MPEG-21 Digital Item Adaptation (DIA) Architecture [12] was defined [16]. This
ontology could then be extended with domain ontologies. A soccer ontology and a
Formula 1 ontology have been developed as extensions of the Upper ontology [17] for
capturing knowledge from video streams in these two domains. We also defined and
implemented a set of transformation rules [17] that allow the transformation of the
OWL metadata (individuals) that describe the multimedia content defined using the
Upper ontology and the domain ontologies into the original MPEG-7/21 constructs.

852 C. Tsinaraki and S. Christodoulakis

The transformation rules relied on a mapping ontology that systematically captured
the information of the MPEG-7/21 schemas that cannot be captured in the Upper
ontology. Although this work is an important motivating example for the need of the
general-purpose mechanism described in this paper, it is only a special case applicable
to MPEG-7/21 and to the applications that use them. In addition, the conversion of the
XML Schema constructs describing the MPEG-7/21 to OWL-DL was done manually
and the transformation back to XML Schema based syntax was focusing on the needs
of MPEG-7/21.

A methodology and a tool have been developed in the context of the MapOnto pro-
ject [2] for the heuristic definition of complex semantic mappings between the attrib-
utes of an XML Schema and the datatype properties of an OWL ontology. The tool
input consists of the XML Schema, the OWL ontology and a set of correspondences
between the attributes of the former and the datatype properties of the later.

In a recent work [7], almost automatic one-way transformation of XML Schema
constructs to OWL constructs has been proposed. The transformations produce OWL-
Full ontologies that partially capture the XML Schema semantics. The methodology
proposed in [7] looses information during the transformation process from XML
Schema to OWL, and it can not be used to transform OWL individuals which may be
produced later back to the original XML Schema constructs. This is however needed
in all the applications mentioned above. In addition, human intervention is needed in
order to preserve the validity of the ontologies produced when homonym top-level
XML Schema constructs exist in the source XML Schema (i.e. elements, attributes,
types or groups with the same name). Finally, some transformations in [7] do not
follow closely the semantics of the XML Schema.

In contrast to the work reported in [7], the XS2OWL model presented in this paper
encapsulates methodology and rules that allow automatically transforming the XML
Schema constructs to OWL-DL constructs (not OWL-Full). Thus, it guarantees com-
putational completeness and decidability of reasoning in the OWL ontologies pro-
duced. In addition, the XS2OWL model allows the representation of all the knowl-
edge needed to transform the individuals generated or added later on to the OWL
ontologies back to the original XML Schema based constructs. This way, they can be
used by the standard-compatible applications. Finally, we have implemented and
extensively tested the XS2OWL model with very large standards based on XML, and
verified manually and automatically the correctness of the model and software.

The rest of the paper is structured as follows: In section 2 we provide background
information. The XS2OWL transformation model and system are outlined in section 3
and the XS2OWL model is detailed in section 4. In section 5 we present the
XS2OWL model evaluation. The paper conclusions and our future research directions
are presented in section 6.

2 Background

In this section we present some background information needed in the rest of the
paper, including the XML Schema Language and the Web Ontology Language (OWL).

The XML Schema Language. The XML Schema Language [6] allows the definition
of classes of XML documents using XML syntax and provides datatypes and rich

 Interoperability of XML Schema Applications with OWL 853

structuring capabilities. An XML document is composed of elements, with the root
element delimiting the beginning and the end of the document. The XML Schema
elements belong to XML Schema types, specified in their “type” attribute, and are
distinguished into complex and simple elements, depending on the kind (simple or
complex) of the types they belong to. Reuse of element definitions is supported by the
substitutionGroup attribute, which states that the current element is a specialization of
another element. The elements may either have a predefined order (forming XML
Schema sequences) or be unordered (forming XML Schema choices). The main dif-
ference between sequences and choices is that all the sequence items must appear
within the containing sequence in their specified order, while the choice items may
appear at any order. Both sequences and choices may be nested. The minimum and
maximum number of occurrences of the elements, choices and sequences are speci-
fied, respectively, in the “minOccurs” and “maxOccurs” attributes (absent “minOc-
curs” and/or “maxOccurs” correspond to values of 1). Reusable complex structures,
combining sequences and choices, may be defined as model groups.

The simple XML Schema types are usually defined as restrictions of the basic
datatypes provided by XML Schema (i.e. strings, integers, floats, tokens etc.). Simple
types can neither contain elements nor carry attributes. The complex XML Schema
types represent classes of XML constructs that have common features, represented by
their elements and attributes. The attributes describe features with values of simple
type and may form attribute groups comprised of attributes that should be used simul-
taneously. The elements represent features of the complex XML Schema types with
values of any type. Default and fixed values may be specified for both attributes and
simple type elements, in the default and fixed attributes respectively. Inheritance is
supported for both simple and complex types, and the base types are referenced in the
“base” attribute of the type definitions.

All the XML Schema constructs may have textual annotations, specified in their
“annotation” element. The top-level XML Schema constructs (attributes, elements,
simple and complex types, attribute and model groups) have unique names (specified
in their “name” attribute). The nested elements and attributes have unique names in
the context of the complex types in which they are defined, while the nested (complex
and simple) types are unnamed. All the XML Schema constructs may have unique
identifiers (specified in their “id” attribute). The top-level constructs may be refer-
enced by other constructs using the “ref” attribute.

The Web Ontology Language (OWL). The Web Ontology Language (OWL) [14] is
the dominant standard in ontology definition. OWL has been developed according to
the description logics paradigm and uses RDF (Resource Description Frame-
work)/RDFS (Resource Description Framework Schema) [9, 4] syntax. Three OWL
species of increasing descriptive power have been specified: (a) OWL-Lite, which is
intended for lightweight reasoning but has limited expressive power; (b) OWL-DL,
which provides the description logics expressivity and guarantees computational
completeness and decidability of reasoning; and (c) OWL-Full, which has more flexi-
ble syntax than OWL-DL, but does not guarantee computational completeness and
decidability of reasoning.

The basic functionality provided by OWL is: (a) Import of XML Schema Datatypes
that extend or restrict the basic datatypes (e.g. ranges etc.). The imported datatypes
have to be declared (using the rdfs:Datatype construct), as RDFS datatypes, in the

854 C. Tsinaraki and S. Christodoulakis

ontologies they are used; (b) Definition of OWL Classes (using the owl:Class con-
struct), organized in subclass hierarchies (using the rdfs:subClassOf construct), for the
representation of sets of individuals sharing some properties. Complex OWL classes
can be defined via set operators (using the owl:intersectionOf, owl:unionOf and
owl:complementOf constructs) or via direct enumeration of their members (using the
owl:oneOf construct); (c) Definition of OWL Individuals, essentially instances of the
OWL classes, following the restrictions imposed on the class in which they belong;
and (d) Definition of OWL Properties, which may form property hierarchies (using
the rdfs:subPropertyOf construct), for the representation of the features of the OWL
class individuals. Two kinds of properties are provided by OWL: (i) Object Proper-
ties, defined using the owl:ObjectProperty construct, which relate individuals of one
OWL class (the property domain, defined using the rdfs:domain construct) with
individuals of another OWL class (the property range, defined using the rdfs:range
construct); and (ii) Datatype Properties, defined using the owl:DatatypeProperty
construct, which relate individuals belonging to one OWL class (the property domain)
with values of a given datatype (the property range). Restrictions may be defined on
OWL class properties (using the owl:Restriction construct), including type (using the
owl:allValuesFrom construct), cardinality (using the owl:minCardinality,
owl:maxCardinality and owl:cardinality constructs), and value (using the
owl:hasValue construct) restrictions. OWL classes, (object and datatype) properties
and individuals are identified by unique identifiers, that are specified in the “rdf:ID”
attribute. They may also have labels, defined using the rdfs:label construct, and tex-
tual descriptions, defined using the rdfs:comment construct.

3 XS2OWL Overview

We present in this section the XS2OWL model for transforming XML Schema con-
structs in OWL-DL and its realization in the XS2OWL system. The XS2OWL sys-
tem transforms every XML Schema it takes as input, through the implementation of
the XS2OWL transformation model (outlined in Fig. 1), into: (a) A main OWL-DL
ontology that directly captures the XML Schema semantics in OWL-DL; (b) A map-
ping OWL-DL ontology that keeps the mapping of the rdf:IDs of the OWL con-
structs of the main ontology with the names of the XML Schema constructs and
systematically captures the semantics of the XML Schema constructs that cannot be
directly captured in the main ontology, since they cannot be represented by corre-
sponding OWL constructs; and (c) A datatypes XML Schema that contains the
simple XML Schema datatypes defined in the source XML Schema that are imported
in the main ontology.

XS2OWL

Transformat ion Model Original XML
Schema Mapping

Ontology

Simple XML
Schema Datatypes

Upper OWL-DL
Ontology

Fig. 1. Outline of the XS2OWL Transformation Model

 Interoperability of XML Schema Applications with OWL 855

The main OWL ontology essentially contains the OWL constructs to which the
corresponding XML Schema constructs are transformed. As already mentioned, some
of the XML Schema construct semantics cannot be expressed in OWL. The semantics
of these constructs do not affect the domain ontologies that may extend the main
ontology and they are not used by the OWL reasoners; however, they are important
when individuals extending the main ontology have to be transformed back to valid
XML descriptions compliant with the source XML Schema. For example, the ele-
ments of an XML Schema sequence should appear in a predefined order, while the
OWL properties that are the constructs corresponding to the elements are always
organized in unordered sets. As a consequence, the ordering information cannot be
directly captured in the main ontology.

In order to support this functionality, we have defined a model that allows trans-
forming the OWL constructs back to XML Schema constructs. This model captures
the semantics of any arbitrary XML schema that cannot be represented in OWL and is
expressed as an OWL-DL ontology, the OWL2XMLRules Ontology (available at
http://www.music.tuc.gr/ontologies/OWL2XMLRules/OWL2XMLRules). For a par-
ticular XML Schema that is being transformed to OWL-DL, XS2OWL generates a
mapping ontology, which extends the OWL2XMLRules ontology with individuals,
keeps the mapping of the rdf:IDs of the OWL constructs of the main ontology with
the names of the XML Schema constructs and represents the constructs of the original
schema that cannot be directly represented in OWL.

The classes of the OWL2XMLRules ontology that represent the semantics of the
XML Schema constructs that cannot be directly mapped to OWL constructs during
the XML Schema to OWL transformation are the following:

 The DatatypePropertyInfoType class, which captures information about the
datatype properties that cannot be directly expressed in OWL.

 The ElementInfoType class, which captures information about the XML Schema
elements that cannot be directly expressed in OWL.

 The ComplexTypeInfoType class, which captures information about the complex
XML Schema types that cannot be directly expressed in OWL.

 The ChoiceInfoType and SequenceInfoType classes, which capture, respectively,
information about the XML Schema choices and sequences that cannot be directly
expressed in OWL.

This way, there is no information loss during the XS2OWL transformations of the
XML Schema constructs to OWL-DL constructs. As a consequence, all the semantics
of the XML Schemas can be utilized by OWL-based tools and applications. For ex-
ample, consider the transformation of individuals formed according to the main on-
tologies to XML documents obeying the original XML Schemas. Since the semantics
of the XML Schema constructs that cannot be directly expressed in OWL are captured
in the mapping ontologies, such information (e.g. the sequence element order) will be
used in order to guarantee that the produced documents will be valid.

The XS2OWL transformation model has been implemented using the XML
Stylesheet Transformation Language (XSLT) [8].

856 C. Tsinaraki and S. Christodoulakis

4 The XS2OWL Transformation Model

We present in this section the XS2OWL model, which allows the transformation of
the XML Schema constructs to OWL-DL constructs. An overview of the XS2OWL
Transformation Model is provided in Table 1, while the transformations of the indi-
vidual constructs are formally presented in the following paragraphs.

The XML Schema constructs are provided in the first column of Table 1, while the
OWL constructs that represent them in the main ontology are provided in the second
column. As shown in Table 1, the complex XML Schema types are mapped to OWL
classes, since they both represent sets of entities with common features. The simple
XML Schema datatypes are mapped to datatype declarations, since OWL does not
directly support the definition of simple datatypes, but only allows using simple XML
Schema datatypes that have been declared in the OWL ontologies. The attributes are
mapped to datatype properties, since they both represent simple type features, while
the (simple and complex type) elements are mapped to (datatype and object) proper-
ties. The sequences and the choices are represented by OWL unnamed classes formed
using set operators and cardinality restrictions on the sequence/choice items. Finally,
the annotations of the XML Schema constructs are mapped to OWL comments.

The mapping ontology constructs representing the semantics of the XML Schema
constructs that cannot be expressed directly in OWL are presented in the third column
and in the fourth column are shown the contents of the datatypes XML Schema.

Table 1. Overview of the XS2OWL Transformation Model

OWL-DL Representation XML Schema
Construct Main Ontology Mapping Ontology Datatypes

Complex Type Class ComplexTypeInfoType individual
Simple Datatype Datatype Declaration Simple Type
Element (Datatype or Object) Property ElementInfoType individual
Attribute Datatype Property DatatypePropertyInfoType indi-

vidual

Sequence Unnamed Class - Intersection SequenceInfoType individual
Choice Unnamed Class - Union ChoiceInfoType individual
Annotation Comment

Complex XML Schema Type Transformation. Let the complex XML Schema type
ct, which is formally described in (1), where: (a) name is the name of ct; (b) cid is the
(optional) identifier of ct; (c) base is the (simple or complex) type extended by ct; (d)
attributes is the list of the attributes of ct; (e) sequences is the list of the sequences of
ct; and (f) choices is the list of the choices of ct.

ct(name, cid, base, attributes, sequences, choices) (1)

The XS2OWL transformation of ct is different, depending on the type extended by
ct (if it is simple or complex). The attributes and the elements that are defined or ref-
erenced in ct are transformed, in both cases, into properties.

 Interoperability of XML Schema Applications with OWL 857

If ct extends a complex type, it is represented in the main ontology by the OWL
class c, formally described in (2), where:

c(id, super_class, label, value_restrictions, cardinality_restrictions) (2)

 id is the unique rdf:ID of c and has name as value if ct is a top-level complex type.
If ct is a complex type nested within the definition of an element e, id is a unique,
automatically generated name of the form concatenate(ct_name, '_', name,
'_UNType'), where ct_name is the name of the complex type containing e. If e is a
top-level element, ct_name has the ‘NS’ string as value. The concatenate(…) algo-
rithm takes as input an arbitrary number of strings and returns their concatenation;

 super_class states which class is extended by ct and has base as value;
 label is the label of ct and has name as value;
 value_restrictions is the set of the value restrictions that represent the fixed values

that may exist for some ct attributes and ct sequence/choice elements. The value of
the restrictions is the value of the “fixed” attribute of the ct attributes and the ct se-
quence/choice elements;

 cardinality_restrictions is the set of the cardinality restrictions assigned to the
properties representing the ct attributes and the ct sequence/choice elements. The
cardinality restrictions are generated as follows:
- According to the value of the “use” attribute of the XML Schema attributes: (a)

If “use” has the “required” value, a cardinality restriction of value 1 is generated;
(b) If “use” has the “prohibited” value, a cardinality restriction of value 0 is gen-
erated; and (c) If “use” is absent or has the “optional” value, a maximum cardi-
nality restriction of value 1 is generated;

- Cardinality, minimum and maximum cardinality restrictions are generated for the
elements of the complex type, according to the “minOccurs” and “maxOccurs”
attribute values of the elements and/or the sequences, choices and model groups
the elements are organized in.

The semantics of ct that cannot be represented in OWL are represented in the map-
ping ontology by the ComplexTypeInfoType individual ct that is formally described in
(3), where: (a) id is the unique rdf:ID of ct and has name as value; (b) type_id repre-
sents the identifier of the OWL class c that represents ct in the main ontology. type_id
is represented as the “typeID” datatype property of ct; (c) dpi_list is the list of the
representations of the datatype properties of c; and (d) container_list is the list of the
representations of the ct containers (sequences and/or choices).

ct(id, type_id, dpi_list, container_list) (3)

If ct extends a simple type, it is represented in the main ontology by the OWL class
c, formally described in (4).

c(id, label, value_restrictions, cardinality_restrictions) (4)

The fact that ct extends the simple type base is represented in the main ontology by
the datatype property ep that is formally described in (5), where: (a) eid is the unique

858 C. Tsinaraki and S. Christodoulakis

rdf:ID of ep and has concatenate(base, ‘_content’) as value; (b) range is the range of
ep and has base as value; and (c) domain is the domain of ep and has the id of c as
value.

ep(eid, erange, edomain) (5)

The semantics of ct that cannot be represented in OWL are represented in the map-
ping ontology by the ComplexTypeInfoType individual ct that corresponds to c and is
formally described in (3), and the DatatypePropertyInfoType individual dpi that cor-
responds to ep and is formally described in (6). dpi states that the ep represents the
fact that ct extends the simple type base through the ‘Extension’ value of the
dpi_type, represented by the “datatypePropertyType” datatype property.

dpi(id, did, dpi_type) (6)

As an example, consider the complex type “ct” that extends the string datatype and
is shown in Fig. 2. The “ct” complex type is represented in the main ontology by the
“ct” OWL class, shown in Fig. 3, together with the “content__xs_string” datatype
property, which states that “ct” is an extension of xs:string. The information about
“ct” in the mapping ontology is shown in Fig. 4.

<xs:complexType name="ct">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="a">
 <xs:simpleType>
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

Fig. 2. Definition of the “ct” XML Schema simple datatype. “ct” extends the string datatype
with the “a” attribute. “a” is of a simple anonymous type that is a restriction of integer.

<owl:Class rdf:ID="ct">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#a__ct_a_UNType"/>
 <owl:maxCardinality rdf:datatype="&xsd;integer">1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#content__xs_string"/>
 <owl:cardinality rdf:datatype= "&xsd;integer">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:label>ct</rdfs:label>
</owl:Class>
<owl:DatatypeProperty rdf:ID="content__xs_string">
 <rdfs:domain rdf:resource="#ct"/>
 <rdfs:range rdf:resource="&xs;string"/>
</owl:DatatypeProperty>

Fig. 3. Class representing the “ct” complex type of Fig. 2 in the main ontology

 Interoperability of XML Schema Applications with OWL 859

<ox:ComplexTypeInfoType rdf:ID="ct">
 <ox:typeID>ct</ox:typeID>
 <ox:DatatypePropertyInfo>
 <ox:DatatypePropertyInfoType rdf:ID="ct_a__ct_a_UNType">
 <ox:datatypePropertyID>a__ct_a_UNType</ox:datatypePropertyID>
 <ox:XMLConstructID>a</ox:XMLConstructID>
 <ox:datatypePropertyType>Attribute</ox:datatypePropertyType>
 </ox:DatatypePropertyInfoType>
 </ox:DatatypePropertyInfo>
 <ox:DatatypePropertyInfo>
 <ox:DatatypePropertyInfoType rdf:ID="ct_content__xs_string">
 <ox:datatypePropertyID>content__xs_string</ox:datatypePropertyID>
 <ox:datatypePropertyType>Extension</ox:datatypePropertyType>
 </ox:DatatypePropertyInfoType>
 </ox:DatatypePropertyInfo>
</ox:ComplexTypeInfoType>

Fig. 4. The ComplexTypeInfoType and DatatypePropertyInfoType individuals generated in the
mapping ontology for the complex type “ct”, shown in Fig. 2

Simple XML Schema Datatype Transformation. Let the simple XML Schema type
st, formally described in (7), where body is the body of the definition of st, id is the
identifier of st and name is the name of st.

st(name, id, body) (7)

XS2OWL transforms st into the simple datatype st’ in the datatypes XML Schema,
formally described in (8), and the dd datatype declaration in the main ontology, for-
mally described in (9).

st'(name', id, body) (8)

dd(about, is_defined_by, label) (9)

The st' simple datatype has the same body and id with st, while name' is formed as
follows: If st is a top-level simple type, name' is the value of its “name” attribute. If st
is a simple type nested in the ae XML Schema construct (that may be an attribute or
an element), name' has the value id if the identifier of st is not null. If the identifier of
st is null, name' has as value the result of concatenate(ct_name, '_', ae_name,
'_UNType'), where ae_name is the name of the property that represents ae and
ct_name is the name of the complex type containing ae. If ae is a top-level attribute or
element, ct_name has the ‘NS’ string as value;

The dd datatype declaration carries the following semantics: (a) about is the URI
of st' referenced by the datatype declaration and is of the form concatenate(uri,
name'), where uri is the URI of the datatypes XML Schema; (b) is_defined_by speci-
fies where the datatype definition is located and has the url value; and (c) label is the
label of dd and has name' as value.

As an example, consider the nested simple datatype of Fig. 2, which is defined in
the “a” attribute of the “ct” complex type. It is transformed to the top-level simple
datatype shown in Fig. 5, and the OWL datatype declaration shown in Fig. 6.

860 C. Tsinaraki and S. Christodoulakis

<xs:simpleType name="ct_a_UNType">
 <xs:restriction base="xs:integer"/>
</xs:simpleType>

Fig. 5. Top-level datatype representing the nested datatype of Fig. 2 in the datatypes XML
Schema

<rdfs:Datatype rdf:about="&datatypes;ct_a_UNType">
 <rdfs:isDefinedBy rdf:resource="&datatypes;"/>
 <rdfs:label>ct_a_UNType</rdfs:label>
</rdfs:Datatype>

Fig. 6. Declaration of the “ct_a_UNType” simple datatype of Fig. 5 in the main ontology

XML Schema Element Transformation. Let the XML Schema element e, formally
described in (10), where name is the name of e, eid is the identifier of e, type is the
type of e, ct_name is the name of the complex XML Schema type c_type in the con-
text of which e is defined (if e is a top-level attribute, ct_name has the null value),
sub_group is an (optional) element being extended by e, fixed is the (optional) fixed
value of e, default is the (optional) default value of e, min is the minimum number of
occurrences of e, max is the maximum number of occurrences of e and pos is the
position of e if e is a sequence element.

e(name, type, eid, ct_name, sub_group, fixed, default, min, max, pos) (10)

XS2OWL represents e in the main ontology as a (datatype if e is of simple type,
object if e is of complex type) property p, formally described in (11), where: (a) id is
the unique rdf:ID of p and has concatenate(name, ‘__’, type) as value; (b) range is the
range of p and has type as value; (c) domain is the domain of p and takes the value of
ct_name; (d) label is the label of p and has name as value; and (e) super_property is
the specification of the property specialized by p and has sub_group as value.

p(id, range, domain, label, super_property) (11)

In the mapping ontology e is represented by the ElementInfoType individual ei,
formally described in (12), where: (a) id is the unique rdf:ID of ei and has concate-
nate(ct_name, ‘_’, name, ‘__’, type) as value; (b) pid is the rdf:ID of the p property
that represents e in the main ontology. pid is represented by the “propertyID” datatype
property of dpi; (c) xml_name is the name of e and has name as value. xml_name is
represented by the “elementID” datatype property of dpi; (d) def_val represents the
default value of e and has default as value. def_val is represented as the “default-
Value” datatype property of dpi; (e) min_occ represents the minimum number of
occurrences of e and has min as value. min_occ is represented by the “minOccurs”
datatype property of e; (f) max_occ represents the maximum number of occurrences
of e and has max as value. max_occ is represented by the “maxOccurs” datatype
property of e; and (g) position represents the position of e if e is a sequence element.
position is represented by the “elementPosition” datatype property of e.

ei(id, pid, xml_name, def_val, min_occ, max_occ, position) (12)

In addition, if e is of simple type, a DatatypePropertyInfoType individual dpi, for-
mally described in (13), is generated in the mapping ontology, where: (a) id is the

 Interoperability of XML Schema Applications with OWL 861

unique rdf:ID of dpi and has concatenate(ct_name, ‘_’, name, ‘__’, type) as value; (b)
did is the rdf:ID of the p datatype property that represents e in the main ontology. did
is represented by the “datatypePropertyID” datatype property of dpi; (c) xml_name is
the name of e and has name as value. xml_name is represented by the “XMLConstruc-
tID” datatype property of dpi; (d) dpi_type represents the construct which has been
mapped to p and has the value ‘Element’; and (e) def_val represents the default value
of e and has default as value.

dpi(id, did, xml_name, dpi_type, def_val) (13)

As an example, consider the “e1” element, shown in Fig. 7, of type “c_type2”,
which is defined in the context of the complex type “c_type1”. The “e1” element is
transformed to the OWL object property “e1__c_type2” of the main ontology (shown
in Fig. 8) and the ElementInfoType individual “c_type1_e1__c_type2__ei” of the
mapping ontology (shown in Fig. 9).

<xs:element name="e1" type="c_type2"/>

Fig. 7. XML Schema definition of the “e1” element, nested in the complex type “c_type1”

<owl:ObjectProperty rdf:ID="e1__c_type2">
 <rdfs:domain rdf:resource="#c_type1"/>
 <rdfs:range rdf:resource="#c_type2"/>
 <rdfs:label>e1</rdfs:label>
</owl:ObjectProperty>

Fig. 8. The object property representing the “e1” element of Fig. 7 in the main ontology

<ox:ElementInfoType rdf:ID="c_type1_e1__c_type2__ei">
 <ox:propertyID>e1__c_type2</ox:propertyID>
 <ox:elementID>e1</ox:elementID>
</ox:ElementInfoType>

Fig. 9. ElementInfoType individual representing the element of Fig. 7 in the mapping ontology

The XML Schema model groups essentially are sets of elements organized into
(possibly nested) lists and choices. Let the XML Schema model group g, formally
described in (14), which is comprised of n sequences/choices, where g_name is the
model group name, g_id is the model group identifier and li with 1≤i≤n are the group
sequences/choices.

g(g_name, g_id, (l1 , …, ln)) (14)

 If li is a sequence/choice of m elements formally described in (15), then for
1≤j≤m, nameij, is the name of eij, eidij, is the identifier of eij, typeij is the value of the
“type” attribute of eij and sub_groupij is an element being extended by eij.

li(lidi, ei1(namei1, eidi1, typei1, sub_groupi1), …, eim(nameim, eidim, typeim,
sub_groupim))

(15)

XS2OWL represents g in the main ontology as the (datatype or object) properties
pij, formally described in (16), where: (a) idij is the unique rdf:ID of pij and has

862 C. Tsinaraki and S. Christodoulakis

concatenate(g_name, ‘__’, nameij) as value; (b) rangeij is the range of pij and has
typeij as value; (c) labelij is the label of pij and has nameij as value; and (d) su-
per_propertyij represents the property specialized by p and has sub_groupij as value.

pij(idij, rangeij, labelij, super_propertyij) (16)

In the mapping ontology g is represented by an ElementInfoType individual ei for
each element eij, formally described in (12). If eij is represented in the main ontology
by a datatype property, a DatatypePropertyInfoType individual dpi, formally de-
scribed in (13), is also generated in the mapping ontology for the eij.

XML Schema Attribute Transformation. Let the XML Schema attribute a, for-
mally described in (17), where name is the name of a, aid is the identifier of a, type is
the type of a, ct_name is the name of the complex XML Schema type c_type in the
context of which a is defined (if a is a top-level attribute, ct_name has the null value),
fixed is the fixed value of a and default is the default value of a.

a(name, aid, type, ct_name, fixed, default) (17)

XS2OWL represents a in the main ontology as an OWL datatype property dp, for-
mally described in (18), where: (a) id is the unique rdf:ID of dp and has concate-
nate(name, ‘__’, type) as value; (b) range is the range of dp and has type as value; (c)
domain is the domain of dp and takes the value of ct_name; and (d) label is the label
of dp and has name as value.

dp(id, range, domain, label, comment) (18)

In the mapping ontology a is represented as a DatatypePropertyInfoType individ-
ual dpi, formally described in (13), where dpi_type represents the construct which has
been mapped to dp and has the value ‘Attribute’.

As an example, consider the “a” attribute of Fig. 2, which is transformed to the
datatype property of the main ontology shown in Fig. 10 and the DatatypePropertyIn-
foType individual of the mapping ontology shown in Fig. 11.

<owl:DatatypeProperty rdf:ID="a__ct_a_UNType">
 <rdfs:domain rdf:resource="#ct"/>
 <rdfs:range rdf:resource="&datatypes;ct_a_UNType"/>
 <rdfs:label>a</rdfs:label>
</owl:DatatypeProperty>

Fig. 10. The datatype property representing the “a” attribute of Fig. 2 in the main ontology

<ox:DatatypePropertyInfo>
 <ox:DatatypePropertyInfoType rdf:ID="ct_a__ct_a_UNType">
 <ox:datatypePropertyID>a__ct_a_UNType</ox:datatypePropertyID>
 <ox:XMLConstructID>a</ox:XMLConstructID>
 <ox:datatypePropertyType>Attribute</ox:datatypePropertyType>
 </ox:DatatypePropertyInfoType>
</ox:DatatypePropertyInfo>

Fig. 11. The DatatypePropertyInfoType individual representing the “a” attribute of Fig. 2 in the
mapping ontology

 Interoperability of XML Schema Applications with OWL 863

algorithm sequence_restr(sequence, max_p, min_p)
minOc=sequence/@minOccurs
maxOc=sequence/@maxOccurs
temp=’’
if ((minOc*min_p=0) and (maxOc=’unbounded’ or max_p=’unbounded’))
 return ’’
else
 for each sequence item
 if the item is element
 if (maxOc=’unbounded’ or max_p=’unbounded’)
 temp=seq_element_restr(item, min_p*minOc, ’unbounded’)
 else
 temp=seq_element_restr(item, min_p*minOc, max_p*maxOc)
 end if
 else if the item is sequence
 if (maxOc=’unbounded’ or max_p=’unbounded’)
 temp=sequence_restr(item, min_p*minOc, ’unbounded’)
 else
 temp=sequence_restr(item, min_p*minOc, max_p*maxOc)
 end if
 else
 if (maxOc=’unbounded’ or max_p=’unbounded’)
 temp=choice_restr(item, min_p*minOc, ’unbounded’)
 else
 temp=choice_restr(item, min_p*minOc, max_p*maxOc)
 end if
 end if
 ret=concatenate(ret, temp)
 end for
 return intersection(ret)
end if
end algorithm

algorithm seq_element_restr(element, max_p, min_p)
minOc=sequence/@minOccurs
maxOc=sequence/@maxOccurs
if ((minOc*min_p=0) and (maxOc=’unbounded’ or max_p=’unbounded’))
 return ’’
else if (maxOc=’unbounded’ or max_p=’unbounded’)
 return min_car(item, minOc*min_p)
else if (maxOc*max_p=minOc*min_p)
 return cardinality(item, minOc*min_p)
else
 return intersection(min_car(item, minOc*min_p), max_car(item, maxOc*max_p))
end if
end algorithm

Fig. 12. Algorithm for the generation of unnamed OWL classes representing XML Schema
Sequences, where: (a) The min_car(item,min) algorithm produces an owl:minCardinality re-
striction on the property that represents “item” with value “min”; (b) The cardinality(item,val)
algorithm produces an owl:cardinality restriction on the property that represents “item” with
value “val”; and (c) The max_car(item,max) algorithm produces an owl:maxCardinality restric-
tion on the property that represents “item” with value “max”.

XS2OWL transforms the XML Schema attribute groups into sets of datatype prop-
erties, each of which represents an attribute that belongs to the attribute group. Let ag
be an XML Schema attribute group comprised of n attributes, formally described in
(19), where ag_name is the attribute group name, ag_ id is the attribute group identi-
fier and ai, with 1≤i≤n are the group attributes, formally described in (20). namei is
the name of ai, aidi is the identifier of ai and typei is the type of ai.

ag(ag_name, ag_id, (a1, …, an)) (19)

864 C. Tsinaraki and S. Christodoulakis

ai(namei, aidi, typei) (20)
XS2OWL represents ag in the main ontology as a set of datatype properties dpi,

1≤i≤n, formally described in (21), where: (a) idi is the unique rdf:ID of dpi and has
concatenate(ag_name, ‘__’, namei) as value; (b) rangei is the range of dpi and has
typei as value; and (c) labeli is the label of dpi and has namei as value.

dpii(idi, rangei, labeli) (21)

In the mapping ontology ag is represented by a DatatypePropertyInfoType individ-
ual dpi for each attribute, formally described in (13), with dpi_type having the value
‘Attribute’.

XML Schema Sequence and Choice Transformation. XS2OWL transforms both
the sequences and the choices into OWL-DL unnamed classes formed using set op-
erators and cardinality restrictions on the sequence/choice items. The classes that
represent the complex types where the sequences/choices are defined or referenced
are subclasses of the unnamed OWL classes that represent the sequences/choices. The
sequence and the choice item cardinality must always be a multiple of an integer in
the range [i_min_occurs, i_max_occurs], where i_min_occurs and i_max_occurs are
the values of the “minOccurs” and the “maxOccurs” attributes of the item.

The sequences are represented in the main ontology as unnamed classes, formed
from the intersection of the cardinality restrictions of the sequence items. The algo-
rithm that transforms the XML Schema sequences to unnamed OWL classes is shown
in Fig. 12. For the transformation of a sequence s the algorithm is initially called as
sequence_restr(s, 1, 1).

As an example, consider the sequence shown in Fig. 13, which is defined in the
context of a complex type c. The sequence is represented in the main ontology by the
unnamed OWL class shown in Fig. 14, of which the class that represents the complex
type c is a subclass.

<xs:sequence minOccurs="2" maxOccurs="2">
 <xs:element name="e1" type="xs:string"/>
 <xs:element name="e2" type="xs:string" maxOccurs="3"/>
</xs:sequence>

Fig. 13. XML Schema Sequence defined in the context of the complex type c

<owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#e1__xs_string"/>
 <owl:cardinality rdf:datatype="&xsd;integer">2</owl:cardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#e2__xs_string"/>
 <owl:minCardinality rdf:datatype="&xsd;integer">2</owl:minCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#e2__xs_string"/>
 <owl:maxCardinality rdf:datatype="&xsd;integer">6</owl:maxCardinality>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

Fig. 14. Representation of the sequence of Fig. 13 in the main ontology

 Interoperability of XML Schema Applications with OWL 865

The choices are represented in the main ontology as unnamed classes, formed from
the union of the allowed combinations of the choice elements. The algorithm that
transforms the XML Schema choices to unnamed OWL classes is shown in Fig. 15.

algorithm choice_restr(choice, maxOc, minOc)
ret=’’
if (minOc=0 and maxOc=’unbounded’), return ret
else if maxOc=’unbounded’
 nz=number of choice items with minOccurs<>0
 z=number of choice items with minOccurs=0
 nzi=choice items with minOccurs<>0
 mat=distribute(nz,0,minOc)
 for i=1 to mat rows
 for j=1 to nz
 min=nzi[j]/@minOccurs
 if nzi[j] is element, add min_car(nzi[j], min*mat[i,j]) to ret
 else if nzi[j] is sequence, add sequence_restr(nzi[j], min*mat[i,j],
’unbounded’) to ret
 else add choice_restr(nzi[j],min*mat[i,j],’unbounded’) to ret
 end if
 end for
 ret=intersection(ret)
 end for
 if z>0
 z_temp=intersection of deep_cardinality(nzi[i],0) (i from 1 to nz)
 return union(z_temp, ret)
 else return ret
 end if
else
 nzu=number of choice items with (minOccurs<>0 and maxOccurs<>’unbounded’)
 zu=number of choice items with (minOccurs=0 and maxOccurs=’unbounded’)
 nzui=choice items with (minOccurs<>0 and maxOccurs<>’unbounded’)
 mat=distribute(nz,minOc,maxOc)
 for i=1 to mat rows
 for j=1 to nz
 min=nzui[j]/@minOccurs
 max=nzui[j]/@minOccurs
 if nzui[j] is element
 if (max=’unbounded’ or maxOc=’unbounded’), add min_car(nzui[j],
min*mat[i,j]) to ret
 else if (min*minOc=0), add max_car(nzui[j], max*mat[i,j]) to ret
 else (if min*minOc=max*maxOc), add cardinality(nzui[j], max*mat[i,j])
to ret
 else add intersection(min_car(nzui[j], min*mat[i,j]), max_car(nzui[j],
max*mat[i,j])) to ret
 end if
 else if nzui[j] is sequence
 if (max=’unbounded’), add sequence_restr(nzui[j], min*mat[i,j], ’un-
bounded’) to ret
 else add sequence_restr(nzui[j], min*mat[i,j], max*mat[i,j]) to ret
 end if
 else
 if (max=’unbounded’), add choice_restr(nzui[j], min*mat[i,j], ’un-
bounded’) to ret
 else add choice_restr(nzui[j], min*mat[i,j], max*mat[i,j]) to ret
 end if
 end if

Fig. 15. Algorithm for the generation of unnamed OWL classes representing XML Schema
Choices, where: (a) The deep_cardinality(item,val) algorithm produces an owl:cardinality
restriction with value “val” on each property that represents “item” or a (sequence or choice)
item of “item”; and (b) The distribute(item_num, min_val, max_val) algorithm calculates the
allowed combination of the occurrences of “item_num” items so that the sum of their occur-
rences is between “min_val” and “max_val”.

866 C. Tsinaraki and S. Christodoulakis

 end for
 intersection(ret)
 end for
 if zu>0
 zu_temp=intersection of cardinality(nzui[i],0) (i from 1 to nzu)
 return union(zu_temp, ret)
 else return ret
 end if
end if
end algorithm

Fig. 15. (continued)

As an example, consider the choice shown in Fig. 16. The choice is represented in
the main ontology by the unnamed OWL class shown in Fig. 17.

<xs:choice minOccurs="0">
 <xs:element name="e2" type="xs:string" minOccurs="2" maxOccurs="2"/>
 <xs:element name="e3" type="xs:string" maxOccurs="2"/>
</xs:choice>

Fig. 16. XML Schema choice defined in the context of a complex type

<owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#e2__xs_string"/>
 <owl:maxCardinality rdf:datatype="&xsd;integer">0</owl:maxCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#e3__xs_string"/>
 <owl:maxCardinality rdf:datatype="&xsd;integer">2</owl:maxCardinality>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#e2__xs_string"/>
 <owl:maxCardinality rdf:datatype="&xsd;integer">2</owl:maxCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#e3__xs_string"/>
 <owl:maxCardinality rdf:datatype="&xsd;integer">0</owl:maxCardinality>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:unionOf>
</owl:Class>

Fig. 17. Representation of the XML Schema Choice of Fig. 16 in the main ontology

If the maximum number of occurrences of a sequence/choice has a large value (but
is not unbounded), the manual generation of the unnamed classes is tedious and time-
consuming and thus becomes error-prone and practically impossible.

Notice that the exact sequence/choice cardinalities cannot be computed when a
choice item is contained in a sequence/choice with unbounded maximum number of

 Interoperability of XML Schema Applications with OWL 867

occurrences. In addition, information regarding the sequence element ordering cannot
be represented in OWL. This information is captured in the mapping ontology. Let sc
be a sequence or choice formally described in (22), where sc_id is the identifier of sc,
c_type is the complex type in which sc is defined or referenced, min is the minimum
number of occurrences of sc, max is the maximum number of occurrences of sc and
elements is the list of the elements of sc.

sc(sc_id, c_type, min, max, elements) (22)

XS2OWL represents sc in the mapping ontology by the (SequenceInfoType if sc is
a sequence, ChoiceInfoType if sc is a choice) individual st formally described in (23),
where: (a) id is the unique rdf:ID of st and has concatenate(ct_name, ‘__’, i) as value,
where ct_name is the name of the class that represents c_type in the main ontology
and i is the index of sc in c_type; (b) min_occ represents the minimum number of
occurrences of sc and has min as value; (c) max_occ represents the maximum number
of occurrences of sc and has max as value; and (d) e_rep is the list of the representa-
tions of the elements of sc.

st(id, min_occ, max_occ, e_rep) (23)

5 Evaluation of the XS2OWL Model

The XS2OWL model and its implementation have been applied to several well-
accepted standards. We present here the results of the XS2OWL evaluation.

In order to acquire extensive empirical evidence, we applied XS2OWL to several
very large and well-accepted standards expressed in XML Schema: The MPEG-7
Multimedia Description Schemes (MDS) and the MPEG-21 Digital Item Adaptation
(DIA) Architecture in the multimedia domain, the IEEE LOM and the SCORM in the
e-learning domain and the METS standard for Digital Libraries. The result was the
transformation of the XML Schema constructs to OWL for each one of those stan-
dards. We then enriched the OWL specifications with OWL domain ontologies and
produced individuals following the ontologies. Finally, we converted the individuals
to XML syntax, valid with respect to the original XML Schemas. The transformations
were successful for these standards due to the utilization of the mapping ontologies.
We have also found that in all cases the semantics of the standards were fully cap-
tured in the main and mapping ontologies generated by the XS2OWL system.

 Then we looked closely the formal semantics of the generated OWL ontologies.
Since we had in our previous research efforts [17] manually transformed the MPEG-7
MDS and the MPEG-21 DIA Architecture in OWL-DL, we compared the semantics
captured in the manually defined ontologies with the semantics captured in the auto-
matically generated ones. The comparison has shown that all the semantics captured
during the manual transformations were also captured during the automatic transfor-
mations. Then, we compared the manually produced mapping ontology for the Se-
mantic DS of the MPEG-7 MDS with the corresponding part of the automatically
produced mapping ontology for the MPEG-7 MDS. Again, the comparison has shown
that all the semantics captured in the manually created ontology are also accurately
captured in the automatically produced one.

868 C. Tsinaraki and S. Christodoulakis

6 Conclusions – Future Work

We have presented in this paper the XS2OWL model that allows the automatic trans-
formation of XML Schemas into OWL-DL ontologies. This transformation allows
domain ontologies in OWL to be integrated and logic-based reasoners to be used for
various applications, as for example for knowledge extraction from multimedia data.
XS2OWL allows the conversion of the generated OWL information back to XML.
We have presented also a system that implements the XS2OWL model. We have used
the implemented system to validate our approach with a number of well-accepted and
extensive standards expressed in XML Schema. The automatically created ontologies
have been found to accurately capture the semantics of the XML Schemas.

Our future work in this area includes experimentation that will be conducted in or-
der to evaluate the enhancement of the retrieval effectiveness that will be achieved
through the utilization of the products of the XS2OWL model. In particular, we will
pose the same queries on top of XML repositories containing (a) Standard-based
XML descriptions that were created from scratch; and (b) Standard-based XML de-
scriptions that were derived from the transformation of OWL constructs produced
after the semantic processing of OWL individuals defined based on the OWL ontolo-
gies produced from the application of the XS2OWL methodology and software on the
standards. Precision and recall will be calculated in both cases and will be compared.

Acknowledgments. The work presented here was partially funded in the scope of the
DELOS II Network of Excellence in Digital Libraries (IST – Project Record #26059).

References

1. ADL Technical Team: Sharable Content Object Reference Model (SCORM) (2004)
2. An, Y., Borgida, A., Mylopoulos, J.: Constructing Complex Semantic Mappings Between

XML Data and Ontologies. In: International Semantic Web Conference, pp. 6–20 (2005)
3. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J. (eds.): Extensi-

ble Markup Language (XML) 1.1. W3C Recommendation (2006), http://www.w3.org/
TR/xml11/

4. Brickley, D., Guha, R.V. (eds.): RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation (2004), http://www.w3.org/TR/rdf-schema

5. Chang, S.F., Sikora, T., Puri, A.: Overview of the MPEG-7 standard. IEEE Transactions
on Circuits and Systems for Video Technology 11, 688–695 (2001)

6. Fallside, D., Walmsley, P. (eds.): XML Schema Part 0: Primer. W3C Recommendation
(2001), http://www.w3.org/TR/xmlschema-0/

7. García, R., Celma, O.: Semantic Integration and Retrieval of Multimedia Metadata. In:
proceedings of the Semannot 2005 Workshop (2005)

8. Kay, M. (ed.): XSL Transformations (XSLT) Version 2.0. W3C Recommendation (2007),
http://www.w3.org/TR/xslt20/

9. Manola, F., Milles, E. (eds.): RDF Primer. W3C Recommendation (2004), http://
www.w3.org/TR/rdf-primer

10. METS: Metadata Encoding and Transmission Standard (METS) Official Website http://
www.loc.gov/standards/mets/

 Interoperability of XML Schema Applications with OWL 869

11. IEEE LTSC 2002: IEEE 1484.12.1-2002 – Learning Object Metadata Standard. http://
ltsc.ieee.org/wg12/

12. ISO/IEC: 21000-7:2004 – Information Technology – Multimedia Framework (MPEG-21)
– Part 7: Digital Item Adaptation (2004)

13. ISO/IEC: 15938-5:2003 – Information Technology –Multimedia content description inter-
face – Part 5: Multimedia description schemes. First Edition, ISO/MPEG N5845 (2003)

14. McGuinness, D.L., van Harmelen, F. (eds.): OWL Web Ontology Language: Overview.
W3C Recommendation (2004), http://www.w3.org/TR/owl-features

15. Pereira, F.: The MPEG-21 standard: Why an open multimedia framework? In: Shepherd,
D., Finney, J., Mathy, L., Race, N.J.P. (eds.) IDMS 2001. LNCS, vol. 2158, pp. 219–220.
Springer, Heidelberg (2001)

16. Tsinaraki, C., Polydoros, P., Christodoulakis, S.: Interoperability support for Ontology-
based Video Retrieval Applications. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E.,
Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 582–591.
Springer, Heidelberg (2004)

17. Tsinaraki, C., Polydoros, P., Christodoulakis, S.: Interoperability support between MPEG-
7/21 and OWL in DS-MIRF. Transactions on Knowledge and Data Engineering (TKDE),
Special Issue on the Semantic Web Era, pp. 219–232 (2007)

18. Tsinaraki, C., Polydoros, P., Kazasis, F., Christodoulakis, S.: Ontology-based Semantic
Indexing for MPEG-7 and TV-Anytime Audiovisual Content. Multimedia Tools and Ap-
plication Journal (MTAP) 26, 299–325 (2005)

Query Expansion and Interpretation to Go

Beyond Semantic P2P Interoperability

Anthony Ventresque1, Sylvie Cazalens1,
Philippe Lamarre1, and Patrick Valduriez2

1 LINA, University of Nantes
FirstName.LastName@univ-nantes.fr

2 INRIA and LINA, University of Nantes
Patrick.Valduriez@inria.fr

Abstract. In P2P data management systems, semantic interoperabil-
ity between any two peers that do not share the same ontology relyes on
ontology matching. The established correspondences, i.e. the “shared”
parts of the ontologies are indeed essential to exchange information. But
to what extent the “unshared” part can contribute to information ex-
change. In this paper, we address this question. We focus on a P2P docu-
ment management system, where documents and queries are represented
by semantic vectors. We propose a specific query expansion step at the
query initiator’s side and a query interpretation step at the document
provider’s. Through these steps, unshared concepts contribute to evalu-
ate the relevance of documents wrt a given query. The experiments show
that the proposed method enables to correctly evaluate the relevance of
a document even if concepts of a query are not shared. In some cases,
we are able to find up to 90% of the documents that would be selected
when all the concepts are shared.

1 Introduction

In peer-to-peer (P2P) data systems, semantic interoperability means that any
two peers are able to exchange information of which meaning is correctly in-
terpreted by both of them. Several solution in P2P data management use local
mappings to ensure the systems global interoperability [5,8]. Most of the solu-
tions focus on what (i.e. the concepts and relations) the peers share, which is
important. However, no matter how the shared part is obtained (through consen-
sus or mapping), there might be concepts (and relations) that are not consensual,
and thus not shared but still useful for information exchange. Thus the question
is to know whether the unshared parts are useful for information exchange.

In this paper, we restrict this question to the case of a P2P document manage-
ment system, with unstructured or semi-structured documents. More precisely,
we focus on semantic interoperability and information exchange between two
peers, a query initiator p1 and a document provider p2, which use different on-
tologies but share some common concepts. Each of them represents its queries
and documents, according to its own ontology. The, the problem we address is

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 870–877, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Query Expansion and Interpretation 871

to find documents which are relevant to a given query although the documents
and the query may be both represented with concepts that are not all shared.

We represent documents and queries by semantic vectors [11] which are a
common way to represent unstructured documents. The principle is simple: each
concept of the ontology is weighted according to its representiveness of the doc-
ument. The same is done for the query. The resulting vector represents the
document (respectively, the query) in the n-dimensional space formed by the n
concepts of the ontology. Then the relevance of a document with respect to a
query corresponds to the proximity of the vectors in the space.

In order to improve information exchange beyond the “shared part” of the on-
tology, we promote both query expansion (at the query initiator’s side) and query
interpretation (at the document provider’s side). Query expansion may con-
tribute to weight linked shared concepts, thus improving the document provider’s
understanding of the query. Similarly, by interpreting an expanded query with
respect to its own ontology (i.e. by weighting additional concepts of its own
ontology), the document provider may find additional related documents that
would not be found by only using the matching concepts in the query and the
documents. To our knowledge, the best of the problem of improving informa-
tion exchange by using the unshared concepts of different ontology has not been
addressed before. Our proposal is a first, encouraging solution.

This paper is organised as follows. Section 2 gives preliminary definitions. In
Section 3, we present query expansion in the case of a shared ontology. Its main
property is to keep separate the results of the propagation from each central
concept of the query. Section 4 considers the case where two peers use differ-
ent ontologies, and describes query interpretation. Section 5 gives preliminary
experiments. Finally, we conclude in Section 6.

2 Preliminary Definitions

We use a semantic vector space, i.e. a multi-dimensional linear space with the
concepts of an ontology as dimensions. The content of each document (respec-
tively query) is abstracted to a semantic vector by characterizing it according
to each concept. The more a given document is related to a given concept, the
higher is the value of the concept in the semantic vector of the document.

We simply define an ontology as a set of concepts together with a set of
relations between those concepts [4]. In our experiments we consider an ontol-
ogy with only the is-a relation (specialization link). This does not restrict the
generality of our relevance calculus.

Definition 1 (Semantic Vector). A semantic vector −→vΩ, or −→v when there is
no ambiguity, is an application defined on the set of concepts CΩ of an ontology
Ω:

∀c ∈ CΩ, −→vΩ : c → [0, 1]

Expansion is based on weight propagation, which consists in weighting initially
unweighted concepts which seem linked to weighted concepts. We propose to

872 A. Ventresque et al.

propagate weight from a given concept ci , according to the similarity[7] of the
other concepts with ci . Thus, we introduce a similarity function simci which
denotes the similarity to a central concept ci .

Definition 2 (Similarity function). Let c be a concept of CΩ. Function simc:
CΩ → [0, 1], is a similarity function iff simc(c) = 1 and 0 ≤ simc(cj) < 1 for all
cj �= c in CΩ.

The concepts of CΩ can then be ordered according to their similarity value. A
propagation function Pfc is a decreasing function which assigns a weight to each
similarity value, c being assigned the highest weight. Figure 1 is an example of
a propagation function, inspired by membership functions used in fuzzy logic.

C4 C6

Decreasing similarity

Weight

C50.7 0.4
C2

1

1

0

Fig. 1. Example of a f0.7,0.4,1 function with central concept c2

3 Query Expansion and Image Based Relevance

For the sake of simplicity, we assume in this section that the query initiator and
the document provider use the same ontology but they can still differ on the
similarity measures and the propagation functions.

Most propagation methods propagate the weight of each concept in the same
vector. We call this kind of method “rough” propagation. Although the results
are not bad, this method has some drawbacks, in particular, a possible unbalance
of the relative importance of the initial concepts [6]. This is why we choose to
keep separate the results of the propagation from different concepts in semantic
enriched dimensions (SEDs).

First, let us denote by C−→q the set of the central concepts of query −→q , i.e.
those weighted concepts which best represent the query. Each central concept of
C−→q is semantically enriched by propagation, in a separate vector (see figure 2).

Definition 3 (Query expansion). Let −→q be a query vector; let c be a concept
in C−→q and let Pfc be a propagation function.

The semantically enriched dimension of c, noted −→
sedc, is the semantic vector

defined by: ∀c′ ∈ CΩ,
−→
sedc[c′] = Pfc(c′)

The expansion of −→q , noted E−→q is defined as: E−→q = {−→
sedc : c ∈ C−→q }

The relevance of a given document is computed using the cosine of its image wrt
the query and the query itself. This image is obtained using the expansion of the

Query Expansion and Interpretation 873

Fig. 2. A query expansion composed of 2 semantically enriched dimensions

Fig. 3. Obtaining the image of a document

query (i.e. the set of SEDs). Given a SED −→
sedc , we consider the product of the

respective values of each concept in −→
sedc and −→

d . The image of −→
d keeps track

of the best value assigned to one of the linked concepts if it is better than −→
d

[c], which is the initial value of c . All the central concepts of the initial query
vector are then weighted in the image of the document as far as the document
is related to them.

4 Relevance in the Context of Unshared Concepts

We now assume that the query initiator, p1, and the document provider, p2,
use different ontologies, respectively noted Ω1 and Ω2. Each peer also has its
own similarity and propagation functions. We also assume that the peers share
some common concepts: each of them regularly (although may be not often)
computes an ontology matching algorithm which provides a non-empty set of
correspondences (equivalences) between those concepts [3]. For the sake of sim-
plicity of notations, when there is an equivalence, we make no difference between
the name of the given concept at p1’s, its name at p2’s, and the identifier of the
correspondence, which all refer to the same concept.

4.1 Overview of the Relevance Calculus

The query initiator and the document provider do not use the same vector spaces.
An additional step is needed in order to be able to evaluate relevance in a same
and single space. We call it interpretation of the query. Thus, the different steps

874 A. Ventresque et al.

involved in the relevance calculus of some document −→
d of p2 wrt a given query

−→q initiated by p1 are the following.

Query expansion. It remains unchanged. Peer p1 computes an expansion of its
query, which results in a set of SEDs. Each SED is expressed on the set CΩ1 , no
matter the ontology used by p2. Then, the expanded query is sent to p2, together
with the initial query.
Query interpretation. Query interpretation by p2 provides a set of interpreted
SEDs on the set CΩ2 and an interpreted query. Each SED of the expanded query
is interpreted separately. Interpretation is composed of two problems:

– The first problem is to find a concept that corresponds to the central concept
of the SED. This is difficult when the central concept is not shared. It might
even lead p2 to introduce “new” concepts. Because of space limitations, we
do not detail this part. In the following, we assume that the corresponding
concept belongs to CΩ2 , even if the initial concept is not shared, and that it
keeps the weight of this latter.

– The second problem is to attribute weights to unshared concepts of CΩ2

which are linked to the SED. This is detailed below.

Image of the document and cosine calculus. They remain unchanged.
Provider p2 computes the image of its document with respect to the interpreted
SEDs and then, its cosine based relevance with respect to the interpreted query,
no matter the ontology used by p1. This is possible because the previous inter-
pretation step makes both the image of the document and the interpreted query
belong to space CΩ2 .

4.2 Interpretation of a SED

In this section, we describe the interpretation process for a given SED (expressed
on CΩ1), of which central concept is noted c. The concept corresponding to c in
CΩ2 is noted iE−→q (c) and is assigned the weight of c. Peer p2 ranks its own

concepts in function of simiE−→q (c). Among these concepts, some are shared and

their initial SED has a given weight, which we preserve in the interpretation.
The problem is how to weight the unshared concepts, given that some of them
might be more similar to iE−→q (c) than shared concepts. Figure 4 illustrates our

general solution. Let us call fi a piecewise affine function which defines a weight
for each similarity value in [0, 1]. To guide the definition of fi, we use the weights
given by −→

sedc to the shared concepts (c1, c2, c3 in figure 4). However, there might
be several shared concepts that have the same similarity value with respect to
iE−→q (c), but have a different weight according to −→

sedc. We only require function

fi to assign one of (or a function of) these values to the given similarity value.
For instance, it can be the minimum value. Given a function fi that satisfyes
this condition, the unshared concepts (c4, c5, c6 in the figure) are assigned the
weight they obtain by function fi. This is illustrated for c5 by a dotted arrow.

Query Expansion and Interpretation 875

C5C4 C1 C2 C3 C6

Decreasing similarity

Weight

Fig. 4. SED interpretation: assigning weights to unshared non-central concepts

5 Preliminary Experiments

The ontology we use is lightweight, i.e. an ontology composed of a taxonomy of
concepts and a taxonomy of relations : WordNet. We use the Cranfield corpus, a
testing corpus consisting of 1400 documents and 225 queries in natural language,
all related to aeronautical engineering1. For each query, each document is scored
by humans as relevant or not relevant (boolean relevance). Although it is similar
in size to other classical testing corpora like CACM, CISI, Medline, etc. it is
small compared to recent TREC corpus. As we are not experts in textual IR
nor in natural language processing, we do not focus on a large corpus for our
experiments. However, this is one direction of our future work. Semantic indexing
is the process which extracts concepts within documents or queries in natural
language [9]. The aim is to find the most representative concepts for documents
and queries. We use a program made in our lab : RIIO [2], which is based on the
selection of synsets from WordNet. Thus, there is no human intervention in the
process. We use a similarity function based on [1], because it has good properties
and results. The propagation functions used are of the form f1,l2,v (see figure 1)

We compare our image based method with two others that are classicaly used
in the context of a shared ontology. In the cosine based method, relevance is
defined by the cosine between the query and the document vectors. In the rough
expansion method, the effects of propagating weights from different concepts are
mixed in a single vector. Relevance is obtained using the cosine. This method
avoids some silence, but often generates too much noise, without any highly
accurate sense disambiguation [10]. In the context of a shared ontology, our
method shows i) better results than rough expansion and ii) results that are
comparable with the cosine ones (a 2% increase of recall and precison). In the
context of two different ontologies, the cosine based method is applied by the
document provider p2 in space CΩ2 : in the query, only the shared concepts are
considered. Rough expansion is done at the query intiator p1’s and the cosine is
calculted at p2’s.

Because the manipulation of two different ontologies is a heavy process, we
decided to simulate that use. Wordnet is used by both p1 (to express its queries)
and p2 (to index its documents). However, in the result of the ontology mapping,
we randomdly remove a given percentage of the shared concepts (from 10% to

1 It was collected between 1957 and 1968 by Cyril W. Cleverdon. The documents are
abstracts of research papers.

876 A. Ventresque et al.

90%). This amounts to simulate two peers that use the same ontology but are
not aware of it. Of course, this eases interpretation. In particular, taking the
lowest common ancestor of the shared concepts of −→

sedc to find the corresponding
concept of central concept c gives good results most of the time.

Figure 5 shows the results obtained in average for the first twelve queries of
the testing corpus. The reference method is the cosine one when no concept
is removed, which gives a given reference precision and recall. Then, for each
method and each percentage of removed concepts, we compute the ratio of the
precision obtained (respectively recall) by the reference precision. When the
percentage of randomly removed concepts increases, precision (figure 5 (a)) and
recall (Figure 5 (b)) decrease i.e. the results are less and less relevant. However,
our image and interpretation based solution shows much better results. When
the percentage of removed concepts is under 70%, we still get 80% or more of
the answers obtained in the reference case.

(a) (b)

Fig. 5. Evolution of (a) precision and (b) recall in function of the percentage of concepts
randomly removed from the set of shared concepts

6 Conclusion

The main contribution of this paper is a solution which improves information
exchange between two peers that use different ontologies. Our solution uses se-
mantic vectors to represent documents and queries. It only requires the peers to
share some concepts and uses the unshared concepts to find additional relevant
documents. To the best of our knowledge, the problem has never been addressed
before and our approach is a first, encouraging solution.

When performing query expansion, the query initiator makes more precise the
concepts of the query by associating an expansion to each of them (SED). The
expansion depends on the initiator’s characteristics: ontology, similarity, prop-
agation function. Interpretation by the document provider is not easy because
the peers do not share the vector space. Given its own ontology and similarity
function, it first finds out a corresponding concept for the central concept of

Query Expansion and Interpretation 877

each SED, and then interprets the whole SED. The interpreted SEDs are used
to compute an image of the documents and their relevance. This is only possible
because the central concepts are expanded separately. The results of our pre-
liminary experiments show that our approach significantly improves information
exchange, finding up to 90% of the documents that would be found if all the
concepts were shared.

As future work, we plan to conduct additional testing in different contexts to
verify the robustness of our approach. Another aspect that we want to consider
carefully is complexity to improve efficiency. Finally, we plan a theoretical study
of the impact of interpretation when several peers are involved

References

1. Bidault, A., Froidevaux, C., Safar, B.: Repairing queries in a mediator approach.
In: ECAI (2000)

2. Desmontils, E., Jacquin, C.: The Emerging Semantic Web. In: chapter Indexing a
web site with a terminology oriented ontology (2002)

3. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
4. Gómez-Pérez, A., Fernández, M., Corcho, O.: Ontological Engineering. Springer,

London (2004)
5. Ives, Z.G., Halevy, A.Y., Mork, P., Tatarinov, I.: Piazza: mediation and integration

infrastructure for semantic web data. Journal of Web Semantics (2003)
6. Nie, J.-Y., Jin, F.: Integrating logical operators in query expansion invector space

model. In: SIGIR workshop on Mathematical and Formal methods in Information
Retrieval (2002)

7. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: IJCAI (1995)

8. Rousset, M.-C.: Somewhere: a scalable p2p infrastructure for querying distributed
ontologies. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp.
698–703. Springer, Heidelberg (2006)

9. Sanderson, M.: Retrieving with good sense. Information Retrieval (2000)
10. Voorhees, E.M.: Query expansion using lexical-semantic relations. In: SIGIR,

Dublin (1994)
11. Woods, W.: Conceptual indexing: A better way to organize knowledge. Technical

report, Sun Microsystems Laboratories (1997)

SPARQL++ for Mapping Between RDF Vocabularies�

Axel Polleres1, François Scharffe2, and Roman Schindlauer3,4

1 DERI Galway, National University of Ireland, Galway
axel@polleres.net

2 Leopold-Franzens Universität Innsbruck, Austria
francois.scharffe@uibk.ac.at

3 Department of Mathematics, University of Calabria, 87030 Rende (CS), Italy
4 Institut für Informationssysteme, Technische Universität Wien

roman@kr.tuwien.ac.at

Abstract. Lightweight ontologies in the form of RDF vocabularies such as
SIOC, FOAF, vCard, etc. are increasingly being used and exported by “seri-
ous” applications recently. Such vocabularies, together with query languages like
SPARQL also allow to syndicate resulting RDF data from arbitrary Web sources
and open the path to finally bringing the Semantic Web to operation mode. Con-
sidering, however, that many of the promoted lightweight ontologies overlap, the
lack of suitable standards to describe these overlaps in a declarative fashion be-
comes evident. In this paper we argue that one does not necessarily need to delve
into the huge body of research on ontology mapping for a solution, but SPARQL
itself might — with extensions such as external functions and aggregates — serve
as a basis for declaratively describing ontology mappings. We provide the seman-
tic foundations and a path towards implementation for such a mapping language
by means of a translation to Datalog with external predicates.

1 Introduction

As RDF vocabularies like SIOC,1 FOAF,2 vCard,3 etc. are increasingly being used and
exported by “serious” applications we are getting closer to bringing the Semantic Web
to operation mode. The standardization of languages like RDF, RDF Schema and OWL
has set the path for such vocabularies to emerge, and the recent advent of an opera-
ble query language, SPARQL, gave a final kick for wider adoption. These ingredients
allow not only to publish, but also to syndicate and reuse metadata from arbitrary dis-
tibuted Web resources in flexible, novel ways.

When we take a closer look at emerging vocabularies we realize that many of them
overlap, but despite the long record of research on ontology mapping and alignment, a

� This research has been partially supported by the European Commission under the FP6
projects inContext (IST-034718), REWERSE (IST 506779), and Knowledge Web (FP6-
507482), by the Austrian Science Fund (FWF) under project P17212-N04, as well as by Sci-
ence Foundation Ireland under the Lion project (SFI/02/CE1/I131).

1 http://sioc-project.org/
2 http://xmlns.com/foaf/0.1/
3 http://www.w3.org/TR/vcard-rdf

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 878–896, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://sioc-project.org/
http://xmlns.com/foaf/0.1/
http://www.w3.org/TR/vcard-rdf

SPARQL++ for Mapping Between RDF Vocabularies 879

standard language for defining mapping rules between RDF vocabularies is still miss-
ing. As it turns out, the RDF query language SPARQL [24] itself is a promising
candidate for filling this gap: Its CONSTRUCT queries may themselves be viewed
as rules over RDF. The use of SPARQL as a rules language has several advantages:
(i) the community is already familiar with SPARQL’s syntax as a query language,
(ii) SPARQL supports already a basic set of built-in predicates to filter results and
(iii) SPARQL gives a very powerful tool, including even non-monotonic constructs
such as OPTIONAL queries.

When proposing the use of SPARQL’s CONSTRUCT statement as a rules language
to define mappings, we should first have a look on existing proposals for syntaxes
for rules languages on top of RDF(S) and OWL. For instance, we can observe that
SPARQL may be viewed as syntactic extension of SWRL [16]: A SWRL rule is of the
form ant ⇒ cons , where both antecedent and consequent are conjunctions of atoms
a1 ∧ . . . ∧ an. When reading these conjunctions as basic graph patterns in SPARQL
we might thus equally express such a rule by a CONSTRUCT statement:

CONSTRUCT { cons } WHERE { ant }
In a sense, such SPARQL “rules” are more general than SWRL, since they may be
evaluated on top of arbitrary RDF data and — unlike SRWL — not only on top of valid
OWL DL. Other rules language proposals, like WRL [7] or TRIPLE [8] which are
based on F-Logic [18] Programming may likewise be viewed to be layerable on top of
RDF, by applying recent results of De Bruijn et al. [5,6]. By the fact that (i) expressive
features such as negation as failure which are present in some of these languages are
also available in SPARQL 4 and (ii) F-Logic molecules in rule heads may be serialized
in RDF again, we conjecture that rules in these languages can similarly be expressed as
syntactic variants of SPARQL CONSTRUCT statements.5

On the downside, it is well-known that even a simple rules language such as SWRL
already lead to termination/undecidability problems when mixed with ontology vocabu-
lary in OWL without care. Moreover, it is not possible to express even simple mappings
between common vocabularies such as FOAF2 and VCard3 in SPARQL only. To rem-
edy this situation, we propose the following approach to enable complex mappings over
ontologies: First, we keep the expressivity of the underlying ontology language low, re-
stricting ourselves to RDFS, or, more strictly speaking to, ρdf− ontologies (a variant of
ρdf [20] defined in Subsection 4.5); second, we extend SPARQL’s CONSTRUCT by
features which are almost essential to express various mappings, namely: a set of use-
ful built-in functions (such as string-concatenation and arithmetic functions on numeric
literal values) and aggregate functions (min, max, avg). Third, we show that evaluating
SPARQL queries on top of ρdf− ontologies plus mapping rules is decidable by trans-
lating the problem to query answering over HEX-programs, i.e., logic programs with
external built-ins using the answer-set semantics, which gives rise to implementations
on top of existing rules engines such as dlvhex. A prototype of a SPARQL engine for
evaluating queries over combined datasets consisting of ρdf− and SPARQL mappings
has been implemented and is avaiblable for testing online.6

4 See [24, Section 11.4.1].
5 With the exception of predicates with arbitrary arities.
6 http://kr.tuwien.ac.at/research/dlvhex/

http://kr.tuwien.ac.at/research/dlvhex/

880 A. Polleres, F. Scharffe, and R. Schindlauer

The remainder of this paper is structured as follows. We start with some motivat-
ing examples of mappings which can and can’t be expressed with SPARQL CON-
STRUCT queries in Section 2 and suggest syntactic extensions of SPARQL, which
we call SPARQL++, in order to deal with the mappings that go beyond. In Section 3
we introduce HEX-programs, whereafter in Section 4 we show how SPARQL++ CON-
STRUCT queries can be translated to HEX-programs, and thereby bridge the gap to im-
plementations of SPARQL++. Next, we show how additional ontological inferences by
ρdf− ontologies can be itself viewed as a set of SPARQL++ CONSTRUCT “mappings”
to HEX-programs and thus embedded in our overall framework, evaluating mappings
and ontological inferences at the same level, while retaining decidability. After a brief
discussion of our current prototype and a discussion of related approaches, we conclude
in Section 6 with an outlook to future work.

2 Motivating Examples – Introducing SPARQL

Most of the proposals in the literature for defining mappings between ontologies use
subsumption axioms (by relating defining classes or (sub)properties) or bridge rules [3].
Such approaches do not go much beyond the expressivity of the underlying ontology
language (mostly RDFS or OWL). Nonetheless, it turns out that these languages are
insufficient for expressing mappings between even simple ontologies or when trying to
map actual sets of data from one RDF vocabulary to another one. In Subsection 10.2.1
of the latest SPARQL specification [24] an example for such a mapping from FOAF to
VCard is explicitly given, translating the VCard properties into the respective FOAF
properties most of which could equally be expressed by simple rdfs:subPropertyOf
statements. However, if we think the example a bit further, we quickly reach the limits
of what is expressible by subclass- or subproperty statements.

Example 1. A simple and straightforward example for a mapping from VCard:FN to
foaf:name is given by the following SPARQL query:
CONSTRUCT { ?X foaf:name ?FN . } WHERE { ?X VCard:FN ?FN . FILTER isLiteral(?FN) }

The filter expression here reduces the mapping by a kind of additional “type checking”
where only those names are mapped which are merely given as a single literal.

Example 2. The situation becomes more tricky for other terms, for instance VCard:n
(name) and foaf:name, because VCard:n consists of a substructure consisting of
Family name, Given name, Other names, honorific Prefixes, and honorific Suffixes. One
possibility is to concatenate all these to constitute a single foaf:name:

CONSTRUCT { ?X foaf:name ?Name . }
WHERE {?X VCard:N ?N .

OPTIONAL {?N VCard:Family ?Fam } OPTIONAL {?N VCard:Given ?Giv }
OPTIONAL {?N VCard:Other ?Oth } OPTIONAL {?N VCard:Prefix ?Prefix }
OPTIONAL {?N VCard:Suffix ?Suffix }
FILTER (?Name = fn:concat(?Prefix," ",?Giv, " ",?Fam," ",?Oth," ",?Suffix))

}

We observe the following problem here: First, we use filters for constructing a new
binding which is not covered by the current SPARQL specification, since filter ex-
pressions are not meant to create new bindings of variables (in this case the variable

SPARQL++ for Mapping Between RDF Vocabularies 881

?Name), but only filter existing bindings. Second, if we wanted to model the case
where e.g., several other names were provided, we would need built-in functions beyond
what SPARQL currently provides, in this case a string manipulation function such as
fn:concat. SPARQL supplies a subset of the functions and operators defined by
XPath/XQuery, but these cover only boolean functions, like arithmetic comparison op-
erators and basic arithmetic functions but no string manipulation routines. Even with
the full range of XPath/XQuery functions available, we would still have to slightly “ex-
tend” fn:concat here, assuming that unbound variables are handled properly, being
replaced by an empty string in case one of the optional parts of the name structure is
not defined.

Apart from built-in functions like string operations, aggregate functions such as count,
minimum, maximum or sum, are another helpful construct for many mappings that is
currently not available in SPARQL. Finally, although we can query and create new
RDF graphs by SPARQL CONSTRUCT statements mapping one vocabulary to an-
other, there is no well-defined way to combine such mappings with arbitrary data, espe-
cially when we assume that (1) mappings are not restricted to be unidirectional from one
vocabulary to another, but bidirectional, and (2) additional ontological inferences such
as subclass/subproperty relations defined in the mutually mapped vocabularies should
be taken into account when querying over syndicated RDF data and mappings. Hence,
we propose the following extensions of SPARQL:

– We introduce an extensible set of useful built-in and aggregate functions.
– We permit function calls and aggregates in the CONSTRUCT clause,
– We further allow CONSTRUCT queries nested in FROM statements, or more gen-

eral, allowing CONSTRUCT queries as part of the dataset.

2.1 Built-In Functions and Aggregates in Result Forms

Considering Example 2, it would be more intuitive to carry out the string translation
from VCard:n to foaf:name in the result form, i.e., in the CONSTRUCT clause:

CONSTRUCT {?X foaf:name fn:concat(?Prefix," ",?Giv," ",?Fam," ",?Oth," ",?Suffix).}
WHERE { ?X VCard:N ?N .

OPTIONAL {?N VCard:Family ?Fam } OPTIONAL {?N VCard:Given ?Giv }
OPTIONAL {?N VCard:Other ?Oth } OPTIONAL {?N VCard:Prefix ?Prefix }
OPTIONAL {?N VCard:Suffix ?Suffix } }

Another example for a non-trivial mapping is the different treatment of telephone num-
bers in FOAF and VCard.

Example 3. A VCard:tel is a foaf:phone – more precisely, VCard:tel is re-
lated to foaf:phone as follows. VCard stores Telephone numbers as string literals,
whereas FOAF uses resources, i.e., URIs with the tel: URI-scheme:

CONSTRUCT { ?X foaf:phone rdf:Resource(fn:concat("tel:",fn:encode-for-uri(?T)) . }
WHERE { ?X VCard:tel ?T . }

Here we assumed the availability of a cast-function, which converts an xs:string
to an RDF resource. While the distinction between literals and URI references in RDF

882 A. Polleres, F. Scharffe, and R. Schindlauer

usually makes perfect sense, this example shows that conversions between URI refer-
ences and literals become necessary by practical uses of RDF vocabularies.

The next example shall illustrate the need for aggregate functions in mappings.

Example 4. The Description of a Project (DOAP) vocabulary7 contains revision, i.e.
version numbers of released versions of projects. With an aggregate function MAX, one
can map DOAP information into the RDF Open Source Software Vocabulary 8, which
talks about the latest release of a project, by picking the maximum value (numerically or
lexicographically) of the set of revision numbers specified by a graph pattern as follows:

CONSTRUCT {?P os:latestRelease MAX(?V : ?P doap:release ?R. ?R doap:revision ?V)}
WHERE {?P rdf:type doap:Project. }

Here, the WHERE clause singles out all projects, while the aggregate selects the highest
(i.e., latest) revision date of any available version for that project.

2.2 Nested CONSTRUCT Queries in FROM Clauses

The last example shows another example of “aggregation” which is not possible with
SPARQL upfront, but may be realized by nesting CONSTRUCT queries in the FROM
clause of a SPARQL query.

Example 5. Imagine you want to map/infer from an ontology having co-author rela-
tionships declared using dc:creator properties from the Dublin Core metadata vo-
cabulary to foaf:knows, i.e., you want to specify “If ?a and ?b have co-authored the
same paper, then ?a knows ?b”. The problem here is that a mapping using CONSTRUCT
clauses needs to introduce new blank nodes for both ?a and ?b (since dc:creator is
a datatype property usually just giving the name string of the author) and then need to
infer the knows relation, so what we really want to express is a mapping

If ?a and ?b are dc:creators of the same paper, then someone named with
foaf:name ?a foaf:knows someone with foaf:name ?b.

A first-shot solution could be:
CONSTRUCT { _:a foaf:knows _:b . _:a foaf:name ?n1 . _:b foaf:name ?n2 . }
FROM <g> WHERE { ?p dc:creator ?n1 . ?p dc:creator ?n2 . FILTER (?n1 != ?n2) }

Let us consider the present paper as example graph g:
g: <http://ex.org/papers#sparqlmappingpaper> dc:creator "Axel"

<http://ex.org/papers#sparqlmappingpaper> dc:creator "Roman"
<http://ex.org/papers#sparqlmappingpaper> dc:creator "Francois"

By the semantics of blank nodes in CONSTRUCT clauses — SPARQL creates new
blank node identifiers for each solutions set matching the WHERE clause — the above
would infer the following additional triples:

_:a1 foaf:knows _:b1. _:a1 foaf:name "Axel". _:b1 foaf:name "Roman".
_:a2 foaf:knows _:b2. _:a2 foaf:name "Axel". _:b2 foaf:name "Francois".
_:a3 foaf:knows _:b3. _:a3 foaf:name "Francois". _:b3 foaf:name "Roman".
_:a4 foaf:knows _:b4. _:a4 foaf:name "Francois". _:b4 foaf:name "Axel".
_:a5 foaf:knows _:b5. _:a5 foaf:name "Roman". _:b5 foaf:name "Axel".
_:a6 foaf:knows _:b6. _:a6 foaf:name "Roman". _:b6 foaf:name "Francois".

7 http://usefulinc.com/doap/
8 http://xam.de/ns/os/

http://usefulinc.com/doap/
http://xam.de/ns/os/

SPARQL++ for Mapping Between RDF Vocabularies 883

Obviously, we lost some information in this mapping, namely the corellations that
the “Axel” knowing “Francois” is the same “Axel” that knows “Roman”, etc. We could
remedy this situation by allowing to nest CONSTRUCT queries in the FROM clause of
SPARQL queries as follows:

CONSTRUCT { ?a knows ?b . ?a foaf:name ?aname . ?b foaf:name ?bname . }
FROM { CONSTRUCT { _:auth foaf:name ?n . ?p aux:hasAuthor _:auth . }

FROM <g> WHERE { ?p dc:creator ?n . } }
WHERE { ?p aux:hasAuthor ?a . ?a foaf:name ?aname .

?p aux:hasAuthor ?b . ?b foaf:name ?bname . FILTER (?a != ?b) }

Here, the “inner” CONSTRUCT creates a graph with unique blank nodes for each author
per paper, whereas the outer CONSTRUCT aggregates a more appropriate answer graph:

_:auth1 foaf:name "Axel". _:auth2 foaf:name "Roman". _:auth3 foaf:name "Francois".
_:auth1 foaf:knows _:auth2. _:auth1 foaf:knows _:auth3.
_:auth2 foaf:knows _:auth1. _:auth2 foaf:knows _:auth3.
_:auth3 foaf:knows _:auth1. _:auth3 foaf:knows _:auth2.

In Section 4, we will extend SPARQL to deal with these features. This extended
version of the language, which we call SPARQL++ shall allow to evaluate SPARQL
queries on top of RDF(S) data combined with mappings again expressed in SPARQL++.

3 Preliminaries – HEX-Programs

To evaluate SPARQL++ queries, we will translate them to so-called HEX-programs [27],
an extension of logic programs under the answer-set semantics.

Let Pred , Const , Var , exPr be mutually disjoint sets of predicate, constant, vari-
able symbols, and external predicate names, respectively. In accordance with common
notation in LP and the notation for external predicates from [9] we will in the following
assume that Const comprises the set of numeric constants, string constants beginning
with a lower case letter, or double-quoted string literals, and IRIs.9 Var is the set of
string constants beginning with an uppercase letter. Elements from Const ∪ Var are
called terms. Given p ∈ Pred an atom is defined as p(t1, . . . , tn), where n is called the
arity of p and t1, . . . , tn are terms. An external atom is of the form

g[Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn is a list of predicates and terms and X1, . . . , Xm is a list of terms
(called input list and output list, respectively), and g ∈ exPr is an external predicate
name. We assume the input and output arities n and m fixed for g. Intuitively, an ex-
ternal atom provides a way for deciding the truth value of an output tuple depending on
the extension of a set of input predicates and terms. Note that this means that external
predicates, unlike usual definitions of built-ins in logic programming, can not only take
constant parameters but also (extensions of) predicates as input.

Definition 1. A rule is of the form

h ← b1, . . . , bm, not bm+1, . . . not bn (1)

9 For the purpose of this paper, we will disregard language-tagged and datatyped literals in the
translation to HEX-programs.

884 A. Polleres, F. Scharffe, and R. Schindlauer

where h and bi (m + 1 ≤ i ≤ n) are atoms, bk (1 ≤ k ≤ m) are either atoms or
external atoms, and ‘not’ is the symbol for negation as failure.

We use H(r) to denote the head atom h and B(r) to denote the set of all body literals
B+(r) ∪ B−(r) of r, where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}.

The notion of input and output terms in external atoms described above denotes the
binding pattern. More precisely, we assume the following condition which extends the
standard notion of safety (cf. [28]) in Datalog with negation.

Definition 2 (Safety). Each variable appearing in a rule must appear in a non-negated
body atom or as an output term of an external atom.

Finally, we define HEX-programs.

Definition 3. A HEX-program P is defined as a set of safe rules r of the form (1).

The notions of grounding, Herbrand Base and interpretation correspond to traditional
logic programming. With every external predicate name e ∈ exPr we associate an
(n+m+1)-ary Boolean function fe assigning each tuple (I, y1, . . . , yn, x1, . . . , xm)
either 0 or 1, where n/m are the input/output arities of e, I ⊆ HBP , xi ∈ Const ,
and yj ∈ Pred ∪ Const . We say that I ⊆ HBP is a model of a ground external atom
a = e[y1, . . . , yn](x1, . . . , xm), denoted I |= a, iff fe(I, y1 . . ., yn, x1, . . . , xm) = 1.

Let r be a ground rule. We define (i) I |= H(r) iff there is some a ∈ H(r) such
that I |= a, (ii) I |= B(r) iff I |= a for all a ∈ B+(r) and I 	|= a for all a ∈ B−(r),
and (iii) I |= r iff I |= H(r) whenever I |= B(r). We say that I is a model of a
HEX-program P , denoted I |= P , iff I |= r for all r ∈ ground(P).

The semantics we use here generalizes the answer-set semantics [13] and is de-
fined using the FLP-reduct [12], which—contrary to the traditional Gelfond-Lifschitz
reduct—ensures minimality of answer sets also in presence of external atoms: The FLP-
reduct of P with respect to I ⊆ HBP , denoted P I , is the set of all r ∈ ground(P) such
that I |= B(r). I ⊆ HBP is an answer set of P iff I is a minimal model of P I .

By the cautious extension of a predicate p we denote the set of atoms with predicate
symbol p in the intersection of all answer sets of P .

For our purposes, we define a set of external predicates exPr = {rdf , isBLANK ,
isIRI , isLITERAL, =, != , REGEX , CONCAT , COUNT , MAX , MIN , SK} with
a fixed semantics as follows. These external predicates exemplarily demonstrate that
HEX-programs are expressive enough to model all the necessary ingredients for evalu-
ating SPARQL filters (isBLANK , isIRI , isLITERAL, =, != , REGEX) and also for
more expressive built-in functions and aggregates (CONCAT , SK , COUNT , MAX ,
MIN). Here, CONCAT is just an example built-in, assuming that more XPath/XQuery
functions could similarly be added.

For the rdf predicate we write atoms as rdf [i](s, p, o) with an input term i ∈ Const∪
Var and output terms s, p, o ∈ Const . The external atom rdf [i](s, p, o) is true if
(s, p, o) is an RDF triple entailed by the RDF graph at IRI i. For the moment, here
we consider simple RDF entailment [15] only.

The atoms isBLANK [c](val), isIRI [c](val), isLITERAL[c](val) test input term
c ∈ Const ∪ Var for being a valid string representation of a blank node, IRI reference
or RDF literal. The atom REGEX [c1, c2](val) test whether c1 matches the regular

SPARQL++ for Mapping Between RDF Vocabularies 885

expression c2. All these external predicates return an output value val ∈ {t, f, e},
representing truth, falsity or an error, following the semantics defined in [24, Sec. 11.3].

Apart from these truth-valued external atoms we add other external predicates which
mimic built-in functions an aggregates. As an example predicate for a built-in, we
chose the predicate CONCAT [c1, . . . , cn](cn+1) with variable input arity which con-
catenates string constants c1, . . . , cn into cn+1 and thus implements the semantics of
fn:concat in XPath/XQuery [19].

Next, we define external predicates which mimic aggregate functions over a certain
predicate. Let p ∈ Pred with arity n, and x1, . . . , xn ∈ Const ∪ {mask} where mask
is a special constant not allowed to appear anywhere except in input lists of aggregate
predicates. Then COUNT [p, x1, . . . , xn](c) is true if c equals the number of distinct
tuples (t1, . . . , tn), such that I |= p(t1, . . . , tn) and for all xi different from the con-
stant mask it holds that ti = xi. MAX [p, x1, . . . , xn](c) (and MIN [p, x1, . . . , xn](c),
resp.) is true if among all tuples (t1, . . . , tn), such that I |= p(t1, . . . , tn), c is the lexi-
cographically greatest (smallest, resp.) value among all the ti such that xi = mask .10

We will illustrate the use of these external predicates to express aggregations below
when discussing the actual translation from SPARQL++ to HEX-programs.

Finally, the external predicate SK [id , v1, . . . , vn](skn+1) computes a unique, new
“Skolem”-like term id(v1, . . . , vn) from its input parameters. We will use this built-in
function in our translation of SPARQL queries with blank nodes in the CONSTRUCT
part. Similar to the aggregate functions mentioned before, when using SK we will need
to take special care in our translation in order to retain strong safety.

As widely known, for programs without external predicates, safety guarantees that
the number of entailed ground atoms is finite. Though, by external atoms in rule bodies,
new, possibly infinitly many, ground atoms could be generated, even if all atoms them-
selves are safe. In order to avoid this, a stronger notion of safety for HEX-programs is
defined in [27]: Informally, this notion says that a HEX-program is strongly safe, if no
external predicate recursively depends on itself, thus defining a notion of stratification
over external predicates. Strong safety guarantees finiteness of models as well as finite
computability of external atoms.

4 Extending SPARQL Towards Mappings

In Section 2 we have shown that an extension of the CONSTRUCT clause is needed for
SPARQL to be suitable for mapping tasks. In the following, we will formally define
extended SPARQL queries which allow to integrate built-in functions and aggregates in
CONSTRUCT clauses as well as in FILTER expressions. We will define the semantics of
such extended queries, and, moreover, we will provide a translation to HEX-programs,
building upon an existing translation presented in [22].

A SPARQL++ query Q = (R, P, DS) consists of a result form R, a graph pattern P ,
and an extended dataset DS as defined below.11 We refer to [24] for syntactical details
and will explain these in the following as far as necessary.

10 Note that in this definition we allow min/max to aggregate over several variables.
11 As we deal mainly with CONSTRUCT queries here, we will ignore solution modifiers.

886 A. Polleres, F. Scharffe, and R. Schindlauer

For a SELECT query, a result form R is simply a set of variables, whereas for a
CONSTRUCT query, the result form R is a set of triple patterns.

We assume the pairwise disjoint, infinite sets I , B, L and Var , which denote IRIs,
blank node identifiers, RDF literals, and variables respectively. I ∪ L ∪ Var is also
called the set of basic RDF terms. In this paper, we allow as blank node identifiers
nested ground terms similar to HiLog terms [4], such that B is defined recursively over
an infinite set of constant blank node identifiers Bc as follows:

– each element of Bc is a blank node identifier, i.e., Bc ⊆ B.
– for b ∈ B and t1, . . . , tn in I ∪ B ∪ L, b(t1, . . . , tn) ∈ B.

Now, we extend the SPARQL syntax by allowing built-in functions and aggregates
in place of basic RDF terms in graph patterns (and thus also in CONSTRUCT clauses)
as well as in filter expressions. We define the set Blt of built-in terms as follows:

– All basic terms are built-in terms.
– If blt is a built-in predicate (e.g., fn:concat from above or another XPath/

XQuery functions), and c1, . . . , cn are built-in terms then blt(c1, . . . , cn) is a built-
in term.

– If agg is an aggregate function (e.g., COUNT , MIN , MAX), P a graph pattern,
and V a tuple of variables appearing in P , then agg(V :P) is a built-in term.12

In the following we will introduce extended graph patterns that may include built-in
terms and extended datasets that can be constituted by CONSTRUCT queries.

4.1 Extended Graph Patterns

As for graph patterns, we follow the recursive definition from [21]:

– A triple pattern (s, p, o) is a graph pattern where s, o ∈ Blt and p ∈ I ∪ Var .13

Triple patterns which only contain basic terms are called basic triple patterns and
value-generating triple patterns otherwise.

– Let P1, P2 be graph patterns, i ∈ I∪Var , R a filter expression, then (P1 FILTER R),
(P1 OPT P2), (P1 UNION P2), (GRAPH i P1), and (P1 AND P2) are graph pat-
terns.14

For any pattern P , we denote by vars(P) the set of all variables occurring in P and
by vars(P) the tuple obtained by the lexicographic ordering of all variables in P . As
atomic filter expression, we allow here the unary predicates BOUND (possibly with
variables as arguments), isBLANK, isIRI, isLITERAL, and binary equality predicates ‘=’
with arbitrary safe built-in terms as arguments. Complex filter expressions can be built
using the connectives ‘¬’, ‘∧’, and ‘∨’.

Similar to aggregates in logic programming, we use a notion of safety. First, given
a query Q = (R, P, DS) we allow only basic triple patterns in P , ie. we only allow
built-ins and aggregates only in FILTERs or in the result pattern R. Second, a built-in
term blt occurring in the result form or in P in a query Q = (R, P, DS) is safe if all
variables recursively appearing in blt also appear in a basic triple pattern within P .
12 This aggregate syntax is adapted from the resp. definition for aggregates in LP from [12].
13 We do not consider blanks nodes here as these can be equivalently replaced by variables [5].
14 We use AND to keep with the operator style of [21] although it is not explicit in SPARQL.

SPARQL++ for Mapping Between RDF Vocabularies 887

4.2 Extended Datasets

In order to allow the definition of RDF data side-by-side with implicit data defined by
mappings of different vocabularies or, more general, views within RDF, we define an
extended RDF graph as a set of RDF triples I ∪ L ∪ B × I × I ∪ L ∪ B and
CONSTRUCT queries. An RDF graph (or dataset, resp.) without CONSTRUCT queries
is called a basic graph (or dataset, resp.).

The dataset DS = (G, {(g1, G1), . . . (gk, Gk)}) of a SPARQL query is defined by
(i) a default graph G, i.e., the RDF merge [15, Section 0.3] of a set of extended RDF
graphs, plus (ii) a set of named graphs, i.e., pairs of IRIs and corresponding extended
graphs. Without loss of generality (there are other ways to define the dataset such as
in a SPARQL protocol query), we assume DS defined by the IRIs given in a set of
FROM and FROM NAMED clauses. As an exception, we assume that any CONSTRUCT
query which is part of an extended graph G by default (i.e., in the absence of FROM
and FROM NAMED clauses) has the dataset DS = (G, ∅) For convenience, we allow
extended graphs consisting of a single CONSTRUCT statement to be written directly in
the FROM clause of a SPARQL++ query, like in Example 5.

We will now define syntactic restrictions on the CONSTRUCT queries allowed in ex-
tended datasets, which retain finite termination on queries over such datasets. Let G be
an extended graph. First, for any CONSTRUCT query Q = (R, P, DS Q) in G, DSQ we
allow only triple patterns tr = (s, p, o) in P or R where p ∈ I , i.e., neither blank nodes
nor variables are allowed in predicate positions in extended graphs, and, additionally,
o ∈ I for all triples such that p = rdf:type. Second, we define a predicate-class-
dependency graph over an extended dataset DS = (G, {(g1, G1), . . . (gk, Gk)}) as fol-
lows. The predicate-class-dependency graph for DS has an edge p → r with p, r ∈ I
for any CONSTRUCT query Q = (R, P, DS) in G with r (or p, resp.) either (i) a pred-
icate different from rdf:type in a triple in R (or P , resp.), or (ii) an object in an
rdf:type triple in R (or P , resp.). All edges such that r occurs in a value-generating
triple are marked with ‘∗’. We now say that DS is strongly safe if its predicate-class-
dependency graph does not contain any cycles involving marked edges. As it turns out,
in our translation in Section 4.4 below, this condition is sufficient (but not necessary) to
guarantee that any query can be translated to a strongly safe HEX-program.

Like in [26] we assume that blank node identifiers in each query Q = (R, P, DS)
have been standardized apart, i.e., that no blank nodes with the same identifiers appear
in a different scope. The scope of a blank node identifier is defined as the graph or graph
pattern it appears in, where each WHERE or CONSTRUCT clause open a “fresh” scope .
For instance, take the extended graph dataset in Fig. 1(a), its standardized apart version
is shown in Fig. 1(b). Obviously, extended datasets can always be standardized apart in
linear time in a preprocessing step.

4.3 Semantics

The semantics of SPARQL++ is based on the formal semantics for SPARQL by Pérez
et al. in [21] and its translation into HEX-programs in [22]. We denote by Tnull the union

888 A. Polleres, F. Scharffe, and R. Schindlauer

g1: :paper2 foaf:maker _:a.
_:a foaf:name "Jean Deau".

g2: :paper1 dc:creator "John Doe".
:paper1 dc:creator "Joan Dough".
CONSTRUCT {_:a foaf:knows _:b .

_:a foaf:name ?N1 .
_:b foaf:name ?N2 . }

WHERE {?X dc:creator ?N1,?N2.
FILTER(?N1 != ?N2) }

(a)

g1: :paper2 foaf:maker _:b1.
_:b1 foaf:name "Jean Deau".

g2: :paper1 dc:creator "John Doe".
:paper1 dc:creator "Joan Dough".
CONSTRUCT {_:b2 foaf:knows _:b3 .

_:b2 foaf:name ?N1 .
_:b3 foaf:name ?N2 . }

WHERE {?X dc:creator ?N1,?N2.
FILTER(?N1 != ?N2) }

(b)

Fig. 1. Standardizing apart blank node identifiers in extended datasets

I ∪ B ∪ L ∪ {null}, where null is a dedicated constant denoting the unknown value not
appearing in any of I, B, or L, how it is commonly introduced when defining outer joins
in relational database systems. A substitution θ from Var to Tnull is a partial function
θ : Var → Tnull. We write substitutions in postfix notation in square brackets, i.e., if
t, t′ ∈ Blt and v ∈ Var , then t[v/t′] is the term obtained from replacing all occcurences
of v in t by t′. The domain of θ, dom(θ), is the subset of Var where θ is defined.
The lexicographic ordering of this subset is denoted by dom(Var). For a substitution
θ and a set of variables D ⊆ Var we define the substitution θD with domain D as
follows

xθD =

{
xθ if x ∈ dom(θ) ∩ D
null if x ∈ D \ dom(θ)

Let x ∈ Var , θ1, θ2 be substitutions, then θ1∪θ2 is the substitution obtained as follows:

x(θ1 ∪ θ2) =

⎧
⎪⎪⎨

⎪⎪⎩

xθ1 if xθ1 defined and xθ2 undefined
else: xθ1 if xθ1 defined and xθ2 = null
else: xθ2 if xθ2 defined
else: undefined

Thus, in the union of two substitutions defined values in one take precedence over null
values the other substitution. Two substitutions θ1 and θ2 are compatible when for all
x ∈ dom(θ1) ∩ dom(θ2) either xθ1 = null or xθ2 = null or xθ1 = xθ2 holds, i.e.,
when θ1 ∪ θ2 is a substitution over dom(θ1)∪ dom(θ2). Analogously to Pérez et al. we
define join, union, difference, and outer join between two sets of substitutions Ω1 and
Ω2 over domains D1 and D2, respectively:

Ω1 �� Ω2 = {θ1 ∪ θ2 | θ1 ∈ Ω1, θ2 ∈ Ω2, θ1 and θ2 are compatible}
Ω1 ∪ Ω2 = {θ | ∃θ1 ∈ Ω1 with θ = θD1∪D2

1 or ∃θ2 ∈ Ω2 with θ = θD1∪D2
2 }

Ω1 − Ω2 = {θ ∈ Ω1 | for all θ2 ∈ Ω2, θ and θ2 not compatible}
Ω1��� Ω2 = (Ω1 �� Ω2) ∪ (Ω1 − Ω2)

Next, we define the application of substitutions to built-in terms and triples: For a built-
in term t, by tθ we denote the value obtained by applying the substitution to all variables
in t. By evalθ(t) we denote the value obtained by (i) recursively evaluating all built-
in and aggregate functions, and (ii) replacing all bNode identifiers by complex bNode
identifiers according to θ, as follows:

SPARQL++ for Mapping Between RDF Vocabularies 889

evalθ(fn:concat(c1, c2, . . . , cn)) Returns the xs:string that is the concatenation of the values of c1θ,. . . ,c1θ

after conversion. If any of the arguments is the empty sequence or null, the argu-
ment is treated as the zero-length string.

evalθ(COUNT(V : P)) Returns the number of distinct15answer substitutions for the query Q =

(V, Pθ, DS) where DS is the dataset of the encapsulating query.

evalθ(MAX(V : P)) Returns the maximum (numerically or lexicographically) of distinct answer sub-
stitutions for the query Q = (V, Pθ, DS).

evalθ(MIN(V : P)) Analogous to MAX, but returns the minimum.

evalθ(t) Returns tθ for all t ∈ I ∪ L ∪ Var , and t(dom(θ)θ) for t ∈ B.16

Finally, for a triple pattern tr = (s, p, o) we denote by trθ the triple (sθ, pθ, oθ), and
by evalθ(tr) the triple (eval θ(s), eval θ(p), eval θ(o)).

The evaluation of a graph pattern P over a basic dataset DS = (G, Gn), can now be
defined recursively by sets of substitutions, extending the definitions in [21,22].

Definition 4. Let tr = (s, p, o) be a basic triple pattern, P, P1, P2 graph patterns, and
DS = (G, Gn) a basic dataset, then the evaluation [[·]]DS is defined as follows:

[[tr]]DS = {θ | dom(θ) = vars(P) and trθ ∈ G}
[[P1 AND P2]]DS = [[P1]]DS �� [[P2]]DS

[[P1 UNION P2]]DS = [[P1]]DS ∪ [[P2]]DS

[[P1 OPT P2]]DS = [[P1]]DS ��� [[P2]]DS

[[GRAPH i P]]DS = [[P]](i,∅), for i ∈ Gn

[[GRAPH v P]]DS = {θ ∪ [v/g] | g ∈ Gn and θ ∈ [[P [v/g]]](g,∅)}, for v ∈ Var
[[P FILTER R]]DS = {θ ∈ [[P]]DS | Rθ = �}
Let R be a filter expression, u, v ∈ Blt . The valuation of R on a substitution θ, written
Rθ takes one of the three values {�, ⊥, ε}17 and is defined as follows.
Rθ = �, if: (1) R = BOUND(v) with v ∈ dom(θ) ∧ evalθ(v) �= null;

(2) R = isBLANK(v) with evalθ(v) ∈ B;
(3) R = isIRI(v) with evalθ(v) ∈ I;
(4) R = isLITERAL(v) with evalθ(v) ∈ L;
(5) R = (u = v) with evalθ(u) = evalθ(v) ∧ evalθ(u) �= null;
(6) R = (¬R1) with R1θ = ⊥;
(7) R = (R1 ∨ R2) with R1θ = � ∨ R2θ = �;
(8) R = (R1 ∧ R2) with R1θ = � ∧ R2θ = �.

Rθ = ε, if: (1) R = isBLANK(v),R = isIRI(v),R = isLITERAL(v), or
R = (u = v) with (v ∈ Var ∧ v �∈ dom(θ)) ∨ evalθ(v) = null ∨

(u ∈ Var ∧ u �∈ dom(θ)) ∨ evalθ(u) = null;
(2) R = (¬R1) and R1θ = ε;
(3) R = (R1 ∨ R2) and R1θ �= � ∧ R2θ �= � ∧ (R1θ = ε ∨ R2θ = ε);
(4) R = (R1 ∧ R2) and R1θ = ε ∨ R2θ = ε.

Rθ = ⊥ otherwise.

In [22] we have shown that the semantics defined this way corresponds with the original
semantics for SPARQL defined in [21] without complex built-in and aggregate terms
and on basic datasets.18

15 Note that we give a set based semantics to the counting built-in, we do not take into account
duplicate solutions which can arise from the multi-set semantics in [24] when counting.

16 For blank nodes evalθ constructs a new blank node identifier, similar to Skolemization.
18 Our definition here only differs in in the application of evalθ on built-in terms in filter expres-

sions which does not make a difference if only basic terms appear in FILTERs.

890 A. Polleres, F. Scharffe, and R. Schindlauer

Note that, so far we have only defined the semantics in terms of a pattern P and ba-
sic dataset DS , but neither taken the result form R nor extended datasets into account.
As for the former, we proceed with formally define solutions for SELECT and CON-
STRUCT queries, respectively. The semantics of a SELECT query Q = (V, P, DS) is
fully determined by its solution tuples [22].

Definition 5. Let Q = (R, P, DS) be a SPARQL++ query, and θ a substitution in
[[P]]DS , then we call the tuple vars(P)θ a solution tuple of Q.

As for a CONSTRUCT queries, we define the solution graphs as follows.

Definition 6. Let Q = (R, P, DS) be a SPARQL CONSTRUCT query where blank
node identifiers in DS and R have been standardized apart and R = {t1, . . . , tn} is
the result graph pattern. Further, for any θ ∈ [[P]]DS , let θ′ = θvars(R)∪vars(P). The
solution graph for Q is then defined as the triples obtained from

⋃

θin[[P]]DS

{evalθ′(t1), . . . , eval θ′(tn)}

by eliminating all non-valid RDF triples.19

Our definitions so far only cover basic datasets. Extended datasets, which are implicitly
defined bring the following additional challenges: (i) it is not clear upfront which blank
node identifiers to give to blank nodes resulting from evaluating CONSTRUCT clauses,
and (ii) extended datasets might involve recursive CONSTRUCT definitions which con-
struct new triples in terms of the same graph in which they are defined. As for (i),
we remedy the situation by constructing new identifier names via a kind of Skolem-
ization, as defined in the function evalθ , see the table on page 889. eval θ generates a
unique blank node identifier for each solution θ. Regarding (ii) we avoid possibly in-
finite datasets over recursive CONSTRUCT clauses by the strong safety restriction in
Section 4.2. Thus, we can define a translation from extended datasets to HEX-programs
which uniquely identifies the solutions for queries over extended datasets.

4.4 Translation to HEX-Programs

Our translation from SPARQL++ queries to HEX-programs is based on the translation
for non-extended SPARQL queries outlined in [22]. Similar to the well-known corre-
spondence between SQL and Datalog, SPARQL++ queries can be expressed by HEX-
programs, which provide the additional machinery necessary for importing and process-
ing RDF data as well as evaluating built-ins and aggregates. The translation consists of
two basic parts: (i) rules that represent the query’s graph pattern (ii) rules defining the
triples in the extended datasets.

We have shown in [22] that solution tuples for any query Q can be generated by a
logic program and are represented by the extension of a designated predicate answerQ,
assuming that the triples of the dataset are available in a predicate tripleQ. We refer
to [22] for details and only outline the translation here by examples.

19 That is, triples with null values or blank nodes in predicate position, etc.

SPARQL++ for Mapping Between RDF Vocabularies 891

Complex graph patterns can be translated recursively in a rather straightforward way,
where unions and join of graph patterns can directly be expressed by appropriate rule
constructions, whereas OPTIONAL patterns involve negation as failure.

Example 6. Let query q select all persons who do not know anybody called “John Doe”
from the extended dataset DS = (g1 ∪ g2, ∅), i.e., the merge of the graphs in Fig. 1(b).

SELECT ?P FROM <g1> FROM <g2>
WHERE { ?P rdf:type foaf:Agent . FILTER (!BOUND(?P1))

OPTIONAL { P? foaf:knows ?P1 . ?P1 foaf:name "John Doe" . } }

This query can be translated to the following HEX-program:

answerq(P) :- answer1q(P,P1), P1 = null.
answer1q(P,P1) :- answer2q(P), answerq3(P,P1).
answer1q(P,null) :- answer2q(P), not answer3q’(P).
answer2q(P) :- tripleq(P,rdf:type,foaf:Agent,def).
answer3q(P,P1) :- tripleq(P,foaf:knows,P1,def),triple(P1,foaf:name,"John Doe",def).
answer3q’(P) :- answer3q(P,P1).

More complex queries with nested patterns can be translated likewise by introducing
more auxiliary predicates. The program part defining the tripleq predicate fixes the
triples of the dataset, by importing all explicit triples in the dataset as well as recursively
translating all CONSTRUCT clauses and subqueries in the extended dataset.

Example 7. The program to generate the dataset triples for the extended dataset DS =
(g1 ∪ g2, ∅) looks as follows:

tripleq(S,P,O,def) :- rdf["g1"](S,P,O).
tripleq(S,P,O,def) :- rdf["g2"](S,P,O).
tripleq(B2,foaf:knows,B3,def) :- SK[b2(X,N1,N2)](B2),SK[b3(X,N1,N2)](B3),

answerC1,g2(X,N1,N2).
tripleq(B2,foaf:name,N1,def) :- SK[b2(X,N1,N2)](B2), answerC1,g2(X,N1,N2).
tripleq(B3,foaf:knows,N2,def) :- SK[b3(X,N1,N2)](B3), answerC1,g2(X,N1,N2).
answerC1,g2(X,N1,N2) :- tripleq(X,dc:creator, N1,def),

tripleq(X,dc:creator,N2,def), N1 != N2.

The first two rules import all triples given explicitly in graphs g1, g2 by means of the
“standard” RDF import HEX predicate. The next three rules create the triples from the
CONSTRUCT in graph g2, where the query pattern is translated by an own subprogram
defining the predicate answerC1,g2, which in this case only consists of a single rule.

The example shows the use of the external function SK to create blank node ids for
each solution tuple as mentioned before, which we need to emulate the semantics of
blank nodes in CONSTRUCT statements.

Next, we turn to the use of HEX aggregate predicates in order to translate aggregate
terms. Let Q = (R, P, DS) and a = agg(V :Pa) – here, V ⊆ vars(Pa) is the tuple
of variables we want to aggregate over – be an aggregate term appearing either in R or
in a filter expression in P . Then, the idea is that a can be translated by an external atom
agg [aux , vars(Pa)′[V/mask]](va) where

(i) vars(Pa)′ is obtained from vars(Pa) by removing all variables which are not aggregated
over and only appear in Pa but not elsewhere in P , i.e., from vars(Pa) ∩ vars(P) ∪ V

(ii) the variable va takes the place of a,
(iii) auxa is a new predicate defined by a rule: auxa(vars(Pa)′) ← answera(vars(Pa)).
(iv) answera is the predicate defining the solution set of the query Qa = (vars(Pa), Pa,DS)

892 A. Polleres, F. Scharffe, and R. Schindlauer

Example 8. The following rules mimic the CONSTRUCT query of Example 4:
triple(P,os:latestRelease,Va) :- MAX[auxa,P,R,mask](Va),

triple(P,rdf:type,doap:Project,gr).
auxa(P,R,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def), triple(R,doap:revision,V,def).

With the extensions the translation in [22] outlined here for extended datasets, ag-
gregate and built-in terms we can define the solution tuples of an SPARQL++ query
Q = (R, P, DS) over an extended dataset now as precisely the set of tuples corre-
sponding to the cautious extension of the predicate answerq.

4.5 Adding Ontological Inferences by Encoding ρdf− into SPARQL

Trying the translation sketched above on the query in Example 6 we observe that we
would not obtain any answers, as no triples in the dataset would match the triple pattern
?P rdf:type foaf:Agent in the WHERE clause. This still holds if we include the
vocabulary definition of FOAF at http://xmlns.com/foaf/spec/index.rdf to
the dataset, since the machinery introduced so far could not draw any additional infer-
ences from the triple foaf:maker rdfs:range foaf:Agent which would be nec-
essary in order to figure out that Jean Deau is indeed an agent. There are several open
issues on using SPARQL on higher entailment regimes than simple RDF entailment
which allow such inferences. One such problem is the presences of infinite axiomatic
triples in RDF semantics or several open compatibility issues with OWL semantics,
see also [9]. However, we would like to at least add some of the inferences of the
RDFS semantics. To this end, we will encode a small but very useful subset of RDFS,
called ρdf [20] into the extended dataset. ρdf, defined by Muñoz et al., restricts the
RDF vocabulary to its essentials by only focusing on the properties rdfs:subPropertyOf,
rdfs:subClassOf,rdf:type, rdfs:domain, and rdfs:range, ignoring other constituents of the
RDFS vocabulary. Most importantly, Muñoz et al. prove that (i) ρdf entailment corre-
sponds to full RDF entailment on graphs not mentioning RDFS vocabulary outside ρdf,
and (ii) that ρdf entailment can be reduced to five axiomatic triples (concerned with re-
flexivity of the subproperty relationship) and 14 entailment rules. Note that for graphs
which do not mention subclass or subproperty relationships, which is usually the case
for patterns in SPARQL queries or the mapping rules we encode here, even a reflexive-
relaxed version of ρdf that does not contain any axiomatic triples is sufficient. We can
write down all but one of the entailment rules of reflexive-relaxed ρdf as CONSTRUCT
queries which we consider implicitly present in the extended dataset:
CONSTRUCT {?A :subPropertyOf ?C} WHERE{?A :subPropertyOf ?B ?B :subPropertyOf ?C.}
CONSTRUCT {?A :subClassOf ?C} WHERE { ?A :subClassOf ?B. ?B :subClassOf ?C. }
CONSTRUCT {?X ?B ?Y} WHERE { ?A :subPropertyOf ?B. ?X ?A ?Y. }
CONSTRUCT {?X rdf:type ?B} WHERE { ?A :subClassOf ?B. ?X rdf:type ?A. }
CONSTRUCT {?X rdf:type ?B} WHERE { ?A :domain ?B. ?X ?A ?Y. }
CONSTRUCT {?Y rdf:type ?B} WHERE { ?A :range ?B. ?X ?A ?Y. }
CONSTRUCT {?X rdf:type ?B} WHERE { ?A :domain ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}
CONSTRUCT {?Y rdf:type ?B} WHERE { ?A :range ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

There is one more entailment rule for reflexive-relaxed ρdf concerning that blank node
renaming preserves ρdf entailment. However, it is neither straightforwardly possible,
nor desirable to encode this by CONSTRUCTs like the other rules. Blank node renam-
ing might have unintuitive effects on aggregations and in connection with OPTIONAL

http://xmlns.com/foaf/spec/index.rdf

SPARQL++ for Mapping Between RDF Vocabularies 893

queries. In fact, keeping blank node identifiers in recursive CONSTRUCTs after stan-
dardizing apart is what keeps our semantics finite, so we skip this rule, and call the
resulting ρdf fragment encoded by the above CONSTRUCTs ρdf−. Some care is in or-
der concerning strong safety of the resulting dataset when adding ρdf−. To still ensure
strong safety of the translation, we complete the predicate-class-dependency graph by
additional edges between all pairs of resources connected by subclassOf or subProper-
tyOf, domain, or range relations and checking the same safety condition as before on
the graph extended in this manner.

4.6 Implementation

We implemented a prototype of a SPARQL++ engine based on on the HEX-program
solver dlvhex.20 The prototype exploits the rewriting mechanism of the dlvhex frame-
work, taking care of the translation of a SPARQL++ query into the appropriate HEX-
program, as laid out in Section 4.4. The system implements external atoms used in the
translation, namely (i) the RDF atom for data import, (ii) the aggregate atoms, and (iii)
a string concatenation atom implementing both the CONCAT function and the SK
atom for bNode handling. The engine can directly be fed with a SPARQL++ query. The
default syntax of a dlvhex results corresponds to the usual answer format of logic pro-
gramming engines, i.e., sets of facts, from which we generate an XML representation,
which can subsequently be transformed easily to a valid RDF syntax by an XSLT to
export solution graphs.

5 Related Work

The idea of using SPARQL CONSTRUCT queries is in fact not new, even some im-
plemented systems such as TopBraid Composer already seem to offer this feature,21

however without a defined and layered semantics, and lacking aggregates or built-ins,
thus insufficient to express mappings such as the ones studied in this article.

Our notion of extended graphs and datasets generalizes so-called networked graphs
defined by Schenk and Staab [26] who also use SPARQL CONSTRUCT statements as
rules with a slightly different motivation: dynamically generating views over graphs.
The authors only permit bNode- and built-in free CONSTRUCTs whereas we addition-
ally allow bNodes, built-ins and aggregates, as long as strong safety holds which only
restricts recursion over value-generating triples. Another differenece is that their se-
mantics bases on the well-founded instead of the stable model semantics.

PSPARQL [1], a recent extension of SPARQL, allows to query RDF graphs using
regular path expressions over predicates. This extension is certainly useful to represent
mappings and queries over graphs. We conjecture that we can partly emulate such path
expressions by recursive CONSTRUCTs in extended datasets.

As an interesting orthogonal approach, we mention iSPARQL [17] which proposes
an alternative way to add external function calls to SPARQL by introducing so called

20 Available with dlvhex on http://www.kr.tuwien.ac.at/research/dlvhex/
21 http://composing-the-semantic-web.blogspot.com/2006/09/
ontology-mapping-with-sparql-construct.html

http://www.kr.tuwien.ac.at/research/dlvhex/
http://composing-the-semantic-web.blogspot.com/2006/09/ontology-mapping-with-sparql-construct.html
http://composing-the-semantic-web.blogspot.com/2006/09/ontology-mapping-with-sparql-construct.html

894 A. Polleres, F. Scharffe, and R. Schindlauer

virtual triple patterns which query a “virtual” dataset that could be an arbitrary service.
This approach does not need syntactic extensions of the language. However, an imple-
mentation of this extension makes it necessary to know upfront which predicates denote
virtual triples. The authors use their framework to call a library of similarity measure
functions but do not focus on mappings or CONSTRUCT queries.

As already mentioned in the introduction, other approaches often allow only map-
pings at the level of the ontology level or deploy their own rules language such as
SWRL [16] or WRL [7]. A language more specific for ontology mapping is C-OWL [3],
which extends OWL with bridge rules to relate ontological entities. C-OWL is a formal-
ism close to distributed description logics [2]. These approaches partially cover aspects
which we cannot handle, e.g., equating instances using owl:sameAs in SWRL or relat-
ing ontologies based on a local model semantics [14] in C-OWL. None of these ap-
proaches though offers aggregations which are often useful in practical applications of
RDF data syndication, the main application we target in the present work. The Ontology
Alignment Format [10] and the Ontology Mapping Language [25] are ongoing efforts
to express ontology mappings. In a recent work [11], these two languages were merged
and given a model-theoretic semantics which can be grounded to a particular logical
formalism in order to be actually used to perform a mediation task. Our approach com-
bines rule and mapping specification languages using a more practical approach than
the above mentioned, exploiting standard languages, ρdf and SPARQL. We keep the
ontology language expressivity low on purpose in order to retain decidability, thus pro-
viding an executable mapping specification format.

As a final remark, let us emphasize that our translation is based on the set-based
semantics of [21,22] whereas the algebra for SPARQL defined in the latest candidate
recommendation [24] defines a multiset semantics. An extension of our translation to-
wards this multiset semantics is described in [23].

6 Conclusions and Further Work

In this paper we have demonstrated the use of SPARQL++ as a rule language for defin-
ing mappings between RDF vocabularies, allowing CONSTRUCT queries — extended
with built-in and aggregate functions — as part of the dataset of SPARQL queries. We
mainly aimed at setting the theoretical foundations for SPARQL++. Our next steps will
involve to focus on scalability of our current prototype, by looking into how far evalua-
tion of SPARQL++ queries can be optimized, for instance, by pushing query evaluation
from our dlvhex as far as possible into more efficient SPARQL engines or possibly dis-
tributed SPARQL endpoints that cannot deal with extended datasets natively. Further,
we will investigate the feasibility of supporting larger fragments of RDFS and OWL.
Here, caution is in order as arbitrary combininations of OWL and SPARQL++ involve
the same problems as combining rules with ontologies (see[9]) in the general case.
We believe that the small fragment we started with is the right strategy in order to al-
low queries over networks of lightweight RDFS ontologies, connectable via expressive
mappings, which we will gradually extend.

SPARQL++ for Mapping Between RDF Vocabularies 895

References

1. Alkhateeb, F., Baget, J.-F., Euzenat, J.: Extending SPARQL with Regular Expression Pat-
terns. Tech. Report 6191, Inst. National de Recherche en Informatique et Automatique (May
2007)

2. Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from
Peer Sources. Journal of Data Semantics 1, 153–184 (2003)

3. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL:
Contextualizing Ontologies. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, Springer, Heidelberg (2003)

4. Chen, W., Kifer, M., Warren, D.: HiLog: A Foundation for Higher-Order Logic Program-
ming. Journal of Logic Programming 15(3), 187–230 (1993)

5. de Bruijn, J., Franconi, E., Tessaris, S.: Logical Reconstruction of Normative RDF. In:
OWLED 2005. OWL: Experiences and Directions Workshop, Galway, Ireland (2005)

6. de Bruijn, J., Heymans, S.: A Semantic Framework for Language Layering in WSML. In:
RR2007. First IntÍ Conf. on Web Reasoning and Rule Systems, Innsbruck, Austria (2007)

7. de Bruijn, J(eds.): Web Rule Language (WRL), W3C Member Submission (2005)
8. Decker, S., et al.: TRIPLE - an RDF Rule Language with Context and Use Cases. In: W3C

Workshop on Rule Languages for Interoperability, Washington D.C., USA (April 2005)
9. Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with Rules and

Ontologies. In: Reasoning Web 2006, pp. 93–127. Springer, Heidelberg (2006)
10. Euzenat, J.: An API for Ontology Alignment. In: Proc. 3rd International Semantic Web Con-

ference, Hiroshima, Japan, pp. 698–712 (2004)
11. Euzenat, J., Scharffe, F., Zimmerman, A.: Expressive Alignment Language and Implementa-

tion. Project Deliverable D2.2.10, Knowledge Web NoE (EU-IST-2004-507482) (2007)
12. Faber, W., Leone, N., Pfeifer, G.: Recursive Aggregates in Disjunctive Logic Programs: Se-

mantics and Complexity. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, Springer, Heidelberg (2004)

13. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

14. Ghidini, C., Giunchiglia, F.: Local model semantics, or contextual reasoning = locality +
compatibility. Artificial Intelligence 127(2), 221–259 (2001)

15. Hayes, P.: RDF Semantics. Technical Report, W3C, W3C Recommendation (February 2004)
16. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A

Semantic Web Rule Language Combining OWL and RuleML, W3C Member Submission
(2004)

17. Kiefer, C., Bernstein, A., Lee, H.J., Klein, M., Stocker, M.: Semantic Process Retrieval
with iSPARQL. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
Springer, Heidelberg (2007)

18. Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-oriented and Frame-based Lan-
guages. Journal of the ACM 42(4), 741–843 (1995)

19. Malhotra, A., Melton, N. W.J.: (eds.) XQuery 1.0 and XPath 2.0 Functions and Operators,
W3C Recommendation (January 2007)

20. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal Deductive Systems for RDF. In: ESWC 2007.
4th European Semantic Web Conference, Innsbruck, Austria (2007)

21. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)

22. Polleres, A.: From SPARQL to Rules (and back). In: WWW 2007. 16th World Wide Web
Conference, Banff, Canada (May 2007)

896 A. Polleres, F. Scharffe, and R. Schindlauer

23. Polleres, A., Schindlauer, R.: dlvhex-sparql: A SPARQL-compliant Query Engine based on
dlvhex. In: ALPSWS 2007. 2nd Int. Workshop on Applications of Logic Programming to the
Web, Semantic Web and Web Services, Porto, Portugal (2007)

24. Prud’hommeaux, E., Seaborne, A.:(eds.) SPARQL Query Language for RDF. W3C Candi-
date Recommendation (June 2007)

25. Scharffe, F., de Bruijn, J.: A Language to specify Mappings between Ontologies. In: IEEE
SITIS2005. First Int. Conf. on Signal-Image Technology and Internet-Based Systems

26. Schenk, S., Staab, S.: Networked rdf graphs. Tech. Report, Univ. Koblenz (2007),
http://www.uni-koblenz.de/∼sschenk/publications/2006/ngtr.pdf

27. Schindlauer, R.: Answer-Set Programming for the Semantic Web. PhD thesis, Vienna Uni-
versity of Technology (December 2006)

28. Ullman, J.: Principles of Database & Knowledge Base Systems. Comp.Science Press (1989)

http://www.uni-koblenz.de/~sschenk/publications/2006/ngtr.pdf

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 897–914, 2007.
© Springer-Verlag Berlin Heidelberg 2007

OntoPath: A Language for Retrieving Ontology
Fragments

E. Jiménez-Ruiz1, R. Berlanga1, V. Nebot1, and I. Sanz2

1 Departamento de Lenguajes y Sistemas Informáticos
2 Departamento de Ingeniería y Ciencia de los Computadores

Universitat Jaume I (Castellón)
{ejimenez, victoria.nebot, berlanga, isanz}@uji.es

Abstract. In this work we introduce a novel retrieval language, named
OntoPath, for specifying and retrieving relevant ontology fragments. This
language is intended to extract customized self-standing ontologies from very
large, general-purpose ones. Through OntoPath, users can specify the desired
detail level in the concept taxonomies as well as the properties between
concepts that are required by the target applications. The syntax and aims of
OntoPath resemble XPath’s in that they are simple enough to be handled by
non-expert users and they are designed to be included in other XML-based
applications (e.g. transformations sheets, semantic annotation of web services,
etc.). OntoPath has been implemented on the top of the graph-based database
G, for which a Protégé OWL plug-in has been designed to access and retrieve
ontology fragments.

Keywords: Query Languages, Ontologies, Semantic Web, Ontology Fragments.

1 Introduction

The Semantic Web is intended to extend the current web by creating knowledge
objects that allow both users and programs to better exploit the huge amount of
resources. The cornerstone of the Semantic Web is the definition of widely agreed
ontologies conceptualizing the knowledge behind web resources. Nowadays, several
efforts are focused on building very large ontologies that are continuously growing as
new knowledge is added to them by the respective communities. This happens mainly
in the biomedical domain (e.g. GO1, GALEN2, FMA3, NCI-Thesurus4, Tambis5,
BioPax6, etc).

1 Gene Ontology: http://www.geneontology.org/
2 Galen Ontology: http://www.opengalen.org/
3 Foundational Model of Anatomy: http:// fma.biostr.washington.edu/
4 NCI taxonomy/ontology: http://nciterms.nci.nih.gov/NCIBrowser
5 Tambis Ontology: http://www.cs.man.ac.uk/~stevensr/tambis-oil.html
6 BioPax Ontology: http://www.biopax.org/

898 E. Jiménez-Ruiz et al.

However, the very large size of these ontologies as well their variety makes it
difficult to deploy them in particular applications. The first problem is scalability.
Most of these ontologies are expressed in OWL-DL, with different degrees of
expressivity. The classification of new concepts, queries and assertions require the use
of reasoners (e.g. Pellet7, Racer8, etc.), but they are not able to handle even medium-
size ontologies [1, 2]. A second problem is the application of these ontologies to
concrete applications. Such an application usually does not require comprehensive
descriptions of the domains but rather a handful subset of concepts and properties
from them (i.e. a local view of the domain [3]). Another important issue is their
visualization in ontology editors, in which large ontologies have difficulties to be
loaded and properly displayed.

This paper presents a new query language, OntoPath, for retrieving consistent
fragments from domain ontologies. It is based on the XPath [24] syntax but it is
applied over ontologies described in OWL. In contrast to other Semantic Web query
languages such as SparQL [4] and RQL [5], this language is intended to extract the
necessary knowledge to build new ontologies according to user and application
requests. As a consequence, query results are also OWL files.

OntoPath is being applied within the Health-e-Child project [25] as a mechanism
to explore large biomedical ontologies and also to perform the vertical integration of
the biomedical knowledge via the definition of ontology fragments and connections
between them (i.e. semantic bridges) [6]. Another direct application of OntoPath is
the extraction of analysis dimensions for building OLAP-based multidimensional
models for biomedical research [7]. Finally, it is also being applied to the
compositions of Semantic Web Services. In this case, semantic services are
represented as concepts and their input/output parameters as their properties. Service
chains can be then obtained through Ontopath queries [8].

The rest of the paper is organized as follows. Section 2 gives a brief review of
related works. An overview of the proposal is presented in Section 3. Section 4
describes how ontologies are parsed and stored into the semi-structured database G.
OntoPath syntax and semantics are presented in Section 5. Section 6 is dedicated to
OntoPath query processing. Experiments and examples are presented in Section 7.
Finally, Section 8 gives some conclusions and future work.

2 Related Work: Ontology Modularization and Querying

The necessity of working with ontology modules is well known in the literature and
several approaches can be found to modularize and query ontologies. In [1] a good
review of ontology modularization formalisms is presented, among them: Distributed
Description Logic [9], Modular Reuse of Ontologies [10], Package Based DL [11]
and Network Partitioning [12]. Although these works propose good formalisms to
automatically define ontology modules and their connections, they do not provide
mechanisms to guide the modularization, that is, users do not participate in the
partitioning of the ontology.

7 Pellet reasoner: http://pellet.owldl.com/
8 RacerPro reasoner: http://www.racer-systems.com/

 OntoPath: A Language for Retrieving Ontology Fragments 899

Alternatively to these approaches, traversal-based ones are aimed at extracting
ontology fragments according to user preferences, usually specified as a set of
concepts and properties of interest. PROMPT [13], MOVE [14] and OntoPathView
[18] are examples of traversal-based methods. All of them deal with pure frame-based
ontologies. This is a serious limitation since most ontologies are being expressed in
the standard language OWL, which assumes as underlying model the Description
Logic (DL).

Recently, Seidenberg and Rector [2] have proposed a segmentation algorithm to
extract fragments (i.e. segments) from large ontologies in OWL, more specifically the
GALEN ontology. This algorithm resembles traversal-based approaches in that it
starts from a concept of interest and then navigates through the concept hierarchy to
identify not only related properties and concepts but also any element necessary to
describe and classify them. Thus, their main aim is to keep as much as possible of the
inference capabilities of the original ontology in the resulting segments. However,
resulting segments use to be very large, some of them still intractable by current
editors and reasoners. This is because affected axioms can be scattered across the
whole concept hierarchy.

In this paper, we present a different approach for extracting fragments from OWL
ontologies. Our method differs from the previous one in that we do not preserve all
the axioms that are necessary to classify the extracted concepts. Instead, our approach
makes explicit much of this knowledge in the resulting fragments. In other words,
instead of generating new OWL with implicit knowledge to be inferred, we generate
specific and explicit fragments that will not require reasoning capabilities. As a
consequence, much smaller and specific fragments can be obtained. This is especially
useful when generating OWL fragments that will be used in specific final applications
(e.g. a data warehouses).

It is worth mentioning that there exist other query languages for the Semantic Web,
such as RQL [5], SparQL [4], KAON views [15] and RVL [23]. However, these
languages deal with RDF/S ontologies, which are less expressive than OWL ones.
Moreover, their aim is not to build new closed and consistent ontologies as ours, but
providing relational-like data satisfying user requests (e.g. all elements with a specific
date and author).

3 Ontology Management System Architecture

The development of OntoPath has been carried out in the context of a new database
management system aimed at storing, organising and retrieving customized pieces of
knowledge to be used in specific applications [16]. This system relies on the semi-
structured database G9 and the language OWL. The former was chosen because of its
great capability for storing and retrieving large graph-like data. Figure 1 summarizes
the system architecture, whose main modules are described in turn.

9 A. Rios ”G Platform (Helide S.A)”: http://www.helide.com, http://www.maat-g.com

900 E. Jiménez-Ruiz et al.

- OWL parser10 and builder. The former consists of an ad-hoc SAX-based parser,
which builds the necessary objects from an input ontology to make it persistent in
the database. The latter allows OWL files to be generated from database objects.

Fig. 1. Architecture of the Ontology Management System

- G database. It has been used as a backend to store, index and retrieve the OWL
ontologies as graphs. To store ontologies four object types are defined, namely:
ontology, property, concept, and enumeration; the latter for nominal lists. Figure 2
summarizes the four object types and the existing references between them. All
OWL constructors have been regarded so that ontologies can be loaded and
retrieved without semantic lost.

Fig. 2. Meta-schema for storing OWL Ontologies into G

- OntoPath. It is the proposed query language for retrieving ontology fragments
(personalized modules or views) from the domain ontologies. By using OntoPath,
users can specify the desired detail level in the concept taxonomies as well as the
properties that are required by the target applications. OntoPath is the main focus
of this work.

- Protégé-OWL. It is the front-end of the system, which allow users to visualize and
edit the stored ontologies (fragment or whole ones). A specific plug-in has been
recently designed to create and browse ontology modules and fragments [19].

10 Python OWL Parser: http://krono.act.uji.es/people/Ernesto/Owl_Parser/

 OntoPath: A Language for Retrieving Ontology Fragments 901

4 Ontology Parsing and Storage

From now on, we assume that ontologies are expressed in OWL-DL 1.0 (which uses a
subset of the DL (D) [20]), and therefore we use standard Description
Logic (DL) syntax when discussing semantic issues in the paper.

As previously mentioned, ontologies are parsed and stored in the G database as
graphs (see Figure 2), where nodes represent ontology entities (e.g. concepts,
properties and nominals) and edges between nodes represent their different
relationships (e.g. subClassOf, domain, range, intersectionOf, etc.) From now on, we
represent G database records as follows:

R= Type(att1=v1,…,attn=vn)

Where Type is the type of the record (e.g. ontology, concept, etc.) , and atti=vi
states that the record attribute atti takes the value vi. Multi-valued attributes are also
allowed, taking the form atti=v1,..,vk. In order to support the heterogeneity of the
database records, attributes lists associated to a record type can be of arbitrary length
(i.e. optional attributes are allowed) and formats (i.e. an attribute can take values from
different data types at each record). Additionally, values can be references to other
database records. For this purpose, record unique identifiers are used. As an example,
the following records represent a simple ontology with two concepts and one
property:

O=ontology(name=’Simple.owl’, rootConcept=C1, rootProperty=P1)
C1=concept(name=’Thing’)
P1= property (name=’PropertyThing’)
C2=concept(name=’Person’, subClassOf=C1)
P2= property(name=’hasFriend’, range=C2, domain=C2, subPropertyOf=P1)

P1, P2, C1, C2 and O are the unique identifiers of the corresponding data records.
To denote an attribute att of a record R, we use R.att, for example C2.subClassOf.

As explained in next sections, OntoPath query processing relies on traversing both
the concept hierarchy and the association graph between concepts. The former
consists of the links present at subClassOf record attributes, whereas the latter
consists of the property records linking concepts through its domains and ranges.

As OWL properties can appear in many different contexts (i.e. class restrictions),
we introduce another record type named inferred property (i-property). An i-property
record has a similar structure to original property records, but its interpretation must
be restricted to the context it happens. For example, considering the class definition

C⊑A⊓∃R.B, the record i-property(name=R, domain=C, range=B) means that in the
context of C, some instances of A are related through R to some instances of B. For
this reason, i-property records will have attached the DL expression from which they
where extracted.

Ontology instances (i.e. individuals in DL jargon) are also stored as database
records, preserving their references through database object references. For example,
the following instances belong to the previous ontology:

I1=instance(name=’John’, hasFriend=I2, type=C2)
I2= instance(name=’Peter’, hasFriend=I1, type=C2)

902 E. Jiménez-Ruiz et al.

Following subsections describe how complex DL expressions resulted from OWL
constructors can be approximated to enrich as much as possible database records, and
therefore to make explicit the necessary knowledge for solving OntoPath queries.

4.1 Approximating DL Expressions

As mentioned in the introduction, large ontologies cannot be classified by current DL
reasoners due to their inherent exponential complexity. This means that concepts that
are not explicitly related to others cannot be properly classified, and will be
unconnected to the rest of the ontology. However, there are some simple and frequent
patterns appearing in OWL definitions that can be treated without requiring tableau-
like reasoning. The application of these patterns establishes further relations between
concepts and properties in the database, and they will provide a more complete vision
of the ontology as a graph.

The current list of patterns is as follows:

1. Inferred parents: if a concept is defined as an intersection (both equivalent and
a subset) of a set of concepts, we can infer that it is a subclass of them.

 C ≡C1 ⊓…⊓Cn ⇒ C.subClassOf=C1,…,Cn
2. Inferred children: if a class is defined as the equivalent of the union of a set of

classes, these classes are its subclasses.

 C ≡C1 ⊔…⊔Cn ⇒C1.subClassOf.append(C) , …, Cn.subClassOf.append(C)

3. Inferred domains: If a restriction of the form ∃R.D or ∀R.D is found as a class
definition, the corresponding property record is build:

 C ⊑∃R.D ⇒ i-property(name=R, domain=C, range=D).
Both C and D must be named classes. Notice that this pattern is also applied to
cardinalities, but the i-property is created without a defined range (qualified
cardinalities are not considered).

4. Creation of new classes: If an axiom of the form C ⊑∃R.(D ⊓∃S.E) is found,

being C and D named classes, then a new named class D’ (D’ ≡D ⊓∃S.E) is
created, with D’.subClassOf=D. Notice that by applying pattern 3, the following
property record is also created: i-property(name=R, domain=C, range=D’).
Finally, the pattern 3 is recursively applied to the sub-expression (∃S.E). New
class names are generated with the elements of the expression:
D’.name=D_with_S_E.

5. Nominals: the occurrence of nominals is treated as a special case of pattern 3 if
they appear inside a restriction: allValuesFrom, someValuesFrom and hasValue
cases. The correspondent i-property record is created (inferred domain), an also
an enumeration record for the set of nominals. Notice that for hasValue cases (∋)
the enumeration record will have only one instance value associated.

 C ⊑∃R.{i1, i2…, in} ⇒ i-property(name=R, domain=C, enumeration=E).

 C ⊑∋R.{ i1} ⇒ i-property(name=R, domain=C, enumeration=E).
 E=enumeration(name=R-nominals, list-of-values=i1,…, in)

 OntoPath: A Language for Retrieving Ontology Fragments 903

These patterns are applied when parsing the OWL file. For each class definition, a
DL expression is built from the corresponding OWL constructors, and it is normalized
(conjunctive form) before applying the patterns. These DL expressions are also stored
in the database records of their classes.

In order to better understand the proposed patterns, let’s consider the following
class definitions examples in DL. The first one has been extracted from the Pizza11
ontology and the second one has been taken from a portion of the GALEN ontology
expressed in OWL12:

Pizza Example

SpicyPizza ≡ Pizza ⊓ hasTopping.(PizzaTopping ⊓ hasSpiciness.Hot)

By applying the previous patterns, the following records are generated; notice that a
new class has been created (PizzaTopping_with_ hasSpiciness_Hot) and new explicit
relationships are stored (i-properties i-hS and i-hT):

P = concept(name=Pizza, ….)
SP = concept(name=SpicyPizza, subClassOf=P)
PT = concept(name=PizzaTopping, …)
H = concept(name=Hot,…)
PTH = concept(name= PizzaTopping_with_ hasSpiciness_Hot, subClassOf=PT)
hT = property(name=hasTopping, …)
hS = property(name=hasSpiciness, …)
i-hT = i-property(name=hasTopping, subPropertyOf=hT, domain=SP, range=PTH)
i-hS = i-property(name=hasSpiciness, subPropertyOf=hS, domain=PTH, range=H)

Figure 3 shows the representation of the previous registers with all the DL
constructors represented explicitly in the graph by means of relationships between
concepts

Fig. 3. Graph representation for Pizza example

Let us emphasize that the creation of class PizzaTopping_with_ hasSpiciness_Hot
(by means of pattern 4) is also proposed in the Pizza-OWL Tutorial13 in which they
create manually the class HotPizzaTopping.

11 Pizza OWL: http://www.co-ode.org/ontologies/pizza/
12 Galen ontology in OWL: http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/galen.owl
13 Pizza-OWL Tutorial: http://www.co-ode.org/resources/tutorials/protege-owl-tutorial.php

904 E. Jiménez-Ruiz et al.

Galen Example
AcuteIschaemicCardiacPathology ≡ CardiacPathology ⊓

 ∃isConsequenceOf.(Ischaemia ⊓ ∃hasChronicity.(Chronicity ⊓ ∃hasState.Acute))

For the previous DL expression two classes are created by applying pattern 4

recursively (Ischaemia_with_hasChronicity_Chronicity_with_hasState_Acute and
Chronicity_with_hasState_Aute). Next we present the created records for the DL
expression:

CP = concept(name= CardiacPathology, ….)
AICP = concept(name= AcuteIschaemicCardiacPathology, subClassOf=CP…)
I = concept(name= Ischaemia, …)
C = concept(name= Chronicity,…)
A = concept(name= Acute,…)
ICA=.concept(subClassOf=I, name= Ischaemia_with_hasChronicity_Chronicity_with_hasState_Acute, …)
CA = concept(name=Chronicity_with_hasState_Aute, subClassOf=C)
iCO = property(name=isConsequenceOf, …)
hC = property(name=hasChronicity, …)
hS = property(name=hasState, …)
i-iCO = i-property(name=isConsequenceOf, subPropertyOf=iCO, domain=AICP, range=ICA, …)
i-hC = i-property(name=hasChronicity, subPropertyOf=hC, domain= ICA, range=CA …)
i-hS = i-property(name=hasState, subPropertyOf=hS, domain=CA, range=A,…)

Finally, it is worth mentioning that for the Galen portion (3002 classes and 413

properties) are generated more than two hundred classes following pattern 4 and near
two thousand inferred properties following patterns 3 and 5.

4.2 Expressivity of Stored and Retrieved Ontologies

During the storage of an ontology, a DL reasoner can be applied to classify all its
concepts and instances according to the logic subsumption relationship. However, if
such a reasoner is not available or it cannot be applied to the ontology due to its size,
relations between concepts will be only approximate as some subsumption
relationships cannot be detected. This is especially critical when union, negations or

complex axioms (i.e. C ⊑∃R.D ⊔∃S.E ⊔(F ⊓¬G)) are included in the concept

definitions, as these constructors can only be treated under very strict conditions. In
these cases, a set of anonymous classes are created to maintain the graph structure,
and the original DL expressions are kept in the concept records in order to be
reconstructed when required.

Next table summarizes the treatment given in the storage for each class or role
constructor. Notice that, OWL DL ontologies using constructors that are not treated
will produce approximate answers (i.e. possibly incomplete) to OntoPath queries.
Fortunately, many domain ontologies seldom use negation and union in the concept
definitions.

 OntoPath: A Language for Retrieving Ontology Fragments 905

Table 1. Treated DL constructors

Constructors Treatment
 - ∀R.C - Universal Restrictions Pattern 3
 - Concept Intersection Pattern 1

 - ∃R.C - Existential Qualifications Pattern 3
 - Complex Concept Negation Not treated.
 - Concept union Pattern 2, only the case of concept equivalence.
 - Role Hierarchy Stored role attribute subPropertyOf
 - Complex Role Inclusion Axioms Not considered for OWL 1.0
 - Inverse Properties Stored role attribute inverseOf
 - Nominals Pattern 5
 - Cardinality Restrictions Pattern 4
 - Qualified Cardinality Restrictions Not considered for OWL 1.0

(D) - Data Type Properties Stored role attribute PropertyType

5 OntoPath Queries

An OntoPath query is a tree relating concepts and properties of the ontology. As in
XPath, trees are expressed through paths with predicates that impose conditions
through the traversed nodes. However, unlike XPath (and SparQL), the answer to an
OntoPath query is not a set of pointers to the nodes in the graph satisfying the
specified conditions, but a consistent and closed fragment of the ontology (i.e. a sub-
graph) containing the required concepts and properties. Consistent means that all
concepts in the fragment are satisfiable, whereas closed means that the fragment
includes all the necessary concepts and properties to make it consistent. Notice that
closeness and consistency may involve changes over the original knowledge, mainly
over frontier concepts of the ontology fragment, in which a partial definition of them
has been extracted. Nevertheless, the main objective is to define a party’s view of a
domain [3].

5.1 Query Expressions

An OntoPath query contains two types of tree nodes: concept nodes and property
nodes. A property node have only one child concept node, whereas a concept node
can have more than one child property node. Tree nodes also contain predicates that
must be satisfied in the retrieved fragment. Figure 4 shows the interpretation of a
simple OntoPath query like Disease/related-to/Gene, where an ontology fragment is
extracted with diseases (if exist) directly related by means of the related-to property to
the Gene concept.

The simplest query in OntoPath consists of specifying a concept C. The result
consists of an ontology fragment containing all their sub-concepts (i.e. the concept
taxonomy under C) an all its instances. No object properties are retrieved nor relations
between instances involved in the fragment. Data type properties associated to these
concepts (direct and inferred ones) are always included in the fragment.

906 E. Jiménez-Ruiz et al.

Disease P=related-to

dom(P)
Gene

instances

Retrieved
 fragments

range(P)

I(C) I(C’)

Taxonomy

Fig. 4. Graphical interpretation of the OntoPath query Disease/related-to/Gene

Let sub(C) denote the set of all the sub-concepts of C, and sub(P) be the set of all
the sub-properties of P and their respective i-property records. To state aggregation
conditions over concepts, we use the syntax: C/P/C’, where C and C’ represent
concepts, and P denotes a property. A fragment satisfying this query contains those
sub-concepts of C and C’, denoted R(C) and R(C’) respectively, as well as those sub-
properties of P, denoted R(P), such that:

- R(C)⊆sub(C), R(C’)⊆sub(C’) and R(P) ⊆ sub(P)
- ∀p∈R(P), dom(P)∈R(C) and range(P)∈R(C’)
- ∀c∈R(C), ∃p∈R(P) such that c=dom(p)
- ∀c∈ R(C’), ∃p∈R(P) such that c=range(p)

We denote with I(C) to the direct instances (individuals) of C. Thus, the query
C/P/C’ also retrieves all the direct instances of all concepts in sub(C) and sub(C’).
Notice that we can extend the previous query definition to paths of any length:
C1/P1/C2/P2/C3/P3/…

Query expressions can contain the symbol “*” to denote the concept ⊤(Thing), and
the symbol “?” to denote any property (i.e. sub(?) denotes all the properties in the
ontology).

Some examples of OntoPath queries are the following ones:

- RheumatoidArthritis: The taxonomy and instances below RA diseases are
retrieved.

- Disease/?/RheumatoidFactor: Returns a fragment with diseases (if exist) directly
related by means of any property to Rheumatoid Factor.

- AutoinmuneDisease/?/*/?/GenePTPN22: Returns a fragment with autoimmune
diseases related to gene PTPN22 along with all the concepts and properties
participating in their relationships.

- RheumatoidArthritis/hasTreatment/ *: Returns a fragment with RA diseases and
their treatments.

Notice that the query C/P/C’ is equivalent to the concept C ⊓∃P.C’. Similarly, the
query C/P/* is equivalent to C ⊓∃P.⊤ and */P/C to ∃P.C. One can think that fragments for
them could be obtained by including their equivalent concepts in the ontology and
applying some reasoner to them. This has several limitations. Firstly, for each query we

 OntoPath: A Language for Retrieving Ontology Fragments 907

need to modify the original ontology and consequently to check the new ontology from
scratch. Second, as previously mentioned reasoning is not possible for large ontologies.
Finally, extracting the ontology fragment involved by a query is a difficult task from the
completion graphs generated by tableau algorithms. For these reasons, we propose an
ad-hoc and fast algorithm for processing OntoPath queries (see Section 6).

5.2 Predicates

As in XPath, we use square brackets [] to specify a predicate that must be satisfied by
the involved concept or property of the query expression. If multiple conditions are
required we use one []-expression for each one. They are always interpreted as a
conjuction of predicates. On the contrary to XPath, we will use only []-expressions
instead of the logic equivalent ones.

Twig Queries: Predicates allow us to express twig queries, that is, tree-like aggregate
conditions over the concepts and properties of the query. These have the form:

C[P1/C1][P2/C2] …

This is equivalent to the DL query C ⊓∃P1.C1 ⊓∃P2.C2.
When a twig query is required, the condition for the ontology fragment associated

to each branching node (e.g. C) is as follows:

∀c∈R(C), ∀Pi∈children(C), ∃p∈R(Pi), such that c=dom(p)

Future extensions of OntoPath will include negation and disjunction in the
predicates. However, such an extension requires the inclusion of reasoning
mechanisms for classifying the appropriate property domains and ranges participating
in the results.

Querying Metadata: These predicates are useful for selecting parts of the ontology
that were created by different authors or that contain useful annotations for retrieving
relevant concepts to certain applications (e.g. lexicon, keywords, etc.) They have the
following syntax:

Node[@annotation]
Node[@annotation <op> value]

Here Node is either a concept or a property of the ontology. The first expression

means that the specified annotation for the OWL element exists, whereas the second
one indicates that the assigned value for the specified annotation must satisfy the
expressed condition. For this purpose, <op> represents any binary operator over
atomic data types (e.g. <, >, ==, !=, like, etc.) Instances including annotated elements
will be included in the resulting fragment. For example, the query Disease[@source=NCI]
retrieves all the disease concepts stemming from NCI thesaurus, along with the
instances created for them.

Notice that reasoning over annotations is undecidable (belongs to OWL-Full
category), and therefore we cannot use a reasoner to build fragments under metadata
conditions.

908 E. Jiménez-Ruiz et al.

Data filters: With this predicates, only concepts having the specified features are
selected. Moreover, only instances satisfying the data filter will be included in the
result. The syntax is as follows:

Concept[Datatype_Property <op> value]

Here <op> also represents any binary operator over atomic data types. In DL these
conditions are expressed via concrete domains. However, these are not fully
supported by current versions of OWL. In the future, it would be interesting to have a
classification of concepts involving data type properties (for example concepts
involving age intervals for disease onsets) and then filter the ontology concepts
according to them (for example, selecting only concepts that involve disease onsets
for infants). However, now this kind of filters can be only applied to instances that
explicitly set the specified data type property.

6 Query Processing

The query processor of OntoPath has been implemented as an interpreted grammar.
The grammar output consists of a tree where each node contains the necessary actions
to retrieve the required objects from the database and to build the result set with them.
All these actions require some basic query over the G database (API), see Figure 5.
Due to size limitations, a full description of the underlying algebra cannot be included
in the paper.

Fig. 5. Query Processing for OntoPath

Query Trees
In the rest of the section, concept nodes are denoted with C, C’, etc., property nodes
with P, P’, etc. parent(X) denotes the parent node of X in the query tree, whereas
children(C) and child(P) denote the children nodes of C and the unique child node of
P respectively. The concepts or properties denoted by the query node X are accessed
with name(X).

Our approach for query processing relies on the following principles:

- For each query concept node C we must keep updated the concepts in
sub(name(C)) that covers all the sub-concepts required by the parent and
children query nodes. We call it R(C).

 OntoPath: A Language for Retrieving Ontology Fragments 909

- For each query property node P we must keep updated those properties in
sub(name(P)) that satisfies the conditions imposed by the parent and child
query nodes. We call it R(P).

- We call empty concept, denoted as ⊥, to any unsatisfiable concept. Thus, if
R(C)= ⊥means that the query has no solution. Similarly, if some property
node has R(P)=∅ then the query has no solution too.

- Two basic functions are necessary to calculate R(C) and R(P), namely:
o Nearest Common Descendant: NCD(u, v) returns the nearest concept

that is descendant of both u and v. It follows that NCD(u,*) = u,
NCD(*, v)=v, NCD(⊥, v)= ⊥ and NCD(u, ⊥)=⊥. If nodes u and v have
not a common descendant (i.e. sub(u) and sub(v) are disjoint) then
NCD(u, v)= ⊥. This function can be defined over a set of concepts,
denoted NCD(S), so that it returns the nearest common descendant of all
the nodes in S.

o Nearest Common Ancestor: NCA(u, v) returns the nearest common
ancestor of both u and v. It follows that NCA(u,*)=*, NCA(*,v)=*,
NCA(⊥, v)= ⊥ and NCA (u, ⊥)=⊥. This function can be defined over a
set of concepts, NCA(S), so that it returns the nearest common ancestor
of all the nodes in S.

The initial values of R sets are calculated as follows:

- R(P)=sub(name(P)) if P≠?. Otherwise, it is initialized taking into account the
values of its parent and child nodes as follows:
R(P)={p | p∈sub(?) ∧ NCD(dom(p), R(parent(P))≠ ⊥∧

 NCD(range(p), R(child(P)) ≠ ⊥}
- For concept nodes C, R(C)={name(C)}, that is, they just contain the name

associated to the concept specified in the query node.

R sets are updated as follows:

R(C)new = NCD({NCD(dom(p),R(C)old)}p∈name(P))}P∈children(C)) ∪
 NCD(range(parent(C)), R(C)old)

(1)

R(P)new = { p | p∈ R(P)old, NCD(dom(p),R(parent(P)) ≠ ⊥ ∧
 NCD (range(p),R(child(P)) ≠ ⊥}

(2)

Notice that whenever a node C changes its R(C), its parent and children must be

revised. Similarly, whenever a node P changes its R(P), its parent and child must be
revised.

Graph Indexes
The efficient evaluation of queries requires the use of index structures. The navigation
of trees and DAGs (finding ancestors, descendants and siblings) has been extensively
studied in the literature; following Christophides et al.’s analysis in [21], in our
implementation we have adopted a variation of Agrawal, Borgida and Jagadish’s
interval-based encoding technique [22].

910 E. Jiménez-Ruiz et al.

Fig. 6. Example of interval of type postorder-index assigned to a concept hierarchy

Agrawal et al’s technique consists on numbering each node in the graph with
integers based on a preorder and postorder traversal of the spanning tree, and then
computing a set of intervals which compactly represent all the descendants of each
node. This encoding is especially suited for the computation of subsumption and
NCD, which are reduced to simple interval arithmetic operations. In contrast, the
computation of NCA is linear in the worst case. In our tests this has not been an issue,
since NCA is the least frequently used primitive; in any case, there are well-known
approaches to compute NCA in constant time at little extra spatial cost, should it be
deemed necessary.

6.1 Query Processing Algorithm

The query processing algorithm is as follows:

1. Initializing R sets for all query tree nodes.
2. First calculation of R sets for all query nodes. Put in a queue Q all the children

and parents of the updated nodes. Finish the query processing if some concept
node contains ⊥or some property node is empty.

3. Until Q is not empty
Pop a node from Q and revise it. That is, apply expressions (1) and (2) to
update its R sets. Stop query processing if it contains ⊥or is empty. If
successfully updated then put in Q its parent and children nodes.

4. For each concept node C, for each concept c∈R(C), construct an OWL fragment
taking into account the selected properties and groups generated in the previous
steps. DL expressions will be expanded only if all its contained concepts and
properties are included in the fragment.

5. For each property node P, construct an OWL fragment taking into account the
inferred domain and ranges as well as the selected property taxonomy.

6. Retrieve all the instances of all the selected concepts such that they satisfy the
filter conditions stated in the corresponding concept node.

 OntoPath: A Language for Retrieving Ontology Fragments 911

If predicates over metadata are included in the query tree, we must first proceed as
follows. For each concept node C we must select all concept in sub(C) satisfying the
predicate. We must update sub(C) and re-construct the concept taxonomy under C for
the selected concepts. Notice that NCA and NCD functions must be now applied to
the re-constructed hierarchy.

The complexity of the query processing algorithm is linear with respect to the
number of property records included in the query tree. This is because each iteration
in step 3 can drop at least one property record from R(P), and the algorithm stops
when either no changes are produced or some set R(P) becomes empty.

7 Experiments and Results

In order to check the results obtained with OntoPath we have designed a set of
queries over well-known ontologies in the biomedical domain, namely: GALEN (a
fragment in OWL format) and NCI (version 03.09d14). The former is more expressive
and smaller than the latter.

Tables 2 and 3 summarize the results of the retrieved fragments for several queries.
These queries go from very simple taxonomy retrieval to complex twig queries with
different detail levels. As it can be seen, the size of the generated fragments is
relatively small (see last column), although it clearly depends on the generality of the
fetched query. In the NCI ontology-thesaurus, class definitions do not have complex
axioms. For example, restrictions included in classes just specify the concrete range
involved in certain property (i-properties). In this way, queries with solution are
reduced to paths of three elements. In the GALEN ontology, complex axioms are
included in class definitions, with numerous anonymous classes and properties. Thus,
richer queries can be realized, obtaining very specific and useful fragments. For
example, the first query in the GALEN ontology allow users to know which counting

Table 2. Query examples and fragment features for the NCI ontology

nciThesaurus.owl
OntoPath Query Size (Kb) Classes Properties i-properties Red.

Whole Ontology 32850 27652 109 13961 100%
Anatomy Kina 413 2204 0 0 1.2%
*/?/Cell 4581 16969 16 444 13.3%
FindingsAndDisordersKind/?/* 3403 10672 6 2556 9.9%
OrganismKind /?/FindingsAndDisordersKind 578 2217 1 0 1.7%
GeneKind/?/FindingsAndDisorders Kina 2977 9345 2 844 8.6%
/rDiseaseHasAssociatedAnatomy/ 1509 4826 1 630 4.4%
Cell/?/* 447 2204 2 274 1.3%
Tissue/?/* 425 2204 2 92 1.2%
*/?/Tissue 4563 16969 16 290 13.2%
Protein Kind/?/* 5333 14851 13 11006 15.5%
*/?/Protein Kina 1458 5420 8 1712 4.2%
GeneKind/?/* 4593 13143 6 8392 13.3%
OrganismKind/?/* 3225 10331 3 0 9.4%
*/?/OrganismKind 1893 7544 5 2152 5.5%

14 EVS-NCI (current version: 07.04e): ftp://ftp1.nci.nih.gov/pub/cacore/EVS/NCI_Thesaurus/

912 E. Jiménez-Ruiz et al.

methods are associated to blood cells, and the last one allow users to know resistant
sensitivity cases produced by proteins.

Finally, Table 4 shows some examples of OntoPath that also retrieves instances.
As GALEN and NCI do not provide instances, we took instead the wine15 ontology,
which illustrates several constructors for individuals and nominal entities.

Table 3. Query examples and fragment features for the GALEN ontology

Galen.owl
OntoPath Query Classes Created16 Properties i-properties

Whole Ontology 3002 221 413 2168
AbsoluteMeasurement/?/Cell/?/LiquidBlood 29 10 2 18
*/hasState/resistant 8 0 1 2
*/Attribute/resistant 8 0 1 2
[hasSubprocess/][isFunctionOf/*] 3 1 2 2
/isFunctionOf/ 86 20 2 24
/hasSubprocess/ 26 5 1 11
Sensitivity[hasState/resistant][Attribute/presence/?/Protein] 10 2 3 3
CardiacPathology/?/Ischaemia/?/Chronicity/?/acute 7 2 3 5
/isStructuralComponentOf//?/Extremity 34 0 2 23
*/isSolidDivisionOf/UpperExtremity 7 0 1 6

Table 4. Query examples for retrieval of instances in the wine ontology

Wine.owl
OntoPath Query Classes Properties i-properties Instances

Whole Ontology 76 13 101 161
*/locatedIn/Region 64 1 4 42
Region/?/* 1 2 0 36 (regions)
Wine 63 0 0 53 (wines)
Wine/?/* 72 9 61 160
Wine/?/Region 64 1 25 89
/hasSugar/ 64 1 24 56
[hasSugar/][hasBody/*] 65 2 31 59

8 Conclusions

Ontology modularization [1] and segmentation [2] have gained an important weight in
domains such as biomedicine, where available ontologies are huge. In these cases,
several issues force the final users to work with a subset of the ontology: scalability
problems in the reasoning over the whole ontology, visualization in ontology editors,
partial knowledge of the domain, maintenance and extension, and use in concrete
applications (i.e.: information extraction guided by ontologies).

The general aim of this work is to extract consistent, closed, and useful ontology
fragments, suitable for concrete applications or for knowledge exploration purposes.
In contrast with ontology modularization approaches, we do not advocate automatic

15 Wine Ontology: http://protege.cim3.net/file/pub/ontologies/wine/wine.owl
16 Classes created by means of pattern 4.

 OntoPath: A Language for Retrieving Ontology Fragments 913

(formal or semi-formal) techniques to partition ontologies without the participation of
the final user of the ontology, which is an important limitation because the generated
modules may not be useful for concrete applications. Our proposed work follows a
similar approach to [13, 2], with respect to the guided module/fragment definition,
where final users define their custom knowledge, instead to work with a previously
module or with the whole ontology.

Currently, we are working in the definition of a well founded framework for our
fragment extraction mechanism, in order to maintain and to express formally (we
mean as formally a kind o representation that a reasoning system can understand;
currently the maintained references does not follows any formalism, only syntactic
references) the connections with the original ontology and between fragments. These
connections will allow the final user to expand its previously defined fragment with
more knowledge from the original ontology (or other fragments). From the literature
we can emphasize, as a good staring point, the Safe Ontology Modularization [10] and
the -Connections [17] approaches. The former one attempts to define safe ontology
modules, whereas the latter aims at extending the OWL syntax and semantics to
represent the connection between ontology modules.

Acknowledgements

This work has been partially funded by the PhD Fellowship Program of the
Generalitat Valenciana, the CICYT Project TIN2005-09098-C05-04 from the Spanish
Ministry of Education and Science, and the Health-e-Child European Project.

References

1. Wang, Y., Haase, P., Bao, J.: A Survey of Formalisms for Modular Ontologies. In: IJCAI
2007. Workshop SWeCKa, Hyderabad, India (January 2007)

2. Seidenberg, J., Rector, A.: Web ontology segmentation: Analysis, classification and use.
In: WWW. Proceedings of the World Wide Web Conference, Edinburgh (June 2006)

3. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: COWL:
Contextualizing Ontologies. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC
2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)

4. Seaborne, A., Prud’hommeaux, E.: SparQL Query Language for RDF (February 2005)
http://www.w3.org/TR/rdf-sparql-query/

5. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: A
Declarative Query Language for RDF. In: Proceedings WWW 2002, Hawaii, USA, USA
(2002)

6. Jimenez-Ruiz, E., et al.: The Management and Integration of Biomedical Knowledge:
Application in the Health-e-Child Project. In: Meersman, R., Tari, Z., Herrero, P. (eds.)
OTM 2006. LNCS, vol. 4278, Springer, Heidelberg (2006)

7. Wang, L., et al.: Biostar models of clinical and genomic data for biomedical data
warehouse design. Int. Journal of Bioinformatics Research and Applications (2005)

8. Paraire, J., Berlanga, R., Llidó, D.M.: Resolution of Semantic Queries on a Set of Web
Services. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS,
vol. 3588, pp. 385–394. Springer, Heidelberg (2005)

914 E. Jiménez-Ruiz et al.

9. Borgida, A., Serafini, L.: Distributed description logics: Directed domain correspondences
in federated information sources. In: CoopIS/DOA/ODBASE, pp. 36–53 (2002)

10. Cuenca-Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Extracting Modules from
Ontologies: A Logic-based Approach. In: OWLED 2007. Proc. of the Third International
OWL Experiences and Directions Workshop (2007)

11. Bao, J., Caragea, D., Honavar, V.: Towards collaborative environments for ontology
construction and sharing. In: CTS 2006. International Symposium on Collaborative
Technologies and Systems, pp. 99–108. IEEE Computer Society Press, Los Alamitos
(2006)

12. Stuckenschmidt, H., Klein, M.: Structure-based partitioning of large concept hierarchies.
In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, Springer, Heidelberg (2004)

13. Noy, N., Musen, M.A.: Specifying ontology views by traversal. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 713–725.
Springer, Heidelberg (2004)

14. Bhatt, M., et al.: Semantic completeness in sub-ontology extraction using distributed
methods. In: Laganà, A., Gavrilova, M., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O.
(eds.) ICCSA 2004. LNCS, vol. 3045, pp. 508–517. Springer, Heidelberg (2004)

15. Volz, R., Oberle, D., Studer, R.: Implementing Views for Light-weight Web Ontologies.
IEEE Database Engineering and Application Symposium (2003)

16. Jiménez-Ruiz, E., Berlanga, R.: A View-based Methodology for Collaborative Ontology
Engineering: an Approach for Complex Applications (VIMethCOE). In: STICA. 1st
International Workshop on Semantic Technologies in Collaborative Applications (June
2006)

17. Cuenca-Grau, B., et al.: Automatic Partitioning of OWL Ontologies Using E-Connections.
In: DL 2005. International Workshop on Description Logics (2005)

18. Jiménez, E., Berlanga, R., Sanz, I., Aramburu, M.J., Danger, R.: OntoPathView: A Simple
View Definition Language for the Collaborative Development of Ontologies. In: López,
B., et al. (eds.) Artificial Intelligence Research and Development, IOS Press, Amsterdam
(2005)

19. Jiménez-Ruiz, E., Nebot, V., Berlanga, R., Sanz, I., Rios, A.: A Protégé Plug-in-Based
System to Manage and Query Large Domain Ontologies. In: 10th Intl. Protégé Conference,
Budapest, Hungary (2007), http://protege.stanford.edu/conference/2007/schedule.html

20. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The
making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)

21. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: Optimizing Taxonomic
Semantic Web Queries Using Labeling Schemes. Journal of Web Semantics 1(2) (2004)

22. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships
in large data and knowledge bases. In: SIGMOD 1989, ACM Press, New York (1989)

23. Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the Semantic
Web through RVL Lenses. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, Springer, Heidelberg (2003)

24. Means, W.S., Harold, E.R.: XML in a Nutshell A Desktop Quick Reference, January 2001,
Chapter 9: XPath: http://www.oreilly.com/catalog/xmlnut/chapter/ch09.html

25. Freund, J., et al.: Health-e-Child: An Integrated Biomedical Platform for Grid-Based
Pediatrics. In: Health-Grid Conference, Valencia (2006)

Taxonomy Construction Using Compound

Similarity Measure

Mahmood Neshati1 and Leila Sharif Hassanabadi2

1 Web Intelligence Laboratory, Computer Engineering Department
Sharif University of Technology, Iran

neshati@ce.sharif.edu
2 Computer Science Department, Shahid Beheshti University, Iran

l sharif@sbu.ac.ir

Abstract. Taxonomy learning is one of the major steps in ontology
learning process. Manual construction of taxonomies is a time-consuming
and cumbersome task. Recently many researchers have focused on auto-
matic taxonomy learning, but still quality of generated taxonomies is not
satisfactory. In this paper we have proposed a new compound similarity
measure. This measure is based on both knowledge poor and knowledge
rich approaches to find word similarity. We also used Neural Network
model for combination of several similarity methods. We have compared
our method with simple syntactic similarity measure. Our measure con-
siderably improves the precision and recall of automatic generated tax-
onomies.

1 Introduction

Semantic Web is proposed to produce information structures which are able to
be processed by Automatic Agents. The well-defined information of these struc-
tures is the foundation of Machine Processing. Development of Semantic Web is
totally dependent on development of these structures. Ontology is the most im-
portant structure of Semantic Web. Automatic and Semi-Automatic production
of ontology can play a prominent part in development of Semantic Web.

The preliminary phase of building an ontology is Taxonomy Extraction from
a domain. A high quality and precision of the produced ontology can be achieved
by producing a high quality and precise taxonomy. Furthermore, conceptual tax-
onomies have many applications in other domains. As an example,[1] used con-
ceptual taxonomy in text Clustering. word sense disambiguation [2] and Named
Entity recognition [3] are two other well-known applications of taxonomies. Here
is the formal definition of a taxonomy.[4]

Taxonomy is triplet T = (C, root, ≤c) where: C is a collection of concepts
(cluster of words). For simplicity each concept can be named using the words
it contains within. root node which shows the top element and ≤c is a partial
order relation on C ∪ {root} where ∀c ∈ C : c ≤c root.

Various methods have been used to automatically build taxonomy from a
conceptual domain. Unfortunately, these methods do not have the required pre-
cision to build a practically usable taxonomy. In this paper we propose a method

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 915–932, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

916 M. Neshati and L.S. Hassanabadi

Fig. 1. Compound Similarity Measure

which increases precision of produced taxonomy. Despite other methods, we use
more than one resource for extraction of taxonomic relations. Hierarchical clus-
tering is a common method of taxonomic relation extraction. This method uses a
similarity measure in order to merge most similar clusters in each step. Further-
more, Formal Concept Analysis method and set theoretical methods are applied
in Taxonomy Learning [4].

Time complexity of set theoretical methods is exponential while hierarchi-
cal clustering methods have time complexity near power 2 of total number of
words used in clustering, Therefore, we use hierarchical clustering method and
similarity based method to build taxonomy.

Performance of hierarchical clustering method is highly dependent on similar-
ity measure it uses, So in this paper we are going to propose a very precise and
optimized similarity measure to be used in taxonomic relation extraction.

Many different methods are applied to find semantic similarity of words
([5],[6],[7]). Unsupervised methods are commonly based on Distributional Hy-
pothesis [8]. Based on this hypothesis, different methods focus on different at-
tributes of words to find their semantic similarity. Words with more similar
attributes are considered to be similar. Co-occurrence [7], syntactic attributes
[6] and occurrence in web[9] are common attributes used to find similarity of
words.

We can not find a precise similarity measure by using only one of existing
methods. for example Co-occurrence of words in corpus or web can be accidental
sometimes and at the other hand extraction of syntactic attributes is usually
faced with Data Sparseness problem[4]. So a new compound similarity measure
that more precisely finds taxonomic relations seems necessary. We have used
neural networks to build the compound similarity measure. The overall process
is shown in fig 1.

Taxonomy Construction Using Compound Similarity Measure 917

Our contributions in this paper are:

1. We used Knowledge rich methods in order to increase performance of syn-
tactic similarity measures while faced with Data Sparseness. Importance
of syntactic attributes of words influences the syntactic similarity between
them. We proposed a new weighted ranking for syntactic attributes which
increases the precision of computed syntactic similarity.

2. We used neural networks to produce a compound similarity measure of
words. Section 2 describes methods used to extract semantic relations of
words. Section 3 describes use of neural networks to combine these extracted
semantic relations. In Section 4 we’ll evaluate the proposed similarity mea-
sure. Section 5 is about related works and we’ll finally have a conclusion in
section 6.

2 Extracting Semantic Relations

In this section we introduce methods used to extract semantic relations of words.
These methods can be put in two main groups. The former methods try to find
semantic relations using existing relationship structures like WordNet Ontology.
These methods are called Knowledge rich because they assume existing relation-
ship structures between words [6]. As mentioned before, we use these methods
to overcome the problem of data sparseness. The latter methods called knowl-
edge poor which do not have any assumption about semantic structure of words.
Sections 2.1 and 2.2 describe these two types of methods more in detail.

2.1 Knowledge Rich Methods

WordNet1 Ontology is the main source of knowledge rich methods to extract
semantic relations. Nouns and verbs are hierarchically organized in this upper
Ontology. Co-occurrence of nouns with similar verbs is a good semantic similarity
measure for them as will be mentioned in section 2.2.

We use knowledge rich methods to find subjective and objective similarity
of nouns. Previous methods used exact match to find subjective and objective
similarity measure of nouns. In other words, Co-occurrence with mere the same
verb is a factor of similarity. Despite of these methods, we assume two nouns
are similar if they have subjective or objective Co-occurrence with similar verbs.
We used WordNet::Similarity [10] tool to find similarity of two verbs.

PATH measure, used in our experiments, is one of the simplest methods
to find similarity measure of two verbs. Shortest distance of two words rep-
resents the semantic distance of the two. SimPATH = − log(length(w1,w2)

2D)
This measure was proposed by [11]. In this formula length(w1, w2) is the
shortest path between w1 and w2 and D is the maximum depth of taxonomy.
For example in fig 2 SimPATH(w1, w2) = 0.12 and SimPATH(w1, w3) = 0.

1 http://wordnet.princeton.edu/

918 M. Neshati and L.S. Hassanabadi

Fig. 2. PATH Similarity in taxonomy

Fig. 3. Position of Eat and Drink in WordNet

The main drawback of this method is that this method assumes that all
the edges of WordNet tree have the same meaning weight, But it is not true.
For example length(tourist,traveler)=1 and length(tourist,person)=1 though it
is obvious that tourist and traveler are more similar that tourist and person.

We used WordNet, as mentioned before, to find the similar verbs. As an
example look at fig 3 that shows verbs eat and drink with distance 2 in taxonomy
tree. We have two sentences extracted from tourism corpus2 and their syntactic
relationship shown in Table 1. In these sentences, nouns Cake and Coffee have

Table 1. Syntax Relation

Sentence Extracted Relation

Its a delight stop to drink a coffee
served from the back of a van.

(DOBJ3, drink, cof-
fee)

The Mid-Autumn Festival is the
time to eat tasty moon cakes.

(DOBJ, eat, cake)

2 We used Tourism corpus in learning phase.

Taxonomy Construction Using Compound Similarity Measure 919

Co-occurrence with verbs Eat and Drink in an object-verb relationship. We
can say Cake and Coffee are similar nouns because they have similar syntactic
relation with two similar verbs (According to WordNet::Similar), so these two
nouns can exist in the same cluster of words. This new method uses background
knowledge to extract semantic similarity of words and can overcome the problem
of data sparseness.

2.2 Knowledge Poor Methods

Text Corpus and Web are two main sources for knowledge poor methods to
extract semantic similarity of words.

Corpus Based Methods. We used three Text Corpus features to find se-
mantic similarity of words. Co-occurrence in windows with predefined length,
Co-occurrence in windows with length equal to the length of documents (Co-
occurrence in documents) and syntactic relations are these three features used.

1. Window Based Methods
Co-occurrence of words in the same window is considered as semantic similarity
of words. We assume two words are more similar if they co-occur in more common
windows. We can show co-occurrence of two words using Contingency Table
shown in Table 2. Each dimension represents a random discrete variable Wi

with range (presence or absence of word i in a given text window). Each cell in
the table represent the joint frequency of co-occurrence. Using Table2, We’ll have
frequency of occurrence of each word in text documents. Assume Corpus size to
be n words, and consider t for the length of window, there’ll be W = n + t − 1
windows. where W is the number of all windows.

Theorem 1. Probability of occurrence of word wi in a window is equal to
P (wi) = f(wi)/W .

Prof. We should anticipate P to maximize the Probability of occurrence of
samples using Maximum Likelihood Principle. Likelihood function is defined
as L = f(X1, X2, ..., XW) where Xi is a random sample. If the word has not
occurred in i-th window then Xi = 0, otherwise Xi = 1. Assuming the indepen-
dence of X1...XW we can write: L = f(X1)...f(XW). Probability of occurrence
of wi in n-th instance has Bernoli distribution with parameter P so we’ll have:

L = P x1(1 − p)1−x1 ...P xW (1 − p)1−xW = P
∑

xi(1 − P)W−∑
xi (1)

Table 2. Contingency Table

wi ¬wi

wj fwi,wj f¬wi,wj fwj

¬wj fwi,¬wj f¬wi,¬wjf¬wj

fwi f¬wi

920 M. Neshati and L.S. Hassanabadi

Applying logarithms in both sides of equation 1 we’ll get to:

ln(L) = (
∑

(xi) ln P + (W −
∑

(xi)) ln(1 − P)) (2)

To have L maximized we should have ln L maximized so ∂ ln L
∂P = 0:

∂((
∑

(xi) ln P + (W −
∑

(xi) ln(1 − P))))
∂P

= 0 (3)

from equation 3 we have P =
∑

xi

W = f(wi)
W .

∑
xi is the number of windows

where Wi has occurred.

Theorem 2. Probability of co-occurrence of words wi and wj in the same
window is P (Wi, Wj) = f(Wi,Wj)

W .

Prof. Prof is like Theorem 1.
We can show co-occurrence of two words with random variable Z = (Wi, Wj)
which means wi and wj are occurred in the same window, So

P (Z = (Wi, Wj)) = f(wi, wj)/W

If the two words are semantically different so their occurrences in windows
are independent. Hence we’ll have

P ′(Z = (Wi, Wj)) = P (Wi)P (Wj)

If a considerable difference exists between values of P and P ′ so words Wi and
Wj are semantically similar, otherwise occurrences of Wi and Wj in windows
are independent and so Wi and Wj are semantically different. For measuring
semantic similarity of words we should compute the difference distribution of P
and P ′. For this purpose, we use PMI4. This method was proposed by [12]. PMI
similarity measure is calculated using this formula

SimPMI(w1, w2) = log
P (w1, w2)

P (w1)P (w2)

PMI method calculates occurrence independency of wi and wj . Positive values
of PMI show that wi and wj have more co-occurrences than independent words.
Negative values show that wj is not willing to occur where wi is occurred. Near
zero values show that wi and wj are independent words. The more wi and wj

are independent, the more P (wi, wj)/P (wi)P (wj) inclines to 1 and PMI inclines
to zero.

PMI similarity measure of some words are calculated and shown in Table 3.
As told before, City and Visa are almost independent words because of their
near zero PMI. (April ,October) and (City,Place) are semantically similar words
because they have positive PMI.
4 Point wise Mutual Information.

Taxonomy Construction Using Compound Similarity Measure 921

Table 3. PMI Similarity

wi wj SimPMI(wi, wj)

April October 6.47

City Place 6.22

City Visa 0.38

Day West -0.83

2. Document Co-occurrence Similarity

Document co-occurrence similarity is some type of window co-occurrence simi-
larity where window size is document length. We assume that words which occur
in the same document are similar, so we can calculate similarity as

SimCOLDOC =
2df(w1, w2)

df(w1) + df(w2)

Where df(w1) is number of documents, w1 occurs, df(w2) is number of doc-
uments, w2 occurs and df(w1, w2) is number of documents w1 and w2 both
occur. This similarity measure is based on Dice method. We can calculate sim-
ilarity measure based on Jaccard or Overlap methods but in our experiments
Dice method achieved more performance than others. Pairs of words in tourism
corpus with most document co-occurrence similarity are shown in Table 4. This
method has some weaknesses compared with window method. For example this
method is dependent on the size of documents.Each paragraph of the document
can be about a different subject, so Co-occurrence of words in big documents
does not necessary mean a semantic similarity. We can normalize the size of doc-
uments to decrease the impacts of this problem but if we have big size documents
the overall precision will be low.

Window Co-occurrence and Document Co-occurrence methods are commonly
used to extract synonym words in literature [7]. As shown in Table 4 two words
with high Document Co-occurrence measures are not necessarily synonyms but
semantic relation of these pairs are undeniable. This semantic relation can be
used in clustering algorithm. In section 3 we will explore the impact of each
similarity measure on overall clustering process and we’ll produce a weighted
ranking of these different similarity measures.

Table 4. COLDOC Similarity

wi wj SimCOLDOC(wi, wj)

April October 0.65

Attraction Museum 0.49

August June 0.70

City Place 0.65

922 M. Neshati and L.S. Hassanabadi

Fig. 4. Co-relation of PMI and PATH

As mentioned before two words can occur in the same document but in dif-
ferent paragraphs, so they can have no similarity. We combine Window Co-
occurrence and Document Co-occurrence methods to overcome this problem. In
other words, we consider two words similar if they occur in the same document
and have a distance less than t, the size of window. We computed co-relation
coefficient of PMI and PATH for 100 pairs of tourism domain words existing
in WordNet ontology in order to find an appropriate t for window size.(fig 4)
Before, we normalize similarity measures between 0 and 1. The most Co-relation
coefficient is achieved when the size of windows is 10. Although we have maxi-
mized the co-relation coefficient but they are still low. This shows that window
method is not solely adequate to compute similarity measures in taxonomy learn-
ing methods.

3. Syntactic Co-occurrence

We can use syntactic Co-occurrence of words as another poor knowledge method
for similarity computation. The main idea here is that words which co-occur
with similar Noun or Verbs in the same syntactic roles are possibly semantically
similar.

Just like window and document co-occurrence methods this method is based
on Distributional Hypothesis[8].We can define a signature for each word. As
shown in Table 5 Iran, Cyprus and Country have an Object relation with the
same verb Visit. We may be able to find a semantic similarity using syntactic rela-
tionships. Syntactic method needs linguistic information. type of words should be
extracted using a POS Tagger. Noun and Verb phrases can be extracted using a

Table 5. Syntactic similarity

Sentence Extracted Relation

Everyone needs a visa to visit Iran. (Iran, DOBJ, Visit)

April, May, September and October are the most pleasant times,
climatically, to visit Cyprus.

(Cyprus, DOBJ, Visit)

The best time to visit the country is in the late spring. (Country, DOBJ, Visit)

Taxonomy Construction Using Compound Similarity Measure 923

tagged text corpus. Then signature of each word is calculated using syntactically
analyzed text corpus. Stanford Parser and tagger5 is used as a POS Tagger in
our experiments. Our text corpus is extracted from Web6. This corpus contains
1801 text files. There are syntactic errors in some sentences and furthermore out-
put of parser is wrong sometimes, so we should analyze quality of the extracted
relations using statistical techniques.

We can show each extracted relation with triplet (w1, r, w2) where r is type of
relation and w1 and w2 are words participating in relation r. We show collection
of triplets as T , text corpus words as W and syntactic roles as Rel. Having
these triplets we can build signatures for each word. Each word signature has its
role and a word which has syntactically co-occurrence with it which constitute
a triplet.

Signature(w) = {(r, w′)|(w, r, w′) ∈ T, r ∈ Rel, w′ ∈ W}

For each relation r in Rel we can consider a collection of w′s signatures which
contain words w1...wn relating to w with r. In other words Signaturer(w)

Signaturer(w) = {(w′)|(w, r, w′) ∈ T, w′ ∈ W}

contains all the words having relation r with w.
Among these words having relation r with w exist words which are acciden-

tally occurred within corpus relations and some of them can be errors of Parser
program, so we should analyze the triplets and select non-accidental triplets
which have more frequency of occurrence than accidental ones. Furthermore we
should anticipate the importance of a triplet with a numerical measure. We can
model occurrence of triplet (w, r, w′) within text corpus by using co-occurrence
of three event.[5]

– W: a random selected word is w
– R: a random selected role is r
– W’: a random selected word is w’

Probability of this co-occurrence is calculated by:

P (W, R, W ′) = P (R)P (W |R)P (W ′|W ∩ R)

Assume that occurrence of W and W’ is independent so P (W ′|W ∩ R) =
P (W ′|R) and we we’ll have :P (W ′|W ∩ R) = P (W ′|R) P (W, R, W ′) can be
find by:

P (R) =
N(r)

N(Rel)

P (W |R) =
P (W ∩ R)

P (R)
=

N(Signaturer(w))
N(r)

5 www-nlp.stanford.edu/downloads/lex-parser.shtml
6 http://www.lonelyplanet.com

924 M. Neshati and L.S. Hassanabadi

P (W ′|R) =
P (W ′ ∩ R)

P (R)
=

N(Signaturer(w′))
N(r)

finally we have:

P (w, r, w′) =
N(Signaturer(w))N(Signaturer(w′))

N(r)N(Rel)

and Information Content will be

IC1(P (w, r, w′)) = − log

N(Signaturer(w))N(Signaturer(w′))
N(r)N(Rel)

on the other hand by using Maximum Likelihood Principle we can find proba-
bility of occurrence of (w, r, w′) in corpus by:

PMLE(w, r, w′) =
N(w, r, w′)

N(Rel)

Where its Information Content is

IC2(P (w, r, w′)) = − log
N(w, r, w′)

N(Rel)

The difference of IC2 and IC1 can be a measure of quality for each triplet. In
other words we choose triplets which have an Information Gain more than a
threshold t. So we’ll have a new definition for signatures:

Signature(w) = {(r, w′)|(w, r, w′) ∈ T, r ∈ Rel,

w′ ∈ W IG(w, r, w′) > t}
Assuming the above formula Information Gain will be

IG(W, r, W ′) = log
N(w, r, w′)N(r)

N(Signaturer(w))N(Signaturer(w′))

A triplet’s Information Gain shows how much reliable that triplet is. In
other words triplets with a low frequency of occurrence have low Information
Gain. Furthermore; Information Gain of a triplet shows how much semantically
valuable its syntactic relation is. As an example considers Table 6, Information

Table 6. Information content of syntactic relations

Triplet IG(w, r, w′)

(Visit, DOBJ, Iran) 4.96

(Visit, DOBJ, Area) 1.3

(Visit, DOBJ, Day) -0.1

Taxonomy Construction Using Compound Similarity Measure 925

Table 7. Signature of Iran and Germany Extracted from text

Relatoin Iran(word,IG) Germany(word,IG)

AMOD (northern,8.18) (southern, 8.08)

APPOS (west, 10.1) (republic, 10.01)-(connection, 9.01)

DOBJ (visit,5.59)-(adjoin, 11.36)-(face,
7.55)

(visit, 4.01)-(abut, 9.77)

NSUBJ (experience,7.79) (play, 9.58)

NSUBJPASS (bless, 7.73) -

POSS (town,5.53)-(mountain,6.86)-
(holiday, 6.45)

(river, 6.45)-(treasure, 7.18)

Content of Iran with verb Visit is 4 times of Information Content of Area with
visit and the syntactic relation is an Object-Verb one. Area participates with
40 nouns in an Object-Verb relationship; Iran participates only in 2 relation-
ships as an object so Information Gain of (Iran , Visit , Object-Verb) is more
than Information Gain of (Area, Visit, Object-Verb). Information Gain of (Day,
Visit, Object-Verb) is negative. It can be explained as a POS Tagger error in
recognizing the syntactic relation, so this triplet will be neglected. It can be said
that Information Gain in co-occurrence of a verb with a general noun is less
than Information Gain in co-occurrence of the same verb with a more specific
noun and also Information Gain in co-occurrence of a noun with a general verb
is less than Information Gain in co-occurrence of the same noun with a more
specific verb. Signatures of Iran and Germany are shown in Table 7 Using this
method to find signatures of words, we encounter the problem of Data Sparse-
ness. For example Visit is the only verb with which Iran and Germany both have
an Object-Verb relation. Although abut and adjoin are different verbs; they are
semantically similar. A very big text corpus (web as an example) can be used
to solve the problem of Data Sparseness. We used WordNet to overcome this
problem instead. For example in DOBJ relation we can use WordNet Ontology
to extract semantic similarity of abut and adjoin.

Information Gain of each binomial is a measure for semantic value of its occur-
rences in corpus, So co-occurrence with a frequent signature has less Information
Gain that co-occurrence with a more specific (less frequent) signature.[4] Used
solely shared signatures of words to calculate semantic similarity of words, we;
furthermore; considered Information Gain of words to calculate semantic similar-
ity of words. In order to calculate semantic similarity measure of W1 and W2; for
each W ′ having relation r with W1 we find the most similar word to W ′ among
words which have relation r with W2 and name its similarity as MaxSim(W ′)
so

Simw1→w2(w1, w2) =
∑

r∈R(
∑

(w′,r)∈signature′(w) Maxsim(w′) ∗ IG(w, r, w′))
∑

(w′,r)∈signature′(w) IG(w, r, w′)

926 M. Neshati and L.S. Hassanabadi

Table 8. Co occurrence in web

w1 w2 SimWeb PMI

elephant proboscidean 7.15

sun star 6.82

animal apple 0.54

year time period -4.5

The value of the similarity above will be between 0 and 1. This measure is a
directed measure so we use below formula to find a symmetric measure.

SimSyntax(w1, w2) =

Simw1→w2(w1, w2) + Simw2→w1(w1, w2)
2

Web based methods. Text corpus based methods usually encounter with
the problem of Data Sparseness. Using web as a big text corpus can solve this
problem. Web has multi billion WebPages. This size of data can not be processed
directly, so we need an interface to extract the required data in a reasonable time
period. Search Engines as in Fig1 can be used as an interface to extract required
information from web. Number of retrieved pages can be a measure of semantic
availability of our query. As an example if we query (tourist , city) and (tourist ,
computer) in Search Engine as expected number of retrieve pages for the former
is 4 times of the latter, So if we query the words of a cluster, number of retrieved
pages should show a semantic availability.

If we search the web with similar semantic words, Number of retrieved pages
will considerably be more than Estimate of independent occurrence of them.
In other words if P (w1) and P (w2) are probability of occurrence of w1 and w2

in web and assume the occurrence of w1 and w2 is independent of each other,
Then P (w2|w1) = P (w2) so E(w1, w2) = P (w1)P (w2) ∗ N(web). Comparing
E(w1, w2) and N(w1, w2) yields to a measure for semantic relation of w1 and
w2. This measure is like PMI mentioned in 2.2.

SimWeb PMI = log
N(w1∩w2)

NWEB

N(w1)N(w2)
NWEBNWEB

SimWeb PMI inclines to zero when occurrences of w1 and w2 are independent.
If w1 and w2 share a similar occurrence pattern SimWeb PMI will be a posi-
tive number. NWEB is number of pages indexed by search Engine7. NWEB is
near1010 now. Some co-occurrence examples are shown in Table 8.

3 Comparison and Combination of Measures

We introduced a few similarity measures of words, but we don’t know how much
practically usable each measure is and how much each measure can impact the
7 We used Google as search engine.

Taxonomy Construction Using Compound Similarity Measure 927

construction of a hierarchical taxonomy based on semantic similarity of words.
Section 3.1 describes how we produced a compound measure of semantic simi-
larity using a neural network model.

3.1 Combination Algorithm

We produce a vector for each pair of words which contains calculated measures
mentioned in previous sections as its elements. Vector extraction algorithm is
shown below:

Algorithm 1- Generate Vector(w1, w2)
// this Algorithm generate a vector for each pair(w1, w2), C is a Corpus
SimPMI(w1, w2) ←Window-Based(w1, w2, C)
SimColdoc(w1, w2) ←Document-Colocation(w1, w2, C)
SimSyntax(w1, w2) ←Syntax-Based(w1, w2, C, WordNet)
SimWeb PMI(w1, w2) ←Web-Based(w1, w2, Web)
Vector v = (SimPMI , SimColdoc, SimSyntax, SimWeb PMI)
Normalize(v)
Return v

We should find impact of each measure on hierarchical taxonomy to build a
weighted ranking of these measures. In other words if we know Path Similarity
of two words, we can have an estimation for impact of each measure to get to
the Path Similarity. In order to find impacts (weights) we used a neural network
model and Sensitivity Analysis. Using PATH method we calculated the goal
variables.

We used a Tourism Taxonomy as our reference which contains 236 words.
These words are leaves of taxonomy tree. Not leaf nodes are abstract concepts
which may not have an assigned name in text corpus. Our goal is to produce
a very similar taxonomy from text corpus automatically, so we need a com-
pound similarity measure which produces that taxonomy. Therefore we use the
hand-built taxonomy in learning phase of neural network to find the compound
measure.

Algorithm 1 produces a 4-dimensional vector for each pair of words. In test
phase we used another hand-built taxonomy for finance domain. We omitted
words which exist in taxonomy but don’t exist in text corpus. For each pair of
words using Algorithm 1 we produced the vector. The weighted ranking which
is the output of neural network learning phase is applied on each vector to pro-
duce a compound similarity measure. Finally we built our taxonomy using Hi-
erarchical Clustering Algorithm. The overall production of compound similarity
measure is shown in 1.

4 Evaluation

We need a method to find how much the automatically built taxonomy is simi-
lar to a real taxonomy in order to analyze our compound similarity measure.[13]

928 M. Neshati and L.S. Hassanabadi

used true ”IS-A” relations to find how real the built taxonomy is. Our algorithm
just builds the clusters and can not assign a name to each cluster so we can not
use this method, So to analyze our compound similarity measure we compare
our automatically built taxonomy with a hand-built one. We used Tourism tax-
onomy to in neural network’s learning phase. We rarely encounter with semantic
ambiguity or synonyms in specific domains, so for analyzing the produced mea-
sure we use another specific domain (Financial Taxonomy). We use Taxonomy
Overlap method introduced by [14] to find similarity of taxonomies.

We name each taxonomy concept (internal nodes) with the words it contains.
Semantic Cotopy introduced by [14] is a measure to find the similarity of two
taxonomies.

SC(ci, T1, T2) = {cj ∈ C1 ∩ C2|(cj leqc1ci) ∪ (cileqc1cj)}

Using Semantic Cotopy we can show each concept by its predecessors and ances-
tors concepts. So we can find similarity of two concepts by comparing collection
of ancestors and predecessors and finding shared concepts of them.[14] defines
Taxonomy Overlap as [4]

TO(T1, T2) =
1

|C1 − C2|

∑

c∈C1−C2

maxc′∈c2∪{root}
|SC(c, T1, T2) ∩ SC(c′, T2, T1)|
SC(c, T1, T2) ∪ SC(c′, T2, T1)

In other words for each automatically built concept we find the most similar
concept in hand-built taxonomy. Finally we find the average Semantic Cotopy
of concepts which do not exist in hand-built taxonomy by calculating Taxonomy
Overlap measure shown in the above formula. Look at Fig 5.

Consider right hand taxonomy as an automatically-built taxonomy and left
hand taxonomy as a hand-built reference taxonomy. We should analyze concepts
which exist in automatically built taxonomy and do not exist in reference taxon-
omy to find out how much similar (between 0 and 1) they are with the concepts

Fig. 5. Comparing Taxonomies

Taxonomy Construction Using Compound Similarity Measure 929

of reference taxonomy. Concepts W34 and W345 are the only automatically pro-
duced concepts which don’t exist in reference taxonomy. By computing SC for
each concept in both Taxonomies we find that the most similar concept in golden
taxonomy to W34 and W345 is W45. So we have

P (TAuto) = TO(TAuto, TGolden) = 0.50

If we replace the two taxonomies in Taxonomy Overlap measure formula and
calculate the Taxonomy Overlap measure we can estimate the Recall of the
automatically built taxonomy. In other words how many reference concepts are
produced automatically.

R(TAuto) = TO(TGolden, TAuto) = 0.42

Hierarchical Clustering Algorithm merges two clusters if similarity of them is
more than threshold t.In fact we control quality of the clusters by value of t.
Semantic distance of words within a cluster decreases when we increase t so the
Precision goes up. This increase in Precision may yield a decrease in Recall. We
analyzed performance of the compound measure by a comparison of Precision
and Recall of the taxonomy automatically built by Syntactic Similarity Method
without Knowledge Rich (used by [4]) with Precision and Recall achieved in our
experiment.

Precision-Recall diagram for the compound measure and syntactic measure
is shown in Fig 6. The compound measure has more Recall value in acceptable
Precisions than syntactic measure. We used 8 threshold values (0,0.1,...,0.8) as
t for the precision-recall diagram of Fig 6. For t=0.7 syntactic measure doesn’t
merge any cluster and puts all the words directly under root. This happens in
t=0.8 for the compound measure.

To have a better comparison we use Harmonic mean of Precision and Recall

F (TAuto) =
2P (TAuto)C(TAuto)

P (TAuto + C(TAuto))

Fig. 6. Comparing compound and syntactic measures

930 M. Neshati and L.S. Hassanabadi

Fig. 7. Comparing F-Measures of compound and Syntactic measures

Fig 7 shows F measure value for the compound measure is higher than syntactic
measure. Maximum F measure (0.32) yields when t=0.2.

As shown in diagrams 6 and 7 performance of the compound measure is
considerably higher than syntactic measure. As mentioned before Text Corpus
based methods generally and Syntactic methods specifically face with the
problem of Data Sparseness. This data sparseness can effectively decrease F
measure. We can solve this problem by our compound measure. Furthermore
use of multiple semantic resources (text corpus , Web , WordNet) has increased
the precision of the compound measure and subsequently the precision of the
concept learning algorithm.

5 Related Work

There are many researchers working on Taxonomy learning algorithms. [4] used
Formal Concept Analysis to extract taxonomy relationships. In [15] WordNet
is used as a semi supervisor while merging clusters. Although this method is
based on Knowledge rich approach but the way we used WordNet is completely
different. [16] used multiple resources to extract taxonomy relationships but it
did not use machine learning techniques to combine these resources.

Another group of taxonomy extraction methods make use of syntactic-
linguistic patterns. [17] Extracts ”Is-a” relations using predefined patterns.
[18]Used the same idea to find ”Part-of” relationships. These methods achieve a
high precision but like other methods face with the problem of data sparseness
and low recall.

As mentioned before we can solve the problem of Data Sparseness by using
a big text corpus like web. [19]extracts Hearst patterns from web using Google
search engine . [20] Uses existing resources like Wiki and a German dictionary
to extract ontology. [21] Uses LSI method to increase the quality of clusters
and naming them.[22] Enriches existing taxonomies by similarity and speci-
ficity measures. As told in [22] introduced algorithm can’t be used to extract a

Taxonomy Construction Using Compound Similarity Measure 931

complete taxonomy from scratch.[9] Makes use of word co-occurrences and Snip-
pets of retrieved pages to extract synonyms from web.[23] Tries to find similarity
of two passages using Knowledge Rich approach and WordNet. In order to review
the state of the art in ontology learning refer to [24].

6 Conclusion

In this paper we introduced a compound measure of word similarity and used
it to cluster and extract taxonomy from a specific domain. Despite previous
methods, similarity measure introduced in this paper makes use of text resources,
Knowledge Rich and search engines in order to increase precision. We used a
learning collection and a neural network model in order to combine different
measures. Taxonomy extracted by our compound measure has considerably more
precision-recall value in comparison with the reference taxonomy extracted by
syntactic measure. Our experiments show by using concurrent and combined
resources we can overcome the problem of Data Sparseness.

References

1. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering.
In: Proceedings of the 2003 IEEE International Conference on Data Mining, pp.
541–544. IEEE Computer Society Press, Los Alamitos (2003)

2. Resnik, P.: Semantic similarity in a taxonomy: An information–based measure and
its application to problems of ambiguity in natural language. Journal of Artificial
Intelligence Research 11, 95–130 (1999)

3. Hahn, U., Schnattinger, K.: Towards text knowledge engineering. In: AAAI/IAAI,
pp. 524–531 (1998)

4. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora
using formal concept analysis. Journal of Artificial Intelligence Research (JAIR) 24,
305–339 (2005)

5. Lin, D.: Automatic retrieval and clustering of similar words. In: COLING-ACL,
pp. 768–774 (1998)

6. Gasperin, C., Gamallo, P., Agustini, A., Lopes, G., de Lima, V.: (Using syntactic
contexts for measuring word similarity) available at:
http://citeseer.ist.psu.edu/article/gasperin01using.html

7. Terra, E., Clarke, C.: Frequency estimates for statistical word similarity measures.
In: Proceedings of Human Language Technology conference North American chap-
ter of the Association for Computational Linguistics, pp. 244–251 (2003)

8. Harris, Z.: Mathematical Structures of Language (1968)

9. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between
words using web search engines. In: WWW 2007. Proceedings of the 16th interna-
tional conference on World Wide Web, pp. 757–766. ACM Press, New York (2007)

10. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet: Similarity - Measuring the
relatedness of concepts. In: AAAI, pp. 1024–1025 (2004)

11. Leacock, C., Chodorow, M.: Combining local context and wordnet sense similiarity
for word sense disambiguation. MIT Press, Cambridge (1998)

http://citeseer.ist.psu.edu/article/gasperin01using.html

932 M. Neshati and L.S. Hassanabadi

12. Church, K.W., Hanks, P.: Word association norms, mutual information, and lex-
icography. In: Proceedings of the 27th. Annual Meeting of the Association for
Computational Linguistics, Association for Computational Linguistics, pp. 76–83
(1989)

13. Caraballo, S.: Automatic construction of a hypernym-labeled noun hierarchy from
text. In: Proceedings of the Conference of the Association for Computational Lin-
guistics (1999)

14. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez,
A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263.
Springer, Heidelberg (2002)

15. Cimiano, P., Staab, S.: Learning concept hierarchies from text with a guided hier-
archical clustering algorithm. Available at:
http://citeseer.ist.psu.edu/article/cimiano05learning.html

16. Cimiano, P., Pivk, A., Schmidt-Thieme, L., Staab, S.: Learning taxonomic relations
from heterogeneous sources. In: ECAI 2004. Proceedings of the Ontology Learning
and Population Workshop (2004)

17. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In:
Proceedings of the 14th conference on Computational linguistics, Association for
Computational Linguistics, pp. 539–545 (1992)

18. Berland, M., Charniak, E.: Finding parts in very large corpora. In: Proceedings
of the 37th annual meeting of the Association for Computational Linguistics on
Computational Linguistics, Association for Computational Linguistics, pp. 57–64
(1999)

19. Cimiano, P., Staab, S.: Learning by googling. SIGKDD Explor. Newsl. 6(2), 24–33
(2004)

20. Weber, N., Buitelaar, P.: Web-based ontology learning with ISOLDE. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

21. Ramakrishnan, Cartic, E.A.: TaxaMiner: Improving taxonomy label quality using
latent semantic indexing (2005)

22. Ryu, P.M., Choi, K.S.: Taxonomy learning using term specificity and similarity. In:
Proceedings of the 2nd Workshop on Ontology Learning and Population: Bridging
the Gap between Text and Knowledge, Association for Computational Linguistics ,
pp.41–48 (2006)

23. Zanzotto, F.M., Moschitti, A.: Automatic learning of textual entailments with
cross-pair similarities. In: ACL 2006. Proceedings of the 21st International Confer-
ence on Computational Linguistics, pp. 401–408 (2006)

24. Shamsfard, M., Barforoush, A.A.: The state of the art in ontology learning: a
framework for comparison. Knowl. Eng. Rev. 18(4), 293–316 (2003)

http://citeseer.ist.psu.edu/article/cimiano05learning.html

r3– A Foundational Ontology for Reactive Rules�

José Júlio Alferes and Ricardo Amador

Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa
{jja,ra}@di.fct.unl.pt

Abstract. In this paper we present the r3 ontology, a foundational ontology for
reactive rules, aiming at coping with language heterogeneity at the rule (com-
ponent) level. This (OWL-DL) ontology is at a low (structural) abstraction level
thus fostering its extension. Although focusing on reactive rules (reactive deriva-
tion rules not excluded), the r3 ontology defines a vocabulary that allows also for
the definition of rule (component) languages to model other types of rules like
production, integrity, or logical derivation rules.

1 Introduction

The goal of the Semantic Web is to bridge the heterogeneity of data formats and lan-
guages and provide unified view(s) of the Web. In this scenario, XML (as a format for
storing and exchanging data), RDF (as an open abstract data model), OWL (as an addi-
tional logic model), and WSDL2 (as a semantically extensible service model) provide
the natural underlying concepts.

The Semantic Web does not have any central structure, neither topologically nor the-
matically, rather it is based on peer-to-peer communication between autonomous, and
autonomously developing, nodes. Furthermore, the Semantic Web should be able not
only to support querying, but also to propagate knowledge and changes in a semantic
way. This evolution and behavior depends on the cooperation of nodes. In the same
way as the main driving force for RDF and the Semantic Web idea was the hetero-
geneity and incompleteness of the underlying data, the heterogeneity of concepts for
expressing behavior requires an appropriate handling on the semantic level. Since the
contributing nodes are prospectively based on different concepts, such as data models
and languages, it is important that frameworks for the Semantic Web are modular, and
that the concepts and the actual languages are independent. Even if we would agree
that for querying the current set of “common” standards for particular data/knowledge
representations/models (e.g. XQuery for XML vs. SPARQL for RDF) could evolve into
a single universal query language, which is doubtful, the concepts for describing and
implementing behavior are much more different, due to different needs, and it is really
unlikely that there will be a unique language for the latter throughout the Web.

Heterogenous Reactivity. In this setting, reactivity and its formalization as Event-
Condition-Action (ECA) rules provide a suitable common model because they provide a

� This research has been funded by the European Commission within the 6th Framework Pro-
gramme project REWERSE number 506779.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 933–952, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

934 J.J. Alferes and R. Amador

modularization into clean concepts with a well-defined information flow. An important
advantage of them is that the content of a rule (event, condition, and action specifications)
is separated from the generic semantics of the ECA rules themselves which has a well-
understood meaning: when an event (atomic or composite, the latter possibly using some
event algebra for composition) occurs, evaluate a condition (possibly gathering further
data via queries, again possibly combined via an algebra of queries), and if the condition
is satisfied then execute an action (or a sequence of actions, a program, a transaction, or
even start a process). Another important advantage of ECA rules is their loosely coupled
inherent nature, which allows for declaratively combining the functionality of different
Web Services (providing events and executing actions). ECA rules constitute a generic
uniform framework for specifying and implementing communication, local evolution,
policies and strategies, and –altogether– global evolution in the Semantic Web.

Previously, in [16,17] we have proposed an ontology-based approach for describing
(reactive) behavior and evolution in the Web, following the ECA paradigm. This work
also defines a global architecture and general markup principles for a modular frame-
work capable of composing languages for events, conditions, and actions by separating
the ECA semantics from the underlying semantics of events, conditions and actions.
This modularity allows for high flexibility wrt. the heterogeneity of the potential sub-
languages, while exploiting and supporting their meta-level homogeneity on the way to
the Semantic Web. The interested reader is referred to [2,1] for additional details on the
present state of this work.

Semantic Web Events. The notion of event is core to ECA rules, and in a reactive model
of behaviour for the Web it needs to be freed of limitations introduced by more specific
settings (e.g. active databases). Events in the Web cannot be restricted to the realization
of a specific set of actions (e.g. insert, update and delete). Instead a Web Event is to be
understood as the actual perception by a reactive system of an(y) external (or otherwise
uncontrolled) occurrence, that may or may not be the result of a known action.

Logically, an event may be perceived as a temporary (non-persistent) assertion, re-
sulting in the evolution of the knowledge base, as described in [4], through concrete
(re)actions (or active deductions) that may generate new persistent assertions, invalidate
existing assertions or cause additional externally perceivable occurrences (i.e. events).
The notion of non-persistence of an event is of utmost importance for the Web given
the humongous number of events perceivable in such a global system. This global na-
ture also precludes any solution based on undiscriminated broadcast of events; systems
interested in particular kinds of events have to express their interest to specialized event
brokers. The latter may to some extent persist historical event information, but reactive
rule engines have to be free of such a burden.

In a distributed environment formed of autonomous nodes, like the (Semantic) Web,
ECA rules can not react to actual occurrences, only (more or less reliable) perceptions
of those occurrences are generally available, and even those may sometimes go unno-
ticed. Nevertheless, using an eclectic mix of deductive and reactive rules, and based on
different lower level perceptions, one may achieve a symbolic definition of higher level
events that (fully) abstract and mimic (to the extent of the knowledge they represent)
the actual occurrences, possibly even compensating for unperceived ones through alter-
native or implicit perceptions; thus allowing to shift the focus to Semantic Web Events

r3– A Foundational Ontology for Reactive Rules 935

(like a book has been bought online), eventually abstracting away the intricacy of Web
Events (just try to imagine how many different ways exist to perceive that a book has
been bought online).

Resourceful Reactive Rules. Since the inception of the Semantic Web, rules have al-
ways been proposed as one of its upper layers: an ontology-based one. Although much
research effort is being targeted upon defining rules for and about ontologies, pragmati-
cal and compatibility issues seem to be guiding the work on modelling rules themselves.
In what concerns the latter, most of the current proposals are based on XML markups
(e.g. [7]); eventually relying on specific abstract syntax for defining rule semantics (e.g.
[8,14]). Markup-based approaches, as such, seem to ignore the fact that rules do not
only operate on the Semantic Web, but are themselves part of it. In general (ECA)
rules and their components must be communicated between different nodes, and may
themselves be subject to being queried and updated, especially if one wants to reason
about evolution, leading to a Semantic Web capable of dynamic behaviour according
to behaviour policies. For that, (ECA) rules themselves must be first class citizens of
the Semantic Web. This need calls for a foundational ontology for describing (ECA)
rules. Such an ontology, according to the heterogeneity requirement previously pre-
sented, must provide also the means to describe different languages to be used at the
rule (component) level. As such, we make two important assumptions: first, in the Se-
mantic Web, rules are resources like everything else, and secondly, there won’t be such
a thing as a (concrete) universal rule language (particularly in what concerns ECA rule
components). Given these two hypotheses r3 takes a third hypothesis: ontologies, in
OWL-DL, provide a suitable tool for describing language heterogeneity.

Present State. Although the examples included in [16] use “syntactical” languages
in XML term markup –ECA-ML– to describe ECA rule components, as stated there,
also languages using a semantical, e.g., OWL-based representation (which have to be
developed) can be used; thus leading to fully embrace the approach proposed in [17].
To further experiment with both approaches, namely syntactic and semantic, two REW-
ERSE WGI51 sub-projects, aiming at developing prototypes of the proposed general
ECA framework, were launched: MARS [22] and r3 [23]. Currently, both prototypes
are functional, available online, and eventually integrable through appropriate syntac-
tic/markup transformations. The MARS project is now also evolving into the semantic
level taking a flexible approach, not restricted to OWL-DL; future integration of the two
prototypes is to be pursued at this semantic/ontology level. The interested reader may
find additional details on both prototypes in [2,1].

In this paper, results of the r3 project on defining an (OWL-DL) foundational ontol-
ogy for reactive rules are presented. The current proposal is at a low (structural) abstrac-
tion level; the extension of this proposal towards characterizing higher abstraction level
concepts, like domain/application specific languages (vs. algebraic and general-purpose
languages) is not excluded, and fruitful synergies are expected with the MARS project
which is following an higher level approach. Although focusing on reactive rules, the
r3 ontology defines a vocabulary allowing for the definition of rule and rule component
languages to model also other types of rules.

1 REWERSE WGI5: Evolution and Reactivity - http://rewerse.net/I5/

http://rewerse.net/I5/

936 J.J. Alferes and R. Amador

Related Work. To the best of our knowledge, to the present there are only three on-
tology proposals for describing rules: SWRL [13], WRL [5] and SBVR [18]. Loosely
speaking, the rules modelled by SWRL and WRL are Horn rules; none of the two
includes any form of reactive rules. SWRL provides an OWL (Full) ontology; WRL
includes a mapping to OWL-DL (but only at the core level that does not include rules).
Although following different approaches, both proposals “extend” OWL by providing
means to express OWL-DL axioms. On the other hand, SBVR, which is not formalized
in OWL terms, does not exclude reactive rules (some illustrative examples are even
present in the specification); but it explicitly chooses not to address its specificities,
postponing such matters for reevaluation upon OMG’s BPDM results. About SBVR,
it is worth mentioning, that it is targeted to describe business rules in general with an
emphasis on human understanding [21] (which may hinder machine computability) and
it is the only one of the three that actually addresses the issue of language heterogeneity
(introducing the concept of business vocabularies, as a form of controlled natural lan-
guage). Nonetheless, it must be stressed that, SBVR is the only one of these three that
does not include a formalization of its semantics.

Most current standardization efforts related to rule interchange, e.g. [8,7], by fol-
lowing a markup-oriented approach, tend to be charged with syntactical details without
semantic value, which has a negative impact on any attempt to raise them to the on-
tology level. Concrete syntax is usually expressed in terms of abstract syntax, not the
other way around. Nevertheless, one of such efforts has to be mentioned even if it does
not include any Semantic Web transparent proposal: Common Logic (CL) [14], in what
concerns language heterogeneity, is probably the standardization effort closest to the
spirit of r3. CL achieves semantics formalization in face of language heterogeneity by
limiting its family of languages to those that (and we quote) have declarative seman-
tics and are logically comprehensive, i.e. it is possible to understand the meaning of
expressions in these languages without appeal to an interpreter for manipulating those
expressions and, at its most general, they provide for the expression of arbitrary first-
order logical sentences. Given the state of the art, this limitation actually excludes most
forms of reactive rules from CL.

Structure of the Paper. We start (in section 2) by introducing the r3 ontology from
a rule “taxonomy” point of view. In the following sections we detail the r3 ontology
explaining and illustrating2 how to define different languages (in section 3), and how to
use these languages to define heterogenous rules (in section 4). We end the paper with
some conclusion and future directions of the work.

The r3 OWL-DL ontology available at http://rewerse.net/I5/NS/2007/
r3/r3.owl constitutes the only complete and formal definition of the r3 ontol-
ogy. For the sake of readability, we have chosen to present it here using UML2 di-
agrams. These diagrams formally define (to the extent possible) the r3 ontology. The
explanatory text that accompanies them is neither a formal definition of the r3 ontology,
nor a substitute for the UML2 diagrams. As such, careful observation of the diagrams
is required for full understanding of the work presented here.

2 Examples illustrating RDF models use Turtle, omit prefix declarations, and assume the r3

namespace as the empty (‘:’) prefix. The complete set of examples presented here may also be
found in RDF/XML at http://rewerse.net/I5/NS/2007/r3/odbase07.owl.

http://rewerse.net/I5/NS/2007/r3/r3.owl
http://rewerse.net/I5/NS/2007/r3/r3.owl
http://rewerse.net/I5/NS/2007/r3/odbase07.owl

r3– A Foundational Ontology for Reactive Rules 937

2 An Ontology for Reactive Rules

An ontology for reactive rules restricted to different forms of active rules would be of
limited expressivity in practice. Conditions used in ECA rules are quite often defined
resorting to logical derivation rules (e.g. deductive rules that define intensional rela-
tions). Also, some form of reactive derivation rules is imperative so that symbolical
events and actions with higher semantic value may be defined/derived; thus allowing
reactive rules to actually express behaviour on a semantic level and not only basic low
level reactions. Furthermore, integrity of a reactive system is frequently hard to express
and maintain on a rule by rule basis (viz. using post-conditions): global integrity rules
provide an additional orthogonal perspective and can be used together or independently
of reactive rules allowing the detection of invalid states or reactions. Given all this, the
r3 ontology, although aiming at describing reactive behaviour, includes all these differ-
ent kinds of rules, as shown in figure 1 where abstract rules (further detailed in section
4) are partitioned according to their components.

Abstract rule components are partitioned into consequent, antecedent and reactive,
i.e. event or (trans)action, components. At this foundational level, such partition is not
based on the contents of those components, but rather on a meta-level declaration (de-
scribed in section 3) of what the constituent elements of a specific rule language are,
and their roles in it. Such structural definition does not exclude further restriction on
the contents of those components, vis-à-vis to specific rule (component) languages,

+on {subsets taking}

+then {subsets taking}

+else {subsets taking}

+if {subsets taking}
+is[1] : AntecedentElement

«definition»

AntecedentComponent

«definition»

EventComponent

«definition»

ActionComponent

«definition»

ReactiveComponent

+deriving {subsets taking}
+is[1] : ConsequentElement

-bound-to[0]

«definition»

ConsequentComponent

«definition»

AbstractRule

«exists» +part[1..*] : ConsequentComponent

«definition»

DerivationRule

«definition»

ComponentExpression

«exists» +part[1..*] : ReactiveComponent

«definition»

ReactiveRule

{complete}

{
c
o

m
p

le
t
e
}

+part[*] : IntegrityRulePart

«definition»

IntegrityRule

«definition»

RuleComponent

+part[*] : ActiveRulePart

«exists» +part[1..*] : ActiveComponent

«definition»

ActiveRule

{
c
o
m

p
le

t
e
}

+part[*] : LogicalDerivationPart

«definition»

LogicalDerivationRule

{
c
o
m

p
le

t
e
}

«definition»

CondtionalRule

{complete}

{
c
o

m
p

le
t
e

}

«definition»

ReactiveDerivationRule

{
c
o

m
p

le
t
e

}

{
c
o

m
p

le
t
e

}

+part[1..*] : ProductionRulePart

«definition»

ProductionRule

{complete}

«exists» +part[1..*] : EventComponent

«definition»

ECARule

+denying {subsets taking}

«definition»

ReactiveDeductiveRule

«definition»

ReactiveReductionRule{complete}

+part[*] : DeductiveRulePart

«definition»

DeductiveRule

«definition»

ActiveComponent

«definition»

AlternativeComponent

Fig. 1. Abstract Rules

938 J.J. Alferes and R. Amador

i.e. extension of the r3 ontology is possible so that semantic coherence is maintained
between the contents of the rule components and the declared nature of the associated
language elements (e.g. ensuring that the content of an event component is actually an
event specification).

Besides the rule components, in figure 1, also rule parameters are permitted, cf. fig-
ure 2, accounting for modelling semantic variations (e.g. rule priority and defeasibility)
that should not have an impact on the general semantics of the different kinds of abstract
rules (wrt. classification of figure 1).

Focusing on the structure of rules, and rule languages, themselves, instead of focus-
ing on the structure of each of the rule components (or on the actual semantics induced
by their contents), results in a layered approach that allows the r3 ontology to distin-
guish the different types of rules independently of the specific languages used in their
components3; thus separating the semantics of rules from the semantics of their com-
ponents. For instance, careful analysis of figures 1 and 2 conveys that:

– an active rule is an abstract rule that has at least one action component but no
consequent component, provided all its antecedents are condition components;

– among active rules, ECA rules are distinguished from production rules according
to the presence or absence of an event component;

– a derivation rule is a rule required to have at least one consequent component and
optionally taking other antecedent (viz. necessity) components;

– a deductive rule is a derivation rule with symbolic consequents (i.e. views) based
only on side-effect free4 components (e.g. conditions).

Notice that the r3 ontology generalizes active rules with alternative components (i.e.
“else”-actions). Alternative components are usually considered syntactic sugar express-
ible with the use of negated conditions, but given their usefulness in practice and the
heterogenous nature of r3 we believe it is important to consider them. ECA rules with
an alternative component (ECAA) have a clear operational semantics5 and facilitate the
modelling of workflows [15]. Further examples may be found in [11]. Regarding pro-
duction rules, we are not aware of any formalization for alternative components and as
such (and given that the main focus of our future work will be on ECA rules and their
derivation variants), we have chosen to restrict the r3 ontology, for now, to their most
usual form (viz. if-then, cf. OMG’s PRR).

Among derivation rules, the r3 ontology distinguishes between reactive and logical
derivation rules depending, respectively, on the presence or absence of a reactive com-
ponent. A reactive derivation rule, optionally under given conditions, allows higher
level symbolic events or actions (viz. occurrences, cf. figure 3) to be derived from,

3 Naturally, this component-based approach has limitations if applied to the description of arbi-
trary logical rules (e.g. FOL formulas, in general, do not adhere to this component structure);
nevertheless we believe it to be expressive enough to describe what is commonly understood
as rules; not excluding general formulas as shown in figure 11.

4 Remember that without proper extension, as mentioned before, the r3 ontology does not en-
force that the content of, e.g., a condition component is actually side-effect free. It simply
declares that it must be so.

5 Given an event occurrence if the condition has no solutions, perform an alternative action.

r3– A Foundational Ontology for Reactive Rules 939

«definition»

AntecedentComponent

+is[1] : DenialElement

«definition»

DenialComponent

IntegrityRulePart

+is[1] : ReturnElement

«definition»

ReturnComponent

{complete}

LogicalDerivationPart

+is[1] : NecessityElement

«definition»

NecessityComponent

«iff» +is[1] : ValueElement

+equals[1] : ValueExpression

«definition»

ValueComponent

{complete}

{
c
o

m
p

le
t
e

}

ReactiveReductionPart

+is[1] : ConditionElement

«definition»

ConditionComponent

«definition»

SymbolicComponent «definition»

OccurrenceComponent

{
c
o
m

p
le

t
e
}

«definition»

ConsequentComponent

ActiveRulePart

«definition»

SymbolicConsequent

DeductiveRulePart

{
c
o

m
p

le
t
e

}

RuleParameter

AbstractRulePart

+is[1] : EventElement

«definition»

EventComponent

{
c
o

m
p

le
t
e

}

+is[1] : ActionElement

«definition»

ActionComponent

+is[1] : AlternativeElement

«definition»

AlternativeComponent

{overlapping, complete}

+is[1] : ReducedElement

«definition»

ReducedComponent

«definition»

ReducedOccurrence

ProductionRulePart

{
c
o

m
p

le
t
e

}

Fig. 2. Rule Parts

«exists» +part[1..*] : EventComponent

«definition»

ReactiveDeductiveRule

+part[*] : ReactiveReductionPart

«exists» +part[1..*] : ReducedOccurrence

«exists» +part[1..*] : ActionComponent

«definition»

ReactiveReductionRule

{complete}

«definition»

ReactiveDerivationRule

«definition»

ConsequentComponent

«definition»

ActionComponent

«definition»

EventComponent
+when {subsets on, subsets returning}

+to {subsets occurrs}

+
o

c
c
u

r
r
s

{
s
u

b
s
e

t
s

d

e
r
iv

in
g

}

«definition»

ValueComponent

«definition»

LogicalDerivationRule

«definition»

DerivationRule {complete}

+holds {subsets deriving}

+as {subsets if, subsets returning}

«definition»

ReducedOccurrence

«definition»

OccurrenceComponent

+is[1] : ReducedElement

«definition»

ReducedComponent

+must {subsets then, subsets returning}

«definition»

ReturnComponent+returning {subsets taking}
«exists» +part[1..*] : ReturnComponent

«definition»FunctionalRule «definition»

RuleComponent

Fig. 3. Derivation Rules

or reduced to, other (atomic, composite or symbolic) events or actions. [2] identifies
three kinds of reactive derivation rules, namely those that, under some conditions de-
rive events from events (ECE), actions from actions (ACA) and events from actions
(ACE). ECE rules have a purely deductive nature and, loosely speaking, they define
views over events. ACA rules have a more operational nature and might be seen as re-
duction rules, rewriting higher level symbolic actions into lower level ones (similarly
to instead-triggers in active databases). The intuitive idea underlying ACE rules is to
declaratively express that when an action is executed (and some conditions are verified)
some events occur as a derived consequence, and it may be realized through proper ex-
tension of ACA rules6. Usually, events derived from actions will include values that are

6 See e.g. [3] for a formalization of a declarative reactive rule language with derivation rules,
and where ACE and ACA rules are not distinguishable.

940 J.J. Alferes and R. Amador

only reliably known during the action evaluation (e.g. old and new in a database update
action/event). Given all this, we propose, as introduced in figure 1 and further detailed
in figure 3, to partition reactive derivation rules into reactive deductive rules (viz. ECE)
and reactive reduction rules (viz. ACA/ACE).

Reactive derivation rules are the subject of ongoing work and further discussion
about them is not in the scope of this paper. Nevertheless, it must be stressed that re-
active derivation rules are mostly uncharted territory in what concerns the (Semantic)
Web. To the best of our knowledge, the only published proposal relating to this matter
concerns a recent evolution of the language XChange [10], which includes reactive de-
ductive rules7. As such, the proposal contained in figure 3 is introduced here mainly as
a matter of completeness of the presented ontology and is to be understood as a pre-
liminary contribution to this open research area, requiring future validation given the
foundational nature of the r3 ontology.

3 Defining Reactive Rule Languages

Mainly, the r3 ontology at the current foundational (and structural) level aims at pro-
viding a Semantic Web transparent abstract syntax for reactive rule-based systems. Rule
component languages are assumed to follow a term structure, using a set of functors, and
functor items. Such language items are described using a meta-level of the ontology. As
shown in figure 4, functors are partitioned into language constructs and language sym-
bols, and their items are distinguished between parameters and construct components.
Recursively, functor items themselves are also language symbols, i.e. functors.

+defines[*] : LanguageItem

Language

+in[0..1] : Language

LanguageItem

+in

+defines

LanguageParameter

{
c
o
m

p
le

t
e
}

LanguageComponent

OpaqueParameter

FunctionalParameter

LogicalParameter

+item[*] : FunctorItem

LanguageFunctor

FunctorItem

+
it
e
m

+item[*] : AtomicFunctor

LanguageConstruct

LanguageType

{overlapping, complete}

BoundParameter

{
c
o
m

p
le

t
e
}

{complete}

«definition»

SymbolicFunctor

+exports[*] : LanguageFunctor

+providing[*] : Interface

+implements[*] : Language

Engine

+implementation

+
im

p
le

m
e
n
t
s

+exports

-item[0]

«definition»

AtomicFunctor

+item[*] : LanguageParameter

LanguageSymbol

{
c
o
m

p
le

t
e
}

{complete}

Fig. 4. Languages

7 We strongly distinguish a reactive deductive rule that derives events (viz. occurrences); from
an ECA rule performing a action (e.g. sending a message) which may induce the occurrence
of events. Resorting to reactive reduction rules, an implementation of XChangeEQ may
not need to be bound to specific (more or less ubiquitous) protocols (viz. HTTP and SOAP as
suggested in [10]).

r3– A Foundational Ontology for Reactive Rules 941

The actual operational implementation of the items of a language is to be exported
by some engine. More precisely, engines evaluate constructions based on language con-
structs, and derive symbolic terms based on language symbols.

Language components are atomic symbols (and can only be included, as items, in
a language construct). Language parameters are further distinguished between log-
ical (i.e. input/output) and bound (i.e. input) parameters. Among input parameters,
opaque parameters are distinguished from purely functional parameters. Appropriate
sub-properties (viz. takes, digs, uses and binds) are introduced, in figure 5, to facilitate
the declaration of functor items.

Declaratively, a functor actually represents the set of functors formed by all its
ground instances (wrt. its parameters). Operationally, the semantics of a language func-
tor (viz. construct) can not be realized unless all its input parameters are known, i.e.
bound to actual values. Opaque parameters can only be used in so called opaque con-
structs. They account for non-atomic parameters whose values are expressed using tex-
tual or markup (sub-)languages that hide their actual structure away. A textual template
where variable references are to be substituted, a snippet of code written in some script-
ing language that is to be interpreted, or even the literal source of a database trigger, as
further detailed below, are all examples of opaque parameters.

Abstract functors, that include only abstract –functional or logical– parameters (be-
sides components, in case of language constructs), do not require the explicit declara-
tion of the involved variables unless for very specific cases (e.g.: quantifying variables
or scoping variables implicitly quantified, and aggregators or solution modifiers).

Language constructs, cf. figure 6, are partitioned into rule, rule package and for-
mula constructs; distinguishing native and abstract rule constructs. Only one subset of
formula constructs is identified, viz. universal or existential quantifiers, but others are
not excluded: e.g. conjunction, disjunction, conditionals and negation in its different
variants.

Opaque formulas are allowed, and opaque native rules are restricted to purely para-
metric ones, i.e. no rule elements are allowed. Native rules allow the modelling of
rule constructs that use textual languages that may not follow a term structure. A na-
tive rule (e.g. a database trigger) may have some functional parameters (e.g. database

LanguageConstruct

+item[*] : AbstractParameter

LanguageParameter

FunctionalParameterOpaqueParameter

LogicalParameter

«definition»

AbstractConstruct

«exists» +item[1..*] : OpaqueParameter

«definition»OpaqueConstruct

{
c
o

m
p

le
t
e

}

AbstractFunctor

{complete}

LanguageFunctor
+has {subsets item}

{
c
o

m
p

le
t
e

} +
b
in

d
s

{
s
u
b
s
e
t
s

h
a
s
}

+
u
s
e
s

{
s
u
b
s
e
t
s

h
a
s
}

+
d
ig

s

{
s
u
b
s
e
t
s

h
a
s
}

AbstractParameter

{complete}

{
c
o

m
p

le
t
e

}

LanguageComponent

+
t
a

k
e

s

{
s
u

b
s
e

t
s

it
e

m
}

LanguageSymbol

«definition»

AtomicConstruct

{
c
o

m
p

le
t
e

}

«exists» +item[1..*] : LanguageComponent

«definition»CompositeConstruct
«definition»

AtomicFunctor

«definition»

NilConstruct

Fig. 5. Language Functors

942 J.J. Alferes and R. Amador

+item[*] : RuleItem

RuleConstruct
+item[*] : RulePackageItem

«exists» +item[1..*] : RulePackageElement

RulePackageConstruct

LanguageComponent

+item[*] : BoundParameter

«definition»

NativeRuleConstruct

{complete}

ConsequentElement

RuleElement

RulePackageElement

AntecedentElement {complete}

ReturnElement

EventElement ActionElement

ReactiveElement

{complete}

+item[*] : AbstractRuleItem

«exists» +item[1..*] : RuleElement

«definition»

AbstractRuleConstruct

AbstractRuleItem

RulePackageItem

FunctionalParameter
{complete}

{
c
o

m
p

le
t
e

}OpaqueParameter

RuleItem

{
c
o

m
p

le
t
e

}

NecessityElement

«definition»

ValueElement

DenialElement {
c
o

m
p

le
t
e

}

FunctorItem
{overlapping}

ConditionElement

LanguageConstruct {complete}

«definition»

FormulaConstruct
Quantifier

UniversalQuantifier ExistentialQuantifier

{
c
o

m
p

le
t
e

}

«definition»

AbstractConstruct

«definition»

OpaqueConstruct

ReducedElement

AlternativeElement

Fig. 6. Language Constructs

name, user name and password), whose atomic values are transparently used. But it is
actually expressed in opaque parameters (e.g. trigger source) which hide away consid-
erable semantic value by using “internal” (sub-)languages.

The full semantics of an opaque construct is not accessible without full knowledge
of the (sub-)languages actually used inside the (consequently, non-atomic) values of
such opaque parameters. In fact, the semantics of an opaque construct is known only
to an engine that, cf. figure 4, exports it or implements its associated language and
opaque (sub-)languages. Usually these engines will only define the semantics of such
an opaque construct in operational terms, meaning that the only form of knowing it is
to submit, at runtime, an actual construction to the evaluation interface provided by the
engine. Nevertheless, static analysis may sometimes be possible as long as a translation
interface is provided by the engine for parsing an opaque construction into an abstract
one.

Example 1. For an illustrative example of an r3 language definition8 we resort to the
current RIF Core proposal [8], more precisely to its subset dedicated to Horn rules (viz.
rif:horn):

rif:ruleset a :RulePackageConstruct; :in rif:horn;
:takes rif:rule, rif:rest.

rif:horn :defines rif:rule, rif:rest.
rif:fact a :RuleConstruct; :in rif:horn;
:takes rif:atomic.

rif:atomic a :ConsequentElement; :in rif:horn.
rif:implies a :RuleConstruct; :in rif:horn;
:takes rif:if, rif:then.

rif:if a :ConditionElement; :in rif:horn.
rif:then a :ConsequentElement; :in rif:horn.

8 The presented definition is a partial one, namely the universal quantifier is omitted as currently
it expresses only implicit quantification at the rule level, and cardinality restrictions (on the
item property) should be present, in order to close the definition of the included individuals.

r3– A Foundational Ontology for Reactive Rules 943

+type[*] : LanguageType

LanguageType

{
c
o
m

p
le

t
e
}

Language

+in[0..1] : Language

LanguageItem

{overlapping, complete}

+uri[1] : xsd:anyURI

«definition»

LexicalType

+in +defines

+sub-type[*] : SymbolicType

SymbolicType
{complete}

+of {subsets in, subsets type} +contains {subsets defines, subsets sub-type}

+sub-type

+type

Domain

LanguageFunctor

+of[1] : Domain

«definition»

DomainItem

+type[*] : LiteralType

LiteralType

+type-is {subsets type, subsets sub-type}

Fig. 7. Language Types

Figure 4 includes two kinds of language items, namely functors and types. Language
types, as shown in figure 7, may be literal types (e.g. lexical XML Schema types iden-
tified by an URI) or symbolic types.

Every language functor implicitly defines a symbolic type; if not a functor a symbolic
type is said to be a domain and is implicitly defined by a language.

A language type is considered here only as some resource that implicitly defines a set
of (literal or symbolic) values. The type/sub-type relation is a containment relation: a
language type contains all its sub-types and is contained in the intersection of its types.

The actual treatment of types, in the context of a general framework like [16], has
not yet been considered, but it may provide, for instance, the means for a safer equality
relation (e.g. xml:space preserving or not in case of lexical types). As such, the concept
of language types is already included here providing the means to define (and refer
to), among others, the domain of functor parameters and components, or the range of
functors themselves9.

Algebras, required in reactive rules e.g. for complex events or for process algebras in
actions, may be seen as domains, as much as functors are seen as symbolic types. This
leads to the definition of algebras as shown in figure 8. Algebra constructs are called as
usual operators (and their elements: arguments) and they all share the same domain.

+defines[*] : AlgebraicItem

Algebra

AlgebraicItem

+item[*] : OperatorItem

«exists» +item[1..*] : OperatorArgument

«definition»Operator

«definition»

OperatorArgument

LanguageComponent

LanguageConstruct

+of[1] : Algebra

«definition»

AlgebraFunctor

{
c
o

m
p

le
t
e
}

{overlapping, complete}

Domain

«definition»

SymbolicFunctor

«definition»

DomainItem

+of {subsets in, subsets type}

+contains {subsets defines, subsets sub-type}

«definition»

Component

+is[1] : OperatorArgument

«definition»Argument

OperatorItem
LanguageParameter

{complete}

+in

+
d

e
f
in

e
s

LanguageItem

LiteralType

Fig. 8. Algebras

9 Language types are also used to constrain the domain of logical variables and the range of
expressions, as explained later in section 4.

944 J.J. Alferes and R. Amador

Example 2. Given that any functor doubles as a symbolic type and introducing the al-
gebraic domain of the RIF Condition language [8] (viz. rif:condition), we could,
for instance, type-annotate the definitions of example 1 as follows:

rif:rule :sub-type rif:fact, rif:implies.
rif:rest :type-is rif:ruleset.
rif:if :type-is rif:condition.
rif:then :type-is rif:atomic.
rif:atomic :type rif:condition.

rif:condition a :Algebra; :in rif:core.
rif:and a :FormulaConstruct; :of rif:condition;
:takes rif:some, rif:other.

rif:or a :FormulaConstruct; :of rif:condition;
:takes rif:some, rif:other.

rif:exists a :ExistentialQuantifier; :of rif:condition;
:takes rif:some.

rif:condition :contains rif:some, rif:other.
rif:equal a :FormulaConstruct; :of rif:condition;
:binds rif:left, rif:right.

rif:condition :defines rif:left, rif:right.

Example 3. To further illustrate the definition of r3 languages, consider the follow-
ing partial language definitions (viz. ECA-ML rule language, a minimal event algebra,
some specific domain and application languages, and some “built-in” libraries).

eca:rule a :RuleConstruct; :in eca:ml;
:takes eca:event, eca:condition, eca:action.

eca:event a :EventElement; :in eca:ml.
eca:condition a :ConditionElement; :in eca:ml.
eca:action a :ActionElement; :in eca:ml.
eca:native a :RuleConstruct; :in eca:ml;
:uses eca:lang; :digs eca:source.

eca:opaque a :FormulaConstruct; :in eca:ml;
:uses eca:lang; :digs eca:literal.

eca:ml :defines eca:lang, eca:source, eca:literal.

event:sequence a :Operator; :of event:algebra;
:takes event:first,event:next.

event:algebra :contains event:first,event:next.

travel:booking-place a :SymbolicFunctor; :of travel:domain;
:binds travel:client,travel:flightnr,travel:seat.

travel:flight-info a :SymbolicFunctor; :of travel:domain;
:uses travel:flight; :binds travel:date,travel:origin,travel:destination.

travel:flightnr :of travel:domain; :type travel:flight.
travel:domain :contains
travel:client,travel:flight,travel:seat,
travel:date,travel:origin,travel:destination.

rental:request-quotation-for-flight a :SymbolicFunctor; :in rental:application;
:uses rental:client,rental:flight.

rental:get-client a :SymbolicFunctor; :in rental:application;
:uses rental:client;
:binds rental:client-name,rental:favorite-class,rental:max-price.

rental:get-available-cars a :SymbolicFunctor; :in rental:application;
:uses rental:office,rental:date;
:binds rental:car,rental:car-class,rental:price.

rental:client :in rental:application; :type travel:client.
rental:flight :in rental:application; :type-is travel:flight.
rental:application :defines
rental:client-name,rental:favorite-class,rental:max-price,
rental:car,rental:car-class,rental:price.

mail:send a :FormulaConstruct; :in mail:library;
:uses mail:from,mail:to,mail:subject,mail:body.

mail:address :in mail:library;

r3– A Foundational Ontology for Reactive Rules 945

:sub-type mail:from,mail:to,rental:client,travel:client.

mail:library :defines mail:from,mail:to,mail:subject,mail:body.
text:join a :FormulaConstruct; :in text:library;
:digs text:template; :uses text:separator.

text:replace a :FormulaConstruct; :in text:library;
:digs text:template.

text:library :defines text:template,text:separator.

4 Defining Reactive Rule Constructions

The term languages modelled on the meta-level of the r3 ontology, described in sec-
tion 3, are used on a coding level to build coding resources that ultimately will define
rule sets describing reactive rule-based systems. Coding resources, cf. figures 9 and 10,
provide the foundations for a generic term structure (that is later used to define rules),
and are partitioned between coding values (structured or not) and structure parts / con-
straints. Also distinguishable are coding variables, viz. references or declarations, and
coding structures.

A coding structure is a language functor (or a hi-functor) gathering several structure
parts (parameters or components), possibly further restricted with a set of constraints
or variable declarations. A structure parameter is bound to a coding value; whereas a
structure component, as further constrained in figure 10, equals a structured value (or a
hi-value) whose returned value (if there is one) may still be bound to a coding value.

A hi-functor or a hi-value is a variable reference used in-place of a functor or of a
component content, resp., which is to be understood in HiLog [12]. From the declar-
ative point of view, r3 will go no further then CL [14], i.e. its logical expressiveness
is restricted to FOL. The semantics of a non-declarative, operational, “hi-construction”
will be impossible to determine unless it is instantiated with a valid construction.

«definition»

StructuredValue

StructureConstraint

VariableDeclaration

«definition»

Constraint

{complete}

{
c
o
m

p
le

t
e
}

+equals

+is

LanguageFunctor

StructureFunctor
{complete}

+equals[0..1]

+part[*] : StructureParameter

-with[0]

StructurePart

+part

+with

LanguageItem

+value[1] : rdfs:Literal

«definition»

LexicalValue

LiteralValue {complete}

VariableReference

-bound-to[0]

-equals[0]

CodingValue

HiFunctor

-equals[0]

+bound-to[1]

«definition»

StructureParameter

«iff» +equals[1]

+bound-to[0..1]

-item[0]

«definition»

StructureComponent

{complete}

{
c
o

m
p

le
t
e

}

+bound-to

SimpleValue

{
c
o

m
p

le
t
e

}

«iff» +is[1] : StructureFunctor

+part[*] : StructurePart

+with[*] : StructureConstraint

«definition»

CodingStructure

{complete}

+name[1] : xsd:NCName

«definition»

CodingVariable

HiValue

+bound-to[*] : CodingValue

+equals[*] : CodingValue

CodingResource

{
c
o

m
p

le
t
e

}

«definition»

HiTerm

«definition»

Term

{complete}

Fig. 9. Coding Resources

946 J.J. Alferes and R. Amador

+is[1] : LanguageConstruct

«definition»Construction

+is[1] : LanguageComponent

+equals[1] : ComplexTerm

«definition»Component

+is[1] : LanguageSymbol

+part[*] : Parameter

-with[0]

«definition»

SymbolicTerm

+is[1] : LanguageFunctor

+part[*] : TermPart

ComplexTerm

{
c
o

m
p

le
t
e

}

SimpleValue

«definition»

Term

{complete}

+bound-to[*] : Term

TermPart

+is[1] : LanguageParameter

-equals[0]

«definition»

Parameter {
c
o

m
p

le
t
e

}+having {subsets part}

«definition»

CodingStructure

HiStructure

{complete}

+equals[1] : HiValue

«definition»

ComponentHiValue

«exists» +part[1..*] : HiStructure

«definition»HiStructureWithin

{
o

v
e

r
la

p
p

in
g

,

c
o

m
p

le
t
e

}

+is[1] : HiFunctor

«definition»

HiStructureFunctor

StructurePart
+part

StructureConstraint
+with

«definition»

HiTerm

CodingValue
{complete}

+taking {subsets part}

+equals[1] : HiStructure

«definition»

ComponentHiStructure

SimpleTerm

+equals[1] : SymbolicTerm

«definition»

SymbolicComponent

Fig. 10. Coding Terms

A coding value is either a term or a hi-term, where a term may be simple or complex.
A simple term (i.e. a simple value cf. figure 10) is a literal value or a variable reference.
A complex term is a coding structure, one that is a language functor and one that,
as implied by the definitions in figure 10, is free of any hi-functors or hi-values. It is
either a symbolic term (i.e. a language symbol without any components, constraints or
variable declarations) or a construction (i.e. a language construct which, unless atomic,
composes its components).

A coding structure that contains a hi-functor or a hi-value is called a hi-structure (not
excluding structure parts10); otherwise a coding structure is either a complex term, a
parameter or a component. As such, a term may be seen as a coding value –and a term
part as a structure part– free of any hi-functors or hi-values. The variable referenced
in a hi-functor (or hi-value) can only be bound to complex terms; possibly incomplete
ones as they are to be merged with the, disjoint, set of structure parts explicitly included
in the hi-structure. That said, we must stress that hi-terms are included here only as a
matter of completeness of this most general level of the r3 ontology; the current main
focus of the r3 ontology, and of this paper, is on terms.

Using the generic definition of a construction, and based on the language items iden-
tified in section 3, it becomes possible to identify, according to figure 11, more specific
kinds of constructions: rules, rule packages, formulas and expressions (i.e. formulas
without rules).

A rule is either a native rule or an abstract rule. The former has no components and
is defined by its opaque source(s), whereas the latter is further partitioned based on its
non-empty set of components, according to figures 1 to 3 as explained in section 2.

Any construction, given one or more input substitutions (possibly empty), when sub-
mitted to an appropriate engine, synchronously (or asynchronously in case of event

10 Notice in figure 9 that a structure part, recursively, must be a coding structure (one without any
structure constraints or components).

r3– A Foundational Ontology for Reactive Rules 947

«iff» +is[1] : RulePackageConstruct

+part[*] : RulePackagePart

«definition»RulePackage

RuleSet
{complete}

+is[1] : RulePackageItem

RulePackagePart

+member {subsets taking}

«definition»

Component

«definition»

Construction

+equals[1] : Expression

«definition»

ComponentExpression

RuleConstruction

{complete}

«definition»

Expression

«exists» +part[1..*] : ComponentRuleConstruction

«definition»RuleConstructionWithin

{
o

v
e

r
la

p
p

in
g

,

c
o

m
p

le
t
e

}

+equals[1] : RuleConstruction

«definition»

ComponentRuleConstruction{
o

v
e

r
la

p
p

in
g

}

«iff» +is[1] : RuleConstruct

+part[*] : RulePart

«definition»Rule «definition»

RuleComponent

+is[1] : FormulaConstruct

«definition»Formula

{complete} TermPart

+is[1] : RuleItem

RulePart

«definition»

RulePackageMember

{
o

v
e

r
la

p
p

in
g

}

+is[1] : OpaqueParameter

RuleSource

«iff» +is[1] : NativeRuleConstruct

+part[*] : Parameter

«exists» +part[1..*] : RuleSource

«definition»NativeRule

«iff» +is[1] : AbstractRuleConstruct

+part[*] : AbstractRulePart

«exists» +part[1..*] : RuleComponent

«definition»AbstractRule

{
c
o
m

p
le

t
e
}

+equals[1] : Formula

«definition»

ComponentFormula

+equals[1] : RuleSet

«definition»

ComponentRuleSet

RuleParameter

AbstractRulePart

{
c
o

m
p

le
t
e
}

{complete}

{
c
o

m
p

le
t
e

}

«definition»

Parameter

{complete}

+is[1] : FunctionalParameter

RuleSetParameter

Fig. 11. Coding Constructions

constructions) returns several results. Each returned result contains an optional literal
value and one or more output substitutions, that must be joined to one or more of the
input substitutions. A construction fails if it returns no results. The returned literal val-
ues can only be used in the evaluation of the construction immediately containing the
submitted construction, unless they are bound to some variable, thus extending the out-
put substitutions. Submission of a rule set to an appropriate engine results in the rule
set being loaded/activated.

A construction may further restrict its results with a set of structure constraints
(viz. constraints or variable declarations, cf. figure 9). According to figure 12, some
of the constraints are to be enforced during the evaluation; while others, namely post-
conditions, are ensured to hold for every result of the construction. Among the former,
pre-requisites are to be enforced, upon invocation, before the actual evaluation starts.

Each structure constraint defines a constraint domain as the intersection of its con-
stituent domains: all possible instantiations of a particular term (it is bound to); all val-
ues returned by a value expression (it equals); or values of a particular language type.
If a structure constraint has no constituent domains it trivially succeeds. Otherwise, its
constraint domain must not be empty, and in case of a variable declaration it further
constrains the domain of the declared variable11. Constraints are a generalization of the
test component proposed in [16] for ECA rules (which is seen here as a constraint that
equals the test expression).

11 Additionally, a variable declaration may rename its variable, in order to support different
naming conventions used by different opaque (sub-)languages.

948 J.J. Alferes and R. Amador

+is[1] : LanguageConstruct

«definition»Construction

+bound-to[*] : Term

+equals[*] : ValueExpression

+type[*] : LanguageType

StructureConstraint

+name[1] : xsd:NCName

+rename[0..1] : xsd:string

VariableDeclaration
SharedVariable

{complete}

LocalVariable

+binding {subsets with}

BoundVariable
+using {subsets binding}

«definition»

Constraint
+for {subsets with}

+ensures {subsets with}

+given {subsets for}
PreRequisite

PostCondition

+var {subsets with}

+is[1] : Quantifier

«definition»

Quantification

BoundConstraint

{
c
o

m
p

le
t
e

}

+with[*] : BoundConstraint

«definition»

BoundConstruction

«definition»

BoundExpression«definition»

Expression

ClosedConstruction

{
o

v
e

r
la

p
p

in
g

}

UniversallyClosedConstruction ExistentiallyClosedConstruction

{complete}

«definition»

ValueExpression
RuleSet

Fig. 12. Variables and Constraints

Any construction defines a scope where local variables may be declared. The
communication between a sub-construction and its ancestor/sibling constructions is
achieved through shared variables. Some of those shared variables may be required to
be bound and a construction cannot be evaluated unless all of them are actually bound
to specific values. Notice that, for efficiency, the constituents of a constraint domain,
namely those based on value expressions, are expected to be incrementally evaluated
thus anticipating empty constraint domain detection and variable restriction.

All variables referenced in a construction, if not explicitly declared, are implicitly
declared as shared (or bound if referenced only by parameters of such nature). Further-
more, a construction implicitly inherits all the shared variables (implicit or explicit) of
its descendant sub-constructions. Finally, all variables shared by bound constructions
are required to be bound variables: explicit declarations are restricted accordingly in
figure 12.

Although scoping of variables is allowed for any construction, their actual quantifi-
cation is only achieved through explicit use of quantifiers, that quantify and scope their
local variables, or through implicit quantification as induced by closed constructions,
that quantify all the variables referenced within and scope them if needed (with the
possible exception of bound variables they explicitly declare).

Example 4. Concluding this section, below we illustrate the usage of the r3 ontology
to define a simplified ECA rule that, as a result of some client booking a flight and
requesting a car rental quotation, sends him the quotation for the cars available at the
date of the flight. For this we resort to the r3 languages included in the examples of
section 3.

_:quotation-request-rule :is eca:rule;
:on [:is eca:event; :equals _:request-for-quotation];
:if [:is eca:condition; :equals _:available-quotation];
:then [:is eca:action; :equals _:send-quotation].

_:request-quotation :is event:sequence;

r3– A Foundational Ontology for Reactive Rules 949

:taking [:is event:first; :equals [
:is travel:booking-place;
:having [:is travel:client; :bound-to [:name "Mail"]];
:having [:is travel:flightnr; :bound-to [:name "Flight"]]]];

:taking [:is event:next; :equals [
:is rental:request-quotation-for-flight;
:having [:is rental:client; :bound-to [:name "Mail"]];
:having [:is rental:flight; :bound-to [:name "Flight"]]]].

_:available-quotation :for _:price-ok; :is rif:and;
:taking [:is rif:some; :equals _:flight-info];
:taking [:is rif:other; :equals [:is rif:and;
:taking [:is rif:some; :equals _:get-client];
:taking [:is rif:other; :equals _:get-available-cars]]].

_:get-client :is rental:get-client;
:having [:is rental:client; :bound-to [:name "Mail"]];
:having [:is rental:client-name; :bound-to [:name "Client"]];
:having [:is rental:favorite-class; :bound-to [:name "Class"]];
:having [:is rental:max-price; :bound-to [:name "Max-Price"]].

_:get-available-cars :is rental:get-available-cars;
:having [:is rental:office; :bound-to [:name "To"]];
:having [:is rental:date; :bound-to [:name "Date"]];
:having [:is rental:car; :bound-to [:name "Car"]];
:having [:is rental:car-class; :bound-to [:name "Class"]];
:having [:is rental:price; :bound-to [:name "Price"]].

_:flight-info :is travel:flight-info;
:having [:is travel:flight; :bound-to [:name "Flight"]];
:having [:is travel:date; :bound-to [:name "Date"]];
:having [:is travel:origin; :bound-to [:name "From"]];
:having [:is travel:destination; :bound-to [:name "To"]].

_:price-ok :equals _:check-price; :bound-to [:value "true"].
_:check-price :is eca:opaque;
:using [:name "Price"], [:name "Max-Price"; :rename "MaxPrice"];
:having [:is eca:lang; :bound-to [:value "http://www.w3.org/XPath"]];
:having [:is eca:literal; :bound-to [:value "$Price <= $MaxPrice"]].

_:send-quotation :is mail:send;
:var [:name "Text"; :equals _:quotation-message];
:having [:is mail:from; :bound-to [:name "Rental-Mail"]];
:having [:is mail:to; :bound-to [:name "Mail"]];
:having [:is mail:subject; :bound-to [:value "Car Rental Quotation"]];
:having [:is mail:body; :bound-to [:name "Text"]].

_:quotation-message :is text:replace;
:var [:name "Priced-Cars";
:equals [:is text:join;

:using [:name "Car"], [:name "Price"];
:having [:is text:template; :bound-to [:value "|Car|=|Price|"]];
:having [:is text:separator; :bound-to [:value ", "]];]];

:using [:name "Client"], [:name "Flight"], [:name "Date"], [:name "To"];
:having [:is text:template; :bound-to [:name "QuotationTemplate"]].

5 Conclusion and Future Work

The r3 ontology provides a foundation to describe both reactive rules and reactive rule
languages. The latter is accomplished on a meta-level where not only rule languages
themselves but also other supporting languages used in rule components can be de-
scribed. The former is provided following a term-based compositional approach that
allows not only the use of different languages for different rule components (e.g. event,
condition, action), but also the composition of different languages in a single compo-
nent possibly using algebraic languages, thus accounting for language heterogeneity.

The r3 ontology recognizes that full expressivity of reactive behavior can not be
achieved without the help of derivation rules. As such it includes a proposal for reactive

950 J.J. Alferes and R. Amador

derivation rules (complementing the more traditional active rules, viz. ECA and produc-
tion rules) and also logical derivation rules. Additionally, it recognizes the importance
of reliability for reactive systems and contemplates global integrity rules.

Furthermore, the r3 ontology contributes for the clarification of concepts through
formal definition of an RDF vocabulary for describing rule-based reactive behaviour;
notably establishing a clear distinction between reactive, active and deductive rules,
consistently with the terminology traditionally used in the Active Databases field. As
obvious as it may seem, it should be stressed that the formal definition of such a (Se-
mantic Web transparent) vocabulary is not to be confused with the formalization of a
semantics for reactive rule languages; the former is the subject of this paper and pro-
vides the basis (as an abstract syntax) for the definition of the latter (which is out of
scope here).

Last, it is worth mentioning that the work here presented builds upon previous con-
crete proposals of the r3 ontology that provided the basis for the current implementation
of the r3 prototype [1] available online [23]. In this prototype a previous version of the
r3 ontology has already been used to model several component languages. Namely,
the languages Xcerpt for queries, XChange for events and actions of updates of XML
data, Prova, XQuery/XPath and HTTP. This work actually lead to the inclusion of these
Languages (as fully functional Engines) in the current version of the r3 prototype.
Details about the previous definition and implementation of these Languages may
be found in [1]. This experimental work on defining Languages has brought relevant
contributions for the r3 ontology and must continue to be pursued and extended to
other languages like, e.g.: XSLT, the algebraic language for actions described in [6], the
XChangeEQ [10] or ruleCore [20] event languages, or even the SPARQL algebra.

At the current foundational level, the r3 ontology mainly defines a Semantic Web
transparent abstract syntax for reactive rules. As usual for most abstract syntax, it al-
lows invalid constructions without a defined semantics (e.g. infinite terms). This abstract
syntax must be validated against and complemented with a formal semantics definition.
Achieving such a formal definition, together with the re-implementation of the r3 pro-
totype according to it, constitutes our major goal for the immediate future.

The future work on the r3 semantics and prototype is to be focused mainly on ECA
and reactive derivation rules, although not discarding consistent integration with the
other types of rules (particularly the evolution of RIF [8] is to be followed as closely as
possible). A very important matter needs to be carefully considered: a solution grouping
mechanism is mandatory for actions (as careful analysis of example 4 shows). Whether
such grouping is achieved through the use of grouped aggregations, or resorting to
solution modifiers like project and distinct, or left out for action languages is still an
open matter under discussion at the time of this writing. As such we have chosen not
to include any proposal on this issue here. On the other hand, types and hi-terms are
a matter to be taken conservatively and may be postponed until a stable version of the
prototype is available.

Considering the extension of the r3 ontology to higher abstraction levels (e.g. rule
languages, domain/application languages, event languages, event algebras, process al-
gebras) is also to be pursued in close cooperation with the MARS project [22]. Fur-
thermore, the r3 ontology implicitly extends and generalizes the previously proposed

r3– A Foundational Ontology for Reactive Rules 951

general ECA framework [2,16,17] (e.g. derivation rules, solution constraints and rule
constructions) and calls for a revision of the ECA-ML markup [16] and of the gen-
eral framework. Any revision of the ECA-ML markup should: consider an homogenous
markup for logical variables, and be based upon the formal specification of the (revised)
framework. Given the r3 ontology (as an adequate abstract syntax for the framework),
such a (fully) formal specification should now be possible to achieve without resorting
to general markup guidelines and principles.

Although not directly related, given its ontology based approach, to current textual or
markup based proposals for concrete Web ECA languages (e.g. [9,19,10]), r3 undoubt-
edly aims at modelling most (if not all) of them. As such, given a formal semantics of
r3, actual demonstration of its adequacy to this purpose is also to be pursued.

References

1. Alferes, J.J., Amador, R., Behrends, E., Bry, F., Eckert, M., Franco, T., Fritzen, O., Grallert,
H., Knabke, T., Krippahl, L., May, W., Pătrânjan, P L., Schenk, F., Schubert, D.: Completion
of the prototype scenario. I5-D7, CENTRIA, Universidade Nova de Lisboa (2007),
http://rewerse.net/deliverables.html

2. Alferes, J.J., Amador, R., Behrends, E., Fritzen, O., Knabke, T., May, W., Schenk, F., Schu-
bert, D.: Reactive rule ontology: RDF/OWL level. I5-D6, CENTRIA, Universidade Nova de
Lisboa (2007), http://rewerse.net/deliverables.html

3. Alferes, J.J., Banti, F., Brogi, A.: An Event-Condition-Action Logic Programming Language.
In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI),
vol. 4160, Springer, Heidelberg (2006)

4. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: An evolvable rule-based e-mail agent. In:
Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, Springer, Heidelberg
(2003)

5. Angele, J., Boley, H., de Bruijn, J., Fensel, D., Hitzler, P., Kifer, M., Krummenacher, R.,
Lausen, H., Polleres, A., Studer, R.: Web Rule Language (WRL). In: W3C (September 2005)
(submission),
http://www.w3.org/Submission/2005/SUBM-WRL-20050909/

6. Behrends, E., Fritzen, O., May, W., Schenk, F.: Combining ECA Rules with Process Algebras
for the Semantic Web. In: RuleML 2006, IEEE, Los Alamitos (2006)

7. Boley, H., Grosof, B., Sintek, M., Tabet, S., Wagner, G.: RuleML Design. RuleML Initia-
tive (August 2006), http://www.ruleml.org/

8. Boley, H., Kifer, M.: RIF Core Design. Working Draft, W3C (August 2007),
http://www.w3.org/TR/2007/WD-rif-core-20070330

9. Bonifati, A., Braga, D., Campi, A., Ceri, S.: Active XQuery. In: ICDE 2002, IEEE, Los
Alamitos (2002)

10. Bry, F., Eckert, M.: Rule-Based Composite Event Queries: The Language XChangeEQ and
its Semantics. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS,
vol. 4524, Springer, Heidelberg (2007)

11. Bry, F., Eckert, M., Pătrânjan, P.-L., Romanenko, I.: Realizing Business Processes with ECA
Rules: Benefits, Challenges, Limits. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.)
PPSWR 2006. LNCS, vol. 4187, Springer, Heidelberg (2006)

12. Chen, W., Kifer, M., Warren, D.S.: HILOG: A Foundation for Higher-Order Logic Program-
ming. Journal of Logic Programming 15(3), 187–230 (1993)

http://rewerse.net/deliverables.html
http://rewerse.net/deliverables.html
http://www.w3.org/Submission/2005/SUBM-WRL-20050909/
http://www.ruleml.org/
http://www.w3.org/TR/2007/WD-rif-core-20070330

952 J.J. Alferes and R. Amador

13. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. W3C (2004)(submission),
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

14. International Organization for Standardization. Common Logic (CL): a framework for a fam-
ily of logic-based languages, volume ISO/IEC FDIS 24707. ISO (May 2007),
http://common-logic.org/

15. Knolmayer, G., Endl, R., Pfahre, M.: Modeling processes and workflows by business rules.
In: Business Process Management, Models, Techniques, and Empirical Studies, pp. 16–29.
Springer, Heidelberg (2000)

16. May, W., Alferes, J.J., Amador, R.: Active rules in the Semantic Web: Dealing with language
heterogeneity. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791,
Springer, Heidelberg (2005)

17. May, W., Alferes, J.J., Amador, R.: An ontology- and resources-based approach to evolution
and reactivity in the Semantic Web. In: Meersman, R., Tari, Z. (eds.) ODBASE 2005. LNCS,
vol. 3761, Springer, Heidelberg (2005)

18. Object Management Group. Semantics of Business Vocabulary and Business Rules (SBVR).
OMG August (2006), http://www.omg.org/cgi-bin/doc?dtc/2006-08-05

19. Papamarkos, G., Poulovassilis, A., Wood, P.T.: Event-condition-action rules on RDF meta-
data in P2P environments. Computer Networks: The International Journal of Computer and
Telecommunications Networking 50(10), 1513–1532 (2006)

20. Seiriö, M., Berndtsson, M.: Design and implementation of an eca rule markup language. In:
Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, Springer, Heidel-
berg (2005)

21. Spreeuwenberg, S., Gerrits, R.: Business Rules in the Semantic Web, Are There Any or Are
They Different? In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning
Web. LNCS, vol. 4126, Springer, Heidelberg (2006)

22. MARS: Modular Active Rules for the Semantic Web. DBIS, Institute for Informatics, Georg-
August-Universität Göttingen. http://rewerse.net/I5/MARS/

23. Resourceful Reactive Rules(r3). CENTRIA, Universidade Nova de Lisboa,
http://rewerse.net/I5/r3/

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://common-logic.org/
http://www.omg.org/cgi-bin/doc?dtc/2006-08-05
http://rewerse.net/I5/MARS/
http://rewerse.net/I5/r3/

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 953–970, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Heuristics for Constructing Bayesian Network Based
Geospatial Ontologies

Sumit Sen1,2 and Antonio Krüger2

1 Deptt of Computer Science,
IIT Bombay, Mumbai 400 076, India

2 Institute for Geoinformatics
University of Münster,

Robert Koch Str. 26, 48149 Münster, Germany
sumitsen@uni-muenster.de, kruegera@uni-muenster.de

Abstract. Bayesian Network based ontologies enable specification of partial re-
lations between concepts as an advantage over conventional ontologies, based
on description logic. In the context of geospatial ontologies such specifications
facilitate encoding relations between action and entitiy concepts. This paper
presents a case study of transportation ontologies based on traffic code texts of
two different countries. We construct ontologies of both geospatial entities and
actions using the BayesOWL approach. Thereafter we employ heuristics based
on verb-noun co-occurence evidences, available from analysis of formal texts,
to construct linkages between the two types of concepts. This approach enables
high recall and precission for querries on concepts and enables rich inferences
such as most similar and disimilar concepts. The results of our experiments are
verified with human subjects testing. Such heuristics-based-probablisitic ap-
proaches to geospatial ontology specification and reasoning can be utilized for
concept mapping within and across geospatial ontologies as well as to quanitfy
the naming hetrogeinities in two given ontologies.

1 Introduction

Ontologies are used to specify and obtain agreements about conceptualizations about
entities represented in information systems [1]. Ontologies are used as tools to im-
prove semantic interoperability between information systems [2]. Geospatial ontolo-
gies or geo-ontologies have been employed to obtain similar results in the geospatial
domain as well [3], [4]. However several issues remain unresolved in the context of
ontologies in general and geospatial ontologies in specific. Handling of partial knowl-
edge about entity classes and their relations is one such aspect.

Conventional ontology languages are based on crisp logic such as Description
Logic (DL) and thus cannot handle incomplete or partial knowledge about an applica-
tion domain. Uncertainties are ubiquitous in all domains and all aspects of ontologies.
For example, in a given ontology about transportation networks, besides knowing that
“Highway is a subclass of Road” and “Street is a subclass of Road”, we would like to
express the probability that an instance of Road is also a Street (or in the other case, is
an instance of Highway). Such information is important and sometimes critical for

954 S. Sen and A. Krüger

practical reasoning tasks in ontologies as shown by Ding et al [13]. In the context of
geospatial ontologies the flexibility provided by the probablisitic framework of on-
tologies, such as BayesOWL [13] enables encoding partial knowledge about linkages
between concepts relating to geospatial entities and actions. Such knowledge is in the
form of affordance values that may be determined by various techniques including
analysis of formal texts [6]. This paper outlines a heuristics based approach of speci-
fying the linkages between geospatial entities and actions using the BayesOWL ap-
proach [13]. We discuss the results of the approach along with its applications in the
area of matching concepts within and across ontologies. We also demonstrate that our
approach allows us to quanitify interoperability between two given ontologies.

1.1 Geospatial Ontologies as Knowledge Representation Tools

Existing literature in geographical information science points out the significance of
geospatial ontologies as tools to represent conceptualizations in the geospatial do-
main. Such knowledge representation tools are mostly used to resolve semantic dif-
ferences and promote interoperability between applications across information com-
munities [7].

Agarwal [5] has discussed that a unified approach to ontology specification in the
geospatial domain does not exist. Different approaches including the approaches of
formal ontologies [8] and algebraic approaches [9] [10] have evolved in parallel to the
conventional approaches of Description Logic (DL) based specifications. Geospatial
ontology engineering has been also proposed to enable a supportive environment for
knowledge representation in the geospatial domain[11] . However the challenges for
geospatial ontologies as tools of knowledge representation remain unresolved to a
large extent. The primary questions that need to be answered include.

(i) Gomez Perez [12] has stated that the number of ontologies specified is not
large enough for their use in practical and industrial scale applications. This is
true for the geospatial domain and practically verified ontologies are still to be
produced. In their absence it is impossible to verify their utility and hence their
contributions to semantic interoperability

(ii) In a similar point of view it has been discussed that the tools and principles of
ontologies are still viewed with skepticism even after years of research. Agar-
wal [5] has pointed that geographic concepts and categories have inherent inde-
terminacy and vagueness especially that emerge from human reasoning and
conceptualization. It is therefore unlikely that the semantic ambiguities can be
resolved without accounting for the uncertainty factor.

(iii) Geospatial ontologies have either looked at geographic space either from the
point of view of the geospatial entities with it or from that of geospatial actions.
A unified view which incorporates knowledge of geospatial actions in ontolo-
gies of geospatial entities and which treats both these components of knowl-
edge as first class citizens, is necessary. Kuhn[6] advocates the inclusion of
actions and affordances in geospatial ontologies.

Geospatial ontologies are in need of innovative approaches to ensure their practical
use. In order that geospatial conceptualizations can be encoded in ontologies, emerg-
ing techniques in ontological specifications and knowledge representation need to be
adapted and experimented in the geospatial domain. These include probabilistic

 Heuristics for Constructing Bayesian Network Based Geospatial Ontologies 955

ontologies [13] and inclusion of knowledge about geospatial actions and their hierar-
chies [14]. The use of probabilistic geospatial ontologies also enables stochastic rea-
soning, which is capable of producing quantitative results to evaluate the similarity of
concepts across ontologies as well.

1.2 Ontologies of Geospatial Entities and Actions

While ontologies of geospatial entities is similar to conventional ontologies of sub-
stances or endurants[15] On the other hand, the term Action-driven ontologies was
first coined by Gilberto Câmara et al [16] to address the intentionality perspective in
categorizing the fiat and bona-fide objects in geospatial ontologies. The view on geo-
spatial ontologies that is advocated by them, states

“geographical space” as “a system of entities and a system of actions”

This view of geographical space has been shared widely across the geospatial do-
main by various groups. The notion of functions of geospatial entities should be con-
sidered analogous to that of actions, and should be viewed in the broader sense as it
appears in ontology literature. Timpf [17] maintains that geography activity models
help to disambiguate semantics of data in a particular domain. Kuhn [6] postulates
that geospatial ontologies need to be designed with a focus on human actions and
activities in geographical spaces. He advocates simple steps of identifying human
actions and activities in the domain space and modelling them with respect to the
domain entities. The assumption underlying this approach is that increasingly com-
plex activities are a precursor to increasingly complex conceptualizations of the envi-
ronment and that such a paradigm ensures that ontologies are both conciseness and
relatedness to human activities. Thus as thumb rule concepts of functions are less in
number than concepts of entities.

Mainstream efforts in geospatial ontologies, and ontologies in general have con-
centrated on so called substantial entities [15] and hence static taxonomies rather than
functions or roles. Worboys [18], states

“The large majority of current systems for handling geospatial information are
static, concentrating on a single temporal snapshot, usually the current state.”

Johansson [19] has discussed the general role of functions in classification of entities.
Ontology engineering by making use of functionality of engineering artifacts in the
manufacturing domain has been discussed by Kitamura et al [20]. It shown that an
ontological framework for functional knowledge helps interoperability of design data
in the form CAD/CAM diagrams. For our study we use analysis of traffic code texts
texts similar to the work of Kuhn [6] and hence restrict the scope of functions or af-
fordances of road network entities to those defined with in the formal text. We discuss
the analysis of texts in section 3.2.

2 Probabilistic Ontologies and Stochastic Inferences

Conventional DL based ontologies such as OWL ontologies are characterized by the
following.

956 S. Sen and A. Krüger

1. Expressivity: DL based constructs are highly expressive, enabling rich and
complex descriptions of domain concepts.

2. Automated Reasoning: Based on logic based reasoning, concepts can be
checked for consistency and to evaluate Subsumption.

3. Compositionality: The previous two characteristics enable creation of new con-
cepts based on existing ones by combining concepts and properties.

Such characteristics are also accompanied by certain deficiencies such as

1. Inability to express probabilistic relationships similar to the links between
functions and entities discussed above. These could be accommodated in the
various extensions suggested such as P-CLASSIC [21], Fuzzy DL [22] besides
others [23].

2. In a practical case it is often that one concept in an ontology does not exactly
match another concept in a second ontology. The match is usually a combina-
tion of multiple concepts, which is discussed as the one-many problem [24]
and requires the capability to match the most similar concept.

We discuss probabilistic ontologies, which are expressed as Bayesian Networks (BN).
The advantage of such ontologies is that a new logic framework is not required. BN
based ontologies also allow stochastic inferences such as most similar and most dis-
similar concepts.

2.1 Ontologies as Bayesian Networks

PR-OWL [25] and BayesOWL [13] are two approaches that use BN based representa-
tion of ontologies. Of these BayesOWL provides an approach for specification and
reasoning.

Ding et al. [13] developed a mechanism of expressing OWL ontologies as Bayesian
networks termed as BayesOWL. The important steps to construct such ontologies are
as below:

Construction of the Directed Acyclic Graph (DAG): The entity classes to be used are
listed first and the topmost (most universal) concept is added to the top of the DAG
as a node. Child concepts of this concept are added below the parent concept as in-
dividual nodes and the complete DAG is created by constructing the links. Each
node has only 2 states (True, False)

Regular Nodes and L Nodes: The nodes created above are called Regular nodes.
There are another category of nodes called L Nodes which help in constructing Un-
ion, Intersection, Disjoint and Equivalent relationships. Since we do not use any of
these relationships in our ontologies we shall ignore construction of L Nodes.

Allocating conditional probabilities: Regular nodes (other than the top node) have one
conditional probability value each for its parent node. It is suggested that such con-
ditional probability values are learnt from text classification techniques. We use the
relatedness values from WordNet similarity modules [26] to derive these values.

 Applying IPFP iterations to impose P Space: Finally with given (Conditional Proa-
bability Table) CPT values it is important for the network to learn the real values
given the probability constraints to arrive at a condition where all LNodes are true.
This is achieved by a iterative proportional fitting procedure [27]. In case there are
no L Nodes to be considered this iterative step can be overlooked.

 Heuristics for Constructing Bayesian Network Based Geospatial Ontologies 957

2.2 Reasoning Tasks in Bayesian Network Ontologies

In the most general form, a BN of n variables consists of a DAG of n nodes and a
number of arcs. Nodes Xi in a DAG correspond to variables, and directed arcs be-
tween two nodes represent direct causal or influential relation from one node to the
other. The uncertainty of the causal relationship is represented locally by the condi-
tional probability table (CPT) P(Xi|πi) associated with each node Xi, whereπi is the
parent node set of Xi. Under a conditional independence assumption, the graphic
structure of BN allows an unambiguous representation of interdependency between
variables, which leads to one of the most important feature of BN: the joint probabil-
ity distribution of X = (X1,….,Xn) can be factored out as a product of the CPTs in the
network (named \the chain rule of BN"):

P(X = x) =)|(
1

∏
=

n

i

i iXP π (1)

With the joint probability distribution, BN supports, at least in theory, any infer-
ence in the joint space although probabilistic inference in a general DAG is NP-hard
[Cooper, 1990]. It is interesting to note the similarity between our ontologies and the
requirement of Directed Acyclic Graphs to construct BNs.

The principle reasoning tasks in our Bayesian network are based on computation of
joint probability distributions and utilize the three methods suggested by Ding et al.
[13]. These are:

• Concept Satisfiablity: if a concept based on certain states of given nodes in the
network can exist. This is defined by verifying if P (e|t) = 0, where e is the
given concept and t indicates the truth condition of other concepts.

• Concept Overlap: the degree of overlap between a given concept e and any
other concept in the network is determined by P (e|C,t).

• Concept similarity: The advocated measure of similarity is based on Jaccard
coefficient provided by Rijsbergen [28] as

In our case this translates to

MSC(e,C) = P(e ∪ C) / P(e ∩ C)
 = P(e,C) / (P(e) + P(C) – P(e,C))
 = P(C|e) * P(e) / (P(e)+ P(C)–P(C|e)* P(e))

For more detailed explanations of these reasoning tasks refer Ding et al. [13]

3 Case Study: Ontologies from Traffic Code Texts

Traffic code texts such as the Highway Code of UK1 (HWC) and the New York
Driver’s Manual2 (NYDM) are examples of formal texts, which not only mention the
entities in a road network but also specify the permissible actions in the respective
geographic jurisdiction. Kuhn [29] has advocated the extraction of ontologies from
such formal texts. Our case study involves the extraction of such ontologies from each

1 www.highwaycode.gov.uk/
2 http://www.nydmv.state.ny.us/dmanual/

958 S. Sen and A. Krüger

of these traffic codes. We extract most frequently occurring entities and construct
hierarchies of such entities. We also extract most frequently occurring actions in
relation to these entities and construct hierarchies of actions as well. A further text
analysis provides with co-occurrence values of entity-action pairs, which are used to
establish linkages between entities and their actions.

In this section we discuss the extraction of probabilistic ontologies based on the
text analysis. We also discuss the inferences obtained from such ontologies as op-
posed to conventional ontologies.

3.1 Extraction of Entity Concepts and Action Concepts

The steps listed in § 2.1 are used to construct the BN based ontologies. The important
constituents required for these are extracted from the text as follows.

1. Both texts are subjected to a Part Of Speech (POS) analysis which not only
analysis the part of speech but also provides the sense of the words [30].

2. The most frequently occurring entities are used to construct a hierarchy of geo-
spatial entities using hypernyms relations of noun terms from WordNet lexicon
[30].

3. Similarly a hierarchy of geospatial action terms are used to construct the hier-
archy of actions. Hypernym relations between verbs are used to construct such
hierarchies.

4. WordNet-similarity modules [26] are used to extract the conditional probabili-
ties between class and subclass relations in the two hierarchies. The CPTs thus
obtained allow us to construct individual BayesOWL ontologies of entities and
actions separately as shown below in figure 1 and 2.

(a)
(((b)

Fig. 1. DAG of entity concepts extracted from the (a) NY Driver Manual text and (b) the UK
Highway code text

 Heuristics for Constructing Bayesian Network Based Geospatial Ontologies 959

It is important to note that many concepts in one entity concept graphs do not reoc-
cur in the other graph. However in the context of action concepts all the concepts
occurred in both texts. The natural motivation for linking the two graphs, which
emerges from these graphs are as follows

1. to match the most similar and most disimilar concepts for the concepts from the
second ontology where these concepts are missing or named differently.

2. to evaluate the performance of the machine based mappings in cases where the
names of the concepts are same across ontologies.

We make an important assumption based on Kuhn [29] that geospatial actions form
basic concepts of the geospatial domain, to which entity concepts could be linked.

Fig. 2. DAG of action concepts extracted from the both traffic code texts

The CPTs of these two ontologies cannot be represented here for lack of space but
it is important to state that these form an important part of the ontology itself. Also it
is important to note that many of the nodes show “0+” value for the state ‘True’.
These values are small but not equal to zero (A zero value would indicate concept
unsatisfiablity but a very small value would indicate that such concepts can still be
satisfied but very rarely).

3.2 Heuristics: Linking Entities and Actions

As discussed in section 2.3 we know that noun-verb co-occurrences are important
sources for extraction of comprehension of the affordance of a road network entity.
Thus a sentence from the NYDM which says:

You may never make a U-turn on a limited access expressway, even if paths
connect your side of the expressway with the other side.

960 S. Sen and A. Krüger

means, limited access expressways do not afford U-turns, although the physical affor-
dance still exists. For our paper we shall not distinguish between physical and so-
cial/legal affordances but recognize that such distinctions can be made.

The co-occurrence analysis of the two texts gives us co-occurrence/occurrence in-
dex values as shown in table 1 below. These values are indicative of the affordance
each of the entities listed have for the corresponding actions. The zero values in the
table indicate non-affordances where as blanks indicate that no information was avail-
able to ascertain affordance or non-affordance.

Kuhn [6] reports similar results about the German traffic code, although his results
are rather deterministic (do not use a quantitative value to represent the affordance)
and do not report non-affordances. We extend the work of Kuhn [6] by adding such
information and propose to include such knowledge in the geospatial ontologies.

The level of automation in terms of machine-based analysis of the affordance is
greater in our case but is also accompanied with careful manual inspection. We con-
firm the observations of Kuhn [6] that manual extraction is tedious but at times most
effective.

Kuhn [6] has also reported hierarchies of actions in the German traffic code and
this includes the notion of entailment of actions. Four notions of entailments com-
monly seen in verbs have been reported in linguistics [31]. These include:

 Troponymy, which express super-sub concept relationships among verbs and
hence the actions.

 Inclusion, which expresses part-of relationships between two actions, implying
that one action is a part of the other.

 Pre-requisiteness, where one action acts as a pre-requisite for the second but not
necessarily causing the second action.

 Causality, when one action initiates (or is the cause) of the second action

These relations are very useful to probe nested and sequential affordances. For ex-
ample the complex action to overtake is composed of the actions drive, approach and
pass. The affordance of another vehicle to be passed is only realized when the affor-
dance of approachability has been used. Much more complex actions can be explored
with the notion of such sequential affordances.

At the same time, by using is-a relations we can express hierarchies of action con-
cepts. As done in Figure 2 discussed earlier. The affordance of the lower concepts
such as walk, drive etc. entails the affordance of movement and is nested inside the
former.

Table 1. Afordances of road network entities based on co-occurrence analysis of the two traffic
code texts

HWC Street Road Footpath Motorway Lane Way Path Crosswalk Expresswa
move 0.015 0.049 - 0.012 0.107 0.035 - - -
walk - 0.026 0.056 0.000 - - - - -
drive 0.057 0.062 0.000 0.069 0.000 - - - -
enter - 0.025 - - 0.000 0.020 - - -
stop 0.010 0.075 - 0.000 0.000 0.051 - - -
be 0.014 0.215 0.006 0.028 0.061 0.033 0.014 - -
cross 0.029 0.135 - 0.000 0.024 0.067 0.020 - -

 Heuristics for Constructing Bayesian Network Based Geospatial Ontologies 961

Table 1. (continued)

turn 0.038 0.059 - - 0.042 0.041 - - -
wait - 0.040 - 0.000 0.009 0.031 - - -
approach 0.022 0.052 - 0.016 0.065 0.045 0.023 - -
go - 0.021 - - 0.063 - - - -
pass - 0.038 - - 0.032 0.012 0.017 - -
NYDM
move 0.026 0.032 - - 0.107 - 0.032 - -
walk - 0.010 - - - - - - -
drive 0.020 0.061 - - 0.056 - - - 0.047
enter 0.025 0.048 - - 0.077 0.041 - 0.053 0.064
stop 0.019 0.048 - - 0.038 0.026 - 0.059 0.026
be 0.011 0.068 - - 0.089 0.026 0.004 0.009 0.024
cross 0.061 0.033 - - 0.017 0.071 - 0.030
turn 0.037 0.080 - - 0.094 0.051 0.029 0.018 0.008
wait 0.040 - - - 0.009 0.059 - - 0.029
approach 0.015 0.060 - - 0.034 - - - 0.026
go 0.020 0.029 - - 0.030 0.051 - - 0.017
pass 0.044 0.039 - - 0.130 0.025 - 0.014 0.013

Given these values, links are established between concepts of entities and actions.
Affordance values are used for Conditional Probababilities (CPs) for these links.

3.3 Inferences from Linked Ontologies

Inferences within BayesOWL as described in section 2.2 can be applied to each prob-
abilistic geo-ontologies of the HWC & the NYDM. The DAGs for the two traffic-code
ontologies are shown in Figure 3 and 4 below. Stoichastic reasoning upon these
Bayesian Networks allow us to obtain the most similar concepts with in the same
ontology and the degree of overlaps. This is particularly useful if one needs to asses
the similarity between a given action concept and an entity concept. However in order
to asses the interoperability between two different ontologies we need to use the no-
tion of virtual evidences explained by [32].

We extend the mechanism to specify virtual evidences by making a fundamental
assumption about action concepts in geospatial ontologies. This assumption is based
on the work of Kuhn [11] which attempts to make the case for concepts of geospatial
actions as primary constituents of geo-ontologies. We assume that our knowledge
about increasing complexities of geospatial actions leads to knowledge about the
complex environment, which affords such actions, and hence the categorization of
geospatial entities and artifacts.

3.3.1 Reasoning Across Ontologies with Common Functions
We now arrive at the basic motivation task of reasoning across ontologies. Since our
two texts have differences in the list of geospatial entity concepts (the Highway code
contains mention of Footpath and Motorway whereas the NY driver’s manual

962 S. Sen and A. Krüger

Fig. 3. DAG extracted from the NY Driver Manual text

Fig. 4. DAG extracted from the UK Highway code text

mentions Crosswalk and Expressway, our task is to obtain degree of overlap between
these two concepts and the most similar concepts given their linkages with the com-
mon function concepts. To do this, we make an assumption that action concepts re-
main invariant across the ontologies such that the meaning of walk or drive remain
the same (although the meaning of a Road and a Highway can differ). We create
a virtual node for each node of the given ontology in the target ontology based

 Heuristics for Constructing Bayesian Network Based Geospatial Ontologies 963

on its conditional probabilities in respect to the action concepts (common to both
ontologies). Thereafter we obtain the most similar and most dissimilar concepts based
on the approach already used in § 3.2.1.

Table 2 lists these top matches obtained from the two BNs. Further we are also
able to obtain the worst matches or most dissimilar concepts as shown in table 3.

Table 2. Most similar and dissimilar concepts of the HWC in the NYDM

HWC Con-
cept

Most similar
entity

Most dissimilar
entity

Footpath Path Expressway
Highway Way Street
Motorway Road Crosswalk
Path Path Expressway
Road Road Expressway
Street Path Street
Way Way Expressway

Table 3. Most similar and dissimilar concepts of the NYDM in the HWC

NYDM
Concept

Most similar
entity

Most dissimilar entity

Way Way Motorway
Street Way Street
Road Road Street
Path Path Motorway
Highway Path Street
Expressway Road Street
Crosswalk Path Motorway

4 Psycholinguistic Verification

We have already stated that a simplistic evaluation of the machine based values of
similarity and hence the mapping between concepts of two ontologies is not appropri-
ate. For example the assumption that Road in HWC and NYDM mean the same needs
to be validated by human experts (this is considered as the ideal case and the ultimate
choice while dealing with semantic matchmaking). However the term “expert” is also
subjective and so we try to analyse the mappings obtained from different subjects
including (i) those who have driven in on of the countries (and hence familiar with
entities of one of the ontologies) and (ii) those who have driven in both (and thus
familiar with entities from both). We have also maintained a balance of age groups
and gender.

This section explains human subjects testing based on the first case study and tries
to compare the results of the machine based mappings vis-à-vis human generated
ones.

964 S. Sen and A. Krüger

4.1 Human Subjects Tests

Human subject testing was conducted for 20 participants who were native English
speakers or with equivalent proficiency. Participants were given two sets of cards,
which had names of road network entities from each ontology (the Highway Code and
NY Driver’s Manual). They were asked to arrange the cards such that the entity from
the first set they believed was the most similar to one from the other set, remained
closest. After this task was completed, they were asked to flip the cards and read the
sections of the texts relevant to the respective entities, which occurred in the corre-
sponding traffic code texts. These sections provided information about the different
actions that were permissible on that particular road network entity.

The mappings generated before and after flipping the cards (and hence before and
after the knowledge about entity functions was available) were recorded and ana-
lyzed. The tests took not more than 20 minutes and were administered with no inter-
ference once the initial instructions were given. All 20 participants volunteered
willingly and were debriefed at the end of the tests.

The raw data obtained from before and after the flipping of cards were arranged
in a two spreadsheets and the differences were recorded in another. One-way
ANOVA tests were applied between the values obtained from each human subject
to analyze the variance. They show that all subjects have similar matches and the
variations are relatively lower for the mappings before the flipping of cards and
slightly higher for mappings after the flipping the corresoponding P values from the
ANOVA tests are 0. 99 and 0.97. The P value for difference between the two being
lower (=0.36) is significant enough to state that the changes between mappings
before and after flipping the cards, for all subjects, was similar across the human
subjects.

4.2 Analysis

Table 5 below summarizes some of the mappings generated from the human subject
tests. We note that most dissimilar mappings are not reported here for sake of simplic-
ity. We note that other than the cases of Street and Motorway most mappings also
appear in machine-based mappings.

Interestingly, the HWC Concept Street appears as the most dissimilar concept in
the machine based mappings, which is the biggest disparity between the two map-
pings. However, rest of the mappings is seen to be comparable. The human mappings
get closer to the machine-base mappings after the subjects were informed of the func-
tional properties. For example, the confidence values for the mapping between
Crosswalk and Footpath decreased after the human subjects were informed about
functions of the entities and Path became the most similar concept.

It is also important to note that the covariance of the mapping values in respect to
age and gender was found to be insignificant. The variance of mappings produced by
subjects who have driven in both countries was found to be slightly lower than those
who have driven only in one but this was fairly insignificant.

 Heuristics for Constructing Bayesian Network Based Geospatial Ontologies 965

Table 5. Human generated mappings. Most similar and dissimilar concepts of the HWC in the
NYDM (a) before reading the texts about entity functions

NYDM
Concept

Most simi-
lar entity

Values (0 to 3)

Way Way 2.7
Street Street 2.7
Road Road 2.65
Path Path 2.5
Highway Highway 0.875
Expressway Motorway 2.55
Crosswalk Footpath 0.95

(b) after reading the texts about entity functions

NYDM
Concept

Most
similar entity

Value (0 to 3)

Way Way 1.8
Street Street 2.85
Road Road 2.95
Path Path 1.2
Highway Road 1.25
Expressway Motorway 2.5
Crosswalk Path 1.0

We have already discussed that there is a close resemblance in the machine based
mappings and the human based mappings although they are not identical. It is possi-
ble to report precision and recall of the mappings in terms of false positives (when a
true match is overlooked) and false negatives (when a incorrect match is reported),
using a Unique Name Assumption (UNA which, assumes that entities which have
same names in both ontologies are the same entities). This is not a good evaluation of
the performance of the machine based mapping because naming heterogeneity is
abundant in most cases. This is also evident from the results of our human subject
tests.

Graph 2 compares the precision and recall values based on the UNA and on the
mappings produced by the human subject tests. The recall value remains the same
(mainly due to the mismatch of the entity Street in the machine-based mappings).
However recall has been shown to improve. Also as stated earlier, the comparison is
more favourable with human mappings when functional knowledge is established.
The confidence values are also similar (we avoid these details for lack of space)

5 Applications

Our approach to geospatial ontologies enables practical usage of ontologies and on-
tology based reasoning to some well-known problems. These include (i) problems of
finding most similar and most disimilar concepts within an ontology [33] , (ii) prob-
lems of finding most similar and most disimilar concepts across ontologies [34] and

966 S. Sen and A. Krüger

(iii) quanitification of the difference between two given ontologies based on the nam-
ing hetrogenities of the entity concepts.

5.1 Concept Mapping Within and Across Ontologies

Mapping or infering most similar concept within an given ontology has been at-
tempted in many contexts [33]. Similarity measurement has been a focus of recent
research in the area of semantics of geospatial data [34, 35]. However we need to
point out that similariy assesment has been beyond the scope of conventional ontol-
ogy reasoning. Our approach allows the use of such inferences not only in the context
of a given geospatial ontology but also across ontologies. Such mappings have impor-
tant implications for ontology based mapping of geospatial databases and services [4].

5.2 Interoperability Between Ontologies

Based on the mappings seen above we not only can ascertain the similar concepts and
the dissimilarities but also quantify the value by which the two ontologies match.
Interoperability between two geontologies has been defined by Fonseca et al as the
degree of similarity matches between tuples of concepts of the given ontologies [39].
In our context this can be obtained by the precision and recall values of the terms that
are common to both ontologies. It is possible to hypothesize that due to the errors
generated by use of wrong affordance values and heuristics used for the same, the true
value of interoperability may not be found. For example, in table 2 and 3 the terms
Street occurs as most dissimilar concept to the corresponding occurrence of Street in
the other ontology. But even if we assume uniform distribution of errors and a cancel-
lation effect there in, it is possible to report the degree of matches as a measure of the
level of interoperability. We can choose to derive this, based on the F value derived
from the harmonic mean of precision and recall [28]. This value

 F = 2 *P* R / (P + R) where P=Precision and R= Recall (2)

The measured value in this case results to be 0.779. A value equal to 1 indicated a
total match or complete interoperability and a value of 0 is the worst-case scenario.
To verify if this was the case in respect to how humans conduct mappings across
systems.

We also conducted human subjects testing and revised our estimates of the interop-
erability between the two ontologies. We use the F values to estimate our interopera-
bility measure, as before. In this case we consider the human generated mappings to
obtain the values of precision and recall. There are two sets of values available, (i) for
the mappings obtained before the humans subjects were allowed to read the geospatial
actions related to the entity by flipping the card and (ii) after flipping and reading the
relevant texts about actions.

The computed value of both precision and recall remain at 100% before the flip-
ping of cards and 80% after the flipping. This resulted in interoperability value = 1 in
the first case dropping down to 0.8. Incidentally, the value of the later is closer to the
machine generated value of interoperability.

 Heuristics for Constructing Bayesian Network Based Geospatial Ontologies 967

With UNA
With human
mappings

Precission

Recall

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Precission

Recall

Graph 2. Graph comparing evaluations of machine-based mapping in the (i) absence and (ii)
presence of human mapping values

6 Conclusions and Future Work

We have reported heuristics based mechanism to specify affordance-based linkages
between entitity concepts and action concepts with a geosptial ontology. Stochaistic
reasoning upon such ontologies allow inference similarity values and utilizes a simple
assumption of invariance of geospatial action concepts. We have deomonstrated the
efficiency of our approach based on efficiences of the machine-based mappings.

One important aspect of our work in treating actions as invariant is the philosophi-
cal perspective that the meanings of geospatial entities are dependent on the use they
have for humans. Although this assumption is a fairly significant one, in the geospa-
tial domain, it requires further validation and acceptance than it currently has. It finds
relevance in the theories of human geography, which assigns meanings to a place
based on its uses to human society, and the activities that it can afford [37]. We also
hypothesize that the framework can be used in respect to any other set of invariant set
of concepts that may be common to both ontologies, such as top level ontologies like
DOLCE [38].

6.1 Future Work

This is only a first step towards linking ontologies of actions and entities and requires
further efforts, which will help to build translationary mechanisms across ontologies
and hence enable the applications discussed in Section 4. Our experience has shown
that there exist many themes for future work. These include

968 S. Sen and A. Krüger

− Extraction of affordance as outlined in this paper is restricted to text analysis,
which can be substituted with field based studies and values obtained from hu-
man subjects testing as reported in literature [40].

− Inclusion of Disjoint, Equivalent, Intersection and Union relations: For simplifi-
cation of our case study these relations were avoided although these relations
can be easily determined from WordNet during text analysis. Using such rela-
tions in future will require use of some iterative algorithm such as DIPFP in or-
der to enforce truth conditions of the LNodes in BayesOWL[27].

− Testing on industrial scale: Finally this experiment, although at a prototype
scale, aims to provide similarities across ontologies, which are developed at an
industrial scale. It would be important to evaluate the full-scale deployment of
such a methodology to large scales geospatial ontologies.

Acknowledgements

TBD.

References

1. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Shar-
ing. In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowl-
edge Representation, Kluwer Academic Publishers, Dordrecht (1993)

2. Kashyap, V., Sheth, A.: Semanti Heterogenity in Global Information Systems: The Role of
Metadata, Context and Ontologies. In: Papazoglou, M., Schlageter, G. (eds.) Cooperative
Information Systems: Current Trends and Directions, Academic Press, London (1998)

3. Fonseca, F.T., et al.: Using Ontologies for Integrated Geographic Information Systems.
Transactions in GIS 6(3) (2002)

4. Kuhn, W.: Why, of What, and How? Journal on Data Semantics III (2005)
5. Agarwal, P.: Ontological considerations in GIScience. Int. Journal of Geographical Infor-

mation Science 19(5), 501–536 (2005)
6. Kuhn, W.: Ontologies in Support of Activities in Geographic Space. International Journal

of Geographical Information Science 15(7), 613–631 (2001)
7. Bishr, Y., et al.: Probing the Concept of Information Communities-a First Step Toward

Semantic Interoperability. In: Goodchild, M.F., et al. (eds.) Interoperating Geographic In-
formation Systems, pp. 55–71. Kluwer Academic Publishers, Boston (1997)

8. Bittner, T., Frank, A.: On the design of formal theories of geographic space. Journal of
Geographical Systems 1(3), 237–275 (1999)

9. Raubal, M., Kuhn, W.: Ontology-Based Task Simulation. Spatial Cognition and Computa-
tion 4(1), 15–37 (2004)

10. Rüther, C., Kuhn, W., Bishr, Y.: An algebraic description of a common ontology for
ATKIS and GDF (2000)

11. Klien, E., Probst, F.: Requirements for Geospatial Ontology Engineering. In: AGILE 2005.
Conference on Geographic Information Science, Estoril, Portugal (2005)

12. Gómez-Pérez, A., Férnandez-López, M., Corcho, O.: Ontological Engineering
13. Ding, Z., Peng, Y., Pan, R.: BayesOWL: Uncertainty Modelling in Semantic Web Ontolo-

gies. In: Soft Computing in Ontologies and Semantic Web, Springer, Heidelberg (2005)

 Heuristics for Constructing Bayesian Network Based Geospatial Ontologies 969

14. Sen, S.: Linking hierarchies of entities and their functions in geospatial ontologies. Journal
of Geomatics 1(1) (2007)

15. Grenon, P., Smith, B.: SNAP and SPAN: Towards Dynamic Spatial Ontology. Spatial
Cognition and Computation 4(1), 69–104 (2004)

16. Camara, G., Monteiro, A.M.V., et al.: Action-Driven Ontologies of the Geographical
Space. In: GIScience 2000, Savannah, GA, AAG (2000)

17. Timpf, S.: Geographic Task Models for geographic information processing. In: Duckham,
M., Worboys, M.F. (eds.) Meeting on Fundamental Questions in Geographic Information
Science, pp. 217–229 (2001)

18. Worboys, M.: Event-oriented approaches to geographic phenomena. Int. Journal of Geo-
graphical Information Science 19(1), 1–28 (2001)

19. Johansson, I.: Functions, Function Concepts, and Scales. The Monist 87(1), 96–114 (2004)
20. Kitamura, Y., Koji, Y., et al.: An Ontological Model of Device Function and Its Deploy-

ment for Engineering Knowledge Sharing. In: First Workshop FOMI 2005 - Formal On-
tologies Meet Industry, Castelnuovo del Garda (VR), Italy (2005)

21. Koller, D., Levy, A., Pfeffer, A.: P-CLASSIC: A Tractable Probabilistic Description
Logic. In: Proc. of AAAI 1997, pp. 390–397 (1997)

22. Straccia, U.: A fuzzy description logic. In: AAAI 1998. Proc. of the 15th Nat.Conf. on Ar-
tificial Intelligence, Madison, USA, pp. 594–599 (1998)

23. Stuckenschmidt, H., Visser, U.: Semantic Translation based on Approximate Re-
classification. In: KR 2000. Proc. of the Workshop Semantic Approximation, Granularity
and Vagueness (2000)

24. Doan, A., Madhavan, J., Halevy, A.: Ontology Matching: A Machine Learning Approach.
In: Staab, S., Struder, R. (eds.) Handbook on Ontologies in Information Systems, pp. 397–
416. Springer, Heidelberg (2004)

25. Costa, P.C.G, Laskey, K.B.: PR-OWL: A Framework for Probabilistic Ontologies. In:
FOIS 2006. International Conference on Formal Ontology in Information Systems, IOS
Press, Amsterdam (2006)

26. Patwardhan, S., Pedersen, T.: Using WordNet Based Context Vectors to Estimate the Se-
mantic Relatedness of Concepts. In: EACL 2006. Workshop Making Sense of Sense -
Bringing Computational Linguistics and Psycholinguistics Together, Trento, Italy (2006)

27. Peng, Y., Ding, Z.: Modifying Bayesian Networks by Probability Constraints. In: UAI
2005. 21st Conference on Uncertainty in Artificial Intelligence, Edinburgh, Scotland
(2005)

28. Rijsbergen, V.: Information Retrieval, 2nd edn. Butterworths, London (1979)
29. Kuhn, W.: Ontologies from Texts. In: GIScience 2000, Savannah, Georgia, USA, Univer-

sity of California Regents (2001)
30. Fellbaum, C. (ed.): WordNet - An Electronic Lexical Database. MIT Press, Cambridge

(1999)
31. Fellbaum, C.: On the Semantics of Troponymy. In: Green, R., Bean, C., Myaeng, S. (eds.)

The Semantics of Relationships: An Interdisciplinary Perspective, pp. 23–24. Kluwer,
Dordrecht (2002)

32. Pan, R., et al.: A Bayesian Network Approach to Ontology Mapping. In: Gil, Y., Motta, E.,
Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, Springer, Heidelberg
(2005)

33. Cross, V.: Fuzzy semantic distance measures between ontological concepts. IEEE Annual
Meeting of the Fuzzy Information , pp.635–640

970 S. Sen and A. Krüger

34. Rodríguez, A., Egenhofer, M.: Determining Semantic Similarity Among Entity Classes
from Different Ontologies. IEEE Transactions on Knowledge and Data Engineering 15(2),
442–456 (2003)

35. Janowicz, K., Raubal, M.: Affordance-Based Similarity Measurement for Entity Types. In:
Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736,
Springer, Heidelberg (2007)

36. Schwering, A.: Hybrid Model for Semantic Similarity Measurement. In: Meersman, R.,
Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, Springer, Heidelberg (2005)

37. Tuan, Y.-F.: Space and Place: The Perspective of Experience. University of Minnesota
Press, Minneapolis (1977)

38. Masolo, C., et al.: WonderWeb Deliverable D17. The WonderWeb Library of Founda-
tional Ontologies and the DOLCE ontology (2002)

39. Fonseca, F.: A Framework for Measuring the Interoperability of Geo-Ontologies. Spatial
Cognition and Computation 6, 307–329 (2006)

40. Raubal, M.: Formalizing Conceptual Spaces. In: Varzi, A., Vieu, L. (eds.) FOIS 2004.
Proceedings of the Third International Conference. Frontiers in Artificial Intelligence and
Applications, vol. 114, pp. 153–164. IOS Press, Amsterdam (2004)

OntoCase - A Pattern-Based Ontology

Construction Approach

Eva Blomqvist

Jönköping University, Jönköping, Sweden
blev@jth.hj.se

Abstract. As the technologies facilitating the Semantic Web become
more and more mature they are also adopted by the business world.
When developing semantic applications, constructing the underlying on-
tologies is a crucial part. Construction of enterprise ontologies need to
be semi-automatic in order to reduce the effort required and the need
for expert ontology engineers. Another important issue is to introduce
knowledge reuse in the ontology construction process. By basing our
semi-automatic method on the principles of case-based reasoning we en-
vision a novel semi-automatic ontology construction process. The ap-
proach is based on automatic selection and application of patterns but
also includes ontology evaluation and revision, as well as pattern candi-
date discovery. The development of OntoCase is still ongoing work, in
this paper we report mainly on the initial realisation and first experi-
ments concerning the retrieval and reuse phases.

1 Introduction

Today companies struggle with a large information overflow. The size of com-
pany intranets is soon comparable to the size of the entire web some years ago.
When developing semantic applications for enterprises, constructing the under-
lying enterprise ontologies is a crucial part. Ontology engineering has for a long
time been considered a manual task, but it is a very resource demanding and
tedious process, so therefore many methods proposed today are semi-automatic.
Using semi-automatic approaches reduce both the total construction effort and
the need for certain ontology engineering expertise. The field of semi-automatic
ontology construction is still a relatively new research field and most methods
leave many difficult tasks up to the user. This is one thing that our research
aims to improve, through further automation of the process in combination with
increased output quality.

An important issue is also to introduce knowledge reuse in the ontology con-
struction process. For instance, in the business domain there are many similari-
ties between companies, e.g. how they organise their business processes and their
information. Common practises should be exploited, as well as drawing on best
practises in ontology engineering to correctly model the features. One way of
doing this would be through ontology patterns. Case-based reasoning (CBR) is
a methodology also based on the idea of reuse. By combining the CBR viewpoint

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 971–988, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

972 E. Blomqvist

with the use of patterns, the OntoCase approach intends to apply a novel hybrid
view of semi-automatic ontology construction, both encompassing patterns and
reuse of partial solutions.

The following sections briefly introduce some background and definitions to-
gether with related work. In Section 3 we focus on the research questions that
the OntoCase approach is based on and in Section 4 two initial experiments are
described, which additionally motivates the use of a CBR viewpoint. Next, in
Section 5 the phases of the OntoCase approach are described. Finally, the paper
is concluded with an outlook and some preliminary conclusions in Section 6.

2 Background

This section describes some background relevant to the rest of this paper, includ-
ing definitions and related work in ontology engineering and ontology patterns.

2.1 Ontologies

In our research we adopt the commonly used ontology definition from [1], stating
that an ontology is a formal explicit specification of a shared conceptualisation.
In our view, this means that an ontology generally contains concepts, a tax-
onomy, general relations, and possibly other axioms. We do not, at this stage,
restrict our research to one specific ontology representation formalism, but the
OntoCase approach assumes the possibility to reduce the ontology to a semantic
network-like representation (a directed labelled graph). We realise that such a
reduction is not trivial and might result in loss of information, but the details
of this problem is considered outside the scope of this paper.

One way of describing ontologies is to view the levels of abstraction in an on-
tology, as defined in [2]. In this context our research focuses mainly on domain
and application ontologies within enterprises. Another categorisation of ontolo-
gies is to classify them by their intended use, and thus we focus on ontologies for
structuring and retrieval of information with respect to one enterprise. This kind
of ontology we denote enterprise application ontology throughout this paper. An
enterprise ontology (see [3]) generally intends to cover all the knowledge of an
enterprise, and is classically acquired during an enterprise modelling process.

2.2 Ontology Patterns

A general view of patterns is the one commonly used in pattern mining, where
the aim is to find regularities in some set of objects, like recurring sets of ontology
primitives in a set of ontologies. We restrict this view slightly to only consider
connected sets of ontology concepts (connected referring to the ontology as a
graph). Finding such patterns is in our case, as we shall see later, comparable
to the CBR idea of retaining partial solutions. A different view is when patterns
denote predefined templates for constructing new solutions. This is a more con-
sensual view, where patterns aim to encode the best practises of some community

OntoCase 973

or domain. These patterns are usually more abstract and perhaps not formally
represented, while in the pattern mining view a pattern can be any reoccurring
partial solution. In our research we aim to exploit a combination of both these
views. With the single term pattern we will throughout this paper denote pat-
terns in a very general sense, encompassing both views described above. More
specific terms will also be used, then referring to either view described above,
like ontology design patterns described in the following paragraph that refers to
patterns conforming to the best practises view of patterns.

When discussing patterns in the second sense mentioned above, patterns as
encoding best practises, we are in the OntoCase approach mainly interested
in patterns on the design and architecture level (see [4] for a classification).
We describe the notion of ontology design patterns generally as self-contained
ontology templates for constructing some ontology component, each consisting
of a well-defined set of ontology primitives. Ontology design patterns belong to
the tradition of consensual best practises and can be compared to for example
software design patterns. Related work on ontology design patterns mainly focus
on manual approaches, as the content patterns described in [6], and language
specific modelling idioms as described by [7], although recent research, as in [8],
is aiming towards automatic use of content patterns for example. An ontology
architecture pattern is a set of constraints on the way the ontology as a whole
can be composed, analogous to the notion of architecture in for example software
engineering. So far no architecture patterns have been constructed, thereby to
encompass architecture patterns in the practical realisation of OntoCase is left
to future work.

2.3 Ontology Engineering

Research in the area of ontology engineering, for the Semantic Web and related
applications, is progressing fast. Recent developments involve semi-automatic
ontology construction, sometimes denoted ontology learning (OL). Most of the
semi-automatic approaches focus on techniques for text analysis in order to ex-
tract mainly suggestions for concepts and relations from a text corpus input.
None of the existing semi-automatic approaches exploit ontology design or ar-
chitecture patterns, to the best of our knowledge. Recent systems can be found in
[9], [10], [11] and [12], mainly based on a variety of text analysis techniques. The
latest additions involve algorithms for named relations extraction as described in
[13] and extraction of disjointness axioms as in [14] for example. Additional ongo-
ing research efforts, like [8], aim at exploring the possibilities of semi-automatic
pattern usage and networked ontologies.

An important requirement, as we shall see later, is multi-word term extraction,
since specific concepts rarely can be described using only one word. Relation ex-
traction can be done both using lexico-syntactic patterns and other techniques,
like collocation analysis. Usually each extracted primitive is associated with a
confidence value, representing some kind of certainty that the primitive is cor-
rectly extracted and relevant. The confidence value of a term or relation is com-
monly determined using different corpus statistical measures. A general problem

974 E. Blomqvist

with the use of a text corpus as input is that not all information is explicitly
stated (as discussed in detail in [15]). Some approaches use additional knowledge
sources, dictionaries (like WordNet [16]) or the web (as in [12]), for supporting
the ontology construction. Another way to reduce the impact of this problem is
to use ontology patterns, as we attempt in the OntoCase approach.

Ontology matching is a field that partly aims to assist ontology reuse in on-
tology engineering. Surveys of ontology matching algorithms and techniques can
be found in [17] and the more recent [18]. The OntoCase method is not a new
ontology matching approach as such, still we intend to use many of the same
techniques when for example matching the input to the patterns and combin-
ing the patterns. One widely used technique is string matching (see [19] and
[20] for surveys and comparisons of string matching metrics). Our approach is
also related to approaches for searching and ranking ontologies (assisting ontol-
ogy reuse by finding relevant ontologies to integrate) like the ontology ranking
scheme described in [21]. Most ontology search engines though, are based on a
very simple query (set of keywords) that is evaluated against the available set of
ontologies. Although the actual ranking might be more elaborate, like in later
versions of the Swoogle engine (see [22]). In contrast we would like to compare
two more rich structures, and then rank one with respect to the other.

2.4 Case-Based Reasoning

Case-based Reasoning (CBR) is, according to for example [23], aiming to use
previous experiences to solve new problems. It is worth noting that this is a
quite similar idea compared to patterns, both aim at reuse of knowledge and
experiences. The CBR process is generally depicted as a cycle of four phases:
retrieve, reuse, revise and retain. The retrieval phase constitutes the process
of deriving a suitable representation of the new case (the process input) and
then compare this representation to the stored previous cases in the case base.
Next, the best match (or several matches) from the case base are retrieved and
used as input for the second phase. In the reuse phase the retrieved case(s) are
reused and adapted to fit the current representation of the new case (the input);
an initial solution is formed. In the third phase, revision, the initial solution is
evaluated and revised until it is sufficient as output of the process (or until the
process is deemed to fail, if the result is still not appropriate). Finally, the fourth
phase is a learning step when the new solution, or parts of it, can be retained
and stored in the case base for future reuse. Also feedback from the solution
construction process can be retained and stored.

A specific branch of CBR is Textual CBR (TCBR) that focuses on approaches
using natural language texts, and their representations, in the CBR process.
In [24] four research questions of this area are stated. One question is concerned
with how to get from a textual representation of a case to a more structured rep-
resentation, and another question is concerned with automating the approaches.
Our method incorporates both these research questions, in the specific setting
of semi-automatic enterprise ontology construction, although the first question is
mainly addressed through the use of existing OL approaches. The second question,

OntoCase 975

concerning further automation of the TCBR process is highly relevant with re-
spect to the OntoCase method. Some additional recent developments in the CBR
field also use ”soft” computation techniques (see [25]) to represent uncertain in-
formation and human-style decision making. The OntoCase approach also incor-
porates uncertainty throughout the process, due to the imprecise nature of both
automatic text analysis, matching, and aggregation of these results.

3 Research Questions

In our research we have stated a number of long term goals that address some
of the open issues of the OL field. The OntoCase approach is mainly based on
research addressing the following research questions:

– How can the effort of constructing an enterprise application ontology be
reduced?

• How can the methodology of CBR improve semi-automatic ontology con-
struction?

– How can knowledge and experience be reused in ontology engineering?
• How can ontology patterns improve semi-automatic ontology construc-

tion?

Based on the research questions the following hypotheses have been proposed:

– Automation reduces the total construction effort.
• CBR gives a framework for further automation of the ontology construc-

tion process compared to related semi-automatic approaches that exist
today.

– Domain knowledge and engineering experiences can be reused through pat-
terns.

• Using CBR together with ontology patterns can improve the quality
of the generated ontologies compared to existing semi-automatic ap-
proaches.

To test the hypotheses, the OntoCase approach is being developed based on
the methodology of CBR and the notion of ontology patterns, and will later be
evaluated and compared mainly to related OL approaches.

4 Initial Experiments

Two initial experiments have been performed. The first one explores the bound-
ary of the OntoCase approach towards existing OL approaches, and concludes that
OntoCase should incorporate state-of-the-artOL algorithms for text processing as
a pre-processing step before applying our pattern-based method. To explain this
experiment an example is described in the next section. In addition a partial ver-
sion of the OntoCase approach was tested and evaluated in a real-world project,
for a detailed description of this see [?]. In this second experiment only the first

976 E. Blomqvist

two phases of the cycle were implemented, mainly restricting the method to a pat-
tern selection and combination approach. The analysis of this experiment moti-
vates the case-based reasoning viewpoint and the additional improvements of the
method that have been made since this experiment. The second experiment is fur-
ther described in Section 4.2.

4.1 Text Processing for Ontology Learning

A small evaluation has been performed comparing one of the recent OL systems
freely available, to more basic text analysis techniques like tokenisation, mor-
phological normalisation and stop word removal etc. This was done to exemplify
why pattern-based methods like OntoCase needs to rely on recent OL systems,
rather than standard text processing tools. For this example the collection of
concept extraction algorithms in the research prototype called Text2Onto (see
[9]) was chosen, both due to that it incorporates a large number of different al-
gorithms and the fact that it is freely available for download. The example is not
intended as a quality measure of the particular approach, or approaches like [9]
in general, it only aims to point out that certain features like multi-word term
extraction (through algorithms as in [26], also used in Text2Onto) are needed for
OL, and that multi-strategy approaches seem to give more useful results than
classical text processing. This is also our motivation why we intend to build on
existing OL systems (even though they are mostly research prototypes) for input
processing, instead of using standard language processing components.

In the example a text corpus was first manually analysed by an ontology en-
gineer, who picked the terms from the text he most likely would use as labels
of concepts (and label synonyms) when building an ontology to represent the
texts. This manually constructed term list was used as a ”gold standard”, when
comparing the result of Text2Onto to different combinations of basic techniques
(tokenisation, weak stemming, and stop-word removal etc.) in standard imple-
mentations (mainly the GATE ANNIE framework, as described in [27]).

Analysis. Some example results are shown in Table 1. The experiment covered
several additional combinations, but the ones presented below are sufficient to
illustrate the general issues. The low level of recall using standard components
(see experiment 1-3) is mainly due to the fact that the classic techniques do
not consider multi-word terms, while this can be done through more elaborate
algorithms in tools like Text2Onto. Additionally it is obvious that the OL ap-
proach (see experiment 4) performs a much more effective and tailored filtering
to also increase the precision. This is mainly done through specific term relevance
measures and lexico-syntactic patterns applied on the parsed text.

In general, existing OL approaches do not only transform terms and linguistic
annotations (determined through classic natural language processing techniques)
to an ontology representation, but additionally use algorithms specifically tai-
lored towards discovering ontology primitives and filtering out irrelevant infor-
mation. A problem with using existing OL systems (many of which are still
experimental prototypes) as a basis for OntoCase could be to introduce a bias,

OntoCase 977

and possibly filter out relevant information. Although our small experiment in-
dicates that the extracted primitives of the OL system also better agree with
human intuition (the decisions of a human ontology engineer) than simply pre-
senting every word from a text, we recognise this risk since the recall is still
below 50% compared to manual extraction. Still, using existing OL algorithms
clearly improve a lot on using classical text analysis techniques (which is the
only alternative in terms of automatic processing) for our specific case.

Table 1. Precision and recall of text analysis for concept discovery

Experiment Method Precision Recall

1 ANNIE tokenisation 14% 33%
2 ANNIE token. + weak stemming 16% 37%
3 ANNIE token. + weak stemming + stop words rem. 18% 37%
4 Text2Onto 52% 48%

4.2 Pattern Selection and Combination

The second experiment was performed in the context of the SEMCO project.
SEMCO aims at introducing semantic technologies into the development process
of software-intensive electronic systems. The experiment also included a manual
construction of an ontology with the same scope, completely separate from the
automatic experiment, in order to later analyse similarities and differences be-
tween the ontologies. The process steps included were focused on extraction of
terms and relations from the input text corpus (using existing tools), comparing
this to the concepts and relations of the patterns, and computing a similarity
score for each pattern. Patterns above a user-defined threshold were selected
and combined through a näıve approach, discarding parts that did not have
appropriate support. For details concerning the experiment setup and pattern
examples see [?]. Both more general ontology design patterns and other reusable
components were used as patterns in this experiment, conforming to the more
general notion of patterns as discussed in Section 2.2.

Analysis. When compared to the analysed input (details on the evaluation are
described in [28]), the automatically constructed ontology covered only 34% of
the terms. The reason is partly a small pattern catalogue, but when compared to
the manually constructed ontology it was mainly quite specific terms that were
missing. A selection process is not enough to cover the scope, since patterns are
too abstract compared to a text corpus. Additionally, some abstract information
was missing since this is not explicit in the texts. Finally, the semi-automatically
constructed ontology also had some nice features when compared to the manu-
ally constructed ontology, for example a larger number of relations connecting
the concepts and to some extent a better structure. This analysis lead us to
believe that the pattern selection and combination approach is not enough to

978 E. Blomqvist

substantially improve on current OL approaches. Ways to introduce a general
structure and abstract concepts are needed, as well as ways to incorporate the
most specific terms within the context and the structure of the patterns.

5 OntoCase

The following sections describe the general outline of the OntoCase approach,
and details on the retrieval and reuse phases that are currently being imple-
mented as a prototype system. Also some notes on future work are presented.

5.1 OntoCase Outline

One of the main elements of a CBR approach is the case base and its content.
In the OntoCase approach (illustrated at the centre of Figure 1), the case base
corresponds to a pattern catalogue (pattern base), containing both ontology
design patterns, architecture patterns (tentatively, although no such patterns
have been constructed yet) and patterns in the broader sense of reoccurring
reusable assets as discussed in Section 2.2. The patterns on design level are
constructed for automatic use and are therefore small self-contained ontologies
described in some ontology representation language (examples presented in [?]).

The first OntoCase phase corresponds to case retrieval and constitutes the
process of analysing the input (text corpus) and matching it to the pattern
base, to select appropriate patterns. The second phase, case reuse, constitutes
the process of reusing retrieved patterns and constructing a first version of the
ontology. The third phase concerns revision of the ontology to improve the fit
and the ontology quality. The final phase includes the discovery of new patterns
as well as storing pattern feedback. In Figure 1 the OntoCase process is de-
scribed at the centre of the figure, and surrounding it an example instantiation
of the complete process is illustrated. The process starts from the top of the
figure (with the input provided by the user) and proceeds clockwise in the illus-
tration. Certainly the process is not limited to being applied in a linear fashion,
the intention is to be able to apply each phase independently or iterate if nec-
essary, depending on available input data. Each phase in itself may also contain
iterations, but for the sake of simplicity we will here describe the process step
by step.

In the OntoCase approach there is an uncertainty inherent in all the described
steps. Each primitive found in the analysis of the input (mainly terms and re-
lations) has a certain degree of confidence associated with it, and so have the
pattern primitives. The pattern confidences are based on a set of factors, where
one factor is the ”nature” of the pattern, i.e. whether it is a consensual ontology
design pattern, if it was manually constructed (representing best practises and
domain consensus), or if it is a pattern retained from one or several solutions.
The pattern primitives match input primitives only to a certain extent, and the
levels of confidence are transferred onto the constructed ontology when it is built.

OntoCase 979

Te
xt

 A
na

ly
si

s
 T

er
m

1

 T
er

m
2

 T
er

m
3

 T
er

m
4

 T
er

m
5

U
se

r I
ni

tia
tin

g
Pr

oc
es

s
D

oc
um

en
ts

In
pu

t R
ep

re
se

nt
at

io
n

(te
rm

s
an

d
re

la
tio

ns
)

Pa
tte

rn
 R

an
ki

ng

an
d

Se
le

ct
io

n

C
1

C
2

C
3

C
4

C
5

C6
C7

C
5

C
8

C
2

C
8

C
4

C
9

C
10

C
11

C
12

C
13

O
nt

ol
og

y
D

es
ig

n
Pa

tte
rn

s

R
eu

se

R
et

rie
ve

R
ev

is
e

R
et

ai
n

R
ep

re
se

nt
at

io
n

of
 te

xt
 c

or
pu

s

In
iti

al
O

nt
ol

og
y

R
ev

is
ed

 a
nd

Ex

te
nd

ed
O

nt
ol

og
y

Te
xt

 C
or

pu
s

R
et

rie
ve

d
pa

tte
rn

s
Le

ar
ne

d
Pa

tte
rn

s

O
nt

ol
og

y
D

es
ig

n
Pa

tte
rn

s

Ar
ch

ite
ct

ur
e

Pa
tte

rn

R
es

ul
tin

g
O

nt
ol

og
y

M
an

ua
lly

C
on

st
ru

ct
ed

Pa
tte

rn
s

U
se

r

Ar
ch

ite
ct

ur
e

Pa
tte

rn

C
on

st
ra

in
t 1

C
on

st
ra

in
t 2

C
on

st
ra

in
t 3

...

C1
C

15

C
3

C
14

C
5

C
7

C
2

C
8

C4
C

10
C

11

C
12

C
13

Th
in

g

C
17

C
19

C
16

Pa
tte

rn
 In

st
an

tia
tio

n
an

d
C

om
bi

na
tio

n

C
ov

er
ag

e
Ev

al
ua

tio
n

an
d

Ex
te

ns
io

n

O
nt

ol
og

y C
1

C
15

C
3

C
14

C5
C

6
C

7

C
2

C8

C
4

C
10

C
11

C
12

C
13

Th
in

g

C
17

C
19

C
16

C
20

C
25

C
21

C
23

C
24

C
26

Ex
te

nd
ed

 O
nt

ol
og

y

 T
er

m
1

 T
er

m
2

 T
er

m
3

 T
er

m
4

 T
er

m
5

In
pu

t R
ep

re
se

nt
at

io
n

Ev
al

ua
tio

n
an

d
Ex

te
ns

io
n

C
1

C
15

C
3

C
14

C
5

C
6

C
7

C
2

C
8

C
4

C
10

C
11

C
12

C
13

Th
in

g

C
17

C
19

C
16

C2
0

C
25

C
22

C
21

C
23

C
24

C
26

W
eb

 P
ag

es

 T
er

m
1

 T
er

m
2

 T
er

m
3

 T
er

m
4

 T
er

m
5

In
pu

t R
ep

re
se

nt
at

io
n

Ev
al

ua
tio

n
an

d
R

ev
is

io
n

C
1

C
15

C
3

C
14

C
5

C
6

C
7

C
2

C
8

C
4

C
10

C
11

C
12

C
13

Th
in

g

C
17

C
19

C
16

C
20

C
25

C
22

C
21

C
23

C
24

C
26

U
se

r

Pa
tte

rn
 D

is
co

ve
ry

C
1

C
15

C
3

C
14

C
5

C6
C

7

C
2

C
8

C
4

C
10

C
11

C
12

C
13

Th
in

g

C
17

C
19

C
16

C
20

C
25

C
22

C
21

C
23

C
24

C
26C

1

C
2

C3

C
4

C
5

C
6

C
7

O
nt

ol
og

y
D

es
ig

n
Pa

tte
rn

Pa
tte

rn
C

on
st

ru
ct

or
s

U
se

r

Ex
te

nd
ed

 O
nt

ol
og

y

O
nt

ol
og

y
O

ut
pu

t

O
nt

ol
og

y
D

es
ig

n
Pa

tte
rn

C

an
di

da
te

s

W
or

dN
et

Fig. 1. The OntoCase approach

To store the ontology using a more standard ontology representation formalism,
thresholds can be set for acceptable confidence levels or the ontology primitives
can be validated by a user.

980 E. Blomqvist

When comparing the complete OntoCase cycle to the initial approach used
in the experiment described previously, the experiment covered two of the four
phases. The analysis of the input text corpus and selection of patterns were
in the experiment realised using existing text processing and string matching
algorithms, and the combination used a näıve implementation. Compared to the
conducted experiment the phases have been considerably improved in the current
OntoCase approach. The description of the retrieval and reuse phase below shows
actual solutions while the discussion of the revision and retain phases describes
intended solutions and future work, since OntoCase is still ongoing research.

5.2 Pattern Base

The pattern base contains two distinct kinds of patterns, patterns on the de-
sign and on the architecture level. Among the patterns on design level also the
consensual and abstract ontology design patterns, as described in section 2.2,
are represented as small ontologies. Intuitively, ontology design patterns need a
certain level of abstraction to be reusable in several cases, just as patterns in
other areas. Still, ontology design patterns for automatic use need to be specific
enough to be matched against the input representation, and they need to be
formally represented. All the patterns on design level are thereby small ontolo-
gies, with the restriction that the graph representation of the pattern must be
connected. Examples of slightly simplified versions of two patterns intended for
enterprise application ontology construction that were used in the initial con-
struction experiment described in section 4.2 are illustrated in Figure 2 and 3.
Whereas the positions pattern clearly qualify as a consensual ontology design
pattern, the communication event pattern has so far been treated as a reoccur-
ring solution rather than an ontology design pattern, since consensual acceptance
and validation of the pattern is still uncertain.

Fig. 2. A pattern covering communication event concepts

The first pattern, illustrated in Figure 2, contains concepts connected to com-
munication within and between companies. A communication event has a certain
purpose in the organisation and a specific role for a specific party involved in

OntoCase 981

Fig. 3. A pattern covering positions

the communication. This is an example of a relatively detailed pattern, encod-
ing domain knowledge of the business domain (but not necessarily any specific
business area). Both patterns presented as examples originate in data model pat-
terns for enterprise database construction, but were slightly modified (replacing
relational model specifics with ontology modelling best-practises, see [?]). The
transformation was made manually by an ontology engineer. The second pat-
tern example, illustrated in Figure 3, represents a more abstract pattern, better
qualifying as an ontology design pattern, dealing with positions within an or-
ganisation and their fulfilment by specific persons. This is a simplified version of
a pattern similarly inspired by data model patterns.

In our hybrid method, ontology design patterns are constructed manually al-
though candidate patterns may be discovered in produced solutions. The manual
pattern construction process involves reaching a domain consensus and encoding
of best-practises in ontology modelling. The OntoCase method does not focus
on this manual process, but assumes the existence of a pattern base. In case
there is a lack of best-practises, or consensus, also the possibility of adapting
modelling patterns from other areas (like database construction and problem
solving methods) could be used as previously described in [?]. In addition to
the approved ontology design patterns, possibly useful variants and specialisa-
tions of these design patterns might be stored as reusable assets. In this way
the distinction between mined patterns (as reoccurring solutions retained from
constructed ontologies) and consensual ontology design patterns will not be very
strict in the OntoCase approach, as a matter of fact in the realised automatic
construction process no distinction is made at all. The automatic discovery of
pattern candidates from solutions is still future work, as described later.

The notion of architecture patterns is used to ensure an appropriate overall
structure of the constructed ontology, and to impose constraints on the ontology
construction process. In an abstract sense, an ontology architecture pattern could
for example describe a division of the ontology into modules, layers and subject
areas. Such a general structure could utilise a top-level enterprise ontology simi-
lar to what is described in [3]. In the OntoCase approach an architecture pattern
is represented as a set of constraints, both used when composing the ontology
from the selected ontology design patterns and also as a domain specification

982 E. Blomqvist

or restriction when searching for patterns in the pattern base. So far no ar-
chitecture patterns have been constructed, mainly due to the lack of available
enterprise ontologies, but the theoretical notion of architecture patterns will still
be considered in the OntoCase approach.

The pattern base is currently realised in the form of a database. The ontology
design pattern part contains metadata of each pattern, pointers to the actual pat-
tern, and connections between patterns (including connections between possible
architecture patterns and design patterns). The metadata is part of the pattern
base index and is currently based on the labels of the core concepts of each pattern,
a set of manually entered keywords (optional), the domain of the pattern (optional
connection to an architecture pattern), and the name of the pattern. Connections
to other patterns can currently be of two kinds, either the pattern is a ”variant of”
another pattern or it is simply ”related to” another pattern. The variant relation
indicates changed patterns, patterns with a significant overlap, and is also used
to connect the consensual design patterns to patterns that are retained solutions.
When patterns are retrieved for matching and ranking, based on a database query,
also direct variants and related patterns will be retrieved.

5.3 Retrieval

The first step of the retrieval phase involves extracting a representation of the in-
put text corpus. The input could in theory be of different kinds (like HTML pages
etc.), but so far we assume plain text files. The extraction involves analysing the
input text corpus to extract as much ”evidence” relevant to ontological primi-
tives as possible. This analysis is the main focus of many of the existing OL ap-
proaches, as stated in section 2.3 and studied through the experiment in section
4.1. Therefore developing new solutions for this is not the focus of our research,
merely to evaluate and select existing approaches that fit with the OntoCase
approach, but such studies is still outside the scope of this paper.

The second step of the retrieval phase involves comparing the input represen-
tation (the list of terms and relations with associated confidence values) to the
pattern base and select appropriate patterns. When viewing the matching on
an abstract level it is similar to ontology matching, with the addition that both
”ontologies” (the input representation and the pattern) are uncertain. On a more
detailed level there are also some specific characteristics of the ontologies being
matched, namely the patterns are relatively small and well structured while the
input representation can be very large and usually quite diverse and sparsely
connected. The matching results is a special kind of ontology alignment (used
in the next phase for composing the ontology) but for the use in this step only a
set of similarity connections (each associated with a value) between primitives of
the input representation and the patterns is used to compute the total ranking
value. The matching method developed is heavily inspired by recent ontology
ranking schemes, like the one described in [21], although our approach draws on
the richer structure of the input extracted from the text corpus.

OntoCase 983

We propose a ranking scheme (presented in more detail in [29]) based on four
different factors; concept coverage, relation coverage, density and semantic prox-
imity of matched concepts in the pattern. Each pattern is evaluated against the
factors and a single value representing the rank of the pattern can be computed.
The pattern selection is made based on choosing patterns in the ranking order
and computing the resulting total coverage over the input representation. Pat-
terns are chosen until a threshold is reached, either a sufficient coverage has been
obtained or the increase in coverage is no longer significant.

To illustrate this process through an example we use the positions pattern
presented in Figure 3 and a pattern describing work effort and its connection
to the realisation of requirements, as illustrated in Figure 4 below. The exam-
ple input representation is based on a set of randomly selected short passages
extracted from the text corpus used in the experiment of Section 4.2 (project
plans and process descriptions of a company in the automotive industry). The
details of the term extraction is not relevant here, but it results in a term list of
33 terms as shown in Figure 5, which will be used throughout this example.

Fig. 4. A pattern covering work efforts and requirements

Details of the ranking process can be found in [29]. For this simple example
we only compute the concept coverage and use this as the pattern rank. Con-
cept coverage is based on a direct and an indirect part, the direct part being
term and label similarity (determined through string matching), and the indirect
part being subsumption coverage (determined for example through the WordNet
dictionary and the vertical relations heuristic, see [29]). We apply the Jaccard
string similarity measure (for details see for example [19]) with a threshold of
0.5 on the term list and the two patterns. The concept labels of the positions
pattern in Figure 3 have no matching terms in the term list. On the other hand,
the work effort pattern from Figure 4 displays several matches, see Table 2.

984 E. Blomqvist

Fig. 5. List of extracted terms with associated confidence values

Table 2. String matching scores between labels of the work effort pattern and the
extracted terms

Pattern concept label Extracted term Similarity

requirement requirement 1.0
project project 1.0
phase phase 1.0
development development 1.0
production production 1.0
product requirement product 0.5
product requirement requirement 0.5
work requirement work 0.5
work requirement requirement 0.5
work effort work 0.5
project project management 0.5
project project manager 0.5
project sw project 0.5
development sw development 0.5

Additionally indirect concept coverage measures are applied to discover (with
assistance of WordNet and heuristics as mentioned above) that for example
the terms designer, engineer, developer and manager in the positions pattern
are concerned with people, thereby indicating that the concept person in the
pattern might indirectly cover these terms. Similarly, some terms can be found
that are possibly covered by the concept of organisation. In total this gives the
positions pattern the aggregated concept coverage value of 0.27. For the work
effort pattern also some indirectly covered terms can be found and together with
the direct coverage (the string matching results) this results in a value of 0.35. In
these numbers the uncertainty of the extracted terms is incorporated, as well as
the uncertainty of the matches and the fraction of the pattern that is covered (for
details see [29]). In the complete method the ranking algorithm would proceed

OntoCase 985

with calculating the relation coverage, as well as density and proximity of the
matched concepts, before aggregating these into a rank value.

The important benefits of this approach is the ability to rank abstract pat-
terns, like the positions pattern, since the ranking is not only based on simple
string matching. Additionally the complete ranking algorithm takes into ac-
count extracted and matched relations, and the quality of the patterns in terms
of their structure in relation to the matched concepts. For pattern selection the
total coverage of the pattern(s) over the input representation should be com-
puted. Selection can then be made based on what the user defines as sufficient
coverage, as well as the coverage gain in selecting more patterns.

5.4 Reuse

The reuse phase is concerned with instantiating and combining the patterns
into an initial solution ontology. The combination process uses the architecture
pattern chosen by the user (if present) to guide the composition, while iterating
over all chosen patterns. The default rule is to only include those parts of a
pattern that had some match in the input representation. This includes choosing
only matched concepts, choosing appropriate labels (and their synonyms), as well
as choosing relations. The process is enhanced by a set of heuristics, intended
to create a more well-structured ontology. In the example presented in the last
section, for the positions pattern the default rule would imply to only include
the concepts person and organisation (that covered some input primitives), but
additionally a heuristic could be used to include the superconcept party if it is
desirable to keep the instantiated pattern ”connected”. Another such heuristic is
for example to use the transitive property of taxonomic relations, including more
taxonomic relations to keep the ontology connected even if not all intermediate
concepts were matched and included.

Also pattern overlap needs to be resolved during the ontology construction.
For some patterns explicit ”variant of” relations exist in the pattern base, then
these can be used to assume an overlap between patterns. Overlap can addi-
tionally be handled using heuristics, for example assuming that two concepts
represent the same concept if they have the same set of synonyms and no con-
flicting relations (or other axioms). This is a näıve approach used for the first
version of OntoCase that needs further refinement in future work, and should
conform to more advanced methods of ontology integration and merging. The
confidence values of the pattern primitives and input representation primitives
are used together with the matching values to compute new confidence values
for the primitives of the resulting ontology.

The evaluation criteria used for the second part of this phase is coverage
of the input representation (as when selecting patterns in the previous phase).
The second part of the reuse phase is devoted to extending the generated ontol-
ogy with primitives from the input representation. The primitives not sufficiently
covered are ordered according to their confidence values and a connection to the
resulting ontology is investigated. This connection might be an extracted rela-
tion, but connections might additionally be found in external sources (as already

986 E. Blomqvist

described in the matching step above). Currently WordNet is used as such an
external knowledge source. If a connection is discovered the primitive can be
added, but the confidence is quite low since WordNet relations not necessarily
correspond to ontological relations, and additionally WordNet is a very general
source of knowledge. The process continues until a sufficient total coverage is
reached or no more primitives can be added with acceptable certainty.

5.5 Future Work - Revise and Retain

For the revision phase, one objective is to compensate the missing background
information of input texts, i.e. to really cover the complete domain intended.
Some missing parts have already been added with the help of design patterns, but
still we can see from the initial experiment that this will probably not be enough.
In this case we have to use external sources of information to try and attach
primitives to the ontology in a structured way. Our idea for improvement involves
using selected (focused) parts of the web to gather more general information. In
addition a second step of the revision phase will focus on reduction of redundancy
and resolving inconsistencies in the ontology.

In the final phase, retaining patterns, we have mainly been inspired by ap-
proaches to ontology modularisation and algorithms for finding strongly con-
nected graph components. Finding coherent parts of the ontology that might
constitute suggestions for new patterns can be done by traversing the taxon-
omy, and through heuristics the candidates can be restricted in their size and
structure. We envision some user involvement in this step, validating and pos-
sibly generalising the candidates before inclusion in the pattern base. The feed-
back process for existing patterns, involves the recalculation of confidence values
present in the applied patterns, as well as supporting the user in making pattern
changes or updates. Purely manual pattern construction methods are considered
outside the scope of OntoCase, but manually constructed patterns can of course
be stored and used in the approach.

6 Summary and Outlook

In this paper we have presented our case-based reasoning inspired approach
for pattern-based ontology construction, called OntoCase. Initial experiments
have already indicated the usefulness of ontology patterns for supporting semi-
automatic enterprise ontology construction, but there is still a long way to go
before having a completely automatic method for ontology construction. By
utilising a full case-based methodology, we suggest as future work to add two
more phases in the process, an evaluation and revision phase and a phase of
retaining patterns and providing feedback to the pattern base. This research
provides a balanced hybrid approach between manual pattern-based ontology
construction and reuse, and a completely case-based system. Patterns can be
constructed both manually and discovered automatically and they are stored
together with information on their confidence.

OntoCase 987

Key contributions of this research is to improve several of the current draw-
backs and issues of existing semi-automatic ontology construction approaches.
Further automation reduces the effort to construct an ontology and addition-
ally reduces the need for ontology engineering expertise. At the same time we
aim at improving the quality of the output, the constructed ontologies. This is
done through introducing both the notion of ontology patterns and additional
evaluation and revision steps in the ontology construction process.

The paper describes ongoing research but the first two phases of the approach
are already realised, and initial experiments have been conducted showing that
automatically constructed ontologies based on patterns do have specific benefits
even when compared to hand-crafted ontologies. Although no deep evaluation
results can yet be presented for the latest improvements of OntoCase, it adds
several steps to improve the output compared to existing OL approaches. It
remains to implement the complete OntoCase cycle and conduct further eval-
uations. We envision that iterative approaches exploiting knowledge reuse and
uncertainty, are really the future of semi-automatic ontology construction.

Acknowledgements

This work was partly developed within the MediaILog research project, financed
by the Swedish foundation Carl-Olof och Jenz Hamrins Stiftelse, and the research
project Semantic Structuring of Components for Model-based Software Engi-
neering of Dependable Systems (SEMCO), based on a grant from the Swedish
KK-Foundation (grant 2003/0241). Special thanks to the three anonymous re-
viewers for valuable comments on how to improve this paper.

References

1. Gruber, T.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5, 199–220 (1993)

2. Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of FOIS
1998, pp. 3–15 (1998)

3. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The Enterprise Ontology. Knowl-
edge Engineering Review 13, 31–89 (1998)

4. Blomqvist, E., Sandkuhl, K.: Patterns in Ontology Engineering: Classification of
Ontology Patterns. In: Proc. of ICEIS2005, Miami Beach, Florida (2005)

5. Blomqvist, E.: Fully automatic construction of enterprise ontologies using design
patterns: Initial method and first experiences. In: Meersman, R., Tari, Z. (eds.)
OTM 2005. LNCS, vol. 3761, Springer, Heidelberg (2005)

6. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp.
262–276. Springer, Heidelberg (2005)

7. W3C-SWBPD: Semantic Web Best Practices and Deployment Working Group
(2004), Available at: http://www.w3.org/2001/sw/BestPractices/

8. NeON Website. Available at: http://www.neon-project.org/
9. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation

and Applications. In: Science, Springer, Heidelberg (2006)

 http://www.w3.org/2001/sw/BestPractices/
 http://www.neon-project.org/

988 E. Blomqvist

10. Fortuna, B., Grobelnik, M., Mladenic, D.: Semi-automatic Data-driven Ontology
Construction System. In: Proc. of IS-2006, Ljubljana, Slovenia (2006)

11. Velardi, P., Navigli, R., Cucchiarelli, A., Neri, F.: Evaluation of OntoLearn, a
methodology for automatic learning of domain ontologies. In: Ontology Learning
from Text: Methods, Evaluation and Applications, IOS Press, Amsterdam (2005)

12. Iria, J., Brewster, C., Ciravegna, F., Wilks, Y.: An Incremental Tri-partite Ap-
proach to Ontology Learning. In: Proc. of LREC 2006, Genoa (2006)

13. Kavalec, M., Svatek, V.: A Study on Automated Relation Labelling in Ontology
Learning. In: Ontology Learning from Text: Methods, Evaluation and Applications,
IOS Press, Amsterdam (2005)

14. Völker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi,
E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, Springer, Heidelberg
(2007)

15. Brewster, C., Ciravegna, F., Wilks, Y.: Background and Foreground Knowledge
in Dynamic Ontology Construction: Viewing Text as Knowledge Maintenance. In:
SIGIR 2003. Proceedings of the Semantic Web Workshop, Toronto, Canada (2003)

16. Fellbaum, C., et al.: WordNet - An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

17. Shvaiko, P., Euzenat, J.: A Survey of Schema-based Matching Approaches. Journal
on Data Semantics IV, 146–171 (2005)

18. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
19. Cohen, W., Ravikumar, P., Fienberg, S.: A Comparison of String Distance Metrics

for Name-Matching Tasks. In: IIWeb 2003. Proc. of IJCAI-03 Workshop on Infor-
mation Integration on the Web, Acapulco, Mexico (August 9-10, 2003), pp. 9–10
(2003)

20. Chapman, S.: Simmetrics. Available at:
http://www.dcs.shef.ac.uk/∼sam/simmetrics.html

21. Alani, H., Brewster, C.: Ontology Ranking based on the Analysis of Concept Struc-
tures. In: Proceedings of K-CAP 2005, Banff, Alberta, Canada, Canada (2005)

22. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking
knowledge on the semantic web. In: Proceedings of the 4th International Semantic
Web Conference (2005)

23. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AICom 7, 39–59 (1994)

24. Weber, R.O., Ashley, K.D., Brüninghaus, S.: Textual case-based reasoning. The
Knowledge Engineering Review 20(3), 255–260 (2006)

25. Pal, S.K., Shiu, S.: Foundations of Soft Case-based Reasoning. John Wiley & Sons
Inc, New Jersey (2004)

26. Frantzi, K., Ananiadou, S., Tsuji, J.: The c-value/nc-value method of automatic
recognition for multi-word terms. In: Nikolaou, C., Stephanidis, C. (eds.) ECDL
1998. LNCS, vol. 1513, Springer, Heidelberg (1998)

27. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proc. of ACL 2002 (2002)

28. Blomqvist, E., Öhgren, A., Sandkuhl, K.: Ontology Construction in an Enterprise
Context: Comparing and Evaluating two Approaches. In: Proc. of ICEIS 2006,
Paphos, Cyprus (2006)

29. Blomqvist, E.: Pattern ranking for semi-automatic ontology construction (submit-
ted, currently under review)

http://www.dcs.shef.ac.uk/~sam/simmetrics.html

Towards Community-Based Evolution of
Knowledge-Intensive Systems�

Pieter De Leenheer and Robert Meersman

Semantics Technology and Applications Research Laboratory (STARLab)
Vrije Universiteit Brussel

Pleinlaan 2, B-1050 BRUSSELS 5, Belgium
{pdeleenh,meersman}@vub.ac.be

Abstract. This article wants to address the need for a research effort and frame-
work that studies and embraces the novel, difficult but crucial issues of adaptation
of knowledge resources to their respective user communities, and vice versa, as
a fundamental property within knowledge-intensive internet systems. Through
a deep understanding of real-time, community-driven evolution of so-called on-
tologies, a knowledge-intensive system can be made operationally relevant and
sustainable over longer periods of time. To bootstrap our framework, we adopt
and extend the DOGMA ontology framework, and its community-grounded on-
tology engineering methodology DOGMA-MESS, with an ontology that models
community concepts such as business rules, norms, policies, and goals as first-
class citizens of the ontology evolution process. Doing so ontology evolution can
be tailored to the needs of a particular community. Finally, we illustrate with an
example from an actual real-world problem setting, viz. interorganisational ex-
change of HR-related knowledge.

1 Introduction

Collaboration and knowledge sharing have become crucial to enterprise success in the
knowledge-intensive European Community and the globalised market world-wide. In
this market the trend in innovation of products and services is shifting from mere pro-
duction excellence to intensive and meaningful knowledge creation and management.

In next-generation computerised distributed working environments, a key objective
indeed is to effectively leverage individual competencies of people working together to
a community level. The World Wide Web has been extremely successful in enabling
information sharing among a seemingly unlimited number of people worldwide. It
therefore also provides the basic infrastructure that allows on-line virtual communities
(professional as well as leisure-oriented) to emerge all around.

Currently, we are witnessing what some call “second-generation Web” (Web 2.0),
manifested by an explosion of new tools and technologies being developed and shared

� We would like to thank Stijn Christiaens, Aldo de Moor, Tom Mens, Stijn Hoppenbrouwers,
and Erik Proper for the valuable discussions about the subject. The research described in this
paper was partially sponsored by the EU Leonardo da Vinci CODRIVE project and the EU
FP6 IST PROLIX project.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 989–1006, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

990 P. De Leenheer and R. Meersman

at little or no cost. Social applications like lightweight folksonomies, blogs, wikis,
and a plethora of other collaborative tools yield value-added communication platforms
that enable virtual communities to emerge that share ideas, knowledge and resources
in a usually self-organising manner [33]. Even as we limit ourselves (as we do in
this article) to professional, “goal-oriented” communities, the logical and inevitable
next step is an increase in scale and maturity of such communal knowledge sharing,
achieved through collaboration and integration within and between different and diverse
communities.

Ontologies, being formal, computer-based specifications of shared conceptualisa-
tions of the worlds under discussion, are instrumental in this process by providing
shared resources of semantics [18,17,22]. Such formal semantics are evidently funda-
mental in the development of any collaborative, knowledge-intensive services, method-
ologies or systems that claim to capture and evolve, in real time, relevant commonalities
and differences in the way communities conceptualise their world and communicate
about it. To this end, the pragmatic aspects of the exchange of knowledge and infor-
mation are crucial. Pragmatics represent the intentions, motivations and methodologies
of the persons involved and need to become formalised and unambiguous for effective
exchange to occur.

This article wants to address the need for a research effort and experimental frame-
work that studies and embraces the novel, difficult but crucial issues of adaptation
of knowledge resources to their respective user communities, and vice versa, as a
fundamental property within knowledge-intensive internet systems. Through a deep un-
derstanding of real-time, community-driven evolution of so-called ontologies, a
knowledge-intensive system can be made operationally relevant and sustainable over
longer periods of time.

To bootstrap a framework, we adopt and extend the DOGMA ontology framework,
and its community-grounded ontology engineering (OE) methodology DOGMA-MESS,
with an ontology that models community concepts such as business rules, actors, roles,
norms, and goals as first-class citizens of the ontology evolution process. Doing so on-
tology evolution can be tailored to the needs of a particular community. Finally, we illus-
trate with an example from an actual real-world problem setting, viz. interorganisational
exchange of HR-related knowledge.

2 Progress Beyond the State of the Art

Several EU FP6 integrated projects1 and networks of excellence2 tested and validated
a vast number of methods and tools for formalising and applying knowledge represen-
tation models in a wide variety of applications [18,17,22]. However, there is still little
understanding of, and technological support for, the methodological and evolutionary
aspects of ontologies as resources. Yet these are crucial in distributed and collabora-
tive settings such as the Semantic Web, where ontologies and their communities of use
naturally and mutually co-evolve.

1 E.g., http://www.sekt-project.com, http://dip.semanticweb.org
2 E.g., http://knowledgeweb.semanticweb.org

Towards Community-Based Evolution of Knowledge-Intensive Systems 991

2.1 Single User Ontology Evolution

For managing the evolution of domain vocabularies and axioms by one single dedi-
cated user (or a small group under common authority), established techniques from data
schema evolution [1,19] have been successfully adopted, and consensus on a generic on-
tology evolution process model has begun to emerge [21,25]. In Fig. 1, we illustrate a
single user, hence context-independent change process model, based on [2], that distin-
guishes four activities, over three phases in the change process model: initiation, execu-
tion, and evaluation. For a comprehensive state-of-the-art survey on ontology evolution
activities we refer to [7].

Fig. 1. A context-independent change process model

Initiation. Requesting the change has to do with initiating the change process. Some
human stakeholder or automatic discovery process [30] wants to make a change to the
ontology under consideration for some reason, and will post a so-called change request.
Usually a change request is formalised by a finite sequence of elementary change oper-
ations [1]. The set of applicable change operators to conduct these change operations
is determined by the applied knowledge representation model.

Planning the change has to do with understanding why and where the change needs
to be made. Therefore, a crucial part of this activity has to do with change impact
analysis, which is “the process of identifying the potential consequences (side effects)
of a change, and estimating what needs to be modified to accomplish a change” [3].
This is very helpful to estimate the required cost and effort (see [27] for a business view
on ontology engineering costs). A result of this activity may be to decide to implement
the change, to defer the change request to a later time, or to ignore the change request
altogether.

Execution. The execution of a change request should have transactional properties,
i.e., atomicity, consistency, isolation, and durability [16]. Our process model realises
these requirements by strictly separating the change request specification and subse-
quent implementation, as suggested by [30]. Implementing a change is a difficult pro-
cess that necessitates many different sub-activities: change propagation, restructuring
and inconsistency management. Furthermore, different evolution strategies might be
implemented to resolve inconsistencies during a change operation [1,31,23].

Evaluation. The last, but certainly not the least, activity in the change process has to
do with verification and validation. Verification addresses the question “did we build
the product right?”, whereas validation addresses the question “did we build the right
product?”. A wide scale of different techniques has been proposed to address these
questions, including: testing, formal verification, debugging, and quality assurance.

992 P. De Leenheer and R. Meersman

2.2 Collaborative Ontology Engineering

Collaboration aims at the accomplishment of shared objectives and an extensive coor-
dination of activities [26]. In order to create synergy in the result of the collaborative OE
process, the socio-technical aspects of the community play a very important role [8].
E.g., through implicit and explicit norms, the authority for the control of the process is
distributed among many different participants.

In a collaborative setting, there are many additional complexities that should be con-
sidered. As investigated in FP6 integrated projects3 on collaborative networked organi-
sations, the different professional experiences; social and cultural backgrounds among
communities and organisations can lead to misconceptions, leading to frustrating and
costly ambiguities and misunderstandings if not aligned properly. This is especially the
case in interorganisational settings, where there may be many pre-existing organisatio-
nal sub-ontologies, inflexible data schemas interfacing to legacy data, and ill-defined,
rapidly evolving collaborative requirements [10]. Furthermore, participating stakehold-
ers usually have strong individual interests, inherent business rules, and entrenched
work practices. These may be tacit, or externalised in workflows that are strongly inter-
dependent, hence further complicate the conceptual alignment.

Summarising, one should not merely focus on the practice of creating ontologies in
a project-like context, but view it as a continuous process that is integrated in the opera-
tional processes of the community. In a collaborative setting, the shared background of
communication partners is continuously negotiated as are the characteristics or values
of the concepts that are agreed upon. The shared background is externalised as formal
artefacts, which can be ontological elements of various levels of granularity, ranging
from individual concepts of definitions to full ontologies, contributing to the commu-
nal knowledge. This includes contributed taxonomies, concept definitions, interfaces,
workflow definitions, etc. The evolution of this shared background should be orches-
trated by and grounded in the community.

2.3 Towards Community-Based Evolution of Knowledge-Intensive Systems

Successful virtual communities and communities of stakeholders are usually self-orga-
nising. The knowledge creation and sharing process is driven by implicit community
goals such as mutual concerns and interests [24]. In order to better capture relevant
knowledge in a community-goal-driven way, these community goals must be exter-
nalised appropriately. E.g., in [5], we identified several macro-level ontology engineer-
ing processes that (in a particular methodological combination) provide the goal of the
ontology engineering process: lexical grounding and disambiguation, specialisation,
integration (including negotiation), axiomatisation, and operationalisation. However,
in their operational implementation, which we call OE micro-processes, methodologies
differ widely. In order to link the community goals to relevant strategies underlying the
collaborative ontology engineering process and its support, we are required to model
relevant community aspects (i.e. establish their formal semantics), and ultimately inte-
grate the concept of community as first-class citizen, where possible, in the evolution
processes of the knowledge-intensive system.

3 E.g. http://ecolead.vtt.fi/

Towards Community-Based Evolution of Knowledge-Intensive Systems 993

This holistic approach is breaking with current practice, where systems are usually
reduced to only its IT aspects, with the possible exception of the field of organisational
semiotics (e.g., MEASUR [29]) and the language/action perspective (e.g., RENESYS
[8]) that already involved a few socio-technical aspects of communities such as norms
and behaviour in legitimate user-driven information system specification [12].

3 Requirements for Our Framework

Based on our observations above, we now make some assumptions in order to proceed
to a design for a knowledge-intensive system that supports community-based ontology
evolution.

3.1 A Constructivist Approach

Humans play an important role in the interpretation and analysis of meaning during the
elicitation and application of knowledge. Hence, given the diversity and the dynamics
of knowledge domains that need to be accommodated, a viable ontology engineering
methodology should not be based on a single, monolithic domain ontology that pre-
sumes a unique objective reality, that is maintained by a single knowledge engineer. It
should instead take a constructivist approach where it supports multiple domain experts
in the gradual and continuous externalisation of their subjective realities contingent on
relevant formal community aspects [5].

Technically, this requires a knowledge engineering methodology that supports the
collaborative building and managing of increasingly mature versions of contextualised
ontological artefacts (conceptualising their divergent subject realities), and of their
inter-dependencies. Ultimately, this will allow human experts to focus on the subtle
“community-grounded” meaning alignment negotiation processes.

3.2 Modelling of Communities: Norms and Negotiation

The RENISYS method [12] conceptualises community information system specifica-
tion processes as conversations for specification by relevant community members. It
therefore uses formal composition norms to select the relevant community members
who are to be involved in a particular conversation for specification. Next, it adopts a
formal model of conversations for specification to determine the acceptable conversa-
tional moves that the selected members can make, as well as the status of their respon-
sibilities and accomplishments at each point in time.

Similarly for our purposes, by grounding evolution processes in terms of commu-
nity aspects such as composition norms and conversation modes for specification, the
knowledge-intensive system can be precisely tailored to the actual needs of the commu-
nity [9]. In next paragraphs, we first identify some composition norms, and then show
conversation modes will play a role in meaning negotiation.

Composition Norms. Among other community aspects that will orchestrate the col-
laborative OE processes, in this paper we only distinguish between two kinds of com-
position norms: (i) external norms that authorise relevant actors in the community for

994 P. De Leenheer and R. Meersman

an action within a particular ontological context, and (ii) internal norms that, indepen-
dently from the involved actors, constrain or propagate the evolution steps, enforced by
the dependencies the involved ontological context has with other contexts.
Inspired by Stamper [29] and de Moor [12], an external norm is defined as follows:

if precondition then actor is {permitted/required/obliged}
to {initiate/execute/evaluate} action in ontological context.

The precondition can be a boolean, based on a green light given by an entitled decision
organ, or triggered by some pattern that detects a trend or inconsistency in the actual
ontological structures. The deontic status states whether an actor is permitted, obliged,
or required to perform a particular role (initiation, execution, validation) within the
scope of a certain action (e.g., a micro-level or macro-level OE process). A micro-level
process is an operation conducted in terms of micro-level primitives, e.g. introduceCon-
cept, defineGenus, etc. In [5], we defined such a set of OE primitives for characterising
context dependencies (see Sect. 4.3).
An internal norm is defined as follows:

{initiate/execute/evaluate} action in ontological context is constrained to
{

⋃
i primitivei(e1

i , . . . , e
n
i) } where ∀i{ej

i , . . . , e
k
i } ∈ ontological contexti

(1 ≤ j ≤ k ≤ n).

Performing a particular action role in some ontological context is (in order to perform
that action) constrained to use a restricted toolbox of primitives (

⋃
i primitivei) of

which some parameters are bound to ontological elements ej
i , . . . , e

k
i , that were already

grounded in some ontological contexts. In Sect. 5, we will extensively illustrate the
above definitions.

Meaning Negotiation. The constructivist approach engenders meaning divergence in
the respective organisational contexts. This requires a complex socio-technical mean-
ing negotiation process, where the meaning is aligned. However, sometimes it is not
necessary (or even possible) to achieve context-independent ontological knowledge, as
most ontologies used in practice assume a certain professional, social, and cultural per-
spective of some community. The key is to reach the appropriate amount of consensus
on relevant conceptual definitions through effective meaning negotiation in an efficient
manner [11]. As suggested earlier, a negotiation process is defined as a specification
conversation about a concept (e.g. a process model) between selected domain experts
from the stakeholding organisations. For an excellent survey on different conversation
models we refer to [9].

3.3 Design for a Framework

The constructivist approach to ontology engineering in complex and dynamic realistic
settings threatens to slip back into out-of-control evolution processes, when the socio-
technical aspects are not well understood. Furthermore, these rapidly evolving commu-
nity aspects, and the many dependencies they have with the actual knowledge artefacts
in the knowledge structures, lead to knowledge structures that can be extremely volatile.

Towards Community-Based Evolution of Knowledge-Intensive Systems 995

Hence, research into a special-purpose and comprehensive framework will be needed
to address the manageable evolution of knowledge structures, while respecting the au-
tonomous yet self-organising drives inherent in the community.

We now bootstrap a design for a community-driven knowledge-intensive system
(KIS):

1. The technical part of KIS, including a general ontology server and an API that
provides collaborative elicitation, representation, and analysis functionalities for
knowledge artefacts and context dependencies.

2. The social part of KIS, representing the client communities where communication
and norms form the basis for coordinated goal-oriented action.

3. The community-grounded meaning evolution support system (MESS) part orches-
trating the co-evolution cycle between between community communication and
their knowledge.

Fig. 2. A design for a knowledge-intensive system

Figure 2 illustrates the three parts and the co-evolution cycle as follows: (i) the evo-
lution process starts with some individual stakeholders becoming aware of a communi-
cation mismatch, that causes a work breakdown. Next, (ii) this breakdown is described
in a concrete request for eliciting the relevant consensus to reinstate normal commu-
nity communication. The knowledge administrator analyses and formulates the change
request into concrete macro-level OE processes, which in turn can be decomposed
into micro-level processes. Each of the micro-level processes engage a MESS process,
which process-wise is similar to the change process model described in Sect. 2.1. Ad-
ditionally, the MESS process is coordinated by the relevant participating members that
are selected from the external norm base, and the impact of the changes is calculated
from the formal dependencies defined by the internal norms.

For the technical part of KIS, we adopt the DOGMA ontology framework, which we
present next.

996 P. De Leenheer and R. Meersman

4 DOGMA Ontology Engineering

Ontology is an approximate shared semiotic representation of a subject matter. The
DOGMA [22] ontology approach and framework is adopted with the intention to create
flexible, reusable bounded semiotics for very diverse computational needs in commu-
nities for an unlimited range of pragmatic purposes [34].

The DOGMA approach has some key distinguishing characteristics that make it in-
teresting for our purpose, such as (i) its groundings in the linguistic representations of
knowledge, (ii) the explicit separation of the conceptualisation (i.e., lexical representa-
tion of concepts and their inter-relationships, materialised by so-called lexons) from
its axiomatisation (i.e., semantic constraints) and (iii) its independence from a par-
ticular representation language. The goal of this separation, referred to as the double
articulation principle [28], is to enhance the potential for re-use and design scalabil-
ity. Lexons are initially uninterpreted binary fact types, which increases their potential
for reusability across community perspectives or goals. The axiomatisation of lexons
guarantees the specification needed for semantic consistency and well-formedness in a
particular collaborative context (see further). Lexons are collected in the Lexon Base,
a reusable pool of possible vocabularies. A lexon is a 5-tuple declaring either (in some
elicitation context G) [5]: (i) a taxonomical relationship (genus): e.g., 〈G, manager,
is a, subsumes, person〉; or (ii) a non-taxonomical relationship (differentia): e.g., 〈G,
manager, directs, directed by, company〉. Next, we will elaborate more on the no-
tions of elicitation context (Sect. 4.1) and application context (Sect. 4.2).

4.1 Language Versus Conceptual Level

Another distinguishing DOGMA characteristic is the explicit duality (orthogonal to
double articulation) in interpretation between the language level and conceptual level.
The goal of this separation is primarily to disambiguate the lexical representation of
terms in a lexon (on the language level) into concept definitions (on the conceptual
level), which are word senses taken from lexical resources such as WordNet [13]. The
meaning of the terms in a lexon is dependent on the context of elicitation [5].

E.g., consider a term “capital”. If this term was elicited from a typewriter manual
(read: elicitation context), it has a different meaning (read: concept definition) than
when elicited from a book on marketing. Hence, we denote:

concept(〈typewritermanual, capital〉) �= concept(〈marketingbook, capital〉).

Within a context of elicitation, lexons are not merely syntactic by nature, but un-
derspecified, what makes them reusable for being applied in a specific collaborative
application context [34] within a UoD. The formal account for application context is
manifested through the selection and interpretation of lexons in ontological commit-
ments, and the context dependencies between them.

4.2 Ontological Commitments

The pragmatic account for knowledge artefacts is formalised in ontological commit-
ments. Committing to the Lexon Base in the context of an application means selecting

Towards Community-Based Evolution of Knowledge-Intensive Systems 997

a meaningful set S of lexons from the Lexon Base that approximates well the intended
vocabulary, followed by the addition of a set of semantic constraints, or rules, to this
subset. The result, called an ontological commitment, is a logical theory of which the
models are first-order interpretations that correspond to the intended task(s) for achiev-
ing a particular goal with a certain level of trust and quality. An important difference
with the underlying Lexon Base is that commitments are internally unambiguous and
semantically consistent. Ontologies can differ in syntax, semantics, and pragmatics, yet
they all are built on these shared vocabularies in the Lexon Base. Examples of ontolog-
ical commitments include goal, process and communication models, but also business
rules, database constraints, or norms.

4.3 Context Dependency Management

Context dependencies constrain the possible relations between the entity and its context,
and constrain or propagate the evolution steps within and between different ontologi-
cal contexts, throughout the ontology engineering processes. Many different types of
context dependencies exist, within and between ontological elements of various levels
of granularity, ranging from individual concepts of definitions to full ontologies. In,
[5], we formalised and illustrated three different types of context dependencies within
one ontology (intra-ontological) and between different ontologies (inter-ontological):
articulation (ART), application (APP), and specialisation (SPE). A typical example of
a dependency type is the specialisation dependency, that exists between a concrete task
description and a task template. In order to be complete, the task description should
address the specialisation of all, and only those, differentiae (plural of differentia) and
concepts in the template.

Context dependencies will be used to enforce internal norms. In order to constrain
the applicable evolution steps, context dependencies also keep a change log in terms of
applied micro-level primitives. Next, we will illustrate internal and external norms in
real-world example.

5 Community-Based Evolution of an HR Knowledge-Intensive
System

In order to illustrate the possibilities of our framework we consider an example that
is inspired by the several research projets in the HR domain we are currently involved
in4. Figure 3 illustrates a snapshot of the scenario, were multiple layers of ontological
contexts mutually constrain each other with context dependencies.

– All ontologies commit to an extendible repository (lexon base) of reusable com-
petence definitions (RCDs) (lexons). We adopt the definitions as proposed by the
HR-XML consortium: an RCD is a specific, identifiable, definable, and measurable
knowledge, skill, ability and/or other deployment-related characteristic (e.g. atti-
tude, behavior, physical ability) which a human resource may possess and which

4 http://www.codrive.org (EU Leonardo da Vinci); http://www.prolixproject.org (EU FP7 IST
PROLIX); http://cvc.ehb.be/PoCeHRMOM/Frameset.htm (IWT TETRA PoCeHRMOM).

998 P. De Leenheer and R. Meersman

is necessary for, or material to, the performance of an activity within a specific
business context5. This repository also provides a set of canonical relationships be-
tween RCDs, including meronymical relationships, i.e. an RCD might be a facet or
part of another RCD.

– The upper interorganisational layer includes the SHAREDTH ontology, which
defines a contributed taxonomy on RCDs.

– On the lower interorganisational level, several so-called (governmental) occupa-
tional information networks accommodate specific collaborative contexts by fur-
ther “articulating” the taxonomy in SHAREDTH . For example, O*NET6 provides
a particular classification of skill RCD types. The ART (articulation) dependency
between the subcontexts O∗NETTH and SHAREDTH enforces the reuse policy
(which is an internal norm) that all RCD skill types tRCD (e.g., Basic Skill) in-
troduced in the lower O∗NETTH context must be articulated by some term gRCD

(e.g., Skill) in the upper SHAREDTH context. This policy is denoted as follows:
execute introduceRCD(tRCD) in O∗NETTH is constrained to{

articulateConcept(〈O∗NETTH , tRCD〉, c),
defineGenus(〈O∗NETTH , tRCD〉, 〈SHAREDTH , gRCD〉)

}

where gRCD ∈ SHAREDTH ,
where c is some concept definition. Other examples of such networks include the
Flemish Social-Economical Council7 (SERV), and the US Army Military Occupa-
tional Specialties (MOS) List8. They also are expected to follow this community
policy when eliciting new RCD types.

– Various higher and lower level organisational levels (e.g., O∗NETRCM in
Sect. 5.2, MOSTemplate in Sect. 5.1), including branches within organisations,
commit to lower or upper interorganisational levels. In the example below, Army
is an organisation consisting of several lower level branches8 such as humanitarian,
armor, aviation, medical service corps, etc. (not illustrated).

RCDs are lexically grounded and disambiguated into concept definitions, however
there still are underspecified for particular pragmatic purposes. This specification hap-
pens by defining RCD maps.

5.1 Defining RCD Maps

Organisations that commit to occupational information networks such as O∗NET ,
reuse RCDs and further specify (in various ways) their semantics by combining them in
reusable competency maps9 (RCMs), and possibly axiomatise these RCMs. Figure 4
illustrates a reusable competency map for RCD “written expression”, that was ex-
tracted from the O*NET RCM subcontext “1.A.1.a.4”. The APP dependency between
O∗NETTH and O∗NETRCM enforces the policy that when building new RCMs for
an RCD tRCD (e.g., Written Expression) in the context of O∗NET , one should not

5 http://ns.hr-xml.org/2 5/HR-XML-2 5/CPO/Competencies.html
6 http://online.onetcenter.org/
7 http://www.serv.be
8 http://www.us-army-info.com/pages/branches.html
9 As defined by the HR-XML consortium.

Towards Community-Based Evolution of Knowledge-Intensive Systems 999

Fig. 3. A snapshot of the scenario in the DOGMA framework: on the left the lexon base, and on
the right the commitment layer, were multiple levels of ontological contexts mutually constrain
each other with context dependencies

introduce new RCD types, but merely reuse existing RCDs tdi
2 (e.g., Understanding)

from O∗NETTH in new differentiae (di = 〈O∗NETRCM , tRCD, rdi
1 , rdi

2 , tdi
2 〉). This

internal norm is denoted as follows:

execute buildRCM(tRCD,
⋃

i di) in O∗NETRCM is constrained to
{ defineDiff(O∗NETRCM , di, 〈O∗NETTH , tRCD〉, 〈O∗NETTH , tdi

2) }
where tRCD, tdi

2 ∈ O∗NETTH .

Although all RCMs might be built on the same RCD base repository, they differ widely
in structure and semantics, contingent on the subjective perspectives of the different
organisational contexts.

5.2 Defining Occupation Specifications

Now consider following scenario where a new military occupational specification (MOS)
for “social worker” is to be introduced in the Army. The request for eliciting a new “so-
cial worker” MOS is produced in response to a breakdown in achieving a new military
strategic goal towards deploying more humanitarian operations. These operations come
in many forms, requiring HR related to confidence-building measures, power-sharing
arrangements, electoral support, strengthening the rule of law, and economic and social
development.

The knowledge administrator analyses and formulates the request into concrete OE
processes, that are relevant to reach the appropriate amount of consensus about the
new MOS in the most effective way. Two important processes are to lexically ground
the term in MOSTH , and to analyse the semantics of “social worker”. Organisational

1000 P. De Leenheer and R. Meersman

Fig. 4. RCM for “written expression” in the collaborative context O∗NETRCM

policy requires any MOS to be semantically analysed according to the MOS template10

(see Fig 5), which basically consists of two parts:

1. a general description for required skills and attitude, used knowledge, and envi-
sioned learning objectives, specified in terms of artefacts such as upper shared
RCMs or organisationally shared specifications;

2. a set of physical requirements, to be assessed with medical evidence data.

The MOS template was elicited by core domain experts and represents the current focus
of the community. By specialising a MOS template in terms of reusable interorganisa-
tional RCMs it can share its call for HR, and hence attract candidates from other mil-
itary organisations that have more specialised HR in humanitarian operations such as
the United Nations Peacekeepers, or from civilian sectors, as the MOS is not restricted
to soldiers, but also include police officers, and other civilian personnel.

Figure 6 illustrates the whole process:

1. The community is aware of a collaboration breakdown, and identifies the need for
a new military occupational specialisation for “ social worker” as one of the solu-
tions.

2. initiation:
– this breakdown is described in a concrete change request for eliciting the rele-

vant consensus to reinstate normal community communication.
– if the request is accepted, the authorised knowledge administrator analyses

the change request, and formulates it into concrete macro-level OE processes.
Fig. 6 only illustrates this for the semantic analysis activity.

– next, he plans the change. First, he locates the (lower organisational) collabora-
tive context in which the analysis is to be performed, viz. HumanOps. Then,
based on this information, he calculates the change impact. Therefore, he con-
sults the internal norms. It turns our that in this case there are no dependent

10 http://www.us-army-info.com/pages/mos/air-defense/14j.html

Towards Community-Based Evolution of Knowledge-Intensive Systems 1001

Fig. 5. A template for a military occupational specialisation (MOS) in context MOSTemplate

artefacts. However, as multiple members are authorised to perform each their
semantic analysis of social worker, an additional negotiation process to align
the resulting divergent specifications will be required.

3. execution:
– once the plan is approved, it moves to the execution phase. Following norm

obliges all recruiting officers (ROs) of all branches b to execute their semantic
analysis activity for “social worker” in their individual subcontexts
HumanOpsROb

:
if initialised(SemanticAnalysis) then ∀bROb is obliged to execute
SemanticAnalysis(〈MOSTH, social worker〉, HumanOpsROb

)
in HumanOpsROb

.
The internal norms further constrain them to be all specialisations of the MOS
template (SPE dependency between HumanOpsROi and MOSTemplate),
and reuse RCD and RCM vocabulary from O∗NET , SERV or MOS (APP
dependency between HumanOpsROi and O∗NET , SERV and MOS). The
result is a set of divergent specifications for “social worker”. The execution is
facilitated by providing the officers with an editing window that is precisely
tailored to the job.

4. evaluation: The specialisations are evaluated by, e.g. defining a test population for
the concepts and relationships, or by committing the organisational data schemas
to them.

5.3 Community-Based Meaning Argumentation and Negotiation

Despite the context dependencies enforcing RCD or RCM reuse and template policies,
our methodology cannot exclude the possibility that policies are ignored, and hence
new competency definitions are rigourously introduced ad hoc. We could further force
the reuse policy by defining specific norms that would delegate the exclusive rights for
defining new RCDs to the HR-XML consortium. However, such exclusive rights would
be unacceptable: we have to accept that the community endorses the constructivist ap-
proach, were ontologies should be grounded in the community and in the language of
the community itself. Similarly to MOS specialisations for social worker, multiple or-
ganisations (such as SERV or MOS) will have divergent RCMs for written expression,
conceptualised in terms of RCDs from SHARED of O ∗ NET , or in terms of their
own familiar organisational competency vocabulary to nuance their intensions.

1002 P. De Leenheer and R. Meersman

Fig. 6. Illustration of a collaborative ontology change process

The goal is that organisations can exchange their HR optimally, hence we propose
a intermediate solution where organisational ontology engineering processes basically
respect the policies enforced by the context dependencies, but are also allowed to in-
troduce competencies from the organisational vocabulary. In any case where the policy
is not followed, an alignment process between the stakeholding organisations should
bring an acceptable balance between RCD reuse and new organisational competency
vocabulary. In [4], we give a semantic account of how RCD reuse can be promoted
within the DOGMA approach.

DOGMA-MESS [11] is a constructivist meaning evolution methodology and sys-
tem, where such a balanced negotiation process is conducted as suggested in the re-
quirements of KIS. In our community-grounded change process, we support DOGMA-
MESS in setting up the negotiation agenda automatically: by consulting the internal and
external norms, the relevant community members who are to be involved in a partic-
ular conversation, and the involved context dependencies can be selected. Ultimately,
when consensus is reached, the aligned concept can be promoted and shared to the
next version of the upper interorganisational level. It also works the other way around:
when some consensus about an artefact is questioned after some validation period, the
artefact is mandated to degrade and undergo a new negotiation round. To support the
negotiation process several argumentation methods were devised such as HCOME [20]
and Diligent [32].

6 Implementation

Currently a first version of a web-based DOGMA-MESS11 is being tested in several
real-world case studies, as illustrated in Sect. 5, and a client variant is being

11 http://www.dogma-mess.org

Towards Community-Based Evolution of Knowledge-Intensive Systems 1003

implemented in our DOGMA Studio Workbench12 as we write. Meanwhile, we are
installing norm and specification conversation models into the system, and we are plan-
ning experiments with other context dependency types (cf. [5]. In [6], we proposed a
graph rewriting approach to formalise the semantics of composition norms, and con-
duct context dependency analysis. This approach promises to be suitable for modelling
external norms as well.

7 Discussion and Conclusion

The key challenge of this article was to bootstrap a framework that studies and em-
braces the novel, difficult but crucial issues of adaptation of knowledge resources to
their respective user communities, and vice versa, as a fundamental property within
knowledge-intensive internet systems. By using norms to select relevant domain ex-
perts in OE processes, knowledge evolution is grounded in the community. Furthermore
context dependencies, enforces organisations to reuse lower or upper shared ontologies
in their local ontological contexts. However, the constructivist MESS process is also
democratical in a sense that it allows organisational vocabularies to be introduced, and
promoted and shared to the next version of the (upper or lower) interorganisational
level. Next we discuss some observations for future research directions.

7.1 Templates

During our experiments, we experienced templates as important instruments in order
to conduct knowledge elicitation in a goal-oriented way. E.g., the MOS template re-
flects the current shared interests regarding the specification military occupations. The
template was not predefined, but also co-evolves over time with the actual community
interests. In [5], we describe how template evolution triggers a cascade of changes to
all its dependent specialisations. In [11] we already give some insights how new trends
in the community can be detected by relevance measures. Based on the “wisdom of
the crowd” principle, if a certain threshold of organisations deviate from the current
template, it means there is a trend shift in the knowledge elicitation process in order to
serve new interests and goals.

7.2 Internal and External Norms

In this paper, we only modelled a fraction of the community aspects that play an impor-
tant role in capturing community-grounded knowledge evolution. Amongst other, this
will imply other context dependency types, e.g. during the evaluation phase, in order to
verify the backwards compatibility of the changed knowledge artefacts with inflexible
data schemas interfacing to legacy data.

7.3 Multi-disciplinary Approach

In order to better capture the communication mismatches that cause collaboration
breakdown, we have to go wider than current practice by taking explorations of new

12 http://www.starlab.vub.ac.be/website/dogmastudio

1004 P. De Leenheer and R. Meersman

and alternative approaches from multiple relevant disciplines. For example, the field of
communication modelling and discourse analysis [14] has applied communication the-
ories that are the basis for inter-organisational and inter-personal communication acts
and knowledge exchange. These concepts can be used for the analysis of communica-
tion processes present in any kind of information and knowledge exchange and in par-
ticular in negotiations. Furthermore, much can be learned from the field of information
system engineering (in particular collaborative software engineering), model-driven en-
gineering, and model-driven architecture [15] offers a wealth of techniques and tools
for versioning, merging and evolving artefacts. Naturally, as already mentioned, princi-
ples from the field of organisational semiotics can be useful in modelling communities
and identifying community aspects in ontology evolution.

7.4 Human-Computer Confluence

Clearly, many of the ontology engineering activities are intrinsically interactive in na-
ture and require a lot of human intervention. This does not mean, however, that we
should rule out other approaches that are fully automated. A careful balance and com-
munication is needed between human, semi-automatic (i.e. requiring human interac-
tion) and automatic approaches for knowledge interpretation and analysis processes.
Ultimately, communities will consist of a mix of human and software agents that trans-
parently will communicate and request services from each other in order to maintain
the shared knowledge structures appropriately.

References

1. Banerjee, J., Kim, W.: Semantics and implementation of schema evolution in object-oriented
databases. In: ACM SIGMOD Conf., SIGMOD Record, pp. 311–322. ACM Press, New York
(1987)

2. Bennett, K., Rajlich, V.: Software maintenance and evolution: a roadmap. In: ICSE - Future
of SE Track, pp. 73–87 (2000)

3. Bohner, S., Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society Press,
Los Alamitos (1996)

4. Christiaens, S., De Bo, J., Verlinden, R.: Competency model in a semantic context: Meaning-
ful competencies (position paper). In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006.
LNCS, vol. 4278, pp. 1100–1106. Springer, Heidelberg (2006)

5. De Leenheer, P., de Moor, A., Meersman, R.: Context dependency management in ontology
engineering: a formal approach. LNCS Journal on Data Semantics 8, 26–56 (2006)

6. De Leenheer, P., Mens, P.: Context-driven ontology engineering: a graph rewriting approach.
In: Proc. of Agtive, Kassel, Germany, Springer, Heidelberg (2007)

7. De Leenheer, P., Mens, T.: Ontology Management for the Semantic Web, Semantic Web
Services, and Business Applications, from Semantic Web and Beyond: Computing for Hu-
man Experience. In: Ontology Evolution: State of the Art and Future Directions, Springer,
Heidelberg (2007)

8. de Moor, A.: Empowering Communities: A Method for the Legitimate User-Driven Speci-
fication of Network Information Systems. PhD thesis, Tilburg University, The Netherlands,
ISBN 90-5668-055-2 (1999)

Towards Community-Based Evolution of Knowledge-Intensive Systems 1005

9. de Moor, A.: Language/action meets organisational semiotics: Situating conversations with
norms. Information Systems Frontiers 4(3), 257–272 (2002)

10. de Moor, A.: Ontology-guided meaning negotiation in communities of practice. In: Mam-
brey, P., Gräther, W. (eds.) C&T 2005. Proc. of the Workshop on the Design for Large-Scale
Digital Communities at the 2nd International Conference on Communities and Technologies,
Milano, Italy (July 2005)

11. de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A meaning evolution support
system for interorganizational ontology engineering. In: Schärfe, H., Hitzler, P., Øhrstrøm, P.
(eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 189–203. Springer, Heidelberg (2006)

12. de Moor, A., Weigand, H.: Formalizing the evolution of virtual communities. Inf. Syst. 32(2),
223–247 (2007)

13. Fellbaum, C. (ed.): Wordnet, an Electronic Lexical Database. MIT Press, Cambridge (1998)
14. Fortuna, G.M., Mladenic, D.: System for semi-automatic ontology construction. In: Sure, Y.,

Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, Springer, Heidelberg (2006)
15. Djuric, D., Gasevic, D., Devedzic, V.: Model Driven Architecture and Ontology Develop-

ment. Springer, Heidelberg (2006)
16. Gray, J.: The transaction concept: Virtues and limitations (invited paper). In: Proceedings of

Very Large Data Bases, 7th International Conference, pp. 144–154. IEEE Computer Society
Press, Los Alamitos (1981)

17. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acqui-
sition 5(2), 199–220 (1993)

18. Guarino, N.: Formal ontology and information systems. In: FOIS 1998. Proc. of the 1st Int’l
Conf. on Formal Ontologies in Information Systems, pp. 3–15. IOS Press, Amsterdam (1998)

19. Katz, R.H.: Towards a unified framework for version modeling in engineering databases.
ACM Comput. Surv. 22(4), 375–408 (1990)

20. Vouros, G.A., Alonso, J.P., Kotis, K.: Hcome: tool-supported methodology for collabora-
tively devising living ontologies. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.) SWDB
2004. LNCS, vol. 3372, pp. 155–166. Springer, Heidelberg (2005)

21. Maedche, A., Motik, B., Stojanovic, L.: Managing multiple and distributed ontologies on the
semantic web. The VLDB Journal 12(4), 286–302 (2003)

22. Meersman, R.: The use of lexicons and other computer-linguistic tools in semantics, design
and cooperation of database systems. In: CODAS 1999. Proc.of the Conf. on Cooperative
Database Systems, pp. 1–14. Springer, Heidelberg (1999)

23. Mens, T., Van Der Straeten, R., D’hondt, M.: Detecting and resolving model inconsistencies
using transformation dependency analysis. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214. Springer, Heidelberg (2006)

24. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies
Create the Dynamics of Innovation. Oxford University Press, Oxford (1995)

25. Plessers, P.: An approach to web-base ontology evolution. PhD thesis, Vrije Universiteit
Brussel, Brussel (2006)

26. Sanderson, D.: Cooperative and collaborative mediated research. In: Harrison, T.M., Stephen,
T. (eds.) Computer networking and scholarly communication in the twenty-first century, pp.
95–114. State University of New York Press (1994)

27. Simperl, E., Sure, Y.: Ontology Management for the Semantic Web, Semantic Web Services,
and Business Applications, from Semantic Web and Beyond: Computing for Human Experi-
ence. In: The Business View: Ontology Engineering Costs, Springer, Heidelberg (forthcom-
ing)

28. Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus ontology engineering. SIGMOD
Record 31(4), 12–17 (2002)

29. Stamper, R.: Linguistic Instruments in Knowledge Engineering. In: Language and Comput-
ing in Organised Behaviour, pp. 143–163. Elsevier Science Publishers, Amsterdam (1992)

1006 P. De Leenheer and R. Meersman

30. Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD thesis, University of Karl-
sruhe, Germany (2004)

31. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-driven ontology evolution
management. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI),
vol. 2473, pp. 285–300. Springer, Heidelberg (2002)

32. Tempich, C., Pinto, S., Sure, Y., Staab, S.: An argumentation ontology for distributed,
loosely-controlled and evolving engineering processes of ontologies. In: Gómez-Pérez, A.,
Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 241–256. Springer, Heidelberg (2005)

33. Van Damme, C., Hepp, M., Siorpaes, K.: Folksontology: An integrated approach for turning
folksonomies into ontologies. In: Proceedings of the ESWC Workshop Bridging the Gap
between Semantic Web and Web 2.0, Innsbruck, Austria, Springer, Heidelberg

34. Zhao, G.: Application semiotics engineering process. In: Maurer, F., Ruhe, G. (eds.) SEKE,
pp. 354–359 (2004)

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 1007–1024, 2007.
© Springer-Verlag Berlin Heidelberg 2007

ImageNotion:
Methodology, Tool Support and Evaluation

Andreas Walter and Gábor Nagypál

FZI Forschungszentrum Informatik, Haid-und-Neu-Straße 10-14, 76131
Karlsruhe, Germany
awalter@fzi.de

disy Informationssysteme GmbH, Erbprinzenstr. 4-12, Eingang B, 76133
Karlsruhe, Germany

nagypal@disy.net

Abstract. The content of image archives changes rapidly. This makes the
traditional separation of ontology development and image annotation steps no
longer feasible. In this paper, we present an approach, termed ImageNotion that
allows for the collaborative development of domain ontologies directly by
domain experts with minimal ontology experience. ImageNotion is both a
methodology based on the idea of the ontology maturing process model, and the
name of the tool supporting this methodology. ImageNotion embeds the
creation of ontology entities, termed imagenotions, into the work process of
creating semantic annotations of images and their parts. Both the creation of
imagenotions and the creation of image annotations are visual, user friendly
processes, implemented by a web application that integrates all of the required
functionality in one consistent framework. Besides the theoretical concepts, this
paper also presents the results of our evaluation of the system with experienced
image annotators and librarians having minimal ontology background.

Keywords: Collaborative ontology development, semantic image annotation.

1 Introduction

In state-of-the-art systems for the management and retrieval of image contents ([7],
[16]), tagging is used for the annotation of images. Tags are very easy to use for
everyone, but have many shortcomings. Because tags are simple, unrelated words,
synonyms or the same concepts in different languages are represented by unrelated
tags, and the same tag represents all concepts of a word with homonymous meanings.
This of course hurts retrieval performance.

The semantic annotation of images allows semantic search. Compared to tag-based
systems, some interesting features can be provided by semantic search, such as
proposing semantically similar images to a search request or automatically refining
the search request considering the current search context. In addition, semantic search
delivers better results than tag-based search. This gives enough motivation to provide
semantic search engines for the retrieval of images.

1008 A. Walter and G. Nagypál

Semantic image annotation requires the usage of ontology elements. This leads to
some new problems compared to the tag-based annotation of images. While tagging is
very easy and collaboratively usable for all kind of users, ontologies appear very
complicated to most users [11]. Additionally, the traditional workflow to allow
semantic annotation is not very practical. There are two separated work processes:
one is the ontology development by ontology experts (knowledge engineers and
domain experts), and the other is the semantic annotation of images by the owners of
image contents1. Every time when users require new ontology elements, they have to
apply for the extension of the ontology. Especially when contents in image archives
change very fast (e.g. Flickr has more than thousand new images per minute2), this
separation is not feasible in practice because it is time consuming and cost intensive.

The owners of images have the knowledge about their image contents, and also
about the domain of the image. For a high quality of semantic image annotations, they
are motivated to participate in the creation of ontologies. Therefore, we propose the
collaborative creation of ontologies embedded in the semantic annotation process of
images. This empowers the owners of images to do both, to create semantic image
annotations and to develop the ontology itself.

The main challenge to reach this goal is to make the ontology development process
so easy that even the average user, who has minimal or even absolutely no ontology
experience, should be able to meaningfully extend the ontology. Further, the ontology
development process should also be collaborative so that users may profit from the
work already done by their fellow users. In this paper, we introduce our visual
ImageNotion approach that provides high usability and simplicity. ImageNotion
embeds the collaborative development of ontologies into the work process for the
semantic annotation of images. Our approach is motivated by the success of Web 2.0
applications for image annotation. ImageNotion is implemented by an easy to use,
collaborative and web based application.

The paper is organized as follows: Section 2 presents the state-of-the-art
of semantic image annotation and discusses its problems for practical usability.
Section 3 analyzes the requirements for combined ontology development and
semantic image annotation. Section 4 discusses related work. Section 5 presents the
ImageNotion formalism; Section 6 presents the ImageNotion methodology. Section 7
introduces the ImageNotion tool. Section 8 presents the results of our evaluation and
Section 9 concludes the paper and provides some outlook.

2 State-of-the-Art for Semantic Image Annotation

2.1 Usual Workflow

The usual workflow for semantic image annotation is introduced in [10] and [12] as
follows: during semantic image annotation domain ontologies are accessed, and the
image is annotated with the proper ontology elements. In a real world setup, this
usually means two different work processes (see Fig. 1): ontology experts (knowledge
engineers and domain experts) are responsible for the development and maintenance

1 Domain experts and annotators are sometimes the same individuals.
2 http://www.flickr.com/photos

 ImageNotion: Methodology, Tool Support and Evaluation 1009

Fig. 1. Traditional work flow for semantic image annotation

of ontologies [5] and the owners of image contents (aka. users) are responsible for the
semantic image annotation.

2.2 Problems of the Usual Workflow

The usual workflow for semantic image annotation has the following four main
problems in practice:

− Separation of processes: The separation of ontology development and semantic
image annotation is very inefficient. Users themselves can not extend or change
ontology elements when it is required. Instead, they have to ask ontology experts
and wait until they extend the ontologies. Besides the time factor this also requires
a lot of communication because it is the annotator who has the required context for
the extension of the ontology, and this contextual knowledge has to be transferred
to the side of the ontology experts. Especially in the case of fast changing contents
it is not feasible anymore.

− Complicated formalisms: Users must understand the meaning of ontology
elements they use. This fails in most cases because of too complicated modeling
constructs (ontology formalisms), too complicated, extensive or abstract ontology
design and incomplete ontology documentation [6].

− Complicated tools: The tools for semantic image annotation are very sophisticated
and not very usable for most users, especially for non-ontology-experts.

− Missing support for collaboration: Ontology building is not a one time activity
but a continuous, evolving process. Ideas and understanding emerge implicitly in
daily work and mature only gradually through the interaction with others to explicit
formal and shared conceptualizations. The communication needed for the
successful maturing of users understanding of the domain is usually not supported
adequately.

2.3 Our Approach: Work Integrated Ontology Development

To overcome these problems we propose a collaborative ontology development
process that is embedded into the work process of semantic image annotation. Our
approach that implements this idea is called ImageNotion. In the following section,

Work process 2
semantic image annotation

Owners of image content
Search and identify missing ontology
elements; annotate images

Ontology experts
Extend ontologies with missing
concepts

Domain ontologies

Work process 1
ontology development and maintenance

For missing concepts: ask and wait for extension of ontologies
Time consuming and cost intensive

1010 A. Walter and G. Nagypál

we define the requirements for this approach and introduce the the ontology maturing
process model that describes the process of collaborative ontology development.

3 Collaborative and Work Integrated Ontology Development

3.1 Advantages of Collaborative Ontology Development

Collaborative ontology development saves a lot of time and costs compared to the
traditional separated ontology development by ontology experts. Time is saved
because users do not need to talk to the ontology experts in order to extend the
domain ontologies and they do not have to transfer their context that motivated the
ontology extension. Costs are saved because collaborative ontology development
reduces the number of required ontology experts for ontology design and
maintenance, and because both ontology experts and users need less time to
accomplish their work. Moreover, the development of ontologies in bigger
communities is not only faster, but also results in a better common understanding of
the created ontologies because of the extensive documentation and the protocol of the
discussion about the major design decisions. Just consider the collaborative creation
of contents in Wikipedia3, the same effect may be expected at the collaborative
creation of ontologies when the process is adequately supported by tools.

3.2 Requirements for a Collaborative Ontology Development

In [1], we have defined the requirements for a collaborative ontology development in
general. Based on these results, we will now give an overview on the important
requirements for collaborative ontology development focused on semantic image
annotation:

− Usability and simplicity: Collaboration assumes that users take part in community
activities. This requires the lowering of barriers for the given activity. In the
context of ontologies, this means the reduction of their complexity and formality.
Therefore, tools and work steps must be informal, lightweight, easy-to-use and
easy to understand.

− Work integration: Users should be able to change seamlessly between semantic
image annotation and ontology development – otherwise, they fail in annotating
their images as desired. This requires the integration of both tasks in one
framework.

During our evaluation we noticed that users usually start ontology development with
concrete, tangible concepts, and they model more abstract concepts only later. Hence,
a collaborative ontology development methodology should support the bottom up
strategy – in contrast to the top down (or middle-out) strategy that is proposed by
most ontology development processes [5].

3.3 The Ontology Maturing Process Model

The ontology maturing process model [1] describes collaborative ontology
development as interconnected individual learning processes [13]. As the ontology

3 http://www.wikipedia.org

 ImageNotion: Methodology, Tool Support and Evaluation 1011

matures, individual image annotators learn to identify entities in their image contents
and learn how to express them with ontology elements. The processes are
interconnected because they operate on the same ontology (and sometimes even on
the same images).

The ontology maturing process model describes four different steps in the learning
process. Focused on semantic image annotation, these steps are:

− Step 1: Emergence of new ideas. Every time when a user identifies missing
concepts for semantic annotation of added images, elements denoting these new
concepts are introduced to the ontology. In this step, concepts are described
informally, e.g., by textual tags.

− Step 2: Consolidation in communities. During collaborative usage of the new
ontology elements, the ideas are refined, incorrect or unhelpful ideas are rejected.

− Step 3: Formalization: For image annotation, this means the creation of relations
between ontology elements, or creating rules for the creation of new descriptive
information.

− Step 4: Axiomization: In this step, background knowledge for improving
inferencing processes, e.g. for query answering, is added. For most users, this step
is too complicated and confusing. Therefore, this step is normally done by
knowledge engineers, mostly with specialized tools for axiomization, e.g. Protégé
[15].

It is very important to stress that the ontology as a whole will usually contain parts
that have different maturing grades. I.e., an ontology may contain parts that are
already formalized or even axiomatized, but may also have new parts that are just
emerging. The ontology maturing process model allows the semantic annotation of
images with ontology elements from all maturing grades.

We believe that the ontology maturing process model describes the real world
process of ontology development closely and therefore we require that an ontology
development methodology (including ours) should be compatible with this model.

4 Related Work

Our work contributes in the following areas: methods and tools for collaborative
ontology development, and tools for semantic image annotation. An important feature
is that we address the combination of these two aspects. Currently, we are not aware
of any other work that achieves this goal. Therefore we can only review works that
addresses partial fields of our research.

Semantic annotation of images: Flickr [7] and Riya [16] allow browser-based
annotation of images with tags in a work integrated environment. However, semantic
annotation of images using ontologies is not possible. In these collaborative
applications, everyone may add tags. Additionally, Riya allows the annotation of
image parts and supports automated face detection. Photostuff [10] is a stand-alone
application that allows the semantic annotation of images with imported ontologies.
Ontology development and collaborative work is not possible with this tool.

1012 A. Walter and G. Nagypál

Tool support for collaborative ontology development: Protégé [15] is one of the
most popular tools for ontology development. With an extension (Collaborative
Protégé [21]), it also allows collaborative work. KAON OIModeler [22] and OntoEdit
[20] provide collaborative features, as well. The problem of these tools is that they are
too complicated for non-ontology-experts. Semantic Wikis [23] are browser-based and
easy to use. However, they share the common drawback with the mentioned ontology
editors that a separate tool is required for semantic image annotation and therefore
ontology development is no more work integrated.

Methodologies and tools for automated ontology development: Automated
ontology development can help in cases, when images are already annotated with tags
or free-text. In such cases, these methods can help build adequate ontologies. The
OntoGen [8] tool uses text mining to cluster tags and a question and answer system to
semi-automatically generate ontologies. FolksOntologies [4,16] uses statistical
methods to generate ontologies and enhances tags for example with synonyms from
WordNet [24]. In most cases, automatically generated ontologies require manual
corrections and extensions. For new images without tags, we think that it is better to
use approaches that allow the semantic annotations directly. This reduces the required
work compared to an approach that first requires tagging and later the manual
correction of automatically generated ontologies.

Work integrated ontology maturing: SOBOLEO [25] allows the work integrated
maturing of ontologies even for non-ontology-experts. However, it is intended for the
annotation of web pages and not for the annotation of images and especially image
parts. MyOntology [19] describes a similar approach using wikis.

5 The ImageNotion Formalism

Our approach is the result of our search for something more intuitive and more
understandable for users to support the ontology development process and to allow
the semantic annotation for all users. The result is a visually supported formalism and
an ontology development methodology called ImageNotion.

5.1 Definition of an Imagenotion

The basis of our ontology formalism is called imagenotion. An imagenotion (formed
from the words image and notion) graphically represents a semantic notion through an
image. Our motivation was the ancient observation that “a picture worth a thousand
words”. Furthermore, similarly to many existing ontology formalisms, it is possible to
associate descriptive information with an imagenotion. A part of the descriptive
information is textual information: labels in different languages (such as English or
German). For each language, one of these synonymous labels is selected as the main
label of an imagenotion. Other labels are termed synonyms. Additionally, date
information (exact date or time interval) allows for the search for images based on an
exact date or time interval. Also, it is possible to add links to web pages for an
imagenotion. Links help in maturing an imagenotion: with the background

 ImageNotion: Methodology, Tool Support and Evaluation 1013

information from web pages, users get new information that supports the maturing of
existing imagenotions.

5.2 Modeling Ontologies Using Imagenotions

The distinctions between concepts and instances are hard to understand for most
users. In our opinion, the distinction between concepts and instances is not intuitive.
The difficulty of deciding whether something should be modeled as an instance or a
concept is described in [18] and [14]. Here, the notion “ape” may be viewed both as
an instance of the concept “species”, or as a concept that has instances such as “Amy,
the gorilla”. This difficulty motivates metamodelling features in some ontology
formalisms such as OWL-Full [9].

Using imagenotions, users do not need to understand this somewhat artificial
separation of ontology elements. Our solution makes no distinction between concepts
and instances. However, to give users a better understanding of how to use relations,
we introduced two different types of imagenotions, called concrete and abstract ones.
Concrete imagenotions represent tangible entities of the real world, such as a specific
event, object, or person like “Romano Prodi” (president of EU Commission 1999-
2004). Abstract imagenotions represent intangible notions such as “apes” or
“president”. This distinction between abstract and concrete imagenotions allows the
introduction of the following rule: Use concrete imagenotions for the semantic
annotation of images if possible. Then, abstract imagenotions can be automatically
inferred for an image, if proper relations among imagenotions were specified in the
ontology.

5.3 The ImageNotion Formalism

Because imagenotions are associated with images, they are very intuitive and
meaningful internationally, as an image has the same meaning in different languages4.
Our aim was to keep our formalism as simple and understandable as possible. The
ImageNotion formalism currently offers three types of relations that were motivated
by the SKOS specification [2]:

- Broader: transitive relation to create “is-a” relations. e.g. the relation
imagenotion “ape” is connected with this relation with the imagenotion
“species”.

- Narrower: transitive relation, the inverse of the broader relation.
- Unnamed: a generic, symmetric relation between two imagenotions. E.g. a

relation from “Romano Prodi” to the “EU Commission”.

5.4 Reasoning and Querying Imagenotions

Our formalism does not allow negative statements, such as “an ape is not a fish”. This
makes reasoning in the ImageNotion formalism very easy, because no model
checking for inconsistent statements is required. Whenever a user creates relations
between imagenotions, or annotates an image with an imagenotion, the system checks

4 This claim does not hold for imagenotions on a high abstraction level, such as “freedom”.

1014 A. Walter and G. Nagypál

whether the relation or the annotation can be inferred based on the actual content of
the ontology. If yes, the new relation or annotation is rejected. During ontology
browsing or semantic search for images, the system can retrieve all imagenotions that
are (possibly indirectly) connected with a given imagenotion through broader,
narrower or unnamed relations. It is also possible to retrieve all images that are
(possibly indirectly) annotated with a given imagenotion. We will evaluate whether
further functionalities are required by the content owners to create high quality image
annotations, or by image searchers to get high quality search results. E.g., we expect
that reasoning with time intervals may be useful.

6 The ImageNotion Methodology

The aim of the ImageNotion methodology is to guide the process of creating
an ontology that consists of imagenotions. The main steps of this methodology (see
Fig. 2) are based on the ontology maturing process model.

Fig. 2. The ImageNotion methodology

6.1 Ontology Maturing with Imagenotions

Based on the ontology maturing process model, imagenotions iteratively mature in
three different steps. In step 1, new imagenotions are created by users in isolation..
These imagenotions are consolidated in Step 2. This phase covers the collaborative
reuse of good ideas and the rejection of bad ideas. The members of the community
refine the imagenotions by adding (or removing) synonyms, date information and
links to web pages such as Wikipedia articles. Step 3 is the formalization of
imagenotions. This step is described in the next section in more detail.

6.2 Maturing Processes for Descriptive Information and Relations

The maturing of an imagenotion follows a learning process in two different areas
(see Fig. 3). The first step is the maturing of descriptive information; the second step

Use
imagenotions for
semantic image
annotation

Imagenotion

Imagenotion

2. Consolidation in communities

Descriptive
Textual
- Labels
- Synonyms
Time information
Links

Visual
Associate
an image

3. Formalization: Rules and relations

1. Create
imagenotions
Emergence of
new ideas

 ImageNotion: Methodology, Tool Support and Evaluation 1015

is the maturing of relations. Iterative steps on both levels make an imagenotion
mature until a stable, collaborative accepted state emerges.

Maturing process of descriptive information
The maturing process of descriptive information follows the first three phases of the
ontology maturing process:

1. Emergence of ideas: Creation of the imagenotion by defining a label and an
image.

2. Consolidation: Collaborative usage and editing of descriptive information.
3. Formalization: Definition of rules for the usage of descriptive information, e.g.

that each person should include the date information of his or her birthday.

Fig. 3. Maturing process of an imagenotion

Maturing process of relations
After iterative steps for editing descriptive information, the community switches to
the next type of work: the creation and editing of relations. Again, this work type
follows the first three phases of the ontology maturing process:

1. Emergence of ideas: Creation of relations to other imagenotions
2. Consolidation: Collaborative acceptance of available relations.
3. Formalization: Specification of the relation type, e.g. changing from “unnamed”

to “broader”.

6.3 Overview of the Complete Workflow for Semantic Image Annotation

Fig. 4 gives an overview of the complete workflow of the combined ontology
development and semantic image annotation process using imagenotions. First, the
user searches for available imagenotions. If a required imagenotion is missing, or its
description is incomplete, the user first participates in the ontology maturing process.
Then, she uses the mature imagenotion for the semantic annotation of images. These
work steps collaborative iterate. Of course, users may also remove incorrect semantic
annotations from images or may directly use already mature imagenotions (according
to the user’s opinion) for the semantic annotation of images without editing the
ontology.

Maturing
Process

Iterations between annotation types and phases of the maturing process

Formalization

Type of
work

Descriptive
annotations

 Consolidation Idea

Relations

1016 A. Walter and G. Nagypál

6.4 Semantic Annotation of Images Using Imagenotions

Imagenotions are used for the semantic image annotation instead of textual tags as in
other systems. It is easy to see the advantage: all the shortcomings of tagging
approaches, e.g. using the same tag for homonyms and different, independent tags for
synonyms are solved using ImageNotion because we can provide semantic search
instead of full-text search.

Fig. 4. Combined workflow for semantic image annotation and ontology maturing

According to the ImageNotion methodology, it is possible to add imagenotions
from every phase of the maturing model and use them for the semantic image
annotation. In our experiments, we have made interesting observations about how
users improve the semantic annotation of images. These observations support our
theory that the semantic annotation of images is an intermingled process of ontology
development and image annotation.

From concrete to abstract imagenotions: During semantic image annotation, users
first identify concrete things in images and therefore use or create concrete
imagenotions, e.g., for concrete persons, events, or objects. Then, they identify
abstract imagenotions (e.g., the profession of a person such as “president”) and add
them to the images.

Usage of relations to reduce annotation time: In most cases, users annotate some
images with similar content and then they switch to ontology development. The
motivation for that is to decrease the required work for annotating similar images in
the future by creating relations between concrete and abstract imagenotions (see Fig.
5). This improves their workflow as follows: for other, similar images, they only need
to add the concrete imagenotion to the image and the information about the relevant
abstract imagenotions is inferred automatically using the given relation.

As an example let us assume that users annotate images showing “Romano Prodi”.
First, users create the concrete imagenotions for “Romano Prodi” and “EU
commission” and use them to annotate their images. Then, they create the abstract
imagenotion “president” and use it to annotation images, too. Later, to save work for
similar images, they create relations from the imagenotion “Romano Prodi” to the

Usage of new / matured
imagenotions

Collaborative iteration of work steps

Missing or incorrect
imagenotions

Collaborative creation
and editing of imagenotions

Semantic annotation
of images using imagenotions

Search ontology
for imagenotions

Imagenotion correct, but missing or
wrong image annotation

 ImageNotion: Methodology, Tool Support and Evaluation 1017

Fig. 5. Maturing process of the semantic annotation of images

imagenotions “president” and “EU commission”. Then they use only the imagenotion
“Romano Prodi” as semantic annotation for similar images instead of using three
imagenotions each time.

7 The ImageNotion Tool

The imagenotion tool supports the combined ontology maturing and the semantic
annotation of images using the ImageNotion methodology. We present the features of
the expert-based version of the ImageNotion tool.

7.1 User Groups

In the area of professional image archives there are two different user groups: content
owners and image searchers. Content owners are responsible for the annotation of
their own images. This paper described the expert-based version of the ImageNotion
tool, intended for professional image archives. It allows the collaborative work for
image editors (content owners) in image archives. They can collaboratively annotate
images. Each of them can propose new imagenotions, manipulate or delete them. As
the number of experts is normally relatively small, they can have face-to-face
discussions, outside the imagenotion system. Thus, in this version collaboration
means that all experts view and edit the same global ontology.

Image searches cannot edit the ontology or change image annotations. They can
only search for images and browse the ontology.

7.2 Implementation

Our main objective for the ImageNotion tool was to achieve high usability and
simplicity. As most users are familiar with the “drag & drop” metaphor, we

Maturing
Process

Level

Consolidation Formalization Idea

Iterations between levels and phases of the maturing process

Abstract
imagenotion

Concrete
imagenotion

Relations

1018 A. Walter and G. Nagypál

Fig. 6. Create new imagenotion

Fig. 7. Insert label text in imagenotion

consistently use this metaphor in our application. In a browser-based application, this
requires the usage of Java Script in combination with AJAX. As Wicket5 allows the
flexible integration of both, we selected it as our Java-based web framework.

7.3 Creation of New Imagenotions

Images that contain new concepts require the creation of new imagenotions. In Fig. 6,
a user has new images of “Joseph Joffre” (a French general in World War I). Let us
assume that the ontology did not contain an imagenotion for Joffre so far, and
therefore a new imagenotion is required. In this case, the user chooses one image in
the archive showing Joffre and drags this image to the area which allows creating new
imagenotions. Now, she can enter a label in her preferred annotation language and the
new imagenotion is created (Fig. 7).

Fig. 8. Edit descriptive information

Fig. 9. Edit relations

7.4 Editing an Imagenotion and Creating Relations Between Imagenotions

The tool allows the editing of existing imagenotions, too. It is possible to edit the
descriptive information (see Fig. 8) and to add unnamed, broader and narrower
relations to other imagenotions. To define a relation, the tool first allows searching for
other imagenotions. The results may be added as relations, e.g. for “Joseph Joffre”,
unnamed relations to “France” or to “First World War” may be added (see Fig. 9).

7.5 Semantic Image Annotation

Semantic image annotation is possible with every available imagenotion. First, the
user searches for imagenotions and then adds any of the retrieved imagenotions to the
list of image or image part annotations by simply dragging it to the list (see Fig. 10).

5 http://wicket.sourceforge.net

 ImageNotion: Methodology, Tool Support and Evaluation 1019

Fig. 10. Semantic annotation of images using imagenotion

7.6 Import of Existing Ontologies

It is not always necessary to build ontologies from scratch. Therefore, our tool allows
the import of ontologies that are defined in SKOS [2] or OWL [9]. During the import,
each of the defined concepts and instances are converted to an imagenotion. All
relations are converted to unnamed relations except those one defined as broader or
narrower ones.

8 Evaluation

Our aim was to evaluate whether users who are not ontology experts are able to
collaboratively create ontologies and semantically annotate images using the expert-
based ImageNotion tool. Therefore, we asked experienced image annotators and
librarians who had minimal ontology background to participate in an evaluation
workshop. We will now present the setup and results of this workshop.

8.1 Evaluation Setup

Six people (see Table 1) participated in our evaluation workshop which was held in
June 2007. One participant (user 1) had well-founded background knowledge about
semantic formalisms; two of the participants (users 2 and 3) had much experience
with tag-based annotation systems but did not have any experience with semantic

Table 1. Overview on the participants of the evaluation

User 1 2 3 4 5 6
Experience with tag-
based annotation

Flickr Flick
Ourweb

Flickr
Ourweb

No No No

Experiences with
semantic formalism

OWL No No Dewey
DDC

Dewey
DDC

Dewey
DDC

Experiences with
semantic application

Protégé No No SBN
Thesaurus

SBN
Thesaurus

SBN
Thesaurus

Profession Text
Mining

Assistant in
picture library

Translator in
picture library

Librarian Librarian Librarian

Experiences with
computer

Very high Normal Normal Normal Normal Normal

1020 A. Walter and G. Nagypál

formalisms and applications. The other three participants were familiar with thesauri
(Dewey DDC [3]), but not with ontologies or with image annotation systems.

For the evaluation, we provided 854 images from two domains: “First World War”
and “European politicians”. The task for the participants of the evaluation was the
semantic annotation of these images. The ontology development thereby had to start
from scratch. The workshop took four hours. During the first hour, we presented the
ImageNotion tool and its features. In the second hour, the participants used the tool
for training purposes and they could ask questions about its features. After that, we
removed all semantic image annotations and imagenotions created so far. The
following results are based on all imagenotions and semantic image annotations that
were created during the remaining two hours of the workshop.

8.2 Overall Result

Table 2 shows the overall work steps for the two different work processes: ontology
maturing and semantic image annotation. In the following, a work step means one
user action, e.g. annotating an image, creating or maturing an imagenotion.
Altogether, the participants have created 46 imagenotions and edited them in 115
work steps. Thus, the number of work steps for the ontology maturing is higher than
the 110 work steps for the annotation of images (see Table 2). Clearly more concrete
imagenotions (35) were created than abstract imagenotions (11). Altogether 46
imagenotions were created.

Table 2. Number of work steps for ontology maturing and semantic image annotation

Work process I: Ontology maturing Work process II: semantic image annotation

Number of created imagenotions 46
Imagenotions with only one work step 10
Number of work steps 115

Average number of work steps on
imagenotions per user

2,5

Average number of work steps per user
for the maturing of imagenotions

19,2

Number of annotated images 68
Number of work steps 110
Number of used imagenotions for
semantic image annotation:

26

Average of imagenotions used for
semantic annotation per image

1,6

Average number of image annotations
per user

18,3

Additionally, users created 40 relations to other imagenotions. From the 46
imagenotions, 10 imagenotions had only one work step and can be considered
obsolete. Some were created as duplicates from other, collaboratively used
imagenotion, e.g. “presi” instead of “president”. Altogether, 26 imagenotions were
used for the semantic annotation of images and image parts. Other nine imagenotions
(e.g. “president” or “general”) were used indirectly through relations. This supports
our theory from section 6.4 that the semantic image annotation benefits from the
maturing process from concrete to abstract imagenotions and the usage of relations
between them. In future work, we will provide mechanisms that will help to identify
obsolete imagenotions so that they can be deleted.

 ImageNotion: Methodology, Tool Support and Evaluation 1021

Table 3. Collaborative usage of imageno-
tions

Table 4. Annotation types and maturing of imagenotions

 Number
 of users

 Number of
 imagenotion

 Percent of
 imagenotions

 1 32 70
 2 11 24
 3 1 2
 4 1 2
 5 1 2

 Type of
 annotation

 Annotation Number of
 imagenotion

 Percent

 Image
 defined

 33 71

 Label
 changed

 7 15

 Date 12 56
 Link 18 39

 Descriptive

 Synonyms 5 11
 Total 75

 Relations 40 87

Already in such a short time of two hours, the participants have collaboratively
used imagenotions (Table 3). 24 percent of them were used by two participants; one
imagenotion – labeled “First World War” – was even used by five users. Table 4
supports our theory from section 6.2 for the maturing of imagenotions in two different
types of work: 75 work steps were used for the work type I for extending the
descriptive information of imagenotions and 40 work steps for the work type 2 – the
creation of relations to other imagenotions.

Table 5. Aggregated user actions in the several work steps

Relation to abstract imagenotions 2 5 6 2 1 2 2 2 3
Relation to concrete imagenotions 3 2 2 1 3 1 1 1
Descriptive annotation 46 32 12 9 6 8 5 3 2 1
Semantic image annotation 3 7 7 19 11 12 15 11 9 2 2
Work step 1 2 3 4 5 6 7 8 9 10 11 12

8.3 Detailed View on User’s Interactions

Table 5 shows the aggregated number of different user actions in each work step. We
separated the work steps for semantic image annotation and the work steps for the
maturing of an imagenotions, which is separated in work steps for editing descriptive
information and editing relations. The bold entries show the mostly used actions in
each work step. After creating descriptive annotations (steps 1-3), users switch to the
semantic annotation of images (steps 4-10) and then back to the imagenotions to add
relations (work step 11).

8.4 Survey of the ImageNotion Tool

After the workshop, we asked the participants to fill out a survey of the ImageNotion
tool. The average rating for the usability concerning the creation of imagenotions and
the semantic annotation of images have a very pleasant average rating (1.8). The
problems with the creation of relations (average rating 2.5) seemed to be a problem
with the participants understanding of the theory about relations that led to the most
questions during and after the workshop. These values altogether are very
encouraging for us, but also show the need to improve the ImageNotion tool
especially in the area of relations.

1022 A. Walter and G. Nagypál

Table 6. Survey results for the ImageNotion tool

User 1 2 3 4 5 6 AVG
Creation of imagenotions 1 2 2 2 2 2 1.8
Image annotation 1 2 1 3 2 2 1.8
Creation of relations 1 3 3 3 3 2 2.5

(1) very easy (2) Problems at the beginning (3) Difficult (4) very difficult

8.5 Discussion

Our evaluation showed that our approach of integrating collaborative ontology
development into the process of collaborative semantic image annotation is
promising: even non-ontology-experts can create semantic annotations and relations
using ImageNotion. An interesting observation is that more than half of work is spent
for the creation and maturing of imagenotions that are used for the semantic image
annotation in the other work steps. This shows that users are qualified to create
ontologies if the ontology development process is integrated in their workflow, i.e., if
they have the chance to participate in the ontology development.

9 Conclusion and Future Work

We have shown that the usual, separated work processes, i.e., ontology development
by ontology experts and the semantic image annotation by content owners, are not
feasible in practice – especially not when the content of the image repository
frequently changes. As a solution, we proposed ImageNotion – a work integrated,
collaborative ontology development methodology and a tool based on the ontology
maturing process model. ImageNotion allows each user to participate in the
development of ontologies of imagenotions during the semantic annotation of images.
The ImageNotion ontology formalism is simpler than classical ontology formalisms
and thus lowers the barrier of participation for non-ontology-experts. Thereby, we
identified two separated maturing processes – one for the maturing of imagenotions
and one for the maturing of semantic image annotations. This observation supports
our thesis: a successful semantic annotation of images is only possible with a work
integrated approach for ontology development.

Our evaluation showed that the ImageNotion methodology supported by the
expert-based ImageNotion tool is promising and well accepted by users with minimal
ontology experience.

Our future work focuses on larger scale evaluations of the expert-based image
notion tool and also on the extension of the tool to support the ontology maturing
process for big communities (such as the community of Flickr). Latter requires
additional methods and tools, such as the creation of user groups for specific topic of
interests, voting, discussion mechanisms about ontology elements and image
annotations, and personalization features such as the possibility to define own images
for the representation of imagenotions.

 ImageNotion: Methodology, Tool Support and Evaluation 1023

Acknowledgement

This work was co-funded by the European Commission within the project
IMAGINATION. Also, we want to thank the participants of our evaluation workshop.

References

1. Braun, S., Nagypál, G., Schmidt, A., Walter, A., Zacharias, V.: Ontology Maturing: A
Collaborative Web 2.0 Approach to Ontology Engineering. In: WWW 2007. Proc. of the
Workshop on Social and Collaborative Construction of Structured Knowledge, Banff,
Alberta, Canada (2007)

2. Brickley, D., Miles, A.: SKOS Core Vocabulary Specification. W3C (2005), http://
www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102

3. Dewey, D.D.C.: The Dewey Decimal Classification, http://www.oclc.org/ca/en/dewey/
4. Van Dammer, C., Hepp, M., Siorpaes, K.: FolksOntology: An Integrated Approach for

Turning Folksonomies into Ontologies. In: International Workshop at the 4th European
Semantic Web Conference on Innsbruck, Austria (June 2007)

5. Fernández-López, M., Gómez-Pérez, A.: A survey on methodologies for developing,
maintaining, integrating, evaluating and reengineering ontologies. Deliverable 1.4, EU IST
Project IST-2000-29243 OntoWeb (2002)

6. Gómez-Pérez, A.: Handbook of Applied Expert Systems. In: Gómez-Pérez, A. (ed.)
Knowledge Sharing and Reuse, CRC Press, Boca Raton (1997)

7. Flickr: Welcome to Flickr – Photo Sharing. http://www.flickr.com/ (accessed: 27.06.7007)
(2007)

8. Fortuna, B., Grobelnik, M., Mladenic, D.: Semi-automatic Data-driven Ontology
Construction System. In: IS 2006. Proc. of the 9th International multi-conference
Information Society, Ljubljana, Slovenia, Slovenia (2006)

9. McGuinness, D., van Harmelen, F.: OWL Web Ontology Language,
http://www.w3.org/TR/owl-features/ (accessed: 27.06.7007)

10. Halaschek-Wiener, C., Golbeck, J., Schain, A., Grove, M., Parsia, B., James, A.:
Annotation and provenance tracking in semantic web photo libraries. In: International
provenance and annotation workshop (2006)

11. Hepp, M.: Possible Ontologies: How Reality Constrains the Development of Relevant
Ontologies. IEEE Internet Computing 11(7), 96–102 (2007)

12. Hollink, L., et al.: Semantic annotation of image collections. In: KCAP 2003. Workshop
on Knowledge Markup and Semantic Annotation (2003)

13. Maier, R., Schmidt, A.: Characterizing Knowledge Maturing: A Conceptual Process
Model for Integrating E-Learning and Knowledge Management. In: Proc. of the 4th
Conference Professional Knowledge Management – Experiences and Visions, Potsdam,
Germany (2007)

14. Motik, B., Maedche, A., Volz, R.: A Conceptual Modeling Approach for building
semantics-driven enterprise applications. In: Meersman, R., Tari, Z., et al. (eds.) ODBASE
2002. LNCS, vol. 2519, Springer, Heidelberg (2002)

15. Protégé. The Protégé Ontology Editor and Knowledge Acquisition System.
http://protege.stanford.edu/ (accessed: 27.06.7007)

16. Riya. Riya - Visual search (accessed: 27.06.7007) (2007), http://www.riya.com/
17. Schmitz, P.: Inducing Ontology from Flickr Tags. In: Proc. of the Collaborative Web

Tagging Workshop at the 15th WWW Conference, Edinburgh, Scotland (2006)

1024 A. Walter and G. Nagypál

18. Schreiber, G.: http://www.cs.man.ac.uk/ horrocks/OntoWeb/SIG/challenge-problems.pdf
19. Siorpaes, K., Hepp, M.: myOntology: The Marriage of Ontology Engineering and

Collective Intelligence. In: International Workshop at the 4th European Semantic Web
Conference on Innsbruck, Austria (June 2007)

20. Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., Wenke, D.: OntoEdit:
Collaborative Ontology Engineering for the Semantic Web. In: International Semantic
Web Conference 2002, Sardinia, Italia (2002)

21. Tudorache, T., Noy, N.: Collaborative Protégé. In: WWW 2007. Proc. of the Workshop on
Social and Collaborative Construction of Structured Knowledge, Alberta, Canada (2007)

22. Volz, R., Oberle, D., Staab, S., Motik, B.: KAON SERVER - A Semantic Web
Management System. In: WWW 2003. Alternate Track Proc. of the Twelfth International
World Wide Web Conference, Budapest, Hungary (20-24 May, 2003) (2003)

23. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic Wikipedia. In:
WWW 2006. 15th international conference, Edinburgh, Scotland (2006)

24. WordNet. A lexical database for the English language, http://wordnet.princeton.edu/
(accessed: 27.06.7007)

25. Zacharias, V., Braun, S.: SOBOLEO – Social Bookmarking & Lightweight Ontology
Engineering. In: Workshop on Social and Collaborative Construction of Structured
Knowledge, 16th International World Wide Web Conference, Canada (2007)

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 1025–1033, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Optimal Learning of Ontology Mappings from Human
Interactions

Sumit Sen, Dolphy Fernandes, and N.L. Sarda

Deptt of Computer Science,
IIT Bombay, Mumbai 400 076, India

{sumitsen, dolphy, nls}@cse.iitb.ac.in

Abstract. Lexical similarity based ontology mappings are useful to obtain
semantic translations of database schemas across application domains.
Incremental improvement of such mappings can be obtained from human inputs
of ontology mapping. Manual mappings are labor intensive and need to be
assisted by machine-generated mappings in a semi-automated approach.
Heuristics based approaches allow multiple strategies to learn human expertise
in concept mappings. Such learning improves the level of automation of the
mapping process. We analyze heuristics based Bayesian learning of manual
mappings to improve effectiveness of machine-generated mappings. Our results
show that human based mappings contribute higher improvement in the
machine-generated values of lexical similarity in comparison to those of
structural similarity. The optimal weightage for structural similarity learning is
inversely proportional to the complexity of given ontology graphs.

1 Introduction

Semantic heterogeneity of databases has received attention for many years now and
ontology based mapping has been increasingly viewed as an engineering solution to
the problems. Based on specifications of the conceptualizations as a more generic
layer above the schema specifications, ontologies serve as an intermediate step to
specify and resolve semantics of the contents of a database system. Two categories of
semantics can be differentiated in regard to (a) classes or schema names and (b)
Individuals or instances of the classes.

While the later is by no means a trivial problem, we state our approach based
on semantics of the class or schema names. The requirement of machine learning
in this case is similar to that of learning schema matching by humans[1].
However, it is important to understand that certain areas of learning from human
experts are more critical than others. The scalability of manual mappings
procedure is also a difficult issue and it is important to note the complexity for
humans to comprehend semantic implications of the relative position of a class in
a complex class hierarchy. This paper aims to explore the optimality of learning
from human knowledge in order to achieve higher efficiency of ontology
mappings in databases.

1026 S. Sen, D. Fernandes, and N.L. Sarda

2 Background

The Framework for Interoperability of Geospatial Information using Ontologies
(FIGO) is developed on the basis of lexical similarities of class names and their
attributes. This framework uses specifications of database ontologies based on a graph
of layers, classes and their attributes [2]. Layers are aggregates of certain classes
grouped as per their usages. Both Layers and Classes can have child elements in the
form of Sub-layers and Sub-classes respectively. Attributes can be both XML data-
types and also object-types (contains Classes). This graph structure, without further
axioms about the classes and attributes themselves, forms the basis of our simplistic
ontologies for a given database. The graph representing an ontology of n nodes,
average depth of hierarchy equal to p and average height q can be represented as
G(n,p,q). Given two graphs OS and OT, we need to determine a mapping between their
nodes. The ontology matching problem now transforms into generating a similarity
matrix given by

M[OSX OT] = {mS1T1, mS1T2,… m S1Tn

 m S2T1, m S2T2, …m S2Tn
 ……

 m Sm,T1, m SmT2, … m SmTn}

 such that 0 ≤ mST ≤ 1

 (1)

The matrix is directed from a given source to a target and the reversibility of the
values is not assumed (i.e. the similarity is not symmetrical). The question that such a
mapping answers is ‘which are the classes and attributes of the source ontology that
can provide corresponding values for the classes and attributes of the target’. This is
similar to the prevalent understanding of ontology mapping in literature. Ehrig and
Staab [6] define ontology mapping: “Given two ontologies O1 and O2, mapping one
ontology onto another means that for each entity (concept C, relation R, or instance I)
in ontology O1, we try to find a corresponding entity, which has the same intended
meaning, in ontology O2.” The mapping assumes that inability of assessing the
similarity results in a zero value, and hence such cases are treated as non-equivalent.
The other relations used in the mappings are equivalent, sub-class, super-class and
attribute union. Mappings with values lower than a given threshold (t) is assumed as
non-equivalent. In this paper we assume t = 0.5.

2.1 Previous Work

The important aspects of the assessment of machine generated values of similarity
involve

1. Classes and attributes are represented by their names and short descriptions. Both
these are used to assess the lexical similarity from WordNet[3]. The synonym,
hyponym and hypernym relations are used to characterize the relations between
different classes.

 Optimal Learning of Ontology Mappings from Human Interactions 1027

2. Lexical similarity values are propagated based on a directional propagation of
similarity. The similarity of attributes, subclasses and super-classes are used to
influence the original values of lexical similarity between classes themselves.
This approach [2] employs no-penalty based heuristics to ensure directional use
of similarity flooding [4].

3. Similarity propagation from subclasses and superclasses are combined to obtain
final scores of similarity between a given source class and a target class.
Attribute mappings remain unchanged by the similarity propagation.

The differences between machine generated mappings in comparison to human
generated mappings has been compared by Sen et al[2]. and it has been reported that
there exists opportunities to improve the precision and recall of the machine based
mappings. The generated values can be improved with two different approaches, (i)
optimization of the heuristics used and (ii) learning of manual mappings. Semi-
automatic ontology mapping approach in FIGO involves machine-based mappings
generated by different approaches, viz. (i) lexical similarity alone, (ii) subclass and
attribute similarity propagation (iii) combined similarity propagation of subclass,
super-class and attributes.

2.2 Learning from Manual Mappings

Machine learning has been deployed for schema matching problems. Berlin and
Motro [4] have discussed Bayesian approach to learn schema matching from domain
experts using an attribute dictionary. Nottelmann and Straccia [5] have discussed the
use of a probability-based framework for automatic learning of schema mapping
rules. Similarly Melnik et al [4] have also pointed that machine learning forms a part
of content based technique for schema matching.The main issues in learning of
schema matching problems include

(i) Non-availability of mapping knowledge from domain experts.
(ii) Complexity of large scale (industrial) databases and hence their

underlying schemas. Learning in such cases is therefore difficult to
design.

(iii) Avoiding cases of over fitting.

Approaches to mappings in ontologies have also used Bayesian learning. A
literature survey of recent ontology mapping research shows that Mapping Discovery
is an area of ongoing work dominated primarily by machine learning and heuristic
techniques. In semantic web research, Bayesian learning has been applied to
documents on the web [6].

2.3 Research Problem

Given that the core problem of learning ontology mappings from human based inputs
we identify the prevalent research problems in this area.

1. Supervised learning of ontology mappings is not always useful because there are
many cases where manual mappings are not available or difficult to obtain

1028 S. Sen, D. Fernandes, and N.L. Sarda

2. It follows that manual mappings are less reliable in complex hierarchies where
the structural similarities between two concepts in different ontologies are not
obvious to the human user.

3. The training dataset for supervised learning is very important and it is necessary
to regulate the information that is learnt in each case.

In the context of FIGO, the information gained from manual mappings include (i)
Information about valid mappings & (ii) Information about invalid mappings. It is
necessary to incorporate both such information and investigate the conditions in
which learning is appropriate. This leads to the following research questions (i) What
are the optimal conditions in which learning of human based mappings are beneficial
to machine based mapping values? (ii) Is learning of structural similarity from
manual mappings beneficial and what is the effect of deep ontological structures on
the learning process?

Weights are used to obtain answers for the above questions. These weights form
the basis of heuristics, which are employed to ensure optimal learning of human
expertise for ontology mappings. While the workflow management based on machine
generated mappings enable semi-automation of the mapping process, heuristics based
learning of manual mappings improve the machine-generated mappings and hence
improves the overall automation. The learning process uses human validations of
machine mappings as evidence to strengthen the belief in a given machine mapping.
Let P(A) be the prior probability of a given mapping (before observing any manual

mappings). Since P(A) represents prior probability that a given mapping is true, we

choose to denote the compliment of this value as)P(Ac =1- P(A) . Bayesian learning

uses evidences)|(AVP to learn posterior probabilities as seen in equation 2.

Equation 2 represents the Bayes’ theorem [31] for any finite partition },{ JjA j ∈ of

Ω and 0>V . Here V represents the condition where human validations for the
given mapping exist.

)()|(

)()|(
)|(

jJj j

ii

APAVP

APAVP
VAP

⋅
⋅

=
∑ ∈

 (2)

Proposition 1
For any mapping value with positive feedback =)|(AVP and negative feedback

=)|(cAVP the posterior probability is given by

)()|()()|(

)()|(
)|(

cc APAVPAPAVP

APAVP
VAP

⋅+⋅
⋅

= (3)

The notion of optimal learning emerges from the fact that learning of manual
mappings is optimal only under certain conditions. These include the type of learning
(whether lexical or structural similarity) or complexity of the ontologies (different
values of n and m). To achieve this we apply weights to the evidences from which
learning takes place. We define three different weights in the context of the three

 Optimal Learning of Ontology Mappings from Human Interactions 1029

different properties (1) Overall optimal weight for learning (w) (2) Fractional weights
for optimal learning of lexical similarity (wL) and structural similarity (wS). (3)
Fractional weight for learning under a given complexity of the graphs (w[m,n]). We
assume that the weight of optimal learning for structural similarity wS= w[m,n].
Therefore overall optimal learning weight criteria are obtained by a combination of
these weightages represented by w.

The optimality condition is achieved when the precision and recall (and hence the
F-score) of the machine-based mappings are highest with respect to the ideal case.
Ideal case can be the manual mappings of experts1. We use the weights discussed
above to obtain a weighted sum of the machine generated values and the learnt values
(equation 4).

))(()1()|(ueLearnt val APwVAPw ⋅−+⋅= (4)

3 Learning Experiments

Our experiments to learn the effects of learning on the performance of machine-
generated values of concept mapping were done with two objectives. (1) To assess
performance of different weights for learning of mappings based on lexical similarity
and structural similarity. Since structural similarity is difficult to measure we use the
difference of overall similarity values and lexical similarity. (2) To assess the
performance of different weights for learning of mappings for graphs with different
number of nodes and average depth. We use the ideal mappings to compute the
efficiency of both machine generated and manually generated values. The F-score
(harmonic mean of precision and recall) is used as an indicator of the efficiency of the
matches. A threshold of 0.5 is used to decide the false positives and false negatives
for our experiments.

3.1 Machine Learning Employed in FIGO

The plot of the F-measure (harmonic mean of precision and recall) over different
weightage given to machine learning is shown in graph 4. This graph shows several
cases with different number of nodes and m measure. As evident from graph 4, higher
complexities of the graph (i.e., bigger [m,n] values for both number of nodes and the
m measure) have a higher correlation with high growth of efficiency in the range of
weights [0,0.6]. In all cases, the F-measure of the mappings reach its maximum at
w = 0 and then remains level. As evident from graph 4, higher complexities of the
graph (i.e., bigger mxn values for both number of nodes and the m measure) have a
higher correlation with high growth of efficiency in the range of weights [0,0.6]. In all
cases the F-measures of the mappings reach their maximum at a certain w and then
remain level. We term this weight as wc.

1 Note that we do not assume that all manual mappings are done by experts. Thus another

weight (wuser) can also be proposed to have different influence factors for different levels of
users.

1030 S. Sen, D. Fernandes, and N.L. Sarda

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

m=[15,3] n=[39,3]
m=[15,5] n=[39,5]
m=[15,5] n=[39,7]
m=[15,15] n=[39,39]
m=[7,3] n=[12,3]
m=[7,5] n=[12,5]
m=[7,5] n=[12,7]
m=[39,39] n=[65,65]
m=[39,5] n=[65,7]
average

Graph 1. Changing F-Score values (Y-axis) with respect to different weightages(X-axis used
and complexity of the ontology graph (legend). The average value is shown as dashed line and
it shows no relative change after w=0.

y = -3505.3x + 2721.4
R2 = 0.3107

y = -1282.6x + 959.98
R2 = 0.3367

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

nodes

m measure

trend(m measure)

trend (nodes)

Graph 2. Correlation of optimal weights (wc) with complexity of ontology graphs (number of
nodes and m measure). It shows a negative correlation for both.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall(Lexical)

Recall(Overall)

Precision(Lexical)

Precisionl(Overall)

Graph 3. Differences in precision and recall (Y-axis) and weightage used for learning human
mapping values(X-axis) in relatively large ontology graphs (n>[30,30] and m>[45,45]

The correlation between the structural complexities of a graph with wc can be seen
in graph 2. It shows the variation of wc with respect to the graph complexity. Graph
complexity is shown as a function of (i) number of nodes and (ii) the measure m
related to average height and weight. It illustrates that with increasing complexity of
the ontology graph the required influence of manual mappings goes down. We have

 Optimal Learning of Ontology Mappings from Human Interactions 1031

discussed that the ontology mapping values obtained from lexical similarity values
alone, are different from the overall similarity value, which are based on subclass and
super class in the ontology graph. We term this similarity as structural similarity [3].
Structural similarity is introduced by using heuristics based on similarity propagation.
The differences in learning manual mapping values based on their type of similarity
(either lexical or structural) are also investigated. There are differences between
machine learning applied to both lexical similarity and overall similarity. These
results are obtained from ontologies of large ontology graphs where human subjects
found difficulty in mapping concepts because of the complexity of the graph in which
they were present. The precision graph (graph 3) of lexical similarity is seen to be
more stable and hence improvement in machine-generated values can largely benefit
from a higher weightage factor (wL) as compared to that for structural similarity (wS).
The correlation of the difference between overall similarity and lexical similarity was
seen to be high in most cases where manual mappings failed the ideal cases. The
positive correlation of this difference in the two similarity values (and hence the
measure of structural similarity) in relation to the number of failed mappings is
observed to be around 0.5.

Weights used for learning lexical similarity were found to reach maximum F
values at 0.6 where as the wc value for structural similarity was found to be at 0.4.
Based on equation 4 the overall weight for learning is 0.5. The optimal
weightage(WC) for structural similarity (and therefore the overall similarity) is
dependent on the size of the graph, as shown in and graph 2. We applied these
weights for learning of manual mappings and the results are shown in graph 4. The
overall f value obtained for the optimality condition (Ws=0.4,WL=.6)is higher than
those obtained other weightage values . Only cases with comparatively high values of
precision and recall have been shown.

0

0.2

0.4

0.6

0.8

1

1.2

Ws=0.4,
WL=.6

(Wc)

Ws=0.6,
WL=.6

Ws=0.6,
WL=.4

Ws=0.5,
WL=.6

Ws=0.4,
WL=.4

recall
precision
f-measure

Graph 4. Precision, recall and F-measure for different weightages for structural and lexical
similarity. The first case is on the basis of the heuristic for optimal learning.

4 Analysis and Discussion

Melnik et al [7] has discussed the assessment of automatic matching algorithms and
discusses the accuracy of a match result as a measure of labor savings2 as follows

2 The measure is not applicable for values of precision less than 0.5 and hence we omit such

cases.

1032 S. Sen, D. Fernandes, and N.L. Sarda

Accuracy / labor savings = ⎟
⎠
⎞

⎜
⎝
⎛ −

Precsion

1
2Recall (5)

This measure is explained to be pessimistic in nature. The values of accuracy obtained
from the results of the heuristics based learning is shown in the table below.

Table 1. Savings from heuristics based learning

Case Weights

Labor Sav-

ings

Optimal WS=0.4, WL=.6
(Wc) 0.288889

WS=0.6 WL=.6 0.08125
WS=0.6, WL=.4 0.073864
WS=0.5, WL=.6 0.08125

Other
cases

WS=0.4, WL=.4 0.073864

The relative savings in the optimal case is seen to be fairly high, mainly due to the
contribution of a higher precision. Learning of manual mappings increases the
chances of deleting the false positives because humans are less likely to map
dissimilar classes. However the chance of missing a correct match is fairly high in
manual mappings. Optimality conditions for learning, in the form correct weightage
applies to the learning of lexical similarity and a lower weightage applied to structural
similarity (in large ontology graphs), ensures a fairly high precision of ontology
mappings. The improvement of machine-generated mappings also provides
opportunities for more efficient manual mappings thereafter.

5 Conclusions and Future Work

We have discussed the framework of ontology-based mappings, which learns from
manual mappings to improve the machine generated mapping values.

We have explored the optimality conditions of such mappings based on the
assumptions of distinctions between lexical similarity and structural similarities
between ontologies. The distinction enabled us to experiment with different
weightage values for Bayesian learning knowledge about manual mappings. We
found that optimal learning ensures higher level of automation (and hence it follows
that higher level of automation warrants optimal learning). Our work presents a
promising way to ensure high accuracy based ontology mapping techniques in the
absence of instance level information. As opposed to techniques that use instances of
classes to learn about ontology mappings such as GLUE [7], our technique is
applicable in cases where data instances are not available to start with.

We believe that this work is only a beginning in the context of optimal learning of
ontology mappings. We believe that the basic principles of heuristics is based learning
of human knowledge is applicable in a broader domain of ontology mapping. In the
context of the work reported in this paper and our project, some of the directions for
future work include (1) Exploring the heuristics employed for learning in further

 Optimal Learning of Ontology Mappings from Human Interactions 1033

examples to inspect their behavior beyond the geospatial domain currently used. (2)
The possibility to increase or modify the lexicon based on the manual mappings is
another alternative to increase the accuracy of the machine-based mappings. (3)
Human subject testing to explore the critical sizes of ontology graphs in the context of
errors produced manually.

Acknowledgements

The work presented in this paper is supported by the NRDMS, Dept. of Science and
Technology, Government of India.

References

1. Berlin, J., Motro, A.: Database Schema Matching Using Machine Learning with Feature
Selection. In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE
2002 and VLDB 2002. LNCS, vol. 2590, Springer, Heidelberg (2003)

2. Sen, S., Somavarapu, S., Sarda, N.L.: Class structures and Lexical similarities of class
names for ontology matching. In: ODBIS. VLDB Workshop on Ontologies-based
techniques for DataBases and Information Systems Co-located with VLDB 2006, Seoul,
South Korea (2006)

3. Fellbaum, C.: WordNet. An Electronic Lexical Database. MIT Press, Cambridge (1998)
4. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching

Algorithm and its Application to Schema Matching. In: ICDE 2002, IEEE Computer
Society, Los Alamitos (2002)

5. Nottelmann, H., Straccia, U.: Information retrieval and machine learning for probabilistic
schema matching. In: CIKM 2005, ACM, New York (2005)

6. Ding, Z., et al.: A Bayesian Methodology Towards Automatic Ontology Mapping. In: C&O
2005. AAAI-05 Workshop on Contexts and Ontologies: Theory, Practice and Applications,
Pittsburgh, PA (2005)

7. Doan, A., et al.: Learning to Map between Ontologies on the Semantic Web. In: WWW.
World Wide Web Confernce (2002)

Automatic Feeding of an Innovation Knowledge

Base Using a Semantic Representation of Field
Knowledge

Issam Al Haj Hasan1, Michel Schneider1, and Grigore Gogu2

1 Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes
(LIMOS)

Complexe des Cézeaux, 63173 Aubière CEDEX
{issam.ahh,michel.schneider}@isima.fr

2 Laboratoire de Mécanique et Ingenieries (LaMI)
Campus de Clermont-Ferrand/les Cézeaux, BP 265, 63173 Aubière CEDEX

grigore.gogu@ifma.fr

Abstract. In this paper, by considering a particular application field,
the innovation, we propose an automatic system to feed an innovation
knowledge base (IKB) starting from texts located on the Web.

To facilitate the extraction of concepts from texts we distinguished in
our work two knowledge types: primitive knowledge and definite knowl-
edge. Each one is separately represented. Primitive knowledge is directly
extracted from natural language texts and temporally organized in a
specific base called TKB (Temporary Knowledge Base). The entry of
the base IKB is the knowledge filtered from the TKB by some speci-
fied rules. After each filtering step, the TKB is emptied for starting new
extractions from other texts sources.

The filtering rules are specified using variables representing interesting
concepts. Their specifications result from the semantics of the innovation
operators involved in the innovation process. The variables are initiated
from a semantic representation of the operators. The content of the base
IKB can be displayed as text annotations. Hence the feeding system is
coupled with a user interface allowing the exploration of these annota-
tions through their dynamic insertion in the associated texts.

In this paper, we present the application field and our approach for
representing and for feeding the IKB innovation base. We also provide a
number of experiment results and we indicate work we plan to undertake
in order to improve our system.

Keywords: knowledge base, feeding system, information extraction, se-
mantic representation, conceptual schema, filtering rule, innovation field,
innovation operator, semantic network.

1 Introduction

In many fields, there appears the need to build knowledge bases starting from
various more or less structured data sources: data bases, documents, web pages.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 1034–1049, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automatic Feeding of an Innovation Knowledge Base 1035

Very often, the location and the acquisition of these data and knowledge sources
are carried out manually. Because of their increasing number, this manual pro-
cess has to be partially or completely automated. Automatic information extrac-
tion from natural language texts (NL texts) was the subject of a great deal of
work carried out over the last decade and significant results were obtained [13]
and [4].

However, these systems are often specific to one domain and adaptation to a
different domain is difficult. Information extraction is generally based on extrac-
tion rules involving syntactic and semantic relations between field entities. The
manual specification of these rules needs vast experience. The automatic spec-
ification can be made by a learning system where the user has to prepare and
to tag training texts. Often, the localization of a sufficient number of training
examples is time consuming, and in some cases it is impossible.

In the innovation domain, it was very difficult to adapt an existing information
extraction system because of the high number and the semantic variety of the
innovation operators.

In this paper, we present an approach that we developed to feed an inno-
vation knowledge base (IKB) (cf. section 5.4) by automatically inserting texts
examples illustrating the innovation operators (cf. section 3). These examples are
retrieved from the NL texts located on the Web and semantically represented
in the innovation base. By this representation, users can semantically query the
knowledge base and retrieve examples having entities corresponding to concept
defining their innovation problem.

In our approach, the extraction rules called “filtering rules” in our work (cf.
section 5.5) are specified starting from a semantic representation of the innova-
tion operators. These specifications involve innovation operators entities such as
resources, characteristics, actions, and objects presented in section 3. The task of
these rules is to semantically filter the relevant information from the texts exam-
ples illustrating the operators by locating their specified entities in the natural
language texts.

The implemented system (cf. section 5.1) is based on a semantic representa-
tion of each innovation operator. In this representation the operator entities are
defined by an expert. The expert specifies for each operator entity one or more
concepts mapped to a lexical network (for instance WordNet).

In the first stage, the system uses the mapping concepts (cf. section 5.2) and
their corresponding terminologies to directly feed the base TKB (cf. section 5.3)
from one or more natural language text sources. In the second stage, it uses the
semantic representation of each operator to initiate the variables of the filtering
rules which are used to feed in the base IKB the relevant knowledge starting
from the base TKB.

The system has an interface (cf. section 5.6) allowing users to explore the
content of the IKB base by a dynamic insertion of concepts annotations in the
corresponding text sources.

1036 I. Al Haj Hasan, M. Schneider, and G. Gogu

2 Information Extraction and Word Sense
Disambiguation

Our approach to feed an innovation knowledge base is inspired from two major
techniques taken from natural language processing and artificial intelligence:
information extraction and word sense disambiguation.

Information extraction (IE) is the task of identifying, collecting and normaliz-
ing relevant information from NL texts. It is different from information retrieval
(IR) based on a user request to extract the relevant documents from a large
collection. But the two techniques are complementary [4].

IE systems don’t attempt exhaustive deep analyses of all the text. Rather,
they only show interest in the text passages containing relevant information
[9]. They are generally based on extraction rules or patterns implying syntactic
and semantic relations. Therefore the text must be syntactically analyzed and
semantically tagged before applying the rules.

The specification of such rules for free or semi structured texts is a very
difficult, time consuming task, and it requires a lot of expertise. For these rea-
sons, the majority of the implemented systems have focused on machine learning
approaches [12] such as CRYSTAL [18], WISH [17], and RAPIER [20]. These
systems aim to automate the production of the extraction rules and thus to
facilitate the adaptation of the system to a new application field.

Word sense disambiguation (WSD), or sense tagging, is the process of assign-
ing the appropriate sense from a lexicon to each word token [21] based on the
context. It is an intermediate process and has been used to accomplish most
natural language processing tasks. A majority of information retrieval works use
this process to compare documents, to index them automatically or to classify
and extract documents relative to a user request [6]. This technique can be in-
teresting in IE systems in order to locate the semantic entities and to extract
and classify the important text passages.

The WSD works can be broadly classified into supervised and unsupervised
techniques. The two techniques are based on external resources such as dictio-
nary, thesaurus or ontologies to achieve their task.

In the dictionary based technique proposed by Lesk [7], semantic closeness is
measured by counting the common words appearing in the word context and in
the dictionary definitions.

Many works and research programs use WordNet [11] to disambiguate the
word sense and specifically to improve automatic text retrieval effectiveness.
Most of them propose lexical semantic relatedness measures [2]. For every sense
of an ambiguous word, a measure function is applied to select the most appro-
priate sense.

In our approach, the filtering rules ensure the extraction task. They select the
candidate words and disambiguate their senses. This task is carried out using
a semantic representation of the interesting knowledge of the application field.
This representation allows us to discard the usage of semantic measures. In this
work we are not interested in associating each text word to one sense (synset)

Automatic Feeding of an Innovation Knowledge Base 1037

[22], but to one field concept. So, the senses to which a word is associated are
the senses related to a mapped concept.

3 The Innovation Field and Its Operators

Innovation (or creativity) is a global notion which exists in all scientific, technical,
and some business fields [3]. This notion is increasingly being considered as
part of new product development. Such development is based on the solving of
inventive problems. An inventive problem means a problem that does not have
a known solution and can contain contradictory requirements, and solving one
problem causes another to appear [10]. Specific methods such as TRIZ [1], [19],
WOIS [8], USIT [16], [5] have been elaborated to facilitate education and to
contribute to the solving of inventive problems.

Most computer assistance tools for innovation are developed around TRIZ
method initiated by G. Altshuller. In this method, he classifies innovation patents
by their problem solving process. Consequently, the solving processes are classi-
fied into three semantic groups of operators: inventive principle, scientific effect,
generic innovating solution. This grouping is based on semantic entities such as
resource, characteristic, function where:

– Resource can be a substance (liquid, solid, gas...), a force (attraction, repul-
sion...) or a field (magnetic or electric field).

– Characteristic is an observable or measurable attribute (length, area, tem-
perature, weight, force...) that can be influenced positively or negatively by
an innovation process. The characteristics can be technically contradictory
when the obvious solution deteriorates some characteristics and improves
others. For example, increasing the strength of a metal plate causing its
weight to get heavier. Altschuller defined 39 Characteristics.

– Function expresses the action and the object required to solve an innovation
problem such as, for example reducing an object temperature, producing an
electric field. The action can be defined by verbs (segment, extract, produce,
reduce, increase...), whereas, the object can be a resource or a characteristic.

The user problem is to find the resources (substance, force, field) allowing him to
fulfill the required function. Using a TRIZ knowledge base, he can semantically
search for examples (or patents) achieving the required function starting from
the previous operator groups where:

– An inventive principle is defined as an operator which corresponds to a num-
ber of contradictory characteristics. Altschuller defined 40 inventive princi-
ples. So, the user can creatively resolve a contradiction problem involving
different characteristics by the help of several examples (patents).

– A scientific effect is an operator defined by a scientific law of mathematics,
physics or chemistry, producing the required action; for example, a force of
attraction exists between two charges of different signs, a force of repulsion
exists between two similar charges, (“Coulomb’s law”). There are several

1038 I. Al Haj Hasan, M. Schneider, and G. Gogu

hundred effects associated to some innovation patents in the implemented
TRIZ bases.

– A generic innovating solution is an innovation operator allowing for the im-
provement or the changing of an action. In this group, the functions and their
associated patents are classified by their action: “segment in two parts, seg-
ment in several parts, segment in powder...”. Altschuller defined 76 generic
innovation solutions.

4 Project Objective

In the innovation field, several knowledge bases such as Goldfire Innovator (from
Invention Machine)1, CreaTRIZ2, Innovative WorkBench IWB IWB3, TriSolver4

have already been implemented starting from the innovation method TRIZ (cf.
section 3). However the examples suggested are not sufficient to meet the re-
quirement of their users.

Fig. 1. A document and its entities of interest that are annoted by the user interface
starting from the knowledge fed into the innovation Base

The objective of the present work is to implement an innovation knowledge
base which is independent of the application field and which is auto-generative.
In other words, such a base is automatically fed by new examples highlighting the
innovation operators and coming from NL texts located on the Web especially
on the patent sits. Hence the functions, the resources and/or the characteristics
of the operators have to be automatically located in the texts and to be fed into
the base. These extracted knowledge entities serve as semantic annotations in
1 http://www.invention-machine.com/
2 http://www.knowllence.com/fr/produits/creatriz.php
3 http://www.ideationtriz.com/new/iwb.asp
4 http://www.trisolver.com/

Automatic Feeding of an Innovation Knowledge Base 1039

their text source where they are dynamically inserted when a user displays it
(cf. figure 1). The reason for separation of these annotations from the texts is so
that multiple heterogeneous annotations can be made on the same text [14].

5 Automatic Feeding System Architecture

5.1 Working Principle

The working of our system is illustrated in the diagram in figure 2.
Firstly, the system retrieves text documents likely to be, or to contain, oper-

ator examples. The research is carried out by an automatic composed query for
a conventional research engine such as Google. The keywords necessary for the
query composition are extracted from a semantic NetWork (for instance Word-
Net for English texts). The candidate keywords of the query are those hyponyms
of WordNet synsets mapped to innovation concepts (cf. section 5.2).

The structure of the research query is similar to that suggested by [15] in their
system associating Web directories to WordNet synsets. For example, let us take

Fig. 2. Working of the system

1040 I. Al Haj Hasan, M. Schneider, and G. Gogu

the query Q = [+circuit ”electrical circuit” ”electric circuit” ”electrical device” -
tour -”racing circuit” -lap -circle]. This query makes it possible to seek documents
including the words: circuit, electrical circuit, electric circuit, electrical device
and which do not include the words turn, racing circuit, lap and circle. So,
the returned documents must be relevant to the synsets containing the positive
words but not negative ones.

A query makes it possible to recover one or more documents. Each document
is separately processed. This process starts by a partial syntactic analysis for
recognizing the part of speech (POS: article, noun, verb...) of each word. In the
implemented system, it is made by the parser TreeTagger5.

The word, its POS, as well as its associated synsets and their mapped con-
cepts (cf. section 5.2) constitute the primitive candidate knowledge fed into the
temporary knowledge base TKB (cf. section 5.3). Then, the relevant knowledge
is filtered and fed into the innovation knowledge base IKB (cf. section 5.4) by
the specified filtering rules (cf. section 5.5) and the base TKB is emptied.

Lastly, after the filtering process, when finishing all the returned documents
for a composed query, a new one can be generated.

5.2 Mapping Between Concepts and WordNet Synsets

Resources, actions and objects of the innovation operators (or their functions)
are defined by semantic concepts such as substances, liquid, solid, electric field,
attraction force, etc. To locate their instances, which are words or terms in the
NL texts, we mapped them to one or more entries a semantic network. This
mapping was done to WordNet synsets for the processing of English texts and it
was represented by a table consisting of two columns (cf. figure 3) which permit
to map a concept name to a synset by its offset. A concept name can be mapped
to one or more synset.

For the following, we consider that all the terms associated to the hyponyms
of a synset represent the corresponding concept.

Fig. 3. Mapping table

5 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
DecisionTreeTagger.html

Automatic Feeding of an Innovation Knowledge Base 1041

5.3 Temporary Knowledge Base TKB

This is a base which contains temporary candidate knowledge. This knowledge
is also called primitive, because it results from a direct extraction of the NL text
sources. It is fed into this base by an automatic system (cf. section 5.1) basing
on the mapping and their corresponding terminologies in the semantic network.
After that, it is filtered and memorized in the base IKB (cf. section 5.4). The
filtering process is carried out by filtering rules (cf. section 5.5).

Fig. 4. Conceptual schema of the Temporary Knowledge Base TKB

The conceptual schema of the TKB is given in figure 4. This schema has been
implemented with a relational DBMS (cf. section 5.5) and an example of the
knowledge data fed into the implemented base is viewed in the figure 5. The
principal entities of the diagram are:

– The class Word: an instance of it is a word defined by its text, by the number
of its sentences in the text, by its number in the sentence, and by its POS.
It is associated to its synsets by its base form called lemma in the WordNet
synsets (cf. figure 5.I).

– The class Synset: its instances are the candidate senses of the associated
words. These senses are the WordNet synsets defined by their offsets. They
are also associated to their relating mapping concepts (cf. figure 5.II).

– The class Concept: its instances are the mapped concepts (cf. figure 5.III).

The feeding process of this base starts from the Word table. The parser an-
notates the text words by their POS and by their base form. For each word, the

1042 I. Al Haj Hasan, M. Schneider, and G. Gogu

Fig. 5. Example of data fed into the base TKB

text reference, the number of the sentence in the text, the number of the word
in the sentence, the word, its POS and its basing form are fed into a row of the
table.

Then, the Synset table is fed by the candidate synsets. They are the synsets of
the text words, which belong to a hierarchy defined by a concept in the mapping
(cf. figure 3). We feed these synsets as follows:

If the POS of the word is noun, for each synset s of its synsets, we recover all
the offsets of its hypernym synsets, then we calculate their intersection with the
mapped offsets (cf. section 5.2). If the intersection is not empty, we feed in the
table 5.II the offset, the lemma of the synset s, and the offsets resulting from
the intersection.

For example, let S(ice) = {14066911, 8727351, 7145319, 3447964, ...} be the
set of offsets of for the synonym synsets of the word ice, let H(3447964) =
{3447964, 3379566, 3168471, 3647935, 3561924, ...16236, 1740} be the set of hy-
pernyms for the synset having the offset s = 3447964 ∈ S(ice) and let M =
{10696423, 10688069, 10688453, 1740} be the set of mapped synset offsets.

So, the intersection H ∩ M = {1740} �= Φ. Hence, we feed in the table synset
the tuple: {ice, 3447964, 740}.

If the POS of the text word is verb, adjective or adverb, let S be the whole of
the synsets of this word. We carry out the same previous treatment starting from
the noun synsets associated to the synsets of S by the Nominalization relation in

Automatic Feeding of an Innovation Knowledge Base 1043

WordNet. In the present work, we have ignored the adjectives and the adverbs,
because they were generally redundant.

Finally, the Concept table is fed directly starting from the mapping (cf.
figure 3).

5.4 Innovation Knowledge Base IKB

The examples illustrating the innovation operators and the associated knowledge
to enrich the Innovation Knowledge Base (IKB) are represented by the UML
schema in figure 6.

Fig. 6. Conceptual schema of the Innovation knowledge base IKB

The examples are instances of the class Example. They are defined by their
text reference. Each one must be associated to a function which is defined by
its name, its operator and the number of its corresponding sentences in the
example text. Also, a function is associated to its resources, its action and its
object by the roles resource, action and object respectively. The domain of these
roles is the class Synset. Their instances and those of the class Concept are the
instances filtered from the class Synset and the class Concept of the base TKB
respectively. For the purpose of giving a semantic interpretation, the association
between the two classes is named individual from the said of the class Synset.
Therefore, the instances of the class Synset, the synsets, are individuals of the
associated instances of the class Concept; the concepts.

This schema is also implemented with a relational DBMS. The contents of the
implemented base are fed from the TKB base by filtering rules (cf. section 5.5).
The table presented in figure 7 is an example of the knowledge fed into it. Each

1044 I. Al Haj Hasan, M. Schneider, and G. Gogu

Fig. 7. Example of data fed into the implemented IKB

line represents an association starting with an instance of the class Example,
finishing with an instance of the class Concept and passing through each role.

5.5 Feeding the Innovation Knowledge Base

An innovation operator can be associated to one or several functions. A function
is characterized by an action, an object, and resources. The objective of the
filtering is to identify in a text example these characteristic entities. For that, we
considered that all these entities do not necessarily appear in the same sentence.
But it is necessary that:

– In a sentence the action is associated to resources;
– In a sentence the object is associated to resources;
– There are common resources between the previous sentences.

These entities are tracked down by terms. Two terms which possess synsets
which are synonym or hyponym/hypernym are considered as equivalents.

Acceptable entities are those that are in correspondence with the predefined
mapping (figure 3).

The filtering is operated from the specifications of an expert who has to spec-
ify every operator function by one or several triplets (Ri, A, O) where Ri is a
resource, A is the action, O is the object. There are as many triplets as resources.

For example let us consider the text in figure 8 illustrating the operator
“Coulomb’s law” and let us suppose that the expert specified the operator func-
tion by the triplet (entity, repulsion, charge)

Acceptable entities according to the predefined mapping are underlined in the
text. The action “ repulsion” appears with the term (repelled) and the object
“ charge” appears with the term (charge). This example is acceptable because

Fig. 8. An example of a text illustrating Coulomb’s law (entities terms are underlined)

Automatic Feeding of an Innovation Knowledge Base 1045

Fig. 9. Query filtering the candidate resources and the candidate actions appearing in
a same sentence

Fig. 10. Query filtering the candidate resources and the candidate objects appearing
in a same sentence

there are resources (wheel, machine, particle) which appear at the same moment
with the action (repel) and with the object (charge) in some text sentences.

In our relational implementation, the filtering rules are implemented with
relational queries. This implementation can be envisaged in a generic way by
three queries:

– A first query which looks for associations in a sentence between the resources
and the action (figure 9);

– A second query which looks for associations in a sentence between the re-
sources and the object (figure 10);

– A third query which combines the results of the two previous ones by a join
on common resources (figure 11).

1046 I. Al Haj Hasan, M. Schneider, and G. Gogu

Fig. 11. Query filtering the candidate resources and the candidate actions appearing
in a same sentence

Fig. 12. Some sentences filtered by the relational queries and their annoted informa-
tions

After execution on the extract of the base given in figure 5 one obtains the results
of figure 12.

5.6 Displaying the Results

The base IKB can be directly displayed to obtain the functions of an operator
and the associated entities.

We also foresaw another feature consisting in dynamically inserting annota-
tions resulting from the base during the display of examples. These annotations
give the interpretation of terms appearing in the example text (cf. figure 1).

6 Experimentations

Currently, we have specified the functions corresponding to four innovation op-
erators. The approach was tested on a collection of 70 NL documents that are
patents extracted from the Web and from the Goldfire Innovator knowledge base
using key words corresponding to the specified functions. In this collection, we
manually annotated 52 functions and 328 resources in 48 documents in order to
compare the results with those obtained from our system. The precision and the
recall obtained by our system are presented in the following table (Table 1).

Automatic Feeding of an Innovation Knowledge Base 1047

Table 1. Precision and recall obtained by the system

precision recall

Document retrieving 0.97 0.93
Function annotation 0.91 0.94
Resource annotation 0.71 0.84

Fig. 13. Example of a relevant text annotation (bad annotations are underlined)

The figure 13 presents an extract of the annotations carried out by the system
in a document of the collection. The sentences containing an occurrence of the ac-
tion and at least one specified resource for the corresponding operator (coulomb’s
law) are annotated by the operator function name (charge attraction). The words
corresponding to resources and actions are respectively tagged by (res) and (act)
in the UI.

The annotation of resources is not as good as that for functions. An impor-
tant number of resources are ignored and non-resources are retrieved. The preci-
sion for resources can be improved by considering extra syntactic and semantic
knowledge in specifying the filtering rules or by executing some post-processing
in the documents. The recall can be improved too by specifying other operator
functions in the innovation domain.

7 Conclusion and Perspectives

In this paper, we have presented an approach and a system for automatically
feeding an innovation knowledge base (IKB), starting from texts in natural lan-
guage. In the base, these texts are considered as examples illustrating their
associated innovation operators.

Initially, primitive candidate knowledge is extracted by a POS tagger, guided
by mapping towards a semantic network (WordNet). Then, the relevant knowl-
edge is obtained by a semantic filtering process. This process is carried out via
rules translating the semantics of the innovation operators. For this purpose, the
common knowledge necessary for formulating the operator rules is represented
by two conceptual schemas. The first illustrates the primitive candidate knowl-
edge, constituting the filtering rules. The second is the relevant knowledge or
innovation knowledge - the object of the rules.

1048 I. Al Haj Hasan, M. Schneider, and G. Gogu

To be significant and visible, the relevant knowledge is dynamically inserted
into the original texts when it is displayed or explored through the user interface.

The experiments carried out revealed that our approach is relevant. The re-
maining annotation errors could be corrected by considering extra knowledge
within the queries, as for example, selecting the most appearing resources with
the function action and object. Another process can be implemented after the
filtering: the grouping of the functions in nominal and verbal sentences in order
to select the most syntactically related resource to the action.

In our relational representation there are semantic relations defined as roles
such as synonymy and hypernymy/hyponymy. These relations possess the sym-
metry and transitivity properties. Our relational queries such as we formulated
them do not exploit these properties and so our system does not use all the avail-
able knowledge. It would be so necessary to evolve towards a more elaborated
relational implementation allowing deducing transitive knowledge. Another al-
ternative would be to implement the knowledge bases with a system based on
the description logics and to exploit the inference possibilities of this system to
make the filtering.

Another problem concerns the specification of the filtering queries. An expert
needs to provide the elements of this specification (the semantic representation
of innovation operators). It would be interesting to represent these elements in a
generic structure from which the filtering queries can be automatically generated.

References

1. Altschuller, G.: Creativity as an Exact Science: The Theory of the Solution of
Inventive Problems. Gordon and Breach Science Publishers, New York (1984)

2. Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic
relatedness. Computational Linguistics 32, 13–47 (2006)

3. Choulier, D., Draghici, G.: Triz: une approche de résolution des problèmes
d’innovation dans la conception de produits. In: Modélisation de la connaissance
pour la conception et la fabrication intégrées, Editura Mirton, pp. 31–58 (2000)

4. Gaizauskas, R., Wilks, Y.: Information extraction: beyond document retrieval.
Journal of Documentation 54, 70–105 (1998)

5. Gogu, G.: Méthodologie d’innovation: la résolution des problèmes créatifs. Revue
Française de Gestion Industrielle 19, 35–62 (2000)

6. Kem, S.-B., Seo, H.-C., Rim, H.-C.: Information retrieval using word senses: Root
sense tagging approach. In: Annual ACM Conference on Research and Development
in Information Retrieval, pp. 258–265. ACM Press, New York (2004)

7. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries:
how to tell a pine cone from an ice cream cone. In: ACM Special Interest Group
for Design of Communication, pp. 24–26 (1986)

8. Linde, H., Hill, B.: Erfolgreich Erfinden - Widerspruchsorientierte Innovation-
sstrategie, Darmstadt, Hoppenstedt (1993)

9. Maedche, A., Neumann, G., Staab, S.: Bootstrapping an ontology-based informa-
tion extraction system. Studies In Fuzziness And Soft Computing , 345–359 (2003)

10. Mazur, G.: Theory of inventive problem solving (triz) (1996),
http://www.mazur.net/triz/

http://www.mazur.net/triz/

Automatic Feeding of an Innovation Knowledge Base 1049

11. Miller, G.: Wordnet: A lexical database for english. Communications of the
ACM 38, 39–41 (1995)

12. Muslea, I.: Extraction patterns for information extraction tasks: A survey. In:
AAAI 1999. Workshop on Machine Learning for Information Extraction (1999)

13. Poibeau, T.: L’évaluation des systèmes d’extraction d’information: une expérience
sur le français. Langues 2, 110–118 (1999)

14. Popov, A., Kiryakov, D., Ognyanoff, D., Manov, A., Kirilov, M.G.: Towards se-
mantic web information extraction. In: The 2nd International Semantic Web Con-
ference, Florida, USA (2003)

15. Santamaŕıa, C., Gonzalo, J., Verdejo, F.: Automatic association of web directories
with word senses. Computacional Linguistics 29, 485–502 (2003)

16. Sickafus, E.N.: Unified Structured Inventive Thinking: How to Invent, Ntelleck
(1997)

17. Soderland, S.: Learning information extraction rules for semi-structured and free
text. Machine Learning 34, 1–44 (1999)

18. Soderland, S., Fisher, D., Aseltine, J., Lehnert, W.: Crystal: Inducing a conceptual
dictionary. In: The 14th International Joint Conference on Artificial Intelligence,
pp. 1314–1321 (1995)

19. Terninko, J., Alla, Z., Boris, ZI.: Step-by-Step TRIZ: Creating Innovative Solution
Concepts, 3rd edn. Responsible Management Inc., Nottingham (1996)

20. Thompson, C., Califf, M.E., Mooney, R.: Active learning for natural language pars-
ing and information extraction. In: The 16th International Conference on Machine
Learning, pp. 406–414 (1999)

21. Wilks, Y., Stevenson, M.: Sense tagging: Semantic tagging with a lexicon. In: Pro-
ceedings of the SIGLEX Workshop Tagging Text with Lexical Semantics, pp. 74–78
(1997)

22. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised meth-
ods. Annual Meeting of the Association for Computational Linguistics , 189–196
(1995)

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 1050–1062, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Ontology Learning for Search Applications

Jon Atle Gulla, Hans Olaf Borch, and Jon Espen Ingvaldsen

Department of Computer and Information Science
Norwegian University of Science and Technology, Trondheim

jag@idi.ntnu.no

Abstract. Ontology learning tools help us build ontologies cheaper by applying
sophisticated linguistic and statistical techniques on domain text. For ontologies
used in search applications class concepts and hierarchical relationships at the
appropriate level of detail are vital to the quality of retrieval. In this paper, we
discuss an unsupervised keyphrase extraction system for ontology learning and
evaluate its resulting ontology as part of an ontology-driven search application.
Our analysis shows that even though the ontology is slightly inferior to
manually constructed ontologies, the quality of search is only marginally
affected when using the learned ontology. Keyphrase extraction may not be
sufficient for ontology learning in general, but is surprisingly effective for
ontologies specifically designed for search.

1 Introduction

Traditional ontology engineering approaches are tedious and labor-intensive, as the
successful construction of high-quality ontologies requires a wide range of skill sets
as well as an ability to deal with very complex and formal representations. The
ontologies are expensive to develop and maintain, and it is often hard to manage and
coordinate the contributions from various types of domain experts and ontology
modelers. The subsea petroleum ontology developed by the Integrated Information
Platform project, for example, currently contains more than 55.000 classes, has been
constructed on the basis of existing ISO standards over 3 years in a 3 million Euro
project and is still not ready as a new ISO standard [10]. At the same time, the
ontologies are vital in Semantic Web applications, as they provide the vocabulary for
semantic annotation of data and help applications to interoperate and people to
collaborate.

Most ontology engineering methods today are based on traditional modeling
approaches and stress the systematic manual assessment of the domain and gradual
elaboration of model descriptions (e.g. [4,5]).

Ontology learning is the process of automatically or semi-automatically
constructing ontologies on the basis of textual domain descriptions. The assumption
is that the domain texts reflect the terminology that should go into an ontology, and
that appropriate linguistic and statistical methods should be able to extract the
appropriate concept candidates and their relationships and properties from these texts.
Numerous approaches to ontology learning have been proposed in recent years

 Ontology Learning for Search Applications 1051

[7,10,11,14,15,17], and they seem to allow ontologies to be generated faster and with
less costs than manual modeling approaches.

Even though many of the approaches display impressive results, the complexities
of ontologies are so fundamental that the generated candidate structures often just
constitute a starting point for the manual modeling task. Advanced approaches with
deep semantic analyses of text or whole batteries of statistical tests tend to yield better
results, but are expensive to develop and may still not compete with traditional
ontology modeling with regard to its abilities to represent deep domain properties.
However, the real quality of ontologies depends on its use in applications, its
application value, which necessitates a consideration of how the ontology and the
ontology engineering method match the requirements of the application.

Ontology-driven search applications use ontological structures to interpret and
reformulate user queries. Only parts of the full ontology is useful to these
applications, and the behavior of both the users and the domain collection may affect
the way the ontologies should be constructed.

In this paper we present an unsupervised keyphrase extraction system that has been
used to speed up the construction of search ontologies. The extracted keyphrases
serve as concept candidates in the ontology and can even give indications for how
hierarchical relations should be defined. This is a lightweight ontology learning
approach, though cheap and practical to use for domains that evolve and lack
available domain experts.

The paper is structured as follows. Section 2 discusses the required qualities of
ontologies for search. We then introduce the keyphrase extraction system in Section
3 and briefly explain how it compares to manual ontology building based on a real
case in Section 4. Section 5 introduces an ontology-driven search engine that uses
ontologies to expand user queries. The semi-automatically generated and manually
modeled ontologies are both plugged into the search application and evaluated with
respect to search relevance in Section 6. Section 7 is devoted to related work, and the
conclusions are found in Section 8.

2 Ontological Quality

Ontology-driven information retrieval incorporates a range of features that are not
commonly found in traditional search applications. Commercial vector space search
engines have started to make use of shallow linguistic technologies, but they do not
attempt to expose the underlying semantics of documents [8]. An ontology-driven
search application may in principle operate at three different levels of ambition. At
the lowest level, we use concept hierarchies in the ontology to retrieve and present
ranked documents to the user. The ontology is used to reformulate the query in terms
of semantic concepts or to construct semantic indices. Slightly more challenging on
the ontology side is the browsing of knowledge in the domain. The idea here is to let
users explore relationships and hierarchies in the ontology to help him get an
overview of the domain and find related information in a more interactive search
session. At the most ambitious level, reasoning is employed to provide answers that
are composed of several documents or implied by rules and axioms in the ontology.

1052 J.A. Gulla, H.O. Borch, and J.E. Ingvaldsen

A formally defined ontology language like OWL and a complete ontology with
constraints and axioms must then be available [1]. Figure 1 illustrates how
ontological information may be used in search.

Function Focus Ontology specification needed
Retrieve a document Concepts Concepts, hierarchies
Browse knowledge Ontological structures + Properties, relationships
Compose a reply Reasoning + logic, constraints

Fig. 1. Three applications of ontological information in information retrieval

As our research on search applications is on pure document retrieval, we will in
this paper concentrate on the search quality of ontological concepts and hierarchies.
The ontology value quadrant in Figure 2 is used to evaluate an ontology’s usefulness
in a particular application. The ontology’s ability to capture the content of the
universe of discourse at the appropriate level of granularity and precision and offer
the users understandable and correct concepts are important features that are
addressed in many ontology/model quality frameworks (e.g. [7,11,15]). But the
construction of the ontology also needs to take into account behavioral aspects of the
domain as well as the users of the application. For search ontologies, this means that
we need to consider the following issues about content and behavior:

Content

ehvaior

Application (search) Universe of Discourse

Ontology

Concept
familiarity

Query formulation

Document
discrimination

Domain volatility

Ontology

Concept
familiarity

Query formulation

Document
discrimination

Domain volatilityB

Fig. 2. Ontology value quadrant

• Concept familiarity. Terminologies are used to subcategorize phenomena and
make semantic distinctions about reality. A high-quality ontology is made up of
concepts that correspond to users’ way of describing the same phenomena.
Analyses of query logs reveal that users tend to use nominal phrases. Whereas
we refer to user concepts not found in the ontology as ignored concepts,
ontology concepts not appealing to users are called superfluous concepts.

• Document discrimination. The structure of concepts in the ontology decides
which groups of documents can theoretically be singled out and returned as

 Ontology Learning for Search Applications 1053

result sets. Similarly, the concepts implied in user queries indicate which groups
of documents he might be interested in and which distinctions between
documents he considers irrelevant. If the granularity of the user’s preferred
concepts and the ontology concepts are compatible, combinations of these terms
can single out the same result sets from the document collection. Result sets that
can be implied by combinations of user-preferred concepts and not by
combinations of ontology concepts are called unfulfilled result sets. Result sets
that can be singled out by combinations of ontology concepts and not by
combinations of user-preferred concepts are considered superfluous result sets.

• Query formulation. The user queries are usually very short, like 2-3 words, and
hierarchical terms tend to be added to refine a query [8]. This economy of
expression seems more important to users than being allowed to specify detailed
and precise user needs, as very few use advanced features to detail their query.
Hierarchical ontological structures corresponding to the users’ query
reformulation strategies are important.

• Domain volatility. Both the search domain itself and its documents may be
constantly changing, and parts of the domain may be badly described in
documents compared to others. The ontology needs to be constructed in such a
way that regular and frequent updates are supported.

An ontology learning approach for search ontologies, thus, should be inexpensive and
needs to generate familiar candidate concepts that enable the user economically to
retrieve exactly those result sets that he might be interested in.

3 Ontology Learning with Unsupervised Keyphrase Extraction

Keyphrase extraction is the process of extracting an optimal set of keyphrases to
describe a document. Whereas supervised keyphrase extraction employs a collection
of documents with pre-assigned keyphrases to train the extraction algorithm,
unsupervised extraction relies solely on a reference collection of plain unannotated
textual data. Unsupervised keyphrase extraction has the advantage of being more
widely applicable, since the method does not require any knowledge of the domain or
consultation of domain experts. On the other hand, supervised keyphrase extraction
normally produces more relevant keyphrases and can with repeated training improve
the quality of its own keyphrases (see for example [18, 20, 22]).

A list of keyphrases gives a high-level summary of the document content. Such
summaries can be used on search engine result pages, helping the user to decide
which documents are relevant. It is also often used in document clustering or back-of-
book index generation, though in this work we focus on ontology learning. Given a
collection of documents describing a domain, the extracted keyphrases can be used to
identify important concepts and provide a basis for constructing simple ontologies.

Figure 3 gives an illustration of the various steps in an unsupervised keyphrase
extraction system for ontology learning. After cleaning and filtering the domain text,
linguistic and statistical techniques are used to extract and rank candidate phrases
from the domain. To avoid phrases that are common in all domains, we compare the

1054 J.A. Gulla, H.O. Borch, and J.E. Ingvaldsen

candidates with a reference text and only include phrases that are characteristic to this
particular domain. The final selection is done either by outputting a fixed number of
keyphrases from each document in the collection, or selecting all keyphrases scoring
higher than some threshold. The phrases may be single words, though usually the
most interesting of them are longer noun phrases. After an appropriate set of
candidate phrases has been identified, they are verified manually by domain experts
and related to each other with various hierarchical and associative relationships. The
multi-word keyphrases tend to give useful hints when constructing these hierarchies,
but manual work is needed to complete the hierarchies and possibly add more abstract
concepts that link everything together in complete ontologies.

Fig. 3. Ontology learning with keyphrase extraction

4 Building Project Management Ontologies in STATOIL

STATOIL ASA is the leading petroleum company on the Norwegian Continental
Shelf and has more than 25,000 employees in 31 countries. Most of their textual
documents are structured in NOTES databases, but they are now in the process of
implementing new applications and processes for information management. As part
of this work, we are building ontologies that can enable ontology-driven search and
more efficient application integration.

The domain chosen for the keyphrase extraction system was STATOIL’s project
management standard, PMI. This standard is enforced throughout STATOIL’s
organization and is well documented in books and reports. In particular, STATOIL is
using a book called PMBOK1 as a guide to people involved in projects. This book
contains 12 chapters that define all the project terminology used in the management of
STATOIL projects. We built two independent ontologies of the project management
domain, one using keyphrase extraction and one with traditional modeling methods.

1 Project Management Institute. A Guide to the Project Management Body of Knowledge

(PMBOK), 2000.

 Ontology Learning for Search Applications 1055

Semi-Automatic Ontology Learning

Our unsupervised keyphrase extraction system was first used to extract candidate
concepts from PMBOK’s 12 chapters. Each chapter in PMBOK was treated as a
separate document, and all formatting and document structures were deleted. The
resulting input to the extraction system was unannotated plain text, as shown by the
PMBOK fragment below:

Scope planning is the process of progressively elaborating and
documenting the project work (project scope) that produces the
product of the project.

A Brill Part-Of-Speech tagger was then used to tag each word with its respective part
of speech (POS):

Scope/NNP planning/NN is/VBZ the/DT process/NN of/IN progressively/RB
elaborating/VBG and/CC documenting/VBG the/DT project/NN work/NN (/(
project/NN scope/NN)/) that/WDT produces/VBZ the/DT product/NN of/IN
the/DT project/NN ./.

These POS tags come from the Penn Treebank tag set and allow us to filter out words
that should not be considered potential keyphrases. Since our keyphrases should be
composed of nouns, we concentrated on the words tagged with NN (singular or mass
noun), NNP (singular proper noun) and NNS (plural noun). Stopwords were removed
from the text, using a list of 571 words that are abundant in the English language and
carry little or no discriminating meaning:

Scope planning is the process of progressively elaborating and
documenting the project work (project scope) that produces the
product of the project.

The words shown in bold were deleted from the text. To get rid of morpho-syntactic
variation in the text, we used a lexicon to lemmatize the words. This means that the
actual inflections are replaced by their corresponding base forms, giving us plan
instead of the progressive planning and produce instead of the third person
singular produces. If a word did not occur in the dictionary, Porter’s stemming
algorithm was applied to the word. This resulted in the following sequence of words
(POS tags hidden):

Scope plan process progress elaborate document project work project
scope produce product project

Notice that the stemming of progressively to progress makes it appear like a
noun, but we kept the tag RB to avoid that progress was analyzed as a noun later.

Different extraction systems tend to adopt different strategies for which structures
should be considered potential keyphrases. In our system all consecutive nouns were
selected as candidate phrases:

{scope planning, process, project work, project scope, product,
project}

The candidate phrases were weighted using the tf.idf measure used in information
retrieval. We first calculated the term frequency (tf), which gave us an indication of
how frequent this phrase was in this chapter compared to other phrases:

1056 J.A. Gulla, H.O. Borch, and J.E. Ingvaldsen

where ni is the number of occurrences of the considered phrase in the chapter, and the
denominator is the number of occurrences of all terms (phrases) in the chapter. The
total tf.idf score was calculated as shown below and takes into account the
distribution of this phrase throughout the document collection:

where │D│is the total number of chapters in the collection and │(dj ⊃ ti)│is the
number of chapters (excluding the current chapter) where the term tj appears (not
equal to 0). The resulting list of weighted phrases were sorted and presented to the
user:

{(scope planning, 0.0097), (project scope, 0.0047), (product,
0.0043), (project work, 0.0008), (project, 0.0001), (process,
0.0000)}

A total of 180 keyphrases, 15 for each chapter of PMBOK, were selected. These were
simply the 15 top-ranked phrases of each chapter, based on the tf.idf score. A domain
expert from STATOIL was then asked to mark out those keyphrases that would not be
suitable as ontological concepts. With these phrases removed, we had 106 phrases left
that were manually structured as an ontology. Synonyms were identified, and the
appropriate hierarchical relations were added manually to form a full ontology.

The resulting ontology, which was represented in OWL, contained 3 hierarchical
levels, 106 concepts (classes) and 6 synonyms.

Manual Ontology Construction

We also constructed a project management ontology manually. The modelers were
familiar with the PMI standard in STATOIL, had access to PMBOK, and also had
some experience in running small projects using similar methodologies.

The manual modeling process was substantially longer than the semi-automatic
ontology learning process. It led to a larger ontology, with deeper structures, more
concepts and more synonyms. The manually constructed ontology had 5 hierarchical
levels, contained 142 concepts and 26 synonyms.

5 Ontology-Driven Search

For the evaluation of our ontologies’ application value, we installed an ontology-
driven search application that uses ontologies to interpret and expand user queries.
The idea is to add weighted synonyms and semantic relations to retrieve relevant
documents that do not necessarily contain the search terms per se. This is an
approach that tends to increase recall rather than precision, which is often preferable
for such a small domain with a limited number of indexed documents available.

Take for example the query ‘human resource’. The original query terms as well as
their synonyms get weight 1.5. Expanding this query with synonyms and semantically
related concepts with slightly lower weights, we get the following two reformulated
queries for the two ontologies at hand:

 Ontology Learning for Search Applications 1057

Expanded query with manual ontology Expanded query with automatic ontology
‘human resource’ (1.5), hr (1.5),
‘organizational planning’ (1.0), staff (1,0),
‘staff acquisition’ (1.0), ‘team development’
(1.0)

‘human resource’ (1.5), ‘human resource
management’ (1.0), ‘organization chart’
(1.0), role (1,0), chart (1.0), staff (1.0), ‘staff
assignment’ (1.0), ‘team competencies’ (1.0),
‘team development’ (1.0)

The term hr is given the same weight as ‘human resource’, as it is considered a
synonym in this domain. All the other terms are related to ‘human resource’ through
associations or abstractions and are given a weight of 1.0. The different expansions
for the two cases reflect the differences of the two ontologies. As seen from this
example, the semi-automatically generated ontology has found more semantic links
between human resource and other concepts. On the other hand, only the manually
built ontology includes the synonym hr.

The expanded weighted query is the system’s interpretation of the user’s real
information needs. After mapping the query onto corresponding search terms, a
standard vector model based search engine (Lucene) is used to retrieve and rank
documents relevant to the new query.

6 Search Quality of Ontologies

The ontologies were first evaluated independently of their applications. Domain
experts from STATOIL ranked the ontology concepts with respect to their suitability
in a real full-fledged project management ontology. Since the manually constructed
ontology was larger, it was not surprising that it also contained more relevant domain
concepts. This ontology had 122 very good concepts against the other ontology’s 73
very good concepts, which means that that manual process had managed to uncover
67 % more high-quality ontology concepts. If we take the total number of concepts
into account, though, the difference of quality is not so great. Whereas in the manual
process around 86 % of the concepts were considered to be of high quality, about 69
% of the semi-automatically generated concepts were of the same quality. For an
equal number of concepts, thus, we may conclude that the manual process would give
us slightly less than 25 % more high-quality concepts.

It could be tempting to improve the semi-automatic ontology by extracting more
keyphrases than the 180 we extracted in this experiment. However, it turns out that
the quality of keyphrase extraction is highly dependent on the size of documents
available to the analysis. As shown in Figure 4, we need documents of at least 5-6,000
words to get an R-precision of more than 0.4 when the top 15 phrases are included,
and it seems very difficult for this method to reach 0.6 for even very large documents.
For chapters 1, 3, 4, 9 and 10 it would quality-wise have been better to extract fewer
than 15 phrases. Chapter 2 does not follow the general trend of getting better phrases
with longer documents, as it deals with the context of project management and the
extracted terms were considered out of scope by the experts.

A practical evaluation of the ontology-driven search applications was then run on a
document index from STATOIL that contained rather small project management and
project-related documents. Two separate search applications were set up to work on
the same index. Whereas one application used the manually constructed ontology to
interpret and reformulate queries, the other one made use of the ontology constructed
with the help of our keyphrase extraction system.

1058 J.A. Gulla, H.O. Borch, and J.E. Ingvaldsen

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

No of words

R
 p

re
ci

si
on

 f
o

r t
o

p
 1

5

Ch. 3

Ch. 1,4,9,10
Ch. 5,12

Ch. 2

Ch. 7,8
Ch. 6

Ch. 11

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

No of words

R
 p

re
ci

si
on

 f
o

r t
o

p
 1

5

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

No of words

R
 p

re
ci

si
on

 f
o

r t
o

p
 1

5

Ch. 3

Ch. 1,4,9,10
Ch. 5,12

Ch. 2

Ch. 7,8
Ch. 6

Ch. 11

Fig. 4. R-precision and chapter size for extracted ontology concepts

As the intention was to evaluate and compare ontologies rather than to evaluate the
search application itself, we defined a total of 16 queries that were all related to
concepts in the two ontologies. The expansions of these queries would naturally
differ, as the concepts were modeled differently and related to different concepts in
the ontologies.

A group of six people were asked independently to run the queries on the two
search applications and rate the top 5 documents for each query from 0 (not relevant)
to 2 (highly relevant). The total score for one individual’s evaluation of one query for
one application was given as:

∑
=

=
5

1

**2/1
i

ii WSQ

where Si is the individual rate of document Di, and Wi is a weight that ranges from 10
for the top ranked document to 1 for the 5th ranked document. After combining the
results from each of the six individuals and normalizing the average scores for all
queries for the two search applications, we got the results shown in Figure 5(a).

The search application performs slightly better with the manually constructed
ontology. In 50% of the queries the manual ontology wins out, and only 25% are
answered better with the generated ontology. However, the score differences are in
most cases very small. On the average, the query scores for the manual ontology are
only 5.1 % higher than for the generated ontology. Taken into account that the manual
ontology had 67 % more high-quality concepts and a ratio of good to neutral ontology
concepts almost 25 % higher than for the generated ontology, this difference is
surprisingly small. It seems that the search quality of ontologies is not so dependent
on an exact match between ontological concepts and domain experts’ judgments, as
long as they are reasonably well defined with respect to the documents available in
the domain.

Another interesting observation is illustrated in Figure 5(b). If we group the results
on the basis of number of query terms, we can easily see where the two search

 Ontology Learning for Search Applications 1059

applications differ in quality. For queries that deal with one-term concepts, like
procurement and stakeholder, the manual ontology performs substantially better than
the semi-automatic one. For long detailed queries, like ‘cost performance index’ and
‘work breakdown structure’, there is practically no difference between the two
ontologies.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Query

N
or

m
al

iz
ed

 q
ue

ry
 s

co
re

Manual Semi-automatic

 (a)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4

No. of search terms

N
or

m
al

iz
ed

 q
ue

ry
 s

co
re

Manual Semi-automatic

 (b)

Fig. 5. (a) R-precision for queries. (b) R-precision as function of number of query terms.

1060 J.A. Gulla, H.O. Borch, and J.E. Ingvaldsen

This seems to support that the manual ontology contains better concepts and
relationships between concepts. Presumably, the importance of good concepts and
well-defined relationships are more important when the query is short and vague by
itself. For longer queries, the user has already specified his information needs so
accurately that the addition of related terms may not contribute much. This may also
indicate that ontology-driven query expansion in general has only limited effect when
queries are precise and unambiguous.

7 Related Work

In this paper we have investigated to what extent unsupervised keyphrase extraction
may be useful in speeding up the construction of ontologies for search applications.
Our idea of taking the intended use of the ontologies into account is not new.
Thurmair claims that precision and recall are useless in keyphrase extraction, and the
quality of extracted terms must be assessed on the basis of how people make use of
the terms and how fast they can define their own term subsets [15]. Tomokiyo and
Hurst propose an unsupervised extraction strategy based on n-grams, and they require
that the users themselves characterize what constitutes proper phrases for their
particular applications [17].

One of the most well-known workbenches for ontology learning is Text2Onto,
which includes a whole battery of statistical and linguistic text mining components
[3]. Text2Onto is meant to support a wide range of analyses and has a flexible and
exapandable architecture. This modular approach to text mining is also adopted in
other applications [7,10]. As opposed to these workbenches, our system is more
lightweight and tailored to the restricted need in constructing and maintaining search
ontologies.

OntoLT in Protégé includes traditional statistical methods for term extraction,
though its main contribution lies in the use of shallow linguistics to extract structured
information from individual sentences [2]. It uses a rule-based system for German
and English sentence analysis, SCHUG, to propose properties and relationships based
on the recognition of heads, modifiers and predicates in the sentences. A similar
approach to linguistic sentence analysis is adopted by Sabou et al. to extract concepts
and relationships between concepts in a web service context [14]. These methods are
able also to suggest relationships between concepts, but it is an open question how
this sentence by sentence approach will work for large text collections where
individual sentences are statistically insignificant and aggregated data need to be used
to produce representative results.

Our search application had a rather simplistic approach to query expansion. As
noted by Voorhees, it is not obvious that adding semantically related terms will
improve the quality of the search application [21]. However, experiments with
domain-dependent vocabularies – instead of Voorhees’ WordNet approach – does
indicate that careful semantic refinement of queries may be useful [18]. Mitra et al.
[13] is refining the query based on blind feedback, i.e. the system itself selects
documents that are considered relevant to the original query and uses these documents
to construct an expanded query without any human involvement. Similarly, detecting
word relationships from result sets and using these to expand the original query with

 Ontology Learning for Search Applications 1061

related terms has been tested successfully by for example Xu & Croft [23].
Interestingly, their text mining approach to query expansion has many similarities
with our approach using automatically generated ontologies. We apply text mining to
construct ontologies off-line, and these ontological structures are afterwards used to
expand the queries. A fundamental difference is that our text analysis is done on the
whole document collection, whereas their analysis only makes use of documents
considered relevant to the unexpanded query.

8 Conclusions

Unsupervised keyphrase extraction is a flexible and inexpensive method for
generating candidate concepts to search ontologies. They do not require any
particular preparation or involvement of domain experts and are thus well suited to
unstable domains like document collections. Using tf.idf to rank keyphrases, we also
end up with phrases that are well suited to single out documents in the collection.

The quality of extracted keyphrases is not at the same level as for supervised
extraction, though their quality increases with the size of the documents used in the
process. It is clear that the keyphrase extraction-based ontology learning method will
not produce as many high-quality domain concepts as the manual approach. However,
when applied as a search ontology, the quality of the search application is not much
affected if a generated ontology replaces a manually built one. For the application
value of the search ontology, it seems equally important that the ontology is well
adapted to the document collection as that the concepts perfectly model the domain
itself. There is a trade-off between the costs of developing and maintaining high-
quality ontologies and the benefits of using them in ontology-driven applications.

Unsupervised keyphrase extraction is a promising approach to search ontology
engineering, though there are still many aspects of search ontologies that this
approach as well as other approaches do not address properly. A good search
ontology is specified at a level of granularity that corresponds to the needs expressed
in user queries. It should contain concepts that are familiar to the users and allow him
to express his information needs in an economic and efficient way. However, we
cannot restrict the user to only use already defined concepts and we need a way to
interpret user queries that involve non-concept terms that may or may not be related
to ontological structures.

References

1. Antoniou, G., Franconi, E., van Harmelen, F.: Introduction to Semantic Web Ontology
Languages. In: Eisinger, N., Maluszynski, J. (eds.) Reasoning Web, First International
Summer School 2005, ch.1, Springer, Heidelberg (2005)

2. Buitelaar, P., Olejnik, D., Sintek, M.: A Protégé Plug-In for Ontology Extraction from
Text Based on Linguistic Analysis. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R.
(eds.) ESWS 2004. LNCS, vol. 3053, Springer, Heidelberg (2004)

3. Cimiano, P., Völker, J.: Text2onto – A Framework for Ontology Learning and Data-
Driven Change Discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005.
LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)

1062 J.A. Gulla, H.O. Borch, and J.E. Ingvaldsen

4. Cristiani, M., Cuel, R.: A Survey on Ontology Creation Methodologies. Idea Group
Publishing, USA (2005)

5. Fernandez, M., Goméz-Peréz, A., Juristo, N.: Methontology: from ontological art towards
ontological engineering. In: AAAI 1997. Proceedings of the Spring Symposium Series on
Ontological Engineering, Stanford, pp. 33–40 (1997)

6. Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. Nature
Genet. 25, 25–29 (2000)

7. Goméz-Peréz, A.: Evaluation of ontologies. International Journal of Intelligent
Systems 16(3), 391–409 (2001)

8. Gulla, J.A., Auran, P.G., Risvik, K.M.: Linguistics in Large-Scale Web Search. In:
Andersson, B., Bergholtz, M., Johannesson, P. (eds.) NLDB 2002. LNCS, vol. 2553, pp.
218–222. Springer, Heidelberg (2002)

9. Gulla, J.A., Brasethvik, T., Kaada, H.A: Flexible Workbench for Document Analysis and
Text Mining. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 336–
347. Springer, Heidelberg (2004)

10. Gulla, J.A., Tomassen, S.L., Strasunskas, D.: Semantic Interoperability in the Norwegian
Petroleum Industry. In: Gulla, J.A., Tomassen, S.L., Strasunskas, D. (eds.) ISTA 2006.
International Conference on Information Systems and Its Applications (submitted, 2006)

11. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual Modeling.
IEEE Software 11(2), 42–49 (1994)

12. Maedche, A.: Ontology Learning for the Semantic Web. Kluwer Academic Publishers,
Dordrecht (2002)

13. Mitra, M., Singhal, A., Buckley, C.: Improving Automatic Query Expansion. In:
Proceedings of 21st annual international ACM SIGIR conference on Research and
Development in Information Retrieval, pp. 206–214. ACM Press, New York (1998)

14. Navigli, R., Velardi, P.: Learning Domain Ontologies from Document Warehouses and
Dedicated Web Sites. Computational Linguistics 30(2), 151–179 (2004)

15. Pinto, H.S., Martins, J.P.: Ontologies: How can They be Built? Knowledge and
Information Systems 6(4), 441–464 (2004)

16. Sabou, M., Wroe, C., Goble, C., Stuckenschmidt, H.: Learning Domain Ontologies for
Semantic Web Service Descriptions. Accepted for publication in Journal of Web Semantics

17. Thurmair, G.: Making Term Extraction Tools Usable. In: EAMT/CLAW 2003. The Joint
Conference of the 8th International Workshop of the European Association for Machine
Translation and the 4th Controlled Language Applications Workshop, Dublin (2003)

18. Tomassen, S.L., Gulla, J.A., Strasunskas, D.: Document Space Adapted Ontology:
Application in Query Enrichment. In: Kop, C., Fliedl, G., Mayr, H.C., Métais, E. (eds.)
NLDB 2006. LNCS, vol. 3999, pp. 46–57. Springer, Heidelberg (2006)

19. Tomokiyo, T., Hurst, M.: A language model approach to keyphrase extraction. In:
Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, Springer, Heidelberg (2004)

20. Turney, P.D.: Learning algorithms for keyphrase extraction. Information Retrieval 2(4),
303–336 (2000)

21. Voorhees, E.M.: Query expansion using lexical-semantic relations. In: Proceedings of the
17th annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 61–69. Springer, Heidelberg (1994)

22. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: KEA: Practical
automatic keyphrase extraction. In: ACM DL, pp. 254–255. ACM Press, New York (1999)

23. Xu, J., Croft, W.B.: Query Expansion Using Local and Global Document Analysis. In:
Proceedings of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 4–11. ACM Press, Zurich (1996)

MultiBeeBrowse – Accessible Browsing on

Unstructured Metadata�

Sebastian Ryszard Kruk1, Adam Gzella1, Filip Czaja1,2,
W�ladys�law Bultrowicz1,2, and Ewelina Kruk1

1 Digital Enterprise Research Institute, NUI Galway, Ireland
2 WETI, Gdansk University of Technology, Poland

firstname.lastname@deri.org

Abstract. Growing abundance of information on the Internet, espe-
cially the Next Generation Internet, poses even more challenges on more
efficient information management; hence it has brought attention of the
researchers to the faceted navigation. Existing solutions, however, do not
address the majority of users, who are still inexperienced in using the
faceted navigation solutions or who do not understand underlying con-
cepts of the Semantic Web technologies, or both. The query refinement
process, while using the faceted navigation interface, is more complex
than, e.g., refining a simple keyword-based query.

In this article we present MultiBeeBrowse (MBB), an accessible faceted
navigation solution that solves aforementioned problems in the browsing
environment. We present how to improve users’ access to their history of
refinements; we discuss how users can share their browsing experience.
And last bust not least, we present an adaptable user interface, which aims
to decrease information overload.

1 Introduction

Future Internet, as envisioned by both the academia and the industry, will be the
Web of metadata. This large, metadata rich information space, will be hardly
manageable with current techniques. Until machines will really understand what
we mean, we will have to refine our queries ourselves. The Semantic Web com-
munity investigates new solutions for the faceted navigation designed for the
unstructured metadata; in contrary to, e.g., Flamenco [18], new interfaces are
designed to facilitate browsing without prior knowledge of the structure of the
information space.

� This material is based upon works supported by Enterprise Ireland under Grant No.
ILP/05/203 and by Science Foundation Ireland Grant No. SFI/02/CE1/I131, and
partially by KBN, Poland under Grant No. 4T11C00525. The author would like to
acknowledge Daniel Schwabe, Peter Brusilovsky, Bill McDaniel, Henryk Krawczyk,
Stefan Decker, the DERI eLearning Cluster, the Corrib.org working group for fruitful
discussions, and the group of 20 patient volunteers who agreed to take help with the
evaluation.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 1063–1080, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

1064 S.R. Kruk et al.

1.1 Motivations

In the faceted navigation the information space is partitioned using orthogo-
nal conceptual dimensions of the data. These dimensions are called facets and
represent important characteristics of the information elements. Each facet has
multiple restriction values and the user selects a restriction value to constrain
relevant items in the information space. The faceted navigation interface allows
to quickly narrow down number of results by choosing more and more precise
values from various angles. The facet theory [13] can be directly mapped to
navigation in semi-structured RDF data.

The faceted navigation aims to allow users to harness the full potential of
the web rich in semantics. Many people, however, have still problems with using
keyword search. In 2004, OneStat.com1 announced that 77% of queries consists
of 3, or less, word phrases. In January 2007, RankStat.com2 reported that 80%
of queries consist of 4, or less, word phrases. It means that over last 3 years only
a few people started using more complex queries. A query consisting of two word
phrases is the most popular, which means that most users do not create complex
queries; they rather rely on their luck, reading through long lists of results, and
eventually on refining they queries.

Constructing more complex (5 and more words) keyword-based queries still
poses problems to an average user; therefore, we cannot expect that advanced
navigation, e.g., faceted browsing, as it is delivered at the moment, will gain
much attention in the near future.

There are also two other features which still make it easier to construct key-
word queries composed to faceted navigation: (1) refining a query by adding,
removing, or changing certain words is relatively easy, since we operate in one
dimension of vocabulary definitions; we need to remember not only values (key-
words) but also the names of the facets (properties). This can become a real
nuisance when we trying to refine a query many times, and when by going back
in the refining process we loose our previous refinements. (2) we can easily share
our keyword-based searching experience with others, by dictating the words, giv-
ing a hint on them, or simply copy-pasting the URL from a search engine. The
same operation using the faceted navigation is much harder to achieve; it takes
much longer, e.g., to dictate all operations a user is required to perform.

In this article we present an accessible browsing solution, a MultiBeeBrowse
component for collaborative faceted navigation, which answers aforementioned
motivation requirements. By accessible browsing we understand a user interac-
tion with the browsing services, where accessibility is achieved through: improv-
ing access to the history of refinements, adapting the presentation and browsing
style, lowering the information overload, and engaging users in the collaborative
browsing. The term unstructured metadata, used in this article, adheres to the
concept of information, which structure, or schema, has not been defined before,
or could not be identified while processing the information.
1 http://www.onestat.com/html/aboutus pressbox27.html
2 http://www.rankstat.com/html/en/seo-news1-most-people-use-2-word-phrases-in-

search-engines.html

MultiBeeBrowse – Accessible Browsing on Unstructured Metadata 1065

1.2 Related Projects

With the growth of the Semantic Web we need more powerful tools to search
and browse on the unstructured metadata. We have identified four types of the
navigation interfaces: (1) with a keyword search, e.g., Swoogle 3, (2) with an
explicit querying, e.g., Sesame4, (3) with a graph visualization, e.g., IsaViz 5,
and (4) with faceted navigation, e.g., Longwell6.

Oren et al [12] showed the advantages, such as speed of information retrieval
and the intuitiveness, of the faceted navigation. They presented and evalu-
ated, both formally and experimentally, many solutions in this area such as
BrowseRDF [12], Flamenco [18], mSpace [14], Ontogator [6], Spectacle7, and
Siderean Seamark8. BrowseRDF turned out to be the most complete and pow-
erful in the whole group. Nevertheless the authors omitted one of the best, in out
opinion, faceted navigation solutions: SIMILE’s Longwell. Another omitted, but
very interesting system, is /facet [5] browser which was created and presented
at the same time as BrowseRDF.

Longwell is a navigation solution, which builds upon flexibility of the RDF
data model and effectiveness of the faceted browsing user interface paradigm. It
allows to visualize and browse arbitrary RDF dataset; users can quickly build
easy to use web sites, based on their own data.

BrowseRDF is minimalistic in form; Longwell, have a strong arsenal of func-
tions, and at the same time stays user-friendly, looks good and is reasonably fast.
It is also quite similar to /facet solution. /facet has most of the Longwell fea-
tures and a special mechanism to deal with the large number of facets. However,
Longwell is more flexible, fully configurable, when displaying the results.

One of research areas, related to the topic presented in this article, focuses on
graphical representation of the queries on RDF graphs. Harth et al. [4] presented
an interesting solution, which could be used to augment existing services, such
as BrowseRDF, Longwell, /facet, or MultiBeeBrowse, with SVG-based graphical
representation of faceted browsing queries.

Since we lacked an explicit comparison between Longwell and BrowseRDF we
decided to evaluate these two solutions together with our own (see Sec. 7). To
keep the evaluation easy and clear for users taking part in it we decided not to
evaluate /facet as this solution is quite similar to Longwell.

1.3 Outline of the Paper

In the next section we present an overview of browsing operations on inter-
connected metadata. In section 3 we present how browsing context information
can be delivered through a zoomable interface paradigm. Section 4 shows how

3 http://swoogle.umbc.edu/
4 http://www.openrdf.org/
5 http://www.w3.org/2001/11/IsaViz/
6 http://simile.mit.edu/wiki/Longwell
7 http://www.aduna-software.com/products/spectacle/
8 http://www.siderean.com/

1066 S.R. Kruk et al.

search and browsing experience can be exchanged among the users. In section 5
we identify adaptive hypermedia, and other techniques, for improving accessibil-
ity of browsing and of presented results. Finally, in section 6 we identify services
oriented architecture of our solution, MultiBeeBrowse. Eventually, we report
results of our user-based evaluation in section 7.

2 Browsing on Interconnected Metadata

Information discovery is a key capability of modern, information society; grow-
ing abundance of information accessible through various media, including the
Internet, has always been both the blessing and the curse of the contemporary
humankind. When Google showed up, it simple swept away other search engines
with its PageRank algorithm. But the new era of the Internet, which grows
to become a network of social media and interconnected metadata (semantics),
brings new challenges in the field of the information retrieval.

This section presents an overview of different information discovery tech-
niques, especially in the context of semantic and social web.

2.1 From Searching to Filtering

People, at the moment, are getting the grip on the keyword-based search very
slowly (see Sec. 1.1); therefore, more complex navigation solutions are still beyond
capabilities of the majority of the Internet users. When dealing with metadata in-
formation a more advanced search can come handy. In a digital librarywe can spec-
ify that Kruk should be matched against names of the authors only, and naviga-
tion should be found in titles of articles only. A similar feature is offered by Google
search; users can restrict their search to a given site only, using a site: prefix of the
URL of the site. Although more powerful, these advanced search solutions are not
very popular and users tend to stick to simple keyword-based queries. Nielsen [11]
even suggests to discourage novice users to using advanced search features. An-
other way to extend search operation is by delivering a natural language query
interface. Users can ask complex queries by using natural language sentences [9].

A simple filtering user interface is a step towards better navigation using
advanced search capabilities; a user can select a value for each property (facet)
from a list of possible values for this property in the given context. This approach
seemed to gain more appreciation from the users [15]. It gave incentives to further
research in the area of faceted navigation; the Flamenco project [18] is one of
most famous results.

2.2 From Filtering to Browsing

The new Web is not just a network of resources and shallow metadata; it is
a network of highly interconnected metadata, often called semantics. The new
Internet is also a social medium, with contribution from all users. In the Semantic
Web, this interconnected information is represented as an RDF Graph [10]. This
imposes new challenges on the navigation techniques. It is required not only to

MultiBeeBrowse – Accessible Browsing on Unstructured Metadata 1067

Fig. 1. Example of part of an RDF graph with article and person concepts

filter but also to browse from one set of results (of one type) to a new set of
results (of different type).

In our example (see Fig. 1) we have two types of resources: articles and people.
A typical scenario for browsing on this information set would be to find other
articles written by authors of, e.g., Search and Browsing Cycle for Knowledge
Discovery and Learning. In our case this could be realized by browsing from this
article, to a set of its authors, and browse back to the list of their publications.
If we analyze the example graph (see Fig. 1) we will notice that Proceedings of
Irish Digital Library Summit will not be returned in our browsing process, since
the resource is related to the person with hasEditor property. In this case, we
would need to be able to find similar resources matching values (in this case a
person), not properties (hasCreator).

This simple scenario illustrates 3 requirements for a browsing on intercon-
nected information:

1. ability to browse from one set of results to another set of results, of possibly
even different type, related through a given property;

2. ability to represent, in human readable form, inverse properties (see Def. 1)
to those in initial graph of information;

3. ability to find similar resources based on either properties or values related
to given set of results.

The first requirement is the basic features of each navigation solution designed
to operate on arbitrary information. It allows to find resources related to these
in current set. Hence, we can get a list of co-authoring people, based on the
initial set of some of their publications.

Definition 1 (Inverse property). In RDF Graph G = (V, E, L, l), for each
e ∈ E, v1,v2 ∈ V, label ∈ L, so that e: (v1, v2) and l(e) = label, an Inverse
Property is a defined as (einv: v2, v1)9, and l(einv) = inv(label), where inv: L →
L’ is an arbitrary labeling function10

Usability of the aforementioned browsing feature relies on realizing the second
requirement - being able to traverse the graph backwards to the direction of given
9 In most cases the inverse property is a logical concept, which is not explicitly provided

in the source RDF graph, but can be explicitly defined using, e.g., owl:inverseOf.
10 Inverse labeling usually involves natural language processing.

1068 S.R. Kruk et al.

property. Support for inverse properties (see Def. 1) relies on both modeling of
possible interactions with given set of information, and on delivering user-friendly
names for the inverse properties. In our example (see Fig. 1), a user who wants
to go from a set of articles to a set of authors, will look for has creator property;
while, a user who wants to go from a set of people to a set of article, authored
by these people, will look for is creator of property. In most cases delivering a
separate label for the inverse property (in our case is creator of) improves the
overall usability of the browsing solution (see Sec. 5). The navigation interface
should allow for a seamless representation of underlying graph representation of
data, without requiring users to understand the technicalities.

The third required browsing operation is finding similar resources based on
either given property or on given value. In the first case, it would mean to look
for other articles co-authored by the same people who wrote any of the articles
from the first set. In the latter case, this would mean to look for any resource
somehow11 related to given value. It would allow for finding publications either
authored or edited by given person, but would not restrict the final set of results
to the same type of resources as the initial one.

When dealing with resources that can have different properties, such as has
creator or has editor, users might also want to restrict the set of presented
results to all resource that have given property, or to those that do not have
given property at all.

Some of more complex queries requires couple of steps to build; when you
what to say that you are looking for articles that were presented at a conference
which took place in Ireland, and whose authors were members of DERI, you need
to compute queries: (based on conference location and affiliation of authors), and
join them together. We have identified 4 types of combination operations:

– intersection – each resource must exist in both input sets;
– sum – each resource must exist in either of input sets;
– difference – each resource must exist in the first set, but not in the second

one;
– binding – returns a set of results that span together resources from both

sets, with a chain of connections not longer than a given parameter.

Access to resource metadata. In most cases, search and browsing services would
rather present the result itself; in the context of multipurpose navigation frame-
work, however, access to the resource metadata allows users to build queries on
this seed information. They can find similar resources (see Sec. 2.2), or continue
with filtering and browsing.

3 Zoomable Browsing Context

Creating a faceted browsing query requires a number of refinement steps (see
Lemma 1); each of these steps involves one of atomic operations (see Def. 2)
defined in previous section (see Sec. 2).
11 New results need to have at least one property with a value matching the given one.

MultiBeeBrowse – Accessible Browsing on Unstructured Metadata 1069

Definition 2 (Browsing Operation). A Browsing Operation bo ∈ BO, is the
simplest operation which can be invoked on the navigation engine; it takes output
of zero, one, or two other Browsing Operations as input12; BO ={Resource0,
Search1, Filter1, Browse1, Similar1, Combine2}, each Browsing Operation
represents one refinement step in the browsing query building process.

Lemma 1 (Decomposition of Browsing Query). Each search and browsing
query Q can be decomposed into a set of consecutive browsing operations, each
representing one refinement step in the query building process.

Mastering the right query can take some time, especially to novice users; sadly
current web browsers does not handle history of actions as a graph of consecutive
operations, but rather as a flat list of recently opened URLs. Therefore our exact
refinement process is lost. When we decided to use backwards button to go back
couple of refinements steps, and continue with refinements, our previous history
of refinements is only accessibly through a meaningless view of all previous URLs
visited with our browser. What if we would like to retrieve our browsing actions
from long time ago, and be able to replay these refinements, step by step?

Based on these two goals: handling many paths of back and forth refinements,
and access to a structured history of operations, we have identified 4 views of
browsing context, which allow user to access effortlessly each of aforementioned
features.

– Basic browsing view provides access to all browsing operations (except for
Combine) with a typical search and browsing user interface (see Fig. 3).
To further enhance usability of our solution, we have extended the query
building part with suggestions of properties and values, and results rendering
part with an in-situ browsing menu (see Sec. 5).

– Structured history view allows users to view their current results in the con-
text of previous and following (if any) operations. This view is almost the
same as the basic browsing view, with one difference that users see 6 slots
(see the HoneycombTMview) with previous operations, and another 6 slots
for further browsing. Some of the slots might be already occupied with def-
inition of previously performed refinements; other are free, and a browsing
pop-up allows to specify which slot to use to continue browsing (see Fig. 3).

– HoneycombTM view presents users a comprehensive overview of their current
browsing context. Each browsing query is represented with a hexagon lozenge
in a 3D visualization (see Fig. 3); some edges between hexagons represent
browsing operations that were added to the chain of operation to create a
new browsing query. With this view, users can get a quick overview on their
browsing session; they can quickly jump to a selected browsing query in the
current context. This view also allows to perform Combine operations, by se-
lecting one of vertexes with exactly two adjacent hexagons. In a similar way,
by selecting an edge with only one adjacent hexagon the user can perform
any browsing operation, which was allowed in previous views.

12 Numbers in subscript, next to the name of operation, indicate a number of other
browsing operations which can be prepended to given one.

1070 S.R. Kruk et al.

Fig. 2. Basic browsing view Fig. 3. Structured history view

Fig. 4. HoneycombTM view Fig. 5. Life-long history view

– Life-long history view presents all previous sessions in which the given query
was invoked (see Fig. 3). It allows a user to quickly move in time to some
browsing context, review refinements invoked after the given browsing query.
User can even jump back to that context and continue browsing.

These four views have been set up, so that users can zoom out from the view
of results, to a view of the browsing context, to a view of all browsing contexts
(life-long history).

4 Collaborative Browsing

In the standard keyword-based search queries are not complicated. They usually
consist of three or four words (see Sec. 1.1), so it is very easy to recall and
repeat searching process. Sharing such queries is also quite easy as it is enough
to dictate or send the set of keyword or a URL that invokes the search query.
With faceted navigation querying process is not always straight forward. It often
consist of keywords and some actions that depends on the previous ones and the
context. Thus, sharing queries and results of them is much harder with faceted
navigation approach.

Definition 3 (Collaborative browsing). In group of users U and browsing
queries sets Bm, for ux, uy ∈ U and set of browsing queries b1m , b2m , ..., bnm ∈
Bum , where m ∈ (x, y). Collaborative browsing is a process in which ux browse

MultiBeeBrowse – Accessible Browsing on Unstructured Metadata 1071

through the Buy and uses bi ∈ Buy Optionally ux refines query bi → bi

′
and

performs Bux = Bux ∩ bi and/or Bux = Bux ∩ bi

′

Collaborative browsing (see Def. 3) solution, presented in this paper closes the
aforementioned gap between classic keyword-based and faceted browse. All the
actions in the system, facets dependency and the context of the search are saved
in a special URL (see Sec. 6). By invoking such a URL users can retrace all their
browsing steps and get desired results. It is also possible to refine the query if
the result is insufficient or the search objective has changed.

Users can now share these specially constructed URLs to the faceted brows-
ing results just like they did with keyword-based search. They can send them
by e-mail, through instant messaging, or put it on the web site. But searching
for URL in e-mails, browsing instant messaging history, looking for web page is
not very convenient and creates lots of problems; user would rather perform new
browsing than use the existing one, no matter how good it was. The navigation
component can be extended with an online bookmarking solution, such as SSCF
(Social Semantic Collaborative Filtering) [7]. SSCF allows users to create the
knowledge repository by bookmarking and categorising interesting and valuable
resources. Users can utilise the knowledge and expertise of others by browsing
and importing resource gathered by their friends. Resources in SSCF are se-
mantically annotated with community established categorization. Users are also
able to set fine-grained access rights to each category. SSCF has been extended
to deal with URLs representing browsing queries. They became standard SSCF
resources, so users can now share browsing experience with ease and without
any hassle.

To make the collaborative browsing truly happen, while browsing resources
users have quick access to their SSCF bookmarks. They can specify a name
and a description and select where in the hierarchy the current browse query be
added. It becomes an SSCF bookmark and can be shared by the community.
The browsing query has the same features as a standard SSCF resource; it can
be copied, cloned, imported by a friend or put in a directory with restricted
access rights.

Users can share their browsing queries, and by bookmarking refinements of
these queries, they actually perform collaborative browsing. With collaborative
browsing people can share their knowledge and their expertise with the social
network. Users can also help each other and learn how (by exchanging query
bookmarks) to get the satisfying results from the search process.

5 Adaptable Browsing Interface

In this section we will present how adaptive hypermedia, and other personaliza-
tion techniques, can improve the accessibility measures, such as the speed and
the ease of use, of navigation process. An accessible navigation interface con-
tains elements that are automatically adapted by the system according to user’s
profile, or that can be dynamically changed by users through their actions.

1072 S.R. Kruk et al.

5.1 Results Presentation

As a result of executing the given query, accessible browsing interface returns
a set of resources together with all available metadata and RDF relations. A
predefined rendering style can be applied based on the value of rdf:type prop-
erty. Each type has some main properties; these properties group predicates
describing the same concepts within different ontologies. We have also identified
descriptive properties of the most popular resource types, e.g., an abstract for
an article. We use the adaptive hypermedia strechtext technique [1] to present
on demand additional, collapsed by default, information, including descriptive
properties. A generic result is rendered with only a label, with all other prop-
erties collapsed. The label for a generic result, as for all properties and other
resources, is generated based on values of rdfs:label, dc:title, or foaf:name
properties. Also the URIs of namespaces are abbreviated to short names. This
feature adds an aspect of adaptability to the result presentation interface.

5.2 Using Results for Refining Queries

Most of the values displayed in the results page, e.g., property names and values
or the resource URIs, can be used for refining user’s query. Instead of typing
some literals or URIs in search box users can click on the given value and use it
for building their query using in-situ browsing pop-up; they can start new search
or simply load the chosen URI. The action choice box that appears after clicking
a value offers the same functionality as the main search box. It limits, however,
possible options to only these actions, where the clicked value can be used. It
means that users can not load a resource using a literal value or they can not
choose a value that is not a predicate for further browsing. System recognizes
what element was chosen (property, value, or resource) and adapts the action
box by changing the set of possible actions for a given element. This technique
is one of the ways of limiting information overload in the browsing solution.

5.3 Adaptive Concepts Suggestion

Whenever users choose an action type and wants to specify some values for this
action, such as keywords or predicate name, the list of possible values appears,
and they can use one of the suggested entries. A given number indicates the
amount of results returned when using this value is presented next to each entry.
The list of the results can be presented as a regular list of entries or as a tag-
cloud, depending on user preferences.

One of the adaptive aspects of our browsing user interface is suggesting to the
user the values while building queries. When browsing through the results or
building new queries system suggests the values that user is most likely to use.

The algorithm for suggesting the entries is based on the statistics concerning
most popular users choices, most relevant predicates in given context, and the
history of browsing saved for a given user. User is not limited to the suggested
predicate values; they are only a hint to make the queries building easier. The
suggestions appear on the top of the list of possible entries, in different color
than the rest of entries. Up to three most likely to be used values are presented.

MultiBeeBrowse – Accessible Browsing on Unstructured Metadata 1073

5.4 Accessible Predicates Names

The faceted browsing user interface is meant to be used by generic users that
do not necessary have to be familiar with concepts of RDF. In order to make
building of search or browse queries easier we decided to create a kind of “ac-
cessible predicates names”. At the moment translations of full predicate names
and names for inverse properties (see Def. 1) are based on hand crafted list of
about 150 items.

Since it is not a very big effort to make such translation for a specific domain,
e.g. eLibrary, this could be a good solution even for a final product. Nevertheless
we decided to create an algorithm, based on some common predicates naming
templates. It transforms the original name to a form that is much closer to
natural language. The algorithm defines rules for constructing names of invert
properties based on the original name of the predicate.

Transformed predicates are easy to understand and to use even by people
without computer background. Transformation process also hides the namespace
of each predicate so the users are not confused about its role and meaning.

The verification process of the algorithm, however, is still not finished. Eval-
uation of the algorithm itself is out of the scope of this paper.

6 Reference Implementation of Accessible Browsing

Based on motivation scenario (see Sec. 1.1), in previous sections we have iden-
tified the most important aspects of faceted browsing: a set of basic operations
(see Sec. 2), access to context and history of browsing (see Sec. 3), collaborative
browsing (see Sec. 4), and adaptability of browsing interface (see Sec. 5).

These component solutions influenced building the MultiBeeBrowse system
according to SOA (Service Oriented Architecture) paradigm [3], coupled with
AJAX-based user interface. MultiBeeBrowse allows to browse unstructured
metadata represented as an RDF graph.

In this section we will present the REST-based services in MultiBeeBrowse
SOA, and briefly recap user interface component. We will discuss rationale and
main design properties behind this solution.

Why REST solution?. As research [17] shows, SOAP is inadequate for imple-
menting web services for Semantic Web applications. An argument for REST
[16], in the context of the MultiBeeBrowse service, is that GET action defines
an idempotent request, i.e., subsequent calls of the same URL should return
the same results. This can ensure that user will get the same results, each time
given URL is called. In MBB it is vital for collaborative browsing paradigm (see
Sec. 4), and handling history of results (see Sec. 3).

Our goal was also to construct a meaningful URL representing single browse
operations, as well as, whole chain of operations building up a browsing query.
This would allow advanced users to quickly construct their queries, directly in
the web browser address field.

1074 S.R. Kruk et al.

Overview of MBB services. We have identified following types of services that
should be delivered by our SOA:

– browsing services: access to a resource, search, filter, browse, similar, com-
bine;

– context and history management services;
– meta-services, which provides access to statistical information, and allows to

format response in desired metadata language format;

Each service is specified using BNF notation13; it is enough, since most of the
services except for the context services provide only GET method implementa-
tion. Each BNF specification has been translated into a regular expression. All
services has been grouped in a hierarchical structure. When an HTTP request
the URL is processed of the request is decomposed (see Fig. 6) into a chain of
atomic service calls, by traversing the tree of hierarchy of services. This approach
allows to validate the service call before it is actually executed. Plus, it adheres
to web approach to deliver as much as it is possible, against existing problems.
In the latter case, if one of atomic browse operations is misspelled the service is
executed until the last correct one.

Browsing services specified in section 2, deliver the primary functionality of the
MultiBeeBrowse component.

– Access resource service allows to load metadata about a resource with given
URL for further browsing; this service can only be called as the first one in
the chain of browsing operations.

– Search services, with three implementations: keywords and advanced search,
natural language query templates [9], and direct RDF query service. The two
first ones were already described in section 2.1; the third one allows to specify
query in one of RDF query languages.

– Filter service allows to specify selection filter using either predefined names
of properties or using full URIs for both properties and values.

– Similar service allows to find resource similar to those in given set,
– Related service allows to find resource that are related to the given ones

with given property, e.g., (list of publications) → has creator → (list of
co-authors).

– Combination service performs four operations: conjunction, sum, difference,
binding, on two given sets of results; it has to be called as the first one in
the chain, and takes as a parameters IDs (see Meta-services) of two other
browsing operations.

Context and history management services. The information on the context of
browsing is kept in the RDF storage according to a simple ontology. This on-
tology defines a Browsing Context as a set of current browsing queries (Browse
Action). Each browsing query invokes a Call to a MBB service. The distinc-
tion between browsing queries and calls to MBB is important to keep track of
13 http://wiki.s3b.corrib.org/MBB/SOA

MultiBeeBrowse – Accessible Browsing on Unstructured Metadata 1075

Fig. 6. Example of decomposing browsing query into browsing and meta-service

user actions, through Browse Action, and still have single Calls independent of
the user; this can be used for, e.g., caching purposes later. With context ser-
vices, users can traverse current browsing contexts, or retrieve all their browsing
contexts with the given call.

Meta-services. Meta-services allow to render results in one of RDF serializations
(GetRawMetadata), or in one of feed (RSS, Atom) formats (GetFeedMetadata).
For adaptable user interface purposes a special meta-service (GetStatsMetadata)
generates statistics on properties and values a user can select from. Similar meta-
service generates a list of most frequently used concepts (GetFreqConcepts).
Another meta-service, GetChainMetadata renders the definition of current chain
of browsing operations in HTML or XML. Finally, the GetId service generates
a unique ID for given browsing query.

7 Evaluation

Since the faceted navigation itself is pretty well evaluated concept [12] we de-
cided to compare our prototype with other somehow similar solutions such as
BrowseRDF14 and Longwell. Second part of our evaluation is dedicated to gain
some opinions about each particular solution delivered by MultiBeeBrowse; these
solutions did not exist in either of compared systems (BrowseRDF, Longwell).

Initial questions. Our survey involved 20 people. Distributions of age and edu-
cation level are shown on the Fig. 7 and Fig. 8. No one way familiar with either
the dataset used in the evaluation or with MultiBeeBrowse.

First of we asked couple of questions about subjects’ background and knowl-
edge of the area of our research. Slightly more than a half of (60%) have computer
science background but only 10 of them knew what RDF is. 15 (75%) of subjects
were not familiar with the term “faceted navigation”, and more than 85% use
Google to search information on the Web.

We asked two open, general questions. First was to name some typical tasks
they perform during searching. Many (75%) subjects pointed that they simply
try to assort good keywords. Then they look on couple first results (30%) or
browse the results further (25%). Opening of the results in new browser tabs
is also quite popular (20%). Among answers mentioned above we identified:
bookmarking, filtering and finding the queries and access to multilevel history
of browsing. Second task was to name features subjects miss searching systems
they use. Apparently only 20% is fully satisfied - 4 people answered “nothing”.
In general subjects complained about too many irrelevant results (low precision),

14 http://browserdf.org

1076 S.R. Kruk et al.

Fig. 7. Distribution of age Fig. 8. Distribution of education

lack of quick previews of the results, no possibility of querying in natural lan-
guage, lack of good history and way to save the results, and last but not least,
about problems with too complicated usage and lack of easy help.

We have asked additional pre-assessment questions. And they were (number
of positive answers in brackets):

– Have you ever wished you could share your browsing experience with your
friends? (45%)

– Have you ever wished you could have someone else help you with browsing?
(80%)

– Have you ever wished you could recall you previous search/browse/refinements
history? (85%)

Comparison. We gave a short tutorial showing features of every search system as
best as it is possible. All of them were working on the same dataset, taken from
http://notitio.us service, filled with FOAF [2] profiles of the users, information
about publications from JeromeDL [8] (http://library.deri.ie) and an informal
knowledge gathered by IKHarvester15. Subjects were allowed to ask questions
and try to play with each system before the evaluation.

After the presentation, we asked everyone to give a subjective marks (1-10)
to each of the compared systems, based on how it looks, how it interacts with
the user, features and results it provides.

Longwell took first place with average mark 6.875, second (by a proverbial
hair’s breadth) was our MBB with average 6.8, and left BrowseRDF far be-
hind (avg. 3.8). Since Longwell is a very mature product we found these results
satisfying.

We also asked about user friendliness (see Fig. 9), and MultiBeeBrowse came
close to Longwell again, leaving BrowseRDF behind.

MBB features. In this paragraph we want to show how users value experience
our system. Figures 10 and 11 present marks which were given by the users to
particular solutions and to parts of our prototype (all marks are in percents).

We also asked some open questions, and the results are very good for us.
18 subjects (90%), like the idea of using results for refining queries. The same
15 http://notitio.us/ikh/

MultiBeeBrowse – Accessible Browsing on Unstructured Metadata 1077

friendly average hard to use

MBB 8 7 3
BrowseRDF 2 6 12
Longwell 16 4 0

Fig. 9. Comparison of user friendliness

Type of query Interesting Useful Clear

get by uri 53.8% 66.9% 86.2%
combine 79.2% 63.3% 67.3%
browse 63.1% 57.7% 53.8%
similar 76.2% 64.2% 49.2%
filter 60.3% 48.2% 71.5%
search 55.4% 86.9% 91.5%

Fig. 10. Evaluation of accessibility of browse services

number like the idea of saving queries as bookmarks. 15 subjects (75%) can
imagine using their friends bookmarked queries for their own searches and vice
versa. In particular: while searching for resources (11/55%), helping friends with
constructing queries (5/25%) or simply sharing knowledge (12/60%).

As far as user friendliness goes 19 people (95%!) said that the type of the
search result was to easy identify, and 17 (85%) of them thought that the default
information describing each resource was sufficient. 14 subjects (70%) claimed
that the history of searching was easy to identify and 13 (65%) were able to
locate themselves while browsing the history. 18 people (90%) found it easy to
switch between system components/views.

To finish our survey we gave four tasks/questions to each subject. Solutions to
similar tasks with use of all three tools were presented during our short tutorial.
The tasks were to find: (1) all friends of Sebastian; (2) all co-authors of Decker;
(3) who were composers contemporary to Mozart? (4) all articles about semantic
web but not about web services. Subjects were asked about their “level of con-
fusion” while the time and the number of the operations needed were measured.
Figure 12 shows the average results (the “ideal” results in brackets). By “ideal”
we mean the best result achieved during our pre-survey trials. An average num-
ber of operations was pretty close to ideal so the system is not really hard to
learn and use and the time was approximately twice longer probably due to lack
of user experience.

1078 S.R. Kruk et al.

Intuitiveness Clearness Attractiveness

72% 74% 59.5%
40% 37.75% 75%
65% 61.5% 72%
84% 81% 74%

Fig. 11. Evaluation of MBB context zooming views

Task Confusion Operations Time

1 17% 1.2 (1) 24s (10s)
2 52% 2.9 (2) 66s (30s)
3 63% 3.3 (2) 106s (30s)
4 28% 2.6 (2) 51s (20s)

Fig. 12. Evaluation of MBB while performing predefined tasks (confusion, number of
operations, time of executing each task)

Table 1. Comparison of browse operations supported by different solutions

Operator MMB BrowseRDF Longwell Flamenco,mSpace,Ontogator,Spectacle,Seamark
search + ± ± -
selection + + ± ±
property + ± - -
browse + - - -
combine + ± ± ±

MultiBeeBrowse – Accessible Browsing on Unstructured Metadata 1079

Comparison between MultiBeeBrowse and other navigation solutions. We have
also compared features provided by MBB, Longwell, BrowseRDF, and other
faceted navigation solutions. From the plethora of services provided by MBB
(see Tab. 1), only selection services were fully supported by BrowseRDF, and
similarity by Longwell.

8 Conclusions and Future Work

In this article we have presented a concept of an adaptable collaborative brows-
ing interface. We have analyzed operations expected from a browsing solution
on interconnected metadata (semantic). We have exemplified how context in-
formation can support a history of browsing actions; than we have presented
the idea of collaborative browsing. Finally, we have described adaptive solutions
for the user interface, and presented the REST-based SOA, implemented in our
prototype called MultiBeeBrowse. We have also analyzed evaluation results.

MultiBeeBrowse component has been successfully implemented in notitio.us;
it is a service for collaborative knowledge aggregation and sharing; it employs
IKHarvester for retrieving RDF information about web resources bookmarked
by the users. In contrary to other bookmarking services, such as del.icio.us,
notitio.us keeps rich, semantically interconnected metadata shared by the users
using Social Semantic Collaborative Filtering [7]. MultiBeeBrowse has also been
integrated into JeromeDL 2.1, where together with solutions like Exhibit and
TagsTreeMaps it enhances user browsing experience.

During our work, and further evaluation of MultiBeeBrowse, we have iden-
tified a number of goal for future development of the project. These include
AJAX proxy service, for aggregating large number of service calls from the user
interface.

References

1. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling
and User Adapted Interaction 6(2-3), 87–129 (1996)

2. Dodds, L.: An Introduction to FOAF (2004),
http://www.xml.com/pub/a/2004/02/04/foaf.html

3. Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and Web
Services. Prentice Hall Professional Technical Reference (2004)

4. Harth, A., Kruk, S.R., Decker, S.: Graphical representation of rdf queries. In: Carr,
L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.) WWW 2006. Proceed-
ings of the 15th international conference on World Wide Web, pp. 859–860. ACM
Press, New York (2006)

5. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A browser for het-
erogeneous semantic web repositories. In: International Semantic Web Conference,
pp. 272–285 (2006)

6. Hyvonen, E., Saarela, S., Viljanen, K.: Ontogator: Combining view- and ontology-
based search with semantic browsing. In: Proc. of XML (2003)

http://www.xml.com/pub/a/2004/02/04/ foaf.html

1080 S.R. Kruk et al.

7. Kruk, S.R., Decker, S.: Social Semantic Collaborative Filtering with FOAFRealm.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, Springer, Heidelberg (2005)

8. Kruk, S.R., Decker, S., Zieborak, L.: JeromeDL - Adding Semantic Web Technolo-
gies to Digital Libraries. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.)
DEXA 2005. LNCS, vol. 3588, Springer, Heidelberg (2005)

9. Kruk, S.R., Samp, K., O’Nuallain, C., Davis, B., McDaniel, B., Grzonkowski, S.:
Search interface based on natural language query templates. In: Proceedings of
IADIS International Conference WWW/Internet 2006 (2006)

10. Manola, F., Miller, E.: RDF primer. W3C Recommendation (2003)
11. Nielsen, J.: Designing Web Usability: The Practice of Simplicity. New Readers

Publishing, Indianapolis (2001)
12. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for RDF data. In:

Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

13. Ranganathan, S.R.: Hidden roots of classification. Information Storage and Re-
trieval 3(4), 399–410 (1967)

14. Schraefel, M., Wilson, M., Russell, A., Smith, D.A.: mspace: Improving information
access to multimedia domains with multimodal exploratory search. Communica-
tions of the ACM 49(4) (2006)

15. Sinha, V., Karger, D.R.: Magnet: supporting navigation in semistructured data
environments. In: SIGMOD 2005. Proceedings of the 2005 ACM SIGMOD inter-
national conference on Management of data, pp. 97–106. ACM Press, New York
(2005)

16. Vinoski, S.: Putting the ”web” into web services. IEEE Internet Computing 6(4),
90–92 (2002)

17. Wozniak, M.: Service oriented architecture for collaboration and negotiation ontol-
ogy management portal. Master’s thesis, Gdansk Univeristy of Technology, Poland
(2006)

18. Yee, P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search and
browsing. In: Proceedings of ACM CHI 2003 (2003)

Matching of Ontologies with XML Schemas Using a
Generic Metamodel

Christoph Quix, David Kensche, and Xiang Li

RWTH Aachen University, Informatik 5 (Information Systems), 52056 Aachen, Germany
{quix,kensche,lixiang}@cs.rwth-aachen.de

Abstract. Schema matching is the task of automatically computing correspon-
dences between schema elements. A multitude of schema matching approaches
exists for various scenarios using syntactic, semantic, or instance information. The
schema matching problem is aggravated by the fact that models to be matched are
often represented in different modeling languages, e.g. OWL, XML Schema, or
SQL DDL. Consequently, besides being able to match models in the same meta-
model, a schema matching tool must be able to compute reasonable results when
matching models in heterogeneous modeling languages. Therefore, we developed
a matching component as a part of our model management system GeRoMeSuite
which is based on our generic metamodel GeRoMe. As GeRoMe provides a uni-
fied representation of models, the matcher is able to match models represented in
different languages with each other. In this paper, we will show in particular the
results for matching XML Schemas with OWL ontologies as it is often required
for the semantic annotation of existing XML data sources.

GeRoMeSuite allows for flexible configuration of the matching system; vari-
ous matching algorithms for element and structure level matching are provided
and can be combined freely using different ways of aggregation and filtering in
order to define new matching strategies. This makes the matcher highly con-
figurable and extensible. We evaluated our system with several pairs of XML
Schemas and OWL ontologies and compared the performance with results from
other systems. The results are considerably better which shows that a matching
system based on a generic metamodel is favorable for heterogeneous matching
tasks.

1 Introduction

Integration of information systems is a major challenge that has been addressed in sev-
eral disciplines such as database and semantic web research. One of the key issues in
integration is creating a mapping between the data models of the systems involved. This
work is, for example, required if the data from different data sources must be merged in
a data warehouse or if two e-business systems must communicate with each other.

Schema matching is the task of identifying a set of correspondences (also called a
morphism or a mapping) between schema elements. Many aspects have to be consid-
ered during the process of matching, such as data values, element names, constraint
information, structure information, domain knowledge, cardinality relationships, and
so on. All this information is useful in understanding the semantics of a schema, but it

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 1081–1098, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

1082 C. Quix, D. Kensche, and X. Li

can be a very time consuming problem to collect this information. Therefore, automatic
methods are required for schema matching.

A multitude of methods have been proposed for schema matching [23,25] using dif-
ferent types of information to identify elements or focusing on models represented in a
specific modeling language such as the Relational Data Model, XML Schema, or OWL
[5,7,8,16,17]. To avoid confusion with the terms being used in this paper (e.g. meta-
model, model, schema), we want to clarify the terminology first. We will use the ter-
minology defined in the IRDS standard [9] and used by the Object Management Group
[21]. According to the IRDS standard, models, schemas, and ontologies are all on the
same level and describe the structure of data instances. A metamodel (or a modeling
language) is used to define a model, schema or ontology. Examples for metamodels are
OWL, UML, or the Relational Data Model.

The schema matching problem is aggravated by the fact that models employed by
one system are often represented in different modeling languages. Consequently, be-
sides being able to match models in the same metamodel, a schema matching tool must
be able to compute reasonable results when matching models in heterogeneous mod-
eling languages. This is for example required for the annotation of existing XML or
relational data sources with ontologies, to enable semantic queries to these sources.
Another example is the enrichment of XML web services with semantic information to
get semantic web services.

In this paper, we present the matching system which is part of our generic model
management system GeRoMeSuite [13,14,22]. GeRoMeSuite is based on our role-based
metamodel GeRoMe ([12], phonetic transcription: dZer@Um) which provides a generic
but yet detailed representation of models represented in different modeling languages.
By using GeRoMe, our system is able to match models expressed in heterogeneous
modeling languages which we will apply in this paper to the case of matching XML
schemas with OWL ontologies.

Currently, schema matching systems represent models as directed labeled graphs to
support the matching of models from different metamodels. However, the way how a
model is encoded as graph is crucial for the match result as structural similarities are
also important in schema matching. As models from different metamodels are repre-
sented differently in graphs (different labels, different structures), the matching between
such models produces often poor results. As we will show, GeRoMeSuite produces sig-
nificantly better results for matching models from heterogeneous metamodels which
indicates an advantage of using a generic metamodel for the representation of mod-
els. We evaluated the matching performance of our system using various examples for
matching OWL ontologies with XML schemas.

The main contributions of our work are (i) a system for matching models using a true
generic representation, (ii) which provides several matchers and traversal strategies, and
(iii) is based on a very flexible and easily extensible implementation. The generic rep-
resentation of schemas allows us to apply our implementations of matching algorithms
to any combination of models regardless of the modeling languages that the models
are originally represented in. Furthermore, the high level of detail of our generic repre-
sentation enables us to provide different structural views on a model to structure-level
matching algorithms. In doing so structural matchers can, for instance, incorporate into

Matching of Ontologies with XML Schemas Using a Generic Metamodel 1083

their similarity assessment associations between types or derivations between types (the
IsA-hierarchy) or even both.

The structure of the paper is as follows. In the next section, we will discuss existing
approaches to schema matching. Then, we will describe briefly our generic metamodel
GeRoMe using an ontology and an XML schema as example. Section 4 presents the
system we have developed in terms of its architecture and implemented matchers. In
section 5, we present the evaluation of our system. We also discuss and analyze the
results of the tested schema matching systems. We conclude our paper with a discussion
of our approach and an outlook to future work.

2 Related Work

There have been many approaches to schema matching. The main reason for the various
approaches is that each matching problem has its own characteristics and might require
a specific solution. The approaches to schema matching can be distinguished by the
information they use: some focus only on the schemas, some use external information in
form of thesauri, dictionaries or acronym databases, and, if available, it is also possible
to use the instance data to find similarities between schemas [23,25].

The Cupid algorithm [17] is intended to be generic across data models and has
been applied to XML and relational examples. It uses auxiliary information sources
for synonyms, abbreviations, and acronyms. It implements a generic schema matching
algorithm combining linguistic and structural schema matching techniques. The input
schemas are encoded as graphs. Nodes represent schema elements and are traversed
in a combined bottom-up and top-down manner. The matching algorithm consists of
three phases. The first phase (linguistic matching) computes linguistic similarity coeffi-
cients between schema element names (labels). The second phase (structural matching)
computes structural similarity coefficients which measure the similarity between con-
texts in which individual schema elements occur. The main idea behind the structural
matching algorithm is to propagate the similarity of leaf items to the similarity of in-
ner nodes. Finally, the third phase (mapping generation) computes weighted similarity
coefficients and generates final mappings by choosing pairs of schema elements with
weighted similarity coefficients which are higher than a threshold.

A similar idea is followed by the Similarity Flooding algorithm [19]. Schemas are
also represented as directed labeled graphs. Based on the idea that if two nodes are
similar then also their neighbors are similar, the similarity of two nodes in the graph
is propagated to its neighbors. This procedure is repeated until the Euclidean distance
between two subsequent similarity matrices is below a certain threshold. The initial
input similarities can be computed by any kind of (linguistic) matching method. The
algorithm can be applied to arbitrary graph structures. In [19], there are also several
strategies proposed to filter the mapping pairs from the computed similarity values.

The COMA schema matching system is a platform designed to combine multiple
matchers in a flexible way [5]. It provides a large number of individual matchers, which
contains both terminology approaches and structural approaches. After combining the
mapping results from the individual matchers, the output mapping could be chosen as
the final result or reused as an individual matching result. As a generic matching system,

1084 C. Quix, D. Kensche, and X. Li

COMA accepts different schema types as input, such as XML schemas and relational
schemas, which are internally represented as directed graphs. COMA also allows users
to reuse the previously obtained matching results. COMA++ [1] is an extended and
improved update of the COMA system. It supports ontologies as inputs and provides
several matchers for ontology matching.

Compared to other ontology alignment tools, COMA++ produces also very good
results in the area of ontology alignment [18]. In principle, ontology matching can
use the same ideas as schema matching (e.g. a combination of linguistic and struc-
tural matchers). However, as ontologies contain usually more semantic information
and constraints than schemas, methods for ontology matching can also use this infor-
mation to detect similarities between ontologies [11,20]. For example, in [6] a metric
for the similarity of concepts is defined using properties, restrictions, sub- and super-
class relationships, and so on. There are several tools for ontology alignment, which
were also evaluated in the Ontology Alignment Evaluation Initiative 2006 (http://
oaei.ontologymatching.org/2006/). Some of them performed better than
COMA++ (e.g. Falcon-AO [8] and RiMOM [16]), but these tools are not able to match
XML schemas with ontologies.

The ARTEMIS tool [3] for schema integration comes closest to our approach. It
also uses a generic metamodel (called reference data model in their work) which is the
relational metamodel with some additional object oriented features. Using this generic
metamodel, they can uniformly analyze models represented as relational, EER or object
oriented models. The matching component matches elements based on their name, data
type or structural similarity. To deal with synonyms and hypernyms, the tool uses also an
external thesaurus (WordNet). However, ARTEMIS has not been applied to match OWL
ontologies and XML schemas. As the tool is not available anymore on the Internet,
we could not compare it with our matching system. To the best of our knowledge,
COMA++ is the only tool, which is available for download and allows to match XML
schemas with OWL ontologies.

3 The Generic Metamodel GeRoMe

The Generic Role based Metamodel GeRoMe [12] uses role based modeling. Each
model element of a native model (e.g. an XML Schema or a relational schema) is rep-
resented as an object that plays a set of roles which decorate it with features and act as
interfaces to the model element. We wiil briefly introduce the main ideas of GeRoMe by
using an example representing an XML schema, which we will use also later as a run-
ning example. Representing XML Schema in a generic metamodel is quite challenging
as it supports modeling constructs which are not common in other metamodels, such
as ordered elements or the derivation of simple types by regular expressions. The ex-
ample schema contains three complex types (AirlineType, EmpType, and PilotType) and
three elements (Airline, Employee, and Pilot). Employees work for an airline, pilots are
modeled as a subtype of employee and have an additional attribute Lic Num.

The GeRoMe representation in fig. 1 shows each model element as a ModelEle-
ment object (gray rectangle) which plays a number of roles (white squares). Each such
role object may be connected to other roles or literals, respectively. For the sake of

(http://oaei.ontologymatching.org/2006/)
(http://oaei.ontologymatching.org/2006/)

Matching of Ontologies with XML Schemas Using a Generic Metamodel 1085

BE

OS

AgNS

NS

D

Att

OS

DE OS

IsA

Att

AgNS

AsNS

CE
NS

OE
OS

AsNS

OECE

AsNS

(min,max)=(1, 1)

OE

http://../Airline

EmpType

PilotType

_DerivP

Lic_Num

Airline

_AnonOE2_AnonOE1

Employee

_AnonOE4_AnonOE3

Pilot

string

SSN

_AnonOE2

CE

_AnonOE1

(min,max)=(1, 1)

(min,max)=(1, 1)

Ag

AirlineType

Fig. 1. GeRoMe representation of an XML schema

readability, we refrain here from showing the whole model and omitted repeating struc-
tures with the same semantics such as Visible roles.

The XML Schema element is an association between its enclosing type and the com-
plex type of the nested element. It is always a 1:n association since an XML document
is always tree structured. Because of this, the elements in XML Schema are represented
by associations in GeRoMe. In the example, the elements Airline, Employee and Pilot
play Association (As) roles connecting the model elements corresponding to the com-
plex types AirlineType, EmpType, and PilotType via anonymous ObjectAssociationEnd
(OE) and CompositionEnd (CE) roles. The CompositionEnd role refers to the enclosing
complex type of the XML element. The root element Airline is a special case; as it is
not enclosed in a complex type, the CompositionEnd role for the enclosing type points
to the model element http://../Airport representing the schema.

Model elements defined within other model elements such as attributes and XML
elements are referenced by the Namespace (NS) role of the containing element. For
example, the element Employee is owned by the Namespace role of AirlineType. Fur-
thermore, the complex types play Aggregate (Ag) roles, as they can have attributes, and
ObjectSet (OS) roles, as they can participate in associations. For example, the Attribute
(Att) roles of SSN and Lic Num are connected to the Aggregate role of the correspond-
ing model element. Finally, the subtype relationship between PilotType and EmpType
is represented by a separate anonymous model element DerivP. This model element
plays an IsA role which is connected to the BaseElement (BE) role of EmpType and to
the DerivedElement (DE) role of PilotType.

We have to admit that the GeRoMe representation of a model is not easy to un-
derstand, but this representation is used only internally in a model management tool;
the user will still use her favorite modeling language. The complexity of GeRoMe is
caused by the complexity of the original modeling languages which can be represented
in GeRoMe. To be able to represent the details of several modeling languages in a
generic way, these details have to be present in GeRoMe as well.

The benefit of this generic and detailed representation is that modeling constructs
from different metamodels which have equivalent (or similar) semantics are represented
by the same roles in GeRoMe. This means that the structure of GeRoMe models, even
if they are originally represented in different metamodels, is similar if they model the

1086 C. Quix, D. Kensche, and X. Li

same domain. This structural similarity is very important for schema matching as we
will show in the evaluation of our matching system in section 5.

4 Schema Matching in GeRoMeSuite

Based on the generic metamodel GeRoMe, we implemented a schema matching system
with the aim to have an extensible and flexible framework for matching models regard-
less of the modeling language they are represented in. Our system can use any model
that can be imported into the generic modeling language as input for the match opera-
tion. Currently, this includes relational models, XML Schemas and OWL ontologies.

Another requirement was that the system is built up from components that can be
easily combined to new composite algorithms. GeRoMeSuite contains a set of graph
traversal strategies that provide different views on the same model. For each provided
graph traversal, there is a corresponding tree traversal that can be used if a tree structure
is needed. These different views on the structure of the same model influence the re-
sults of structure level matchers. Besides allowing variations of the data structure being
matched, our matchers also consist of arbitrarily combinable and parametrized steps. In
the following, we explain some traversal strategies, the central components of a matcher
in GeRoMeSuite and how to combine these components to a matcher configuration.

4.1 Graph Traversal Strategies

During the development of the matching system, our aim was to exploit the special
characteristics of models represented in GeRoMe. As shown in the example in section
3, a GeRoMe model is a highly connected structure, i.e. model elements are linked by
many different types of relationships. These different types of relationships can be used
to define the structure used by the structure level matchers. For example, the links be-
tween Association, Aggregate, and Attribute roles could be used to define such a struc-
ture. However, there are also other possibilities: the structure implied by the Namespace
roles define the context in which model elements are defined; IsA and other derivation
roles can be used to build up a type hierarchy.

In order to use these different structures in our matcher, we defined different iterators
for GeRoMe models which implement certain traversal strategies, i.e. they navigate a
model in a specific way. Our current implementation provides five traversal strategies:

Namespace: Uses the Namespace roles to navigate the model.
Derivation: Builds a type (or class) hiearchy.
Association: Uses mainly Association roles to navigate the model (e.g. XML Schemas

are represented as trees as in most XML editors).
Types: Like the Association iterator, but includes also the model elements representing

types (e.g. Aggregates, ObjectSets, Domains).
Structure: Reproduces the complete structure of a GeRoMe model.

These iterators usually produce graph structures; for matchers which require tree struc-
tures as input, we implemented a “meta”-iterator which produces a tree structure from
a graph. In addition, we can restrict the iterators to return only model elements which

Matching of Ontologies with XML Schemas Using a Generic Metamodel 1087

http://../Airline

EmpType

PilotType

Lic_Num

Airline

EmployeePilot

SSN

AirlineType

http://../Airline

EmpType

PilotType

Lic_Num

Airline

_AnonOE2_AnonOE1

Employee

_AnonOE4_AnonOE3

Pilot
SSN

_AnonOE2_AnonOE1

AirlineType

Fig. 2. Types and Namespace traversal for the XML schema from fig. 1

play a Visible role (i.e. elements which have an explicit name). Thus, in total we provide
twenty different iteration strategies.

Fig. 2 shows the Types and Namespace traversals for the model from fig. 1. As it can
be seen from the example, the traversals imply a different structure as the semantics
of the relationships considered in a traversal strategy is quite different. The namespace
structure is sometimes an “artificial” structure as it does not represent the structure of
the data; it is just the structure in which the schema is defined. The right part of fig. 2
shows the namespace iterator, in which EmpType and PilotType are directly connected
to the root of the schema, although the data of these would be nested under an Airline
element. A traversal of the model corresponding to the structure of the instance data is
produced by the Types traversal strategy which is shown in the left part of fig. 2.

4.2 Matcher Components

Schema-based matchers can be classified into element-level and structure-level match-
ers [23]. Element-level matchers consider an element in isolation, whereas structure-
level matchers also consider the context of an element. Additionally to these two kinds
of matcher components, GeRoMeSuite provides different strategies for aggregation of
multiple input morphisms to one output morphism and different filters for morphisms.

Element Level Matchers are capable of computing an initial morphism between two
models from scratch. They get two models as input and return a morphism between
these two models. Usually, they are based on assessment of similarity for pairs of single
model elements. Most such matchers perform a string comparison on the names of the
elements using some metric. Whereas this assessment depends in most cases on the two
elements alone, it is possible to incorporate the model structure into this step as well.
For instance, the similarity of two elements may be determined by the similarity of the
possible paths to this element through the model.

GeRoMeSuite provides two basic element level matchers. The StringMatcher
compares two model elements without taking into account their structure. It is pa-
rameterized with a metric that gets two model elements for input and returns a simi-
larity value. Currently, we provide the Levenshtein metric [15] (or edit distance), the
Jaro/Winkler metric [10,27], and an improved string matcher [26]. In the future we also
plan to add a datatype matcher that can assess the similarity of primitive datatypes.

1088 C. Quix, D. Kensche, and X. Li

On the other hand, the NamepathMatcher also takes into account the structure of
the two models to be matched. It applies the aforementioned string similarity metrics
to a set of path expressions that lead to a model element. As its similarity assessment
is based on paths to the respective model elements it also requires a tree traversal as
a parameter. To assess similarity of two model elements, the NamepathMatcher
computes the similarity of each pair of paths to the elements and then combines (based
on a configurable strategy) these values to the final similarity assessment.

Structure Level Matchers refine an input morphism based on some strategy and on
the structures of the models to be matched. That is, they receive a single morphism
as input and return a single morphism as output. The general idea of structure level
matchers is that the similarity of neighboring elements contributes to the similarity of
the element itself. This idea is, for example, realized in the Similarity Flooding algo-
rithm [19] which is also implemented in our system. In addition, our schema matcher
provides a children matcher. The children matcher resembles the idea of the Cupid al-
gorithm [17]; if the children of an element A are similar to the children of an element
B, then A and B are also similar. Both structure level matchers require a graph traversal
as input. Furthermore, they are composed of a variety of exchangeable strategy objects
that implement certain parts of the respective matching algorithms.

Our schema matching system relies on well-known schema matching methods. The
goal of this work is not to provide new algorithms for schema matching, but the usage of
a generic metamodel for schema matching and the proof that the generic representation
of models is beneficial.

Aggregation Strategies can be used to combine an arbitrary number of morphisms to a
single morphism using average, maximum or weighted similarities of model elements.

Morphism filters select similarity values from morphisms based on various criteria
such as the maximum distance to the best match, keeping only at least the best K
matches, or applying a simple threshold to the similarity values. These filters can be
adjusted for existing morphisms to mask or unmask links, but they can also be used as
an intermediate step in a matcher to refine the input of subsequent steps.

4.3 Matcher Configuration

Fig. 3 shows an example of how to configure a matcher using the aforementioned com-
ponents. An arbitrary number of matcher components can be chosen from the set of
all matchers already defined by the user and the predefined matchers. In the same way
filter and aggregation steps are added to the matcher. Each component has a result mor-
phism and one or more input morphisms. Furthermore, each matching component may
provide a GUI class that fills a configuration window with its own controls for specifi-
cation of its parameters. When all required parameters have been defined the matcher
configuration is stored in a configuration repository and is then available for execution
and as a component of future custom matchers.

Matching of Ontologies with XML Schemas Using a Generic Metamodel 1089

Fig. 3. Creating a matcher configuration

Extensibility. Our matching subsystem is easily extensible. Predefined components
such as the different graph and tree traversals or the metrics can be reused for new
component classes. All interfaces of the available matcher steps are clearly defined
and consolidated. For instance, adding a new filter requires only the implementation of
the filter functionality (currently the largest is 32 LOC) and the provision of the user
interface (currently the largest is 25 LOC).

Adding new matching algorithms is also easily possible, it just requires the creation
of a subclass of an abstract Matcher class and the implementation of the match method.
For example, the implementation of Similarity Flooding uses less than 1000 LOC of
which the largest part is used for the implementation of the propagation graph.

For all components, the user interface definition only consists of filling a panel with
controls and adding event listeners that update parameter values in the configuration
object. This panel is then available in various stages of the process. For instance, a filter
can be used for filter steps of a matcher and for filtering a currently displayed morphism.

User Interface. Fig. 4 displays the view of a morphism as it is shown after executing
a matcher or loading an existing mapping. Both models are shown as a tree view. The
traversal strategy to be used for the tree view can be chosen from a drop-down box.

The morphism itself is shown as a set of lines between the elements of the two models
in the center of the view. As in other matching systems different color shades are used
to distinguish different degrees of similarity. Links adjacent to selected model elements
are displayed in another color. Furthermore, the link(s) with the maximum similarity
originating from the selected element is (are) distinguished. To further improve the
usability of the system, the user can mask all links that are not adjacent to the currently
selected element.

1090 C. Quix, D. Kensche, and X. Li

Fig. 4. Viewing and tweaking a morphism

Using a non-modal filtering dialog, all available filters can be adjusted to filter the
currently selected morphism. The filters can be freely narrowed and relaxed until a
satisfactory result is found before the user starts to manually fine-tune the morphism.

5 Evaluation

The matcher component has been evaluated by gaging the metrics that are usually
used for evaluation of schema matching applications [4], that is precision, recall, f-
measure(0.5), and overall. The overall metric was developed especially for schema
matching systems [4]; it should represent the effort to correct the mapping. As adding
mappings is more difficult than removing incorrect mappings, it puts more emphasis on
recall than on precision.

For the purpose of this paper, we evaluated only examples that involved ontologies
and XML schemas. However, we tested our matching system also with several other
examples (also involving other modeling languages) which had a similar results in terms
of matching performance as the examples shown in here. As COMA++ is the only other
system which is able to match XML schemas and ontologies, and is available for us,
we could compare our matching system only to COMA++.

The featured tasks are matching terra.xsd from the Mondial data set (http://
www.dbis.informatik.uni-goettingen.de/Mondial/) with a manually
created ontology, matching MapOnto’s DBLP.xsd with a bibtex ontology (http://
cse.unl.edu/ scotth/SWont/bib.owl), and the company example
(company.xsd and company-er.owl) from the MapOnto project (http://
www.cs.toronto.edu/semanticweb/maponto/). For all these tasks and con-
figurations tested, our matching system had an execution time of less than 10 seconds.

5.1 Comparison with COMA++

For COMA++ we performed each of these matching tasks with all available combina-
tions of preconfigured matchers and additionally defined new matchers to search for the

http://www.dbis.informatik.uni-goettingen.de/Mondial/
http://www.dbis.informatik.uni-goettingen.de/Mondial/
http://cse.unl.edu/~scotth/SWont/bib.owl
http://cse.unl.edu/~scotth/SWont/bib.owl
http://www.cs.toronto.edu/semanticweb/maponto/
http://www.cs.toronto.edu/semanticweb/maponto/

Matching of Ontologies with XML Schemas Using a Generic Metamodel 1091

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

COMA++ SF Ch SF(Ch) Ch(SF) Avg(Ch,SF)

precision

recall

overall

f-measure

Fig. 5. Comparison of GeRoMeSuite with COMA++ for the company example

best possible results. In GeRoMeSuite we used basically five different combined match-
ers. For each of the matchers we used the improved string metric to create an initial
match result which was given as input to either the children matcher (Ch) or our simi-
larity flooding implementation (SF). We placed our focus on varying the parameters of
these structure level matchers such as traversal strategies or combination of component
results to an overall result of the respective matcher. In a next step, we combined these
basic matchers in various ways in which we used the best results of the children matcher
as input for similarity flooding (SF(Ch)) or vice versa (Ch(SF)) or simply combined the
individual result morphisms by computing their average (Avg(Ch, SF)). The following
diagrams show the best results of each matcher on the respective match task.

Fig. 5 presents the results of matching the company example, using the metrics
precision, recall, overall, and f-measure for COMA++ and the five matchers defined
with GeRoMeSuite. The company example is a pair of two relatively small models and
most elements of the models could be mapped. For COMA++ the best results could
be achieved using variations of the original COMA algorithm with different thresholds
or other variations of selection strategies. Each of the five matchers of GeRoMeSuite
outperforms the best result of COMA++ for all quality metrics. Similarity flooding in
our implementation achieved better results than the best configuration of COMA++, but
was outperformed by the children matcher. However, the best result could be achieved
by using the result of the children matcher as initial result for the similarity flooding al-
gorithm (SF(Ch)). The children matcher used the Association iteration strategy on this
example.

Fig. 6 displays the quality of results for the bibtex/DBLP example. On this example,
both tools did not achieve outstanding results. The reason for the poor performance
of all matchers is that this matching task is quite difficult as labels and structures of
the two models are quite different. GeRoMeSuite’s children matcher (Ch) outperformed
the best result of COMA++. Whereas its recall is slightly worse, its precision is better
by about the same degree. Because the overall metric punishes precision below 0.5,
our overall is slightly better. However, the difference is small enough that it seems
reasonable to state that both matchers achieve about the same performance. Similarity
flooding achieved a very small overall measure due to its low precision on this example.

1092 C. Quix, D. Kensche, and X. Li

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

COMA++ SF Ch SF(Ch) Ch(SF) Avg(Ch,SF)

precision

recall

overall

f-measure

Fig. 6. Comparison of GeRoMeSuite with COMA++ for the bibtex example

Consequently, the children matcher that receives similarity flooding’s results as input
(Ch(SF)) performs poor as well. Overall the simple children matcher returned the best
result for this example.

The last example is the task of matching the XML Schema terra.xsd from the
Mondial database with an ontology of the geographical domain. The results are shown
in fig. 7. Again, GeRoMeSuite’s children matcher by far outperformed the best result of
COMA++. Also, similarity flooding was outperformed by the children matcher. How-
ever, the averaging of the two results (Avg(Ch,SF)) slightly dominates both input mor-
phisms. The children matcher used the Association traversal strategy, similarity flooding
used the Structure traversal strategy on this example.

Thus, on the given matching tasks GeRoMeSuite was at least as good as COMA++
or even outperformed COMA++. However, we must emphasize that we are of course
not as familiar with COMA++ as we are with our own matcher component. There is a
large number of configuration options for COMA++ and, consequently, an experienced
user may have produced better results with this tool. Nevertheless, we tested more than
50 configurations for COMA++ and presented here only the best results. We tried every

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

COMA++ SF Ch SF(Ch) Ch(SF) Avg(Ch,SF)

precision

recall

overall

f-measure

Fig. 7. Comparison of GeRoMeSuite with COMA++ for the geographic example

Matching of Ontologies with XML Schemas Using a Generic Metamodel 1093

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

bibtex Invoice Company vldb-conf go-terra PO_COMA

f-
m

ea
su

re

SF
Ch
SF(CH)
Ch(SF)
Avg(Ch,SF)

Fig. 8. Quality of matcher results in GeRoMeSuite (F-Measure)

configuration using the default matchers and also created some custom matcher configu-
rations searching for more promising results. It is reasonable to assume that comparable
results can be achieved for other examples.

In the last example it could be seen that averaging of the two results (Avg(Ch,SF))
dominated both, children matcher and similarity flooding. In fact, our tests on other
examples suggest that averaging the results of these two matchers improves the result
in many cases.

Fig. 8 compares the results of our matchers in F-Measure(0.5) for different matching
tasks. The combined matchers SF(Ch) and Ch(SF) could not challenge the children
matcher alone. However, the simple aggregation by averaging resulted only in one case
(bibtex) in a mapping that was inferior to the input mappings, but in all other cases the
results had the same or even better quality than the individual matchers alone.

5.2 Effect of Filter Configuration on the Quality

The variation of morphism filters has of course a significant impact on the quality of
the result. GeRoMeSuite provides four filters for morphisms. The epsilon filter allows
all links originating at a model element the confidence of which is within a specified
range from the element’s best match, the TopK filter allows only the best k matches for
each element, and the threshold filter allows links with a confidence measure exceeding
a certain value. These filters can be freely configured, whereas the visible filter, when
enabled, denies all links that involve anonymous model elements such as an anonymous
object property that is mapped to a visible property in the other model.

We made the experience that our system is quite stable with respect to variations
of the filters, i.e. the results do not vary too much if different filter configurations are
applied. Furthermore, the evaluation has shown that if we choose a threshold of about
0.8, the quality of the match result is very close to the best result which can be achieved
with our matcher.

For instance, fig. 9 shows the results of adjusting the threshold filter in GeRoMeSuite
for the company example. The graph shows the results for the children matcher. The
best results are those already displayed in fig. 5. We varied the thresholds with steps of
0.05 in an interval from 0.3 to 0.95. The optimal values are reached at a threshold value

1094 C. Quix, D. Kensche, and X. Li

0,4

0,5

0,6

0,7

0,8

0,9

1

0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95

precision

recall

f-measure

overall

Fig. 9. Matching the company example with different thresholds

of 0.85 and 0.90, respectively. However, the results for a threshold of 0.8 or 0.95 were
not considerably worse. For most of the examples we have tested, the best result in terms
of f-measure and overall value was produced with threshold values of 0.75 to 0.95.

The stability of the result quality of our matching system with respect to the config-
uration options is important if “real” matching problems have to be solved, i.e. without
having a reference mapping to figure out the best configuration parameters. Using the
configuration mentioned above for matching ontologies with XML Schemas, we are
confident that the quality of the result is very close to the best result that could be pro-
duced with GeRoMeSuite.

5.3 Effect of Traversals on the Quality

In section 4, we explained our approach of providing different structural views on the
same model. Using traversal strategies, structural matchers can be applied to these dif-
ferent structures, which has an effect on the matching results.

Fig. 10 displays the effect on the quality of results of the same Similarity Flood-
ing matcher which uses different traversal strategies to compute its propagation graph.
These are results of matching the geographical example. All matchers had identical con-
figurations except for the traversal strategy. Furthermore, the same filters have been ap-
plied to all matcher results. The traversal strategies used were Association (A), Structure
(S) and Types (T) and variations of these traversals that omit anonymous model elements
from the graph (AV, SV, TV). It can be seen that different graph structures which induce
different propagation graphs result in different morphism quality. However, the impact
of different traversals on the match result is less than expected. This is probably due to
the fact that the similarity of elements in the examples we have tested is mainly deter-
mined by the similarity of their labels. Structural similarity has only a small effect on the
match result. This sounds like a counter argument to the idea of structural matchers, but
the dominance of string matchers is a particular characteristic of the examples we have
chosen. We plan further evaluations on this topic in the context of the Ontology Align-
ment Evaluation Initiative (http://oaei.ontologymatching.org/2007/) which
also includes test cases in which only the structural similarity can be used.

http://oaei.ontologymatching.org/2007/

Matching of Ontologies with XML Schemas Using a Generic Metamodel 1095

0,5

0,6

0,7

0,8

A AV S SV T TV

Fig. 10. Performance of Similarity Flooding Using Different Traversal Strategies

5.4 Discussion of the Results

To conclude, for matching ontologies with XML Schemas the children matcher alone or
the average of the results of the children matcher and the Similarity Flooding algorithm
are a good matcher configuration. The children matcher performed best using the Asso-
ciation traversal strategy whereas for similarity flooding the Structure traversal strategy
was the best choice.

As we implemented only well known schema matching algorithms, the differences
in the results of the tools must stem from their internal model representations. For
matching ontologies with models from different native modeling languages, the us-
age of GeRoMe as a generic data structure seems to be beneficial. From our experience
in the development of the Protoplasm prototype [2], we know that models of different
metamodels are represented significantly different when no generic modeling language
is used. The graphs represent rather the syntactical structure than the semantics of a
model. For example, different labels are used for the edges, and also nodes representing
predefined modeling constructs (such as “OWL Class” and “ComplexType”) can have
different labels, although the semantics of the model elements is quite similar.

The internal graph structures are not exposed by COMA++, but based on the publica-
tions [1,5] and our experience with Protoplasm [2], we can infer that the internal graphs
are similar to the graphs shown in fig. 11. The graphs represent the XML schema from
section 3 (right part of the figure), and an ontology for the same domain.

These graphs might be easier to understand for humans than the GeRoMe repre-
sentation in section 3. However, as we are dealing with automatic schema matching
methods, human-readability is not an issue. For a schema matching tool, the graphs
contain some problems. First of all, the labels of the edges are different except for the
“type” edge. Identical edge labels are for example an important requirement for the
Similarity Flooding algorithm as its main data structure, the propagation graph, is build
according to identical edge labels in the two graphs. If the labels are different, then the
propagation of similarity values to neighboring nodes does not work.

Furthermore, the structure of the graphs is different although the same domain is
represented. For example, the association between Airline and Employee/Pilot is not
directly visible in the XML schema. Thus, the structural similarity will be considered
as very low.

1096 C. Quix, D. Kensche, and X. Li

Class

Employee

Pilot
Object

Property

WorksFor

SSN

Name

Datatype
Property

OntologyAirline
Ontology

type

inverse
Of

contains

type
type

type
Airline

subclassOf

domain

range

domain

domain type

Lic_Numdomain

Employs

http://../Airline

Airline

Element

Complex
Type

Attribute

PilotEmployee

SSN

root

type
_Airline

Type
type

hasType

element type

hasAttribute

type

base

LicNo

hasAttribute

type

Fig. 11. Graph representation of an ontology and an XML schema

6 Conclusion

We implemented a schema matching subsystem for our holistic model management
system GeRoMeSuite [13] to match models represented in different metamodels. Our
results show the usefulness of our generic metamodel GeRoMe for generic model man-
agement tasks. The matcher returned comparatively good results when matching mod-
els represented in different modeling languages. The comparison with COMA++, an-
other matching system capable of matching XML schemas and OWL ontologies, has
shown that GeRoMeSuite achieved better results in all test cases. Our system provides
several algorithms for element level and structure level matchers; these basic matchers
can be combined in a very flexible way which enables the definition of arbitrary matcher
combinations. The evaluation has shown that the combination of matchers leads often
to better results than the individual matchers.

Furthermore, our matching system is quite stable with respect to different scenar-
ios and configuration options. Using a reasonable combination of matchers and a high
threshold value produces a result which is close to the best result that can be achieved
with our matcher. Thus, the application of our system to new scenarios can use a stan-
dard configuration. Therefore, the user does not need to have a deep understanding of
the system, and can still expect a good result of the matching system.

Our results suggest that the usage of a generic metamodel can improve the perfor-
mance even of model management operators that do not rely on detailed semantics of
metamodel constructs, such as the Match operator. Algorithms for matching models are
usually interested only in properties of individual nodes, such as labels or types, and
in the abstract graph structure of the model. However, the unification of structure that
comes along with using a generic metamodel improves their results. Our matching sys-
tem provides also various traversal strategies for models, and is not restricted to one
graph representation of the model. Depending on the structural information available,
the user can choose an appropriate traversal strategy (e.g. IsA hierarchy, associations).

In the near future we plan to improve the usability of our matcher application. Im-
proving the usability and visualization in matching systems is itself an active research
area [24]. Automated focussing of matching elements, collapsing and expanding trees
when exploring a mapping are already included in our current prototype. We also plan

Matching of Ontologies with XML Schemas Using a Generic Metamodel 1097

to provide algorithms for sorting the children of tree nodes such that the number of line
crossings is minimized. This would highly increase the readability of morphisms.

As our matching subsystem is very easily extendable, it forms a thorough basis for
further research on schema and ontology matching. Therefore, we will also implement
and evaluate more and new matcher components, and apply them to other homogeneous
and heterogeneous matching scenarios. The currently implemented matching compo-
nents are general purpose components that we can apply to any kind of models. Our
next steps include the definition of special purpose matcher components that exploit the
characteristics of particular metamodels, e.g. OWL ontologies.

Acknowledgements. This work is supported by the DFG Research Cluster on Ultra
High-Speed Mobile Information and Communication (UMIC, http://www.umic.
rwth-aachen.de).

References

1. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with
COMA++. In: Proc. SIGMOD Conf., pp. 906–908. ACM Press, New York (2005)

2. Bernstein, P.A., Melnik, S., Petropoulos, M., Quix, C.: Industrial-Strength Schema Matching.
SIGMOD Record 33(4), 38–43 (2004)

3. Castano, S., Antonellis, V.D., di Vimercati, S.D.C.: Global Viewing of Heterogeneous Data
Sources. IEEE Transactions on Knowledge and Data Engineering 13(2), 277–297 (2001)

4. Do, H.H., Melnik, S., Rahm, E.: Comparison of Schema Matching Evaluations. In: Aksit,
M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 221–237. Springer,
Heidelberg (2003)

5. Do, H.H., Rahm, E.: COMA - A System for Flexible Combination of Schema Matching
Approaches. In: VLDB. Proc. 28th Intl. Conf. Very Large Data Bases, pp. 610–621 (2002)

6. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-Lite. In: ECAI 2004.
Proc. 16th European Conference on Artificial Intelligence, pp. 333–337 (2004)

7. Hernández, M.A., Miller, R.J., Haas, L.M.: Clio: A Semi-Automatic Tool For Schema Map-
ping. In: Proc. ACM SIGMOD, p. 607 (2001)

8. Hu, W., Cheng, G., Zheng, D., Zhong, X., Qu, Y.: The Results of Falcon-AO in the OAEI
2006 Campaign. In: Intl. Workshop on Ontology Matching (OM-2006), Athens, GA, USA
(2006)

9. ISO/IEC. Information technology – Information Resource Dictionary System (IRDS) Frame-
work. International Standard ISO/IEC 10027, 1990 (1990)

10. Jaro, M.: Probabilistic linkage of large public health data files. Statistics in Medicine 14,
491–498 (1995)

11. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The Knowledge
Engineering Review 18(1), 1–31 (2003)

12. Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe: A Generic Role Based Metamodel
for Model Management. Journal on Data Semantics VIII, 82–117 (2007)

13. Kensche, D., Quix, C., Li, X., Li, Y.: GeRoMeSuite: A System for Holistic Generic Model
Management. In: Proc. 33rd Int. Conf. on Very Large Data Bases (to appear, 2007)

14. Kensche, D., Quix, C., Li, Y., Jarke, M.: Generic Schema Mappings. In: ER 2007. Proc. 26th
Intl. Conf. on Conceptual Modeling (to appear, 2007)

15. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and reversals. So-
viet Physics Doklady 10, 707–710 (1966)

http://www.umic.rwth-aachen.de
http://www.umic.rwth-aachen.de

1098 C. Quix, D. Kensche, and X. Li

16. Li, Y., Li, J., Zhang, D., Tang, J.: Result of Ontology Alignment with RiMOM at OAEI 2006.
In: Intl. Workshop on Ontology Matching (OM-2006), Athens, GA, USA (2006)

17. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: Proc.
27th Intl. Conf. on Very Large Data Bases (VLDB), Rome, Italy, pp. 49–58 (2001)

18. Massmann, S., Engmann, D., Rahm, E.: COMA++: Results for the Ontology Alignment
Contest OAEI 2006. In: Intl. Workshop on Ontology Matching (OM-2006), Athens, GA,
USA (2006)

19. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching
Algorithm and Its Application to Schema Matching. In: Proc. 18th Intl. Conference on Data
Engineering (ICDE), pp. 117–128. IEEE, Los Alamitos (2002)

20. Noy, N.F.: Semantic Integration: A Survey Of Ontology-Based Approaches. SIGMOD
Record 33(4), 65–70 (2004)

21. Object Management Group. Common Warehouse Metamodel (CWM), version 1.0. Spezi-
fikation (February 2001)

22. Quix, C., Kensche, D., Li, X.: Generic Schema Merging. In: Krogstie, J., Opdahl, A., Sindre,
G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 127–141. Springer, Heidelberg (2007)

23. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB
Journal 10(4), 334–350 (2001)

24. Robertson, G.G., Czerwinski, M., Churchill, J.E.: Visualization of mappings between
schemas. In: CHI. Proc. Conf. on Human Factors in Computing Systems, pp. 431–439. ACM,
New York (2005)

25. Shvaiko, P.: A Survey of Schema-Based Matching Approaches. Journal on Data Semantics
IV IV, 146–171 (2005)

26. Stoilos, G., Stamou, G.B., Kollias, S.D.: A String Metric for Ontology Alignment. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637.
Springer, Heidelberg (2005)

27. Winkler, W.: The state record linkage and current research problems. Tech. rep., Statistics of
Income Division, Internal Revenue Service Publication (1999)

Labeling Data Extracted from the Web

Altigran S. da Silva1, Denilson Barbosa2,
João M.B. Cavalcanti1, and Marco A.S. Sevalho1

1 Universidade Federal do Amazonas
Manaus, AM, Brazil

{alti,john,msevalho}@dcc.ufam.edu.br
2 University of Calgary
Calgary, AB, Canada
denilson@ucalgary.ca

Abstract. We consider finding descriptive labels for anonymous, struc-
tured datasets, such as those produced by state-of-the-art Web wrappers.
We give a probabilistic model to estimate the affinity between attributes
and labels, and describe a method that uses a Web search engine to popu-
late the model. We discuss a method for finding good candidate labels for
unlabeled datasets. Ours is the first unsupervised labeling method that
does not rely on mining the HTML pages containing the data. Experi-
mental results with data from 8 different domains show that our methods
achieve high accuracy even with very few search engine accesses.

1 Introduction

The Web is a vast, albeit disorganized, source of valuable information. To extract
such information into a format suitable for use by other applications, several Web
wrappers have been proposed. However, these methods [1,3,16] recognize only
the structure, but not the semantics, of the Web data: They produce anony-
mous datasets (i.e., datasets with meaningless labels in their schema). This is
unfortunate, as data integration tools often rely on the existence of meaningful
labels in the schema [11]. In face of these limitations, other authors have pro-
posed methods for labeling anonymous data extracted by Web wrappers [2,4,13].
In general, these methods work by mining terms with distinctive formatting
within the original pages containing the data. While high accuracy is sometimes
achieved (the authors of [2] report up to 90% accuracy), this approach has two
drawbacks. First, typical Web pages often omit labels, which are understood
from the context (by a human). For instance, the book description in Figure 1
contains some labels (e.g., ISBN), while others are missing (e.g, title and pub-
lisher). Second, and more importantly, this approach restricts one to using only
those labels chosen by the Web content providers, which may not be the most
appropriate or most descriptive ones.

We propose a novel and highly effective method for automatically labeling
anonymous data based on a simple probabilistic model that takes into account
the affinity between a set of values (i.e., an anonymous attribute) and poten-
tial attribute labels. The probabilities are estimated by counting the number of
answers to speculative queries, obtained from a standard Web search engine. In-
tuitively, a speculative query formulates a hypothesis that a given term is a good

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 1099–1116, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

1100 A.S. da Silva et al.

Fig. 1. Book description extracted from http://www.bookpool.com

label for an attribute in the anonymous dataset. The search engine is used as an
oracle to determine how plausible such a hypothesis is. Unlike previous methods,
our method is oblivious to where the candidate labels come from. Also, we give
a fully automatic method for finding good candidate labels for an anonymous
dataset. Our approach is to search the Web for documents containing certain
text patterns commonly used to enumerate instances of classes of objects [6].
We exploit these patters to mine frequently occurring terms that can be used as
labels. Finally, we report an experimental evaluation using real Web data from
different domains thats shows that our approach is very effective, even when
very few accesses to a search engine are employed.

The remainder of the paper is organized as follows. Sections 2 discusses related
work. Section 3 introduces the terminology and explains our method. Sections 4
and 5 detail the implementation of our candidate label selection and labeling
algorithms, respectively. Sections 6 presents and evaluates our experiments. Fi-
nally, we conclude in Section 7.

2 Related Work

There is already a vast literature on automatic and semi-automatic Web data
extraction methods. Laender et al. [7] give a recent survey of the topic. While
differing in many aspects, all those methods identify only the structure of the
Web data, producing anonymous datasets, as discussed above.

To the best of our knowledge, there are only two generic methods for the
automatic labeling of anonymous data: DeLa (Data Extraction and Label As-
signment) [13] and Labeller [2]. (We note in passing that there are accurate
domain-specific methods for extracting labeled data; e.g., Reis et al. [4] describe
an automatic tool for extracting and labeling news articles.) DeLa is an auto-
matic data extraction technique for Web pages accessible through seach forms
(which form the so-called deep Web). It tries to discover a schema for the data
and associates labels to the anonymous attributes based on the following: (1)
the similarity between labels in the fields of the form with data values in a page
accessed through the form; (2) the presence of labels at the headings of HTML
tables containing those data values; (3) the presence of labels in the vicinity

Labeling Data Extracted from the Web 1101

R A1 A2

Miles Davis Kind of Blue
John Coltrane A Love Supreme
John Coltrane My Favorite Things
...

Fig. 2. An anonymous dataset about music, containing a single relation R(A1, A2)

of those data values; (4) the formatting of data values, e.g., the presence of an
“@” inside a value may suggest “e-mail” as a suitable label for it. Their authors
report experimental results showing that the combination of all four heuristics
led to almost 90% accuracy in the label assignment.

Labeller extends RoadRunner [3] by annotating the automatically generated
wrappers with labels mined from the pages containing the data. This is done with
heuristics for finding the best associations between labels and data values based
on the graphical rendering of the pages by a browser. These heuristics capture
common page design styles, and consider both the distance and the alignment
between a data value and its corresponding label. For instance, Labeller relies on
the fact that a label is usually placed above or to the left of the corresponding
data value, in a location never too far from it, etc. Their authors report accuracy
results matching those of DeLa.

A severe limitation of both previous methods is the dependence on finding
the labels within the Web documents from which the data was extracted, which,
as discussed above, fails if any of the labels are missing in the Web document
(e.g, see Figure 1). Moreover, the approach limits the choice of labels to only
those used by the content author, which may not be best suited for the user
interested in the data. Our method, on the other hand, does not suffer from
either problem. Our probabilistic model estimates the appropriateness of a label
regardless of where it come from, allowing the user to provide her own set of la-
bels. Also, we find candidate labels by searching the Web, resulting in commonly
used labels. Finally, we show good experimental results with both manually and
automatically selected labels (see Section 6).

Interestingly, our probabilistic model for estimating the affinity between at-
tributes and labels is similar to the PMI-IR algorithm proposed by Turney [12],
for finding synonyms amongst English words (by estimating their similarity). As
observed in that paper, the accuracy of the similarity results depends on the
size of the document collection in the underlying Information Retrieval system
(potentially the entire Web in our case). Overall, our accuracy results, obtained
through experiments on several domains, are very similar to those of Turney.

3 Probabilistic Labeling of Anonymous Data

An anonymous dataset is a structured collection of data in which descriptive
labels for similar objects are missing; e.g., Figure 2 shows a (relational) anony-
mous dataset about music. This dataset is a prototypical example of the output

1102 A.S. da Silva et al.

Fig. 3. Overview of the proposed approach

produced by most state-of-the-art data extraction tools1. Note that the data has
a well defined, albeit semantically poor, schema R(A1, A2); also, both attributes
have well defined domains (A1 contains artist names and A2 contains album
names). The labeling problem, which we deal with in this paper, consists of
finding descriptive labels for an anonymous relational dataset.

As illustrated by Figure 3, the labeling problem can be solved in two steps:
Finding a good set of candidate labels, and finding the best matching between
labels and the attributes. It is important to separate these steps because different
ways of finding candidate labels are possible. For instance, as discussed above,
the labels may be mined from the pages with the data or the user may provide
her own labels. We propose fully automated and independent methods for the
label selection and the label assignment tasks in this paper.

3.1 Candidate Label Selection

It has been observed that one can discover instances of a given class of similar
objects, with high accuracy, by formulating queries to Web search engines [5,15].
The process consists of searching for documents with specific patterns, usually
called Hearst patterns, expressing relationships among terms, particularly hy-
ponymy. For instance, the pattern “NP1 such as (NP2)∗” can be used to find one
or more instances NP2 (for noun phrase) of a class NP1. To find city names using
this method, one searches for documents containing the phrase “cities such as”,
and extracts frequently occurring terms that appear after that phrase in those
documents. This approach works well in practice when used on sufficiently large
text corpora [6], including the Web.

The problem of finding labels for a set of attributes is the converse of the
problem above, and can be partly addressed using a similar approach. Before we
describe our method, however, it is important to discuss why the use of Hearst
patterns alone fails to find good labels (and hence, why step 2 in our method is
still necessary). Hearst patterns are designed for finding hyponyms [6]; that is,
finding terms that are special kinds of another, more general, term. Thus, one
1 Some tools produce nested relations encoded as XML, which can be easily converted

into a relational format.

Labeling Data Extracted from the Web 1103

is likely to find that Paris is a city using this method, because it is a popular
hyponym of city. However, the word Paris refers to many different objects in
different contexts. (In fact, at the time of writing, in none of the first 5 documents
returned by the Google, Yahoo! and MSN search engines to the query “such as
Paris”, the term Paris is used in direct reference to the city. The closest match,
occurring in 2 of the 15 documents, refers to Paris as a location, which is a
hypernym of city.) Moreover, it is not clear how accurate a method based on
Hearst patterns would be if the set of values used for finding the associations
does not contain very popular terms.

Finding Candidate Labels. Our label selection algorithm (Section 4) is based
on the following assumptions. Given attribute Ai of anonymous relation R, we
assume that: (1) plausible labels for Ai are likely to occur in Web documents
that contain instances of Ai; (2) such labels are likely to appear close to those
instances in such documents; (3) this close co-occurrence expresses the hyponymy
relationship between the label and the instance; (4) this situation is frequent on
the web, so that these pages are likely to be crawled by popular search engines.

We consider three strategies when searching for candidate labels. In all of
them, we formulate a query to a search engine using a Hearst pattern and search
for nouns that appear close to the exact query phrase in the documents returned
by the search engine. The strategies differ only w.r.t. where the search for candi-
date labels is done, relative to the occurrence of the query phrase. In a forward
search, we search for candidate labels after the query expression. Conversely, in
a backward search, we look for candidate labels before the query text. Finally, in
a bidirectional search, we search in both directions.

In order to find a good list of candidate labels for the entire dataset we obtain
individual list for each attribute separately, which are merged into a single one
at the end. We do so because in our experiments, it was not uncommon to find a
good label for a given attribute appearing in several individual lists. Regardless
of the search strategy used, we assign a numeric score to each candidate label
that is inversely proportional to the square of the distance between the label
and the query phrase (measured in number of words). Intuitively, this strategy
is strongly biased towards labels that are both frequent on the Web and often
appear close to the given query pattern.

3.2 Affinity-Based Labeling

Let R(A1, A2, . . . , An) be a relation on n anonymous attributes A1, . . . , An,
where each Aj is of domain Dj, and domains are pairwise disjoint. Assume we
are given an instance of R with t tuples, and a set L = {l1, . . . , lm} with m
candidate labels (m > n). Our goal is to assign to each Aj a label li ∈ L which
is the best descriptor for attribute Aj .

There are two challenges in finding good labels for anonymous data. First, we
need a way of measuring how well a labeling R → Ln describes the (domains of
the) attributes in R. Second, the cost of the labeling algorithm must not be too
high. (We note in passing that the labeling problem is equivalent to finding a
maximum-weight matching in a complete bipartite graph where the vertex sets
are the columns in R and L, respectively, and the weight of each edge (Aj , li)

1104 A.S. da Silva et al.

indicates how well li describes Aj . The fastest algorithms for this problem run
in low polynomial, but super-linear, time on the size of the graph [14].)

In order to minimize the number of accesses to the search engine, which are
orders of magnitude more expensive than any other operation in our method, we
use a greedy labeling strategy: We find a label for each attribute in isolation, and
once a label is assigned to an attribute it is no longer considered as a candidate
label for other attributes. Also, we take a probabilistic approach for estimating
the goodness of a labeling. More precisely, we use P (li | Aj), the probability
of li describing well attribute Aj as the metric for evaluating a labeling of an
anonymous dataset. By doing so, we account for the inherent uncertainty in how
well a label describes a domain. For simplicity, we assume that the probability
of a label being a good fit for an attribute is independent of other attributes.

Computing Label-Attribute Affinities. Note that P (li | Aj) = P (Aj |li)P (li)
P (Aj)

.

Thus, we need to estimate P (Aj | li) and P (li) in order to compute the affinity
between li and Aj . (P (Aj) is a normalizing factor, and can be ignored for all
practical purposes.) Intuitively, the prior probability P (li) captures the user’
preference for the label li regardless of its affinity with any of the attributes.

W approximate the true affinity between labels and domains by submitting
speculative queries to a standard Web search engine. A speculative query (to be
defined later) is a statement saying that a given label li is a good descriptor for
attribute Aj . We use the number of documents that the search engine classifies as
relevant answers for that query to estimate the probabilities above. The intuition
behind speculative queries is as follows. If label li is a better match for attribute
Aj than label lk, a Web document D containing high quality information about
an instance of Aj is more likely to refer to li than to lk. A complementary
interpretation of our model is to assume that every Web document about a given
value from attribute Aj (e.g., a specific artist if the domain of Aj is artist names)
is an “expert” on (the entity represented by) that value. Thus, the number of
documents in the answer to a speculative query represents the number of experts
that consider the given label a good match for the given attribute value.

More precisely, we define:

Definition 1. The Document Count of a query expression e, denoted DC(e), is
the number of documents relevant to e according to a given Web search engine.

Definition 2. Given an anonymous relation R(A1, . . . , An) and a set of can-
didate labels L = {l1, . . . , lm}, the Label-Attribute Affinity between Aj and li,
denoted LAA(Aj , li), is defined as

LAA(Aj , li) = P (Aj | li) =
(

1
‖ [Aj] ‖

) ‖[Aj]‖∑

x=1

DC(li ∧ vx)
∑m

y=1 DC(ly ∧ vx)

where [Aj] is the active domain2 of Aj, and vx ∈ [Aj].

We write li ∧vx do denote the speculative query asserting that label li and value
vx ∈ Aj are likely to appear together in a Web document. Note that we restrict
2 Recall the active domain of an attribute is the set of distinct values for the attribute

that are used in the actual databases instance.

Labeling Data Extracted from the Web 1105

Table 1. Query patterns used in the Label Selection method

p region(si,p) query(p,v)
bwd terms before query expression “such as v”

perm terms before query expression “v1, v2”
fwd terms after query expression “v is ”
val all terms in answer “v”

the definition of LAA to the active domain of each attribute; that is, we ignore
duplicate values. Intuitively, this avoids skewing the affinity of an attribute based
on the relative frequency of the values in its active domain. For the purposes
of this work, we define P (li), the a priori probability of li being a good label
for any attribute as the relative frequency of li among the candidate label lists
obtained in step 1 (recall Section 3.2).

Sampling. Even with a fast Internet connection, invoking a search engine several
times to compute DC(e) is a costly operation in terms of clock time. Thus, in-
stead of using t·m speculative queries for computing P (Aj | li) as in Definition 2,
we will consider only a sample of the tuples in the anonymous database.

4 Selecting Candidate Labels

We now detail our algorithm for finding candidate labels. We consider only nouns
as candidate labels; moreover, we use the Java WordNet Library3 to recognize
variants of the same noun obtained by applying the usual inflection rules. That
is, candidate labels in our approach are nouns in the singular, represented in their
canonical form according to WordNet. As discussed in Section 3.1, we search for
labels in Web documents containing certain text patterns instantiated with in-
stances of the anonymous attribute. We restrict our search space to the document
snippets4 returned by the search engine. Intuitively, this restricts the set of candi-
date labels to only those that appear close to the attribute value in the document.

Table 1 shows the patterns we use. Both the bwd (backward) and perm (per-
mutation) patterns are used with backward searches (recall Section 3.1), while
the fwd (forward) pattern is used with a forward search, and val (value) pat-
tern is used with a bidirectional search. Two attribute instances are used with
the permutation pattern; our experience indicates that doing so is very effective
when dealing with categorical attributes.

Ranking. Let S be the set of snippets of the m highest ranked documents for a
query formulated using pattern p with some value v of an anonymous attribute
Ai. For a given term t in S, the coincidence factor of t and v in S is defined as:

α(t, v, S) =
∑

si∈St

W t
i

d(t, v, si)2
, (1)

3 http://jwordnet.sourceforge.net.
4 Snippets are small text fragments of Web documents returned with the answers of a

search engine that usually contain the terms used in the query.

http://jwordnet.sourceforge.net

1106 A.S. da Silva et al.

1 Input: anonymous relation R(A1, . . . , An)
2 Output: set L of candidate labels for R
3 begin
4 foreach Ai ∈ {A1, . . . , An} do
5 Ti ← ∅; V ← sample with k distinct instances of Ai

6 foreach v ∈ V do
7 S ← ∅
8 foreach pattern p ∈ {fwd, bwd, val, perm} do
9 S ← S ∪ top m snippets for query(p,v)

10 end
11 foreach t in a snippet in S
12 αcurr ← α(t, v, S)
13 if t �∈ Ti then
14 Ti ← Ti ∪ {t}; αmax[t, v] ← 0
15 end
16 αmax[t, v] ← max{αmax[t, v]; αcurr}
17 end
18 foreach t ∈ Ti

19 score [Ai, t] ← score [Ai, t] + αmax[t, v]
20 end
21 end
22 Li ← � terms t in Ti with highest score[Ai, t]
23 end
24 L ← L1 ∪ . . . ∪ Ln

25 end

Fig. 4. The Label Selection Algorithm

where St is the subset of snippets si ∈ S that contain the term t in region(si,p)
(see Table 1), W t

i is the frequency of term t in the snippet si and d(t, v, si) is
the distance between t and v in si.

Intuitively, Equation 1 captures the desiderata for a good label, as discussed
in Section 3.1: It favors terms that appear in many snippets, penalizing those
that occur “far” from the pattern in the snippet.

4.1 Label Selection Algorithm

Our Label Selection algorithm (Figure 4) works as follows. For each attribute Ai

in anonymous relation R, we build a list of candidate labels Ti, keeping in the
final answer only those � with highest coincidence factor (line 22). Ti contains
all nouns (normalized according to WordNet, as discussed above) that appear in
a (snippet of a) Web document close to an instance of Ai.

In order to build Ti, we pick k instances of Ai at random and, for each instance
v, collect the document snippets from a search engine using the four search
patterns in Table 1 (lines 8–10). Next, we find the highest coincidence factor
between each term t appearing in any snippet obtained with v (lines 11–17).
Finally, we define the final score of term t relative to the entire attribute Ai as
the sum of the highest coincidence factors of t relative to all sample instances of
Ai (lines 18–20).

Labeling Data Extracted from the Web 1107

Table 2. Number of answers to different kinds of speculative queries

label value phrase l + v words
artist Miles Davis 39,900 5,980,000 12,000,000
title Miles Davis 220 1,940,000 16,300,000
album Miles Davis 9,230 6,140,000 9,170,000
artist John Coltrane 21,700 2,910,000 3,710,000
title John Coltrane 83 1,670,000 2,720,000
album John Coltrane 493 3,340,000 4,180,000
artist Kind of Blue 7 425,000 25,600,000
title Kind of Blue 117 539,000 46,700,000
album Kind of Blue 17,900 885,000 17,900,000
artist A Love Supreme 36 213,000 9,000,000
title A Love Supreme 60 158,000 16,800,000
album A Love Supreme 497 318,000 5,610,000

Analysis. The algorithm in Figure 4 is straightforward. It runs in O(n · m · k)
time, where k is the number of samples from each anonymous attribute, m is the
number of snippets retrieved for each query, and n is the number of attributes
in the dataset. There is a trade-off when choosing k: it must be high enough to
ensure that a representative sample of the attribute is used, but not too high,
to avoid an excessive number of search engine calls. Conversely, because the
snippets returned by the search engine are ranked according to the relevance
of the corresponding documents, lower values of m should yield better labels;
however, using very low values of m require more queries to be issued in order to
obtain a representative set of candidate labels. In preliminary experiments, we
obtained better results when both k and m were set to 10; we used this setting
in all experiments discussed in the paper.

The last parameter, �, determines the number of candidate labels that will be
selected for each anonymous attribute. Obviously, the value of � has an impact
not only the accuracy of the labeling method as a whole, but also the cost of the
label assignment step (recall Figure 3). Initial experiments we have carried out
indicate the � = 10 is a good choice for this parameter.

A final remark on the implementation of our Label Selection algorithm con-
cerns the elimination of stopwords, punctuation as well as other special charac-
ters. Our experiments indicate that doing so has little effect on the accuracy of
the method, but substantially reduces the memory footprint of our algorithm,
as fewer terms are kept in memory.

5 Speculative Labeling

This section describes our implementation of the labeling method and our strat-
egy to formulate speculative queries. We illustrate the discussion using the
dataset in Figure 2 and candidate labels L = {artist, title, album}.

1108 A.S. da Silva et al.

Table 3. Label-Attribute Affinities

phrase l + v words
P (A1 | artist) 0.8911 0.3964 0.3350
P (A1 | title) 0.0043 0.1744 0.3457

P (A1 | album) 0.1046 0.4292 0.3193
P (A2 | artist) 0.0305 0.2695 0.3160
P (A2 | title) 0.0538 0.2604 0.5826

P (A2 | album) 0.9156 0.4701 0.1014

5.1 Formulating Speculative Queries

Recall that speculative query li ∧ vx formulates the hypothesis that li is a class
of objects of which vx is a member. The first question that arises is how to
formulate such a hypothesis using the keyword-based search paradigm currently
in use in all major Web search engines.

Table 2 compares the number of results of three kinds of speculative queries; all
queries were run using the Google search engine on June 3, 2006. Column 3 shows
the DC values for the phrase approach, which uses speculative queries asking for
documents containing a phrase formed by the label and the value (e.g., “artist
John Coltrane”). Column 4 shows the DC values for the l + v approach, which
uses speculative queries asking for documents containing the label and the value
(e.g., “artist” and “JohnColtrane”). Finally, column 5 shows the DC values for the
words approach, whose speculative queries ask for documents containing the label
and every word in the value (e.g., the words “artist”, “John” and “Coltrane”).

Table 3 shows the affinity between the labels and attributes, computed as in
Definition 2, using the DC values in Table 2. Note that the phrase approach
yields a very good labeling after considering only two tuples in the anonymous
dataset. The l+v approach finds one correct label assignment (that A2 contains
albums), albeit with much lower confidence. Finally, the words approach gives a
less precise labeling for A2. One reason why the words performs poorly is that
speculative queries built in that way tend to be too general; thus, the very high
DC values for them. We observed experimentally that l+v and phrase yield high
DC values for correct hypothesis. However, l + v does not discriminate incorrect
hypothesis well because high quality Web pages on a given domain tend to
contain several good labels (e.g., a document with Miles Davis’s discography is
likely to have all labels in our example). Hence, we used the phrase approach
only in the experiments reported in this paper.

5.2 The Speculative Labeling Algorithm

Figure 5 shows our Speculative Query Labeler algorithm, which works as follows.
We iterate over all attributes in R, assigning a label to each of them, one at a time
and independently of others. For each attribute Ai, we pick k distinct instances
of it (line 7), and, for each instance v and label lj still available, we compute the
DC(lj ∧v) (lines 8-13). LVC [i, j] accumulates the document counts of all specula-
tive queries using label lj and a v value from attribute Ai. The affinity between Ai

and each label lj is estimated, and the best label for Ai (called lb) is chosen (lines

Labeling Data Extracted from the Web 1109

1 Inputs: anonymous relation R(A1, . . . , An)
2 set of candidate labels L = {l1, . . . , lm}
3 Output: labeling of R
4 begin
5 foreach Ai ∈ {A1, . . . , An} do
6 b ← 1; sum ← 0
7 V ← sample with k distinct instances of Ai;
8 foreach v ∈ V do
9 foreach lj ∈ L do

10 s ← speculative query lj ∧ v
11 LVC [Ai, lj] += DC(s); sum += LVC [Ai, lj]
12 end
13 end
14 foreach lj ∈ L do
15 LAA[Ai, lj] = LVC [Ai, lj]/sum
16 if (P (lj) · LAA[Ai, lj] > P (lb) · LAA[Ai, lb])
17 b ← j
19 end
20 end
21 L ← L − {lb}
22 result = result ∪ {(Ai, lb)}
23 end
24 return result
25 end

Fig. 5. The Speculative Query Labeler Algorithm

14–20). Finally, the best label for Ai is removed from the set o candidate labels
(line 21), so that it is no longer considered for other attributes.

The analysis of this algorithm is straightforward. Let n be the number of
attributes in the anonymous relation, m be the number of candidate labels, and
k be the number of sample values taken. It is easy to see that, in the worst case,
the algorithm runs in time O(n · m · k). However, an interesting feature of our
approach is that the algorithm can achieve high accuracy even when a small
sample of data values are used. This is important because it reduces the number
of speculative queries submitted in Line 13. (Indeed, Section 6 shows that our
method achieves high accuracy with less than 10 sample values per attribute.)
Obviously, the fewer speculative queries used for labeling an attribute, the better.
In our experiments, the response time for running a speculative query using the
Yahoo! Search Web Service5 was less than 1.5 seconds on average, but with high
variance.

6 Experimental Evaluation

We evaluated our method using 8 datasets from different application domains,
with 52 anonymous attributes amongst them (see Table 4). All data used in our
tests were obtained using automatic Web wrappers. Figure 6 gives sample tuples
5 http://developer.yahoo.com/search/index.html

http://developer.yahoo.com/search/index.html

1110 A.S. da Silva et al.

Table 4. Datasets used in our experiments

domain Web site tuples attributes labels
books www.amazon.com 900 8 15
games www.allgame.com 500 5 21

medicine www.vitacost.com 615 7 22
movies www.allmovie.com 700 5 20
music www.allmusic.com 600 4 17
posters www.postershop.com 510 8 14
teams www.fifaworldcup.com 32 10 18

watches www.watchzone.com 550 5 18

A1 A2 A3 A4 A5

Romance 5 Stars 1965 Doctor Zhivago David Lean
Comedy 5 Stars 1936 Modern Times Charles Chaplin
Action 4.5 Stars 1981 Raiders of the Lost Ark Steven Spielberg
Epic 4 Stars 1960 Spartacus Stanley Kubrick

Sample tuples in the movies dataset. Manually extracted candidate Labels:
actor, box office, certification, company, country, director, directed by, distributor,
film, genre, language, movie, release, rating, rank, starring, theatrical run, title,
votes, year.

A1 A2 A3 A4 A5

Armani AR5447 Ladies Stainless steel bracelet $195.00
Seiko SDWG32 Men Stainless steel Butterfly clasp $400.00
Longines L51580966 Petite Stainless Steel Bracelet $1700.00
Casio DW5600E1V Men Plastic, black $70.00

Sample of the watches dataset. Manually extracted candidate Labels: band,
brand, category, condition, description, display, gender, features, material, move-
ment, model, price, price range, savings amount, size, style, title, type.

Fig. 6. Samples of tuples from three of our datasets with the candidate labels

from two of the datasets. Our goal in selecting datasets was to maximize diver-
sity; thus, we used real data from various domains, and we selected attributes
with several distinct values, attributes with few distinct values, numerical at-
tributes, text attributes, etc.

We report here on three experiments. First, we study the behavior of the
label assignment algorithm with manually provided labels. Next, we study the
effectiveness candidate selection method. Finally, we evaluate the two methods
working together. All our accuracy results are given by comparing the labeling
produced by our algorithm to a manually defined correct labeling. We used our
best judgment for deciding when a label is adequate for a given attribute. All
our experimental data, including the datasets, candidate labels, and the correct

www.amazon.com
www.allgame.com
www.vitacost.com
www.allmovie.com
www.allmusic.com
www.postershop.com
www.fifaworldcup.com
www.watchzone.com

Labeling Data Extracted from the Web 1111

Table 5. 1st and 2nd highest LAA values for all anonymous attributes. In all cases,
the label with the highest LAA value is correct.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

books 1st 0.89 0.91 0.92 0.95 0.44 0.78 0.78 0.37
– –

2nd 0.05 0.08 0.04 0.04 0.28 0.10 0.11 0.29

games 1st 0.74 0.34 0.35 0.58 0.29
– – – – –

2nd 0.07 0.33 0.26 0.13 0.22

medicine 1st 0.60 0.45 0.54 0.71 0.43 0.52 0.40
– – –

2nd 0.16 0.12 0.19 0.05 0.37 0.32 0.29

movies 1st 0.58 0.92 0.75 0.32 0.49
– – – – –

2nd 0.21 0.04 0.12 0.29 0.43

music 1st 0.55 0.63 0.89 0.67
– – – – – –

2nd 0.13 0.24 0.03 0.11

posters 1st 0.47 0.50 0.63 0.77 0.68 0.92 0.76 0.67
– –

2nd 0.11 0.18 0.11 0.12 0.12 0.06 0.13 0.12

teams 1st 0.64 0.43 0.59 0.64 0.49 0.75 0.91 0.73 0.57 0.41
2nd 0.15 0.18 0.27 0.19 0.38 0.06 0.02 0.05 0.33 0.34

watches 1st 0.58 0.94 0.26 0.99 0.97
– – – – –

2nd 0.08 0.4 0.22 0.01 0.01

labeling for each such dataset can be found at http://www.dcc.ufam.edu.br/∼
msevalho/labeling. All results reported in this paper were obtained using the
Yahoo! Search Web Service.

6.1 Effectiveness of Speculative Labeling

We verify the effectiveness of our labeling algorithm using it with candidate labels
manually selected from 10 distinct Web sites for each domain. (Figure 6 shows
the candidate labels used in two of the tests.) We restrict ourselves to labels
that are popular on the Web; that is, terms for which the number of documents
containing them was greater than 1 million. We set the a priori preference for
these labels, P (li), to 1 for simplicity.

Table 5 shows the highest (1st) and second highest (2nd) average LAA val-
ues obtained in 50 runs of the algorithm (with 50 different samples of 3 tuples
each), for all datasets. In all cases, the labels with the highest LAA are correct.
Nevertheless, we have also found cases in which more than one label would be
appropriate for a given attribute. This has happened, for instance, for attributes
A8 in books with labels list price (0.3659) and buy new (0.2855); A3 in games
with labels genre (0.3500) and category (0.2601); and A4 in movies with labels
film (0.3248) and movie (0.2929). In all cases, all labels seem equally plausible.
Note that in most cases the highest LAA value is far greater than the second
LAA value obtained for the same attribute.

6.2 Impact of Sample Size

This experiment studies the impact of the number of samples from the (active
domain of the) anonymous datasets on the accuracy of the labeling. We repeated

http://www.dcc.ufam.edu.br/~
msevalho/labeling

1112 A.S. da Silva et al.

1 3 5 7 9
60

70

80

90

100

sample size

ac
cu

ra
cy

 (
%

)

books
games
mdicines
movies
music
posters
teams
watches

Fig. 7. Accuracy versus sample size for all datasets

the labeling process for each one of the 52 attributes using k = 1, 3, 5, 7 and 9
samples. For each value k, we repeated the labeling with 50 different samples.
Figure 7 shows the accuracy of the method, defined as the fraction of the runs in
which the label with highest LAA value corresponds to the correct label for the
attribute. As the graph shows, 3 sample data values were enough to achieve an
average accuracy around or above 90% for the datasets in the domains watches,
music, books, movies, games and teams, which are fairly popular on the Web.
For the medicine and posters datasets, which are less popular, the accuracy was
above 80% using 3 samples.

It is worth noting that with datasets medicine and posters we observed much
fewer responses to speculative queries than with the other ones. This could be
explained by inaccuracies with some data values in our dataset (e.g., misspelled
words) or by the fact that these datasets, as mentioned above, come from non-
popular domains. Nevertheless, the results above indicate that our method can
be very effective across domains even when one uses very few sample values from
the anonymous dataset.

6.3 Cost of Speculative Labeling

We now discuss the cost of our labeling algorithm with respect to accessing the
search engine. Table 6 shows the average number of speculative queries and the
average execution time for the experiments reported in Section 6.2, per attribute
and for different sample sizes. In addition, the average time spent with each
individual speculative query was 1.4 seconds.

Note that to reach acceptable accuracy levels using 3 sample data values
(Figure 7) required less than 50 speculative queries on average (per attribute),
corresponding to about 1 minute of clock time. One may argue that this is a high
cost compared to those methods that mine labels from Web pages. However, it
must be noted that the time requirements in our method are comparable to most
other data extraction tasks, such as fetching the data-rich pages, or generating

Labeling Data Extracted from the Web 1113

Table 6. Average number of queries (q) and average execution time in seconds (t), per
anonymous attribute, for different sample sizes (k)

k = 1 k = 3 k = 5 k = 7 k = 9
q t q t q t q t q t

books 12.75 22.71 34.50 55.21 56.13 85.96 79.00 111.89 111.13 142.00
games 20.27 21.77 57.00 66.86 95.00 98.50 129.25 169.88 169.55 245.85

medicine 20.41 29.60 61.24 94.30 99.54 142.34 139.36 199.28 179.17 238.18
movies 18.00 25.05 54.00 62.73 90.00 114.05 122.60 135.83 144.20 166.54
music 12.50 26.45 37.50 69.31 64.75 117.82 84.50 153.49 101.25 177.55
posters 10.50 16.74 31.93 42.82 48.85 56.84 68.29 74.36 81.56 116.59
teams 17.01 28.30 51.02 84.91 85.03 125.85 115.98 172.90 146.05 199.31

watches 16.60 24.90 50.78 62.49 80.00 97.24 110.63 138.29 132.19 159.81

aggregate 16.00 24.44 47.24 67.33 77.41 104.83 106.20 144.49 133.14 180.73

LMRR LAR l
books 0.75 97.50% 60.4
games 0.53 86.00% 41.5

medicine 0.52 87.14% 47.4
movies 0.78 92.00% 37.9
music 0.64 97.22% 33.6
posters 0.37 88.75% 57.4
teams 0.82 98.00% 79.0

watches 0.72 96.00% 37.2

(a) Mean LMRR, LAR, and number of
labels (l) per domain.

accuracy q t
books 91.25% 141.70 139.47
games 84.00% 119.10 110.07

medicine 72.86% 139.70 132.06
movies 90.00% 108.30 105.12
music 92.50% 96.30 67.33
posters 63.75% 163.20 158.10
teams 90.00% 213.78 235.09

watches 82.00% 115.20 114.30

(b) Mean accuracy, number of queries (q),
and execution time in seconds (t).

Fig. 8. Evaluation of the Candidate Labels Selection Method

wrappers. In light of the our high accuracy and the many limitations of the
previous methods, our approach seems very attractive in practice.

6.4 Candidate Label Selection

This section evaluates the effectiveness of the candidate label selection method
(recall Sections 3.1 and 4), which is aimed at producing a list of plausible labels
for an anonymous dataset. The evaluation is based on two metrics, adapted from
classical ones in Information Retrieval, which we discuss next.

Label MRR (LMRR). This metric is an adaptation of the well-known Mean
Reciprocal Ranking metric (MRR). MRR is suitable for evaluating ranking func-
tions, such as our label/attribute score, in contexts where the number of relevant
elements in the ranking is expected to be small (such as in Q&A systems). In-
stead of measuring the rate of relevant elements in the ranking (i.e., precision),
MRR measures how far down in the ranking is the first relevant answer.

For a given domain represented by an anonymous dataset R(A1, . . . , An), we
compute the LMRR according to Equation 2, where Li is the ranking of the

1114 A.S. da Silva et al.

candidate labels with respect to attribute Ai (see Section 4) and f(Li) is the
position of the uppermost plausible label for Ai in this ranking, according to a
human judgment.

LMRR(R) =

∑

Ai∈R

1
f(Li)

n
(2)

Note that LMRR values closer to 1 implies that a plausible label appears
closer to the top of the ranking, and that the values are exponentially reduced
as the position of the first plausible label in the ranking increases.

Label-Attribute Recall (LAR). This metric evaluates how well the labels in
found by the label selection algorithm (denoted by L below) cover the at-
tributes to be labeled. For a given domain represented by an anonymous dataset
R(A1, . . . , An), we compute the LAR as follows:

LAR(R) =
m

n
, (3)

where m is the number of attributes of R which have at least one plausible label
in L.

The table in Figure 8(a) shows the mean LMRR and LAR over 10 runs of the
method over each domain. Because a different sample is used in each run (recall
Section 4), it is possible that different candidate labels are found in different
runs. Thus, table also shows the average number of candidate labels (l) obtained
in the runs for each domain.

Figure 8(a) indicates that a plausible label is found before the third position
on the ranking for all domains we have tested. This corroborates our assump-
tions regarding the co-occurrence of values and labels of a given attribute and
shows that our score function for associating labels and attributes works well in
practice. (This also confirms the fact that Hearst patterns alone are not enough
for finding good labels, because the highest ranked label is not always the most
appropriate one.) Regarding LAR, the table in Figure 8(a) shows that most of
time time a plausible label is found for the anonymous attributes in all domains
considered. In fact, even in the games domain, which has the lowest LAR (86%)
in our tests, our method failed to find a suitable label only in 7 of the 50 trials
(10 for each of the 5 attributes). In summary, the method was very effective in
finding good labels for the anonymous attributes.

6.5 Label Selection and Assignment

This section evaluates the label selection method and the label assignment
method working together. To do that, we run the labeling process for every
attribute of all datasets using k = 3 samples (as suggested by the discussion in
Section 6.2). The labeling process is repeated 10 times using the distinct sets of
candidate labels generated by the label selection method in the previous experi-
ment. The table in Figure 8(b) shows the average of accuracy values, the average
number of speculative queries issued (q) and the average clock time in seconds
(t), per attribute. The results are consistent with those using manually selected

Labeling Data Extracted from the Web 1115

labels (Figure 7). For instance, note the relatively worse accuracy for domains
posters and medicine. On the other hand, notice that the set of candidates labels
used here is much larger than the set of manually selected ones (Figure 8(a)).
As a result, the labelling process required more queries and time. Nevertheless,
we believe these are very reasonable costs given the accuracy of the results.

7 Conclusion

We have proposed a novel and highly effective automated approach for labeling
anonymous datasets extracted from the Web. By enriching the schemas of ex-
tracted data, labeling algorithms greatly help in data integration settings, which
often rely on the existence of meaningful labels in the schemas [11]. The assign-
ment of labels in our work is based on the probabilistic notion of affinity between
(the domains of) anonymous attributes and candidate labels. We use the num-
ber of documents matched by speculative queries submitted to standard Web
search engines for estimating the probabilities in our model. As demonstrated
by extensive experimental results, our method is both very effective, indicated
by the very high accuracy achieved, and efficient, indicated by the low average
number of speculative queries needed before a labeling is found.

Unlike previous methods, our approach does not require the presence of labels
in the Web content containing the data. By doing so, we allow user-defined
labels to be considered as candidate labels, not restricting the user to accept
those labels chosen by the content authors. We provide an effective algorithm
for finding candidate labels for a given anonymous dataset that mines frequently
occurring terms on Web documents which are used as hypernyms for some the
values in the dataset.

Future Work. One immediate line of future work that we identify is exploit-
ing existing repositories of Semantic Web metadata (e.g., Swoogle6) that index
RDF [8] schemas and OWL [9] specifications as sources of candidate labels. Simi-
larly to standard Web search engines, such repositories provide a keyword-based
search interface allowing one to retrieve a ranked list of metadata documents
(essentially, hierarchical schemas) that match given keywords. In our setting,
this leaves open the question of which keywords to use for the search (note that
the best search keywords are not necessarily data values, which is all we have
as input in our setting). We are investigating the use of techniques for finding
prominent keywords out of Web documents (e.g., see [10]) for this purpose.

An interesting observation from our experiments is that speculative queries on
popular domains (e.g. books) return a much larger number of results compared to
other less popular ones (e.g., watches). This raises interesting questions regarding
the confidence in the labeling produced by our algorithm. First, we are interested
in characterizing formally what would be an acceptable threshold for stopping
the execution of speculative queries. Second, given that our algorithm samples
from the anonymous dataset, we want to study how resilient it is to sampling
bias.

6 http://swoogle.umbc.edu/.

http://swoogle.umbc.edu/

1116 A.S. da Silva et al.

Acknowledgments. This work was supported in part by grants from the Natu-
ral Sciences and Engineering Research Council of Canada and from the Brazilian
Research Council (CNPq) through projects GERINDO (CT-INFO 552.087/ 02-
5), SIRIAA (CT-Amazônia 55.3126/2005-9) and through individual fellowships
to A. S. da Silva (303032/2004-9) and J. M. B. Cavalcanti (303738/2006-5). D.
Barbosa is also supported in part by an Ingenuity New Faculty award from the
Alberta Ingenuity Fund.

References

1. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In: SIG-
MOD (2003)

2. Arlotta, L., Crescenzi, V., Mecca, G., Merialdo, P.: Automatic annotation of data
extracted from large web sites. In: WebDB (2003)

3. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: Towards automatic data ex-
traction from large web sites. In: VLDB (2001)

4. de Castro Reis, D., Golgher, P.B., da Silva, A.S., Laender, A.H.F.: Automatic web
news extraction using tree edit distance. In: WWW (2004)

5. Etzioni, O., Cafarella, M., Downey, D., Shaked, A.-M.P.T., Soderland, S., Weld,
D.S., Yates, A.: Unsupervised Named-Entity Extraction from the Web: An Exper-
imental Study. Artif. Intell. 165(1), 91–134 (2005)

6. Hearst, M.A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In:
COLING, pp. 539–545 (1992)

7. Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey
of web data extraction tools. SIGMOD Record 31(2), 84–93 (2002)

8. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syn-
tax Specification. W3C Recommendation (1999)

9. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview.
W3C Recommendation (2004)

10. Rafiei, D., Mendelzon, A.O.: What is this page known for? Computing Web page
reputations. Computer Networks 33(1-6), 823–835 (2000)

11. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

12. Turney, P.D.: Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In:
Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, Springer,
Heidelberg (2001)

13. Wang, J., Lochovsky, F.H.: Data extraction and label assignment for web
databases. In: WWW (2003)

14. West, D.B.: Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs (1996)
15. Wu, W., Doan, A., Yu, C.T.: WebIQ: Learning from the Web to Match Deep-Web

Query Interfaces. In: ICDE (2006)
16. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: WWW

(2005)

Data Quality Enhancement of Databases Using

Ontologies and Inductive Reasoning

Olivier Curé1 and Robert Jeansoulin2

1 S3IS Université Paris Est, Marne-la-Vallée, France
ocure@univ-mlv.fr

2 IGM Université Paris Est, Marne-la-Vallée, France
robert.jeansoulin@univ-mlv.fr

Abstract. The objective of this paper is twofold: create domain ontolo-
gies by induction on source databases and enhance data quality features
in relational databases using these ontologies. The proposed method con-
sists of the following steps : (1) transforming domain specific controlled
terminologies into Semantic Web compliant Description Logics, (2) as-
sociating new axioms to concepts of these ontologies based on inductive
reasoning on source databases, and (3) providing domain experts with
an ontology-based tool to enhance the data quality of source databases.
This last step aggregates tuples using ontology concepts and checks the
characteristics of those tuples with the concept’s properties. We present
a concrete example of this solution on a medical application using well-
established drug related terminologies.

1 Introduction

The emergence of the Semantic Web and other semantic dependent applications
encourages the design and use of ontologies. Although efficient and user-friendly
ontology engineering tools (edition, visualization, storage, etc.) are now available,
the design from scratch of domain ontologies is still considered a difficult and
burdensome task. An approach generally adopted is that database schemata can
support and thus ease, accelerate the design of expressive ontologies. Among
these approaches, the most widely used aim to define a mapping between the
source database schemata and a target ontology (see [20] as a survey of solutions
on this topic).

In this paper, we propose another approach which takes advantages of the
large number of databases maintained in the world as well as the many available
hierarchical classifications, thesauri and taxonomies. In the ontology research
field, these notions are associated with a set of concepts that are more or less
strictly organized in hierarchies. The fundamental work of [6] analyzes the mean-
ing of the taxonomic relationships and highlights that multiple types of taxo-
nomic relationships exists. Also, as proposed in [14], depending on the context
it is possible to interpret the hierarchical organizations of these terminologies as
defining partial order relations on their concepts. In this paper, we concentrate

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 1117–1134, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

1118 O. Curé and R. Jeansoulin

on the contexts where such properties can be assumed and we therefore call
them classifications.

The aim of our approach is twofold. In a first phase, we enrich classifications
integrated in valuable databases using inductive reasoning (the output of this
processing is henceforth called an ontology). In a second phase, we provide a
graphical user interface which exploits ontologies created in phase one to detect
and ease the repairing of inconsistencies in the source databases.

A main idea of our approach is to consider that the axioms added to the
ontologies correspond to additional source database data dependencies. These
data dependencies are strongly related to instances of the database and their
representation are generally not supported in most standard relational database
management systems (RDBMS). So this approach enables to store these data
dependencies as valuable properties of expressive ontologies.

Starting from these resulting ontologies, we check if the source database vi-
olates some of these data dependencies and propose a data cleaning solution.
Due to possible exceptions in the dataset, the automatic repairing of data may
not be pertinent. Nevertheless, we assist the end-user by automatically detecting
possible violations and by offering an effective and user-friendly graphical user
interface to semi-automatically enable data repairing.

By repairing violations, we aim to enhance the data quality of the source
databases. In this paper, we are being influenced by ISO 9000 Quality standards
and consider two data quality elements : completeness and correctness. In terms
of completeness, we are interested in the presence or absence of data in the
dataset. We distinguish between two aspects of completeness : (i) comission, i.e.
when excess data are present in the dataset, and (ii) omission, i.e. when some
data are absent from the dataset. Considering the correctness aspect, we expect
the dataset to contain the correct data.

This paper is organized as follows: in section 2, we present the basic notions
involved in our data quality enhancing framework. In section 3, we highlight the
motivating example of this research which is related to medical informatics and
exploits drug databases. In section 4, the terminology enrichment using inductive
reasoning approach is presented. Section 5 introduces our ontology-based detec-
tion and repairing solution and evaluates its efficiency on the drug database exam-
ple. Section 6 emphasizes the adaptability of our solution to other domains such
as geographical information. Some related works are proposed in Section 7 and
Section 8 concludes the paper and emphasizes on some future work.

2 Basic Notions

This section reviews the main notions, related to relational databases and De-
scription Logics (DL), needed to present our framework.

A fixed database schema is a finite sequence R={R1, .., Rn} of relation symbols
Ri, with 1 ≤ i ≤ n, that are of fixed arity and correspond to the database
relations. We define a relation Ri as a set of attributes {A1

i , .., A
k
i } where Aj

i ,
with 1 ≤ j ≤ k, denote attributes over a possibly infinite domain D.

Data Quality Enhancement of Databases 1119

An instance I over a schema R is a sequence (RI
1, .., R

I
k) that associates each

relation Ri with a relation of the same arity RI
i . In this paper, we often abuse

the notation and use Ri to denote both the relation symbol and the relation RI
i

that interprets it. We call a fact R(t) the association between a tuple t of a fixed
arity and a relation R of the same arity. If R is a schema then a dependency
over R is a sentence in some logical formalism over R.

The ontologies are represented using a DL formalism [2]. This family of knowl-
edge representation formalisms allows the represention and reasoning over do-
main knowledge in a formally and well-understood way. We assume readers are
familiar with the semantics of DLs, though we recall that the syntax for concepts
in SHOIN (D) [15] are defined as follows, where Ci is a concept, A is an atomic
concept, R is an object role, S is a simple object role, T is a datatype role, D is
a datatype, oi is an individual and n is a non-negative integer :

C → A | ¬ C1 | C1 � C2 | C1 � C2 | ∃ R.C | ∀ R.C | ≥ n S | ≤ n S | {o1, .., om}
| ≥ n T | ≤ n T | ∃ T.D | ∀T.D

The reason of our interest in the SHOIN (D) DL is its syntactical equivalence
with the OWL DL language [11], an expressive ontology language developed by
the W3C and which is already supported by numerous tools (editors, reasoners,
etc.).

3 Motivating Example

The motivating example of our approach is related to the data quality assess-
ment in a self-medication application [9] and a drug database. In a nutshell, our
self-medication application enables patients to maintain medical information in
a personal health care record, access data on mild clinical signs and over the
counter drugs. In such a context, the data quality of the drug database is funda-
mental as incorrect or incomplete data, e.g. contra-indications, may exacerbate
the health condition of the patient. The drug database stores, for all drugs sold
in the french market, all the information available on the Summary of Product
Characteristics (SPC) as well as some extra information such as a rating, based
on an efficiency/tolerance ratio, and a comment from a team of health care pro-
fessionals. Some of the most used classifications in the drug domain have also
been integrated in our database and are used to link drug products to a certain
concept in these classifications. In the rest of this section, we introduce the main
characteristics of these drug classifications.

3.1 Drug Terminologies

Controlled terminologies and classifications are widely available for health care
and bioinformatics [7]. In this paper, we are interested in the drug related classi-
fications that are the most used in french drug databases, namely the European
Pharmaceutical Market Research Association (EphMRA) c© and the Anatomi-
cal Therapeutic Chemical (ATC) classifications. As most french drug databases,
we use the CIP french codes to identify products. For instance, the drug Tussi-
dane c© syrup is sold as a 250ml bottle product identified with CIP value 3622682

1120 O. Curé and R. Jeansoulin

and a 125ml bottle product with CIP value 3622676. So each product has a dis-
tinct CIP code and many CIPs may be available for a given drug, one for each
product presentation.

EphMRA classification. The EphMRA brings together European, research-
based pharmaceutical companies operating on a global perspective. One of the
missions of the EphMRA is to provide recognised standards by continuously sup-
porting and actively participating in establishing high levels of standards and
quality control in pharmaceutical marketing research. The Anatomical Classifi-
cation system (AC-system) is the main classification developed by the EphMRA,
with its sister organisation in the USA, the Pharmaceutical Business Intelligence
and Research Group (PBIRG). This system represents a subjective method of
grouping certain pharmaceutical products. The products are classified according
to their main therapeutic indication and each product is assigned to one cate-
gory. In the AC-system, categories are organized on a cascade of 4 levels where
each sub-level gives additional details about its upper-level.

The first level of the code is based on a letter for the anatomical group and
defines 14 groups. The second level is used to regroup several classes together,
in order to classify according to (i) indication, (ii) therapeutic substance group
and (iii) anatomical system. This level adds a digit to the letter of the first level
and enables the creation of the cascade classification. Therefore, before creating
a new second level, all existing possibilities of classification should be analyzed.
There could be cases where it is necessary to create a second level without a
cascade to the third or fourth level. However, these cases are seldom in the
current classification. The third level adds a letter to a second level code and
describes a specific group of products within the second level. This specification
can be a chemical structure or it can describe an indication or a method of
action. The fourth level gives more details about the elements of the third level
(formulation, chemical description, mode of action, etc.). Fourth level codes add
a digit to third level ones.

The complete hierarchy for antitussive drugs corresponds to :

R: Respiratory system
R5: Cough and cold preparations

R5D: Antitussives
R5D1: Plain antitussives
R5D2: Antitussives in combinations

ATC classification. The ATC system [22] proposes an international classifi-
cation of drugs and is part of WHO’s initiatives to achieve universal access to
needed drugs and rational use of drugs. In this classification, drugs are classified
in groups at five different levels.

In fact, the ATC system modifies and extends the AC-system of EphMRA.
Thus the first level is composed of the 14 groups of the EphMRA system. The
second is also quite similar and corresponds to a pharmacological/therapeutic
subgroup. The third and fourth levels are chemical/pharmacological/therapeutic

Data Quality Enhancement of Databases 1121

subgroups. Finally, the fifth level corresponds to the chemical substances. With
its fifth level, the ATC classification enables to classify drugs according to Rec-
ommended International Non-proprietary Names (rINN). This is different from
EphMRA’s classification where the leafs of the tree (fourth level) give details on a
wider perspective (formulation chemical description, mode of action, etc.). Thus
we consider that the use of both terminologies in our data quality assessment
approach is complementary.

We now provide an extract from the ATC hierarchy for some cough suppres-
sants:

R: Respiratory system
R5: Cough and cold preparations

R05D: Cough suppressants, excluding combinations
with expectorants

R05DA: Opium alkaloids and derivatives
R05DA01 Ethylmorphine
...
R05DA08 Pholcodine
...
R05DA20 Combinations

The R05DA20 code identifies compound chemical products that combine opium
alkaloids with other substances. An example for this code is the Hexapneu-
mine c© syrup which contains the following chemical substance : pholcodin, chlor-
phenamin and biclotymol which respectively correspond to R05DA08, R06AB04
and R02AA20. In our approach, we argue on the relevance of classifying such
products with the conjuction of their codes rather than with a single unifying
code.

4 Terminology Enrichment Using Inductive Reasoning

The purpose of the terminology enrichment is to enable the aggregation of
database tuples in a coherent way such that common properties can be dis-
covered and associated to ontology concepts.

Intuitively, we consider that a relation, or a set of relations, Term in the
database schema R stores a given terminology, e.g. the ATC classification. Let
consider that a relation Ind stores individuals of the database domain, e.g. drug
products. Then it is most likely that a one-to-many relation, or a chain of rela-
tions, TermInd relates facts between Term and Ind. We can also assume that
properties, e.g. contraindications or side-effects, about these individuals are ei-
ther directly stored in Ind or stored in a relation Prop in which case a possibly
many-to-many relation PropInd relates facts between Prop and Ind. Thus the
Ind relation plays a central role in our solution as it enables to join elements
from Term to elements of Prop. Given a fact in Term, it is possible to aggregate
tuples from Ind, via TermInd, in a sufficiently coherent manner and to extract
valuable properties from these groups. It is straightforward that such a query
can be performed using SQL queries in most RDBMS.

1122 O. Curé and R. Jeansoulin

4.1 Transformation into a Description Logic Formalism

In order to perform such enrichment, it is first necessary to transform the ter-
minologies stored in Term into a DL formalism. This step has been performed
using the DBOM [8] [10] Protégé plugin [13]. In a nutshell, DBOM (DataBase
Ontology Mapping) enables to design and enrich existing OWL ontologies from
relational databases by mapping relations to concepts and roles of the TBox via
SQL queries. DBOM proposes a solution to the impedance mismatch problem
between relational schemata and DL-based knowledge bases (KB) and supports
the creation of simple and complex matching with declarative mappings. DBOM
also enables the creation of ABoxes by processing the SQL queries associated to
each mapped concepts and roles. Finally, this system also provides a preference-
based approach to deal the inconsistencies.

For the terminology transformation operations, DBOM’s input is the database
schema R. The end-user defines mappings between relations of R and concepts
of the ontology. The output is an OWL DL ontology [11]. In the context of our
motivating example, the classification codes stored in Term, e.g. EphMRA or
ATC codes, are transformed into OWL concepts. The classification levels are
represented as a subsumption of concepts, i.e. using rdfs:subClassOf properties,
and sibling concepts are declared disjoint, i.e. using owl:disjointWith properties.

In the following extract of our ATC ontology, we provide the description
associated with the Pholcodine chemical substance concept, whose ATC code is
R05DA08. On line 1, we can see that this concept is identified by a given URI
with a local name corresponding to R05DA08 ATC code. Line 2 defines the
concept associated with the R05DA code (Opium alkaloids and derivatives) to
be a super concept of this concept. On lines 3 and 4, we present examples of
disjointWith properties between sibling concepts, only the first and last concepts
are displayed for briefty reasons. Line 5 states a comment in the french language.

1. <owl:Class rdf:about="&p1;R05DA08">
2. <rdfs:subClassOf rdf:resource="&p1;R05DA"/>
3. <owl:disjointWith rdf:resource="&p1;R05DA01"/>
...
4. <owl:disjointWith rdf:resource="&p1;R05DA20"/>
5. <rdfs:comment xml:lang="fr">Pholcodine
6. </rdfs:comment>
7. </owl:Class>

4.2 Enriching the Description Logic Via Induction

Starting from such an OWL ontology, which we now call O, it is now possible
to perform an enrichment by inductive reasoning on the information stored in
the source database. Intuitively, the method presented exploits the one-to-many
and many-to-many relations holding between the relations Ind, Term and Prop
where tuples from Ind are first class citizen in the induction approach.

Given the relations {Term, Ind, T ermInd, Prop, PropInd} of a database in-
stance R and the top concept (
) of O, the methods proceeds as follows. In a first

Data Quality Enhancement of Databases 1123

step, it is necessary to select the relation Prop that leads the inductive process
and to create an OWL concept associated to this relation, e.g. ContraIndica-
tion, and an object property, π, that relates concepts of O to this newly created
concept, e.g. hasContraIndidication. We can now present the Induction-based
ontology enrichment (IBOE) algorithm in which we consider that KB denotes
the knowledge base being enriched, and a threshold θ that has been previously
defined in the system. We consider that a binary relation PropInd (respectively
TermInd) follows the pattern {A1, A2}, where these attributes correspond re-
spectively to the primary keys in Ind and Prop (respectively Term for TermInd
). The input concept of IBOE is the starting concept from which we want to
start the Domain ontology. It is generally assumed to start this process with the

 concept.

Algorithm 1. Induction-based ontology enrichment (IBOE) algorithm
Input : concept c of the ontology
Output : enriched ontology O

1. for each sub concept sc of c do
2. size = number of individuals in Ind that are associated, via TermInd, to

tuples of Term related to sc
3. if size>0 then
4. for each {p,count} retrieved from the query SELECT PropInd.A2,

count(*) from TermInd,PropInd WHERE TermInd.A2 ilike ’sc%’ AND
TermInd.A1 = PropInd.A1 GROUP BY PropInd.A2 HAVING count(*)/
size ≥ θ do;

5. if no individual corresponding to p is in the KB then
6. create individual(p)
7. associate π owl:hasValue individual(p) for the concept sc
8. else
9. if none of the superclasses of sc already has the property π then

10. retrieve individual(p) from KB
11. associate π owl:hasValue individual(p) for the concept sc
12. IBOE(sc)
13. end do

In the context of our medical example, we provide with Figure 1 an extract
from our drug database dedicated to medical contra-indications. Figure 1a pro-
poses an extract, not all columns are displayed, of the Drug relation with two
drugs and with their respective CIP identifiers. Figure 1b presents an incom-
plete list of the ContraIndication relation which stores all terms related to drug
contra-indications. Now the ProductContraIndication relation enables to relate
products identified by CIPs with their contra-indications (Figure 1c). Figure 1e
provides an extract from the relation dedicated to the EphMRA classification
(respectively Figure 1g for the ATC classification). Finally, two relations relate
EphMRA and ATC codes to CIPs, respectively ProductEphMRA (Figure 1d)
and ProductATC (Figure 1f) relations.

1124 O. Curé and R. Jeansoulin

Fig. 1. Extract of the XIMSA drug database

In the following, we present the inductive reasoning method on the EphMRA
ontology, also named AC-ontology, and stress that an adaptation for the ATC on-
tology is straightforward. The method used to enrich the AC-ontology is based on
induction reasoning on relevant groups of products, generated using the AC hier-
archy. Intuitively, we navigate in the hierarchy of AC concepts and create groups
of products for each level, using the ProductEphMRA relation, i.e. TermInd on
the IBOE algorithm. Then, for each group we study the information contained in
the ContraIndication relation, i.e. Prop in our database R and for each possible
value in this domain we calculate the ratio of this value occurences on the total
number of elements of the group. Table 1 proposes an extract of the results for
the concepts of the respiratory system and the contra-indication domain. This
table highlights that our self medication database contains 56 antitussives (iden-
tified by AC code R05D), which are divided into 44 plain antitussives products
(R05D1) and 12 antitussives in combinations (R05D2). For the contra-indication
identified by the number 76, i.e. allergy to one of the constituants of the product,
we can see that a ratio of 1 has been calculated for the group composed of the
R AC code. This means that all 152 products (100 %) of this group present this
contra-indication. We can also stress that for this same group, the breast-feeding
contra-indication (#9) has a ratio of 0.48, this means that only 72 products out
the 152 of this group present this constraints.

Data Quality Enhancement of Databases 1125

Table 1. Analysis of contra-indications for the respiratory system

R R05 R05D R05D1 R05D2

occurences 152 71 56 44 12

ContraId

9 .48 .83 .86 .82 1

21 .26 .39 .3 .2 .73

76 1 1 1 1 1

108 .34 .69 .84 .84 .82

109 .35 .66 .8 .8 .82

110 .34 .73 .89 .86 1

112 .34 .71 .88 .86 .91

129 .4 .56 .8 .82 0.16

We now consider this ratio as a confidence value for a given AC-concept on
the membership of a given domain’s value. This membership is materialized
in the ontology with the association of an AC-concept to a property, e.g. the
hasContraIndication property, that has the value of the given contra-indication,
e.g. breast-feeding (#9). In our approach, we only materialize memberships when
the confidence values are greater or equal to a predefined threshold θ, in the
contra-indication example this value is set to 0.6.

This membership is only related to the highest concept in the AC hierar-
chy and inherited by its sub-concepts. For instance, the breast feeding contra-
indication (#9) is associated to the R05 AC-concept as its confidence value
(0.83) is the first column on the contraId 9 line that displays a confidence
value greater or equal to θ (0.6) in the R hierarchy. Also, the pregnancy contra-
indication (#21) is related to the R05D2 AC concept since its value is (0.73).

Using this simple approach, we are able to enrich the AC-ontology with axioms
related to several features of the SPC, e.g. contra-indication, side-effects, etc. At
the end of this enrichment phase, the expressiveness of the newly generated
ontology still corresponds to an OWL DL ontology. The following code proposes
an extract of the AC-ontology, in RDF/XML syntax, where we can see the
definition of R05D2 concept (line #1 to #12). This description states that the
concept :

– has the contra-indication identified by CI 21 (line #2 to #7) which corre-
sponds to pregnacy (line #13 to #16).

– is a subconcept of the R05D concept (line #8)
– is disjointWith the concept identified by the R05D1 code
– has a comment, expressed in the french language (line #10).

1. <owl:Class rdf:about="&j.0;R05D2">
2. <rdfs:subClassOf>
3. <owl:Restriction>
4. <owl:onProperty

rdf:resource="&j.0;hascontraIndication"/>

1126 O. Curé and R. Jeansoulin

5. <owl:hasValue rdf:resource="&j.0;CI_21"/>
6. </owl:Restriction>
7. </rdfs:subClassOf>
8. <rdfs:subClassOf rdf:resource="&j.0;R05D"/>
9. <owl:disjointWith rdf:resource="&p1;R05D1"/>
10. <rdfs:comment

xml:lang="fr">ANTITUSSIFS EN ASSOCIATION
11. </rdfs:comment>
12.</owl:Class>
13.<j.0:contraIndication rdf:about="&j.0;CI_21">
14. <rdfs:comment xml:lang="fr">grossesse
15. </rdfs:comment>
16.</j.0:contraIndication>

4.3 Ontology Refinement

In some situations, it may be necessary to revise the implantation of properties
in the concept hierarchy. Table 2 highlights such a case if we consider that
x2 ≥ x1 ≥ θ but x3 ≤ θ and concepts N2 and N3 are siblings and sub-concepts
of N1. The execution of the IBOE algorithm attaches property px to the N1

concept as it is the first concept in the hierarchy that has a value, i.e. x1, greater
than θ. Table 2 emphasizes that the property is disbelieved for instances of
the concept N2 but it still holds for the concept N2. Thus we consider that it
is necessary to refine the attachment of px to the concept hierarchy. Figure 2
presents the refinement policy by changing the ontology from a state where px is
associated to N1 (Figure 2a) to a state where px is attached to all subconcepts
of N1 with a confidence value greater or equal to θ (Figure 2b), in this case only
the N2 node.

The line identified by contra-indication #129 in Table 1 highlights the need to
refine the ontology. The resulting ontology has contra-indication #129 attached
to the R05D1 and not to R05D as originally deduced by the IBOE algorithm.

Fig. 2. Ontology refinement

Data Quality Enhancement of Databases 1127

This method can easily be applied to the ATC ontology or other drug related
ontologies as soon as we consider that the ontology is presented in a DL formalism
and a relation relates CIPs to identifiers of this ontology.

5 Ontology-Based Detection and Repairing

5.1 Detection Method

In this section, we only consider data quality violations at the completeness
(comission and omission) and correcteness levels. The principle we use to de-
tect these violations are supported by the ontologies defined in Section 4 and
the relational database R, e.g. the drug database extract from Figure 1. The
main assumption of this method is the following. We consider that the database
R presents overall good data quality. This is the reason why we designed the
ontology enrichment from induction on this database. But as data related de-
pendencies are not supported in R, some data violations may exist in R. Thus
we are using the properties associated to the concepts of our ontology(ies) to
detect data quality violations. The potential of this approach is interesting be-
cause tuples from R can generally be aggregated using different characteristics,
e.g. therapeutic class, chemical substances for the drug database. We also believe
that an efficient approach to design relevant groups are based on the use of the
terminologies that supported the design of these ontologies, e.g. EphMRA and
the ATC terminologies.

We can view the relation between the ontologies and the relational database
with a logical point of view. The schema part of a DL KB is typically called a
TBox (terminology box) and is a finite set of universally quantified implications
[2]. Most DLs can be considered as decidable fragments of first-order logic. Thus
their axioms have an equivalent representation as first-order-formulae [5]. On
the other hand, the schema of a relational database is defined in terms of rela-
tions and dependencies [16], also named integrity constraints. In [1], the authors
explain that most dependencies can be represented as first-order formulae and
have a dual role in relational databases : they describe the possible worlds as
well as the states of the databases. Reiter also observed in [19] that integrity
constraints are sentences about the state of the database and are not objective
sentences about the world. As discussed in [17], although the expressivity of DLs
underlying OWL and of relational dependencies is clearly different, the schema
languages of the two are quite closely related.

The interpretation of schemas in both DLs and relational databases are
grounded in standard first-order semantics. In this semantics, a distinction is
made between legal and illegal relational structures. A structure is legal when
it satisfies all axioms defined in its schema, otherwise it is illegal. The terms
used to denote legal structures in DLs and relational databases are different,
respectively models and database instances.

Whenever a relational database is updated, its dependencies are interpreted
as check. If the check is satisfied, the database instance is modified accordingly

1128 O. Curé and R. Jeansoulin

otherwise the update is rejected. The behavior on the models of DLs first-order
formulae is different [12],[17].

In our approach, we consider that each database instances respect a given
set of integrity constraints. But we also require from these database instances
to respect a set of dependencies expressed in some associated ontologies, e.g.
EphMRA and ATC ontologies in our medical example. Thus we want the data-
base instances to satisfy explicitly provided database schema integrity con-
straints as well as the DL dependencies. The mechanism proposed for the latter
has to deal with the context of a domain where many exception can occur,
e.g. the pharmacology domain. For example, in the case of processing a group of
drugs based on a given EphMRA concept, we may encounter drugs which do not
present the same set of contra-indications. This may be caused by the dosage
of the drugs, an aspect we are currently trying to solve with the integration
of the DDD system, or the presence of excipients, an issue we aim to address
with the integration of rules in the ontologies. In the current solution, in order
to deal with these exceptions, we must involve users in the process of repairing
violations. Thus our detect and repair approach is semi-automatic : detection is
automatic and repairing involves the validation of the end-user. These steps are
facilitated by the design of a web interface which highlights possible violations
for a set of drugs and propose a fast and easy way to correct them.

We are actually proposing two graphical solutions to repair these violations:
ontology concept-centric and database attribute-centric approaches.

Ontology concept-centric approach
In this approach two concepts from the ontology O are first selected. The first
concept C1 corresponds to a code of the Term relation while the second one,
C2, corresponds to one of the concepts created from the relations Prop, e.g.
the concept ContraIndication. The validation of this selection causes the display
of a matrix where columns correspond to instances of the C2 concept and the
rows to database tuples, resulting from the execution of a system-generated SQL
query, identified by a value x, i.e. drug products. At a row x and a column y,
the matrice can be filled with 3 different values: (1) a ’x’ symbol indicates that
the tuple of Ind identified by value x has the property identified by value y for
the C2 concept, (2) a ’?’ highlights that the tuple does not have this property
according to the data in the ontology, it should be the case, (3) an empty cell
indicates that the drug does not have this property and this state holds with
the ontology’s knowledge. In case (2), the end-user can click on the interrogation
mark to automatical correct the database by inserting a new tuple in PropInd
that states that the database individual has this property. Figure 3 proposes
an extract from this presentation for the contra-indication fields for the R05D2
EphMRA code. From such a matrix, it possible to click on a CIP number and
to access the complete SPC of the drug. In this case, the composition field may
help the health care professional to take a decision. Concerning possible database
violations highlighted by interrogation marks in Figure 3, two violations are
detected for the contra-indication #108 (productive cough): products identified

Data Quality Enhancement of Databases 1129

Fig. 3. Extract from an ontology concept-centric view: contra-indication matrix for the
R05D2 EphMRA concept

by CIPs 3032035 and 3418154. This detection is processed assuming that drugs
of this category R05D2 may all have the productive cough contra-indication.
This aspect corrects data quality completeness related to comission. It is also
possible to correct data quality completeness related to omission but deleting
contra-indications in the SPC drug window.

Database attribute-centric approach
In a database attribute-centric approach an attribute of the database R, possibly
not associated to an ontology concept, a concept created from a relation Prop
and a set of available ontologies are selected. The selected attribute serves to
design groups of database tuples and the set of ontologies enables to analyze
this group according to the information stored in these ontologies. The results
are displayed in a matrix similar to the one presented previously: columns are
individuals of the concept C2 and rows are tuples from the created group. The
cells of the matrix can again be empty or filled with ’x’ with the same interpreta-
tion as the previous approach. But the cells can also be filled with integer values
that range from 2n − 1 with n the number of ontologies in the set. These values
identify the elements of the powerset of n minus the empty set which is being
dealt with the ’x’ symbol. Figure 4 proposes an extract for the contra-indication
SPC field for the antitussive therapeutic class. Both the EphMRA and ATC
ontologies have been selected thus values range for 1 to 3:

– A value of 1 in a cell highlights a proposition made from the EphMRA ontol-
ogy. This is the case for the contra-indication with value 109 and products
identified with CIP 3481537 and 3371903.

– A value of 2 in a cell highlights a detection made from inferences using the
ATC ontology.

– A value of 3 in a cell highlights that both ontologies (EphMRA and ATC)
have detected this cell as a candidate for violation.

1130 O. Curé and R. Jeansoulin

Fig. 4. Extract from a database attribute-centric view: contra-indication matrix for
antitussive therapeutic class

5.2 Evaluation

We propose to evaluate this method on several aspects: (1) improvement of
the resulting drug database after a thorough detection and repairing step, (2)
satisfaction of the team of health care professionals maintaining the database.
The evaluation emphasizes the results of the first execution of the detection and
repairing process. This is the most relevant results as it is the step where the
enhancements are most clearly visible. As database updates are performed, the
data quality improvements are less evident but still as effective.

The first evaluation aspect of this method is to study the most prominent
comparison criteria orginating from information retrieval: precision and recall.
In logical terms, precision and recall correspond respectively to the correctness
and completeness methods. Our evaluation studied the following SPC fields:
contra-indications, drug interactions, cautions with allergies and diseases, cau-
tions with other drug treatments, side-effects. The method we use proceeds as
follows: during a detection and repairing session we evaluate the precision and
recall for each row of our matrices. In such a setting, the precision is the measure
of correctly found properties, ’x’ in a matrix (true positives), over the total num-
ber of properties, the number of columns in the matrix (true and false positives).
The recall measures the ratio of the true positives over the total number of prop-
erties for a row (true positives and true negatives). Testing over a set of more
than 2000 drugs, we were able to evaluate the average precision and recall to re-
spectively 0,71 and 0,61. Even more important is the estimation of improvements
over both our criteria after our induction-based repairing. These improvements
are calculated after the validation of a matrix by a domain experts, possibly
with some repairings, e.g. the end-user modified the set of contra-indications for
a given drug and thus changing the number of true positives and/or false pos-
itives. Over the same set of drugs, the ameliorations for precision was 6% and
8% for recall. This rate of improvement shows that the original database was of
a relative high quality, which is good viewed from the inductive reasoning as-
pect. But it also shows that this database’s data quality can be improved by our
method. After each execution of the ontology-based detection and repairing, the

Data Quality Enhancement of Databases 1131

ontology is refined by modification/validation of the domain experts responsible
for this task. Finally, another interesting feature is the system’s ability to check
the data dependencies stored in the ontologies after each database updates.

The second aspect which is quite interesting is the satisfaction of our health
care professionals. They consider that the detection and repairing method is
really user-friendly, as it only involves reading and clicking, and the learning is
quite short, as the detection only requires a visual detection. The best proof
of success is the high usage rate of this maintenance assistant by our team of
domain experts.

We believe that we can improve the end-user efficiency for the completeness
comission factor which is less obvious and really involves a clear understanding
of the grouping characteristic.

The efficiency of the detection method depends on the quality of the grouping
factor. We believe that the system can assist end-users in selecting pertinent
groups where the number of individuals is relevant. We can stress that the fewer
products in the group, the easier it is to reach the membership threshold θ
without really being relevant.

6 Application to Other Domains

There are other situations where the problem can be formulated into the same
framework that has been used in this paper. This framework can be sketched
this way:

– there exists some identifiable and observable item: here, an item is an indi-
vidual ”drug”;

– there exists some properties, in some identifiable domain, that can be at-
tached to the above mentionned observable item: here, the effects of each
drug can be observed with respect to some contra-indication list, through
series of more or less quantifiable observations;

– there exists a general taxonomy of individual components, whose lower level
is made of individuals, which we can name atoms: here, an atom is a ”chem-
ical molecule”;

– finally, there exists a partonomy of items in terms of atoms: here, this is the
chemical composition of each drug as an association of molecules.

The enrichment procedure tries to propagate the appropriate properties from
the atoms, up to the top of the hierarchy, pointing which contra-indications are
most likely.

Let’s consider the situation of landscape description and analysis:

– items are individual polygonal zones that we can observe, for instance from
space;

– atoms are land parcels, stored as administrative or agricultural parcels,
within some geographical database;

– the taxonomy of parcels is the hierarchy of space partitions at several levels
(county, state, etc.) or any landscape sub-division;

1132 O. Curé and R. Jeansoulin

– the partonomy describes the observed polygonal zones in terms of union of
parcels (or intersecting parts);

– the observable properties can be crop classes, vegetation state, etc.

The enrichment procedure tries to propagate the appropriate properties from
the atoms, up to the top of the hierarchy, describing which is the prominent
land-use at any level, in terms of set of vegetation properties, etc. We can also
introduce a second taxonomy on the observable properties, and propagate at
each generalisation level, which is the most contributing part of space, in terms
of set of space atoms.

Finally, the two enrichments, on the space taxonomy and on the property
taxonomy, can be performed in a coordinate movement, and can be used for
controlling the overal consistency. Even if this is propably a computational chal-
lenge, it is one of perpective for future investigation.

7 Related Work

The research work in data cleaning based on constraints are related to this work.
A central aspect of these researches have been introduced in [3] where the notion
of a repair is defined as the action to find another database that is consistent
and minimally differs from the original database. In [3] repairs are provided by
means of insertions and deletions while [23] proposes tuple updates as a repair
primitive. Recently [4] introduced the notion of conditional functional depen-
dencies (CFD) which is an extension of traditional functional dependencies and
captures a fundamental part of the semantics of the data. The main objective of
CFDs is to propose a new tool for data cleaning and toward this goal, [4] provides
techniques and a sound and complete inference systems for their consistency and
implication analyses. SQL-based techniques for detecting inconsistencies as vio-
lations of CFDs have been tested but the authors argue that much more work has
to be done on several aspects, in particular on discovering CFDs. Like this work,
our approach aims to store a new form of data dependencies to repair/clean
existing databases but our approach focuses on storing these dependencies in
DLs and much attention is given in terms of discovering the dependencies using
inductive reasoning on the data.

The inductive approach has been used in the domain of Knowledge Discovery
in Databases (KDD), in particular, to find classifications rules. Classification
systems create mappings from data to predefined classes, based on features of
the data. Many of the solutions adopting this approach are based on decision
tree technology introduced in [18]. The obvious exploitation of this approach is
to design a classification of concept based on data induction. Another relation
between ontologies and such approaches is to exploit ontologies as background
knowledge to enhance data mining applications [21]. So to our knowledge, this
approach is a first step toward transforming existing classifications into expres-
sive ontologies by inducing new concept properties.

Data Quality Enhancement of Databases 1133

8 Conclusion

We presented in this paper a simple yet effective and user-friendly solution to
enhance the data quality of relational databases. In the process of repairing these
databases, our solution enables to construct domain ontologies from available
terminologies and classifications. We demonstrated this solution on the medical
domain with drug databases. We believe that this method can be generalized to
other domains where terminologies are accessible. In future, we aim to test our
solution in the geographical domain with the Corine land cover hierarchy and the
subsets of the United Nations Standard Products and Services Code (UNSPSC)
products and services classification. Another extension we are working on is
related to mapping ontologies using the inductive approach described. Actually,
it is really easy to map the EphMRA and ATC ontologies because their concepts
are both defined using the same set of terms, e.g. contra-indication, caution,
side-effect terms. Finally, the extension that may have the biggest potential in
the pharmaceutical domain is trying to automatize the generation of SPC from
these and other ontologies. We think that the integration of the Defined Daily
Dose (DDD) which is generally associated to the ATC in order to define drug
posology.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley,
Reading (1995)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

3. Bertossi, L., Chomicki, J.: Query Answering in Inconsistent Databases Chapter in
book. In: Chomicki, J., Saake, G., van der Meyden, R. (eds.) Logics for emerging
applications of databases, Springer, Heidelberg (2003)

4. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietdsidis, A.: Conditional func-
tional Dependencies for Data Cleaning

5. Borgida, A.: On the Relative Expressiveness of Description Logics and Precidate
Logics. Artificial intelligence 82(1-2), 353–367 (1996)

6. Brachman, R.J.: What IS-A is and isn’t: an analysis of taxonomic links in semantic
networks. IEEE Computer 16, 30–36 (1983)

7. Cimino, J.J., Zhu, X.: The practical impact of ontologies on biomedical informatics
IMIA Yearbook of Medical Informatics, pp. 1-12 (2006)

8. Curé, O., Squelbut, R.: A database trigger strategy to maintain knowledge bases
developed via dat a migration. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA
2005. LNCS (LNAI), vol. 3808, pp. 206–217. Springer, Heidelberg (2005)

9. Curé, O.: Ontology Interaction with a Patient Electronic Health Record. In: Pro-
ceedings of 18th IEEE Symposium on Computer-Based Medical Systems, pp. 185–
190 (2005)

10. Curé, O., Squelbut, R.: Integrating data into an OWL Knowledge Base via the
DBOM Protplug-in. In: Proceedings of the 9th International Protégé conference
(2006)

1134 O. Curé and R. Jeansoulin

11. Dean, M., Schreiber, G.: OWL Web Ontology Language Reference. W3C Recom-
mendation (2004)

12. de Bruijn, J., Lara, R., Polleres, A., Fensel, D.: OWL DL vs. OWL flight: conceptual
modeling and reasoning for the semantic Web. In: Proceedings of 14th international
conference on World Wide Web, pp. 623–632 (2005)

13. Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubezy, M., Eriksson, H.,
Noy, N., Tu, S.: The evolution of protege: an environment for knowledge - based
systems development. International Journal of Human - Computer Studies 123,
58–89 (2003)

14. Hepp, M., de Bruijn, J.: GenTax: a gerenric methodology for deriving OWL and
RDF-S ontologies from hierarchical classifications thesauri, and inconsistent tax-
onomies. In: Proceedings of the European Semantic Web Conference (to appear,
2007)

15. Horrocks, I., Sattler, U.: A Tableaux Decision Procedure for SHOIQ. In: Proc. of
IJCAI 2005, pp. 448–453 (2005)

16. Kanellakis, P.C.: Elements of relational database theory. In: Handbook of theoret-
ical computer science (vol. B): formal models and semantics, pp. 1073–1156. MIT
Press, Cambridge (1990)

17. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. In: Proceedings of the 16th International World Wide Web Conference,
to appear (to appear 2007)

18. Quinlan, J.R.: Induction of Decision Trees. In: Readings in Machine Learning, pp.
81–106. Morgan Kaufamn, San Francisco (1990)

19. Reiter, R.: What Should a Database Know? Journal of Logic Programming 14(1-2),
127–153 (1992)

20. Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. Journal
of Data Semantics IV, 146–171 (2005)

21. Taylor, M., Stoffel, K., Hendler, J.: Ontology-based Induction of High Level
Classification Rules. Research Issues on Data Mining and Knowledge Discovery
(DMKD) (1997)

22. WHO Collaborating Centre for Drug Statistics Methodology URL of Web site:
http://www.whocc.no/atcddd/

23. Wijsen, J.: Condensed representation of database repairs for consistent query an-
swering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS,
vol. 2572, pp. 378–393. Springer, Heidelberg (2002)

http://www.whocc.no/atcddd/

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 1135–1152, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Web Services-Based Annotation Application for
Semantic Annotation of Highly Specialised Documents

About the Field of Marketing

Mercedes Argüello Casteleiro1,∗, Mukhtar Abusa1, Maria Jesus Fernandez Prieto2,
Veronica Brookes2, and Fonbeyin Henry Abanda1

1 Research Institute of the Built and Human Environment (BUHU)
2 School of Languages

The University of Salford, Salford, M5 4WT, United Kingdom
m.arguello@computer.org

Abstract. The field of marketing is ever-changing. Each shift in the focus of
marketing may have an impact on the current terminology in-use, and therefore,
compiling marketing terminology and knowledge can help marketing managers
and scholars to keep track of the ongoing evolution in the field. However, proc-
essing highly specialised documents about a particular domain is a delicate and
very time-consuming activity performed by domain experts and trained termi-
nologists, and which can not be easily delegated to automatic tools. This paper
presents a Web services-based application to automate the semantic annotation
and text categorisation of highly specialised documents where domain knowl-
edge is encoded as OWL domain ontology fragments that are used as the inputs
and outputs of Web services. The approach presented outlines the use of OWL-
S and the OWL´s XML presentation syntax to obtain Web services that easily
deal with terminological background knowledge. To validate the proposal, the
research has focused on expert-to-expert documents of the marketing field. The
emphasis of the research approach presented is on the end-users (marketing ex-
perts and trained terminologists) who are not computer experts and not familiar-
ized with Semantic Web technologies.

Keywords: Semantic Web, Semantic Web Services, Semantic annotation, On-
tologies, OWL, OWL-S, XML, Text Categorisation.

1 Introduction

There is an increasing need to effectively mine for knowledge both across the Internet
and in particular repositories. From the publishing industry to the competitive intelli-
gence business, important volumes of data from various sources have to be processed
daily and analysed by professional users [1]. In general, when expert professionals
perform manual processing of specialised documents is to capture the pertinent

∗ Please note that the author has joined the ESRC National Centre for e-Social Science (NCeSS)

based at the University of Manchester, M13 9PL, United Kingdom.

1136 M. Argüello et al.

knowledge contained in each selected resource, and the knowledge captured is used to
annotate the document by a set of descriptors (e.g. terms from a thesaurus). The intro-
duction of tools that automatically extract/highlight specialised terminology from
textual documents and are designed to be interactive and usable by domain experts
and trained terminologists who are not necessarily computer experts, will contribute
to save time from domain experts and trained terminologists and accelerate the proc-
ess of semantic annotation of documents. Furthermore, make explicit the domain
specific terminology used in a particular domain can be considered as “feature extrac-
tion” and may be used for text clustering and text categorisation.

Annotators were first conceived as tools that could be used to alleviate the burden
of including ontology based annotations manually into Web pages [2]. Since then,
many of them have evolved into more complete environments that use Information
Extraction (IE) and Machine Learning (ML) techniques to propose semi-automatic
annotations for Web documents. Nowadays, there are many annotation tools or envi-
ronments such as Annotea [3], the Semantic Markup Tool [4], the OntoMat Annotizer
[5], SMORE [6], SHOE Knowledge Annotator [7], ONTO-H [8]. However, some of
them are not very well suited for the annotators unfamiliar with concepts related to
ontologies and the semantic annotation in general. Moreover, most of the current
annotation systems, like some of the ones mentioned-above, are applications that run
locally on the annotator’s computer.

The research approach presented in this paper is aligned with the annotation tool
Saha [9], i.e. tackle the problem of creating semantically rich annotations by develop-
ing an annotation system that supports the distributed creation of metadata and that
can be easily used by non-experts in the field of Semantic Web. However, the re-
search approach presented in this paper differs from Saha [9] in:

1. The annotation application developed and presented in this paper is based on
Web services [10] and considers three types of annotations: Dublin Core annota-
tion, thesaurus annotation, and ontology-based annotation.

2. Background knowledge about specialised terminology is used to obtain a repre-
sentation of documents as a selection of terms (term vectors) which is a
pre-processing strategy where documents are reduced to terms considered “im-
portant”, and therefore text clustering and text categorisation may profit from it.
In fact, the Web services-based annotation application developed makes use of
text categorisation to classify the content of highly specialised documents by
means of relating parts of the document to one or several concepts of the domain
ontology.

3. The research approach pays special attention to two tasks: the first task is to de-
fine the service’s domain ontologies in terms of OWL [11] classes, properties,
and instances. The second task is to create an OWL-S [12] description of the
services, relating this description to the domain ontologies.

4. The research study addresses the challenge of service composition which refers
to the process of combining different Web services to provide a value-added
service [13]. The approach outlines the use of OWL-S [12] and the OWL´s
XML presentation syntax [14] to obtain a combination of Web services that eas-
ily deal with terminological background knowledge.

 A Web Services-Based Annotation Application for Semantic Annotation 1137

This paper is organised as follows. Section 2 summarises related work. Require-
ments and an approach overview are in section 3. The details about the three different
types of annotations are described in section 4. Section 5 presents the evaluation per-
formed of the Web services-based annotation application in the marketing domain.
Conclusions are in section 6.

2 Related Work

With the emergence of the Semantic Web, annotate metadata in documents and gen-
eral Web resources have been the focus of many projects that have attempted to pro-
vide tools or frameworks for annotating different types of content (HTML, databases,
multimedia) and with different degrees of automation – see http://
annotation.semanticweb.org/. Some examples of widely used applications
of metadata annotation will be the following:

1. Dublin Core [15]: is an example of a lightweight ontology that is being widely
used to specify the characteristics of electronic documents without providing too
many details about their content. It specifies a predefined set of document fea-
tures such as creator, date, contributor, description, etc.

2. Thesaurus and controlled vocabularies: such as MeSH [16]. Terms from a
thesaurus or from a controlled vocabulary can be used to provide agreed terms
in specific domains and to annotate documents. Since these vocabularies are not
completely formal, the annotations are normally pointers to those terms in the
vocabulary [2].

3. Ontologies: such as the SWRC ontology [17]. The SWRC ontology generically
models key entities in a typical research community and reflects one of the ear-
liest attempts to put this usage of Semantic Web Technologies in academia into
practice. The SWRC ontology initially grew out of the activities in the KA2 pro-
ject [18]. Since its initial versions it has been used and adapted in a number of
different settings, most prominently for providing structured metadata for web
portals, e.g. OntoWeb [19].

Dublin Core annotations are more ambiguous than annotations based on a thesau-
rus or controlled vocabulary, and these are also more ambiguous, in general, than the
annotations based on ontologies [2]. However, these three approaches complement
each other. To illustrate this: the most recent version of the SWRC ontology that has
been released in OWL [11] format comprises a total of seven top level concepts
namely Document, Event, Organization, Person, Product, Project and Topic and
includes Dublin Core elements by means of both datatype and object properties.
Furthermore, [20] proposes a method for transforming thesaurus into ontologies.

The foundations of the current approach are in line with the annotation tool Saha
[9], i.e. tackle the problem of creating semantically rich annotations by developing an
annotation system that supports the distributed creation of metadata and that can be
easily used by non-experts in the field of Semantic Web. However, the current ap-
proach pursues to facilitate the economical annotation of large document collections.
To achieve this, the current approach integrates terminological resources to facilitate
the incorporation of knowledge extraction techniques into the annotation environ-
ment. Initially, terminological resources can be easily included in the SWRC ontology

1138 M. Argüello et al.

by means of a Document Extension ontology mainly because a controlled vocabulary,
a dictionary or a thesaurus can be naturally seen as three different types of documents.
The current approach pays special attention to thesaurus which are the most interest-
ing terminological resources because a terminological entry in a thesaurus may con-
tain synonyms, abbreviations, regional variants, definitions, contexts, even term
equivalents in other languages. Different fields have thesaurus of their own which can
be widely used for harmonising content indexing. For example, the MeSH [16] the-
saurus is used to index the biomedical literature. Taking this into account, the current
approach dedicated effort to obtain a suitable thesaurus, because with the help of
thesaurus descriptors, domain experts can relate terminological entries from a thesau-
rus with class names from a classification system (e.g. concepts from a simple taxon-
omy ontology) to make explicit how terminological entries from a thesaurus cover a
certain topic. The mapping process performed (i.e. mapping terms to concepts) has
several advantages: a) the size of concept vectors representing documents is consider-
able smaller than the size of term vectors produced, and b) to facilitate providing the
end-user with useful classifications of documents.

The combination of Web services [10] and ontologies [21] has resulted in the
emergence of a new generation of Web services called Semantic Web services [22].
The landscape created by Semantic Web services has spurred several research issues.
One important challenge is service composition which refers to the process of com-
bining different Web services to provide a value-added service [13]. A large body of
research has recently been devoted to Web service composition, and therefore, several
techniques, prototypes, and standards have been proposed by the research community.
However, these techniques, prototypes, and standards provide little or no support for
the semantics of Web services, their messages, and interactions [10]. The research
approach presented in this paper uses OWL-S [12] to describe Web services and ex-
plores the advantages of using the existing OWL Web Ontology Language XML
Presentation Syntax [14] to encode OWL [11] domain ontology fragments as XML
documents that are fruitful to be passed between Web services and that may be
needed by other components in the same workflow. To validate the proposal, the
research has focused on a Web services-based application which uses terminological
knowledge to automate the semantic annotation and text categorisation of highly
specialised documents (i.e. expert-to-expert documents). The next section provides an
overview of the Web services-based annotation approach and requirements.

3 Requirements and Approach Overview

3.1 Requirements

In [23] seven requirements for semantic annotation systems have been formulated. A
summary of how the current Web services-based annotation approach fulfils the re-
quirements identified in [23] could be the following:

1. Standard formats - The Web Ontology Language (OWL) [11] has been used
for representing ontologies, and a XML syntax based on a OWL’s XML presen-
tation syntax [14] has been used to pass ontology fragments between the
services.

 A Web Services-Based Annotation Application for Semantic Annotation 1139

2. User centred/collaborative design - An easy to use interface that simplify the
annotation process to end-users not familiarized with semantic Web techniques
is achieved by means of a GUI partially generated on-fly by means of Ajax [24],
where the existing XSLT stylesheet [25] and XML documents derived from the
OWL’s XML presentation syntax are interpreted by JavaScript functions that
keep end-users unaware of underlying complexities.

3. Ontology support - Protégé 3.2 beta [26] has been chosen as the ontology-
design and knowledge acquisition tool to: a) build ontologies in the Web Ontol-
ogy Language OWL using the Protégé-OWL Plugin and b) to create OWL-S on-
tologies using the OWL-S Editor [27] that is implemented as a Protégé plugin.

4. Support of heterogeneous document formats -Documents can be in Web-
native formats such as HTML. Although, MS Word format is also supported.

5. Document evolution - Documents may change as ontologies may change. This
is even more likely in an environment where terminology plays pivotal role and
may need to be up-dated on daily-basis. A way to keep ontologies and annota-
tions consistent is to consider annotations as “temporary annotations” instead of
“definitive annotations”, and therefore, the environment should be able to gen-
erate or regenerate annotations automatically.

6. Annotation storage - The approach taken is in line with the Semantic Web
model that assumes that annotations will be stored separately from the original
document.

7. Automation - The level of automation achieved (generate or regenerate annota-
tions automatically) guarantees the use by end-users without computer expertise.

3.2 Approach Overview

A Web service is a set of related functionalities that can be programmatically ac-
cessed through the Web [10]. A growing number of Web services are implemented
and made available internally in an enterprise or externally for other users to invoke.
These Web services can be reused and composed in order to realize larger and more
complex business processes. The Web service proposals for description (WSDL[28]),
invocation (SOAP[29]) and composition (WS-BPEL [30]) that are most commonly
used, lack proper semantic description of services. This makes hard to find appropri-
ate services because a large number of syntactically described services need to be
manually interpreted to see if they can perform the desired task. Semantically de-
scribed Web services make it possible to improve the precision of the search for exist-
ing services and to automate the composition of services. Semantic Web Services
(SWS) [22] take up on this idea, introducing ontologies to describe, on the one hand,
the concepts in the service’s domain (e.g. flights and hotels, tourism, e-business), and
on the other hand, characteristics of the services themselves (e.g. control flow, data
flow) and their relationships to the domain ontologies (via inputs and outputs, precon-
ditions and effects, and so on) [27]. Two recent proposals have gained a lot of
attentions: 1) the American-based OWL Services (OWL-S) [12] and 2) the European-
based Web Services Modelling Language (WSML) [31]. These emerging specifica-
tions overlap in some parts and are complementary in other parts. WSML uses its own
lexical notation, while OWL-S is XML-based.

1140 M. Argüello et al.

The OWL Web Ontology Language for Services (OWL-S) [12] provides develop-
ers with a strong language to describe the properties and capabilities of Web Services
in such a way that the descriptions can be interpreted by a computer system in an
automated manner. The current approach pays special attention to the Service Process
Model because it includes information about inputs, outputs, preconditions, and re-
sults and describes the execution of a Web service in detail by specifying the flow of
data and control between the particular methods of a Web service. The execution
graph of a Service Process Model can be composed using different types of processes
and control constructs. OWL-S defines three classes of processes. Atomic processes
(AtomicProcess) are directly executable and contain no further sub-processes.
From the point of view of the caller atomic processes are executed in a single step
which corresponds to the invocation of a Web service method. Simple processes
(SimpleProcess) are not executable. They are used to specify abstract views of
concrete processes. Composite processes (CompositeProcess) are specified
through composition of atomic, simple and composite processes recursively by refer-
ring to control constructs (ControlConstruct) using the property ComposeOf.
Control constructs define specific execution orderings on the contained processes.

The research study addresses the challenge of service composition which refers to
the process of combining different Web services to provide a value-added service
[13]. The approach highlights the benefits of Semantic Web technologies in order to
obtain a combination of Web services that easily deal with terminological background
knowledge to automate the semantic annotation and text categorisation of highly
specialised documents. The current research study exposes the advantages of using
the existing OWL's XML Presentation Syntax [14] to encode OWL [11] domain on-
tology fragments as XML documents that are fruitful to be passed between Web ser-
vices and that may be needed by other components in the same workflow. The current
approach considers two Web services:

1. Taxonomy-Thesaurus mapping service: is a service that provides functionality to
associate terminological entries from a thesaurus with concepts from a simple
taxonomy ontology to make explicit how terminological entries from a thesau-
rus cover a certain topic. The Taxonomy-Thesaurus mapping performed plays
pivotal role to obtain a text classifier that could carry out automatic text catego-
risation.

2. Semantic annotation service: is a service that provides functionality to perform
three different types of annotations from textual documents: a) Dublin Core an-
notation, b) thesaurus annotation, and c) ontology-based annotation which is de-
voted to describe the content of documents, and where thematic metadata is
used to describe the semantics of the document.

Each service considers different kinds of activities. It is necessary to detail each
activity and consider if the activity can be related to an atomic process or to a com-
posite process that can be further refined into a combination of atomic processes.
Furthermore, it is essential to decide what are the inputs and outputs for each of the
considered processes. Figure 1 and 2 show the inputs and outputs for composite

 A Web Services-Based Annotation Application for Semantic Annotation 1141

processes of the Taxonomy-Thesaurus mapping service and the Semantic annotation
service respectively. The name of each input or output is specified in (bold black) as
well as a type is defined for each input and output (between brackets in grey). Inputs’
and outputs’ types are classes/concepts of ontologies that appear in figure 3.

Fig. 1. Inputs and outputs for composite processes of the Taxonomy-Thesaurus mapping service

Fig. 2. Inputs and outputs for composite processes of the Semantic annotation service

The research study presented in this paper is adhered to a modular ontology design.
Existing methodologies and practical ontology development experiences have in
common that they start from the identification of the purpose of the ontology and the
need for domain knowledge acquisition [32], although they differ in their focus and

1142 M. Argüello et al.

steps to be taken. In this study, the three basic stages of the knowledge engineering
methodology of CommonKADS [33] coupled with a modularised ontology design
have been followed:

I. KNOWLEDGE IDENTIFICATION: in this first stage, several activities were
included: explore all domain information sources in order to elaborate the most
complete characterisation of the application domain, and list potential compo-
nents for reusing. The following knowledge sources were identified: a) the
SWRC ontology [17] which generically models key entities relevant for typical
research communities and the relationships between them, b) a taxonomy of
marketing topics that appears in [34], and c) several terminological resources re-
lated to the marketing field, such as [35] or [36].

II. KNOWLEDGE SPECIFICATION: in this second stage, the domain model was
developed. An overview of the modular ontological design appears in figure 3.

Fig. 3. Overview of the modular ontological design

 A Web Services-Based Annotation Application for Semantic Annotation 1143

Four ontologies have been considered: 1) the SWRC ontology [17] where several
top level concepts and relationships have been reused, 2) the Document Extension
ontology which is an extension of the SWRC ontology to include terminological
resources, 3) the Marketing ontology which can be considered as an extension of
the SWRC ontology to incorporate an adaptation of the taxonomy of marketing top-
ics from [34], and 4) the Data Set ontology which is introduced to facilitate the
linkage between inputs’ and outputs’ types of Web services and classes/concepts of
the other three ontologies. Protégé 3.2 beta [26] has been chosen as the ontology-
design and knowledge acquisition tool to build OWL [11] ontologies. Figure 4
shows a screenshot of Protégé 3.2 beta during the OWL ontology development that
illustrates the relationship between the SWRC ontology and the Data Set Ontology
(dso) by means of the object property belongsTo which is remarked.

Fig. 4. A screenshot of Protégé 3.2 beta during the OWL ontology development

III. KNOWLEDGE REFINEMENT: in this third stage, the resulting domain model
is validated by paper-based simulation, and more terms from [36] are added to
the marketing thesaurus developed. It is also evaluated how each terminological
entry added to the thesaurus is associated to one or more categories of a finite set
of categories (selection of concepts from the taxonomy of marketing topics).

1144 M. Argüello et al.

The next section provides details about the three different types of annotations con-
sidered. The annotation process relies on a combination of Web services. To enable a
Web services composition that easily deal with terminological background knowl-
edge, the research approach relies on OWL-S [12] to describe Web services and ex-
poses the advantages of using the existing OWL’s XML presentation syntax [14] to
encode OWL [11] domain ontology fragments as XML documents that are fruitful to
be passed between Web services and that may be needed by other components in the
same workflow.

4 Annotation

Services can be described as a collection of atomic or composite processes, which can
be connected together in various ways, and the data and control flow can be specified.
Figure 5 shows the control flow and data flow for the three composite processes of the
Semantic annotation service. The details about how to encode OWL ontology frag-
ments as XML documents that are fruitful to be passed between processes in the same
workflow are described below.

Fig. 5. Control flow and data flow for composite processes of the Semantic annotation service

 A Web Services-Based Annotation Application for Semantic Annotation 1145

Web services are part of a trend in XML-based distributed computing and XML
does not provide any means of talking about the semantics (meaning) of data. How-
ever, a XML document type definition can be derived from a given ontology as
pointed out in [37]. The linkage has the advantage that the XML document structure
is grounded on a true semantic basis.

There is more than one way to derive an XML Schema [38] from an OWL ontol-
ogy which is compatible with the RDF/XML syntax. Many possible XML encodings
could be imagined, but the most obvious solution is to use the existing OWL Web
Ontology Language XML Presentation Syntax [14] which is the solution taken here.
The owlx namespace prefix should be treated as being bound to
http://www.w3.org/2003/05/owl-xml, and is used for the existing OWL’s
XML presentation syntax. The subsection 4.3 provides an example of individual axi-
oms (also called “facts”) based on the XML presentation syntax for OWL. These facts
are outputs and/or inputs for each of the three composite processes of the Semantic
annotation service that appears in figure 5.

4.1 Dublin Core Annotation

Documents may be in many different formats. The current approach considers two
document formats: HTML and MS Word. Depending on the document source pro-
vided, a HTML-wrapper (see figure 5) or a MS Word-text converter is being used.
Because, the world-wide-web (i.e. WWW) has become one of the most widely used
information resources, the HTML-wrapper has being proved as more useful for auto-
matic processing.

The HTML-wrapper, which appears in figure 5, performs the task of extract the
data embedded in Web pages for further processing. The goal of the HTML-wrapper
is to translate the relevant data embedded in Web pages into a structured format: the
Dublin Core [15] lightweight ontology that is being widely used to specify a prede-
fined set of document features such as title, creator, etc. The HTML-wrapper
performs a Dublin Core annotation to create as an output a XML document (Text-
dc_annotation) that will contain a set of document features according with the
Dublin Core lightweight ontology and will be used as the input of the Term-
Detector_based-on_Thesaurus (see figure 5).

4.2 Thesaurus Annotation

The Term-Detector_based-on_Thesaurus (see figure 5) uses simple terms and/or
compound terms from thesaurus of specific domains to annotate documents. The
process could be seen as an automatic indexing with controlled vocabularies/ thesau-
rus, and therefore, is closely related to automated metadata generation.

Terminological resources are increasingly available on-line, e.g. TERMIUM [39]
or EURODICAUTOM [40]. In the particular case of the marketing field, many on-
line dictionaries and glossaries of marketing terms could be found. However, not all
of them appear to be comprehensive enough. To illustrate this: on the one hand, the
American Marketing Association offers an on-line marketing dictionary [35] which is
a good resource of information, although well researched definitions are not always
provided. On the other hand, the Faculty of Business and Economics at the Monash

1146 M. Argüello et al.

University (Australia) offers an on-line marketing dictionary [36] which is a compre-
hensive glossary of marketing terms that offers well researched definitions for most of
the marketing related terms likely to be needed on this topic, and which could be
easily converted into a thesaurus where each terminological entry may contain syno-
nyms, abbreviations, regional variants, and definitions.

Text categorisation is one of the core problems in Text Mining. The goal of text
categorisation is to automatically assign text documents to a finite set of predefined
categories. With the rapid growth of Web pages on the World Wide Web (WWW),
text categorisation has become more and more important in both the world of research
and applications. One important challenge for large-scale text categorisation is how to
reduce the number of features that are required for building reliable text classification
models. There are typically two types of algorithms to represent the feature space
used in classification. One type is the so-called “feature selection” algorithms, i.e. to
select a subset of most representative features from the original feature space. Another
type is called “feature extraction”, i.e. to transform the original space to a smaller
feature space to reduce the dimension.

The use of thesaurus can be seen as a type of “feature selection” because only the
terms which belong to each terminology entry of the thesaurus will be taken into
account. Furthermore, the use of thesaurus is expected to contribute to “feature ex-
traction” as well, because most probably only a portion of the terms from the thesau-
rus will be found in the text documents of the corpus considered.

The Dublin Core annotation performed by the HTML-wrapper is more ambiguous
than the annotations based on a thesaurus or controlled vocabulary. As depicted in
figure 5, the XML document (Text-dc_annotation), which is the output of the
HTML-wrapper, is complemented by the Term-Detector_based-on_Thesaurus which
performs a thesaurus annotation to create as an output a XML document (Text-
Thesaurus_annotation) that introduces a local (document level) measure: term
frequency. For each simple or compound term tk from thesaurus that appears in the
document dj, it is annotated not only the name of the term but also the term frequency
(term counts) tfk, i.e. the number of times that a term tk occurs in a document dj.

4.3 Ontology-Based Annotation

The Text-Classifier_based-on_Taxonomy-Thesaurus-Mapping (see figure 5) performs
the task of annotate the document with thematic metadata by relating parts of the
document (simple terms and/or compound terms previously identified that belongs to
a thesaurus) to one or several concepts of the domain ontology (e.g. concepts from a
taxonomy of topics).

The construction of the Text-Classifier_based-on_Taxonomy-Thesaurus-Mapping
involves: a) a phase of term selection, in which the most relevant terms for the classi-
fication task are defined and where simple and compound terms which belong to
terminological entries of thesaurus have been selected, and b) a phase of term weight-
ing, in which weights for the selected terms are computed based on the explicit asso-
ciations performed between terminological entries from thesaurus with concepts from
a simple taxonomy ontology.

 A Web Services-Based Annotation Application for Semantic Annotation 1147

Thanks to the Taxonomy-Thesaurus mapping service described in subsection 3.2,
the terminological entries of a thesaurus can be grouped and assigned to a finite set of
categories (selection of concepts from the domain ontology), and therefore, the text
indexing performed can be considered as an instance of text categorisation.

Text categorisation problems are usually multi-class in the sense that there are usu-
ally more than two possible categories. Although in some applications there may be a
very large number of categories, the current research study focuses on the case in
which there are a small to moderate number of categories. It is also common for text
categorisation tasks to be multi-label, meaning that the categories are not mutually
exclusive so that the same document may be relevant to more than one category.

In the particular case of the marketing field, there is a high overlapping between
categories. Ranking categorisation has been introduced to deal with overlapping cate-
gories. In other words, for a given document dj, the existing categories are ranked
according to their estimated appropriateness to dj, without taking any “hard” decision
about any of them.

As pointed out in [41] the inductive construction of a ranking classifier for cate-
gory ci ∈ C usually consists in the definition of a function CSVi: D [0,1]
that, given a document dj, returns a categorization status value for it, that is, a num-
ber between 0 and 1 which, roughly speaking, represents the evidence for the fact that
dj ∈ ci. The CSVi function takes up different meanings according to the learning
method used. For example, probabilistic classifiers (see [42] for a thorough discus-
sion) view CSVi(dj) in terms of a probability.

The thesaurus annotation performed by the Term-Detector_based-on_Thesaurus is, in
general, more ambiguous than the annotations based on ontologies. As depicted in figure
5, the XML document (Text-Thesaurus_annotation), which is the output of the
Term-Detector_based-on_Thesaurus, is complemented by the Text-Classifier_based-
on_Taxonomy-Thesaurus-Mapping which performs an ontology-based annotation to
create as an output a XML document (Text-Classifier_annotation). An ex-
ample of ontology-based annotation appears in figure 6 where significant facts from a
XML document (Text-Classifier_annotation) have been included. The re-
search approach presented in this paper estimates the appropriateness of a category ci to
a document dj based on the weight of a category ci in a document dj, wcij, which is
determined by a combination of a local (document level) measure and a global (thesaurus
level) measure. The local (document level) measure is the term frequency (term counts)
tfk, i.e. the number of times that a simple term or a compound term tk from a thesaurus
appears in the document dj. The global (thesaurus level) measure is the term weight
wk,i.e. the value assigned to a simple or compound term tk from a thesaurus. The weight-
ing scheme considers: on the one hand, that terms from a thesaurus that have been asso-
ciated to too many categories (high overlapping) should receive a low weight, while
terms from a thesaurus that have been associated to only one category should receive a
high weight. On the other hand, the total number of terms from a thesaurus that have
been associated to each category should be taken into account to prevent that categories
with higher number of associated terms will become predominate.

1148 M. Argüello et al.

Fig. 6. Significant facts related to ontology-based annotation

5 Evaluation

The evaluation of the Web services-based annotation application considers: 1) the
experimental results obtained over two data sets of highly specialised documents (i.e.
expert-to-expert documents) that were selected among the vast marketing corpora
available, and 2) the feed-back obtained from end-users (marketing experts and
trained terminologists) by interviewing and observation-based methods.

5.1 Experimental Results

Two data sets of highly specialised marketing documents (i.e. expert-to-expert mar-
keting documents) were considered: a) a training and validation set TV which con-
tains a selection of 72 documents that attempt to be an overall overview of the field of
marketing and which includes case studies, chapters from books, journal papers, etc,

 A Web Services-Based Annotation Application for Semantic Annotation 1149

and b) a test set TE which contains 60 marketing articles, and its scope is wide
enough to cover the spectrum of marketing’s sub-disciplines.

In table 1 the marketing categories considered are listed, where each category is
associated with a top level marketing concept from a taxonomy of marketing topics.
Table 1 shows the number of documents of the test set TE that are manually assign to
each category by marketing experts. For a given document dj, the Web services-
based annotation application ranks the seven marketing categories according to their
estimated appropriateness to the document dj (see subsection 4.3), and normalised
those values by means of JavaScript functions before showing them to the end-user.
Table 1 shows the estimated appropriateness assigned by the Web services-based
annotation application to those documents that have being manually assigned to each
category. Based on the results obtained with the set TV, an experimental threshold
was defined: only the documents under “less than 72% of estimated appropriateness”
can be considered as wrongly classified under a certain category by the Web services-
based annotation application because the evaluation sessions performed with different
marketing experts indicate that a) it is usual to assign more than one category for a
given marketing document, and b) marketing experts do not always easily agree about
the more appropriate category for a given marketing document.

Table 1. Test set TE. Documents assigned to each category manually and automatically.

Web services-based annotation application:
estimated appropriateness

Categories Number of documents
manually assigned by
marketing experts 100 % Equal or more

than 72%
Less than 72 %

MC_Customer_
and_Marketing

8 3 2 3

MC_Market_
Segmentation

5 4 1

MC_Product_and
_ Services

15 15

MC_Price 8 8
MC_Place 4 2 2
MC_Promotion 6 6
MC_Marketing_
Research

14 8 4 2

According to the reasons above-mentioned, only 10% of the marketing documents
of the test set TE can be considered as wrongly classified. This result combined with
the relatively high level of estimated appropriateness (equal or more than 72%) en-
courage the current approach to extend the study among the vast marketing corpora
available to verify if the current approach facilitates the economical annotation of
large document collections.

In order to improve the categorisation capability of the Web services-based annota-
tion application, it may be needed to check the correctness of the selected categories
and modify or insert new terms into the thesaurus. To illustrate this: among the finite
set of marketing categories considered in table 1, the category that has the biggest

1150 M. Argüello et al.

categorisation error (37.5 %) is MC_Customer_ and_Marketing. With the aim of
bringing some light about the causes of the relatively high categorisation error found
for the category MC_Customer_ and_Mark, different marketing experts were con-
sulted. The consultation revealed that marketing experts strongly disagree about the
selection of terminological entries from a thesaurus and their associations with the
category MC_Customer_ and_Marketing, and therefore, a refinement in the semantics
(meaning) of the category and in the terminological entries associated are needed.

5.2 End-Users Feed-Back

Several evaluation sessions were performed to obtain feed-back from marketing ex-
perts and trained terminologists. During those sessions, the Think-Aloud Protocol
(TAP) [43] was frequently used to gain an outline about the efficacy of the Web ser-
vices-based annotation application. TAP is a verbal protocol method popularly used
to gather usability data during system evaluation by asking the users to vocalize their
thoughts, feelings and opinions concurrently while interacting with the system. The
audio recorded data reveals that comments like “incredible quick”, “just at the click of
a button”, or “is quite right” appear frequently. These comments enlightened the fact
that the Web services-based annotation application has reduced substantially the time
that marketing experts and trained terminologists have to invest to classify a highly
specialised document about marketing (i.e. expert-to-expert marketing documents)
and extract/highlight a minimum of relevant marketing terminology from the docu-
ment from an average of hours to an average of seconds. Furthermore, the above-
mentioned tasks have been simplified to just a click of a button.

6 Conclusions

The approach highlights the benefits of Semantic Web technologies in order to obtain
a combination of Web services that easily deal with terminological background
knowledge to automate the semantic annotation and text categorisation of highly
specialised documents (i.e. expert-to-expert documents). On the one hand, although
OWL-S [12] is not currently ready to support the dynamic discovery, composition,
and invocation of services; OWL-S facilitates to define the inputs and outputs of a
service in terms of an ontology which is a step forward to enable dynamic discovery,
composition, and invocation of services without user intervention. On the other hand,
the OWL Web Ontology Language XML Presentation Syntax [14] has been exposed
as a good way of encoding OWL [11] domain ontology fragments as XML documents
that are fruitful to be passed between Web services and that may be needed by other
components in the same workflow.

The substantial reduction in the time and effort required from marketing experts
and trained terminologists to classify highly specialised marketing documents (i.e.
expert-to-expert marketing documents) and extract/ highlight a minimum of relevant
marketing terminology from documents, together with a high accuracy in the auto-
matic text categorisation performed by the Web services-based annotation applica-
tion, encourage the current research study to be extended to a large collection of
documents. Furthermore, from the point of view of terminologists, translators and

 A Web Services-Based Annotation Application for Semantic Annotation 1151

interpreters as well as translator and interpreter trainers it is a paramount to have an
easy-to-use environment or tool that not only provides terms already available from a
controlled vocabulary or thesaurus, but more importantly shows/highlights very quick
those terms in context (how terms are being used in highly specialised documents).

References

1. Amardeilh, F., Laublet, P., Minel, J.L.: Document annotation and ontology population
from linguistic extractions. In: Proceedings of the 3rd international conference on Knowl-
edge Capture, pp. 161–168 (2005)

2. Corcho, O.: Ontology based document annotation: trends and open research problems. In-
ternational Journal of Metadata, Semantics and Ontologies 1, 47–57 (2006)

3. Kahan, J., Koivunen, M.R., Prud’Hommeaux, E., Swick, R.R.: Annotea: An Open RDF In-
frastructure for Shared Web Annotations. In: Proceedings of the 10th International World
Wide Web Conference (WWW10), Hong Kong, China (2001)

4. Kettler, B., Starz, J., Miller, W., Haglich, P.: A Template-based Markup Tool for Semantic
Web Content. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, Springer, Heidelberg (2005)

5. OntoMat-Annotizer, http://annotation.semanticweb.org/ontomat/index.html
6. Kalyanpur, A., Hendler, J., Parsia, B., Golbeck, J.: SMORE – Semantic Markup. In: RDF

(ed.) Ontology (2005), Available at: http://www.mindswap.org/papers/SMORE.pdf
7. The SHOE Knowledge Annotator, http://www.cs.umd.edu/projects/plus/SHOE/ Knowl-

edgeAnnotator.html
8. Benjamins, V.R., Contreras, J., Blázquez, M., Dodero, J.M., García, A., Navas, E.,

Hernández, F., Wert, C.: Cultural heritage and the semantic web. In: Bussler, C., Davies,
J., Fensel, D., Studer, R. (eds.) The Semantic Web: Research and Applications, First Euro-
pean Semantic Web Symposium, pp. 433–444. Springer-Verlag, Heidelberg (2004)

9. Saha, http://www.seco.tkk.fi/applications/saha/
10. Medjahed, B., Bouguettaya, A.: A multilevel composability model for semantic Web ser-

vices. IEEE Transactions on Knowledge and Data Engineering 17(7), 954–968 (2005)
11. OWL, http://www.w3.org/2004/OWL/
12. David, L.: Bringing Semantics to Web Services: The OWL-S Approach. In: Cardoso, J.,

Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, Springer, Heidelberg (2005)
13. Tsur, S., Abiteboul, S., Agrawal, R., Dayal, U., Klein, J., Weikum, G.: Are Web Services

the Next Revolution in e-Commerce (Panel). In: Proc. Very Large Data Bases Conf., pp.
614–617 (2001)

14. Hori, M., Euzenat, J., Patel-Schneider, P.F.: OWL web ontology language XML presenta-
tion syntax. W3C Note (2003), Available at http://www.w3.org/TR/owl-xmlsyntax/

15. Dublin Core, http://dublincore.org/documents/dces/
16. Medical Subject Headings (MeSH), http://www.nlm.nih.gov/mesh/meshhome.html
17. SWRC ontology, http://ontoware.org/projects/swrc/
18. Benjamins, V.R., Fensel, D.: Community is knowledge (KA)2. In: Proceedings of the 11th

Workshop on Knowledge Acquisition, Modeling, and Management, Banff, Canada (1998)
19. OntoWeb, http://www.ontoweb.org
20. Hyvönen, E.: Semantic Web Applications in the Public Sector in Finland - Building the

Basis for a National Semantic Web Infrastructure. Norwegian Semantic Days, Stavanger,
Norway (2006)

1152 M. Argüello et al.

21. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisition 5(2),
199–220 (1993)

22. McIlraith, S., Song, T., Zeng, H.: Semantic Web services. IEEE Intelligent Systems, Spe-
cial Issue on the Semantic Web 16, 46–53 (2001)

23. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E., Ciravegna, F.:
Semantic Annotation for Knowledge Management: Requirements and a survey of the state
of the art. Journal of Web Semantics 4(1) (2006)

24. Ajax, http://adaptivepath.com/publications/essays/archives/000385.php
25. http://www.w3.org/TR/owl-xmlsyntax/owlxml2rdf.xsl
26. Protégé, http://protege.stanford.edu/
27. Elenius, D., Denker, G., Martin, D., Gilham, F., Khouri, J., Sadaati, S., Senanayake, R.:

The OWL-S. In: Gomez-Perez, Euzenat (eds.) A Development Tool for Semantic Web
Services, pp. 78–92 (2005)

28. WSDL, http://www.w3.org/TR/wsdl20
29. SOAP, http://www.w3.org/TR/soap12-part0/
30. WS-BPEL, http://www.ibm.com/developerworks/library/specification/ws-bpel/
31. WSMO working group. D16.1v0.2 The Web Service Modeling Language WSML, WSML
32. Davies, J., Fensel, D., van Harmelen, F. (eds.): Towards the Semantic Web: Ontology-

Driven Knowledge Management. John Wiley, Chichester (2002)
33. Schreiber, A., Akkermans, H., Anjewierden, A.A., Hoog, R., Shadbolt, N.R., Van de

Velde, W., Wielinga, B.: Engineering and managing knowledge. In: The CommonKADS
methodology, The MIT Press, Cambridge (1999)

34. Fernandez Prieto, M.J., Moroto Garcia, N.: The SALCA project: marketing terminology in
Spanish and English. In: Thelen, M., Lewandowska-Tomasczyk (eds.) Translation and
Meaning Part 5, Maastricht:Hogeschool Zuyd, Maastricht School of Translation and Inter-
preting, pp. 231–239 (2001)

35. Dictionary of Marketing Terms, http://www.marketingpower.com/mg-dictionary.php
36. Monash University: marketing dictionary,

 http://www.buseco.monash.edu.au/mkt/ dictionary/
37. Erdmann, M., Studer, R.: Ontologies as conceptual models for XML documents. In: Pro-

ceedings of KAW 1999, Banff, Canada (1999)
38. XML Schema, http://www.w3.org/XML/Schema
39. TERMIUM, http://www.termium.gc.ca/
40. EURODICAUTOM, http://iate.europa.eu/
41. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing

Surveys 34(1), 1–47 (2002)
42. Lewis, D.D.: Naive (Bayes) at forty: The independence assumption in information re-

trieval. In: Nédellec, C., Rouveirol, C. (eds.) Machine Learning: ECML-98. LNCS,
vol. 1398, pp. 4–15. Springer, Heidelberg (1998)

43. Ericsson, K.A., Simon, H.A.: Protocol analysis: verbal reports as data. MIT Press, Cam-
bridge (1984)

Ontology Based Categorization in eGovernment

Application

Claude Moulin1, Fathia Bettahar1, Jean-Paul Barthès1,
and Marco Luca Sbodio2

1 University of Compiègne, CNRS, Heudiasyc, Centre de Recherches de Royallieu,
60205 Compiègne, France

2 Italy Innovation Center, Hewlett Packard Italiana, C.so Trapani 16,
10139 Torino, Italy

Abstract. Applications in eGovernment domain often manage a knowl-
edge base containing information about citizens. In this domain many
commissions have to statute on citizens conditions in order to allow some
assistance. Processes for classifying citizens have to be proposed to sim-
plify the work of these commissions.

We propose a method for automatically classify instances of concepts
in knowledge bases. In this categorization, instances may themselves be-
long to a category defined by a rule or may be associated to specific
instances or concepts defined in an ontology. We consider three types
of classification that can be applied to the main criteria of social care
applications.

We also present a module allowing tools to get all required informa-
tion about the categorization of elements in a knowledge base and in
particular the categorization of citizens.

1 Introduction

Applications in eGovernment domain often manage a knowledge base containing
information about citizens. It is interesting to query such a knowledge base in
order to select elements having similar properties. These information often con-
cern persons but all the considerations concerning the categorization could be
applied to any kind of elements. For example, it is valuable to know people that
can benefit of some social services with regard to their situation. The character-
istics that have to be taken into account for the categorization may concern in
particular the age, the conditions of unemployment, the handicap, the health of
a person.

When defining the notions that allow to classify the persons according to some
conditions, we use both assertions of the ontologies, and knowledge expressed
by rules. These notions allows to categorize persons of a knowledge base seen as
individuals of Person concept of an ontology.

The categorization depends on modeling of the ontology. However, we took
into consideration different ways of defining some pertinent ontological elements.
We propose a solution that can be applied locally according to the way the on-
tologies are modeled and used in actual applications. The analysis of situations

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 1153–1160, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

1154 C. Moulin et al.

lead to consider three ways of categorization of knowledge base elements. These
ways are illustrated by simple examples. However, in real applications developed
during the TERREGOV project (see section 4), the modeling is more compli-
cated. We present each case theoretically.

We also present the Java library that we have built, and which allows to query
an RDF knowledge base in order to have a better representation of its content.
It mainly uses the Jena framework 1. This library takes as input all OWL files
containing the ontologies referenced by the knowledge base and their extensions,
the OWL files (or the Jena models) representing the knowledge base to analyze,
and the rule file describing the conditions used for classifying the elements. We
detail how to integrate the required elements allowing the library to give the
categorization results.

In this paper, we consider that the schema of the RDF knowledge base is given
by one or more ontologies that can be locally extended. Ontologies and knowledge
bases have an OWL representation. The vocabulary used in explanations is the
one generally associated with the OWL paradigm.

We also consider that the possible users are in the following situation: they
manage a knowledge base whose elements are associated with some ontologies,
but they are not the authors of these ontologies and they can not modify them.
They wish to know how to use this tool and what are the files to create or adapt.
In particular, when some ontological extensions have to be made, they will be
created with a namespace different from the namespaces of the ontologies used
in the knowledge base. In this paper, all ontology examples have been inserted
using the N3 format.

2 Three Types of Categorization

2.1 Ontology

The solution we proposed in the TERREGOV project is based on the definition
of an ontology of the social care domain. The ontology is designed to be inserted
and used by different modules of a platform allowing civil servants to deliver
services to citizens. The ontology was built by several groups of experts follow-
ing a classic methodology (see [1] for more details). We applied in this sense
the principle that terms must be accessible to future users [2,3,4]. We added a
mechanism allowing to build indexes from all important information found in
the ontology [5].

An ontology representation structure may be very expressive, but that may
lead to difficulties when reasoning. Conversely, a restriction of the knowledge rep-
resentation allows better control of the reasoning task, but may prevent building
some concepts [6]. It is thus necessary to follow a method which preserves the ex-
pressive nature of the ontology and insures the control of the reasoning task. We
chose to extend the ontology with rules [7] like those presented in the following
sections in order to create new assertions in knowledge bases.
1 See http://jena.sourceforge.net

Ontology Based Categorization in eGovernment Application 1155

Rules allow engines to create the assertions that classify instances in knowl-
edge bases without modifying the structure of the ontology. This is very impor-
tant in the e-Government domain when laws change [8].

2.2 Virtual Class

Let’s suppose that we want to find the elderly people described in a knowledge
base. Let’s suppose that the ontology contains the concept of <Person>, domain
of the datatype property <age>. We are interesting in knowing the instances
of <Person> of the knowledge base whose age is greater or equal to 65. This
rule gives us the definition of the category of elderly people. The problem is to
represent this category in the knowledge base.

We chose to add a class, subclass of <Person>, called <ElderlyPeople>. How-
ever, it is not possible to directly instantiate this class: only an authorized mod-
ule like a knowledge base engine can do that. For that reason, we called this
kind of class a virtual class. The fact that an instance of <Person> belongs to
<ElderlyPeople> or not depends on a condition (rule) that has to be verified
only when the request is made.

However, as any other concept this class must be defined clearly and without
ambiguity. It must at least have labels and comments about the way to consider
it. As said in the introduction we prefer to add this information in an ontology
that extends the ontology where <Person> is defined. An ontology designer could
also introduce virtual classes in the original ontology. The tool we have built (see
section 3.1) take this eventuality in consideration. The <ElderlyPeople> class
must also be declared as a subclass of <Person>. It is necessary for an engine
to distinguish a normal class and a virtual class. For that reason we declare a
specific class, the class of all the virtual classes, called <VirtualClass>. In the
following example tg indicates the namespace of the main ontology.

:VirtualClass
a rdfs:Class ;
rdfs:comment "Class of all the virtual classes"@en ;
rdfs:label "Virtual Class"@en ;
rdfs:subClassOf owl:Class .

tgkb:ElderlyPeople
a :VirtualClass , owl:Class ;
rdfs:comment "Persons that are more than 65"@en ;
rdfs:label "Elderly People"@en ;
rdfs:subClassOf tg:Person .

An instance of <Person> belongs to the <Elderly_People> class is defined by
a condition given by a rule: if a <Person> instance has an age greater than 65,
then it is an instance of <Elderly_People>. It is only a sufficient condition for
an instance to belong to this new class. However it is the only way for a instance
to belong to the <ElderlyPeople>. Rule are written in the Jena format. The
namespace of the knowledge base is represented by tgkb.

1156 C. Moulin et al.

[Role_Elderly:
(?p rdf:type tgkb:Elderly_People)
<-
(?p rdf:type tg:Person)
(?p tgkb:hasAge ?y)
ge(?y, 65) // greater or equals to

]

Virtual classes may require the definition of datatype properties whose values
are calculated from information occurring in the knowledge base. It is the case
of the <Elderly_People> class. The previous example was a little bit simpli-
fied in order to introduce the concept of virtual class. The age of a person is
not directly inserted in the knowledge base because it changes every year. The
property age is not an attribute of the <Person> class. The actual attribute is
<date_of_birth>. We have created a new type of data properties that does not
lead to a category of elements, but which is useful in the description of knowledge.
We call Virtual Datatype Properties, those datatype properties whose definition
depends on other properties to be calculated. They can not be directly instanti-
ated. The <VirtualDatatypeProperty> class allows an engine to distinguish a
normal and a virtual datatype property. In the following example the age is first
declared as a virtual data type property and the age of a person is then defined
by a rule:

:hasAge
a :VirtualDatatypeProperty ;
rdfs:comment "gives the age of a person"@en ;
rdfs:domain tg:Person ;
rdfs:label "has age"@en ;
rdfs:range xsd:int .

[Role_hasAge:
(?p tgkb:hasAge ?y)

<-
(?p rdf:type tg:Person)
(?p tg:hasBirthDate ?d)
getYears(?d, ?y)

]

Notice that in this definition we use the possibility offered by the rule format to
create custom operators. In the last line getYears is an operator that calculates
the age of a person by comparing the current date to the birth date contained
in the ?d variable and affects the result to the ?y variable. The elderly rule seen
above allows the engine to create assertions in the knowledge base from instances
that can be associated to the virtual class. In the following example, the Lana
description leads to assign Lana to elderly people:

:lana
a tg:DisabledPerson ;

tg:hasBirthDate "1940-01-18"^^xsd:date ;
...
tg:hasName "Lana"^^xsd:Name .

Ontology Based Categorization in eGovernment Application 1157

2.3 Virtual Object Property

Let’s suppose that we want to know the type of help a citizen may receive.
A person may benefit from some housing or financial help according to some
conditions, based on age, health, revenue or unemployment situations. Let’s
suppose that the ontology contains the concept of <Help_Types>, and some
instances of it, such as <housing_help>, <financial_help>, <medical_help>.
Instances of this class represent the types of help a citizen may benefit from.
We associate a person with the type of help she can benefit from, by building
a new property linking the <Person> class and the <Help_Types> class. Thus,
the second way to categorize people is to use an object property. This relation
can only be instantiated by knowledge base engines and is still called virtual and
declared as a virtual object property.

:hasHelp
a :VirtualObjectProperty ;
rdfs:comment "indicates the type of help

a person can benefit from"@en ;
rdfs:domain tg:Person ;
rdfs:label "has help"@en ;
rdfs:range tg:Help_Types .

It is necessary for an engine to distinguish a normal object property and a virtual
object property. For that reason we declare a specific class, the class of all the
virtual object properties, called VirtualObjectProperty. The conditions for a
person to benefit of help depend on information occurring in the knowledge base
that uses concepts and properties of the reference ontology. These conditions
are expressed with rules. We give a simplified rule that illustrates a sufficient
condition.

[Role_hasMedicalHelp:
(?p tgkb:hasHelp tgkb:medicalHelp)
<-
(?p rdf:type tg:DisabledPerson)
(?p rdf:type tgkb:Elderly_People)

]

The rule shows that a disabled and elderly person can benefit of the medical
help. Obviously other rules could assign the same type of help to a person but
under other conditions and other rules assign other types of help. Rules can
embed virtual datatype properties and virtual classes. The engine will create
assertions in the knowledge base for instances that satisfy the conditions.

:lana
a tg:DisabledPerson, tgkb:Elderly_People ;
tg:hasBirthDate "1940-01-18"^^xsd:date ;
tgkb:hasHelp tgkb:medicalHelp ;
tg:hasName "Lana"^^xsd:Name .

2.4 Virtual Potential Property

Let’s suppose that we want to know what kind of services a person may benefit
of. For example, a person may benefit of an housing service, a kind of social

1158 C. Moulin et al.

service according to some conditions, based on handicap. Let’s suppose that
the services like <Housing_Service> are modeled as concepts, subclasses of the
<Social_Service> concept.

An instance of such a service can be seen as a sort of contract between an
administration and a person. When the case of a person is studied, the contract
does not exist yet and thus no instance of the service occurs in the knowledge
base.

A property <has_housing_service> can be defined for the <Person> concept.
The problem is to define the instances of such a property. Basically we could
associate to each <Person> fulfilling the conditions the <Housing_Service>
concept itself. However, in this case the range of such a property should be
owl:Class, which is not compliant with the OWL-DL level. The solution is to
set the range of the <has_housing_service> property to <Housing_Service>,
and to create an anonymous instance of <Housing_Service> when the property
<has_housing_service> is examined.

We qualify such a property a Virtual Potential Property, virtual for the same
previous reason and Potential because the instance of the property range to link
to the instance of <Person> does not exist when the property is defined.

:hasHousingService
a :VirtualPotentialObjectProperty ;
rdfs:domain tg:Z-Person ;
rdfs:range tg:HousingService .

It is necessary for an engine to distinguish a virtual object property and a
virtual potential object property. For that reason we declare a specific class
called VirtualPotentialObjectProperty, the class of all virtual potential ob-
ject properties .

The conditions for a person to benefit of such a service depends on informa-
tion contained in the knowledge base that uses concepts and properties of the
reference ontology. These conditions are expressed with rules. We give a simple
rule that illustrates a sufficient condition. In this example, a ?p variable is as-
sociated to an ?x variable if ?p satisfies the condition. The last line of the rule
states that a blank node is created in the knowledge base; such blank node is an
instance of <Housing_Service> and associated to elements binded to ?p.

[Rule_hasHousingService:
(?p, tgkb:hasHousingService, ?x)
<-
(?p rdf:type tg:Z-DisabledPerson)
makeTemp(?x)

]

3 Tool

3.1 Technology

We have chosen an homogeneous suite of technologies in order to implement a
tool able to answer the different cases of categorization we have presented in

Ontology Based Categorization in eGovernment Application 1159

the previous sections. The tool helps the user to query a RDF knowledge base
for categorization purpose. The ontologies that the tool imports must be OWL-
DL compliant. The tool is written in Java (at least version 5.0). Ontologies and
knowledge bases are parsed using the Jena technology. Queries against knowledge
base are expressed in SPARQL. Rules respect the Jena rule syntax.

The tool takes in input different elements describing all the required knowl-
edge. They consist in one or more ontologies, the knowledge base and the rule
description. One of the ontology defines the virtual classes respecting the identi-
fier syntax presented in the examples. It may happen to import several ontologies
declaring these classes. Each virtual concept or property must be declared as an
instance of one of these classes.

This rule model allows to create the anonymous instances allowing the third
case of categorization (through virtual potential object properties). The other
advantage of this model is the possibility to define custom operators (like the
GetYears in the example) which can be added to the system. We have extended
the parsing of the rule file in order to declare custom operators at the beginning
of the rule file, adding lines such as:.

####### Operator List
operator=net.eupm.terregov.categorization.jena.GetYears
...

3.2 Main Methods

Our tool contains different methods that query the knowledge base. Their main
role is to encapsulate the SPARQL queries against the knowledge base and the
corresponding result sets. It is possible for a client application to directly query
the knowledge base with the appropriate method. The elements bound to the
query variables are returned in an array. The main methods of this library return:
the instances of a virtual class, the instances of a virtual object property (a list
of couples containing an instance of the property domain and an instance of the
property range), the instances of a virtual potential object property (it is a list
of couples containing an instance of the property domain and the concept having
an anonymous instance associated to it).

As explained in the last example, we can look for the persons that can benefit
from a service. These services are modeled as subclasses of a <Social_Service>.
For that it is necessary to create a virtual potential object property for each
service a person may benefit of which may be painful. We have simplified the
discovery with the declaration of a generic property, say <has_Service> whose
domain and range are <Person> and <Social_Service>. The virtual potential
object properties are sub properties of this last one. A method taking in in-
put this generic property returns a list of triples containing: an instance of the
generic property domain, a potential property and the range of this potential
property.

1160 C. Moulin et al.

4 Conclusion

In this paper we have presented three cases of the categorization of knowledge
base elements. They are covering all the cases occurring in the scenarios de-
veloped by the pilot partners of the TERREGOV project. Our considerations
are generic enough to be applied in other domains. The first case of catego-
rization corresponds to the creation of a new class of the ontology. The other
cases depend on the way the reference ontology is built. Ontology designers may
represent knowledge using classes or individuals and our model supports both.

The application of rules adds permanent assertions, because the status of a
person generally remains valid when it is reached (adult or an elderly people). In
other case, it is possible to add assertions that are valid only during the queries.

Acknowledgments

This work has been developed within the TERREGOV project, an integrated
project co-funded by the European Commission2 under the IST Program, e-
Government unit, under the reference IST-2002-507749.

References

1. Fernandez-Lopez, M.: Overview of methodologies for building ontologies. In: IJCAI
1999. Workshop on Ontologies and Problem-Solving Methods, Stockholm (1999)
4/1,4/13

2. Fikes, R., Farquhar, A.: Distributed repositories of highly expressive reusable on-
tologies. IEEE Intelligent Systems, 73–79 (1999)

3. Uschold, M., King, M.: Towards a methodology for building ontologies. In: Workshop
on Basic Ontological Issues in Knowledge Sharing (1995)

4. Staab, S., Studer, R., Schnurr, H.P., Sure, Y.: Knowledge process and ontologies.
IEEE Intelligent Systems, 26–34 (2001)

5. Bettahar, F., Moulin, C., Barthès, J.P.: Adding an index mechanism to an ontology.
In: AWIC 2007. 5th Atlantic Web Intelligence, Fontainebleau, France, pp. 56–61
(2007)

6. Doyle, J., Patil, R.: Two dogmas of knowledge representation: language restrictions,
taxonomic classification, and the utility of representation services. In: rapport, MIT,
Cambridge (1989)

7. Golbreich, C., Bierlaire, O., Dameron, O., Gibaud, B.: Use case: Ontology with rules
for identifying brain anatomical structures. In: W3C Workshop on Rule Languages
for Interoperability, Washington, USA (2005)

8. Ae Chun, S., Atluri, V.: Ontology-based workflow change management for flexible
egovernment service delivery. In: The National Conference on Digital Government
Research, Boston, USA (2003)

2 The content of this paper is the sole responsibility of the authors and in no way
represents the views of the European Commission or its services.

Semantic Matching Based on Enterprise

Ontologies

Andreas Billig, Eva Blomqvist, and Feiyu Lin

Jönköping University, Jönköping, Sweden
{bill,blev,life}@jth.hj.se

Abstract. Semantic Web technologies have in recent years started to
also find their way into the world of commercial enterprises. Enterprise
ontologies can be used as a basis for determining the relevance of infor-
mation with respect to the enterprise. The interests of individuals can
be expressed by means of the enterprise ontology. The main contribu-
tion of our approach is the integration of point set distance measures
with a modified semantic distance measure for pair-wise concept dis-
tance calculation. Our combined measure can be used to determine the
intra-ontological distance between sub-ontologies.

1 Introduction

Our approach presented in this paper is a step towards reducing the information
overload and assisting the human user in processing and evaluating the infor-
mation entering a company from the surrounding world. An enterprise ontology
represents, among other things, the business interests and processes of the com-
pany, and the information demand of individual users can be expressed in terms
of this enterprise ontology. The core algorithm needed for evaluating how dis-
tant (or similar) two parts of the enterprise ontology are is the main focus of
this paper, in order to support a relevance evaluation of incoming information.

The following section presents background and motivation. In Section 3 the
problem is outlined and our semantic distance algorithm is described in detail.
Section 4 focuses on a small example to illustrate the usefulness of the method.
Finally, in Section 5 some conclusions are drawn and future work is outlined.

2 Background

This section describes the motivation and background of our approach, for ex-
ample the notion of semantic distance. With respect to ontologies we adopt the
classic definition from [1], describing an ontology as a formal explicit specification
of a shared conceptualisation. In our research we do not, at this time, restrict
ourselves to a specific ontology formalism, but assume the possibility to reduce
the ontology to a semantic net-like structure (i.e. a labelled directed graph). Our
research focuses mainly on domain and application ontologies within enterprises,

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 1161–1168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

1162 A. Billig, E. Blomqvist, and F. Lin

i.e. an ontology describing the necessary views and concepts, with the intention
of structuring and retrieving information.

The term semantic distance is in this paper used as the inverse of seman-
tic similarity. For semantic distance (or similarity) of ontologies many measures
exist to measure distance of concept pairs within one ontology (see the survey
in [3]). As described in [6] there are edge-based, information content-based, and
feature-based approaches. We want to rely only on the ontology without incorpo-
rating documents for distance measurement, thus we do not consider information
content approaches. Feature-based methods focus on property definitions. Our
approach is based on semantic network-like representations where taxonomies
play a more crucial role than property definitions. Still we incorporate user de-
fined relations as well, but we focus on edge-based methods, as the one in [5].

Different aggregation schemes can then be applied to determine distance be-
tween sets of objects. Most of these assume a way to determine the distance of
two individual objects, from the two sets. In [7] different distance measures are
discussed and compared, as well as in [8]. There exist measures such as the simple
Hausdorff metric, considering only the most extreme points in the set, and oth-
ers such as the family of optimal mappings, also incorporating the cardinalities
of the sets.

Document relevance in classical IR is commonly measured with respect to
some query (a set of keywords), and the document is treated as a bag-of-words
[9]. Some systems also use ontologies, as in [10] where RDF annotations are used
to represent the meaning of documents. Also in [11] documents are ranked ac-
cording to an ontology. However, the annotations for the documents are manually
defined, in our case we need to avoid manual annotation. Therefore we choose
to align the representation of the document to the ontology automatically, using
simple string matching (see [2]).

3 The Semantic Matching Approach

This section describes our approach to semantic matching, calculating the se-
mantic distance between two parts of an ontology.

3.1 General Framework

First of all, we rely on an enterprise ontology (see Figure 1). Secondly, we assume
that for all users a profile, a set of concepts of the enterprise ontology, exists.
As documents, the approach may deal with any kind of machine processable
information that can be mapped to a list of terms. The matched part of the
term list together with the enterprise ontology form the extended enterprise
ontology (XO, as described later in Section 3.3).

To calculate the relevance of a document to a user’s interests the following pro-
cess steps are needed, (1) processing of the document to construct a correspond-
ing term list, (2) aligning the term list to the enterprise ontology (constructing
the XO), and (3) calculating the semantic distance.

Semantic Matching Based on Enterprise Ontologies 1163

user

: enterprise ontology (EO)

user profileterm list

document

: extended enterprise ontology (XO)

Fig. 1. Relevant information objects

3.2 Preliminaries

Representing an ontology as a triple set is adequate for our purposes and aligned
to RDF [12]. Because there is no need to consider literals here, we restrict our-
selves to the set Res of (RDF-)resources (subsequently called concepts).

An ontology is a set of triples (s, p, o) over Res where s, p, o is called sub-
ject, property, and object, respectively. Let O be an ontology, then root de-
notes the taxonomic root, Prop denotes the set of properties occurring in O
and propCard(s, p) =

∣
∣{o | (s, p, o) ∈ O}

∣
∣. An (ontology) path of length n be-

tween concepts x and y is a sequence of triples (x, p1, o1), . . . , (sn, pn, y) where
oi = si+1 for i = 1, . . . , n − 1. If triple t is within a path p we also write
t ∈ p. Path resp. Path(x, y) denote the set of all paths resp. the set of paths
between x and y. A triple weight is a function from O to R. A path weight is
a function from Path to R. For a triple weight f and path x the canonical
path weight κf is defined by κf (x) =

∑
i=1,...,n f(xi) where x = x1, . . . , xn.

The normalisation of the canonical path weight is defined by κ∗f (x) = κf (x)
m

where m = maxy∈Path κf (y). Note that κ∗f is normalised if f is normalised. The
minimal path weight between x and y according to path weight f restricted by
property set R is defined as: MinPathWeight (x, y, f, R) = minp∈P f(p) where
P = {p ∈ Path(x, y) | ∀(u, v, w) ∈ p . v ∈ R}.1A property weight range is a
function f : Prop −→ R × R where r1 ≤ r2 holds for every (r1, r2) ∈ f(Prop).

3.3 Process Steps

The first step of the process is generating the term list, which is done through
standard text processing methods (mainly tokenisation, stop-word removal and
stemming, see [9]). The following steps of the process are described below.

Term List Alignment. The term list is related to the enterprise ontology
through string matching (see [2]). For this purposes we choose a threshold t
for the string similarity level. Assuming that L = TL(d) is the term list of

1 If there is no property restriction, i.e. R = Prop, we write MinPathWeight(x, y, f).

1164 A. Billig, E. Blomqvist, and F. Lin

processing document d, the string match of L is defined by SM (L) = {x ∈ L |
∃y ∈ EO . σ(x, y) ≥ t}, where σ is any string matching method that deliverers
values between 0 and 1. Then the XO is constructed with the matched terms
of the term list as concepts and σ as an ontological relation. The result is the
following ontology, where sm stands for the string match relationship:

XO = EO ∪ {(x, sm, y) | x ∈ SM (L), y ∈ EO}

Semantic Distance. Next, is the calculation of the semantic distance between
SM (L) and the users’ interest profiles. The interest profile of user u is a set of
concepts, i.e. UP(u) = {r | (u, interestedIn, r) ∈ EO}.

Among the edge-based methods the one proposed by Sussna in [5] includes
the facility to incorporate user defined relations as well as taxonomic relations,
and additionally allows for weighting of relations. Our adaptation of this to the
RDF environment is the triple weight ω:

ω(x, p, y) =
w(x, p) + w(y, p)
2 ∗ max (l(x), l(y))

,

w(x, p) = maxp − maxp − minp

propCard(x , p)
, and

l(x) = length
(
MinPathWeight(x , root , f , rdfs:subClassOf)

)
,

where x, p, y are resources, (minp , maxp) is a property weight range, and path
weight f is equal to the path length. According to [5] the property weight range
of rdf:label should be set to (0, 0) and the ranges of rdfs:subClassOf and rdf:type
should be (1, 2). The property weight range of user defined relations can be set
to the same range, or a value range can be determined experimentally.

To use this together with the string matching score in XO we define:

Δ(x, p, y) =

⎧
⎨

⎩

ω(x, p, y)
max (ω(EO))

, if (x, p, y) ∈ EO

|1 − σ(x, y)|, otherwise,

where σ is a string matching method. Note that Δ is normalised with the
maximum value of ω for EO and by definition of σ. Furthermore string sim-
ilarity σ is inverted to string distance because it has to be aligned to con-
cept distance and concept set distance. Because we are interested in the dis-
tance between two arbitrary concepts instead of adjacent concepts we define
Δ∗(x, y) = MinPathWeight (x, y, κ∗Δ) where x, y are concepts from XO and κ∗Δ
is the normalised canonical path weight.

To calculate the semantic distances of concept sets within ontologies we chose
the minimal linking approach of [7] which embrace the whole sets (instead of

Semantic Matching Based on Enterprise Ontologies 1165

acting locally, like the Hausdorff measure). This approach is based on the set of
linkings M l between concept sets A and B. For r ∈ M l it holds ∀a ∈ A ∃b ∈ B
with (a, b) ∈ r and vice versa. For the distance calculation those elements from
M l is chosen for which the sum of concept distances Δ∗ is minimal:

dist l (A, B) = minr∈Ml

(∑

(a,b)∈r

Δ∗(a, b)
|r|

)

Finally we introduce a measure for the document d and the user interests u:

Δl(d, u) = dist l (SM (TL(d)), UP (u))

4 Document Ranking

Our method could be useful in a range of applications. As a first case we apply
it to ranking of incoming e-mails, with respect to user profiles expressed by the
enterprise ontology. This case is part of a project called Media Information Lo-
gistics (MediaILog), which aims to develop and introduce semantic technologies
to improve information supply within companies in the Swedish media industry.

4.1 Ranking Example

In this example the objective is to rank two incoming e-mails (documents) with
respect to user profiles in the enterprise ontology. A small part of an enterprise
ontology is used for understandability purposes (illustrated in Figure 2). The
numbers associated with each relation are the distances between adjacent con-
cepts (user defined relations also have the weight range (1, 2)). Two profiles are
used, profile A and profile B in Figure 2 (in the real world case the language
would be Swedish). The document texts can be viewed in Table 1.

Sports

JSödraBankeryd’s Basket

BasketballVolleyballFootball

Team

Ball sportsTrack&Field

BankerydJönköping

Mullsjö regionJönköping region

Location

Sandhem Mullsjö

Plays

Plays Located in

Rdfs:subClassOf

 part-of
part-of

part-of
part-of

Rdf:type Rdf:type

Rdfs:subClassOf

Rdfs:subClassOf

<root>

Rdfs:subClassOf

Rdfs:subClassOf

Rdfs:subClassOf

Rdfs:subClassOf Located in

0.47
0.47

0.47
0.47

0.47 0.47

1.0 1.0

1.0

0.33

0.33 0.33

0.25

0.25

0.25

0.25 0.31 0.31
0.31 0.31

= Profile A = Profile B

Fig. 2. The example ontology and the two profiles

1166 A. Billig, E. Blomqvist, and F. Lin

Table 1. Text content of the documents

Doc# Text

1 Hi! This weekend JSödra plays a training match against SandhemsIK. It starts
on Saturday at 12.00. /Andreas Andersson, JSödra

2 Hi! Bankeryd’s Basket invites you to a promotional evening with free snacks
and a presentation of our plans for the future of our clubs in the region.
The target group is newspapers and local politicians, please spread the word
to anyone that might be interested! Regards, Arne Bokvist, Bankeryd’s Basket

The term lists are extracted from the texts using standard text processing
methods (tokenisation, stop-word removal and stemming, as in [9]). The term
lists are matched against the concept labels using string matching (here the Jaro-
Winkler measure from [2], with threshold 0.90). The result can be seen in Table
2. So far we do not involve the unmatched concepts in our calculation, but a
penalty score could easily be incorporated. The matched terms are temporarily
added to the EO to form the XO. An illustration of the XO:s can be seen in
Figure 3.

Table 2. The matched terms in the term lists and their string matching scores

Text Term Concept Score Text Term Concept Score

1 JSödra JSödra 1.0 2 Bankeryd’s Bankeryd’s Basket 0.91
1 SandhemsIK Sandhem 0.94 2 Basket Basketball 0.92
2 Bankeryd’s Bankeryd 0.98

Now, the distances between all concept pairs containing one concept from the
extension (representing the text) and one concept in the current profile, can be
computed. The values shown in Table 3 result from text 1 and profile A. Finally,
these values are aggregated using the point set measure. The resulting ranks are
shown in Table 4.

The small differences between the ranking values are due to the very small on-
tology and due to that the texts are of relatively similar topics. Still it is possible
to note benefits of our approach, especially compared to approaches using key-
words. Exact matching of keywords would not have been able to determine the

Table 3. Distances between concepts in XO representing profile A and text 1

XO Profile Path Dist. XO Profile Path Dist.

JSödra Football 2 0.073 SandhemsIK Football 7 0.62
JSödra Basketball 4 0.27 SandhemsIK Basketball 7 0.62
JSödra Jönköping region 3 0.19 SandhemsIK Jönköping region 4 0.38

Semantic Matching Based on Enterprise Ontologies 1167

Sports

JSödraBankeryd’s Basket

BasketballVolleyballFootball

Team

Ball sportsTrack&Field

BankerydJönköping

Mullsjö regionJönköping region

Location

Sandhem Mullsjö

Plays

Plays Located in

Rdfs:subClassOf

 part-of
part-of

part-of
part-of

Rdf:type Rdf:type

Rdfs:subClassOf

Rdfs:subClassOf

<root>

Rdfs:subClassOf

Rdfs:subClassOf

Rdfs:subClassOf

Rdfs:subClassOf Located in

0.47
0.47

0.47
0.47

0.47 0.47

1.0 1.0

1.0

0.33

0.33 0.33

0.25

0.25

0.25

0.25 0.31 0.31
0.31 0.31

1

SandhemsIKJSödra

0.06

0.0

Bankeryd’sBasket

0.090.08 0.02

2
sm sm

sm sm

sm

Fig. 3. The extended Enterprise Ontology

relevance of either document, since none of the profile concepts are mentioned
in the texts. Inexact string matching would work better but still with no way of
determining the relevance of the first document, without using the ontology to
discover that for example JSödra is a football team.

Table 4. Ranking of the texts with respects to profiles A and B

Document 1 Document 2

Profile A 0.76 0.86
Profile B 0.82 0.70

5 Conclusions

In this paper we have presented a general measure for computing the distance
between two sets of concepts in the same ontology. The novelty of this approach is
mainly that it modifies an existing point set distance measure and then combines
it with a modified version of a commonly used distance measure between pairs
of concepts in the same ontology. This is a general approach that can be useful
in many application scenarios. This is also what we envision in the future of
the MediaILog project, for example by assessing news items from news agencies
or updates on websites. Intuitively, it is easy to see the basic usefulness of this
approach, since it takes into account more background knowledge than a simple
keyword-based approach, but still a thorough evaluation is also needed.

Future work concerning the distance measure intend to use a first application
to measure and compare its performance to other systems and measures. There

1168 A. Billig, E. Blomqvist, and F. Lin

may be need for optimisation to reach a suitable time performance, although
many parts can also be computed ”off-line”. We envision the option to use cut-
off thresholds for the path computations to reduce the number of possible paths.

Acknowledgements

This work was mainly conducted within the MediaILog research project, financed
by the Swedish foundation Carl-Olof och Jenz Hamrins Stiftelse. Special thanks
to the three anonymous reviewers for valuable comments on how to improve this
paper.

References

1. Gruber, T.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5, 199–220 (1993)

2. Cohen, W., Ravikumar, P., Fienberg, S.: A Comparison of String Distance Met-
rics for Name-Matching Tasks. In: Proc. of IJCAI-03 Workshop on Information
Integration on the Web (IIWeb-03) (August 9-10, 2003), Acapulco, Mexico. (2003)

3. Blanchard, E., Harzallah, M., Briand, H., Kuntz, P.: A typology of ontology-based
semantic measures. In: Proc. of the Open Interop Workshop on Enterprise Mod-
elling and Ontologies for Interoperability (2005)

4. Shvaiko, P., Euzenatm, J.: A Survey of Schema-based Matching Approaches. Jour-
nal on Data Semantics IV, 146–171 (2005)

5. Sussna, M.: Word sense disambiguation for free-text indexing using a massive se-
mantic network. In: Proceedings of the second international conference on Infor-
mation and Knowledge Management, ACM Press, New York (1993)

6. Raftopoulou, P., Petrakis, E.: Semantic Similarity Measures: a Comparison Study.
Technical report, Technical University of Crete. Department of Electronic and
Computer Engineering (2005)

7. Eiter, T., Mannila, H.: Distance measures for point sets and their computation.
Acta Informatica (1997)

8. Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point
sets. Acta Informatica 37(10) (2001)

9. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,
Reading (1999)

10. Chirita, P.A., Ghita, S., Nejdl, W., Paiu, R.: Semantically enhanced searching
and ranking on the desktop. In: Proc. of the ISWC Workshop on The Semantic
Desktop Next Generation Personal Information Management and Collaboration
Infrastructure, Galway, Ireland (2005)

11. Castells, P., Fernández, M., Vallet, D.: An adaptation of the vector-space model for
ontology-based information retrieval. IEEE Transactions on Knowledge and Data
Engineering 19, 261–272 (2007)

12. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation. W3C Consortium (2004)

Author Index

Abanda, Fonbeyin Henry I-1135
Abid, Adnan II-1233
Abusa, Mukhtar I-1135
Adams, Michael I-95
Adamus, Rados�law II-1186
Ahmad, Imran II-1313
Aich, Subhendu II-1567
Al Haj Hasan, Issam I-1034
Alcaide, Almudena II-1701
Aldred, Lachlan I-735
Alferes, José Júlio I-933
Álvarez, P. II-1516
Amador, Ricardo I-933
Amara-Hachmi, Nejla II-1322
Andersen, Anders I-226
Ardaiz, Oscar II-1288, II-1403
Armendáriz-́Iñigo, J. Enrique I-489,

I-717

Bacon, Jean II-1244
Baldoni, Roberto I-701
Bama, S. II-1489
Bañares, J. A. II-1516
Barbosa, Denilson I-1099
Barbosa, M. II-1785
Barreto, João I-318
Barros, João II-1718
Barry, Bazara I.A. II-1616
Barthès, Jean-Paul I-1153
Bauer, Thomas I-150
Benavides Navarro, Luis Daniel I-772
Berlanga, R. I-897
Bertino, Elisa II-1548
Bertok, Peter I-558
Bettahar, Fathia I-1153
Billig, Andreas I-1161
Blomqvist, Eva I-971, I-1161
Blundo, Carlo I-667
Borch, Hans Olaf I-1050
Borch, Nj̊al T. I-226
Bosque, José Luis II-1435, II-1473
Bouchenak, Sara I-540
Boufäıda, Zizette II-1821

Brookes, Veronica I-1135
Brunner, René II-1403
Buccafurri, Francesco I-188
Bultrowicz, W�ladys�law I-1063

Caballé, Santi II-1280
Cardoso, Jorge I-427
Cary, Ariel II-1304
Casteleiro, Mercedes

Argüello I-1135
Cavalcanti, João M.B. I-1099
Cazalens, Sylvie I-870
Celikel, Ebru II-1548
Chacin, Pablo II-1403
Chan, H. Anthony II-1616
Chao, Isaac II-1288, II-1403
Chen, Huajun I-285
Cheribi, Haoua II-1821
Christodoulakis, Stavros I-850
Ciglan, Marek II-1417
Cilia, Mariano I-790
Colombo, M. II-1505
Corsaro, Angelo I-701
Cortes, Toni II-1214
Cristea, Valentin II-1331
Cueva, David II-1453
Cunha, João Paulo II-1583
Curé, Olivier I-1117
Czaja, Filip I-1063

da Silva, Altigran S. I-1099
Daradoumis, Thanasis II-1280
De Cristofaro, Emiliano I-667
de Juan-Maŕın, Rubén I-717
De Leenheer, Pieter I-989
De Palma, Noël I-540
de Spindler, Alexandre I-408
Decker, Gero I-24
Deng, Zijian II-1675
Di Napoli, Claudia II-1497
Diffie, Whitefield II-1529
Dimitrov, George II-1453
Dimitrov, Ivan II-1453
Doi, Norihisa II-1659

1170 Author Index

Dou, Dejing I-832
Douence, Rémi I-772
Dumas, Marlon I-41
Dunlop, Matthew II-1752
Dupplaw, Dave I-381

Eavis, Todd II-1453
Ebringer, Tim I-417
Edmond, David I-95
Estevez-Tapiador, Juan M. II-1701
Ezenwoye, Onyeka II-1304
Ezpeleta, J. II-1516

Fahad, Muhammad I-505
Fan, Wenfei I-285
Felber, Pascal I-206
Ferguson, Donald F. I-5
Fernandes, Dolphy I-1025
Fernandez, Pedro J. II-1734
Fernandez Prieto, Maria

Jesus I-1135
Francioli, Laurent II-1233
Freisleben, Bernd II-1264
Freitag, Felix II-1403
Fry, Andrew I-558
Fukuno, Naoya II-1659

Gaaloul, Walid I-353
Gannon, Dennis II-1179
Garcia-Alfaro, Joaquin II-1770
Garćıa-Muñoz, Luis H. I-717
Garćıa-Ruiz, Miguel II-1634
Garruzzo, Salvatore I-391
Gates, Carrie II-1752
Giordano, Maurizio II-1497
G�lowacki, Edgar II-1186
Godart, Claude I-353
Gogu, Grigore I-1034
Gomes, Helder II-1583
Gomez, Antonio F. II-1734
Gonzalez, J.L. II-1214
González de Mend́ıvil, J.R. I-489
Green, Mark II-1634
Gritzalis, Stefanos II-1601
Grosskopf, Alexander I-41
Grossniklaus, Michael I-408
Gulla, Jon Atle I-1050
Gzella, Adam I-1063

Hacini, Salima II-1821
Hagimont, Daniel I-540
Han, Jong-wook II-1688
Han, Jun I-417
Hasan, Masum II-1367
Hassanabadi, Leila Sharif I-915
Hauswirth, Manfred I-353
Herbst, Joachim I-131
Hernandez-Castro, Julio C. II-1701
Herrero, Pilar II-1435
Hettel, Thomas I-41
Hluchý, Ladislav II-1417
Honiden, Shinichi I-454, I-683
Hose, Katja I-399
Hu, Changjun II-1200, II-1349
Hwang, Hon I-253

Ingvaldsen, Jon Espen I-1050
Ishikawa, Fuyuki I-683

Jaimez González, Carlos R. I-577
Jan, Asif II-1233
Jang, Julian II-1296
Jeansoulin, Robert I-1117
Jiménez-Ruiz, E. I-897
Joita, Liviu II-1403
Joosen, Wouter I-630

Kambourakis, Georgios II-1601
Kantarcioglu, Murat II-1548
Kapralos, Bill II-1634
Karlapalem, Kamalakar I-300
Kasper, Timo II-1531
Kensche, David I-1081
Kikuchi, Hiroaki II-1659
Kiringa, Iluju I-169
Klempt, Philipp II-1835
Kon, Fabio I-648
Kotoulas, Spyros I-381
Krishna, P. Radha I-300
Krishnaswamy, Ruby II-1322
Kropf, Peter I-206
Krüger, Antonio I-953
Kruk, Ewelina I-1063
Kruk, Sebastian Ryszard I-1063

Lagaisse, Bert I-630
Lai, Xuejia II-1675

Author Index 1171

Lamarre, Philippe I-870
Lax, Gianluca I-188
Lee, Deok-Gyu II-1688
Lee, Im-Yeong II-1688
Lee, Yun-kyung II-1688
Lefevre, Laurent II-1367
Lemke, Christian I-399
Lemke-Rust, Kerstin II-1531
Lenzini, Gabriele II-1803
Leordeanu, Catalin II-1331
LePendu, Paea I-832
Leymann, Frank I-336
Li, Jianjiang II-1200, II-1349
Li, Xiang I-1081
Liao, Lijun II-1646
Lin, Feiyu I-1161
Little, Mark I-439
Liu, Yifei II-1531
Lopes, Antónia I-754
Lopez, Alex II-1453
Lucas, Simon M. I-577
Lyu, Michael R. I-505

MacLaren, Jon II-1385
Magaña, Edgar II-1367
Majumdar, A.K. II-1567
Majumdar, Shikharesh II-1313
Marin, Rafa II-1734
Marques, Joan Manuel II-1322
Martinelli, F. II-1505
Masud, Md Mehedi I-169
Meersman, Robert I-272, I-989
Mega, Giuliano I-648
Menaud, Jean-Marc I-772
Mendling, Jan I-113
Menéndez de Llano, Rafael II-1473
Mietzner, Ralph I-336
Mitschang, Bernhard I-522
Moreland, David I-253
Mori, P. II-1505
Moss, A. II-1785
Moulin, Claude I-1153
Müller, Dominic I-131
Mulyar, Nataliya I-735
Muñoz-Escóı, Francesc D.

I-489, I-717

Nadeem, Aamer I-505
Nagypál, Gábor I-1007

Namiri, Kioumars I-59
Navarro, Leandro II-1322, II-1403
Navarro-Arribas, Guillermo II-1770
Nebot, V. I-897
Neisse Ricardo II-1803
Nepal, Surya I-253, II-1296
Neshati, Mahmood I-915
Neumann, Gustaf I-113
Nguyen, Dong Ha I-613
Norrie, Moira C. I-408

Oliveira, Paulo F. II-1718
Overbeek, S.J. I-371

Paar, Christof II-1531
Page, D. II-1785
Palmisano, Diego I-790
Palomar, Esther II-1701
Papalilo, Elvis II-1264
Park, Jong Hyuk II-1688
Parulek, Július II-1417
Pérez, Maŕıa S. II-1435
Perreau de Pinninck, Adrian I-381
Pesic, M. I-77
Petrocchi, M. II-1505
Phan, Khoi Anh I-558
Phan, Tan I-417
Philippe, Jérémy I-540
Pla-Civera, J. I-489
Plale, Beth II-1179
Polleres, Axel I-878
Pop, Florin II-1331
Pottinger, Stefan I-336
Proper, H.A. (Erik) I-371
Puhlmann, Frank I-6, I-24

Qi, Lei II-1634
Qin, Han I-832
Querzoni, Leonardo I-701
Quix, Christoph I-1081

Rana, Omer F. II-1403
Reed, Daniel A. II-1179
Reichert, Manfred I-131, I-150
Rijsenbrij, D.B.B. I-371
Robertson, David I-381
Robinson, Michael II-1304
Rodrigues, Lúıs I-754

1172 Author Index

Rogers, Tony I-417
Rosa, Liliana I-754
Rosaci, Domenico I-391
Rosset, Valério I-471
Rouached, Mohsen I-353
Ruiz-Fuertes, M.I. I-489
Ryan, Caspar I-558

Sadjadi, S. Masoud II-1304
Salvadores, Manuel II-1435
Sangüesa, Ramón II-1288
Sanz, I. I-897
Sarda, N.L. I-1025
Satheesh, A. II-1489
Sattler, Kai-Uwe I-399
Sbodio, Marco Luca I-1153
Scharffe, François I-878
Schindlauer, Roman I-878
Schmidpeter, Hannes II-1835
Schneider, Jean-Guy I-417
Schneider, Michel I-1034
Schonenberg, M.H. I-77
Schuermann, Felix II-1233
Schwenk, Jörg II-1646
Scipioni, Sirio I-701
Sei, Yuichi I-454
Sen, Sumit I-953, I-1025
Serbu, Sabina I-206
Serrat, Joan II-1367
Sevalho, Marco A.S. I-1099
Sfyrakis, Konstantinos II-1233
Shapiro, Marc I-318
Shapiro, Richard I-595
Shen, Haifeng I-238
Sheng, Hao I-285
Sidorova, N. I-77
Siebes, Ronny I-381
Simion, Bogdan II-1331
Šimo, Branislav II-1417
Siracuse, Sarah I-595
Souto, Pedro F. I-471
Sowa, Sebastian II-1835
Šrámek, Miloš II-1417
Stojanovic, Nenad I-59
Südholt, Mario I-613, I-772
Sun, Chengzheng I-238
Sural, Shamik II-1567
Sure, York I-813
Sutra, Pierre I-318
Swoboda, Nik I-814

Taleb, Ahmad II-1453
Tang, Yan I-272
Taton, Christophe I-540
ter Hofstede, Arthur H.M. I-95
Terada, Masato II-1659
Thuraisingham, Bhavani II-1548
Tolosana-Calasanz, R. II-1516
Truyen, Eddy I-630
Tsakountakis, Alexandros II-1601
Tsinaraki, Chrisa I-850
Tsinas, Lampros II-1835
Tucci-Piergiovanni, Sara I-701

Vaccarelli, A. II-1505
Valduriez, Patrick I-870
van Bommel, P. I-371
van Harmelen, Frank I-381
van Sinderen, Marten II-1803
van der Aalst, Wil M.P. I-77, I-95,

I-113, I-735
Vargas Martin, Miguel II-1634
Vasques, Francisco I-471
Vazquez, Ruben I-814
Ventresque, Anthony I-870
Vidyasankar, K. I-300
Vilajosana, Xavier II-1322
Vognild, Lars K. I-226

Wagner, Ralf I-522
Walter, Andreas I-1007
Wang, Chenxi II-1752
Wang, Jue II-1200, II-1349
Wegdam, Maarten II-1803
Wierzbicki, Adam II-1186
Wong, Cynthia II-1752
Wright, Todd I-595
Wu, Zhaohui I-285
Wynn, Moe I-41

Xhafa, Fatos II-1280
Xia, Steven I-238
Xie, Yong II-1675

Yao, Guangli II-1200
Yoneki, Eiko II-1244
Yoshioka, Nobukazu I-683

Żaczek, �Lukasz II-1186
Zahradńık, Ivan II-1417

Author Index 1173

Zhang, Shensheng II-1675
Zhang, Xizhe II-1675
Zhang, Yu I-285
Zheng, Yang I-238

Zic, John I-253, II-1296
Zinky, John I-595
Zinn, Daniel I-399
Zúquete, André II-1583

	Title Page
	Preface
	Organization
	Table of Contents – Part I
	CoopIS 2007 International Conference (International Conference on Cooperative Information Systems)
	CoopIS 2007 PC Co-chairs’ Message
	The Internet Service Bus
	Soundness Verification of Business Processes Specified in the Pi-Calculus
	Introduction
	Preliminaries
	The Pi-Calculus
	Business Process Formalizations
	Simulation
	Bisimulation

	Characterizations of Soundness
	Easy Soundness
	Lazy Soundness
	Weak Soundness
	Relaxed Soundness
	Classical Soundness

	Tool Support and Efforts
	Tool-Supported Reasoning
	Efforts

	Conclusion and Related Work

	Extending BPMN for Modeling Complex Choreographies
	Introduction
	Assessment of BPMN
	BPMN Extensions
	Participant Sets
	References
	Reference Passing
	Example

	Validation
	Single Transmission Bilateral Interaction Patterns
	Single Transmission Multilateral Interaction Patterns
	Multi Transmission Interaction Patterns
	Routing Patterns
	Validation Summary

	Discussion
	Related Work
	Conclusion

	Semantics of Standard Process Models with OR-Joins
	Introduction
	Syntax of BPMN
	BPMN Overview
	Abstract Syntax

	Semantics of BPMN Models
	Informal Definition
	Formal Definition of Enablement

	Algorithm for Determining Enablement of an OR-Join
	Incremental Evaluation
	Related Work
	Conclusion

	Pattern-Based Design and Validation of Business Process Compliance
	Introduction
	Motivating Scenario
	Domain Model for Internal Controls Compliance
	Roles Involved
	Interplay of the Entities in the Domain Model

	Control Patterns
	High Level Control Patterns
	System Level Control Patterns

	The Approach
	Phase 1 - Control Design Phase
	Phase 2 - Recovery Action Design Phase
	Phase 3 - Business Process Execution Phase

	Implementation
	Related Work
	Conclusion
	References

	Constraint-Based Workflow Models: Change Made Easy
	Introduction
	Constraint Models
	Preliminaries
	Constraint Workflows
	Change

	ConDec and Declare
	ConDec
	Declare Tool

	Change in ConDec
	Related Work
	Conclusions

	Dynamic, Extensible and Context-Aware Exception Handling for Workflows
	Introduction
	Service Overview
	Service Architecture
	Exception Types and Handling Primitives
	Exception Types
	Exception Handling Primitives

	Contextual Selection of Exlets
	Related Work
	Conclusion

	Understanding the Occurrence of Errors in Process Models Based on Metrics
	Introduction
	Error Detection and Metrics Calculation for EPCs
	Empirical Distribution of Errors and Metrics
	Descriptive Statistics Disaggregated by Group
	Descriptive Statistics Disaggregated by hasErrors

	Inferential Statistics
	Correlation Analysis
	Logistic Regression Estimation
	Logistic Regression Validation
	Implications of the Findings

	Related Work
	Conclusions and Future Work

	Data-Driven Modeling and Coordination of Large Process Structures
	Introduction
	Overview of the Approach
	Modeling and Instantiation of Data Structures
	Creation of a Data Model
	Creation of the Data Structure

	Integration of Data and Processes
	Modeling of the Dynamic Aspects of Single Object Types
	Modeling of the Dynamic Aspects of the Data Model
	Creating the Life Cycle Coordination Structure
	Change Scenarios

	Practical Impact
	Related Work
	Summary and Outlook

	Supporting Ad-Hoc Changes in Distributed Workflow Management Systems
	Introduction
	Distributed Workflow Execution in ADEPT
	Ad-Hoc Modifications in a Distributed WfMS
	Synchronizing Workflow Servers During Ad-Hoc Modifications
	Determining the Set of Active Servers of a Workflow Instance
	Illustrative Example

	Distributed Execution of a Modified Workflow Instance
	Efficient Transmission of Information About Ad-Hoc Modifications
	Enhancing the Method Used to Transmit Modification Histories

	Related Work
	Summary

	Acquaintance Based Consistency in an Instance-Mapped P2P Data Sharing System During Transaction Processing
	Introduction
	Objectives, Assumptions, and Contributions

	P2P Database Systems Model
	Global Transaction Structure
	Transaction Translation
	Transaction Dependency

	Consistency of a P2PDBS
	Transactions Scheduling Problem in a P2PDBS
	P2PDBS Serializability Theory
	Scheduling Transactions in a P2PDBS
	Merged Global Transactions (MGT)
	Ticket Method

	Implementation Issues
	Typical Transaction Service Request Scenario

	Related Work
	Concluding Remarks

	Enabling Selective Flooding to Reduce P2P Traffic
	Introduction
	Peer Similarity
	Beyond the Similarity: The Expectation Notion
	System Adaptivity
	A Working Example
	Experiments
	Related Work
	Conclusions

	Improving the Dependability of Prefix-Based Routing in DHTs
	Introduction
	Related Work
	Hypercube-Based DHTs
	Fault Tolerance with Other Structures
	Extensions for Fault-Tolerance
	Fault-Tolerant Routing

	Motivation
	On the Dependability of Greedy Routing
	The Hypercube Structure Approach

	$hypeer$ Design
	$hypeer$ Overlay
	Routing Strategies

	Evaluation
	Overlay Structure
	Routing Under Failure-Free Operation
	Routing Upon Failure

	Conclusions

	Social Topology Analyzed
	Introduction
	Related Work
	The Socialized.Net
	Filelist.org Analysis
	Simulation
	Analysis
	Concluding Remarks and Future Work

	Conflict Resolution of Boolean Operations by Integration in Real-Time Collaborative CAD Systems
	Introduction
	Conflicting Boolean Operations
	Boolean Operations
	Conflicting Boolean Operations

	Resolving Conflicting Boolean Operations by Integration
	Resolving Conflicting Boolean Operations
	Rules
	Rules Analysis

	Significance of the CRIBO Technique in Supporting Creative Design
	Obtain “Hard-to-Achieve” Effects
	Stimulate Design Innovation
	Applying CRIBO to Other CAD Operations

	Conclusion
	References

	Trust Extension Device: Providing Mobility and Portability of Trust in Cooperative Information Systems
	Introduction
	Context and Motivation
	Trust Extension Device (TED)
	TED Architecture
	Enterprise System Architecture
	Trust Establishment Protocol

	Prototype Implementation
	Related Work
	Conclusions
	References

	Organizing Meaning Evolution Supporting Systems Using Semantic Decision Tables
	Introduction
	Semantic Decision Tables
	Decision Table and Semantic Decision Table
	Modeling Semantic Decision Tables

	DOGMA-MESS
	Outline of SDT in the Meaning Evolution Support Systems

	Design SDT for DOGMA-MESS
	Lift a Concept from OTO to LCO
	Improve the Lifting Algorithm
	Evaluation of Different Decision Rules

	Related Work and Discussion
	Conclusion and Future Work
	References

	Extending Online Travel Agency with Adaptive Reservations
	Introduction
	A Transaction Model
	Supporting Reservations
	Implementation Techniques
	The Architecture of a Ticket Booking System

	Experimental Study
	Experimental Setting
	Experimental Results

	Concluding Remarks

	A Multi-level Model for Activity Commitments in E-contracts
	Introduction
	E-contract Commitment
	Related Work
	Contributions and Organization of the Paper

	E-contract Commitment
	ER^{EC} Architecture
	Our Approach

	Basic Concepts
	Basic Activities
	Constraints
	Compensatibility
	Retriability
	Execution States

	Composition Model for Activities
	Path Model
	Tree Model
	Multi-level Model
	Multi-level Commitment and Closure
	Implementation Issues

	Discussion and Conclusion
	References

	Decentralised Commitment for Optimistic Semantic Replication
	Introduction
	System Model
	Classical or Commitment Algorithms
	Client Operation
	Client Behaviour and Client Interaction
	Multilog Propagation

	A Decentralised Commitment Protocol
	Overview
	Epidemic Communication
	Client, Local State, Proposer
	Election
	Example

	Discussion
	Safety Proof Outline
	Message Cost
	Implementation Considerations
	Example Application

	Related Work
	Conclusion and Future Work

	Coordinate BPEL Scopes and Processes by Extending the WS-Business Activity Framework
	Introduction and Motivation
	BPEL and Its Long-Running Transaction Model
	WS-Coordination and WS-Business Activity

	An External Coordinator to Drive BPEL’s Transaction Model
	Mapping of BPEL Scopes to WS-Coordination
	Modifying WS-BA to Enable Coordinated WS-BA for BPEL

	Discussion and Related Work
	Including Partners of a BPEL Process in BPEL’s Transaction Model
	Sub-processes and Externally Initiated WS-BA Transactions
	Implicit Transaction Termination for Root Activity
	Proof of Concept
	Future Work

	Conclusions
	References

	Verifying Composite Service Transactional Behavior Using Event Calculus
	Introduction
	Transactional Behavior in Composite Web Services
	Event Calculus
	Transactional Web Service Model
	Transactional Composite Service Model

	Transactional WS Patterns
	Event-Based Transactional Behavior Validation
	A-Priori Checking
	A-Posteriori Checking

	Implementation
	Discussion

	Matching Cognitive Characteristics of Actors and Tasks
	Introduction
	Cognitive Actor Settings
	Actor Types

	Cognitive Matchmaker System
	Characteristic Match
	Weighed Suitability Match

	Conclusion

	The OpenKnowledge System: An Interaction-Centered Approach to Knowledge Sharing
	Introduction
	Relevant Literature
	An Extensive Example Describing the Functionality of the OpenKnowledge System
	Writing and Publishing an IM
	Creating and Publishing OKC's
	Searching for IMs and OKCs
	Team Formation and Execution
	Other Examples

	Summary

	Ontology Enrichment in Multi Agent Systems Through Semantic Negotiation
	Introduction
	HISENE2: A Protocol to Support Semantic Negotiation
	The HISENE Ontology Enrichment (HOE) Algorithm
	Conclusions

	A Relaxed But Not Necessarily Constrained Way from the Top to the Sky
	Introduction
	Related Work
	Distributed Query Processing
	Introducing Constraints
	Evaluation
	Conclusion

	Collaborative Filtering Based on Opportunistic Information Sharing in Mobile Ad-Hoc Networks
	Introduction
	Motivation
	Spatio-temporal Collaborative Filtering
	Equivalence to Existing Algorithms
	Conclusions

	Policy-Based Service Registration and Discovery
	Introduction
	Background
	Enabling Policy-Based Service Registration and Discovery
	Policy Information Model
	Enabling Policy-Based Service Registration
	Enabling Policy-Based Service Discovery
	Example

	Implementation
	Related Work
	Conclusion and Future Work
	Reference

	Business Process Quality Metrics: Log-Based Complexity of Workflow Patterns
	Introduction
	Related Work
	Log-Based Complexity of Workflow Patterns
	Workflow Patterns
	Log-Based Complexity Metrics for Workflow Patterns

	Aggregating the Complexity of Workflow Patterns
	Conclusions
	References

	Distributed Objects and Applications (DOA) 2007 International Conference
	DOA 2007 PC Co-chairs’ Message
	WS-CAF: Contexts, Coordination and Transactions for Web Services
	Introduction
	An Overview of WS-CAF
	Context Management
	Coordination
	Transactions

	Comparison with Other Specifications
	Conclusions
	References

	Resilient Security for False Event Detection Without Loss of Legitimate Events in Wireless Sensor Networks
	Introduction
	System Models
	Sensor Network Model
	False Event Attack

	Related Work
	Problems of a Randomized Key Distribution Mechanism
	Problems of a Location-Based Key Distribution Mechanism

	Design
	Definition of Novel Concepts and Notations
	Overall Operations

	Analysis
	Filtering Effectiveness
	Resiliency to Compromising Many Nodes

	Simulation Evaluation
	Discussion
	Conclusion

	Formal Verification of a Group Membership Protocol Using Model Checking
	Introduction
	Background
	Group Membership Protocol
	UPPAAL

	Verification Model
	Basic Model
	Modeling of Faults

	Limiting the Size of the State Space
	Symmetry Reduction
	Priorities
	Synchronization

	Correctness Properties
	Verification Results
	Conclusion
	GMP Protocol

	Revisiting Certification-Based Replicated Database Recovery
	Introduction
	System Model
	Certification-Based Replication Protocols
	Recovery Strategies
	Basic Recovery
	Two-Stage Recovery
	Compacting Recovery
	Combined Recovery

	Performance Evaluation
	Statistical Comments
	Evaluation with Clients
	Evaluation Without Clients
	Long-Term Outages

	Related Work
	Conclusions

	A Survey of Fault Tolerant CORBA Systems
	Introduction
	Fault Tolerant Approaches
	Integration Approach
	Interception Approach
	Service Approach
	Reflective Approach

	Replication Styles
	Active Replication
	Passive Replication

	Overview of FT-CORBA
	FT-CORBA Architecture
	Requirements of FT-CORBA Specification
	Limitations of FT-CORBA Specification

	Existing Fault Tolerant CORBA Systems
	Electra
	Orbix+Isis
	Eternal
	DOORS
	AQuA
	FTS
	IRL
	OGS
	Newtop
	Aquarius
	Pluggable Protocol Framework (PPF)
	CARRIAGE
	Lightweight Fault Tolerance (LW-FT)
	FRIENDS
	FT-MOP

	Comparative Analysis
	Conclusion
	References

	Flexible Reuse of Middleware Infrastructures in Heterogeneous IT Environments
	Introduction
	Motivation
	Conventional Integration Solutions
	Reuse Issues

	Virtualization Tier
	VT Architecture
	Object Configurations
	VT Processing

	Reuse of Adapters and Middleware Systems
	Reuse of Adapters and Adapter Deployments
	Reuse of Middleware Systems
	Homogenizing Middleware Infrastructure

	Related Work
	Conclusion and Future Work

	Self-optimization of Clustered Message-Oriented Middleware
	Introduction
	Background: Java Message Service (JMS)
	Clustered Queues
	Clustered Queue Load-Balancing
	Configuration of Clients Connections
	Provisioning

	A Self-optimizing Clustered Queue
	Control Rules
	Algorithm

	Implementation Details
	Requirements
	The Control Loop

	Evaluation
	Algorithm Evaluation

	Related Work
	Conclusion and Future Work

	Minimal Traffic-Constrained Similarity-Based SOAP Multicast Routing Protocol
	Introduction
	SMP Overview
	Related Work
	QoS-Based Routing Overview
	QoS Multicast Routing
	QoS-Constrained Multicast Source Routing
	Hop-by-Hop Routing Algorithms

	Traffic-Constrained SMP Routing
	Problem Definition and Notations
	The Algorithm
	Example Illustration
	Heuristic Methods
	Complexity Analysis

	Tc-SMP Performance Evaluation
	Experimental Setup
	Experimental Results

	Discussion
	Conclusion and Future Work

	Implementing a State-Based Application Using Web Objects in XML
	Introduction
	Web Objects in XML (WOX)
	WOX Design
	WOX Client Operations
	Web Browser Interface
	XML Messages in WOX
	WOX Server Operation
	Limitations

	Case Study
	The Chart Application
	Implementation Using RMI
	Implementation Using SOAP
	Implementation Using WOX

	Conclusions and Future Work

	Experience with Dynamic Crosscutting in Cougaar
	Introduction
	Requirements for Dynamic Crosscutting
	Spectrum of Crosscutting Techniques
	Service-Oriented Architecture and Components
	Binders
	Nested Binders
	Aspect Interceptors

	Examples of Dynamic Crosscutting
	Multicast
	Traffic Masking
	Compression
	Gossip

	Relative Overhead of Crosscutting
	Related Works
	CORBA Based Middleware
	IONA Adaptive Runtime Technology
	Byte-Code Manipulation

	Conclusions
	References

	Property-Preserving Evolution of Components Using VPA-Based Aspects
	Introduction
	Motivation
	Extending VPA-Based Aspects for Component Evolution
	VPA-Based Aspects by Example
	Pointcut and Advice Operators for Component Evolution
	Syntax
	Semantics

	Preservation of Compositional Properties
	Related Work
	Conclusion

	Multi-stage Aspect-Oriented Composition of Component-Based Applications
	Introduction
	Problem Statement
	The M-Stage Solution

	M-Stage
	The M-Stage Component Model
	AO Composition Model

	Validation
	The Elementary Components
	Composition and Deployment of the Basic Banking Application
	Evaluation

	Related Work
	Conclusion

	An Eclipse-Based Tool for Symbolic Debugging of Distributed Object Systems
	Introduction
	Debugging with Distributed Threads
	A Distributed-Thread-Based Debugger
	Representing and Tracking Distributed Threads
	Interactivity and Synchronicity
	Node and Link Failures
	Debugger Architecture and Implementation
	More on Scalability and Correctness
	One-Click Launch, and Debugger for Testing

	Related Work
	Conclusions and Future Work

	A Bluetooth-Based JXME Infrastructure
	Introduction
	The JXBT Project
	Design
	Mobile Peer Implementation
	Relay Peer Implementation

	Related Work
	The $BlueIRC$ Application
	Performance Evaluation
	Conclusions and Future Works

	Agreements and Policies in Cooperative Mobile Agents: Formalization and Implementation
	Introduction
	Background and Motivation
	Cooperative Mobility
	Problems

	Agreements on Cooperative Mobility
	Approach
	Agreements for Host Usage
	Agreements for Cooperative Mobility
	Behavior of Each Agent

	Implementation
	Freedia Framework
	Migration Policy Descriptions
	Cooperative Mobility Policy
	Policy Constraints

	Discussion
	Related Work
	Cooperative Mobility
	Agreements

	Summary
	Example of Formal Model in Event Calculus

	An Adaptive Coupling-Based Algorithm for Internal Clock Synchronization of Large Scale Dynamic Systems
	Introduction
	Clock Coupling Model
	Time Continuous Clock Coupling
	Time Discrete Coupling with Imperfect Estimates
	The Clock Coupling Algorithm

	Empirical Evaluation
	Simulation Settings
	Static Scenario with Symmetric Channels Results
	Static Scenario with Asymmetric Channels Results
	Dynamic Scenario with Symmetric Channels Results

	Related Work
	Concluding Remarks

	Reviewing Amnesia Support in Database Recovery Protocols
	Introduction
	Group Communication System Issues
	The Amnesia Phenomenon
	A Generic Solution
	Amnesia Formalization

	Considered Recovery Protocols
	Protocols by Kemme, Bartoli and Babaoǧlu�
	Protocols by Holliday
	Parallel Recovery by Jiménez, Patiño and Alonso
	The COLUP Recovery Protocol
	CLOB: Short-Term Failure Recovery
	Protocol by Armendáriz

	Amnesia Support Recovery Observations
	Version-Based Techniques
	Log-Based Techniques

	Conclusions

	The Conceptualization of a Configurable Multi-party Multi-message Request-Reply Conversation
	Introduction
	Related Work
	Conceptual Background
	Pattern Family: Multi-party Multi-message Request-Reply Conversation
	Oracle BPEL PM: A Default Scenario in Action
	Evaluation of WS-BPEL v2.0
	Conclusions

	Building Adaptive Systems with Service Composition Frameworks
	Introduction
	Protocol Composition Frameworks
	Adaptation Requirements
	Context Monitoring
	Reconfiguration Actions
	Selection of Adaptation Targets

	Adaptation Support in Existing Composition Frameworks
	Addressing the Requirements
	Discussion

	An Adaptation-Friendly Composition Framework
	$RAppia$ Basics
	Service Programming Model
	Adaptation-Friendly Services
	Kernel Mechanisms
	Discussion

	Conclusions

	Invasive Patterns for Distributed Programs
	Introduction
	Motivation
	Pattern-Like Structures in JBoss Cache
	Source Code Representation of Pattern-Like Structures
	Invasive Patterns in a Nutshell

	Pattern Language
	Design Choices
	Syntax and Informal Semantics

	Implementation
	Evaluation
	JBoss Cache Revisited
	Qualitative and Quantitative Evaluation

	Related Work
	Conclusion and Future Work

	NSLoadGen– A Testbed for Notification Services
	Introduction
	Related Work
	Notification Services
	Benchmarking of MOM

	Proposed Approach
	Scenario Definition
	Scenario Simulation
	Result Collection

	Architecture and Design
	High Level Architecture
	Distributed Testbed
	Logging Approach

	Implementation
	Scenario Definition: Meta Language
	Scenario Simulation

	Conclusions and Future Work

	Ontologies, Databases and Applications of Semantics (ODBASE) 2007 International Conference
	ODBASE 2007 PC Co-chairs’ Message
	Towards Next Generation Value Networks
	Combining the Semantic Web with the Web as Background Knowledge for Ontology Mapping
	Introduction
	Related Work
	Experimental Set-Up
	Dataset
	Experiments
	Measures

	Architecture of the Model
	Motivation
	Using the Web as Background Knowledge
	Using the Semantic Web as Background Knowledge
	Combining the Semantic Web with the Web as Background Knowledge

	Results
	Combining the Semantic Web with the Web
	Comparing Hearst Patterns
	Comparing New Experiments with Previous Work
	Open Questions

	Conclusions

	Discovering Executable Semantic Mappings Between Ontologies
	Introduction
	Related Work
	Framework
	System Architecture
	Approach Overview with a Simple Example

	Matching and Object Reconciliation
	Basic Name Matching
	Datatype Property Matching
	Data Similarity of Datatype Property Pairs
	Object Reconciliation
	Object Property Matching

	Semantic Mapping Rule Mining
	Matching Groups
	Generating Mapping Rules

	Case Study
	People vs. Person and Employee Ontology
	Online Sale Databases

	Conclusion and Future Work

	Interoperability of XML Schema Applications with OWL Domain Knowledge and Semantic Web Tools
	Introduction
	Background
	XS2OWL Overview
	The XS2OWL Transformation Model
	Evaluation of the XS2OWL Model
	Conclusions – Future Work
	References

	Query Expansion and Interpretation to Go Beyond Semantic P2P Interoperability
	Introduction
	Preliminary Definitions
	Query Expansion and Image Based Relevance
	Relevance in the Context of Unshared Concepts
	Overview of the Relevance Calculus
	Interpretation of a SED

	Preliminary Experiments
	Conclusion

	SPARQL++ for Mapping Between RDF Vocabularies
	Introduction
	Motivating Examples -- Introducing SPARQL
	Built-In Functions and Aggregates in Result Forms
	Nested CONSTRUCT Queries in FROM Clauses

	Preliminaries -- HEX-Programs
	Extending $SPARQL$ Towards Mappings
	Extended Graph Patterns
	Extended Datasets
	Semantics
	Translation to HEX-Programs
	Adding Ontological Inferences by Encoding ρdf$^-$ into $SPARQL$
	Implementation

	Related Work
	Conclusions and Further Work

	OntoPath: A Language for Retrieving Ontology Fragments
	Introduction
	Related Work: Ontology Modularization and Querying
	Ontology Management System Architecture
	Ontology Parsing and Storage
	Approximating DL Expressions
	Expressivity of Stored and Retrieved Ontologies

	OntoPath Queries
	Query Expressions
	Predicates

	Query Processing
	Query Processing Algorithm

	Experiments and Results
	Conclusions
	References

	Taxonomy Construction Using Compound Similarity Measure
	Introduction
	Extracting Semantic Relations
	Knowledge Rich Methods
	Knowledge Poor Methods

	Comparison and Combination of Measures
	Combination Algorithm

	Evaluation
	Related Work
	Conclusion

	r^3– A Foundational Ontology for Reactive Rules
	Introduction
	An Ontology for Reactive Rules
	Defining Reactive Rule Languages
	Defining Reactive Rule Constructions
	Conclusion and Future Work

	Heuristics for Constructing Bayesian Network Based Geospatial Ontologies
	Introduction
	Geospatial Ontologies as Knowledge Representation Tools
	Ontologies of Geospatial Entities and Actions

	Probabilistic Ontologies and Stochastic Inferences
	Ontologies as Bayesian Networks
	Reasoning Tasks in Bayesian Network Ontologies

	Case Study: Ontologies from Traffic Code Texts
	Extraction of Entity Concepts and Action Concepts
	Heuristics: Linking Entities and Actions
	Inferences from Linked Ontologies

	Psycholinguistic Verification
	Human Subjects Tests
	Analysis

	Applications
	Concept Mapping Within and Across Ontologies
	Interoperability Between Ontologies

	Conclusions and Future Work
	Future Work

	References

	OntoCase - A Pattern-Based Ontology Construction Approach
	Introduction
	Background
	Ontologies
	Ontology Patterns
	Ontology Engineering
	Case-Based Reasoning

	Research Questions
	Initial Experiments
	Text Processing for Ontology Learning
	Pattern Selection and Combination

	OntoCase
	OntoCase Outline
	Pattern Base
	Retrieval
	Reuse
	Future Work - Revise and Retain

	Summary and Outlook

	Towards Community-Based Evolution of Knowledge-Intensive Systems
	Introduction
	Progress Beyond the State of the Art
	Single User Ontology Evolution
	Collaborative Ontology Engineering
	Towards Community-Based Evolution of Knowledge-Intensive Systems

	Requirements for Our Framework
	A Constructivist Approach
	Modelling of Communities: Norms and Negotiation
	Design for a Framework

	DOGMA Ontology Engineering
	Language Versus Conceptual Level
	Ontological Commitments
	Context Dependency Management

	Community-Based Evolution of an HR Knowledge-Intensive System
	Defining RCD Maps
	Defining Occupation Specifications
	Community-Based Meaning Argumentation and Negotiation

	Implementation
	Discussion and Conclusion
	Templates
	Internal and External Norms
	Multi-disciplinary Approach
	Human-Computer Confluence

	ImageNotion: Methodology, Tool Support and Evaluation
	Introduction
	State-of-the-Art for Semantic Image Annotation
	Usual Workflow
	Problems of the Usual Workflow
	Our Approach: Work Integrated Ontology Development

	Collaborative and Work Integrated Ontology Development
	Advantages of Collaborative Ontology Development
	Requirements for a Collaborative Ontology Development
	The Ontology Maturing Process Model

	Related Work
	The ImageNotion Formalism
	Definition of an Imagenotion
	Modeling Ontologies Using Imagenotions
	The ImageNotion Formalism
	Reasoning and Querying Imagenotions

	The ImageNotion Methodology
	Ontology Maturing with Imagenotions
	Maturing Processes for Descriptive Information and Relations
	Overview of the Complete Workflow for Semantic Image Annotation
	Semantic Annotation of Images Using Imagenotions

	The ImageNotion Tool
	User Groups
	Implementation
	Creation of New Imagenotions
	Editing an Imagenotion and Creating Relations Between Imagenotions
	Semantic Image Annotation
	Import of Existing Ontologies

	Evaluation
	Evaluation Setup
	Overall Result
	Detailed View on User’s Interactions
	Survey of the ImageNotion Tool
	Discussion

	Conclusion and Future Work
	References

	Optimal Learning of Ontology Mappings from Human Interactions
	Introduction
	Background
	Previous Work
	Learning from Manual Mappings
	Research Problem

	Learning Experiments
	Machine Learning Employed in FIGO

	Analysis and Discussion
	Conclusions and Future Work
	References

	Automatic Feeding of an Innovation Knowledge Base Using a Semantic Representation of Field Knowledge
	Introduction
	Information Extraction and Word Sense Disambiguation
	The Innovation Field and Its Operators
	Project Objective
	Automatic Feeding System Architecture
	Working Principle
	Mapping Between Concepts and WordNet Synsets
	Temporary Knowledge Base TKB
	Innovation Knowledge Base IKB
	Feeding the Innovation Knowledge Base
	Displaying the Results

	Experimentations
	Conclusion and Perspectives

	Ontology Learning for Search Applications
	Introduction
	Ontological Quality
	Ontology Learning with Unsupervised Keyphrase Extraction
	Building Project Management Ontologies in STATOIL
	Ontology-Driven Search
	Search Quality of Ontologies
	Related Work
	Conclusions
	References

	MultiBeeBrowse – Accessible Browsing on Unstructured Metadata
	Introduction
	Motivations
	Related Projects
	Outline of the Paper

	Browsing on Interconnected Metadata
	From Searching to Filtering
	From Filtering to Browsing

	Zoomable Browsing Context
	Collaborative Browsing
	Adaptable Browsing Interface
	Results Presentation
	Using Results for Refining Queries
	Adaptive Concepts Suggestion
	Accessible Predicates Names

	Reference Implementation of Accessible Browsing
	Evaluation
	Conclusions and Future Work

	Matching of Ontologies with XML Schemas Using a Generic Metamodel
	Introduction
	Related Work
	The Generic Metamodel $GeRoMe$
	Schema Matching in $GeRoMeSuite$
	Graph Traversal Strategies
	Matcher Components
	Matcher Configuration

	Evaluation
	Comparison with COMA++
	Effect of Filter Configuration on the Quality
	Effect of Traversals on the Quality
	Discussion of the Results

	Conclusion

	Labeling Data Extracted from the Web
	Introduction
	Related Work
	Probabilistic Labeling of Anonymous Data
	Candidate Label Selection
	Affinity-Based Labeling

	Selecting Candidate Labels
	Label Selection Algorithm

	Speculative Labeling
	Formulating Speculative Queries
	The Speculative Labeling Algorithm

	Experimental Evaluation
	Effectiveness of Speculative Labeling
	Impact of Sample Size
	Cost of Speculative Labeling
	Candidate Label Selection
	Label Selection and Assignment

	Conclusion

	Data Quality Enhancement of Databases Using Ontologies and Inductive Reasoning
	Introduction
	Basic Notions
	Motivating Example
	Drug Terminologies

	Terminology Enrichment Using Inductive Reasoning
	Transformation into a Description Logic Formalism
	Enriching the Description Logic Via Induction
	Ontology Refinement

	Ontology-Based Detection and Repairing
	Detection Method
	Evaluation

	Application to Other Domains
	Related Work
	Conclusion

	Web Services-Based Annotation Application for Semantic Annotation of Highly Specialised Documents About the Field of Marketing
	Introduction
	Related Work
	Requirements and Approach Overview
	Requirements
	Approach Overview

	Annotation
	Dublin Core Annotation
	Thesaurus Annotation
	Ontology-Based Annotation

	Evaluation
	Experimental Results
	End-Users Feed-Back

	Conclusions
	References

	Ontology Based Categorization in eGovernment Application
	Introduction
	Three Types of Categorization
	Ontology
	Virtual Class
	Virtual Object Property
	Virtual Potential Property

	Tool
	Technology
	Main Methods

	Conclusion

	Semantic Matching Based on Enterprise Ontologies
	Introduction
	Background
	The Semantic Matching Approach
	General Framework
	Preliminaries
	Process Steps

	Document Ranking
	Ranking Example

	Conclusions

	Author Index

