
M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 617–623, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Array Modeling in Java Virtual Machine

Wu Weimin1, Li Kailun2, and Su Qing3

1 Computer Faculty, Guangdong University of Technology, Guangzhou 510006, China
2 Guangzhou Branch, People’s Bank of China, Guangzhou 510050, China

Abstract. Array is an important feature in Java and Java Virtual Machine. In
spite of its importance, it has not been modeled by any existing Java Virtual
Machine Models. In this paper, we define an extending model which uses an
existing model as a basis and give the hierarchy of these two models, to model the
array. In the extending model, we model the array in three steps. The first step is
adding array related instructions in a formal way. The second step is refining the
type compatibility to include array types. The last step is implementing array
loading process also in a formal way. In the last part of thesis, we give the future
work of extending other important features in Java and Java Virtual Machine.

1 Introduction

Java is an object-oriented programming language with a widespread use, and the java
compiler translates Java source code to bytecode, which executes on the Java Virtual
Machine (JVM).[1]

Compared to other object-oriented languages, there are many distinct features in
Java, and array is one of them. And array is also an important feature in Java and JVM.
The distinction and importance of it are as follows. First, in Java programming
language, array is a most frequently used data structure to contain elements. Second, in
Java type system, array type is a kind of reference type (the other two are class type and
interface type). Third, in object creating, other then any other kinds of objects, array is a
full-fledged object and is dynamically created, and it generally includes basic type
array and object reference array. Fourth, in object loading, array loading is different
from class or interface loading. Last but not least, in JVM instruction set, the JVM uses
special bytecode to handle array. [2]

For this distinct and important feature in Java and JVM, it is significant to describe it
in essence to help us in designing, programming, etc. The best and precise way to
describe the essence is to build a model in a mathematical way. And because the JVM
involves type, object creating and loading, and instruction set, so the most suitable
model to build on is JVM model. After building the model, we can take the advantages
as follows. First, it can help us precisely find the compiling error or runtime error which
is directly or indirectly caused by misusing of array. Second, it can help us know what
happens to the array behind the scene in a mathematical way, and thus help us design
more robust programs.

618 W. Weimin, L. Kailun, and S. Qing

So far, several formalizations of the JVM model have been proposed. However, they
provide only insight into one or few aspects of the machine, not the whole machine, and
the array is not modeled in any of these models. So it means we need to extend an
existed model to support array. The most rigorous and comprehensive one among these
model is the machine proposed by Egon Borger and Wolfram Schulte (for clarity, we
call it BSM, namely, Borger and Schulte Model). [3]. This machine can be validated
and verified by standard techniques because it is defined by Abstract State Machines
(ASM), which have a simple but precise semantic foundation. [4]

In BSM, the model can be described as a hierarchy of four submachines. Fig. 1.
shows the hierarchy. The basic stack machine VMI supports instructions which are
used for compilation of imperative programs. Typical instructions are: load and store a
variable, apply arithmetic and relational operators, and jump. VMI is upgraded to VMC
by including instructions which are used for the compilation of Java static features,
such as class fields, class methods and class initializers. VMC can be extended to VMO
which supports instructions for Java object-oriented features, such as instance creation,
instance field access, instance calls with early or lately binding and type casts. And the
topmost machine VME provides instructions with respect to exception [3]. And this
structural decomposition is based on the orthogonality of various language features of
Java. [5,6]

VMI: Loc vars, expr, stm

VMO: fields methods casting constructors

VME: throw try/catch try/finally

VMC: fields,methods,initializations

Fig. 1. Structural Decomposition of BSM

2 The Model of Extending BSM

Based on the current situation of JVM and the importance of array in JVM, we extend
the BSM to support the function of array. And we call this extending model the
Extending BSM (short for EBSM).

We add a VMA machine which supports array on top of the topmost model VME to
extend the BSM. The main reason is as follows: when we extend the machine to support
array, we should refine some functions and add some functions. If we separate these
functions in four levels, then the description of the functions will not be centralized and
the difference between BSM and EBSM will not be clear enough. And if we create a
new level above the BSM, then these two problems will be solved. Fig. 2. shows the
structural decomposition of EBSM.

 Array Modeling in Java Virtual Machine 619

VMI: Loc vars, expr, stm

VMO: fields methods casting constructors

VME: throw try/catch try/finally

VMC: fields,methods,initializations

VMA: array

Fig. 2. Structural Decomposition of EBSM

3 VMA Modeling

We implement the VMA machine by three steps. First, we add 20 instructions which
involving array into the instruction set of the JVM. Second, we refine the type
compatibility to include the array type. Third, we refine the loading method to add the
process of loading and linking array.

3.1 Adding Array Instructions

There are about 20 array related instructions in JVM. They can be divided into three
kinds. The first kind is loading and storing array elements, contains aaload, aastore,
baload, bastore, caload, castore, daload, dastore, faload, fastore, iaload, iastore, laload,
lastore, saload, sastore. The most difference among these instructions are the type of the
operand. Details of these instructions can be seen in [2]. The second kind is creating
array, contains anewarray, newarray, multianewarray, which mean creating array of
reference type, creating array of basic type and creating multiple array respectively.
The third kind is getting length of array, which has only one instruction: arraylength.
The first and the second kind are more important than the third kind, so we describe
these two kind instructions in detail.

3.1.1 Instructions of Loading and Storing Array Elements
Because the execVM part of the BSM, which defines the process of instruction
executing, uses the free data type to abstract the difference between non-array type,
including reference type and basic type, so the first kind of instructions can be abstract
to loadarrayelem and storearrayelem, which mean loading array element and storing
array element respectively. Prog. 1. shows this kind of instructions.

Prog. 1. Instructions of loading and storing array elements

execVM (redef)==…

loadarrayelem()•

if newopd•wr•wi=opd• #w #wr =r• #wi=i then

newopd(#newopd+1):=r[i]

620 W. Weimin, L. Kailun, and S. Qing

pc:=pc+1

storarrayelem()•

if newopd•wr•wi•wv=opd• #w #wr=r• #wi=i• #wv=v then

r[i]:=v

pc:=pc+1

3.1.2 Instructions of Creating Array
To implement the instructions of creating array, we should first define a type called
AState to denote the state of an array. Prog. 2. shows the AState type and its related
State and InitialState.

Prog. 2. AState Type

Type AState:= NotInited | Inited

State aState:ANm • AState

Initial State aState(c)=NotInited

To implement the instruction newarray, we define five steps. First, we get the array
type according to the basic type in parameter using the function arraytype. Second, if
the class of the array is not already loaded, we should first load the class of the array
type using callLink function. Third, we set the class and dimension of the new created
reference using function aOf and countOf respectively. Fourth, we initialize the array
using the default values. Last, we update the operand and the PC register. The
implementation of instruction anewarray is similar to the newarray. For clarity, we do
not describe it in detail.

The most distinct differences between newarray and multianewarray is the latter
uses a function initArrayElem to init the elements of the multiple array using function
elemType which returns the element type of the array argument. The element may also
be an array, so this call may be recursive. Prog. 3. shows the instructions of newarray
and multianewarray.

Prog. 3. Instructions of newarray and multianewarray

execVM (redef)==…

newarray(t) •

at := arraytype(t)

if newopd •wc = opd • # wc =c then

if aState(at) := NotInited

 callLink(cLd(meth), cNm(f))

aOf(r) := at

countOf(r) := c

for all e in afield(at)

elem(r ,e) := default(e)

 Array Modeling in Java Virtual Machine 621

newopd :=new opd • [r]

pc := pc +1

where r = new (dom(aOf))

multianewarray(t, d) •

at := multiarraytype(t, d)

if newopd •wc1…•wcd = opd • # wc1 =c1 •… # wcd =cd then

if aState(at) := NotInited

 callLink(cLd(meth), cNm(f))

aOf(r) := at

i := 1

countOf(r) := ci

for all e in afield(at)

elem(r ,e) :=(i = d) ?default(e): initArrayElem
(elemtype(at),ci+1)

newopd :=newopd • [r]

pc := pc +1

where r = new (dom(aOf))

initArrayElem(at, ci)

aOf(r) := at

countOf(r) := ci

for all e in afield(at)

elem(r ,e) := (i = d) ?default(e)

:initArrayElem(elemtype(at),ci+1)

where r = new (dom(aOf))

3.2 Type Compatibility of Array Type

Because the propagateVM part (which defines the process of verifying byte code) and
the execVM part of the BSM involves type compatibility, so we refine the function
compat and the operator ‘≤‘to include type compatibility of array.

Prog. 4. shows the refined function and operator. According to the JVM
specification[2], it is compatible when two arrays are of the same dimension and the
element types of the two arrays are type compatible. In model, the function isArray
returns true if parameter is actually an array, and the function dim returns the dimension
of the array argument.

622 W. Weimin, L. Kailun, and S. Qing

Prog. 4. Type compatibility of array type

isArray(C1) • isArray(C2) • dim (C1) = dim (C2) •elemType
(C1) • elemTy elemType(C2)

• Compat(C1, C2) = true Compat(C1, C2) = true

isArray(C1) • isArray(C2) • dim(C1) = dim(C2) •elemType
(C1) • elemType(C2) elemType(C2)

• C1 • C2 C1 • C2

3.3 Array Loading

For array loading, if the element type of the array is a reference type, then according to
the JVM specification[2], JVM first loads the element type (may lead to recursively
loading), and then adds the array type to the name space of the environment. If the
element type of the array is a basic type, then just adds the array type to the name space
of the environment.

Because no matter what classLoaders (system or user-defined) are defined, the
function of loading and linking are eventually found in findSystemClass, defineClass
and resolveClass in class called classClassLoader, so we refine the InvInstance method
taken each of these three method names as argument in the execVM of BSM for array
loading. Prog. 5. shows the refining rule for findSystemClass. We refine similarly the
execution rules for the other two methods. For clarity, we do not show it in Prog. 5. The
black part of the program shows what we have refined.

Prog. 5. Instructions of array loading

execVM (redef)==…

InvInstance(bind, findSystemClass) •

if cinitd(cNm(findSystenClass)) •newopd •[ld, cn] = opd
•ld <> null then

 let c = (sysLd, cn) in

if unloaded(c) then

 if ¬ isArray(c) then

 loadVM(c)

 else

 bc := elementType (c)

 if(isReferenceType(Class(bc))) then

 loadVM(bc)

 addArrayToEnv(c, lc)

 else

 addArrayToEnv(c, lc)

else if ¬ cinitd(c) then

 Array Modeling in Java Virtual Machine 623

 if ¬ isArray(c) then

linkVM(c)

 else

 bc := elementType (c)

 if(isReferenceType(Class(bc))) then

 linkVM(bc)

 addArrayToEnv(c, lc)

 else

 addArrayToEnv(c, lc)

else

 opd := newopd•[ldEnv(c)]

pc := pc +1

4 Conclusion

Array is an important feature in Java and JVM. The best and precise way to describe the
essence of it is to build a model in mathematical way. In this paper, we define an
extending model which uses an existing model as a basis and give the hierarchy of these
two models, to model the array. In the extending model, we model the array in three steps.

Acknowledgment

The future work is to model the other important features in Java and JVM which have
not been modeled by existing JVM . models.

References

1. Gosling, J., Joy, B., Steele, G.: The Java(tm) Language Specification. Addison-Wesley,
Reading (1996)

2. Lindholm, T., Yellin, F.: The Java(tm) Virtual Machine Specification. Addison-Wesley,
Reading (1996)

3. Borger, E., Schulte, W.: Modular Design for the Java Virtual Machine Archicture. In:
Archicture Design and Validation Methods (2000)

4. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Borger, E. (ed.) Specification and
Validation Methods, Oxford University Press, Oxford (1995)

5. Borger, E., Schulte, W.: Defining the Java Virtual Machine as platform for provably correct
Java compilations. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450,
Springer, Heidelberg (1998)

6. Borger, E., Schulte, W.: A programmer friendly modular definition of the semantics of Java.
In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of Java(tm), Springer, Heidelberg (to
appear, 1999)

	Array Modeling in Java Virtual Machine
	Introduction
	The Model of Extending BSM
	VMA Modeling
	Adding Array Instructions
	Type Compatibility of Array Type
	Array Loading

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

