

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 560–568, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Research on Dynamic Load Balancing Algorithms for
Parallel Transportation Simulations

Dongliang Zhang1,2, Changjun Jiang1,2, and Shu Li1,2

1 Department of Computer Science and Technology, Tongji University, Shanghai, China,
201804

2 The Key Laboratory of “Embedded System and Service Computing”, Ministry of Education,
China, Shanghai 201804

Abstract. To the issue of dynamic load balancing in parallel transportation
simulations, we describe two algorithms for different types of task partitions,
parallel lines partition and grid partition. In the algorithms, load balance is
obtained by iteratively moving the boundary lines according to the relative
balance of adjacent sub-domains. Assuming real traffic distribution as the
experimental work load, we test the performance of the algorithms. And the
result we observe confirms the value of the methods. Based on the discussion of
the communication overheads under different types of partitions, due to the
relative small amount of boundary lines, grid partition can decrease the
communication overheads and is a more adaptive partition model.

Keywords: load balance, parallel computing, transportation simulation.

1 Introduction

As an important component of Intelligent Transportation Systems (ITS), the large-scale
transportation simulation system is widely used in researching and designing
transportation control systems. However, a large scale transportation simulation needs
a large amount of calculation. The development of distributed and parallel computing
technology provides sufficient calculating resource for traffic simulation. In recent
years, the research on parallel traffic simulation has gained much progress [1, 2, 3].

In parallel computing, load balancing is an effective way to minimize the processing
time and maximize the utilization of calculation resource [5, 6]. In a distributed and
parallel transportation simulation system, the work loads of processors are often
unbalanced, and so the efficiency of calculation is quite low. The main task of a
transportation simulation is to simulate the behavior of vehicles on the road network.
And in a view of large scale, the simulation of transportation is much similar to that of
molecular dynamics [4]. We can take vehicles as molecules with special moving rules
in a two dimensional square. The typical approach to parallelizing these computations
is to decompose the spatial region into sub-domains, and associate each sub-domain
with a processor. The computational work for a given processor at each time step
depends on the number of vehicles in the corresponding spatial domain. Due to the
ununiformity of the traffic load in the real word, the simulation tasks differ between

 Research on Dynamic Load Balancing Algorithms 561

sub-domains. In the simulation, when a vehicle is running across the boundary of two
sub-domains, the source processor needs to pass it to the destination processor. So the
transfer of vehicles changes the distribution of simulation work loads during the
simulation procedure. To balance the loads between processors, the boundary lines
need to be relocated.

In this paper, we partition the traffic map using parallel lines and quadrilateral grids
separately, and for these two kinds of partition two corresponding algorithms are
proposed. In the algorithm for parallel lines partition, our approach is to adaptively
repartition the space by moving the vertical lines. The algorithm is introduced for
determine how to move the given vertical line depends on the relative loads of
sub-domains which have that line in common. And in the algorithm for quadrilateral
grids partition, our approach is to repartition the space by moving the vertex in the grid.
And the algorithm is focused on how to move a given vertex depends on the relative
loads of sub-domains which have that vertex in common. These lines or vertex
movement, as well as the transfer of any vehicle from one processor to another, can be
carried out in parallel. Furthermore, we discuss the communication overheads induced
by the algorithms, and the adaptability of each algorithm.

The rest of the paper is organized as follow: in section 2 we describe the algorithms
for parallel lines partition and quadrilateral grids partition separately. In section 3 we
present testing results of the two algorithms. Finally, section 4 provides the
performance of the algorithms and some conclusion comments.

2 Algorithms

2.1 Load Balancing Algorithm Using Parallel Lines Partition

Using parallel vertical lines to partition the simulation region, just like using longitude
to divide the map, has an obvious advantage in minimizing the message channel
between processors. Using this type of partition, every processor has utmost two
adjacent processors to communicate. And the decrease of message channels may cut
down the communication time greatly at some occasions. Figure 1 illustrates the basic
model of parallel lines partition.

Fig. 1. This figure shows the basic model of parallel lines partition

562 D. Zhang, C. Jiang, and S. Li

We assume the total work load is W. And we use an arbitrary vertical line L to divide

the work load into W1 and W2, let W and maxW be the average work load and

maximize work load among the processors separately. Then we define

max1 /lI W W= − be the measure of imbalance of the workloads, and let idealI be the

ideal imbalance. Obviously, if the workloads are evenly distributed, lI would be quite

small. Then we define another component:

1 2W W

W
δ −=

Here δ determines which side has the heavier load between two sub-domains. Then
define:

(1) 2l lε δΔ = − × (0<ε <1)

Here lΔ is the shift of L and ε is a parameter which controls how aggressively we seek
to the balance.

We need to make several remarks:

1. When moving the line L, the work loads change monotonously and we can surely
find an optimal position for balance.

2. When using more than one line, we can firstly adjust the lines which have an odd
index, and then adjust the even lines.

The main steps of the algorithm are:

Step I. Calculate lI according to the method mentioned above, if l idealI I< , stop

the algorithm, otherwise turn to Step II.
Step II. For each odd line, calculate lΔ .

Step III. Adjust L by lΔ , and recalculate the work loads of the two sides.

Step IV. For each even line, calculate lΔ .

Step V. Adjust L by lΔ , and recalculate the work loads of each part, then turn to
Step I.

2.2 Load Balancing Algorithm for Quadrilateral Grids Partition

Using quadrilateral grids or triangle grids to partition the simulation region is a widely
accepted method. In this paper, we choose quadrilateral grids to divide the traffic map,
and we describe the algorithm based on the basic partition model shown in figure 2.

As is illustrated in fig.2, Let P be an arbitrary grid point, and E1, E4, E2, E3 are the
neighbor grid points. Let the work loads of the four grid area which shares P be W1,

W2, W3, W4, separately, and let W , maxW be the average and maximize workload

separately. Then the definition of imbalance is quit similar to that of prior
algorithm:

max1 /lI W W= − . And let the ideal value of lI be
idealI .

 Research on Dynamic Load Balancing Algorithms 563

Fig. 2. The basic model of quadrilateral grids partition

Obviously, if we adjust P to P′ , 1P V′ ， 2P V′ ， 3P V′ ， 4P V′ will
repartition the region, and so the work load of each sub-domain will be modified.

We define parameter 1δ ：

(1 2) (3 4)
1

1 2 3 4

W W W W

W W W W
δ + − +=

+ + +

Here 1δ presents which pair has the heavier load, the up pair or the down pair. Then we
let pE1 denotes the vector from P to E1 and pE4 be the vector from P to E4, then a
vector 1offset ：

1 1 1 0
1

1 4 1 0

pE
offset

pE

δ δ
δ δ

⎧ >⎪= ⎨ <⎪⎩

In the same way , using W1+W3 and W2+W4 ，we define 2δ , vector pE2, pE3, and
2offset . Then the offset of point P is defined as follow：

1 2
(1)

2

offset offset
P ε +Δ = −

Note that we move the point P by vector pE1, pE2, pE3 and pE4, and the four
sub-domains will remain convex.

Obviously, only by moving P will not necessarily reach the balance status. For
example, if 1 4 2 3W W W W≈ ≈ , we must adjust the locations of the points E1, E2,
E3, E4. The movement of these points is quite similar to that of P. We take E1 for
example, define:

1

1 3

1 3E

W W

W W
δ −=

+

564 D. Zhang, C. Jiang, and S. Li

And let E1V1 be the vector from E1 to V1 and E1V2 be the vector from E1 to V2, and
then the vector 1offsetE and the offset 1EΔ are defined as follow:

1 1 1 0
1

1 4 1 0

pE
offsetE

pE

δ δ
δ δ

⎧ >⎪= ⎨ <⎪⎩

1 (1) 1E offsetEεΔ = −

The adjustment of E2, E3 and E4 is similar to that of E1, and we do not make any
further discussion.

Based on the definition above, for a partition of M N× grid, we number all the
points on the edges and inside of the region as (0 ,0)ijP i M j N≤ ≤ ≤ ≤ by its location.

And all the work loads are numbered as (1 ,1)Wij i M j N≤ ≤ ≤ ≤ . For all the points,

we apply a red-black coloring scheme to adjacent points to adjusting their location. We
choose this type of scheme because in this strategy multi-processors can work
synchronously without any conflict.

The algorithm is described as follow:

Step I. Calculate the work loads of all the sub-domains, and the imbalance degree

lI . If l idealI I< , stop the algorithm, else turn to Step II.

Step II. For all the inside points,
ijP (1 1i M≤ ≤ − , 1 1j N≤ ≤ −), choose the ones in

odd rows and odd columns and the ones in even rows and even columns.
Adjust these points themselves and the adjacent points.

Step III. For all the inside points, choose the ones in odd rows and even columns and
the ones in even rows and odd columns. Adjust these points themselves and
the adjacent points. And then turn to Step I.

3 Experimental Result and Analysis

We take the real traffic map of Shanghai China as the experimental task region. And we
present the real distribution in a 1024 1024× bit map, in which each colored pixel
stands for a number of vehicles. From white to red the color of each pixel stands for the
density of vehicles from low to high. The balancing result based on the parallel lines
partition is illustrated in figure 3.

Figure 4 illustrates the detail of the balancing procedure and the distribution of work
loads between processors.

Figure 5 and figure 6 illustrate the balancing result based on a 4 4× quadrilateral
grid partition.

From the experimental result we can see that using parallel lines to partition the
domain, the balancing algorithm can gain a rather good result. But this type of partition
may lead to big communication overheads between some processors. So in order to
compare the algorithm, we design another model to estimate the communication
overheads between processors.

 Research on Dynamic Load Balancing Algorithms 565

Fig. 3. This figure shows the status before balancing (a) and 100 algorithm cycles later (b) based
on parallel lines partition

Fig. 4. This figure shows the relationship between the imbalance and calculating cycles
(0.9ε =) in 100 cycles based on parallel lines partition. Inset in this figure are three histograms
showing the initial, midpoint, and final load distributions.

566 D. Zhang, C. Jiang, and S. Li

Fig. 5. This figure shows the status before balancing (a) and 32 algorithm cycles later (b) based
on a 4× 4 grid partition

Fig. 6. This figure shows the relationship between the imbalance and calculating cycles
(0.9ε =) in 100 cycles based on a 4× 4 quadrilateral grid partition. Inset in this figure are four
histograms showing the initial, midpoints, and final load distributions.

 Research on Dynamic Load Balancing Algorithms 567

Fig. 7. This figure shows the basic communication overhead estimating model

In the parallel simulation of transportation, vehicles may run across the boundary
lines and need to be transferred from one processor to another. So the communication
overheads can be estimated by accounting the number of vehicles near the boundary
lines. As is shown in figure 7, we name the adjacent area of a partition line a
communication region, and by accounting the vehicles inside the area we estimate the
approximate communication overhead for each processor. In the experiment we set the
width of the communication region to two pixels in the bit map. Figure 8 illustrates the
result on the communication overheads estimation.

Through calculating the amount of vehicles in the communication areas, we estimate
the communication overhead between each pair of adjacent processors. And as

Fig. 8. This figure shows the communication overhead of 8 parallel lines partition (a) and
3 3× grid partition (b), different colors represent the communication overheads with different
processors.

568 D. Zhang, C. Jiang, and S. Li

illustrated in figure 8, we use different colors to represent the communication with
different processors. In figure 8(a), we can see the communication of each processor is
composed of utmost two parts, but is much larger than that in figure8(b).

In figure 8(b), the communication overhead of processor 5 is composed of four parts,
because it is in charge of the central sub-domain in the 3 3× grid. However the over
communication head is not very large. This is because the four boundary lines of its
sub-domain are quite short after balancing.

4 Conclusion

On the problem of dynamic load balancing in parallel transportation simulation, we
propose an algorithm for parallel lines partition and an algorithm for quadrilateral grids
partition. Based on the real traffic density distribution, we make several experiments to
test the performance of each algorithm. The result shows that the algorithm using
parallel lines partition can obtain a relative low imbalance in 100 algorithm cycles, and
the algorithm using quadrilateral grids partition can obtain a relative high imbalance.
But this does not necessarily mean that the former is more advisable and in the later
experiment of comparing the communication overheads of an 8 parallel lines model
and a 3 3× grid model. We find that the communication overhead of the former is much
bigger than that of the later and is not adaptable in real application unless on a quit fast
network.

References

1. O’Cearbhaill, E.A., O’Mahony, M.: Parallel implementation of a transportation network
model. Journal. Parallel Distributed Computing 65, 1–14 (2005)

2. Nagel, K., Rickert, M.: Parallel implementation of the TRANSSIMS micro-simulation.
Parallel Computing 27, 1611–1639 (2001)

3. Klefstad, R., Zhang, Y., Lai, M., Jayakrishnan, R., Lavanya, R.: A Distributed, Scalable, and
Synchronized Framework for Large-Scale Microscopic Traffic Simulation. In: Proceedings
of the 8th International IEEE Conference on Intelligent Transportation Systems, pp. 813–818
(2005)

4. Deng, Y., Peierlsy, R.F., Riveraz, C.: An Adaptive Load Balancing Method for Parallel
Molecular Dynamics Simulations. Journal of Computational Physics 161, 250–263 (2000)

5. Rus, P., Tok, B., Mole, N.: Parallel computing with load balancing on heterogeneous
distributed systems. Advances in Engineering Software 34, 185–201 (2003)

6. Genaud, S., Giersch, A., Vivien, F.: Load-balancing scatter operations for grid computing.
Parallel Computing 30, 923–946 (2004)

	Research on Dynamic Load Balancing Algorithms for Parallel Transportation Simulations
	Introduction
	Algorithms
	Load Balancing Algorithm Using Parallel Lines Partition
	Load Balancing Algorithm for Quadrilateral Grids Partition

	Experimental Result and Analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

