Exploring Data Reusing of Failed Transaction

Shaogang Wang, Dan Wu, Xiaodong Yang, and Zhengbin Pang

School of Computer, National University of Defense Technology
Changsha, Hunan, 410073 China

wshaogang@nudt.edu.cn

Abstract. Transactional Memory (TM) has been the promising paral-
lel programming technique to relieve the tedious work of synchronizing
shared object using lock mechanism. Transaction execution required to
be atomic and isolated relative to the whole system. The transaction
fails if found violated access to the shared object from other transaction,
and it will be re-executed till finally commit successfully; currently, most
TM systems are required to restore shared memory’s state before re-
execution, this cleanup cost and the shared object’s opening cost greatly
hurdle system’s performance.

In this paper, we propose a new general transaction iteration’s data
reusing (TTtDR) method which reuses the opened object of failed trans-
action in the following re-execution. The obvious advantage is that it
greatly simplify the opening process if it has been opened in previous
failed transaction and most of the cleanup work are no longer needed.
TItDR leaves opened object in pseudo-active state and restart the trans-
action, We talk about conflicts resolution, validation, commit/abort pro-
cessing problem along with our data reusing method and show that
TItDR will not incur more conflicts and more overhead for validation or
commit. Both currently proposed software transactional memory (STM)
systems and hardware systems (HTM) have much potential data reusing.

Our test result is based on STM implementation, which shows 40%
performance improvement on average.

Keywords: transactional memory, data reusing, TItDR.

1 Introduction

Recent research has showed that transactional memory has been the promising
parallel programming technique. The proposed TM systems (RSTM[I], UTM[2],
logTM[3], TCC4]) must provide atomicity and isolation for transactions. If con-
current executing transactions find that they can not both successfully commit
because of conflicting shared memory access, one transaction must be chosen to
re-execute. This abort handling is the import part of TM systems as it greatly
affects the overall TM system’s performance. Next we summarize the well-known
published TM systems, focusing on processing if transaction fails. Analysis shows
that there exists potential data reusing of the aborted work for failed transaction
execution.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 141 2007.
© Springer-Verlag Berlin Heidelberg 2007

142 S. Wang et al.

As seen from the currently TM systems(Log TM[BI5I6], TCC[L7], UTM[2I§],
RSTM[I9]), to abort a transaction, we must do the tedious compensating work
to guarantee the transaction’s isolation property[TOIIT2/T3]. The burden of
memory system doing the restore operation may be greater than the cost of
opening the shared object. Because this needs to read and write a large set of
dispersed data simultaneously. The retry on failed (i.e. transaction iteration) ex-
ecution method will reopen the same object with very high chance, the close and
then open process is necessary for the conflicting object to ensure consistency.
Yet with our experience, other non-conflicting shared object, the reopen process
usually does the same thing as reconstruction the metadata, allocating memory
space, and updating bookkeeping information etc.

TM system detects conflicts when concurrent transactions visiting the same
object and at least one is write[], reducing transaction conflicts chance can
greatly improve the whole system performance. Currently proposed conflicts res-
olution technique deals with this problem by letting transaction wait for object
to be released or back off some time before retry transaction. The principle of
reusing data should avoiding introducing more conflicts. Our paper shows that
by taking special management, TM system can get this win-win situation.

In this paper, we proposed a common method to reusing transactional object
on transaction aborts, which called TItDR. As far as I know, this is the first
research on exploring data reusing across transaction iterations. Our contribution
includes:

— We proposed a new method called TItDR which exploring the data reusing
across transaction iteration.

— We show that current TM system can support our TItDR without redesign
from ground.

— We give a hardware framework to support TItDR. Currently proposed trans-
actional protocol can be enhanced to benefit from the data reusing.

2 Basic Idea

In this section, we discuss basic idea of TItDR, and ignore some implementation
details which may be different for STM or HTM. In this paper, we call the
repeated retry of the transaction until successfully as transaction iteration, so one
transaction’s execution is composed of several iterations with the last iteration
is successful; current running iteration is called active iteration; the iterations
that failed before active iteration is called obsolete iteration; the object which
has been opened in the active iteration is in active state, the object opened in
the obsolete iterations but not opened in active iteration is in obsolete state.
Overall TItDR improved TM system with the following idea:

1. Binding a number called itnumber to each transaction iteration, on abort,
increase the itnumber and reset itnumber if commits successfully. When
shared object is opened, TItDR saves current itnumber together with the
object. So by comparing the itnumber with the active iteration’s itnumber,
we can decide if the object is in obsolete state.

Exploring Data Reusing of Failed Transaction 143

2. Thread maintains a local list of opened objects; on opening shared object,
add the object together with current iteration’s itnumber to the list. Most
TM systems maintain the opened list for rolling back, so we may only a
mirror modification. If transaction aborts, we keep the opened list through
which TM system keeps information about the obsolete object, and do not
try to restore the state of transactional opened object. In the next iteration, if
transaction opens an obsolete object, the cost can be greatly reduced because
we can reuse the obsolete object. For opening for read an obsolete object, we
can use directly use the data if validation is successful, and for opening for
write, previous iteration’s write data maybe incorrect, so the value should
be discarded, but we can reuse the metadata to avoid reconstructing.

3. Other transaction’s conflicts with opened object now has two types, conflicts
with active objects and conflicts with obsolete objects. Our method keeps
the obsolete in the ”pseudo-active” state that will enlarge the object’s open
time. That will introduce more conflicts between transactions. So contention
manager should take a compromised decision between these two folds. With
our experience, always aborting the obsolete object will not bring more con-
flicts than current TM systems; more, the obsolete object may not be opened
in the re-execution if the execution path is different; so aborting the obsolete
object will not introduce some unnecessary conflicts;

4. On reopening object in the re-execution, if object is in obsolete state and
the object has not been aborted by other transaction, thread can reuse this
object without performing the reopening process.

Our method’s primary advantage is it greatly reduces the work needed on
transaction abort, because we no longer need to restore memory state before
transaction restarts. A second advantage is we reduce the cost of reopening
process by reusing obsolete object in active transaction iteration. The reusing
includes data value reuse, memory space reuse and data structure reuse.

On read operation, value first read to a temporal local place and uses this value
in the remainder transaction, transaction commits failed if object’s curren has
been updated by other transaction during the transaction. TItDR improves the
read operation with transaction’s itnumber which will increase by 1 on restarted,
if current transaction fails, most current TM systems will discard the read list
and temporal read value and start a fresh read operation in the next iteration.
Yet we can simply keep the read set and value in the next iteration, on opening
an object, if this object is in the obsolete read set(object’s itnumber will be less
than active iteration’s itnumber), we can reuse the value if validation successful.
On write operation, new value can be directly updated to the temporal location
if previous iteration has opened for write. Our basic idea is simple, we believe
that the failed transaction is not having nothing to gain.

As we study from current proposed TM systems, we think that it is feasible to
incorporate with our method to have data reusing benefit. In the next section,
we give one implementation example based on RSTM and show some problem
that is brought with data reusing.

144 S. Wang et al.

3 Example Software Implementation

STM system usually construct through software library or language extension
which uses complex metadata organization[I], in this section, we give the de-
tailed optimization of RSTM to implement our TItDR methods. RSTM is a
non-blocking STM system implemented as C++ class library. RSTM support
visible/invisible transactional object read, eager/lazy transactional object write.
In RSTM, every transactional object is accessed through ObjectHeader, which
points to the current version of the object. The ObjectHeader contains the
visiting information from transactions; The Transaction Descriptor referenced
through an object’s header determines the transaction’s state. If the transac-
tion commits, then NewDataObject is the current version of the object. If the
transaction aborts, then OldDataObject restored to the current version. If the
transaction is active, no other transaction can read or write the object without
aborting the transaction. We will ignore detailed information in this paper and
only gives the optimization of RSTM, which is referred by RSTM datareuse.

We redefine transaction’s ABORTED state, which means the time between
current iteration is aborted and next iteration starts. RSTM datareuse adds
itnumber to transaction descriptor to holds transaction’s iteration information;
ObjectHeader uses the second low-bit of NewData as obsolete flag for eager
write, for every entry in the explicit list of visible reader, adds one bit obsolete
flag for visible reader. The obsolete flag indicates that object is in obsolete state,
which is opened in previous iteration, but has not opened in current iteration.

RSTM uses bookkeeping lists (invsibleReadList, visibleReadList, eagerWrite-
List, lazy WriteList) to hold currently opened object, In addition RSTM datareuse
adds the list entry with itnumber field which hold current transaction iteration’s
itnumber.

When transaction initially starts, the bookkeeping lists are empty and the
itnumber reset to 1. On read operation, RSTM datareuse adds the object to
thread local invisibleReadList or visibleReadList based on reading type. In case
of visible read, mark the corresponding read flag in the ObjectHeader. The read

Status Transaction Descriptor

itnumber

A

Obsolete Bn\ {Clean Bit

[] >
New Datal I > Ouner

VisRd 1 | Obsolete 1

Old Data

Y

Data Object- new version
VisRdn | Obsolete n

Data Object-old version

Fig. 1. metadata used to implement TItDR

Exploring Data Reusing of Failed Transaction 145

flag together with the obsolete flag cleared indicating that the read object is
in active state. For write operation, RSTM allocate a cloned object to hold
new value. The ObjectHeader’s owner state with obsolete cleared indicating the
object is in write active state. If the transaction is aborted, for visible read and
eager write, iterates the list and marks the active object’s corresponding obsolete
flag. So other transaction may only need to check the obsolete bit to see whether
the object is in active state or obsolete state. RSTM datareuse does not drop
the bookkeeping list or free new allocated memory; this has performance benefit
as avoids rebuilding the metadata on transaction’s re-execution. As comparing
with RSTM, RSTM datareuse’s abort processing is really simple.

If transaction is aborted and restarted, now the bookkeeping lists holds opened
object in previous iterations. The reopening process makes some difference, first
checks if the object is in the bookkeeping list, if found and the itnumber is less
than current transaction itnumber, the opened object needs validation to see
whether the object is still valid, if validate successfully, clear ObjectHeader’s
obsolete flag, and now the object is in current transaction’s active state. For
write operation, because RSTM datareuse does not free the cloned object, active
transaction’s cloned object will reuse this memory space. RSTM datareuse incurs
a bit of lookup and validation for open cost, this cost is neglectable because the
system needs periodically validating to ensure opened object is still in valid[T3].
A pseudo-code for open RW operation is as follows:

On transaction commit successfully, RSTM datareuse only update memory of
the active objects (i.e. bookkeeping list entry’s itnumber equals active iteration’s
itnumber). There may be obsolete objects in bookkeeping list when transaction
commit successfully, this is due to execution path is different between commit-
ted iteration and previous iteration. For these objects, we need to restore their
previous value before transaction.

The object’s obsolete state divides conflicts into two types: transaction con-
flicts with active object or obsolete object, RSTM datareuse always abort the ob-
solete object for several reasons. First, aborting obsolete object’s cost is small for
it does not need to abort current active transaction execution. Second, releasing
obsolete object makes object’s open time shorter which allows more transaction
parallelism. Third, transaction’s open set may be different between iterations if
the transaction has branches and the condition is based on the shared object’s
return value. So always aborting the obsolete object will avoid some false con-
flicts. The contention management policies can be used with no modification for
only conflict with active objects is resolved by CM (Contention Manager) and
the introduced obsolete state can be ignored by CM.

Modern STM systems incrementally validate opened object to test whether
the execution is valid. RSTM opened set is maintained in transaction’s bookkeep-
ing lists, RSTM datareuse only needs to validate the active object in the list and
ignores the obsolete object, because if the obsolete object will be reopened, the
opening process includes the validation operation. So although RSTM datareuse
does not drop obsolete objects, its validation cost will not be greater than RSTM.

146 S. Wang et al.

4 The Hardware Approach

Hardware transactional memory is a hardware system that supports implement-
ing nondurable ACI properties for threads manipulating shared data. A very
natural way of implementing HTM is enhancing cache coherence protocol to
support transactional processing. LogTM supports eviction of transactional ac-
cessed cache lines during a transaction by retaining ownership of the cache line.
The cache coherence protocol’s directory state is in sticky state when an active
transaction’s opened object is written back while the ownership is still reserved
by transaction. In this way transaction that conflicts with the sticky object can
be detected by forwarding the request to the owner if the owner is in transaction
mode. A second feature is using software log to restore memory state on abor-
tion. To implement our data reusing idea, we should enhance logTM’s protocol
with some extensions similar to our software approach.

Transactional object has two copies (active copy and shadow copy) in cache,
the active copy stores current value and shadow copy store backup data. In this
way, we no longer need the undo log maintained by processor, for the backuped
value is stored in shadow copy. The space requirement is the mainly cost, yet
we think it is acceptable as we can enhance the multi-level cache to support our
requirement. Another method to reduce the cost is to use the similar method
used in operating system when mapping virtual memory to cache entry mapping.
If memory first opened in transaction, update the active and shadow copy with
object’s current data. The following update to the object will be written to the
active copy, if transaction commits successfully, update the memory system with
the active copy. On failure, mark active copy as obsolete, if obsolete object is
visited, use the shadow copy value.

Transaction’s iteration number needs to be hold in processor. Cache and direc-
tory maintain iteration number information for every opened object. On trans-
action fails, processor increase its iteration number and mark opened shared
objects as obsolete. On reopening object, the validation processor is really sim-
ple, it only needs to see whether the cache block is still valid in cache.

Undo log: only active transaction’s evicted cache object is written into the
undo log. If transaction failed and the undo log is not empty, we should replay
the undo log to restore memory state. The undo log is managed by software,
which dealing the case hardware cache overflows.

Conflicts detection is through the cache coherence protocol. When processor
get intervention message which visit the obsolete object in his cache, the pro-
cessor should forwarding the old data and need not abort current transaction.
Another tricky is when another processor conflicts with out-of-cache active ob-
jects (i.e. objects in the undo log), in this situation, simply send NACK message
to abort it.

The hardware approach does not need to replay the undo log to restore
memory state if transaction fails. This cost is much greater than the RSTM,
because logTM write the previous back to memory, while RSTM simply mod-
ify the object’s header to point back original data as it keeps both active and
backup data in memory. On reopening objects it reuses the shadow copy so saves

Exploring Data Reusing of Failed Transaction 147

memory visiting cost. Currently we are working on the test environment to give
our reusing detailed test result.

5 Test Results and Analysis

In this section, we give our test result of data reusing in transactional memory,
we implement TItDR based on RSTM2 as shown in section Bl We test bench-
marks on a 2-processor blade server with Intel Xeon 2.3GHz, 4core processor.
We compiled both our implementation and RSTM with gce3.4.4 with O3 opti-
mization level. We tested for a period of 10 seconds for each benchmark, varying
the thread number from 1 to 8. Results were averaged over a set of 3 test runs
and all experiments use the Polka contention manager.

We use the same benchmark with RSTM2[I] which includes: shared counter;
linked list; hash table; LEUCache and random graph.

5.1 Total Transaction Throughput

Throughput comparison was given by the total finished transactions during 10
seconds; we give both eager and lazy write type benchmark results.

For the shared counter benchmark, we get the best speedup compared with
RSTM2, this is due to that all threads want to increase the same shared variable,
which can not be accessed parallel. All the thread must line up to access the
counter, so with threads number increase, both our method and RSTM does not
increase the total transactions throughput. Yet for RSTM’s eager write type,
with thread number increase, we got decrease total committed transactions, for
it needs more work to contention management, restoring. For the same reason,
Eager write type with data reusing will not suffer this problems. Another reason
for we get the best speedup is that the counter benchmark is dominated by write,
with no read operation. For software approach TM, the reusing for write will
save more work than reusing for read. This is due to that we relieve the memory
burden of reclaim and reallocate memory space for speculative writes. For cache
coherence based HTM systems, it is another case; hardware can easily get his
obsolete read object by checking cache status, and return current value.

12000000 1400000

10000000 1200000

1000000 5] [
8000000 P reusing lazy
rstm_lazy
Breusing eager

B rstm_eager

reusing lazy
rstm_lazy

Breusing_eager 600000
Erstm eager

800000
6000000

4000000 100000

2000000

200000

S

P s

0
0
0
s
N
N
N
IN:
N
N
N
N

N
N
N
N
N
N
N
N
N
N
N
N
N
A
é%
ION:

o

0 0

Fig. 2. Throughput of shared counter Fig. 3. Throughput of linked list

148 S. Wang et al.

35000000
30000000
25000000
20000000
15000000
10000000

5000000

0

6000000 -

5000000

reusing lazy 4000000

Nrstm lazy

. 3000000
Ereusing eager

rstm _eager 2000000

1000000

2
1
/]
/]
/]
/)
9
9
1
/)
2
A
Vi
A
A
A
A
A
Vi
A
A
A
A
A
2
2
A
A
A
A
A
V.
2
A
A
A
A
Vi
:

A5 SSSRSS
OSSN

5SS S SSSSSSSSSSRRRSSSNW

SN

>
33333 TSRS

IS

reusing_lazy
rstm_lazy
Ereusing eager
rstm eager

Fig. 4. Throughput of hash table

140000
7 7
120000 ‘ -
N N N
100000 A \ -
A \ N AN Drene
A \ N A Preusing lazy
80000 T tn 1
A \! gg g§ Nrstm_lazy
A
N N AN . .
60000 A\ & \ | Breusing cager
A S\
é§ é§ g% Erstm eager
40000 é§ é§ é
N A
N Nl
A\ Nl
A ~
N N 7
0 A el

Fig. 6. Throuput of random graph tests

Fig. 5. Throughput of LFUCache

For hash table and random graph benchmarks, we get continued increased
throughput as threads number increase, while RSTM’s RandomGraph get de-
creased throughput, it is because that as thread continues add vertex to the
graph, the graph will get large, so every time we want to locate a vertex, it
must traverse a large number of vertexes before getting to the vertex, this will
increase transaction’s read and write set and the transaction will getting large.

Table 1. the result is got from running benchmark with 8 threads and uses invisible
read, lazy write acquire rule. The number is given on thread average. Validation success
on write means that the object has not been updated by other thread. Validation
success on read means that our read value is still valid.

Benchmark

Counter
LinkedList
HashTable
LFUCache

1031806 74566 162 0 0

44119 50 1683 12854531 4287378
1151057 761 2454 5755649 3920
1218634 134212 3795 115610 351

RandomGraph 123708 183 9406 9314085 2210817

W times V success V failed R times V success V Failed

0
160397
16814
10390
17373

Exploring Data Reusing of Failed Transaction 149

This large transaction’s aborting cost is the primary reason for the decreasing
performance. With our method, test results show good scalability. Our method’s
cost of aborting will not change with different transaction size.

TTtDR has better performance speedup for eager write type, e.g. the counter
benchmark gets 35% to 2.2 times performance increase for eager, and for lazy,
we got 25% enhancement. Totally, we got the average performance speedup of
41.4% for all benchmarks.

5.2 Potential of Data Reusing

To see the potential data reusing there exists in transactional memory systems,
we count the times of open operation, and the times we can find data in failed
transaction’s open set, with the times that the data is valid.

For counter and LFUCache benchmark, the benchmark is dominated by write
operation, so write conflicts may occur very common, this servers two folds
effect, first, it will regularly make other transaction’s read not valid, so to reuse
read data, there is more chances that validation is failed. Second, the write
may have more chances that validation is success. The LinkedList, HashTable
and RandomGraph benchmarks are another case; the read operation has more
chances to find that the aborted transaction’s read value is still valid.

6 Conclusion and Future Work

We believe that TItDR is very attractive for TM systems have great potential
data reusing. The TItDR method greatly reduced the work to abort a transaction
and will accelerate the reopening process. From my experience, hardware based
data reusing is more attractive than software, for it can easy get the real data
reusing which can get value from cache. We have worked mainly on the software
approach. Yet the software approach should be optimized to efficiently support
currently proposed TM systems or rebuild TM system from ground with data
reusing in mind. We have not explored how to efficiently reuse data in the nested
transaction environment. Further studying cache coherence based transactional
memory with data reusing support includes protocol verification, implementation
and performance test.

References

1. Marathe, V.J., Spear, M.F., Heriot, C., Acharya, A., Eisenstat, D.: Scherer 111, W.N.,
Scott, M.L.: Lowering the overhead of software transactional memory. Technical Re-
port TR 893, Computer Science Department, University of Rochester (2006)

2. Chuang, W., Narayanasamy, S., Venkatesh, G., Sampson, J., Van Biesbrouck, M.,
Pokam, G., Calder, B., Colavin, O.: Unbounded page-based transactional memory.
In: ASPLOS-XII: Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, San Jose, California,
USA, pp. 347-358. ACM Press, New York, NY, USA (2006)

150

10.

11.

12.

13.

S. Wang et al.

Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: Logtm: Log-
based transactional memory. In: Proceedings of the 12th International Symposium
on High-Performance Computer Architecture, pp. 254-265 (2006)

Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B.,
Prabhu, M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory
coherence and consistency. SIGARCH Comput. Archit. News 32(2), 102 (2004)
Liblit, B.: An operational semantics for LogTM. Technical Report, University of
Wisconsin—-Madison (2006) Version 1.0 (1571)

Moore, K.E.: Thread-level transactional memory. In: Wisconsin Industrial Affiliates
Meeting (2004)

Hammond, L., Carlstrom, B.D., Wong, V., Hertzberg, B., Chen, M., Kozyrakis, C.,
Olukotun, K.: Programming with transactional coherence and consistency (tcc).
In: ASPLOS-XI: Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems, pp. 1-13. ACM Press,
New York, NY, USA (2004)

Lie, S.: Hardware support for unbounded transactional memory. Master’s thesis,
Massachusetts Institute of Technology (2004)

William, N., Scherer, 1., Scott, M.L.: Advanced contention management for dy-
namic software transactional memory. In: PODC 2005. Proceedings of the twenty-
fourth annual ACM symposium on Principles of distributed computing, pp. 240
248. ACM Press, New York, NY, USA (2005)

Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: ISCA 1993. Proceedings of the 20th annual international
symposium on Computer architecture, pp. 289-300. ACM Press, New York, NY,
USA (1993)

Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-
ware transactional memory. In: OOPSLA 2006. Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications, pp. 253-262. ACM Press, New York, NY, USA (2006)

Saha, B., Adl-Tabatabai, A.-R., Hudson, R.L., Minh, C.C., Hertzberg, B.: Mcrt-
stm: a high performance software transactional memory system for a multi-core
runtime. In: PPoPP 2006. Proceedings of the eleventh ACM SIGPLAN symposium
on Principles and practice of parallel programming, pp. 187-197. ACM Press, New
York, NY, USA (2006)

Spear, M.F., Marathe, V.J., Scherer III, W.N., Scott, M.L.: Conflict detection and
validation strategies for software transactional memory. In: DISC, pp. 179-193
(2006)

	Exploring Data Reusing of Failed Transaction
	Introduction
	Basic Idea
	Example Software Implementation
	The Hardware Approach
	Test Results and Analysis
	Total Transaction Throughput
	Potential of Data Reusing

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

