
M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 151–160, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Parallel BSP Algorithm for Irregular Dynamic
Programming

Malcolm Yoke Hean Low1, Weiguo Liu1, and Bertil Schmidt2

1 School of Computer Engineering, Nanyang Technological University,
Singapore 639798

{yhlow, liuweiguo}@ntu.edu.sg
2 University of New South Wales Asia, 1 Kay Siang Road, Singapore 248922

bertil.schmidt@unswasia.edu.sg

Abstract. Dynamic programming is a widely applied algorithm design
technique in many areas such as computational biology and scientific
computing. Typical applications using this technique are compute-intensive and
suffer from long runtimes on sequential architectures. Therefore, several
parallel algorithms for both fine-grained and coarse-grained architectures have
been introduced. However, the commonly used data partitioning scheme can
not be efficiently applied to irregular dynamic programming algorithms, i.e.
dynamic programming algorithms with an uneven load density pattern. In this
paper we present a tunable parallel Bulk Synchronous Parallel (BSP) algorithm
for such kind of applications. This new algorithm can balance the workload
among processors using a tunable block-cyclic data partitioning method and
thus is capable of getting almost linear performance gains. We present a
theoretical analysis and experimentally show that it leads to significant runtime
savings for pairwise sequence alignment with general gap penalties using
BSPonMPI on a PC cluster.

Keywords: BSP, Irregular Dynamic Programming, Partitioning, Load
Balancing, Scientific Computing.

1 Introduction

Dynamic programming (DP) is a popular algorithm design technique for optimization
problems. Problems such as string editing [1], genome sequence alignment [14, 22],
RNA and protein structure prediction [6, 17, 24], context-free grammar recognition
[7, 19], and optimal static search tree construction [9] have efficient sequential DP
solutions. In order to reduce the high computing cost of DP problems, many efficient
parallel algorithms on different parallel architectures have been introduced [1, 2]. On
fine-grained architectures, the computation of each cell within an anti-diagonal is
parallelized [20, 21]. However, this way is only efficient on architectures such as
systolic arrays, which have an extremely fast inter-processor communication. On
coarse-grained architectures like PC clusters it is more convenient to assign an equal
number of adjacent columns to each processor as shown in Figure 1. In order to
reduce communication time further, matrix cells can be grouped into blocks.

152 M.Y.H. Low, W. Liu, and B. Schmidt

Processor Pi then computes all the cells within a block after receiving the required
data from processor Pi−1. Figure 1 shows an example of the computation for 4
processors, 8 columns and a block size of 2×2, the numbers 1 to 7 represent
consecutive phases in which the cells are computed. We call this method blockbased.
It works efficiently for regular DP computations with an even workload across matrix
cells, i.e. each matrix cell is computed from the same number of other matrix cells.

1 2

2

3

3

3

4

4

4

4

5

5

5 6

6 7

P1 P2 P3 P4

Fig. 1. Parallel computation for 4 processors, 8 columns and a 2×2 block size

In practice, there are many irregular DP applications where the workload of a cell
varies across the matrix. Figure 2 shows an example of such an application. The
workload to compute one matrix cell will increase along the shift direction of the
computation. We call this the load computation density. Figure 2 shows the change of
load computation density along the computation shift direction by using increasingly
blacking shades. We can see that the load computation density at the bottom right-
hand corner is much higher than that in the top left-hand corner. The column-based
partitioning method in Figure 1 will therefore lead to a poor performance, since the
workload on processor Pi is much higher than on the processor Pi−1.

P1 P2 P3 P4

Fig. 2. Example of an irregular DP computation

In this paper, we propose a general parameterized parallel BSP algorithm to solve
this problem. By introducing two performance-related parameters, we can get the
trade-off between load balancing and communication time by tuning these two
parameters and thus obtain the maximum possible performance. We demonstrate how
this algorithm can lead to substantial performance gains for irregular DP applications.

The rest of the paper is organized as follows: Section 2 describes the characters and
classification for irregular DP algorithms. The BSP model is briefly reviewed in
Section 3. Section 4 presents the parallel BSP algorithm. Section 5 evaluates the
performance on a PC clusters using BSPonMPI. Section 6 concludes this paper.

 A Parallel BSP Algorithm for Irregular Dynamic Programming 153

2 Irregular DP Algorithms

DP algorithms can be classified according to the matrix size and the dependency
relationship of each matrix cell [10]: a DP algorithm for a problem of size n is called a
tD/eD algorithm if its matrix size is O(nt) and each matrix cell depends on O(ne) other
cells. The DP formulation of a problem always yields an obvious algorithm whose
time complexity is determined by the matrix size and the dependency relationship. If
a DP algorithm is a tD/eD problem, it takes time O(nt+e) provided that the
computation of each term takes constant time. Three examples are given in Algorithm
1 to 3.

Algorithm 1. (2D/0D): Given D[i,0] and D[0, j] for 1 ≤ i, j ≤ n,
D[i, j] = min{D[i-1, j] + xi, D[i, j-1] + yj, D[i-1, j-1] + zi,j} where xi, yj and zi,j are

computed in constant time.

Algorithm 2. (2D/1D): Given w(i, j) for 1 ≤ i<j ≤ n; D[i,i] = 0 for 1 ≤ i ≤ n
D[i,j] = w(i, j) +

jki ≤<
min {D[i,k−1] + D[k, j]} for 1 ≤ i, j ≤ n

Algorithm 3. (2D/2D): Given w(i, j) for 1 ≤ i<j ≤ 2n; D[i, 0] and D[0, j] for 0 ≤ i, j ≤ n,

 D[i, j] =
ii

jj

<≤

<≤

'0

'0
min {D[i’,j’] + w(i’+ j’,i+j)} for 1 ≤ i, j ≤ n

Table 1. A classification for the popular DP algorithms in CB

Algorithm Time complexity Application Field Reference
Smith-Waterman

algorithm with linear and
affine gap penalty

Genome alignment

Syntenic alignment

O(n2)

Generalized genome global
alignment

[14, 22]

Smith-Waterman
algorithm with general

gap penalty

Genome alignment

Nussinov algorithm

O(n3)

RNA base pair maximization

[8, 22]

Viterbi Algorithm O(n2)~O(n4) Gene sequence alignment
using HMMs, Multiple sequence

alignment

[8]

Double DP algorithm O(n4) Protein threading [17]
Spliced Alignment O(n3) Gene finding [11]

Zuker Algorithm RNA secondary structure
prediction

[24]

CYK Algorithm

O(n3)~O(n4)

RNA secondary structure
alignment

[8]

There are many DP algorithms in Computational Biology (CB). DP is used for

assembling DNA sequence data from the fragments that are delivered by automated
sequencing machines [3], and to determine the intron/exon structure of eukaryotic
genes [12]. It is used to infer function of proteins by homology to other proteins with
known function [18, 23] and it is used to predict the secondary structure of functional
RNA genes or regulatory elements. In some areas of CB, DP problems arise in such

154 M.Y.H. Low, W. Liu, and B. Schmidt

variety that a specific code generation system for implementing such algorithms has
been developed [4]. However, the development of a successful parallel DP algorithm
is a matter of experience, talent, and luck. The typical matrix recurrence relations that
make up a parallel DP algorithm are intricate to construct, and difficult to implement
reliably. No general problem independent guidance is available. Table 1 shows the
classification of some popular DP algorithms in CB.

(a) Nussinov: Given a sequence A of length L with symbols x1, … xL. Let δ (i, j) = 1 if xi and xj are a

complementary base pair, else δ (i, j) = 0. We will recursively calculate scores M(i, j) which are the
maximal number of base pairs that can be formed for subsequence xi, …,xj.

Initialization: Recursion:
for i = 2 to L do M(i, j)=max{M(i+1, j), M(i, j-1),

M(i,i-1) = 0 M(i+1, j-1)+ δ (i, j),
for i = 1 to L do maxi<k<j[M(i, k)+M(k+1, j)]}
 M(i,i) = 0

(b) SkylineMatrix: The skyline matrix problem can be formulated as follows: Given an N×N skyline
matrix A and an N-vector b, we seek to find an N-vector x such that Ax = b. An efficient and widely used
technique for solving Ax = b in the general case is the LU-Decomposition. This method decomposes A
into two matrices L and U. The algorithm used for sequential LU-Decomposition is “Doolittle’s
Method”. Generally, the algorithm works as follows:

 for i = 1 to N do
 for j = 1 to i−1 do

 () jj
j
k kjikijij UULaL /1

1∑ −
=−=

 for j = 1 to i do

 ∑ −
=−= 1
1

j
k kijkjiji ULaU

(c) SW with general gap penalty function: Consider two strings A and B of length l1 and l2, a
substitution matrix s and a general gap penalty function γ (g). To identify common subsequences, they

compute the similarity matrix M(i, j) of two sequences ending at position i and j.

M(i, j) = max

⎪
⎩

⎪
⎨

⎧

−=−+
−=−+

+−−

.1,...,0),(),(

,1,...,0),(),(

),,()1,1(

jkkjkiM

ikkijkM

BAsjiM ji

γ
γ

Fig. 3. The recurrence formulas for three 2D/1D DP algorithms: (a) Nussinov algorithm, (b)
Skyline matrix problem, (c) Smith-Waterman algorithm with general gap penalty function

In this paper we concentrate on the parallelization of DP algorithms of the type
2D/1D. This is an important DP algorithm with many applications. Figure 3 shows
three well-known DP algorithms of type 2D/1D. Although these DP algorithms look
different, they share similar characteristics. These 2D/1D DP algorithms are all
irregular with load computation density changes along the computation shift direction.

Figure 4 shows the change of load computation density along the computation shift
direction by using increasingly blacking shades. For these algorithms, the column-
based partitioning method of Figure 1 leads to poor load balancing. Thus, a more
efficient data partitioning scheme is needed. The problem of determining an
appropriate data partitioning scheme is to maximize system performance by balancing
the computational load among processors. Since the data partitioning scheme largely
determines the performance and scalability of a parallel algorithm, a great deal of
research has aimed at studying different data partitioning schemes. As a result the

 A Parallel BSP Algorithm for Irregular Dynamic Programming 155

(b)

Mij

(a)

Uij

Lij

(c)

Mij

Fig. 4. Dependency relationship and distribution of load computation density along
computation shift direction for (a) Nussinov, (b) Skyline matrix problem, (c) Smith-Waterman
algorithm with general gap penalty function

block-cyclic partitioning has been suggested as a general-purpose basic scheme for
parallel algorithms because of its scalability, load balancing and communication
properties [15]. In this paper, we introduce a tunable block-cyclic based distribution
of columns for irregular DP algorithms to balance the workload among processors.

3 The Bulk Synchronous Parallel (BSP) Model

The BSP model first proposed in [23] is designed to be a general purpose approach to
parallel computing that allows the separation of concerns between computation,
synchronization and communication costs. It has a simple cost model for predicting
the performance of BSP algorithms on different parallel platforms. A BSP
programming model consists of P processors linked by an inter-connecting network
and each with its own pool of memory.

A BSP algorithm consists of a set of processors each executing a series of
supersteps. Each superstep consists of three ordered phases: 1) a local computation
phase, where each processor can perform computation using local data and issue
communication requests; 2) a global communication phase, where data is exchanged
between processors according to the requests made during the local computation
phase; and 3) a barrier synchronization, which waits for all data transfers to complete
and makes the transferred data available to the processors for use in the next
superstep. The BSP cost model for a BSP algorithm S can be expressed as

cost(S) = sum{ w(i) + gh(i) + L } for superstep i = 1 … ns

where ns is the total number of supersteps; w(i) is the maximum computation cost by
any processor in superstep i; and h(i) is the maximum number of messages sent or
received respectively by any processor in superstep i. The architecture dependent
parameters g and L represent the communication and synchronization costs
respectively. From the BSP cost model, we can see that the performance of a BSP
algorithm relies on three factors: a) computation balance; b) communication balance;
and c) ns, the total number of supersteps.

156 M.Y.H. Low, W. Liu, and B. Schmidt

While a BSP library consists of a small set of architectural independent
programming interface that support the BSP programming model, the efficiency of a
BSP algorithm depends on how the underlying BSP library implementation optimizes
the architecture dependent parameters g and L. Existing BSP library implementation
such as the Oxford BSP library [13] and the Paderborn University BSP (PUB) Library
[5] are often optimized for a selection of parallel hardware platforms. To keep up with
changes and development in these platforms, these libraries have to be constantly
updated. The BSPonMPI library (http://bsponmpi.sourceforge.net) is an effort to
create a BSP library that runs on any machine that has MPI installed. This ensures
that any BSP program compiled using BSPonMPI will benefit from improvements
and optimizations in the MPI library for a particular hardware platform.

4 Parallel BSP Algorithm

In this section, we describe a tunable parallel BSP algorithm for solving irregular DP
problems. The algorithm proceeds in a series of wavefront diagonally across the
matrix M. Figure 5 illustrate the concept of the algorithm for an 8×8 matrix with a
column-wise block-cyclic partition. The parameter division is used to implement a
block cyclic distribution of columns to processors. The parameter rowwidth is used to
control the size of messages that Pi will send to other processors. In the figure, Pi,dj

k
denotes that the cell is updated by processor Pi at division j of wavefront k. Each
wavefront corresponds to a superstep in the BSP computation. For example, in
wavefront 4, processor P1 and P2 are active in both division 1 and 2.

Fig. 5. The tunable block-cyclic partitioning method for irregular dynamic programming

Increasing the number of cyclic divisions and decreasing the size of messages may
lead to better load balancing at the expense of increase in communication overhead.
Thus, the choice of the parameter for division and rowwidth is a trade-off between
load balancing and communication time. Figure 6 shows the BSP algorithm for
irregular dynamic programming. In each superstep (or wavefront), each processor
updates the block allocated to it in all its active divisions and sends the updated block
to other processors. In this implementation, we use the BSP shared memory primitive
bsp_put() to update the matrix block. A barrier synchronization is called at the
end of each superstep. All processors will receive the updated matrix by the beginning

P1,d1
1 P1,d1

1 P2,d1
2 P2,d1

2 P1,d2
3 P1,d2

3 P2,d2
4 P2,d2

4
P1,d1

1 P1,d1
1 P2,d1

2 P2,d1
2 P1,d2

3 P1,d2
3 P2,d2

4 P2,d2
4

P1,d1
2 P1,d1

2 P2,d1
3 P2,d1

3 P1,d2
4 P1,d2

4 P2,d2
5 P2,d2

5
P1,d1

2 P1,d1
2 P2,d1

3 P2,d1
3 P1,d2

4 P1,d2
4 P2,d2

5 P2,d2
5

P1,d1
3 P1,d1

3 P2,d1
4 P2,d1

4 P1,d2
5 P1,d2

5 P2,d2
6 P2,d2

6
P1,d1

3 P1,d1
3 P2,d1

4 P2,d1
4 P1,d2

5 P1,d2
5 P2,d2

6 P2,d2
6

P1,d1
4 P1,d1

4 P2,d1
5 P2,d1

5 P1,d2
6 P1,d2

6 P2,d2
7 P2,d2

7
P1,d1

4 P1,d1
4 P2,d1

5 P2,d1
5 P1,d2

6 P1,d2
6 P2,d2

7 P2,d2
7

division=2

rowwidth=2

 A Parallel BSP Algorithm for Irregular Dynamic Programming 157

Input: The number of processors Np, the number of division Nd, the
row width R. (n×n is the size of matrix M, dt denotes the t-
th division, wt denotes the t-th wave, C denotes the column
width).

Output: Depending on the requirements of the given applications,
the output will be the optimal score M[1,n] or the whole
matrix M.

Nwaves = p*Nd + n/R;
C = n/Nd;

bsp_begin(Np)
 pid = bsp_pid();
 // beginning of a superstep, do for each wavefront
 for wt = 1 to Nwaves
 for dt = 1 to Nd // do for each division
 // if processor pid is active in this division
 if pid+(dt × Np) <= wt
 Sc = (pid + (dt-1)×Np) × C; // compute starting column
 Sr = (wt – pid -(dt × Np)) × R; // compute starting row
 for i = Sc to Sc + C
 for j = Sr to Sr + R
 compute(M[i,j]);
 endfor
 endfor
 send_block();//send updated block to other processors
 endif
 endfor
 // end of superstep
 bsp_sync();
 endfor
bsp_end()

Fig. 6. The BSP algorithm for irregular dynamic programming

of the next superstep. Note that for sake of simplicity, the algorithm presented
assumes the dimension of the matrix n is exactly divisible by C and R. The actual
algorithm implemented does not have this assumption.

5 Performance Evaluation

We carried out a set of experiments using the BSP algorithm described in section 4 to
parallelize the Smith-Waterman algorithm with general gap penalty function. The
hardware platform used is an 8-node Dual-Processor Linux cluster with a 1GBit/sec
Myrinet switch used as inter-cluster connection. The BSP algorithm is compiled with
Myrinet MPICH ver 1.2.6 and linked with the BSPonMPI ver 2.0 library.

Table 2 shows the speedup results using the BSP algorithm for irregular dynamic
programming on different number of processors. With different number of processors,
the best speedup (shown in bold) is obtained with different combination of Nd and R.

In the first implementation, each processor is allocated equal number of columns in
each division. When the dimension of the matrix is not exactly divisible by the Nd and
the number of processor, the remainder columns are allocated to the first processor in
the first division. For example, in the case of Np=16 and Nd=50, each processor will
be allocated 3 columns in each division. In the first division, processor P1 will be
allocated the remaining 600 columns in addition to the 3 columns allocated to each
processor! Since processor P1 will be active in division 1 for n/R supersteps, this

158 M.Y.H. Low, W. Liu, and B. Schmidt

allocation will result in computation and communication imbalance during the BSP
computation. Table 3 shows the number of extra columns allocated to processor P1 in
division 1. Except for Np=2, the best speedup numbers from Table 2 clearly matches
the value of Nd that gives the smallest number of extra columns in division 1.

In the second implementation, a more balanced partitioning approach is used. In
this implementation, all processors are allocated k = n/(NpNd) columns in all divisions.
If NpNd does not divide n exactly, in division 1, the remaining n−kNp(Nd−1) columns
are divided again equally among all processors and the remaining columns are
allocated to P1. For example, in the case of Np=16 and Nd=50, each processor will be
allocated 3 columns in each division except division 1. In division 1, each processor

Table 2. Speedup for Nd=50 to 90 and row width R=10 to 40 with Np=2, 4, 8 and 16 processors.
The DP matrix is of size 3000×3000.

 Nd=50 60 70 80 90 Nd=50 60 70 80 90
 Np=2 Np =4
R=10 1.56 1.55 1.65 1.59 1.43 2.39 2.76 2.72 2.60 2.92

20 1.63 1.58 1.62 1.49 1.41 2.93 2.20 2.79 2.60 2.74
30 1.46 1.47 1.55 1.57 1.53 3.15 2.79 2.69 2.54 2.84
40 1.50 1.61 1.40 1.66 1.60 2.43 2.96 2.63 2.60 2.71

 Np =8 Np =16
R=10 4.46 4.56 4.09 3.43 4.71 3.46 3.81 2.55 3.75 4.74

20 3.77 3.98 4.38 3.48 4.68 3.57 4.42 2.96 3.57 6.60
30 4.13 4.94 4.45 3.13 4.92 3.27 5.81 2.70 3.26 6.47
40 4.37 4.77 4.18 3.45 4.63 3.15 6.10 2.49 3.59 5.77

Table 3. Number of extra columns allocated to processor 1 in division 1

Nd=50 60 70 80 90 Nd=50 60 70 80 90
Np =2 Np =4

0 0 60 120 120 0 120 200 120 120
Np =8 Np =16

200 120 200 440 120 600 120 760 440 120

Table 4. Speedup using BSP algorithm for Nd=50 to 90 and row width R = 10 to 40 with Np= 2,
4, 8 and 16 processors using improved partitioning. The DP matrix is of size 3000×3000.

 Nd=50 60 70 80 90 Nd=50 60 70 80 90
 Np =2 Np =4
R=10 1.59 1.58 1.64 1.60 1.60 2.82 3.16 3.04 2.92 3.24

20 1.62 1.56 1.59 1.62 1.64 2.65 2.99 3.09 3.11 3.20
30 1.44 1.64 1.66 1.56 1.71 3.17 2.52 2.67 2.99 2.68
40 1.58 1.61 1.61 1.62 1.66 3.12 2.55 2.97 2.31 3.08

 Np =8 Np =16
R=10 5.98 5.78 5.52 5.23 5.64 9.09 7.40 7.12 8.14 8.33

20 5.62 5.79 5.84 5.15 5.62 7.58 9.36 7.43 8.70 8.19
30 4.96 5.79 5.58 5.05 5.41 6.65 5.40 7.98 6.34 7.68
40 5.45 5.20 5.17 5.18 5.20 8.02 7.68 3.77 3.76 6.59

 A Parallel BSP Algorithm for Irregular Dynamic Programming 159

will be allocated 40 columns each and processor 1 will receive 48 columns. Another
alternative partitioning approach is to allocate the remaining columns equally across
all divisions. This will be investigated in our future implementation.

Table 4 shows the experimental results using the improved partitioning. For Np=16,
there is clearly a substantial improvement in performance and the difference in
performance between different Nd is reduced. The results show that a balanced
partitioning approach is crucial to the performance of the BSP algorithm for irregular
dynamic programming.

6 Conclusions and Future Work

In this paper, we have described a tunable BSP algorithm for irregular DP algorithms
of type 2D/1D. In the BSP algorithm presented in Figure 6, communication is
initiated through the BSP shared memory primitive bsp_put() invoked by each
sender processor. The receiving part of the communication is automatically handled
by the BSPonMPI library and is carried out in bulk at the end of every superstep. This
makes the code simple and easy to understand. Note that such one-sided
communication primitive is also available in MPI 2.0. An MPI algorithm for irregular
DP applications similar to the one presented in [16] that uses matching send and
receive primitive for inter-processor communication can sometime lead to code that is
hard to understand and debug.

The experimental results also show that good partitioning approach is essential to
achieving high parallel efficiency for this BSP algorithm. The corresponding parallel
efficiency for P = 2, 4 and 8 ranges from 75% to 83%. For P = 16, the parallel
efficiency drops to 58%. Table 4 shows that the selection of Nd and R has a more
significant effect on the performance Np=16. This could be due to (1) the relatively
high barrier synchronization cost L for 16 processors; and (2) the scheduling of tasks
between each of the two processors in each node of the Linux cluster.

With improved performance of future versions of the BSPonMPI library, the
effects of barrier synchronization cost will be minimized accordingly. We will
explore different processor mapping and data partitioning strategies to resolve the
issue of scheduling dual-processor nodes in a cluster. Our future work also includes
benchmarking the communication and synchronization cost of different processor
configurations for our system. This will allow us to predict the performance of
different combinations of Nd and R and determine the combination that will yield the
best performance. We will also explore how the BSP algorithm can be adapted to
other type of DP applications such as 2D/2D and 3D/1D. Such applications are
frequently used in the field of computational biology.

References

1. Alves, C.E.R., Cáceres, E.N., Dehne, F.: Parallel dynamic programming for solving the
string editing problem on a CGM/BSP. In: Proc. of the fourteenth annual ACM
symposium on Parallel algorithms and architectures, Winnipeg, Manitoba, Canada (2002)

2. Alves, C.E.R., Cáceres, E.N., Dehne, F., Song, S.W., Parallel, A.: Wavefront Algorithm
for Efficient Biological Sequence Comparison. In: Kumar, V., Gavrilova, M., Tan, C.J.K.,
L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 249–258. Springer, Heidelberg
(2003)

160 M.Y.H. Low, W. Liu, and B. Schmidt

3. Anson, E.L., Myers, G.W.: Realigner: A Program for Refining DNA Sequence Multi-
Alignments. In: 1st Conference on Computational Molecular Biology, pp. 9–16 (1997)

4. Birney, E., Durbin, R.: Dynamite: A Flexible Code Generating Language for Dynamic
Programming Methods. In: Proc. Intelligent Systems for Molecular Biology, pp. 56–64 (1997)

5. Bonorden, O., Juurlink, B., von Otte, I., Rieping, I.: The Paderborn University BSP (PUB)
Library. Parallel Computing 29(2), 187–207 (2003)

6. Bowie, J., Luthy, R., Eisenberg, D.: A Method to Identify Protein Sequences That Fold
Into A Known Three-dimensional Structure. Science 253, 164–170 (1991)

7. Ciressan, C., Sanchez, E., Rajman, M., Chappelier, J.C.: An FPGA-based coprocessor for
the parsing of context-free grammars. In: IEEE Symposium on Field-Programmable
Custom Computing Machines (April 2000)

8. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis-Probabilistic
Models of Protein and Nucleic Acids. Cambridge University Press, Cambridge (1998)

9. Farach, M., Thorup, M.: Optimal evolutionary tree comparison by sparse dynamic
programming. In: 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, November 20-22, 1994, pp. 770–779 (1994)

10. Galil, Z., Park, K.: Dynamic Programming with Convexity, Concavity and Sparsity.
Theoretical Computer Science 92, 49–76 (1992)

11. Gelfand, M.S., Mironov, A.A., Pevzner, P.A.: Gene Recognition Via Spliced Sequence
Alignment. Proc. Natl. Acad. Sci. 93, 9061–9066 (1996)

12. Gelfand, M.S., Roytberg., M.A., Dynamic, A.: Programming Approach for Prediction the
Exon-Intron Structure. Biosystems 30, 173–182 (1993)

13. Hill, J., McColl, B., Stefanescu, D., Goudreau, M., Lang, K., Rao, S., Suel, T., Tsantilas,
T., Bisseling, R.: BSPlib: The BSP programming library. Parallel Computing 24(14),
1947–1980 (1998)

14. Huang, X., Chao, K.M.: A Generalized Global Alignment Algorithm. Bioinformatics 19(2),
228–233 (2003)

15. Kumar, V., Grama, A., Gupa, A., Karypis, G.: Introduction to Parallel Computing.
Cummings Publishing Company Inc., The Benjamin (1994)

16. Liu, W., Schmidt, B.: A Tunable Coarse-Grained Parallel Algorithm for Irregular
Dynamic Programming Applications. In: Bougé, L., Prasanna, V.K. (eds.) HiPC 2004.
LNCS, vol. 3296, Springer, Heidelberg (2004)

17. Mount, D.W.: Bioinformatics-Sequence and Genome Analysis. Cold Spring Harbor
Laboratory Press (2001)

18. Needleman, S.B., Wunsch., C.D., General, A.: Method Applicable to the Search for
Similarities in the Amino Acid Sequence of Two Proteins. J. Mol. Biol. 48, 443–453 (1970)

19. Ney, H.: The Use of a One-Stage Dynamic Programming Algorithm for Connected Word
Recognition. IEEE Trans. on Acoustic, Speech and Signal Processing ASSP-32(2), 263–
271 (1984)

20. Schmidt, B., Schroder, H., Schimmler, M.: Massively Parallel Solutions for Molecular
Sequence Analysis. In: Proc. of IPDPS 2002 (2002)

21. Schmidt, B., Schroder, H., Schimmler, M.: A Hybrid Architecture for Bioinformatics.
Future Generation Computer System 18, 855–862 (2002)

22. Smith, T.F., Waterman, M.S.: Identification of Common Subsequences. Journal of
Molecular Biology 147, 195–197 (1981)

23. Valiant, L.G.: A Bridging Model for Parallel Computation. Communications of the
ACM 33(8), 103–111 (1990)

24. Zuker, M., Stiegler, P.: Optimal Computer Folding of Large RNA Sequences Using
Thermodynamics and Auxiliary Information. Nucleic Acids Research, 9 (1981)

	A Parallel BSP Algorithm for Irregular Dynamic Programming
	Introduction
	Irregular DP Algorithms
	The Bulk Synchronous Parallel (BSP) Model
	Parallel BSP Algorithm
	Performance Evaluation
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

