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Abstract. GEP is a biologically motivated machine learning technique used to 
solve complex multitude problems. Similar to other evolution algorithms, GEP 
is slow when dealing with a large number of population. Considering that the 
parallel GEP has great efficiency and the niching method can keep diversity in 
the process of exploring evolution, a niching GEP algorithm based on parallel 
model is presented and discussed in this paper. In this algorithm, dividing the 
population to the niche nodes in sub-populations can solves the same problem 
in less computation time than it would take on a single process. Experimental 
results on sequence induction, function finding and sunspot prediction demon-
strate its advantages and show that the proposed method takes less computation 
time but with higher accuracy. 

1   Introduction 

Natural biological systems are well adapted to the environment; they can be used to 
solve many complex multitude problems. Inspired by the process of biological evolu-
tion in natural systems, evolutionary methods of algorithm designs are applied to 
stochastic searches for optimal results.  

Gene Expression Programming (GEP) was first introduced by Candida Ferreira 
[1]. It combines the characteristics of Genetic Algorithms (GA) and Genetic Pro-
gramming (GP), and overcomes some drawbacks of them. It has performed well for 
solving a large variety of problems, including symbolic regression, optimization, time 
series analysis, classification, logic synthesis and cellular automata, etc [1, 2, 3 and 4]. 
The GEP algorithm is a robust but slow process with a large number of individuals 
and complex multitude problems. Parallel execution is a better method to reduce com-
putation time and to improve the efficiency in evolution algorithm. There are many 
studies in parallel GA [5, 6] and parallel GP [7, 8], but there are few studies in paral-
lel GEP [9].  

In this paper, a new algorithm called PNGEP (Parallel Niching GEP) which com-
bines parallel model and niching method is presented. Experimental results on  
sequence induction, function finding and sunspot prediction show that this new algo-
rithm gets better performance and higher efficiency than the basic GEP. 
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2   Related Works 

Basic GEP can get good results in regression and prediction problem [1, 2, 3 and 4]. 
Niching method is a biologically technology, using this technology in evolution can 
get higher efficiency [10, 11 and 12]. However, similar to other evolution algorithms, 
GEP is also slow when dealing with a large number of individuals and complex multi-
tude problems. To solve this problem, some researches have imported parallel model 
in evolution algorithm, and the hybrid algorithm has better performance [5, 6, 7, 8  
and 9].  

2.1   Niching Method 

Niching method is widely used in GAs like Niching Genetic Algorithm (NGA). NGA 
are preserved the diversity inside the population by altering the operators to prevent 
premature convergence to an optimum result, like fitness sharing [10], crowding [11] 
and deterministic crowding [12] model. 

For example, sharing fitness encourages individuals to populate proportionally 
over the whole search space by introducing a penalty on the fitness of each individu-
als based on its relative distance to its neighbors. This causes population diversity 
pressure that allows a population to maintain individuals at local optima, and reduce 
premature convergence [14]. This strategy will also force the final distribution of 
individuals to be dispersed throughout the niche. Each individual is under pressure to 
maximize distance between itself and its neighbors. This diversity pressure within the 
niches retards the exploration of the fitness peak areas in each niche, as fewer indi-
viduals are able to populate and explore the fitness peak areas. 

2.2   Parallel Model 

There are two parallel models in evolution algorithm: the coarse-grain model and the 
fine-grain model. In the coarse-grain model, the parallel program, which consists of a 
few computing-intensive processes, has few communication demands, such as the 
Message Passing Interface (MPI) model. The fine-grain one is made up of a large 
number of processes with low computational requirements but high demands on the 
communication in order to coordinate all the processes. The former utilizes fewer 
processors with less communication than the latter. 

In the GEP algorithm, the individuals must be exchanged from each population, 
and the population in different processed must be cooperated with others. It is obvious 
that the fine-grain model is appropriate for applications if considering the balance of 
computational speed and precision.  

This fine-grain model in GEP algorithm is also called the cooperation model. The 
processes sometimes exchange information by allowing some individuals to migrate 
from one process to another according for optimization. A share individuals’ pool will 
be set. This approach re-injects diversity into converging processes. Then, different 
processes will be tended to explore different parts of the search space. This parallel 
model is in figure 1. 
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Fig. 1. Population is divided into several processes; the best individuals of each process will be 
exchanged through the share individuals’ pool during the calculations. The cooperation control-
ler controls the evolution of generation in each process. 

3   Niching GEP Based on Parallel Model 

In this paper, a hybrid algorithm called PNGEP is presented. This algorithm uses the 
fine-grain parallel model, which combines the niche theory and genetic mechanism. 

3.1   Niching Method 

The fundamental step of niching method is like the basic GEP. There is some differ-
ent when the fitness of each individual is evaluated, a clustering of individuals opera-
tion will be done first. Before doing genetic operation, the individuals will be divided 
into k niches using the k-means clustering algorithm according to their fitness and 
NMSE value. The genetic operation will be done only in the same niche.  

The main idea in this method is to define k centroids, one for each cluster. Each 
point is belonging to a given data set and associates it to the nearest centroid. Then re-
calculate k new centroids as new centers of the clusters resulting from the previous 
step, a new binding has to be done between the same data set points and the nearest 
new centroid. A loop has been generated. Finally k niches are set in a population with 
different types, such as good, average, poor, etc. Individuals only compete in the same 
niche and breed like in any traditional algorithm.  

 

Fig. 2. First k centroids are defined; the individuals are selected and taken to the nearest cen-
troid. Then re-calculate k new centroids of the clusters results and assign the individuals to the 
nearest new centroid. A loop has been generated. As a result of this loop the niche sets are 
initialization, the niches are marked like figure 2. 
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After doing the genetic operation in each niche, the k niches will compound to a 
new population and the elitism method will be used. This is one generation’s opera-
tion, a loop will be generated. This clustering niching operation with k-means algo-
rithm is shown in figure 2. 

3.2   Parallel Model in Niching GEP 

The main idea in this parallel algorithm is to define N sub-populations (processes), 
each sub-population with k-niche is mapped into a processor and its individuals are 
sometimes exchanged between the sub-populations during the calculations. The to-
pology of this parallel model is shown in figure 3. 

 

 

Fig. 3. Populations are divided into N sub-population and a sub-population is mapped into k 
niches. The best individuals of each sub-population will be exchanged through the share indi-
viduals’ pool during the calculations. 

In this parallel model, the best individual will be put into the share individual’s pool 
and exchange to each sub-population. Then each sub-population will be re-injected the 
best genes.  This behaves will be converged to a global/local optimum result. 

3.3   Niching GEP Based on Parallel Model 

PNGEP has seven genetic operators: mutation, transposition (insertion sequence 
transposition, root transposition and gene transposition), recombination (one-point, 
two-point and gene recombination). Among these operators, mutation is the most 
important and powerful one. PNGEP algorithm is depicted as follows: 

Algorithm: PNGEP (Ts, Fs, f, P, Ps, k, N, G) 

Input: Ts: the terminal set; Fs: the function set; f:    
the fitness function to evaluate the individuals; P: the 
sub-population for evaluation; Ps: the parameter for the 
genetic operation, such as the mutation rate, the multi-
ple-point crossover rate, etc; k: number of the niches; 
N: number of the sub-populations; G: number of the gen-
erations. 

Output: The model with the highest fitness. 
  1. For each sub-population: 
       Initialize the sub-population Pi(i=1 to N) ran-
domly; 
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  2. For each generation g (g=1 to G) 
      Evolution in each sub-population Pi (i=1 to N): 
       (1)Inject: inject share-pool-individuals into Pi 
random by pool exchange rate; 
       (2)Evaluate: for each individual p, compute f(p); 
       (3)Divide the individuals into k niches: 
       (4)For each niche, generate the new population: 

(a) Mutation: generate new individual by mu-
tation old individual. 
(b) Transposition: generate new individual by 
transposition old individual.  
(c) Recombination: generate new individual by 
recombination the two old individuals.  

  (5) Using the elitism method; 
(6) Put the best m individual into share pool. 

3. Return the best model with highest fitness. 

4   Experiment and Results 

In this paper, we compare PNGEP with the basic GEP in three problems [9, 15].  
The first one is a problem of sequence induction, where an consists of the nonnegative 
integers. The nth term N of the chosen sequence is given by the formula: 

12345 234 ++++= nnnn aaaaN  (1) 

The second is a problem of “V” shaped function requiring floating-point constants. 
In this case, the following “V” shaped function is chosen: 

aeaay 243.7)ln(251.4 22 ++=  (2) 

where a is the independent variable and e is the irrational number 2.71828183. 

Table 1. Wolfer sunspots series (read by rows) 

101 82 66 35 31 7 20 92 154 125 

85 68 38 23 10 24 83 132 131 118 

90 67 60 47 41 21 16 6 4 7 

14 34 45 43 48 42 28 10 8 2 

0 1 5 12 14 35 46 41 30 24 

16 7 4 2 8 17 36 50 62 67 

71 48 28 8 13 57 122 138 103 86 

63 37 24 11 15 40 62 98 124 96 

66 64 54 39 21 7 4 23 55 94 

96 77 59 44 47 30 16 7 37 74 
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The third one is the predicting sunspots problem. In this case, 100 observations of 
the Wolfer sunspots series are used (Table 1) with an embedding dimension of 10 and 
a delay time of one. 

4.1   Setting the System 

The relative error (equation 3), the absolute error (equation 4) and the normalized 
mean square error (NMSE, equation 5) are used to test the evaluation model.  
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In the equations, M is the range of selection; yj is the fact value; 
jy is the average of 

all yj; jy'  is the value return by GEP. The less NMSE shows the good result. 

For the sequence induction problem, the first 10 positive integers an are used as fit-
ness cases. The fitness function is based on the relative error with a selection range of 
20%, the maximum fitness is 200. 

For the “V” shaped function problem, a set of 20 random fitness cases chosen from 
the interval [-1, 1] is used. The fitness function is also based on the relative error but 
in this case a selection range of 100% is used, the maximum fitness is 2000. 

For the sunspot prediction problem, an embedding dimension of 10 and a delay 
time of one are used with 90 fitness cases. In this case, the fitness function is based on 
the absolute error with the selection range is 1000% and the maximum fitness is 
90,000. 

Because of the constants have less effect on the expected evolution; there is no 
constant using in the PNGEP algorithm. Our experiments show that the evolutionary 
results without constants of the three problems are good.  

The PNGEP algorithm is written in C# using the threading class. N threads are cre-
ated when the algorithm is initialized. Then N sub-populations are initialization and 
each sub-population is mapped into a thread process. When a-generation-running is 
done, the sub-populations exchange their individuals with the share stack. The best 
individuals will be re-injects diversity into converging sub-populations. Then, differ-
ent sub-populations will be tended to explore different parts of the search space in this 
thread synchronization process. 

In this paper, Experiments are running on a Hewlet-Packard BL25 blade server 
with AMD Opteron 265 1.8G CPU，2G memory, Windows 2003 operation SP1 sys-
tem and Microsoft .NET Framework 2.0 platform.  
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Table 2. General settings used in the sequence induction (SI), the “V” function and the sunspot 
prediction (SS) problems 

SIGEP SIPNGEP VGEP VPNGEP SSGEP SSPNGEP

Number of runs 100 100 100 100 100 100 

Number of generations 100 100 200 200 200 200 

Population size 200 50 200 50 200 50 

Niche number 1 4 1 4 1 5 

Sub-population number --- 2 --- 4 --- 4 

Number of fitness cases 10 10 20 20 50 50 

Function set {+,-,*,/}
{+,-,*,/,

,ex ,log,10x,sin,cos}
{+,-,*,/}

Terminal set {a} {a} {a} {a} {a-j} {a-j}

Head length 6 6 6 6 8 8 

Number of genes 7 7 5 5 3 3 

Linking function + + + + + + 

Chromosome length 140 140 100 100 78 78 

Mutation rate 0.044 0.044 0.044 0.044 0.044 0.044 

One-point recombination rate 0.3 0.3 0.3 0.3 0.3 0.3 

Two-point recombination rate 0.3 0.3 0.3 0.3 0.3 0.3 

Multipoint recombination rate 0.3 0.3 0.3 0.3 0.3 0.3 

Gene recombination rate 0.1 0.1 0.1 0.1 0.1 0.1 

IS transposition rate 0.1 0.1 0.1 0.1 0.1 0.1 

IS element length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 

RIS transposition rate 0.1 0.1 0.1 0.1 0.1 0.1 

RIS element length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 

Selection range 20% 20% 100% 100% 1000% 1000% 

Pool size --- 4 --- 8 --- 8 

Pool exchange rate --- 0.2 --- 0.2 --- 0.2 

Average best-of-run fitness 151.674 184.370 1648.21 1780.04 88609.6 88643.1 

Average best-of-run NMSE 0.0011 0.0005 0.0252 0.0132 0.3233 0.3108 

Average running 

time(second) 
<30 <30 572.52 106.34 215.46 84.73 

Success rate 40% 71% --- --- --- --- 
 

4.2   Experimental Analysis 

In the experiments, the selection is made by roulette-wheel sampling coupled with 
simple elitism and the performance is evaluated over 100 independent runs. The six 
experiments are summarized in Table 2. 
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The first problem of sequence induction can be exactly solved by the basic GEP 
and the PNGEP. The success rate of the basic GEP is 40% and the PNGEP is 71%. 
Both algorithms’ running time is less than 30s. The PNGEP’ precision is higher than 
the basic GEP.  

To find the “V” shaped function, we use function set F = {+, -, *, /, ㏑, ex, log, 10x, 
sin, cos}. The basic GEP’s average best fitness is 1648.21, the average best NMSE is 
0.0252 and the running time is 572.52s. The PNGEP’s average best fitness is 1780.04, 
the average best NMSE is 0.0132 and the running time is 106.34s. The basic GEP’s 
running time is about five times longer than the PNGEP. 

For the sunspot prediction problem, the basic GEP’s average best fitness is 
88609.6, the average best NMSE is 0.3233 and running time is 215.46s. The PNGEP’s 
average best fitness is 88643.1, the average best NMSE is 0.3108 and the running time 
is 84.73s. The basic GEP’s running time is about four times longer than the PNGEP. 
From the comparisons in table 2, we can see that the PNGEP is taken less computa-
tion time but with higher accuracy than the basic GEP. 

The basic GEP often enters a local optimization and jumps out of the local optimi-
zation at random probability. On the other hand, PNGEP can jump out of the local 
optimization at a greater probability with N sub-population. For the sunspot prediction 
problem, the basic GEP search the solution space only with one population, but the 
PNGEP using the 4 sub-population. Although the basic GEP individuals’ number is 
for times than the PNGEP, the PNGEP’s individuals have more diversity by using the 
niche method. The comparison in figure 4 shows that PNGEP has better search ability 
than the basic GEP. 
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Fig. 4. The best solution’s evolution in sunspot prediction problem between the basic GEP 
algorithm and the 4 sub-population PNGEP algorithm 

Niching method tries to keep diversity in the population and to use this diversity as 
resource for exploratory evolution. The niche method of parallel model makes GEP 
with more flexibility and power of exploring the search space and converging to op-
timal result. From the comparisons of the success rate, the fitness value and the NMSE 
value, we can know that the PNGEP algorithm is better than the basic GEP. 
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5   Conclusion 

In GEP algorithm, programs are represented as linear character strings of fixed-length 
which can be expressed as expression trees of different sizes and shapes. This separa-
tion of genotype and phenotype has endowed GEP with more flexibility and power of 
exploring the entire search space.  

In this paper, a niching GEP based on parallel model is described and the advan-
tages are demonstrated by its application. Experimental results on the sequence induc-
tion, the “V” shaped function and the sunspot prediction problem show that this paral-
lel model of niching GEP algorithm, which called PNGEP, not only gains in the op-
timal results but also in better performance. It has higher precision and better search 
ability than the basic GEP. In the future, we will use the MPI parallel model and other 
clustering algorithm to improve the performance of this algorithm.  
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