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Abstract. Pawlak rough set theory is a powerful mathematic tool to deal with 
imprecise, uncertainty and incomplete dataset. In this paper, we study the fuzzy 
rough set attribute reduction (fuzzy RSAR) in fuzzy information systems. Firstly, 
we present the formal definition of a kind new rough set form-the composed 
fuzzy rough set. The second, some properties of extension forms of Pawlak rough 
set are also discussed. Lastly, we illustrate the fuzzy RSAR based on composed 
fuzzy rough set, and a simple example is given to show this approach can retain 
less attributes and entailing higher classification accuracy than the crisp 
RST-based reduction method.  
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1   Introduction 

It is well known many classification problems involve high-dimensional descriptions 
of input features. However, some existing methods tend to destroy the underlying 
semantics of the features after reduction or require additional information beyond the 
given data set. A technique that can reduce the dimensionality by using information 
contained within the data set and preserving the meaning of the features is clearly 
desirable. Rough Sets Theory (RST) can be used as such a tool to discover data 
dependencies and reduce the number of attributes contained in data set by purely 
structural methods [4]. 

With more than twenty years development [5], RST has indeed become an 
expanding research area, recent theoretical developments are collected in papers [7]. 
However, in traditional Pawlak RST, an equivalence relation seems to be a very 
stringent condition which limits its applications fields. As well known, the fuzzy set 
theory and rough set theory represent different aspects of uncertainty and aim to two 
different purpose, so many attempts have been made to combine these two theories 
[1,2,9]. Because the values of attributes may often be both crisp and real-valued in 
more and more application cases, therefore the traditional RST encounters a problem. 
Based on information entropy, paper [8] presents a discretization algorithm of 
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real-valued attributes values information system for selecting cut points. Because the 
discretization process itself often requires some additional information beyond the 
aimed data sets, the paper [4] introduce a new concepts for fuzzy-rough attribute 
reduction based on fuzzy rough sets. 

In this paper, a kind new rough set concept is presented and the composed fuzzy 
rough set is formally defined and its properties are discussed. The fuzzy rough attribute 
reduction based on the composed fuzzy rough set is illustrated with a simple example. 
This approach can retain less attributes and entail higher classification accuracy than 
the crisp RST-based reduction method. The rest of this paper is organized as follows. 
Section 2 discusses some related basic theory with this paper later, such as fuzzy set, 
Pawlak rough set theory, information system, and so forth. Section 3 mainly explores 
some extension Pawlak rough set models. Firstly some properties of generalized fuzzy 
rough set are discussed. The second, the composed fuzzy rough set is initiated and 
formally defined; its some properties are also discussed in detailed. The four section 
illustrate the fuzzy RSAR based the composed fuzzy rough set; and an example is given 
to show its efficiency and accuracy in classification. In section 5 we make a conclusion 
on the paper. 

2   Preliminaries 

Let U= {u1, u2, …, un} stands for the finite and nonempty set of objects. The power 
P(U) can be viewed as a subset of fuzzy power ℱ(U), X∈ℱ(U) can be represented as 
form X={(u, μX(u))| u ∈U}, where for every u∈U, the value μX(u)∈[0, 1]. X is also 
represented as form X=(μX(u1), μX(u2), …, μX(un)) when U is finite set, or as X=ʃμX(u)/u 
when U is infinite set. For arbitrary λ∈I=[0, 1], the λ-level Xλ and the strong λ-level 

Xλ+ are respectively Xλ={u∈U|μX(u)≥λ} and Xλ+={u∈U|μX(u)>λ}, X=
Iλ∈

∨ (λ∧Xλ) 

=
Iλ∈

∨ (λ∧Xλ+), , X0=U, X1+=Ø [7]. A fuzzy binary relation R over U is a function R: 

U×U→[0, 1], its membership function is represented by μR(x, y). The class of all fuzzy 
binary relations of U will be denoted as ℱ(U×U). 

Let R be an ordinary equivalence relation on U, U/R denotes the equivalence classes 

by R. For every u∈U, [u]R∈U/R denotes the equivalence class of u, the pair (U, R) is 

called as the Pawlak approximation space. Let X⊆U, 

                            R X={u|[u]R⊆X}, R X={u|[u]R∩X≠Ø}                                    (2.1) 

Where R X is called the lower approximation of X, while R X is the upper 

approximation of X, ( R X, R X) is called as rough set of X. αR(X) =card( R X) 

/card( R X) denotes the accuracy of approximation, R X- R X as the boundary set of 

X. The fuzzy set X
~

 over U is defined as following [7]: 
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                            X~μ (u)=
)card([u]
X)card([u]

R

R ∩ , for every object u∈U                           (2.2) 

So, X~μ (u)=1 iff u∈ R X; X~μ (u)=0 iff u∈U- R X; otherwise 0< X~μ (u)<1 iff 

u∈R X- R X. However, if X is fuzzy rough set or R is fuzzy equivalence relation over 

U, the above calculation formula of membership function X~μ (u) may need some 

changes in form.  
Information system (IS) is an ordered quadruple S=(U, A, f, V), where U={u1, u2, 

…, un} is a non-empty finite objects set, A={a1, a2, …, am} is a non-empty finite 

attributes set. V= Aa∈∪ Va is a set of attributes values, where Va is the domain of 

attribute a∈A. f: U×A→V is an information function, where for all (u, a)∈U×A, f(u, 
a)∈Va, Inf(u)={(a, fa(u))|a∈A} is called as an information vector of u.  

Let P⊆A, Ind(P)={(u, v)∈U×U| for all a∈P, f(a, u)=f(a, v)}. If (u, v)∈Ind(P), then 

u and v are indiscernible under attributes subset P. For every u∈U, its equivalence 

class is denoted as [u]P={v|(u, v)∈Ind(P)} and U/P={[u]P|u∈U}. Let P, Q⊆A, the 

positive region POSP(Q) =
U/QX∈

∪ P X contains all objects of U that can be classified to 

classes of U/Q by using the knowledge in attributes P. For P, Q⊆A, we call Q depends 

on P in a degree k (0≤k≤1), where 

                                         k=γP(Q)=
card(U)

(Q))card(POS P                                              (2.3) 

If k=1, then call Q depends totally on P; if 0<k<1, then call Q depends partially on P 

with the degree k, denoted by P⇒k Q; and if k=0 then call Q does not depend on P. 

3   Extensions of Pawlak Rough Set Model 

Let U={u1, u2, …, un} and W={w1, w2, …, wm} be two finite and nonempty sets, R∈

ℱ(U×W) is fuzzy relation from U to W. When U and W are finite nonempty sets, R can 

be represented by n*m matrix R=(rij)n×m where rij=μR(ui, wj)∈[0, 1], for all i=1, 2, …, n, 

j=1, 2, …, m [3]. For each λ∈[0, 1], matrix (λrij)n×m denotes the cut relation Rλ, where 

λrij=1 iff rij≥λ, otherwise λrij=0. If R∈P(U×W), then for all u∈U, we call RW(u)={w

∈W|(u, w)∈R} as the successor neighborhood of u. 

Definition 1. Let U be two finite and nonempty sets, R∈ℱ(U×W). Y∈ℱ(W), u∈U, 

the generalized fuzzy rough set (
R

apr Y, Rapr Y) can be defined as following:  
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                          R
apr Y(u)=

Ww
min

∈
{max(1-R(u, w), Y(w))} 

                          Rapr Y(u)=
Ww

max
∈

{min(R(u, w), Y(w))}                                   (3.1) 

Where the triple (U, W, R) is called as generalized fuzzy approximation space. 

Theorem 1. Let R∈ℱ(U×W), then for all Y∈ℱ (W) and arbitrary α ∈[0, 1], 

(
R

apr Y)α=
+−α)(1R

apr Yα,  ( Rapr Y)α= αRapr Yα  

(
R

apr X)α+=
α)(1R

apr
−

Yα+,  ( Rapr Y)α+=
+αRapr Yα+  

Proof. For arbitrary α∈[0, 1], 

(
R

apr Y) α={ u ∈U|
R

apr Y(u)≥α} 

= { u ∈U |
Ww

min
∈

{ max(1-R(u, w), Y(w))}≥α} 

= { u ∈U| for all w ∈W, max(1-R(u, w), Y(w))≥α} 
= { u ∈U| for each w ∈W, 1-R(u, w)≥α, or Y(w)≥α} 
= { u ∈U| { w ∈W | 1-R(u, w)≥α}∪{ w∈W | Y(w)≥α}=W } 
= { u ∈U| { w ∈W | R(u, w)>1-α}⊆{ w∈W | Y(w)≥α} } 

= { u ∈U| (RW(u))(1-α)+⊆Y α}=
+−α)(1R

apr Y α 

( Rapr Y) α={ u ∈U | Rapr Y(u)≥α} 

= { u ∈U |
Ww

max
∈

{ min(R(u, w), Y(w))}≥α} 

= { u ∈U |∃w ∈W, min(R(u, w), Y(w))≥α} 
= { u ∈U |∃w ∈W, R(u, w) ≥α and Y(w)≥α} 

= { u ∈U | (RW(u)) α∩ Y α ≠Ø}=
αRapr Y α 

(
R

apr Y) α+= { u ∈U |
R

apr Y(u)>α} 

= { u ∈U |
Ww

min
∈

{ max(1-R(u, w), Y(w))}>α} 

= { u ∈U | for each w∈W, max(1-R(u, w), Y(w))>α} 
= { u ∈U | for each w∈W, 1-R(u, w)>α, or Y(w)>α} 
={ u∈U | { w∈W | 1-R(u, w)>α}∪{ w∈W | Y(w)>α}=W } 
={ u∈U | { w∈W | R(u, w)≥1-α}⊆{ w∈W | Y(w)>α}=W } 

= { u ∈U | (RW(u))1-α⊆Yα+}=
α)(1R

apr
−

Y α+ 

( Rapr Y) α+= { u ∈U | Rapr Y(u)>α} 

= { u ∈U |
Ww

max
∈

{ min(R(u, w), Y(w))}>α} 
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= { u ∈U |∃w ∈W, min(R(u, w), Y(w))>α} 
= { u ∈U |∃w ∈W, R(u, w)>α and Y(w)>α} 

= { u ∈U | (RW(u))α+∩Y α+≠Ø}=
+αRapr Y α+ 

Remark 1. From the theorem 1 and the decompose theory, we can immediately 

conclude that the following conclusion. 

1) 
R

apr Y = 
[0,1]α∈
∨ (α∧(

+−α)(1R
apr Y α))= 

[0,1]α∈
∨ (α∧(

α)(1R
apr

−
Y α+)) 

2) Rapr Y = 
[0,1]α∈
∨ (α∧(

+αRapr Y α+))= 
[0,1]α∈
∨ (α∧(

αRapr Y α)) 

In paper [6], Wu construct the generalized fuzzy rough sets exactly starting from the 

above formulas 1) and 2). Our results in the paper show these two approaches are 

totally equivalence. 
Let the fuzzy equivalence classes set U/R={F1, F2, …, F k}, we consider the 

approximations problem for every X∈ℱ(U), let RApr X denotes upper approxim 

-ation and 
R

Apr X lower approximation respectively. Because the membership values 

of individual object to the approximations are not explicitly available directly, so we 
need obtain them from another point. Let Fi∈U/R denoted by Fi={(u, μFi(u))|u∈U}, 
consider the following fuzzy set forms:  

             R
Apr X=

k,1,i
Σ

= RXμ (F i)/F i  RApr X=
k,1,i

Σ
= RXμ (F i)/F i                 (3.2) 

Where RX  and RX  are short writing of fuzzy sets 
R

Apr X and RApr X, 

respectively. For every F∈U/R= {F1, F2, …, F k}, the membership degree values 

RXμ (F) and RXμ (F) can be respectively calculated by the following: 

RXμ (F)=
Uv

min
∈

max (1- Fμ (v), X(v)), RXμ (F)=
Uv

max
∈

min ( Fμ (v), X(v)). 

On the other hand, for every u∈U,  

RXμ (u)=
U/RF

max
∈

min ( Fμ (u), RXμ (F)), RXμ (u)=
U/RF

max
∈

min ( Fμ (u), RXμ (F)). 

If R is a crisp equivalence relation over U and U/R={F1, F2, …, F k}. Let X∈P(U), 

then the RXμ (F) and RXμ (F) can be computed as follows. 

RXμ (F)=
Uv

min
∈

max (1- Fμ (v), X (v)) =
Fv

min
∈

X (v) 

RXμ (F)=
Uv

max
∈

min ( Fμ (v), X (v)) =
Fv

max
∈

X (v) 
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It means that RXμ (F) =1 iff F⊆X, otherwise RXμ (F)=0; and RXμ (F)=1 iff 

F∩X≠Ø, other wise RXμ (F)=0. Therefore, 

RXμ (u)=
U/RF

max
∈

min ( Fμ (u), RXμ (F)) =max { Fμ (u) | u ∈F and F⊆X} 

RXμ (u)=
U/RF

max
∈

min ( Fμ (u), RXμ (F)) = max { Fμ (u) | u ∈F and F∩X≠Ø} 

Above statements show that our viewpoint is a natural generalization of Pawlak 

rough set from crisp case to the fuzzy circumstance. Below the paper, we will present 

the more general statement of above extension. Let U= {u1, u2, …, un} and W={w1, w2, 

…, wm} be two finite and nonempty universe,  

                        R=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

nmn2n1

2m2221

1m1211

rrr

rrr
rrr

= (r i j ) n×m=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

n

2

1

r

r
r

=(r’1, r’2,…, r’ m)               (3.3) 

Where for all i=1, 2, …, n, j=1, 2, …, m, rij=μR(ui, wj), RW(ui)= ri=(ri1, ri2, …, rim), 

RU(wj)=r’j=(r1j, r2j, …, rnj)
T, R’=(r’ij)m×n�ℱ(W×U), where r’ji=rij.  

Definition 2. Let U and W be two finite and nonempty sets, R∈ℱ(U×W). X∈ℱ(W), 

then RApr X, 
R

Apr X∈ℱ(W) can be defined as following. For all v∈W, 

                  R
Apr X(v)=

Uu
max

∈
min(R’(v, u), 

Ww
min

∈
max(1-R(u, w), X(w))), 

                     RApr X(v)=
Uu

max
∈

min(R’(v, u), 
Ww

max
∈

min(R(u, w), X(w)))              (3.4) 

The pair (
R

Apr X, RApr X) is called as the composed fuzzy rough set of X, and the 

triple (U, W, R) as the composed fuzzy approximation space. 

Proposition 4. Let U and W be two finite and nonempty universes, R∈ℱ (U×W). Then 

for all X∈ℱ (W), 

R
Apr X= R'apr (

R
apr X), RApr X= R'apr ( Rapr X). 

Where 
R

apr and Rapr are respectively generalized fuzzy rough lower and upper 

approximation operators, R'apr  is upper approximation operator related with R’. 
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If U=W and R is a fuzzy equivalence relation, then R=R’ and R’ (v, u) =R (u, v). For 

each u∈U, Fu=
Uv
Σ
∈

R (u, v)/v. Furthermore,  

                         R
Apr X= 

Uu
Σ
∈

(
Uv

min
∈

max(1-R(u, v), X(v)))/Fu 

                           RApr X= 
Uu
Σ
∈

(
Uv

max
∈

min(R(u, v), X(v)))/Fu                                 (3.5) 

Therefore, from above definition 2, 

R
Apr X (v) =

Uu
max

∈
min (R’ (v, u), 

Ww
min

∈
max (1-R(u, w), X(w))) 

=
Uu

max
∈

min ( Fuμ (v), RXμ (Fu)) 

RApr X (v) =
Uu

max
∈

min (R’ (v, u), 
Ww

max
∈

min(R (u, w), X(w))) 

=
Uu

max
∈

min ( Fuμ (v), RXμ (F)) 

Proposition 5. Let U be finite and nonempty set, R∈P (U×U), then for all X∈P(U),  

R
Apr X= R X,    RApr X= R X 

Proof. Since R∈P (U×U), X∈P(U), then for arbitrary u∈U, there exists a unique 

equivalence class [u]R=
Uv
Σ
∈

R(u, v)/v. Therefore, for all X∈P(U) and u∈U, 

R
Apr X (v) =

Uu
max

∈
min(R’(v, u), 

Ww
min

∈
max(1-R(u, w), X(w))) 

=
Uu

max
∈

min(R (v, u), min (
R[u]w

min
∉

max (1-R(u, w), X(w)), 
R[u]w

min
∈

max(1-R(u, w), X(w)))) 

=
Uu

max
∈

min(R (v, u), 
R[u]w

min
∈

X (w)) 

=max (
R[v]u

max
∈

min(R (v, u), 
R[u]w

min
∈

X(w)), 
R[v]u

max
∉

min(R (v, u), 
R[u]w

min
∈

X(w))) 

=
R[v]w

min
∈

X (w) = R X(v) 

RApr X (v) =
Uu

max
∈

min(R’(v, u), 
Ww

max
∈

min(R(u, w), X(w))) 

=
Uu

max
∈

min(R (v, u), max(
R[u]w

max
∈

min(R(u, w), X(w)), 
R[u]w

max
∉

min(R(u, w), X(w)))) 

=
Uu

max
∈

min(R (v, u), 
R[u]w

max
∈

X(w)) 

=max (
R[v]u

max
∈

min(R (v, u), 
R[u]w

max
∈

X(w)), 
R[v]u

max
∉

min(R(v, u), 
R[u]w

max
∈

X(w))) 

=
R[v]w

max
∈

X (w) = R X (v). 
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That is 
R

Apr X= R X, RApr X= R X. 

Theorem 2. Let R∈ℱ(U×W), then for all X∈ℱ(W), and arbitrary α∈[0, 1],  

1) (
R

Apr X) α= α)(R'apr
+−α)(1R

apr Xα,    2) ( RApr X)α= α)(R'apr
αRapr Xα, 

3) (
R

Apr X) α+=
α)(R'apr

α)(1R
apr

−
Xα+,   4) ( RApr X)α+=

+α)(R'apr
+αRapr Xα+. 

Proof. For arbitrary α∈ [0, 1], 

1) (
R

Apr X) α= {v ∈U|
R

Apr X(v)≥α} 

= {v ∈U|
Uu

max
∈

min (R’ (v, u), 
Ww

min
∈

max(1-R(u, w), X(w)))≥α} 

= {v ∈U|∃u ∈U, R’ (v, u)≥α and 
Ww

min
∈

max(1-R(u, w), X(w))≥α} 

= {v ∈U| (R’v)α∩(
R

apr X)α≠Ø }=
α)(R'apr (

R
apr X)α= α)(R'apr

+α)-(1R
apr Xα 

2) ( RApr X)α={v ∈U| RApr X(v)≥α} 

= {v ∈U|
Uu

max
∈

min(R’(v, u), 
Ww

max
∈

min(R(u, w), X(w)))≥α} 

= {v ∈U|∃u ∈U, R’(v, u)≥α and 
Ww

max
∈

min(R(u, w), X(w))≥α} 

= {v ∈U| (R’v)α∩( Rapr X)α≠Ø }=
α)(R'apr ( Rapr X)α= α)(R'apr

αRapr Xα 

3) (
R

Apr X) α+= {v ∈U|
R

Apr X (u)>α} 

= {v ∈U|
Uu

max
∈

min (R’ (v, u), 
Ww

min
∈

max (1-R(u, w), X(w)))>α} 

= {v ∈U|∃u ∈U, R’ (v, u)>α and 
Ww

min
∈

max (1-R (u, w), X(w))>α} 

= {v ∈U| (R’v) α+∩(
R

apr X)α+≠Ø }=
+α)(R'apr (

R
apr X) α+=

α)(R'apr
α)-(1R

apr Xα+ 

4) ( RApr X)α+={ v∈U| RApr X(v)>α} 

= {v∈U|
Uu

max
∈

min(R’(v, u), 
Ww

max
∈

min(R(u, w), X(w)))>α} 

= {v∈U|∃u∈U, (R’(v, u)>α and 
Ww

max
∈

min(R(u, w), X(w))>α) 

= {v∈U| (R’v)α+∩( Rapr X)α+≠Ø }=
+α)(R'apr ( Rapr X)α+=

+α)(R'apr
+αRapr Xα+ 

Remark 2. From above theorem 2, then 

1) 
R

Apr Y=
[0,1]α∈
∨ (α∧(

α)(R'apr
+α)-(1R

apr Yα))=
[0,1]α∈
∨ (α∧(

α)(R'apr
α)-(1R

apr Xα+)), 

2) RApr Y=
[0,1]α∈
∨ (α∧(

α)(R'apr
αRapr Xα))=

[0,1]α∈
∨ (α∧(

+α)(R'apr
+αRapr Xα+)). 
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4   Attribute Reduction Based on Composed Fuzzy-Rough Set 

An information system S=(U, A, f, V) is called as decision table system, if A=C∪D 
and C∩D=∅, where C is the conditional attributes set and D≠∅ is the set of decision 
attributes. The issue of decision table mainly focuses on how to obtain whole rules by 
as less rules and attributes as possible from the information table. The main approach is 
attribute reduction including the reduction of attributes-values and deletion of 
redundant rules. In fuzzy case, fuzzy rough set attributes reduction (Fuzzy RSAR) 
should be built on the notion of the composed fuzzy lower approximation. Let fuzzy 
decision table system S=(U, C∪{d}, f, V), for arbitrary P⊆C, the fuzzy positive region 

POSP({d})=
U/{d}F∈
∪

P
Apr F, where ({d})POSPμ (u) =

U/{d}F
sup
∈

PFμ (u), Then the 

dependency function γP({d}) can be calculated by the following: 

                            γP({d})=
|U|

|({d})POS| P =
|U|

(u)μΣ ({d})POSUu P∈                              (4.1) 

In fuzzy case, we use the fuzzy positive region POSC({d}) rather than |U| as the 

denominator of normalization, then 

                          γ({d})=
|({d})POS|
|({d})POS|

C

P =
(u)μΣ
(u)μΣ

({d})POSUu

({d})POSUu

C

P

∈

∈                                (4.2) 

An data set example from stock market [10] is given to illustrate the operation of 

fuzzy RSAR, in which U={u1, u2, u3, u4, u5, u6, u7, u8}, two real-valued attributes are 

feature a (profit ratio of per stock) and feature b (harvest ratio of per capital), decision 

2-valued attribute is d (representing invest or not), fuzzy equivalence class over U  

are (Ha, La) partitioned by attribute a and (Hb, Lb) partitioned by attribute b, 

respectively. 

Table 1. Stock Information Table 

a：profit ratio b：harvest ratio of per capitalU 
La Ha Lb Hb 

d：investment 

1 1 0 1 0 Y 
2 0.7 0.3 0.2 0.8 N 
3 0.8 0.2 0.9 0.1 Y 
4 0.9 0.1 1 0 Y 
5 0.1 0.9 0.2 0.8 N 
6 0.8 0.2 1 0 Y 
7 0.1 0.9 0.2 0.8 N 
8 0.8 0.2 0.2 0.8 Y 
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Setting A={a}, B={b}, C={a, b} and Q={d}, then the following equivalence classes 

are obtained from the above decision table. 

U/Q={X, Y}={{u1, u3, u4, u6, u8}, {u2, u5, u7}}. 

U/A= {La=(1.0,0.7,0.8,0.9,0.1,0.8,0.1,0.8), Ha= (0.0,0.3,0.2,0.1,0.9,0.2,0.9,0.2)}, 

U/B= {Lb= (1.0,0.2,0.9,1.0,0.2,1.0,0.2,0.2), Hb= (0.0,0.8,0.1,0.0,0.8,0.0,0.8,0.8)}, 

U/C= {La∩Lb, La∩Hb, Ha∩Lb, Ha∩Hb} 

= {(1.0, 0.2, 0.8, 0.9, 0.1, 0.8, 0.1, 0.2), (0.0, 0.7, 0.1, 0.0, 0.1, 0.0, 0.1, 0.8), 

(0.0, 0.2, 0.2, 0.1, 0.2, 0.2, 0.2, 0.2), (0.0, 0.3, 0.1, 0.0, 0.8, 0.0, 0.8, 0.2)}. 

The first step is to calculate the lower approximations of the sets A, B and C. For 

simplicity, only A will be considered here. For object u1 and decision equivalence class 

X= {u1, u3, u4, u6, u8} and Y={u2, u5, u7},  

AXμ (u1)=
U/AF

max
∈

min (μF (u1), 
Uy

min
∈

max {1-μF(y), μ X (y)})=0.3 

AYμ (u1)=
A/UF

max
∈

min (μF(u1), 
Uy

min
∈

max{1-μF(y), μX(y)})=0.0 

Hence, (Q)POSAμ ( u1) =0.3. For the other objects, (Q)POSAμ (u2)=0.3, (Q)POSAμ (u3) 

=0.3, (Q)POSAμ (u4) =0.3, (Q)POSAμ (u5)=0.8, (Q)POSAμ (u6)=0.2, (Q)POSAμ (u7)=0.8, 

(Q)POSAμ (u8)=0.3. Then rA(Q)=
|U|

(u)μΣ (Q)POSUu A∈ =3.3/8=0.4125. Calculating for B 

and C gives rB(Q)=5/8=0.625, rC(Q)=5.4/8=0.675. Because there are only  
two condition attributes in this example, so its core and reduction are set {a, b}. The 
result is exactly in accordance with that of come from by the method of fuzzy cluster in 
paper [10]. 

5   Conclusions 

As a suitable mathematical model to handle partial knowledge in data set, traditional 
RSAR encounters some critical problems when the noise and real-valued attributes 
value is included in the information system. The fuzzy RSAR method can alleviate 
these important problems and has been applied in more than one field with very 
promising results. In this paper, we study the fuzzy RSAR methods used in fuzzy 
information systems. We extend the rough set model to fuzzy case and present the 
formal definition of the composed fuzzy rough set. We also illustrate the fuzzy RSAR 
method and give a simple example to show its higher efficiency and accuracy. 

References 

1. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal General 
Systems 17(2-3), 191–209 (1990) 

2. Jensen, R., Shen, Q.: Fuzzy rough attribute reduction with application to web categorization. 
Fuzzy Sets and Systems 141, 469–485 (2004) 



 Composed Fuzzy Rough Set and Its Applications in Fuzzy RSAR 763 

 

3. Liu, G.L.: The Axiomatic Systems of Rough Fuzzy Sets on Fuzzy Approximation Space (in 
Chinese). Chinese Journal Of Computers 27(9), 1187–1191 (2004) 

4. Pawlak, Z.: Rough sets. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining, pp. 
3–8. Kluwer Academic Publishers, Boston (1997) 

5. Slowinski, R.: Intelligent Decision Support: Handbook of Applications and Advances of the 
Rough Sets Theory, pp. 287–304. Kluwer Academic Publishers, Dordrecht (1992) 

6. Wu, W.-Z., Mi, J.-S., Zhang, W.-X.: Generalized fuzzy rough sets. Information Sciences 151, 
263–282 (2003) 

7. Zhang, W., Wu, W., Liang, J., Li, D.: Theory and Methods of the Rough Sets (in Chinese). 
Sciences Publisher Press, Beijing (2001) 

8. Hong, X., Zhong, C.H., Xiao, N.D.: Discretization of Continuous Attributes in Rough Set 
Theory Based on Information Entropy(in Chinese). Chinese Journal of Computers 28(9), 
1570–1573 (2005) 

9. Yao, Y.Y.: A comparative study of fuzzy sets and rough sets. J. of Information 
Science 109(1-4), 227–242 (1998) 

10. Zhang, S., Sun, J., Zhang, J.: A Study on the Reducing Method of Rough Set Decision Table 
Based on Fuzzy Cluster (in Chinese). Computer Engineering and Applications 15, 175–177 
(2004) 


	Composed Fuzzy Rough Set and Its Applications in Fuzzy RSAR
	Introduction
	Preliminaries
	Extensions of Pawlak Rough Set Model
	Attribute Reduction Based on Composed Fuzzy-Rough Set
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




