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Abstract. Over the past few years, Model-driven Development (MDD) has 
become an active research area of software engineering, in which model 
transformation is a key technology. However, there is currently no mature 
foundation on the definition of mapping rules as well as cardinal principles to 
verify the mapping relations between such models. Based on software 
architecture, category theory is used to explore the mapping relations between 
models at different abstract levels, so that the interconnections and mapping 
relations between component-based models and the compositions of these 
relations have rigorous meanings. The morphism composition and functors are 
used to trace the relationships between component models at different abstract 
levels. Formal description of model mappings is suitable to the automatic 
software development. It can be a measurement for validating the mapping 
rules between different models, and thus can make an effective support to 
MDD. 

1   Introduction 

Over the past few years, Model-driven Development (MDD) has become an active 
research area of software engineering [1], in which model transformation is a key 
technology. Represented by OMG’s MDA, numerous research institutions and 
enterprises have been investing a large amount of money and manpower in the model 
transformation study. Currently, a number of products based on MDA have proved 
that a lot of benefits can be obtained from it, such as rapid development, architecture 
advantages, improvement of code consistency and maintainability, enhancement of 
system’s portability across middleware vendors, and it also shows great potential in 
these areas. 

Most of the existing and proposed approaches [2] for model transformation focus 
on providing a concrete solution for the transformation between models at different 
abstract levels, and there's currently no mature foundation on the definition of 
mapping rules as well as cardinal principles to validate the mapping relations between 
such models. More in-depth study and formal methods about this issue are expected 
to support complicated model transformation [3]. Consequently, a unifying 
framework for the mapping description techniques seems imperative. Such a 
framework should be formal, in order to avoid ambiguities; offer a sufficiently high 
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level of abstraction, in order to concentrate on the meaning of concepts instead of on 
representational aspects; and be sufficiently expressive. These requirements suggest 
category theory as an excellent candidate. 

Category theory is a mathematical framework suitable for representing relationships 
between knowledge [4], which has been viewed by the computer sciences as a means 
of achieving representation independence and abstraction, while providing conceptual 
subdiscipline unification [5]. Category theory has been widely used to facilitate 
specification construction [6]. It provides the right level of mathematical abstraction to 
address languages for describing software architectures [7]. The abstract framework of 
category theory is shown to provide semantics for the configuration of complex 
systems from their component parts. Diagrams express configuration by representing 
the results of applying combinators to recursively defined system components. These 
ideas are extended to provide a precise semantics for both components structuring and 
models mapping in this paper. We propose adaptations to the categorical framework in 
order to manage model mapping and transformation. 

The rest of this paper is organized as follows: some basic concepts of category and 
algebraic specification are given briefly in Section 2; the formal semantic meanings of 
component model mapping are developed in Section 3; a case study about email client 
model mapping is shown in Section 4; related works in this area are presented in 
Section 5; The paper ends with conclusions and future works. 

2   Category Theory and Algebraic Specification 

In computing science, more abstract viewpoints are often more useful, because of the 
need to achieve independence from the overwhelmingly complex details of how 
things are represented or implemented. Category theory allows the study of the 
essence of certain concepts as it focuses on the properties of mathematical structures 
instead of on their representation. One of the basic principles summarized in [8] is 
that complex systems can be usefully identified with diagrams, system components 
and connectors corresponding to nodes, and interconnections being established 
through the edges of the diagrams. Category theory is ideal for this purpose, as it 
provides a rich body of theory for reasoning about objects and relations between 
them. Moreover, category theory lends itself well to automation, so that, for example, 
the composition of two specifications can be derived automatically, provided that the 
category of specifications obeys certain properties. Most of the category definitions of 
this section are adapted from [4]. 

Definition 1. Category. A category  is composed of two collections: 

(1) the objects of the category, which is called C-objects; 
(2) the morphisms (arrows) of the category, which is called C-arrows; 
These two collections must respect the following properties: 
(a) each morphism f is associated with an object A that is its domain and an object 

B that is its codomain. Notation: f: A→B. 
(b) for all morphisms f: A→B and g: B→C, there exists a composed morphism 

g f: A→C and the composition law is associative, i.e. for all h: C→D, h (g f)= 
(h g) f. 
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(c) for each object A of the category, there exists an identity morphism idA such 
that: 

∀ f: B→A, idA f = f and ∀ f: A→B; f idA= f. 

Many categorical definitions and proofs employ diagrams. As remarked before, 
quite complex facts can be visualized by the use of these diagrams. 

Definition 2. Diagram. A diagram  in a category  consists of a collection DC of C-
objects and a collection DA of C-arrows such that for any arrow a∈DA, cod a∈DC 
and dom a∈DC, where cod a represents the codomain of a and dom a represents the 
domain of a.  

Definition 3. Commutative diagram. A diagram is said to commute if every path 
between two objects in its image determines through composition the same arrow. 
The case is shown in Fig.1. 

 

C

f

g

BA

h

 

Fig. 1. Diagram commutes iff h is the composite g f 

A powerful construction operation called colimit is defined over diagrams. 

Definition 4. Colimit. A colimit for a diagram  in a category  is a C-object C 
along with a co-cone{fi : Di→C | Di ∈ } from D to C such that for any other co-cone 
{f 'i: Di→c' | Di ∈ } from D to a vertex C’, there is a unique C-arrow f : C→C’ such 
that for every object Di in , the diagram shown in Fig.2. commutes; i.e., f fi = f’i. 

Di

f

fi’

C’

C

fi

 

Fig. 2. Definition of a colimit 

A practical interpretation for the colimit is given by Goguen in [5]: “Given a 
species of structure, say widgets, then the result of interconnecting a system of 
widgets to form a super-widget corresponds to taking the colimit of the diagram of 
widgets in which the morphisms show how they are interconnected.” 
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Definition 5. Functor. A functor F from a category  to a category  is a function 
which assigns to each C-object a, a D-object F(a), and to each C-arrow f: A→B, a D-
arrow F(f): F(A)→F(B), such that identity arrows and composites are preserved, i.e., 
F(idA)= idF(A); for all C-objects A, and F(g f)= F(g) F(f); whenever g f is defined  
in .  

Category theory can be used to compose formal specifications from smaller, 
reusable pieces. When used for specification construction, there is usually a 
requirement that the morphisms preserve theoremhood. That is, if a morphism 
between two specifications is defined, there is an obligation to prove that the axioms 
of the source specification are theorems of the target specification under the 
translation. Thus we can define an architecture model as a diagram of specifications, 
and prove properties of this architecture at a relatively abstract level. 

3   Formal Semantic Meanings for Architecture Model 

In MDD, the model description must be precise enough to grasp the essential 
behavior of the component, which also must be sufficiently abstract to ensure that, 
according to the requirements of the model, different vendors can respectively 
develop their component products that can compete with each other. A category 
theoretic foundation is shown in this section for the conceptual component modeling 
elements.  

3.1   Component Signature and Component Specification 

From a mathematical point of view, component signatures are structures defined as 
follows. 

Definition 6. Component signature. A component signature is a 6-tuple < Σ , A, Γ , 
fa, fp, D> where 

(1) Σ =<S, Ω > is a data signature in the usual algebraic sense, i.e. a set S of sort 
symbols and a S*×S-indexed family Ω  of function symbols; 

(2) A is a S*×S-indexed family of attribute symbols of the component, each 
attribute is typed by a data sort in S; 

(3) Γ  is an S*-indexed family of port symbols. 
(4) fa: A→SA, SA ⊂ S is a total function, which shows the properties of the attribute;  
(5) fp: Γ→ST, ST ⊂ S is a total function, which shows the properties of the ports; 
(6) D: Γ →2A is a total function, for each g∈ Γ , D(g) is the collection of the 

attributes which can be modified via port g. 

Definition 7. Component signature morphism. Given two component signatures 

1θ =< 1Σ , A1, 1Γ , fa1, fp1, D1> and 2θ =< 2Σ , A2, 2Γ , fa2, fp2, D2>, a morphism σ : 

1θ → 2θ  from 1θ  to 2θ  consists of: 

(1) a morphism of algebraic signatures vσ : 1Σ → 2Σ ; 
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(2) for each f: s1, …, sn → s in A1, an attribute symbol aσ (f): vσ (s1), …, vσ (sn) 

→ vσ (s) in A2; 

(3) for each g: s1,…,sn in 1Γ , an action symbol γσ (g): γσ (s1),…, γσ (sn) in 2Γ ; 

(4) for each g∈ 1Γ , aσ (D1(g))=D2( aσ (g)). 

The last conditions show that the attributes affected by a certain port must be 
preserved through a component signature morphism.  

Definition 8. Component specification. A component specification CS is a pair 
(θ , Δ ), where θ  is a component signature < Σ , A, Γ , fa, fp, D> and Δ , the body of 
the specification, is a quadruple (I, F, B, Φ), where 

(1) I is a θ -proposition (constraining the initial values of the attributes); 
(2) F assigns to every port g∈ Γ  a non-deterministic command, i.e. F maps every 

attribute a in D(g) to a set expression F(a); 
(3) B assigns to every port g∈ Γ  a θ -proposition as its guard. 
(4) Φ is a (finite) set of θ-formulae (the axioms of the description), which is a 

collection of the functional and non-functional goals of the component. 

We distinguish between functional requirements and nonfunctional requirements. 
Functional requirements describe the system behavior as well as the collaboration 
among system components to accomplish the system behavior. nonfunctional 
requirements pertain to how a system performs its functions and include concerns 
such as quality, quantity, and timeliness. 

Definition 9. Component specification morphism. A morphism ω : CS1→CS2 of 

component specification CS1= < 1θ , 1Δ > and CS2= < 2θ , 2Δ >, consists of a signature 

morphism σ : 1θ → 2θ such that, 

(1) ∃ p∈Φ1, ω (p)∈Φ2; 

(2) ∃ g1∈ 1Γ , al∈Dl(gl), B2(σ (g1)) ⊃ σ (F1(g1, a1))=F2(σ (g1),σ (a1)); 

(3) I2 ⊃ ω (I1). 

(4) ∃ g1∈ 1Γ , B2(σ (g1)) ⊃ σ (B1(g1)). 

Requirements shown above allow guards to be strengthened but not to be 
weakened. 

3.2   Component Relations and The Hierarchy Component Models 

Relationships between components impose accessibility constraints on their attributes 
and, thus, restrict the way components can be interconnected. In the component-based 
model-driven development [9], there are many kinds of relations between component 
models, such as compose, use, extend, as well as the mapping relations between 
component models at different abstract levels [10]. 

A specification morphism m: A→B from a specification A to specification B maps 
any element of the signature of A to an element of the signature of B that is 
compatible (i.e., sort with sort etc). The compose relationship express how that 
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component is part of the given ones. On this basis, a compose relation between two 
components S1 and S0 is achieved in category theory by identifying a morphisms c1 
from S1 to S0, which express that S1 is a subcomponent of S0. This case is expressed 
by Fig 3 (a). Through this morphism, the configuration diagram returns a new 
component that represents the overall system. Some constraints, however, apply. The 
use and extends relationship may describe a dependency between two 
implementations or between two specifications. It actually applies to different yet 
closely related component relationships. These dependency relationships between 
components at the same level are represented by the morphisms given in Fig. 3 (b) 
and (c), which shows that the implementations of some functions in R1 (or C2) are 
based on the functions specified in R2 (or C1). The mapping relations describe the key 
relationship between abstract component specifications and concrete component 
specifications. It is also formalized via morphisms in category theory. As shown in 
Fig.3. (d), the morphism between S and T is as an illustration, where T is the direct 
corresponding part to S at a more concrete level. The mapping relationship can be 
defined informally as follows: Abstract component S is mapped to concrete 
component T if and only if T exhibits the behavior specified by S. 

S1

c1

S2

c2

R3R1

R2

f1 f2

S

T

mS0

(a) (b) (d) 

C3

C2

a1 a2

(c) 

C1

 
Fig. 3. Component specifications morphisms 

The composition of component specifications can be modeled hierarchically in a 
category theoretic framework. Large complex systems are put together, or configured, 
from smaller parts, some of which have already been put together from even smaller 
parts. The composition operation then defines and constructs an aggregated 
component describing the overall system from the individual components and their 
interactions. Colimits can be used to construct systems from simpler components in 
our category of component models. We consider systems composed of a number of 
components coordinating their activities. The components of a system are represented 
by recursively defined objects and configured by combinators. Under such 
interpretation, a categorical diagram represents a system of components. A colimit of 
a diagram, if it exists, allows one to represent the whole system as a single component. 

Properties can be associated to each specification. These are the properties that we 
expect the component to respect; that we need to prove on the component. We can 
represent these properties in the same framework as the specifications and this allows 
us to use category theory and particularly categorical computations to manage them. 
The property of the colimit specifications gives the composition for the properties. 
The advantage of this approach is that the management of properties and their status 
(proved, to be proved) is handled in a uniform way through the management of 
morphisms and proof obligations. 
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3.3   Architecture Models and Mapping Functors 

Software architecture is a world populated by components, connectors, configurations, 
etc [6]. As a simple example, an architecture theory could be defined by the objects 
and the composition rules. These rules provide the semantics of the architecture, and 
can be used to both interpret the meaning of structures and to identify equivalent or 
included substructures. These notions can be formalized as a category. 

Definition 10. Architecture Model. An architecture model is a 5-tuple <CO, CR, OT, 
RT,┝>, where 

(1) CO is a collection of components; 
(2) CR is a collection of binary relations defined over CO; 
(3) OT is a collection of component specifications, and for every component 

o∈CO, type(o)∈OT, herein the operation type returns the component’s type; 
(4) RT is a collection of binary relation types defined over OT, for each r∈CR, 

type(r)∈RT; 
(5) ┝ is a satisfaction relation between OT-sentences and OT-models [10] such 

that ┝ defines a well order. 

Component specifications and cs-morphisms constitute a category for architecture 
model, henceforth denoted by AM. Obviously, the category AM is cocomplete.  

Category theory also provides us with the means to establish relationships between 
different architectural models: functors. An architecture mapping from AM1 to AM2 is 
simply a mapping of component specifications of AM1 to component specifications of 
AM2 that preserves relations between these components. 

Definition 11. Architecture mapping functor. An architecture mapping functor 
denoted F: AM1→AM2 from architecture model AM1=<CO1, CR1, OT1, RT1,┝> to 
AM2=< CO2, CR2, OT2, RT2,┝> is a function F: AM1→AM2, in such a way that 

(1) for every component o∈CO1, F(o)∈CO2; 
(2) for every component specification o, o’ ∈  CO1, o→o’ ∈ CR1 implies 

F(o) → F(o’)∈CR2; 
(3) F(f g)=F(f) F(g); whenever g, f∈CR1 and f g is defined; 
(4) for all OT1 sentence s, AM1┝ s if and only if AM2┝ F(s). 

According to the theory of model-driven development [11], a mapping functor 
between two architecture models at different abstract levels for the same system is a 
mapping in case the axioms of the source are logically implied by the axioms of the 
target under the translation. Thus, architecture mapping preserve the properties of the 
source architecture models. Functors map the objects and morphisms of one category 
to corresponding objects and morphisms of another category. Consistency between 
the sorts and operations of the component specifications are maintained. 

4   A Case Study 

In this section, a component-based model for email client was used as a simple case to 
illustrate the feasibility of the approach proposed in this paper. 
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Based on hierarchy component model, the structure of the source model was 
depicted within categorical diagram in the left part of Fig.4., which involving seven 
components types: (1) MainUI is in charge of the UI layout and art design of the 
interaction between the mail client and users, through which users can receive email, 
check email, send email and compose email; (2) EmailManagement is responsible for 
the storage, reading and display of all the e-mails stored locally; (3) Editor is used to 
composing text format or html format e-mail; (4) Client is responsible for sending and 
receiving e-mail; (5) Protocol is identified for the setting of mail protocols; (6) 
AddressBook is used for the management of address book; (7) Account is responsible 
for account management. Herein, EmailManagement and Editor are two composite 
components. In the component EmailManagement, a general-used component named 
GeneralList used to handle mail-lists, a DataAccess component used to access email 
information, and a component FileView used to show details of different kinds of e-
mails as well as the corresponding component ManageUI for user interface were 
introduced as four sub-components. Herein, the component FileView was composed 
of three sub-components: HtmlView to deal with Html format documents, component, 
TextView to manage text format documents and MultimediaView to process 
multimedia documents. In the component Editor, the sub-component EditorUI is 
responsible for the user interface, and two subcomponents named TextEdit and 
HtmlEdit respectively are used to compose different formats emails. 
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Fig. 4. Component model mapping of email client 
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We assume that the target platform does not support composite components, such 
as the programming language C++ does not support nested definition of the Class, 
and the EJB specification, only permits several javabeans be included in a jar 
package, but do not support the definition of composite EJB. In such case, the 
mapping relations between the majority of the source atomic components and the 
components types of the target platform can easily built. As for the composite 
components, the decomposition mapping relations must be built through stepwise 
layers-decomposition. In order to optimize the target architecture, there is generally a 
need to integrate target components specifications, and thus will form the composition 
mapping from the source model to the target model. In this case, the functions for 
html document editing and browsing were combined into a component T-HtmlMp in 
the target architecture. Similarly, the functions for text document editing and 
browsing were combined into a component T-TextMp. 

The corresponding target architecture model was represented within categorical 
diagram in the right part of Fig.4. The mapping relations from the source to the target 
can be observed by component names. Only a part of mapping morphisms are drawn 
in Fig. 4, which satisfy the commutative law of category diagram, such as t-f1 m1= 
m3 f1, tf3 t-a7 m2=m3 f3 a7, and so on. This property shows that the 
transformation following these mappings persevere consistency of dependency 
relations among the components. 

5   Related Work 

In the past few years, a large number of approaches for model transformation have 
been proposed. Most of these approaches lay emphasis on providing a concrete 
solution for the transformation from source model to target model. In the work by 
Bezivin et al [12], the impact on the efforts to define mapping rules caused by the gap 
between the source and the target modeling languages is mentioned briefly from the 
view of meta-model semantics, but no general solutions are given. The central role of 
formalism extension mechanisms in managing the abstraction-level gap between 
modeling languages as well as the platform-level details of specific implementations 
is shown in Caplat and Sourrouille’s work [3]. The gap between the modeling 
languages can be narrowed using this mechanism, but cannot be completely 
eliminated. The mapping relations between models are still difficult to define directly. 
On the other hand, category theory has been widely used to facilitate specification 
construction. In Gerken’s work [6], category theory and algebraic specifications were 
used to develop a formal definition of architecture and it also showed how 
architecture theory can be used in the construction of software specifications. The 
problem of interconnection relationships in large systems was addressed using 
category theory in Guo’s paper [10], which also gives a framework of the 
dependencies modeling. The work by Fiadeiro and Maibaum [7] have showed how 
elementary concepts of category theory can be used to formalize key notions of 
software architecture independently of the formalism chosen for describing the 
behavior of components. Despite the popularity of category theory in specification 
construction, little attention was given to understanding the relationship between 
levels of abstraction for component-based model mapping. 
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6   Conclusion and Future Work 

In this paper, a unifying framework for component-based model mapping was 
presented. The framework is based on category theory due to its formality and its high 
level of abstraction. An important contribution is the formalization of mappings 
between architecture modes at different abstract levels. In order to specify and verify 
such a model mapping to ensure semantic compatibility, we postulate that through 
formality, the terms “component” and “architecture” both can be precisely defined 
and some important properties of systems can be investigated with precision. 
Furthermore, we use category theory to develop a formal definition of architecture 
mapping and some important properties are exploited. It can be a measurement for 
validating the mapping rules between models at different abstract levels, and thus to 
provide an effective support to model driven software development. 

Future works are as follows: (1) further to formalize the definition of component 
specification and architecture model, and thus to strengthen the abilities of semantic 
expressiveness and consistent verification between models; (2) more study about the 
preserving of semantics features in model mapping for the enhancement of accuracy. 
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