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Abstract. For modeling the parallel actions, the quantified dynamic logic 
(QDL) is extended to Parallel First-order Dynamic Logic (PaFDL) with parallel 
action compositions. The composition is introduced as an operator ∩ on actions 
in the same syntax as in Peleg’s CQDL but its semantics is defined differently 
from those of CQDL. The expressive power of PaFDL is proved to be the same 
as that of QDL. An axiomatic system is given and its first-order soundness and 
completeness are proved. Compared with other parallel or concurrent Dynamic 
Logics, PaFDL has a very easy and intuitive understanding for parallel actions 
as they are in the sequential models. 
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1   Introduction 

Propositional dynamic logic (PDL) was first proposed by Fischer and Ladner [FiL79] 
for describing the sequential program dynamic characteristics such as correctness, 
termination, and equivalence. It has received considerable attention, and many of its 
aspects have been thoroughly investigated [Nis79, Har84, HKT00]. Many 
investigations concern with complexity and axiomatization [Bal01, Dan84, KoP81, 
Lan05, LaL05, Lei81, Pra78]. PDL has been also extended to first-order level with 
many deep investigations [BeS01, GrS91, Har79]. Applications of dynamic logic to 
program verification and reasoning about actions and knowledge are also studied 
[PrS96, HRS87]. For modeling concurrent behaviors of multiagent systems, 
propositional dynamic logic has been extended to concurrent propositional dynamic 
logic (CPDL) and concurrent quantified dynamic logic (CQDL) by Peleg [Pel87a, 
Pel87b] with an extension of parallel actions. Peleg’s approach views concurrency in 
its purest form as the dual notion of nondeterminism. Nondeterminism introduces 
splitting at a state into several branches, and letting the process choose between the 
different possible continuations. Analogously, concurrency means again splitting a 
node into several branches, but requiring the process to execute all possible 
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continuations. This is basically the classical concept of and/or decomposition, which 
occurs widely in logic, game theory, etc. It is shown that CPDL is strictly more 
expressive than PDL. A complete axiom system and its decidability for CPDL are 
provided. Some other investigations on concurrency of dynamic logic are presented in 
[Dan84].  

In this paper, we introduce a parallel first-order dynamic logic (short for PaFDL) 
by adopting the syntax of Peleg’s CQDL and give it a different semantics for parallel 
action compositions. The expressiveness of PaFDL is proved to be the same as QDL 
which is proposed by Harel et al. in [HKT00]. A sound and complete axiomatic 
system is provided for a restricted set of formulas of the form A→〈α〉B. In the 
following, we give the syntactic definitions in Section 2, define their semantics  
in Section 3, and discuss the expressiveness in Section 4, the axiomatization in 
Section 5, and finally conclusion in Section 6. 

2   Syntax 

The syntax of parallel first-order dynamic logic (PaFDL) is based upon two kinds of 
symbols: logical symbols including the connectives ¬ and ∨, the punctuation marks (, 
), 〈, 〉, [ and ], the equality symbol =, the existential qualifier ∃ and the universal 
qualifier symbol ∀, a countable set V of variables, the truth symbols true and false; 
extralogical symbols including a countable set P of predicate symbols, a countable set 
F of function symbols, and a countable set Π0 of atomic action symbols. Each of 
function and predicate symbols has associated with it a natural number which is called 
its arity. 0-ary function symbols are called constants and 0-ary predicate symbols are 
called propositional constants. These countable sets constitute the basis for PaFDL. 
Complex formulas and complex programs over this basis are defined as follows. 

Definition 1. (Basis) A basis for PaFDL is B=(F,P,Π0) of sets of symbols, where F, P 
and Π0 are understood to be the sets of function symbols, predicate symbols, and 
action symbols respectively as described above. 

Definition 2. (Terms) The set TB of all terms of PaFDL over a basis B=(F,P,Π0) is 
inductively defined by: 

(1) Every variable from V is a term. (V⊆TB)  
Every constant from F is a term.  

(2) If t1, …, tn (n≥1) are terms and f∈F is an n-ary function symbol, then f(t1, …, tn) is 
also a term. 

Definition 3. (Formulas) The set Φ of all well-formed formulas of PaFDL over a 
basis B=(F,P,Π0) is inductively defined by: 

(1) Every propositional constant from P is a formula. (P⊆Φ)  
The truth symbols false and true are formulas.  
If t1 and t2 are terms, then t1=t2 is a formula. 
If t1, …, tn (n≥1) are terms and p∈P is an n-ary predicate symbol, then p(t1, …, tn) 
is also a formula. 
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(2) If A is a formula then (¬A) ("not A") is a formula.  
If A and B are formulas then (A∨B) ("A or B") is a formula.  
If A is a formula and x is a variable, then (∃xA) and (∀xA) are formulas. 
If α is an action and A is a formula then [α]A ("every execution of α from the 
present state leads to a state where A is true") is a formula  

Definition 4. (Actions) The set Π of all actions of PaFDL over a basis B=(F,P,Π0) is 
inductively defined by: 

(1) Every atomic action is an action. (Π0 ⊆ Π) 
(2) If α and β are actions then (α;β) ("do α followed by β") is an action.  

If α and β are actions then (α∪β) ("do α or β, nondeterministically") is an action.  
If α and β are actions then (α∩β) ("do α and β, in parallel") is an action.  
If α is a action then α* ("repeat α a finite, but nondeterministically determined, 
number of times") is an action.  
If A is a formula then A? ("proceed if A is true, else fail") is an action  

The syntax for actions we adapted is exactly the same as Peleg’s CQDL. However, 
we will have a different view of concurrency for parallel actions as described in the 
following sections. 

3   Semantics 

First we define a function patching operator as follows: if f: D→E is any function, 
x∈D and v∈E, then f[x/v]: D→E is the function defined by 

   
otherwise

if

)(
)](/[

def yx

yf

v
yvxf

=

⎩
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⎧

=  

We also need to define the domain Bool as  
  Bool = {true, false}. 
As default, we always include this domain in our description. 

Definition 5. (Interpretation) Let B=(F,P,Π0) be a basis for PaFDL. An interpretation 
of B is a pair I=(D,I0), where D is a non-empty set (called the domain or world of 
states of I) and I0 is a mapping which assigns 

(1) To every constant c∈F an element I0(c)∈D; 
(2) To every function symbol f∈F of arity n≥1 a total function I0(f): D

n→D; 
(3) To every propositional constant a∈P an element I0(a)∈Bool, where Bool is the 

domain of truth values; 
(4) To every predicate symbol p∈P of arity n≥1 a predicate I0(p): Dn→Bool. 

Definition 6. (Assignment) Let B=(F,P,Π0) be a basis for PaFDL and I=(D,I0) be an 
interpretation of B. A total function σ: V→D mapping variables to the domain D of I 
is called an assignment. In some context, an assignment is also called state. The set of 
all assignments for I is denoted by ΣI or simply by Σ. 

The definition of interpretation then can be extended to include: 
(5) To every action symbol α∈Π0 a binary relation I0(α)⊆Σ×Σ. 
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An interpretation and an assignment together induce a mapping from every term to 
an element in the domain of the interpretation and from every formula to a truth value 
and from every action to a binary relation over assignments. It is clear that the 
interpretation must be extended inductively as follows to supply the intended 
meanings for the complex terms, actions and formulas: 

Definition 7. (Semantics) Let I=(D,I0) be an interpretation of a basis B=(F,P,Π0) for 
PaFDL. To I is associated a functional, also denoted by I, which maps every term 
t∈TB to a function I(t): Σ→D and every formula A∈Φ to a function I(A): Σ→Bool 
and every action α∈Π to a binary relation I(α)⊆Σ×Σ. Each parts of this functional 
are defined inductively over TB, Φ and Π as follows: 

Semantics of terms 
(1) If c∈F is a constant, then I(c)(σ)=I0(c) for all assignments σ∈Σ.  

If x∈V is a variable, then I(x)(σ)=σ(x) for all assignments σ∈Σ. 
(2) If t1, …, tn (n≥1) are terms and f∈F is an n-ary function symbol, then I(f(t1, …, 

tn))(σ)=I0(f)(I(t1)(σ),…,I(tn)(σ)) for all assignments σ∈Σ. 

Semantics of actions 
(1) For any atomic action a in Π0, I(a)= I0(a). 
(2) (s,t)∈I(α;β) iff there exists a state z such that (s,z)∈I(α) and (z,t)∈I(β). 
(3) (s,t)∈I(α∪β) iff (s,t)∈I(α) or (s,t)∈I(β). 
(4) (s,t)∈I(α∩β) iff (s,t)∈I(α;β) and (s,t)∈I(β;α).  
(5) (s,t)∈I(α*) iff there exists a non-negative integer n and there exist states z0, …, zn 

such that z0=s, zn=t and for all k=1..n, (zk−1, zk)∈I(α). 
(6) (s,t)∈I(A?) iff s=t and I(A)(t)=true. 

Semantics of formulas 

(1) For any propositional constant a in P, then I(a)(s)=I0(a) for all s in Σ.  
I(false)(s) = false and I(true)(s) = true, for any s in Σ.  
If t1, t2 are terms, then I(t1=t2)(s)=true if I(t1)(s)=I(t2)(s), I(t1=t2)(s)=false if 
I(t1)(s)≠I(t2)(s), for all s in Σ. 
If t1, …, tn (n≥1) are terms and p∈P is an n-ary predicate symbol, then I(p(t1, …, 
tn))(s)= I0(p)(I(t1)(s),…,I(tn)(s)) for all assignments σ∈Σ.  

(2) I(¬A)(s)=true if I(A)(s)= false, I(¬A)(s)= false if I(A)(s)=true, for all s in Σ.  
I(A∨B)(s)=I(A)(s)∨I(B)(s), for all s in Σ.  
I([α]A)(s)=true if s in {r: for all states t, if (r,t)∈I(α) then I(A)(t)=true}, 
I([α]A)(s)= false otherwise, for any s in Σ.  
If A∈TB is a formula and x∈V is a variable, then  
I((∃xA))(s)=

⎩
⎨
⎧ =∈

otherwise

])/[)((thatsuchdomaintheofelementanisthereif

false

truedxsADdtrue I  

for all s in Σ. 
If A∈TB is a formula and x∈V is a variable, then  
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I((∀xA))(s)=
⎩
⎨
⎧ =∈

otherwise

])/[)((thatsuchdomaintheofallforif

false

truedxsADdtrue I  

for all s in Σ. 

We can define a new modal operator 〈〉 as follows: 

〈α〉A =def ¬[α]¬A. 

Now consider a formula A. We shall say that A is valid in I or that I is a model of 
A, or "I╞ A", iff for all states s in ΣI, I(A)(s)=true. A is said to be logically valid, or 
"╞ A", iff for all interpretation I, I╞ A. We shall say that A is satisfiable in I or that 
I satisfies A, or "I⎬A", iff there exists a state t such that I(A)(t)=true. A is said to be 
logically satisfiable, or "⎬A", iff there exists a model I such that I⎬A.  

4   Expresiveness of PaFDL 

We investigate the expressive power of PaFDL relative to quantified dynamic logic 
(QDL) with no ∩ operator. First we introduce a definition that allows us to compare 
different dynamic logics. If DL1 and DL2 are two different dynamic logics over the 
same basis, we say that DL2 is as expressive as DL1 and write DL1≤DL2 if for each 
formula A in DL1 there is a formula B in DL2 such that I(A↔B)(s)=true for all I and 
all s. Intuitively, < and ≡ mean “strictly less expressive than” and “of equal expressive 
power” respectively. 

Lemma 1. QDL≤PaFDL. 

Proof. This is directly from the syntactic definition of PaFDL. Actually, PaFDL is 
extended from QDL.                                                                                                       

Lemma 2. PaFDL≤QDL. 

Proof. We should prove that for any A in PaFDL there is a formula B in QDL such 
that I(A↔B)(s)=true for all I and all s. Any formula A in PaFDL can be either 
containing operator ∩ or not. If A contains no operator ∩, then A is in QDL by the 
syntactic definition of PaFDL.  

Now suppose that A contains the operator ∩. Without losing the generality and for 
simplification we consider only the case A is [α∩β]B. Given any interpretation I and 
s∈ΣI, by the semantic definition of PaFDL,  

I([α∩β]B)(s)=true  
iff  

s∈{r: for all states t, if (r,t)∈I(α∩β) then I(B)(t)=true} 
iff 

s∈{r: for all states t, if (r,t)∈I(α;β) and (r,t)∈I(β;α) then I(B)(t)=true} 
iff  

I([α;β]B)(s)=true and I([β;α]B)(s)=true 
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iff 
I([α;β]B∧[β;α]B)(s)=true. 

Clearly [α;β]B∧[β;α]B is in QDL.                                                                           
 

Theorem 1. (Expressiveness) QDL≡PaFDL. 

Proof. This is directly from the above two lemmas.                                                     

This theorem shows that PaFDL has the same expressive power as QDL. Intuitively, 
PaFDL understands parallel actions in just the interleavable way as in QDL.  

5   Axiomatization of PaFDL 

Here we introduce an axiomatic system for the PaFDL calculus with an interpretation. 
Let B=(F,P,Π0) be a basis for PaFDL and I=(D,I0) be an interpretation of B. All 
semantically valid in I formulas of form A→〈α〉B are taken as axioms. This may lead 
some confusions with calculus because we consider that calculus has nothing to do 
with semantics. However, we usually can understand intuitively what the interpreted 
formulas to be true. 

Axiom schemes 

(A1)   All instances of valid PaPDL formulas;  
(A2)   All instances of valid first-order formulas; 
(A3)   All formulas of form A→〈α〉B which satisfies  
          “for all s and t such that (s,t)∈I(α), I(A)(s)=true implies I(B)(t)=true”,  
          where α is an atomic action. 

Inference rule 
(MP) modus ponens: from A, A→B infer B  

If X is a set of formulas and A is a formula then we say that A is deducible from X 
in I, or "X ├I A", if there exists a construction sequence A0, A1, …, An=A for A from 
the set of axioms and the inference rule (MP). Further, we say that A is deducible in I 
or “├I A” iff Ø├I A. X is said to be consistent in I iff not X├I false.  

Theorem 2. (First-order Soundness) For any PaFDL formula of the form A→〈α〉B, for 
first-order A and B and action α containing first-order tests only,  

├I A→〈α〉B  implies I╞A→〈α〉B 

Proof. The proof of the soundness proceeds by induction on the compositions of 
actions.                                                                                                                            

Theorem 3. (First-order Completeness) For any PaFDL formula of the form A→〈α〉B, 
for first-order A and B and action α containing first-order tests only,  

I╞A→〈α〉B implies ├I A→〈α〉B 
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Proof. The proof of the completeness is simplified as the following induction. For 
atomic α, it is clear that I╞A→〈α〉B implies ├I A→〈α〉B. For any composed action α 
= α1⋅α2, where operator “⋅” indicates one of “;”, “∩”,“∪”, we can prove the 
conclusion for α holds in the condition that the induction hypotheses for α1 and α2 
both hold. And more for α* we can prove the same conclusion.                                   

6   Conclusion and Discussion 

The Parallel First-order Dynamic Logic (PaFDL) is introduced with the syntactic and 
semantic definitions. The same syntax as Peleg’s CQDL is adopted and semantics of 
PaFDL is defined differently from those of CQDL. The expressive power of PaFDL is 
proved to be the same as that of QDL. An axiomatic system is given and its first-order 
soundness and completeness are proved.  

Compared with other parallel or concurrent Dynamic Logics, PaFDL has a very 
easy and intuitive understanding for parallel actions as they are in sequential models. 
According to Theorem 1, PaFDL has the same expressive power as its sequential 
counterpart QDL, not as the concurrent version CQDL. This indicates that PaFDL 
depicts parallel actions in a much like way the sequential models take.  

Many other properties remain to be investigated including complexity, more 
extended axiomatization, and applications in reasoning about parallel actions and 
changes.  
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