
Improving Recovery in Weak-Voting Data Replication�

Luis H. Garcı́a-Muñoz, Rubén de Juan-Marı́n, J. Enrique Armendáriz-Íñigo,
and Francesc D. Muñoz-Escoı́

Instituto Tecnológico de Informática - Universidad Politécnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

{lgarcia,rjuan,armendariz,fmunyoz}@iti.upv.es

Abstract. Nowadays eager update everywhere replication protocols are widely
proposed for replicated databases. They work together with recovery protocols
in order to provide highly available and fault-tolerant information systems. This
paper proposes two enhancements for reducing the recovery times, minimizing
the recovery information to transfer. The idea is to consider on one hand a more
realistic failure model scenario –crash recovery with partial amnesia– and on the
other hand to apply a compacting technique. Moreover, it is provided amnesia
support avoiding possible state inconsistencies –associated to the failure model
assumed– before starting the recovery process at recovering replicas.

1 Introduction

Database replication consists in maintaining identical copies of a given database at mul-
tiple network nodes. This improves performance, since clients access their local replica
or are forwarded to the less loaded one; and availability: whenever a node fails, its as-
sociated clients are silently redirected to another available one. Replication protocols
can be designed for eager or lazy replication [1], and for executing updates in a pri-
mary copy or at all node replicas [2]. With eager replication we can keep all replicas
exactly synchronized at all nodes, but this could have an expensive cost. With the lazy
alternative we can introduce replication without severely affecting performance, but it
can compromise consistency. Many replication protocols are based on eager update ev-
erywhere with a read one, write all available (ROWAA) approach. As we have briefly
highlighted before, these replication protocols provide high availability. However, only
a few of them deal with the possible reconnection of the failed node, which is managed
by recovery protocols [3,4,5,6].

The aim of the recovery protocols is to bring failed or temporarily disconnected
nodes back into the network as fully functional peers, by reconciling the database state
of these recovering nodes with that of the active nodes. This could be done by logging
transactions and transferring this log to recovering nodes so they can process missed
transactions, or transferring the current state of the items that have been updated in the
database since the recovering node failed.

� Work supported by FEDER, the Spanish MEC grant TIN2006-14738-C02 and the Mexican
DGEST and SES-ANUIES.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 131–140, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

132 L.H. Garcı́a-Muñoz et al.

This paper is focused in the recovery protocol for eager update everywhere replica-
tion protocols, proposing some optimizations to the work presented in [6]. These en-
hancements include amnesia support, and a better performance reducing the amount of
data to save in the actions done before recovering and the amount of data to transfer at
recovering time. The main idea in the last case is to compact recovery data eliminating
redundant information.

The rest of this paper is distributed as follows. Section 2 provides the system model.
Section 3 deals with the basic recovery protocol. Section 4 explains the necessary ac-
tions for the amnesia support. Next, Section 5 relates the process of compacting recov-
ery information. Later, Section 6 shows the simulation results followed by the related
works in Section 7. In the final Section 8, we provide our conclusions.

2 System Model

The basic recovery protocol has been designed for database replicated systems com-
posed by several replicas –each one in a different node–. These nodes belong to a par-
tially synchronous distributed system: their clocks are not synchronized but the message
transmission time is bounded. The database state is fully replicated in each node.

This replicated system uses a group communication system (GCS) [7]. Point-to-point
and broadcast deliveries are supported. The minimum guarantee provided is a FIFO
and reliable communication. A group membership service is also assumed, that knows
in advance the identity of all potential system nodes. These nodes can join the group
and leave it, raising a view change event. Therefore, each time a membership change
happens, i.e. any time the failure or the recovery of one of the member nodes occurs, it
supplies consistent information about the current set of reachable members as a view.
The group membership service combined with the GCS provides Virtual Synchrony [7]
guarantees, which is achieved using sending view delivery multicast [7] enforcing that
messages are delivered in the view they were sent. A primary component [7] model is
followed in case of network partitioning.

The replicated system assumes the crash-recovery with partial-amnesia [8] model.
This implies that an outdated node must be recovered from two “lost of updateness”:
forgotten state and missed state. This assumption supports a more realistic and precise
way to perform the recovery process. So the assumed model allows to recover failed
nodes from their previous crashing state maintaining their assigned node identifiers.

3 Basic Recovery Protocol

Our basic proposal is inspired in the recovery protocol presented in [6]. It has been
designed for eager update everywhere database replication protocols and proposes the
use of DB-partitions (see below). It was originally designed for providing recovery
support for the ERP and TORPE [6] replication protocols. Such protocols use a voting
termination approach [2], and can be considered as weak voting replication protocols
[9]. This basic recovery protocol can be outlined as follows:

– The system has a database table named MISSED, which maintains all the infor-
mation that will be needed for recovery purposes. Each time a new view is installed

Improving Recovery in Weak-Voting Data Replication 133

a new entry is inserted in the MISSED table if there are failed nodes. Each entry
in MISSED table contains: the view identifier, the identifiers of crashed nodes in
this view –SITES–, and the identifiers list of data items modified during this view
–OID LIST –. The two first ones are set at the beginning of the view, while the
last one grows as long as the view passes.

– When a set of crashed nodes reconnects to the replicated system, the recovery pro-
tocol will choose one node as the recoverer with a deterministic function. Then
in a first step the recoverer transfers the metadata recovery information to all re-
connected nodes. This metadata information contains: the identifiers of modified
items, and the crashed node identifiers in each view lost by the oldest crashed node
being recovered. The per-view metadata generates a DB-partition during the recov-
ery process; i.e., such items will be blocked while they are being transferred to the
recovering node, logically partitioning the database. These DB-partitions are also
used in order to block in each replica the current user transactions whose modified
items conflict with its DB-partitions. Subsequently, the recoverer starts to recover
each recovering node view by view. For each lost view, the recoverer transfers the
state of the modified items during this view. And, once the view has been recovered
in the recovering node, it notifies the recovery of this view to all alive nodes. The
recovery process ends in each recovering node once it has updated all its lost views.

– As a transaction broadcast is performed spreading two messages –remote and com-
mit–, it is possible that a reconnected node receives only the second one, without
any information about the updates to be committed. In this case the replication pro-
tocol will transfer the associated writesets to these nodes. This behavior implies that
transaction writesets are maintained in the sender node until the commit message is
broadcast.

But this recovery protocol presents the following two problems:

– Amnesia phenomenon. Although we are assuming the crash-recovery with partial
amnesia [8] failure model, many systems do not handle it in a perfect way. This
problem arises because once the replication protocol propagates the commit mes-
sage associated to one transaction, and it is delivered, the system assumes that this
transaction is being committed locally in all replicas. But this assumption even
using strong virtual synchrony [7] is not always true. It is possible that a replica
receives a transaction commit message, but before applying the commit the replica
crashes, as it is commented in [10] –the basic idea is that message delivery does
not imply correct message processing–. The problem will arise when this crashed
node reconnects to the replicated system, because it will not have committed this
transaction and the rest of the system will not include among the necessary recov-
ery information the updates performed by this transaction, arising then a problem
of replicated state inconsistency.

– Large MISSED table and redundant recovery information. If in the system there
are long-term crashed nodes –meaning nodes failed during many views– and there
are also high update rates it is possible that the MISSED table enlarges signifi-
cantly with high levels of redundant information, situation that is strongly discour-
aged. Redundant recovery information will appear because it is possible that the

134 L.H. Garcı́a-Muñoz et al.

same item has been modified in several views where the crashed nodes set is very
similar. In this case if an item is modified during several views, only knowing the
last time –meaning the last view– it was updated is enough. Therefore, it will be
interesting to apply algorithms that avoid redundant recovery information, because
the larger MISSED tables the greater the recovery information management over-
head becomes.

In the following section we will present and study different approaches for solving
these problems improving the basic recovery protocol.

4 Amnesia Support

In order to provide amnesia support different approaches can be considered. These ap-
proaches can be classified depending on which recovery information they use. On one
hand, there are the ones using the broadcast messages –log-based– [3,4] and, on the
other hand there are the ones using the information maintained in the database –version-
based– [5,6].

But before describing how the amnesia support can be provided in the basic recovery
protocol, it must be considered how this amnesia phenomenon manifests. In [11], it is
said that the amnesia phenomenon manifests at two different levels:

– Transport level. At this level, amnesia implies that the system does not remem-
ber which messages have been received. In fact, the amnesia implies that received
messages non-persistently stored are lost when the node crashes, generating a prob-
lem when they belong to transactions that the replicated system has committed but
which have not been already committed in the crashed node.

– Replica level. The amnesia is manifested here in the fact that the node “forgets”
which were the really committed transactions.

Hereafter we detail a log-based solution for the amnesia problem. There are other
amnesia supporting techniques –e.g., a version-based approach [5]– but are not pre-
sented here to due space constraints.

The information maintained in order to perform the amnesia recovery process will be
the broadcast replication messages. In this replication protocol two messages for each
propagated transaction: remote and commit. The amnesia recovery must be performed
before starting the recovery of missed updates –the latter will be done by the basic re-
covery protocol–. The amnesia recovery process will consist in reapplying the messages
belonging to non really committed transactions.

A transport-level solution consists in each node storing persistently the received mes-
sages, maintaining them as long as the associated transaction, t, has not been committed
and discarding them as soon as t its really committed in the replica. But, the message
persist process must be performed atomically inside the delivery process as already dis-
cussed in [10] with its “successful delivery” concept. Moreover, messages belonging to
aborted or rolled-back transactions must be also deleted.

Once the amnesia phenomenon is solved at transport level, it is necessary to manage
the amnesia problem at replica level. At this level the amnesia implies that the system

Improving Recovery in Weak-Voting Data Replication 135

can not remember which were the really committed transactions. Even for those trans-
actions for which the “commit” message was applied, it is possible for the system to
fail during the commit. Then the amnesia recovery process in a replica will consist in
reapplying (and immediatly deleting, in the same transactional context) the received and
persistently stored messages in this replica that have not been already deleted, because
it implies that the corresponding transactions have not been committed in the replica.
These messages are applied in the same order as they were originally received.

It also must be noticed, that in this process is not needed to apply the remote mes-
sages whose associated commit messages have not been received, because it implies
that they have been committed in the subsequent view, and therefore their changes are
applied during the recovery of its first missed view.

Finally, once the amnesia recovery process ends, the basic recovery protocol mecha-
nism can start.

5 Compacting Recovery Information

In order to increase the performance at the moment of determining and transferring the
necessary information for the synchronization of recovering nodes, we propose some
modifications based on packing information that enhance the basic recovery protocol
described in [6]. This could be done by compacting the records in the MISSED table,
and with this, minimize the items to transmit and to apply them in the recovering node,
reducing thus the transmission and synchronization time.

These item identifiers can be packed due to the fact that the recovery information
only maintains the identifiers of updated items. The state of these items is retrieved by
the recoverer from the database at recovering time. Moreover, if a recovering node, k,
has to recover the state of an item modified in different views lost by k it will receive
as many times the item value, but transferring its state only once is enough. As a conse-
quence, it is not relevant to repeat the identifier of an updated item across several views,
being only necessary to maintain it in the last view it was modified.

We consider that the actions for the amnesia support are performed during the exe-
cution of user transactions. Whenever one (or more than one) node fails, the recovery
protocol starts the execution of the actions to advance the recovery of failed nodes. To
this end, when a transaction commits, the field which contains the identifiers of the
updated items, OID LIST , will be updated in the following way:

1. For each item in the WriteSet, the OID LIST is scanned to verify if the item is
already included in it or not. If it is not, it is included and is looked for in previous
views OID LIST , eliminating it from the OID LIST in which it appears, com-
pacting thus the OID LIST , i.e. the information to transfer when a node recovers.

2. If as a result of this elimination, an OID LIST is emptied, the content of the field
SITES is included into the field SITES of the next record, and the empty record
in the table MISSED can be eliminated.

When a node reconnects to a replicated system, the new view is installed and the
actions for the amnesia recovery are performed locally at the recovering node. This is

136 L.H. Garcı́a-Muñoz et al.

a lightweight process (i.e. only a few stored messages have to be processed) in com-
parison to the database state recovery process itself. The other nodes know who is the
recovering node, and every one performs locally the next actions:

1. The MISSED table is scanned looking for the recovering node in the field SITES

until the view that contains the recovering node is found. The items for which the
recovering node needs to update its state are the elements of OID LIST of this
view and the subsequent views.

2. At the recoverer node, the recovery information is sent to the recovering node ac-
cording to the basic protocol.

3. Once the recovering node has confirmed the update of a view, the node is eliminated
from the SITES field in this view, and if it is the last item, also the record that
contains this view is eliminated.

4. If a recoverer node fails during the recovering process, then another node is elected
to be the new recoverer, according to the basic protocol. And it will create the
partitions pending to be transferred, according to the previous points, and then it
will perform the item transfer to recovering nodes, again as in the basic protocol.

It is important to note that in a view change consisting in the join and leave of several
nodes, we must first update the information about failed nodes, and later execute the
recovery process.

6 Simulation Results

We have simulated the compacting enhancement in order to know which level of im-
provement provides. We have considered three replicated scenarios with 5, 9 and 25
nodes each one. The replicated database has 100000 data items. All simulations start
having all replicas updated and alive. Then, we start to crash nodes one by one –
installing a new view each time a node crashes–, until the system reaches the minimum
primary partition in each scenario. At this point two different recovery sequences are
simulated. In the first one, denoted as order 1, the crashed nodes are reconnected one
by one in the same order as they crashed, while in the second, denoted as order 2, they
are reconnected one by one but reversing their crash order. In both cases, each time a
node reconnects a new view is installed, and immediately the system starts its recov-
ery, ending its recovery process before reconnecting the following one. In any installed
view we assume that the replicated system performs 250 transactions successfully, and
each transaction modifies 20 database items. All simulation parameters are described in
Table 1.

The items in the writeset are obtained randomly with a uniform distribution. We have
not used neither a hot spot, as in other previous works [12], nor typical workloads as
TPC-W or TPC-C [13]. In both cases, they would be more favorable environments for
the compacting method than a uniform distribution, since they suppose more frequent
access to a set of items of the database, removing a big amount of items in the compact-
ing proccess. We have also assumed a fast network, and this reduces the performance
difference between the normal and compacting recoveries, since it only depends on the

Improving Recovery in Weak-Voting Data Replication 137

Table 1. Simulator Parameters

Parameter Value Parameter Value
Number of items in the database 100000 Time for a read 4 ms
Number of servers 5, 9, 25 Time for a write 6 ms
Transactions per view 250 Time for an identifier read 1 ms
Transaction length 20 modified items Time for an identifier write 3 ms
Identifier size 4 bytes CPU time for an I/O operation 0,4 ms
Item size 200 bytes Time for point to point message 0,07 ms
Maximum message size 64 Kbytes Time for broadcast message 0,21 ms
CPU time for network operation 0,07 ms

Table 2. Recovery times in seconds (N = Nodes, V = Views)

Basic Compacted Basic CompactedOrder N V
Avg StdDev Avg StdDev

Order N V
Avg StdDev Avg StdDev

1 5 2 165.8 0.23 161.7 0.21 2 25 5 414.6 0.18 376.1 0.15
2 5 1 82.8 0.20 82.9 0.18 2 25 7 580.4 0.19 502.1 0.14
2 5 3 248.7 0.18 236.7 0.16 2 25 9 746.2 0.19 616.0 0.12
1 9 4 331.6 0.19 308.1 0.18 2 25 11 912.0 0.19 719.2 0.11
2 9 1 82.9 0.17 82.9 0.20 2 25 13 1077.9 0.19 812.6 0.11
2 9 3 248.7 0.17 236.7 0.18 2 25 15 1243.8 0.19 897.1 0.10
2 9 5 414.5 0.18 376.0 0.17 2 25 17 1409.6 0.19 973.6 0.10
2 9 7 580.4 0.18 501.9 0.17 2 25 19 1575.5 0.19 1042.9 0.09
1 25 12 995.1 0.18 767.2 0.12 2 25 21 1741.3 0.19 1105.4 0.08
2 25 1 82.9 0.20 82.9 0.19 2 25 23 1907.2 0.18 1162.0 0.07
2 25 3 248.7 0.19 236.7 0.16

amount of transferred items. If we had a slow network, such difference would have been
bigger. We have made one hundred repetitions for every experiment obtaining with this,
the guarantees of a low dispersion (see Table 2).

This simulation has not considered the costs of: managing the amnesia problem, and
recovery information compacting. The amnesia problem, as it has been said before, is
solved using a log-based approach, persisting the delivered messages during the repli-
cation work, and applying those not committed during the amnesia recovery process.
Thus, it implies two costs: one in the replication work and another in the recovery work.
The first cost is not considered because does not happen in the recovery process. The
second one, although appears in the recovery process, is not considered because it is
very low compared to the recovery process itself –usually it will consist in applying
few messages (writesets) and in our simulation are very small–. The recovery informa-
tion compacting cost is not taken into account because this work is performed online,
therefore its associated overhead penalizes only the replication work performance, but
not the recovery.

138 L.H. Garcı́a-Muñoz et al.

The simulation results show that the more views a crashed node loses the better the
compacting technique behaves, which is a logical result. In fact, when more updates a
crashed node misses the probability of modifying the same item increases. Both in the
Table 2 and in the Figure 1 we can observe the same behavior. When a crashed node
has lost only one view the compacting technique does not provide any improvement
because it has been unable to work. But, as long as the crashed node misses more views
the compacting technique provides better results.

(a) (b)

(c)

Fig. 1. Item Compactness: (a) 5 nodes, (b) 9 nodes, (c) 25 nodes

It must be also noticed that the basic recovery protocol could arrive to transfer a
greater number of items than items has the original database. This occurs because it
transfers for each lost view all the modified (and created items in this view) indepen-
dently they are transferred when recovering other views where these items have been
also modified. This situation is avoided by our recovery protocol enhancement. And in
the worst case the proposed solution will transfer the whole database because during the
inactivity period of the recovered node all the items of the database have been modified.

Obviously, we must say that the improvement provided by our approach depends on
the replicated system load activity, the update work rate, and the changed items rate.
For the first two ones, we can consider in a general way that when higher they are better
our compacting technique behaves. This is because the probabilities of modifying the
same item in different views increase. This consideration drives us to the changed items
rate, which is really the most important parameter. It tells us if the performed updates
are focused in few items or not. Then for our technique it is interesting that changes are
focused in as few items as possible. In fact, the worst scenario for our technique will be
the one in which all the modifications are performed in different items.

Improving Recovery in Weak-Voting Data Replication 139

As final conclusion, we can say that our enhanced recovery protocol works better in
some of the worst scenarios from a recovery point of view: when the crashed node has
lost a lot of updates and the changed items rate is not very high.

7 Related Work

For solving the recovery problem [14] database replication literature has largely recom-
mended the crash recovery failure model use as it is proposed in [3,4,5,6], while process
replication has traditionally adopted the fail stop failure model. The use of different ap-
proaches for these two areas is due to the fact that usually the first one manages large
data amounts, and it adopts the crash recovery with partial amnesia failure model in
order to minimize the recovery information to transfer.

The crash-recovery with partial amnesia failure model adoption implies that the as-
sociated recovery protocols have to solve the amnesia problem. This problem has been
considered in different papers as [10,11,15] and different recovery protocols have pre-
sented ways for dealing with it. The CLOB recovery protocol presented in [3] and the
Checking Version Numbers proposed in [5] support amnesia managing it in a log-based
and version-based way, respectively.

In regard to the compactness technique, [16] uses it in order to optimize the database
recovery. In this case, this technique is used to minimize the information size that must
be maintained and subsequently transferred in order to perform the recovery processes.
Such paper also presents experimental results about the benefits introduced by using
this technique, reaching up to 32% time cost reductions.

The background idea of our compacting technique is very similar to the one used in
one of the recovery protocols presented in [5]. This protocol maintained in a database
table the identifiers of the modified objects when there were failed nodes. Each one
of these object identifiers was inserted in a different row, storing at the same time the
identifier of the transaction which modified the object. Therefore, when an object was
modified the system checked if its identifier was already inserted in this table. If it
has not, the protocol created a new entry where inserted the identifier object and the
transaction identifier. If it already existed an entry with this object identifier, the pro-
tocol simply updated in this entry the transaction identifier. So, this recovery protocol
also avoids redundant information, but it uses a more refined metadata granularity –
transaction identifier– than our enhanced protocol –view identifier–.

8 Conclusions

In this paper we have reviewed the functionality of the original recovery protocol de-
scribed in [6]. We have enhanced it providing an accurated amnesia support and incor-
porating a compacting method for improving its performance.

The amnesia support has been improved using a log-based technique which consists
in persisting the messages as soon as they are delivered in each node, in fact they must
be persisted atomically in the delivery process.

Our compacting technique avoids that any data object identifier appears more than
once in the MISSED table. Then, this mechanism reduces the size of recovery messages,
both the ones that set up the DB-partitions and the ones which transfer the missed values.

140 L.H. Garcı́a-Muñoz et al.

Tests have been made with a simulation model and the advantages of the enhanced
recovery protocol have been verified when comparing the results of both protocols. The
obtained results have pointed out how our proposed compacting technique provides
better results when the number of lost views by a crashed node increases. Thus, our
compacting technique has improved the recovery protocol performance for recoveries
of long-term failure periods.

References

1. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In:
ACM SIGMOD International Conference on Management of Data, pp. 173–182. ACM Press,
New York (1996)

2. Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., Alonso, G.: Database replication tech-
niques: A three parameter classification. In: SRDS, pp. 206–215 (2000)

3. Castro, F., Esparza, J., Ruiz, M., Irún, L., Decker, H., Muñoz, F.: CLOB: Communication
support for efficient replicated database recovery. In: 13th Euromicro PDP, Lugano, Sw, pp.
314–321. IEEE Computer Society Press, Los Alamitos (2005)

4. Jiménez-Peris, R., Patiño-Martı́nez, M., Alonso, G.: Non-intrusive, parallel recovery of repli-
cated data. In: SRDS, pp. 150–159. IEEE Computer Society Press, Los Alamitos (2002)

5. Kemme, B., Bartoli, A., Babaoǧlu, O.: Online reconfiguration in replicated databases based
on group communication. In: Intl.Conf.on Dependable Systems and Networks, Washington,
DC, USA, pp. 117–130 (2001)

6. Armendáriz, J.E., Muñoz, F.D., Decker, H., Juárez, J.R., de Mendı́vil, J.R.G.: A protocol
for reconciling recovery and high-availability in replicated databases. In: Levi, A., Savaş,
E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 634–644.
Springer, Heidelberg (2006)

7. Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication specifications: A compre-
hensive study. ACM Computing Surveys 4(33), 1–43 (2001)

8. Cristian, F.: Understanding fault-tolerant distributed systems. Communications of the
ACM 34(2), 56–78 (1991)

9. Wiesmann, M., Schiper, A.: Comparison of database replication techniques based on total
order broadcast. IEEE Trans. Knowl. Data Eng. 17(4), 551–566 (2005)

10. Wiesmann, M., Schiper, A.: Beyond 1-Safety and 2-Safety for replicated databases: Group-
Safety. In: Proceedings of the 9th International Conference on Extending Database Technol-
ogy (EDBT2004), Heraklion - Crete - Greece (2004)

11. de Juan-Marı́n, R., Irún-Briz, L., Muñoz-Escoı́, F.D.: Supporting amnesia in log-based recov-
ery protocols. In: ACM Euro-American Conference on Telematics and Information Systems,
Faro, Portugal, ACM Press, New York (May 2007)

12. Kemme, B.: Database Replication for Clusters of Workstations. PhD thesis, Swiss Federal
Inst. of Technology, Zurich, Switzerland (2000)

13. The transaction processing performance council, http://www.tpc.org
14. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in

Database Systems. Addison Wesley, Reading, MA, EE.UU (1987)
15. de Juan-Marı́n, R., Irún-Briz, L., Muñoz-Escoı́, F.D.: Recovery strategies for linear replica-

tion. In: ISPA, pp. 710–723 (2006)
16. Civera, J.P., Ruiz-Fuertes, M.I.: Garcı́a-Muñoz, L.H., Muñoz-Escoı́, F.D.: Optimizing

certification-based database recovery. Technical report, ITI-ITE-07/04, Instituto Tecnológico
de Informática (2007)

http://www.tpc.org

	Improving Recovery in Weak-Voting Data Replication
	Introduction
	System Model
	Basic Recovery Protocol
	Amnesia Support
	Compacting Recovery Information
	Simulation Results
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

