

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 322–329, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SIGRE – An Autonomic Spatial Information Grid
Runtime Environment for Geo-computation

ZhenChun Huang1, GuoQing Li2, Bin Du1, Yi Zeng2, and Lei Gu1

1 Department of Computer Science and Engineering, Tsinghua University, Beijing 100084
2 China Remote Sensing Satellite Ground Station, Beijing 100086
huangzc@tsinghua.edu.cn, gqli@ne.rsgs.ac.cn,

dubin@mails.tsinghua.edu.cn, yzeng@ne.rsgs.ac.cn,
jackflit98@mails.tsinghua.edu.cn

Abstract. Spatial Information Grid is a kind of application grid which tries to
connect resources such as computer, data sources, and processing algorithms,
and builds a distributed, robust, flexible and powerful infrastructure for geo-
computation. It needs a powerful and easy-to-use running environment. In this
paper, an autonomic runtime environment for geo-computation is proposed and
named SIGRE — the Spatial Information Grid Runtime Environment. Based on
it, SIG resources can be distributed, discovered, and matched autonomically.
And a distributed, flexible and powerful data infrastructure which can distribute
data with different types, different sources, and different goals in a uniform
interface easily and flexibly is founded. Based on the implementation of SIGRE
by java language, a SIG testbed is constructed, and the test on it shows that
SIGRE can provide a powerful, easy-to-use, robust and autonomic runtime
environment for SIG, and developers can develop SIG resources and SIG
applications on SIGRE easily and quickly.

Keywords: geo-computation, spatial information grid, runtime environment.

1 Introduction

Geo-computation can be regarded as the application of the computational science
paradigm to study a wide range of problems in geographical and Earth science
context. It is concerned with new computational techniques, algorithms, and
paradigms that are dependent upon and can take advantage of techniques such as Grid
computing, high performance computing and high throughput computer. Based on
grid computing technologies, the Spatial Information Grid (shortly SIG) tries to
connect resources such as high performance computers, high throughput data storages
and spatial data processing algorithms; enable the sharing, co-operation and
collaboration among the resources and their consumers; and build a distributed,
robust, flexible, and powerful infrastructure for geo-computation. Based on SIG,
resources such as computing powers, spatial information data, and processing models
and algorithms can be shared; and distributed geo-computation applications can be
built easily and quickly.

 SIGRE – An Autonomic Spatial Information Grid Runtime Environment 323

In brief, SIG can be regarded as a kind of application grid for the geo-computation
researchers. It is based on the general grid infrastructure; and built by the general grid
infrastructure and dozens of SIG extensions and improvements, such as the SIG job
framework, SIG data infrastructure, SIG registry meta-service extension, and so on. In
SIG, the general grid infrastructure makes it possible to share resources and co-
operating among resources. On the other hand, the SIG extensions and improvements
make the infrastructure more powerful, friendly, and adaptive for the geo-
computation users, and make it easier and quicker to develop SIG applications on the
infrastructure.

As viewed from the physical deployment, SIG is constructed by a lot of distributed
SIG nodes which are connected by network (usually Internet). All resources in SIG
are attached to the SIG nodes, and accessed through the nodes. At the same time,
most of the web-based SIG applications are deployed on the SIG nodes and provide
web UI for their users, too. Whether the SIG resources or the SIG applications need a
basic support running environment, which will be proposed later and named SIGRE
— the Spatial Information Grid Runtime Environment, an autonomic runtime
environment for geo-computation.

Most traditionally, the “runtime environment” is implemented as a set of support
libraries on the target platform for the basic functions of the applications. These
libraries are invoked by the application codes through a well-defined API
(Application Programming Interface) and serve applications the most frequently used
functions. One of the most famous samples is the Unix lib5 runtime environment for
C applications, which carries the basic functions such as file accessing and process
management. And there are different platform-dependent lib5 libraries on different
platforms, and they support the same functions. The Win32 runtime environment is
another sample for this set.

By the growing up of virtual machine techniques, virtual machine is adopted as a
part of the runtime environment, and provides a platform-independent running core
for applications; so that the applications may move from one platform to another
smoothly and quickly without modification. It can be called “VM based runtime
environment”. One of the most famous VM based runtime environment is java
runtime environment which is often called JRE. In JRE, a virtual machine named
JVM (Java Virtual Machine) is included, and interprets the java virtual codes for the
java applications. And at the same time, a set of java runtime libraries are included to
provide frequent functions such as iostream or url supports. The JRE supports
different platforms, and makes it possible to “build one, run anywhere”. The .Net
framework is also another sample of this kind of runtime environments.

Though the VM based runtime environment provides a platform-independent
environment for applications by a well-defined virtual machine and a set of support
libraries, it is still not enough for the applications today, especially for the resources
and applications in grid such as SIG. To develop, deploy and manage resources and
applications based on a VM based runtime environment is still a hard work. So, an
autonomic runtime environment which is able to self-configure, self-manage, self-
heal and self-optimize is needed for better development and execution of the
resources and applications.

In this paper, based on the techniques including web service, grid computing, and
spatial information grid, an autonomic runtime environment named SIGRE (Spatial

324 Z.C. Huang et al.

Information Grid Runtime Environment) is proposed and implemented for geo-
computation. Each SIG node carries out an instance of SIGRE, which provides the
basic running environment including the virtual machine, runtime libraries,
management and optimization components, monitoring and healing components, etc.
All SIGRE instances on the SIG nodes makeup an environment for the execution and
management of resources and applications in SIG, and provide the key functions
including resource discovering, data managing, service quality supporting, etc.

2 Architecture

There are two connotations of SIGRE: the SIGRE instance deployed on a SIG node,
which is called SIGRE instance; and the runtime environment built by all the SIGRE
instances on SIG nodes, which is called SIGRE platform. As viewed from the logical
architecture, SIGRE is built up by the following components: Java virtual machine
and runtime environment; general web server and servlet container; SIG resource and
job framework; SIG data infrastructure support; SIG resource registry and discovery;
SIG service and node monitor; SIG service quality control and management; and so
on. It is shown in Figure. 1.

SIGRE is founded
based on the following
components: JVM and
JRE [1], web server,
and servlet container
[2]; and they should be
downloaded and in-
stalled separately for
the sake of the user’s
free choice on them.
SIG resource and job
framework [3] provides
a basic job framework
and make it possible to
create, run, monitor,
and manage an SIG job
through web service
interface. Most of the SIG resources are implemented and provided as SIG jobs. With
the toolkits provided by SIGRE, it is very simple and easy to develop and deploy an
SIG job so that almost each user who knows a little of Java can share his resources by
develops and deploys new SIG jobs.

Besides the job framework, SIGRE provides some more components to make the
runtime environment more useful and autonomic. They are: SIG resource registry and
discovery service, SIG data infrastructure support, SIG service and node monitor
framework, SIG service quality control and management, etc. The components
provides a lot of basic functions for resources and applications, such as to collect and
distribute the information about services ad nodes, monitor the execution of resources

Web server and servlet container

SIG resource and job framework

SIG
resource

registry and
discovery

SIG data
infra-

structure
support

SIG service
quality

control and
management

Applications for geo-computation

JVM and JRE

SIG
service

and node
monitor

…

SIG resources

Fig. 1. Architecture of SIGRE

 SIGRE – An Autonomic Spatial Information Grid Runtime Environment 325

and nodes, index and discover SIG resources, and control and manage service quality
which can make SIG more friendly and autonomic.

3 The Autonomic Resource Distribution, Discovery and Matching

It is very important for users
and applications to find and
assemble the most suitable
resources. It depends on
several functions provided by
SIGRE: resource discovery,
service and node monitor,
service quality control and
management, etc. The figure 2
shows information flows for
the autonomic resource
distribution, discovery and
matching.

First of all, when the
resource are deployed on
nodes, (1) the static
information about the
resources such as its name,
usage and function will be
registered to the resource
registry and discovery service. (2) Then, when the resources and services are invoked
executed, the performance and status information about them will be probed and
collected by the SIG service and node monitor. (3) And the information organized and
analyzed by the SIG service and node monitor will be provided to the SIG resource
registry and discovery service for service discovery and matching. (4) Furthermore,
the quality and cost of SIG service may be different far away, users may care about
them. So, the SIG service quality control and management will collect the service
quality information from resources, users and applications, analyze them to get the
score, (5) and provide the score to the SIG resource registry and discovery component
so that the users and applications can find the most suitable and high quality resources
by the resource matching. (6) Finally, integrating the static and dynamic information
from SIG resources, service quality control and management component, service and
node monitor, and other parts of SIGRE, the SIG resource registry and discovery
service can discover and match the most suitable SIG resources for users and
applications request. (7)

Around the SIG resource registry and discovery service which is extended based
on the Distributed Grid Resource Registry Meta-Service [4] for geo-computation
users, SIG service and node monitor, SIG service quality control and management
component, and all the deployed SIG resources make up a closed loop. By the closed
loop, the static, history and real-time information about all SIG resources, node status,
service status, service quality, and so on, is collected, analyzed, and proceeded for the

Users and applications

resources resources
Resources

SIG resource
registry and
discovery

SIG service
and node
monitor

SIG service
quality control and

management

resources resources
Nodes

Fig. 2. Information flows for the autonomic
resource distribution, discovery and matching

(1)

(2)

(3)

(3)

(4)

(5)

(6)

(5)

(7)

326 Z.C. Huang et al.

resource matching. Then, the users and applications can find the resources needed: the
resource with the highest performance, the best quality, the lowest cost, the most
robust node, or the widest network bandwidth. With the distributed architecture of
SIG, the closed loop enables the SIGRE to self-configure, self-manage, self-heal, and
self-optimize in the resource discovery and matching.

For example, an application can find a data processing resource based on a super
computer which has at least 16 processors and 8GB memory, a data source which
provides Landset7 image through network with bandwidth at least 10Mbps, and a
WMS service to visualize the processing result. SIGRE and the resource discovery
service will search in the SIG resources by a well-defined p2p protocol and find the
available and most suitable resources for the application. What the application need
do only is to access the resources found and resolve problems for the end users.
SIGRE provides an autonomic run time environment for the SIG applications.

In the other hand, the development and distribution of resources is very simple,
too. Most of the SIG computation resources are implemented as SIG jobs which is
deployed in the SIG job framework and managed by the SIGRE. As soon as a java
class or a script file which implement the job and a job description file are deployed
in the job framework, a SIG job is deployed and can serve the users and applications.
And all information about the job will be collected, analyzed and used by the registry
and discovery service, the service quality control and management component and
other parts of SIGRE. SIGRE can configure and manage itself and resources based on
it. It provides an autonomic runtime environment in resource distribution, discovery
and matching for SIG resources and applications.

4 The Autonomic Data Infrastructure Based on SIGRE

Data sharing and distribution is another important usage for Spatial Information Grid.
And it plays the role of bridge between the data consumer and data supplier, and
brings spatial data on the finger of users. It is required for almost all the SIG
applications to search and access spatial data through a powerful and easy-to-use data
infrastructure. For the construction of SIG data infrastructure, a data sharing
framework for the support of data infrastructure is included in the SIGRE. Based on
it, a data distribution system is designed and implemented. [5] The data distribution
system is built up by data sources, data agencies, registry services in SIGRE, client
support libraries, and other components. Applications can query and access stored
data by a well-defined XML based extensible RSI-data source accessing language
through SOAP protocol which is platform-independent.

In the data infrastructure, each data provider is organized as a data source which
has a uniform service accessing point. The service accessing point is a web service
which is described by a WSDL [6] document and invoked through SOAP [7]
protocol. By invoking the web service in a well-defined XML based protocol; data
stored in the data node can be searched and accessed.

Although users and applications can search and download data from the data
sources directly, it is too deficient for the SIG based data infrastructure which is built
up by data nodes only to be an ideal data infrastructure for geo-computation. The third
layer – agency layer is the most important layer to make the data infrastructure

 SIGRE – An Autonomic Spatial Information Grid Runtime Environment 327

flexible, extensible, autonomic, and powerful. In this layer, there are a series of data
agencies with different goal and different functions serving for the users of the data
infrastructure. For instance, a “catalogue agency” may collects information from data
sources, generates a “catalogue” of data in the infrastructure, and provides a service
for users to find data with some given features in the “catalogue”. It is a “search
engine” like “google” in the data
infrastructure, and provides more
powerful functions for the data
infrastructure.

In order to make the design of data
infrastructure simple and neat, the data
agencies are required to adopt the same
protocol as the data sources. It is called
“eXtensible Data Accessing Language”,
shortly XDAL. Users can accomplish the
operation by invoking the web service
provided by data source or data agency,
passing the request in XDAL format to it,
and analyzing the response in XDAL
format for the result. Figure 3 is a sample
of searching data from satellite “Landset-
7” with a given acquirement date.

Comparing with the ordinary data
distribution system, the SIG based data
infrastructure can distribute data with
different types, different sources, and
different goals in a uniform interface
easily and flexibly. Furthermore, based
on the data infrastructure support of
SIGRE, a lot of “data agencies” will be
continuously deployed in the data
infrastructure and make the infrastructure
more flexible, extensible, autonomic, and
powerful.

5 Implementation, Test and
Future Works

Java language is often adopted by grid
implementation because of its platform-
independent, acceptable performance and
mass of open-source support. So, the
SIGRE is implemented based on the
famous SOAP support library Axis [8] by java language, too. For the sake of easy
deployment, the SIGRE implementation is distributed as a WAR package. It can be
deployed on most of the popular servlet container such as Apache Tomcat [9] and

1、client sends the request of searching an image
<query>
 <conditions relation=”AND”>

<condition op=”EQ”>
 <param>satellite</param>

<value>landset7</value>
</condition>
<condition op=”EQ”>

 <param>date</param>
 <value>2006-01-01</value>

</condition>
</conditions>
<orders>
<sortBy order=”ASC”>ID</sortBy>

</orders>
</query>
2、data source starts the operation, and returns a
operation ID
<response>
 <operationID>001235864631</operationID>
</response>
3、client gets the operation status
<getStatus>
 <operationID>001235864631</operationID>
</getStatus>
4、data source returns the operation status
<status>
 <operationID>001235864631</operationID>
<currentStatus>processing</currentStatus>
</status> <!-- processing -->
<status>
 <operationID>001235864631</operationID>
 <currentStatus>finished</currentStatus>
</status> <!-- finished -->
5、client gets the operation result
<getResult>
 <operationID>001235864631</operationID>
</getResult>
6．data source returns the operation result
<result>
 <operationID>001235864631</operationID>
 <resultSet>

<item>
 <id>0013256782</id>
 <spacecraft>Landset7</spacecraft>
 <senser>ETM+</senser>
 ……

</item>
……

<item>
 <id>0020165784</id>
 ……

</item>
 </resultSet>
</result>

Fig. 3. Sample of searching data

328 Z.C. Huang et al.

provide an autonomic runtime environment for
not only SIG applications but also SIG
resources. Based on the SIGRE, a SIG testbed
is constructed and deployed on Apache Tomcat
servlet container. The testbed integrates three
kinds of computing nodes (high performance
cluster, condor computing pool, and traditional
high-end server, totally more than 100
processors) for its computing infrastructure,
about ten data sources with more than 10TB
data for its data infrastructure, more than forty
algorithms for data processing models, several
WMS servers for data visualization, a web
based management and monitor user interface
for management, and so on. Figure 4 shows
some of the SIG testbed user interfaces.

The test on SIG testbed shows that SIGRE
can provide a powerful, easy-to-use, robust and
autonomic runtime environment for SIG,
developers can develop SIG resources and SIG
applications on SIGRE easily and quickly. For
example, based on the SIGRE data
infrastructure support component, a new data
source can be developed and deployed
successfully in one day at most, and to create a
new application based on SIGRE may take only
hours or less.

As a kind of application grid for geo-
computation context, Spatial Information Grid
needs a powerful and easy-to-use runtime
environment for its users and developers. In this
paper, based on the techniques including web
service, grid computing, and spatial information
grid, an autonomic runtime environment named
SIGRE is proposed and implemented for geo-
computation. Each SIG node carries out an
instance of SIGRE, which provides the basic
running environment including the java virtual
machine, runtime libraries, management and optimization components, monitoring
and healing components, etc. All SIGRE instances on the SIG nodes makeup an
environment for the execution and management of resources and applications in SIG,
and provide the key functions including resource discovering, data managing, service
quality supporting, etc. based on SIGRE, a SIG testbed is constructed and tested. The
test shows that SIGRE can provide a powerful, easy-to-use, robust and autonomic
runtime environment for SIG, and developers can develop SIG resources and SIG
applications on SIGRE easily and quickly.

(a) input data searching arguments

(b) data searching result

(c) processing algorithms integrated

Fig. 4. User interfaces of SIG testbed

 SIGRE – An Autonomic Spatial Information Grid Runtime Environment 329

But, the SIGRE can not make the SIG popular immediately and automatically. A
lot of useful and powerful applications are needed to respond the requirement of SIG
end users. It is very important for the survival and growth of SIG to provide mass of
applications for the users to resolve their problem.

The requirements of the end users are so various that it is difficult to respond them
by limited developed applications. The application development becomes the
bottleneck of SIG popularization. One way to ease the bottleneck is to develop and
deploy more and more powerful applications as soon as possible and as many as
possible so that the requirements of end users can be responded. It is the traditional
way and seems failed. There are two main reasons at least. First, if the application is
more powerful, it is more complex, more expensive, and more difficult to develop.
Second, the requirement of end user is always uncertain and unstable. It is too
difficult to develop a powerful application for the uncertain and unstable requirement
of a mass of end users with a low cost.

Another possible way to ease the bottleneck is to make the application
development easier so that more people, even all end users can develop applications
for themselves. Situational application will be a good choice. In SIG, situational
application is such an application that it is quickly created and deployed based on the
SIG infrastructure and SIG resources for a situational requirement by the end user. It
is often developed and deployed by a series of visual development toolkits. To make
the SIGRE support the development and deployment of situational applications will
be one of our most important future works to make the SIG more useful and popular.
Based on the SIGRE situational application support, users can create and deploy
situational applications for their requirements themselves. It will ease the application
development bottleneck of SIG and make SIG more powerful and popular.

References

1. Java Technology, http://java.sun.com
2. Java Servlet - Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Java_Servlet
3. Huang, Z.C., Li, G.: An SOA based On-Demand Computation Framework for Spatial

Information Processing. In: GCCW 2006. Fifth International Conference on Grid and
Cooperative Computing Workshops, Hunan, China, October 21-23, 2006, pp. 487–490
(2006)

4. Huang, Z.C., Du, B., Gu, L., He, C., Li, S.: Distributed Grid Resource Registry Meta-
Service: Design and Implementation. In: The 7th International Symposium on Autonomous
Decentralized Systems, Chengdu, China, April 4-6, 2005, pp. 531–535 (2005)

5. Huang, Z.C., Li, G.: SIG-DDS: A Grid-based Remote Sensing Data Distribution System.
In: SKG 2006. Second International Conference on Semantics, Knowledge, and Grid,
GuiLin, China, November 1-3, 2006, pp. 93–94 (2006)

6. Web Services Description Language (WSDL) 1.1: http://www.w3.org/TR/wsdl
7. SOAP: The fundamental message enveloping mechanism in Web services,

 http://www.w3.org/TR/SOAP
8. The Apache Software Foundation: Web Services - Axis, http://ws.apache.org/axis/
9. The Apache Software Foundation: Apache Tomcat, http://tomcat.apache.org/

	SIGRE – An Autonomic Spatial Information Grid Runtime Environment for Geo-computation
	Introduction
	Architecture
	The Autonomic Resource Distribution, Discovery and Matching
	The Autonomic Data Infrastructure Based on SIGRE
	Implementation, Test and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

