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Abstract. A new method of designing and using virtual array in pipeline recon-
figurable system is presented. This method is based on the partition of the  
configuration data. Using this method not only is helpful to design the virtual 
hardware, but also is necessary to investigate the application algorithms ori-
ented this virtual hardware. Basing on the analysis of the space-time graph and 
the configuration plane, this paper explores the structure and application of vir-
tual array integrated in the MPRS (Multi-Pipeline Reconfigurable System), an 
in-house developed reconfigurable computing system that utilizes virtual pipe-
line. Finally, the design procedure of mapping the application to the virtual  
array and the programming procedure of using the MPRS are illustrated by  
examples. The experiment results show that the method is feasible and the per-
formance of the MPRS with the virtual array nearly reaches the expected level. 

1   Introduction 

The fixed size of reconfigurable resource restricts the computing capability of recon-
figurable system, which is one of the most important problems in reconfigurable com-
puting. Based on this fact the concept of virtual hardware [1,2,3,4] have been  
presented, which means satisfying infinite resource requirement of algorithms by time 
division of finite hardware resource. Paper [1] surveyed a collection of important 
projects in this field. The virtualization of hardware is one of the basis objectives of 
studying dynamic reconfiguration. 

In fact, similar restriction also exists in systolic array. The fact that one array can 
only be used to solve the applications under certain fixed size limits the application 
range of systolic array. Therefore some methods [5] including emulation method, 
partition method, LPGS (Local Parallel, Global Sequential) method, and LSGP (Local 
Sequential, Global Parallel) method have been proposed to resolve this problem. 
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The traditional LPGS/LSGP methods have been used as references when implement 
virtual hardware in reconfigurable systems, though some key processes must be 
changed to adapt the reconfigurable factors. Several projects show that the virtualiza-
tion of hardware can be implemented by introducing incremental reconfigurable into 
the compute pipeline, designing buffers for intermediate data and creating correspond-
ing control mechanism [4, 6]. In despite of some papers mentioned that the systems 
supporting virtual hardware have been completed, but most of them focused on de-
scribing the corresponding changes on the hardware and few of them explained what 
preparations of the target applications should be made for the virtualization of hard-
ware, which is the key process when execute a algorithm using virtual arrays [3, 7].  

On the other hand, there are some realistic difficulties existing in other projects to 
support the proposed method of designing virtual hardware. For instance, RaPiD 
implements large scale applications by storing multiple configuration data in local 
memory and then cyclically processing the compute data within the processing ele-
ments. This method makes the control logic in each processing unit too complex. 
More importantly, the data propagating between the neighbor units loses the inherent 
systolic rhythm because of the repeatedly unit-inside processing. All of these make 
the design of virtual array more difficult. 

2   MPRS Architecture  

We have implemented the MPRS that incorporates multiple 1-D arrays as coprocessor 
with a main processor. MPRS supports virtual array and the multiple 1-D arrays can 
optionally work in chained mode or parallel mode to explore the loop-level parallelism.  

The structure of MPRS reconfigurable arrays is shown in Fig.1. The torus chain 
and the hierarchy buses are used as the interconnection backbone: torus chain con-
nects the arrays and the buses connect the arrays with the storages. The first-level 
buses connect the main memory with the inner buffer. The second-level buses consist 
of the intra-array buses and the inter-array buses. The intra-array buses are used to 
connect the units in the same array with the buffer corresponding to that array, and the 
inter-array buses are used to connect the units in different arrays with buffer corre-
sponding to that unit. In short, the hierarchy buses transport the input/output operation 
data, the reconfiguration data and the intermediate results. 

In Fig. 1, the shadowed rPUs belong to one single linear array. S_FIFO represents 
the buffer used to store the intermediate result; D_FIFO represents the buffer used to 
store the operation data; C_FIFO represents the buffer used to store the reconfigura-
tion data. The inter-array input buses make each unit have the capability of inputting 
data, but only the last unit of each array has the capability of outputting data.  

Interconnecting neighbor rPUs (dashed arrows in Fig. 1) that belong to different ar-
rays enhances the generality of MPRS to wider field of applications. In this way, the 
interconnection of MPRS extends from the torus chain to the torus mesh, which can 
utilize those mature algorithms based on 2-dimension mesh.The detail description 
about MPRS architecture and mapping method can be referred to the paper [8]. 
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Fig. 1. MPRS architecture 

3   Designing Virtual Array Using Configuration Plane 

In the reconfigurable system utilizing virtual pipeline, the intermediate data between 
two sequent reconfiguring operations must be stored/restored in the right time, and the 
external data (including the configuration data and the computing data) for the pipe-
line must be arranged in correct order. In other word, we must predefine the organiza-
tion and timing of these data.  

The requirements on the various sequences of the input/output data should be met 
to compute various algorithms using pipeline array, and the same thing should happen 
to compute one same algorithm using different pipeline arrays. In fact, these require-
ments are decided by the specific configuring and executing of the physical array. The 
distinction of the data sequences is caused by two reasons: one is the data flow direc-
tion; the other is the data flow speed. The data flow direction can be transformed to fit 
MPRS anyway, so the data flow speed becomes the main factor need considering 
when design virtual arrays.  
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The data flow speed is corresponding with the number of pipeline registers in the 
rPU (reconfigurable Processing Unit). It is difficult to decide the data sequence when 
there are two or more registers in the Rpu's data path. The structures of MPRS array 
when compute matrix-vector multiplication and 1-D Convolution are shown in Fig.2 
respectively. Only one pipeline register is used in the rPU of the former, while three 
registers (two is in the output data path and one is in the input data path) is used in the 
rPU of the latter. The design of virtual arrays for the latter will be more difficult than 
that for the former, because it is more difficult to figure out the organization and tim-
ing of input/output data, even more difficult to decide the time of storing/restoring the 
intermediate data. 

 

Fig. 2. Different data flow speed according to the different algorithms implemented on MPRS 
(a) matrix-vector multiplication; (b) 1-D convolution 

The concept of “configuration plane” is proposed in this paper for those reasons 
mentioned above, and the corresponding design method based on the partition of the 
configuration plane is presented also. Using this method we can describe the configu-
ration and execution of reconfigurable arrays directly, which make it easier to analyze 
the influence of the data flow speed on the virtual array, and to define the organiza-
tion/timing of external data, and to decide the exact time of storing/restoring interme-
diate data. Only after all these key problems have been considered, can we design 
hardware structure correctly. 

Suppose that an n-stage virtual pipeline is realized with an actual array including 
m-stage rPUs, as shown in Fig. 3. The whole array on the top of Fig. 3 is the virtual 
array: the real line shows the actual array, and the dashed line shows the virtual array 
simulated with the actual array. The space-time plane of the virtual array on the bot-
tom of Fig. 3 shows the data operation of each rPU in each time step. 

We partition these operations into several groups marked by a set of horizontal 
parallel lines in the time axis. The interval of these horizontal lines indicates the basic 
time step of the computing pipeline, and is called as “virtual time slice”. All the op-
erations in one same time slice should be done in one same time step if the actual 
array is large enough. However, if that actual array is smaller than the virtual array, 
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those operations must be processed in the different partitioned time steps. We hope 
make such partition clear. According to the maximal number k of the pipeline regis-
ters in one rPU, a set of directed biases whose slope is k can be drawn. All the opera-
tions along one same bias can be processed in the pipelined sequence, and then the 
final results can be achieved. We call this directed bias “computing slice”. All the 
operations can be partitioned into many groups marked by the parallelograms along 
the computing slice, and those operations contained in one same parallelogram are the 
all operations needed when configure/execute the whole actual array one time. We 
call the parallelogram “configuration plane”. It should be noted that only (m-1) opera-
tions on one configuration plane can be processed by the actual array simultaneously 
at the same time slice, and the remained one rPU is being configured at the same time. 
That is the cost that must pay out for the reconfiguration of array. 

 

Fig. 3. Space-time plane of virtual array 

The operation OPij of the rPU represents all possible operations that include input-
ting external data, executing arithmetic and logical operation (among the input data, 
local data and intermediate data) and outputting the results. A space-time plane of the 
actual array (Fig. 4.) can be achieved by arranging all these operations according to  
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Fig. 4. Space-time plane of actual array 

 

Fig. 5. Architecture of MPRS considering virtual array 
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the sequence number of configuration plane. From this new plane, we can decide 
when the operations of the same original virtual time slice are processed respectively; 
also can we decide the organization and timing of input/output data, and the stor-
ing/restoring time and contents of the intermediate data. 

According to the analysis of configuration plane, we know that some special com-
ponents should be designed in the MPRS if this system supports virtual array. All 
these components are marked with blue color in Fig. 5. The state FIFO is used to store 
the intermediate data and the store/restore controller decides when the store/restore 
operations start and finish. It should be noted that there are no additional storage de-
vices for the storing/restoring of configuration data, and the configuration FIFO is 
reused for this purpose instead. As the precondition of this method, the reconfigurable 
array should work in a pure pipelined mode and the length of the virtual array should 
be smaller than the depth of the configuration FIFO. These two conditions can be met 
in our current MPRS implementation. 

The computing time spend on processing the pipelined task using virtual array is 
determined by the scale of the actual array and the requirement of the task. Using the 
“configuration plane” method, it is easy to figure out (by the control unit of MPRS) 
the number of time slices needed to complete the given pipelined task. That number 
can be used to program the specific control register automatically, which is necessary 
to be definite for the designer of the system supporting virtual hardware. 

4   Examples and Results 

Matrix operation and motion estimation belong to the uniform linear recurrence appli-
cations fitting the MPRS array. Here we illustrate the design procedure and the pro-
gramming procedure for the MPRS virtual array with these two examples and give the 
results finally. 

4.1   Design and Programming Steps 

The design steps of MPRS array list as follow, and the detail steps can be referred to 
another submitting paper “Mapping Algorithms to Multi-Pipeline Reconfigurable 
System” for limited space. 

(1) Design the serial algorithm; 
(2) Design the single assignment program by extending the index of the input  

variable; 
(3) Construct the DG (Dependency Graph) according to the extended space-time 

index; 
(4) Draw the DGRV (DG with Reconfigurable Variable) by localization and recon-

figurablization processes; 
(5) Design SFG (Signal Flow Graph) through projecting and scheduling the 

DGRV; 
(6) Mapping the SFG into the multiple MPRS arrays simultaneously when the 

MPRS works in the parallel mode or mapping the SFG to the single chained MPRS 
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array when works in the chained mode. Working in the virtual mode is transparent for 
the mapping process; 

(7) Reflect the mapping results into the different fields of the configuration word 
that will be used to reconfigure the MPRS arrays dynamically when perform  
computing. 

The programming steps of MPRS list as follow. 

(1) Prepare the configuration data achieved from above processes. 
(2) Prepare the computing data achieved from the target application. 
(3) Create the configuration/computing data file that will used by the main  

program. Firstly, draw the space-time plane of virtual array (like Fig. 3) and the 
space-time plane of actual array (like Fig. 4) respectively. Secondly, arrange the con-
figuration data in proper sequence according to the configuration plane and organize 
the computing data properly according to the space-time plane of actual array. Fi-
nally, create the data files. 

(4) Program the specific registers in MPRS to provide enough information for the 
system to run properly. This is done by creating main program. 

(5) Compile the main program and run the executable code on the MPRS. 

4.2   Matrix-Vector Multiplication 

After implementing the procedures mentioned above, all the needed data and program 
are ready for running on the MPRS that works in the virtual mode. 

Suppose that x is a 8-dimention vector, A is a m×8 matrix, and y=Ax is a m-
dimension vector. Here, m represents the scale of matrix-vector multiplication, and its 
value changes from 32 to 4096.  

In this experiment, various scales of array are used to compare the efficiency of the 
virtual array with that of the normal array. In the first situation, the array consists of 4 
rPUs; in the second situation, the array consists of 8 rPUs. The execution periods of 
SimpleScalar [9] and MPRS on different application scales are shown in Fig. 6(a). In 
this figure, the horizontal axis represents the scale of matrix-vector multiplication, and 
the vertical axis represents the number of execution periods. MPRS_A shows the 
performance of MPRS using normal array, and MPRS_V shows the performance 
using virtual array. It can be seen that the number of periods spent by MPRS is much 
smaller than SimpleScalar. Fig. 6(b) shows the speedup factor of MPRS vs. SimpleS-
calar. It can be seen that the speedup factor when using virtual array is nearly equal to 
that when using normal array.  

We can draw another conclusion by analyzing the periods spending respectively on 
the MPRS array and on the whole MPRS system. The system overhead should occupy 
the larger proportion of the total execution periods if the scale of applications is not 
large enough. In this situation, the number of rPU in the array can be effectively re-
duced by using virtual array. Inversely, when the application scale is large enough and 
the memory access time is short enough, the expense of speed caused by using virtual 
array should be considered fully. 
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Fig. 6. (a) The number of execution periods of SimpleScalar and MPRS; (b) speedup factor 

4.3   Motion Estimation 

Since motion evaluation (ME) occupies the 98% processing time in video compress-
ing and 42% in decompressing [10], it is important to enhance the execution speed of 
ME. One of most popular ME algorithm is the Full Search Block Matching (FSBM). 
FSBM can be expressed as follows: 
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In the parallel work mode, MPRS can complete one FSBM of the standard MPEG 
scale (with N＝8，q＝8). Fig. 7 also shows the different results in other systems, in  

 

 

Fig. 7. Execution cycles of motion evaluation 
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which the ASICs have the special optimization for the FSBM [11]. Moreover, the 
same application in Pentium MMX needs 29000 cycles. It can be concluded that the 
speed of our MPRS in ME execution is 10 times faster than the general-purpose proc-
essor, also faster than the MorphoSys who is the similar reconfigurable computing 
system, and near the ASIC products． 

5   Conclusions 

This paper proposes a method of designing virtual hardware and exploiting target 
algorithms on it. The correct experiment results demonstrate that the method based on 
“configuration plane” is feasible. This new method can be applied to our MPRS sys-
tem as well as to other systems using incremental reconfiguration. 
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