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Abstract. Dynamic programming is a widely applied algorithm design 
technique in many areas such as computational biology and scientific 
computing. Typical applications using this technique are compute-intensive and 
suffer from long runtimes on sequential architectures. Therefore, several 
parallel algorithms for both fine-grained and coarse-grained architectures have 
been introduced. However, the commonly used data partitioning scheme can 
not be efficiently applied to irregular dynamic programming algorithms, i.e. 
dynamic programming algorithms with an uneven load density pattern. In this 
paper we present a tunable parallel Bulk Synchronous Parallel (BSP) algorithm 
for such kind of applications. This new algorithm can balance the workload 
among processors using a tunable block-cyclic data partitioning method and 
thus is capable of getting almost linear performance gains. We present a 
theoretical analysis and experimentally show that it leads to significant runtime 
savings for pairwise sequence alignment with general gap penalties using 
BSPonMPI on a PC cluster.  
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1   Introduction 

Dynamic programming (DP) is a popular algorithm design technique for optimization 
problems. Problems such as string editing [1], genome sequence alignment [14, 22], 
RNA and protein structure prediction [6, 17, 24], context-free grammar recognition 
[7, 19], and optimal static search tree construction [9] have efficient sequential DP 
solutions. In order to reduce the high computing cost of DP problems, many efficient 
parallel algorithms on different parallel architectures have been introduced [1, 2]. On 
fine-grained architectures, the computation of each cell within an anti-diagonal is 
parallelized [20, 21]. However, this way is only efficient on architectures such as 
systolic arrays, which have an extremely fast inter-processor communication. On 
coarse-grained architectures like PC clusters it is more convenient to assign an equal 
number of adjacent columns to each processor as shown in Figure 1. In order to 
reduce communication time further, matrix cells can be grouped into blocks. 
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Processor Pi then computes all the cells within a block after receiving the required 
data from processor Pi−1. Figure 1 shows an example of the computation for 4 
processors, 8 columns and a block size of 2×2, the numbers 1 to 7 represent 
consecutive phases in which the cells are computed. We call this method blockbased. 
It works efficiently for regular DP computations with an even workload across matrix 
cells, i.e. each matrix cell is computed from the same number of other matrix cells. 
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Fig. 1. Parallel computation for 4 processors, 8 columns and a 2×2 block size 

In practice, there are many irregular DP applications where the workload of a cell 
varies across the matrix. Figure 2 shows an example of such an application. The 
workload to compute one matrix cell will increase along the shift direction of the 
computation. We call this the load computation density. Figure 2 shows the change of 
load computation density along the computation shift direction by using increasingly 
blacking shades. We can see that the load computation density at the bottom right-
hand corner is much higher than that in the top left-hand corner. The column-based 
partitioning method in Figure 1 will therefore lead to a poor performance, since the 
workload on processor Pi is much higher than on the processor Pi−1.  

P1 P2 P3 P4

 

Fig. 2. Example of an irregular DP computation 

In this paper, we propose a general parameterized parallel BSP algorithm to solve 
this problem. By introducing two performance-related parameters, we can get the 
trade-off between load balancing and communication time by tuning these two 
parameters and thus obtain the maximum possible performance. We demonstrate how 
this algorithm can lead to substantial performance gains for irregular DP applications. 

The rest of the paper is organized as follows: Section 2 describes the characters and 
classification for irregular DP algorithms. The BSP model is briefly reviewed in 
Section 3. Section 4 presents the parallel BSP algorithm. Section 5 evaluates the 
performance on a PC clusters using BSPonMPI. Section 6 concludes this paper. 
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2   Irregular DP Algorithms 

DP algorithms can be classified according to the matrix size and the dependency 
relationship of each matrix cell [10]: a DP algorithm for a problem of size n is called a 
tD/eD algorithm if its matrix size is O(nt) and each matrix cell depends on O(ne) other 
cells. The DP formulation of a problem always yields an obvious algorithm whose 
time complexity is determined by the matrix size and the dependency relationship. If 
a DP algorithm is a tD/eD problem, it takes time O(nt+e) provided that the 
computation of each term takes constant time. Three examples are given in Algorithm 
1 to 3. 
 

Algorithm 1. (2D/0D): Given D[i,0] and D[0, j] for 1 ≤ i, j ≤ n, 
D[i, j] = min{D[i-1, j] + xi, D[i, j-1] + yj, D[i-1, j-1] + zi,j} where xi, yj and zi,j are 

computed in constant time. 

Algorithm 2. (2D/1D): Given w(i, j) for 1 ≤ i<j ≤ n; D[i,i] = 0 for 1 ≤ i ≤ n 
D[i,j] = w(i, j) + 

jki ≤<
min {D[i,k−1] + D[k, j]} for 1 ≤ i, j ≤ n 

Algorithm 3. (2D/2D): Given w(i, j) for 1 ≤ i<j ≤ 2n; D[i, 0] and D[0, j]  for 0 ≤ i, j ≤ n, 

       D[i, j] = 
ii

jj

<≤

<≤

'0

'0
min {D[i’,j’] + w(i’+ j’,i+j)} for 1 ≤ i, j ≤ n 

Table 1. A classification for the popular DP algorithms in CB 

Algorithm Time complexity Application Field Reference 
Smith-Waterman 

algorithm with linear and 
affine gap penalty 

Genome alignment 

Syntenic alignment 

O(n2) 

Generalized genome global 
alignment 

[14, 22] 

Smith-Waterman 
algorithm with general 

gap penalty 

 
Genome alignment 

Nussinov algorithm 

O(n3) 

RNA base pair maximization 

[8, 22] 

Viterbi Algorithm O(n2)~O(n4) Gene sequence alignment 
using HMMs, Multiple sequence 

alignment 

[8] 

Double DP algorithm O(n4) Protein threading [17] 
Spliced Alignment O(n3) Gene finding [11] 

Zuker Algorithm RNA secondary structure 
prediction 

[24] 

CYK Algorithm 

O(n3)~O(n4) 

RNA secondary structure 
alignment 

[8] 

 
There are many DP algorithms in Computational Biology (CB). DP is used for 

assembling DNA sequence data from the fragments that are delivered by automated 
sequencing machines [3], and to determine the intron/exon structure of eukaryotic 
genes [12]. It is used to infer function of proteins by homology to other proteins with 
known function [18, 23] and it is used to predict the secondary structure of functional 
RNA genes or regulatory elements. In some areas of CB, DP problems arise in such 
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variety that a specific code generation system for implementing such algorithms has 
been developed [4]. However, the development of a successful parallel DP algorithm 
is a matter of experience, talent, and luck. The typical matrix recurrence relations that 
make up a parallel DP algorithm are intricate to construct, and difficult to implement 
reliably. No general problem independent guidance is available. Table 1 shows the 
classification of some popular DP algorithms in CB. 

 
(a) Nussinov: Given a sequence A of length L with symbols x1, … xL. Let δ (i, j) = 1 if xi and xj are a 

complementary base pair, else δ (i, j) = 0. We will recursively calculate scores M(i, j) which are the 
maximal number of base pairs that can be formed for subsequence xi, …,xj. 

Initialization:                           Recursion: 
for i = 2 to L do                       M(i, j)=max{M(i+1, j), M(i, j-1), 

M(i,i-1) = 0                                              M(i+1, j-1)+ δ (i, j), 
for i = 1 to L do                                             maxi<k<j[M(i, k)+M(k+1, j)]} 
      M(i,i) = 0                                                                                                                                           

(b) SkylineMatrix: The skyline matrix problem can be formulated as follows: Given an N×N skyline 
matrix A and an N-vector b, we seek to find an N-vector x such that Ax = b. An efficient and widely used 
technique for solving Ax = b in the general case is the LU-Decomposition. This method decomposes A 
into two matrices L and U. The algorithm used for sequential LU-Decomposition is “Doolittle’s  
Method”. Generally, the algorithm works as follows: 

                   for i = 1 to N do 
                       for j = 1 to i−1 do 

                            ( ) jj
j
k kjikijij UULaL /1

1∑ −
=−=  

                            for j = 1 to i do 

                                 ∑ −
=−= 1
1

j
k kijkjiji ULaU                                                                                               

(c) SW with general gap penalty function: Consider two strings A and B of length l1 and l2, a 
substitution matrix s and a general gap penalty function γ (g). To identify common subsequences, they 

compute the similarity matrix M(i, j) of two sequences ending at position i and j.  

M(i, j) = max 

⎪
⎩

⎪
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Fig. 3. The recurrence formulas for three 2D/1D DP algorithms: (a) Nussinov algorithm, (b) 
Skyline matrix problem, (c) Smith-Waterman algorithm with general gap penalty function 

In this paper we concentrate on the parallelization of DP algorithms of the type 
2D/1D. This is an important DP algorithm with many applications. Figure 3 shows 
three well-known DP algorithms of type 2D/1D. Although these DP algorithms look 
different, they share similar characteristics. These 2D/1D DP algorithms are all 
irregular with load computation density changes along the computation shift direction.  

Figure 4 shows the change of load computation density along the computation shift 
direction by using increasingly blacking shades. For these algorithms, the column-
based partitioning method of Figure 1 leads to poor load balancing. Thus, a more 
efficient data partitioning scheme is needed. The problem of determining an 
appropriate data partitioning scheme is to maximize system performance by balancing 
the computational load among processors. Since the data partitioning scheme largely 
determines the performance and scalability of a parallel algorithm, a great deal of 
research has aimed at studying different data partitioning schemes. As a result the  
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Fig. 4. Dependency relationship and distribution of load computation density along 
computation shift direction for (a) Nussinov, (b) Skyline matrix problem, (c) Smith-Waterman 
algorithm with general gap penalty function 

block-cyclic partitioning has been suggested as a general-purpose basic scheme for 
parallel algorithms because of its scalability, load balancing and communication 
properties [15]. In this paper, we introduce a tunable block-cyclic based distribution 
of columns for irregular DP algorithms to balance the workload among processors. 

3   The Bulk Synchronous Parallel (BSP) Model 

The BSP model first proposed in [23] is designed to be a general purpose approach to 
parallel computing that allows the separation of concerns between computation, 
synchronization and communication costs. It has a simple cost model for predicting 
the performance of BSP algorithms on different parallel platforms. A BSP 
programming model consists of P processors linked by an inter-connecting network 
and each with its own pool of memory.  

A BSP algorithm consists of a set of processors each executing a series of 
supersteps. Each superstep consists of three ordered phases: 1) a local computation 
phase, where each processor can perform computation using local data and issue 
communication requests; 2) a global communication phase, where data is exchanged 
between processors according to the requests made during the local computation 
phase; and 3) a barrier synchronization, which waits for all data transfers to complete 
and makes the transferred data available to the processors for use in the next 
superstep. The BSP cost model for a BSP algorithm S can be expressed as 

 

cost(S) = sum{ w(i) + gh(i) + L } for superstep i = 1 … ns 
 

 

where ns is the total number of supersteps; w(i) is the maximum computation cost by 
any processor in superstep i; and h(i) is the maximum number of messages sent or 
received respectively by any processor in superstep i. The architecture dependent 
parameters g and L represent the communication and synchronization costs 
respectively. From the BSP cost model, we can see that the performance of a BSP 
algorithm relies on three factors: a) computation balance; b) communication balance; 
and c) ns, the total number of supersteps. 
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While a BSP library consists of a small set of architectural independent 
programming interface that support the BSP programming model, the efficiency of a 
BSP algorithm depends on how the underlying BSP library implementation optimizes 
the architecture dependent parameters g and L. Existing BSP library implementation 
such as the Oxford BSP library [13] and the Paderborn University BSP (PUB) Library 
[5] are often optimized for a selection of parallel hardware platforms. To keep up with 
changes and development in these platforms, these libraries have to be constantly 
updated. The BSPonMPI library (http://bsponmpi.sourceforge.net) is an effort to 
create a BSP library that runs on any machine that has MPI installed. This ensures 
that any BSP program compiled using BSPonMPI will benefit from improvements 
and optimizations in the MPI library for a particular hardware platform. 

4   Parallel BSP Algorithm  

In this section, we describe a tunable parallel BSP algorithm for solving irregular DP 
problems. The algorithm proceeds in a series of wavefront diagonally across the 
matrix M. Figure 5 illustrate the concept of the algorithm for an 8×8 matrix with a 
column-wise block-cyclic partition. The parameter division is used to implement a 
block cyclic distribution of columns to processors. The parameter rowwidth is used to 
control the size of messages that Pi will send to other processors. In the figure, Pi,dj

k 
denotes that the cell is updated by processor Pi at division j of wavefront k. Each 
wavefront corresponds to a superstep in the BSP computation. For example, in 
wavefront 4, processor P1 and P2 are active in both division 1 and 2. 

 

 

 

 

 

 

 

 

Fig. 5. The tunable block-cyclic partitioning method for irregular dynamic programming 

Increasing the number of cyclic divisions and decreasing the size of messages may 
lead to better load balancing at the expense of increase in communication overhead. 
Thus, the choice of the parameter for division and rowwidth is a trade-off between 
load balancing and communication time. Figure 6 shows the BSP algorithm for 
irregular dynamic programming. In each superstep (or wavefront), each processor 
updates the block allocated to it in all its active divisions and sends the updated block 
to other processors. In this implementation, we use the BSP shared memory primitive 
bsp_put() to update the matrix block. A barrier synchronization is called at the 
end of each superstep. All processors will receive the updated matrix by the beginning  
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Input:  The number of processors Np, the number of division Nd, the 
row width R. (n×n is the size of matrix M, dt denotes the t-
th division, wt denotes the t-th wave, C denotes the column 
width). 

Output:  Depending on the requirements of the given applications, 
the output will be the optimal score M[1,n] or the whole 
matrix M. 

 
Nwaves = p*Nd + n/R; 
C = n/Nd; 
 
bsp_begin(Np) 
  pid = bsp_pid(); 
 // beginning of a superstep, do for each wavefront 
 for wt = 1 to Nwaves     
  for dt = 1 to Nd  // do for each division   
   // if processor pid is active in this division 
   if pid+(dt × Np) <= wt 
    Sc = (pid + (dt-1)×Np) × C; // compute starting column 
    Sr = (wt – pid -(dt × Np)) × R; // compute starting row 
    for i = Sc to Sc + C 
     for j = Sr to Sr + R 
      compute(M[i,j]); 
     endfor 
    endfor 
    send_block();//send updated block to other processors 
   endif 
  endfor   
   // end of superstep 
  bsp_sync(); 
 endfor 
bsp_end() 

Fig. 6. The BSP algorithm for irregular dynamic programming 

of the next superstep. Note that for sake of simplicity, the algorithm presented 
assumes the dimension of the matrix n is exactly divisible by C and R. The actual 
algorithm implemented does not have this assumption. 

5   Performance Evaluation 

We carried out a set of experiments using the BSP algorithm described in section 4 to 
parallelize the Smith-Waterman algorithm with general gap penalty function. The 
hardware platform used is an 8-node Dual-Processor Linux cluster with a 1GBit/sec 
Myrinet switch used as inter-cluster connection. The BSP algorithm is compiled with 
Myrinet MPICH ver 1.2.6 and linked with the BSPonMPI ver 2.0 library. 

Table 2 shows the speedup results using the BSP algorithm for irregular dynamic 
programming on different number of processors. With different number of processors, 
the best speedup (shown in bold) is obtained with different combination of Nd and R. 

In the first implementation, each processor is allocated equal number of columns in 
each division. When the dimension of the matrix is not exactly divisible by the Nd and 
the number of processor, the remainder columns are allocated to the first processor in 
the first division. For example, in the case of Np=16 and Nd=50, each processor will 
be allocated 3 columns in each division. In the first division, processor P1 will be 
allocated the remaining 600 columns in addition to the 3 columns allocated to each 
processor! Since processor P1 will be active in division 1 for n/R supersteps, this 
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allocation will result in computation and communication imbalance during the BSP 
computation. Table 3 shows the number of extra columns allocated to processor P1 in 
division 1. Except for Np=2, the best speedup numbers from Table 2 clearly matches 
the value of Nd that gives the smallest number of extra columns in division 1. 

In the second implementation, a more balanced partitioning approach is used. In 
this implementation, all processors are allocated k = n/(NpNd) columns in all divisions. 
If NpNd does not divide n exactly, in division 1, the remaining n−kNp(Nd−1) columns 
are divided again equally among all processors and the remaining columns are 
allocated to P1. For example, in the case of Np=16 and Nd=50, each processor will be 
allocated 3 columns in each division except division 1. In division 1, each processor 
 

Table 2. Speedup for Nd=50 to 90 and row width R=10 to 40 with Np=2, 4, 8 and 16 processors. 
The DP matrix is of size 3000×3000. 

  Nd=50 60 70 80 90   Nd=50 60 70 80 90 
  Np=2   Np =4 
R=10 1.56 1.55 1.65 1.59 1.43   2.39 2.76 2.72 2.60 2.92 

20 1.63 1.58 1.62 1.49 1.41   2.93 2.20 2.79 2.60 2.74 
30 1.46 1.47 1.55 1.57 1.53   3.15 2.79 2.69 2.54 2.84 
40 1.50 1.61 1.40 1.66 1.60   2.43 2.96 2.63 2.60 2.71 

  Np =8   Np =16 
R=10 4.46 4.56 4.09 3.43 4.71   3.46 3.81 2.55 3.75 4.74 

20 3.77 3.98 4.38 3.48 4.68   3.57 4.42 2.96 3.57 6.60 
30 4.13 4.94 4.45 3.13 4.92   3.27 5.81 2.70 3.26 6.47 
40 4.37 4.77 4.18 3.45 4.63   3.15 6.10 2.49 3.59 5.77 

Table 3. Number of extra columns allocated to processor 1 in division 1 

Nd=50 60 70 80 90   Nd=50 60 70 80 90 
Np =2   Np =4 

0 0 60 120 120   0 120 200 120 120 
Np =8   Np =16 

200 120 200 440 120   600 120 760 440 120 

Table 4. Speedup using BSP algorithm for Nd=50 to 90 and row width R = 10 to 40 with Np= 2, 
4, 8 and 16 processors using improved partitioning. The DP matrix is of size 3000×3000. 

  Nd=50 60 70 80 90   Nd=50 60 70 80 90 
  Np =2   Np =4 
R=10 1.59 1.58 1.64 1.60 1.60   2.82 3.16 3.04 2.92 3.24 

20 1.62 1.56 1.59 1.62 1.64   2.65 2.99 3.09 3.11 3.20 
30 1.44 1.64 1.66 1.56 1.71   3.17 2.52 2.67 2.99 2.68 
40 1.58 1.61 1.61 1.62 1.66   3.12 2.55 2.97 2.31 3.08 

  Np =8   Np =16 
R=10 5.98 5.78 5.52 5.23 5.64   9.09 7.40 7.12 8.14 8.33 

20 5.62 5.79 5.84 5.15 5.62   7.58 9.36 7.43 8.70 8.19 
30 4.96 5.79 5.58 5.05 5.41   6.65 5.40 7.98 6.34 7.68 
40 5.45 5.20 5.17 5.18 5.20   8.02 7.68 3.77 3.76 6.59 
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will be allocated 40 columns each and processor 1 will receive 48 columns. Another 
alternative partitioning approach is to allocate the remaining columns equally across 
all divisions. This will be investigated in our future implementation.  

Table 4 shows the experimental results using the improved partitioning. For Np=16, 
there is clearly a substantial improvement in performance and the difference in 
performance between different Nd is reduced. The results show that a balanced 
partitioning approach is crucial to the performance of the BSP algorithm for irregular 
dynamic programming.  

6   Conclusions and Future Work 

In this paper, we have described a tunable BSP algorithm for irregular DP algorithms 
of type 2D/1D. In the BSP algorithm presented in Figure 6, communication is 
initiated through the BSP shared memory primitive bsp_put() invoked by each 
sender processor. The receiving part of the communication is automatically handled 
by the BSPonMPI library and is carried out in bulk at the end of every superstep. This 
makes the code simple and easy to understand. Note that such one-sided 
communication primitive is also available in MPI 2.0. An MPI algorithm for irregular 
DP applications similar to the one presented in [16] that uses matching send and 
receive primitive for inter-processor communication can sometime lead to code that is 
hard to understand and debug.  

The experimental results also show that good partitioning approach is essential to 
achieving high parallel efficiency for this BSP algorithm. The corresponding parallel 
efficiency for P = 2, 4 and 8 ranges from 75% to 83%. For P = 16, the parallel 
efficiency drops to 58%. Table 4 shows that the selection of Nd and R has a more 
significant effect on the performance Np=16. This could be due to (1) the relatively 
high barrier synchronization cost L for 16 processors; and (2) the scheduling of tasks 
between each of the two processors in each node of the Linux cluster.  

With improved performance of future versions of the BSPonMPI library, the 
effects of barrier synchronization cost will be minimized accordingly. We will 
explore different processor mapping and data partitioning strategies to resolve the 
issue of scheduling dual-processor nodes in a cluster. Our future work also includes 
benchmarking the communication and synchronization cost of different processor 
configurations for our system. This will allow us to predict the performance of 
different combinations of Nd and R and determine the combination that will yield the 
best performance. We will also explore how the BSP algorithm can be adapted to 
other type of DP applications such as 2D/2D and 3D/1D. Such applications are 
frequently used in the field of computational biology.  
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