
Multi-cluster Load Balancing Based on
Process Migration�

XiaoYing Wang, ZiYu Zhu, ZhiHui Du, and SanLi Li

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science & Technology, Tsinghua University, Beijing 100084

{wangxy,zzy,duzh,lsl}@tirc.cs.tsinghua.edu.cn

Abstract. Load balancing is important for distributed computing sys-
tems to achieve maximum resource utilization, and process migration is
an efficient way to dynamically balance the load among multiple nodes.
Due to limited capacity of a single cluster, it’s necessary to share the
underutilized resources of other sites. This paper addresses the issues in
multi-cluster load balancing based on process migration across separate
clusters. Key technology and mechanisms are discussed and then the
implementation of a prototype system is described in detail. Experimen-
tal results depict that by achieving multi-cluster load balance, surplus
resources can be efficiently utilized and the makespan is also greatly re-
duced as a result.

Keywords: Load balancing, Process migration, Multi-cluster.

1 Introduction

Recent years, clusters of inexpensive networked computers are increasingly a
popular platform for executing computationally intense and long running ap-
plications. The main goal of cluster systems is to share all the resources of the
whole system through the interconnections and to effectively share resources via
efficient resource management and task scheduling, finally achieving high perfor-
mance. Thus, a key problem is how to effective utilize the resources. However, in
such a loose-coupled computing environment as clusters, load imbalance, which
is usually caused by the variable distribution of workload on the computing
nodes, leads to performance degradation. Therefore, it is important for a cluster
to balance the load among all nodes to improve the system performance.

Methods for load balancing can be classified into two categories. Static ap-
proaches are usually achieved by task allocation beforehand, which requires prior
knowledge of exact information of tasks (such as execution time) and thus can-
not adapt to the run-time load variation. Dynamic approaches are more complex
and need the support of process migration, one of the most important techniques

� This work is supported partly by the Natural Science Foundation of China under
Grant No.60503090 and No. 10778604, and China’s National Fundamental Research
973 Program No.2004CB217903.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 100–110, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multi-cluster Load Balancing Based on Process Migration 101

to fully utilize the resources of the entire system. Besides, process migration in a
cluster system is also of benefit to system maintenance, availability, data locality,
mobility and failure recovery [1,2,3]. Process migration can be implemented on
different levels, which greatly affects the design choices. Current implementations
can be divided into four categories:

– Unix-like Kernel. This method requires significant modification to mono-
lithic kernel to achieve full transparency. Nevertheless, kernel-level imple-
mentation could sufficiently utilize the functionality of the operating
systems(OS), obtain the detailed status about processes and thus provide
high efficiency to users. Examples are LOCUS [5] and Sprite [6].

– Microkernel. As a separate module, microkernel builds process migration
facilities on top of OS. It’s relatively easy to implement because of the avail-
ability of system transparency support and message passing communication
mechanism. Mach [7] is a typical example.

– User-space migration. This method doesn’t require the modification of the
kernel, implying that the entire address spaces are extracted and transferred
to rebuild at the destination node. Condor [8] is an example system. Since not
all states can be obtained at user level, some processes cannot be migrated.
Great overhead has to be paid for breaking the obstacle between kernel space
and user space, and thus the efficiency is much lower.

– Application-level migration. The function of process migration is inte-
grated into real applications, and optimization methods could be designed
based on particular applications. Freedman [9] and Skordos [10] have studied
about such approaches. However, transparency and reusability would be sig-
nificantly sacrificed, since semantics of the application need to be known and
the programs have to be rewritten or recompiled. The functions of migrated
processes are limited, and each new application has to be specially designed.

OpenMosix [4] is a typical tool which modifies the OS kernel to support pro-
cess migration and allows multiple uniprocessors and symmetric multiprocessors
running the same kernel to work in close cooperation. Dynamic load balancing
can be achieved by migrating processes from one node to another, preemptively
and transparently. Via openMosix, a cluster is seen as a large virtual machine
with multiple CPUs and mass storage, and the cluster-wide performance of both
sequential and parallel applications can be improved. However, when the ca-
pacity of a single cluster is limited, resources of multiple clusters ought to be
shared. Unfortunately, conventional implementations of kernel-level process mi-
gration don’t support migrating across different clusters. As computational grids
emerged and got widely used, resources of multiple clusters became dominant
computing nodes of the grid. Cross-cluster process migration can help to balance
the load among multiple grid nodes with fine granularity, so it’s also valuable
for multi-site load balancing in computational grid. In this paper we discuss the
key issues in multi-cluster load balancing and considerations in the implemen-
tation of a prototype system. Experimental results demonstrate that resource
utilization greatly benefits from enabling multi-cluster load balancing, thus lead-
ing to significant reduction in task makespan.

102 X. Wang et al.

2 Process Migration Techniques

In this section, we discuss the key techniques and mechanisms of process mi-
gration based on openMosix [11,12]. Each process has only one Unique Home
Node(UHN) where it was created, usually the node which the user logged in.
Every process seems to be running on its UHN, but in fact it may have been
transferred to another node.

2.1 Deputy/Remote Mechanism

A migrated process consists of two parts - user context (called remote) and
system context (called deputy). Remote contains the program code, stack, data,
memory-maps and registers of the process, encapsulating the process when it’s
running at user level. Meanwhile, deputy encapsulates the process when it’s
running at kernel level, containing the description of resources that the process
is attached to and a kernel-stack for the execution of system code on behalf of
the process. Thus, remote can be migrated several times among different nodes,
while deputy is site-dependent and can only stay on UHN. The interfaces between
user context and system context are well defined. It’s possible to intercept every
interaction between the two contexts, and forward it across the network.

In Linux operating system, a process can only enter the kernel level via sys-
tem calls. The interception and forwarding of every interaction between two
contexts are done by the Link Layer. When a process has been migrated, its
deputy and remote still keep connected. Remote deals with UHN-dependent op-
erations through deputy, like getting environment variables or doing I/O. High
transparency is achieved by their interaction. When remote meets system calls
or resource requests when running the process, it sends them back to deputy.
Deputy is always looping itself in kernel level, waiting for the requests from
remote. Then, it deals with them and sends the results back to remote.

2.2 Migration Procedure

After the OS with migration support boots up, three daemons are started on
each node running as kernel-level threads, including: mig daemon, which listens
at a certain port and deals with incoming requests; info daemon, which collects
and distributes the load information; and mem daemon, which monitors memory
utilization. Necessary steps of the process migration procedure include: (1)Target
selection. A target node can be either specified by user manually or automat-
ically decided by the scheduling system according to history and current load
information of the cluster. When a process P is selected to migrate, it is marked
and its priority is increased in order to get CPU timeslices more easily. Then, a
request is sent to the mig daemon on the target node. (2)Request and negotia-
tion. After receiving the migration request of process P, the target node forks a
new process P’ to deal with it. P’ first asks the load-balancing module whether
to accept the incoming request and the module judges it according to predefined
algorithms. P’ is marked as remote, and then a TCP connection is established

Multi-cluster Load Balancing Based on Process Migration 103

between remote and deputy, exchanging messages between two nodes. (3)Process
state transfer. If the target node accepts P to migrate there, it sends back an
acknowledgement to the source node. After receiving the acknowledgment mes-
sage, the source node starts to extract the states of process P and forwards them
to the remote process. The remote modifies its own process states according to
the received data. (4)Execution resuming. Once the sending phase is finished,
P becomes deputy and enters a waiting loop in kernel level, until the process is
terminated or migrated back to its UHN. P’ is modified to READY state and
added into the running queue, waiting for scheduling. When it is scheduled and
enters the use space, it resumes executing from the instruction before migrating,
which indicates the completion of the entire process migration procedure.

3 Multi-cluster Load Balancing Implementation

In reality, cluster systems often belong to different organizations or locate in iso-
lated districts. Extending and merging the capability of existing cluster systems
which are geographically distributed is helpful to achieve unified management
and also decrease the cost of system expansion. In this section we present the
main issues to implement a system supporting multi-cluster load balancing.

3.1 Multi-cluster Architecture

In a cluster system, computing nodes are usually configured inside a Local Area
Network. A gateway node is connected to all the nodes via one Network Interface
Card(NIC), and to the public network via another NIC, assuring that external
users can log in and operate. For security consideration, users from public net-
work cannot access the internal nodes of a cluster directly. The gateway node
acts as a router, and also guarantees the security of the cluster system via firewall
configurations. The topology of multi-cluster architecture is shown in Fig. 1.

As seen, the computing nodes inside different clusters are unable to commu-
nicate with each other. Traditional process migration approaches require direct
connection of UHN and the remote node. As a result, when a cluster is under
heavy load while other clusters are light-loaded, the imbalance problem emerges
from a global point of view. To support multi-cluster load-balancing, lower-level
operation system needs to be modified and the gateway can be used to forward
migration data and necessary messages. Here, we add a property groupID into
the data structure representing a node, indicating the cluster it belongs to. The
gateway node is not involved in computing and has two entries in the configura-
tion file - one for internal IP address, which contains a groupID of the cluster it
belongs to; another for public IP address, which has a groupID of 0. An example
file of two clusters is shown in Fig. 2.

3.2 Information Collection

There is no central control or master/slave relationship between nodes. For auto-
matic load-balancing, every node has to know the current status of other nodes.

104 X. Wang et al.

Cluster 1

Gateway

Node Node Node…

Cluster 2

Gateway

Node Node Node…

Cluster N

Gateway

Node Node Node…

…

Public Network

Fig. 1. Architecture of Multiple Clusters

ID IP number-of-nodes groupID
================================

1 10.0.0.1 1 1
2 10.0.0.5 1 1
3 10.0.0.6 gw 1
3 192.168.4.15 gw 0
4 192.168.4.11 gw 0
4 10.0.0.111 gw 2
5 10.0.0.9 1 2
6 10.0.0.12 1 2

Fig. 2. Config File Example

This is achieved by each node sending its own info to others periodically. Hence, it’s
necessary to enable the support for information collection in multi-cluster scenario.
Load information is forwarded using UDP protocol, as the information messages
needn’t acknowledgement and have no critical requirements for reliable transfer.
Each node starts an info daemon, waiting for info messages from other nodes. A
node sends back an info message about itself immediately after receiving another’s.

In order to let the gateway know where to send these messages, two additional
segments are added, each carrying a sockaddr structure of the network address.
The converting and sending procedure of the encapsulated data is shown in
Fig. 3, which involves three types of nodes working: 1)Sender(Src). The source
node first queries the groupID of the destination node and compares to its own
groupID. If unequal, then they are not in a same cluster and cross-cluster migra-
tion is needed. Then, it queries the configuration table again to get the external
address of the gateway node of the destination cluster together with the internal
address of the gateway node of the local cluster. Data are encapsulated as a
three-segment format, with the first segment containing the destination gateway
address(Gw2 addr), the second segment containing the destination node address
(Dest addr), and the last segment containing the original message content. The
encapsulated data are sent to the local gateway. 2)Gateway node(Gw). The gate-
way is listening and waiting for the encapsulated data from Src. It doesn’t care
the content, only processing and converting messages. It reads the first segment
and extracts the network address as the next destination, then copies the second
segment to the first segment, and fills the second segment with the address of
the original sender. 3)Receiver(Dest). After converted by two gateway nodes se-
quentially, the first segment of the encapsulated data becomes the address of Src
and the second segment is the gateway of the source cluster(Gw1). The receiver
can query the configuration table and find the ID of Src, and then obtain load
info about Src from the last segment of received data.

3.3 Cross-Cluster Process Migration

According to the source and destination of the process to be migrated, we de-
scribe following three different scenarios.

Local to remote (migrating to a remote node). Before migrating, the local
node first connects to its mig daemon and sends requests containing the reason to
migrate. After acknowledged by the remote node, necessary data are transferred

Multi-cluster Load Balancing Based on Process Migration 105

Src
Dest

Public netCluster1

Cluster2

Gw2 addr
Dest addr

Data

Dest addr
Src addr

Data

Src addr
Gw1 addr

Data

Gw2Gw1

Info Message

Fig. 3. Info Messages Forwarding

Oldlink

Remsock

Newlink

(1) (2)

(3)

(4
)

(5)

Remote(r1) Remote(r2)

Deputy(d)

Fig. 4. remote to remote

continuously, including process memory states, virtual areas, physical pages and
so forth. Once finishing, the local process becomes deputy and enters a loop
waiting for system-calls from remote. At the remote node, mig daemon accepts
incoming migration requests and sends back acknowledgement if it agrees to
receive the process. Then, a user-level process is created and after receiving all
necessary data, the process is changed to READY state and waits for scheduling.

Remote to local(migrating back home). When a process is coming back
from the remote node, the UHN sends a DEP COME BACK instruction, and
then receives all of the process states. Remote starts “going home” after being
acknowledged by UHN. After finishing sending the necessary data, remote kills
the migrated process and exits normally.

Remote to remote(migrating more than once). It’s a little more complex
when a process needs to migrate from one remote node to another. Figure 4
illustrates the steps of migration from remote r1 to r2. (1)oldlink is the link
between d and r1, and newlink connecting d and r2 is created. (2) d sends a
probing request to r2, and notifies it a migration event is going to occur. (3)
r2 sends information of itself to d. (4) d copies the information about r2 and
sends it together with a request to r1 via oldlink and tells it “Please Migrate”.
(5) r1 opens a new link to r2, and then sends a migration request to r2. After
sending necessary data to r2, it releases the local process. Till now, the process
is migrated to r2 and only related to d and r2.

In order to transfer process states reliable TCP connections should be es-
tablished among nodes and gateways. Unlike info messages, migration messages
need bidirectional transfer. The source node sends an “open-connection” com-
mand first, the structure of which is similar to the packed info message, with the
third segment containing a command string. Since the mig gateway acts almost
in the same way as the info gateway, detailed descriptions are omitted here.
Note that if the migration type is “remote to remote”, the listening port will
be randomly selected. Once the process terminates, the source node notifies the
gateway to close all open connections.

3.4 Load Balancing Strategy

The main load balancing algorithms consists of CPU load-balancing and memory
ushering. Due to space constraints, here we only focus on the CPU load-balancing

106 X. Wang et al.

strategy. The dynamic CPU load-balancing algorithm continuously attempts to
reduce the load differences between pairs of nodes, by migrating processes from
high loaded to less loaded nodes. This scheme is decentralized with all the nodes
regarding each other as equal-position peers and executing the same algorithm.
The whole balancing strategy is comprised of following steps.

1)Calculate the load values. Since the nodes in the system may be het-
erogeneous, the load calculation is related to the number of processors(denoted
as Np) and their speed. First, the number of running processes is added to an
accumulator at each clock interrupt. Then, the accumulated load Lacc is normal-
ized to the CPU speed of this processor using the maximum CPU speed SMAX

in the system versus the local node’s calculated CPU speed S cal, namely,

Lacc = Lacc · SMAX

Scal · Np
. (1)

Under the consideration of preventing migration thrashing, the actual load value
sent to other nodes, called “the export load”, is calculated to be slightly higher
than the load calculated for internal use. Denote the internal load as Lint and
the export load as Lexp. To calculate Lexp, a value representing the highest
load over any period has to be recorded, denoted as Lup. Denote Lincome as the
summarized load brought by processes“recently” migrated to this node. Then,
the internal load and the export load can be computed in the following way:

If (Lacc>Lint) //slowly up
Lint=Lint*decay+Lacc

Else //quickly down
Lint=Lacc

End If
If (Lacc>=Lup) //quickly up

Lup=Lacc

Else //slowly down
Lup=(Lup*7+Lacc)/8

End If
Lexp=Lup+Lincome //prevent receiving too many new processes too quickly

where decay is predefined constant value between 0∼1. Each node maintains a
local load vector storing both the internal load value of its own and export load
values received from other nodes.

2)Choose a process to migrate. Processes cannot be migrated if they are
constrained, such as being locked, in creation phase, being transferred, or using
a shared memory region. Moreover, if a process has not accumulated enough
CPU usage, it is not considered for migration. For each process, a migration
priority value is first calculated based on the CPU use since it is last consid-
ered for migration, including the CPU use of all its children processes. Then,
this priority value is combined with a value which attempts to measure the
process’s contribution to the load currently on the machine. Consequently, a
process which forks frequently is more attractive for migration, because once
migrated it will continue to fork children thus spreading the load as it bounces
from one node to another. Once a process is chosen to be migrated, a flag will

Multi-cluster Load Balancing Based on Process Migration 107

be set, indicating that it’s the candidate process selected for load-balancing
consideration.

3)Choose a destination node. It is a complicated problem to determine the
optimal location for the job to be migrated, since available resources are usually
heterogeneous and even not measured in the same units. Here we try to recon-
cile these differences by standardizing the resource measurements and adopt a
method based on economic principles and competitive analysis. The target node
for migration is determined by computing the opportunity cost for each of the
nodes in the local load vector, which is a concept from the field of economies
research. The key idea is to convert the total usage of several heterogeneous
resources, such as memory and CPU, into a single homogeneous “cost”. Jobs
are then assigned to the machine where they have the lowest cost, just like in
a market oriented economy. A simple way is to compute the marginal cost of a
candidate node, namely, the amount of the sum of relative CPU usage and mem-
ory usage would increase if the process was migrated to that node. The goal is
to find a node with minimal marginal cost and select it as the destination.

As a whole, the above load-balancing algorithms respond to variation in the
runtime characteristics of the processes, as long as there is no extreme shortage
of other resources such as free memory or empty process slots.

4 Performance Evaluation

This section presents the results of performance evaluation experiments con-
ducted on the prototype system we implemented. Our testbed is comprised of
two clusters: Cluster 1 has nodes with dual PIII 500MHz CPUs and 128M phys-
ical memory; Cluster 2 has nodes with dual PIII 733MHz and 256M physical
memory. There are two independent networks of each cluster, and they own a
gateway node respectively, connecting to the public net. Gateways can communi-
cate to each other directly. Both nodes inside the two clusters and the gateways
are connected by 100Mb/s Ethernet. After the startup of our prototype system
on each node, all the load information used by the scheduling module can be
monitored by upper-level tools.

We use a simple CPU-intensive program for exemplification of the experiment,
which requires two parameters - the iteration count and the number of child
processes. As iteration count becomes larger, the CPU load will be accordingly
heavier. We tested and compared three scenarios respectively: without migration
support (local), with intra-cluster migration support (internal) and with cross-
cluster migration support (cross). Figure 5 shows the task completion time (i.e.
makespan) achieved in the above three scenarios, in which Fig. 5(a) has 8 child
processes forked and Fig. 5(b) has 16 ones.

During the period when the program is running, we can monitor the load
situation on the nodes by user-level tools. While the operating system treats all
processes as a whole task, through the userspace monitoring tool implemented
in our prototype system, we can distinguish every child process clearly. Take
Fig. 5(b) for example, when the program has been submitted to a node and

108 X. Wang et al.

starts to run, the load of the local cluster quickly increases, while the other
cluster is idle without any heavy-load tasks; after enabling multi-cluster load
balancing, 4 processes are distributed on each node, and the CPU utilization of
all nodes reaches nearly 100%.

From Fig. 5, it can be observed that without migration support, it results
in low efficiency and remarkably takes more time to complete the task. If the
intra-cluster migration support is enabled, a half time can be saved (because
there are two nodes in the cluster to share the load), but nodes inside the cluster
are still under heavy burden. With multi-cluster load balancing, load can be
shared across different clusters and thus the task makespan is greatly reduced.
The speedup is computed and shown in Table 1, which depicts the significant
improvement by enabling multi-cluster load balancing. Moreover, from the table
we can also observe that as the iteration count becomes larger, the speedup of
cross increases proportionally. That’s because in this program the iteration count
represents the computation amount of the tasks, and long-running tasks are more
tolerant of “non-computation” overhead because of their urgent requirement for
additional resource. As the results demonstrate, multi-cluster load balancing can
make the resource of multiple clusters more effectively utilized and workload
more balanced in a total view.

Nevertheless, the performance overhead cannot be ignored, especially when
the migration experiences two hops at the gateway nodes. Now we investigate the
multi-cluster load balancing overhead, which involves information analysis and
making scheduling decisions, process states transfer, communication over net-
work, and results finalization. We figure out the average summarized overhead
per computing node and compared cross with internal in order to make clear
how much additional overhead is caused by the processing of gateway nodes,
as shown in the bottom rows of Table 1. Again we can see that larger amount
of computation makes the overhead relatively smaller, as explained previously.
Meanwhile, as the computation amount increases, the additional overhead in-
curred by cross(relative to internal) becomes more significant too, due to mas-
sively more data passing through the intermediate gateway nodes. However, to
sum up, cross only incur less than 3% more overhead compared to the inter-

2 4 6 8 10 12 14 16
0

20

40

60

80

100

Iteration Count(x100000)

M
ak

es
pa

n(
se

co
nd

s)

cross
internal
local

(a) 8 processes

2 4 6 8 10 12 14 16
0

20

40

60

80

100

Iteration Count(x100000)

M
ak

es
pa

n(
se

co
nd

s)

internal
cross

(b) 16 processes

Fig. 5. Performance Evaluation Results

Multi-cluster Load Balancing Based on Process Migration 109

Table 1. Comparison of Speedup and Overhead

Iteration(×105) 2 4 6 8 10 12 14

SpeedUp
Internal 1.43 1.65 1.71 1.81 1.91 1.86 1.89
Cross 1.72 2.51 2.84 3.07 3.17 3.28 3.38

Average Overhead
Per Node

Internal 14% 8.8% 7.1% 4.8% 2.3% 3.4% 2.7%
Cross 14% 9.3% 7.2% 5.8% 5.2% 4.5% 3.9%

nal load balancing, which is acceptable especially when dealing with long-term
tasks. In practice, the upper-level scheduler should be able to decide whether to
migrate according to the overhead and possible efficiency gain.

5 Conclusions and Future Work

In this paper, we conduct researches on multi-cluster load-balancing based on the
study and analysis of process migration mechanism. The main problem is that
the internal node of a cluster cannot be directly accessed by other machines out-
side the cluster. Hence, we have designed a system which supports multi-cluster
load balancing by employing gateway nodes to forward and transfer necessary
data. The results of performance evaluation experiments based on the proto-
type system have demonstrated the availability and efficiency of multi-cluster
load balancing in reducing the task makespan. Our work can be regarded as a
preliminary step into the research on dynamical resource sharing and load bal-
ancing of multiple large nodes in computational grid environment (especially for
CPU-intensive applications). This prototype system has been put into practice
and achieved unified management and resource sharing among multiple clusters.
As a possible direction for future work, we plan to investigate some potential
problems, such as the bottleneck of gateway nodes when dealing with frequent
system-calls. Moreover, in the case of decentralized grid environment, the la-
tency between gateway nodes may be considerable, which requires the decision
of whether and when there exists the need to migrate. As a further step, we are
also considering to employ modeling and simulation to test the performance of
multiple large cluster systems in the grid under different workloads.

References

1. Milojicic, D.S., Douglis, F., Paindaveine, Y., et al.: Process migration. ACM Com-
put. Surv. 32(3), 241–299 (2000)

2. Powell, M.L., Miller, B.P.: Process migration in DEMOS /MP. In: Proc. Ninth
Symposium on Operating System Principles, pp. 110–119. ACM, New York (1983)

3. Smith, P., Hutchinson, N.C.: Heterogeneous process migration: The tui system.
Technical Report TR-96-04, University of British Columbia. Computer Science
(1996)

4. The openMosix Project, http://openmosix.sourceforge.net
5. Popek, G.J., Walker, B.J., Johanna, M., et al.: LOCUS - A Network Transpar-

ent, High Reliability Distributed System. Proceedings of the 8th Symposium on
Operating System Principles, 169–177 (1981)

http://openmosix.sourceforge.net

110 X. Wang et al.

6. Douglis, F., Ousterhout, J.K.: Transparent Process Migration: Design Alternatives
and the Sprite Implementation. Softw., Pract. Exper. 21(8), 757–785 (1991)

7. Accetta, M., Baron, R., Bolosky, W., et al.: Mach: A New Kernel Foundation for
UNIX Development. In: Proceedings of the Summer USENIX Conference, pp. 93-
112 (1986)

8. Litzkow, M., Solomon, M.: Supporting Checkpointing and Process Migration out-
side the UNIX Kernel. Proceedings of the USENIX Winter Conference, pp. 283-290
(1992)

9. Freedman, D.: Experience Building a Process Migration Subsystem for UNIX. In:
Proceedings of the WinterUSENIX Conference, pp. 349-355 (1991)

10. Skordos, P.: Parallel Simulation of Subsonic Fluid Dynamics on a Cluster of Work-
stations. In: Proceedings of the Fourth IEEE International Symposium on High
Performance Distributed Computing (1995)

11. Argentini, G.: Use of openMosix for parallel I/O balancing on storage in Linux
cluster. CoRR cs.DC/0212006 (2002)

12. Katsubo, D.: Using openMosix Clustering System for Building a Distributed Com-
puting Environment, http://www.openmosix.org.ru/docs/omosix.html

http://www.openmosix.org.ru/docs/omosix.html

	Multi-cluster Load Balancing Based on Process Migration
	Introduction
	Process Migration Techniques
	Deputy/Remote Mechanism
	Migration Procedure

	Multi-cluster Load Balancing Implementation
	Multi-cluster Architecture
	Information Collection
	Cross-Cluster Process Migration
	Load Balancing Strategy

	Performance Evaluation
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

