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Abstract. General-purpose computing is taking an irreversible step toward on-
chip parallel architectures. One way to enhance the performance of chip multi-
processors is the use of thread-level speculation (TLS). Identifying the points 
where the speculative threads will be spawned becomes one of the critical is-
sues of this kind of architectures. In this paper, a criterion for selecting the re-
gion to be speculatively executed is presented to identify potential sources of 
speculative parallelism in general-purpose programs. A dynamic profiling 
method has been provided to search a large space of TLS parallelization 
schemes and where parallelism was located within the application. We analyze 
key factors impacting speculative thread-level parallelism of SPEC CPU2000, 
evaluate whether a given application or parts of it are suitable for TLS technol-
ogy, and study how to balance thread partition for efficiently exploiting specu-
lative thread-level parallelism. It shows that the inter-thread data dependences 
are ubiquitous and the synchronization mechanism is necessary; Return value 
prediction and loop unrolling are important to improve performance. The in-
formation we got can be used to guide the thread partition of TLS. 

1   Introduction 

We have witnessed that chip multiprocessors (CMPs), or multi-core processors, have 
become a common way of reducing chip complexity and power consumption while 
maintaining high performance. General-purpose computing is taking an irreversible 
step toward on-chip parallel architectures [1]. The ability to place multiple cores or 
many cores on the same chip will significantly increase the communication bandwidth 
and decrease the communication latency seen by threads executing on different proc-
essing cores. This enables the exploitation of finer-grained thread-level parallelism on 
a multicore chip as compared to a conventional symmetric multiprocessor (SMPs). 
But current parallel software is limited since many programs have been written using 
serial algorithms.  

On the one hand, software transformations are a possible way for extracting  
some parallelism from these codes. Unfortunately, although parallel compilers have 
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made significant efforts, they still fail to automatically parallelize general-purpose 
single-threaded programs which have complex data dependence structures caused by 
non-linear subscripts, pointers, or function calls within code sections [2,3,4]. On the 
other hand, many applications may still turn out to have a large amount of parallelism, 
but are still only hand-parallelizeable with state-of-the-art parallel programming mod-
els. Manual parallelization can provide good performance, but typically requires not 
only a different initial program design but also programmers with additional skills and 
efforts. In a word, the primary problem is that creating parallelized versions of legacy 
code is difficult.  

Can simple hardware support on multicore chip help to parallelize general-purpose 
programs? To parallelize these codes, researchers have proposed Thread-Level Specu-
lation (TLS) that allows to parallelize regions of code in the presence of ambigu-
ous data dependence, thus extracting parallelism whatever dynamic dependences 
actually exist at run-time [5,6,7]. Speculative CMPs use hardware to enforce depend-
ence, allowing a parallelizing compiler to generate multithreaded code without need-
ing to prove independence. In these systems, a sequential program is decomposed into 
threads to be executed in parallel; dependent threads cause performance degradation, 
but do not affect correctness. Speculative threads are thus not limited by the pro-
grammer’s or the compiler’s ability to find guaranteed parallel threads. Furthermore, 
speculative threads have the potential to outperform even perfect static parallelization 
by exploiting dynamic parallelism, unlike a multiprocessor which requires conserva-
tive synchronization to preserve correct program semantics. But for performance 
reasons, thread decomposition is expected to reduce the run-time overheads of data 
dependence, inter-thread control-flow misprediction, and load imbalance. Unfortu-
nately, these kinds of threads are very hard to find, especially in non-numerical pro-
grams. Identifying the points where the speculative threads will be spawned becomes 
one of the critical issues of this kind of architectures.  

Several hardware designs have been proposed for this speculative thread-level par-
allelism (STP) model [5,6,7,9,10], but so far the speedup achieved on large general-
purpose code has been limited. The decision on where to speculate can make a large 
difference in the resulting performance. If the performance is poor, we gain little 
insight on why it does not work, or whether it is the parallelization scheme or ma-
chine model (or both) that should be improved. As a consequence, poor results may 
not reflect any inherent limitations of the STP model, but rather the way it was  
applied. 

The goal of this paper is to propose a criterion for selecting the region to be specu-
latively executed and to identify potential sources of speculative parallelism in gen-
eral-purpose programs. We also evaluate whether a given application or parts of it are 
suitable for TLS technology, and study how to balance thread partition for efficiently 
exploiting speculative thread-level parallelism. 

The rest of this paper is organized as follows. In Section 2 we describe the STP 
models for subroutine and loop level speculation. The analysis method is described in 
Section 3, followed by experiment analysis in Section 4. Finally we conclude in  
Section 5. 
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2   Speculative Thread-Level Parallel Execution Model 

2.1   Candidate Threads  

The thread partition is based on the control flow information, usually choose loop and 
subroutine structures as the candidate threads. For subroutine, its boundaries often 
separate fairly independent computations, the local variables wouldn’t violate with the 
outer program; and for the loop body, every iteration does the similar operations to 
the same data set, and is independent each other. The data dependence between itera-
tions is regular. Both of them are good choices for candidate threads. 

2.2   Speculative Execution Model for Loops 

The speculative execution model for loops is shown in Fig.1, for comparing, Fig.1(a) 
shows the traditional execution model and Fig.1(b) shows the speculative execution 
model. At the beginning of the speculative execution, the main processor informs all 
the other processors to load and execute different iterations of the loop by sending a 
“Loop_Start” signal to them. In the process of speculative execution, only the head 
processor can write to memory directly, and all the other speculative processor’s 
memory references will be cached in its speculative buffer. The next processor will 
become the new head processor after the current head processor committed. A new 
iteration will be loaded and executed after a processor committed its result into mem-
ory. When a processor found that the exit condition of the loop becomes true, a 
“Loop_End” signal would be send to all the other processors to finish the speculative 
execution of the specific loop structure, and only the main processor continue running 
the code followed the loop. 

 

Fig. 1. Speculative execution model for loops 
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2.3   Speculative Execution Model for Subroutines 

As shown in Fig.2, when a speculative subroutine call takes place, a new processor 
will be selected to run the code followed the call speculatively with the predicted 
return value and the old processor concurrently run the subroutine. The new proces-
sor’s memory references will be cached in its speculative buffer while the old proces-
sor can write directly into memory. After the old processor complete the execution of 
the subroutine, the real return value come into being and compared with the predic-
tion value, if miss prediction detected, the new processor must rollback to correct the 
execution.  

 

Fig. 2. Speculative execution model for subroutines 

3   Analysis Method 

3.1   Basic Criterion for Selecting Threads 

Granularity and inter-thread data dependence pattern is the most important criterions 
for selecting candidate threads. Long thread may lead to speculative buffer overflow 
which must stall the execution of the thread, while short thread cannot payoff the 
overhead of speculative execution. Different from subroutine, loop slicing and unroll-
ing can be used to control the granularity of a loop. Inter-thread data dependence 
pattern is the other basic criterion for both loop and subroutine, and we will propose 
two new concepts to describe this issue in section 3.2. Besides granularity and inter-
thread data dependence pattern, there are some other distinguished criterions, such as 
type of return value and return value prediction rate that should be used to choose 
thread from subroutine structure. In all of them, value predication rate, data depend-
ence, thread granularity are foremost in the TLS parallelism, the reasons are as  
follows: 

The value predication rate shows the control dependence violations among the 
threads, the data dependence would cause the violations, and the granularity shows 
the problem about the thread balance. 
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3.2   Analysis Method for TLS Parallelism 

The inter-thread data dependence can be abstracted as a producer/consumer model, 
write operation is data producing while read operation is data consuming. To describe 
the data dependence violation, we introduce two terms here: “produce- distance” and 
“consume-distance”, as shown in Fig.3. The produce-distance means the instruction 
numbers from the beginning of the thread to the last write instruction for a specific 
memory address, and consume-distance means the instruction numbers from the be-
ginning of the thread to the first read instruction for a specific memory address. Either 
of them is a concept relative to program’s one specific execution and both of them 
must be calculated at running time.  

 

Fig. 3. Produce-distance & Consume-distance 

For thread i and its successor thread i+1, starting at almost the same time, if the lat-
ter’s consume-distance is less than the former’s produce-distance, there will be a 
dependence violation under the assumption of that all processor execute instructions 
at a same speed. In this paper we select the ratio of consume-distance to produce-
distance to evaluate the inter-thread data dependence pattern. To facilitate the descrip-
tion, we call a inter-thread data dependence as a Deadly Dependence if the ratio is 
less than 1.0, Dangerous Dependence for the ratio between 1.0 and 2.0 and Safe De-
pendence for the ratio larger than 2.0.  

4   Experiment Analysis 

4.1   Experimental Environment and Tools 

The profiling tools we used in our investigation named ProFun, ProRV and ProLoop, 
and all of them are extended from sim-fast, the fasted simulator of SimpleScalar tool 
set which execute one instruction per cycle. ProFun and ProRV are used to profile the 
subroutines and ProLoop is for Loop. All the tests were achieved on an x86 machine 
running Linux system, the compiler we used is modified from gcc-2.7.2.3, and the 
benchmarks are selected from SPEC CPU2000. 

Firstly, we pick out subroutines that occupy more than 5% of the total program 
execution time, as the inputs of ProRV and ProFun by using Gprof tool, and the input  
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loop structures of ProLoop were selected in the subroutines acquired above. And then 
by running the profiling tools, we profiled execution time distribution and the return 
value prediction rate of subroutines with different return value types, the granularity 
distribution and the inter-thread data dependence pattern of both subroutines and 
loops, and the ideal speedup achieved by speculative execution. 

4.2   Experiment Results 

4.2.1   Return Value Prediction Rate 
The “sparse int” subroutine always returns zero except it errors and can be well 
predicted (e.g. boolean type), it is necessary to separate it from int type and we 
named it as sparse int. As shown in Fig.4, we found that the last-value prediction 
scheme is better then the stride, the “sparse int” type achieve a prediction rate about 
80%, and the prediction rate of float is almost zero. For the “void” and “sparse int” 
subroutines take up most of the execution time and they’re easy to predicate, we can 
say that the source of speculative thread-level parallelism is abundant in general-
purpose applications.  

 

Fig. 4. Prediction rate of different return value types 
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Fig. 5. The thread granularity for subroutines 
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Fig. 6. The thread granularity for loops 

4.2.2   The Thread Granularity 
Figure 5 shows the execution time distribution of subroutines with different instruc-
tion numbers, and from it we can see that the execution time distribution of them 
varied widely. For only the subroutines with a length of 103-106 instructions are suit-
able for speculative execution and luckily we found that they take about 55% of total 
execution time. 

Figure 6 shows the execution time distribution for Loop structure, and we found 
that most of the loop iteration is shorter than 104 instructions. It means that loop un-
rolling should be frequently used to achieve a larger iteration. 

4.2.3   Memory Dependence Distribution 
Figure 7 and Fig.8 show the memory dependence distribution for subroutine and loop 
structures. From Fig.7 we can see that the distribution characteristic is quite varied, 
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Fig. 7. Memory dependence distribution for subroutine speculation 
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Fig. 8. Memory dependence distribution for loop speculation 

 

and in average, there are about 30% dependences are deadly dependence, 12% are 
dangerous dependence and about 58% are safe dependence. Only ammp, art and mesa 
almost have no deadly dependence. The situation for loop structure is more pessimis-
tic, all the applications have deadly dependence as shown in Fig.8. It means that for 
application of SPEC CPU2000, the data dependences are ubiquitous; to achieve a 
better performance, synchronization mechanism is quite necessary. 

par
ser mesa mcf gcc

equ
ak

e

vp
r.ro

ute

vp
r.p

lac
e

gzi
p

bzi
p

 

Fig. 9. Speedup of subroutine speculation 

4.2.4   Speedup 
Figure 9 and Fig.10 show the potential speedup of speculative execution for subroutine 
and loop structures when using different core numbers. As we can see in Fig.9, even the 
highest speedup we can achieve by speculative execution of  subroutines using infinite 
cores, can not exceed 5, and most of the applications can only achieve the speedup 
lower than 3 even using infinite cores. The situation is more awful when limited the 
number of cores to 2. The similar situation was also appeared in Fig.10:  the highest 
speedup can only be about 5.3 even for infinite cores and allowing speedup nest loop. 
This pessimistic result is consistent with the analysis mentioned in section 4.2.3. 
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Fig. 10. Speedup of loop speculation 

5   Conclusions 

In this paper, a criterion for selecting the region to be speculatively executed is pre-
sented to identify potential sources of speculative parallelism in general-purpose pro-
grams. The dynamic profiling method has been provided to search a large space of 
parallelization schemes. We analyze the key factors impacting speculative thread-
level parallelism of SPEC CPU2000, such as the return value prediction rate of sub-
routines with various prediction methods, the memory dependence, the granularity of 
loops and subroutines, and so on. We evaluate whether a given application or parts of 
it are suitable for TLS technology, and study how to balance thread partition for ex-
ploiting speculative thread-level parallelism. It shows that the source of speculative 
thread-level parallelism is abundant in general-purpose applications, the value predi-
cation and loop unrolling technology can greatly improve the TLS performance. 

Acknowledgement 

This work has been supported by the grant from Intel (PO#4507176412), the National 
Natural Science Foundation of China (60373043 and 60633040) and the National 
Basic Research Program of China (2005CB321601). 

References 

1. Asanovic, K., Bodik, R., et al.: The Landscape of Parallel Computing Research: A View 
from Berkeley. Technical Report, No.UCB/EECS-2006-183, UC Berkeley (2006) 

2. Zhai, A., Colohan, C.B., Steffan, J.G., et al.: Compiler optimization of scalar value com-
munication between speculative threads. In: ASPLOS-10, San Jose, California (2002) 

3. S.W. Liao, et al.: SUIF Explorer: An Interactive and Interprocedural Parallelizer. In: 
PPoPP 1999 (1999)  



 Balancing Thread Partition 49 

4. Miller, B.P., et al.: The Paradyn Parallel Performance Measurement Tools. IEEE Com-
puter 11, 37–46 (1995) 

5. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar Processors. In: 22nd Annual Inter-
national Symposium (1995) 

6. Hammond, L., Willey, M., Olukotun, K.: Data Speculation Support for a Chip Multiproc-
essor. In: ASPLOS-VIII, San Jose, CA (1998) 

7. Steffan, J.G., Mowry, T.: The potential for using thread-level data speculation to facilitate 
automatic parallelization. In: HPCA-4, Las Vegas, NV (1998) 

8. Oplinger, J.T., Heine, D.L.: In Search of Speculative Thread-Level Parallelism. In: Ma-
lyshkin, V. (ed.) Parallel Computing Technologies. LNCS, vol. 1662, Springer, Heidelberg 
(1999) 

9. Akkary, H., Driscoll, M.A.: A Dynamic Multithreading Processor. MICRO-31, Dallas, TX 
(1998) 

10. Krishnan, V., et al.: Hardware and Software Support for Speculative Execution of Sequen-
tial Binaries on a Chip- Multiprocessor. In: Supercomputing 1998, Melbourne, Australia 
(1998) 


	Balancing Thread Partition for Efficiently Exploiting Speculative Thread-Level Parallelism
	Introduction
	Speculative Thread-Level Parallel Execution Model
	Candidate Threads
	Speculative Execution Model for Loops
	Speculative Execution Model for Subroutines

	Analysis Method
	Basic Criterion for Selecting Threads
	Analysis Method for TLS Parallelism

	Experiment Analysis
	Experimental Environment and Tools
	Experiment Results

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




