
M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 608 – 616, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Efficient Voice User Interface System Using VoiceXML
and ASP.NET 2.0

Byung-Seok Kang1 and Gi-Jong Yoo2

1 Department of Electronics Engineering, Korea University
1, 5-ga, Anam-dong, Sungbuk-gu, 136-701, Seoul, Korea

kbsgasu@korea.ac.kr
2 Graduate School of Education, Ajou University

San 5, Wonchon-dong, Yeongtong-gu, 443-749, Suwon, Kyonggi-do, Korea
mathink@naver.com

Abstract. The web-based application by VoiceXML service on the Internet is
gradually being accepted for the human-machine interaction because it provides
the speech-enabled function and makes telephone access a reality. Many
companies are interested in building the effective dynamic Voice User Interface
(VUI) system into the architecture of the already existing web application. The
previous papers [1, 2] suggest that they demonstrate how to design and
implement using VoiceXML and Active Server Pages. However, they have
used only one server script language, so it is not efficient. For that reason, we
have built another design that is more efficient for VoiceXML. Experimental
results demonstrate that ASP.NET 2.0 shows the highest communication
success rate and the lowest response time for web surfing.

1 Introduction

Today the computer distinguishes itself as a key player in the everyday human
activity, be it business, research, engineering, or entertainment. The invention of the
World Wide Web gave the computer even greater importance. By bringing the entire
globe under its orb, the World Wide Web opened before us a new world characterized
by the use of computer applications in every field. Voice and web technologies
assumed a definite shape in the last decade of the 20th century and soon sparked a
series of unprecedented changes in the way people interact long distance. There are a
host of competent technologies, such as VoiceXML 2.0, that facilitate fast and
accurate transfer of information all over the world. Furthermore, the Microsoft new
computer language Active Server Page.NET 2.0 is powerful for designing the VUI
system.

Many companies and personal users are using VXML for their customer web
service. D. Mecanovic proposes the Voice User Interface Design for a telephone
application [1]. They proved that the long and descriptive prompts make navigation
difficult and female text-to-speech (TTS) voice is preferred in dynamic VUI. R.
Vankayala and H. Shi [2], in their paper “Dynamic Voice Use Interface using VXML
and Active Server Pages” implemented and demonstrated an existing e-Commerce

 Efficient Voice User Interface System Using VoiceXML and ASP.NET 2.0 609

web application by using the BeVocal.com server and Microsoft IIS Web server.
Furthermore M. Tsai [5] deploys a web-based Mandarin dialogue system, in which a
user can use either a telephone channel or VoIP by personal computer to access the
voice server. But no one suggested which programming language is the most efficient
when it is used with VXML for existing web application services. In this paper, we
perform comprehensive experiments to find out the best implementation tool to build
an efficient VUI system. Specifically, we consider four tools: ASP, ASP.NET 2.0,
JSP, and PHP. Experimental results demonstrate that ASP.NET 2.0 has the highest
communication success rate and the lowest response time. This paper is organized as
follows. Section 2 discusses some background information. Next, the design utilizing
VoiceXML with some famous web programming languages is presented in section 3.
Simulation results are presented in Section 4 to show that our proposed design can
provide a good performance in the communication success rate and reduce the
response time. Finally, Section 5 concludes the paper.

2 Background

2.1 VoiceXML System

While HTML assumes a graphical web browser with display, keyboard, and mouse,
VoiceXML assumes a voice browser with audio output, audio input, and keypad
input. Audio input is handled by the voice browser's speech recognizer. Audio output
consists both of recordings and speech synthesized by the voice browser's text-to-
speech system.

A voice browser typically runs on a specialized voice gateway node that is
connected both to the Internet and to the public switched telephone network (see
Figure 1). The voice gateway can support hundreds or thousands of simultaneous
callers, and can be accessed by any one of the world's estimated 1,500,000,000
phones, ranging from antique black candlestick phones up to the very latest mobiles.

The user interacts with a Web site over the phone using a VoiceXML Browser,
which is hosted on a Gateway. Instead of rendering and interpreting HTML, the
VoiceXML Browser renders and interprets VoiceXML. The Gateway is the key

Fig. 1. VoiceXML serving architecture

610 B.-S. Kang and G.-J. Yoo

bridge technology, responsible for VoiceXML Browser, ASR Resource, TTS
Resource, Telephony Resource, Audio Resource and TCP/IP Resource.

2.2 ASP.NET 2.0

Active Server Pages.NET (ASP.NET) is a web development technology from
Microsoft. Part of the .NET Framework, ASP.NET allows developers to build
dynamic web applications and web services using compiled languages like VB.NET
and C#. Using Visual Studio, the development tool from Microsoft, web developers
can develop very compelling applications using ASP.NET, with the ease of drag-and-
drop server controls. Currently in its next major release, ASP.NET 2.0 is slated to be
released in November 2005.

ASP.NET 2.0 is a compiled common language runtime code running on the server.
Unlike its interpreted predecessors, ASP.NET 2.0 can take advantage of early
binding, just-in-time compilation, native optimization, and caching services right out
of the box.

Two aspects of ASP.Net 2.0 makes it fast (compiled code and caching). In the past,
the code was interpreted into "machine language" when website visitor viewed web
page. Now, with ASP.Net 2.0 the code is compiled into "machine language" before
visitor ever comes to web site. Caching is the storage of information that will be
reused in a memory location for faster access in the future. ASP.Net 2.0 allows
programmers to set up pages or areas of pages that are commonly reused to be cached
for a set period of time to improve the performance of web applications. In addition,
ASP.Net 2.0 allows the caching of data from a database so the website isn't slowed
down by frequent visits to a database when the data doesn't change very often.

3 Design and Implementation Using VoiceXML and ASP.NET 2.0

This section gives the main implementation details of our site. We describe our
algorithm and four designed systems.

3.1 System Architecture

To build VUI systems, we use VoiceXML café, “BeVocal.com” [6] for a VoiceXML
server. The BeVocal Café is a world-class, web-based development environment that
provides all the tools and resources developers need to create their own innovative
speech applications.

In our VUI systems, two web servers (Microsoft IIS and Apache web server), two
operating systems (Windows 2003 server and Linux server), four web programming
languages (ASP, ASP.NET 2.0, JSP, and PHP), and two database systems (MS-SQL
2005 and MySQL 5.0) are used. Figure 2 shows the VUI system architecture.

3.2 Algorithm of the Web Surfing System

To demonstrate the behavior of VUI systems, the following application scenario is
adopted. Once a user calls a VUI homepage, the VUI system says “Welcome to my
homepage. Which do you want? Notice, Free board, Public data or On-line poll?” If

 Efficient Voice User Interface System Using VoiceXML and ASP.NET 2.0 611

Fig. 2. VUI architecture

the user selects a free board (b), the system says “Do you want to write or not?”. If the
user chooses “yes”, the system shows a “write article” page; otherwise, the system
asks you a next question. Detailed application scenario is illustrated in Figure 3.

The source code which is below is the detail for main page in Figure 3’s
application scenario [7]. During some system design we describe a part of source
code under ASP.NET 2.0.

Fig. 3. Application scenario in VUI systems

612 B.-S. Kang and G.-J. Yoo

Sample Source Code of Main Page

<%@ Page Language="C#" MasterPageFile="~/Default.master"
Title="Simulation no.4 - ASP.NET 2.0 with C#" %>

<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">
<form id="main" scope="dialog">
 <prompt bargein="true">
 Welcome to visit my homepage. Which do you want?
 </prompt>
 <grammar> Notice | Free Board | Public Data | Survey </grammar>
 <noinput>
 No response, say one more please.
 <reprompt/>
 </noinput>
 <noinput count="4">
 Disconnect the phone.
 <disconnect/>
 </noinput>
 <nomatch>
 Say one more please.
 <reprompt/>
 </nomatch>
 <filled namelist="user_input" mode="all">
 <if cond="user_input == 'Notice'">
 <goto next="/List.aspx?TblName=Notice" fetchhint="safe"/>
 <elseif cond="user_input == 'Free Board'"/>
 <goto next="/List.aspx?TblName=Notice" fetchhint="safe"/>
 <elseif cond="user_input == 'Public Data'"/>
 <goto next="/List.aspx?TblName=Notice" fetchhint="safe"/>
 <elseif cond="user_input == 'Survey'"/>
 <goto next="/Poll_List.aspx" fetchhint="safe"/>
 <else/>
 <disconnect/>
 </if>
 </filled>
</form>
</VXML>

If users request the web service through voice interface, the BeVocal server should

interpret the voice and connect with this site for response. Then the web server shows
the correct web page and waits for the next request. Figure 4 shows some sample web
pages.

First, in figure 4(a), visitors view a notice board. Second, Figure 4(b) shows a
guest write the free board. Third, figure 4(c), users connect to the public data for
download some useful data. Finally in figure 4(d), users view the result of online poll
page.

 Efficient Voice User Interface System Using VoiceXML and ASP.NET 2.0 613

 (a) (b)

 (c) (d)

Fig. 4. (a) View notice list. (b) Write the free board. (c) Download some data. (d) The result of
online poll.

4 Simulations

In the implemented VUI systems, we measure the average response time and the
success rate. The average response time is the elapsed time to obtain the result page
when a user requests a page, and the success rate is the probability that a correct page is
obtained. Figure 5, 6 shows the average response time as the number of web pages
surfed by users using VUI system or not. As you can assume, VUI is much more
efficient than usual web application system in using circumstances (figure6). It is shown
that ASP.NET 2.0 has the shortest response time and JSP and ASP exhibit longer
response time than PHP and ASP.NET 2.0. This can be explained by two reasons: 1)
JSP, ASP, and PHP interpret common language runtime codes whenever a user requests
a page. On the other hand, ASP.NET 2.0 pre-compiles common language runtime codes
before the user visits the web site, and thus it can display the result page immediately
without any interpretation; 2) ASP.NET 2.0 employs a caching scheme to allocate
frequently used code and data in main memory when a user visits a web site.

614 B.-S. Kang and G.-J. Yoo

Fig. 5. Average response time not using VUI system

Fig. 6. Average response time using VUI system

 Efficient Voice User Interface System Using VoiceXML and ASP.NET 2.0 615

Fig. 7. Success rate

Figure 7 show the success rate as the number of speeches. It can be found that
ASP.NET 2.0 has the highest success rate compared with other tools. All of these
experimental results demonstrate that ASP.NET 2.0 is the most suitable programming
language in VUI system.

5 Conclusion and Future work

This paper describes which web programming language reduces the response time
with VXML. We design four other VXML systems. We also propose the guideline to
use the VUI service without changing previous infra structure. Experimental results
indicate that ASP.NET 2.0 can significantly reduce the average response time and
provide higher success rate, compared with other tools, i.e., JSP, PHP, and ASP. In
our future work, we will investigate VUI systems using VoiceXML 3.0 which is a
new release from the W3C's voice browser working group [4].

References

1. Mecanovic, D., Shi, H.: Voice User Interface Design for a Telephone Application using
VoiceXML. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005.
LNCS, vol. 3399, pp. 1058–1061. Springer, Heidelberg (2005)

2. Vankayala, R., Shi, H.: Dynamic Voice User Interface Using VoiceXML and Active Server
Pages. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006.
LNCS, vol. 3841, pp. 16–18. Springer, Heidelberg (2006)

616 B.-S. Kang and G.-J. Yoo

3. VoiceXML Forum (June 2007), http://www.voicexml.org
4. W3C Voice Brower Activity (June 2007), http://www.w3c.org/Voice
5. Tsai, M.-j.: The VoiceXML dialog system for the e-commerce ordering service. In: Proc. of

the Ninth International Conference, May 24-26, 2005, vol. 1, pp. 95–100 (2005)
6. BeVocal Café, VoiceXML development environment (June 2007), http://www.bevocal.com
7. XML Web Services Created Using ASP.NET and XML Web Service Clients (June 2007),

http://msdn2.microsoft.com/en-us/library/7bkzywba.aspx

	Efficient Voice User Interface System Using VoiceXML and ASP.NET 2.0
	Introduction
	Background
	VoiceXML System
	ASP.NET 2.0

	Design and Implementation Using VoiceXML and ASP.NET 2.0
	System Architecture
	Algorithm of the Web Surfing System

	Simulations
	Conclusion and Future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

