
M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 723–732, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Convolution Filter Based Pencil Drawing
and Its Implementation on GPU

Dang-en Xie1, Yang Zhao2, Dan Xu1,∗, and Xiaochuan Yang3

1 School of Information Science & Engineering, Yunnan University 650091, China
2 School of Information Science, Yunnan Normal University 650092, China

3 South China University of Technology 510641, China
Tel.: +86-871-5737873 Fax: +86-871-5737873

danxu@vip.sina.com, xde820@gmail.com, xcy1198@163.com

Abstract. Traditional pencil drawing methods have their own drawbacks, such
as modeling complexity and higher time-consuming. Thus, they are difficult to
be suitable for the real-time applications. In the paper, we present a new pencil
texture generating method based on the pencil filter. The method can
conveniently generate the pencil drawing effect by convoluting the input image
with the pencil filter. Moreover, the method is implemented on GPU, and then
satisfies the requirement of real-time synthesis. Optical flow technique is used
to guarantee the interframe coherence in video stylization.

Keywords: pencil filter, pencil drawings, Graphics Processing Unit (GPU),
optical flow, non-photorealistic rendering.

1 Introduction

In the past decade, researchers in computer graphics community began to simulate
traditional artistic media and styles, such as paintings [1], watercolor [2, 4], charcoal
rendering [3, 5]. This is a new technique called Non-photorealistic rendering (NPR).
Its purpose is not to aspire to the photorealism but to simulate the artist’s work and
represent the artistry, even the drawbacks of the artwork. To some extent, NPR is the
complementarity of the photorealistic rendering.

Pencil drawing rendering is an important branch of NPR, which is firstly presented
in the 90s last century [7, 8, 9, 10]. A key step of pencil drawing rendering is how to
simulate the pencil texture. Sousa [8] attempted to model the physical behavior of
pencil, paper and eraser. Their approach attained the pencil texture vividly. Later,
Mao [6] simulates pencil texture using the line integral convolution (LIC) method.
Also, they gain satisfied effect. LIC is a texture based vector field visualization
technique which was first presented by Cabral and Leedom in 1993[10]. Given a 2D
vector field represented as a regular Cartesian grid, the LIC algorithm takes as input a
white noise image of the same size as the vector field and generates an output image
wherein the texture has been locally blurred in the direction of the vector field.

∗ Corresponding author.

724 D.-e. Xie et al.

Although the traditional pencil texture generating methods obtain good effect, they
all have disadvantages of deficiency and time-consuming. Physical modeling is very
complexity. LIC method needs to calculate the visualization vector field of the input
image, and then convolute the pixel one by one, so it also costs much time. Generally,
using the LIC method to generate a pencil drawing needs about 20 minutes (here the
image size is 1024*768) [10]. Both of the methods are not suitable to the real-time
applications.

In this paper, we present a new method for simulating pencil texture by pre-
calculating a special convolution filter, named pencil filter. It may have different
appearances according to different stroke orientations and different stroke sizes. Once
the pencil filters are made ready, we convolute the pixel of the black noise image with
each corresponding filter, and then the pencil drawing image is accomplished. The
proposed approach saves lots of time because pencil filters are generated in advance
and the convolution operation is more efficient than traditional methods.

Obviously, the method can be extended to process video. To preserve interframe
coherence of a video segment, the optical flow technique is adopted, which will be
described in detail in Section 4. Additional, for real-time stylization applications, the
paper performs an achievement of the method on GPU (Graphics Processing Unit).

2 Image Based Pencil Drawing

All existing pencil drawing techniques can be classified primarily into two kinds:
geometry-based and image based. Geometry-based techniques take 3D scene
descriptions as their input. Image based techniques directly process 2D images to get
pencil drawing expressions. Our method belongs to the latter. Figure 1 shows the
framework of our pencil drawing algorithm. Each processing box corresponds to a
step of the algorithm:

Fig. 1. The frame map of the algorithm

2.1 Generating the Pencil Filter

By observing and analyzing the real pencil texture (see Figure 2(a)), we simply suppose
that: 1) graphite marks present stochastic distribution according to the coarseness of
papers; 2) graphite marks stretch along the stroke tracks; 3) graphite marks on
perpendicular direction of a stroke present obviously black-white staggered distribution.

 Convolution Filter Based Pencil Drawing and Its Implementation on GPU 725

 (a) (b)

Fig. 2. Comparison of the real pencil texture (a) with the pencil filter generated texture (b)

Fig. 3. Properties of the pencil stroke model

Considering the above supposes, we create a mathematic model for pencil filter.
Assume that the stroke length is len, the stroke direction isθ and the stroke width is
2D. As shown in Figure 3, if we know the stroke length and the stroke orientation, we

can easily calculate the template size by ⎡ ⎤ ⎡ ⎤)cos*sin*(θθ lenlen × .
The next problem is how to decide the value of each element in the pencil filter. As

shown in Figure 4, firstly, calculate the distance d from each point P to the central
axis l of a stroke. Then calculate the distance r from the point P to the center O of the
stroke. The value of each element in the pencil filter lies on the relation between d and
D, and also the relation between r and len/2.

Here, we take the upper right quarter of the template as an example (Figure 4(a)).
Obviously, only three kinds of points are presented in the template. Points in the
green area (e.g. P in Figure 4(b)) satisfy the conditions that r is less than len/2 and d is

Fig. 4. Define a pencil filter

726 D.-e. Xie et al.

less than D, so we choose D-d as their values. Points in the gray area (e.g. Q in Figure
4(c)) satisfy the condition that d is large than D, which means the stroke can’t covered
this area, so their values are set to be zero. Points in the blue area (e.g. R in Figure
4(d)), satisfy the conditions that r is large than len/2 and d is less than D. Blue area is
near to the stroke end, and the graphite marks is thin there, so the value in the
template is less than D-d and none zero. We calculate the distance dx from point R to
the end of line l, and then we choose D-dx as the value of this area. In this way, it
decreases the value of the stroke end effectively, and the decrement is in proportion to
the distance r. When D-dx is less than zero, the value should be set to zero.

Viewing the pencil filter generating procedure, it properly simulates the real pencil
texture:

1. The points near the stroke central line l have greater values. The larger the
distance, the smaller the value. That is in accord with the real pencil texture
property.

2. When the point beyond the stroke width, the value is set to zero. It insures the
pencil stroke width;

3. The filter kindly simulates the stroke ends’ physical property—graphite marks
tapered with the disappear of the pressure on papers;

4. The points which have the equal distance to the central axis line have the equal
value in the template. It insures the strength direction along the stroke.

2.2 Generating the Black Noise Image

To make sure the pencil texture has stochastic distribution, we generate the black
noise image from the reference image. Our method for generating the black noise
image is similar with the method for adding white noise in Mao [10]. We use the tone
of the input image to guide the distribution of the black noise. Let Iinput be the intensity
of a pixel in the input image, P is a floating-point number generated with a pseudo-
random function, and then the intensity Iinput of the corresponding pixel in the noise
image is decided in the following way:

255, [0.0,1.0]
, , (0.0,1.0]

255
0,

input
noise

Iif P T P
I T k k

otherwise

⎧
≤ ∈ ⎛ ⎞⎪= = ⋅ ∈⎨ ⎜ ⎟

⎝ ⎠⎪
⎩

, (1)

 (a) (b)

Fig. 5. The black noise image ((a) is the original image; (b) is the corresponding black noise
image)

 Convolution Filter Based Pencil Drawing and Its Implementation on GPU 727

in which k is a coefficient for controlling the density of the black noise. In this way
we can promise the pencil drawings have the stochastic distribution character, and
also promise the density of the black noise correspond to the intensity of the input
image. If the intensity of the current pixel is lower, the value of T is smaller, and the
probability of P large than T is larger, so the value of Inoise has more probability to be
0. On the contrary, the output value Inoise is 255. Figure 5(b) is the black noise image
generated from the input image shown in Figure 5(a).

2.3 Extract the Contour Lines

A simplest artistic expression is extruding the outlines of the artwork. It is also an
important step for generating the pencil drawing. In computer, we need to extract the
contour lines for simulating the action of extruding outlines.

Gradient operators, such as Sobel, Robert, Prewitt and Kirsch operators are
commonly used in digital image processing to extract edges of an image. Considering
Kirsch operator [11] has the bigger weighted factors, we prefer to choose the Kirsch
gradient operator to extract the contour lines in this paper, so that we can obtain the
contour lines clearly.

The Kirsch operator has 8 filters. Formally, the Kirsch operator is defined by:

{ }{ } 70,35max,1max),(=−= iTSyxK ii (2)

in which,

1 2

3 4 5 6 7

() () (),

()

() () () () ()

i i i i

i i

i i i i i i

S f A f A f A

f A A

T f A f A f A f A f A

+ +

+ + + + +

= + +

= + + + +
st ands f or t he pi xel val ue on pos i t i on

(3)

(4)

 (a) (b) (c) (d)

Fig. 6. The contour lines maps with different value of μ

In practice, we are used to change the values of the Kirsch operator according to
different images. Let Ki be the filter of the Kirsch operator, then we have:

]1,0(,70, ∈=∗= μμ iKK ii (5)

Here, μ is a coefficient for controlling the weight value in the filter. One can adjust

the value of μ interactively, but we suggest that the value of μ should between 0

728 D.-e. Xie et al.

and 1. Figure 6 shows the different contour line maps with the different value of μ .

Figure 6(b), (c) and (d) are show the results that μ is 1, 0.5 and 0.3, respectively.

Generally, if an image has more details, the value of μ should be smaller. A

smaller μ can prevent the contour line conglutination. On the contrary, if an image has

little details, a larger μ should be set in order to make sure the consistency of the

contour lines.

3 Implementation on GPU

In this paper, we transplant the pencil filter based stylization algorithm onto GPU.
With the GPU’s powerful parallel processing ability, we have achieved the real-time
video synthesis for pencil drawing style. In this section, we will describe the GPU
implementation of our algorithm in detail.

3.1 Convolution on GPU

It is difficult to generate pencil filter directly on GPU because the instructions and the
registers are limited in GPU. Fortunately, we can generate the weight values of pencil
filter in advance (like what shown in Figure 7). This idea makes a way to using our
method on GPU. Firstly we load the weight values of pencil filter into GPU, which is
generated in CPU in advance, and then convolution is executed for each pixel.

 0 0.1509 0.3767

0.1509 0.6431 0.1509

0.3767 0.1509 0

 0 0.0000 0.3293

0.3293 0.6827 0.3293

0.3293 0.0000 0

 0 0 0 0.1001 0.0608

 0 0 0.1038 0.3543 0.1001

 0 0.1038 0.3543 0.1038 0

0.1001 0.3543 0.1038 0 0

0.0608 0.1001 0 0 0

Fig. 7. pencil filters using our method generated with the template parameters (left: D=1, len=3,

θ =45o; middle: D=1, len=3, θ =30o; right: D=1, len=5, θ =45o)

Many effective means can achieve the convolution on GPU. Generally, we can
store the weight values of the convolution template as a constant or uniforms type,
and then execute the convolution operation. This method seems simple and feasible,
but the fact is that if we solidify these constants into GPU’s shader program, we can
not easily expand the program function later on. It’s not suitable to our method
because we need to use the weight values to simulate the different property of the
pencil stroke, such as stroke length, stoke width and stroke orientation. To solve the
problem, we load the template data as a texture image, and call the image as Filter
Texture. When a video fragment is synthesized in real-time, the corresponding filter
texture will be chosen according to the user’s need, and then convolution is executed.
The convolution process can be expressed by:

∑
∑

−−
−−

=
),(

),(),(

00

00

ttssk

tstexttssk
colorfiltered (6)

 Convolution Filter Based Pencil Drawing and Its Implementation on GPU 729

where the current pixel position is (s0, t0), tex is a function for searching the
corresponding filter texture. To save the memory, we store the total value of the
template on the alpha channel.

3.2 Generating the Black Noise Image on GPU

At present, there’s no function supplied for generating the floating-point pseudo-
random number in GPU. Therefore, we generate a noise texture image in advance; the
pixel value of the noise image is making up of floating-point random number. GPU
can thereby get the floating-point random number by sampling the noise texture
image. Then, we can generate the black noise image on GPU according to the
approach described in section 2.2.

4 Stylization for Video Segment

The method described in Section 2, also can be used for rendering video segments.
First, capture each frame from the input video. Then, use the same way to process
each frame like what is used to deal with a single picture. Finally, rebuild the video
with the processed frames. This procedure usually brings a negative effect to the
result video because it cannot preserve the interframe coherence.

 (a) (b)

 (c) (d)

Fig. 8. Calculate the optical flow field((a) (b) are two adjacent frames. (c) is the optical flow
vector field.(d) is the enlarged image of the red region of (c).)

To solve the problem, we use Horn’s method [12] to estimate the optical flow field of
each two adjacent frames. Figure 9 shows the optical flow vector field. As synthesis a
frame, we compare the magnitude of the current pixel with an appointed threshold. If
the former is small, then we believe this pixel is almost still. So we need only to copy
the previous frame’s corresponding pixel to the current pixel. Otherwise, we recalculate
the value of the current pixel following with the method described in Section 2.
Generally, the scene’s change is very small in a pair of adjacent frames. So the

730 D.-e. Xie et al.

magnitudes of optical flow vectors are often to be zero or very small on most pixel
positions, especially in the background. In this way, we can basically keep the
interframe coherence of the video.

5 Experiment Result

A pencil drawing generating system on Windows environment has been built with the
Matlab tool. Basically when the input image is specified, the system can generate the
pencil drawing picture automatically. Users are allowed to specify some parameters
interactively. These parameters control the stroke orientation, the stroke length, the
density of the black points and the coefficients of the Kirsch operator. Figure 9 are some
results generated by our method for static pictures. Figure 10 shows some video frames
of real-time rendering results on GPU. In existing system, we do not allow the users to
change the parameters during process a video stream. Instead, we set the default values
for parameters in advance. Thus, the result quality is not good as static pictures because
the default values are not usually suitable for all the frames.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Fig. 9. Experiment results on CPU(figure(a),(d),(g) are original images; figure (b),(e),(h)are the
pencil drawing images with single stroke orientation 450;figure (c),(f),(i) are the pencil drawing
images with different stroke orientations.

 Convolution Filter Based Pencil Drawing and Its Implementation on GPU 731

Compared with the LIC method, our method saves lots of time. The primary reason is
our method needn’t to calculate the visualization vector field of the input image, and
also needn’t to do the hundreds of iterations. Our method only needs to do the
convolution once for each pixel, and the kernel operator elements (Figure 7) usually
have many zeros.
The system is developed using Matlab7.04. All experiments run on a 1.73GHz Pentium
PC with 512M RAM. Cg(C for graphics) language is used for GPU programming.

Fig. 10. Real-time rendering result on GPU for some frames of the movie Ice Age

6 Conclusion

This paper presents a simple and efficient method for simulating pencil texture. Using
the method, we accomplished an image based pencil drawing algorithm. Also, the
method is successfully implemented on GPU to support real-time video stylization. The
proposed method has the following advantages: (1) Efficient. The time cost for
rendering a 1024*768 image on Matlab is 43.26 seconds; it is far less than LIC method,
which needs about 20 minutes. (2) Convenient. Only single convolution is needed for
pencil drawing image synthesis. (3) Bring a new way for real-time synthesis. It brings a
significant reference for the other computer hardware, such as FPGA.

Acknowledgement

This work is supported by NSFC (No. 60663010) and NSF (No. 2006F0017M) of
Yunnan province. All images are downloaded from the Internet. The video fragments
are captured from the movie of “Ice Age”.

References

1. Hertzmann, A.: Painterly Rendering with Curved Brush Strokes of Multiple Sizes. In:
SIGGRAPH 1998 conference proceedings, pp. 453–460 (1998)

2. Laerhoven, T.V., Reeth, F.V.: Real-time simulation of watery paint. Computer Animation
and Virtual Worlds 16, 3–4, 429–439 (2005)

732 D.-e. Xie et al.

3. Lee, H., Kwon, S., Lee, S.: Real-Time Pencil Rendering. In: Proc. of the 4th Intl’
Symposium on Non-Photorealistic Animation and Rendering, pp. 37–45 (2006)

4. Luft, T., Deussen, O.: Interactive watercolor animations. In: Proc. Pacific Graphics 2005,
pp. 7–9 (2005)

5. Majumder, A., Gopi, M.: Hardware accelerated real time charcoal rendering. In: Proc.
NPAR 2002, pp. 59–66 (2002)

6. Mao, X., Nagasaka, Y., Imamiya, A.: Automatic Generation of Pencil Drawing from 2D
Images Using Line Integral Convolution. In: Proceedings of the Senventh International
Conference on Computer Aided Design and Computer Graphics CAD/GRAPHICS 2001,
pp. 240–248 (2001)

7. Takagi, S., Fujishiro, I., Nakajima, M.: Volumetric modeling of colored pencil drawing. In:
Pacific Graphics 1999 conference proceedings, pp. 250–258 (1999)

8. Sousa, M.C., Buchanan, J.W.: Observational Model of Blenders and Erasers in Computer-
Generated Pencil Rendering. In: Graphics Interface 1999 conference proceedings, pp. 157–
166 (1999)

9. Sousa, M.C., Buchanan, J.W.: Computer-Generated Graphite Pencil Rendering of 3D
Polygonal Models. In: EUROGRAPHICS 1999 conference proceedings, pp. 195–207
(1999)

10. Cabral, B., Leedom, C.: Imaging Vector Field Using Line Integral Convolution. In:
SIGGRAPH 1993 conference Proceeding, pp. 263–270 (1993)

11. Castleman, K.R.: Digital Image Processing, pp. 390–391. Publishing House of Electronics
Industry, Beijing (2002)

12. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17,
185–203 (1981)

	Convolution Filter Based Pencil Drawing and Its Implementation on GPU
	Introduction
	Image Based Pencil Drawing
	Generating the Pencil Filter
	Generating the Black Noise Image
	Extract the Contour Lines

	Implementation on GPU
	Convolution on GPU

	Stylization for Video Segment
	Experiment Result
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

