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Abstract. De-synchronous is a very useful method to design
asynchronous circuit automatically from synchronous description of cir-
cuits. This paper introduces an optimal design method based on Con-
trol Graph which is an abstract model of the de-synchronous circuit.
The main purpose of this optimal design method is to reduce the ex-
tra overhead in the area of the de-synchronous circuit. The optimization
algorithm takes the performance evaluation function based on the Con-
trol Graph of the de-synchronous circuit as its heuristic function. The
performance evaluation function presented in this paper is a linear pro-
gramming problem. In the end of this paper, the optimal method is
applied to a set of benchmark circuits. The number of the local con-
trollers in these circuits is markedly reduced by 54%, and the number
of C-elements that is required to construct the handshake circuitry be-
tween local controllers is also reduced by 76.3%. So the entire area of
the circuit is sharply reduced. Because this design method is directed by
the performance evaluation function of the circuit, there is no penalty in
performance of the de-synchronous circuit.

Keywords: de-synchronous, asynchronous, performance evaluation,
algorithm, control graph, Petri-net.

1 Introduction

Along with the scale of chip is getting larger and larger, the clock skew becomes
more and more serious. In order to solve the clock skew problem, a large balance
clock tree needs to be constructed, involving much area and consuming much
energy of the circuit. Compared with synchronous circuits, the power dissipation
of asynchronous ones are really small. As the different parts of the circuit operate
at different speed and switching activity, the Electro-Magnetic Compatibility has
increased. With their interfaces free from global constraints such as operating
frequency, asynchronous circuit provides inherent modularity, which is the major
advantage of the asynchronous design methodology. However, there are some
disadvantages related to asynchronous circuit. On the one hand, there are no
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good CAD tools for asynchronous circuit design; on the other hand, the design
of asynchronous circuit is really complex since there is no global control signal
in the circuit.

In order to avoid the disadvantages of the asynchronous design style, the
concept of de-synchronous has been brought up [1], whose essential idea is that
the design starts from a standard synchronous synthesized circuit, and then the
global clock network is directly replaced by a set of local controllers. All steps of
this design flow can be implemented within standard CAD tools. This method
works efficiently in dealing with the difficulties which will be encountered when
adopting a pure asynchronous design style.

When adopting de-synchronous design methodology, a local handshake cir-
cuitry should be inserted into the circuit in order to take place the global clock.
So an extra overhead, i.e. area, will be introduced to the circuit. The major
purpose of this paper is to reduce this area overhead. A abstract model is devel-
oped to represent the control path of the circuit, based on which an algorithm
is introduced to reduce the area of the de-synchronous circuit.

In Section 2, the related works of this paper are introduced. The concept
and design flow of the de-synchronous design style are explained in Section 3.
In Section 4 we use an abstract model—Control Graph based on Petri-net to
model the de-synchronous circuit. In Section 5, based on Control Graph of de-
synchronous circuit, an optimization algorithm is developed to combine the local
controllers in order to reduce the entire area of the circuit, which is directed by
the performance evaluation function. In Section 6, the algorithm is applied to a
number of benchmark circuits. Section 7 is the conclusion part.

2 Related Work

The idea of generating local control signals for a synchronous latch-based circuit
is proposed by Sutherland in his Turing award lecture [2]. The micorpipeline
theory has been adopted in several designs [3] and CAD tools [4,5,6].

Theseus Logic has developed a design method [7] that uses the commercial
EDA tools to synthesize and optimize the datapath, and directly translates the
control path into an asynchronous implementation. But this approach suffers
from high overhead and requires the non-standard HDL style.

Liner and Harden have introduced a method that replaces each logic gate
with an equivalent sequential handshake asynchronous circuit, where the syn-
chronization information is encoded into the code of data using an LEDR delay-
insensitive code [8]. This approach also have an expensive overhead.

The similar work as this paper is presented by A. Davare in [9]. He also directly
replaces the global clock network with local controllers. But in that paper, he
only introduces a simple method to optimize the circuit without concerning the
circuit performance.

Our group has also done a lot of works on de-synchronous circuit design. We
have presented a de-synchronous circuit design flow [10,11] based on macrocell.
This design flow tries to compatible with current EDA tools for synchronous
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design, which makes it easy to design asynchronous circuits. Based on this de-
sign methodoloy, we have designed a 32-bits asynchronous multiplier in 0.35μm
process. Compared with the synchronous partner, our design of multiplier has
smaller area, lower power dissipation and higher performance.

3 Design Step for De-synchronous Circuit

Generally speaking, the design based on flip-flop will need more complex control
circuitry, which will lead to an extra area overhead. In this paper, we translate
each flip-flop to a pair of master-slave latches, because latch-based design will
be smaller and faster. In [1], a design flow of de-synchronous circuit has been
introduced. All steps of this flow starting from a flip-flop-based synchronous cir-
cuit that can be implemented with standard CAD tools. The de-synchronization
method proceeds in the following three steps:

1. Splitting each flip-flop into a master-slave latch pair.
2. Generating matched delay for combinational logic.

Serving as a completion detector for the corresponding combinational block,
each matched delay must be greater than or equal to the delay of the critical
path of the corresponding combinational block.

3. Implementing the local controller corresponding to each latch.
For each latch of the latch-based synchronous circuit, a local controller will
be inserted into the circuit for generating the control signal. The local con-
trollers communicate with each other over handshake. Request signals from
predecessors are delayed by the matched delay generated in the previous
step.

4 The Model of De-synchronous Circuit

In fact, the data path of the de-synchronous circuit presented in this paper has
no difference with its synchronous partner, so the major design concern should
be paid to the design of the control path of the circuit. Based on the work in [12] ,
this paper introduces an abstract model of the control path of the de-synchronous
circuit—Control Graph. The Control Graph takes a weighted directed graph to
represent the local controllers corresponding to the latches in the circuit and the
handshake circuitry between the local controllers. The definition of the Control
Graph is:

Definition 1. Control Graph
A Control Graph is a 4-tuple, < V, F, W, P >; < V, F > is a directed graph,

P : V �→ {even, odd} is a polarity function, W : F �→ R is a weighted function.

In the directed graph < V, F > , V is a set of all vertices in this graph, and
each vertex in V represents a local controller in the de-synchronous circuit; F
is a set of all edges in the graph, and each edge in F represents a connecting
relationship of two local controllers, in other words, these two local controllers
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should synchronize with each other. In a real circuit, an edge also indicates
that there is a combination logic path between the two latches. The polarity
function P assigns a polarity to each vertex of < V, F > according to the type
of corresponding latch, such as master or slave. The weighted function assigns a
real number to each edge of < V, F >, which indicates that the worst case delay
associates with corresponding combination logic path of this edge.

The construction process of the Control Graph is as follows:

1. Using logical synthesis tools to synthesize the circuit, getting the gate-level
net-list of the circuit.

2. Inserting a new vertex to the Control Graph for every latch in the gate level
net-list.

3. Determining the connecting relationship between the vertices in the Control
Graph, i.e. determining the predecessors and successors of every vertex in the
graph. For each vertex v, all vertices that are connected to the input ports
of the combination block whose output port is connected to the input ports
of v construct the predecessor set of v, pre(v). The successor set post(v) can
be determined in same way.

4. Determining the polarity of each vertex in the Control Graph. For vertex v,
if the latch corresponding to v is a master latch, define P (v) = even, else
define P (v) = odd.

5. Determining the weight of edge in the Control Graph, i.e. the weighted func-
tion W . The worst case delay of each combinational path corresponding to
the edge of the Control Graph can be calculated by STA tools. This delay
is assigned to the edge as a weight.

An example circuit and its Control Graph are illustrated in Fig 1.
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Fig. 1. An example circuit and its Control Graph

The circuitry of control path can be automatically derived from the Control
Graph of the de-synchronous circuit. For each local controller v, there is a pair
of reqin, ackin signals, and a pair of reqout, ackout signals, where reqin, ackin are
the handshake signals with the local controllers in set pre(v); reqout, ackout are
the handshake signals with the local controllers in set post(v). All reqout of the
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local controllers in pre(v) are combined by a multi-input C-element to generate
the reqin of the local controller v; All ackout of the local controller in pre(v) are
directly connected to the ackin of the local controller v.

5 Optimization of the Control Path

Based on the Control Graph of the de-synchronous circuit, this paper develops
an optimization algorithm to reduce the area of the de-synchronous circuit.

The control path of the de-synchronous circuit is made up by the local con-
trollers and the handshake circuitry between them. The de-synchronous circuit
which avoids the area overhead of the global clock introduces the new area over-
head of local controllers and the handshake circuitry between them. As the data
path of the de-synchronous circuit is the same as its synchronous partner, reduc-
ing the area of the control path of the de-synchronous circuit will be important
to reduce the entire area of the whole circuit.

We can naturally combine the control signals of a set of latches with a single
control signal. One local controller generates the latch signal of a set of latches,
by which the number of the local controllers in the control path will be decreased
and in turn reducing the whole area of the circuit. According to this concept, we
develop an optimal method based on the combining control signals of latches.

5.1 Combining Control Signals of Latches

The meaning of combining control signals of latches is that the control signals
of several latches are generated by a single local controller, by which the area of
the circuit will be reduced.

In fact, combining control signals of latches is to combine the vertices in the
control graph. Because the mapping between the vertex in the control graph
and the latch controller in the circuit is one to one, we can use the combination
of the vertices in the control graph to represent combining control signals of
latches. In this way, we can combine the vertices in the control graph to achieve
the purpose of combining the local controllers in the circuit. When two vertices
in the control graph are combined, the following rules must be followed:

– Only when two vertices have the same polarity, they can be combined, i.e.
P (u) = P (v); After the combination, a new vertex w will be inserted into
the control graph.

– pre(w) = pre(u)
⋃

pre(v).
– post(w) = post(u)

⋃
post(v).

– The weight of each edge remains unchanged.

5.2 The Performance Evaluation Function Based on Control Graph

Definition 2. Average Cycle Time[13]
The average cycle time of an asynchronous circuit is the longest average cycle

time among all circles in the timed Petri-net model corresponding to this circuit.
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The average cycle time is a performance evaluation parameter of the asyn-
chronous circuit. De-synchronous circuit is a kind of asynchronous circuit, so
this parameter can also be the performance evaluation parameter of the de-
synchronous circuit.

Definition 3. Timed Petri-net
Timed Petri-net is defined as a 5-tuple N =< P, T, F, Δ, M0 >, where P =

{p1, p2, ..., pm} is the non-empty and finite set of place, T = {t1, t2, ..., tn} is the
the non-empty and finite set of transition, F ⊆ (P × T ) ∪ (T × P ) is the flow
relationship, Δ : T �→ R is the execution time function of transition, M0 ⊆ P is
the initial marking of the Petri-net.

The timed Petri-net of a de-synchronous circuit can be derived from the Control
Graph of the circuit. The procedure is:

1. Every vertex in the Control Graph has been extended to a substructure
in timed Petri-net. This substructure is constructed by two transitions and
one place; one transition is called input transition which can have several
inputs and only one output connecting to the input of the place; the other
is called output transition which can have several output and only one input
connecting to the output of the place.

2. Each edge in the Control Graph become a place in the timed Petri-net, whose
input is connected to the output transition of the extended substructure
derived from the source vertex of this edge; the output is connected to the
input transition of the extended substructure derived from the target vertex
of this edge.

3. The place in the substructure produced in step 1 can present the vertex in
Control Graph. Each place corresponding to the odd vertex in the Control
Graph should be included in initial marking M0.

4. For each transition ti, the corresponding transition execution time θi is the
maximum delay of the edges which input to ti.

It is easy to be confirmed that the timed Petri-net derived from above proce-
dure is live and safe.

[14] has pointed that the bottom bound of average cycle is:

τ = max
i

{yT
i (C−)T Dx

yT
i M0

}

where C− = [c−ij ]m×n , c−ij is the weight of directed arc from transition j to place
i; D is the diagonal matrix constructed by θii, which is the execution time of
the transitions ti in timed Petri-net; M0 is an array having the same number of
elements as the place set of timed Petri-net, which contains the initial number
of tokens kept in the corresponding place.

If the Petri-net is a marked graph (a subclass of Petri-nets[15] that can model
decision-free concurrent systems), the maximum average cycle time can be gained
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by solving the below Linear Programming problem.

T = maxY T (C−)T θ

st.
C · Y = 0

Y T · M0 = 1
Y ≥ 0

This method is very fast, so it works in dealing with large scale problems. For
a de-synchronous circuit whose Control Graph is C, we take the average cycle
time T (C) calculated in this method as the performance evaluation function of
this de-synchronous circuit.

5.3 The Optimization Algorithm

According to the polarity of the vertex in the Control Graph, the latches in the
circuit can be divided into two subsets. Only vertices with the same polarity
can be combined. In the extreme case, it will result in a circuit with only two
local controllers, one for the master latches and the other for the slave latches,
which behaviors just like the synchronous partner and eliminates the benefit of
the asynchronous one. In fact, the purpose of combination of latches is to find a
best partition of these two subsets to achieve the best balance between the area
and the benefit of asynchronism.

In order to find the exact optimization result, it is necessary to traverse every
partition of the two subsets of the vertices, which is unacceptable for it is a NP-
hard problem. Therefore, a polynomial time algorithm to find an approximate
optimal solution is introduced in this paper.

To prevent the benefit of asynchronism lost, a threshold is introduced to the
optimization procedure. The threshold means the up-bound of the number of
latches controlled by a single local controller. The larger value the threshold
assigned, the more local controller can be combined, the more benefit of asyn-
chronous is lost, vice versa. The algorithm for combining control signals of latches
is as follows:

Algorithm 1 ( combining control signals of latches). Given a Control
Graph C =< V, F, W, P >. Vdeleted is a set that keeps the vertices deleted during
the optimization. Set n = |V |. It maintains an array (θ1, θ2, ..., θn), where θi

present the times which vi has been combined. Θ is the threshold assigned to
algorithm. The algorithm is as follows:

1. Set Vdeleted = ∅;
2. Set i = 1, τmin = ∞;
3. Set j = i + 1;
4. If vi ∈ Vdeleted, then jump to 5. If vj ∈ Vdeleted or θi + θj > Θ, then

jump to 4. Combine vi and vj of C to produce a new control graph C′, if
T (C′) � T (C), then set τmin = T (C′), imin = i, jmin = j. If j � n, then
jump to 5, otherwise j = j + 1 and jump to 4.

5. If i > n, then jump to 6, otherwise i = i + 1 and jump to 3;
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6. If τmin < ∞, then combine vimin and vjmin to produce the new control graph
C and set Vdeleted = Vdeleted ∪ {vjmin}.

The core step of this algorithm is step 4, in which T (C) has been calculated.
T (C) is a linear programming problem. If we chose the Karmarker’s algorithm to
solve the linear programming problem, the time complexity is O(n3.5) [16], where
n is the number of variables in this problem, i.e. the place of timed petri-net
corresponding to the circuit. The iterative depth of our optimization algorithm
is 2, so the time complexity of the algorithm is O(n5.5). The time complexity of
this algorithm is polynomial time.

6 Experiment Result

In order to evaluate the effectiveness of the algorithm presented in this paper,
several experiments are conducted on some benchmark circuits and describing
in the following part.

We choose a subset of the ISCAS’89 benchmark circuit sets, 9 circuits of which
are chosen. To determine the effect of the threshold, we choose different threshold
values to run the algorithm on these set of benchmark circuits. The reduction
of the number of the local controllers is illustrated in Table 1. Since the control
path is made up by these local controllers and the handshake circuitry between
them, and the major part of the handshake circuitry is C-elements, the total
area of the control path is mainly composed by the area of the local controllers
and the area of the C-elements. For this reason, we also illustrate the number of
C-elements needed by the circuit. In the experiment, we investigate the result
when threshold is 2(Θ = 2) and 3(Θ = 3).

Table 1. The experiment result of combining control signals of latches

Original Optimized(Θ = 2) Optimized(Θ = 3)
Circuit Vertex Edge C-element Vertex Edge C-element Vertex Edge C-element
s27 6 10 4 4 6 2 4 6 2
s298 28 83 55 16 38 22 12 25 13
s344 30 93 63 16 40 24 12 35 23
s349 30 93 63 16 40 24 12 35 23
s386 12 42 30 6 12 6 4 6 2
s420 32 152 120 14 44 28 12 30 18
s510 12 42 30 6 12 6 4 6 2
s526 42 165 123 22 77 55 14 48 34
s1448 12 42 30 6 12 6 6 12 6

From the experiment result presented above, we can see that the number of
vertices and edges are both decreased, and the C-elements required by the circuit
are also dramatically reduced. We can also see that when Θ = 2, the number
of local controllers in the circuit is totally reduced by 37.9%, the number of
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C-elements is totally reduced by 66.6%, and when Θ = 3, the number of local
controllers in the circuit is totally reduced by 54%, the number of C-elements is
totally reduced by 76.3%.

Along with the reduction of the number of the local controllers in the cir-
cuit, the fan-in and fan-out of a single local controller may be increased, which
may cause some extra overhead of area introduced into the circuit. In Table 2,
we illustrate the average fan-in and fan-out of these circuits before and after
optimization.

Table 2. The average fan-in and fan-out of the benchmark circuits before and after
optimization

Original Optimized
Circuit Avg. fan-in/out Avg. fan-in/out(Θ = 2) Avg. fan-in/out(Θ = 3)
s27 2.67 3.00 3.00
s298 3.96 4.15 4.42
s344 4.10 4.38 5.42
s349 4.10 4.38 5.42
s386 4.50 4.00 4.50
s420 5.75 4.75 5.17
s510 4.50 4.00 4.50
s526 4.93 5.41 6.43
s1448 4.50 4.00 4.00

From the result above, we observe that the change of the average fan-in and
fan-out is relatively small compared with the notable reduction in the number
of the local controllers and the C-elements. In some cases, because of the great
reduction of the number of handshakes in the circuit, the average fan-in and
fan-out may even be decreased.

7 Conclusions

In this paper, an optimization method to balance the penalties and benefits of de-
synchronous circuit is introduced. It is allowed that the control signals of several
latches to be combined into a single signal generated by one local controller. In
this way, the overhead of the local controllers can be sharply reduced. From the
experiment results, we can see that nearly half of the local controllers can be
eliminated and nearly 2/3 of the C-elements required to construct the control
path can also be eliminated.

The de-synchronous design methodology can improve EMI, and markedly
shorten the design cycle of asynchronous circuit. Our optimization method for
de-synchronism can conquer the problem that de-synchronism may bring some
overhead into circuit. We believe that de-synchronism with our optimization
algorithm is a very useful method to design asynchronous circuit before the pure
asynchronous design methodology be widely used.
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