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Abstract. Nodes in the hexagonal mesh and torus network are placed at the ver-
tices of a regular triangular tessellation, so that each node has up to six 
neighbors.  The routing algorithm for the Hexagonal Torus is very complicated, 
and it is an open problem by now.  Hexagonal mesh and torus are known to be-
long to the class of Cayley digraphs. In this paper, we use Cayley-formulations 
for the hexagonal torus, along with some result on subgraphs and Coset graphs, 
to develop the optimal routing algorithm for the Hexagonal Torus, and then we 
draw conclusions to the network diameter of the Hexagonal Torus. 

1   Introduction 

Hexagonal networks belong to the family of networks modeled by planar graphs.  
These networks are based on triangular plane tessellation, or the partition of a plane 
into equilateral triangles. The closest networks are those based on regular hexagonal, 
called honeycomb networks, and those based on regular square partitions, called mesh 
networks. Hexagonal networks and honeycomb have been studied in a variety of 
contexts. The Honeycomb architecture was proposed in [12], where a suitable ad-
dressing scheme together with routing and broadcasting algorithms were investigated, 
higher dimensional hexagonal networks have been defined in [5] and [4] as a gener-
alization of the plane hexagonal networks. Addressing scheme, routing and broadcast-
ing algorithms have been also proposed. An addressing scheme for the processors, 
and the corresponding routing and broadcasting algorithms for a hexagonal intercon-
nection network has been proposed in [2]. The performance of hexagonal networks 
has been further studied in [3] and [11].  Hexagonal networks has been used in track-
ing mobile users and connection rerouting in Cellular networks[9].  The 2D hexagonal 
torus has been used in the HARTS project[13]. But the routing algorithm for the hex-
agonal torus has been an open problem. 
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Hexagonal mesh and torus, as well as honeycomb and certain other pruned  
torus networks, are known to belong to the class of Cayley graphs which are node 
symmetric and possess other interesting mathematical properties[15,16,17,19,7]. In 
this paper we use Cayley-graph formulations of hexagonal torus to develop an opti-
mal routing algorithm, and then discuss the network diameter.  

2   Knowledge of Cayley Graph 

Before proceeding further, we introduce some definitions and notations related to 
digraphs Cayley digraphs in particular, and interconnection networks. For more defi-
nitions and mathematical results on graphs and groups we refer the reader to [1] and 
[6], for instance, and on interconnection networks to [8] and [10].A digraph Г=(V, E) 
is defined by a set V of vertices and a set E of directed edges. The set E is subset of 
elements (u, v) of If the subset E is symmetric, that is, (u,v)∈E, implies (v,u)∈E, we 
identify two opposite arcs (u,v) and (v,u) by the undirected edge (u,v). Let G be a 
group and S a subset of G. The subset S is said to be a generating set of G, and the 
elements of S are called generators of G, if every element of G can be expressed as a 
finite product of their powers. We also say that G is generated by S. The Cayley di-
graph of the group G and the subset S, denoted by Cay(G,S), has vertices  that are 
elements of G and arcs that are ordered pairs (g,gs) for g∈E,s∈S. If S is a generating 
set of G, we say that Cay(G,S) is the Cayley digraph of G generated by S. When 1∉ S  
and S=S-1, the graph Cay(G,S) is a simple graph. Assume that Γ and Σ if for and 
(u,v)∈E(Γ) we have (ф(u), ф(v))∈E(Σ). In particular, if ф is bijection such that both 
ф and the inverse of ф are homeomorphisms, then ф is called an isomorphism of Γ to 
Σ. Let G be a group and S a subset of G. Assume that K is a subgroup of G, denoted as 
K≤G. Let G/K denote the set of the right cosets of K in G. The right coset graph of G 
with respect to subgroup K and subset S, denoted by Cos(G,K,S)set of the right cosets 
of K in G. is the digraph with vertex set G/K such that there exists an edge (Kg, Kg’) 
if and only if there exists s∈S and Kgs=Kg’. 

 

Fig. 1. Connectivity pattern for hexagonal mesh network 
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3   Hexagonal Mesh and Torus 

3.1   Hexagonal Mesh 

Let G=Z×Z where Z is the infinite cyclic group of integers, and consider Γ=Cay(G,S) 
with S={(±1,0),(0, ±1),(1,1),(-1,-1)}. It is evident that Г is isomorphic to the hexago-
nal mesh network [9][12]. Fig.1 shows a small part of an infinite hexagonal mesh in 
which the six neighbors of the “center” node (0,0) are depicted.  

 
Fig. 2. Hexagonal torus with order 9×5 

 
Fig. 3. Hexagonal torus with order 5×9 
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Using the Cayley-graph formulation of hexagonal networks, we can easily derive the 
distance dis((a,b),(c,d)) between the vertices (a,b) and (c,d) in such networks[18]. 

The routing algorithm of hexagonal mesh has been developed in [16] as the follow 
proposition. 

Proposition 1. In the hexagonal mesh Г, dis((0,0),(a,b)) equals max(|a|,|b|) if a and b 
have the same sign and |a|+|b| otherwise. 

Proof. See [16]. 

By symmetry of Cayley graphs, we can easily obtain the distance between any two 
vertices in the graph Γ from Proposition 1, using dis((a,b),(c,d))=dis((0,0),(c-a,d-b)). 
This observation and the preceding discussion lead to a simple distributed routing 
algorithm for Г. 

3.2   Hexagonal Torus 

Let G=Zl×Zk, where Zl and Zk are cyclic groups of orders l and k respectively, 
l>0,k>0. Assume that S is defined as in the preceding paragraph. Then △=Cay(H,S) 
is the hexagonal torus of order lk. Fig.2 shows hexagonal torus with order 9×5 and 
Fig.3 shows hexagonal torus with order 5×9. 

Using the results obtained for hexagonal meshes according to Proposition 1, we 
can deal with problems on Hexagonal torus which are, in general, more difficult. Let 
△ be defined as above. Then we have the following result. 

Proposition 2. For the hexagonal torus △  of order lk and integers a and b, 
l>a≥0,k>b≥0,we have dist((0,0),(a,b))=min(max(a,b),max(l-a,k-b),l-a+b,k+a-b).  

According to the Proposition 2, we can develop a routing algorithm of the hexagonal 
torus.  

4   Optimal Routing Algorithm for Hexagonal Torus 

The hexagonal torus △=Cay(Zl×Zk,S) with S={(±1,0),(0, ±1),(1,1),(-1,-1)}, is vertex 
transitive. The routing of any two nodes can transform to the routing of (0,0) to (a,b), 
a and b are integers. Let a+ml→a and b+nk→b, with the choice of integer m and n, 
we can get  

⎣ ⎦ ⎡ ⎤ 12/2/ −≤≤− lal            ⎣ ⎦ ⎡ ⎤ 12/2/ −≤≤− kbk  

Now we discuss the routing from (0,0) to (a,b). 

Definition 1. For any node (a,b) in the hexagonal torus, a is called the x-dimension 
coordinate and b is called the y-dimension coordinate. When a+0→a or a+1→a is 
called x-dimension increase, and when x-0→x or x-1→x is called x-dimension de-
crease. Also we can define y-dimension increase and decrease. 

Proposition 3. The Optimal routing from (0,0) to (a,b) must keep x-dimension and  
y -dimension increase or decrease.  

Proof. We only consider the case of first increase then decrease. 

Case 1. x-dimension first increase then decrease. 
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Assume the routing from (0,0) to (a,b) is: (0,0) →...→(ai,bj) →(ai+1,bk) →(ai,bm) 
→…→(a,b), and dis((0,0),(a,b))=D. Because the generator S={(±1,0),(0, ±1),(1,1),(-
1,-1)}, bk=bj or bj+1 and bm=bk or bk-1. We can get bm=bj or bj+1 or bj-1, (ai,bm) may 
be (ai,bj) or (ai, bj+1) or (ai, bj-1). 

If  (ai,bm)=(ai,bj), the (ai,bj) →(ai+1,bk) →(ai,bm) is a circle, the routing can change 
to (0,0) →...→(ai,bj) →(ai+1,bk) →(ai,bm) →…→(a,b), the distance change to D-2. 

If (ai,bm)=(ai,bj+1), the routing can change to (0,0) →...→(ai,bj) →(ai,bj+1) 
→…→(a,b), the distance change to D-1, this means the routing keeps x-dimension 
increase. 

If (ai,bm)=(ai,bj-1), the routing can change to (0,0) →...→(ai,bj) →(ai,bj-1) 
→…→(a,b), the distance change to D-1, this means the routing keep x-dimension 
decrease. 
Case 2. The case of y-dimension first increase then decrease is similar to Case 1. 
According to the Proposition 3, the routing between any two nodes can be divided 
into x-dimension routing and y-dimension routing.                                                        □ 

Definition 2. We define the functions dist( ) to denote the distance of two nodes, 
distx( ) to denote the x-dimension distance, disty ( ) denote the y- dimension distance.      

Now, we discuss the routing from (0,0) to (a,b) in five cases: 

Case 1. One of a or b is zero 
Case 2. a>0 and b>0. 
Case 3. a<0 and b<0. 
Case 4. a>0 and b<0. 
Case 5. a<0 and b>0. 

4.1   One of a or b is Zero 

If a=0 and b>0, x-dimension and y-dimension keep increase to get the routing from 
(0,0) to (0,b): (0,0) →(0,1) →...→(0,b). 

If a=0 and b<0, x-dimension and y-dimension keep decrease to get the routing 
from (0,0) to (0,b) the routing from (0,0) to (0,b) keep x-dimension and y-dimension 
decrease : (0,0) →(0,-1) →...→(0,b). 

Similarly, we can get the routing in the case of b=0. 

4.2   a>0 and b>0 

For x-dimension, it has two ways to establish the routing from 0 to a: the increase way 
or the decrease way. According to the increase way, distx((0,0),(a,b))=a, while ac-
cording to the decrease way, distx((0,0),(a,b))=l-a. Because ⎡ ⎤ 12/0 −≤< la , we 

can get ⎣ ⎦ lall <−≤+ 12/ , it is obviously that l-a>a. So the x-dimension routing 

must be increased. Because b>0, the y-dimension routing must be increased too. Syn-
thetically, the routing between (0,0) to (a,b) must be x-dimension increased and  
y-dimension increased.  

If a≥b , the routing is:  
(0,0) →(1,1) →...→(b,b) →(b+1,b) →...→(a-1,b) →(a,b). 
If a<b , the routing is:  
(0,0) →(1,1) →...→(a,a) →(a,a+1) →...→(a,b-1) →(a,b).  
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4.3   a<0 and b<0 

The discussion of this part is similar to part 3.2, we can draw the conclusion that the 
routing between (0,0) to (a,b) is x-dimension decrease and y-dimension decrease.  

If  |a|≥|b|, the routing is:  

(0,0) →(-1,-1) →...→(b,b) →(b-1,b) →...→(a+1,b) →(a,b). 
If |a|<|b|, the routing is:  
(0,0) →(-1,-1) →...→(a,a) →(a-1,a) →...→(a,b+1) →(a,b). 

4.4   a>0 and b<0 

Because ⎣ ⎦ 02/ <≤− bk , we can get ⎣ ⎦ ⎡ ⎤2/2/ kkkbkk =−≥+> , it is 

obviously that k+b>|b|. We have already known that l-a>a. 
The routing between (0,0) to (a,b) can be implemented in four ways:  

1. x-dimension increase and y-dimension decrease, the distance is a+|b|. 
2. x-dimension increase and y-dimension increase, the distance is max(a, k+b). 
3. x-dimension decrease and y-dimension decrease, the distance is max(l-a, -b). 
4. x-dimension decrease and y-dimension increase, the distance is l-a+k+b. 

According to the Proposition 2, we know that dist((0,0),(a,b))=min(a+|b|, max(a, 
k+b), max(l-a, -b),l-a+k+b), then we discuss the routing problem in two cases: 

(1)  l-a>k+b 

Because l-a>k+b and k+b>|b|, we can get max(l-a,-b)=l-a, l-a+k+b>l-a, and l-
a>max(a, k+b), then dist((0,0),(a,b))=min(a+|b|, max(a, k+b)). 

If a≥k+b, dist((0,0),(a,b))=min(a+|b|, a)=a. So the routing is x-dimension in-
crease and y-dimension increase:  

⎡ ⎤ ⎡ ⎤ ⎣ ⎦ ⎣ ⎦ )12/,12/()2/,2/()12/,12/(...)1,1()0,0( +−+→−→−−→→→ kkkkkk

),(...),1(),(... babbkbbk →→++→+→→  

Example 1. The routing from (0,0) to (4,-2) in Fig.2 is as follows: 

(0,0) →(1,1) →(2,2)→(3,-2) →(4,-2).  
If a<k+b, dist((0,0),(a,b))=min(a+|b|, k+b).  

When a+|b|≥k+b, , that is a≥k+2b, we have dist((0,0),(a,b))=k+b. So the routing is 
x-dimension increase and y-dimension increase:  

⎣ ⎦ ⎣ ⎦ ),(...)12/,()2/,()12/,(

...)1,(),(...)1,1()0,0(

bakakaka

aaaa

→→+−→−→−
→→+→→→→  

Example 2. The routing from (0,0) to (1,-2) in Fig.2 is as follows: 

(0,0) →(1,1) →(1,2)→(1,-2)  

When a+|b|<k+b, that is a<k+2b, we have dist((0,0),(a,b))=a+|b|. So the routing 
is x-dimension increase and y-dimension decrease:  
(0,0) →(1,0) →…→(a,0)→(a,-1) →…→(a,b) . 

Example 3. The routing from (0,0) to (2,-1) in Fig.2 is as follows: 

(0,0) →(1,0) →(2,0)→(2,-1) . 
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(2)  l-a≤k+b 

Because k+b>l-a>a, max(a, k+b)=k+b, l-a+k+b>k+b, and k+b≥max(l-a,|b|), we get 
dist((0,0),(a,b))=min(a+|b|, max(l-a, |b|)). 

If  l-a≥-b, dist((0,0),(a,b))=min(a+|b|, l-a).  
When a+|b|≥l-a, that is b≤2a-l, we have dist((0,0),(a,b))=l-a. So the routing is x-

dimension decrease and y-dimension decrease: 

⎣ ⎦
⎡ ⎤ ⎡ ⎤ ).,(...),22/(),12/(

),2/(...),1(),(...)1,1()0,0(

bablbl

blbbbb

→→−→−
→−→→−→→→−−→  

Example 4. The routing from (0,0) to (2,-3) in Fig.3 is as follows: 

(0,0) →(-1,-1) →(-2,-2)→(2,-3). 

When  a+|b|<l-a that is b>2a-l, we have dist((0,0),(a,b))=a+|b|. So the routing is 
x-dimension increase and y-dimension decrease:  

(0,0) →(1,0) →…→(a,0)→(a,-1) →…→(a,b).  

Example 5. The routing from (0,0) to (1,-2) in Fig.3 is as follows: 

(0,0) →(1,0) →(1,-1)→(1,-2). 

If  l-a<-b, k+b>-b>l-a, we have dist((0,0),(a,b))=min(a+|b|, |b|)=|b|. So the rout-
ing is x-dimension decrease and y-dimension decrease:  

⎣ ⎦ ⎣ ⎦ ⎡ ⎤ ⎣ ⎦
⎡ ⎤ ⎣ ⎦ ).,(...)1,(),(...)22/,22/(

)12/,12/()2/,2/(...)1,1()0,0(

balaalaall

llll

→→−−→−→→−−−
→−−−→−−→→−−→  

Example 6. The routing from (0,0) to (2,-4) in Fig.3 is as follows: 

(0,0) →(-1,-1) →(-2,-2)→(2,-3) →(2,-4). 

4.5   a<0 and b>0 

Because ⎡ ⎤ 12/0 −≤< kb and ⎣ ⎦ 02/ <≤− al , similar to part 4.5 we can get k-b≥b and 

l+a≥|a|. 
The routing between (0,0) to (a,b) can be implemented in four ways:  

1. x-dimension decrease and y-dimension increase, the distance is |a|+b. 
2. x-dimension increase and y-dimension increase, the distance is max(l+a, b). 
3. x-dimension increase and y-dimension decrease, the distance is l+a+k-b. 
4. x-dimension decrease and y-dimension decrease, the distance is max(|a|, k-b). 

We know that dist((0,0),(a,b))=min(|a|+b, max(l+a, b), l+a+k-b, max(|a|, k-b)), 
then we discuss the routing problem in two cases: 

(1)  k-b>l+a 

If b≥l+a, dist((0,0),(a,b))=min(|a|+b, b)=b. So the routing is x-dimension increase 
and y-dimension increase: 

⎡ ⎤ ⎡ ⎤ ⎣ ⎦ ⎡ ⎤
).,(...)1,(),(

...)2/,2/()12/,12/(...)1,1()0,0(

balaalaa

llll

→→++→+→
→−→−−→→→    
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Example 7. The routing from (0,0) to (-2,4) in Fig.3 is as follows: 

(0,0) →(1,1) →(2,2)→(-2,3) →(-2,4). 
If  b<l+a, dist((0,0),(a,b))=min(|a|+b, l+a).  

When |a|+b≥l+a, that is b≥l+2a, we have dist((0,0),(a,b))=l+a. So the routing is 
x-dimension increase and y-dimension increase:  

⎡ ⎤
⎣ ⎦ ⎣ ⎦ ).,(...),12/(),2/(

),12/(...),1(),(...)1,1()0,0(

bablbl

blbbbb

→→+−→−
→−→→+→→→→  

Example 8. The routing from (0,0) to (-2,2) in Fig.3 is as follows: 

(0,0) →(1,1) →(2,2)→(-2,2) . 

When |a|+b<l+a, that is b<l+2a, we have dist((0,0),(a,b))=b-a. So the routing is 
x-dimension decrease and y-dimension increase:  

(0,0) →(-1,0) →…→(a,0) →(a,1) →…→(a,b) . 

Example 9. The routing from (0,0) to (-1,2) in Fig.3 is as follows: 
(0,0) →(-1,0) →(-1,1)→(-1,2). 

(2)  k-b≤l+a 

Because max(l+a,b)=l+a, l+a+k-b≥l+a, and l+a≥max(|a|,k-b), we get 
dist((0,0),(a,b))=min(|a|+b, max(|a|, k-b)). 

If  k-b≥-a, dist((0,0),(a,b))=min(a+|b|, k-b).  
When b-a≥k-b, that is a≤2b-k, we have dist((0,0),(a,b))=k-b. So the routing is x-

dimension decrease and y-dimension decrease:  

⎣ ⎦ ⎡ ⎤ ⎡ ⎤ ).,(...)22/,()12/,()2/,(

...)1,(),(...)1,1()0,0(

bakakaka

aaaa

→→−→−→−
→→−→→→−−→  

Example 10. The routing from (0,0) to (-2,2) in Fig.2 is as follows: 

(0,0) →(-1,-1) →(-2,-2)→(-2,2). 

When b-a<k-b, that is a>2b-k, we have dist((0,0),(a,b))=b-a. So the routing is x- 
dimension decrease and y-dimension increase:  

(0,0) →(-1,1) →…→(a,0) →(a,1) →…→(a,b).  

Example 11. The routing from (0,0) to (-2,1) in Fig.2 is as follows: 

(0,0) →(-1,0) →(-2,0) →(-2,1). 

If k-b<-a, dist((0,0),(a,b))=min(a+|b|, |a|)=|a|. So the routing is x-dimension de-
crease and y-dimension decrease:  

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡ ⎤
).,(...),1(),(

)12/,12/()2/,2/(...)1,1()0,0(

babkbbkb

kkkk

→→−−→−→
−−−→−−→→−−→  

Example 12. The routing from (0,0) to (-4,2) in Fig.2 is as follows: 

(0,0) →(-1,-1) →(-2,-2)→(-3,2) →(-4,2). 

The routing algorithm can get the optimal routing according to the Proposition 3. 
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5   Diameter of Hexagonal Torus 

For any digraph Г, D(Г) denotes the diameter of Г, defined as the longest distance 
between any pair of vertices in Г. In [17] ,we have the following result about the di-
ameter.  

Theorem 1. For g∈S,S ⊆ G, ,the mapping ф:g→Kg is a homomorphism from 
Cay(G,S) to Cos(G,K,S). 

Theorem 2. Assume that G is a finite group, K≤G,Г=Cay(G,S), △=Cos(G,K,S) for 
some generating set S of G, and  D(ГK) denote the longest distance between vertices 
of K in Г. Then we have D(Г)≤D(△)+D(ГK). 
Proof. See [17]. 

Proposition 4. Assume the hexagonal torus△=Cay(Zl×Zk,S),where S={(±1,0),(0, 
±1),(1,1),(-1,-1)}, we have ⎡ ⎤ ⎣ ⎦ ⎣ ⎦2/2/)(2/)),(max( klDkl +≤Δ≤ .  

Proof. Let K={ ⎣ ⎦ )0,2/( k− , ⎣ ⎦ )0,12/( +− k ,…,(0,0),(1,0),…, ⎡ ⎤ )0,12/( −k }, then  

Cos(G,K,S) is an 1-D torus according to Theorem1and,  D(Cos(G,K,S))= ⎣ ⎦2/l . The 

K in △ is an 1-D torus too, and D(ГK)= ⎣ ⎦2/k . From the Theorem 2, we get  

D(△)≤ ⎣ ⎦ ⎣ ⎦2/2/ kl + .For any l≥3,k≥3, either dis((0,0),(1, ⎡ ⎤2/k )or dis((0,0),( ⎡ ⎤2/l ,1)) 

is ⎡ ⎤2/)),(max( kl . Assume k≥l, we can get D(△)≥ ⎡ ⎤2/)),(max( kl  according to 

the Proposion 2.                                                                                                            □ 

6   Conclusion 

The routing algorithm for the Hexagonal Torus is an open problem. In this paper, we 
use Cayley-formulations for the hexagonal torus to develop an optimal routing algo-
rithm for the Hexagonal Torus. Then we discuss the diameter of the Hexagonal Torus, 
and give an upper bound and a lower bound to the diameter. We are currently investi-
gating the Hexagonal Torus diameter in order to give an accurate value. 
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