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Abstract. This paper aims at studying two Java high performance environments
in order to implement parallel iterative methods on Grid infrastructures. We ex-
hibit the important features offered by MPJ Express and Jace V2 to tackle the
different issues linked to parallel iterative algorithms. Our study relies on the im-
plementation of a typical iterative application: the multi-splitting method on a
large scale grid platform.

1 Introduction

Currently there is a growing interest in developing Grid applications using the Java
language. Even if its performance are not comparable to those of the C language for
example, many reasons could explain this interest. Among them we can quote the two
following ones. First, the ability of Java to handle the heterogeneity between different
hardware and operating systems. With regard to the highly heterogeneous nature of the
Grid this feature is essential. Second, its ability to support efficient communication.
Becker et al shows in [1] how the Java NIO API [2] provides scalable non-blocking
I/Os which perform very well.

It also appears that most Grid parallel applications use the message-passing
paradigm. In this model, tasks co-operate by exchanging messages and the Message
Passing Interface (MPI) is a standard for implementing message-passing applications.
In this context, and considering the advantages of Java previously exposed, it is not
surprising to see that many research projects aim at developing a message-passing sys-
tem in Java. These projects can be classified into three classes. The projects of the first
class [3] are built upon JNI [4] and use a native MPI implementation as communication
layer. These projects provide efficient communication procedures but are not “pure”
Java. Projects of the second class [5,6] are based on Java RMI. The RMI API is an
elegant high-level “pure” Java solution for remote method invocations of distributed
objects but offers little communication performances. In the third class, projects [1,7]
use a low-level approach based on Java sockets. This ensures good communication per-
formances and a truly “pure” Java portable environment.
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Now, from an application point of view it appears that the well-known parallel it-
erative numerical algorithms have been the main class used in scientific applications
so far. Unfortunately, they usually require several inter-processor communications and
synchronizations (to update data and to start the next computation steps for example).
The aim of this paper is to provide a comparative study of two “pure” Java message-
passing environments for implementing parallel iterative numerical algorithms. We fo-
cus on MPJ Express which is developed at the University of Reading [1] and on Jace
an environment we are currently developing at the Université de Franche-Comté. We
present the features offered by these two environments to tackle the different issues
linked to parallel iterative applications. Both of them use the Java NIO socket API and
Jace also allows to implement a particular iterative model called AIACs (Asynchronous
Iteration-Asynchronous Communication) algorithms [8,9]. Our study relies on the im-
plementation, on the Grid’5000 testbed [10], of a typical numerical iterative method:
the multisplitting method. We show that the communication layer of MPJ offers bet-
ter performances than Jace. Nevertheless, the ability of Jace V2 to build asynchronous
implementations allows it to outperform MPJ synchronous implementations.

This paper is organised as follows. In section 2, we present the motivations and sci-
entific context of our work. In section 3, we describe the MPJE and Jace environments.
We particularly describe the new architecture and the new features that we have im-
plemented in the Jace environment (named Jace V2). Section 4 details the experiments
we conducted on the Grid’5000 testbed. We present the multisplitting method (both its
synchronous and asynchronous implementations) and we analyze the results of our test.
We end in section 5 by some concluding remarks and future work.

2 Scientific Context and Motivations

As exposed in the introduction, parallel iterative methods are now widely used in many
scientific domains. In the same way and due, in part, to its ability to tackle the hetero-
geneity problem of the Grid, the Java language is now a good candidate for developping
high performance applications. But what are the main features that a Java programming
environment must offer to develop efficient numerical iterative applications ?

Parallel iterative algorithms can be classified in three main classes depending on how
iterations and communications are managed (for more details readers can refer to [11]).
In the Synchronous Iterations - Synchronous Communications (SISC) model data are
exchanged at the end of each iteration. All the processors must begin the same itera-
tion at the same time and important idle times on processors are generated. The Syn-
chronous Iterations - Asynchronous Communications (SIAC) model can be compared to
the previous one except that data required on another processor are sent asynchronously
i.e. without stopping current computations. This technique allows to partially overlap
communications by computations but unfortunately, the overlapping is only partial and
important idle times remain. It is clear that, in a grid computing context, where compu-
tational nodes are large, heterogeneous and widely distributed, the idle times generated
by synchronizations are very penalizing. One way to overcome this problem is to use
the Asynchronous Iterations - Asynchronous Communications (AIAC) model. Here, lo-
cal computations do not need to wait for required data. Processors can then perform
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their iterations with the data present at that time. Figure 1 illustrates this model where
the grey blocks represent the computation phases, the white spaces the idle times and
the arrows the communications. With this algorithmic model, the number of iterations
required before the convergence is generally greater than for the two former classes.
But, and as detailed in [8], AIAC algorithms can significantly reduce overall execution
times by suppressing idle times due to synchronizations especially in a grid computing
context.

In this context, it appears that communications and synchronizations are crucial
points that any message-passing environment must managed carefully. This communi-
cation management must be based on: an efficient point-to-point communication mod-
ule, an efficient thread management module (for scalability reasons) and the ability to
easily implement AIAC algorithms.

Processor 1

Processor 2

 Time

Fig. 1. The Asynchronous Iterations - Asynchronous Communications model

In the remainder, we present MPJ Express and Jace, two Java message-passing envi-
ronments which aim at offering these features.

3 The MPJ Express and Jace V2 Environments

3.1 MPJ Express

MPJE is structured into a layered design (see figure 2) which allows to use different
communication devices such as NIO or native MPI via JNI. In the following we only
focus on the NIO device driver. In [1] Baker et al show how point-to-point NIO com-
munications perform well and in [12] Pugh et al point out the good scalability of this
package with respect to standard Java sockets.

The communication protocols. The NIO device driver (called mjdev) proposes three
communication protocols.

– The Eager-Send protocol. This protocol is used for small messages (size smaller
than 128 Kbytes). Assuming that the receiving part has got an unlimited memory
for storing messages the number of control messages is minimized.

– The Rendezvous protocol. This protocol is used for large messages (size greater
than 128 Kbytes). In this case, control messages are exchanged since their overhead
is negligible.

– The Shared Memory protocol. This protocol is used when a process is sending a
message to itself (inside the same JVM).
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Fig. 2. The MPJ layered architecture

The buffering API. Java sockets are not able to directly access memory in order to
read/write basic datatypes. Furthermore, the lack of pointers management could make
difficult the use of complex operations such as gather/scatter. To overcome these diffi-
culties, MPJ provides a buffering API in order to pack and unpack data to be sent [13].
Two kinds of buffers can be used: static and dynamic buffers. Static buffers can only
contain primitive datatypes while dynamic buffers can deal with serialized Java objects.
When a buffer is created, read and write operations are available to pack and unpack
data on it.

The communications primitives. Blocking and non-blocking sending methods are
available. These methods are called in the user thread and use the communication
protocols previously described. In the same way, blocking and non-blocking receiving
methods are available. These methods can be initiated by the user thread (eager-send
protocol) or by the NIO selector thread (rendez-vous protocol).

Advantages and drawbacks. The MPJ API is complete and offers a MPI-like style
of programming which makes the porting of existing applications easier. Based on a
solid buffer management its communication layer is efficient and MPJ appears to be
standard for implementing Java message-passing applications. Nevertheless, it appears
that MPJ is not well suited for AIAC algorithms. Indeed, even if it is a thread-safe
environment, its communication layer architecture is mono-threaded. It is shown in [8]
that with this kind of process management it is difficult to implement efficient AIAC
algorithms. Another drawback of MPJ is that the application deployment procedure can
suffer from a lack of scalability since centralized communication schemes are used.

3.2 Jace V2

Jace [6] is a Java programming and executing environment that permits to implement
efficient asynchronous algorithms as simply as possible. Jace builds a distributed virtual
machine, composed of heterogeneous machines scattered over several distant sites. It
proposes a simple programming interface to implement applications using the message
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passing model. The interface completely hides the mechanisms related to asynchro-
nism, especially the communication management and the global convergence control.
In order to propose a more generic environment, Jace also provides primitives to im-
plement synchronous algorithms and a simple mechanism to swap from one mode to
another. Jace relies on four components: the daemon, the worker, the computing task
and the spawner.

The daemon. The daemon is the core of the Jace system, it is launched on each node
taking part in the computation. When a daemon is launched, a remote server is started on
it and continuously waits for remote invocations. This server provides communications
between the daemons and the spawner. It is used to manage the Jace environment like
for example: initializing the workers, monitoring and gathering the results . . . Daemons
are structured as a binomial tree. This hierarchical view of the machines set achieves
more efficient spawning and optimizes global communications.

The worker. The worker is the entity responsible for executing user applications. It is
a Jace service created for each execution by the daemon. Figure 3 shows the internal
architecture of the worker which is composed of two layers:

Grid Infrastructure

Message Manager

NIO RMI

Tasks Manager

User Task’s

Socket TCP/IP

Communication layer

Application layer

Fig. 3. Jace worker architecture

– The Application Layer. This layer provides tasks execution and global conver-
gence detection. A daemon may execute multiple tasks, allowing to reduce distant
communications. Jace is designed to control the global convergence process in a
transparent way. Tasks only compute their local convergence state and call the Jace
API to retrieve the global state. The internal mechanisms of the convergence detec-
tion depend on the execution mode i.e. synchronous or asynchronous.

– The Communication Layer. Communications between tasks are performed us-
ing the message/object passing model. Jace uses waiting queues to store incom-
ing/outgoing messages and two threads (sender and receiver) to deal with
communications. According to the kind of algorithm used, synchronous or
asynchronous, queues managements are different. For a synchronous execution, all
messages sent by a task must be received by the other tasks. Whereas on an asyn-
chronous execution, only the most recent occurrence of a message, with the same
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source or destination and containing the same type of information, is kept in the
queues. The older one, if existing, is deleted. For scalability issues and to achieve
better performances, the communication layer should use an efficient protocol to
exchange data between remote tasks. For this reason Jace is based on several proto-
cols : TCP/IP Sockets, NIO (New Input/Output) [2,12] and RMI (Remote Method
Invocation).

The Computing Task. As in MPI-like environments, the programmer decomposes the
problem to be solved into a set of cooperating sequential tasks. These tasks are executed
on the available processors and invoke special routines to send or receive messages.
A task is the computing unit in Jace, which is executed like a thread rather than a
process. Thus, multiple tasks may be executed in the same worker and can share system
resources.

We also point out here that Jace implementation relies on the Java object serialization
to transparently send objects rather than raw data.

The Spawner. The spawner is the entity that effectively starts the user application.
After starting daemons on all nodes, computations begin by launching the spawner
program with some parameters (the number of tasks to be executed, the URL of the
task byte-code, the parameters of the application, the list of target daemons, the mapping
algorithm (round robin, best effort)). Then, the spawner broadcasts this information to
all the daemons. For scalability reasons, that is achieved by using an efficient broadcast
algorithm based on a binomial tree [14]. When a daemon receives the spawner message,
it forwards this information to its neighbors and starts a worker to load and execute the
user tasks.

Advantages and drawbacks. As presented above Jace is a multi-threaded environment
very suitable for AIAC algorithms. For scalability reasons its application deployment
procedure is designed in a highly distributed way. Unlike the MPJ one, the Jace com-
munication layer is able to transfer any kind of data objects. This feature provides more
flexibility but requires objects serialization which decreases overall performances.

4 Experiments

4.1 The Application: The Multisplitting Method

Consider the n dimensional linear system: Ax = b. As exposed in figure5, the A matrix
is split into horizontal rectangle parts. Each of these parts is then affected to one pro-
cessor. With this distribution, a processor is in charge of computing its XSub part by
iteratively solving the following subsystem:

ASub ∗ XSub = BSub − DepLeft ∗ XLeft − DepRight ∗ XRight

This resolution can be processed by a direct solver such as SuperLu. Then the solu-
tion XSub must be sent to each processor which depends on it. Now, if rectangle matri-
ces are not disjoint, it appears that some computations will be redundant. This property
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Fig. 4. Decomposition of the system

is called overlapping and should be taken into account. In this way, three policies can be
applied. Either a processor ignores its components if its neighbors has computed them,
or it ignores the neighbors components or it mixes the shared components (by com-
puting their average for example). This parameter has an influence on the convergence
speed of the algorithm. Interesting reader can find more details in [15].

For our purpose, this application is interesting for many reasons. First, the conver-
gence of the method for both synchronous and asynchronous mode is shown in [15]
(with some restrictions on the A matrix). Second, it appears that the computation/
communication ratio does not let performances be too dependant on the communica-
tion layer. In this way, we must be able to evaluate the whole of the target environments
(memory management, threads management . . . ). Finally, this application is not a “toy”
application. It covers several scientific computation areas and its study in different con-
texts is relevant.

4.2 Experiments Results

The experiments have been conducted on the Grid’5000 platform. This testbed is com-
posed of an average of 1, 300 bi-processors that are located in 9 sites in France: Bor-
deaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes, Sophia-Antipolis and Toulouse.
The inter-sites links range from 2.5Gbps up to 10Gbps while most of the sites have a
Gigabit Ethernet Network for local machines. For more details on the Grid’5000 archi-
tecture, interested readers can refer to: www.grid5000.fr. All the nodes run the Linux
Debian distribution with the Sun Java 1.5 Java Virtual Machine.

Figure 5 shows the execution times of the multi-splitting application for different ma-
trix sizes and with 150 nodes of the Grid’5000 testbed. The processors were distributed
over 2 sites and the two Jace implementations (synchronous and asynchronous) rely on
the Socket communication layer.

It appears that the two synchronous versions (MPJ and Jace) present some equivalent
execution times. With respect to the architecture of the two communication layers, these
results can be surprising since no object serialization is performed with MPJ while Jace
requires this kind of process. We can explain these results by the fact that the target ap-
plication is coarse grain and so is less sensitive to communication performances. These
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Fig. 5. Time to solve different generated matrices

tests also show the interest of AIAC algorithms since the Jace asynchronous version
clearly outperforms the two synchronous ones. The fundamental properties of AIACs
algorithms can explained these results. In particular, we can see here the efficiency of
asynchronism which allows to obtain a good computations/communications overlap-
ping. This underlines an important feature for Java high performance environments: the
ability of easily implemented AIAC algorithms.

5 Concluding Remarks and Future Work

In this paper, we have presented a comparative study of two Java high performance
environments (MPJ Express and Jace V2) for implementing parallel iterative meth-
ods. Through the implementation of a typical iterative application (the multi-splitting
method) we have shown that the communication layer of MPJ Express is efficient. We
have also shown that the ability of Jace to support the AIAC model is very relevant.

We are currently working on how AIAC algorithms behave on a peer-to-peer (P2P)
architecture. We study the integration of Jace on P2P environments such as JXTA or
ProActive [16] since these environments already propose standard P2P services such as
failure detection, NAT traversing.
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