
Reducing Storage Requirements in Accelerating
Algorithm of Global BioSequence Alignment

on FPGA

Fei Xia and Yong Dou

Department of Computer Science, National University of Defence Technology,
Changsha, P. R. China, 410073

{xcyphoenix,yong dou}@hotmail.com

Abstract. In the paper, we present storage optimization scheme for
hardware accelerating Needleman-Wunsch algorithm. The scheme ex-
ploits the characteristics of back-tracking phase in which the back-trace
path only travels in a constrained area. Our analysis shows that in ad-
dition to logic element resource and memory capacity, the number of
RAM blocks is also one of the constrained factors for hardware acceler-
ating bio-sequence alignment. The optimized algorithm only store part of
the score matrix to reduce storage usages of FPGA RAM blocks, and im-
plement more processing element in FPGA. We fit our design on FPGA
chips EP2S130 and XC2VP70. The experimental results show that the
peak performance can reach 77.7 GCUPS (Giga cell updates per sec-
ond) and 46.82 GCUPS respectively. Our implementation is superior to
related works in clock frequency, the maximal PE number and peak per-
formance, respectively.

Keywords: Bioinformatics, FPGA, Global BioSequence Alignment,
Needleman-Wunsch algorithm, Hardware Accelerator.

1 Introduction

With the technology development of the genome sequencing, the scale of Gene
database expands steeply. In August 2005, the INSDC announced the DNA
sequence database exceeded 100 gigabytes and the number of sequence reached
over 52 million[1]. It is inefficient to scan the Gene-Bank using traditional
software approach. In recent years, FPGA have emerged as performance acceler-
ators capable of implementing fine-grained, potential massively parallelized al-
gorithm for computation-intensive applications. The reconfigurable FPGA chips
also enable algorithms to be implemented with different computing structures on
the same hardware platform[2]. As a result, hardware accelerating bio-sequence
matching attracts much more attention.

After Needleman-Wunsch algorithm was published in 1970, it soon became
the standard technique in biological matching, which uses DP-based method
(dynamic-programming) and is suitable for global alignment of pair-wise se-
quence with a certain similarity. It also spawned many variations, including the
famous Smith-Waterman algorithm for local alignment.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 90–99, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reducing Storage Requirements in Accelerating Algorithm 91

Because sequence comparison algorithms based on DP have been proven to
produce an optimal alignment, a number of hardware parallel architecture based
on the Needleman-Wunsch or the Smith-Waterman algorithm have been pro-
posed for sequence analysis[3],[4],[5],[6],[7],[8],[10] and most of them only concen-
trate on the scoring phase. Some implementations[5],[11] address on the structure
and scale of PE array, but did not consider the storage problem of DP matrix.
Works in[3],[6],[7] and[9] discussed how to accelerate the scoring process and en-
hance the performance scaling, but did not implement the backtracking process.
Researches in[4],[8] mapped the backtracking process in FPGA, but did not take
the storage optimization of scoring matrix into account.

Since the storage complexity of DP-based method is O (M × N) for two
strings with size M and N. Furthermore, the required port number is linear scale
with the size of PE array. With the growth of sequence length, it is difficult to
implement both of the scoring and backtracking process of DP matrix in FPGA.
To reduce the storage requirement in Needleman-Wunsch algorithm, we present
a storage optimization scheme for global bio-sequence alignment applications
with backtracking. Based on the analysis to the characteristic of Needleman-
Wunsch algorithm, we find that given a fixed scoring method, the backtracking
paths always fall into a limited area in DP matrix even in the worst cases, which
means storing all elements of DP matrix is unnecessary. Our scheme uses two
extra registers for checking address limits, but saves about 50% of storage space
in general cases. The saved memory blocks can be used to implement more pro-
cessing elements. Our experimental results show over 800 PEs can be fitted in
an FPGA chip of Altera EP2S130, the maximal speedup reach 5.6 compared to
closely related works, and achieve peak performance 77.7 GCUPS.

2 Needleman-Wunsch Algorithm Overview

The basic idea of Needleman-Wunsch algorithm is to use the best alignment
of shorter subsequence to build the best alignment of two sequences gradually
and recursively. In practice, a matrix F is used to store alignment scores of
subsequence. When F is figured out, the scoring process is finished. Needleman-
Wunsch algorithm is composed of two phases: firstly, calculate the DP matrix
and store the computing trace; secondly, execute trace-back operation according
to DP matrix. In this paper we use the convention that the query sequence S
with length M is along the vertical dimension and the sequence L with length
N in database along the horizontal dimension.

Scoring Phase: Suppose F (i, j) represents the best alignment score between
subsequence S1...i and subsequence L1...j. The score F (i, j) for grid cell (i, j) is
computed following below equations(1 ≤ i ≤ M, 1 ≤ j ≤ N).

Initialization: ⎧
⎨

⎩

F (0, 0) = 0
F (i, 0) = F (i − 1, 0) + P (Si, −)
F (0, j) = F (0, j − 1) + P (−, Lj)

(1)

92 F. Xia and Y. Dou

Recurrence relation:

F (i, j) = max

⎧
⎨

⎩

F (i − 1, j − 1) + P (Si, Lj)
F (i − 1, j) + P (Si, −)
F (i, j − 1) + P (−, Lj)

(2)

Thus, we can translate the above recurrence relation (2) into a systolic parallel
algorithm executing on linear processing elements, PE, as shown in Fig.1(A).

Each PE calculates a row of DP matrix and stores corresponding trace flag
in its local memory. Multiple PEs compute different elements in a line perpen-
dicular to the main diagonal concurrently. In the scoring stage, PE[n](n ≥ 1)
receives score and current character in sequence L from PE[n-1] (PE[0]’s input
is supplied by array control module). PE[n] calculates the score of current grid,
generates trace-back flag and transmits the scoring result and current character
to PE[n+1]. Finally, in step S5, PE[n] stores the flags into PE LM[n] (PE[n]’s
local memory).

Algorithm 2: Scoring and Trace-recording for PE[n] (Optimized)

Input
Valid_trace:
 the starting point of valid trace for PE[n];

Initial phase:
S1: S_reg S_in; Score_reg 0; RAM_Addr 0;
 Valid_trace_reg Valid_trace; Counter 0;
S2: S_out S_in;

S1: If (L_in = S_reg)
 then Score_1 Score_in + Z + X;
 else Score_1 Score_in + Z + Y;
 Score_2 Score_in + Z;
 Score_3 Score_reg + Z;
S2: Score_max Max{Score_1 Score_2 Score_3} Counter Counter + 1;
S3: Case (Score_max)
 Score_1 Trace_back_flag Trace_1;
 Score_2 Trace_back_flag Trace_2;
 Score_3 Trace_back_flag Trace_3;
S4: L_out L_in; Score_out Score_max; Next_PE_start PE_start ;

Processing phase:

Temporary Variables
Valid_trace_reg
 register starting point of valid trace;
Counter
 record the number of calculated element;

Only increased signals are listed here, the definition of other signals is identical with algorithm 1.

Constant
Storage_length:
 the valid trace width of PE[n];

S5: If (Valid_trace_reg Counter Valid_trace_reg + Storage_length)
 then Store (Trace_back_flag) to PE_LM[n];
 RAM_Addr RAM_Addr + 1;
 else Discard current Trace_back_flag value;
 RAM_Addr RAM_Addr;

Algorithm 1: Scoring and Trace-recording for PE[n]
Input

S_in: current char in S sequence;
L_in: current char in L sequence;
Score_in: calculation result by PE[n-1];
PE_start: start signal for PE[n];
Stop: pause/resume signal for PE array;

Initial phase:

Output
S_out: current char in S sequence send to PE[n+1];
L_out: current char in L sequence send to PE[n+1];
Score_out: calculation result by PE[n];
Next_PE_start: start signal for PE[n+1];

S1 S_reg S_in; Score_reg 0; RAM_Addr 0;
S2 S_out S_in;

S1 If (L_in = S_reg)
 then Score_1 Score_in + W + X;
 else Score_1 Score_in + W + Y;
 Score_2 Score_in + Z;
 Score_3 Score_reg + W;
S2 Score_max Max{Score_1 Score_2 Score_3}
S3 Case (Score_max)
 Score_1 Trace_back_flag Trace_1;
 Score_2 Trace_back_flag Trace_2;
 Score_3 Trace_back_flag Trace_3;
S4 L_out L_in; Score_out Score_max; Next_PE_start PE_start ;
S5 Store (Trace_back_flag) into PE_LM[n] RAM_Addr RAM_Addr + 1;

Processing phase:

Temporary Variables
n: current PE number;
Score1/Score2/Score3: alignment score calculated from
 three different locations (diagnal/above/left);
S_reg: register char in S sequence;
Score_max: register alignment score calculated by
PE[n];
Trace_back_flag: trace result calculated by current PE;
RAM_Addr: address of PE_LM[n];

Constant
Trace1: from diagnal location;
Trace2: from above location;
Trace3: from left location;
X: P a a ; Y: P a b ;
Z: P a - W: P - a ;
PE_LM[n]: PE[n] s local memory;

(A) (B)

:

:

Fig. 1. (A)Scoring and trace-recording algorithm; (B)Optimized scoring and trace-
recording algorithm for each PE

Trace-back Phase: After scoring phase, begin backtracking process as shown
in Fig.2(A). The start point is set to the low-right element of DP matrix recorded
in scoring phase. The trace-back processing can find out the location of the next
trace-back point through the current flag. Then set the next point as the current
trace-back point until reaches the top-left element of DP matrix.

At the end of backtracking, the path composed by trace-back points is the best
alignment. In traditional Needleman-Wunsch algorithm, each PE is responsible
for calculating and storing the all elements of corresponding row of DP matrix.
The storage requirement is M ×N (M and N are the length of input sequences).
With the growth of sequence size, the storage requirements may exceed the

Reducing Storage Requirements in Accelerating Algorithm 93

capacity of on-chip memory. In order to implement larger scale scoring and
trace-back process on FPGA chips, we present a storage reduction strategy for
Needleman-Wunsch algorithm.

3 Storage Optimization Strategy

Given two input sequences S and L, |S| = M , |L| = N . With universality, we
suppose N > M . Moreover we using linear gap penalty model and the scoring
scheme is shown as follows: P (a, a) = x, P (a, b)= −y, P (−, a)= P (a, −)= −z
(x, y, z > 0). Parameter G represents the number of gaps in sequence L. R is the
number of replace operation in sequence S. The optimized algorithm is shown
in Fig.1(B).

The basic calculating process of optimized algorithm is consistent with tradi-
tional Needleman-Wunsch algorithm. The main difference lies in S5, where two
registers, valid trace reg and counter are used to check the address range so that
only valid traces are stored in PE local memory. The former register is filled
with starting location of valid trace range in the phase of initialization and the
latter records the location of current point of DP matrix. Therefore, Each PE
only records partial elements of corresponding row of DP matrix. As a result,
the largest memory cost of PE is N − M + 2G+ 1, the total memory cost of the
optimized algorithm is:

(N − M + G + 1) × M, G ≤ (M − R) × (x + y)
2 · z + x

(3)

The correctness of formula(3) is proved as follows: (only consider the situation
N > M ; when N ≤ M , the conclusion is the same). The selection of trace-
back path is closely related with the location of gaps inserted in the alignment
result. As for trace-back point F (i, j), there are three possible choices in trace
selection: vertical path (trace a in Fig.2(A), pointing to element F (i − 1, j), it
means inserting a gap at the location of Lj in horizontal sequence); horizontal
path (trace b pointing to F (i, j − 1), it means inserting a gap at the location of
Si in vertical sequence) and diagonal path (trace c pointing to F (i − 1, j − 1),
it means the two sequences generating a match or mismatch at the location of
F (i, j)).

When G = 0, there is no gap in sequence L, that means trace-back path
contains no vertical trace, then the gaps in sequence S is N − M . So there are
only N − M horizontal traces and M diagonal traces in the trace-back path.
Whatever the alignment score is, all possible paths must be fall into the shadow
parallelogram area in Fig.2(A). The trace 1, 2 and 3 are three possible paths.

Therefore, we can get all the information about backtracking phase recording
the elements in the above parallelogram shadow area. Thus the length of PE local
memory is N − M + 1, and the storage cost of algorithm is (N − M + 1) × M ,
the proportion of saved storage cost is:

T =
M − 1

N
(4)

94 F. Xia and Y. Dou

N-M+1
 N

M

Sequence L

Se
qu

en
ce

S

2

1
3

a

b
c

F(i,j
)

M

G

G

M
-G

-1

N
N-M+1

Sequence L

Se
qu

en
ce

S

(A) (B)

Fig. 2. (A)Valid trace area in DP matrix (G=0); (B)Valid trace area in DP Matrix
(G�=0)

When G�=0, there are G vertical traces in backtracking path. Then the path
will transcend the shadow parallelogram area in Fig.2(A). Thus it’s necessary to
extend the recording area. Two gaps matching each other are impossible, so the
number of blanks in sequence S is N − M + G. There are only four situations in
sequence alignment: match, replace, delete and insert (in-del). According to the
linear gap penalty model and the scoring scheme above, the matching score is
(M − G − R)·x, in-del (gap) penalty is (N − M + G)·z+G·z and replace penalty
is R ·y, so the alignment score of pair-wise sequence S and L is (M − G − R)·x−
R·y−(N − M + 2G)·z. The score in the worst condition is (N − M)·(−z)−M ·y,
(any pair of characters in sequence S and L can’t match in this situation). The
alignment score in common condition should be greater than the worst case,
thus

(M − G − R) · x − R · y − (N − M + 2G) · z ≥ (N − M) · (−z) − M · y (5)

As a result of (5), G has an upper limit:

G ≤ (M − R) × (x + y)
2 · z + x

(6)

Therefore, we can obtain all trace-back information by recording only the
elements in the shadow area as depicted in Fig.2(B). Thus the largest length of
PE local memory is (N − M + 2G + 1), and the whole storage cost is (N × M)−
(M − G) × (M − G − 1).

According to the analysis above, if the scoring rule is fixed, the gaps inserted
in sequence L are limited by the range of G given in formula (6). The proportion
of saved storage of optimized algorithm is:

T =
(M − G) × (M − G − 1)

M × N
(7)

In implementation we should consider not only the capacity of memory and
LE (Logic Cell) but also the size of RAM block and the port constrains of FPGA.

Suppose: LF is number of logic cells in FPGA, CF is RAM capacity, PF is the
port number of RAM blocks in FPGA, MC is the capacity of single RAM block,

Reducing Storage Requirements in Accelerating Algorithm 95

PE Array Control Module

PE LIFO
PE Module

Trace_back
Module

Traceback Start Module

S/L Squence

Trace_back
Result

Trace_back
Start

PE LIFO

S/L Squence in Alignment Result

Score

Trace

Trace

Score

PE Module

SDRAM Controller Module

SDRAM DIMM

USB
Inter-
face

ModuleA ACG C CAS : A

A CAC A TCL : A

A CAC A ATC
A ACG C ACAS :

L :

,

,

Fig. 3. The structure of N-W algorithm accelerator

PPE is the port number PE uses and LPE represents PE logic cost. The number
of PE, NPE , can be fit in a single chip must fulfill the following constrains:

(1) RAM capacity constrain: NPE × (N − M + 2G + 1) ≤ CF ;
(2) Logic capacity constrain: NPE × LPE ≤ LF ;
(3) Memory port constrain: NPE × PPE ≤ PF ;

PPE =
[
(N − M + 2G + 1) · d/MC

]
+ 1 (8)

Where d is storage cost of each element in DP matrix, (N − M + 2G + 1) · d is
the memory cost of PE, square brackets means getting the floor of number.

The above analysis is suitable for other scoring rules. The optimized method
not only can reduce memory cost without increasing design complexity but also
increase the number of PEs. Furthermore, the experimental result shows that the
port number of RAM blocks in FPGA is usually the main constraining factor.

4 Design and Implementation

We have implemented the optimized algorithm in the Altera StratixII
EP2S130C5 FPGA. The test-bed of our algorithm accelerator includes a FPGA
chip, two SDRAM modules and a USB Peripheral Controller. The algorithm core
includes PE Array Control Module, PE Array, Trace-back Start Module and
Trace-back Module. The structure of N-W algorithm accelerator is shown in Fig.3.

PE module contains score calculation unit (compute element in DP matrix),
trace generation unit (generate trace mark) and trace storage LIFO (Last in
First out queue, implemented by block RAM) shown in Fig.4(A). The structure
of score calculation unit shown in Fig.4(B) consists of three adders and three
comparators in terms of formula (2). Since the trace-back marks depend on
scoring results, the score calculation becomes the critical path.

Trace-back module is in charge of finding out the valid trace-back flag and
generating final alignment. It accesses PE local memory in trace-back phase.

96 F. Xia and Y. Dou

Score_in
H(i-1,j)

blank_penalty

H(i-1,j-1)

match_reward

If (Li=Si) ?

Li Si

M
A
X

H(i,j-1)

blank_penalty

M
A
X

Score_out

Control Signal
PE LIFO

Wr_en
S_

in
pu

t

Sc
or

e_
in

pu
t

Trace_Store
Wr_Addr

St
ar

t_
si

gn
al

T
ra

ce
_f

la
g

Trace_readout

Rd_Addr

PE ModuleL
_i

np
ut

S_
ou

tp
ut

Sc
or

e_
ou

tp
ut

L
_o

ut
pu

t

St
ar

t_
si

gn
al

T
ra

ce
_f

la
g

(A) (B)

Fig. 4. (A) PE Module Structure and (B) Score Calculation Component

Basic Trace_back Cell

PE0 Local Memory

Basic Trace_back Cell

Trace_back
Control Module

S/L Sequence Addr Trace _back Start

S/L Squence

Alignment
Result

Trace_back Module

S/L Sequence Addr Trace _back Start

M
U

X

PE31 Local Memory

Rd_Addr

Trace_out

/
5

M
U

X

Rd_Addr

Trace_out

/
5

M
U

X

C
ur

re
nt

 S
/L

Se

qu
en

ce
 A

dd
r

C
ur

re
nt

 S
/L

Se

qu
en

ce
 A

dd
r

Char_Addr

S/L Squence

S/L Squence

S/L Squence

/
5

PE0 Local Memory

PE31 Local Memory

Fig. 5. The structure of trace-back module

When the scale of PE array is large enough, the huge multiplexer becomes the
bottleneck in FPGA implementation. To solve the problem, we adopt the well-
phased trace-back strategy. The structure of trace-back module shown in Fig.5 is
composed of multiple basic trace-back cells and a control module. We divide the
linear PE array into several groups so that each basic trace-back cell accesses the
corresponding local memory group of PEs and controls the trace-back procedure
of current stage (The experiments show that the 32 PEs per group is an optimal
choice). The kernel of Basic Trace-back Cell is address generation component,
which calculates the address of next trace-back point.

5 Experiments and Performance Comparison

We made experiments with different parameter G. To simplify experiment, we
use the following scoring rules: P (a, a) = 1, P (a, b) = −1 and P (−, a) =
P (a, −) = −1.

5.1 Reducing Local Memory Requirements

Our optimized storage scheme requires less memory size than traditional al-
gorithm for storing DP matrix. This will save storage space for more PEs

Reducing Storage Requirements in Accelerating Algorithm 97

implementation. Fig.6 indicates the experimental result. Given the PE num-
ber equals the length of sequence S, M=512 and G, the gaps in sequence L,
equals 0, M/8, M/4 to 3M/8 respectively. The saving storage percentage can
be calculated as equation (7).

G=0 G=M/8 G=M/4 G=3M/8

Sequence Size

M
em

or
y

sa
ve

d
(%

)

Fig. 6. Proportion of memory saved in different sequence size and parameter G

From the above figure, supposing the lengths of both sequence S and L equal
to 512 and no gaps are inserted, our optimized scheme achieves the maximal
storage reduction, nearly 99%, compared with traditional algorithm. Even in the
worst cases, where the length difference between S and L rises and the inserted
gaps also increases to 3M/8, the reduction percentage still reach about 10%.

5.2 Increasing PE Number

Besides of the limitation in logical resource and memory capacity, the port num-
ber of FPGA RAM blocks also constrains the size of PE array. Since each PE
occupies one LIFO, which is composed of at least one RAM block of FPGA.
The saved storage will provide extra RAM blocks for more PE implementation.
Table 1 shows the comparison of PE number implemented in FPGA EP2S130C5
with different length of sequence L.

Table 1. PE number for different sequence size

Sequence L(N) 128 256 512 1024 2048 4096
PEs(Traditional) 928 928 928 780 680 340
PEs (Optimized) 928 928 928 928 780 680

The maximum PE number fitted in FPGA is closely-related to the sequence
size. In the condition of N ≤ 512, the PEs can be fitted in FPGA is limited not
by memory but logic resource. With the same FPGA logic resource, the maximal
PE number is the same as 928.

But when N > 512, the storage factor takes more effects on the scale of PE
array. The saved storage can implement more PEs in our optimized scheme than
traditional algorithms. The difference between the maximal PE number increases
greatly. When sequence length reaches 4096, our scheme can achieves double PE
number, as shown in the last column of Table 1.

98 F. Xia and Y. Dou

5.3 Experimental Result

We implemented our optimized algorithm on FPGA StratixII EP2S130F1020C5,
supposing N = 1024, M = 800, G = M/8 = 100. The PE local memory capacity
is 512 × 2bit occupying two M512 RAM blocks or one M4K block. Fitting 800
PEs consumes 87% logical elements and the clock frequency reaches 97.13MHz,
as shown in the first column of Table 2.

Table 2. Performance results and comparison ([*]: the usage of RAM Blocks)

Ours ASM[4] HCP[3] SRC[11] PC[4]
FPGA EP2S130C5 XC2VP70-5 XC2VP70-5 XC2V6000 XC2V6000 XeonPC

PEs Fitted 800 384 303 252 4 Engines —
LEs (LUT) 87% 73% — — /Chip
M512 (%)[*] 394 (56%) BRAMs N-W
M4K (%)[*] 609(100%) 323 (98%) — — 4 Chips Algo-

Mem Capacity 13% 11% rithm
Clock (MHz) 97.13 121.93 77.5 55 100 3000

Speed (GCUPS) 77.7 46.82 23.48 13.9 42.7 0.046

Since traditional algorithm needs N ×M = 800×1024 memory cells, it is im-
possible to generate 800 RAM blocks with the capacity of 1024×2bit in EP2S130.
The optimized approach reduces local memory usage of each PE and saves 50%
storage cost, which makes the implementation can be fitted in EP2S130. From
Table 2 we also find that the memory usage in our work is only 13%. The reason
is that large part of memory capacity in FPGA is implemented by M-RAM block
with size of 1Mbits, which can only be used by at most two processing elements.
Thus, the bottleneck lies in the number of RAM blocks, not memory capacity
for sequence alignment application.

For comparison to related work, we also implement 384 PEs on FPGA chip
of Xilinx XC2VP70-5. The result shows our design is superior to the implemen-
tation[4] in both PE number and clock frequency. The performance speedup is
nearly 2.0. We also compared our performance to the closely related proposals,
HCP[3] and SRC[11]. Our implementation achieves the peak performance of 77.7
GCUPS on EP2S130 and the speedup can reach 5.6 and 1.8 relatively.

In addition, we tested the execute time of global pair-wise sequence alignment
with backtracking in our FPGA testbed. With sequence length 512, the scanning
time of total 1000 sequences is 90.8ms. For the same application on a PentiumIV
2.6 GHz PC, the run time is 31770ms. Hence, our FPGA implementation achieves
a speedup of approximately 350.

6 Conclusion

This paper presented the design and implementation of storage reduction strat-
egy of global bio-sequence alignment with backtracking on FPGAs. The proposed

Reducing Storage Requirements in Accelerating Algorithm 99

scheme can efficiently reduce the storage cost by shortening the length of PE
local memory, and increase the scale of PE array fitted in FPGA. Experimen-
tal results showed our implementation is superior to related works in frequency,
maximum PE number and peak performance.

References

1. GenBank Growth Statistics (March 7 2006),
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

2. Regester, K., Byun, J., et al.: Implementing Bio-informatics Algorithms on
Nallatech-Configurable Multi-FPGA Syatems.University of North Carolina (2005)

3. Oliver, T., Schmidt, B., Maskell, D.: Hyper Customized Processors for Bio-
Sequence Database Scanning on FPGAs. In: Proc. ACM/SIGDA 13th Interna-
tional Symposium on Field Programmable Gate Arrays, pp. 229–237 (2005)

4. Court, T.V., et al.: Families of FPGA-Based Accelerators for Approximate String
Matching. Journal of Microprocessors and Microsystems 31, 135–145 (2007)

5. Dydel, S., Bala, P.: Large Scale Protein Sequence Alignment Using FPGA Repro-
grammable Logic Devices. In: Proc. IEEE Int. Conf. Field Programmable Logic
and Application, pp. 23–32. IEEE Computer Society Press, Los Alamitos (2004)

6. Yu, C.W., Kwong, K.H., et al.: A Smith-Waterman Systolic Cell. Proc. IEEE Int.
Conf. Field Programmable Logic and Application, 375–384 (2003)

7. Peiheng, Z., Xinchun, L., Xiangyang, J.: An Implemention of Reconfigurable Com-
puting Accelerator Card Oriented Bioinformatics. Journal of Computer Research
and development, 930–937 (2005)

8. West, B., et al.: An FPGA-based Search Engine for Unstructured Database. In
Proc. of 2nd Workshop on Application Specific Processors, 25–32 (2003)

9. Herbordt, M.C., Model, J., et al.: Single Pass, BLAST-Like, Approximate String
Matching on FPGAs. In: Proc. IEEE 14th IEEE Int. Symp. Field-Programmable
Custom Computing Machines, pp. 217–226 (2006)

10. Michailidis, P.D., Konstantinos, G.: Margaritis:A Programmable Array Processor
Architecture for Flexible Approximate String Matching Algorithms. Journal of
Parallel and Distributed Computing 67, 131–141 (2007)

11. El-Ghazawi, T.: The High-Performance Reconfigurable Computing Era. GWU
HPC Symposium (2006)

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

	Reducing Storage Requirements in Accelerating Algorithm of Global BioSequence Alignment on FPGA
	Introduction
	Needleman-Wunsch Algorithm Overview
	Storage Optimization Strategy
	Design and Implementation
	Experiments and Performance Comparison
	Reducing Local Memory Requirements
	Increasing PE Number
	Experimental Result

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

