
M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 190–198, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Pampoo: An Efficient Skip-Trie Based Query Processing
Framework for P2P Systems∗

Li Meifang1, Zhu Hongkai2, Shen Derong1, Nie Tiezheng1, Kou Yue1, and Yu Ge1

1 Department of Computer Science and Engineering,
Northeastern University, Shenyang, China, 110004

Li.Meifang@gmail.com, shenderong@ise.neu.edu.cn
2 Baidu Inc., Beijing, China, 100080
zhuhongkai@baidu.com

Abstract. In this paper, we present Pampoo, a novel distributed framework for
efficient query processing in P2P systems. We propose a new locality preserv-
ing data structure Skip-trie as its substrate. Skip-trie incorporates the advan-
tages of skip graph with features of traditional trie. Thus, Pampoo can
efficiently support various types of queries such as range queries and k nearest
neighbor queries. We study the time cost of search and update operations on
Skip-trie structure under our Pampoo framework. We further briefly present a
repairing strategy to boost the robustness of Pampoo system. Extensive experi-
ments are conducted to verify the effectiveness and efficiency of our approach.

1 Introduction

Distributed peer-to-peer (P2P) computing system has received growing attention for
its wide area real-world applications in recent years, which brings forth the notion of
sharing resources available at the edges of the Internet. The P2P paradigm specifies a
fully distributed, self-organizing network design, where peers collectively form a
system randomly. Therefore, it offers enormous potentials for extensive resource
sharing, with remarkable features in terms of dynamics, scalability, resilience to fail-
ures, self-organizing and load balancing etc.. A large number of systems and architec-
tures that utilize this technology have emerged since its initial success [1, 2, 3, 4].

Therefore, efficient query processing, as a key aspect in P2P systems, is increas-
ingly important at present. Distributed Hash Table (DHT) has been a typical and the
most widely applied strategy for peer routing, owing to its inherent characteristics
such as scalability, load-balancing and fault-tolerance [1,2,5,6,7]. Nevertheless, DHT
can only support exact queries since it adopts the cryptographic hash function such as
SHA-1 to map application keys to their identifier space, which impairs the locality
properties of the semantically close data items. Thus, DHT is marred by its deficiency
in supporting range queries and other complex queries. Currently, several approaches
have been proposed to remedy such shortcoming, such as Prefix Hash Tree[8,9], Skip
Graph/Net[10,11,12], DP-tree[13] etc..

∗ Supported by the National Natural Science Foundation of China (60673139, 60473073,

60573090).

 Pampoo: An Efficient Skip-Trie Based Query Processing Framework for P2P Systems 191

1.1 Motivations and Challenges

In our framework, Pampoo (means peer-bamboo in vigorous growth), we aim to de-
sign an efficient distributed data structure in support of a fairly rich set of possible
data queries such as exact query for a key (e.g. a file name), partial query for a string
(e.g. schema matching, prefix matching), k nearest-neighbor query for a numerical
attribute, range query over various numerical attributes, multidimensional query, top-
k query and point location query in Ad-hoc and sensor networks.

Applications of such queries include DNA databases, fuzzy systems, location-
aware services, approximate searches for file names or data titles. Particularly, range
query is significant in a large field of applications such as prefetching of web pages,
enhanced browsing and efficient searching.

Therefore, in this paper, we mainly focus on a unified architecture in support of range
query, i.e. locating resources whose keys lie within a certain specified range, which can
also easily deal with the former three types of queries since they are the special cases for
range query. For example, a prefix query for ISBN numbers in a book database acm.lib,
we can resort it to range query constrained within the acm.lib range scope.
Our design of Pampoo intends to meet the following desired features:

1) Fault tolerance: the framework should adjust to the failure of some nodes, al-
lowing simple repairing mechanism at small cost.

2) Efficient queries processing: the framework should support query processing
in terms of the number of rounds of communication and number of messages
that must be exchanged in order to complete requested query.

3) Small cost at network changes and data updates: the framework should flexibly
tackle issues in node join/leave, data insertion/deletion as well as a necessary
repairing.

4) Locality preserving: The structure should meet locality preserving in support
of range queries that are based on an ordering of the data. This feature has cer-
tain practical advantages over DHT. For example, a search from c.neu.edu to
k.neu.edu will not require contacting any node outside neu.edu, which not only
reduce the searching scope, but also allow the message to be broadcast within
neu.edu.

1.2 Contributions

The contributions of this paper are threefold:

 First, we propose a novel data structure Skip-trie which incorporates advantages
of skip graph and the locality preserving feature of trie;

 Second, we present our Pampoo framework and study the time cost of search
and update operations on Skip-trie structure;

 Third, we present a repairing strategy in support of the robustness and conduct
extensive experiments to verify our approach.

The rest of this paper is organized as follows. We start by presenting our novel Skip-
trie data structure in section 2; section 3 presents our Pampoo framework and study
the operation cost under it. Extensive experiments are conducted in section 4. Section
5 describes a summary of related work, and finally section 6 draws the conclusion.

192 L. Meifang et al.

2 Skip-Trie Structure

2.1 Backgrounds

Trie, or prefix tree, is a common ordered tree data structure that is used to store an
associative array of keys. The position in the tree shows what key a node is associated
with. All the descendants of any one node have a common prefix of the string associ-
ated with that node, and the root is associated with the empty string. Though trie is
commonly keyed by strings, it can also easily be adapted to serve similar functions of
ordered lists of any construct, e.g., permutations on a list of digits, permutations on a
list of shapes, etc.

Skip graph is a distributed data structure that extends the skip list into a distributed
environment by adding redundant connectivity and multiple handles into the data
structure [10,11]. On average, there are O(log n) levels in skip graph. All keys ap-

pear in sorted order in the list at Level 0. Each Level i, for i > 0, can now contain
multiple linked-lists. Each key maintains a membership vector, which is a random
string of bits. For each i greater than 0, each node appears randomly in one of the
many link lists in level i with two constraints. First, if node X is a singleton at level i
− 1, it doesn’t appear in any of the linked list at levels higher than i − 1. Second, for
every linked list L at level i, there must be another linked list 'L at level i − 1 where
the elements in L are a subset of the elements in 'L . Skip graph is highly concurrent
and resistant to node failures. More importantly, skip graph does not employ a hash-
ing function which allows it to support range queries, since logically similar keys will
become neighbors in the skip graph. However, each key must store pointers to an
average of two neighbors for each of the O(log n) levels. The result is a cost of

O(log n) state per key. Besides, it is unclear how keys are assigned to machines in

the system in skip graph, thus skip graph makes no guarantees about system wide
load-balancing nor does it make any guarantees about the geographic locality of
neighboring keys.

These two limitations of skip graph incur our interest in designing our own data
structure skip-trie to address such problems in our designing of Pampoo framework.

2.2 Skip-Trie: Two-Layered Data Structure

For notational convenience, we assume the data items are (but not confined to) data
base tuples of multi-attribute relations R , suppose the number of attributes in R is

n, 1 2{ , ,..., }nR A A A= , with each attribute iA (1 i n≤ ≤) being represented as a

string (can be other constructs of ordered lists as well). Our Skip-trie is constructed
under two steps. First, we dynamically build a reduced logical trie, aka., a longest
prefix tree based on the strings(e.g. the attributes, the name ID of a peer in a physical
network), which are mapped to trie. Evidently, there are no more than n leaf nodes in
trie since some attributes may be the substring of others. We consider all the strings of
a tuple t in R as a segment, which is uniquely identified by a primary key () key t that

 Pampoo: An Efficient Skip-Trie Based Query Processing Framework for P2P Systems 193

should be an attribute iA within R . Second, we hash the primary keys with an order

preserving hash function, i.e., ()i ih key val= , and construct the skip graph based on

those keys with values (non-redundant skip graph). A hash function is order preserv-
ing i.f.f. it satisfies the following property:

Given two input strings 1s and 2s , 1 2 1 2() ()s s h s h s⇒≺ ≺ , where ≺ is the

prefix operator.
Note here that originally, all the leaf nodes of the trie are assigned some values, but
we only consider those keys with special interest (i.e. the primary keys). It is also
worth noting that since no two primary keys can be identical, thus our skip graph
layer is non-redundant, thus we coin it as NR-skip graph.

The fundamental idea of our approach is to make use of the skip graph for efficient
routing, while trie for the locality preserving. The inherent features of both structures
are capable of supporting range queries, which we have already addressed. The sub-
stantial number of pointers in merely skip graph approach makes it really hard to
implement and maintain. Therefore, in our skip-trie structure, the NR-skip graph is
constructed based only on the primary keys of the underlying trie structure. Given k

primary keys in R , typically k n<< , NR-skip graph will only maintain k nodes
instead of n nodes, thus it is relatively non-densed and the complexity of our data
structure is significantly reduced.

Inspired by the two-layer architecture in [14], we can also think of our skip-trie
structure as being composed of two layers, with NR-skip graph as the upper layer and
trie as the lower one, as is shown in Fig. 1.

233 35141 8Level 0

1

14

23

353
8

1

car dns

care
cat

d

co

c
dn

cars dnssdnsi
com

ca

000 100 101001010110

353
23141Level 3

8

353
23141

8Level 1

353

23
14

1
8Level 2

M embership
vectors

NR-skip
graph layer

Trie layer

Skip-trie
link:

Skip link:

trie link:

Fig. 1. Two-layered Skip-trie data structure

194 L. Meifang et al.

Observing the properties of skip graphs, we also have following theorem.

Theorem 1. In an NR-skip graph on k nodes, the height of every node is (log)kΟ

with high probability.

Proof. It is identical to the theorem that with n nodes, the height of every node in
skip graph is (log)kΟ with high probability.

3 Pampoo: A Skip-Trie Based Framework

In Pampoo, we denote the set of all the peers within the framework as PP , thus each

peer ip PP∈ is associated with a path ip
G

 in the trie layer of Skip-trie, which corre-

sponds to a binary string. The path may only involve the inner nodes of the trie, which
is different from the trie-layered P-Grid architecture that each node only associates

with the leaf node. Each peer stores ip
G

the prefixes of its path, thus allowing for

efficient search routing.
Now we will discuss how the different operations are addressed in our Skip-trie

based framework Pampoo.

3.1 Skip-Trie Search Algorithm

In skip graph, the search operation is achieved in a top-down manner. It is initiated by a
top level node -skip layer seeking a key and proceeds down the lower level until it
reaches level 0. However, in our skip-trie structure, we approach this operation quite
differently. To search for a node with key from node X, we start from the trie layer first
and proceed up to the NR-skip graph layer and then down to the trie layer again in a
bottom-up-down manner, quite similar in family tree[15]. We incorporate the idea of
shower algorithm in [14] that aims to process range queries concurrently, and propose
our Skip-trie Search algorithm, which is illustrated as follows.

Algorithm 1. Skip-trie Search Algorithm: SSA(ip , X)

1. Lookup _ ()iprefix path p // ip caches the prefixes of its path

2. If _ ()iX prefix path p⊆ Then

3. Return X
4. End if

5. _ (,)iL p X p ← Longest-prefix-search (,)iX p ,

'X ← Trie-lookup (, _ ())X prefix path X // find the closest nodes 'X //

to X with hashed value

6. _ (,).iL p X p key ← Map-trie-skip_Level_0 (_ (,))iL p X p ,

'.X key ← Map-trie-skip_Level_0 (')X

7. 'X ← Skip-level-search (_ (,). , '.)iL p X p key X key
8. Return Trie-lookup (, ')X X

 Pampoo: An Efficient Skip-Trie Based Query Processing Framework for P2P Systems 195

In this algorithm, we start from the trie layer with the purpose of making use of the
locality property and start the node near the destined node, thus perform the algorithm
in an aggressively greedy way.

Lemma 2. The search operation in Skip-trie with n nodes in trie layer and k nodes in
NR-skip graph layer takes (log)k rΟ + with high probability, where r = maxi-

mal_cost{ Trie-lookup (, _ ())X prefix path X , Trie-lookup (, ')X X } .

Proof. In trie with n nodes, the lookup operation takes ()nΟ amortized time cost,

while in NP-skip layer, it takes (log)kΟ with high probability, thus verifies lemma 1.

Moreover, our Skip-trie Search algorithm is processed in an aggressively greedy way,
the cost of lookup operation in trie of n nodes is (log)nΟ with high probability (see

[16] for details), thus practically the cost is much smaller than in Lemma with high
probability.

3.2 Skip-Trie Update

We Address approaches of node join and node leave and their respective time cost in
this section.

3.2.1 Node Join. Most of the work required to join (i.e., insert) a node is accom-
plished by calls to the search operation described in Section 3.1. When a new node X
joins, we first find the node sharing the longest prefix with X, and then insert the
suffix of X into the trie layer. If the string is a not a primary key, then the operation is
over; however, if it is a primary key, we have further to do the insert operations in the
NR-skip graph layer identical as described in skip graph.

Lemma 3. The insert operation in Skip-trie with n nodes in trie layer and k nodes in

NR-skip graph layer takes (log)k rΟ + in expectation and 2(log)k rΟ + with high

probability, where r is the same as specified in section 3.1.

Proof. Similar to Lemma 2.

3.2.2 Node Leave. The algorithm for deleting a node X is straightforward. If X only
belongs to the trie layer, we simply delete the path. If X also belongs to the NR-skip
layer, then it is non-trivial. First, we have to enumerate the nodes with pointers to X
and update them to the appropriate predecessor and successor. Then we delete the
path in the trie layer.

Lemma 4. The delete operation in Skip-trie with n nodes in trie layer and k nodes in
NR-skip graph layer takes (log)k rΟ + in expectation and 2(log)k rΟ + with high
probability, where r is the same as specified in section 3.1.

Proof. Identical to Lemma 3.

3.3 Repair Strategy

In this section, we describe a self-stabilization strategy in Pampoo that repairs our
Skip-tree in case of node failures. If the node only lies in the trie layer, then we do not

196 L. Meifang et al.

have to take any measures since the system is not affected. However, if the node be-
longs to the NR-skip layer, we have to repair the system for robustness. Thus, the
repair strategy mainly focuses on the NR-Skip layer: each node in NR-skip graph
layer sends message to its neighbors periodically to see if they are alive. If one of the
neighbors fails, then we try to fix the link to the next live neighbor. Our repair strat-
egy works quite similar to that in Skip B-tree[17].

Since load is generally uniform in trie structure, our Skip-trie does not have to han-
dle load balancing problem.

4 Experimental Evaluation

To evaluate the performance of our Skip-trie structure, we implemented Pampoo
framework in Java and ran it over Planetlab [7], a testbed for large-scale distributed
systems. In our implementation, each peer node is identified both physically by a pair
of IP address and port number and logically by its position in the Skip-trie structure.

We compare Skip-trie with PHT with different distribution of data and range que-
ries, since PHT also supports range queries and is easy to implement.

Data distribution skewness

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

 Number of insert nodes(k)

In
se

rt
 c

os
t (

s)

Fig. 2. Comparison of Skip-trie and PHT in
number of message with different data
distribution

Fig. 3. Comparison of insert cost between
Skip-trie and PHT

Range query

N
um

be
r

of
 m

es
sa

ge
s(

10
0)

N
um

be
r

of
 m

es
sa

ge
s

(1
00

)

Fig. 4. Comparison of Skip-trie and PHT in
number of message with different range query
on uniform data distribution

Fig. 5. Comparison of Skip-trie and PHT in
number of message with different range query
on skewed data distribution

 Pampoo: An Efficient Skip-Trie Based Query Processing Framework for P2P Systems 197

From Fig. 2, we see that the number of messages in Skip-trie is much smaller that in
PHT. Fig. 3 indicates that when the number of nodes to be inserted is small, we have
fairly small insert cost; however, as the number increase, the time cost grows quickly.

Fig. 4 and Fig. 5 study the number of messages between Skip-trie and PHT under
different data distribution. Skip-trie still performs much better than PHT and is not
much affected by the skewness distribution.

5 Related Work

There are a wealth of work addressing issues in support of range query in P2P sys-
tems. To support approximate range queries, locality preserving hashing to hash
ranges instead of keywords is used in [18]. An improvement of this approach to sup-
port exact range queries is proposed in [19]. The fundamental problem of these ap-
proaches is that the ranges themselves are hashed, and hence, simple key search
operations are not supported or are highly inefficient.

Ganesan et. al. propose storage load balance algorithms combined with distributed
routing structures which can support range queries [20]. Their solution may sup-port
load balance in skewed data distributions, but it does not ensure balance in skewed
query distributions. BATON is a balanced binary tree overlay network which can
support range queries, and query load balancing by data migration between two, not
necessarily adjacent, nodes[11]. In Mercury system, Bharambe et al support multi-
attribute range queries and explicit load balancing, using random sampling[5]; nodes
are grouped into routing hubs, each of which is responsible for various attributes.In
terms of key search efficiency, support for range queries and storage load-balancing,
there are some interesting novel structured overlay network abstractions which exhibit
performance comparable to our trie-structured proposal: Skip Graphs [10, 11] which
are based on skip lists [21].A detailed survey of search mechanisms in P2P systems,
including range queries can be found in [22].

6 Conclusion

In this paper we propose a new two-layered data structure called Skip-trie which has
several desirable properties. Skip-trie supports range queries in that it exploits the local-
ity preserving feature in location of resources. Based on Skip-trie, we build a distributed
P2P framework Pampoo, which aim to support efficient query processing and complex
queries. We have studied the time cost of the basic operations in Skip-trie under our
Pampoo framework and conducted extensive experiments to verify our approach.

Next, we will study the strategy to support top-k queries and multidimensional que-
ries in our Pampoo framework.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable
peer-to-peer lookup service for internet applications. In: SIGCOMM 2001 (2001)

2. Druschel, P., Rowstron, A.: Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In: Middleware (2001)

198 L. Meifang et al.

3. Aberer, K., Punceva, M., Hauswirth, M., Schmidt, R.: Improving data access in P2P sys-
tems. IEEE Internet Computing 6(1), 58–67 (2002)

4. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M.,
Schmidt, R.: P-Grid: A Self organizing Structured P2P System. In: ACM SIGMOD Re-
cord (2003)

5. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Middleware (2001)

6. Cuenca-Acuna, F.M., et al.: PlanetP: Using Gossiping to Build Content Addressable Peer-
to-Peer Information Sharing Communities. Technical Report DCS-TR-487, Rutgers Uni-
versity (September 2002)

7. Ratnasamy, S., et al.: A scalable content-addressable network. In: SIGCOMM 2001 (2001)
8. Ramabhadran, S., Ratnasamy, S., Hellerstein, J., Shenker, S.: Brief Announcement: Prefix

Hash Tree. In: Proc. of PODC 2004 (2004)
9. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-

addressable network. In: Proc. ACM SIGCOMM 2001, ACM Press, New York (2001)
10. Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load balancing and locality in range-queriable

data structures. In: ACM PODC 2004, ACM Press, New York (2004)
11. Aspnes, J., Shah, G.: Skip graphs. In: ACM-SIAM Symposium on Discrete Algo-

rithms(January 2003)
12. Harvey, N., et al.: SkipNet: A scalable overlay network with practical locality preserving

properties. In: Proc.of 4th USENIX Symp. on Internet Technologies and Systems (2003)
13. Mei Li.DP-tree: A Balanced Tree-based Indexing Framework for Peer-to-Peer Systems. In

Proc. Of icnp 2006 (2006)
14. Datta, A., et,: al. Range queries in trie-structured overlays. In: Proc. of P2P 2005 (2005)
15. Zatloukal, K.C., Harvey, N.J.A.: Family Trees:An ordered dictionary with optimal conges-

tion, locality, degree, and search time. In: 15th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pp. 301–310. ACM Press, New York (2004)

16. Naor, M., Wieder, U.: Know thy neighbor’s neighbor: Better routing in skip-graphs and
small worlds. In: 3rd Int. Workshop on Peer-to-Peer Systems (2004)

17. Abraham, I., Aspnes, J., Yuan, J.: Skip B-Trees. In: Proc. of Opodis 2005 (2005)
18. Gupta, A., Agrawal, D., Abbadi, A.E.: Approximate Range Selection Queries in Peer-to-

Peer Systems. In: CIDR 2003. 1st Biennial Conference on Innovative Data Systems Re-
search (2003)

19. Sahin, O.D., Gupta, A., Agrawal, D., Abbadi., A.E., Peer-to-peer, A.: Framework for
Caching Range Queries. In: 20th ICDE 2004 (2004)

20. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned data
with applications to peer-to-peer systems. In: Proc. of VLDB 2004 (2004)

21. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Communications of the
ACM 33(6) (1990)

22. Risson, J., Moors, T.: Survey of Research towards Robust Peer-to-Peer Networks: Search
Methods. Technical Report UNSW-EE-P2P-1-1, University of New South Wales, Sydney,
Australia (September 2004)

	Pampoo: An Efficient Skip-Trie Based Query Processing Framework for P2P Systems
	Introduction
	Motivations and Challenges
	Contributions

	Skip-Trie Structure
	Backgrounds
	Skip-Trie: Two-Layered Data Structure

	Pampoo: A Skip-Trie Based Framework
	Skip-Trie Search Algorithm
	Skip-Trie Update
	Repair Strategy

	Experimental Evaluation
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

