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Abstract. In this paper, we present Pampoo, a novel distributed framework for 
efficient query processing in P2P systems. We propose a new locality preserv-
ing data structure Skip-trie as its substrate.  Skip-trie incorporates the advan-
tages of skip graph with features of traditional trie. Thus, Pampoo can  
efficiently support various types of queries such as range queries and k nearest 
neighbor queries. We study the time cost of search and update operations on 
Skip-trie structure under our Pampoo framework. We further briefly present a 
repairing strategy to boost the robustness of Pampoo system. Extensive experi-
ments are conducted to verify the effectiveness and efficiency of our approach. 

1   Introduction 

Distributed peer-to-peer (P2P) computing system has received growing attention for 
its wide area real-world applications in recent years, which brings forth the notion of 
sharing resources available at the edges of the Internet. The P2P paradigm specifies a 
fully distributed, self-organizing network design, where peers collectively form a 
system randomly. Therefore, it offers enormous potentials for extensive resource 
sharing, with remarkable features in terms of dynamics, scalability, resilience to fail-
ures, self-organizing and load balancing etc.. A large number of systems and architec-
tures that utilize this technology have emerged since its initial success [1, 2, 3, 4]. 

Therefore, efficient query processing, as a key aspect in P2P systems, is increas-
ingly important at present. Distributed Hash Table (DHT) has been a typical and the 
most widely applied strategy for peer routing, owing to its inherent characteristics 
such as scalability, load-balancing and fault-tolerance [1,2,5,6,7]. Nevertheless, DHT 
can only support exact queries since it adopts the cryptographic hash function such as 
SHA-1 to map application keys to their identifier space, which impairs the locality 
properties of the semantically close data items. Thus, DHT is marred by its deficiency 
in supporting range queries and other complex queries. Currently, several approaches 
have been proposed to remedy such shortcoming, such as Prefix Hash Tree[8,9], Skip 
Graph/Net[10,11,12], DP-tree[13] etc.. 
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1.1   Motivations and Challenges 

In our framework, Pampoo (means peer-bamboo in vigorous growth), we aim to de-
sign an efficient distributed data structure in support of a fairly rich set of possible 
data queries such as exact query for a key (e.g. a file name), partial query for a string 
(e.g. schema matching, prefix matching), k nearest-neighbor query for a numerical 
attribute, range query over various numerical attributes, multidimensional query, top-
k query and point location query in Ad-hoc and sensor networks.  

Applications of such queries include DNA databases, fuzzy systems, location-
aware services, approximate searches for file names or data titles. Particularly, range 
query is significant in a large field of applications such as prefetching of web pages, 
enhanced browsing and efficient searching.  

Therefore, in this paper, we mainly focus on a unified architecture in support of range 
query, i.e. locating resources whose keys lie within a certain specified range, which can 
also easily deal with the former three types of queries since they are the special cases for 
range query.  For example, a prefix query for ISBN numbers in a book database acm.lib, 
we can resort it to range query constrained within the acm.lib range scope. 
Our design of Pampoo intends to meet the following desired features:  

1) Fault tolerance: the framework should adjust to the failure of some nodes, al-
lowing simple repairing mechanism at small cost.  

2) Efficient queries processing: the framework should support query processing 
in terms of the number of rounds of communication and number of messages 
that must be exchanged in order to complete requested query.  

3) Small cost at network changes and data updates: the framework should flexibly 
tackle issues in node join/leave, data insertion/deletion as well as a necessary 
repairing. 

4) Locality preserving: The structure should meet locality preserving in support 
of range queries that are based on an ordering of the data. This feature has cer-
tain practical advantages over DHT. For example, a search from c.neu.edu to 
k.neu.edu will not require contacting any node outside neu.edu, which not only 
reduce the searching scope, but also allow the message to be broadcast within 
neu.edu. 

1.2   Contributions 

The contributions of this paper are threefold: 

 First, we propose a novel data structure Skip-trie which incorporates advantages 
of skip graph and the locality preserving feature of trie; 

 Second, we present our Pampoo framework and study the time cost of search 
and update operations on Skip-trie structure; 

 Third, we present a repairing strategy in support of the robustness and conduct 
extensive experiments to verify our approach. 

The rest of this paper is organized as follows. We start by presenting our novel Skip-
trie data structure in section 2; section 3 presents our Pampoo framework and study 
the operation cost under it. Extensive experiments are conducted in section 4. Section 
5 describes a summary of related work, and finally section 6 draws the conclusion. 
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2   Skip-Trie Structure 

2.1   Backgrounds  

Trie, or prefix tree, is a common ordered tree data structure that is used to store an 
associative array of keys. The position in the tree shows what key a node is associated 
with. All the descendants of any one node have a common prefix of the string associ-
ated with that node, and the root is associated with the empty string. Though trie is 
commonly keyed by strings, it can also easily be adapted to serve similar functions of 
ordered lists of any construct, e.g., permutations on a list of digits, permutations on a 
list of shapes, etc. 

Skip graph is a distributed data structure that extends the skip list into a distributed 
environment by adding redundant connectivity and multiple handles into the data 
structure [10,11]. On average, there are O(log n)  levels in skip graph. All keys ap-

pear in sorted order in the list at Level 0. Each Level i, for i > 0, can now contain 
multiple linked-lists. Each key maintains a membership vector, which is a random 
string of bits. For each i greater than 0, each node appears randomly in one of the 
many link lists in level i with two constraints. First, if node X  is a singleton at level i 
− 1, it doesn’t appear in any of the linked list at levels higher than i − 1. Second, for 
every linked list L at level i, there must be another linked list 'L at level i − 1 where 
the elements in L are a subset of the elements in 'L . Skip graph is highly concurrent 
and resistant to node failures. More importantly, skip graph does not employ a hash-
ing function which allows it to support range queries, since logically similar keys will 
become neighbors in the skip graph. However, each key must store pointers to an 
average of two neighbors for each of the O(log n)  levels. The result is a cost of 

O(log n)  state per key. Besides, it is unclear how keys are assigned to machines in 

the system  in skip graph, thus skip graph makes no guarantees about system wide 
load-balancing nor does it make any guarantees about the geographic locality of 
neighboring keys. 

These two limitations of skip graph incur our interest in designing our own data 
structure skip-trie to address such problems in our designing of Pampoo framework. 

2.2   Skip-Trie: Two-Layered Data Structure 

For notational convenience, we assume the data items are (but not confined to) data 
base tuples of multi-attribute relations R , suppose the number of attributes in R  is 

n, 1 2{ , ,..., }nR A A A= , with each attribute iA  (1 i n≤ ≤ ) being represented as a 

string (can be other constructs of ordered lists as well). Our Skip-trie is constructed 
under two steps. First, we dynamically build a reduced logical trie, aka., a longest 
prefix tree based on the strings( e.g. the attributes, the name ID of a peer in a physical 
network), which are mapped to trie. Evidently, there are no more than n leaf nodes in 
trie since some attributes may be the substring of others. We consider all the strings of 
a tuple t in R as a segment, which is uniquely identified by a primary key ( ) key t that  
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should be an attribute iA  within R . Second, we hash the primary keys with an order 

preserving hash function, i.e., ( )i ih key val= , and construct the skip graph based on 

those keys with values (non-redundant skip graph). A hash function is order preserv-
ing i.f.f. it satisfies the following property:  

Given two input strings 1s  and 2s , 1 2 1 2( ) ( )s s h s h s⇒≺ ≺ , where ≺  is the 

prefix operator. 
Note here that originally, all the leaf nodes of the trie are assigned some values, but 
we only consider those keys with special interest (i.e. the primary keys). It is also 
worth noting that since no two primary keys can be identical, thus our skip graph 
layer is non-redundant, thus we coin it as NR-skip graph. 

The fundamental idea of our approach is to make use of the skip graph for efficient 
routing, while trie for the locality preserving. The inherent features of both structures 
are capable of supporting range queries, which we have already addressed.  The sub-
stantial number of pointers in merely skip graph approach makes it really hard to 
implement and maintain. Therefore, in our skip-trie structure, the NR-skip graph is 
constructed based only on the primary keys of the underlying trie structure. Given k  

primary keys in R , typically k n<< , NR-skip graph will only maintain k  nodes 
instead of n nodes, thus it is relatively non-densed and the complexity of our data 
structure is significantly reduced.  

Inspired by the two-layer architecture in [14], we can also think of our skip-trie 
structure as being composed of two layers, with NR-skip graph as the upper layer and 
trie as the lower one, as is shown in Fig. 1. 
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Fig. 1. Two-layered Skip-trie data structure 
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Observing the properties of skip graphs, we also have following theorem. 

Theorem 1. In an NR-skip graph on k  nodes, the height of every node is (log )kΟ  

with high probability. 

Proof. It is identical to the theorem that with n  nodes, the height of every node in 
skip graph  is (log )kΟ  with high probability. 

3   Pampoo: A Skip-Trie Based Framework 

In Pampoo, we denote the set of all the peers within the framework as PP  , thus each 

peer ip PP∈  is associated with a path ip
G

 in the trie layer of Skip-trie, which corre-

sponds to a binary string. The path may only involve the inner nodes of the trie, which 
is different from the trie-layered P-Grid architecture that each node only associates 

with the leaf node.  Each peer stores ip
G

the prefixes of its path, thus allowing for 

efficient search routing. 
Now we will discuss how the different operations are addressed in our Skip-trie 

based framework Pampoo. 

3.1   Skip-Trie Search Algorithm  

In skip graph, the search operation is achieved in a top-down manner. It is initiated by a 
top level node -skip layer seeking a key and proceeds down the lower level until it 
reaches level 0. However, in our skip-trie structure, we approach this operation quite 
differently.  To search for a node with key from node X, we start from the trie layer first 
and proceed up to the NR-skip graph layer and then down to the trie layer again in a 
bottom-up-down manner, quite similar in family tree[15]. We incorporate the idea of 
shower algorithm in [14] that aims to process range queries concurrently, and propose 
our Skip-trie Search algorithm, which is illustrated as follows. 

Algorithm 1. Skip-trie Search Algorithm: SSA( ip , X )

1. Lookup _ ( )iprefix path p    // ip  caches the prefixes of its path 

2. If _ ( )iX prefix path p⊆  Then 

3.       Return X
4. End if 

5. _ ( , )iL p X p ← Longest-prefix-search ( , )iX p ,          

'X ← Trie-lookup ( , _ ( ))X prefix path X  // find the closest nodes 'X  //

to X  with hashed value 

6. _ ( , ).iL p X p key ← Map-trie-skip_Level_0 ( _ ( , ))iL p X p ,

'.X key ← Map-trie-skip_Level_0 ( ')X            

7. 'X ← Skip-level-search ( _ ( , ). , '. )iL p X p key X key
8. Return  Trie-lookup ( , ')X X
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In this algorithm, we start from the trie layer with the purpose of making use of the 
locality property and start the node near the destined node, thus perform the algorithm 
in an aggressively greedy way. 

Lemma 2. The search operation in Skip-trie with n nodes in trie layer and k nodes in 
NR-skip graph layer takes (log )k rΟ + with high probability, where r = maxi-

mal_cost{ Trie-lookup ( , _ ( ))X prefix path X , Trie-lookup ( , ')X X } . 

Proof. In trie with n nodes, the lookup operation takes ( )nΟ  amortized time cost, 

while in NP-skip layer, it takes (log )kΟ with high probability, thus verifies lemma 1.  

Moreover, our Skip-trie Search algorithm is processed in an aggressively greedy way, 
the cost of lookup operation in trie of n nodes is  (log )nΟ  with high probability (see 

[16] for details), thus practically the cost is much smaller than in Lemma with high 
probability. 

3.2   Skip-Trie Update  

We Address approaches of node join and node leave and their respective time cost in 
this section. 
 
3.2.1   Node Join. Most of the work required to join (i.e., insert) a node is accom-
plished by calls to the search operation described in Section 3.1. When a new node X 
joins, we first find the node sharing the longest prefix with X, and then insert the 
suffix of X into the trie layer. If the string is a not a primary key, then the operation is 
over; however, if it is a primary key, we have further to do the insert operations in the 
NR-skip graph layer identical as described in skip graph.  

Lemma 3. The insert operation in Skip-trie with n nodes in trie layer and k nodes in 

NR-skip graph layer takes (log )k rΟ +  in expectation and 2(log )k rΟ +  with high 

probability, where r is the same as specified in section 3.1. 

Proof. Similar to Lemma 2. 
 

3.2.2   Node Leave. The algorithm for deleting a node X is straightforward. If X only 
belongs to the trie layer, we simply delete the path. If X also belongs to the NR-skip 
layer, then it is non-trivial. First, we have to enumerate the nodes with pointers to X 
and update them to the appropriate predecessor and successor. Then we delete the 
path in the trie layer. 

Lemma 4. The delete operation in Skip-trie with n nodes in trie layer and k nodes in 
NR-skip graph layer takes (log )k rΟ +  in expectation and 2(log )k rΟ +  with high 
probability, where r is the same as specified in section 3.1. 

Proof. Identical to Lemma 3. 

3.3   Repair Strategy  

In this section, we describe a self-stabilization strategy in Pampoo that repairs our 
Skip-tree in case of node failures. If the node only lies in the trie layer, then we do not 
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have to take any measures since the system is not affected. However, if the node be-
longs to the NR-skip layer, we have to repair the system for robustness. Thus, the 
repair strategy mainly focuses on the NR-Skip layer: each node in NR-skip graph 
layer sends message to its neighbors periodically to see if they are alive. If one of the 
neighbors fails, then we try to fix the link to the next live neighbor. Our repair strat-
egy works quite similar to that in Skip B-tree[17]. 

Since load is generally uniform in trie structure, our Skip-trie does not have to han-
dle load balancing problem. 

4   Experimental Evaluation 

To evaluate the performance of our Skip-trie structure, we implemented Pampoo 
framework in Java and ran it over Planetlab [7], a testbed for large-scale distributed 
systems. In our implementation, each peer node is identified both physically by a pair 
of IP address and port number and logically by its position in the Skip-trie structure. 

We compare Skip-trie with PHT with different distribution of data and range que-
ries, since PHT also supports range queries and is easy to implement.  
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From Fig. 2, we see that the number of messages in Skip-trie is much smaller that in 
PHT. Fig. 3 indicates that when the number of nodes to be inserted is small, we have 
fairly small insert cost; however, as the number increase, the time cost grows quickly.  

Fig. 4 and Fig. 5 study the number of messages between Skip-trie and PHT under 
different data distribution. Skip-trie still performs much better than PHT and is not 
much affected by the skewness distribution. 

5   Related Work 

There are a wealth of work addressing issues in support of range query in P2P sys-
tems. To support approximate range queries, locality preserving hashing to hash 
ranges instead of keywords is used in [18]. An improvement of this approach to sup-
port exact range queries is proposed in [19]. The fundamental problem of these ap-
proaches is that the ranges themselves are hashed, and hence, simple key search  
operations are not supported or are highly inefficient. 

Ganesan et. al.  propose storage load balance algorithms combined with distributed 
routing structures which can support range queries [20]. Their solution may sup-port 
load balance in skewed data distributions, but it does not ensure balance in skewed 
query distributions. BATON is a balanced binary tree overlay network which can 
support range queries, and query load balancing by data migration between two, not 
necessarily adjacent, nodes[11]. In Mercury system, Bharambe et al support multi-
attribute range queries and explicit load balancing, using random sampling[5]; nodes 
are grouped into routing hubs, each of which is responsible for various attributes.In 
terms of key search efficiency, support for range queries and storage load-balancing, 
there are some interesting novel structured overlay network abstractions which exhibit 
performance comparable to our trie-structured proposal: Skip Graphs [10, 11] which 
are based on skip lists [21].A detailed survey of search mechanisms in P2P systems, 
including range queries can be found in [22]. 

6   Conclusion 

In this paper we propose a new two-layered data structure called Skip-trie which has 
several desirable properties. Skip-trie supports range queries in that it exploits the local-
ity preserving feature in location of resources. Based on Skip-trie, we build a distributed 
P2P framework Pampoo, which aim to support efficient query processing and complex 
queries. We have studied the time cost of the basic operations in Skip-trie under our 
Pampoo framework and conducted extensive experiments to verify our approach.  

Next, we will study the strategy to support top-k queries and multidimensional que-
ries in our Pampoo framework. 
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