
M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 640–649, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Formal Semantic Meanings of Architecture-Centric
Model Mapping

Xiao Yang, Jinkui Hou, and Jiancheng Wan

School of Computer Science and Technology, Shandong University,
Jinan, 250061, China

{yangx,houjk}@mail.sdu.edu.cn, wanjch@sdu.edu.cn

Abstract. Over the past few years, Model-driven Development (MDD) has
become an active research area of software engineering, in which model
transformation is a key technology. However, there is currently no mature
foundation on the definition of mapping rules as well as cardinal principles to
verify the mapping relations between such models. Based on software
architecture, category theory is used to explore the mapping relations between
models at different abstract levels, so that the interconnections and mapping
relations between component-based models and the compositions of these
relations have rigorous meanings. The morphism composition and functors are
used to trace the relationships between component models at different abstract
levels. Formal description of model mappings is suitable to the automatic
software development. It can be a measurement for validating the mapping
rules between different models, and thus can make an effective support to
MDD.

1 Introduction

Over the past few years, Model-driven Development (MDD) has become an active
research area of software engineering [1], in which model transformation is a key
technology. Represented by OMG’s MDA, numerous research institutions and
enterprises have been investing a large amount of money and manpower in the model
transformation study. Currently, a number of products based on MDA have proved
that a lot of benefits can be obtained from it, such as rapid development, architecture
advantages, improvement of code consistency and maintainability, enhancement of
system’s portability across middleware vendors, and it also shows great potential in
these areas.

Most of the existing and proposed approaches [2] for model transformation focus
on providing a concrete solution for the transformation between models at different
abstract levels, and there's currently no mature foundation on the definition of
mapping rules as well as cardinal principles to validate the mapping relations between
such models. More in-depth study and formal methods about this issue are expected
to support complicated model transformation [3]. Consequently, a unifying
framework for the mapping description techniques seems imperative. Such a
framework should be formal, in order to avoid ambiguities; offer a sufficiently high

 Formal Semantic Meanings of Architecture-Centric Model Mapping 641

level of abstraction, in order to concentrate on the meaning of concepts instead of on
representational aspects; and be sufficiently expressive. These requirements suggest
category theory as an excellent candidate.

Category theory is a mathematical framework suitable for representing relationships
between knowledge [4], which has been viewed by the computer sciences as a means
of achieving representation independence and abstraction, while providing conceptual
subdiscipline unification [5]. Category theory has been widely used to facilitate
specification construction [6]. It provides the right level of mathematical abstraction to
address languages for describing software architectures [7]. The abstract framework of
category theory is shown to provide semantics for the configuration of complex
systems from their component parts. Diagrams express configuration by representing
the results of applying combinators to recursively defined system components. These
ideas are extended to provide a precise semantics for both components structuring and
models mapping in this paper. We propose adaptations to the categorical framework in
order to manage model mapping and transformation.

The rest of this paper is organized as follows: some basic concepts of category and
algebraic specification are given briefly in Section 2; the formal semantic meanings of
component model mapping are developed in Section 3; a case study about email client
model mapping is shown in Section 4; related works in this area are presented in
Section 5; The paper ends with conclusions and future works.

2 Category Theory and Algebraic Specification

In computing science, more abstract viewpoints are often more useful, because of the
need to achieve independence from the overwhelmingly complex details of how
things are represented or implemented. Category theory allows the study of the
essence of certain concepts as it focuses on the properties of mathematical structures
instead of on their representation. One of the basic principles summarized in [8] is
that complex systems can be usefully identified with diagrams, system components
and connectors corresponding to nodes, and interconnections being established
through the edges of the diagrams. Category theory is ideal for this purpose, as it
provides a rich body of theory for reasoning about objects and relations between
them. Moreover, category theory lends itself well to automation, so that, for example,
the composition of two specifications can be derived automatically, provided that the
category of specifications obeys certain properties. Most of the category definitions of
this section are adapted from [4].

Definition 1. Category. A category is composed of two collections:

(1) the objects of the category, which is called C-objects;
(2) the morphisms (arrows) of the category, which is called C-arrows;
These two collections must respect the following properties:
(a) each morphism f is associated with an object A that is its domain and an object

B that is its codomain. Notation: f: A→B.
(b) for all morphisms f: A→B and g: B→C, there exists a composed morphism

g f: A→C and the composition law is associative, i.e. for all h: C→D, h (g f)=
(h g) f.

642 X. Yang, J. Hou, and J. Wan

(c) for each object A of the category, there exists an identity morphism idA such
that:

∀ f: B→A, idA f = f and ∀ f: A→B; f idA= f.

Many categorical definitions and proofs employ diagrams. As remarked before,
quite complex facts can be visualized by the use of these diagrams.

Definition 2. Diagram. A diagram in a category consists of a collection DC of C-
objects and a collection DA of C-arrows such that for any arrow a∈DA, cod a∈DC
and dom a∈DC, where cod a represents the codomain of a and dom a represents the
domain of a.

Definition 3. Commutative diagram. A diagram is said to commute if every path
between two objects in its image determines through composition the same arrow.
The case is shown in Fig.1.

C

f

g

BA

h

Fig. 1. Diagram commutes iff h is the composite g f

A powerful construction operation called colimit is defined over diagrams.

Definition 4. Colimit. A colimit for a diagram in a category is a C-object C
along with a co-cone{fi : Di→C | Di ∈ } from D to C such that for any other co-cone
{f 'i: Di→c' | Di ∈ } from D to a vertex C’, there is a unique C-arrow f : C→C’ such
that for every object Di in , the diagram shown in Fig.2. commutes; i.e., f fi = f’i.

Di

f

fi’

C’

C

fi

Fig. 2. Definition of a colimit

A practical interpretation for the colimit is given by Goguen in [5]: “Given a
species of structure, say widgets, then the result of interconnecting a system of
widgets to form a super-widget corresponds to taking the colimit of the diagram of
widgets in which the morphisms show how they are interconnected.”

 Formal Semantic Meanings of Architecture-Centric Model Mapping 643

Definition 5. Functor. A functor F from a category to a category is a function
which assigns to each C-object a, a D-object F(a), and to each C-arrow f: A→B, a D-
arrow F(f): F(A)→F(B), such that identity arrows and composites are preserved, i.e.,
F(idA)= idF(A); for all C-objects A, and F(g f)= F(g) F(f); whenever g f is defined
in .

Category theory can be used to compose formal specifications from smaller,
reusable pieces. When used for specification construction, there is usually a
requirement that the morphisms preserve theoremhood. That is, if a morphism
between two specifications is defined, there is an obligation to prove that the axioms
of the source specification are theorems of the target specification under the
translation. Thus we can define an architecture model as a diagram of specifications,
and prove properties of this architecture at a relatively abstract level.

3 Formal Semantic Meanings for Architecture Model

In MDD, the model description must be precise enough to grasp the essential
behavior of the component, which also must be sufficiently abstract to ensure that,
according to the requirements of the model, different vendors can respectively
develop their component products that can compete with each other. A category
theoretic foundation is shown in this section for the conceptual component modeling
elements.

3.1 Component Signature and Component Specification

From a mathematical point of view, component signatures are structures defined as
follows.

Definition 6. Component signature. A component signature is a 6-tuple < Σ , A, Γ ,
fa, fp, D> where

(1) Σ =<S, Ω > is a data signature in the usual algebraic sense, i.e. a set S of sort
symbols and a S*×S-indexed family Ω of function symbols;

(2) A is a S*×S-indexed family of attribute symbols of the component, each
attribute is typed by a data sort in S;

(3) Γ is an S*-indexed family of port symbols.
(4) fa: A→SA, SA ⊂ S is a total function, which shows the properties of the attribute;
(5) fp: Γ→ST, ST ⊂ S is a total function, which shows the properties of the ports;
(6) D: Γ →2A is a total function, for each g∈ Γ , D(g) is the collection of the

attributes which can be modified via port g.

Definition 7. Component signature morphism. Given two component signatures

1θ =< 1Σ , A1, 1Γ , fa1, fp1, D1> and 2θ =< 2Σ , A2, 2Γ , fa2, fp2, D2>, a morphism σ :

1θ → 2θ from 1θ to 2θ consists of:

(1) a morphism of algebraic signatures vσ : 1Σ → 2Σ ;

644 X. Yang, J. Hou, and J. Wan

(2) for each f: s1, …, sn → s in A1, an attribute symbol aσ (f): vσ (s1), …, vσ (sn)

→ vσ (s) in A2;

(3) for each g: s1,…,sn in 1Γ , an action symbol γσ (g): γσ (s1),…, γσ (sn) in 2Γ ;

(4) for each g∈ 1Γ , aσ (D1(g))=D2(aσ (g)).

The last conditions show that the attributes affected by a certain port must be
preserved through a component signature morphism.

Definition 8. Component specification. A component specification CS is a pair
(θ , Δ), where θ is a component signature < Σ , A, Γ , fa, fp, D> and Δ , the body of
the specification, is a quadruple (I, F, B, Φ), where

(1) I is a θ -proposition (constraining the initial values of the attributes);
(2) F assigns to every port g∈ Γ a non-deterministic command, i.e. F maps every

attribute a in D(g) to a set expression F(a);
(3) B assigns to every port g∈ Γ a θ -proposition as its guard.
(4) Φ is a (finite) set of θ-formulae (the axioms of the description), which is a

collection of the functional and non-functional goals of the component.

We distinguish between functional requirements and nonfunctional requirements.
Functional requirements describe the system behavior as well as the collaboration
among system components to accomplish the system behavior. nonfunctional
requirements pertain to how a system performs its functions and include concerns
such as quality, quantity, and timeliness.

Definition 9. Component specification morphism. A morphism ω : CS1→CS2 of

component specification CS1= < 1θ , 1Δ > and CS2= < 2θ , 2Δ >, consists of a signature

morphism σ : 1θ → 2θ such that,

(1) ∃ p∈Φ1, ω (p)∈Φ2;

(2) ∃ g1∈ 1Γ , al∈Dl(gl), B2(σ (g1)) ⊃ σ (F1(g1, a1))=F2(σ (g1),σ (a1));

(3) I2 ⊃ ω (I1).

(4) ∃ g1∈ 1Γ , B2(σ (g1)) ⊃ σ (B1(g1)).

Requirements shown above allow guards to be strengthened but not to be
weakened.

3.2 Component Relations and The Hierarchy Component Models

Relationships between components impose accessibility constraints on their attributes
and, thus, restrict the way components can be interconnected. In the component-based
model-driven development [9], there are many kinds of relations between component
models, such as compose, use, extend, as well as the mapping relations between
component models at different abstract levels [10].

A specification morphism m: A→B from a specification A to specification B maps
any element of the signature of A to an element of the signature of B that is
compatible (i.e., sort with sort etc). The compose relationship express how that

 Formal Semantic Meanings of Architecture-Centric Model Mapping 645

component is part of the given ones. On this basis, a compose relation between two
components S1 and S0 is achieved in category theory by identifying a morphisms c1
from S1 to S0, which express that S1 is a subcomponent of S0. This case is expressed
by Fig 3 (a). Through this morphism, the configuration diagram returns a new
component that represents the overall system. Some constraints, however, apply. The
use and extends relationship may describe a dependency between two
implementations or between two specifications. It actually applies to different yet
closely related component relationships. These dependency relationships between
components at the same level are represented by the morphisms given in Fig. 3 (b)
and (c), which shows that the implementations of some functions in R1 (or C2) are
based on the functions specified in R2 (or C1). The mapping relations describe the key
relationship between abstract component specifications and concrete component
specifications. It is also formalized via morphisms in category theory. As shown in
Fig.3. (d), the morphism between S and T is as an illustration, where T is the direct
corresponding part to S at a more concrete level. The mapping relationship can be
defined informally as follows: Abstract component S is mapped to concrete
component T if and only if T exhibits the behavior specified by S.

S1

c1

S2

c2

R3R1

R2

f1 f2

S

T

mS0

(a) (b) (d)

C3

C2

a1 a2

(c)

C1

Fig. 3. Component specifications morphisms

The composition of component specifications can be modeled hierarchically in a
category theoretic framework. Large complex systems are put together, or configured,
from smaller parts, some of which have already been put together from even smaller
parts. The composition operation then defines and constructs an aggregated
component describing the overall system from the individual components and their
interactions. Colimits can be used to construct systems from simpler components in
our category of component models. We consider systems composed of a number of
components coordinating their activities. The components of a system are represented
by recursively defined objects and configured by combinators. Under such
interpretation, a categorical diagram represents a system of components. A colimit of
a diagram, if it exists, allows one to represent the whole system as a single component.

Properties can be associated to each specification. These are the properties that we
expect the component to respect; that we need to prove on the component. We can
represent these properties in the same framework as the specifications and this allows
us to use category theory and particularly categorical computations to manage them.
The property of the colimit specifications gives the composition for the properties.
The advantage of this approach is that the management of properties and their status
(proved, to be proved) is handled in a uniform way through the management of
morphisms and proof obligations.

646 X. Yang, J. Hou, and J. Wan

3.3 Architecture Models and Mapping Functors

Software architecture is a world populated by components, connectors, configurations,
etc [6]. As a simple example, an architecture theory could be defined by the objects
and the composition rules. These rules provide the semantics of the architecture, and
can be used to both interpret the meaning of structures and to identify equivalent or
included substructures. These notions can be formalized as a category.

Definition 10. Architecture Model. An architecture model is a 5-tuple <CO, CR, OT,
RT,┝>, where

(1) CO is a collection of components;
(2) CR is a collection of binary relations defined over CO;
(3) OT is a collection of component specifications, and for every component

o∈CO, type(o)∈OT, herein the operation type returns the component’s type;
(4) RT is a collection of binary relation types defined over OT, for each r∈CR,

type(r)∈RT;
(5) ┝ is a satisfaction relation between OT-sentences and OT-models [10] such

that ┝ defines a well order.

Component specifications and cs-morphisms constitute a category for architecture
model, henceforth denoted by AM. Obviously, the category AM is cocomplete.

Category theory also provides us with the means to establish relationships between
different architectural models: functors. An architecture mapping from AM1 to AM2 is
simply a mapping of component specifications of AM1 to component specifications of
AM2 that preserves relations between these components.

Definition 11. Architecture mapping functor. An architecture mapping functor
denoted F: AM1→AM2 from architecture model AM1=<CO1, CR1, OT1, RT1,┝> to
AM2=< CO2, CR2, OT2, RT2,┝> is a function F: AM1→AM2, in such a way that

(1) for every component o∈CO1, F(o)∈CO2;
(2) for every component specification o, o’ ∈ CO1, o→o’ ∈ CR1 implies

F(o) → F(o’)∈CR2;
(3) F(f g)=F(f) F(g); whenever g, f∈CR1 and f g is defined;
(4) for all OT1 sentence s, AM1┝ s if and only if AM2┝ F(s).

According to the theory of model-driven development [11], a mapping functor
between two architecture models at different abstract levels for the same system is a
mapping in case the axioms of the source are logically implied by the axioms of the
target under the translation. Thus, architecture mapping preserve the properties of the
source architecture models. Functors map the objects and morphisms of one category
to corresponding objects and morphisms of another category. Consistency between
the sorts and operations of the component specifications are maintained.

4 A Case Study

In this section, a component-based model for email client was used as a simple case to
illustrate the feasibility of the approach proposed in this paper.

 Formal Semantic Meanings of Architecture-Centric Model Mapping 647

Based on hierarchy component model, the structure of the source model was
depicted within categorical diagram in the left part of Fig.4., which involving seven
components types: (1) MainUI is in charge of the UI layout and art design of the
interaction between the mail client and users, through which users can receive email,
check email, send email and compose email; (2) EmailManagement is responsible for
the storage, reading and display of all the e-mails stored locally; (3) Editor is used to
composing text format or html format e-mail; (4) Client is responsible for sending and
receiving e-mail; (5) Protocol is identified for the setting of mail protocols; (6)
AddressBook is used for the management of address book; (7) Account is responsible
for account management. Herein, EmailManagement and Editor are two composite
components. In the component EmailManagement, a general-used component named
GeneralList used to handle mail-lists, a DataAccess component used to access email
information, and a component FileView used to show details of different kinds of e-
mails as well as the corresponding component ManageUI for user interface were
introduced as four sub-components. Herein, the component FileView was composed
of three sub-components: HtmlView to deal with Html format documents, component,
TextView to manage text format documents and MultimediaView to process
multimedia documents. In the component Editor, the sub-component EditorUI is
responsible for the user interface, and two subcomponents named TextEdit and
HtmlEdit respectively are used to compose different formats emails.

HtmlEdit

EditorUI

Account

TextEdit

ManageUI
GeneralList

EmailManagemantFileView

c1

Target Architecture ModelSource Architecture Model

MainUI

ClientProtocol

AddressBook

Editor

DataAcessMultimediaView

TextView

HtmlView

T-EditorUI

T-Account

T-ManageUI

T-GeneralList

T-FileView

T-MainUI

T-Client T-Protocol

T-AddressBook

T-Editor

T-DataAcess
T-MultimediaView

T-TextMp T-HtmlMp

T-EmailManagemant

m2

f2

c2

c8

c3

c4

c5

c6

c7

c9

c10

f3

f1

f4

f6

f7

f5

f8

a2

a1

a3

a4

a6

a5

a7 t-f1

t-f2

t-f3

t-f4 t-f5

t-f7

t-f8

t-a1

t-f6

t-a2

t-a3

t-a4

t-a5

t-a6

t-a7

t-a10

t-a8

t-a9

t-a11

t-a10
t-a12

t-a13

m1

m3

m4

Fig. 4. Component model mapping of email client

648 X. Yang, J. Hou, and J. Wan

We assume that the target platform does not support composite components, such
as the programming language C++ does not support nested definition of the Class,
and the EJB specification, only permits several javabeans be included in a jar
package, but do not support the definition of composite EJB. In such case, the
mapping relations between the majority of the source atomic components and the
components types of the target platform can easily built. As for the composite
components, the decomposition mapping relations must be built through stepwise
layers-decomposition. In order to optimize the target architecture, there is generally a
need to integrate target components specifications, and thus will form the composition
mapping from the source model to the target model. In this case, the functions for
html document editing and browsing were combined into a component T-HtmlMp in
the target architecture. Similarly, the functions for text document editing and
browsing were combined into a component T-TextMp.

The corresponding target architecture model was represented within categorical
diagram in the right part of Fig.4. The mapping relations from the source to the target
can be observed by component names. Only a part of mapping morphisms are drawn
in Fig. 4, which satisfy the commutative law of category diagram, such as t-f1 m1=
m3 f1, tf3 t-a7 m2=m3 f3 a7, and so on. This property shows that the
transformation following these mappings persevere consistency of dependency
relations among the components.

5 Related Work

In the past few years, a large number of approaches for model transformation have
been proposed. Most of these approaches lay emphasis on providing a concrete
solution for the transformation from source model to target model. In the work by
Bezivin et al [12], the impact on the efforts to define mapping rules caused by the gap
between the source and the target modeling languages is mentioned briefly from the
view of meta-model semantics, but no general solutions are given. The central role of
formalism extension mechanisms in managing the abstraction-level gap between
modeling languages as well as the platform-level details of specific implementations
is shown in Caplat and Sourrouille’s work [3]. The gap between the modeling
languages can be narrowed using this mechanism, but cannot be completely
eliminated. The mapping relations between models are still difficult to define directly.
On the other hand, category theory has been widely used to facilitate specification
construction. In Gerken’s work [6], category theory and algebraic specifications were
used to develop a formal definition of architecture and it also showed how
architecture theory can be used in the construction of software specifications. The
problem of interconnection relationships in large systems was addressed using
category theory in Guo’s paper [10], which also gives a framework of the
dependencies modeling. The work by Fiadeiro and Maibaum [7] have showed how
elementary concepts of category theory can be used to formalize key notions of
software architecture independently of the formalism chosen for describing the
behavior of components. Despite the popularity of category theory in specification
construction, little attention was given to understanding the relationship between
levels of abstraction for component-based model mapping.

 Formal Semantic Meanings of Architecture-Centric Model Mapping 649

6 Conclusion and Future Work

In this paper, a unifying framework for component-based model mapping was
presented. The framework is based on category theory due to its formality and its high
level of abstraction. An important contribution is the formalization of mappings
between architecture modes at different abstract levels. In order to specify and verify
such a model mapping to ensure semantic compatibility, we postulate that through
formality, the terms “component” and “architecture” both can be precisely defined
and some important properties of systems can be investigated with precision.
Furthermore, we use category theory to develop a formal definition of architecture
mapping and some important properties are exploited. It can be a measurement for
validating the mapping rules between models at different abstract levels, and thus to
provide an effective support to model driven software development.

Future works are as follows: (1) further to formalize the definition of component
specification and architecture model, and thus to strengthen the abilities of semantic
expressiveness and consistent verification between models; (2) more study about the
preserving of semantics features in model mapping for the enhancement of accuracy.

References

1. Brent, H., Peri, T.: Model-driven development: The good, the bad, and the ugly. IBM
Systems Journal 45(3), 451–461 (2006)

2. Krzysztof, C., Simon, H.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), 621–644 (2006)

3. Caplat, G., Sourrouille, J.L.: Model Mapping Using Formalism Extensions. IEEE
Software 22(2), 44–51 (2005)

4. Barr, M., Wells, C.: Category Theory for Computing Scince. Prentice-Hall, Englewood
Cliffs (1990)

5. Goguen, J.: A Categorical Manifesto. Mathematical Structures in Computer Science 1(1),
49–67 (1991)

6. Mark, J.G.: Specification of Software Architecture. Journal on Software Engineering and
Knowledge Engineering 10(1), 69–95 (2000)

7. Fiadeiro, J.L., Maibaum, T.: A Mathematical Toolbox for the Software Architect. In: Proc.
8th International Workshop on Software Specification and Design, pp. 46–55 (1995)

8. Eilenberg, S., MacLane, S.: General theory of natural equivalences. Transactions of the
American Mathematical Society 58(1), 231–245 (1945)

9. Colin, A., Joachim, B., Christian, B., et al.: Component-Based Product Line Engineering
with UML, Addison-Wesley Professional, Pearson Education, Boston (2002)

10. Guo, J.: Using category theory to model software component dependencies. In: ECBS
2002. Proc. of the 9th Annual IEEE Int’l Conf. and Workshop on the Engineering of
Computer-Based Systems, pp. 185–192. IEEE Computer Society, Los Alamitos (2002)

11. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley, Boston (2003)

12. Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA approach for Web
service platform. In: Proc. of Enterprise Distributed Object Computing Conference,
Monterey, California, USA, pp. 58–70 (2004)

	Formal Semantic Meanings of Architecture-Centric Model Mapping
	Introduction
	Category Theory and Algebraic Specification
	Formal Semantic Meanings for Architecture Model
	Component Signature and Component Specification
	Component Relations and The Hierarchy Component Models
	Architecture Models and Mapping Functors

	A Case Study
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

