
M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 684–692, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Composing Software Evolution Process Component*

Fei Dai and Tong Li

School of Information Science and Engineering, Yunnan University, Kunming 650091, China
flydai.cn@gmail.com, tli@ynu.edu.cn

Abstract. Composing software evolution process components into a complete
software evolution process can effectively improve quality and efficiency of the
software evolution process. However, existing researches do not propose a
systematic method for composing software evolution process components. We
propose a software evolution process component model (EPCM) which is based
on 3C model and the concept of a software evolution process component (EPC).
Based on EPCs, we propose three types of software evolution process component
composition operations, namely, sequence composition, selection composition
and concurrence composition.

Keywords: Petri Net, Component Model, Software Evolution Process,
Component Composition, Process Reuse.

1 Introduction

As more and more successful software systems become legacy systems, software
evolution becomes more and more important. On the one hand, software evolution has
become an important characteristic in the software life cycle. On the other hand,
software process plays an important role to increase efficiency and quality of software
evolution. The term software evolution process denotes a set of interrelated software
processes under which the corresponding software is evolving. A software evolution
process provides a framework for managing activities that can very easily get out of
control in software evolution, so we use software evolution processes to improve the
effectiveness and efficiency of software evolution. Li [1] defined a formal evolution
process meta-model (EPMM) based on extended Petri Net which is added with
object-oriented technology and Hoare Logic to construct software evolution process
models with four-level architecture. However, as more and more software evolution
process modes are constructed by process designers based on EPMM [1], how we can
reuse these existing software evolution models poses a challenging and exciting
question for us.

* The project is supported by National Natural Science Foundation of China under Grant No.

60463002 and Education Science Foundation of Yunnan Province, China under Grant No.
04Z290D.

 Composing Software Evolution Process Component 685

The term software evolution process reuse can be described as “usage of one process
description in the creation of another process description” [10]. Osterweil presented a
widely accepted view that software processes are software too [2]. According to
Osterweil’s idea, a software evolution process can be made up of many serial or parallel
software evolution process components. Thus we apply component technology to
software evolution processes and propose the concept of a software evolution process
component (EPC). An EPC is actually an internally high cohesive and consistent
software evolution process that can be reused with other EPCs to assemble a more
powerful EPC. In order to describe an EPC, a software evolution process component
model (EPCM) based on 3C model is proposed. Comparing to traditional software
reuse, four essential steps for software evolution process reuse based on EPCs are
needed. Firstly, we need to describe an EPC. Secondly, we need to search EPCs from
software evolution process component library (EPCL) according to process
requirements. Thirdly, we need a mechanism to tailor EPCs. Fourthly, we need a
mechanism to compose EPCs into a software evolution process. In this paper,
composing software evolution process component is focused on.

This paper is organized as follows. In the next section, a software evolution process
models is proposed. In section 3, we propose three types of EPC composition
operations, namely sequence composition, selection composition and concurrence
composition. Finally, we conclude in section 4 with a brief summary and discussion of
the future work.

2 Evolution Process Component Model

EPCM is the foundation of EPCL and is the key factor in realizing software evolution
process reuse. Recently, the component models can be classified into three different
categories according to their usage: (1) Model for component
description/classification, such as REBOOT model [5]; (2) Model for component
specification/composition, such as 3C model [4] and JBCOM [6]; (3) Model for
component implementation, such as COM/DCOM [7][8], CORBA/OM [3], and
Enterprise JavaBeans [9].

Obviously, it is difficult for us to build a comprehensive model to meet all software
evolution processes defined by other process description languages. Thus we propose
a component model to only meet the need of evolution process description language
(EPDL) [1]. 3C model is a prescriptive component model that was proposed by Will
Tracz on the “Reuse in Practice Workshop” in 1989. In 3C model, a component
consists of three parts: concept, content, and context [4]. The concept is the abstract
description of what a component does. The content describes how a component
implements the concept. The context depicts the dependencies between the
component and its environment. Based on 3C model, we propose EPCM which is
shown in Figure 1.

686 F. Dai and T. Li

Specification

R
equire

Provide

Process Definition

Fig. 1. Evolution Process Component Model

EPCM is a formal evolution process component model. The definition of EPCM is
as follows:

Definition 1 EPCM is a 4-tuple epcm= (Req, Pro, Spec, PD)
1. Req and Pro are called the interfaces of EPC. Req denotes the required functions of

EPC； Pro denotes the provided functions of EPC. They correspond to the concept in
3C model.

2. PD (Process Definition) is called the body of EPC, which is defined by EPDL [1]. It
corresponds to the content in 3C model.

3. Specification is called the specification of EPC, which is used to describe the EPC
briefly; it corresponds to the context in 3C model.
According to EPCM, the definition of EPC is as follows:
Definition 2 A EPC is a 7-tuple epc = (C, A; F, M0, ae, ax , S,)

1. (C, A; F) is a net without isolated elements, A∪ C ≠ Φ ;
2. C is a finite set of conditions; ∀ c∈C is called a condition;
3. A is a finite set of activities; ∀ a∈A is called an activity;
4. p=(C, A; F, M0), called the body of epc, is a software evolution process with

M0= Φ ;
5. ae, ax∈ A are called the entrance and the exit of EPC respectively, if ∃ step sequence

G1G2…Gn-1 (G1, G2, …, Gn-1
⊆ A) and ∃ cases M1, M2, …, Mn

⊆ C, such that
[ae >M1, M1[G1>M2, …, Mn-1[Gn-1>Mn, Mn[ax > and (Mn- ax)= Φ ;

6. S, called the mini specification, is a set of strings which is used to describe the epc
briefly;

c1 ei c3

c2 ej c4

axae

Fig. 2. An Evolution Process Component

 Composing Software Evolution Process Component 687

From the definition above, we see that p corresponds to the PD in EPCM; ae.I
corresponds to the Req in EPCM; ax.O corresponds to the Pro in EPCM; S corresponds
to the Spec in EPCM. Here ae.I denotes the input data structure of ae, ax.O denotes the
output data structure of ax [1]. Graphically, we represent activity as rectangle and
condition as circle respectively. An EPC is shown in Figure 2.

The definition of EPC shown in Figure 2 is as follows:

epc = (C, A; F, M0, ae, ax , S);

C = (c1, c2, c3, c4);

A = (ei, ej);

F=((ae,c1), (ae,c2), (c1,ei), (c2,ej), (ei,c3), (ej,c4),
(c3, ax), (c4, ax));

M0 =Φ ;

ae= ae;

ax = ax;

S=(…..);

The description of EPC shown in Figure 2 is defined by EPDL [1] as follows:

PROCESS An Evolution Process Component

Begin

ENTRANCE { ae }

EXIT { ax }

MINI SPECIFICATION

S={....};

CONDITION SET

C:={c1, c2, c3, c4};

ACTIVITY SET

A:={ ae, ei, ej, ax };

ARC SET

F:={(ae,c1), (ae,c2), (c1,ei), (c2,ej), (ei,c3), (ej,c4),
(c3, ax), (c4, ax)};

MARKING {Φ } ;

END;

688 F. Dai and T. Li

3 A Systematic Method for EPC Composition

EPC composition is defined as composing EPCs into a complete software evolution
process. After process designers find out the required EPCs from EPCL, EPC
composition is the next step. In this paper, we define three types of EPC composition
operations, namely sequence composition, selection composition, and concurrence
composition. In the following, we will compose R and S into T using these three
composition operations. R and C are EPCs as shown in Figure 3.

c1 ei c3

c2 ej c4

R
ej

c2 c1

ei

ae ax

S

axae

Fig. 3. Evolution Process Component R and C

3.1 Sequence Composition

Sequence composition is defined as composing R and S into T and T’s execution
sequence is that after R terminates, S then executes. During sequence composition,
process designers should avoid interface conflict. The term interface conflict means
that the interfaces between EPCs are mismatched. The following conditions are used
for interface checking. By interface checking, process designers can check whether all
the interfaces among EPCs are matched. If EPCs satisfy the following conditions, they
are considered to be interface conformance. If EPCs are interface conformance, they
can be composed into a more powerful EPC. The following algorithm 1 is used for
sequence composition and Figure 4 shows the process of sequence composition.

The conditions are as follows:

-R.ae = S.ax ;
-R.ae is a part of S.ax

Algorithm 1 Fun SequenceComposing(R, S)

//Supposing that R.ax and S.ae are interface conformance

Begin

 // New(c) denotes the added conditions.

T.C = R.C + S.C + New(C);

T.A = R.A + S.A;

// New(F) denotes the added flow relations.

 Composing Software Evolution Process Component 689

T.F = R.F + S.F + New(F);

T.M0 = R.M0 + S.M0;

T.ae = R.ae;

T.ax = S.ax;

T.S =R.S ∪ S.S;

return T;

End;

ej

c2 c1

ei

 ae ax

c1 ei c3

c2 ej c4

ae ax

Fig. 4. Sequence Composition

3.2 Selection Composition

Selection composition is defined as composing R and S into T and T’s execution

sequence is that only R or S can execute according to process requirements. The

following algorithm 2 is used for selection composition and Figure 5shows the process

of selection composition.

Algorithm 2 Fun SelectionComposing(R, S)

Begin

T.C = R.C + S.C + c5 + c6;

T.A = R.A + S.A + a1 + a2;

// New(F) denotes the added flow relations.

T.F = R.F + S.F + New(F);

T.M0 = R.M0 + S.M0;

T.ae = a1;

T.ax = a2;

690 F. Dai and T. Li

a1.I = R.ae.I + S.ae.I;

a1.O= R.ae.O + S.ae.O;

a1.L= R.ae.L + S.ae.L;

a2.I= R.ax.I + S.ax.I;

a2.O= R.ax.O + S.ax.O;

a2.L= R.ax.L + S.ax.L;

T.S =R.S ∪ S.S;

return T ;

End;

Algorithm 2 will introduce new activities and new conditions when running selection
composition. It is necessary to notice that the newly added activities are virtual
activities and the newly added conditions are virtual conditions. These activities have
no actual operations in T except for passing a token from a condition to another
condition. These conditions have no other meanings in T except for connections.

R c1 ei c3

a2

c2c1ae ax

a1

ae

c2 ej c4

axaxae

ej

ei

Sc5 c6

Fig. 5. Selection Composition

3.3 Concurrence Composition

Concurrence composition is defined as composing R and S into T and T’s execution
is that R and S can execute concurrently. The following algorithm 3 is used for
concurrence composition and Figure 6 shows the process of concurrence
composition.

 Composing Software Evolution Process Component 691

Algorithm 3 Fun ConcurrenceComposing(R, S)

Begin

T.C = R.C + S.C + c5 + c6 + c7 + c8;

T.A = R.A + S.A + a1 + a2;

// New(F) denotes the added flow relations.

T.F = R.F + S.F + New(F);

T.M0 = R.M0+ S.M0;

T.ae = a1;

T.ax = a2;

a1.I = R.ae.I + S.ae.I;

a1.O= R.ae.O + S.ae.O;

a1.L= R.ae.L + S.ae.L;

a2.I= R.ax.I + S.ax.I;

a2.O= R.ax.O + S.ax.O;

a2.L= R.ax.L + S.ax.L;

T.S =R.S ∪ S.S;

return T;

End;

c2c1 ae ax

ae

c1 ei c3

c2 ej c4

axaxae

ej

ei

S

a1
a2

Rc5

c6

c7

c8

Fig. 6. Concurrence Composition

692 F. Dai and T. Li

4 Conclusions

In this paper, the main idea is to compose EPCs into a complete software evolution
process. In order to achieve the goal, we firstly propose an evolution process
component model and define an evolution process component. Based on evolution
process components, we propose three types of software evolution process component
operations, namely, sequence composition, selection composition and concurrence
composition.

However, there still remains much work. Firstly, a process operating system which
is used to mange software evolution processes will be investigated. Secondly, after
composing or tailoring EPCs, software evolution process’s simulation will be
researched.

References

1. Li, T.: Modeling formal software evolution process [Ph.D Thesis]. DeMontfort University
(2007)

2. Osterweil, L.J.: Software Processes are Software too. In: Proceedings of the 9th
International Conference on Software Engineering, pp. 2–13. ACM Press, New York (1987)

3. Object Management Group home page [online].Available WWW URL,
 http://www.omg.org

4. Implementation Working Group Summary, Reuse in Practice Workshop. Pittsburgh,
Pensylvania (July 1989)

5. Weighted Term Spaces for Related Search. In: CIKM 1992. proceedings of the 1st
International Conference on Information and Knowledge Management, pp.5–8 (November
1992)

6. JadeBird Project Group, JadeBird Component Model, Technical report, Department of
Computer Science and Technology, Peking University (1997)

7. Microsoft Corporation. The Component Object Model Specification, Version 0.9, (October
24, 1995) Available WWW URL: http://www.microsoft.com/oledev/

8. Microsoft Corporation. Distributed Component Object Model Protocol COM/1.0, draft
(November 1996) Available WWW. URL: http://www.microsoft.com/oledev/

9. Sun Microsystems, Inc., Enterprise JavaBeans Specifications Version 1.1, Available
WWW. URL: http://java.sun.com/products/ejb/docs.html

10. Hollenbach, C., Frakes, W.: Software Process Reuse in an Industrial Setting, Fourth
International Conference on Software Reuse, Orlando, FL, IEEE Computer Society Press,
Los Alamitos, CA, pp. 22-30 (1996)

	Composing Software Evolution Process Component*
	Introduction
	Evolution Process Component Model
	A Systematic Method for EPC Composition
	Sequence Composition
	Selection Composition
	Concurrence Composition

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

