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Abstract. Peer-to-peer technique becomes mature gradually, and mul-
tiple domain-involved applications emerge, such as IPTV, distance learn-
ing, chatting network. In the context of distance learning, small scale
of teachers would serve large scale of geographically located students.
Normally, knowledge points are associated with different difficulty lev-
els. And students usually are interested in varied subsets of knowledge
points. Also teachers are capable of serving knowledge point subsets. The
objective to schedule meeting among students and teachers according
to their respective interests and capabilities is to reduce total learning
duration. After formulating meeting schedule as Integer Programming
problem, this paper proposes three heuristic algorithms to approximate
the optimal solution. To the best of our knowledge, such problem is
firstly investigated in distance learning context. Performance evaluation
demonstrates their behaviors and PKPA algorithm excels two others
substantially.

Keywords: Scheduling, Timetable, Integer Programming, Heuristics,
Distance Learning.

1 Introduction

Scheduling is of common combinatorial optimization and planning problem,
and finds usage in almost every resource-constrained scenarios. The timetable
scheduling, one of important scheduling problems, exists in realistic life, such as
lecture, transportation, examination, meeting. Due to heavy problem complexity
and involved domain context, such problem is widely solved with heuristics.

Peer-to-Peer technique has been thoroughly studied in the past decade. And
multiple domain-involved applications emerge such as IPTV, distance learning,
chatting network, content-based service. The Peer-to-Peer overlay distributes
learning content, consisting of audio, video, and handwriting, to large population
of consumers efficiently. Consequently, distance learning achieves big progress in
terms of scale of service capability. Among involved students and teachers in
distance learning, there exists scheduling issue for efficient resource usage.

Knowledge points in distance learning are normally associated with difficulty
levels. Students request different subset of them due to interest or difficulty
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level. In addition, the teachers do also specialize in subset of knowledge points
whose size is often large. The objective of scheduling meetings among involved
students and teachers according to their respective interests and capabilities is
to reduce total learning duration. Of course, such scheduling strategy can apply
into virtual lab or virtual collaboration on the Internet, too.

To the best of our knowledge, scheduling meetings in context of distance learn-
ing is firstly investigated. The remainder of this paper is organized as follows. Sec-
tion 2 reviews representative works on timetable scheduling. Section 3 formally
formulates scheduling meeting problem and three heuristic algorithms are pro-
posed consequently in section 4. The performance of algorithms are numerically
evaluated in section 5. The paper concludes in section 6 with future work.

2 Related Work

As scheduling is concerned, the most relevant works are timetable ones. Tabu [1]
deals with problem of assigning teachers to courses in a secondary school. Such
timetable is to be built when teaching assignments are not fixed. It considers the
characteristics of the school week, finite teachers and rooms, individual subject
requirement, prerequisites, as well as characteristics and regulations of country-
specific education system into account and finds a schedule for a set of meetings
between teachers and groups of students over a set of time periods using tabu
searching algorithm. Timetable is so difficult to solve due to large search space
and highly constrained requirements. Thus, works [2] and [3] strive to approxi-
mate the optimal solution for timetable problem by genetic algorithms.

TGA [4] presents two-phase genetic algorithm to solve timetable problem for
universities, and it uses two populations for class scheduling and room allocation,
respectively. Consequently, it achieves better performance than simple genetic
algorithm. Work [5] utilizes Particle Swarm Optimization technique to solve the
discrete problem of timetable scheduling. And PSO performs well in discrete
problem. Furthermore, the timetable problem is solved with efficient heuristic
numerical algorithm in [6]. The main objective of timetable is to find feasible
time slots with respect to multiple constraints.

TCDMP [7] is a Timetable-Constrained Distance Minimization Problem,
which is a sports scheduling problem applied for tournaments and the total
travel distance on individual teams must be minimized. MICSP [8] tends to
address curriculum planning problem, which is defined as constructing a set of
courses for each semester - over a sequence of semesters - in order to satisfy the
academic requirements such as for undergraduate university degree. Obviously,
both have different objectives to be optimized compared to timetable works.
Interestingly, scheduling meetings in distance learning also differs from existing
works due to intrinsic objective. As students interested in same knowledge point
can be served by one teacher, where such sharing is easy in peer-to-peer overlay,
the objective in this paper is to minimize total learning duration with relatively
few constraints. The total learning duration denotes the time period from the
instant the learning begins to the time all students complete learning.



582 J. Wang, C. Niu, and R. Shen

3 Problem Formulation

In distance learning, activities are often conducted in group form. The group is
formed by students with common interest, as well as supervised teachers. Given
a large set of knowledge points, students involved with common knowledge point
form a group. In collaborated virtual experiment scenario, specific experiment
is correlated with student subsets as well as teachers. Thus, group is common
form in distance education, especially when number of overall students is large.
Due to finite number of teachers, it is imperative to schedule learning groups in
a sequence time-efficiently.

3.1 Assumptions and Constraints

For formulating scheduling meeting problem easily, the notations and assump-
tions are introduced as following.

� P : set of knowledge points, and P = {p1, p2, · · · , pl}
� T : set of teachers, and T = {t1, t2, · · · , tm}
� S: set of students, and S = {s1, s2, · · · , sn}
� Xti : subset of knowledge points that can be served by teacher ti, and Xti ⊆

P, 1 ≤ i ≤ m
� Ysj : subset of knowledge points that is requested by student sj , and Ysj ⊆

P, 1 ≤ j ≤ n
� Each knowledge point pk, 1 ≤ k ≤ l incurs same unit learning time

Assuming student in group interacts with supervised teacher during learning
session, it is useless to prerecord lectures of knowledge point set such that student
requests content of his favorites on demand, consequently. Thus, the constraints
of scheduling meetings are given.

� Each teacher ti can serve at most one knowledge point at any time.
� Each student sj can enjoy at most one knowledge point at any time.

The problem to investigate is: Given knowledge point set P, teacher set T and
their corresponding serving capabilities {Xti , 1 ≤ i ≤ m}, student set S and their
corresponding knowledge requests {Ysj , 1 ≤ j ≤ n}, how does the scheduling
strategy arrange students and teachers to study knowledge point together (i.e.
meeting) in minimum total learning time.

3.2 Formulation

A decision variable zr
ijk is introduced to denote whether student sj can enjoy

knowledge point pk served by teacher ti at time round r

zr
ijk =

{
1 student sj enjoys pk served by teacher ti at time round r

0 otherwise
(1)
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Consequently, the main objective is to minimize number of rounds for schedul-
ing all involved teachers and students to complete all learning requests.

minimize R (2)

Subject to

n∑
j=1

l∑
k=1

zr
ijk ≤ 1, ∀i ∈ {1, 2, · · · , m}, ∀r ∈ {1, 2, · · · , R} (3)

m∑
i=1

l∑
k=1

zr
ijk ≤ 1, ∀j ∈ {1, 2, · · · , n}, ∀r ∈ {1, 2, · · · , R} (4)

m⋃
i=1

l⋃
k=1

R⋃
r=1

{pk|zr
ijk = 1} = Ysj , ∀j ∈ {1, 2, · · · , n} (5)

n⋃
j=1

l⋃
k=1

R⋃
r=1

{pk|zr
ijk = 1} ⊆ Xti , ∀i ∈ {1, 2, · · · , m} (6)

|
m⋃

i=1

n⋃
j=1

R⋃
r=1

{r|zr
ijk = 1}| ≤ τ, ∀k ∈ {1, 2, · · · , l} (7)

zr
ijk ∈ {0, 1}, ∀r ∈ {1, 2, · · · , R}, ∀i ∈ {1, 2, · · · , m},

∀j ∈ {1, 2, · · · , n}, ∀k ∈ {1, 2, · · · , l}
(8)

The formulation is a comprehensive integer linear programming. Equation (3)
reflects the constraint that each teacher can serve at most one knowledge point
at any time, and that of student in Equation (4). Equation (5) declares that
individual learning request set Ysj must be satisfied. In addition, Equation (6)
shows that teacher serves knowledge set no more than his capability Xti . Equa-
tion (7) enforces cost efficiency as the one knowledge point can at most be taught
τ times. At last, Equation (8) indicates that the formulation is an integer pro-
gramming. Since such problem is intrinsically complex, this paper resorts to
heuristic algorithms to approximate the optimal solution.

4 Heuristic Algorithms

A simple example is given for above formulation before proposing three heuristic
algorithms. In Figure 1, there are four students {s1, s2, s3, s4}, three knowledge
points {p1, p2, p3}, as well as three teachers {t1, t2, t3}. Student requests and
teacher capabilities are reflected by those edges in graph. For instance, student
s3 requests knowledge point set {p1, p2}, while teacher t2 could serve knowledge
point set {p2, p3}.
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Fig. 1. An example relation graph for knowledge point learning

As scheduling meeting is concerned, there requires 2 rounds to complete
knowledge learning process. In round 1, teacher t2 serves the knowledge point
p3 that is interested by students s4, while teacher t1 serves p1 that is enjoyed by
s1, s3. Then in round 2, teacher t2 serves p2 that is interested by s2, s3, s4. Obvi-
ously, there may exist multiple scheduling arrangements corresponding to same
number of rounds. Such phenomenon contributes finding scheduling arrangement
of minimum time quickly.

As size of students and knowledge points becomes larger, it is impracticable
to find the optimal solution for the problem due to large computation load.
Thus, three heuristic algorithms are proposed to approximate optimality quickly.
They are feeded with same input and derive round number R individually. For
clarity, the input is described as: knowledge point set P , student set S and
corresponding request {Ysj }, teacher set T and corresponding capabilities {Xti}.
For convenience, the edge between student sj and his knowledge request {Ysj }
is uniquely labeled by each element in {Ysj }. Similarly, such labeling strategy
applies to edges between teacher ti and capability {Xti}.

In brief, three following algorithms are greedy-based. The τ -constraint defined
in Equation (7) is relaxed in algorithms. Each iteration attempts to maximize
number of students that can be served, although PSA, PTA, PKPA start it-
eration at position of student, teacher and knowledge point, respectively. In
addition, each algorithm contains two layers of loop. The outer loop guarantees
each individual student to be satisfied. And inner loop attempts to maximize
served students in one round.

4.1 Preferential-Student Algorithm (PSA)

The idea is that in each iteration, first find student sj with maximum knowledge
points pending for studying. Then among those points, choose the one pk that
can be served by maximum available teachers. Finally, select the teacher ti with
minimum capability among corresponding teachers.
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1: E = ∪n
j=1Ysj , round = 0

2: WHILE E �= ∅
3: D = {s|s ∈ S, Ys = ∅}, S = S − D
4: A = ∅, B = ∅, C = ∅, W = ∅
5: WHILE S − A − B �= ∅
6: s = argmaxx∈S−A−B|Yx|
7: p = argmaxx∈Ys−W |Ω(x)|
8: IF Ω(p) == ∅
9: B = B ∪ {s}

10: CONTINUE
11: END
12: t = argminz∈Ω(p)|Xz |
13: C = C ∪ {t}, V = {s|s ∈ S − A − B, p ∈ Xs}
14: A = A ∪ V, W = W ∪ {p}
15: Yz = Yz − {p}, ∀z ∈ V
16: END
17: E = ∪n

j=1Ysj

18: round = round + 1
19: END
20: RETURN round

Fig. 2. Preferential-Student Algorithm

Definition 1. Let Ω(p) = {t|p ∈ Xt, t ∈ T, t is available} denote the teacher
subset, where each is available and is capable to serve knowledge point p.

In Figure 2, E represents collection of pending student requests and S denotes
students that still have requests. The S will be divided into two set A and
B. A contains the students that can learn in current round, while B contains
those not. Step 6 selects the student s with largest size of request set. Step
7 chooses the knowledge point p of s that has maximum available teachers. If
such p does not exist, the student s joins into set B. Otherwise, the teacher of
minimum capability t corresponding to p is chosen. Consequently, the unavailable
teacher set C, knowledge point served W , the learning student set A as well as
knowledge request of necessary students Yz are updated in sequence. Whenever
S − A − B == ∅ (i.e. the current students are divided into groups), the inner
loop stops. Thus, E is updated and round is increased by one before next loop.

4.2 Preferential-Teacher Algorithm (PTA)

This algorithm takes inverse design direction compared to PSA. The idea is that
in each iteration, first find maximum capability teacher ti, then select knowledge
point pk ∈ Xti with maximum interested students.

In Figure 3, E represents the pending knowledge requests and S denotes those
students that have knowledge points to learn. The teacher set will also be di-
vided into two groups B and C. B contains those teachers not interested by
current student S. In addition, A denotes allocated students while W denotes
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1: E = ∪n
j=1Ysj , round = 0

2: WHILE E �= ∅
3: D = {s|s ∈ S, Ys = ∅}, S = S − D
4: A = ∅, B = ∅, C = ∅, W = ∅
5: WHILE T − B − C �= ∅
6: t = argmaxz∈T−B−C|Xz |
7: p = argmaxz∈Xt−W |{s|s ∈ S − A, z ∈ Ys}|
8: IF p == ∅
9: B = B ∪ {t}

10: ELSE
11: V = {s|s ∈ S − A, p ∈ Ys}
12: A = A ∪ V, C = C ∪ {t}, W = W ∪ {p}
13: Yz = Yz − {p}, ∀z ∈ V
14: END
15: END
16: E = ∪n

j=1Ysj

17: round = round + 1
18: END
19: RETURN round

Fig. 3. Preferential-Teacher Algorithm

allocated knowledge points. Step 6 selects maximum capable teacher t. Step 7
selects knowledge point p of t interested by maximum students in S − A. If
such p is not found, the teacher t joins into B. Otherwise, allocated students
A, allocated teachers C, allocated knowledge points W , and knowledge point
request Yz are updated consequently. The inner loop stops when all teachers
are grouped. Of course, E and round updated in order for next round of the
inner loop.

4.3 Preferential-Knowledge Point Algorithm (PKPA)

The idea of third algorithm is in each iteration, first find knowledge point pk

with maximum unallocated interested students. Then select available teacher ti
that can serve pk and has minimum corresponding capability.

In Figure 4, pending knowledge point set E and pending students S are ini-
tialized. The allocated students A, allocated teachers C, and allocated knowl-
edge points W are set to empty. Step 6 selects the knowledge point p interested
by maximum unallocated students. If p is not interested, that means no more
knowledge points can be allocated. Otherwise, minimum capable teacher for
knowledge point p is selected. If no available teacher exists, p joins into W .
Otherwise, A, C, W, Yz are modified accordingly. The inner loop stops when all
knowledge points are inspected or no unallocated student exists. Within outer
loop, E, round are updated conveniently.
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1: E = ∪n
j=1Ysj , round = 0

2: WHILE E �= ∅
3: D = {s|s ∈ S, Ys = ∅}, S = S − D
4: A = ∅, C = ∅, W = ∅
5: WHILE P − W �= ∅
6: p = argmaxz∈P−W |{s|s ∈ S − A, z ∈ Ys}|
7: V = {s|s ∈ S − A,p ∈ Ys}
8: IF V == ∅
9: BREAK

10: END
11: t = argminz∈T−C,p∈Xz |Xz|
12: IF t == ∅
13: W = W ∪ {p}
14: ELSE
15: A = A ∪ V, C = C ∪ {t}, W = W ∪ {p}
16: Yz = Yz − {p}, ∀z ∈ V
17: END
18: END
19: E = ∪n

j=1Ysj

20: round = round + 1
21: END
22: RETURN round

Fig. 4. Preferential-Knowledge Point Algorithm

5 Performance Evaluation

We evaluate three heuristic algorithms running on a computer with 1.5 GHz
CPU and 512 MB memory. The algorithms are implemented upon the Mat-
lab. Scheduling meeting problem has six configuring parameters: l:number of
knowledge point, m: number of teachers, n: number of students, f : size of
Xti , 1 ≤ i ≤ m, g: size of Ysj , 1 ≤ j ≤ n, τ : cost tradeoff parameter. We re-
lax τ in three proposed algorithms. In addition, each result is averaged over
10 runs through random sampling. We vary one configuring parameter while
fixing others in order to reveal individual impact on algorithm performance.
Each Xti and Ysj are randomly sampled on knowledge point set P . In addition,(⋃n

j=1 Ysj

)
⊆ (

⋃m
i=1 Xti) is ensured such that feasible solution exists.

l:number of knowledge point. In Figure 5, m = 6, n = 40, f = 6, g = 5. As
number of knowledge point increases, the groups become less overlapping. Three
algorithms need more rounds to complete the arrangement. Note that PKPA
performs better than two others.

m:number of teachers. In Figure 6, l = 20, n = 40, f = 6, g = 5. Obviously,
as the number of teachers grows up, more probably concurrent groups appear.
Of course, the rounds derived by three algorithm decrease, although PKPA does
the best.
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20 40 60 80 100
5

6

7

8

9

10

Number of student

R
ou

nd
s

 

 
PSA
PTA
PKPA
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Fig. 9. Rounds vs. number of each student requests

n:number of students. In Figure 7, l = 20, m = 11, f = 6, g = 5. Increasing
number of students means more requests need to be handled by teacher set. So
the rounds increase definitely.
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f :number of each teacher services. In Figure 8, l = 20, m = 11, n = 40, g = 5.
Normally, teacher with larger service capability would decrease corresponding
rounds since more probably the request can be satisfied.

g:number of each student requests. Figure 9 is similar to Figure 7. Here l =
20, m = 11, n = 40, f = 12. The number of the whole requests increases as g
becomes large. Thus, rounds increases for three algorithms.

Summary: In five figures corresponding to each configuring parameter except
for τ , the PKPA algorithm always outperforms two others. Potential reasons
are: 1) selecting maximum student in each iteration. 2) choosing teacher with
minimum capability would let other teacher can still contribute in following
selections within same iteration.

6 Conclusion

This paper formulates scheduling meetings problem in distance learning scenario.
Then three heuristic algorithms are proposed to quickly approximate the optimal
solution. And the evaluation reveals that PKPA performs the best. In future
work, one is to derive mathematical analysis of such formulation further, and
the other is to incorporate τ into heuristic algorithm design.
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