
M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 261–270, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Niching Gene Expression Programming Algorithm
Based on Parallel Model

Yishen Lin, Hong Peng, and Jia Wei

School of Computer Science and Engineering, South China University of Technology,
Guangzhou, 510641, China

Linnys@gmail.com, mahpeng@scut.edu.cn,
wei.jia@mail.scut.edu.cn

Abstract. GEP is a biologically motivated machine learning technique used to
solve complex multitude problems. Similar to other evolution algorithms, GEP
is slow when dealing with a large number of population. Considering that the
parallel GEP has great efficiency and the niching method can keep diversity in
the process of exploring evolution, a niching GEP algorithm based on parallel
model is presented and discussed in this paper. In this algorithm, dividing the
population to the niche nodes in sub-populations can solves the same problem
in less computation time than it would take on a single process. Experimental
results on sequence induction, function finding and sunspot prediction demon-
strate its advantages and show that the proposed method takes less computation
time but with higher accuracy.

1 Introduction

Natural biological systems are well adapted to the environment; they can be used to
solve many complex multitude problems. Inspired by the process of biological evolu-
tion in natural systems, evolutionary methods of algorithm designs are applied to
stochastic searches for optimal results.

Gene Expression Programming (GEP) was first introduced by Candida Ferreira
[1]. It combines the characteristics of Genetic Algorithms (GA) and Genetic Pro-
gramming (GP), and overcomes some drawbacks of them. It has performed well for
solving a large variety of problems, including symbolic regression, optimization, time
series analysis, classification, logic synthesis and cellular automata, etc [1, 2, 3 and 4].
The GEP algorithm is a robust but slow process with a large number of individuals
and complex multitude problems. Parallel execution is a better method to reduce com-
putation time and to improve the efficiency in evolution algorithm. There are many
studies in parallel GA [5, 6] and parallel GP [7, 8], but there are few studies in paral-
lel GEP [9].

In this paper, a new algorithm called PNGEP (Parallel Niching GEP) which com-
bines parallel model and niching method is presented. Experimental results on
sequence induction, function finding and sunspot prediction show that this new algo-
rithm gets better performance and higher efficiency than the basic GEP.

262 Y. Lin, H. Peng, and J. Wei

2 Related Works

Basic GEP can get good results in regression and prediction problem [1, 2, 3 and 4].
Niching method is a biologically technology, using this technology in evolution can
get higher efficiency [10, 11 and 12]. However, similar to other evolution algorithms,
GEP is also slow when dealing with a large number of individuals and complex multi-
tude problems. To solve this problem, some researches have imported parallel model
in evolution algorithm, and the hybrid algorithm has better performance [5, 6, 7, 8
and 9].

2.1 Niching Method

Niching method is widely used in GAs like Niching Genetic Algorithm (NGA). NGA
are preserved the diversity inside the population by altering the operators to prevent
premature convergence to an optimum result, like fitness sharing [10], crowding [11]
and deterministic crowding [12] model.

For example, sharing fitness encourages individuals to populate proportionally
over the whole search space by introducing a penalty on the fitness of each individu-
als based on its relative distance to its neighbors. This causes population diversity
pressure that allows a population to maintain individuals at local optima, and reduce
premature convergence [14]. This strategy will also force the final distribution of
individuals to be dispersed throughout the niche. Each individual is under pressure to
maximize distance between itself and its neighbors. This diversity pressure within the
niches retards the exploration of the fitness peak areas in each niche, as fewer indi-
viduals are able to populate and explore the fitness peak areas.

2.2 Parallel Model

There are two parallel models in evolution algorithm: the coarse-grain model and the
fine-grain model. In the coarse-grain model, the parallel program, which consists of a
few computing-intensive processes, has few communication demands, such as the
Message Passing Interface (MPI) model. The fine-grain one is made up of a large
number of processes with low computational requirements but high demands on the
communication in order to coordinate all the processes. The former utilizes fewer
processors with less communication than the latter.

In the GEP algorithm, the individuals must be exchanged from each population,
and the population in different processed must be cooperated with others. It is obvious
that the fine-grain model is appropriate for applications if considering the balance of
computational speed and precision.

This fine-grain model in GEP algorithm is also called the cooperation model. The
processes sometimes exchange information by allowing some individuals to migrate
from one process to another according for optimization. A share individuals’ pool will
be set. This approach re-injects diversity into converging processes. Then, different
processes will be tended to explore different parts of the search space. This parallel
model is in figure 1.

 A Niching Gene Expression Programming Algorithm Based on Parallel Model 263

Fig. 1. Population is divided into several processes; the best individuals of each process will be
exchanged through the share individuals’ pool during the calculations. The cooperation control-
ler controls the evolution of generation in each process.

3 Niching GEP Based on Parallel Model

In this paper, a hybrid algorithm called PNGEP is presented. This algorithm uses the
fine-grain parallel model, which combines the niche theory and genetic mechanism.

3.1 Niching Method

The fundamental step of niching method is like the basic GEP. There is some differ-
ent when the fitness of each individual is evaluated, a clustering of individuals opera-
tion will be done first. Before doing genetic operation, the individuals will be divided
into k niches using the k-means clustering algorithm according to their fitness and
NMSE value. The genetic operation will be done only in the same niche.

The main idea in this method is to define k centroids, one for each cluster. Each
point is belonging to a given data set and associates it to the nearest centroid. Then re-
calculate k new centroids as new centers of the clusters resulting from the previous
step, a new binding has to be done between the same data set points and the nearest
new centroid. A loop has been generated. Finally k niches are set in a population with
different types, such as good, average, poor, etc. Individuals only compete in the same
niche and breed like in any traditional algorithm.

Fig. 2. First k centroids are defined; the individuals are selected and taken to the nearest cen-
troid. Then re-calculate k new centroids of the clusters results and assign the individuals to the
nearest new centroid. A loop has been generated. As a result of this loop the niche sets are
initialization, the niches are marked like figure 2.

Cooperation Controller

……process2 processn

Share individuals pool

process1

264 Y. Lin, H. Peng, and J. Wei

After doing the genetic operation in each niche, the k niches will compound to a
new population and the elitism method will be used. This is one generation’s opera-
tion, a loop will be generated. This clustering niching operation with k-means algo-
rithm is shown in figure 2.

3.2 Parallel Model in Niching GEP

The main idea in this parallel algorithm is to define N sub-populations (processes),
each sub-population with k-niche is mapped into a processor and its individuals are
sometimes exchanged between the sub-populations during the calculations. The to-
pology of this parallel model is shown in figure 3.

Fig. 3. Populations are divided into N sub-population and a sub-population is mapped into k
niches. The best individuals of each sub-population will be exchanged through the share indi-
viduals’ pool during the calculations.

In this parallel model, the best individual will be put into the share individual’s pool
and exchange to each sub-population. Then each sub-population will be re-injected the
best genes. This behaves will be converged to a global/local optimum result.

3.3 Niching GEP Based on Parallel Model

PNGEP has seven genetic operators: mutation, transposition (insertion sequence
transposition, root transposition and gene transposition), recombination (one-point,
two-point and gene recombination). Among these operators, mutation is the most
important and powerful one. PNGEP algorithm is depicted as follows:

Algorithm: PNGEP (Ts, Fs, f, P, Ps, k, N, G)

Input: Ts: the terminal set; Fs: the function set; f:
the fitness function to evaluate the individuals; P: the
sub-population for evaluation; Ps: the parameter for the
genetic operation, such as the mutation rate, the multi-
ple-point crossover rate, etc; k: number of the niches;
N: number of the sub-populations; G: number of the gen-
erations.

Output: The model with the highest fitness.
 1. For each sub-population:
 Initialize the sub-population Pi(i=1 to N) ran-
domly;

Share individuals pool

……

Population1
Niche1 Niche2

…… Nichen

Population2
Niche1 Niche2

…… Nichen

Populationn
Niche1 Niche2

…… Nichek

 A Niching Gene Expression Programming Algorithm Based on Parallel Model 265

 2. For each generation g (g=1 to G)
 Evolution in each sub-population Pi (i=1 to N):
 (1)Inject: inject share-pool-individuals into Pi
random by pool exchange rate;
 (2)Evaluate: for each individual p, compute f(p);
 (3)Divide the individuals into k niches:
 (4)For each niche, generate the new population:

(a) Mutation: generate new individual by mu-
tation old individual.
(b) Transposition: generate new individual by
transposition old individual.
(c) Recombination: generate new individual by
recombination the two old individuals.

 (5) Using the elitism method;
(6) Put the best m individual into share pool.

3. Return the best model with highest fitness.

4 Experiment and Results

In this paper, we compare PNGEP with the basic GEP in three problems [9, 15].
The first one is a problem of sequence induction, where an consists of the nonnegative
integers. The nth term N of the chosen sequence is given by the formula:

12345 234 ++++= nnnn aaaaN (1)

The second is a problem of “V” shaped function requiring floating-point constants.
In this case, the following “V” shaped function is chosen:

aeaay 243.7)ln(251.4 22 ++= (2)

where a is the independent variable and e is the irrational number 2.71828183.

Table 1. Wolfer sunspots series (read by rows)

101 82 66 35 31 7 20 92 154 125

85 68 38 23 10 24 83 132 131 118

90 67 60 47 41 21 16 6 4 7

14 34 45 43 48 42 28 10 8 2

0 1 5 12 14 35 46 41 30 24

16 7 4 2 8 17 36 50 62 67

71 48 28 8 13 57 122 138 103 86

63 37 24 11 15 40 62 98 124 96

66 64 54 39 21 7 4 23 55 94

96 77 59 44 47 30 16 7 37 74

266 Y. Lin, H. Peng, and J. Wei

The third one is the predicting sunspots problem. In this case, 100 observations of
the Wolfer sunspots series are used (Table 1) with an embedding dimension of 10 and
a delay time of one.

4.1 Setting the System

The relative error (equation 3), the absolute error (equation 4) and the normalized
mean square error (NMSE, equation 5) are used to test the evaluation model.

)100*|/)'(|(
1

j

n

j
jj yyyMfitness ∑

=

−−= (3)

|)'|(
1
∑

=

−−=
n

j
jj yyMfitness (4)

2

1

2

1

)(

)'(

∑

∑

=

=

−

−

=
n

j
jj

n

j
jj

yy

yy

NMSE

(5)

In the equations, M is the range of selection; yj is the fact value;
jy is the average of

all yj; jy' is the value return by GEP. The less NMSE shows the good result.

For the sequence induction problem, the first 10 positive integers an are used as fit-
ness cases. The fitness function is based on the relative error with a selection range of
20%, the maximum fitness is 200.

For the “V” shaped function problem, a set of 20 random fitness cases chosen from
the interval [-1, 1] is used. The fitness function is also based on the relative error but
in this case a selection range of 100% is used, the maximum fitness is 2000.

For the sunspot prediction problem, an embedding dimension of 10 and a delay
time of one are used with 90 fitness cases. In this case, the fitness function is based on
the absolute error with the selection range is 1000% and the maximum fitness is
90,000.

Because of the constants have less effect on the expected evolution; there is no
constant using in the PNGEP algorithm. Our experiments show that the evolutionary
results without constants of the three problems are good.

The PNGEP algorithm is written in C# using the threading class. N threads are cre-
ated when the algorithm is initialized. Then N sub-populations are initialization and
each sub-population is mapped into a thread process. When a-generation-running is
done, the sub-populations exchange their individuals with the share stack. The best
individuals will be re-injects diversity into converging sub-populations. Then, differ-
ent sub-populations will be tended to explore different parts of the search space in this
thread synchronization process.

In this paper, Experiments are running on a Hewlet-Packard BL25 blade server
with AMD Opteron 265 1.8G CPU，2G memory, Windows 2003 operation SP1 sys-
tem and Microsoft .NET Framework 2.0 platform.

 A Niching Gene Expression Programming Algorithm Based on Parallel Model 267

Table 2. General settings used in the sequence induction (SI), the “V” function and the sunspot
prediction (SS) problems

SIGEP SIPNGEP VGEP VPNGEP SSGEP SSPNGEP

Number of runs 100 100 100 100 100 100

Number of generations 100 100 200 200 200 200

Population size 200 50 200 50 200 50

Niche number 1 4 1 4 1 5

Sub-population number --- 2 --- 4 --- 4

Number of fitness cases 10 10 20 20 50 50

Function set {+,-,*,/}
{+,-,*,/,

,ex ,log,10x,sin,cos}
{+,-,*,/}

Terminal set {a} {a} {a} {a} {a-j} {a-j}

Head length 6 6 6 6 8 8

Number of genes 7 7 5 5 3 3

Linking function + + + + + +

Chromosome length 140 140 100 100 78 78

Mutation rate 0.044 0.044 0.044 0.044 0.044 0.044

One-point recombination rate 0.3 0.3 0.3 0.3 0.3 0.3

Two-point recombination rate 0.3 0.3 0.3 0.3 0.3 0.3

Multipoint recombination rate 0.3 0.3 0.3 0.3 0.3 0.3

Gene recombination rate 0.1 0.1 0.1 0.1 0.1 0.1

IS transposition rate 0.1 0.1 0.1 0.1 0.1 0.1

IS element length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

RIS transposition rate 0.1 0.1 0.1 0.1 0.1 0.1

RIS element length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Selection range 20% 20% 100% 100% 1000% 1000%

Pool size --- 4 --- 8 --- 8

Pool exchange rate --- 0.2 --- 0.2 --- 0.2

Average best-of-run fitness 151.674 184.370 1648.21 1780.04 88609.6 88643.1

Average best-of-run NMSE 0.0011 0.0005 0.0252 0.0132 0.3233 0.3108

Average running

time(second)
<30 <30 572.52 106.34 215.46 84.73

Success rate 40% 71% --- --- --- ---

4.2 Experimental Analysis

In the experiments, the selection is made by roulette-wheel sampling coupled with
simple elitism and the performance is evaluated over 100 independent runs. The six
experiments are summarized in Table 2.

268 Y. Lin, H. Peng, and J. Wei

The first problem of sequence induction can be exactly solved by the basic GEP
and the PNGEP. The success rate of the basic GEP is 40% and the PNGEP is 71%.
Both algorithms’ running time is less than 30s. The PNGEP’ precision is higher than
the basic GEP.

To find the “V” shaped function, we use function set F = {+, -, *, /, ㏑, ex, log, 10x,
sin, cos}. The basic GEP’s average best fitness is 1648.21, the average best NMSE is
0.0252 and the running time is 572.52s. The PNGEP’s average best fitness is 1780.04,
the average best NMSE is 0.0132 and the running time is 106.34s. The basic GEP’s
running time is about five times longer than the PNGEP.

For the sunspot prediction problem, the basic GEP’s average best fitness is
88609.6, the average best NMSE is 0.3233 and running time is 215.46s. The PNGEP’s
average best fitness is 88643.1, the average best NMSE is 0.3108 and the running time
is 84.73s. The basic GEP’s running time is about four times longer than the PNGEP.
From the comparisons in table 2, we can see that the PNGEP is taken less computa-
tion time but with higher accuracy than the basic GEP.

The basic GEP often enters a local optimization and jumps out of the local optimi-
zation at random probability. On the other hand, PNGEP can jump out of the local
optimization at a greater probability with N sub-population. For the sunspot prediction
problem, the basic GEP search the solution space only with one population, but the
PNGEP using the 4 sub-population. Although the basic GEP individuals’ number is
for times than the PNGEP, the PNGEP’s individuals have more diversity by using the
niche method. The comparison in figure 4 shows that PNGEP has better search ability
than the basic GEP.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

Generation

N
M
S
E

basic GEP

PNGEP-sub1

PNGEP-sub2

PNGEP-sub3

PNGEP-sub4

Fig. 4. The best solution’s evolution in sunspot prediction problem between the basic GEP
algorithm and the 4 sub-population PNGEP algorithm

Niching method tries to keep diversity in the population and to use this diversity as
resource for exploratory evolution. The niche method of parallel model makes GEP
with more flexibility and power of exploring the search space and converging to op-
timal result. From the comparisons of the success rate, the fitness value and the NMSE
value, we can know that the PNGEP algorithm is better than the basic GEP.

 A Niching Gene Expression Programming Algorithm Based on Parallel Model 269

5 Conclusion

In GEP algorithm, programs are represented as linear character strings of fixed-length
which can be expressed as expression trees of different sizes and shapes. This separa-
tion of genotype and phenotype has endowed GEP with more flexibility and power of
exploring the entire search space.

In this paper, a niching GEP based on parallel model is described and the advan-
tages are demonstrated by its application. Experimental results on the sequence induc-
tion, the “V” shaped function and the sunspot prediction problem show that this paral-
lel model of niching GEP algorithm, which called PNGEP, not only gains in the op-
timal results but also in better performance. It has higher precision and better search
ability than the basic GEP. In the future, we will use the MPI parallel model and other
clustering algorithm to improve the performance of this algorithm.

Acknowledgments

This research has been funded by the National Natural Science Foundation of Guang-
dong Province (07006474), Sci & Tech Research Project of Guangdong Province
(2007B010200044) and Sci & Tech Research Project of Guangzhou (2006Z3-
D3051).

References

1. Ferreira, C.: Gene Expression Programming: a New Adaptive Algorithm for Solving Prob-
lems. Complex Systems 13, 87–129 (2001)

2. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial In-
telligence. Angra do Heroismo Portugal (2002)

3. Ferreira, C.: Automatically Defined Functions in Gene Expression Programming. Studies
in Computational Intelligence 13, 21–56 (2006)

4. Jie, Z., Changjie, T., Chuan, L.: Time Series Prediction Based on Gene Expression Pro-
gramming. In: Proceedings of the Fifth International Conference on Web-Age Information
Management, Dalian, China (2004)

5. Gang, P., Iimura, I., Nakatsuru, T.: Efficiency of Local Genetic Algorithm in Parallel
Processing. In: PDCAT 2005. Parallel and Distributed Computing, Applications and
Technologies, pp. 620–623 (2005)

6. Goldberg, D.: Sizing population for serial and parallel genetic algorithms. In: Proceedings
of the Third International Conference on Genetic Algorithms, San Mateo, California, pp.
70-79 (1989)

7. Andre, D., Koza, J.R.: Parallel genetic programming: A scalable implementation using the
transporter network architecture. In: Angeline, P., Kinnear, K. (eds.) Advances in Genetic
Programming 2, Cambridge, MA, pp. 317–337 (1993)

8. Oussaidkne, M., Chopard, B., Pictet, O.: Parallel genetic programming and its application
to trading model induction. Parallel Computing 23, 1183–1198 (1997)

9. Siwei, J., Zhihua, C., Dang, Z.: Parallel Gene Expression Programming Algorithm Based
on Simulated Annealing Method. ACTA Electronic Sinica 33, 2017–2021 (2005)

270 Y. Lin, H. Peng, and J. Wei

10. Goldberg, D., Richardson, J.: Genetic algorithms with sharing for multimodal function op-
timization. In: Proceedings of the 2nd International Conference on Genetic Algorithms, pp.
41–49 (1987)

11. De Jong, K.: An analysis of the behavior of a class of genetic algorithms. Dissertation Ab-
stracts International 36(10), 5140B (1975)

12. Mahfoud, S.W.: Crowding and preselection revisited. Parallel Problem Solving from Na-
ture II, 27–36 (1992)

13. Ferreira, C.: Gene Expression Programming and the Evolution of Computer Programs. In:
Recent Developments in Biologically Inspired Computing, pp. 82–103. Idea Group Pub-
lishing (2004)

14. Yang, H., Ch, F., Li, C., Wang, M.: A density clustering based niching genetic algorithm
for multimodal optimization. In: Machine Learning and Cybernetics. Proceedings of 2005
International Conference, vol. 3, pp. 1599–1604 (2005)

15. Ferreira, C.: Function Finding and the Creation of Numerical Constants in Gene Expres-
sion Programming. In: Proceedings of the 7th Online World Conference on Soft Comput-
ing in Industrial Applications (2002)

	A Niching Gene Expression Programming Algorithm Based on Parallel Model
	Introduction
	Related Works
	Niching Method
	Parallel Model

	Niching GEP Based on Parallel Model
	Niching Method
	Parallel Model in Niching GEP
	Niching GEP Based on Parallel Model

	Experiment and Results
	Setting the System
	Experimental Analysis

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

