

Lecture Notes in Computer Science 4847
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ming Xu Yinwei Zhan Jiannong Cao
Yijun Liu (Eds.)

Advanced
Parallel Processing
Technologies

7th International Symposium, APPT 2007
Guangzhou, China, November 22-23, 2007
Proceedings

13

Volume Editors

Ming Xu
National University of Defense Technology
Computer School
Changsha, Hunan 410073, China
E-mail: xuming-64@hotmail.com

Yinwei Zhan
Yijun Liu
Guangdong University of Technology
Faculty of Computer Science
Guangzhou, Guandong 510090, China
E-mail: {ywzhan, yjliu}@gdut.edu.cn

Jiannong Cao
The Hong Kong Polytechnic University
Department of Computing
Hung Hom, Kowloon, Hong Kong, China
E-mail: csjcao@comp.polyu.edu.hk

Library of Congress Control Number: 2007939056

CR Subject Classification (1998): D, B, C, F.1-3, G.1-2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-76836-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-76836-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12193387 06/3180 5 4 3 2 1 0

Preface

We are currently witnessing a proliferation in parallel and distributed processing
technologies and applications. However, more new technologies have ushered in
unprecented challenges to the research community across the range of high-performance
computing, multi-core microprocessor architecture, networks and pervasive computing,
as well as new paradigm computing issues.

APPT 2007 was sponsored by the China Computer Federation, in cooperation with
TCPP of the Institute for Electrical and Electronics Engineers (IEEE). The highly
positive responses to the previous APPT workshops encouraged us to continue this
international event. This year, APPT was upgraded to the International Symposium on
Advanced Parallel Processing Technologies. However, it kept its traditional flavor by
sharing of the underlying theories and applications, and the establishment of new and
long-term collaborative channels. And it will continue to provide a forum for
researchers, professionals, and industrial practitioners from around the world to report
on new advances in high-performance architecture and software, as well as to identify
issues and directions for research and development in the new era of evolving
technologies.

The success of APPT 2007 was a result of the hard work and planning of a large
group of renowned researchers from around the world, who served on the Technical
Program Committee and the Organizing Committee. Their invaluable efforts in
developing this technical program are most gratefully acknowledged. In particular, we
would like to thank the Program Co-chairs, Xin Chen, Xuejun Yang, and Albert Y.
Zomaya.

We also would like to take this opportunity to thank our keynote speakers: Arndt
Bode from the Technical University of Munich and Barbara Chapman from Houston
University. The symposium also invited David W. Yen from Sun Microsystems Inc.
to offer an interesting talk on multi-core microprocessor product. Their views on
different aspects of the challenges we all face were of high value.

Last but not least, the conference would not have been possible without the
generous support of our industrial sponsor, Sun Microsystems Inc. We hope you find
the papers to be both stimulating and enjoyable!

November 2007 Xingming Zhou

 Arndt Bode

Message from the Program Committee Co-chairs

Since 1995, the Advanced Parallel Processing Technologies (APPT) workshop series
has provided a forum for international, cross-disciplinary parallel and distributed
processing technologies. APPT 2007 was the seventh event in the series.

It was our pleasure to hold this symposium (originally workshop) in Guangzhou.
During the conference, participants had the opportunity to obtain the latest
information on a variety of aspects of parallel and distributed processing theories,
applications, and practices.

This year, we received 346 full manuscripts from researchers and practitioners of
12 countries and regions. Each paper was peer-reviewed so that most papers had at
least two anonymous referees. Papers were reviewed and selected based on their
originality, significance, correctness, relevance, and clarity of presentation. Only 78
papers were accepted for presentation at the symposium, representing an acceptance
rate of 22.5%. Overall, the program struck a comfortable balance between applied and
theoretically oriented papers. All accepted papers are included in the proceedings. We
appreciate Springer for accepting to publish the proceedings again as part of the
LNCS series.

We would like to acknowledge the support of the Computing College, Guangdong
University of Technology for taking care of every fine detail in the operation of the
symposium. In particular, we mention Yinwei Zhan, the local Organizing Chair, and
Yijun Liu, Zhenkun Li, Xiufen Fu for their notable endeavors to make this conference
successful. We also express our deepest gratitude to the Computer Architecture
Professional Committee members, who offered us valuable advice and suggestions.
Without their devotion and contribution, we could not have had a fruitful conference.

On behalf of the Program Committee, we would like to express our heartfelt thanks
to everyone who attended APPT 2007!

Xin Chen

Xuejun Yang
Albert Y. Zomaya

Organization

General Co-chairs

Xingming Zhou, National Laboratory for Parallel and Distributed Processing, China
A. Bode, Technical University of Munich, Germany

Program Co-chairs

Xin Chen, Guangdong University of Technology, China
Xuejun Yang, National Laboratory for Parallel and Distributed Processing, China
Albert Y. Zomaya, University of Sydney, Australia

Program Committee Members

Binxing Fang, Harbin Institute of Technology, China
Xinda Lu, Shanghai Jiao Tong University, China
Weimin Zheng, Tsinghua University, China
Xinsong Liu, Electronical Sciences University, China
Siwei Luo, Beijing Jiaotong University, China
Song Shen, Institute No. 706, Aeronautic Industry Inc., China
Jiannong Cao, Hong Kong Polytechnic University, China
Xiangdong Hu, Jiangnan Computing Institute, China
Xiaodong Wang, National Laboratory for Parallel and Distributed Processing, China
Zhiwei Xu, Chinese Academy of Science, China
Zhenzhou Ji, Harbin Institute of Technology, China
Xiaoming Li, Peking University, China
Dongsheng Wang, Tsinghua University, China
Cheng-Zhong Xu, Wayne State University, USA
Wentong Cai, Nanyang Technological University, Singapore
Rodrigo de Mello, University of Sao Paulo, Brazil
Srinivas Aluru, Iowa State University, USA
John Feo, Cray Inc., USA
Kurt Rothermel, University of Stuttgart, Germany
Laurence T. Yang, St. Francis Xavier University, Canada
Eric Aubanel, University of New Brunswick, Canada
Jacques Bahi, University of Franche-Comté, France
Subhash Bhalla, University of Aizu, Japan
Jie Wu, Florida Atlantic University, USA
Jingling Xue, University of New South Wales, Australia
Zahari Zlatev, National Environmental Research Institute, Denmark
Jemal H. Abawajy, Deakin University, Australia

 Organization X

Jie Li, University of Tsukuba, Japan
Martin Buecker, Aachen University of Technology, Germany
Beniamino Di Martino, Second University of Naples, Italy
Andrei Doncescu, University of West French Indies, France
George A. Gravvanis, Democritus University of Thrace, Greece
Minyi Guo, University of Aizu, Japan
Weijia Jia, City University of Hong Kong, China
Helen Karatza, Aristotle University of Thessaloniki, Greece
Ajay Kshemkalyani, University of Illinois, Chicago, USA
Gerhard Joubert, Technische Universität Clausthal, Germany
Thomas Rauber, University of Bayreuth, Germany
Virendra C. Bhavsar, University of New Brunswick, Canada

Publication Chair

Jiannong Cao, Hong Kong PolytechnicUniversity, China

Panel Chair

Qian Zhang, Hong Kong University of Science and Technology, China

Organizing Chair

Yinwei Zhan, Guangdong University of Technology, China
Ming Xu, National University of Defense Technology, China

Demonstration and Exhibit Chair

Yijun Liu, Guangdong University of Technology, China

Industry Liaison

Yong Tong, National Sun Yat-Sen University, China

Publicity Chair

Bingbing Zhou, University of Sydney, Australia

Finance Chair

Zhenkun Li, Guangdong University of Technology, China

 Organization XI

Reviewers

Jemal H. Abawajy Zhiping Jia Sufeng Wang
Srinivas Aluru Jingfei Jiang Xiaodong Wang
Eric Aubanel Xiaohong Jiang Xingwei Wang
Jacques Bahi Gerhard Joubert Yijie Wang
Subhash Bhalla Helen Karatza Yongwen Wang
Virendrakumar C. Bhavsar Ajay Kshemkalyani Zhijun Wang
Martin Buecker Victor Lee Jun Xia
Wentong Cai Hong Li Bin Xiao
Zhicai Cai Mengjun Li Canwen Xiao
Zhiping Cai Tiejun Li Jitian Xiao
Jiannong Cao XinSong Liu Nong Xiao
Issac Chan Yijun Liu Xiaoqiang Xiao
Wenguang Chen Hongyi Lu Chang sheng Xie
Beniamino Di Martino Li Luo Cheng-Zhong Xu
Andrei Doncescu Xinda Luo Jingling Xue
Xiaoshe Dong Zhigang Luo Ming Xu
Qiang Dou Xiaoguang Mao Laurence T. Yang
Yong Dou Xinjun Mao Danlin Yao
Xiaoya Fan Rodrigo Mello Jianping Yin
John Feo Zhiyong Peng Wanrong Yu
Tony Fong Depei Qian Binyu Zang
George Gravvanis Zili Shao Yinwei Zhan
Changguo Guo Li Shen Gongxuan Zhang
Minyi Guo Song Shen Heying Zhang
Xiaoxing Guo Dianxi Shi Yuelong Zhao
Weihong Han Jinshu Su Wenhua Zeng
Fengru He Caixia Sun Weimin Zheng
Hongjun He Alfred Tan Yi Zheng
An Hong Qingping Tan Zahari Zlatev
Fangyong Hou Yong Tang Chuanqi Zhu
Chuanhe Huang Cho-li Wang Peidong Zhu
Zhenzhou Ji Dongsheng Wang Shurong Zou
Xiaohua Jia Guojun Wang

Table of Contents

Invited Talks

Scalability for Petaflops systems . 1
Arndt Bode

Chip Multi-Threading and the SPARC Evolution . 2
David W. Yen

The Multicore Programming Challenge . 3
Barbara Chapman

Session 1 – Advanced Microprocessor Architecture

Replication-Based Partial Dynamic Scheduling on Heterogeneous
Network Processors . 4

Zhiyong Yu, Zhiyi Yang, Fan Zhang, Zhiwen Yu, and Tuanqing Zhang

The Optimum Location of Delay Latches Between Dynamic Pipeline
Stages . 14

Mahmoud Lotfi Anhar and Mohammad Ali Jabraeil Jamali

A Novel Fault-Tolerant Parallel Algorithm . 18
Panfeng Wang, Yunfei Du, Hongyi Fu, Haifang Zhou,
Xuejun Yang, and Wenjing Yang

The Design on SEU-Tolerant Information Processing System of the
On-Board-Computer . 30

Huang Ying, Zhang Chun-yuan, Liu Dong, Li Yi, and
Weng Sheng-xin

Balancing Thread Partition for Efficiently Exploiting Speculative
Thread-Level Parallelism . 40

Yaobin Wang, Hong An, Bo Liang, Li Wang, Ming Cong, and
Yongqing Ren

Design and Implementation of a High-speed Reconfigurable Modular
Arithmetic Unit . 50

Wei Li, Zibin Dai, Tao Chen, Tao Meng, and Xuan Yang

Virtual Disk Monitor Based on Multi-core EFI . 60
Xizhe Zhang, Shensheng Zhang, and Zijian Deng

An Optimal Design Method for De-synchronous Circuit Based on
Control Graph . 70

Gang Jin, Lei Wang, Zhiying Wang, and Kui Dai

XIV Table of Contents

Evaluating a Low-Power Dual-Core Architecture . 80
Yijun Liu, Pinghua Chen, Guobo Xie, Guangcong Liu, and
Zhenkun Li

Session 2 – Parallel Distributed System Architectures

Reducing Storage Requirements in Accelerating Algorithm of Global
BioSequence Alignment on FPGA . 90

Fei Xia and Yong Dou

Multi-cluster Load Balancing Based on Process Migration 100
XiaoYing Wang, ZiYu Zhu, ZhiHui Du, and SanLi Li

Property-Preserving Composition of Distributed System Components . . . 111
K.S. Cheung and K.O. Chow

A Distributed Scheduling Algorithm in Central-stage Buffered
Multi-stage Switching Fabrics . 121

Yuxiang Hu, Fang Dong, and Julong Lan

Improving Recovery in Weak-Voting Data Replication 131
Luis H. Garćıa-Muñoz, Rubén de Juan-Maŕın,
J. Enrique Armendáriz-Íñigo, and Francesc D. Muñoz-Escóı

Exploring Data Reusing of Failed Transaction . 141
Shaogang Wang, Dan Wu, Xiaodong Yang, and Zhengbin Pang

A Parallel BSP Algorithm for Irregular Dynamic Programming 151
Malcolm Yoke Hean Low, Weiguo Liu, and Bertil Schmidt

Context-Aware Middleware Support for Component Based Applications
in Pervasive Computing . 161

Di Zheng, Yan Jia, Peng Zhou, and Wei-Hong Han

Design of High-Speed String Matching Based on Servos’ Array 172
Wang Jie, Ji Zhen-zhou, and Hu Ming-zeng

An Efficient Construction of Node Disjoint Paths in OTIS Networks 180
Weidong Chen, Wenjun Xiao, and Behrooz Parhami

Pampoo: An Efficient Skip-Trie Based Query Processing Framework for
P2P Systems . 190

Li Meifang, Zhu Hongkai, Shen Derong, Nie Tiezheng,
Kou Yue, and Yu Ge

On the Implementation of Virtual Array Using Configuration Plane 199
Yong-Sheng Yin, Li Li, Ming-Lun Gao, Gao-Ming Du, and
Yu-Kun Song

Table of Contents XV

Analysis on Memory-Space-Memory Clos Packet Switching Network 209
Xiangjie Ma, Yuxiang Hu, Junpeng Mao, Julong Lan,
Lian Guan, and Baisheng Zhang

Measurement of High-Speed IP Traffic Behavior Based on Routers 222
Xiangjie Ma, Junpeng Mao, Yuxiang Hu, Julong Lan,
Lian Guan, and Baisheng Zhang

The Design and Implementation of the DVS Based Dynamic Compiler
for Power Reduction . 233

Xiang LingXiang, Huang JiangWei, Sheng Weihua, and
Chen TianZhou

Optimal Routing Algorithm and Diameter in Hexagonal Torus
Networks . 241

Zhen Zhang, Wenjun Xiao, and Mingxin He

Implementation and Performance Evaluation of an Adaptable Failure
Detector in iSCSI . 251

Guang Yang, Jingli Zhou, and Gang Liu

A Niching Gene Expression Programming Algorithm Based on Parallel
Model . 261

Yishen Lin, Hong Peng, and Jia Wei

Session 3 – Grid Computing

ComNET: A P2P Community Network . 271
Zhentao Sun and Wenjun Xiao

Data Grid Model Based on Structured P2P Overlay Network 282
Wei Song, Yuelong Zhao, Wenying Zeng, and Wenfeng Wang

PeerTR: A Peer-to-Peer Terrain Roaming Architecture 292
Sheng Zheng, Zhanwu Yu, Zhongmin Li, and Lu Gao

SDRD: A Novel Approach to Resource Discovery in Grid
Environments . 301

Yiduo Mei, Xiaoshe Dong, Weiguo Wu, Shangyuan Guan, and
Junyang Li

A Comparative Study of Two Java High Performance Environments for
Implementing Parallel Iterative Methods . 313

Jacques M. Bahi, Raphaël Couturier, David Laiymani, and
Kamel Mazouzi

SIGRE – An Autonomic Spatial Information Grid Runtime
Environment for Geo-computation . 322

ZhenChun Huang, GuoQing Li, Bin Du, Yi Zeng, and Lei Gu

XVI Table of Contents

A Flexible Job Scheduling System for Heterogeneous Grids 330
Lan Cheng, Hai Jin, Li Qi, and Yongcai Tao

n-Cube Model for Cluster Computing and Its Evaluation 340
Tian Song, Dongsheng Wang, Meizhi Hu, and Yibo Xue

Session 4 – Interconnection Networks

An Algorithm to Find Optimal Double-Loop Networks with Non-unit
Steps . 352

Xiaoping Dai, Jianqin Zhou, and Kaihou Wang

Self-adaptive Adjustment on Bandwidth in Application-Layer
Multicast . 362

Jianqun Cui, Yanxiang He, and Libing Wu

Overlay Multicast Routing Algorithm with Delay and Delay Variation
Constraints . 372

Longxin Lin, Jie Zhou, and Zhao Ye

Selfish MAC Layer Misbehavior Detection Model for the IEEE
802.11-Based Wireless Mesh Networks . 382

Hongjian Li, Ming Xu, and Yi Li

rHALB: A New Load-Balanced Routing Algorithm for k-ary n-cube
Networks . 392

Huaxi Gu, Jie Zhang, Kun Wang, and Changshan Wang

P2P File Sharing in Wireless Mesh Networks . 402
Luo Huiqiong, Ding Xuyang, Lao Hansheng, and Wang Wenmin

General Biswapped Networks and Their Topological Properties 414
Mingxin He, Wenjun Xiao, Weidong Chen, Wenhong Wei, and
Zhen Zhang

Design a Hierarchical Cache System for Effective Loss Recovery in
Reliable Multicast . 423

Zhijun Wang, Xiaopeng Fan, and Jiannong Cao

A Novel Design of Hidden Web Crawler Using Reinforcement Learning
Based Agents . 433

J. Akilandeswari and N.P. Gopalan

Look-Ahead Adaptive Routing on k-Ary n-Trees . 441
Quanbao Sun, Liquan Xiao, and Minxuan Zhang

Session 5 – Network Protocols

A Beehive Algorithm Based QoS Unicast Routing Scheme with ABC
Supported . 450

Xingwei Wang, Guang Liang, and Min Huang

Table of Contents XVII

An Effective Real-time Rate Control Scheme for Video Codec 460
Wei Sun and Haoshan Shi

An Anti-Statistical Analysis LSB Steganography Incorporating
Extended Cat-Mapping . 468

Wenxiao Chen, Jing Cai, and Siwei Li

Geographic Probabilistic Routing Protocol for Wireless Mesh
Network . 477

Ning Xiao, Ling Ding, Minglu Li, and Minyou Wu

Towards a New Methodology for Estimating Available Bandwidth on
Network Paths . 487

Shaohe Lv, Xiaodong Wang, Xingming Zhou, and Jianping Yin

Design and Realization of Multi-protocol Communication Model for
Network Security Management System . 497

Shouling Dong and Jiaming Luo

Enhanced and Authenticated Deterministic Packet Marking for IP
Traceback . 508

Dan Peng, Zhicai Shi, Longming Tao, and Wu Ma

Session 6 – Pervasive and Mobile Computing
Architectures

A Designing Method for High-Rate Serial Communication 518
Gongxuan Zhang, Ling Wang, and Bin Song

A Comprehensive Efficient Flooding Algorithm Using Directional
Antennas for Mobile Ad Hoc Networks . 525

Xianlong Jiao, Xiaodong Wang, and Xingming Zhou

GTCOM: A Network–Based Platform for Hosting On-Demand Desktop
Computing . 535

Guangbin Xu, Yaoxue Zhang, Yuezhi Zhou, and Wenyuan Kuang

Multi-robot Task Allocation Using Compound Emotion Algorithm 545
Wei Yuan and Bi Zeng

The Security Threats and Corresponding Measures to Distributed
Storage Systems . 551

Lanxiang Chen, Dan Feng, and Liang Ming

Session 7 – Task Scheduling and Load Balancing

Research on Dynamic Load Balancing Algorithms for Parallel
Transportation Simulations . 560

Dongliang Zhang, Changjun Jiang, and Shu Li

XVIII Table of Contents

Embedded System’s Performance Analysis with RTC and QT 569
Fulong Chen and Xiaoya Fan

Scheduling Meetings in Distance Learning . 580
Jian Wang, Changyong Niu, and Ruimin Shen

Domain Level Page Sharing in Xen Virtual Machine Systems 590
Myeongjae Jeon, Euiseong Seo, Junghyun Kim, and Joonwon Lee

Session 8 – Software Engineering

Parallel First-Order Dynamic Logic and Its Expressiveness and
Axiomatization . 600

Zhiguo Zhang and Yunfei Jiang

Efficient Voice User Interface System Using VoiceXML and
ASP.NET 2.0 . 608

Byung-Seok Kang and Gi-Jong Yoo

Array Modeling in Java Virtual Machine . 617
Wu Weimin, Li Kailun, and Su Qing

Configuration Modeling Based Software Product Development 624
Yi-yuan Li, Jian-wei Yin, Yin Li, and Jin-xiang Dong

Formal Semantic Meanings of Architecture-Centric Model Mapping 640
Xiao Yang, Jinkui Hou, and Jiancheng Wan

Exploiting Thread-Level Parallelism of Irregular LDPC Decoder with
Simultaneous Multi-threading Technique . 650

Xing Fang, Dong Wang, and Shuming Chen

P2P Distributed Cooperative Work Model Based on JXTA Platform . . . 658
Gao Bao-Qing, Fu Xiu-Fen, and Xu Su-Xia

EasyPAB: An Extensible IDE Framework for Parallel Applications 666
Yu Ce, Sun Jizhou, Huang Yanyan, Wu Huabei, Xu Zhen, and
Sun Min

The Implementation of Parallel Genetic Algorithm Based on
MATLAB . 676

Chen Guifen, Wan Baocheng, and Yu Helong

Session 8 – Other Issues

Composing Software Evolution Process Component 684
Fei Dai and Tong Li

Table of Contents XIX

Asynchronous Spiking Neural P System with Promoters 693
Zhimin Yuan and Zhiguo Zhang

Fingerprint Classification Method Based on Analysis of Singularities
and Geometric Framework . 703

Taizhe Tan, Yinwei Zhan, Lei Ding, and Sun Sheng

Study on Embedded Vehicle Dynamic Location Navigation Supported
by Network and Route Availability Model . 713

Zhang Dong, Qian Depei, Liu Ailong, Chen Tao, and Yang Xuewei

Convolution Filter Based Pencil Drawing and Its Implementation on
GPU . 723

Dang-en Xie, Yang Zhao, Dan Xu, and Xiaochuan Yang

Improved LLE Algorithm for Motion Analysis . 733
Honggui Li and Xingguo Li

Hybrid GA Based Online Support Vector Machine Model for
Short-Term Traffic Flow Forecasting . 743

Haowei Su and Shu Yu

Composed Fuzzy Rough Set and Its Applications in Fuzzy RSAR 753
Weigen Qiu and Zhibin Hu

Author Index . 765

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, p. 1, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Scalability for Petaflops systems

Arndt Bode

Technical University of Munich, Germany
http://wwwbode.cs.tum.edu/~bode/

Abstract. Future very high end systems, petaflops computers, will be
megaprocessors or megacores with a million or more active processors. This
can be derived both by extrapolation of the processor number of the leading
systems in the TOP500 and by the consideration of multi- and many-core
microprocessors for energy efficiency reasons. Part of processors could also be
application specific accelerators as latest microprocessor architectures support
interfaces to such devices. The large number of processors will also impose
fault tolerance strategies making the system architectures highly heterogeneous
and dynamic. To sum up: petaflops systems will be massively parallel and use
heterogeneous and dynamic processor arrangements. Such architectures pose
the question of scalability and programmability in general. The talk describes
the challanges of such systems for existing application programs, programming
languages and models as well as programming tools.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, p. 2, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Chip Multi-Threading and the SPARC Evolution

David W. Yen

Executive Vice President, Microelectronics
Sun Microsystems, Inc.

The multi-core, multi-threaded (Chip Multi-Threading, or CMT) CPU is a disruptive
technology arrived just in time to further boost computing performance at moderate
energy cost. While similar to the SMP servers in the 90's, the richness of threads and
the finer granularity of parallelism of CMT CPU-based systems do open up a new
programming paradigm. System virtualization on such platforms makes the concept
more intuitive and provides a "soft landing".

Sun Microsystems has been working on CMT SPARC processors since 2002. The
success of UltraSPARC T1 and T2 processors released in December 2005 and August
2007, respectively, bodes well for the entire CMT SPARC processor roadmap. Sun
has further made available to the community at large the OpenSPARC T1 and T2,
open sourced versions based on the UltraSPARC T1 and T2 under GPL.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, p. 3, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Multicore Programming Challenge

Barbara Chapman

Houston University, USA
http://www2.cs.uh.edu/~chapman/

Abstract. Dual-core machines are now actively marketed for desktop and home
computing. Systems with a larger number of cores exist, and more are planned.
Some cores are capable of executing multiple threads. At the very high end,
programmers need to design codes for execution by thousands of processes or
threads and have begun to consider how to write programs that can scale to
hundreds of thousands of threads. Clearly, the future is multi- and many-core,
as well as many-threaded.

In the past, most application developers could rely on Moore's Law to
provide them with steady performance improvements. But we have entered an
era in which they may have to expend considerable effort if their codes are to
exploit the processing power offered by next-generation platforms. At least in
the medium term, a broad variety of parallel applications will need to be
developed.

Existing shared memory parallel programming APIs were not necessarily
designed for general-purpose computing or with many threads in mind.
Distributed memory paradigms do not necessarily allow the expression of fine-
grained parallelism or provide full exploitation of architectural features. The
fact that threads share some resources in multicore systems makes it hard to
reason about the impact of program modifications on performance and results
may be surprising. Will programmers be able to use multicore platforms
effectively?

In this presentation, we discuss the challenges posed by multicore
technology, review recent work on programming languages that is potentially
interesting for multicore platforms, and discuss on-going activities to extend
compiler technology in ways that may help the multicore programmer.

Replication-Based Partial Dynamic Scheduling

on Heterogeneous Network Processors

Zhiyong Yu1, Zhiyi Yang1, Fan Zhang1, Zhiwen Yu2, and Tuanqing Zhang1

1 School of Computer Science, Northwestern Polytechnical University, P.R. China
yuzhiyong@mail.nwpu.edu.cn

2 Academic Center for Computing and Media Studies, Kyoto University, Japan
yu@ccm.media.kyoto-u.ac.jp

Abstract. It is a great challenge to map network processing tasks to
processing resources of advanced network processors, which are hetero-
geneous and multi-threading multiprocessor System-on-Chip. This paper
proposes a novel scheduling algorithm, called Replication-based Partial
Dynamic Scheduling (RPDS). It aims to improve the NP performance by
combining the strategies of partial dynamic mapping and task replication
with a 2-phase scheduling. RPDS differs from existing solutions in several
aspects, e.g., the processing elements are heterogeneous, fully-connected,
and multi-threading, the application is decomposed into directed acyclic
graph tasks with continuous data-packets, and scheduling is conducted
at both of initialization and run-time. Experimental results showed our
algorithm could increase the largest average throughput by about 30%
than those without dynamic phase replication.

Keywords: scheduling, network processors, task replication, partial
dynamic scheduling, directed acyclic graph.

1 Introduction

The Internet has evolved from a simple store-and-forward network to a complex
communication infrastructure. In order to meet demands on security, flexibility
and performance of increasingly complex network services, network traffic not
only needs to be forwarded, but processed on network devices such as routers.
The programmable on-Chip Multi-Processors (CMP) called network processors
(NPs) hence appeared. One of the difficulties of application development on
such kind of hardware platform is to handle processing resources scheduling.
And it also has some other restricts and requirements such as strong real-time,
high throughput, low power, small instruction space, changing traffic load, etc.,
which make it a great challenge to solve this problem.

Scheduling of processing resources is basically to decide which task should be
processed on given processing resource at a given time, to achieve the optimal
goal. Within NPs, this problem is concretely the mapping from tasks to process-
ing elements (PEs). The tasks are relatively independent code blocks which are
decomposed from network applications by using two main methods, i.e. pipelin-
ing and directed acyclic graph (DAG).

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 4–13, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

RPDS on Heterogeneous Network Processors 5

The optimizing problem of mapping tasks to PEs is NP-complete [1]. So the
practical goal is to get the approximate optimal result. Manual mapping is inef-
fective and fallible when the system architecture and application are complex [2],
and previous research on automatic mapping did not consider the characteristics
of advanced NPs.

According to weakest-link principle, the performance of the whole system
relies on a few bottlenecks. So we can improve the system performance by abating
them. When a task is identified to be a bottleneck, there are usually two solving
methods, one is deepening the pipeline, which can’t be changed after software
compilation, the other is duplicating the task executable code to let it occupy
more processing resources at the time of execution. If the bottleneck of a system
is changing, the method of task replication can efficiently track the changes and
abate the bottleneck.

Therefore, to map network processing tasks to processing resources of ad-
vanced complex network processors, this paper proposes a novel scheduling al-
gorithm, called Replication-based Partial Dynamic Scheduling (RPDS). It com-
bines the strategies of partial dynamic mapping and task replication together
in NP scheduling that aims to improve the network processing performance in
terms of throughput and delay.

The rest of this paper is organized as follows. In Sect. 2, we describe related
work in NP scheduling and highlight the distinctive aspects of our approach. In
Sect. 3, the details of problem formalization, processing models, and algorithm
procedure are proposed. Section 4 presents the evaluation method, simulation
tool and experimental results. Finally, Sect. 5 concludes the paper.

2 Related Work

Previous research of mapping tasks to PEs on NPs mainly utilized linear pro-
gramming and heuristic algorithms, e.g., list scheduling, randomized mapping,
and genetic algorithms. In linear programming method, the mapping problem is
transformed to a linear programming problem to handled through greedy heuris-
tic [3] or randomized rounding [4]. The list scheduling sorts all tasks according
to their priorities and chooses a PE for each task based on a particular rule.
Ramaswamy et al. [5] use “criticality” as task priority. Wolf et al. [6] propose
two predictive scheduling algorithms, LAP and EFQ, both of which are in nature
based on list scheduling. The basic idea of randomized mapping is to randomly
choose a valid mapping and evaluate its performance and repeat this process
certain times. [7] and [8] present randomized mapping algorithms with different
models for performance evaluation. Genetic algorithm maintains a population of
candidate solutions that evolves over time and ultimately converges. Yan et al.
[2] generate the initial population by utilizing Monte Carlo method. However,
the above algorithms made a lot of assumptions and simplifications:

– Assumptions of PE architecture. PEs are supposed to be homogeneous,
i.e., execution time of a task processed on different PEs are the same; PEs

6 Z. Yu et al.

are supposed to be linked as pipelining; PEs are supposed not to contain
hardware multi-threads. Actually these assumptions are not true in advanced
NPs’ hardware architecture.

– Simplification of task partition. Existing algorithms usually choose
pipelining tasks, i.e., except the beginning task and the ending task, each
task has and only has one predecessor and one successor. This method can
not take full advantage of parallelism of NPs. Describing the network appli-
cation with DAG is more natural. It reflects characteristics of classification,
synchronization, and parallelism of data-packets processing.

– Simplification of scheduling trigger. Scheduling occasions can be classi-
fied into static scheduling, dynamic scheduling, and partial dynamic schedul-
ing [9]. Partial dynamic scheduling is the trade-off of the former two, in which
partial tasks are assigned off-line, and others at run-time. It has low compu-
tation cost and can achieve local optimal solution at least.

Our work differs from and perhaps outperforms previous work in several as-
pects. First, the NP platform is different. We use the advanced hardware archi-
tecture, which is heterogeneous, fully-connected, and multi-threading. Second,
we adopt partial dynamic mapping, which has been rarely studied in existing
NP scheduling. Third, although the strategy of task replication has been deeply
studied in cluster systems in the context of scientific computing [10], the task
model is very different from ours. Furthermore, we are the first to combine task
replication and partial dynamic mapping in NP scheduling.

3 RPDS Algorithm

3.1 Problem Formalization

The scheduling problem is expressed by 5-tuple as following:

Π = (G, D, P , Θ, Ω) . (1)

G = (T , E) is the dependent relationship graph of tasks, which is usually a
DAG. It takes elements in T as nodes, and elements in E as directed edges. T =
{T1, T2, . . . , Tm} is the set of tasks partitioned from the application. 〈Ti, Tj〉 ∈
E (i, j = 1, 2, . . . , m) denotes that Tj is processed after Ti, and there is data
transferring from Ti to Tj .

D = {D1, D2, . . . , Dl} describes the characteristics of data-packets being
processed, such as arrival time and which type of process is needed. Di =
〈ti, Gi〉 (i = 1, 2, . . . , l), ti is the arrival time of the packet, and Gi is a sub-graph
of G, i.e., the packet needs to be processed by partial or all of the tasks.

P = {P1, P2, . . . , Pn} is the set of PEs in the system. Each PE can load several
tasks with each one costs time tl. Each PE has r hardware multi-threads. Every
two PEs can communicate directly with the delay of time tc, and communicating
delays of inner-PE are ignored.

Θ is an m × n matrix. An element of it θij denotes the execution time of the
task Ti on the PE Pj (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

RPDS on Heterogeneous Network Processors 7

Ω is an m × n matrix. An element of it ωij denotes the number of the task
Ti on the PE Pj(i = 1, 2, . . . , m; j = 1, 2, . . . , n).

The scheduling problem of DAG network processing tasks to heterogeneous
multiprocessors is, given input G, D, P , Θ, to get output Ω and achieve the
optimal goal of the system.

3.2 Processing Model

We present the abstract models for network device and processing. Two defini-
tions are presented at first:

Definition 1. Di.RET , the remaining execution time of data-packet Di.

Definition 2. Di.RCT , the remaining communication time of data-packet Di.

Task Model. We assume that the application has been decomposed to T appro-
priately, and m < n×r, i.e., the number of tasks is less then the total number of
threads. One node may have multiple successors, which means the application
has conditional branches. For example, the sub-graphs of G are G1, G2, . . . , G7,
which represent the processing paths of all types of data-packets (see Fig. 1).

Thread Model. Each thread has its own data buffer. When multiple packets
arrive, they are organized as a FIFO queue in the buffer (see Fig. 2).There are
four states, unoccupied, blocked, running, and ready, of a thread, which can be
transited from one to another in a certain condition.

Fig. 1. An example of sub-graphs

P1

P2

…

T1 T2 T3

D1 RET 0

D2 RET RCT

D3 RET RCT

thread1 thread2 thread4 thread3

D4 RET 5

D5 RET RCT

Switching

Fig. 2. The architecture of thread buffer

State Model of PEs. The load state of the PE Pk can be busy, normal, or idle.
For a period of detecting time td, the summation time when Pk is running is te.
Then the utilization rate of this PE is:

Pk.UR =
te
td

. (2)

Given load upper limit λ1 and load lower limit λ2, if Pk.UR � λ1, Pk is busy;
if Pk.UR < λ2, Pk is idle; Pk is normal when Pk.UR falls between λ1 and λ2.

8 Z. Yu et al.

Communicating and Processing Model. For modern processor, communicating is
independent with processing. RCT of all data-packets in the buffer minus 1 till
0 after every time unit; RET of the first data-packet in the queue minus 1 till 0
after every time unit if its RCT is 0, while RET of other data-packets remain
unchanged; if Di.RET and Di.RCT are both 0, the data-packet Di is finished
on this task, and is passed to the tail of successor task queue, resets Di.RET as
θjk (Tj is the successor task, and Pk is the processor that Tj is loaded), Di.RCT
as tc (different PE) or 0 (the same PE). For a particular task Tj, the buffer of
corresponding thread contains data-packets D1, D2, . . . , Ds. We define Tj .EEF
as the earliest expected finish time of Tj:

Tj.EEF =
s∑

i=1

(Di.RET + Di.RCT) . (3)

The value of EEF implies how busy the task is. For all tasks at the moment,
the task whose EEF value is the biggest is the bottleneck task.

3.3 Algorithm Procedure

Cost function is used to measure the fitness of mapping results, which is the key
of list scheduling algorithm. To take into account execution time, load balance
and communication overhead, the cost function is defined as follows:

F = a×
n∑

j=1

m∑

i=1

ωijθij+b× 1
n

n∑

j=1

(
m∑

i=1

ωijθij −
∑n

j=1
∑m

i=1 ωijθij

n

)2

+c×
m∑

j=1

j∑

i=1

βijtc .

(4)

where βij = 1, if (〈Ti, Tj〉 ∈ E & ∀k, ωik × ωjk = 0) ; or 0, else. The every addend
respectively means the linear sum of all execution time, the variance of the exe-
cution time of every PE, and the linear sum of all communication delay. a, b, c
are corresponding weights. The main procedure of RPDS algorithm is described
as follows:

– Static phase scheduling. At the initialization of NPs, all tasks are orga-
nized as an ordering list. First, calculating the difference between the shortest
execution time and the hypo-shortest execution time of each task, the larger
the difference is, the higher the task priority is. Then for the task with the
highest priority in the list, a PE among those contain unoccupied threads is
selected to make the value of cost function F minimal, to which the task is
allocated. This process is repeated until all tasks are assigned. At the end of
this step the result Ω0 is obtained. As long as the number of tasks m is less
than the total number of threads n × r, each task can occupy a correspond-
ing thread. Apparently there are some redundant unoccupied threads after
static phase scheduling, which will be fully utilized at the next phase.

– Dynamic phase scheduling. During the run-time of NPs, the PEs’ states
are detected every td time. If all PEs are busy, it’s unable to adjust, and if
all PEs are idle, it’s unnecessary to adjust. Therefore when there are some

RPDS on Heterogeneous Network Processors 9

busy PEs and some idle PEs, the bottleneck task found in busy PEs are
duplicated. For each idle PE, the value of cost function F is calculated when
the bottleneck task replication is loaded on it, and the PE that makes F the
minimal is finally chosen. If all threads on the idle PE is occupied, the task
whose EEF is 0 is removed. The pseudo code is given in Fig. 3.

Input: G, Θ, Ω0, time, Pk.UR, Tj .EEF (k = 1, 2, . . . , n, j = 1, 2, . . . , m)
Output: Ωtime

1: While td|time & ∃Pk.UR � λ1 & Pk.UR < λ2

2: Tbottleneck ← Tj : max{Tj .EEF}
3: For each Pk.UR < λ2

4: If all threads in Pk are occupied
5: If ∃Tj .EEF = 0 /∈ Ω0 in Pk

6: remove Tj

7: Else
8: continue
9: load Tbottleneck
10: calculate Fk

11: If more than one Fk

12: Pchosen ← Pk : min{Fk}
13: Pk except Pchosen roll back //remain not changed
14: Return Ωtime

15: End While

Fig. 3. The pseudo code of dynamic phase scheduling

4 Performance Evaluation

4.1 Evaluation Metrics

We use average delay and average throughput as metrics to evaluate the algo-
rithm. For each data-packet Di, its arrival time is Di.treceive, and its finished
time is Di.tfinish, then the delay of this data-packet is Di.Delay = Di.tfinish −
Di.treceive. The average delay and throughput of l data-packets is:

Average Delay =
1
l

l∑

i=1

Di.Delay . (5)

Average Throughput =
l

Dl.tfinish − D1.tfinish
. (6)

These metrics can work only if G, D, P , and Θ are the same.

4.2 Simulation Tool

We developed a simulation tool called dbma, which implemented the processing
model presented in Sect. 3.2. The input was a configuration file in which the

10 Z. Yu et al.

task graph (G), packets sending sequence (D), PEs (P), execution times (Θ),
and other parameter values were specified. The outputs included the arrival and
finished time of all data-packets (treceive, tfinish), the earliest expected finish
time of all tasks at each detecting time (EEF), the utilization rates of all PEs
at each detecting time (UR), and all mapping results ever have (Ω). Uniform
virtual time unit was used in simulation.

Specially, to specify Di = 〈ti, Gi〉 for every data-packet separately is time-
consuming because there are thousands of packets in the experiment. For ti, we
assumed that the packet sending intervals follow the exponential distribution.
For Gi, we added probabilities of data-packets transferred from Ti to Tj. The
execution time ranged from 0 to 100, whereas 0 means that the task is not
executable on that PE.

4.3 Experimental Results

The choice of parameters is important to the experiments. We used some pa-
rameters as default (see Table 1, and varied others to observe their effect to
performance.

(1) Sending Data-Packets at Constant Speed. The DAG in this experiment is
presented in Fig. 1, where m = 4, n = 4, r = 3. The default branch probability is
1. The execution time of each task is shown in Table 2. To verify the performance
of RPDS, we implemented several variations (i.e., different types) of it, which
are presented in Table 3.

Table 1. Default parameters

Parameter tc tl td λ1 λ2 a b c

Value 10 20 500 0.9 0.7 0.5 0.1 0.4

Table 2. Execution time

P1 P2 P3 P4

T1 86 57 68 85
T2 29 61 52 18
T3 0 53 16 68
T4 94 6 15 86

Table 3. RPDS algorithm variations

Schedule Have Allow
Type Multi-DAGs at dynamic synonymous
ID static phase phase tasks in one PE

2 No Yes No
4 No No No
6 Yes Yes No
8 Yes No No
10 No Yes Yes

Sending data-packets at the constant speed every time unit respectively (e.g.,
0.01 denotes that the average sending interval is 100 time units), the results are
shown in Fig. 4 and Fig. 5.

We can observe that the average delay and average throughput are both in-
creasing along with the increase of the constant speed. The performance of RPDS
variations ranks as: Type-10 > Type-2 > Type-6 > Type-8 > Type-4. Let the
delay bound be 1500, we can see that the throughput rate (throughput / send-
ing speed) keeps 1. If exceeding this bound, the throughputs do not increase

RPDS on Heterogeneous Network Processors 11

Fig. 4. Packet speed vs. delay

Fig. 5. Packet speed vs. throughput

any more but have trends to decrease. When the packet sending speed is lower
than 0.017, the five variations are grouped into two classes: Type-2, Type-4, and
Type-10 vs. Type-6 and Type-8. The average delays of the former are about
50% lower than those of the latter. But as the speed increasing, the two classes
turn to be: Type-2, Type-6, and Type-10 vs. Type-4 and Type-8. The largest
acceptable speeds of the former are 30% larger than those of the latter.

That is to say, when the workload is light, scheduling without static repli-
cation is superior to that with static replication; while the workload is heavy,
scheduling with dynamic replication performs better than that without dynamic
replication. The reason is that there is no need to duplicate at light workload,
and furthermore the delay is increased after replication because of the frequent
transferring between PEs of data-packets. Dynamic replication abated the pres-
sure of the bottleneck task effectively at heavy workload, balanced the tasks
among PEs, and therefore increased the throughput.

(2) Sending Data-Packets at Variable Speed or Probabilities. In this experiment,
the DAG, execution time, and algorithm types are the same as those in experi-
ment (1). The packet sending speed and branch probabilities are different, which
are shown in Table 4.

Table 4. Packet sending speed; Branch probabilities of T1 → T2/T1 → T3

Time 0–10000 10000–20000 20000–30000 30000–40000 40000-50000

Speed 0.017 0.0185 0.0195 0.0235 0.026

Time 0–15000 15000–30000 30000-

Probability 0.4/0.4 0.1/0.9 0.9/0.1

We selected Type-10 (with dynamic replication) and Type-8 (without dynamic
replication) to compare with each other. The results are shown in Fig. 6 and
Fig. 7.

This experiment shows the reason why RPDS can reduce the delay and im-
prove the throughput in more detail. The delay of packets in Type-10 algorithm

12 Z. Yu et al.

Fig. 6. Different speed vs. delay

Fig. 7. Different probabilities vs. delay

reaches a small peak after changes of traffic characters (speed or probabilities),
and turns to be smooth soon. But for Type-8, the delay changes dramatically
according to the changes of traffic(see Fig. 8 and Fig. 9). It is obvious that the
detection and adaptation of RPDS contribute to the performance.

Fig. 8. Utilization rates of PEs

Fig. 9. EEF of tasks

5 Conclusions

The Replication-Based Partial Dynamic Scheduling (RPDS) is proposed in this
paper. It tries to solve the problem of processing resources scheduling on the
heterogeneous, fully-connected, and multi-threading NP hardware architecture.
The main idea of RPDS algorithm is two-phase scheduling: static phase and
dynamic phase. The static phase scheduling performs task pre-assignment before
processing data-packets. It guarantees that each task could hold the minimal
processing resources and keep the cost lowest. The dynamic phase scheduling
occurs during the processing data-packets. When busy PEs and idle PEs coexist,
the bottleneck task will be duplicated to the idle PE which makes the lowest
cost. The future work includes the theoretic verification of RPDS, update of
dbma, and experiments to the default parameters, etc.

RPDS on Heterogeneous Network Processors 13

Acknowledgments. This work is partially supported by Graduate Starting
Seed Fund of Northwestern Polytechnical University (No. M016634).

References

1. Malloy, B.A, Lloyd, E.L., Soffa, M.L.: Scheduling DAG’s for Asynchronous Multi-
processor Execution. IEEE Trans. Parallel and Distributed Systems 5(5), 498–508
(1994)

2. Yan, S., Zhou, X., Wang, L., Wang, H.: GA-Based Automated Task Assignment
on Network Processors. In: ICPADS 2005. Proc. of the 11th international Confer-
ence on Parallel and Distributed Systems, July 20–22, 2005, pp. 112–118. IEEE
Computer Society Press, Los Alamitos (2005)

3. Franklin, M., Datar, S.: Pipeline task scheduling on network processors. In: Proc.
of Third Network Processor Workshop in conjunction with Tenth International
Symposium on High Performance Computer Architecture (HPCA-10), pp. 103–
119 (February 2004)

4. Yang, L., Gohad, T., Ghosh, P., Sinha, D., Sen, A., Richa, A.: Resource map-
ping and scheduling for heterogeneous network processor systems. In: ANCS 2005.
Proc. of the 2005 Symposium on Architecture for Networking and Communications
Systems, pp. 19–28 (2005)

5. Ramaswamy, R., Weng, N., Wolf, T.: Application Analysis and Resource Mapping
for Heterogeneous Network Processor Architectures. In: Proc. of Network Processor
Workshop, Madrid, Spain, pp. 103–119 (2004)

6. Wolf, T., Pappu, P., Franklin, M.A.: Predictive scheduling of network processors.
Comput. Networks 41(5), 601–621 (2003)

7. Weng, N., Wolf, T.: Pipelining vs. Multiprocessors-choosing the Right Network
Processor System Topology. In: Proc. of ANCHOR 2004, Munich, Germany (2004)

8. Weng, N., Wolf, T.: Profiling and mapping of parallel workloads on network pro-
cessors. In: Proc. of 20th ACM Symposium on Applied Computing (SAC) (March
2005)

9. Wolf, T., Weng, N., Tai, C.: Design considerations for network processor operat-
ing systems. In: ANCS 2005. Proc. of the 2005 Symposium on Architecture for
Networking and Communications Systems, October 26–28, 2005, pp. 71–80. ACM
Press, New York (2005)

10. Aggarwal, A., Franklin, M.: Instruction Replication for Reducing Delays Due to
Inter-PE Communication Latency. IEEE Trans. Comput. 54(12), 1496–1507 (2005)

The Optimum Location of Delay Latches

Between Dynamic Pipeline Stages

Mahmoud Lotfi Anhar1 and Mohammad Ali Jabraeil Jamali2

1 Islamic Azad University Khoy Branch , Khoy, Iran
MahmoudLotfie@gmail.com

2 Islamic Azad University Shabestar Branch, Shabestar , Iran
m jamali@itrc.ac.ir

Abstract. Latches are used between pipeline stages to get Minimum
Average Latency (MAL). An optimization technique based on introduc-
ing a method to search the most proper location of noncompute delay
latches between nonlinear pipeline stages is given. The idea is to find
a new collision vector which is adaptable with pipeline topology and
modifies reservation table, yielding MAL at minimum execution time.
This approach not only reduces execution time of hardware, but also
minimizes favorite collision vector search time.

Keywords: Latch, Pipeline, Minimum, Average, Latency, MAL, Reser-
vation, Table, Collision.

1 Introduction

When scheduling events in a pipeline, the main objective is to obtain the short-
est average latency between initiations without causing collisions. The pipeline
utilization is limited by the collision characteristics which are the result of the us-
age patterns of the segments. One way of modifying usage pattern is by segment
replication. Another way of changing a usage pattern is by inserting noncompute
segments, which simply provide a fixed delay between some computation steps.
A methodology has presented for modifying the collision characteristics with
the insertion of delays so as to increase the utilization of segments by Davidson
[1]. The purpose of delay insertion is to modify the reservation table, yielding a
new collision vector. This leads to a modified state diagram, which may produce
greedy cycles meeting the lower bound the MAL.

2 Single Function Pipelines

The combined set of permissible and forbidden latencies can be displayed by
a j-bit binary vector C=(CjCj−1...C1). The value Ci=1 if latency i causes a
collision and Ci=0 if latency i is permissible. Figure 1 shows an example of 3
stage pipeline and corresponding reservation table.

From reservation table MAL must be 2 but state diagram shows 3. Hence
delay latches must be used. A solution proposed by Hwang [2]. Two latches are

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 14–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Optimum Location of Delay Latches Between Dynamic Pipeline Stages 15

Fig. 1. A 3-stage pipeline and reservation table

Fig. 2. Delay Insertion

added between S3-S3 and S3-S1 feedback loops and modified reservation table
is presented in Fig. 2.

Our approach is shown in Fig. 3. It is 1 cycle faster than previous method.

3 Methodology

Assume a j-bit initial collision vector Xj=(xj xj−1...x1) which must be evalu-
ated to produce {MAL} and Xi=(xi xi−1...x1) is initial collision vector before
inserting latches . First we try evaluate Xj supposing it has a constant latency
greedy cycle (G.C) equals the MAL.

Lemma 1. If G.C={k} then j �= q.k where q is an integer . Since xj = 1 and
SHR[Xj , k] OR Xj = Xj , hence xk= x2k=...= 0,and j �= {k,2k,3k,...}.

Time reduction considerations lead us to minimize j as it is possible. If i+1 �=
q.k we start j with i+1 which is the best choice and yields minimum processing
time else j= i+2 is the next choice.

16 M.L. Anhar and M.A.J. Jamali

Fig. 3. Insertion delay latches using new approach

Example 1. In Fig. 1 Xi = (1011) and MAL is 2 then we can select j = 5. The
new collision vector after inserting latches is Xj = (x5 x4 x3 x2x1). Assume at
this case MAL is 2, then

SHR[Xj , 2] OR Xj = Xj =⇒ x1 = x3 = x5 = 1 , x2 = x4 = 0.
Now examine Xj = (10101). Fig. 3 shows modified state diagram with a

reduced MAL. It has better time response than previous approach.

Example 2. Fig. 3 is the reservation table which is used in [1]. Choosing Xj =
(x7x6x5x4x3x2x1) , G.C = {3} and using lemma 1 yields Xj= (1011011) and it
is a possible solution.

Another way to find Xj is choosing a greedy cycle such as {k1,k2}.

Lemma 2. If G.C = {k1, k2} then xk1= xk2 = xk1+k2= 0 and we can find two
internal states (Y , Z)in state diagram satisfy following conditions:

1. YK1=ZK2=0.
2. Z= X OR SHR [Y,k1].
3. Y=X OR SHR [Z,k2].

Assume X= (xj xj−1... x1) , Y=(Yj Yj−1...Y1) and Z=(Zj Zj−1... Z1) then
Zj−(k1+i) = Xj−(k1+i) OR Yj−i+1 , i = 1 to j-(k1+1).
Yj−(k2+i) = Xj−(k2+i) OR Zj−i+1 , i = 1 to j-(k2+1).
Zj−k1+i = Xj−k1+i , i = 0 to k1.
Yj−k2+i= Xj−k2+i , i = 0 to k2.
Xj=Yj=Zj= 1.
Zj−(k1+1)= 1 , Yj−(k2+1)=1
Then j-(k1+1) �= k2 and j-(k2+1) �= k1. j must satisfy following criteria :
j �= k1+k2+1 ⇒ j≥ k1+k2+2.

The Optimum Location of Delay Latches Between Dynamic Pipeline Stages 17

Example 3. Another solution to example1 is to choose greedy cycle {1,3}. Find-
ing this greedy cycle is easy by introduced method. First select j = 1+3+2 =6 ,
then X = (1 x5 0 0 x2 0). Now use lemma 2 and find result : X = (1 0 0 0 1 0) ,
Y = (1 0 0 1 1 0) and Z=(1 1 0 0 1 1). Reservation table of new initial collision
vector has 7 columns (1 cycle slower than previous X resulted with {2} greedy
cycle).

In this case MAL = (k1 + k2)/2 then X must be calculated for following
set :1, k1+k2-1, 2, k1+k2-2 , ,(k1+k2)/2 -1,(k1+k2)/2 + 1. All of these choices
have MAL = (k1+k2)/2 and number of them is (k1+k2)/2 - 1. Then we calculate
X for constant greedy cycle MAL first, and if it is not sufficient, propose one of
above introduced non-constant MALs.

4 Algorithm

The following algorithm is used in this method:

1. For each MAL generate a j-bit collision vector Xj which j = i + 1 (i is the
number of initial collision vector Xi bits). Assume greedy cycle is MAL.

2. Test X . If X satisfies then quit, else j = j + 1;
3. Try 2 until j < k1+k2+2 .
4. Select one of non-constant previously stated greedy cycles. Select another

greedy cycle if does not satisfy criteria stated in lemma 2.

5 Concluding Remarks

We have presented a new method to evaluate initial collision vector using
constant and non-constant greedy cycles. For increasing throughput and then
reducing processing time we began with constant greedy cycles. Then other non-
constant cycles related to MAL is used. This method not only reduces processing
time but also is a faster one than other methods.

References

1. Patel, J.H., Davidson, E.S.: Improving the Throughput of a Pipeline by Insertion
of Delays. Coordinated Science Lab, University of Illinois, Urbana, Illinois 61801,
132–137 (1976)

2. Hwang, K.: Advanced Computer Architecture: Parallelism, Scalability, Programma-
bility. McGraw-Hill, New York (1993)

3. Davidson, E.S., Thomas, D.P., Shar, L.E., Patel, J.H.: Effective Control for Pipelined
Computers. In: Proc. COMPCON, pp. 181–184 (1975)

4. Kogge, P.M.: The Architecture of Pipelined computers. Mc-Graw-Hill, New York
(1981)

A Novel Fault-Tolerant Parallel Algorithm

Panfeng Wang, Yunfei Du, Hongyi Fu, Haifang Zhou,
Xuejun Yang, and Wenjing Yang

National Laboratory for Paralleling and Distributed Processing,
College of Computer, National University of Defense Technology,

Changsha, Hunan, 410073, China
{wpfeng,forest80,mrfool 163,haifang zhou,xjyang}@nudt.edu.cn

Abstract. The mean-time-between-failure of current high-performance
computer systems is much shorter than the running times of many
computational applications, whereas those applications are the main
workload for those systems. Currently, checkpoint/restart is the most
commonly used scheme for such applications to tolerate hardware fail-
ures. But this scheme has its performance limitation when the number
of processors becomes much larger. In this paper, we propose a novel
fault-tolerant parallel algorithm FPAPR. First, we introduce the basic
idea of FPAPR. Second, we specify the details of how to implement a
FPAPR program by using two NPB kernels as examples. Third, we theo-
retically analyze the overhead of FPAPR, and find out that the overhead
of FPAPR decreases with the increase of the number of processors. At
last, the experimental results on a 512-CPU cluster show the overhead
introduced by the algorithm is very small.

Keywords: high-performance computing, fault tolerance, parallel
algorithm.

1 Introduction

There is a trend that the high-performance computing systems are consisted
of more and more processors. The fastest one, IBM Blue Gene/L, has 131, 072
processors, and even the smallest computer system in the Top10 has 9024 proces-
sors. However, as the complexity of a computer system increases, its reliability is
drastically deteriorating. For example, if the reliability of individual components
is 99.999%, then for the whole system consisting of 100, 000 non-redundant com-
ponents, the reliability is nothing more than (99.999%)100000 = 36.79%. Such a
low reliability is unacceptable in most applications.

A critical issue for machines of large size is the mean time between failures.
Projecting from the existing supercomputers, a 100,000 processors supercom-
puter could see a failure every few minutes. But the applications running on
these supercomputers are typically compute-intensive and will take a long time.
Therefore, it is an important ability for computer systems consisting of such a
large amount of processors to deal with processor failures.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 18–29, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Novel Fault-Tolerant Parallel Algorithm 19

Today, applications typically deal with process failures by writing out check-
points periodically[7,3]. All processors save their computation state to a storage
server periodically during the execution. Even if there is no failure, the overhead
is inevitable. If a fault occurs, then all processes are forced to stop and the job is
reloaded from the last checkpoint. For a large-scale system, checkpoint/restart
may not obtain an effective utilization of the resources.

In this paper, we propose a novel Fault-tolerant Parallel Algorithm based on
Parallel Recomputing (FPAPR for short). If there is no failure, the overhead of
FPAPR is insignificant. If there is a failure, the overhead of FPAPR decreases
with the increase of the processor number.

The rest of the paper is organized as follows. Section 2 is an introduction
of related works. Section 3 introduces our scheme, FPAPR. In Section 4, we
give a detailed presentation on how to write a FPAPR application by using two
examples, EP and DT from NAS Parallel Benchmark. In Section 5, we evaluate
the performance overhead of our fault tolerance algorithm in theoretic. Section
6 is the experimental results. Section 7 we conclude the paper and discuss future
work.

2 Related Work

Checkpoint/restart scheme is the most typical fault tolerance handling technique
for large-scale parallel computing. The conventional checkpoint/restart scheme
uses the coordinated checkpoint protocol that the system saves a global check-
point to a central file server at very coarse intervals (for example, once every
hour or day). Such a checkpoint/restart scheme is straightforward and has been
discussed and implemented elsewhere [9,10,8,4,5,2]. But this checkpoint/restart
scheme has its performance and conceptual limitations. Firstly, the computation
state of each processor has to be stored periodically to the disk of a special check-
point server during execution. The I/O bandwidth of the checkpoint server will
heavily impact the performance of whole system, whereas the I/O bandwidth
is often hardly improved. When the amount of all checkpoint files is huge, the
overhead of checkpoint will become unacceptable. Sometimes, the time to do a
checkpoint or a restart will be longer than the time between failures. As a result,
the conventional checkpoint/restart scheme becomes completely impractical as a
means to deal with failure. Secondly, checkpoint/restart scheme has considerable
overhead even if no failure occurs, which will significantly reduce the speedup
of a parallel application. Thirdly, compared with the processor and the mem-
ory, the hard disk is least dependable. The dependability of whole system will
decrease when extra hard disks are involved to save checkpoint files.

Whatever point of view we are from, the dependability or the speed of devel-
opment, the processor is the best, the memory is the secondary, and the hard
disk is the worst. In contrast to the above works that need extra hard disks or
memories, FPAPR tolerates a processor failure by using one or more remain-
ing processors to recompute the subtask of the failed one. The main advantage
of FPAPR lies in two points. Firstly, it is a scalable algorithm. Secondly, it

20 P. Wang et al.

has almost no overhead in the failure-free condition. The details of FPAPR are
described in the next section.

3 FPAPR

There is a common requirement for fault tolerance that the data of the failed
process must be accessible by other processes. For example, checkpointing tech-
niques usually require the checkpoint file of the failed process being saved in a
common server, so the restarted process can read it. This requirement is easy
satisfied for SPMD parallel programs which are prevalent in high performance
computing. In many SPMD parallel programs, the input data of each process is
determined by its process rank. As long as surviving processes know who fails,
they can compute or reload the input data of failed one and complete the work-
load of it. In this paper, our FPAPR is mainly designed for this kind of parallel
application.

3.1 The Basic Idea of FPAPR

In fact, many parallel applications have inherent ability for fault tolerance. For a
SPMD application, 1/N of the whole workload is distributed to each processor. If
any one is failed, we can use multiple remaining processors to share the subtask
of the failed one. This is the basic idea of FPAPR. We show the task partitioning
of FPAPR in Fig.1.

P0

(T0)

P3

(T3)

P2

(T2)

P1

(T1)

P0

(T0)

P3

(T3)

P2

(T2)

P1

(T1)

P0

(T0)
(T3)

P2

(T2)

P1

(T1)

P0

(T0)

P2

(T2)

P1

(T1)

(T30) (T31) (T32)

a) b)

d)c)

Fig. 1. Task partitioning of FPAPR

In Fig.1 a), the whole task is partitioned to four processors. For process Pi,
it will take time Ti to perform its subtask. If the processor P3 fails, as shown in
Fig.1 b), then its subtask is repartitioned to the remaining three processors in
Fig.1 c). As a result, the execute time of each remaining processor Pi becomes
Ti + T3i in Fig.1 d).

We illustrate the execute process of one processor in a FPAPR program in
Fig.2, where we assume that the program includes a computation segment and

A Novel Fault-Tolerant Parallel Algorithm 21

a communication segment, and the whole computation consists of a serial part
WS and a parallel part WP . In the failure-free condition, the subtask of each
processor will be WS + WP

N , and there is no extra overhead. If there is one failure,
the subtask of each remaining processor will be WS + WP

N + WS + WP

N(N−1) , and
the extra overhead of FPAPR is WS + WP

N(N−1) .

Computing ()

start

Communication

end

failed?

No

Additional Computing

 ()

N

1

Yes

)1(

1

−NN

Fig. 2. The execution process of FPAPR

For a parallel application, each subtask is unique. If any processor fails which
takes a subtask on, the whole application will fail too. In order to tolerance
a processor failure, we have to firstly recovery the lost data in the failed one.
Checkpoint/restart scheme perform the work by saving the data periodically to
a storage server, but FPAPR find the lost data back through another way, i.e.
recomputing it in parallel by multiple surviving processors. If the lost data can
be computed in parallel, the overhead of recomputation will decrease with the
increases of N .

3.2 Fault Processing in FPAPR

Fault processing typically includes three steps: detection, information and re-
covery. Here, we assume that parallel computing platform, such as MPI, pro-
vides failure detection and information (One such implementation of MPI is
FT-MPI[6]), and at most one failure occurs during execution. FPAPR focuses
on how to recover computing using multiple surviving processors to recomputing
the subtask in the failed processor in parallel. There are two main issues: when
to recompute and how many processor the subtask is repartitioned to.

There are two strategies for the first issue. One is a studious strategy. Once
a process fails, the parallel computing platform informs the application imme-
diately of it and the application turns to the fault processing module on the
instant. The other is a lazy strategy. Only when the lost data is needed by the
other processors, it is recomputed. The former is straightforward but is difficult
to implement. Using the latter strategy, the application just needs to check fail-
ure in a few key points where the fault will be carried to another processor. The

22 P. Wang et al.

fault must be processed before the statement, which will carry data from or to
the failed processor, is executed. In a MPI application, the fault spreads through
MPI calls such as MPI Send or MPI Bcast. So the application should check and
process fault before these statements.

For the second issue, we think that in a scalable parallel application, the
subtask of failed processor is also computation-intensive, and it can be repar-
titioned to all remaining processors to shorten the recovery time. Fig.2 shows
that all N − 1 remaining processors are used to recompute the subtask on the
failed one. However, in some special parallel application, the subtask of failed
processor may be very simple, and using N −1 processors does not benefit much
in comparison with using one. So without any performance loss, dispatching the
subtask of failed processor to one of the remaining processors is simpler. In the
next section, we will illustrate how to use implement FPAPR in these two kinds
parallel programs.

4 Examples of FPAPR Implementation

FPAPR is an application-based fault-tolerant scheme. Fault processing in
FPAPR is closely related to specific applications. We have implemented fault-
tolerant versions of MPI-based EP and DT kernels from NAS Parallel Bench-
mark (NPB3.2.1-MPI). In this section, we provide an overview of how each kernel
works and how we make it fault-tolerant.

We choose MPICH2-1.0.5 as the parallel computing platform and simulate a
fail-stop failure by killing a process. And we added two global variables HasFailed
and FailedRank to MPICH2-1.0.5, thus enabling processes to obtain the rank of
the failed process through the failure detection interface.

4.1 EP

EP (Embarrassingly Parallel) generates pairs of Gaussian random deviates ac-
cording to a specific scheme and tabulates the number of pairs in successive
square annuli [1]. EP is a typical data-parallel SPMD application. Each pro-
cessor executes one part of the whole task independently, and communications
occur only after computing.

In Fig.3 a), we show the execution process of NPB EP in one processor, and
in Fig.3 b) we illustrate the execution process of the FPAPR version.

There are four main steps in NPB EP: 1) Task partitioning, 2) Main com-
puting loop, 3) Collecting global results through communication, 4) Results
reporting.

Each processor runs independently in step 1 and 2.The failure of one proces-
sor does not infect the others, so fault processing is not necessary. The global
results are collected through collective communications (MPI Allreduce) in step
3. Faults will spread with messages. So this is a fault processing point. It is
necessary to check whether each collective communication returns successfully.
If not, the program should turn to the fault processing module.

A Novel Fault-Tolerant Parallel Algorithm 23

Task partitioning

Ti = Task / N

start

end

rc=success?

No

Main computing loop

The result is Ri

Collect global results

through communication

rc = MPI_Allreduce()

Yes

Fault processing

Ri2 = Ri

Task = Tfailed

N = N – 1

Recovery = 1

Task partitioning

Ti = Task / N

start

Report results

end

Main computing loop

The result is Ri

 Collect global results

 through communication

 rc = MPI_Allreduce()

 R =

a)

b)

∑ iR

Recovery = 1?

No

 R =

 Report results
∑ iR

Recovery = 0

 Ri = Ri + Ri2Yes

Fig. 3. The execution process of EP

In the fault processing module, each remaining processor must save the current
local result (Ri2 = Ri), set the program enter into recovery state (Recovery = 1),
and change the parameters of task repartitioning module (Task = Tfailed, N =
N − 1). Then the execution reenters into step 1 and 2, and gets a new result
Ri. Before step 3, the two results are cumulated (Ri = Ri + Ri2). Thus, the
execution goes back to the normal way, collects global results through collec-
tive communications, and reports final results. The processor of rank 0 is the
default one for reporting final results in NPB EP. In FPAPR version, we use the
processor of rank 1 to report the final results if rank 0 fails.

4.2 DT

Different from EP, DT (Data Traffic) is typical communicate-intensive bench-
mark. It includes data generating nodes (sources), data processing nodes (com-
parators), data consuming nodes (sinks), communication graph, and two special
nodes ”Launch” and ”Report”. The arcs of the graph indicate the directions
the data communicated between the nodes. Each source uses its own seed and
generator to generate a random number of feature points, which size scale from a
few KB(class S benchmark) to many MB(class C benchmark). The data stream
from/to the processing nodes according to the communication graph. The com-
putation in each node is very simple and can be rapidly completed. Shuffle
network is the most complicated communication graph. In Fig. 4 a) we illustrate

24 P. Wang et al.

C1

C0

C1

C0

Sources

0

3

8

Comparators Sinks ReportLaunch

a)

Sources

3

8

10

Comparators Sinks ReportLaunch

b)

2

1

2 0

1

10

Fig. 4. Data communication graph of DT

the communication graph of class S, and in Fig. 4 b) show the FPAPR version
with one failure.

As shown in Fig.4, comparator C0 receives messages 0 and 1, processes them,
and sends results to two sinks through messages 8 and 10. When C0 fails, the
others should partition the subtask on it. Since this subtask is very simple, it is
directly dispatched to C1 rather than all the N − 1 remaining processors.

We implement a function, who(Ci), to choose a substitute for Ci, and replace
the destination/source parameter in MPI communication called by Ci. If Ci fails,
data will be sent to or receive from the substitute of Ci chosen by function who().
Figure 5 gives an example of using this function.

 int SendResults(DGraph *dg,DGNode *nd,Arr *feat){

 …

 if (head->address != nd->address){

// MPI_Send(&feat->len,1,MPI_INT,head->address,tag,MPI_COMM_WORLD);

// MPI_Send(feat->val,feat->len,MPI_DOUBLE,head->address,tag,MPI_COMM_WORLD);

 MPI_Send(&feat->len,1,MPI_INT,who(head->address),tag,MPI_COMM_WORLD);

 MPI_Send(feat->val,feat->len,MPI_DOUBLE,who(head->address),tag,MPI_COMM_WORLD);

 }

 …

}

Fig. 5. An example of using the function who()

5 Performance Analysis of FPAPR

In this section, we analyze the scalability and extra overhead of FPAPR. It is
assumed that the whole workload, W , is measured by time and includes a serial
part WS and a parallel part WP , i.e. W = WS+WP . Let f = WS/(WS+WP). We
suppose that the workload can be scaled to WS + G(N)WP in a parallel system
consisting of N processors. The overhead of parallel computing is WO. There
are some extra overhead in a FPAPR program. For example, when a processor

A Novel Fault-Tolerant Parallel Algorithm 25

failed, the MPI communicator (such as MPI COMM WORLD) is corrupted. It
is necessary to recovery it in the fault processing module. Let Wft represent such
a overhead of FPAPR.

The serial part can not be speed up by N −1 processors. Thus, if one processor
fails, the total overhead of FPAPR is

OFPAPR = WS +
G(N)WP

N(N − 1)
+ WP . (1)

The percentage overhead of FPAPR is:

POFPAPR =
WS + G(N)WP

N(N−1) + Wft

WS + G(N)WP

N + WO

(2)

If the overheads (WO and Wft) and f are so small that can be ignored, then we
have:

POFPAPR =
1

N − 1
(3)

From Eq.(1), we conclude that the overhead of FPAPR decreases with the in-
crease of N . From Eq.(3), we know that in some special conditions, the percent-
age overhead equals 1/(N − 1). These two equations imply the same conclusion
that FPAPR is scalable. Then, we discuss the speedup of FPAPR with one
failure.

The time of FPAPR program executing in a single processor is T (1). If a
processor failure occurs, T (1) is infinite. For a FPAPR program, at last one
remaining processor is needed to perform the whole task. So T (2) is the baseline
for comparison. We make T (1) equal T (2). Then T (1) is

T (1) = WS +
G(N)WP

2
+WS +

G(N)WP

2(2 − 1)
+Wft = 2WS +G(N)WP +Wft (4)

And T (N) is

T (N) = WS + G(N)WP

N + WO + WS + G(N)WP

N(N−1) + Wft

= 2WS + G(N)WP

N−1 + WO + Wft

(5)

Using two equations, we obtain the following speedup equation:

S =
T (1)
T (N)

=
2WS + G(N)WP + Wft

2WS + G(N)WP

N−1 + WO + Wft

(6)

Notice that W = WS + WP and f = WS

WS+WP
, and then Eq.(6) can be changed

into:

S =
T (1)
T (N)

=
2f + G(N)(1 − f) + Wft

W

2f + G(N)(1−f)
N−1 + WO+Wft

W

(7)

Equation(7) is similar to Sun & Ni equation[11].

26 P. Wang et al.

If G(N) equals N , and WO, Wft can be ignored, then an ideal speedup can
be attained:

S =
T (1)
T (N)

=
2f + N(1 − f)

2f + N(1−f)
N−1

=
2f + N(1 − f)
1 + f + 1−f

N−1

≈ 2f

1 + f
+ N(1 − 2f

1 + f
) (8)

From Eq.(8), we conclude that when N is large enough and all overheads (WO

and Wf t) can be neglectable, the ideal speedup of FPAPR is proportional to N .
If G(N) is not equal to N , but the serial part WS is very small in comparison
with the whole workload, i.e. , WO, Wf t can be ignored too, then we can obtain
another helpful equation:

S =
T (1)
T (N)

=
G(N)
G(N))
N−1

= N − 1 (9)

Equation(9) means that for some applications which are very suitable for data-
parallel programming model, the speedup of FPAPR just subtracts one when one
processor fails. If there is no processor failure, the overhead is maybe different be-
tween FPAPR EP and FPAPR DT. There are some collective communication calls
in EP. If one process in a MPI communicator (such as MPI COMM WORLD)
fails, all the collective communication calls in this communicator will fail too.
So some extra recovery operations about the MPI communicator are needed to
protect these collective communication calls. The overhead of these operations
maybe relates to the number of processors. The communication calls in DT are
much simple, and only peer-to-peer communication calls such as MPI Send and
MPI Recv are involved. So the overhead of FPAPR DT mainly lies in the extra
messages processing for the substitute of the failed processor.

6 Experiment Results

We implement EP and DT described in section 4 on a 256-node cluster. Each
node has two XEON 3.2GHz CPUs and 4GB RAM.

We run three sets of tests for each program. The first one is a pure NPB
version with no failures, named NPB EP. The second is a FPAPR version, but
there is no failure, named FPAPR-EP(0). And the third is a FPAPR version,
injected randomly with one processor failure, named FPAPR-EP(1).

6.1 EP

The implementation results are illustrated in Figure 6∼8. Fig.6 and Fig.7 show
the execution time and overhead percentage respectively. Figure 8 gives the
speedup of FPAPR-EP.

From Fig.6 and Fig.7, we can see that the overhead of FPAPR EP with 1
failure decreases as the number of processors increases. The right reason is that
NPB EP is a typical compute-intensive application, and the proportion of the
serial part and extra overheads are very small. Therefore, the prior conditions

A Novel Fault-Tolerant Parallel Algorithm 27

Fig. 6. Execution Time Fig. 7. Overhead percentage

expressed by Eq.(3) and Eq.(9) are nearly satisfied. And we can see the results
shown in Fig.7 and Fig.8 accord with those indicated by Eq.(3) and Eq.(9). The
overhead percentages approximate to 1/(N − 1). And the speedups of FPAPR
EP with one failure approximate to N − 1.

0

8

16

24

32

16 32 64 128 256 512

Number of processors

S
p
e
e
d
u
p

FPAPR-EP(0)

FPAPR-EP(1)

Fig. 8. Speedup

Fig.6 and Fig.7 also show that the overhead of FPAPR EP without failures
keeps very slow. These are in line with our expectation. But the overhead percent-
ages grow with the increase of N . This can be explained that the execution time
of those recovery operations of the MPI communicator such as MPI Comm dup
grows when the number of processes in the communicator increases.

6.2 DT

The results of DT are listed in Table 1 and Table 2.
DT is a special instance for FPAPR. The basic idea of FPAPR is utilizing the

computing power of multi-processors to speed up the recovery of the lost data of

28 P. Wang et al.

Table 1. Execution Time (s)

CLASS NPB DT
FPAPR DT

No failure 1 failure

S 0.0600 0.0632 0.0648

W 0.6420 0.6681 0.6860

A 9.1892 9.2500 9.3875

Table 2. Overhead Percentage of FPAPR Version (%)

CLASS No failure One failure

S 1.0533 1.0800

W 1.0407 1.0685

A 1.0066 1.0216

the failed process. But the main workload of DT is the communication part, and
there is no chance of using the computing power of multi-processors. However, the
experimental results show that the overhead percentages in both circumstances
are very small. This implies that FPAPR can be applicable in broader areas.

7 Conclusions and Future Work

We have given a novel fault-tolerant algorithm based on parallel recomputing,
FPAPR, for parallel computing. This algorithm enables an application designed
as SPMD programming model to tolerate a single processor failure without in-
troducing any hardware overhead. As long as the number of processors N is
larger than 2, the computation will not be terminated by a single processor
failure. For a data-parallel application, the overhead of fault-tolerance decreases
and the speedup grows with the increase of number of processors.

We have implemented this algorithm in two NPB kernels and give performance
results on a 512-CPU cluster. The results are gratifying. The overheads of FPAPR
without failure are so small that they can be neglected. For a computation inten-
sive SPMD program like EP, the overhead of FPAPR with a single failure is nearly
in reverse proportion to N-1. For a communication intensive SPMD program like
DT, the overhead of FPAPR with a single failure is also very small.

Our continuing progress with this work has been in two directions. First, we
are researching the applicability of FPAPR in broader areas and finding out
the common character of applications whose FPAPR versions are very efficient.
Second, we will implement an automatic source-to-source tool based on compiler
technique for translating a common parallel program into its FPAPR version.

Acknowledgments. This work was supported by NSFC (60621003 and
60603081).

A Novel Fault-Tolerant Parallel Algorithm 29

References

1. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakr-
ishnan, V., Weeratunga, S.: The nas parallel benchmarks. Technical report (1994)

2. Bronevetsky, G., Marques, D., Pingali, K., Stodghill, P.: Automated application-
level checkpointing of mpi programs. In: PPoPP 2003. Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of parallel programming,
San Diego, California, USA, pp. 84–94. ACM Press, New York, NY, USA (2003)

3. Chiueh, T.-C., Deng, P.: Evaluation of checkpoint mechanisms for massively par-
allel machines. In: FTCS 1996. Proceedings of the The Twenty-Sixth Annual In-
ternational Symposium on Fault-Tolerant Computing, Washington, DC, USA, p.
370. IEEE Computer Society Press, Los Alamitos (1996)

4. Mootaz Elnozahy, E.N., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of
rollback-recovery protocols in message-passing systems. ACM Comput. Surv. 34(3),
375–408 (2002)

5. Engelmann, C., Geist, A.: Super-scalable algorithms for computing on 100,000
processors. pp. 313–321 (2005)

6. Fagg, G.E., Dongarra, J.: Ft-mpi: Fault tolerant mpi, supporting dynamic appli-
cations in a dynamic world. In: PVM/MPI, pp. 346–353 (2000)

7. Geist, A., Engelmann, C.: Development of naturally fault tolerant algorithms for
computing on 100,000 processors (2002)

8. Plank, J.S.: Improving the performance of coordinated checkpointers on networks of
workstations using RAID techniques. In: 15th Symposium on Reliable Distributed
Systems, pp. 76–85 (October 1996)

9. Plank, J.S., Li, K.: ickp: A consistent checkpointer for multicomputers. IEEE Par-
allel Distrib. Technol. 2(2), 62–67 (1994)

10. Stellner, G.: CoCheck: Checkpointing and Process Migration for MPI. In: IPPS
1996. Proceedings of the 10th International Parallel Processing Symposium, Hon-
olulu, Hawaii (1996)

11. Sun, X.-H., Ni, L.M.: Another view on parallel speedup. In: Supercomputing 1990.
Proceedings of the 1990 conference on Supercomputing, New York, New York,
United States, pp. 324–333. IEEE Computer Society Press, Los Alamitos, CA,
USA (1990)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 30–39, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Design on SEU-Tolerant Information Processing
System of the On-Board-Computer

Huang Ying1,2, Zhang Chun-yuan1, Liu Dong1, Li Yi1,
and Weng Sheng-xin2

1 Department of Computer Science, National University of Defense and Technology,
Changsha, 410073 Hunan Province, P.R. China

2 Department of Computer Management Center, Navy General Hospital, Beijing 100037,
P.R. China

{cyzhang,yinghuangying}@nudt.edu.cn

Abstract. For SEU(Single-Event-Upsets) of space radiation environment, a
multi-level fault-tolerant mechanism based-on FPGA, which has greatly
improved the system’s ability of resisting SEU was presented. The design of
three-level fault-tolerant included the dual fault-tolerant system based-on
FPGA, the module-level triple modular redundancy, and the chip-level SEU-
tolerant FPGA. Finally, the evaluation for the SEU reliability of the OBC(on-
board-computer) was mentioned.

Keywords: Single-Event-Upsets, Field Programmable Gate Array, Dual
Fault-Tolerant, Triple Module Redundancy, Cost-Off-The-Shelf.

1 Introduction

Nowadays, the R&D(research and development) and application of the COTS-based
(Cost-Off-The-Shelf) space computer system are the keystone of many universities
and institutes all around the world. Moreover, as a combined product of spatial flight
application and computer, one of the targets of designing COTS-based computer
subsystem is to achieve low-cost, light-weight and short-development-cycle, and it is
supported by using commercial device and development kits[1].

Due to the high energy particles and diversified external interferences in the
spatial environment, the safty of flight, at a large extent, relies on the design of
computer system reliability. In order to avoid spatial fault, the selection of devices
should be seriously considered. Normally, we adopt industrial-class and commercial-
class chips in the spatial COTS-based computer. However, from the view of system-
design level, the most important thing is to introduce the fault-tolerant technique.
Combined with the system architecture and needs of the design, we put forward a
design scheme of COTS-based multi-level fault-tolerant architecture, and finally used
an analytical model to validate the reliability of the design.

2 Architecture

The COTS-based space computer system architecture is shown in figure 1. The
COTS-based chips of the system like SRAM, Flash, CPU and so on, are all prone to
suffer from SEU, and consequently result in bad working status.

 The Design on SEU-Tolerant Information Processing System 31

SEU is caused by electrification particles casting into the sensitive fields of
integrate circuit[2]. It usually introduces many important errors such as CPU’s inner
register content changed or bit flipped. These errors may directly result in wrong
computing results, wrong sequence of program executing, and even breakdown of the
system. In order to adapt to spatial radiation environment and improve system’s
reliability of SEU-mitigation, according to the rules of design on COTS-based
devices, we put forward a multi-level SEU-mitigation design scheme based on
FPGA(Field Programmable Gate Array). There were FPGA-based dual fault-tolerant
system at the system level, FPGA-based SEU-mitigation design of RAM and Flash at
the module level and SEU-mitigation design on SRAM-based FPGA at the chip level.
As a result, the system’s reliability to mitigate SEU has been improved by this multi-
level-tolerant mechanism.

config
config

D
A

TA
B

U
S

A
D

D
RE

SS
B

U
S

CPU

Flash
AM29LV320DB

PC104 INTERFACE

Current
monitor

FPG
A

JT
A

G

S
E
R
I
A
L

I
N
T
E
R
F
A
C
E

Chip
confiured

config

同
步
通
道

debug

Flash
AM29LV320DBFlash

monitor

I/O
B

U
S

SDRAM
MT48LC8M16A2

USB HOST

SDRAM

ETHERNET

SRAM
debug

FPG
A

Fig. 1. The two same single boards were connected by the interface PC104 constituted of the
dual fault-tolerant subsystem of the OBC

3 Design of Multi-level Fault-Tolerant System Architecture

3.1 System-Level Design of SEU Mitigation

This section introduces a kind of FPGA-based warm-back-up dual fault-tolerant
system scheme. By efficiently integrated advantages and characteristics of FPGA
chips, we not only implemented the mechanism of judging the fault computer of dual
fault-tolerant system and resume by itself, but also arbitrated diversified data signals
by MS(master symbol), so that the system would be immune to the influence of
single-computer faults and hold communicating with external data.

The architecture of the adopted system-level dual fault-tolerant mechanism based
on FPGA, is shown in Fig.2. The watchdog timer circuit(WDT0,WDT1) and the
arbitrator(ARBITER) , which were both the key modules of the dual system,

32 H. Ying et al.

respectively took charge of supervising its running states and arbitrating signals of the
dual system like communication and control. In order to implement the system-level
dual warm-back-up fault-tolerant function, the two CPU were linked by the middle
interface module(the arbitrator). At the same time, FPGA was also responsible for
providing the interface (arbitrated by FPGA) communicated with the external. It was
supposed that the mechanism of CPU1 and WDT1 were respectively the same as
CPU0 and WDT0. There are symbol explained as follows.

CPU0

F P G A

MS0 nRESET0 IRQ0

WDT0
wdi0 IS1

wdo0

ARBITER

WDT1
wdo1

IS0 wdi1

DBOUT

clk ena

CPU1
MS1nRESET1IRQ1

ms

wd0 wd1

com0

com1
com

Fig. 2. The architecture of dual fault-tolerant system based on FPGA

A. CPU0 saw after 4 kinds of signals
①CPU0 periodically sent impulse signal wdi0 to WDT0, denoting that CPU0 works
normally. ②CPU0 received nRESET from WDT0, in order to reset CPU0 and resume
from fault state. ③CPU0 received IS0 from WDT1 to take over the system when
CPU1 had been broken. ④CPU0 received MS0 simultaneously from arbitrator, in
order to judge the respective current state of CPU0 and CPU1.

B. WDT0 took charge into inspecting CPU0
After the system had been electrified, CPU0 periodically sent WDT0 an impulse
signal wdi0, which reset the counter of WDT0 to 0. When the next clk0(WDT0’s
inner clock) came, the counter of WDT0 recounted from 0. If WDT0 counted over
some value(CPU0 had not sent wdi0 during a scheduled period), CPU0 was
considered broken, and WDT0 would act as follows: ①WDT0 sent IS1 to CPU1,
required it taking over CPU0 and kept system go on. ②WDT0 sent CPU0 nRESET0
to reset it. ③WDT0 sent low current-flow of wdo0 to the port wd0 of the ARBITER
module of FPGA, in order to notify the arbitrator that CPU0 had been broken and
should power on CPU1 to take the place of CPU0.

C. ARBITER was the core of the realization of dual warm-back-up mechanism
It judged the value of ms(master symbol) through changes of wd0 and wd1, and
export the value of ms to DBOUT. When the system was powered on, the enable

 The Design on SEU-Tolerant Information Processing System 33

signal ena set ms=0, wd0=0, and wd1=0, export ms=0, denoting that CPU0 was the
host. After a period of time, if CPU1 had been broken(wd1=1), ms maintained value
0. If CPU0 had been broken, wd0 from WDT0 was set to 1, and simultaneously ms
was set to 1. However, after CPU0 resumed from fault state, wd0 would be set to
0, and the value of ms would not be changed immediately. By the time CPU1 had
been broken(it means that the value of wd1 had been changed to 1), the value of ms
would be changed. In this way, it could be avoid to frequently switch the host and the
guest from the dual system, by too frequently changed the value of ms. CPU could
judge the host or guest from the dual system through the value of correspond master
symbol MS.

D. The effect of DBOUT module
By judging the value of ms, the system port com was switched to communicate with
correspond channels of each CPU. When system was powered on and initialized, com
was switched into com0, and then CPU0, as the host, was responsible for
communicate with external data out of system. If CPU0 appeared fault(namely ms=1),
com was switched into com1, and CPU1 took instead of CPU0. The way to switch
system communication channels by judging the value of ms, assured system was able
to resume itself from fault state and continued to communicate with external data
despite that a computer was broken in the dual system.

3.2 The Module-Level Mitigation Design on SEU

As memory device, SRAM and Flash are both prone to suffer from SEU. Usually
there are two methods to mitigate SEU on memory in the module-level, EDAC(Erro
Detection And Correction) and TMR(Triple Module Redundancy). With different
coding measures, the capacity of fault tolerance are different. EDAC is a software
fault-tolerant technique. But usually its ability to correct errors is confined to the cost
and performance. And it costs much more additional delay time to check and correct
errors, since comparatively opacity to the processor. Especially for high-speed device
like SRAM, performance is influenced, and the complexity of design and difficulty of
realization are increased as well. In this paper, we have adopted and implemented
FPGA-based TMR technique to mitigate SEU on SRAM and Flash, due to the rich
storage resource and based on the hypothesis that the possibility of SEU is 0 in the
same bit of two memory cell.

3.2.1 SRAM-Mitigation Design
To improve the reliability at the maximum extent, and to reduce memory cells’ upsets
caused by high energy particles, we used three identified memory cells arbitrated by a
controller to form a TMR fault-tolerant mechanism. The cell could be arbitrated out
by TMR arbitrator, when it met SEU, and the system continued working freely. For
the adequate memory resources, the upset cells could be scrubbed into right value
instead of wrong[3]. Fig.3 shows the logic circuit of TMR.

34 H. Ying et al.

Fig. 3. The logic circuit of TMR

Fig. 4. The function of the arbitrating controller of TMR

Fig. 4. illustrates the function of the FPGA-based TMR arbitrator controller.
As Shown in the Fig.4, triple voting is typically used for functional blocks with

high clock rates of at least 66 MHz between a processor and banks of volatile
memory. To maximize the processor performance, this mechanism must allow for
zero wait-state operation such that the fetch and write performance is not degraded for
additional delays in implementing this voting methodology. From the processor
perspective, triple voted memory is therefore achieved to perform the voting function
within the same CPU read-memory request transaction; it is completely transparent to
the processor. The general procedure to operate a triple voting memory mechanism is
shown in Fig.5 [4] .

A typical triple voted controller was implemented in a radiation-tolerant FPGA and
included the memory data integrity logic and circuitry, which were needed to enhance
system reliability in space environment applications.

3.2.2 The SEU-Mitigation Design on Flash
Flash was used to reserve programs and data of the system while working. In order to
assure correctness of the data, FPGA-based TMR technique was used to mitigate SEU.
Data can directly be read out and written back by Flash(without memory controller), so
it could be easily immune to SEU as long as TMR arbitrating mechanism. One of the
advantages was transparent for the processor to directly access and execute instructions
from Flash, without the processor judging whether it was correct.

 The Design on SEU-Tolerant Information Processing System 35

Fig. 5. The mechanism of memory controller of TMR

3.3 The Chip-Level Mitigation Design on SEU

The arbitrator of dual system and TMR arbitrating controller, on the above, were both
implemented on a basis of a SEU-hardened FPGA, including memory data integrated
logic, so as to improve the reliability of spatial application.

TMR CONTROLLER

ENB

ENB

ENB

ENB

DATA

Flash B

DATA

Flash C
DATA

Flash A

DATA

READ Write

Fig. 6. The logic circuit of TMR of FLASH

Considering overseas import limit and the cost of SEU-hard product, we used
SRAM-based FPGA based on COTS. There were several advantages, low-price,
programmable, and widely-used, but it was easily incurred SEU. So, as bottleneck of
system’s reliability, SEU-mitigation design on FPGA was a sticking point of the
system design.

36 H. Ying et al.

3.3.1 The Inner Fault-Tolerant Design on FPGA

A. The redundant design on I/O pins
The signals of I/O pins were all triple-voted in the inner logic cells of FPGA. Then
data signals and control signals could bear the effect of SEU while were being
processed via inner logic of FPGA. As Shown in Fig.7, there was a SEU-tolerant
design principle chart.

Fig. 7. The inner SEU-tolerant redundant architecture of FPGA

B. The dual-module redundant design on inner logic module
We have adopted the dual-module redundant design on the inner logic module M of
FPGA. The thought was to integrate the advantages of high-speed hardware-based
and economy time-based redundancy, which saved nearly 1/3 redundant hardware
resource compared with traditional method TMR. The Scheme is shown in the fig.8 as
follows: at the time of t, the input signal Input was exported to R(t) through the
module M; then Input came by encoding and decoding to the redundant signal R(t+d).
if the result compared was 1, which means the two signals reached the comparator C
at the same time, R would be output, else returned a recalculation flag to reset the
signal R from Input to M, and export the result to the signal Output.

Fig. 8. The dual module redundancy design of the inner logic module of FPGA

 The Design on SEU-Tolerant Information Processing System 37

C. The outer reconfigurable fault-tolerant design on FPGA
As the key to the implementation of inner hardware logic redundancy technique, the
arbitrator was the bottleneck of the system reliability. So we have setup a watchdog
(seen in the Fig.7) in the inner controller of FPGA. Once the watchdog sending an
overtime signal, the logic result of the FPGA was wrong, and then it would resume
from fault state through the online reconfiguration operation. However, in the
course of deigning on computer system of spacecraft, we must implement its ability
of auto-fault-repair. Thereby according to the characteristics of configuration of
SRAM-based FPGA, we have designed an auto-reconfiguration circuit with
watchdog. The typical configuration-circuit signal elements chart of SRAM-based
FPGA was shown in the Fig.9, and the auto-repair function was triggered by the
signal CONF_DONE.

Fig. 9. The typical configuration-circuit signal elements chart of SRAM-based FPGA. When
watchdog had alarmed, the signal CONF_DONE would be set to low level to reset the system.

The signal RST, the timeout alarm signal of watchdog, was connected with
CONF_DONE. After the FPGA had been powered on and been configured,
CONF_DONE became high level from low. Once the watchdog alarmed, RST would
set CONF_DONE to low level, then the circuit of FPGA would restarted, and the
inner logic circuits would be downloaded and auto-reconfigured from storage.

4 Analysis of the Reliability

The entire spacecraft computer subsystem was nonobjectively seen as a mixed
combination system with serial and parallel connection. Seen in the Fig.10, the dual
system came differently by fault-tolerant reinforcing to be the dual fault-tolerant
system with parallel connection.

38 H. Ying et al.

Fig. 10. The model on the reliability of SEU of OBC

4.1 The Reliability of a Single Board

Shown in the Fig.10, the single board was also the mixed combination model. The
SEU-tolerant reliability of its modules (concluding Flash and RAM) was represented
by Rm (Rm=R1R2), thereinto R1 denoted the reliability of Flash (or RAM) and R2
denoted the arbitrator of FPGA. λ denoted the SEU-invalidation effects, Rf and Rr
respectly denoted the reliability of triple-module-redundant system of Flash and
RAM, and the reliability of CPU in a single board was denoted by Rcpu. In the thesis,
we have supposed that there were not more than one-bit SEU-upset in
synchronization, and the invalidation effects of each module in the parallel connection
modules was equal.

From the foregone conditions, results were obtained as follows.

Rf10=Rf11=Rf12=R2=e-λt. (1)

R1=(e-λt)3+3(1-e-λt)(e-λt)2=3e-2λt(1-e-λt). (2)

Rm=R1R2=3e-3λt(1-e-λt). (3)

Rf =Rr=Rm. (4)

So the reliability of a single board could be denoted by

Rcpu=Rm
2=9e-6λt(1-e-λt)2. (5)

4.2 The Reliability of the Dual System

From the Fig.10, the host and the spare made up of a mixed combination model
through the judge controller of FPGA. The SEU-tolerant reliability of this system was
denoted by Rd (Rd=Rcpu2). The equations were obtained as follows, according to the
same hypothesis and known conditions presented before.

Rcpu0= Rcpu1=RfRr=Rm
2. (6)

So the reliability of entire system could be denoted by

R=1-(1-Rm
2)2=1-(1-9e-6λt(1-e-λt)2)2. (7)

 The Design on SEU-Tolerant Information Processing System 39

Table 1. The SEU-tolerant reliability of OBC

Time(year) Rm R
1 0.9802 0.9996
2 0.8976 0.9895
3 0.7712 0.8600

In case of the disable probability of a single device was 10-7, and then the SEU-

tolerant reliability of spacecraft computer system in apiece time extent could be
shown in the table 1.

According to the reference[5], the disabled probability of computer subsystem
should be less than 0.05 in two years. The result of above shows that its reliability
satisfied the request.

5 Conclusion

With consideration of the characteristics of COTS-based devices and radiation effects
in outer space, this thesis illustrated the design on SEU-tolerant architecture of COTS-
based OBC. The fault-tolerant technology of its subsystem must give attention to the
volume & power efficiency of spacecraft and meet the needs of appropriate
redundancy and adequate reliability and the commercial request for low cost and high
performance of COTS. So we analyzed function and logic structure of the OBC
firstly. Secondly, we put forward an embedded design scheme with SEU-tolerant
architecture. Finally, its reliability has been validated in theory. In the future, we will
carry out the system to be validated in the spatial environment.

References

1. Du, W., Tan, W.: Research on Realizationof ASIC in Chinese Spacecraft. Chinese Space
Science and Technology 5 (2002)

2. Reorda, S., Paccagnella, A.: Analyzing SEU Effects in SRAM-based FPGAs. IOLTS2003:
IEEE International On-Line Testing Symposium , 119–123 (2003)

3. Pratt, B., Johnson, E., Wirthlin, M., Caffrey, M., Morgan, K., Graham, P.: Improving FPGA
Design Robustness with Partial TMR. In: MAPLD 2005, Washington, D.C. (September
2005)

4. Lai, A.: Mitigation techniques for electronics in Single Event Upset environments[EB/OL].
US: Opensystems Publishing, Military Embedded Systems, [2006-6-27]. (2006),
http://www.mil-embeded.com/articles/authors/lai

5. Xiang, L., Qu, G.: The Fault Tolerant System Design of Housekeeping Computer for small
satellite. Aerospace Control 2, 92–96 (2005)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 40–49, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Balancing Thread Partition for Efficiently Exploiting
Speculative Thread-Level Parallelism

Yaobin Wang, Hong An, Bo Liang, Li Wang, Ming Cong, and Yongqing Ren

Department of Computer Science and Technology,
University of Science and Technology of China, Hefei 230026, China

Key Laboratory of Computer System and Architecture,
Chinese Academy of Sciences, Beijing 100086, China

wyb1982@mail.ustc.edu.cn, han@ustc.edu.cn,
{boliang,wangliii,mcong,renyq}@mail.ustc.edu.cn

Abstract. General-purpose computing is taking an irreversible step toward on-
chip parallel architectures. One way to enhance the performance of chip multi-
processors is the use of thread-level speculation (TLS). Identifying the points
where the speculative threads will be spawned becomes one of the critical is-
sues of this kind of architectures. In this paper, a criterion for selecting the re-
gion to be speculatively executed is presented to identify potential sources of
speculative parallelism in general-purpose programs. A dynamic profiling
method has been provided to search a large space of TLS parallelization
schemes and where parallelism was located within the application. We analyze
key factors impacting speculative thread-level parallelism of SPEC CPU2000,
evaluate whether a given application or parts of it are suitable for TLS technol-
ogy, and study how to balance thread partition for efficiently exploiting specu-
lative thread-level parallelism. It shows that the inter-thread data dependences
are ubiquitous and the synchronization mechanism is necessary; Return value
prediction and loop unrolling are important to improve performance. The in-
formation we got can be used to guide the thread partition of TLS.

1 Introduction

We have witnessed that chip multiprocessors (CMPs), or multi-core processors, have
become a common way of reducing chip complexity and power consumption while
maintaining high performance. General-purpose computing is taking an irreversible
step toward on-chip parallel architectures [1]. The ability to place multiple cores or
many cores on the same chip will significantly increase the communication bandwidth
and decrease the communication latency seen by threads executing on different proc-
essing cores. This enables the exploitation of finer-grained thread-level parallelism on
a multicore chip as compared to a conventional symmetric multiprocessor (SMPs).
But current parallel software is limited since many programs have been written using
serial algorithms.

On the one hand, software transformations are a possible way for extracting
some parallelism from these codes. Unfortunately, although parallel compilers have

 Balancing Thread Partition 41

made significant efforts, they still fail to automatically parallelize general-purpose
single-threaded programs which have complex data dependence structures caused by
non-linear subscripts, pointers, or function calls within code sections [2,3,4]. On the
other hand, many applications may still turn out to have a large amount of parallelism,
but are still only hand-parallelizeable with state-of-the-art parallel programming mod-
els. Manual parallelization can provide good performance, but typically requires not
only a different initial program design but also programmers with additional skills and
efforts. In a word, the primary problem is that creating parallelized versions of legacy
code is difficult.

Can simple hardware support on multicore chip help to parallelize general-purpose
programs? To parallelize these codes, researchers have proposed Thread-Level Specu-
lation (TLS) that allows to parallelize regions of code in the presence of ambigu-
ous data dependence, thus extracting parallelism whatever dynamic dependences
actually exist at run-time [5,6,7]. Speculative CMPs use hardware to enforce depend-
ence, allowing a parallelizing compiler to generate multithreaded code without need-
ing to prove independence. In these systems, a sequential program is decomposed into
threads to be executed in parallel; dependent threads cause performance degradation,
but do not affect correctness. Speculative threads are thus not limited by the pro-
grammer’s or the compiler’s ability to find guaranteed parallel threads. Furthermore,
speculative threads have the potential to outperform even perfect static parallelization
by exploiting dynamic parallelism, unlike a multiprocessor which requires conserva-
tive synchronization to preserve correct program semantics. But for performance
reasons, thread decomposition is expected to reduce the run-time overheads of data
dependence, inter-thread control-flow misprediction, and load imbalance. Unfortu-
nately, these kinds of threads are very hard to find, especially in non-numerical pro-
grams. Identifying the points where the speculative threads will be spawned becomes
one of the critical issues of this kind of architectures.

Several hardware designs have been proposed for this speculative thread-level par-
allelism (STP) model [5,6,7,9,10], but so far the speedup achieved on large general-
purpose code has been limited. The decision on where to speculate can make a large
difference in the resulting performance. If the performance is poor, we gain little
insight on why it does not work, or whether it is the parallelization scheme or ma-
chine model (or both) that should be improved. As a consequence, poor results may
not reflect any inherent limitations of the STP model, but rather the way it was
applied.

The goal of this paper is to propose a criterion for selecting the region to be specu-
latively executed and to identify potential sources of speculative parallelism in gen-
eral-purpose programs. We also evaluate whether a given application or parts of it are
suitable for TLS technology, and study how to balance thread partition for efficiently
exploiting speculative thread-level parallelism.

The rest of this paper is organized as follows. In Section 2 we describe the STP
models for subroutine and loop level speculation. The analysis method is described in
Section 3, followed by experiment analysis in Section 4. Finally we conclude in
Section 5.

42 Y. Wang et al.

2 Speculative Thread-Level Parallel Execution Model

2.1 Candidate Threads

The thread partition is based on the control flow information, usually choose loop and
subroutine structures as the candidate threads. For subroutine, its boundaries often
separate fairly independent computations, the local variables wouldn’t violate with the
outer program; and for the loop body, every iteration does the similar operations to
the same data set, and is independent each other. The data dependence between itera-
tions is regular. Both of them are good choices for candidate threads.

2.2 Speculative Execution Model for Loops

The speculative execution model for loops is shown in Fig.1, for comparing, Fig.1(a)
shows the traditional execution model and Fig.1(b) shows the speculative execution
model. At the beginning of the speculative execution, the main processor informs all
the other processors to load and execute different iterations of the loop by sending a
“Loop_Start” signal to them. In the process of speculative execution, only the head
processor can write to memory directly, and all the other speculative processor’s
memory references will be cached in its speculative buffer. The next processor will
become the new head processor after the current head processor committed. A new
iteration will be loaded and executed after a processor committed its result into mem-
ory. When a processor found that the exit condition of the loop becomes true, a
“Loop_End” signal would be send to all the other processors to finish the speculative
execution of the specific loop structure, and only the main processor continue running
the code followed the loop.

Fig. 1. Speculative execution model for loops

 Balancing Thread Partition 43

2.3 Speculative Execution Model for Subroutines

As shown in Fig.2, when a speculative subroutine call takes place, a new processor
will be selected to run the code followed the call speculatively with the predicted
return value and the old processor concurrently run the subroutine. The new proces-
sor’s memory references will be cached in its speculative buffer while the old proces-
sor can write directly into memory. After the old processor complete the execution of
the subroutine, the real return value come into being and compared with the predic-
tion value, if miss prediction detected, the new processor must rollback to correct the
execution.

Fig. 2. Speculative execution model for subroutines

3 Analysis Method

3.1 Basic Criterion for Selecting Threads

Granularity and inter-thread data dependence pattern is the most important criterions
for selecting candidate threads. Long thread may lead to speculative buffer overflow
which must stall the execution of the thread, while short thread cannot payoff the
overhead of speculative execution. Different from subroutine, loop slicing and unroll-
ing can be used to control the granularity of a loop. Inter-thread data dependence
pattern is the other basic criterion for both loop and subroutine, and we will propose
two new concepts to describe this issue in section 3.2. Besides granularity and inter-
thread data dependence pattern, there are some other distinguished criterions, such as
type of return value and return value prediction rate that should be used to choose
thread from subroutine structure. In all of them, value predication rate, data depend-
ence, thread granularity are foremost in the TLS parallelism, the reasons are as
follows:

The value predication rate shows the control dependence violations among the
threads, the data dependence would cause the violations, and the granularity shows
the problem about the thread balance.

44 Y. Wang et al.

3.2 Analysis Method for TLS Parallelism

The inter-thread data dependence can be abstracted as a producer/consumer model,
write operation is data producing while read operation is data consuming. To describe
the data dependence violation, we introduce two terms here: “produce- distance” and
“consume-distance”, as shown in Fig.3. The produce-distance means the instruction
numbers from the beginning of the thread to the last write instruction for a specific
memory address, and consume-distance means the instruction numbers from the be-
ginning of the thread to the first read instruction for a specific memory address. Either
of them is a concept relative to program’s one specific execution and both of them
must be calculated at running time.

Fig. 3. Produce-distance & Consume-distance

For thread i and its successor thread i+1, starting at almost the same time, if the lat-
ter’s consume-distance is less than the former’s produce-distance, there will be a
dependence violation under the assumption of that all processor execute instructions
at a same speed. In this paper we select the ratio of consume-distance to produce-
distance to evaluate the inter-thread data dependence pattern. To facilitate the descrip-
tion, we call a inter-thread data dependence as a Deadly Dependence if the ratio is
less than 1.0, Dangerous Dependence for the ratio between 1.0 and 2.0 and Safe De-
pendence for the ratio larger than 2.0.

4 Experiment Analysis

4.1 Experimental Environment and Tools

The profiling tools we used in our investigation named ProFun, ProRV and ProLoop,
and all of them are extended from sim-fast, the fasted simulator of SimpleScalar tool
set which execute one instruction per cycle. ProFun and ProRV are used to profile the
subroutines and ProLoop is for Loop. All the tests were achieved on an x86 machine
running Linux system, the compiler we used is modified from gcc-2.7.2.3, and the
benchmarks are selected from SPEC CPU2000.

Firstly, we pick out subroutines that occupy more than 5% of the total program
execution time, as the inputs of ProRV and ProFun by using Gprof tool, and the input

 Balancing Thread Partition 45

loop structures of ProLoop were selected in the subroutines acquired above. And then
by running the profiling tools, we profiled execution time distribution and the return
value prediction rate of subroutines with different return value types, the granularity
distribution and the inter-thread data dependence pattern of both subroutines and
loops, and the ideal speedup achieved by speculative execution.

4.2 Experiment Results

4.2.1 Return Value Prediction Rate
The “sparse int” subroutine always returns zero except it errors and can be well
predicted (e.g. boolean type), it is necessary to separate it from int type and we
named it as sparse int. As shown in Fig.4, we found that the last-value prediction
scheme is better then the stride, the “sparse int” type achieve a prediction rate about
80%, and the prediction rate of float is almost zero. For the “void” and “sparse int”
subroutines take up most of the execution time and they’re easy to predicate, we can
say that the source of speculative thread-level parallelism is abundant in general-
purpose applications.

Fig. 4. Prediction rate of different return value types

gzip
vpr-place
vpr-route

gcc
mesa

art
mcf

equake
ammp
parser

bzip
twolf

AVERAGE

A
pp

lic
at

io
n

Proportion of execution time

Magnitude

Fig. 5. The thread granularity for subroutines

46 Y. Wang et al.

Fig. 6. The thread granularity for loops

4.2.2 The Thread Granularity
Figure 5 shows the execution time distribution of subroutines with different instruc-
tion numbers, and from it we can see that the execution time distribution of them
varied widely. For only the subroutines with a length of 103-106 instructions are suit-
able for speculative execution and luckily we found that they take about 55% of total
execution time.

Figure 6 shows the execution time distribution for Loop structure, and we found
that most of the loop iteration is shorter than 104 instructions. It means that loop un-
rolling should be frequently used to achieve a larger iteration.

4.2.3 Memory Dependence Distribution
Figure 7 and Fig.8 show the memory dependence distribution for subroutine and loop
structures. From Fig.7 we can see that the distribution characteristic is quite varied,

0% 20% 40% 60% 80% 100%

gzip
vpr.place
vpr.route

gcc
mesa

art
mcf

euqake
ammp
parser

bzip
twolf

AVERAGE

A
pp

lic
at

io
n

Deadly Dependence Dangerous Dependence Safe Dependence

Fig. 7. Memory dependence distribution for subroutine speculation

 Balancing Thread Partition 47

Fig. 8. Memory dependence distribution for loop speculation

and in average, there are about 30% dependences are deadly dependence, 12% are
dangerous dependence and about 58% are safe dependence. Only ammp, art and mesa
almost have no deadly dependence. The situation for loop structure is more pessimis-
tic, all the applications have deadly dependence as shown in Fig.8. It means that for
application of SPEC CPU2000, the data dependences are ubiquitous; to achieve a
better performance, synchronization mechanism is quite necessary.

par
ser mesa mcf gcc

equ
ak

e

vp
r.ro

ute

vp
r.p

lac
e

gzi
p

bzi
p

Fig. 9. Speedup of subroutine speculation

4.2.4 Speedup
Figure 9 and Fig.10 show the potential speedup of speculative execution for subroutine
and loop structures when using different core numbers. As we can see in Fig.9, even the
highest speedup we can achieve by speculative execution of subroutines using infinite
cores, can not exceed 5, and most of the applications can only achieve the speedup
lower than 3 even using infinite cores. The situation is more awful when limited the
number of cores to 2. The similar situation was also appeared in Fig.10: the highest
speedup can only be about 5.3 even for infinite cores and allowing speedup nest loop.
This pessimistic result is consistent with the analysis mentioned in section 4.2.3.

48 Y. Wang et al.

gzi
p

bzi
p

vp
r.p

lac
e

vp
r.ro

ute art gcc mcf
mesa

par
ser tw

olf

equ
ak

e

Fig. 10. Speedup of loop speculation

5 Conclusions

In this paper, a criterion for selecting the region to be speculatively executed is pre-
sented to identify potential sources of speculative parallelism in general-purpose pro-
grams. The dynamic profiling method has been provided to search a large space of
parallelization schemes. We analyze the key factors impacting speculative thread-
level parallelism of SPEC CPU2000, such as the return value prediction rate of sub-
routines with various prediction methods, the memory dependence, the granularity of
loops and subroutines, and so on. We evaluate whether a given application or parts of
it are suitable for TLS technology, and study how to balance thread partition for ex-
ploiting speculative thread-level parallelism. It shows that the source of speculative
thread-level parallelism is abundant in general-purpose applications, the value predi-
cation and loop unrolling technology can greatly improve the TLS performance.

Acknowledgement

This work has been supported by the grant from Intel (PO#4507176412), the National
Natural Science Foundation of China (60373043 and 60633040) and the National
Basic Research Program of China (2005CB321601).

References

1. Asanovic, K., Bodik, R., et al.: The Landscape of Parallel Computing Research: A View
from Berkeley. Technical Report, No.UCB/EECS-2006-183, UC Berkeley (2006)

2. Zhai, A., Colohan, C.B., Steffan, J.G., et al.: Compiler optimization of scalar value com-
munication between speculative threads. In: ASPLOS-10, San Jose, California (2002)

3. S.W. Liao, et al.: SUIF Explorer: An Interactive and Interprocedural Parallelizer. In:
PPoPP 1999 (1999)

 Balancing Thread Partition 49

4. Miller, B.P., et al.: The Paradyn Parallel Performance Measurement Tools. IEEE Com-
puter 11, 37–46 (1995)

5. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar Processors. In: 22nd Annual Inter-
national Symposium (1995)

6. Hammond, L., Willey, M., Olukotun, K.: Data Speculation Support for a Chip Multiproc-
essor. In: ASPLOS-VIII, San Jose, CA (1998)

7. Steffan, J.G., Mowry, T.: The potential for using thread-level data speculation to facilitate
automatic parallelization. In: HPCA-4, Las Vegas, NV (1998)

8. Oplinger, J.T., Heine, D.L.: In Search of Speculative Thread-Level Parallelism. In: Ma-
lyshkin, V. (ed.) Parallel Computing Technologies. LNCS, vol. 1662, Springer, Heidelberg
(1999)

9. Akkary, H., Driscoll, M.A.: A Dynamic Multithreading Processor. MICRO-31, Dallas, TX
(1998)

10. Krishnan, V., et al.: Hardware and Software Support for Speculative Execution of Sequen-
tial Binaries on a Chip- Multiprocessor. In: Supercomputing 1998, Melbourne, Australia
(1998)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 50–59, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Design and Implementation of a High-Speed
Reconfigurable Modular Arithmetic Unit

Wei Li, Zibin Dai, Tao Chen, Tao Meng, and Xuan Yang

Institute of Electronic Technology, the PLA Information Engineering University,
Zhengzhou 450004, China
try_1118@163.com

Abstract. A high-performance and dynamic reconfigurable modular arithme-
tic unit is presented, which provides full support to modulo 28/216/232 addition
and modulo232/ 216+1/232-1 multiplication operation. To save the hardware cost,
we have adopted sharing technique to implement modular multiplication opera-
tion, and then optimized each critical block. The design has been realized using
Altera’s FPGA. Synthesis, placement and routing of reconfigurable design have
accomplished on 0.18μm SMIC process. The result proves that the propagation
time of the critical path is 6.04ns. Compared with other designs, the reconfigur-
able modular arithmetic unit not only supports for diverse modular arithmetic in
the block ciphers, but also provides IP Core for reconfigurable cryptographic
system.

1 Introduction

Block ciphers are the core mechanism of data encryption, digital signature and key
management due to the characteristic of high-speed, simplified standardization and
hardware realization. With the development of cipher chip design technology, the
realization method of cipher algorithms is increasing gradually. The cipher processor
is widely approved due to the characteristic of high-speed and flexible realization.
The design scheme of reconfigurable cipher processing unit is: the hardware circuit
can be reconfigured to adapt to more cipher algorithms and have a tradeoff between
flexibility and efficiency.

Based on the analysis of block cipher architectures, most designs of block cipher
algorithms have a few similar hardware units. In the block cipher algorithms, the
frequency of modular arithmetic operation is very high. As for different block ciphers,
there are large difference in the aspects of width and module. So the modular arithme-
tic unit not only takes up large area but also pays more delay time. Basing on the
analysis of modular arithmetic operation, this paper presents a high-speed reconfigur-
able modular arithmetic unit(RMAU), which can be reconfigured to perform modulo
28/216/232 addition and modulo232/ 216+1/232-1 multiplication operation.

This paper is organized as follows: section 2 presents a reconfigurable modular
arithmetic unit. Section 3 optimizes the 16-bit multiplier with booth algorithm[1],
leapfrog Wallace tree[2] and Ling adder[3]. Section 4 analyzes conventional adders in
delay and area. Section 5 introduces a high-speed module modification circuit.

 Design and Implementation of a High-Speed RMAU 51

Section 6 shows the simulation result and compares the RMAU with reference[4],[5].
Finally, we conclude with section 7.

2 Design and Application of RMAU Unit

2.1 Analysis of Modular Operation Based on Block Ciphers

In the block cipher algorithms, the frequency of modular operation is very high. How-
ever, different algorithms have different operation mode and width. Based on the
analysis of conventional block ciphers, if the width of two operands is n, module is
usually 2n or 2n±1, and n is 8, 16 or 32. Table 1 shows the modular operation of pub-
lished block cipher algorithms.

Table 1. Modular operation of block cipher

Algorithm Addition/Subtraction Multiplication
IDEA Modulo 216 Modulo216+1

Blowfish Modulo 232
MARS Modulo 232 Modulo232
FEAL Modulo 28

CAST-128 Modulo 232
CAST-256 Modulo 232

MMB Modulo232-1
GOST Modulo 232
WAKE Modulo 232

WiderWake Modulo 232
RC2 Modulo 216
RC5 Modulo 232
RC6 Modulo 232 Modulo232

SAFER K Modulo 28
SAFER + Modulo 28

E2 Modulo232
Twofish Modulo 232

Based on the analysis above, conventional modular operation includes modulo 216
addition or subtraction, modulo 232 addition or subtraction, modulo 216+1 multiplica-
tion and modulo 232-1 multiplication. Therefore, the configurable modular operation
unit should support to implement the operation above through dynamically reconfig-
uring the control signals.

2.2 Hardware Architecture of RMAU

The whole architecture of RMAU is illustrated in Fig.1. It contains 16-bit multiplier,
adder array block, modulo 216+1 and 232-1 modification circuit and some reconfigur-
able control signals (C1~C5). Beside that, the function of invers block is that it can
acquire the negative logic of data input under the domination of signal C3.

52 W. Li et al.

Fig. 1. The whole architecture of RMAU

Table 2. The details of C1~5’s configurations

Control signal
Mode

C1&C2 C3 C4 C5
Operation

Config1 00 X X X Modulo 216 multiplication
Config2 01 X X X Modulo 232 multiplication
Config3 0 0 0 Modulo 28 addition
Config4 1 0 0 Modulo 28 subtraction
Config5 0 0 1 Modulo 216 addition
Config6 1 0 1 Modulo 216 subtraction
Config7

10

X 1 X Modulo 216+1 multiplication
Config8 0 0 X Modulo 232 addition
Config9 1 0 X Modulo 232 subtraction

Config10
11

X 1 X Modulo 232-1 multiplication

In the architecture of RMAU, it contains many reconfigurable elements whose

function is determined through programmable configuration bits such as C1~C5.
These elements are connected using a set of routing resources that are also program-
mable. In this way we can change the configurable routing to connect the blocks to-
gether to form necessary circuit. At the same time, we can save hardware sources. In
this paper, through reconfiguring control signals (C1~C5), the RMAU can implement
modular addition, modular subtraction and modular multiplication operation.

 Design and Implementation of a High-Speed RMAU 53

Moreover, it can also implement modulo 216+1 and modulo 232-1 multiplication op-
eration. The details of C1~C5’s configurations are presented in Table 2.

2.3 Design Scheme of RMAU

In the architecture of RMAU, 16-bit multiplier, 16-bit adder, 32-bit adder and module
modification circuit are the basic blocks of RMAU. So RMAU can implement modu-
lar addition and modular subtraction operation by setting the signals C1~C5. More-
over, because it has 16-bit multiplier, RMAU can also implement modulo 28 and mod-
ulo 216 multiplication operation. The illustration about modulo 216+1, modulo 232 and
modulo 232-1 multiplication scheme will be given as follows.

Modulo 232 multiplication operation can be expressed as A×B mod232, where A
and B are 32-bit data. AH and BH denote 16 most significant bits of A and B. AL and
BL denote16 least significant bits of A and B.

(i) A×B=C12
32+C2, where 0≤C1, C2<232

 (ii) AL×BL=D12
16+D2, AL×BH=E12

16+E2
(iii) AH×BL=F12

16+F2, where 0≤D1, D2, E1, E2, F1, F2<216

Therefore, we may get
 C2[31:16]=(D1+E2+F2)mod216, and C2[15:0]=D2

From the equation above, C2 is the result of A×B mod232
As to modulo 216+1 multiplication operation, we design the specific module modi-

fication circuit. There are two main realization methods: One is Ma algorithm[6],
which can modify directly in the process of multiplication operation. Another method
is Low—High algorithm scheme, which can modify the result after multiplication
operation. In this paper, we adopt Low—High algorithm to realize module modifica-
tion circuit. The modified scheme of modulo 216+1 multiplication operation is:

A×B=(C12
16+C2)mod (216+1), where 0≤C1, C2<216

Since C12
16+C2=C1(2

16+1)+(C2- C1)
Therefore, (C12

16+C2)mod (216+1)= (C2- C1) (2
16+1)

 From the equation above, C2- C1 is the result of A×B mod232
As to modulo 232-1 multiplication operation, it can be easily seen that the modified

scheme is the same as modulo 216+1 multiplication. We adopt Low+High algorithm to
modified 32-bit multiplication result. The scheme is described as follows.

A×B=C12
32+C2, where 0≤C1, C2<232

Where,(AL×BL=D12
16+D2, AL×BH=E12

16+E2, AH×BL=F12
16+F2,

AH×BH=G12
16+G2)

Here ((0≤D1, D2, E1, E2, F1, F2, G1, G2)<216)
We may get C12

32+C2=C1(2
32-1)+(C2+C1)

Since C2[15:0]=D2, C2[31:16]=(D1+E2+F2)mod 216
C1[15:0]= {((D1+E2+F2)mod216)cout+(E1+F1+G2)mod216}mod216

C1[31:16]={(((D1+E2+F2)mod216)cout+(E1+F1+G2)mod216)mod216)cout+G1}mod216
(Here, (Xmod216)cout is the carry of X mod216)

Based on the analysis above, it can be seen that the series carry increase the delay
time of whole path. In order to minimize the delay time of critical path, we incorpo-
rate the carry together. Therefore, the equation can be described as follows.

54 W. Li et al.

C1=(D1+E2+F2)mod216)cout+((E1+F1+G2)mod216)cout216+(E1+F1+G2)mod216+G12
16

we can obtain: (C2+C1)mod(232-1) is the result of A×B mod(232-1)

3 Analysis and Realization of 16-Bit Multiplier

As the whole circuit architecture, 16-bit multiplier is the core block, but it has a long
delay time. So we make the optimization to improve its performances in speed, area
and power. The improved 16-bit multiplier we designed is shown in Fig.2. We con-
sider the optimization of multiplier mainly from three parts: Firstly, through compared
with other booth algorithms, we adopt modified booth 2 algorithm[7], Secondly, the
traditional Wallace tree is replaced by leapfrog Wallace tree which minimizes the de-
lay time of partial products compression. Finally, we adopt the Ling adder[3] to get the
final result. The detailed illustration about Ling adder is depicted in 4.1.

Fig. 2. Structure of 16-bit multiplier

3.1 Analysis of Booth Algorithm

Recently, a recoding scheme introduced by Booth [8] reduces the number of partial
products by about a factor of two. But there is different characteristic in various booth
algorithms. The analysis result is shown in Table 3.

Table 3. Analysis of booth algorithms

Algorithm type Partial products number Required extra circuit
None 16 None

Booth3 6 Shifting, inverting, 3M.

Booth4 5
 Shifting, inverting, 3M,

5M, 6M, 7M.
Redundant Booth3 7 constant+2 carry =9 Shifting, inverting, 3M.
Modified Booth2 9 Shifting, inverting.

 Design and Implementation of a High-Speed RMAU 55

Based on the analysis above, booth algorithm has an obvious advantage in partial
products compression. As shown in Table 3, booth 4 algorithm produces 4 partial prod-
ucts. But it requires more multiple generation circuit including 3M, 5M, 6M and 7M;
Redundant booth 3 algorithm produces 6 partial products, and it requires 1 bias constant
and two carry combining numbers. Moreover, it also requires multiple generation cir-
cuit; booth 3 algorithm products 6 partial products, and requires 3M generation circuit.

Modified booth 2 algorithm produces 9 partial products. But all of the multiples
can be produced using simple shifting and complementing. So the modified booth 2
algorithm shows advantage in speed and area compared to other booth algorithms.

3.2 Analysis of Leapfrog Wallace Tree

As we know, Wallace tree architecture can enhance the compressing speed of partial
products. The traditional Wallace tree architecture is shown in Fig.3.(a). Detailed
illustration is shown in references [9]. In this paper, we have adopted the leapfrog
Wallace tree (as shown in Fig.3.(b))which has a high performance in speed. Further-
more, it reduces the spurious switching in the circuit to save power dissipation.

CSA

Partial Products

CS C S C S

S C S C

S C

S C

CS C S C S

S C

S C

S C

(a)

CSA

CSA

CSA

CSA

CSA

CSACSACSA

CSA

CSA

S C

CSA

CSA

CSA

Partial Products

Fig. 3. Structure of Wallace tree

An improved method is proposed through adopting leapfrog Wallace tree architec-
ture. The main idea of it is to make C and S signals enter next level CSA circuit sepa-
rately. They can arrive at input port of every level CSA circuit at the same time. So
the invalid inversion can be decreased. Compared with traditional Wallace tree archi-
tecture, there is not data waiting time in the leapfrog Wallace tree architecture, which
accelerate compression of partial products.

4 Design of Adder Array Hardware Architecture

4.1 Analysis of Adder Unit

In the reconfigurable multiplier, 16-bit multiplier, module modification circuit and
adder array all include the adder circuit. So the fast adder is important to high

56 W. Li et al.

performance multiplier design. Compared with conventional adder, we adopt Ling
adder. In the Ling scheme, the group carry generate and propagate (G and P) are re-
placed by similar functions (called H and I respectively) which can be produced in
fewer stages than the group G and P. we make the comparison between Ling adder
and other conventional adders in area and speed performance. Synthesize adders with
Synopsys Design Compiler, the result is shown in Table 4.

Table 4. Analysis of conventional adder

Adder type Delay ns Area μm2
CPA 1.21 4896
BK 1.27 5121
KS 1.13 6433

CLA 1.19 5255
Synopsys Adder 1.19 3998

LING 1.07 5264

Based on the analysis above, Ling adder shows an obvious advantage in speed. The

area of Ling adder is similar with BK[10], CPA and Synopsys adder. What is more,
the size of Ling adder is smaller than KS[11] and CLA adder. So Ling adder is best
choice in the consideration of speed and area.

4.2 Hardware Architecture of Adder Array

In the architecture of RMAU, adder array is the basic block which is shown in Fig.4.
We optimize the block with CSA and LING adder. Beside, there are two combination
elements in adder array. The function of it is to incorporate two input ports into one
output ports. The adder array is designed to accomplish a series of addition operation.
We put the result of adder array as inputs into the module modification circuit, and
then accomplish modulo 216+1 or 232-1 multiplication.

Fig. 4. Structure of adder array

 Design and Implementation of a High-Speed RMAU 57

5 Analysis and Implementation of Module Modification Circuit

The scheme about modulo 2n+1 multiplication is illustrated in 2.3. We adopt Low-
High algorithm. The architecture of module modification circuit is shown in Fig.5.
The architecture not only provides support for modulo 2n+1 multiplication imple-
menting, but also accomplishes 8 or 16-bit modular addition and subtraction opera-
tion. In the process of modular multiplication operation, we segment the sum of 16-bit
multiplier into n least significant bits (A) and n most significant bits (B), and then
make them as inputs into the module modification circuit, which accomplishes A-B
operation. As to modular addition and subtraction operation, we use signal C5 to
distinguish between those two operations.

Fig. 5. Architecture of module modification circuit

6 Analysis and Comparison of Performance

6.1 Performance Evaluation of RMAU

Synthesize the reconfigurable modular arithmetic unit with Synopsys Design Com-
piler, based on SMIC 0.18μm CMOS technology, without regard to wire load, at
worst case, the result in area and speed of RMAU are listed in Table 5

Slack indicates whether synthesis result meets the constraint. A positive Slack value
denotes the design meets the required setup-time. And a negative Slack implies that the
hold time of the endpoint flop is violated. As to our design, when the constraint is 8ns,
the value of Slack is 0.00ns. Therefore, the maximum frequency is 125MHz.

Table 5. Performance of RMAU in area and speed

Constraint(ns) Area(μm2) Slack(ns)
5 157480 -5.34
8 99697 +0.00

10 95127 +0.04

58 W. Li et al.

6.2 Contrast with Other Designs

In this paper, we compare RMAU with the reconfigurable elements of COBRA [4]
and RELOG_DIGG[5] cipher processor. COBRA cipher processor designed special
block to implement modulo 232 multiplication and modulo 232 addition operation.
RELOG_DIGG cipher processor also designed special block to accomplish modulo
216+1, 232 multiplication and modulo 232 addition operation. But in our design, RMAU
can implement modular addition, modular subtraction and modular multiplication
operation. Moreover, it can also implement modulo 216+1 and modulo 232-1 multipli-
cation operation. RMAU has an obvious advantage in flexibility. The comparison in
delay time between RMAU and special modular arithmetic element of two cipher
processor are listed in Table 6. From these we can see: RMAU also has a high per-
formance with other designs.

Table 6. The comparison with other designs

Modular multiplication Modular addition
Design

Modulo 232 Modulo 216+1 Modulo 232-1 Modulo 232
RELOG_DIGG 13.685ns 14.701ns -- 6.910ns

COBRA 5.5ns -- -- 5.0ns
RMAU 3.6ns 3.7ns 6.04ns 2.82ns

7 Conclusion

In this paper, we present a high-speed RMAU, which can achieve both short critical
path and low power dissipation. Furthermore, we optimize 16-bit multiplier, module
modification block and analyze conventional adder. Synthesize design with Synopsys
Design Compiler, Simulation results show achievements on both high speed and
small size.

References

1. Booth, A.D.: A Signed Binary Multiplication Technique. Quarterly Journal of Mechanics
and Applied Mathematics 4, 236–240 (1951)

2. Nan, Y.S., Chen, O.T.: Low-power multipliers by minimizing switching activities of par-
tial products. In: IEEE International Symposium on Circuits and Systems[C]. IEEE Cir-
cuits and Systems Society, Arizona USA, pp. 93–96 (2002)

3. Ling, H.: High-Speed Binary Adder. IBM Journal of Research and Development 25, 156–
166 (1981)

4. Ying jie Qu.: The Research and Design of the Reconfigurable Logic for Cryptography[D].
In: Beijing University of Technology, Beijing China (2002)

5. Elbirt, A.J.: Reconfigurable Computing For Symmetric-Key Algorithms[D] Massachusetts:
Electrical and Computer Engineering Department University of Massachusetts Lowell
(2002)

6. Yu tai Ma: A Simplified Architecture for Modulo (2n + 1) Multiplication. IEEE Transac-
tions on Computers 47 (1998)

 Design and Implementation of a High-Speed RMAU 59

7. MacSorley, O.L.: High-Speed Arithmetic in Binary Computers. Proceedings of the IRE 49,
67–91 (1961)

8. Weinberger, A., Smith, J.L.: A One-Microsecond. Adder Using One-Megacycle Circuitry.
IRE Transactions on Electronic Computers, 65–73 (1956)

9. Wallace, C.S.: A Suggestion for a Fast Multiplier. IEEE Transactions on Electronic Com-
puters, 14–17 (1964)

10. Brent, P.R., Kung, T.H.: A regular layout for parallel adders. IEEE Trans. Comput. 32,
260–264 (1982)

11. Kogge, P., Stone, H.: A parallel algorithm for the efficient solution. IEEE Trans. Com-
put. 22, 783–787 (1973)

Virtual Disk Monitor Based on Multi-core EFI�

Xizhe Zhang1, Shensheng Zhang1, and Zijian Deng2

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, 200240, China

2 Lab of Information Security and National Computing Grid, Southwest Jiaotong
University, Chengdu, 610031, China

{zhangxizhe,sszhang}@sjtu.edu.cn, zijian.deng@gmail.com

Abstract. This paper presents a novel approach to build a real-time
high performance virtual disk monitor based on multi-core EFI, which
keeps file system’s integrity and mobility simultaneously. This monitor
supports both file-level and block-level protection for general FAT file
system. Data image can be dynamically loaded from various devices such
as disk drives and even from a USB flash drive. A prototype system has
been designed and implemented. Experiments show great performance
merits for this unique virtual disk monitor.

1 Introduction

Extensible Firmware Interface (EFI) [1] was designed to modernize firmware
technology and move beyond the limitations of legacy Basic Input/Output Sys-
tem (BIOS). By using EFI, we can effectively manage the platform firmware.

Disk virtualization is widely used in modern operating system (OS) and
system virtual machine [12] [13] [14]. It is very useful for implementing portable
file system and surveillance file system. Virtual disk emulates physical disk on
block-level transfer operations so that transient status and operation information
naturally embedded in physical disk can easily be retrieved and logged.

In general purpose OS and system virtual machine environment, no matter
how disk virtualization is implemented, performance and security requirements
can not be fulfilled at the same time. When OS is compromised, file system
may also be corrupted and data integrity may not be preserved. System virtual
machine suffers from performance overhead because of system emulation.

In this paper, a Virtual Disk Monitor (VDM) based on multi-core EFI is
presented. The monitor is able to balance performance and security requirements
simultaneously. This approach also extends EFI’s ability to support a secure
computational environment for future multi-core platform.
Main contributions of this paper are:

• A real-time virtual disk monitor on FAT file system was designed and im-
plemented

� This project is supported by Intel Corporation and SJTU under the Contracts
No. 4507258277 and No. 4507255994.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 60–69, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Virtual Disk Monitor Based on Multi-core EFI 61

• Files access rules can be dynamically assigned by EFI user
• Experiment results show up to 3 times speedup on write operation as com-

pared to that of physical hard disk

The rest of this paper is organized as the following: Section 2 discusses related
works published previously; Multi-core EFI architecture is introduced in sec-
tion 3; Section 4 describes the prototype design of EFI virtual disk monitor;
Experiment results are presented in section 5; Finally, section 6 concludes the
VDM project and discusses future work.

2 Related Work

Authors of reference [4] provided an accurate disk drive model, which precisely
emulates physical disk drives. A real-time integrity monitor on file-system is pro-
posed in reference [7]. Authors pointed out seven security problems associated
with file-system integrity. They used Xen [11] VMM to transfer file system op-
erations from Domain-U to Domain-0. However, this method needs to modify
kernel code and needs a trusted kernel on Domain-U. In reference [6], authors
presented an file-aware block level intrusion detection storage system, which can
convert block level operations to file level operations. This method requires a
scanning of the entire file system before turning on the intrusion detection fea-
ture. In addition, file access control rules must be defined before mounting virtual
disk.

In reference [5], authors comprehensively explained the opportunities and ob-
stacles on virtual machine based security architecture. They suggested an OS
Interface library to translate hardware status from guest virtual machine to vir-
tual machine introspection based intrusion detection system (VMI-based IDS).

Encouraged by the above researches and taking a step forward, Virtual Disk
Monitor (VDM) is made capable of translating hardware status of disk I/O into
file operations in real time. VDM can protect virtual file system without the
need of a trusted kernel in OS. In addition, the new VDM does not need to scan
the entire file system before mounting disk image. Moreover, with new VDM,
file access control rules can be dynamically changed.

3 Multi-core EFI Architecture

Extensible Firmware Interface was invented in 1999. It was traditionally used
for booting Intel Itanium processor-based sever. This section introduces EFI and
Multi-core EFI architecture.

3.1 EFI

As a specification, EFI defines a new model for the interface between operating
systems and platform firmware. It also provides boot and runtime service calls

62 X. Zhang, S. Zhang, and Z. Deng

Fig. 1. EFI Architecture

available to the operating system and its loader. A diagram of EFI architec-
ture is given in Figure 1.

Although primarily intended for the next generation of IA architecture-based
computers, EFI is designed to be CPU architecture independent. It separates
the hardware platform from the OS, but still let OS transparently control the
platform. Under this condition, independently from the OS, EFI provides its
own value-added features. EFI framework also specifies and provides a series
of programmatic service interfaces to EFI applications and services, which are
purely API specifications and implementation independent.

Intel created the platform Innovation Framework named Tiano for EFI.
Tiano [3] made EFI extended for Desktop computers. Tiano can support un-
modified general purpose OS like Windows XP, etc.

3.2 Multi-core EFI

Multi-core architecture is a single package that contains two or more processing
”execution cores” or computational engines [2]. Accordingly, multi-core platform
provides more processing resources.

In multi-core environment, EFI partitions hardware platform into many sep-
arate logical domains [9] [10]. EFI domain is a base and trusted domain. Other
domains are un-trusted domains. Figure 2 illustrates this architecture. Bootstrap
processor (BSP) is dedicated to EFI. Application processors (AP), physical de-
vices and virtual devices can be assigned to the OS which is monitored by EFI.
Although monitored OS has its own dedicated memory, EFI can access all phys-
ical memory address.

Monitored OS can be a general purpose OS such as Linux or Windows. EFI
monitors the OS though the methods of memory inspection, system call moni-
toring and virtual device monitoring. Memory inspection method uses memory
information of OS to interpret OS status. System call monitor method gathers
OS information by insert a system call hooker into monitored OS. Virtual de-
vice monitor method transparently monitors OS through device operations and
hardware status. This paper will focus on virtual device monitor method.

Virtual Disk Monitor Based on Multi-core EFI 63

Fig. 2. Multi-core EFI Architecture

4 System Design

This section presents the design of Virtual Disk Monitor (VDM) in the follow-
ing order: the structure of VDM and its components; program model; and the
mechanism of VDM.

4.1 Structure

The design is based on multi-core EFI architecture. Linux operating system is
used as monitored OS. For hardware, a dual-core processor is used as reference
system platform. Figure 3 illustrates the structure of this virtual disk monitor
system.

In figure 3, EFI is a host which has the access of all memory locations. Boot
Strap Processor (BSP) is dedicated to EFI. Linux controls Application Proces-
sor (AP) and has its own dedicated memory. Both Linux and EFI can access
shared memory used for communication between two systems.

On EFI site, the components of VDM consists of management console, disk
image, access rules and Monitor. Users use management console to load disk
image from various devices in EFI directory or even from a USB flash drive.
After disk image is loaded, users can view files and directories in the disk image.
Access rules can also be assigned and modified by users through the management
console. Monitor checks access rules on every block write and read operation.

Management console is connected through a serial port. This serial port is
concealed by EFI and not recognized by OS. To the OS, this serial port does
not exist. The console is alive after the system powers on.

For general purpose OS, device driver is the only way to access various storage
media. Virus or malicious programs can cause troubles to a system by corrupting
OS or by corrupting device driver or by both. Since users assign access rules to
files by OS interface, they may be fooled by corrupted OS. Further, OS may be

64 X. Zhang, S. Zhang, and Z. Deng

Fig. 3. Virtual Disk Monitor System Structure

fooled by corrupted device driver. The main issue here is that the storage media
can not report the problems to users directly.

In multi-core EFI system, storage media is emulated by VDM. Device can not
fool users by conceal or forge real media operations. Any violence of access rules
bill be reported to users on EFI console immediately. Then user can unmount the
virtual disk. EFI domain is a trusted base in the system. As long as EFI domain re-
mains intact, un-trusteddomain cannot corrupt storagemedia controlledbyVDM.

VDM check every disk I/O operations. VDM first check the access rules then
perform real disk operation. Rules Checking Additional Time (RCAT) is different
according to different type of access rule. For block level access rules, RCAT is a
constant. For file level access rules, RCAT varies as the depth of directory where
files reside varies.

When a user assigns access rule to a file, VDM marks relevant files blocks and
relevant directory blocks according to the file. Mark Time (MT) will also vary
as the depth of directory where the file resides varies.

On Linux site, EFI virtual disk driver is a loadable kernel module which acts
as a block device. File system calls it when users write to or read from EFI virtual
disk. EFI virtual disk driver will then relay the file system call information to
the Monitor in EFI through shared memory.

Write and read operations among Linux file system, EFI virtual disk driver
and EFI monitor are block level operations. EFI management console and Linux
applications access virtual disk through file operations.

4.2 Program Model

In presented design, a USB flash drive is attached to EFI system. On software
level, Linux applications see no difference between EFI virtual disk and physical
disk although the underlying physical mechanism has been changed.

Virtual Disk Monitor Based on Multi-core EFI 65

Fig. 4. Virtual Disk Monitor Program Model

Linux applications can use Linux file system APIs (e.g. fopen, fwrite, fread).
Linux file system will translate file operations to block operations and call device
driver through block device ioctls (e.g. block read, block write). Device driver
converts block operations into EFI defined block operations format, which con-
sists of synchronization status, block address, number of blocks, read/write, and
disk size. Three phases on the right-hand side of figure 4 shows this workflow.

In figure 4, EFI Virtual Disk Monitor checks shared memory for block op-
erations. After receiving block operation information, it checks the files access
rules, and then writes blocks to or reads blocks from disk image. Every block
operation must be checked for access rules to ensure the security of virtual disk.

This program model supports two image loading methods. One is called EFI
ram-disk for high speed: disk image can be loaded into EFI memory when disk
is mounted in Linux and only write back is allowed when disk is unmounted in
Linux. The other is called EFI USB-disk for high security and reliability: data is
directly read from and written to a USB drive. A comparison of the two methods
is given in the next section.

4.3 Mechanism

EFI Virtual Disk Monitor (VDM) consist of a FAT [8] file system module and a
security module. Processing details of VDM is shown in Figure 5. Security mod-
ule functions on access rules and handles tags on file-to-block mapping table.
File-to-block mapping table is maintained by file system module.

66 X. Zhang, S. Zhang, and Z. Deng

Fig. 5. Mechanism of Virtual Disk Monitor

When a user assigns an access rule to a file, file system module will convert
filename to a series of block number and security module tags access rule in the
mapping table. Mapping table will be checked on every block write/read request.
If any rule on a file is violated, monitor will show a message in EFI and stop
associated operations. For EFI users, Virtual Disk Monitor acts as a normal file
system with user assigned file access rules. The presented design supports six
rules: 1) file system read-only. 2) file read-warning. 3) file write-prohibit. 4) block
read-warning. 5) block write-prohibit. 6) display all write/read operations. For
Linux users, Virtual Disk Monitor acts as a block device. It only support block
write/read operations.

5 Experiment

In this section, two sets of experiment results are presented. Test hardware plat-
form is based on Intel Lakeport develop platform. It consists of Pentium D 3.2GHz,
1GB DDR2 RAM, Quantum Fireball 6.4GB PATA hard disk, and SanDisk Cruzer
Micro (512MB) USB disk. Software platform consists of EFI V1.10 with multi-
core support, modified Linux kernel 2.6.13 and Iozone 3.283.

Write speed tests were performed for EFI ram-disk, EFI USB-disk and phys-
ical hard disk. Implementation methods of EFI ram-disk and EFI USB-disk are
described in subsection 4.2. Iozone file system benchmark tool [15] is used for
all tests. This benchmark generates and measures a variety of fie operations.

Test procedures for EFI ram-disk and EFI USB-disk:

1. load disk image into virtual disk monitor in EFI
2. insmod EFI virtual disk module in Linux
3. mount virtual disk in Linux
4. mkdosfs with parameter -F16 is executed to format virtual disk in Linux
5. copy and run Iozone test in Linux
6. umount virtual disk in Linux
7. rmmod EFI virtual disk module in Linux
8. unload disk image in EFI

Physical hard disk is tested by copying and running iozone test in a void
directory.

Virtual Disk Monitor Based on Multi-core EFI 67

5.1 Test Case 1

32MB disk image is used in this test. Write speed tests were performed for EFI
ram-disk, EFI USB-disk and physical hard disk. Parameters of Iozone are: -
Ra -p -o -s 512k -y 4k -i 0 -i 1 -f test.dat. Parameter -p was used to purge the
processor cache before each file operation and -o to force all writes to the file to
completely go to disk. Figure 6 shows the results.

Fig. 6. Iozone Write Performance on 32MB Disk Image

Write speed for EFI ram-disk method is about 48MB/s on average. The speed
is unstable when test record size is below 64KB. Write speed for EFI USB-disk
method is about 8MB/s on average, but drops fast when test record size is larger
than 128KB. Write speed for physical hard disk is steadily up to 5MB/s on 512KB
record size and 3MB/s on average. In general, the performance of EFI ram-disk
method is about 6 times faster than the performance of EFI USB-disk method
on stable speed. The performance of physical hard disk is a little faster than the
performance of EFI USB-disk method when block size is larger than 256 KB.

5.2 Test Case 2

256MB disk image is used in this test. Write speed tests for EFI ram-disk and
physical hard disk are tested. Parameters of Iozone are: -Ra -s 64m -y 4k -i 0 -
f test.dat. Figure 7 shows the results.

Write speed for EFI ram-disk method is about 50MB/s on average and it is
stable during the tests. Speed for physical hard disk is about 17MB/s on average
and it is also stable. This shows that the average write performance of EFI ram-
disk method is about 3 times faster than the performance of physical hard disk
method.

68 X. Zhang, S. Zhang, and Z. Deng

Fig. 7. Iozone Write Performance on 256MB Disk Image

6 Conclusion

In this paper, EFI shows great extensibility in support multi-core architecture
and support virtual device for monitored OS. In the future, increasing write
speed for EFI USB-disk performance by optimizing EFI USB driver and file
library is planned. Furthermore, a plan to design other virtual devices for mon-
itored OS and use more sophisticated security rules on virtual devices will also
be considered.

Acknowledgments

We appreciate Intel Corporation for providing hardware platform and EFI
environment. Also, a lot of useful supports and suggestions come from Intel
EFI/Tiano Team. We would like to thanks anonymous reviewers for their valu-
able suggestions to improve this manuscript

References

1. Intel. Extensible Firmware Interface Specification Version 1.10 (December 2002),
http://developer.intel.com/technology/efi/

2. Intel. Multi-Core Overview, http://www.intel.com/multi-core/overview.htm
3. Intel. Tiano Architecture Specification Version 0.7 (June 2002),

http://www.tianocore.org
4. Ruemmler, C., Wilkes, J.: An Introduction to Disk Drive Modeling. IEEE Com-

puter , 17–28 (March 1994)

http://developer.intel.com/technology/efi/
http://www.intel.com/multi-core/overview.htm
http://www.tianocore.org

Virtual Disk Monitor Based on Multi-core EFI 69

5. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture
for Intrusion Detection. In: Proceedings of the Internet Society’s 2003 Symposium
on Network and Distributed System Security (February 2003)

6. Zhang, Y., Gu, Y., Wang, H., Wang, D.: Virtual-Machine-based Intrusion Detection
on File-aware Block Level. In: SBACPAD 2006. Proceedings of the 18th Interna-
tional Symposium on Computer Architecture and High Performance Computing,
pp. 185–192 (2006)

7. Quynh, N.A., Takefuji, Y.: A Real-time Integrity Monitor for Xen Virtual Machine.
In: ICNS 2006. Proceedings of the International conference on Networking and
Services, p. 90 (July 2006)

8. Microsoft Extensible Firmware Initiative FAT32 File System Specification 1.03
9. Inoue, H., Ikeno, A., Kondo, M., Sakai, J., Edahiro, M.: VIRTUS: A New Processor

Virtualization Architecture for Security-Oriented Next-Generation Mobile Termi-
nals. In: Proceedings of the 43rd annual conference on Design automation table of
contents, Annual ACM IEEE Design Automation Conference, pp. 484–489 (2006)

10. Hiroaki, I., Naoki, S.: FIDES: A Multi-Core Platform to Enhance Robustness of
Embedded Systems. NEC Technical Journal 1(3) (July 2006)

11. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A.,
Barham, P., Neugebauer, R.: Xen and the art of virtualization. In: Proceedings of
the ACM Symposium on Operating Systems Principles (October 2003)

12. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation
architectures. Communications of the ACM 17(7), 412–421 (1974)

13. Rosenblum, M., Garfinkel, T.: Virtual Machine Monitors: Current Technology and
Future Trends. IEEE Computer, 39–47 (May 2005)

14. Smith, J., Nair, R.: Virtual Machines: Versatile Platforms for Systems and Pro-
cesses. Elsevier Science & Technology Books (May 2005)

15. Norcott, W.D.: Iozone Filesystem Benchmark User Manual (2003),
http://www.iozone.org

http://www.iozone.org

An Optimal Design Method for De-synchronous

Circuit Based on Control Graph�

Gang Jin, Lei Wang, Zhiying Wang, and Kui Dai

School of Computer Science,National University of Defense Technology,
Changsha, 410073, China
jingang@nudt.edu.cn

Abstract. De-synchronous is a very useful method to design
asynchronous circuit automatically from synchronous description of cir-
cuits. This paper introduces an optimal design method based on Con-
trol Graph which is an abstract model of the de-synchronous circuit.
The main purpose of this optimal design method is to reduce the ex-
tra overhead in the area of the de-synchronous circuit. The optimization
algorithm takes the performance evaluation function based on the Con-
trol Graph of the de-synchronous circuit as its heuristic function. The
performance evaluation function presented in this paper is a linear pro-
gramming problem. In the end of this paper, the optimal method is
applied to a set of benchmark circuits. The number of the local con-
trollers in these circuits is markedly reduced by 54%, and the number
of C-elements that is required to construct the handshake circuitry be-
tween local controllers is also reduced by 76.3%. So the entire area of
the circuit is sharply reduced. Because this design method is directed by
the performance evaluation function of the circuit, there is no penalty in
performance of the de-synchronous circuit.

Keywords: de-synchronous, asynchronous, performance evaluation,
algorithm, control graph, Petri-net.

1 Introduction

Along with the scale of chip is getting larger and larger, the clock skew becomes
more and more serious. In order to solve the clock skew problem, a large balance
clock tree needs to be constructed, involving much area and consuming much
energy of the circuit. Compared with synchronous circuits, the power dissipation
of asynchronous ones are really small. As the different parts of the circuit operate
at different speed and switching activity, the Electro-Magnetic Compatibility has
increased. With their interfaces free from global constraints such as operating
frequency, asynchronous circuit provides inherent modularity, which is the major
advantage of the asynchronous design methodology. However, there are some
disadvantages related to asynchronous circuit. On the one hand, there are no
� Supported by the National Natural Science Foundation of China under Grant No.

90407022.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 70–79, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Optimal Design Method for De-synchronous Circuit 71

good CAD tools for asynchronous circuit design; on the other hand, the design
of asynchronous circuit is really complex since there is no global control signal
in the circuit.

In order to avoid the disadvantages of the asynchronous design style, the
concept of de-synchronous has been brought up [1], whose essential idea is that
the design starts from a standard synchronous synthesized circuit, and then the
global clock network is directly replaced by a set of local controllers. All steps of
this design flow can be implemented within standard CAD tools. This method
works efficiently in dealing with the difficulties which will be encountered when
adopting a pure asynchronous design style.

When adopting de-synchronous design methodology, a local handshake cir-
cuitry should be inserted into the circuit in order to take place the global clock.
So an extra overhead, i.e. area, will be introduced to the circuit. The major
purpose of this paper is to reduce this area overhead. A abstract model is devel-
oped to represent the control path of the circuit, based on which an algorithm
is introduced to reduce the area of the de-synchronous circuit.

In Section 2, the related works of this paper are introduced. The concept
and design flow of the de-synchronous design style are explained in Section 3.
In Section 4 we use an abstract model—Control Graph based on Petri-net to
model the de-synchronous circuit. In Section 5, based on Control Graph of de-
synchronous circuit, an optimization algorithm is developed to combine the local
controllers in order to reduce the entire area of the circuit, which is directed by
the performance evaluation function. In Section 6, the algorithm is applied to a
number of benchmark circuits. Section 7 is the conclusion part.

2 Related Work

The idea of generating local control signals for a synchronous latch-based circuit
is proposed by Sutherland in his Turing award lecture [2]. The micorpipeline
theory has been adopted in several designs [3] and CAD tools [4,5,6].

Theseus Logic has developed a design method [7] that uses the commercial
EDA tools to synthesize and optimize the datapath, and directly translates the
control path into an asynchronous implementation. But this approach suffers
from high overhead and requires the non-standard HDL style.

Liner and Harden have introduced a method that replaces each logic gate
with an equivalent sequential handshake asynchronous circuit, where the syn-
chronization information is encoded into the code of data using an LEDR delay-
insensitive code [8]. This approach also have an expensive overhead.

The similar work as this paper is presented by A. Davare in [9]. He also directly
replaces the global clock network with local controllers. But in that paper, he
only introduces a simple method to optimize the circuit without concerning the
circuit performance.

Our group has also done a lot of works on de-synchronous circuit design. We
have presented a de-synchronous circuit design flow [10,11] based on macrocell.
This design flow tries to compatible with current EDA tools for synchronous

72 G. Jin et al.

design, which makes it easy to design asynchronous circuits. Based on this de-
sign methodoloy, we have designed a 32-bits asynchronous multiplier in 0.35μm
process. Compared with the synchronous partner, our design of multiplier has
smaller area, lower power dissipation and higher performance.

3 Design Step for De-synchronous Circuit

Generally speaking, the design based on flip-flop will need more complex control
circuitry, which will lead to an extra area overhead. In this paper, we translate
each flip-flop to a pair of master-slave latches, because latch-based design will
be smaller and faster. In [1], a design flow of de-synchronous circuit has been
introduced. All steps of this flow starting from a flip-flop-based synchronous cir-
cuit that can be implemented with standard CAD tools. The de-synchronization
method proceeds in the following three steps:

1. Splitting each flip-flop into a master-slave latch pair.
2. Generating matched delay for combinational logic.

Serving as a completion detector for the corresponding combinational block,
each matched delay must be greater than or equal to the delay of the critical
path of the corresponding combinational block.

3. Implementing the local controller corresponding to each latch.
For each latch of the latch-based synchronous circuit, a local controller will
be inserted into the circuit for generating the control signal. The local con-
trollers communicate with each other over handshake. Request signals from
predecessors are delayed by the matched delay generated in the previous
step.

4 The Model of De-synchronous Circuit

In fact, the data path of the de-synchronous circuit presented in this paper has
no difference with its synchronous partner, so the major design concern should
be paid to the design of the control path of the circuit. Based on the work in [12] ,
this paper introduces an abstract model of the control path of the de-synchronous
circuit—Control Graph. The Control Graph takes a weighted directed graph to
represent the local controllers corresponding to the latches in the circuit and the
handshake circuitry between the local controllers. The definition of the Control
Graph is:

Definition 1. Control Graph
A Control Graph is a 4-tuple, < V, F, W, P >; < V, F > is a directed graph,

P : V �→ {even, odd} is a polarity function, W : F �→ R is a weighted function.

In the directed graph < V, F > , V is a set of all vertices in this graph, and
each vertex in V represents a local controller in the de-synchronous circuit; F
is a set of all edges in the graph, and each edge in F represents a connecting
relationship of two local controllers, in other words, these two local controllers

An Optimal Design Method for De-synchronous Circuit 73

should synchronize with each other. In a real circuit, an edge also indicates
that there is a combination logic path between the two latches. The polarity
function P assigns a polarity to each vertex of < V, F > according to the type
of corresponding latch, such as master or slave. The weighted function assigns a
real number to each edge of < V, F >, which indicates that the worst case delay
associates with corresponding combination logic path of this edge.

The construction process of the Control Graph is as follows:

1. Using logical synthesis tools to synthesize the circuit, getting the gate-level
net-list of the circuit.

2. Inserting a new vertex to the Control Graph for every latch in the gate level
net-list.

3. Determining the connecting relationship between the vertices in the Control
Graph, i.e. determining the predecessors and successors of every vertex in the
graph. For each vertex v, all vertices that are connected to the input ports
of the combination block whose output port is connected to the input ports
of v construct the predecessor set of v, pre(v). The successor set post(v) can
be determined in same way.

4. Determining the polarity of each vertex in the Control Graph. For vertex v,
if the latch corresponding to v is a master latch, define P (v) = even, else
define P (v) = odd.

5. Determining the weight of edge in the Control Graph, i.e. the weighted func-
tion W . The worst case delay of each combinational path corresponding to
the edge of the Control Graph can be calculated by STA tools. This delay
is assigned to the edge as a weight.

An example circuit and its Control Graph are illustrated in Fig 1.

1

01

0

0 1

L1 L2

L3L4

L5L6

L6

L5

L4

L3

L1

L2

(b)(a)

Fig. 1. An example circuit and its Control Graph

The circuitry of control path can be automatically derived from the Control
Graph of the de-synchronous circuit. For each local controller v, there is a pair
of reqin, ackin signals, and a pair of reqout, ackout signals, where reqin, ackin are
the handshake signals with the local controllers in set pre(v); reqout, ackout are
the handshake signals with the local controllers in set post(v). All reqout of the

74 G. Jin et al.

local controllers in pre(v) are combined by a multi-input C-element to generate
the reqin of the local controller v; All ackout of the local controller in pre(v) are
directly connected to the ackin of the local controller v.

5 Optimization of the Control Path

Based on the Control Graph of the de-synchronous circuit, this paper develops
an optimization algorithm to reduce the area of the de-synchronous circuit.

The control path of the de-synchronous circuit is made up by the local con-
trollers and the handshake circuitry between them. The de-synchronous circuit
which avoids the area overhead of the global clock introduces the new area over-
head of local controllers and the handshake circuitry between them. As the data
path of the de-synchronous circuit is the same as its synchronous partner, reduc-
ing the area of the control path of the de-synchronous circuit will be important
to reduce the entire area of the whole circuit.

We can naturally combine the control signals of a set of latches with a single
control signal. One local controller generates the latch signal of a set of latches,
by which the number of the local controllers in the control path will be decreased
and in turn reducing the whole area of the circuit. According to this concept, we
develop an optimal method based on the combining control signals of latches.

5.1 Combining Control Signals of Latches

The meaning of combining control signals of latches is that the control signals
of several latches are generated by a single local controller, by which the area of
the circuit will be reduced.

In fact, combining control signals of latches is to combine the vertices in the
control graph. Because the mapping between the vertex in the control graph
and the latch controller in the circuit is one to one, we can use the combination
of the vertices in the control graph to represent combining control signals of
latches. In this way, we can combine the vertices in the control graph to achieve
the purpose of combining the local controllers in the circuit. When two vertices
in the control graph are combined, the following rules must be followed:

– Only when two vertices have the same polarity, they can be combined, i.e.
P (u) = P (v); After the combination, a new vertex w will be inserted into
the control graph.

– pre(w) = pre(u)
⋃

pre(v).
– post(w) = post(u)

⋃
post(v).

– The weight of each edge remains unchanged.

5.2 The Performance Evaluation Function Based on Control Graph

Definition 2. Average Cycle Time[13]
The average cycle time of an asynchronous circuit is the longest average cycle

time among all circles in the timed Petri-net model corresponding to this circuit.

An Optimal Design Method for De-synchronous Circuit 75

The average cycle time is a performance evaluation parameter of the asyn-
chronous circuit. De-synchronous circuit is a kind of asynchronous circuit, so
this parameter can also be the performance evaluation parameter of the de-
synchronous circuit.

Definition 3. Timed Petri-net
Timed Petri-net is defined as a 5-tuple N =< P, T, F, Δ, M0 >, where P =

{p1, p2, ..., pm} is the non-empty and finite set of place, T = {t1, t2, ..., tn} is the
the non-empty and finite set of transition, F ⊆ (P × T) ∪ (T × P) is the flow
relationship, Δ : T �→ R is the execution time function of transition, M0 ⊆ P is
the initial marking of the Petri-net.

The timed Petri-net of a de-synchronous circuit can be derived from the Control
Graph of the circuit. The procedure is:

1. Every vertex in the Control Graph has been extended to a substructure
in timed Petri-net. This substructure is constructed by two transitions and
one place; one transition is called input transition which can have several
inputs and only one output connecting to the input of the place; the other
is called output transition which can have several output and only one input
connecting to the output of the place.

2. Each edge in the Control Graph become a place in the timed Petri-net, whose
input is connected to the output transition of the extended substructure
derived from the source vertex of this edge; the output is connected to the
input transition of the extended substructure derived from the target vertex
of this edge.

3. The place in the substructure produced in step 1 can present the vertex in
Control Graph. Each place corresponding to the odd vertex in the Control
Graph should be included in initial marking M0.

4. For each transition ti, the corresponding transition execution time θi is the
maximum delay of the edges which input to ti.

It is easy to be confirmed that the timed Petri-net derived from above proce-
dure is live and safe.

[14] has pointed that the bottom bound of average cycle is:

τ = max
i

{yT
i (C−)T Dx

yT
i M0

}

where C− = [c−ij]m×n , c−ij is the weight of directed arc from transition j to place
i; D is the diagonal matrix constructed by θii, which is the execution time of
the transitions ti in timed Petri-net; M0 is an array having the same number of
elements as the place set of timed Petri-net, which contains the initial number
of tokens kept in the corresponding place.

If the Petri-net is a marked graph (a subclass of Petri-nets[15] that can model
decision-free concurrent systems), the maximum average cycle time can be gained

76 G. Jin et al.

by solving the below Linear Programming problem.

T = maxY T (C−)T θ

st.
C · Y = 0

Y T · M0 = 1
Y ≥ 0

This method is very fast, so it works in dealing with large scale problems. For
a de-synchronous circuit whose Control Graph is C, we take the average cycle
time T (C) calculated in this method as the performance evaluation function of
this de-synchronous circuit.

5.3 The Optimization Algorithm

According to the polarity of the vertex in the Control Graph, the latches in the
circuit can be divided into two subsets. Only vertices with the same polarity
can be combined. In the extreme case, it will result in a circuit with only two
local controllers, one for the master latches and the other for the slave latches,
which behaviors just like the synchronous partner and eliminates the benefit of
the asynchronous one. In fact, the purpose of combination of latches is to find a
best partition of these two subsets to achieve the best balance between the area
and the benefit of asynchronism.

In order to find the exact optimization result, it is necessary to traverse every
partition of the two subsets of the vertices, which is unacceptable for it is a NP-
hard problem. Therefore, a polynomial time algorithm to find an approximate
optimal solution is introduced in this paper.

To prevent the benefit of asynchronism lost, a threshold is introduced to the
optimization procedure. The threshold means the up-bound of the number of
latches controlled by a single local controller. The larger value the threshold
assigned, the more local controller can be combined, the more benefit of asyn-
chronous is lost, vice versa. The algorithm for combining control signals of latches
is as follows:

Algorithm 1 (combining control signals of latches). Given a Control
Graph C =< V, F, W, P >. Vdeleted is a set that keeps the vertices deleted during
the optimization. Set n = |V |. It maintains an array (θ1, θ2, ..., θn), where θi

present the times which vi has been combined. Θ is the threshold assigned to
algorithm. The algorithm is as follows:

1. Set Vdeleted = ∅;
2. Set i = 1, τmin = ∞;
3. Set j = i + 1;
4. If vi ∈ Vdeleted, then jump to 5. If vj ∈ Vdeleted or θi + θj > Θ, then

jump to 4. Combine vi and vj of C to produce a new control graph C′, if
T (C′) � T (C), then set τmin = T (C′), imin = i, jmin = j. If j � n, then
jump to 5, otherwise j = j + 1 and jump to 4.

5. If i > n, then jump to 6, otherwise i = i + 1 and jump to 3;

An Optimal Design Method for De-synchronous Circuit 77

6. If τmin < ∞, then combine vimin and vjmin to produce the new control graph
C and set Vdeleted = Vdeleted ∪ {vjmin}.

The core step of this algorithm is step 4, in which T (C) has been calculated.
T (C) is a linear programming problem. If we chose the Karmarker’s algorithm to
solve the linear programming problem, the time complexity is O(n3.5) [16], where
n is the number of variables in this problem, i.e. the place of timed petri-net
corresponding to the circuit. The iterative depth of our optimization algorithm
is 2, so the time complexity of the algorithm is O(n5.5). The time complexity of
this algorithm is polynomial time.

6 Experiment Result

In order to evaluate the effectiveness of the algorithm presented in this paper,
several experiments are conducted on some benchmark circuits and describing
in the following part.

We choose a subset of the ISCAS’89 benchmark circuit sets, 9 circuits of which
are chosen. To determine the effect of the threshold, we choose different threshold
values to run the algorithm on these set of benchmark circuits. The reduction
of the number of the local controllers is illustrated in Table 1. Since the control
path is made up by these local controllers and the handshake circuitry between
them, and the major part of the handshake circuitry is C-elements, the total
area of the control path is mainly composed by the area of the local controllers
and the area of the C-elements. For this reason, we also illustrate the number of
C-elements needed by the circuit. In the experiment, we investigate the result
when threshold is 2(Θ = 2) and 3(Θ = 3).

Table 1. The experiment result of combining control signals of latches

Original Optimized(Θ = 2) Optimized(Θ = 3)

Circuit Vertex Edge C-element Vertex Edge C-element Vertex Edge C-element

s27 6 10 4 4 6 2 4 6 2
s298 28 83 55 16 38 22 12 25 13
s344 30 93 63 16 40 24 12 35 23
s349 30 93 63 16 40 24 12 35 23
s386 12 42 30 6 12 6 4 6 2
s420 32 152 120 14 44 28 12 30 18
s510 12 42 30 6 12 6 4 6 2
s526 42 165 123 22 77 55 14 48 34
s1448 12 42 30 6 12 6 6 12 6

From the experiment result presented above, we can see that the number of
vertices and edges are both decreased, and the C-elements required by the circuit
are also dramatically reduced. We can also see that when Θ = 2, the number
of local controllers in the circuit is totally reduced by 37.9%, the number of

78 G. Jin et al.

C-elements is totally reduced by 66.6%, and when Θ = 3, the number of local
controllers in the circuit is totally reduced by 54%, the number of C-elements is
totally reduced by 76.3%.

Along with the reduction of the number of the local controllers in the cir-
cuit, the fan-in and fan-out of a single local controller may be increased, which
may cause some extra overhead of area introduced into the circuit. In Table 2,
we illustrate the average fan-in and fan-out of these circuits before and after
optimization.

Table 2. The average fan-in and fan-out of the benchmark circuits before and after
optimization

Original Optimized

Circuit Avg. fan-in/out Avg. fan-in/out(Θ = 2) Avg. fan-in/out(Θ = 3)

s27 2.67 3.00 3.00
s298 3.96 4.15 4.42
s344 4.10 4.38 5.42
s349 4.10 4.38 5.42
s386 4.50 4.00 4.50
s420 5.75 4.75 5.17
s510 4.50 4.00 4.50
s526 4.93 5.41 6.43
s1448 4.50 4.00 4.00

From the result above, we observe that the change of the average fan-in and
fan-out is relatively small compared with the notable reduction in the number
of the local controllers and the C-elements. In some cases, because of the great
reduction of the number of handshakes in the circuit, the average fan-in and
fan-out may even be decreased.

7 Conclusions

In this paper, an optimization method to balance the penalties and benefits of de-
synchronous circuit is introduced. It is allowed that the control signals of several
latches to be combined into a single signal generated by one local controller. In
this way, the overhead of the local controllers can be sharply reduced. From the
experiment results, we can see that nearly half of the local controllers can be
eliminated and nearly 2/3 of the C-elements required to construct the control
path can also be eliminated.

The de-synchronous design methodology can improve EMI, and markedly
shorten the design cycle of asynchronous circuit. Our optimization method for
de-synchronism can conquer the problem that de-synchronism may bring some
overhead into circuit. We believe that de-synchronism with our optimization
algorithm is a very useful method to design asynchronous circuit before the pure
asynchronous design methodology be widely used.

An Optimal Design Method for De-synchronous Circuit 79

References

1. Cortadella, J., Kondratyev, A., Lavagno, L., Sotiriou, C.: A concurrent model for
desynchronization. In: IWLS 2003 (2003)

2. Sutherland, I.E.: Micropipelines. Communications of the ACM 32 (1989)
3. Furber, S.B., Garside, J.D., Gilbert, D.A.: Amulet3: A high-performance self-timed

arm microprocessor. In: Proc. International Conf. Computer Design(ICCD) (Oc-
tober 1998)

4. Bardsley, A., Edwards, D.: Coompiling the language Balsa to delay-insensitive
hardware (1997)

5. van Berkel, K.: Handshake Circuits: an Asynchronous Architecture for VLSI Pro-
gramming. Cambridge University Press, Cambridge (2001)

6. Blunno, I., Lavagno, L.: Automated synthesis of micro-pipelines from behavioral
verilog hdl. In: Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pp. 84–92. IEEE Computer Society Press, Los
Alamitos (2000)

7. Ligthart, M., Fant, K., Smith, R., Taubin, A., Kondratyev, A.: Asynchronous dsign
using commercial hdl synthesis tools. In: Proc. International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems, pp. 114–125. IEEE Com-
puter Society Press, Los Alamitos (2000)

8. Linder, D.H., Harden, J.C.: Phased logic: Supporting the synchronous design
paradigm with delay-insensitive circuitry. IEEE Transactions on Computers 45,
1031–1044 (1996)

9. Davare, A., Lwin, K., Kondratyev, A., Sangiovanni-Vincentelli, A.: The best of both
worlds: The efficient asynchronous implementation of synchronous specifications.
In: Design Automation Conference (DAC), ACM/IEEE (June 2004)

10. Yong, L., Lei, W., Rui, G., Kui, D., Zhi-ying, W.: Research and implementation
of a 32-bits asynchronous multiplier. Journal of Computer Research and Develop-
ment 43 (November 2006)

11. Gong, R., Wang, L., Li, Y., Dai, K.: A de-synchronous circuit design flow using
hybrid cell library. In: ICSICT 2006. Proc. of 8th International Conference on
Solid-State and Integrated-Circuit Technology, Madrid, Spain, pp. 149–158. IEEE
Computer Society Press, Los Alamitos (2004)

12. Blunno, I., Cortadella, J., Kondratyev, A., Lavagno, L., Lwin, K., Sotiriou, C.:
Handshake protocols for de-synchronization. In: Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, Shanghai, China

13. Wang, L., Zhi-ying, W., Dai, K.: Cycle period analysis and optimization of asyn-
chronous timed circuits. In: Jesshope, C., Egan, C. (eds.) ACSAC 2006. LNCS,
vol. 4186, pp. 502–508. Springer, Heidelberg (2006)

14. Wang, L.: Design and Anslysis Techniques of Asynchronous Embedded Micro-
processors. Ph.d. thesis, National University of Defence technology, Changsha
(September 2006)

15. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 541–580 (April 1989)

16. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Pro-
ceedings of the 16th Annual ACM Symposium on Theory of Computing, pp. 302–
311 (April 1984)

Evaluating a Low-Power Dual-Core Architecture

Yijun Liu, Pinghua Chen, Guobo Xie, Guangcong Liu,
and Zhenkun Li

The Faculty of Computer
Guangdong University of Technology

Guangzhou, Guangdong, China, 510006
yjliu@gdut.edu.cn

Abstract. With the rapid development of silicon technology, chip die
size and clock frequency increase; it becomes very difficult to further in-
crease the performance of silicon devices only by speeding up their clock.
We believe a more practical way to increase their speed is to use the abun-
dant transistor resource to implement several cores and make the cores
execute in parallel. In the paper, we propose a processor-coprocessor
architecture to increase the speed of the most frequently-used short pro-
gram segments and reduce their power consumption. As these segments
dominate the dynamic execution trace of embedded programs, the overall
increment of performance and power-saving is significant. A dataflow co-
processor and a RISC coprocessor are implemented for comparison. The
experimental results show the dataflow coprocessor is faster and more
power-efficient than the other one, due to the fact that the dataflow
coprocessor offers natural properties for fine-grained instruction-level
parallel processing and its parallelism is self-scheduling. Except for data
dependencies, there is no constrained sequentiality, so a dataflow pro-
gram allows all forms of instruction parallelism.

1 Introduction

Based on the prediction of ITRS (International Technology Roadmap for Semi-
conductors), the diameter of a silicon die will be larger than 22 millimeter and
one chip can integrate more than 40 billion transistors by 2010 [1]. ITRS also
predicts that the clock frequency will be 10 GHz or one clock cycle will be 100
pico-second. However, the frequency of global clock seems to reach its limit,
because even under the optimal circumstance, electric current can only travel
30 millimeter at the speed of 300,000 m/s in 100 pico-second. It is very dif-
ficult to further increase the performance of silicon devices only by increasing
their clock frequency. Using the abundant transistor resource to generate more
cores and parallelizing different parts of a silicon circuit is a more practical way
to increase its performance. Parallization also reduces the power consumption
of a silicon circuit since supply voltage can be reduced. For these reasons, on
the PC processor market, manufactories encapsulate several processor cores in
a single chip to improve speed and power-efficiency. On the embedded market,

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 80–89, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Evaluating a Low-Power Dual-Core Architecture 81

application-specific components are integrated with general-purpose micropro-
cessors, like ARM processors, in a SoC to increase performance and reduce power
consumption.

Based on the analysis of embedded processing, we proposed that embedding
a small coprocessor, which supports a small instruction set, within a general-
purpose microprocessor can effectively increase its performance and power-
efficiency. The coprocessor can be designed using different architectures. In the
paper, we will compare a dataflow [2][3] coprocessor with a RISC-like coprocessor
to evaluate their performance and power-efficiency.

The remainder of the paper is organized as following: Section 2 reviews the
architecture of the dataflow coprocessor. Section 3 brings forward a RISC-like
coprocessor competitor. Section 4 compares the performance and the power con-
sumption of the two coprocessors. Section 5 concludes the paper.

2 The Dataflow Coprocessor Architecture Review

Based on the analysis of a large number of benchmark programs, we found that
phenomenon of locality [4] is very apparent in embedded processing. In other
words, embedded processors spend most of their execution time in several small
segments of their programs. For example, a JPEG program contains totally
148,040 instructions but an ARM9 processor spends 44% of its time executing
only 14 instructions when running the program [5]. Following the same rule, an
ARM9 processor spends 76% of its time in executing only 52 instructions of
a media encoding/decoding program, totally containing 14,780 instructions [5].
These most frequently-executed program segments (or kernels) greatly influence
the speed and power consumption of embedded devices. Our idea is to treat
them differently — these program kernels can be executed in a fast and power-
efficient coprocessor, which supports only a small number of instructions and
contains a small memory. Figure 1 illustrated the idea: the most frequently-used
program kernels are stored and executed in the small coprocessor, the other
parts of the program is still put in the big system memory and executed by a
general-purpose microprocessor. The coprocessor memory (CoMem) is designed
to be a part of the main memory to alleviate the overhead of data transport.
Since the coprocessor supports only a small number of instructions (about 64)
and contains a small memory (several KB), the delay and power consumption
of data fetching, instruction decoding, memory accessing and execution is much
small than those of a general-purpose processor, which supports a large set of
instructions (larger than 100) and contains a big memory (several MB). In our
design, the coprocessor is three times the speed of the general-purpose proces-
sor and uses only 10% of the power consumption. Therefore, if a kernel of an
embedded program dominates 50% of the execution time and it can be put and
executed in the coprocessor, the overall speed can be sped up by 50% and 45%
of the overall power consumption can be saved.

The dataflow coprocessor using a static dataflow scheme [6] is illustrated in
Figure 2, which shows a dataflow diagram for a FIR algorithm. As can be seen

82 Y. Liu et al.

CoMem

main memory
Small & Fast

Coprocessor

General−purpose

Microprocessor

Fig. 1. The proposed microprocessor-coprocessor architecture

from the figure, if a data item is fetched from memory, it will flow through
the datapath and the output will be calculated after some time depending on
the speed of the multipliers and adders used. The sequence of the operations is
not important. As long as the function units (multipliers and adders) have valid
inputs, they can process the operations. However, if a stream of data needs to be
processed, function units must synchronize with others to prevent overwriting the
data values (data tokens) which are being calculated. Thus a dataflow operation
should satisfy two requirements:

– Each input port of a function unit should have a valid data token.
– Each output port of a function unit (destination) should be empty, which

means the function unit has finished its former calculation (if any) and is
ready to process new tokens.

From the example mentioned above, a dataflow graph is constructed from some
basic dataflow ‘nodes’, each representing a basic data processing function. The
input arcs of a node represent the inputs for the respective data processing
function and the output arcs represent the outputs from the respective data
processing function. Normally, a node has two input arcs and one output arc,
but the number of input and output arcs can be changed for different purposes. A
number of basic nodes are connected together to implement different programs
and data flowing through a dataflow graph are referred to as ‘tokens’. If two
nodes are linked together, the node that issues data tokens is called a ‘sender’
and that accepting data tokens is called a ‘receiver’. Two kinds of dataflow
computations are defined depending on who initializes dataflow operations:

– Data-driven computation — operations are executed in an order determined
by the availability of input data.

 fork fork fork fork Read
 mem

W0 W1 W2 W3 W4

 Write
 mem

Fig. 2. A dataflow diagram for FIR

Evaluating a Low-Power Dual-Core Architecture 83

c d ea b

x

3: ?+? 2

1: exf 3

0: bxc 3

2: a+? out

And

I/OXor Or

(a) (b)

Function Block

Interconnect
network

store
Matching

(c)

Fig. 3. A general dataflow architecture

– Demand-driven computation — operations are executed in an order deter-
mined by the requirements for data.

The coprocessor is designed using an asynchronous scheme [7]. In data-driven
computation, senders start dataflow operations, similar to a ‘push’ channel in
asynchronous logic. In data-demand computation, receivers start dataflow oper-
ations, similar to a ‘pull’ channel in asynchronous logic.

Clearly, it is inefficient for a general-purpose data processing device to have
a specific datapath for every possible computation such as that shown in Figure
2; a more flexible architecture is needed which can support many different com-
putations. Figure 3(c) shows a basic static dataflow architecture [6] and Figure
3(b) illustrates the mapping of the dataflow diagram in Figure 3(a) onto this ar-
chitecture. There are three main components in this architecture — a matching
store, a data processing unit and an interconnect network. The matching store is
used to store instructions and data. It is implemented using a single-port RAM.
The data processing unit contains several function blocks where data are pro-
cessed and an Input/Output module to access main memory or communicate
with a CPU. The interconnect network sends data tokens to the function blocks
and results back to the specified positions in the matching store.

Figure 4(a) illustrates the structure of the instruction format in the matching
store. OPcode indicates the operation of an instruction. Different from those of
conventional RISC microprocessor, the dataflow instructions contain two
operands (like immediate values in RISC CPUs); a RISC instruction normally
indicates the addresses of the registers holding the operands. The Ctr-bits are
used to indicate the status of operands and destination to guide data flow. If
the two operands of an instruction are both valid and its destination is empty,
the instruction becomes ‘active’. The interconnect network will ‘fire’ the active
instructions if the corresponding function blocks are free. The ‘fired’ instruction
will send the result to the destination and ‘activate’ other instructions. Figure
4(a) just shows the format of normal data processing instructions. Other in-
structions, like load/store and jump/branch instructions, are also implemented
in the coprocessor [5]. The proposed dataflow coprocessor architecture is shown
in Figure 4(b).

The most interesting property of the dataflow coprocessor is its parallelism.
Dataflow execution offers natural properties for fine-grained instruction-level

84 Y. Liu et al.

Matching

 store

Function

 block

70 02627323348496465

Oprand1OPcode Ctr−bitDestOprand2

(a)

Controller

Reqs

A
rb

ite
r

Acks

Local

memory

M
ux

(b)

Fig. 4. The proposed dataflow coprocessor

parallel processing. The parallelism of a dataflow program is self-scheduling.
Except for data dependencies, there is no constrained sequentiality, so a dataflow
program allows all forms of instruction parallelism. Synchronization of different
parallel threads is implicit in the form of data interdependencies. With a dataflow
scheme, parallelism and synchronization eliminate the need for programmers to
use explicit control instructions which manage parallel execution. For example,
in Figure 2, fetching a data item from the memory activates two instructions;
the two instructions can be sent to the processing unit and execute in parallel
as long as enough function blocks exist.

The pure dataflow machines also allow instruction-level parallization, however
the big matching stores make it very difficult to implement them efficiently. Our
coprocessor only stores and executes the most frequently-used program kernels,
thus containing a small matching store (at most hold 64 instructions) as men-
tioned before. Therefore, it is designed fast and efficiently using an asynchronous
logic scheme [5]. The coprocessor is embedded in a general-purpose micropro-
cessor as a ‘computation engine’ to improve the speed and power efficiency of
the most repeatedly executed instruction segments.

3 RISC Coprocessor

To evaluate the performance and power-efficiency of the dataflow coprocessor,
a RISC-like counterpart is implemented. The coprocessor instruction set is de-
signed using a straight forward way. The prototype instruction set of the co-
processor includes only three kinds of instructions: data processing, branch and
load/store instructions. All the instructions have an instruction-length of 20 bits.
The first 5 bits represent what kind operation the processor should execute. The

Evaluating a Low-Power Dual-Core Architecture 85

OPCode −− Rn Rm

Comparison

Comparison

not occupied

second operand register

first operand register

OPCode Rd Rn Rm

Data processing

operation code

destination register

second operand register

first operand register
19 1415 910 45 0

19 1415 910 45 0

OPCode Rd

Immediate

IMM

Destination register

10 bit immediate number

19 1415 910 0

19 1415 910 45 0

19 1415 910 45 0

19 1415 910 45 0

OPCode Rn Rm

Postincrement Load/Store

postincrement load/store

post increment offset

target address register

operand register

immediate A
Rm = [Rn]/[Rn]=Rm
Rn = Rn + #A

19 1415 0

OPCode Rd Rn

Shift/Move

shift/mov

destination register

immediate A

if A[4]=0, shift right, else shift left
if A=0, mov; if A=31; mov negative

second operand register

Rd = Rn << #A

Rd = Rn / Rd = −Rn
Rd = Rn >> #A

immediate A Rd = #A

cmp Rn, Rm

Rd = Rn + Rm OPCode

Branch instruction

Direct jump target

not occupied

19 1415 910 0

Branch condition

Rm = [Rn]/[Rn]=Rm

Immediate A PC = #A

OPCode −− Rn Rm

Load/Store

load/store

not occupied

target address register

operand register

−−

OPCode

I/O

I/O, communicate with the CPU

I/O information

I/O instruction
communicate with CPU

Info

Fig. 5. The structure of the instruction set

unused opcodes can be left for specific data processing applications. Instructions
for division, Hamming distance, Counting Leading Zeros (CLZ) and S-box for
DES algorithm are possible candidates [8]. The last 15 bits of an instruction are
divided into 3 segments with different definitions for different instructions. The
structure of the instruction set is shown in Figure 5 and the prototype instruc-
tion set of the coprocessor is shown in Table 1. As can be seem from Figure 5
and Table 1, the coprocessor is very small but capable of executing many data
processing functions.

Figure 6 (a) and (b) show the proposed RISC architecture of the coprocessor
and its pipeline stages. Since the instructions of the coprocessor are very simple,
there is no need to include a dedicated instruction decoding stage. Therefore,
the pipeline architecture includes only 4 pipeline stages: instruction fetch (IF),
register file reading (REG), processing/memory (EXE) and result writing back
(WB). Since the load and store instructions in the coprocessor do not need to
calculate an operand memory address, the memory fetch/store circuits are put
in parallel with the function units which process data. Both the load and store
instructions can complete in one cycle. The postincrement load and store instruc-
tions can also complete in one cycle by allowing a memory load/store operation
to execute in parallel with an address calculation. The postincrement load may
cause a slight longer latency than other instructions because two results need
to be written back to the register file (one data item from the memory and the
post incremented address), but the latency can be tolerated by an asynchronous
pipeline.

86 Y. Liu et al.

Table 1. The coprocessor instruction set

No. Mnemonic Meaning No. Mnemonic Meaning

0 AND logic AND 16 BAL branch always

1 OR logic OR 17 BEQ branch if equal

2 XOR logic XOR 18 BNE branch if not equal

3 ADD addition 19 BGT greater than

4 SUB subtract 20 BLT less than

5 CMP comparison 21 BGE greater than or equal

6 SM shift/move 22 BLE less than or equal

7 MUL multiplication 23

8 IO CPU communication 24

9 IMM move immediate 25

10 LDR load 26

11 PLDR postincrement load 27

12 STR store 28

13 PSTR postincrement store 29

14 30

15 31

Unlike the classic 5-stage pipeline architecture, which puts the memory load
and store operations after the ALU, the coprocessor puts it in parallel with the
function units. Since the coprocessor does not allow load/store instructions to
have address calculations, putting the memory load/store circuit in an early
pipeline stage helps to improve the speed and reduce the energy consumption
used by propagating opcodes and addresses through more stages in the datapath.

4 The Experimental Comparison of the Two Coprocessors

The two coprocessors were implemented at a schematic level using a SGS-
Thomson 0.18 micron CMOS technology. The datapaths of the coprocessors
are both 16-bit. Five benchmarks are used to compare the speed and the power
efficiency of the two coprocessor. These benchmarks are:

– SUM =
∑100

i=1 i;
– A 5-tap finite impulse response (FIR) filter with 500 inputs;
– A 5-tap infinite impulse response (IIR) filter with 500 inputs;
– The IDEA encryption algorithm with 500 inputs;
– A 4-point fast Fourier transform (FFT) algorithm with 500 inputs.

Table 2 shows the speed and power consumption of the coprocessors when run-
ning these five benchmark programs.

As can be seem from the table, the dataflow coprocessor is 1.6 times faster
than the RISC coprocessor, thanks to its natural self-scheduling parallelism.
In the dataflow coprocessor, one ‘fired’ instruction may send results to several
destinations and ‘activate’ several instructions. Therefore the arbiter can find

Evaluating a Low-Power Dual-Core Architecture 87

instruction
Local

buffer

Local
register

file

R
/W memory

Local

EXE/MEMIF REG WB

(a)

(b)

Function
block

Fig. 6. The organization and pipeline architecture of the coprocessor

Table 2. The comparison of the two coprocessors

Benchmark Dataflow RISC Speed Dataflow RISC energy
time time Ratio energy/Inst energy/Inst Ratio

SUM 0.42 0.64 1.6 24.7 48.5 0.51

FIR 7.50 11.28 1.5 35.9 85.5 0.42

IIR 8.52 11.90 1.4 34.6 72.1 0.48

IDEA 14.5 23.20 1.6 29.3 54.3 0.54

FFT 11.7 18.74 1.6 32.8 52.9 0.62

Average – – 1.6 – – 0.51

‘active’ instructions to fill the pipeline and keep it busy most of the time. On
the other hand, the pipeline of the RISC coprocessor stalls from time to time
due to pipeline hazards, such as data dependence and branch shadow.

Figure 7 shows the executing segments of the dataflow coprocessor and RISC
coprocessor when they execute the FIR program. As can be seen from the fig-
ure, the executing segment of RISC coprocessor is highly regular because of its
sequential control. For dataflow coprocessor, however, the executing segment is
irregular because the arbiter randomly selects active instructions and the exe-
cuting sequence of instructions is ambiguous. The experiment shows that the
dataflow coprocessor is 1.6 times faster than the RISC coprocessor, which also
can be seen from the figure.

To sum up, the dataflow coprocessor is faster than the RISC coprocessor
because dataflow one can alleviate pipeline stalls due to the data/control de-
pendence of one instruction by selecting other active instructions. How much
faster the dataflow coprocessor is than the RISC coprocessor depends on the
actual programs. If we add another set of data processing unit in the dataflow
coprocessor, its speed will be further sped up.

88 Y. Liu et al.

register file write
Local memory write

Fig. 7. The pipeline operations of FIR in the two coprocessors

The dataflow coprocessor is more power-efficient than the RISC coproces-
sor. We found the reason is mainly due to the way of their memory access.
The dataflow coprocessor fetches operands (immediate values) together with in-
structions, thus a one-port RAM can be used to implement the matching store.
However, to execute an instruction, the RISC coprocessor must fetch the in-
struction and read two operands from a three-port register bank, needing three
read operations. Three-port register bank uses more energy than one-port RAM
and accessing memory three times consumes more power than accessing memory
only once. Therefore, the dataflow coprocessor is more power-efficient than the
RISC coprocessor.

We compared the speed of the dataflow coprocessor with an ARM9 soft core, it
is three time faster than the ARM microprocessor and use only 10% of the power.
The main reason is due to the small size of the coprocessor. Based on Amdahl’s
law [9], if a kernel of an embedded program dominates 50% of the execution time
and it can be put and executed in the coprocessor, the overall speed can be sped
up by 50% and 45% of the overall power consumption can be saved.

5 Conclusion

In the paper, a dataflow coprocessor is proposed, which is used to be embedded
in a general-purpose microprocessor to increase its performance and minimize its
power consumption. To evaluate the speed and power efficiency of the dataflow
coprocessor, an RISC coprocessor is implemented. Based on experimental results,
the dataflow coprocessor is 1.6 times faster than the RISC one and uses only 51%
of the power. The speedup is due to the highly instruction-level parallelization
of the dataflow scheme. The dataflow architecture is not new and may not fast
due to the complex control of big-size matching store. However, we can design a
small dataflow coprocessor very efficiently and the dataflow coprocessor can help
general-purpose microprocessor to increase speed and reduce power consumption
by executing the most frequently-used small program kernels.

Evaluating a Low-Power Dual-Core Architecture 89

References

1. ITRS, International Technology Roadmap for Semiconductors Report, 2006 Update
(2006), http://www.itrs.net/

2. Veen, A.H.: Dataflow machine architecture. ACM Computing Surveys (December
1986)

3. Gurd, J., Watson, I.: A data driven system for high speed parallel computer. Com-
puter Design (June 1980)

4. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative approach.
Morgan Kaufmann, San Francisco (2003)

5. Liu, Y., et al.: The design of a dataflow coprocessor for low power embedded hierar-
chical processing. In: Vounckx, J., Azemard, N., Maurine, P. (eds.) PATMOS 2006.
LNCS, vol. 4148, Springer, Heidelberg (2006)

6. Dennis, J.B., Misunas, D.P.: Preliminary architecture for a basic data-flow pro-
cessor. In: Proceedings of the 2nd Annual Symposium on Computer Architecture
(December 1974)

7. Sparsø, J., Furber, S. (eds.): Principles of Asynchronous Circuit Design: A systems
Perspective. Kluwer Academic Publishers, Dordrecht (2001)

8. Proakis, J.G., Manolakis, D.: Digital Signal Processing: Principles, Algorithms and
Applications, 3rd edn. Prentice-Hall Engineering/ Science/Mathematics (1995)

9. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computer capability. In: Proceedings of AFIPS Spring Joint Computer Conference
(1967)

http://www.itrs.net/

Reducing Storage Requirements in Accelerating

Algorithm of Global BioSequence Alignment
on FPGA

Fei Xia and Yong Dou

Department of Computer Science, National University of Defence Technology,
Changsha, P. R. China, 410073

{xcyphoenix,yong dou}@hotmail.com

Abstract. In the paper, we present storage optimization scheme for
hardware accelerating Needleman-Wunsch algorithm. The scheme ex-
ploits the characteristics of back-tracking phase in which the back-trace
path only travels in a constrained area. Our analysis shows that in ad-
dition to logic element resource and memory capacity, the number of
RAM blocks is also one of the constrained factors for hardware acceler-
ating bio-sequence alignment. The optimized algorithm only store part of
the score matrix to reduce storage usages of FPGA RAM blocks, and im-
plement more processing element in FPGA. We fit our design on FPGA
chips EP2S130 and XC2VP70. The experimental results show that the
peak performance can reach 77.7 GCUPS (Giga cell updates per sec-
ond) and 46.82 GCUPS respectively. Our implementation is superior to
related works in clock frequency, the maximal PE number and peak per-
formance, respectively.

Keywords: Bioinformatics, FPGA, Global BioSequence Alignment,
Needleman-Wunsch algorithm, Hardware Accelerator.

1 Introduction

With the technology development of the genome sequencing, the scale of Gene
database expands steeply. In August 2005, the INSDC announced the DNA
sequence database exceeded 100 gigabytes and the number of sequence reached
over 52 million[1]. It is inefficient to scan the Gene-Bank using traditional
software approach. In recent years, FPGA have emerged as performance acceler-
ators capable of implementing fine-grained, potential massively parallelized al-
gorithm for computation-intensive applications. The reconfigurable FPGA chips
also enable algorithms to be implemented with different computing structures on
the same hardware platform[2]. As a result, hardware accelerating bio-sequence
matching attracts much more attention.

After Needleman-Wunsch algorithm was published in 1970, it soon became
the standard technique in biological matching, which uses DP-based method
(dynamic-programming) and is suitable for global alignment of pair-wise se-
quence with a certain similarity. It also spawned many variations, including the
famous Smith-Waterman algorithm for local alignment.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 90–99, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reducing Storage Requirements in Accelerating Algorithm 91

Because sequence comparison algorithms based on DP have been proven to
produce an optimal alignment, a number of hardware parallel architecture based
on the Needleman-Wunsch or the Smith-Waterman algorithm have been pro-
posed for sequence analysis[3],[4],[5],[6],[7],[8],[10] and most of them only concen-
trate on the scoring phase. Some implementations[5],[11] address on the structure
and scale of PE array, but did not consider the storage problem of DP matrix.
Works in[3],[6],[7] and[9] discussed how to accelerate the scoring process and en-
hance the performance scaling, but did not implement the backtracking process.
Researches in[4],[8] mapped the backtracking process in FPGA, but did not take
the storage optimization of scoring matrix into account.

Since the storage complexity of DP-based method is O (M × N) for two
strings with size M and N. Furthermore, the required port number is linear scale
with the size of PE array. With the growth of sequence length, it is difficult to
implement both of the scoring and backtracking process of DP matrix in FPGA.
To reduce the storage requirement in Needleman-Wunsch algorithm, we present
a storage optimization scheme for global bio-sequence alignment applications
with backtracking. Based on the analysis to the characteristic of Needleman-
Wunsch algorithm, we find that given a fixed scoring method, the backtracking
paths always fall into a limited area in DP matrix even in the worst cases, which
means storing all elements of DP matrix is unnecessary. Our scheme uses two
extra registers for checking address limits, but saves about 50% of storage space
in general cases. The saved memory blocks can be used to implement more pro-
cessing elements. Our experimental results show over 800 PEs can be fitted in
an FPGA chip of Altera EP2S130, the maximal speedup reach 5.6 compared to
closely related works, and achieve peak performance 77.7 GCUPS.

2 Needleman-Wunsch Algorithm Overview

The basic idea of Needleman-Wunsch algorithm is to use the best alignment
of shorter subsequence to build the best alignment of two sequences gradually
and recursively. In practice, a matrix F is used to store alignment scores of
subsequence. When F is figured out, the scoring process is finished. Needleman-
Wunsch algorithm is composed of two phases: firstly, calculate the DP matrix
and store the computing trace; secondly, execute trace-back operation according
to DP matrix. In this paper we use the convention that the query sequence S
with length M is along the vertical dimension and the sequence L with length
N in database along the horizontal dimension.

Scoring Phase: Suppose F (i, j) represents the best alignment score between
subsequence S1...i and subsequence L1...j. The score F (i, j) for grid cell (i, j) is
computed following below equations(1 ≤ i ≤ M, 1 ≤ j ≤ N).

Initialization: ⎧
⎨

⎩

F (0, 0) = 0
F (i, 0) = F (i − 1, 0) + P (Si, −)
F (0, j) = F (0, j − 1) + P (−, Lj)

(1)

92 F. Xia and Y. Dou

Recurrence relation:

F (i, j) = max

⎧
⎨

⎩

F (i − 1, j − 1) + P (Si, Lj)
F (i − 1, j) + P (Si, −)
F (i, j − 1) + P (−, Lj)

(2)

Thus, we can translate the above recurrence relation (2) into a systolic parallel
algorithm executing on linear processing elements, PE, as shown in Fig.1(A).

Each PE calculates a row of DP matrix and stores corresponding trace flag
in its local memory. Multiple PEs compute different elements in a line perpen-
dicular to the main diagonal concurrently. In the scoring stage, PE[n](n ≥ 1)
receives score and current character in sequence L from PE[n-1] (PE[0]’s input
is supplied by array control module). PE[n] calculates the score of current grid,
generates trace-back flag and transmits the scoring result and current character
to PE[n+1]. Finally, in step S5, PE[n] stores the flags into PE LM[n] (PE[n]’s
local memory).

Algorithm 2: Scoring and Trace-recording for PE[n] (Optimized)

Input
Valid_trace:
 the starting point of valid trace for PE[n];

Initial phase:
S1: S_reg S_in; Score_reg 0; RAM_Addr 0;
 Valid_trace_reg Valid_trace; Counter 0;
S2: S_out S_in;

S1: If (L_in = S_reg)
 then Score_1 Score_in + Z + X;
 else Score_1 Score_in + Z + Y;
 Score_2 Score_in + Z;
 Score_3 Score_reg + Z;
S2: Score_max Max{Score_1 Score_2 Score_3} Counter Counter + 1;
S3: Case (Score_max)
 Score_1 Trace_back_flag Trace_1;
 Score_2 Trace_back_flag Trace_2;
 Score_3 Trace_back_flag Trace_3;
S4: L_out L_in; Score_out Score_max; Next_PE_start PE_start ;

Processing phase:

Temporary Variables
Valid_trace_reg
 register starting point of valid trace;
Counter
 record the number of calculated element;

Only increased signals are listed here, the definition of other signals is identical with algorithm 1.

Constant
Storage_length:
 the valid trace width of PE[n];

S5: If (Valid_trace_reg Counter Valid_trace_reg + Storage_length)
 then Store (Trace_back_flag) to PE_LM[n];
 RAM_Addr RAM_Addr + 1;
 else Discard current Trace_back_flag value;
 RAM_Addr RAM_Addr;

Algorithm 1: Scoring and Trace-recording for PE[n]
Input

S_in: current char in S sequence;
L_in: current char in L sequence;
Score_in: calculation result by PE[n-1];
PE_start: start signal for PE[n];
Stop: pause/resume signal for PE array;

Initial phase:

Output
S_out: current char in S sequence send to PE[n+1];
L_out: current char in L sequence send to PE[n+1];
Score_out: calculation result by PE[n];
Next_PE_start: start signal for PE[n+1];

S1 S_reg S_in; Score_reg 0; RAM_Addr 0;
S2 S_out S_in;

S1 If (L_in = S_reg)
 then Score_1 Score_in + W + X;
 else Score_1 Score_in + W + Y;
 Score_2 Score_in + Z;
 Score_3 Score_reg + W;
S2 Score_max Max{Score_1 Score_2 Score_3}
S3 Case (Score_max)
 Score_1 Trace_back_flag Trace_1;
 Score_2 Trace_back_flag Trace_2;
 Score_3 Trace_back_flag Trace_3;
S4 L_out L_in; Score_out Score_max; Next_PE_start PE_start ;
S5 Store (Trace_back_flag) into PE_LM[n] RAM_Addr RAM_Addr + 1;

Processing phase:

Temporary Variables
n: current PE number;
Score1/Score2/Score3: alignment score calculated from
 three different locations (diagnal/above/left);
S_reg: register char in S sequence;
Score_max: register alignment score calculated by
PE[n];
Trace_back_flag: trace result calculated by current PE;
RAM_Addr: address of PE_LM[n];

Constant
Trace1: from diagnal location;
Trace2: from above location;
Trace3: from left location;
X: P a a ; Y: P a b ;
Z: P a - W: P - a ;
PE_LM[n]: PE[n] s local memory;

(A) (B)

:

:

Fig. 1. (A)Scoring and trace-recording algorithm; (B)Optimized scoring and trace-
recording algorithm for each PE

Trace-back Phase: After scoring phase, begin backtracking process as shown
in Fig.2(A). The start point is set to the low-right element of DP matrix recorded
in scoring phase. The trace-back processing can find out the location of the next
trace-back point through the current flag. Then set the next point as the current
trace-back point until reaches the top-left element of DP matrix.

At the end of backtracking, the path composed by trace-back points is the best
alignment. In traditional Needleman-Wunsch algorithm, each PE is responsible
for calculating and storing the all elements of corresponding row of DP matrix.
The storage requirement is M ×N (M and N are the length of input sequences).
With the growth of sequence size, the storage requirements may exceed the

Reducing Storage Requirements in Accelerating Algorithm 93

capacity of on-chip memory. In order to implement larger scale scoring and
trace-back process on FPGA chips, we present a storage reduction strategy for
Needleman-Wunsch algorithm.

3 Storage Optimization Strategy

Given two input sequences S and L, |S| = M , |L| = N . With universality, we
suppose N > M . Moreover we using linear gap penalty model and the scoring
scheme is shown as follows: P (a, a) = x, P (a, b)= −y, P (−, a)= P (a, −)= −z
(x, y, z > 0). Parameter G represents the number of gaps in sequence L. R is the
number of replace operation in sequence S. The optimized algorithm is shown
in Fig.1(B).

The basic calculating process of optimized algorithm is consistent with tradi-
tional Needleman-Wunsch algorithm. The main difference lies in S5, where two
registers, valid trace reg and counter are used to check the address range so that
only valid traces are stored in PE local memory. The former register is filled
with starting location of valid trace range in the phase of initialization and the
latter records the location of current point of DP matrix. Therefore, Each PE
only records partial elements of corresponding row of DP matrix. As a result,
the largest memory cost of PE is N − M + 2G+ 1, the total memory cost of the
optimized algorithm is:

(N − M + G + 1) × M, G ≤ (M − R) × (x + y)
2 · z + x

(3)

The correctness of formula(3) is proved as follows: (only consider the situation
N > M ; when N ≤ M , the conclusion is the same). The selection of trace-
back path is closely related with the location of gaps inserted in the alignment
result. As for trace-back point F (i, j), there are three possible choices in trace
selection: vertical path (trace a in Fig.2(A), pointing to element F (i − 1, j), it
means inserting a gap at the location of Lj in horizontal sequence); horizontal
path (trace b pointing to F (i, j − 1), it means inserting a gap at the location of
Si in vertical sequence) and diagonal path (trace c pointing to F (i − 1, j − 1),
it means the two sequences generating a match or mismatch at the location of
F (i, j)).

When G = 0, there is no gap in sequence L, that means trace-back path
contains no vertical trace, then the gaps in sequence S is N − M . So there are
only N − M horizontal traces and M diagonal traces in the trace-back path.
Whatever the alignment score is, all possible paths must be fall into the shadow
parallelogram area in Fig.2(A). The trace 1, 2 and 3 are three possible paths.

Therefore, we can get all the information about backtracking phase recording
the elements in the above parallelogram shadow area. Thus the length of PE local
memory is N − M + 1, and the storage cost of algorithm is (N − M + 1) × M ,
the proportion of saved storage cost is:

T =
M − 1

N
(4)

94 F. Xia and Y. Dou

N-M+1
 N

M

Sequence L

Se
qu

en
ce

S

2

1
3

a

b
c

F(i,j
)

M

G

G

M
-G

-1

N
N-M+1

Sequence L

Se
qu

en
ce

S

(A) (B)

Fig. 2. (A)Valid trace area in DP matrix (G=0); (B)Valid trace area in DP Matrix
(G�=0)

When G�=0, there are G vertical traces in backtracking path. Then the path
will transcend the shadow parallelogram area in Fig.2(A). Thus it’s necessary to
extend the recording area. Two gaps matching each other are impossible, so the
number of blanks in sequence S is N − M + G. There are only four situations in
sequence alignment: match, replace, delete and insert (in-del). According to the
linear gap penalty model and the scoring scheme above, the matching score is
(M − G − R)·x, in-del (gap) penalty is (N − M + G)·z+G·z and replace penalty
is R ·y, so the alignment score of pair-wise sequence S and L is (M − G − R)·x−
R·y−(N − M + 2G)·z. The score in the worst condition is (N − M)·(−z)−M ·y,
(any pair of characters in sequence S and L can’t match in this situation). The
alignment score in common condition should be greater than the worst case,
thus

(M − G − R) · x − R · y − (N − M + 2G) · z ≥ (N − M) · (−z) − M · y (5)

As a result of (5), G has an upper limit:

G ≤ (M − R) × (x + y)
2 · z + x

(6)

Therefore, we can obtain all trace-back information by recording only the
elements in the shadow area as depicted in Fig.2(B). Thus the largest length of
PE local memory is (N − M + 2G + 1), and the whole storage cost is (N × M)−
(M − G) × (M − G − 1).

According to the analysis above, if the scoring rule is fixed, the gaps inserted
in sequence L are limited by the range of G given in formula (6). The proportion
of saved storage of optimized algorithm is:

T =
(M − G) × (M − G − 1)

M × N
(7)

In implementation we should consider not only the capacity of memory and
LE (Logic Cell) but also the size of RAM block and the port constrains of FPGA.

Suppose: LF is number of logic cells in FPGA, CF is RAM capacity, PF is the
port number of RAM blocks in FPGA, MC is the capacity of single RAM block,

Reducing Storage Requirements in Accelerating Algorithm 95

PE Array Control Module

PE LIFO
PE Module

Trace_back
Module

Traceback Start Module

S/L Squence

Trace_back
Result

Trace_back
Start

PE LIFO

S/L Squence in Alignment Result

Score

Trace

Trace

Score

PE Module

SDRAM Controller Module

SDRAM DIMM

USB
Inter-
face

ModuleA ACG C CAS : A

A CAC A TCL : A

A CAC A ATC
A ACG C ACAS :

L :

,

,

Fig. 3. The structure of N-W algorithm accelerator

PPE is the port number PE uses and LPE represents PE logic cost. The number
of PE, NPE , can be fit in a single chip must fulfill the following constrains:

(1) RAM capacity constrain: NPE × (N − M + 2G + 1) ≤ CF ;
(2) Logic capacity constrain: NPE × LPE ≤ LF ;
(3) Memory port constrain: NPE × PPE ≤ PF ;

PPE =
[
(N − M + 2G + 1) · d/MC

]
+ 1 (8)

Where d is storage cost of each element in DP matrix, (N − M + 2G + 1) · d is
the memory cost of PE, square brackets means getting the floor of number.

The above analysis is suitable for other scoring rules. The optimized method
not only can reduce memory cost without increasing design complexity but also
increase the number of PEs. Furthermore, the experimental result shows that the
port number of RAM blocks in FPGA is usually the main constraining factor.

4 Design and Implementation

We have implemented the optimized algorithm in the Altera StratixII
EP2S130C5 FPGA. The test-bed of our algorithm accelerator includes a FPGA
chip, two SDRAM modules and a USB Peripheral Controller. The algorithm core
includes PE Array Control Module, PE Array, Trace-back Start Module and
Trace-back Module. The structure of N-W algorithm accelerator is shown in Fig.3.

PE module contains score calculation unit (compute element in DP matrix),
trace generation unit (generate trace mark) and trace storage LIFO (Last in
First out queue, implemented by block RAM) shown in Fig.4(A). The structure
of score calculation unit shown in Fig.4(B) consists of three adders and three
comparators in terms of formula (2). Since the trace-back marks depend on
scoring results, the score calculation becomes the critical path.

Trace-back module is in charge of finding out the valid trace-back flag and
generating final alignment. It accesses PE local memory in trace-back phase.

96 F. Xia and Y. Dou

Score_in
H(i-1,j)

blank_penalty

H(i-1,j-1)

match_reward

If (Li=Si) ?

Li Si

M
A
X

H(i,j-1)

blank_penalty

M
A
X

Score_out

Control Signal
PE LIFO

Wr_en
S_

in
pu

t

Sc
or

e_
in

pu
t

Trace_Store
Wr_Addr

St
ar

t_
si

gn
al

T
ra

ce
_f

la
g

Trace_readout

Rd_Addr

PE ModuleL
_i

np
ut

S_
ou

tp
ut

Sc
or

e_
ou

tp
ut

L
_o

ut
pu

t

St
ar

t_
si

gn
al

T
ra

ce
_f

la
g

(A) (B)

Fig. 4. (A) PE Module Structure and (B) Score Calculation Component

Basic Trace_back Cell

PE0 Local Memory

Basic Trace_back Cell

Trace_back
Control Module

S/L Sequence Addr Trace _back Start

S/L Squence

Alignment
Result

Trace_back Module

S/L Sequence Addr Trace _back Start

M
U

X

PE31 Local Memory

Rd_Addr

Trace_out

/
5

M
U

X

Rd_Addr

Trace_out

/
5

M
U

X

C
ur

re
nt

 S
/L

Se

qu
en

ce
 A

dd
r

C
ur

re
nt

 S
/L

Se

qu
en

ce
 A

dd
r

Char_Addr

S/L Squence

S/L Squence

S/L Squence

/
5

PE0 Local Memory

PE31 Local Memory

Fig. 5. The structure of trace-back module

When the scale of PE array is large enough, the huge multiplexer becomes the
bottleneck in FPGA implementation. To solve the problem, we adopt the well-
phased trace-back strategy. The structure of trace-back module shown in Fig.5 is
composed of multiple basic trace-back cells and a control module. We divide the
linear PE array into several groups so that each basic trace-back cell accesses the
corresponding local memory group of PEs and controls the trace-back procedure
of current stage (The experiments show that the 32 PEs per group is an optimal
choice). The kernel of Basic Trace-back Cell is address generation component,
which calculates the address of next trace-back point.

5 Experiments and Performance Comparison

We made experiments with different parameter G. To simplify experiment, we
use the following scoring rules: P (a, a) = 1, P (a, b) = −1 and P (−, a) =
P (a, −) = −1.

5.1 Reducing Local Memory Requirements

Our optimized storage scheme requires less memory size than traditional al-
gorithm for storing DP matrix. This will save storage space for more PEs

Reducing Storage Requirements in Accelerating Algorithm 97

implementation. Fig.6 indicates the experimental result. Given the PE num-
ber equals the length of sequence S, M=512 and G, the gaps in sequence L,
equals 0, M/8, M/4 to 3M/8 respectively. The saving storage percentage can
be calculated as equation (7).

G=0 G=M/8 G=M/4 G=3M/8

Sequence Size

M
em

or
y

sa
ve

d
(%

)

Fig. 6. Proportion of memory saved in different sequence size and parameter G

From the above figure, supposing the lengths of both sequence S and L equal
to 512 and no gaps are inserted, our optimized scheme achieves the maximal
storage reduction, nearly 99%, compared with traditional algorithm. Even in the
worst cases, where the length difference between S and L rises and the inserted
gaps also increases to 3M/8, the reduction percentage still reach about 10%.

5.2 Increasing PE Number

Besides of the limitation in logical resource and memory capacity, the port num-
ber of FPGA RAM blocks also constrains the size of PE array. Since each PE
occupies one LIFO, which is composed of at least one RAM block of FPGA.
The saved storage will provide extra RAM blocks for more PE implementation.
Table 1 shows the comparison of PE number implemented in FPGA EP2S130C5
with different length of sequence L.

Table 1. PE number for different sequence size

Sequence L(N) 128 256 512 1024 2048 4096

PEs(Traditional) 928 928 928 780 680 340

PEs (Optimized) 928 928 928 928 780 680

The maximum PE number fitted in FPGA is closely-related to the sequence
size. In the condition of N ≤ 512, the PEs can be fitted in FPGA is limited not
by memory but logic resource. With the same FPGA logic resource, the maximal
PE number is the same as 928.

But when N > 512, the storage factor takes more effects on the scale of PE
array. The saved storage can implement more PEs in our optimized scheme than
traditional algorithms. The difference between the maximal PE number increases
greatly. When sequence length reaches 4096, our scheme can achieves double PE
number, as shown in the last column of Table 1.

98 F. Xia and Y. Dou

5.3 Experimental Result

We implemented our optimized algorithm on FPGA StratixII EP2S130F1020C5,
supposing N = 1024, M = 800, G = M/8 = 100. The PE local memory capacity
is 512 × 2bit occupying two M512 RAM blocks or one M4K block. Fitting 800
PEs consumes 87% logical elements and the clock frequency reaches 97.13MHz,
as shown in the first column of Table 2.

Table 2. Performance results and comparison ([*]: the usage of RAM Blocks)

Ours ASM[4] HCP[3] SRC[11] PC[4]

FPGA EP2S130C5 XC2VP70-5 XC2VP70-5 XC2V6000 XC2V6000 XeonPC

PEs Fitted 800 384 303 252 4 Engines —
LEs (LUT) 87% 73% — — /Chip

M512 (%)[*] 394 (56%) BRAMs N-W
M4K (%)[*] 609(100%) 323 (98%) — — 4 Chips Algo-

Mem Capacity 13% 11% rithm

Clock (MHz) 97.13 121.93 77.5 55 100 3000

Speed (GCUPS) 77.7 46.82 23.48 13.9 42.7 0.046

Since traditional algorithm needs N ×M = 800×1024 memory cells, it is im-
possible to generate 800 RAM blocks with the capacity of 1024×2bit in EP2S130.
The optimized approach reduces local memory usage of each PE and saves 50%
storage cost, which makes the implementation can be fitted in EP2S130. From
Table 2 we also find that the memory usage in our work is only 13%. The reason
is that large part of memory capacity in FPGA is implemented by M-RAM block
with size of 1Mbits, which can only be used by at most two processing elements.
Thus, the bottleneck lies in the number of RAM blocks, not memory capacity
for sequence alignment application.

For comparison to related work, we also implement 384 PEs on FPGA chip
of Xilinx XC2VP70-5. The result shows our design is superior to the implemen-
tation[4] in both PE number and clock frequency. The performance speedup is
nearly 2.0. We also compared our performance to the closely related proposals,
HCP[3] and SRC[11]. Our implementation achieves the peak performance of 77.7
GCUPS on EP2S130 and the speedup can reach 5.6 and 1.8 relatively.

In addition, we tested the execute time of global pair-wise sequence alignment
with backtracking in our FPGA testbed. With sequence length 512, the scanning
time of total 1000 sequences is 90.8ms. For the same application on a PentiumIV
2.6 GHz PC, the run time is 31770ms. Hence, our FPGA implementation achieves
a speedup of approximately 350.

6 Conclusion

This paper presented the design and implementation of storage reduction strat-
egy of global bio-sequence alignment with backtracking on FPGAs. The proposed

Reducing Storage Requirements in Accelerating Algorithm 99

scheme can efficiently reduce the storage cost by shortening the length of PE
local memory, and increase the scale of PE array fitted in FPGA. Experimen-
tal results showed our implementation is superior to related works in frequency,
maximum PE number and peak performance.

References

1. GenBank Growth Statistics (March 7 2006),
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

2. Regester, K., Byun, J., et al.: Implementing Bio-informatics Algorithms on
Nallatech-Configurable Multi-FPGA Syatems.University of North Carolina (2005)

3. Oliver, T., Schmidt, B., Maskell, D.: Hyper Customized Processors for Bio-
Sequence Database Scanning on FPGAs. In: Proc. ACM/SIGDA 13th Interna-
tional Symposium on Field Programmable Gate Arrays, pp. 229–237 (2005)

4. Court, T.V., et al.: Families of FPGA-Based Accelerators for Approximate String
Matching. Journal of Microprocessors and Microsystems 31, 135–145 (2007)

5. Dydel, S., Bala, P.: Large Scale Protein Sequence Alignment Using FPGA Repro-
grammable Logic Devices. In: Proc. IEEE Int. Conf. Field Programmable Logic
and Application, pp. 23–32. IEEE Computer Society Press, Los Alamitos (2004)

6. Yu, C.W., Kwong, K.H., et al.: A Smith-Waterman Systolic Cell. Proc. IEEE Int.
Conf. Field Programmable Logic and Application, 375–384 (2003)

7. Peiheng, Z., Xinchun, L., Xiangyang, J.: An Implemention of Reconfigurable Com-
puting Accelerator Card Oriented Bioinformatics. Journal of Computer Research
and development, 930–937 (2005)

8. West, B., et al.: An FPGA-based Search Engine for Unstructured Database. In
Proc. of 2nd Workshop on Application Specific Processors, 25–32 (2003)

9. Herbordt, M.C., Model, J., et al.: Single Pass, BLAST-Like, Approximate String
Matching on FPGAs. In: Proc. IEEE 14th IEEE Int. Symp. Field-Programmable
Custom Computing Machines, pp. 217–226 (2006)

10. Michailidis, P.D., Konstantinos, G.: Margaritis:A Programmable Array Processor
Architecture for Flexible Approximate String Matching Algorithms. Journal of
Parallel and Distributed Computing 67, 131–141 (2007)

11. El-Ghazawi, T.: The High-Performance Reconfigurable Computing Era. GWU
HPC Symposium (2006)

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

Multi-cluster Load Balancing Based on

Process Migration�

XiaoYing Wang, ZiYu Zhu, ZhiHui Du, and SanLi Li

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science & Technology, Tsinghua University, Beijing 100084

{wangxy,zzy,duzh,lsl}@tirc.cs.tsinghua.edu.cn

Abstract. Load balancing is important for distributed computing sys-
tems to achieve maximum resource utilization, and process migration is
an efficient way to dynamically balance the load among multiple nodes.
Due to limited capacity of a single cluster, it’s necessary to share the
underutilized resources of other sites. This paper addresses the issues in
multi-cluster load balancing based on process migration across separate
clusters. Key technology and mechanisms are discussed and then the
implementation of a prototype system is described in detail. Experimen-
tal results depict that by achieving multi-cluster load balance, surplus
resources can be efficiently utilized and the makespan is also greatly re-
duced as a result.

Keywords: Load balancing, Process migration, Multi-cluster.

1 Introduction

Recent years, clusters of inexpensive networked computers are increasingly a
popular platform for executing computationally intense and long running ap-
plications. The main goal of cluster systems is to share all the resources of the
whole system through the interconnections and to effectively share resources via
efficient resource management and task scheduling, finally achieving high perfor-
mance. Thus, a key problem is how to effective utilize the resources. However, in
such a loose-coupled computing environment as clusters, load imbalance, which
is usually caused by the variable distribution of workload on the computing
nodes, leads to performance degradation. Therefore, it is important for a cluster
to balance the load among all nodes to improve the system performance.

Methods for load balancing can be classified into two categories. Static ap-
proaches are usually achieved by task allocation beforehand, which requires prior
knowledge of exact information of tasks (such as execution time) and thus can-
not adapt to the run-time load variation. Dynamic approaches are more complex
and need the support of process migration, one of the most important techniques

� This work is supported partly by the Natural Science Foundation of China under
Grant No.60503090 and No. 10778604, and China’s National Fundamental Research
973 Program No.2004CB217903.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 100–110, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multi-cluster Load Balancing Based on Process Migration 101

to fully utilize the resources of the entire system. Besides, process migration in a
cluster system is also of benefit to system maintenance, availability, data locality,
mobility and failure recovery [1,2,3]. Process migration can be implemented on
different levels, which greatly affects the design choices. Current implementations
can be divided into four categories:

– Unix-like Kernel. This method requires significant modification to mono-
lithic kernel to achieve full transparency. Nevertheless, kernel-level imple-
mentation could sufficiently utilize the functionality of the operating
systems(OS), obtain the detailed status about processes and thus provide
high efficiency to users. Examples are LOCUS [5] and Sprite [6].

– Microkernel. As a separate module, microkernel builds process migration
facilities on top of OS. It’s relatively easy to implement because of the avail-
ability of system transparency support and message passing communication
mechanism. Mach [7] is a typical example.

– User-space migration. This method doesn’t require the modification of the
kernel, implying that the entire address spaces are extracted and transferred
to rebuild at the destination node. Condor [8] is an example system. Since not
all states can be obtained at user level, some processes cannot be migrated.
Great overhead has to be paid for breaking the obstacle between kernel space
and user space, and thus the efficiency is much lower.

– Application-level migration. The function of process migration is inte-
grated into real applications, and optimization methods could be designed
based on particular applications. Freedman [9] and Skordos [10] have studied
about such approaches. However, transparency and reusability would be sig-
nificantly sacrificed, since semantics of the application need to be known and
the programs have to be rewritten or recompiled. The functions of migrated
processes are limited, and each new application has to be specially designed.

OpenMosix [4] is a typical tool which modifies the OS kernel to support pro-
cess migration and allows multiple uniprocessors and symmetric multiprocessors
running the same kernel to work in close cooperation. Dynamic load balancing
can be achieved by migrating processes from one node to another, preemptively
and transparently. Via openMosix, a cluster is seen as a large virtual machine
with multiple CPUs and mass storage, and the cluster-wide performance of both
sequential and parallel applications can be improved. However, when the ca-
pacity of a single cluster is limited, resources of multiple clusters ought to be
shared. Unfortunately, conventional implementations of kernel-level process mi-
gration don’t support migrating across different clusters. As computational grids
emerged and got widely used, resources of multiple clusters became dominant
computing nodes of the grid. Cross-cluster process migration can help to balance
the load among multiple grid nodes with fine granularity, so it’s also valuable
for multi-site load balancing in computational grid. In this paper we discuss the
key issues in multi-cluster load balancing and considerations in the implemen-
tation of a prototype system. Experimental results demonstrate that resource
utilization greatly benefits from enabling multi-cluster load balancing, thus lead-
ing to significant reduction in task makespan.

102 X. Wang et al.

2 Process Migration Techniques

In this section, we discuss the key techniques and mechanisms of process mi-
gration based on openMosix [11,12]. Each process has only one Unique Home
Node(UHN) where it was created, usually the node which the user logged in.
Every process seems to be running on its UHN, but in fact it may have been
transferred to another node.

2.1 Deputy/Remote Mechanism

A migrated process consists of two parts - user context (called remote) and
system context (called deputy). Remote contains the program code, stack, data,
memory-maps and registers of the process, encapsulating the process when it’s
running at user level. Meanwhile, deputy encapsulates the process when it’s
running at kernel level, containing the description of resources that the process
is attached to and a kernel-stack for the execution of system code on behalf of
the process. Thus, remote can be migrated several times among different nodes,
while deputy is site-dependent and can only stay on UHN. The interfaces between
user context and system context are well defined. It’s possible to intercept every
interaction between the two contexts, and forward it across the network.

In Linux operating system, a process can only enter the kernel level via sys-
tem calls. The interception and forwarding of every interaction between two
contexts are done by the Link Layer. When a process has been migrated, its
deputy and remote still keep connected. Remote deals with UHN-dependent op-
erations through deputy, like getting environment variables or doing I/O. High
transparency is achieved by their interaction. When remote meets system calls
or resource requests when running the process, it sends them back to deputy.
Deputy is always looping itself in kernel level, waiting for the requests from
remote. Then, it deals with them and sends the results back to remote.

2.2 Migration Procedure

After the OS with migration support boots up, three daemons are started on
each node running as kernel-level threads, including: mig daemon, which listens
at a certain port and deals with incoming requests; info daemon, which collects
and distributes the load information; and mem daemon, which monitors memory
utilization. Necessary steps of the process migration procedure include: (1)Target
selection. A target node can be either specified by user manually or automat-
ically decided by the scheduling system according to history and current load
information of the cluster. When a process P is selected to migrate, it is marked
and its priority is increased in order to get CPU timeslices more easily. Then, a
request is sent to the mig daemon on the target node. (2)Request and negotia-
tion. After receiving the migration request of process P, the target node forks a
new process P’ to deal with it. P’ first asks the load-balancing module whether
to accept the incoming request and the module judges it according to predefined
algorithms. P’ is marked as remote, and then a TCP connection is established

Multi-cluster Load Balancing Based on Process Migration 103

between remote and deputy, exchanging messages between two nodes. (3)Process
state transfer. If the target node accepts P to migrate there, it sends back an
acknowledgement to the source node. After receiving the acknowledgment mes-
sage, the source node starts to extract the states of process P and forwards them
to the remote process. The remote modifies its own process states according to
the received data. (4)Execution resuming. Once the sending phase is finished,
P becomes deputy and enters a waiting loop in kernel level, until the process is
terminated or migrated back to its UHN. P’ is modified to READY state and
added into the running queue, waiting for scheduling. When it is scheduled and
enters the use space, it resumes executing from the instruction before migrating,
which indicates the completion of the entire process migration procedure.

3 Multi-cluster Load Balancing Implementation

In reality, cluster systems often belong to different organizations or locate in iso-
lated districts. Extending and merging the capability of existing cluster systems
which are geographically distributed is helpful to achieve unified management
and also decrease the cost of system expansion. In this section we present the
main issues to implement a system supporting multi-cluster load balancing.

3.1 Multi-cluster Architecture

In a cluster system, computing nodes are usually configured inside a Local Area
Network. A gateway node is connected to all the nodes via one Network Interface
Card(NIC), and to the public network via another NIC, assuring that external
users can log in and operate. For security consideration, users from public net-
work cannot access the internal nodes of a cluster directly. The gateway node
acts as a router, and also guarantees the security of the cluster system via firewall
configurations. The topology of multi-cluster architecture is shown in Fig. 1.

As seen, the computing nodes inside different clusters are unable to commu-
nicate with each other. Traditional process migration approaches require direct
connection of UHN and the remote node. As a result, when a cluster is under
heavy load while other clusters are light-loaded, the imbalance problem emerges
from a global point of view. To support multi-cluster load-balancing, lower-level
operation system needs to be modified and the gateway can be used to forward
migration data and necessary messages. Here, we add a property groupID into
the data structure representing a node, indicating the cluster it belongs to. The
gateway node is not involved in computing and has two entries in the configura-
tion file - one for internal IP address, which contains a groupID of the cluster it
belongs to; another for public IP address, which has a groupID of 0. An example
file of two clusters is shown in Fig. 2.

3.2 Information Collection

There is no central control or master/slave relationship between nodes. For auto-
matic load-balancing, every node has to know the current status of other nodes.

104 X. Wang et al.

Cluster 1

Gateway

Node Node Node…

Cluster 2

Gateway

Node Node Node…

Cluster N

Gateway

Node Node Node…

…

Public Network

Fig. 1. Architecture of Multiple Clusters

ID IP number-of-nodes groupID
================================

1 10.0.0.1 1 1
2 10.0.0.5 1 1
3 10.0.0.6 gw 1
3 192.168.4.15 gw 0
4 192.168.4.11 gw 0
4 10.0.0.111 gw 2
5 10.0.0.9 1 2
6 10.0.0.12 1 2

Fig. 2. Config File Example

This is achieved by each node sending its own info to others periodically. Hence, it’s
necessary to enable the support for information collection in multi-cluster scenario.
Load information is forwarded using UDP protocol, as the information messages
needn’t acknowledgement and have no critical requirements for reliable transfer.
Each node starts an info daemon, waiting for info messages from other nodes. A
node sends back an info message about itself immediately after receiving another’s.

In order to let the gateway know where to send these messages, two additional
segments are added, each carrying a sockaddr structure of the network address.
The converting and sending procedure of the encapsulated data is shown in
Fig. 3, which involves three types of nodes working: 1)Sender(Src). The source
node first queries the groupID of the destination node and compares to its own
groupID. If unequal, then they are not in a same cluster and cross-cluster migra-
tion is needed. Then, it queries the configuration table again to get the external
address of the gateway node of the destination cluster together with the internal
address of the gateway node of the local cluster. Data are encapsulated as a
three-segment format, with the first segment containing the destination gateway
address(Gw2 addr), the second segment containing the destination node address
(Dest addr), and the last segment containing the original message content. The
encapsulated data are sent to the local gateway. 2)Gateway node(Gw). The gate-
way is listening and waiting for the encapsulated data from Src. It doesn’t care
the content, only processing and converting messages. It reads the first segment
and extracts the network address as the next destination, then copies the second
segment to the first segment, and fills the second segment with the address of
the original sender. 3)Receiver(Dest). After converted by two gateway nodes se-
quentially, the first segment of the encapsulated data becomes the address of Src
and the second segment is the gateway of the source cluster(Gw1). The receiver
can query the configuration table and find the ID of Src, and then obtain load
info about Src from the last segment of received data.

3.3 Cross-Cluster Process Migration

According to the source and destination of the process to be migrated, we de-
scribe following three different scenarios.

Local to remote (migrating to a remote node). Before migrating, the local
node first connects to its mig daemon and sends requests containing the reason to
migrate. After acknowledged by the remote node, necessary data are transferred

Multi-cluster Load Balancing Based on Process Migration 105

Src
Dest

Public netCluster1

Cluster2

Gw2 addr
Dest addr

Data

Dest addr
Src addr

Data

Src addr
Gw1 addr

Data

Gw2Gw1

Info Message

Fig. 3. Info Messages Forwarding

Oldlink

Remsock

Newlink

(1) (2)

(3)

(4
)

(5)

Remote(r1) Remote(r2)

Deputy(d)

Fig. 4. remote to remote

continuously, including process memory states, virtual areas, physical pages and
so forth. Once finishing, the local process becomes deputy and enters a loop
waiting for system-calls from remote. At the remote node, mig daemon accepts
incoming migration requests and sends back acknowledgement if it agrees to
receive the process. Then, a user-level process is created and after receiving all
necessary data, the process is changed to READY state and waits for scheduling.

Remote to local(migrating back home). When a process is coming back
from the remote node, the UHN sends a DEP COME BACK instruction, and
then receives all of the process states. Remote starts “going home” after being
acknowledged by UHN. After finishing sending the necessary data, remote kills
the migrated process and exits normally.

Remote to remote(migrating more than once). It’s a little more complex
when a process needs to migrate from one remote node to another. Figure 4
illustrates the steps of migration from remote r1 to r2. (1)oldlink is the link
between d and r1, and newlink connecting d and r2 is created. (2) d sends a
probing request to r2, and notifies it a migration event is going to occur. (3)
r2 sends information of itself to d. (4) d copies the information about r2 and
sends it together with a request to r1 via oldlink and tells it “Please Migrate”.
(5) r1 opens a new link to r2, and then sends a migration request to r2. After
sending necessary data to r2, it releases the local process. Till now, the process
is migrated to r2 and only related to d and r2.

In order to transfer process states reliable TCP connections should be es-
tablished among nodes and gateways. Unlike info messages, migration messages
need bidirectional transfer. The source node sends an “open-connection” com-
mand first, the structure of which is similar to the packed info message, with the
third segment containing a command string. Since the mig gateway acts almost
in the same way as the info gateway, detailed descriptions are omitted here.
Note that if the migration type is “remote to remote”, the listening port will
be randomly selected. Once the process terminates, the source node notifies the
gateway to close all open connections.

3.4 Load Balancing Strategy

The main load balancing algorithms consists of CPU load-balancing and memory
ushering. Due to space constraints, here we only focus on the CPU load-balancing

106 X. Wang et al.

strategy. The dynamic CPU load-balancing algorithm continuously attempts to
reduce the load differences between pairs of nodes, by migrating processes from
high loaded to less loaded nodes. This scheme is decentralized with all the nodes
regarding each other as equal-position peers and executing the same algorithm.
The whole balancing strategy is comprised of following steps.

1)Calculate the load values. Since the nodes in the system may be het-
erogeneous, the load calculation is related to the number of processors(denoted
as Np) and their speed. First, the number of running processes is added to an
accumulator at each clock interrupt. Then, the accumulated load Lacc is normal-
ized to the CPU speed of this processor using the maximum CPU speed SMAX

in the system versus the local node’s calculated CPU speed S cal, namely,

Lacc = Lacc · SMAX

Scal · Np
. (1)

Under the consideration of preventing migration thrashing, the actual load value
sent to other nodes, called “the export load”, is calculated to be slightly higher
than the load calculated for internal use. Denote the internal load as Lint and
the export load as Lexp. To calculate Lexp, a value representing the highest
load over any period has to be recorded, denoted as Lup. Denote Lincome as the
summarized load brought by processes“recently” migrated to this node. Then,
the internal load and the export load can be computed in the following way:

If (Lacc>Lint) //slowly up
Lint=Lint*decay+Lacc

Else //quickly down
Lint=Lacc

End If
If (Lacc>=Lup) //quickly up

Lup=Lacc

Else //slowly down
Lup=(Lup*7+Lacc)/8

End If
Lexp=Lup+Lincome //prevent receiving too many new processes too quickly

where decay is predefined constant value between 0∼1. Each node maintains a
local load vector storing both the internal load value of its own and export load
values received from other nodes.

2)Choose a process to migrate. Processes cannot be migrated if they are
constrained, such as being locked, in creation phase, being transferred, or using
a shared memory region. Moreover, if a process has not accumulated enough
CPU usage, it is not considered for migration. For each process, a migration
priority value is first calculated based on the CPU use since it is last consid-
ered for migration, including the CPU use of all its children processes. Then,
this priority value is combined with a value which attempts to measure the
process’s contribution to the load currently on the machine. Consequently, a
process which forks frequently is more attractive for migration, because once
migrated it will continue to fork children thus spreading the load as it bounces
from one node to another. Once a process is chosen to be migrated, a flag will

Multi-cluster Load Balancing Based on Process Migration 107

be set, indicating that it’s the candidate process selected for load-balancing
consideration.

3)Choose a destination node. It is a complicated problem to determine the
optimal location for the job to be migrated, since available resources are usually
heterogeneous and even not measured in the same units. Here we try to recon-
cile these differences by standardizing the resource measurements and adopt a
method based on economic principles and competitive analysis. The target node
for migration is determined by computing the opportunity cost for each of the
nodes in the local load vector, which is a concept from the field of economies
research. The key idea is to convert the total usage of several heterogeneous
resources, such as memory and CPU, into a single homogeneous “cost”. Jobs
are then assigned to the machine where they have the lowest cost, just like in
a market oriented economy. A simple way is to compute the marginal cost of a
candidate node, namely, the amount of the sum of relative CPU usage and mem-
ory usage would increase if the process was migrated to that node. The goal is
to find a node with minimal marginal cost and select it as the destination.

As a whole, the above load-balancing algorithms respond to variation in the
runtime characteristics of the processes, as long as there is no extreme shortage
of other resources such as free memory or empty process slots.

4 Performance Evaluation

This section presents the results of performance evaluation experiments con-
ducted on the prototype system we implemented. Our testbed is comprised of
two clusters: Cluster 1 has nodes with dual PIII 500MHz CPUs and 128M phys-
ical memory; Cluster 2 has nodes with dual PIII 733MHz and 256M physical
memory. There are two independent networks of each cluster, and they own a
gateway node respectively, connecting to the public net. Gateways can communi-
cate to each other directly. Both nodes inside the two clusters and the gateways
are connected by 100Mb/s Ethernet. After the startup of our prototype system
on each node, all the load information used by the scheduling module can be
monitored by upper-level tools.

We use a simple CPU-intensive program for exemplification of the experiment,
which requires two parameters - the iteration count and the number of child
processes. As iteration count becomes larger, the CPU load will be accordingly
heavier. We tested and compared three scenarios respectively: without migration
support (local), with intra-cluster migration support (internal) and with cross-
cluster migration support (cross). Figure 5 shows the task completion time (i.e.
makespan) achieved in the above three scenarios, in which Fig. 5(a) has 8 child
processes forked and Fig. 5(b) has 16 ones.

During the period when the program is running, we can monitor the load
situation on the nodes by user-level tools. While the operating system treats all
processes as a whole task, through the userspace monitoring tool implemented
in our prototype system, we can distinguish every child process clearly. Take
Fig. 5(b) for example, when the program has been submitted to a node and

108 X. Wang et al.

starts to run, the load of the local cluster quickly increases, while the other
cluster is idle without any heavy-load tasks; after enabling multi-cluster load
balancing, 4 processes are distributed on each node, and the CPU utilization of
all nodes reaches nearly 100%.

From Fig. 5, it can be observed that without migration support, it results
in low efficiency and remarkably takes more time to complete the task. If the
intra-cluster migration support is enabled, a half time can be saved (because
there are two nodes in the cluster to share the load), but nodes inside the cluster
are still under heavy burden. With multi-cluster load balancing, load can be
shared across different clusters and thus the task makespan is greatly reduced.
The speedup is computed and shown in Table 1, which depicts the significant
improvement by enabling multi-cluster load balancing. Moreover, from the table
we can also observe that as the iteration count becomes larger, the speedup of
cross increases proportionally. That’s because in this program the iteration count
represents the computation amount of the tasks, and long-running tasks are more
tolerant of “non-computation” overhead because of their urgent requirement for
additional resource. As the results demonstrate, multi-cluster load balancing can
make the resource of multiple clusters more effectively utilized and workload
more balanced in a total view.

Nevertheless, the performance overhead cannot be ignored, especially when
the migration experiences two hops at the gateway nodes. Now we investigate the
multi-cluster load balancing overhead, which involves information analysis and
making scheduling decisions, process states transfer, communication over net-
work, and results finalization. We figure out the average summarized overhead
per computing node and compared cross with internal in order to make clear
how much additional overhead is caused by the processing of gateway nodes,
as shown in the bottom rows of Table 1. Again we can see that larger amount
of computation makes the overhead relatively smaller, as explained previously.
Meanwhile, as the computation amount increases, the additional overhead in-
curred by cross(relative to internal) becomes more significant too, due to mas-
sively more data passing through the intermediate gateway nodes. However, to
sum up, cross only incur less than 3% more overhead compared to the inter-

2 4 6 8 10 12 14 16
0

20

40

60

80

100

Iteration Count(x100000)

M
ak

es
pa

n(
se

co
nd

s)

cross
internal
local

(a) 8 processes

2 4 6 8 10 12 14 16
0

20

40

60

80

100

Iteration Count(x100000)

M
ak

es
pa

n(
se

co
nd

s)

internal
cross

(b) 16 processes

Fig. 5. Performance Evaluation Results

Multi-cluster Load Balancing Based on Process Migration 109

Table 1. Comparison of Speedup and Overhead

Iteration(×105) 2 4 6 8 10 12 14

SpeedUp
Internal 1.43 1.65 1.71 1.81 1.91 1.86 1.89
Cross 1.72 2.51 2.84 3.07 3.17 3.28 3.38

Average Overhead
Per Node

Internal 14% 8.8% 7.1% 4.8% 2.3% 3.4% 2.7%
Cross 14% 9.3% 7.2% 5.8% 5.2% 4.5% 3.9%

nal load balancing, which is acceptable especially when dealing with long-term
tasks. In practice, the upper-level scheduler should be able to decide whether to
migrate according to the overhead and possible efficiency gain.

5 Conclusions and Future Work

In this paper, we conduct researches on multi-cluster load-balancing based on the
study and analysis of process migration mechanism. The main problem is that
the internal node of a cluster cannot be directly accessed by other machines out-
side the cluster. Hence, we have designed a system which supports multi-cluster
load balancing by employing gateway nodes to forward and transfer necessary
data. The results of performance evaluation experiments based on the proto-
type system have demonstrated the availability and efficiency of multi-cluster
load balancing in reducing the task makespan. Our work can be regarded as a
preliminary step into the research on dynamical resource sharing and load bal-
ancing of multiple large nodes in computational grid environment (especially for
CPU-intensive applications). This prototype system has been put into practice
and achieved unified management and resource sharing among multiple clusters.
As a possible direction for future work, we plan to investigate some potential
problems, such as the bottleneck of gateway nodes when dealing with frequent
system-calls. Moreover, in the case of decentralized grid environment, the la-
tency between gateway nodes may be considerable, which requires the decision
of whether and when there exists the need to migrate. As a further step, we are
also considering to employ modeling and simulation to test the performance of
multiple large cluster systems in the grid under different workloads.

References

1. Milojicic, D.S., Douglis, F., Paindaveine, Y., et al.: Process migration. ACM Com-
put. Surv. 32(3), 241–299 (2000)

2. Powell, M.L., Miller, B.P.: Process migration in DEMOS /MP. In: Proc. Ninth
Symposium on Operating System Principles, pp. 110–119. ACM, New York (1983)

3. Smith, P., Hutchinson, N.C.: Heterogeneous process migration: The tui system.
Technical Report TR-96-04, University of British Columbia. Computer Science
(1996)

4. The openMosix Project, http://openmosix.sourceforge.net
5. Popek, G.J., Walker, B.J., Johanna, M., et al.: LOCUS - A Network Transpar-

ent, High Reliability Distributed System. Proceedings of the 8th Symposium on
Operating System Principles, 169–177 (1981)

http://openmosix.sourceforge.net

110 X. Wang et al.

6. Douglis, F., Ousterhout, J.K.: Transparent Process Migration: Design Alternatives
and the Sprite Implementation. Softw., Pract. Exper. 21(8), 757–785 (1991)

7. Accetta, M., Baron, R., Bolosky, W., et al.: Mach: A New Kernel Foundation for
UNIX Development. In: Proceedings of the Summer USENIX Conference, pp. 93-
112 (1986)

8. Litzkow, M., Solomon, M.: Supporting Checkpointing and Process Migration out-
side the UNIX Kernel. Proceedings of the USENIX Winter Conference, pp. 283-290
(1992)

9. Freedman, D.: Experience Building a Process Migration Subsystem for UNIX. In:
Proceedings of the WinterUSENIX Conference, pp. 349-355 (1991)

10. Skordos, P.: Parallel Simulation of Subsonic Fluid Dynamics on a Cluster of Work-
stations. In: Proceedings of the Fourth IEEE International Symposium on High
Performance Distributed Computing (1995)

11. Argentini, G.: Use of openMosix for parallel I/O balancing on storage in Linux
cluster. CoRR cs.DC/0212006 (2002)

12. Katsubo, D.: Using openMosix Clustering System for Building a Distributed Com-
puting Environment, http://www.openmosix.org.ru/docs/omosix.html

http://www.openmosix.org.ru/docs/omosix.html

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 111–120, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Property-Preserving Composition of
Distributed System Components

K.S. Cheung1 and K.O. Chow2

1 Hong Kong Baptist University, Kowloon Tong, Hong Kong
cheungks@hkbu.edu.hk

2 City University of Hong Kong, Tat Chee Avenue, Hong Kong
cspchow@cityu.edu.hk

Abstract. Augmented marked graphs possess a special structure for modelling
common resources as well as some desirable properties pertaining to liveness,
boundedness, reversibility and conservativeness. This paper investigates the
property-preserving composition of augmented marked graphs for the synthesis
of distributed systems. It is proposed that distributed system components are
specified as augmented marked graphs. An integrated system is then obtained
by composing these augmented marked graphs via their common resource
places. Based on the preservation of properties, the liveness, boundedness, re-
versibility and conservativeness of the integrated system can be readily derived.
This effectively solves the difficult problem of ensuring design correctness in
the composition of distributed system components.

1 Introduction

In the past decade, component-based system design has emerged as a promising para-
digm to meet the ever increasing needs for managing system complexity and maxi-
mising re-use as well as for deriving software engineering into standards. When
applied to distributed systems which usually involve concurrent (parallel) and asyn-
chronous processes, one need to be aware that errors such as deadlock and capacity
overflow may occur. Even though the system components are correct in the sense that
they are live (implying freeness of deadlock), bounded (implying absence of capacity
overflow) and reversible (implying the capability of being reinitialised from any
reachable states), the integrated system may not be correct, especially as competition
of common resources exists.

This paper investigates the component-based approach to synthesising a given set
of distributed system components into an integrated system. Our focus is placed on
the preservation of four essential properties which include liveness, boundedness,
reversibility and conservativeness. Based on the property-preserving composition of
augmented marked graphs, we propose a formal method for synthesising the given
distributed system components into an integrated system whose design correctness (in
terms of liveness, boundedness, reversibility and conservativeness) can be readily
derived and verified.

112 K.S. Cheung and K.O. Chow

A subclass of Petri nets, augmented marked graphs possess a special structure for
modelling common resources. They exhibit some desirable properties pertaining to
liveness, boundedness, reversibility and conservativeness. Chu and Xie first studied
their liveness and reversibility using siphons and mathematical programming [1]. We
proposed siphon-based and cycle-based characterisations for live and reversible aug-
mented marked graphs, and transform-based characterisations for bounded and con-
servative augmented marked graphs [2, 3, 4]. Besides, the composition of augmented
marked graphs via common resource places was preliminarily studied [5, 6].

In this paper, after a brief review of augmented marked graphs, we investigate the
composition of augmented marked graphs via common resource places and show that
this composition preserves boundedness and conservativeness whereas liveness and
reversibility can be preserved under a pretty simple condition. The results are then
applied to the composition of distributed system components, where liveness, bound-
edness, reversibility and conservativeness of the integrated system can be readily
derived. These will be illustrated using examples.

The rest of this paper is organised as follows. Section 2 introduces augmented
marked graphs. Section 3 presents the composition of augmented marked graphs with
a special focus on the preservation of properties. Section 4 shows its application to the
composition of distributed system components. Section 5 briefly concludes this paper.
Readers of this paper are expected to have knowledge of Petri nets [7, 8].

2 Augmented Marked Graphs

This section introduces augmented marked graphs and summarises their known prop-
erties and characterisations.

Definition 2.1 [1]. An augmented marked graph (N, M0; R) is a PT-net (N, M0) with a
specific subset of places R called resource places, satisfying the following conditions :
(a) Every place in R is marked by M0. (b) The net (N', M0') obtained from (N, M0; R)
by removing the places in R and their associated arcs is a marked graph. (c) For each r
∈ R, there exist kr ≥ 1 pairs of transitions Dr = { 〈ts1, th1〉, 〈ts2, th2〉, ..., 〈tskr, thkr〉 } such
that r• = { ts1, ts2, ..., tskr } ⊆ T and •r = { th1, th2, ..., thkr } ⊆ T and that, for each 〈tsi, thi〉
∈ Dr, there exists in N' an elementary path ρri connecting tsi to thi. (d) In (N', M0'),
every cycle is marked and no ρri is marked.

Definition 2.2. For a PT-net (N, M0), a set of places S is called a siphon if and only if
•S ⊆ S•. S is said to be minimal if and only if there does not exist a siphon S' in N
such that S' ⊂ S. S is said to be empty at a marking M ∈ [M0〉 if and only if S contains
no places marked by M.

Definition 2.3. For a PT-net (N, M0), a set of places Q is called a trap if and only if Q•
⊆ •Q. Q is said to be maximal if and only if there does not exist a trap Q' in N such
that Q ⊂ Q'. Q is said to be marked at a marking M ∈ [M0〉 if and only if Q contains a
place marked by M.

Property 2.1 [1]. An augmented marked graph is live and reversible if and only if it
does not contain any potential deadlock. (Note : A potential deadlock is a siphon
which would eventually become empty.)

 Property-Preserving Composition of Distributed System Components 113

Definition 2.4. For an augmented marked graph (N, M0; R), a minimal siphon is
called a R-siphon if and only if it contains at least one place in R.

Property 2.2 [1, 2, 3]. An augmented marked graph (N, M0; R) is live and reversible
if every R-siphon contains a marked trap.

Property 2.3 [2, 3]. An augmented marked graph (N, M0; R) is live and reversible if
and only if no R-siphons eventually become empty.

Definition 2.5 [4]. Suppose an augmented marked graph (N, M0; R) is transformed
into a PT-net (N', M0') : For each r ∈ R, where Dr = { 〈ts1, th1〉, 〈ts2, th2〉, ..., 〈tskr, thkr〉 },
replace r with a set of places { q1, q2, ..., qkr } such that M0'[qi] = M0[r] and qi

• = { tsi }
and •qi = { thi } for i = 1, 2, ..., kr. (N', M0') is called the R-transform of (N, M0; R).

Property 2.4 [4]. Augmented marked graph (N, M0; R) is bounded and conservative
if and only if every place in its R-transform (N', M0') belongs to a cycle.

Fig. 1 shows an augmented marked graph (N, M0; R), where R = { r1, r2 }. Every R-
siphon contains a marked trap and would never become empty. It follows from Prop-
erties 2.2 and 2.3 that (N, M0; R) is live and reversible. As every place in the R-
transform of (N, M0; R) belongs to a cycle, according to Property 2.4, (N, M0; R) is
bounded and conservative.

Fig. 1. An augmented marked graph

3 Composition of Augmented Marked Graphs

This section first describes the composition of augmented marked graphs via common
resource places. Preservation of properties is then studied.

Property 3.1. Let (N1, M10; R1) and (N2, M20; R2) be two augmented marked graphs,
where R1' = { r11, r12, ..., r1k } ∈ R1 and R2' = { r21, r22, ..., r2k } ∈ R2 are the common
places that r11 and r21 are to be fused as one single place r1, r12 and r22 into r2, ..., r1k

r2

t10

t1

r1

t2

p4

p2
p3

p7

t8

t9

t6

p5

p8

t3

t4

p9

p10

t7

p6t5 p1 • • •

114 K.S. Cheung and K.O. Chow

and r2k into rk. Then, the resulting net is also an augmented marked graph (N, M0; R),
where R = (R1 \ R1') ∪ (R2 \ R2') ∪ { r1, r2, ..., rk }. (obvious)

Definition 3.1. With reference to Property 3.1, (N, M0; R) is called the composite
augmented marked graph of (N1, M10; R1) and (N2, M20; R2) via a set of common
resource places { (r11, r21), (r12, r22), ..., (r1k, r2k) }, where r11, r12, ..., r1k ∈ R1 and r21,
r22, ..., r2k ∈ R2. RF = { r1, r2, ..., rk } is called the set of fused resource places that are
obtained after fusing (r11, r21), (r12, r22), ..., (r1k, r2k).

Fig. 2 shows two augmented marked graphs (N1, M10; R1) and (N2, M20; R2). Fig. 3
shows the composite augmented marked graph (N, M0; R) of (N1, M10; R1) and (N2,
M20; R2) via { (r11, r21) }, where RF = { r1, r2 }.

Fig. 2. Two augmented marked graphs (N1, M10, R1) and (N2, M20, R2)

Fig. 3. An augmented marked graph obtained by composing the two augmented marked graphs
in Fig. 2 via { (r11, r21) }

t11

r12t12

p12

t13

 p13

r1t15

p14

t16

 p15

p11

t21

t22

 p22

t14

t23

t24

 p23 p21 • • • •

t11

t12

p12

t13

 p13

r11 t15

p14

t16

 p15

p11

r21

t21

t22

 p22

t14

t23

t24

 p23 p21
r12

(N1, M10, R1) (N2, M20, R2)

• • •

• •

 Property-Preserving Composition of Distributed System Components 115

Property 3.2 [5, 6]. Let (N, M0; R) be the composite augmented marked graph of two
augmented marked graphs (N1, M10; R1) and (N2, M20; R2) via a set of common resource
places. (N, M0; R) is bounded if and only if (N1, M10; R1) and (N2, M20; R2) are bounded.

Property 3.3 [5]. Let (N, M0; R) be the composite augmented marked graph of two
augmented marked graphs (N1, M10; R1) and (N2, M20; R2) via a set of common re-
source places. (N, M0; R) is conservative if and only if (N1, M10; R1) and (N2, M20; R2)
are conservative.

Definition 3.2. Let (N, M0; R) be the composite augmented marked graph of two
augmented marked graphs via a set of common resource places, and RF ⊆ R be the set
of fused resource places. For (N, M0; R), a minimal siphon is called a RF-siphon if
and only if it contains at least one place in RF.

Property 3.4 [5]. Let (N, M0; R) be the composite marked graph of two augmented
marked graphs (N1, M10; R1) and (N2, M20; R2) via a set of common resource places.
(N, M0; R) is live and reversible if and only if (N1, M10; R1) and (N2, M20; R2) are live
and no RF-siphons eventually become empty.

Consider the augmented marked graphs (N1, M10; R1) and (N2, M20; R2) in Fig. 2. (N1,
M10; R1) is neither live nor reversible but is bounded and conservative. (N2, M20; R2)
is live, bounded, reversible and conservative. According to Properties 3.2 and 3.3, the
composite augmented marked graph (N, M0; R) as shown in Fig. 3 is bounded and
conservative. According to Property 3.4, (N, M0; R) is neither live nor reversible.

4 Application to Distributed Systems

In component-based system design, a system is synthesised from a set of components
[9, 10]. It may not be live, bounded and reversible even all its components are live,
bounded and reversible. For distributed systems which usually involve concurrent
(parallel) and asynchronous processes, because of competition of common resources,
errors such as deadlock and capacity overflow are easily induced. This section shows
the application of composition of augmented marked graphs to the synthesis of a
distributed system whose design correctness can be readily derived.

Fig. 4 shows a distributed system consisting of four system components, C1, C2, C3
and C4. Owing to the "distributed processing" nature, the components exhibit

Fig. 4. Example of a distributed system with shared resources

distributed
component

C1

S1 and S2 are
needed

distributed
component

C4

distributed
component

C2

distributed
component

C3

common
resources

S1 S2

S5 S4

S3S6

S2, S4,
S5 and S6

are needed

S3 and S4 are
needed

S1, S3,
S5 and S6
are needed

116 K.S. Cheung and K.O. Chow

concurrent (parallel) and asynchronous processes. There are six pieces of common
resources, S1, S2, S3, S4, S5 and S6, used to be shared among the components.

The functions of the distributed system components C1, C2, C3 and C4 are briefly
described as follows.

C1 : At its initial idle state, C1 invokes operation o11 only if S1 is available. While
o11 is being processed, S1 is occupied. Once o11 finishes processing, operation o12 is
invoked only if S2 is available. S1 is then released. While o12 is being processed, S2 is
occupied. Once o12 finishes processing, S2 is released and C1 returns to idle state. At
any moment, S1 is withheld on receipt of signal m11 and released on receipt of signal
m12. S2 is withheld on receipt of signal m13 and released on receipt of signal m14.

C2 : At its initial idle state, C2 invokes operation o21 only if S3 is available. While
o21 is being processed, S3 is occupied. Once o21 finishes processing, operation o22 is
invoked only if S4 is available. S3 is then released. While o22 is being processed, S4 is
occupied. Once o22 finishes processing, S4 is released and C2 returns to idle state. At
any moment, S3 is withheld on receipt of signal m21 and released on receipt of signal
m22. S4 is withheld on receipt of signal m23 and released on receipt of signal m24.

C3 : At its initial idle state, C3 invokes operation o31 only if S1, S3, S5 and S6 are all
available. While o31 is being processed, S1, S3, S5 and S6 are occupied. Once o31 fin-
ishes processing, S1, S3, S5 and S6 are released and C3 returns to idle state.

C4 : At its initial idle state, C4 invokes operation o41 only if S2, S4, S5 and S6 are all
available. While o41 is being processed, S2, S4, S5 and S6 are occupied. Once o41 fin-
ishes processing, S2, S4, S5 and S6 are released and C4 returns to idle state.

Our method begins with specifying each component as an augmented marked
graph. We identify the event occurrences and their pre-conditions and post-conditions
in the component. For each event occurrence, a transition is created for denoting the
location of occurrence. Input and output places are created to denote the locations of
its pre-conditions and post-conditions. An initial marking is created to denote the
system initial state. Execution for the component begins at this initial marking which
semantically means its initial idle state, and ends at the same marking.

Component C1 is specified as augmented marked graph (N1, M10; R1), where R1 = {
r11, r12 }. C2 is specified as (N2, M20; R2), where R2 = { r21, r22 }. C3 is specified as (N3,
M30; R3), where R3 = { r31, r32, r33, r34 }. C4 is specified as (N4, M40; R4), where R4 = {
r41, r42, r43, r44 }. They are shown in Fig. 5.

According to Properties 2.1, 2,2, 2.3 and 2.4, (N1, M10; R1), (N2, M20; R2), (N3,
M30; R3) and (N4, M40; R4) are live, bounded, reversible and conservative.

Resource places r11 in (N1, M10; R1) and r31 in (N3, M30; R3) refer to the same re-
source S1. r12 in (N1, M10; R1) and r42 in (N4, M40; R4) refer to the same resource S2. r21
in (N2, M20; R2) and r33 in (N3, M30; R3) refer to the same resource S3. r22 in (N2, M20;
R2) and r44 in (N4, M40; R4) refer to the same resource S4. r32 in (N3, M30; R3) and r41 in
(N4, M40; R4) refer to the same resource S5. r34 in (N3, M30; R3) and r43 in (N4, M40; R4)
refer to the same resource S6. (N1, M10; R1), (N2, M20; R2), (N3, M30; R3) and (N4, M40;
R4) are to be composed via these common resource places.

We first obtain the composite augmented marked graphs (N', M0'; R') of (N1, M10;
R1) and (N3, M30; R3) via { (r11, r31) }, and the composite augmented marked graph
(N", M0"; R") of (N2, M20; R2) and (N4, M40; R4) via { (r22, r44) }. Fig. 6 shows (N',
M0'; R'), where r1 is the place after fusing r11 and r31. Fig. 7 shows (N", M0"; R"),
where r4 is the place after fusing r22 and r44.

 Property-Preserving Composition of Distributed System Components 117

Semantic meaning of places Semantic meaning of transitions
p11 C1 is at idle state t11 C1 starts operation o11
p12 C1 is performing operation o11
p13 C1 is performing operation o12

t12 C1 finishes operation o11
and starts operation o12

p14 S1 is being withheld t13 C1 finishes operation o12
p15 S2 is being withheld t14 C1 receives signal m11
p21 C2 is at idle state t15 C1 receives signal m12
p22 C2 is performing operation o21 t16 C1 receives signal m13
p23 C2 is performing operation o22 t17 C1 receives signal m14
p24 S3 is being withheld t21 C2 starts operation o21
p25 S4 is being withheld
p31 C3 is at idle state

t22 C2 finishes operation o21
and starts operation o22

p32 C3 is performing operation o31 t23 C2 finishes operation o22
p41 C4 is at idle state t24 C2 receives signal m21
p42 C4 is performing operation o41 t25 C2 receives signal m22
r11, r31 S1 is available t26 C2 receives signal m23
r12, r42 S2 is available t27 C2 receives signal m24
r21, r33 S3 is available t31 C3 starts operation o31
r22, r44 S4 is available t32 C3 finishes operation o31
r32, r41 S5 is available t41 C4 starts operation o41
r34, r43 S6 is available t42 C4 finishes operation o41

Fig. 5. Specification of distributed system components as augmented marked graphs

t12

(N1, M10, R1) (N2, M20, R2)

r32

t21

t22

t23

p23

t26

t27

t24

t25

t16

t17

t31

t32

t14

t15

r33

p32

p31

r31

p11

•

•

•

•

 •

• •

p12

p13

p14

p15

p24

p25

p21

p22

t11

t13

r21

r22

r11

r12

•

•

•

•

r34 r42

t41

t42

r43

p42

p41

r41 • •

 •

• • r44

(N3, M30, R3) (N4, M40, R4)

118 K.S. Cheung and K.O. Chow

Fig. 6. Composite augmented marked graph (N', M0'; R')

Fig. 7. Composite augmented marked graph (N", M0"; R")

Since (N1, M10; R1), (N2, M20; R2), (N3, M30; R3) and (N4, M40; R4) are all bounded
and conservative, according to Properties 3.2 and 3.3, the composite augmented
marked graphs (N', M0'; R') and (N", M0"; R") are also bounded and conservative. On
the other hand, (N1, M10; R1), (N2, M20; R2), (N3, M30; R3) and (N4, M40; R4) are all
live and reversible. For (N', M0', R'), where RF' = { r1 }, no RF'-siphons would eventu-
ally become empty. According to Property 3.4, (N', M0', R') is also live and reversible.
For (N", M0", R"), where RF" = { r4 }, no RF"-siphons would eventually become
empty. According to Property 3.4, (N", M0", R") is also live and reversible.

t12

r12
t13

r32

t31

t32

r33

p32

p31

•

 •

• • r34

t16

t17

t14

t15

p11

•

•

•

p12

p13

p14

p15

t11
r1

r43

t21

t22

t23

p23

p21

p22

•

t27

t24

t25

r4

p24

p25

t26

•

• r21

r42

t41

t42

p42

p41

r41 •

•

 •

•

 Property-Preserving Composition of Distributed System Components 119

We obtain the final composite augmented marked graph (N, M0; R) of (N', M0'; R')
and (N", M0"; R") via { (r12, r42), (r33, r21), (r32, r41), (r34, r43) }. Fig. 8 shows (N, M0;
R), where r2 is the place after fusing r12 and r42, r3 is the place after fusing r21 and r33,
r5 is the place after fusing r32 and r41, and r6 is the place after fusing r34 and r43.

Since (N', M0'; R') and (N", M0"; R") are bounded and conservative, according to
Properties 3.2 and 3.3, the composite augmented marked graph (N, M0; R) is also
bounded and conservative. On the other hand, (N', M0'; R') and (N", M0"; R") are live
and reversible. For (N, M0; R), where RF = { r2, r3, r5, r6 }, no RF-siphons would even-
tually become empty. According to Property 3.4, (N, M0; R) is also live and reversi-
ble. Hence, it may be concluded that the integrated system is live, bounded, reversible
and conservative. In other words, the integrated system is well-behaved.

Semantic meaning of places Semantic meaning of transitions
p11 C1 is at idle state t11 C1 starts operation o11
p12 C1 is performing operation o11
p13 C1 is performing operation o12

t12 C1 finishes operation o11
and starts operation o12

p14 S1 is being withheld t13 C1 finishes operation o12
p15 S2 is being withheld t14 C1 receives signal m11
p21 C2 is at idle state t15 C1 receives signal m12
p22 C2 is performing operation o21 t16 C1 receives signal m13
p23 C2 is performing operation o22 t17 C1 receives signal m14
p24 S3 is being withheld t21 C2 starts operation o21
p25 S4 is being withheld
p31 C3 is at idle state

t22 C2 finishes operation o21
and starts operation o22

p32 C3 is performing operation o31 t23 C2 finishes operation o22
p41 C4 is at idle state t24 C2 receives signal m21
p42 C4 is performing operation o41 t25 C2 receives signal m22
s1 S1 is available t26 C2 receives signal m23
s2 S2 is available t27 C2 receives signal m24
s3 S3 is available t31 C3 starts operation o31
s4 S4 is available t32 C3 finishes operation o31
s5 S5 is available t41 C4 starts operation o41
s6 S6 is available t42 C4 finishes operation o41

Fig. 8. The final composite augmented marked graphs (N, M0; R)

p12

p24

p21 r5

t21

t22

t23

p23
t26

t27

t24

t25

t33

t34

t16

t17

t31

t32

t14

t15

r3

r4

p32

p34

p31

p33

r1

r2

p11

•

•

• •

•

•

•

 •

• •

p13

p14

p15 p25

p22

t11

t12

t13

r6

120 K.S. Cheung and K.O. Chow

5 Conclusion

We investigate the property-preserving composition of augmented marked graphs and
its application to the synthesis of distributed systems. It is shown that, in composing
two augmented marked graphs via their common resource places, boundedness and
conservativeness are preserved while liveness and reversibility are preserved under a
pretty simple condition. By modelling the distributed system components as aug-
mented marked graphs with common resources denoted by resource places, an inte-
grated system can be obtained by composing these augmented marked graphs via the
common resource places. Based on preservation of properties, liveness, boundedness,
reversibility and conservativeness of the integrated system can be readily derived.

Liveness, boundedness, reversibility and conservativeness are essential properties
that collectively characterise a well-behaved system. For distributed systems which
usually involve concurrent (parallel) and asynchronous processes, as competition of
common resources exists, it is important for one to assure design correctness in the
sense that these essential properties are maintained. By making good use of the spe-
cial structure and properties of augmented marked graphs as well as the property-
preserving composition of augmented marked graphs, our method effectively solves
the problem of ensuring design correctness in the composition of distributed system
components, which has perplexed designers of distributed systems for a long time.

References

1. Chu, F., Xie, X.: Deadlock Analysis of Petri Nets Using Siphons and Mathematical Pro-
gramming. IEEE Transactions on Robotics and Automation 13(6), 793–804 (1997)

2. Cheung, K.S.: New Characterisations for Live and Reversible Augmented Marked Graphs.
Information Processing Letters 92(5), 239–243 (2004)

3. Cheung, K.S., Chow, K.O.: Cycle Inclusion Property of Augmented Marked Graphs. In-
formation Processing Letters 94(6), 271–276 (2005)

4. Cheung, K.S., Chow, K.O.: Analysis of Capacity Overflow for Manufacturing Systems. In:
Proceedings of the IEEE Conference on Automation Science and Engineering, pp. 287–
292. IEEE Press, Los Alamitos (2006)

5. Cheung, K.S., Chow, K.O.: Compositional Synthesis of Augmented Marked Graphs. In:
Proceedings of the IEEE International Conference on Control and Automation, pp. 2810–
2814. IEEE Press, Los Alamitos (2007)

6. Huang, H.J., Jiao, L., Cheung, T.Y.: Property-Preserving Composition of Augmented
Marked Graphs that Share Common Resources. In: Proceedings of the IEEE International
Conference on Robotics and Automation, vol. 1, pp. 1446–1451. IEEE Press, Los Alami-
tos (2003)

7. Reisig, W.: Petri Nets: An Introduction. Springer, Heidelberg (1985)
8. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE 77(4), 541–580 (1989)
9. Heineman, G.T., Councill, W.T.: Component-Based Software Engineering: Putting the

Pieces Together. Addison-Wesley, Reading (2002)
10. Crnkovic, I., Larsson, M.: Building Reliable Component-Based Software Systems, Artech

House (2002)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 121–130, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Distributed Scheduling Algorithm in Central-Stage
Buffered Multi-stage Switching Fabrics

Yuxiang Hu, Fang Dong, and Julong Lan

National Digital Switching System Engineering & Technological Research Center
Zhenzhou, Henan, P.R. China, 450002

{huyuxiang1982,chxachxa}@yahoo.com.cn

Abstract. The current MSM switching fabric has poor performance under un-
balanced traffic. To eliminate the internal congestion of switching fabric, we
put forward a new central-stage buffered multi-stage switching fabric—CB-
3Clos and the backpressure-based strategy to control flows under credit-
dispensed mode. By analyzing the condition to satisfy the central-stage load
balance, we also advance an iSLIP alike scheduling algorithm—RGA. The
simulation results show: compared with CRRD algorithm based on MSM
switching fabric, the RGA algorithm has high throughput irrespective with the
arriving traffic model and better performance in packet delay. At the same time,
the QoS can be guaranteed.

1 Introduction

Current network faces the embarrassment of unbalance between transport ability and
switching ability. Compared with the transport ability developing at a fast speed, the
lag of switching ability of core nodes has became the bottleneck of network. The
single-stage switches and the relevant scheduling algorithms have became mature, so
it’s difficult to increase the number of ports or heighten the line-rate to satisfy the
requirements of large-scale switching system, the single-stage switch meets it’s bot-
tleneck. At present, in order to achieve large-capability and high-expansibility, the
development shows an obvious trend: multi-stage switching fabric. Its purpose is
taking advantages of multi-stage switching fabrics to design switch systems with
large-capability and high-expansibility.

Current researches on switching fabrics mostly focus on Clos network, Benes net-
work, Banyan network and so on. In all of these networks, the three-stage Clos net-
work has become the emphasis owing to its high-modularization and large-capability
and the characteristic of strict non-blocking in internal links.

The three-stage symmetrical Clos network C(n, m, r) has r n×m switch cells in the
input-stage, and m r×r switch cells in the central-stage, so there are r m×n switch cells
in the output-stage. The network has N=n×n input/output ports in all, and every
switch cell in central-stage connects with every switch cell both in input-stage and
output-stage through a link. It has been proved that [1]: if nm ≥ , the C(n, m, r) Clos
network is a rearrangeable non-blocking switching fabric, this indicates that if and
only if there are a pair of matched input/output ports and a pair of unmatched

122 Y. Hu, F. Dong, and J. Lan

Fig. 1. The three-stage symmetrical Clos network C(n, m, r)

input/output ports, by re-routing between the matched ports, we can establish a match
between the pair of unmatched ports. Figure 1 shows the three-stage symmetrical Clos
network C(n, m, r).

2 Related Work

2.1 Buffer Setting

The Clos network in pocket switching system falls into two categories: the first is SSS
Clos fabric [2]. This fabric takes advantages of space-division multiplexing and
makes the bufferless Crossbar as the switch cell. The SSS Clos fabric is simple in
physics and has loose requirements on circuit level, but it’s strict with the scheduling
algorithms and makes them difficult to implement.

With the development of circuit level, buffers have been applied into multi-stage
fabric, so the MSM Clos fabric [3] became feasible. The MSM Clos fabric contains
buffers in the first and last stage, but use bufferless central-stage. It has been proved
that: under uniform traffic, the CRRD algorithm based on MSM can provide nearly
100% throughput, but the performance drops dramatically under unbalanced traffic.

2.2 Flow Control

2.2.1 Backpressure
Backpressure protocol provides a direct method to prevent data from overflow at
input ports. It’s similar to the counterpressure brought by flows in the pipeline, when
the end is closed, the flows will generate counterpressure to the source, and so inter-
dict or slow down the flows. Similarly, the congested ports will send the congestion
messages to the sources and make the sources restrict pockets from being sent into
network.

Backpressure technique can be selective applied on certain logical links; it’s con-
venient to manage these links between two nodes. The backpressure-based flow con-
trol is a good mechanism in the case of whole net, and can be applied in network
infrastructures that allow hop-by-hop flows such as the routers, but is restricted in
this.

 A Distributed Scheduling Algorithm 123

2.2.2 Credit-Based Flow Control
Another universal mechanism is credit-based flow control [5]. Its essence: before
send any packet, the sources must receive the credit messages from receivers and the
credits decide the number of packets can be sent. Generally, the credit equals to the
line-rate multiplying the RTT (round-trip time).

Ideally, the credit-based flow control mechanism can make sure no packet lost,
even if under burst traffic, because the length of packet queue will not exceed the
credit. Due to this strategy would keep a queue for per link and makes the buffer big-
ger, it’s not suitable for multi-link, and otherwise the buffer will be very complex.
The credit-based flow control is usually implemented in low-cost adapters and can
achieve high performance.

2.2.3 Regional Explicit Congestion Notification (RECN)
To resolve the internal blocking in multi-stage switching fabric, it’s pivotal to resolve
the sharing queues between congested and non-congested flows while ensuring the
performance. J. Duato and I. Johnson put forward an extensible congestion control
strategy [6]. They advise: all non-congested flows share a single queue, while dy-
namically assign a set-aside-queue for per congestion tree. Congestion trees may be
rooted at any output or internal fabric link, and their appearance is signaled upstream
via regional explicit congestion notification (RECN) messages. This queue-sharing
method based on space-division multiplexing resolves the effects between congested
flows, while the complexity of the algorithm is high. The packet delay generated by
the transport of the signals is also another problem.

3 Scheduling Algorithm in Multi-stage Switching Fabrics

3.1 Buffer Assignment

The switching fabric may be buffered or bufferless. The bufferless switching fabrics
merely steer the flows and couldn’t generate any packet delay or output congestion,
but it makes the scheduling algorithms very complex and impractical. The buffered
switching fabric can resolve the port collision to some extent by setting buffers in the
fabric, and current circuit level makes this fabric feasible. Buffer has become an im-
portant factor in deciding the performance of the switching fabrics.

Based on the analysis above, inheriting the thinking of space-division multiplexing
in multi-stage fabrics, and using the single-stage switches for reference, we put for-
ward a new central-stage buffered three-stage Clos switching fabric—CB-3Clos,
figure 1 shows the configuration.

As shown in figure 2, VOQs are set in the input-ports of the switch cells at input-
stage to store the congested flows. Here we use the two-stage switching for reference
and set buffers in the input-ports of the switch cells at central-stage. So the first and
second stage can be treated as a two-stage switching. For the sake of internal non-
blocking, the fabric introduces multi-route. Per traffic is allotted to all switch cells of
the central-stage uniformly, in a way such as to equalize the rates of the resulting sub-
flows. The central-stage switch cells can be thought of as parallel slices of one, faster
virtual switch, and inverse multiplexing performs load balancing among these slices.

124 Y. Hu, F. Dong, and J. Lan

Fig. 2. The configuration of CB-3Clos switching fabric

By setting buffers at the central-stage, the complexity of algorithms on the first
stage is reduced efficiently, and it can decrease the unfairness of resources at central-
stage brought by the unbalanced dispersed packets’ arriving from input-stage. So, to
some extent, the load balance on the first two stages can tidy the traffic—tidying the
unbalanced traffic into regulated traffic.

3.2 Congestion Control

The scheduler of switch is a buffer-disperser for packets in essence, and the schedul-
ing strategy is just a traffic control strategy selected to guarantee the performance.
Considering current traffic control strategies, based on the configuration of CB-3Clos,
we put forward a strategy to control traffic which is based on backpressure protocol
while in credit-dispensed mode: use backpressure protocol in interior of the whole
fabric but in credit-dispersed mode between two conjoint stages. As the broken lines
shown in figure 2, firstly the input ports of input-stage send requests to their corre-
sponding ports duo to the queue’s estate, secondly the switch cells of output-stage
produce credits by calculating the queues and the buffers, and then send credits to
central-stage, after receive the credits, the switch cells of central-stage send them to
input-stage by load balance. Only the input ports that have obtained credits can send
packets into switching fabric.

Traffic first being store in buffers then entering fabric, this can obtain high
throughput and small buffer in interior of the fabric. It’s a typical thinking of space-
division multiplexing, and it makes only the traffic destined out can occupy the
buffer, while the congested traffic stay out of fabric. At the same time, to make full
use of the buffer which is very costly, the buffer is reserved from the output stage to
input stage, once a stage. This is precisely opposite to how packets progress under
backpressure protocol. The direction chosen ensures that each reservation, when per-
formed, is on behalf of a packet that is guaranteed not to block inside the buffer:
buffer space has already been reserved for that packet in the next downstream buffer.
Hence, packets will be allowed to move freely, and without danger of any buffer
overflowing. Figure 3 gives a demonstration of the congestion control.

 A Distributed Scheduling Algorithm 125

Fig. 3. Demonstration of the congestion control in interior of the fabric

This strategy may lead to the phenomenon that several ports reserve buffers for the
same packet; here we define this phenomenon as output buffer collision. The output
buffer collision may lead to: buffer reservations constitute a second pass through the
fabric, after requests have traversed once from inputs to the per-output scheduler. So
the most essential method is making sure that no other input ports send any request to
these output ports.

In sum, we give the rules to resolve the congestion between flows: in per in-
put/output port, per credit scheduler work paralleling in pipe-line independently; the
request must fix on certain output port for per flow and be sent to corresponding port;
requests must queue in the credit scheduler, per output scheduler responds to these
requests after assigns buffers. Credits may be generated based on certain QoS strate-
gies such as: WRR/ WFQ. When packet comes out of the fabric, it must inform the
credit scheduler to re-assign buffer, so the department rate can regulate the rate that
switch be granted.

3.3 Load Balance in Central-Stage

In multi-path fabrics, route can be selected by credit scheduler. To guarantee internal
non-blocking in switching fabric, per flow should be allotted to all switch cells in
central-stages averagely.

Suppose a certain output port and an ideal traffic model, we follow the filter rule
when allotting the traffic from certain input port to all switch cells in central-stage.

And we also suppose: in a slot, there are k ports in central-stage is free, R is the
bandwidth of the whole fabric, BΔ is the bandwidth allocation parameter of certain
flow, xA stands for the x th switch cell in input-stage, while yB stands for the y th

switch cell in central-stage, the credit scheduler in input-stage calculate the weighted
credit that it received. If in a slot, the result satisfies the rule І:

() (){ }yxyx BAwTBAl max, =→

(І)

At the same time, the result satisfies the rule II:

()∑ Δ+≤→ B
k

R
TBAl yx ,

(II)

Then the scheduler will acknowledge the corresponding grant.

126 Y. Hu, F. Dong, and J. Lan

In other words, the allotment of grants and load must make sure that all flows on

yx BA → are restricted in Bk
R Δ+ bandwidth. The grants in central-stage are gener-

ated independently. Easy to say, if only there are free buffers, the link between

yx BA → will never be free. So in this ideal traffic model, all flows to enter the fabric

will find free buffer. Figure 4 gives a simple example.

Fig. 4. A simple example of load balance

In ideal stream model, it’s easy to achieve perfect load balance by rule І, but in
practical system, several inputs of the same switch cell may send concurrently to the
same switch cell, which is inevitable under distributed and independent load-
balancing. So in order to deal with quantization imbalance, all flows between the

yx BA → must satisfy rule II, and as a result, buffers must be set at the input-stage to

store the temporary congested flows.
There are many advantages taking algorithm for load-balance in central-stage: the

algorithm is brief, expansible and prone to be implemented by hardware; the algo-
rithm guarantees the fairness by setting the upper limit of bandwidth, while the credits
are generated based on certain QoS strategy, so it can efficiently support quality of
service also; the fabric achieves perfect load-balancing for per packet and can control
the congested flow in real-time.

3.4 Analysis of the Scheduling Algorithm

Based on the analysis above, we put forward an iSLIP alike scheduling algorithm
based on the CB-3Clos switching fabric—RGA algorithm. It takes advantages of
parallel iterative matching algorithm—PIM and round-robin matching algorithm—
iSLIP, adopts the PIM’s “request-grant-accept” mechanism and iSLIP’s “Round-
Robin” mechanism, is distributed implemented in credit schedulers, so this algorithm
can achieve fairness and stabilization while keeps high efficiency.

The RGA algorithm still has three steps in sum: they are request, grant and ac-
knowledgement.

 A Distributed Scheduling Algorithm 127

Step 1: request. All input ports whose VOQ is busy send requests to the correspond-
ing output ports.
Step 2: grant. Once receive several requests from input ports, the credit schedulers in
output-stage generate credits based on the state of buffers and queues under certain
QoS strategy. After inform the credits to the input ports, the credit schedulers increase
the poll point by one (mol N).
Step 3: acknowledgement. After receive the grants, the unmatched input ports select
the output ports satisfying the rule І and II from the credit queues to acknowledge. If
it’s the first time, the input ports and the acknowledged output ports should modify
the poll point. The modification rule is: the points of both input and output port in-
crease by one (mol N). After each match, all unmatched ports turn into the next
match.

4 Analysis of Simulation

To illuminate the performance of RGA algorithm, we establish the simulation model.
Under this model we get the throughout and packet delay and then compare them with
the performance of CRRD algorithm in MSM fabric, All through the simulation

supposing nm 2= .

4.1 Traffic Model

First we define the traffic model in the simulation model.

 Uniform traffic: the ports aimed by arriving flows distribute uniformly, and
all ports face the same traffic load.

 Unbalanced traffic: the load ρ between input port s and output port d
follows:

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

=⎟
⎠
⎞

⎜
⎝
⎛ −+

=
otherwise

N

dsif
N

ds

,
1

,
1

, ωρ

ωωρ
ρ

(1)

ω stands for the unbalanced factor, N stands for the number of ports, so the load on
d is:

ρωωρρρ =⎟
⎠
⎞

⎜
⎝
⎛ −+==∑ N

N
s

dsd

1
,

(2)

In the model, we take the Bernoulli traffic and burst traffic, In the same period of
ON, the destination addresses are same, while in different period, the destination
addresses are distributed in uniform and unbalanced model, the length of both ON and

OFF state follow the geometry distribution, by the traffic load ρ and average burst
length

omE , we will get:

128 Y. Hu, F. Dong, and J. Lan

p

p
q

EON
d ×+−

×==
ρρ

ρρ
1

,
1

(3)

4.2 Performance Comparison Between Algorithms with Fix-Size Packets Under
Different Traffic Models

4.2.1 Uniform Bernoulli Traffic Model
Table 1 shows the throughout of RGA and CRRD algorithm under fabrics of different
scales by uniform Bernoulli traffic model, it’s easy to say that both algorithms
achieve high throughout, especially RGA algorithm nearly get 100% throughout.

Table 1. Throughout of RGA and CRRD algorithm under fabrics of different scales by uniform
Bernoulli traffic model

64×64 128×128 256×256

CRRD 96.4% 97.1% 95.2%

PGA 99.3% 99.1% 98.9%

4.2.2 Unbalanced Traffic Model
Under unbalanced traffic model, the performance of RGA and CRRD algorithm shift
dramatically.

Fig. 5. Throughout of algorithms under fabrics of different scales by unbalanced traffic model

As figure 5 shows, under fabrics of different scales by unbalanced traffic model,
throughout of both algorithms drop fast, and achieve the minimum 57% when ω is
0.5 and then ascend. But noticeably, the throughout of RGA algorithm holds above
90% all the time, which illuminates that the throughout of RGA algorithm is irrespec-
tive with arriving traffic model.

Figure 6 gives the packet delay of algorithms under fabrics of different scales by
unbalanced traffic model. It’s obvious that the packet delay increases with ω fast.

 A Distributed Scheduling Algorithm 129

Fig. 6. Delay of algorithms under fabrics of different scales by unbalanced traffic model

Under 64-ports, when ω is under 0.65, the packet delay of RGA is a little bigger than
CRRD’s, but when ω exceed 0.65, the packet delay of RGA is smaller than CRRD’s
a lot. It’s the same under 256-ports. This phenomenon can be explained by the buffers
set in the central stage of switching fabric. To achieve better load balance, the buffers
will work out certain delay, but while ω exceeds certain ambit, the impact of buffers
reduce.

Fig. 7. The bandwidth allocation of RGA

Figure 7 gives the bandwidth allocation of RGA. Supposing the arriving rate of EF
and AF is: 18%, 24%, 20%, 16%, 12%, 10%. The corresponding bandwidth alloca-
tion is: 19.8%, 24%, 20%, 16%, 12%, 8.2%. From the figure 7 we can see: the per-
formance on bandwidth allocation of RGA is good.

5 Conclusions and Future Work

On the basis of analysis of congestion control theory, we put forward a new central-
stage buffered three-stage Clos switching fabric—CB-3Clos and the backpressure-
based flow control strategy under credit-dispensed mode. By analyzing the condition
to satisfy the central-stage load balance, we also advance an iSLIP alike scheduling
algorithm—RGA. The simulation results show: compared with CRRD algorithm of

130 Y. Hu, F. Dong, and J. Lan

MSM Clos fabric, the RGA algorithm has high throughput irrespective with the arriv-
ing traffic model and better performance in packet delay. At the same time, the QoS
can be guaranteed.

By setting buffers at the central-stage, we can reduce the complex of algorithm
while improve the performance of switching fabrics, and current circuit level make it
possible. But this fabric with multi-route may lead packets to out-of-order, how to
keep the order of packets in multi-stage fabrics will be our emphases of researches in
the future.

Acknowledgment

This paper is jointly funded by Chinese National High Technology Research and
Development Program (NO. 2005AA121210) and the National Science Foundation of
China (NO. 60572042)

References

1. Clos, C.: A study of nonblocking switching fabric networks [J]. BSTJ 32(5), 406–424
(1953)

2. Chao, H.J., Deng, K., Jing., Z., Petabit, A.: Photonic Packet Switch (P3S) [C]. In: Proc.
IEEE Infocom 2003, vol. 21(7), pp. 1096–1112. IEEE Computer Society Press, Los Alami-
tos (2003)

3. Oki, E., Jing, Z., Rojas-Cessa, R., et al.: Concurrent Round-Robin-Based Dispatching
Schemes for Clos-Network Switches [J]. IEEE/ACM Trans. on Networking 10(2), 830–844
(2002)

4. Sapountzis, G., Katevenis, M.: Benes Switching Fabrics with O(N)-Complexity Internal
Backpressure [J]. IEEE Communications Magazine 43(1), 88–94 (2005)

5. Kong, H.T., Morris, R.: Credit-Based Flow Control for ATM [J]. IEEE Magazine 9(2), 40–
48 (1995)

6. Duato, J., Johnson, I., Flich, J., et al.: A New Scalable and Cost-Effective Congestion Man-
agement Strategy for Lossless Multistage Interconnection Networks [C]. In: Proc. HPCA-
11, San Francisco, USA, pp. 108–119 (February 2005)

7. Chrysos, N., Katevenis, M.: Scheduling in Switches with Small Internal Buffers [C]. In:
Proc. IEEE Globecom2005, MO, USA, pp. 614–619 (2005)

8. Chang, C., Chen, W., Juang, H.: On Service Guarantees for Input Buffered Crossbar
Switches: A Capacity Decomposition Approach by Birkhoff and von Neumann [C]. In:
Proceedings of IEEE IWQoS, pp. 79–86 (1999)

9. Chao, H.J., Park, J.S.: Centralized contention resolution schemes for a large-capacity opti-
cal ATM switch [C]. In: Proc. IEEE ATM workshop, pp. 11–16 (1998)

Improving Recovery in Weak-Voting Data Replication�

Luis H. Garcı́a-Muñoz, Rubén de Juan-Marı́n, J. Enrique Armendáriz-Íñigo,
and Francesc D. Muñoz-Escoı́

Instituto Tecnológico de Informática - Universidad Politécnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

{lgarcia,rjuan,armendariz,fmunyoz}@iti.upv.es

Abstract. Nowadays eager update everywhere replication protocols are widely
proposed for replicated databases. They work together with recovery protocols
in order to provide highly available and fault-tolerant information systems. This
paper proposes two enhancements for reducing the recovery times, minimizing
the recovery information to transfer. The idea is to consider on one hand a more
realistic failure model scenario –crash recovery with partial amnesia– and on the
other hand to apply a compacting technique. Moreover, it is provided amnesia
support avoiding possible state inconsistencies –associated to the failure model
assumed– before starting the recovery process at recovering replicas.

1 Introduction

Database replication consists in maintaining identical copies of a given database at mul-
tiple network nodes. This improves performance, since clients access their local replica
or are forwarded to the less loaded one; and availability: whenever a node fails, its as-
sociated clients are silently redirected to another available one. Replication protocols
can be designed for eager or lazy replication [1], and for executing updates in a pri-
mary copy or at all node replicas [2]. With eager replication we can keep all replicas
exactly synchronized at all nodes, but this could have an expensive cost. With the lazy
alternative we can introduce replication without severely affecting performance, but it
can compromise consistency. Many replication protocols are based on eager update ev-
erywhere with a read one, write all available (ROWAA) approach. As we have briefly
highlighted before, these replication protocols provide high availability. However, only
a few of them deal with the possible reconnection of the failed node, which is managed
by recovery protocols [3,4,5,6].

The aim of the recovery protocols is to bring failed or temporarily disconnected
nodes back into the network as fully functional peers, by reconciling the database state
of these recovering nodes with that of the active nodes. This could be done by logging
transactions and transferring this log to recovering nodes so they can process missed
transactions, or transferring the current state of the items that have been updated in the
database since the recovering node failed.

� Work supported by FEDER, the Spanish MEC grant TIN2006-14738-C02 and the Mexican
DGEST and SES-ANUIES.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 131–140, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

132 L.H. Garcı́a-Muñoz et al.

This paper is focused in the recovery protocol for eager update everywhere replica-
tion protocols, proposing some optimizations to the work presented in [6]. These en-
hancements include amnesia support, and a better performance reducing the amount of
data to save in the actions done before recovering and the amount of data to transfer at
recovering time. The main idea in the last case is to compact recovery data eliminating
redundant information.

The rest of this paper is distributed as follows. Section 2 provides the system model.
Section 3 deals with the basic recovery protocol. Section 4 explains the necessary ac-
tions for the amnesia support. Next, Section 5 relates the process of compacting recov-
ery information. Later, Section 6 shows the simulation results followed by the related
works in Section 7. In the final Section 8, we provide our conclusions.

2 System Model

The basic recovery protocol has been designed for database replicated systems com-
posed by several replicas –each one in a different node–. These nodes belong to a par-
tially synchronous distributed system: their clocks are not synchronized but the message
transmission time is bounded. The database state is fully replicated in each node.

This replicated system uses a group communication system (GCS) [7]. Point-to-point
and broadcast deliveries are supported. The minimum guarantee provided is a FIFO
and reliable communication. A group membership service is also assumed, that knows
in advance the identity of all potential system nodes. These nodes can join the group
and leave it, raising a view change event. Therefore, each time a membership change
happens, i.e. any time the failure or the recovery of one of the member nodes occurs, it
supplies consistent information about the current set of reachable members as a view.
The group membership service combined with the GCS provides Virtual Synchrony [7]
guarantees, which is achieved using sending view delivery multicast [7] enforcing that
messages are delivered in the view they were sent. A primary component [7] model is
followed in case of network partitioning.

The replicated system assumes the crash-recovery with partial-amnesia [8] model.
This implies that an outdated node must be recovered from two “lost of updateness”:
forgotten state and missed state. This assumption supports a more realistic and precise
way to perform the recovery process. So the assumed model allows to recover failed
nodes from their previous crashing state maintaining their assigned node identifiers.

3 Basic Recovery Protocol

Our basic proposal is inspired in the recovery protocol presented in [6]. It has been
designed for eager update everywhere database replication protocols and proposes the
use of DB-partitions (see below). It was originally designed for providing recovery
support for the ERP and TORPE [6] replication protocols. Such protocols use a voting
termination approach [2], and can be considered as weak voting replication protocols
[9]. This basic recovery protocol can be outlined as follows:

– The system has a database table named MISSED, which maintains all the infor-
mation that will be needed for recovery purposes. Each time a new view is installed

Improving Recovery in Weak-Voting Data Replication 133

a new entry is inserted in the MISSED table if there are failed nodes. Each entry
in MISSED table contains: the view identifier, the identifiers of crashed nodes in
this view –SITES–, and the identifiers list of data items modified during this view
–OID LIST –. The two first ones are set at the beginning of the view, while the
last one grows as long as the view passes.

– When a set of crashed nodes reconnects to the replicated system, the recovery pro-
tocol will choose one node as the recoverer with a deterministic function. Then
in a first step the recoverer transfers the metadata recovery information to all re-
connected nodes. This metadata information contains: the identifiers of modified
items, and the crashed node identifiers in each view lost by the oldest crashed node
being recovered. The per-view metadata generates a DB-partition during the recov-
ery process; i.e., such items will be blocked while they are being transferred to the
recovering node, logically partitioning the database. These DB-partitions are also
used in order to block in each replica the current user transactions whose modified
items conflict with its DB-partitions. Subsequently, the recoverer starts to recover
each recovering node view by view. For each lost view, the recoverer transfers the
state of the modified items during this view. And, once the view has been recovered
in the recovering node, it notifies the recovery of this view to all alive nodes. The
recovery process ends in each recovering node once it has updated all its lost views.

– As a transaction broadcast is performed spreading two messages –remote and com-
mit–, it is possible that a reconnected node receives only the second one, without
any information about the updates to be committed. In this case the replication pro-
tocol will transfer the associated writesets to these nodes. This behavior implies that
transaction writesets are maintained in the sender node until the commit message is
broadcast.

But this recovery protocol presents the following two problems:

– Amnesia phenomenon. Although we are assuming the crash-recovery with partial
amnesia [8] failure model, many systems do not handle it in a perfect way. This
problem arises because once the replication protocol propagates the commit mes-
sage associated to one transaction, and it is delivered, the system assumes that this
transaction is being committed locally in all replicas. But this assumption even
using strong virtual synchrony [7] is not always true. It is possible that a replica
receives a transaction commit message, but before applying the commit the replica
crashes, as it is commented in [10] –the basic idea is that message delivery does
not imply correct message processing–. The problem will arise when this crashed
node reconnects to the replicated system, because it will not have committed this
transaction and the rest of the system will not include among the necessary recov-
ery information the updates performed by this transaction, arising then a problem
of replicated state inconsistency.

– Large MISSED table and redundant recovery information. If in the system there
are long-term crashed nodes –meaning nodes failed during many views– and there
are also high update rates it is possible that the MISSED table enlarges signifi-
cantly with high levels of redundant information, situation that is strongly discour-
aged. Redundant recovery information will appear because it is possible that the

134 L.H. Garcı́a-Muñoz et al.

same item has been modified in several views where the crashed nodes set is very
similar. In this case if an item is modified during several views, only knowing the
last time –meaning the last view– it was updated is enough. Therefore, it will be
interesting to apply algorithms that avoid redundant recovery information, because
the larger MISSED tables the greater the recovery information management over-
head becomes.

In the following section we will present and study different approaches for solving
these problems improving the basic recovery protocol.

4 Amnesia Support

In order to provide amnesia support different approaches can be considered. These ap-
proaches can be classified depending on which recovery information they use. On one
hand, there are the ones using the broadcast messages –log-based– [3,4] and, on the
other hand there are the ones using the information maintained in the database –version-
based– [5,6].

But before describing how the amnesia support can be provided in the basic recovery
protocol, it must be considered how this amnesia phenomenon manifests. In [11], it is
said that the amnesia phenomenon manifests at two different levels:

– Transport level. At this level, amnesia implies that the system does not remem-
ber which messages have been received. In fact, the amnesia implies that received
messages non-persistently stored are lost when the node crashes, generating a prob-
lem when they belong to transactions that the replicated system has committed but
which have not been already committed in the crashed node.

– Replica level. The amnesia is manifested here in the fact that the node “forgets”
which were the really committed transactions.

Hereafter we detail a log-based solution for the amnesia problem. There are other
amnesia supporting techniques –e.g., a version-based approach [5]– but are not pre-
sented here to due space constraints.

The information maintained in order to perform the amnesia recovery process will be
the broadcast replication messages. In this replication protocol two messages for each
propagated transaction: remote and commit. The amnesia recovery must be performed
before starting the recovery of missed updates –the latter will be done by the basic re-
covery protocol–. The amnesia recovery process will consist in reapplying the messages
belonging to non really committed transactions.

A transport-level solution consists in each node storing persistently the received mes-
sages, maintaining them as long as the associated transaction, t, has not been committed
and discarding them as soon as t its really committed in the replica. But, the message
persist process must be performed atomically inside the delivery process as already dis-
cussed in [10] with its “successful delivery” concept. Moreover, messages belonging to
aborted or rolled-back transactions must be also deleted.

Once the amnesia phenomenon is solved at transport level, it is necessary to manage
the amnesia problem at replica level. At this level the amnesia implies that the system

Improving Recovery in Weak-Voting Data Replication 135

can not remember which were the really committed transactions. Even for those trans-
actions for which the “commit” message was applied, it is possible for the system to
fail during the commit. Then the amnesia recovery process in a replica will consist in
reapplying (and immediatly deleting, in the same transactional context) the received and
persistently stored messages in this replica that have not been already deleted, because
it implies that the corresponding transactions have not been committed in the replica.
These messages are applied in the same order as they were originally received.

It also must be noticed, that in this process is not needed to apply the remote mes-
sages whose associated commit messages have not been received, because it implies
that they have been committed in the subsequent view, and therefore their changes are
applied during the recovery of its first missed view.

Finally, once the amnesia recovery process ends, the basic recovery protocol mecha-
nism can start.

5 Compacting Recovery Information

In order to increase the performance at the moment of determining and transferring the
necessary information for the synchronization of recovering nodes, we propose some
modifications based on packing information that enhance the basic recovery protocol
described in [6]. This could be done by compacting the records in the MISSED table,
and with this, minimize the items to transmit and to apply them in the recovering node,
reducing thus the transmission and synchronization time.

These item identifiers can be packed due to the fact that the recovery information
only maintains the identifiers of updated items. The state of these items is retrieved by
the recoverer from the database at recovering time. Moreover, if a recovering node, k,
has to recover the state of an item modified in different views lost by k it will receive
as many times the item value, but transferring its state only once is enough. As a conse-
quence, it is not relevant to repeat the identifier of an updated item across several views,
being only necessary to maintain it in the last view it was modified.

We consider that the actions for the amnesia support are performed during the exe-
cution of user transactions. Whenever one (or more than one) node fails, the recovery
protocol starts the execution of the actions to advance the recovery of failed nodes. To
this end, when a transaction commits, the field which contains the identifiers of the
updated items, OID LIST , will be updated in the following way:

1. For each item in the WriteSet, the OID LIST is scanned to verify if the item is
already included in it or not. If it is not, it is included and is looked for in previous
views OID LIST , eliminating it from the OID LIST in which it appears, com-
pacting thus the OID LIST , i.e. the information to transfer when a node recovers.

2. If as a result of this elimination, an OID LIST is emptied, the content of the field
SITES is included into the field SITES of the next record, and the empty record
in the table MISSED can be eliminated.

When a node reconnects to a replicated system, the new view is installed and the
actions for the amnesia recovery are performed locally at the recovering node. This is

136 L.H. Garcı́a-Muñoz et al.

a lightweight process (i.e. only a few stored messages have to be processed) in com-
parison to the database state recovery process itself. The other nodes know who is the
recovering node, and every one performs locally the next actions:

1. The MISSED table is scanned looking for the recovering node in the field SITES

until the view that contains the recovering node is found. The items for which the
recovering node needs to update its state are the elements of OID LIST of this
view and the subsequent views.

2. At the recoverer node, the recovery information is sent to the recovering node ac-
cording to the basic protocol.

3. Once the recovering node has confirmed the update of a view, the node is eliminated
from the SITES field in this view, and if it is the last item, also the record that
contains this view is eliminated.

4. If a recoverer node fails during the recovering process, then another node is elected
to be the new recoverer, according to the basic protocol. And it will create the
partitions pending to be transferred, according to the previous points, and then it
will perform the item transfer to recovering nodes, again as in the basic protocol.

It is important to note that in a view change consisting in the join and leave of several
nodes, we must first update the information about failed nodes, and later execute the
recovery process.

6 Simulation Results

We have simulated the compacting enhancement in order to know which level of im-
provement provides. We have considered three replicated scenarios with 5, 9 and 25
nodes each one. The replicated database has 100000 data items. All simulations start
having all replicas updated and alive. Then, we start to crash nodes one by one –
installing a new view each time a node crashes–, until the system reaches the minimum
primary partition in each scenario. At this point two different recovery sequences are
simulated. In the first one, denoted as order 1, the crashed nodes are reconnected one
by one in the same order as they crashed, while in the second, denoted as order 2, they
are reconnected one by one but reversing their crash order. In both cases, each time a
node reconnects a new view is installed, and immediately the system starts its recov-
ery, ending its recovery process before reconnecting the following one. In any installed
view we assume that the replicated system performs 250 transactions successfully, and
each transaction modifies 20 database items. All simulation parameters are described in
Table 1.

The items in the writeset are obtained randomly with a uniform distribution. We have
not used neither a hot spot, as in other previous works [12], nor typical workloads as
TPC-W or TPC-C [13]. In both cases, they would be more favorable environments for
the compacting method than a uniform distribution, since they suppose more frequent
access to a set of items of the database, removing a big amount of items in the compact-
ing proccess. We have also assumed a fast network, and this reduces the performance
difference between the normal and compacting recoveries, since it only depends on the

Improving Recovery in Weak-Voting Data Replication 137

Table 1. Simulator Parameters

Parameter Value Parameter Value
Number of items in the database 100000 Time for a read 4 ms
Number of servers 5, 9, 25 Time for a write 6 ms
Transactions per view 250 Time for an identifier read 1 ms
Transaction length 20 modified items Time for an identifier write 3 ms
Identifier size 4 bytes CPU time for an I/O operation 0,4 ms
Item size 200 bytes Time for point to point message 0,07 ms
Maximum message size 64 Kbytes Time for broadcast message 0,21 ms
CPU time for network operation 0,07 ms

Table 2. Recovery times in seconds (N = Nodes, V = Views)

Basic Compacted Basic CompactedOrder N V
Avg StdDev Avg StdDev

Order N V
Avg StdDev Avg StdDev

1 5 2 165.8 0.23 161.7 0.21 2 25 5 414.6 0.18 376.1 0.15
2 5 1 82.8 0.20 82.9 0.18 2 25 7 580.4 0.19 502.1 0.14
2 5 3 248.7 0.18 236.7 0.16 2 25 9 746.2 0.19 616.0 0.12
1 9 4 331.6 0.19 308.1 0.18 2 25 11 912.0 0.19 719.2 0.11
2 9 1 82.9 0.17 82.9 0.20 2 25 13 1077.9 0.19 812.6 0.11
2 9 3 248.7 0.17 236.7 0.18 2 25 15 1243.8 0.19 897.1 0.10
2 9 5 414.5 0.18 376.0 0.17 2 25 17 1409.6 0.19 973.6 0.10
2 9 7 580.4 0.18 501.9 0.17 2 25 19 1575.5 0.19 1042.9 0.09
1 25 12 995.1 0.18 767.2 0.12 2 25 21 1741.3 0.19 1105.4 0.08
2 25 1 82.9 0.20 82.9 0.19 2 25 23 1907.2 0.18 1162.0 0.07
2 25 3 248.7 0.19 236.7 0.16

amount of transferred items. If we had a slow network, such difference would have been
bigger. We have made one hundred repetitions for every experiment obtaining with this,
the guarantees of a low dispersion (see Table 2).

This simulation has not considered the costs of: managing the amnesia problem, and
recovery information compacting. The amnesia problem, as it has been said before, is
solved using a log-based approach, persisting the delivered messages during the repli-
cation work, and applying those not committed during the amnesia recovery process.
Thus, it implies two costs: one in the replication work and another in the recovery work.
The first cost is not considered because does not happen in the recovery process. The
second one, although appears in the recovery process, is not considered because it is
very low compared to the recovery process itself –usually it will consist in applying
few messages (writesets) and in our simulation are very small–. The recovery informa-
tion compacting cost is not taken into account because this work is performed online,
therefore its associated overhead penalizes only the replication work performance, but
not the recovery.

138 L.H. Garcı́a-Muñoz et al.

The simulation results show that the more views a crashed node loses the better the
compacting technique behaves, which is a logical result. In fact, when more updates a
crashed node misses the probability of modifying the same item increases. Both in the
Table 2 and in the Figure 1 we can observe the same behavior. When a crashed node
has lost only one view the compacting technique does not provide any improvement
because it has been unable to work. But, as long as the crashed node misses more views
the compacting technique provides better results.

(a) (b)

(c)

Fig. 1. Item Compactness: (a) 5 nodes, (b) 9 nodes, (c) 25 nodes

It must be also noticed that the basic recovery protocol could arrive to transfer a
greater number of items than items has the original database. This occurs because it
transfers for each lost view all the modified (and created items in this view) indepen-
dently they are transferred when recovering other views where these items have been
also modified. This situation is avoided by our recovery protocol enhancement. And in
the worst case the proposed solution will transfer the whole database because during the
inactivity period of the recovered node all the items of the database have been modified.

Obviously, we must say that the improvement provided by our approach depends on
the replicated system load activity, the update work rate, and the changed items rate.
For the first two ones, we can consider in a general way that when higher they are better
our compacting technique behaves. This is because the probabilities of modifying the
same item in different views increase. This consideration drives us to the changed items
rate, which is really the most important parameter. It tells us if the performed updates
are focused in few items or not. Then for our technique it is interesting that changes are
focused in as few items as possible. In fact, the worst scenario for our technique will be
the one in which all the modifications are performed in different items.

Improving Recovery in Weak-Voting Data Replication 139

As final conclusion, we can say that our enhanced recovery protocol works better in
some of the worst scenarios from a recovery point of view: when the crashed node has
lost a lot of updates and the changed items rate is not very high.

7 Related Work

For solving the recovery problem [14] database replication literature has largely recom-
mended the crash recovery failure model use as it is proposed in [3,4,5,6], while process
replication has traditionally adopted the fail stop failure model. The use of different ap-
proaches for these two areas is due to the fact that usually the first one manages large
data amounts, and it adopts the crash recovery with partial amnesia failure model in
order to minimize the recovery information to transfer.

The crash-recovery with partial amnesia failure model adoption implies that the as-
sociated recovery protocols have to solve the amnesia problem. This problem has been
considered in different papers as [10,11,15] and different recovery protocols have pre-
sented ways for dealing with it. The CLOB recovery protocol presented in [3] and the
Checking Version Numbers proposed in [5] support amnesia managing it in a log-based
and version-based way, respectively.

In regard to the compactness technique, [16] uses it in order to optimize the database
recovery. In this case, this technique is used to minimize the information size that must
be maintained and subsequently transferred in order to perform the recovery processes.
Such paper also presents experimental results about the benefits introduced by using
this technique, reaching up to 32% time cost reductions.

The background idea of our compacting technique is very similar to the one used in
one of the recovery protocols presented in [5]. This protocol maintained in a database
table the identifiers of the modified objects when there were failed nodes. Each one
of these object identifiers was inserted in a different row, storing at the same time the
identifier of the transaction which modified the object. Therefore, when an object was
modified the system checked if its identifier was already inserted in this table. If it
has not, the protocol created a new entry where inserted the identifier object and the
transaction identifier. If it already existed an entry with this object identifier, the pro-
tocol simply updated in this entry the transaction identifier. So, this recovery protocol
also avoids redundant information, but it uses a more refined metadata granularity –
transaction identifier– than our enhanced protocol –view identifier–.

8 Conclusions

In this paper we have reviewed the functionality of the original recovery protocol de-
scribed in [6]. We have enhanced it providing an accurated amnesia support and incor-
porating a compacting method for improving its performance.

The amnesia support has been improved using a log-based technique which consists
in persisting the messages as soon as they are delivered in each node, in fact they must
be persisted atomically in the delivery process.

Our compacting technique avoids that any data object identifier appears more than
once in the MISSED table. Then, this mechanism reduces the size of recovery messages,
both the ones that set up the DB-partitions and the ones which transfer the missed values.

140 L.H. Garcı́a-Muñoz et al.

Tests have been made with a simulation model and the advantages of the enhanced
recovery protocol have been verified when comparing the results of both protocols. The
obtained results have pointed out how our proposed compacting technique provides
better results when the number of lost views by a crashed node increases. Thus, our
compacting technique has improved the recovery protocol performance for recoveries
of long-term failure periods.

References

1. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In:
ACM SIGMOD International Conference on Management of Data, pp. 173–182. ACM Press,
New York (1996)

2. Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., Alonso, G.: Database replication tech-
niques: A three parameter classification. In: SRDS, pp. 206–215 (2000)

3. Castro, F., Esparza, J., Ruiz, M., Irún, L., Decker, H., Muñoz, F.: CLOB: Communication
support for efficient replicated database recovery. In: 13th Euromicro PDP, Lugano, Sw, pp.
314–321. IEEE Computer Society Press, Los Alamitos (2005)

4. Jiménez-Peris, R., Patiño-Martı́nez, M., Alonso, G.: Non-intrusive, parallel recovery of repli-
cated data. In: SRDS, pp. 150–159. IEEE Computer Society Press, Los Alamitos (2002)

5. Kemme, B., Bartoli, A., Babaoǧlu, O.: Online reconfiguration in replicated databases based
on group communication. In: Intl.Conf.on Dependable Systems and Networks, Washington,
DC, USA, pp. 117–130 (2001)

6. Armendáriz, J.E., Muñoz, F.D., Decker, H., Juárez, J.R., de Mendı́vil, J.R.G.: A protocol
for reconciling recovery and high-availability in replicated databases. In: Levi, A., Savaş,
E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 634–644.
Springer, Heidelberg (2006)

7. Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication specifications: A compre-
hensive study. ACM Computing Surveys 4(33), 1–43 (2001)

8. Cristian, F.: Understanding fault-tolerant distributed systems. Communications of the
ACM 34(2), 56–78 (1991)

9. Wiesmann, M., Schiper, A.: Comparison of database replication techniques based on total
order broadcast. IEEE Trans. Knowl. Data Eng. 17(4), 551–566 (2005)

10. Wiesmann, M., Schiper, A.: Beyond 1-Safety and 2-Safety for replicated databases: Group-
Safety. In: Proceedings of the 9th International Conference on Extending Database Technol-
ogy (EDBT2004), Heraklion - Crete - Greece (2004)

11. de Juan-Marı́n, R., Irún-Briz, L., Muñoz-Escoı́, F.D.: Supporting amnesia in log-based recov-
ery protocols. In: ACM Euro-American Conference on Telematics and Information Systems,
Faro, Portugal, ACM Press, New York (May 2007)

12. Kemme, B.: Database Replication for Clusters of Workstations. PhD thesis, Swiss Federal
Inst. of Technology, Zurich, Switzerland (2000)

13. The transaction processing performance council, http://www.tpc.org
14. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in

Database Systems. Addison Wesley, Reading, MA, EE.UU (1987)
15. de Juan-Marı́n, R., Irún-Briz, L., Muñoz-Escoı́, F.D.: Recovery strategies for linear replica-

tion. In: ISPA, pp. 710–723 (2006)
16. Civera, J.P., Ruiz-Fuertes, M.I.: Garcı́a-Muñoz, L.H., Muñoz-Escoı́, F.D.: Optimizing

certification-based database recovery. Technical report, ITI-ITE-07/04, Instituto Tecnológico
de Informática (2007)

http://www.tpc.org

Exploring Data Reusing of Failed Transaction

Shaogang Wang, Dan Wu, Xiaodong Yang, and Zhengbin Pang

School of Computer, National University of Defense Technology
Changsha, Hunan, 410073 China

wshaogang@nudt.edu.cn

Abstract. Transactional Memory (TM) has been the promising paral-
lel programming technique to relieve the tedious work of synchronizing
shared object using lock mechanism. Transaction execution required to
be atomic and isolated relative to the whole system. The transaction
fails if found violated access to the shared object from other transaction,
and it will be re-executed till finally commit successfully; currently, most
TM systems are required to restore shared memory’s state before re-
execution, this cleanup cost and the shared object’s opening cost greatly
hurdle system’s performance.

In this paper, we propose a new general transaction iteration’s data
reusing (TItDR) method which reuses the opened object of failed trans-
action in the following re-execution. The obvious advantage is that it
greatly simplify the opening process if it has been opened in previous
failed transaction and most of the cleanup work are no longer needed.
TItDR leaves opened object in pseudo-active state and restart the trans-
action, We talk about conflicts resolution, validation, commit/abort pro-
cessing problem along with our data reusing method and show that
TItDR will not incur more conflicts and more overhead for validation or
commit. Both currently proposed software transactional memory (STM)
systems and hardware systems (HTM) have much potential data reusing.

Our test result is based on STM implementation, which shows 40%
performance improvement on average.

Keywords: transactional memory, data reusing, TItDR.

1 Introduction

Recent research has showed that transactional memory has been the promising
parallel programming technique. The proposed TM systems (RSTM[1], UTM[2],
logTM[3], TCC[4]) must provide atomicity and isolation for transactions. If con-
current executing transactions find that they can not both successfully commit
because of conflicting shared memory access, one transaction must be chosen to
re-execute. This abort handling is the import part of TM systems as it greatly
affects the overall TM system’s performance. Next we summarize the well-known
published TM systems, focusing on processing if transaction fails. Analysis shows
that there exists potential data reusing of the aborted work for failed transaction
execution.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 141–150, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

142 S. Wang et al.

As seen from the currently TM systems(LogTM[3,5,6], TCC[4,7], UTM[2,8],
RSTM[1,9]), to abort a transaction, we must do the tedious compensating work
to guarantee the transaction’s isolation property[10,11,12,1,3]. The burden of
memory system doing the restore operation may be greater than the cost of
opening the shared object. Because this needs to read and write a large set of
dispersed data simultaneously. The retry on failed (i.e. transaction iteration) ex-
ecution method will reopen the same object with very high chance, the close and
then open process is necessary for the conflicting object to ensure consistency.
Yet with our experience, other non-conflicting shared object, the reopen process
usually does the same thing as reconstruction the metadata, allocating memory
space, and updating bookkeeping information etc.

TM system detects conflicts when concurrent transactions visiting the same
object and at least one is write[9], reducing transaction conflicts chance can
greatly improve the whole system performance. Currently proposed conflicts res-
olution technique deals with this problem by letting transaction wait for object
to be released or back off some time before retry transaction. The principle of
reusing data should avoiding introducing more conflicts. Our paper shows that
by taking special management, TM system can get this win-win situation.

In this paper, we proposed a common method to reusing transactional object
on transaction aborts, which called TItDR. As far as I know, this is the first
research on exploring data reusing across transaction iterations. Our contribution
includes:

– We proposed a new method called TItDR which exploring the data reusing
across transaction iteration.

– We show that current TM system can support our TItDR without redesign
from ground.

– We give a hardware framework to support TItDR. Currently proposed trans-
actional protocol can be enhanced to benefit from the data reusing.

2 Basic Idea

In this section, we discuss basic idea of TItDR, and ignore some implementation
details which may be different for STM or HTM. In this paper, we call the
repeated retry of the transaction until successfully as transaction iteration, so one
transaction’s execution is composed of several iterations with the last iteration
is successful; current running iteration is called active iteration; the iterations
that failed before active iteration is called obsolete iteration; the object which
has been opened in the active iteration is in active state, the object opened in
the obsolete iterations but not opened in active iteration is in obsolete state.
Overall TItDR improved TM system with the following idea:

1. Binding a number called itnumber to each transaction iteration, on abort,
increase the itnumber and reset itnumber if commits successfully. When
shared object is opened, TItDR saves current itnumber together with the
object. So by comparing the itnumber with the active iteration’s itnumber,
we can decide if the object is in obsolete state.

Exploring Data Reusing of Failed Transaction 143

2. Thread maintains a local list of opened objects; on opening shared object,
add the object together with current iteration’s itnumber to the list. Most
TM systems maintain the opened list for rolling back, so we may only a
mirror modification. If transaction aborts, we keep the opened list through
which TM system keeps information about the obsolete object, and do not
try to restore the state of transactional opened object. In the next iteration, if
transaction opens an obsolete object, the cost can be greatly reduced because
we can reuse the obsolete object. For opening for read an obsolete object, we
can use directly use the data if validation is successful, and for opening for
write, previous iteration’s write data maybe incorrect, so the value should
be discarded, but we can reuse the metadata to avoid reconstructing.

3. Other transaction’s conflicts with opened object now has two types, conflicts
with active objects and conflicts with obsolete objects. Our method keeps
the obsolete in the ”pseudo-active” state that will enlarge the object’s open
time. That will introduce more conflicts between transactions. So contention
manager should take a compromised decision between these two folds. With
our experience, always aborting the obsolete object will not bring more con-
flicts than current TM systems; more, the obsolete object may not be opened
in the re-execution if the execution path is different; so aborting the obsolete
object will not introduce some unnecessary conflicts;

4. On reopening object in the re-execution, if object is in obsolete state and
the object has not been aborted by other transaction, thread can reuse this
object without performing the reopening process.

Our method’s primary advantage is it greatly reduces the work needed on
transaction abort, because we no longer need to restore memory state before
transaction restarts. A second advantage is we reduce the cost of reopening
process by reusing obsolete object in active transaction iteration. The reusing
includes data value reuse, memory space reuse and data structure reuse.

On read operation, value first read to a temporal local place and uses this value
in the remainder transaction, transaction commits failed if object’s curren has
been updated by other transaction during the transaction. TItDR improves the
read operation with transaction’s itnumber which will increase by 1 on restarted,
if current transaction fails, most current TM systems will discard the read list
and temporal read value and start a fresh read operation in the next iteration.
Yet we can simply keep the read set and value in the next iteration, on opening
an object, if this object is in the obsolete read set(object’s itnumber will be less
than active iteration’s itnumber), we can reuse the value if validation successful.
On write operation, new value can be directly updated to the temporal location
if previous iteration has opened for write. Our basic idea is simple, we believe
that the failed transaction is not having nothing to gain.

As we study from current proposed TM systems, we think that it is feasible to
incorporate with our method to have data reusing benefit. In the next section,
we give one implementation example based on RSTM and show some problem
that is brought with data reusing.

144 S. Wang et al.

3 Example Software Implementation

STM system usually construct through software library or language extension
which uses complex metadata organization[1], in this section, we give the de-
tailed optimization of RSTM to implement our TItDR methods. RSTM is a
non-blocking STM system implemented as C++ class library. RSTM support
visible/invisible transactional object read, eager/lazy transactional object write.
In RSTM, every transactional object is accessed through ObjectHeader, which
points to the current version of the object. The ObjectHeader contains the
visiting information from transactions; The Transaction Descriptor referenced
through an object’s header determines the transaction’s state. If the transac-
tion commits, then NewDataObject is the current version of the object. If the
transaction aborts, then OldDataObject restored to the current version. If the
transaction is active, no other transaction can read or write the object without
aborting the transaction. We will ignore detailed information in this paper and
only gives the optimization of RSTM, which is referred by RSTM datareuse.

We redefine transaction’s ABORTED state, which means the time between
current iteration is aborted and next iteration starts. RSTM datareuse adds
itnumber to transaction descriptor to holds transaction’s iteration information;
ObjectHeader uses the second low-bit of NewData as obsolete flag for eager
write, for every entry in the explicit list of visible reader, adds one bit obsolete
flag for visible reader. The obsolete flag indicates that object is in obsolete state,
which is opened in previous iteration, but has not opened in current iteration.

RSTM uses bookkeeping lists (invsibleReadList, visibleReadList, eagerWrite-
List, lazyWriteList) to hold currently opened object, In addition RSTM datareuse
adds the list entry with itnumber field which hold current transaction iteration’s
itnumber.

When transaction initially starts, the bookkeeping lists are empty and the
itnumber reset to 1. On read operation, RSTM datareuse adds the object to
thread local invisibleReadList or visibleReadList based on reading type. In case
of visible read, mark the corresponding read flag in the ObjectHeader. The read

Owner

Old Data

Data Object- new version

VisRd 1

New Data

Obsolete 1

VisRd n Obsolete n

Clean BitObsolete Bit

Data Object- old version

Status Transaction Descriptor

itnumber

Fig. 1. metadata used to implement TItDR

Exploring Data Reusing of Failed Transaction 145

flag together with the obsolete flag cleared indicating that the read object is
in active state. For write operation, RSTM allocate a cloned object to hold
new value. The ObjectHeader’s owner state with obsolete cleared indicating the
object is in write active state. If the transaction is aborted, for visible read and
eager write, iterates the list and marks the active object’s corresponding obsolete
flag. So other transaction may only need to check the obsolete bit to see whether
the object is in active state or obsolete state. RSTM datareuse does not drop
the bookkeeping list or free new allocated memory; this has performance benefit
as avoids rebuilding the metadata on transaction’s re-execution. As comparing
with RSTM, RSTM datareuse’s abort processing is really simple.

If transaction is aborted and restarted, now the bookkeeping lists holds opened
object in previous iterations. The reopening process makes some difference, first
checks if the object is in the bookkeeping list, if found and the itnumber is less
than current transaction itnumber, the opened object needs validation to see
whether the object is still valid, if validate successfully, clear ObjectHeader’s
obsolete flag, and now the object is in current transaction’s active state. For
write operation, because RSTM datareuse does not free the cloned object, active
transaction’s cloned object will reuse this memory space. RSTM datareuse incurs
a bit of lookup and validation for open cost, this cost is neglectable because the
system needs periodically validating to ensure opened object is still in valid[13].
A pseudo-code for open RW operation is as follows:

On transaction commit successfully, RSTM datareuse only update memory of
the active objects (i.e. bookkeeping list entry’s itnumber equals active iteration’s
itnumber). There may be obsolete objects in bookkeeping list when transaction
commit successfully, this is due to execution path is different between commit-
ted iteration and previous iteration. For these objects, we need to restore their
previous value before transaction.

The object’s obsolete state divides conflicts into two types: transaction con-
flicts with active object or obsolete object, RSTM datareuse always abort the ob-
solete object for several reasons. First, aborting obsolete object’s cost is small for
it does not need to abort current active transaction execution. Second, releasing
obsolete object makes object’s open time shorter which allows more transaction
parallelism. Third, transaction’s open set may be different between iterations if
the transaction has branches and the condition is based on the shared object’s
return value. So always aborting the obsolete object will avoid some false con-
flicts. The contention management policies can be used with no modification for
only conflict with active objects is resolved by CM (Contention Manager) and
the introduced obsolete state can be ignored by CM.

Modern STM systems incrementally validate opened object to test whether
the execution is valid. RSTM opened set is maintained in transaction’s bookkeep-
ing lists, RSTM datareuse only needs to validate the active object in the list and
ignores the obsolete object, because if the obsolete object will be reopened, the
opening process includes the validation operation. So although RSTM datareuse
does not drop obsolete objects, its validation cost will not be greater than RSTM.

146 S. Wang et al.

4 The Hardware Approach

Hardware transactional memory is a hardware system that supports implement-
ing nondurable ACI properties for threads manipulating shared data. A very
natural way of implementing HTM is enhancing cache coherence protocol to
support transactional processing. LogTM supports eviction of transactional ac-
cessed cache lines during a transaction by retaining ownership of the cache line.
The cache coherence protocol’s directory state is in sticky state when an active
transaction’s opened object is written back while the ownership is still reserved
by transaction. In this way transaction that conflicts with the sticky object can
be detected by forwarding the request to the owner if the owner is in transaction
mode. A second feature is using software log to restore memory state on abor-
tion. To implement our data reusing idea, we should enhance logTM’s protocol
with some extensions similar to our software approach.

Transactional object has two copies (active copy and shadow copy) in cache,
the active copy stores current value and shadow copy store backup data. In this
way, we no longer need the undo log maintained by processor, for the backuped
value is stored in shadow copy. The space requirement is the mainly cost, yet
we think it is acceptable as we can enhance the multi-level cache to support our
requirement. Another method to reduce the cost is to use the similar method
used in operating system when mapping virtual memory to cache entry mapping.
If memory first opened in transaction, update the active and shadow copy with
object’s current data. The following update to the object will be written to the
active copy, if transaction commits successfully, update the memory system with
the active copy. On failure, mark active copy as obsolete, if obsolete object is
visited, use the shadow copy value.

Transaction’s iteration number needs to be hold in processor. Cache and direc-
tory maintain iteration number information for every opened object. On trans-
action fails, processor increase its iteration number and mark opened shared
objects as obsolete. On reopening object, the validation processor is really sim-
ple, it only needs to see whether the cache block is still valid in cache.

Undo log: only active transaction’s evicted cache object is written into the
undo log. If transaction failed and the undo log is not empty, we should replay
the undo log to restore memory state. The undo log is managed by software,
which dealing the case hardware cache overflows.

Conflicts detection is through the cache coherence protocol. When processor
get intervention message which visit the obsolete object in his cache, the pro-
cessor should forwarding the old data and need not abort current transaction.
Another tricky is when another processor conflicts with out-of-cache active ob-
jects (i.e. objects in the undo log), in this situation, simply send NACK message
to abort it.

The hardware approach does not need to replay the undo log to restore
memory state if transaction fails. This cost is much greater than the RSTM,
because logTM write the previous back to memory, while RSTM simply mod-
ify the object’s header to point back original data as it keeps both active and
backup data in memory. On reopening objects it reuses the shadow copy so saves

Exploring Data Reusing of Failed Transaction 147

memory visiting cost. Currently we are working on the test environment to give
our reusing detailed test result.

5 Test Results and Analysis

In this section, we give our test result of data reusing in transactional memory,
we implement TItDR based on RSTM2 as shown in section 3. We test bench-
marks on a 2-processor blade server with Intel Xeon 2.3GHz, 4core processor.
We compiled both our implementation and RSTM with gcc3.4.4 with O3 opti-
mization level. We tested for a period of 10 seconds for each benchmark, varying
the thread number from 1 to 8. Results were averaged over a set of 3 test runs
and all experiments use the Polka contention manager.

We use the same benchmark with RSTM2[1] which includes: shared counter;
linked list; hash table; LFUCache and random graph.

5.1 Total Transaction Throughput

Throughput comparison was given by the total finished transactions during 10
seconds; we give both eager and lazy write type benchmark results.

For the shared counter benchmark, we get the best speedup compared with
RSTM2, this is due to that all threads want to increase the same shared variable,
which can not be accessed parallel. All the thread must line up to access the
counter, so with threads number increase, both our method and RSTM does not
increase the total transactions throughput. Yet for RSTM’s eager write type,
with thread number increase, we got decrease total committed transactions, for
it needs more work to contention management, restoring. For the same reason,
Eager write type with data reusing will not suffer this problems. Another reason
for we get the best speedup is that the counter benchmark is dominated by write,
with no read operation. For software approach TM, the reusing for write will
save more work than reusing for read. This is due to that we relieve the memory
burden of reclaim and reallocate memory space for speculative writes. For cache
coherence based HTM systems, it is another case; hardware can easily get his
obsolete read object by checking cache status, and return current value.

Fig. 2. Throughput of shared counter Fig. 3. Throughput of linked list

148 S. Wang et al.

Fig. 4. Throughput of hash table Fig. 5. Throughput of LFUCache

Fig. 6. Throuput of random graph tests

For hash table and random graph benchmarks, we get continued increased
throughput as threads number increase, while RSTM’s RandomGraph get de-
creased throughput, it is because that as thread continues add vertex to the
graph, the graph will get large, so every time we want to locate a vertex, it
must traverse a large number of vertexes before getting to the vertex, this will
increase transaction’s read and write set and the transaction will getting large.

Table 1. the result is got from running benchmark with 8 threads and uses invisible
read, lazy write acquire rule. The number is given on thread average. Validation success
on write means that the object has not been updated by other thread. Validation
success on read means that our read value is still valid.

Benchmark W times V success V failed R times V success V Failed

Counter 1031806 74566 162 0 0 0

LinkedList 44119 50 1683 12854531 4287378 160397

HashTable 1151057 761 2454 5755649 3920 16814

LFUCache 1218634 134212 3795 115610 351 10390

RandomGraph 123708 183 9406 9314085 2210817 17373

Exploring Data Reusing of Failed Transaction 149

This large transaction’s aborting cost is the primary reason for the decreasing
performance. With our method, test results show good scalability. Our method’s
cost of aborting will not change with different transaction size.

TItDR has better performance speedup for eager write type, e.g. the counter
benchmark gets 35% to 2.2 times performance increase for eager, and for lazy,
we got 25% enhancement. Totally, we got the average performance speedup of
41.4% for all benchmarks.

5.2 Potential of Data Reusing

To see the potential data reusing there exists in transactional memory systems,
we count the times of open operation, and the times we can find data in failed
transaction’s open set, with the times that the data is valid.

For counter and LFUCache benchmark, the benchmark is dominated by write
operation, so write conflicts may occur very common, this servers two folds
effect, first, it will regularly make other transaction’s read not valid, so to reuse
read data, there is more chances that validation is failed. Second, the write
may have more chances that validation is success. The LinkedList, HashTable
and RandomGraph benchmarks are another case; the read operation has more
chances to find that the aborted transaction’s read value is still valid.

6 Conclusion and Future Work

We believe that TItDR is very attractive for TM systems have great potential
data reusing. The TItDR method greatly reduced the work to abort a transaction
and will accelerate the reopening process. From my experience, hardware based
data reusing is more attractive than software, for it can easy get the real data
reusing which can get value from cache. We have worked mainly on the software
approach. Yet the software approach should be optimized to efficiently support
currently proposed TM systems or rebuild TM system from ground with data
reusing in mind. We have not explored how to efficiently reuse data in the nested
transaction environment. Further studying cache coherence based transactional
memory with data reusing support includes protocol verification, implementation
and performance test.

References

1. Marathe, V.J., Spear, M.F., Heriot, C., Acharya,A., Eisenstat, D.: Scherer III,W.N.,
Scott, M.L.: Lowering the overhead of software transactional memory. Technical Re-
port TR 893, Computer Science Department, University of Rochester (2006)

2. Chuang, W., Narayanasamy, S., Venkatesh, G., Sampson, J., Van Biesbrouck, M.,
Pokam, G., Calder, B., Colavin, O.: Unbounded page-based transactional memory.
In: ASPLOS-XII: Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, San Jose, California,
USA, pp. 347–358. ACM Press, New York, NY, USA (2006)

150 S. Wang et al.

3. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: Logtm: Log-
based transactional memory. In: Proceedings of the 12th International Symposium
on High-Performance Computer Architecture, pp. 254–265 (2006)

4. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B.,
Prabhu, M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory
coherence and consistency. SIGARCH Comput. Archit. News 32(2), 102 (2004)

5. Liblit, B.: An operational semantics for LogTM. Technical Report, University of
Wisconsin–Madison (2006) Version 1.0 (1571)

6. Moore, K.E.: Thread-level transactional memory. In: Wisconsin Industrial Affiliates
Meeting (2004)

7. Hammond, L., Carlstrom, B.D., Wong, V., Hertzberg, B., Chen, M., Kozyrakis, C.,
Olukotun, K.: Programming with transactional coherence and consistency (tcc).
In: ASPLOS-XI: Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems, pp. 1–13. ACM Press,
New York, NY, USA (2004)

8. Lie, S.: Hardware support for unbounded transactional memory. Master’s thesis,
Massachusetts Institute of Technology (2004)

9. William, N., Scherer, I., Scott, M.L.: Advanced contention management for dy-
namic software transactional memory. In: PODC 2005. Proceedings of the twenty-
fourth annual ACM symposium on Principles of distributed computing, pp. 240–
248. ACM Press, New York, NY, USA (2005)

10. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: ISCA 1993. Proceedings of the 20th annual international
symposium on Computer architecture, pp. 289–300. ACM Press, New York, NY,
USA (1993)

11. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-
ware transactional memory. In: OOPSLA 2006. Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications, pp. 253–262. ACM Press, New York, NY, USA (2006)

12. Saha, B., Adl-Tabatabai, A.-R., Hudson, R.L., Minh, C.C., Hertzberg, B.: Mcrt-
stm: a high performance software transactional memory system for a multi-core
runtime. In: PPoPP 2006. Proceedings of the eleventh ACM SIGPLAN symposium
on Principles and practice of parallel programming, pp. 187–197. ACM Press, New
York, NY, USA (2006)

13. Spear, M.F., Marathe, V.J., Scherer III, W.N., Scott, M.L.: Conflict detection and
validation strategies for software transactional memory. In: DISC, pp. 179–193
(2006)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 151–160, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Parallel BSP Algorithm for Irregular Dynamic
Programming

Malcolm Yoke Hean Low1, Weiguo Liu1, and Bertil Schmidt2

1 School of Computer Engineering, Nanyang Technological University,
Singapore 639798

{yhlow, liuweiguo}@ntu.edu.sg
2 University of New South Wales Asia, 1 Kay Siang Road, Singapore 248922

bertil.schmidt@unswasia.edu.sg

Abstract. Dynamic programming is a widely applied algorithm design
technique in many areas such as computational biology and scientific
computing. Typical applications using this technique are compute-intensive and
suffer from long runtimes on sequential architectures. Therefore, several
parallel algorithms for both fine-grained and coarse-grained architectures have
been introduced. However, the commonly used data partitioning scheme can
not be efficiently applied to irregular dynamic programming algorithms, i.e.
dynamic programming algorithms with an uneven load density pattern. In this
paper we present a tunable parallel Bulk Synchronous Parallel (BSP) algorithm
for such kind of applications. This new algorithm can balance the workload
among processors using a tunable block-cyclic data partitioning method and
thus is capable of getting almost linear performance gains. We present a
theoretical analysis and experimentally show that it leads to significant runtime
savings for pairwise sequence alignment with general gap penalties using
BSPonMPI on a PC cluster.

Keywords: BSP, Irregular Dynamic Programming, Partitioning, Load
Balancing, Scientific Computing.

1 Introduction

Dynamic programming (DP) is a popular algorithm design technique for optimization
problems. Problems such as string editing [1], genome sequence alignment [14, 22],
RNA and protein structure prediction [6, 17, 24], context-free grammar recognition
[7, 19], and optimal static search tree construction [9] have efficient sequential DP
solutions. In order to reduce the high computing cost of DP problems, many efficient
parallel algorithms on different parallel architectures have been introduced [1, 2]. On
fine-grained architectures, the computation of each cell within an anti-diagonal is
parallelized [20, 21]. However, this way is only efficient on architectures such as
systolic arrays, which have an extremely fast inter-processor communication. On
coarse-grained architectures like PC clusters it is more convenient to assign an equal
number of adjacent columns to each processor as shown in Figure 1. In order to
reduce communication time further, matrix cells can be grouped into blocks.

152 M.Y.H. Low, W. Liu, and B. Schmidt

Processor Pi then computes all the cells within a block after receiving the required
data from processor Pi−1. Figure 1 shows an example of the computation for 4
processors, 8 columns and a block size of 2×2, the numbers 1 to 7 represent
consecutive phases in which the cells are computed. We call this method blockbased.
It works efficiently for regular DP computations with an even workload across matrix
cells, i.e. each matrix cell is computed from the same number of other matrix cells.

1 2

2

3

3

3

4

4

4

4

5

5

5 6

6 7

P1 P2 P3 P4

Fig. 1. Parallel computation for 4 processors, 8 columns and a 2×2 block size

In practice, there are many irregular DP applications where the workload of a cell
varies across the matrix. Figure 2 shows an example of such an application. The
workload to compute one matrix cell will increase along the shift direction of the
computation. We call this the load computation density. Figure 2 shows the change of
load computation density along the computation shift direction by using increasingly
blacking shades. We can see that the load computation density at the bottom right-
hand corner is much higher than that in the top left-hand corner. The column-based
partitioning method in Figure 1 will therefore lead to a poor performance, since the
workload on processor Pi is much higher than on the processor Pi−1.

P1 P2 P3 P4

Fig. 2. Example of an irregular DP computation

In this paper, we propose a general parameterized parallel BSP algorithm to solve
this problem. By introducing two performance-related parameters, we can get the
trade-off between load balancing and communication time by tuning these two
parameters and thus obtain the maximum possible performance. We demonstrate how
this algorithm can lead to substantial performance gains for irregular DP applications.

The rest of the paper is organized as follows: Section 2 describes the characters and
classification for irregular DP algorithms. The BSP model is briefly reviewed in
Section 3. Section 4 presents the parallel BSP algorithm. Section 5 evaluates the
performance on a PC clusters using BSPonMPI. Section 6 concludes this paper.

 A Parallel BSP Algorithm for Irregular Dynamic Programming 153

2 Irregular DP Algorithms

DP algorithms can be classified according to the matrix size and the dependency
relationship of each matrix cell [10]: a DP algorithm for a problem of size n is called a
tD/eD algorithm if its matrix size is O(nt) and each matrix cell depends on O(ne) other
cells. The DP formulation of a problem always yields an obvious algorithm whose
time complexity is determined by the matrix size and the dependency relationship. If
a DP algorithm is a tD/eD problem, it takes time O(nt+e) provided that the
computation of each term takes constant time. Three examples are given in Algorithm
1 to 3.

Algorithm 1. (2D/0D): Given D[i,0] and D[0, j] for 1 ≤ i, j ≤ n,
D[i, j] = min{D[i-1, j] + xi, D[i, j-1] + yj, D[i-1, j-1] + zi,j} where xi, yj and zi,j are

computed in constant time.

Algorithm 2. (2D/1D): Given w(i, j) for 1 ≤ i<j ≤ n; D[i,i] = 0 for 1 ≤ i ≤ n
D[i,j] = w(i, j) +

jki ≤<
min {D[i,k−1] + D[k, j]} for 1 ≤ i, j ≤ n

Algorithm 3. (2D/2D): Given w(i, j) for 1 ≤ i<j ≤ 2n; D[i, 0] and D[0, j] for 0 ≤ i, j ≤ n,

 D[i, j] =
ii

jj

<≤

<≤

'0

'0
min {D[i’,j’] + w(i’+ j’,i+j)} for 1 ≤ i, j ≤ n

Table 1. A classification for the popular DP algorithms in CB

Algorithm Time complexity Application Field Reference
Smith-Waterman

algorithm with linear and
affine gap penalty

Genome alignment

Syntenic alignment

O(n2)

Generalized genome global
alignment

[14, 22]

Smith-Waterman
algorithm with general

gap penalty

Genome alignment

Nussinov algorithm

O(n3)

RNA base pair maximization

[8, 22]

Viterbi Algorithm O(n2)~O(n4) Gene sequence alignment
using HMMs, Multiple sequence

alignment

[8]

Double DP algorithm O(n4) Protein threading [17]
Spliced Alignment O(n3) Gene finding [11]

Zuker Algorithm RNA secondary structure
prediction

[24]

CYK Algorithm

O(n3)~O(n4)

RNA secondary structure
alignment

[8]

There are many DP algorithms in Computational Biology (CB). DP is used for

assembling DNA sequence data from the fragments that are delivered by automated
sequencing machines [3], and to determine the intron/exon structure of eukaryotic
genes [12]. It is used to infer function of proteins by homology to other proteins with
known function [18, 23] and it is used to predict the secondary structure of functional
RNA genes or regulatory elements. In some areas of CB, DP problems arise in such

154 M.Y.H. Low, W. Liu, and B. Schmidt

variety that a specific code generation system for implementing such algorithms has
been developed [4]. However, the development of a successful parallel DP algorithm
is a matter of experience, talent, and luck. The typical matrix recurrence relations that
make up a parallel DP algorithm are intricate to construct, and difficult to implement
reliably. No general problem independent guidance is available. Table 1 shows the
classification of some popular DP algorithms in CB.

(a) Nussinov: Given a sequence A of length L with symbols x1, … xL. Let δ (i, j) = 1 if xi and xj are a

complementary base pair, else δ (i, j) = 0. We will recursively calculate scores M(i, j) which are the
maximal number of base pairs that can be formed for subsequence xi, …,xj.

Initialization: Recursion:
for i = 2 to L do M(i, j)=max{M(i+1, j), M(i, j-1),

M(i,i-1) = 0 M(i+1, j-1)+ δ (i, j),
for i = 1 to L do maxi<k<j[M(i, k)+M(k+1, j)]}
 M(i,i) = 0

(b) SkylineMatrix: The skyline matrix problem can be formulated as follows: Given an N×N skyline
matrix A and an N-vector b, we seek to find an N-vector x such that Ax = b. An efficient and widely used
technique for solving Ax = b in the general case is the LU-Decomposition. This method decomposes A
into two matrices L and U. The algorithm used for sequential LU-Decomposition is “Doolittle’s
Method”. Generally, the algorithm works as follows:

 for i = 1 to N do
 for j = 1 to i−1 do

 () jj
j
k kjikijij UULaL /1

1∑ −
=−=

 for j = 1 to i do

 ∑ −
=−= 1
1

j
k kijkjiji ULaU

(c) SW with general gap penalty function: Consider two strings A and B of length l1 and l2, a
substitution matrix s and a general gap penalty function γ (g). To identify common subsequences, they

compute the similarity matrix M(i, j) of two sequences ending at position i and j.

M(i, j) = max

⎪
⎩

⎪
⎨

⎧

−=−+
−=−+

+−−

.1,...,0),(),(

,1,...,0),(),(

),,()1,1(

jkkjkiM

ikkijkM

BAsjiM ji

γ
γ

Fig. 3. The recurrence formulas for three 2D/1D DP algorithms: (a) Nussinov algorithm, (b)
Skyline matrix problem, (c) Smith-Waterman algorithm with general gap penalty function

In this paper we concentrate on the parallelization of DP algorithms of the type
2D/1D. This is an important DP algorithm with many applications. Figure 3 shows
three well-known DP algorithms of type 2D/1D. Although these DP algorithms look
different, they share similar characteristics. These 2D/1D DP algorithms are all
irregular with load computation density changes along the computation shift direction.

Figure 4 shows the change of load computation density along the computation shift
direction by using increasingly blacking shades. For these algorithms, the column-
based partitioning method of Figure 1 leads to poor load balancing. Thus, a more
efficient data partitioning scheme is needed. The problem of determining an
appropriate data partitioning scheme is to maximize system performance by balancing
the computational load among processors. Since the data partitioning scheme largely
determines the performance and scalability of a parallel algorithm, a great deal of
research has aimed at studying different data partitioning schemes. As a result the

 A Parallel BSP Algorithm for Irregular Dynamic Programming 155

(b)

Mij

(a)

Uij

Lij

(c)

Mij

Fig. 4. Dependency relationship and distribution of load computation density along
computation shift direction for (a) Nussinov, (b) Skyline matrix problem, (c) Smith-Waterman
algorithm with general gap penalty function

block-cyclic partitioning has been suggested as a general-purpose basic scheme for
parallel algorithms because of its scalability, load balancing and communication
properties [15]. In this paper, we introduce a tunable block-cyclic based distribution
of columns for irregular DP algorithms to balance the workload among processors.

3 The Bulk Synchronous Parallel (BSP) Model

The BSP model first proposed in [23] is designed to be a general purpose approach to
parallel computing that allows the separation of concerns between computation,
synchronization and communication costs. It has a simple cost model for predicting
the performance of BSP algorithms on different parallel platforms. A BSP
programming model consists of P processors linked by an inter-connecting network
and each with its own pool of memory.

A BSP algorithm consists of a set of processors each executing a series of
supersteps. Each superstep consists of three ordered phases: 1) a local computation
phase, where each processor can perform computation using local data and issue
communication requests; 2) a global communication phase, where data is exchanged
between processors according to the requests made during the local computation
phase; and 3) a barrier synchronization, which waits for all data transfers to complete
and makes the transferred data available to the processors for use in the next
superstep. The BSP cost model for a BSP algorithm S can be expressed as

cost(S) = sum{ w(i) + gh(i) + L } for superstep i = 1 … ns

where ns is the total number of supersteps; w(i) is the maximum computation cost by
any processor in superstep i; and h(i) is the maximum number of messages sent or
received respectively by any processor in superstep i. The architecture dependent
parameters g and L represent the communication and synchronization costs
respectively. From the BSP cost model, we can see that the performance of a BSP
algorithm relies on three factors: a) computation balance; b) communication balance;
and c) ns, the total number of supersteps.

156 M.Y.H. Low, W. Liu, and B. Schmidt

While a BSP library consists of a small set of architectural independent
programming interface that support the BSP programming model, the efficiency of a
BSP algorithm depends on how the underlying BSP library implementation optimizes
the architecture dependent parameters g and L. Existing BSP library implementation
such as the Oxford BSP library [13] and the Paderborn University BSP (PUB) Library
[5] are often optimized for a selection of parallel hardware platforms. To keep up with
changes and development in these platforms, these libraries have to be constantly
updated. The BSPonMPI library (http://bsponmpi.sourceforge.net) is an effort to
create a BSP library that runs on any machine that has MPI installed. This ensures
that any BSP program compiled using BSPonMPI will benefit from improvements
and optimizations in the MPI library for a particular hardware platform.

4 Parallel BSP Algorithm

In this section, we describe a tunable parallel BSP algorithm for solving irregular DP
problems. The algorithm proceeds in a series of wavefront diagonally across the
matrix M. Figure 5 illustrate the concept of the algorithm for an 8×8 matrix with a
column-wise block-cyclic partition. The parameter division is used to implement a
block cyclic distribution of columns to processors. The parameter rowwidth is used to
control the size of messages that Pi will send to other processors. In the figure, Pi,dj

k
denotes that the cell is updated by processor Pi at division j of wavefront k. Each
wavefront corresponds to a superstep in the BSP computation. For example, in
wavefront 4, processor P1 and P2 are active in both division 1 and 2.

Fig. 5. The tunable block-cyclic partitioning method for irregular dynamic programming

Increasing the number of cyclic divisions and decreasing the size of messages may
lead to better load balancing at the expense of increase in communication overhead.
Thus, the choice of the parameter for division and rowwidth is a trade-off between
load balancing and communication time. Figure 6 shows the BSP algorithm for
irregular dynamic programming. In each superstep (or wavefront), each processor
updates the block allocated to it in all its active divisions and sends the updated block
to other processors. In this implementation, we use the BSP shared memory primitive
bsp_put() to update the matrix block. A barrier synchronization is called at the
end of each superstep. All processors will receive the updated matrix by the beginning

P1,d1
1 P1,d1

1 P2,d1
2 P2,d1

2 P1,d2
3 P1,d2

3 P2,d2
4 P2,d2

4
P1,d1

1 P1,d1
1 P2,d1

2 P2,d1
2 P1,d2

3 P1,d2
3 P2,d2

4 P2,d2
4

P1,d1
2 P1,d1

2 P2,d1
3 P2,d1

3 P1,d2
4 P1,d2

4 P2,d2
5 P2,d2

5
P1,d1

2 P1,d1
2 P2,d1

3 P2,d1
3 P1,d2

4 P1,d2
4 P2,d2

5 P2,d2
5

P1,d1
3 P1,d1

3 P2,d1
4 P2,d1

4 P1,d2
5 P1,d2

5 P2,d2
6 P2,d2

6
P1,d1

3 P1,d1
3 P2,d1

4 P2,d1
4 P1,d2

5 P1,d2
5 P2,d2

6 P2,d2
6

P1,d1
4 P1,d1

4 P2,d1
5 P2,d1

5 P1,d2
6 P1,d2

6 P2,d2
7 P2,d2

7
P1,d1

4 P1,d1
4 P2,d1

5 P2,d1
5 P1,d2

6 P1,d2
6 P2,d2

7 P2,d2
7

division=2

rowwidth=2

 A Parallel BSP Algorithm for Irregular Dynamic Programming 157

Input: The number of processors Np, the number of division Nd, the
row width R. (n×n is the size of matrix M, dt denotes the t-
th division, wt denotes the t-th wave, C denotes the column
width).

Output: Depending on the requirements of the given applications,
the output will be the optimal score M[1,n] or the whole
matrix M.

Nwaves = p*Nd + n/R;
C = n/Nd;

bsp_begin(Np)
 pid = bsp_pid();
 // beginning of a superstep, do for each wavefront
 for wt = 1 to Nwaves
 for dt = 1 to Nd // do for each division
 // if processor pid is active in this division
 if pid+(dt × Np) <= wt
 Sc = (pid + (dt-1)×Np) × C; // compute starting column
 Sr = (wt – pid -(dt × Np)) × R; // compute starting row
 for i = Sc to Sc + C
 for j = Sr to Sr + R
 compute(M[i,j]);
 endfor
 endfor
 send_block();//send updated block to other processors
 endif
 endfor
 // end of superstep
 bsp_sync();
 endfor
bsp_end()

Fig. 6. The BSP algorithm for irregular dynamic programming

of the next superstep. Note that for sake of simplicity, the algorithm presented
assumes the dimension of the matrix n is exactly divisible by C and R. The actual
algorithm implemented does not have this assumption.

5 Performance Evaluation

We carried out a set of experiments using the BSP algorithm described in section 4 to
parallelize the Smith-Waterman algorithm with general gap penalty function. The
hardware platform used is an 8-node Dual-Processor Linux cluster with a 1GBit/sec
Myrinet switch used as inter-cluster connection. The BSP algorithm is compiled with
Myrinet MPICH ver 1.2.6 and linked with the BSPonMPI ver 2.0 library.

Table 2 shows the speedup results using the BSP algorithm for irregular dynamic
programming on different number of processors. With different number of processors,
the best speedup (shown in bold) is obtained with different combination of Nd and R.

In the first implementation, each processor is allocated equal number of columns in
each division. When the dimension of the matrix is not exactly divisible by the Nd and
the number of processor, the remainder columns are allocated to the first processor in
the first division. For example, in the case of Np=16 and Nd=50, each processor will
be allocated 3 columns in each division. In the first division, processor P1 will be
allocated the remaining 600 columns in addition to the 3 columns allocated to each
processor! Since processor P1 will be active in division 1 for n/R supersteps, this

158 M.Y.H. Low, W. Liu, and B. Schmidt

allocation will result in computation and communication imbalance during the BSP
computation. Table 3 shows the number of extra columns allocated to processor P1 in
division 1. Except for Np=2, the best speedup numbers from Table 2 clearly matches
the value of Nd that gives the smallest number of extra columns in division 1.

In the second implementation, a more balanced partitioning approach is used. In
this implementation, all processors are allocated k = n/(NpNd) columns in all divisions.
If NpNd does not divide n exactly, in division 1, the remaining n−kNp(Nd−1) columns
are divided again equally among all processors and the remaining columns are
allocated to P1. For example, in the case of Np=16 and Nd=50, each processor will be
allocated 3 columns in each division except division 1. In division 1, each processor

Table 2. Speedup for Nd=50 to 90 and row width R=10 to 40 with Np=2, 4, 8 and 16 processors.
The DP matrix is of size 3000×3000.

 Nd=50 60 70 80 90 Nd=50 60 70 80 90
 Np=2 Np =4
R=10 1.56 1.55 1.65 1.59 1.43 2.39 2.76 2.72 2.60 2.92

20 1.63 1.58 1.62 1.49 1.41 2.93 2.20 2.79 2.60 2.74
30 1.46 1.47 1.55 1.57 1.53 3.15 2.79 2.69 2.54 2.84
40 1.50 1.61 1.40 1.66 1.60 2.43 2.96 2.63 2.60 2.71

 Np =8 Np =16
R=10 4.46 4.56 4.09 3.43 4.71 3.46 3.81 2.55 3.75 4.74

20 3.77 3.98 4.38 3.48 4.68 3.57 4.42 2.96 3.57 6.60
30 4.13 4.94 4.45 3.13 4.92 3.27 5.81 2.70 3.26 6.47
40 4.37 4.77 4.18 3.45 4.63 3.15 6.10 2.49 3.59 5.77

Table 3. Number of extra columns allocated to processor 1 in division 1

Nd=50 60 70 80 90 Nd=50 60 70 80 90
Np =2 Np =4

0 0 60 120 120 0 120 200 120 120
Np =8 Np =16

200 120 200 440 120 600 120 760 440 120

Table 4. Speedup using BSP algorithm for Nd=50 to 90 and row width R = 10 to 40 with Np= 2,
4, 8 and 16 processors using improved partitioning. The DP matrix is of size 3000×3000.

 Nd=50 60 70 80 90 Nd=50 60 70 80 90
 Np =2 Np =4
R=10 1.59 1.58 1.64 1.60 1.60 2.82 3.16 3.04 2.92 3.24

20 1.62 1.56 1.59 1.62 1.64 2.65 2.99 3.09 3.11 3.20
30 1.44 1.64 1.66 1.56 1.71 3.17 2.52 2.67 2.99 2.68
40 1.58 1.61 1.61 1.62 1.66 3.12 2.55 2.97 2.31 3.08

 Np =8 Np =16
R=10 5.98 5.78 5.52 5.23 5.64 9.09 7.40 7.12 8.14 8.33

20 5.62 5.79 5.84 5.15 5.62 7.58 9.36 7.43 8.70 8.19
30 4.96 5.79 5.58 5.05 5.41 6.65 5.40 7.98 6.34 7.68
40 5.45 5.20 5.17 5.18 5.20 8.02 7.68 3.77 3.76 6.59

 A Parallel BSP Algorithm for Irregular Dynamic Programming 159

will be allocated 40 columns each and processor 1 will receive 48 columns. Another
alternative partitioning approach is to allocate the remaining columns equally across
all divisions. This will be investigated in our future implementation.

Table 4 shows the experimental results using the improved partitioning. For Np=16,
there is clearly a substantial improvement in performance and the difference in
performance between different Nd is reduced. The results show that a balanced
partitioning approach is crucial to the performance of the BSP algorithm for irregular
dynamic programming.

6 Conclusions and Future Work

In this paper, we have described a tunable BSP algorithm for irregular DP algorithms
of type 2D/1D. In the BSP algorithm presented in Figure 6, communication is
initiated through the BSP shared memory primitive bsp_put() invoked by each
sender processor. The receiving part of the communication is automatically handled
by the BSPonMPI library and is carried out in bulk at the end of every superstep. This
makes the code simple and easy to understand. Note that such one-sided
communication primitive is also available in MPI 2.0. An MPI algorithm for irregular
DP applications similar to the one presented in [16] that uses matching send and
receive primitive for inter-processor communication can sometime lead to code that is
hard to understand and debug.

The experimental results also show that good partitioning approach is essential to
achieving high parallel efficiency for this BSP algorithm. The corresponding parallel
efficiency for P = 2, 4 and 8 ranges from 75% to 83%. For P = 16, the parallel
efficiency drops to 58%. Table 4 shows that the selection of Nd and R has a more
significant effect on the performance Np=16. This could be due to (1) the relatively
high barrier synchronization cost L for 16 processors; and (2) the scheduling of tasks
between each of the two processors in each node of the Linux cluster.

With improved performance of future versions of the BSPonMPI library, the
effects of barrier synchronization cost will be minimized accordingly. We will
explore different processor mapping and data partitioning strategies to resolve the
issue of scheduling dual-processor nodes in a cluster. Our future work also includes
benchmarking the communication and synchronization cost of different processor
configurations for our system. This will allow us to predict the performance of
different combinations of Nd and R and determine the combination that will yield the
best performance. We will also explore how the BSP algorithm can be adapted to
other type of DP applications such as 2D/2D and 3D/1D. Such applications are
frequently used in the field of computational biology.

References

1. Alves, C.E.R., Cáceres, E.N., Dehne, F.: Parallel dynamic programming for solving the
string editing problem on a CGM/BSP. In: Proc. of the fourteenth annual ACM
symposium on Parallel algorithms and architectures, Winnipeg, Manitoba, Canada (2002)

2. Alves, C.E.R., Cáceres, E.N., Dehne, F., Song, S.W., Parallel, A.: Wavefront Algorithm
for Efficient Biological Sequence Comparison. In: Kumar, V., Gavrilova, M., Tan, C.J.K.,
L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 249–258. Springer, Heidelberg
(2003)

160 M.Y.H. Low, W. Liu, and B. Schmidt

3. Anson, E.L., Myers, G.W.: Realigner: A Program for Refining DNA Sequence Multi-
Alignments. In: 1st Conference on Computational Molecular Biology, pp. 9–16 (1997)

4. Birney, E., Durbin, R.: Dynamite: A Flexible Code Generating Language for Dynamic
Programming Methods. In: Proc. Intelligent Systems for Molecular Biology, pp. 56–64 (1997)

5. Bonorden, O., Juurlink, B., von Otte, I., Rieping, I.: The Paderborn University BSP (PUB)
Library. Parallel Computing 29(2), 187–207 (2003)

6. Bowie, J., Luthy, R., Eisenberg, D.: A Method to Identify Protein Sequences That Fold
Into A Known Three-dimensional Structure. Science 253, 164–170 (1991)

7. Ciressan, C., Sanchez, E., Rajman, M., Chappelier, J.C.: An FPGA-based coprocessor for
the parsing of context-free grammars. In: IEEE Symposium on Field-Programmable
Custom Computing Machines (April 2000)

8. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis-Probabilistic
Models of Protein and Nucleic Acids. Cambridge University Press, Cambridge (1998)

9. Farach, M., Thorup, M.: Optimal evolutionary tree comparison by sparse dynamic
programming. In: 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, November 20-22, 1994, pp. 770–779 (1994)

10. Galil, Z., Park, K.: Dynamic Programming with Convexity, Concavity and Sparsity.
Theoretical Computer Science 92, 49–76 (1992)

11. Gelfand, M.S., Mironov, A.A., Pevzner, P.A.: Gene Recognition Via Spliced Sequence
Alignment. Proc. Natl. Acad. Sci. 93, 9061–9066 (1996)

12. Gelfand, M.S., Roytberg., M.A., Dynamic, A.: Programming Approach for Prediction the
Exon-Intron Structure. Biosystems 30, 173–182 (1993)

13. Hill, J., McColl, B., Stefanescu, D., Goudreau, M., Lang, K., Rao, S., Suel, T., Tsantilas,
T., Bisseling, R.: BSPlib: The BSP programming library. Parallel Computing 24(14),
1947–1980 (1998)

14. Huang, X., Chao, K.M.: A Generalized Global Alignment Algorithm. Bioinformatics 19(2),
228–233 (2003)

15. Kumar, V., Grama, A., Gupa, A., Karypis, G.: Introduction to Parallel Computing.
Cummings Publishing Company Inc., The Benjamin (1994)

16. Liu, W., Schmidt, B.: A Tunable Coarse-Grained Parallel Algorithm for Irregular
Dynamic Programming Applications. In: Bougé, L., Prasanna, V.K. (eds.) HiPC 2004.
LNCS, vol. 3296, Springer, Heidelberg (2004)

17. Mount, D.W.: Bioinformatics-Sequence and Genome Analysis. Cold Spring Harbor
Laboratory Press (2001)

18. Needleman, S.B., Wunsch., C.D., General, A.: Method Applicable to the Search for
Similarities in the Amino Acid Sequence of Two Proteins. J. Mol. Biol. 48, 443–453 (1970)

19. Ney, H.: The Use of a One-Stage Dynamic Programming Algorithm for Connected Word
Recognition. IEEE Trans. on Acoustic, Speech and Signal Processing ASSP-32(2), 263–
271 (1984)

20. Schmidt, B., Schroder, H., Schimmler, M.: Massively Parallel Solutions for Molecular
Sequence Analysis. In: Proc. of IPDPS 2002 (2002)

21. Schmidt, B., Schroder, H., Schimmler, M.: A Hybrid Architecture for Bioinformatics.
Future Generation Computer System 18, 855–862 (2002)

22. Smith, T.F., Waterman, M.S.: Identification of Common Subsequences. Journal of
Molecular Biology 147, 195–197 (1981)

23. Valiant, L.G.: A Bridging Model for Parallel Computation. Communications of the
ACM 33(8), 103–111 (1990)

24. Zuker, M., Stiegler, P.: Optimal Computer Folding of Large RNA Sequences Using
Thermodynamics and Auxiliary Information. Nucleic Acids Research, 9 (1981)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 161–171, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Context-Aware Middleware Support for Component
Based Applications in Pervasive Computing∗

Di Zheng, Yan Jia, Peng Zhou, and Wei-Hong Han

School of Computer Science,
National University of Defence Technology,

Changsha, Hunan, China 410073
dizheng@nudt.edu.cn

Abstract. Ubiquitous computing allows application developers to build a large
and complex distributed system that can transform physical spaces into
computationally active and intelligent environments. Ubiquitous applications
need a middleware that can detect and act upon any context changes created by
the result of any interactions between users, applications, and surrounding
computing environment for applications without users’ interventions. The
context-awareness has become the one of core technologies for application
services in ubiquitous computing environment and been considered as the
indispensable function for ubiquitous computing applications. The need for
high quality context management is evident to the component-based
middleware for it forms the basis of the component adaptation and the
component deployment in the pervasive computing. Therefore, we suggest a
holistic approach where context management is an integral part of a more
comprehensive adaptation enabling middleware, thus enabling the development
and support of context-aware, component-based applications.

Keywords: Pervasive Computing, Context Management, Middleware,
Component.

1 Introduction

With the technical evolution of wireless networks, mobile and sensor technology, the
vision of pervasive computing is becoming a reality. The paradigm for pervasive
computing aims at enabling people to contact anyone at anytime and anywhere in a
convenient way. And it also brings the new challenges to traditional applications
[1, 2]. In this environment, the applications should become context aware for the
reason that the resources (e.g. memory, battery, CPU) of the mobile devices may be
limited and the application execution context (e.g. user location, device screen size)
is variable[3].Therefore, the applications need adapt their behaviors basing on
corresponding context information. The context-awareness has become the one of

∗ This work was funded by the National Grand Fundamental Research 973 Program of China

under Grant No.2005cb321804, the National High-Tech Research and Development Plan of
China under Grant No.2004AA112020.

162 D. Zheng et al.

core technologies for application services in ubiquitous computing environment and
been considered as the indispensable function for ubiquitous computing applications.

At the same time, middleware is a widely used term to denote generic
infrastructure services above operating system and protocol stack. The role of the
middleware is to ease the task of designing, programming and managing distributed
applications by providing a simple, consistent and integrated distributed programming
environment. As the name ”middleware” suggests, it uses the hierarchical model, a
layer of services which sits between applications and operating systems and it can
allow the clients to invoke the operations on distributed objects without concern for
object location, programming language, OS platform, communication protocols and
interconnects, and hardware. Therefore, ubiquitous applications need a middleware
that can detect and act upon any context changes created by the result of any
interactions between users, applications, and surrounding computing environment for
applications without users’ interventions.

In order to provide context-awareness services, the middleware platform
supporting ubiquitous computing should be able to recognize contextual changes so
that applications use contexts for evaluating new environments and finding an
appropriate action by the result of evaluation for these changes. Furthermore, many of
the current applications are component-based and the management of the components
in the pervasive computing environment will be more difficult than ever. However,
the existing component based middleware (e.g., .NET[4], Enterprise JavaBeans [5],
and the CORBA Component Model [6]) do not take charge of the context
information. The OMG Specification of the Deployment and Configuration [7] and
the deployment tool of COACH [8] only support the context that presents the
deployment target environment and do not consider the context in general case.
Therefore, we put forward a context-aware middleware to support QoS-aware context
management, context-aware adaptations and deployment for component-based
pervasive applications in this paper and discussed according mechanisms.

2 Architecture of the Context-Aware Middleware for
Component-Based Pervasive Computing

2.1 Component Based Middleware StarCCM

In terms of middleware, lots of emphasis has been given to enterprise (or server-side)
component technologies, such as Enterprise Java Beans or the CORBA Component
Model. As depicted in figure 1, in previous work we have developed a component
based middleware StarCCM which conform to the CORBA Component Model. The
components execute inside a container, which provides implicit support for
distribution in terms of support for transactions, security, persistence and resource
management. This offers an important separation of concerns in the development of
business applications; i.e. the application programmer can focus on the development
and potential re-use of components to provide the necessary business logic, and a
more “distribution-aware” developer can provide a container with the necessary non-
functional properties. Containers also provide additional functionality including life-
cycle management and component discovery.

 Context-Aware Middleware Support for Component Based Applications 163

The OMG Specification of the Deployment and Configuration presents a data
model for the description of a deployment plan which contains information about
artifacts that are part of the deployment, how to create component instances from
artifacts, where to instantiate them, and information about connections between them.
This specification also presents a data model for the description of the domain into
which applications can be deployed as a set of inter-connected nodes with bridges
routing between inter-connects. However, these data models are still insufficient for
the context of the mobile devices and do not support a description of the rules
achieving the adaptation of the deployment.

Run-time Environment
（CCM Container）

CORBA
Component

CORBA
Component

Transaction Service
Persistence Service
Notification Service
Event Service
Security Service
Fault Tolerance
Load Balancing

CORBA
Component

IDL (3)
Compiler

CIDL
Compiler

PSDL
Compiler

Monitoring
Tools

Deployment
Tools

Component

Framework

Component
repository

Run-time Environment
（CCM Container）

CORBA
Component

CORBA
Component

Transaction Service
Persistence Service
Notification Service
Event Service
Security Service
Fault Tolerance
Load Balancing

CORBA
Component

IDL (3)
Compiler

CIDL
Compiler

PSDL
Compiler

Monitoring
Tools

Deployment
Tools

Component

Framework

Component
repository

Fig. 1. The Architecture of the StarCCM

2.2 Architecture of Component Based Context-Aware Middleware

The overall middleware architecture is shown in the figure 2. The core provides the
fundamental platform-independent services for the management of applications,
components and component instances. The core relies on the basic mechanisms for
instantiation, deployment and communication provided by the distributed computing
environment.

StarCCM Core Component Management provides platform-independent services
for the management of the component based applications, components and component
instances as depicted in the figure 1. It also provides uniform platform-independent
access to the execution platform resources. Furthermore, the middleware offers the
other three core services:

164 D. Zheng et al.

 The Context manager which monitors the user and the execution context
for detection of relevant changes.

 The Adaptation Manager which reasons about the impact of the changes
and decides about appropriate adaptations based on architectural
description of component properties.

 The Configurator which reconfigures the application variant to put the
decided adaptations into effect.

Context Manager is responsible for sensing and capturing context information and
changes, providing access to context information (pull) and notifying context changes
(push) to the Adaptation Manager. The Context Manager is also responsible for
storing user needs and preferences on application services. The Context Manager
should provide flexible context sensing. We recommend the Context Manager to be
developed as a Component Framework where new context sensor components can be
plugged in. The Context Manager may provide advanced reasoning operations on
context. For example, it may aggregate complex context elements from elementary
context elements or derive user needs from context. The Context Manager may also
keep track of context change history.

StarCCM Core
Component Management

Context Manager Adaptation Manager Configurator

Middleware

Resource Sensor

Component based Context-aware Applications

Component

Autonomic Manager

Download
Module

Installation
Module

Decision
ModuleStarCCM Core

Component Management

Context Manager Adaptation Manager Configurator

Middleware

Resource Sensor

Component based Context-aware Applications

Component

Autonomic Manager

Download
Module

Installation
Module

Decision
Module

Fig. 2. Architecture of the Context-Aware Middleware

Adaptation Manager is responsible for reasoning on the impact of context changes
on the application(s), and for planning and selecting the application variant or the
device configuration that best fits the current context. As part of reasoning, the
Adaptation Manager needs to assess the utility of these variants in the current context.
The Adaptation Manager produces dynamically a model of the application variant that

 Context-Aware Middleware Support for Component Based Applications 165

best fits the context. We use the term “configuration template” to denote a model of
an application variant where all variation points have been resolved.

Configurator is responsible for coordinating the initial instantiation of an
application and the reconfiguration of an application or a device. When reconfiguring
an application, the Configurator proceeds according to the configuration template for
the variant selected by the Adaptation Manager. Thus, the Configurator carries out the
adaptations decided by the Adaptation Manager by applying the configuration
template. The Adaptation Manager and the Configurator are tightly coupled as they
operate on a common information element: the configuration template.

Autonomic Manager provides the basis for realizing the dynamic, automatic
binding of software components into concrete functionality as well as the dynamic
replacement of a component with another. The components are downloaded and
installed in the system; thereafter they realize their seamless plug-in to the system.
Another issue lies in the capability to enable the dynamic replacement of one
component with another during runtime. Specifically, the proposed system supplies
the components with the appropriate characteristics that allow them to be properly
initialized and self-configured in order to achieve on-the-fly replacement. The
Download Module, which deals with the orchestration of the software transfer to the
system, and other procedures, i.e. asserting the authenticity of the concerned
component’s source, and integrity checks. The Installation Module, which caters for
post-download steps, as well as the installation and integration of the downloaded
components in the system. The Decision Module, which defines certain actions and
decisions for the configuration of the autonomic system, after evaluating its behavior.
The latter may include QoS requirements, user preferences, business aspects as well
as constraints concerning resources. Based on this information, this module deals with
the selection of the most suitable software components to use in a given configuration
of the autonomic system and triggers the downloading of missing components.

3 QoS-Aware Context Management

3.1 Architecture of the Context Management Infrastructure

As we have discussed above, with the development of the pervasive computing,
dealing with the direct access to context information during the development of a
context-aware[10,11,12] service or application is expensive, error-prone, and the
applications will be complex and non-portable. So we must try to separate the
context-aware infrastructure from the context-aware applications. The context-aware
infrastructure deals with the activities like communicating with context sources,
collecting context data, storing and managing context data, and finally transforming
context data into higher level context and refine them according to the applications
needs. All the actions are transparent to the end users and the applications supported
may be more scalable. The middleware provides abstractions for the fusion of the
sensor information to obtain high-level context information whereas the context-
aware applications are responsible for adaptation and reaction to context changes.
Furthermore, the middleware allows designers to build context-aware applications
and to interact with context-aware services by providing a meta-model for describing

166 D. Zheng et al.

context and adaptation policies and the middleware communicates with the
underlying execution environment to collect context information, processes them to
identify relevant changes, and propagates those changes up to the context-aware
components or adapt the applications to context changes.

As depicted in figure 3, the context manager provides two important interfaces to
clients, the context listener and the context access. The clients can either request to be
notified of certain events using the context listener interface (push), or they can use
the context access interface to explicitly query context information (pull).

The context repository is the main entry point for clients to the context manager.
The primary tasks of the context repository are to maintain a context model, register
and notify listeners, give access to context elements, and keep registry of available
components (sensors, reasoners and storage). In order to get access to a specific
context element, a context client (such as the adaptation manager) either registers as
an observer to that element, or directly accesses it via the context access interface.

The context sensors are components which provide context information to the
context repository (a type of context source). Sensors can be wrappers around
specialized hardware drivers, or legacy code used for monitoring context, such as
battery, memory, and network information. This component is in charge of
discovering, managing sensors and collecting raw data from them through agents. It
shields the heterogeneity of all kinds of sensors and provides universal interfaces and
transmits the raw context data. At the same time, it does some preprocess work, for
example, it will filter the data by certain rules, wipe off redundancies and encapsulate
them in a unified format. This component has to activate and deactivate agents
according to the context to which applications or services are sensitive.

The context interpreter abstracts raw or low level context information into richer or
higher level information according to interpretation rules described by using the

Fig. 3. Architecture of the Context Manager

 Context-Aware Middleware Support for Component Based Applications 167

context meta-model provided by the middleware. Furthermore, this component can
fuse kinds of basic information into more comprehensive elements; for instance, it can
merge temperature, luminance, humidity and other context within the room into a
ROOM context.

The context reasoners can produce one or more context elements using other
context elements as input. This component is used to filter context information to
determine relevant ones, and notify the subscribed component of these context
changes. It is an important task for the context manager to reduce context noise, by
filtering out unnecessary context information, which is not relevant for adapting
applications. The adaptation manager should only be notified when a significant
change occurs in context. Consequently, the context reasoners need to implement
filtering mechanisms. These mechanisms can vary from very simple, rule-based logic,
to more advanced techniques. The reasoners are “plug and play” in order to make it
possible to target reasoners according to different needs and domains. For example,
the applications can provide the context manager with Quality of Context (QoC)
requirements, such as precision and refresh rate.

The context storage keeps the track of historical context information which is often
required in order to determine trends in context data (for example trends in user
behavior, network stability, etc). The need for storage mechanisms was shown in Dey
[9], where context widgets stored all context information they sensed.

3.2 Context Quality Measurements

In the recent years, context-aware computing has extracted a lot of attention from
academic researchers and industrial practitioners. Context-aware systems usually
make use of a large amount of sensed context information which is obtained from
various physical sensors. Over the past decade, many context-aware applications have
been built; however, few of them have been deployed in real life. One of the critical
issues is quality of context; this issue is either ignored or not well addressed in the
existing context-aware systems. The issues on quality of context may vary from type
to type and from application to application; but it has two main factors. First,
inconsistent contexts may often appear in context-aware systems because different
sensors may produce different sensed data values which will lead to the inconsistency
of sensor-based applications. Second, most sensors usually send sensed data to sinks
periodically so that it is very difficult for computers to know what indeed happens in
the time interval between two sensor signals. As a result, quality of context is always
difficult to guarantee.

To measure quality of context, we propose three important parameters: Delay time,
Context correctness probability, and Context consistency probability.

Delay Time. Delay time is the time interval between the time when the situation
happens in real world and the time when the situation is recognized in computers. It is
important to context-aware applications, because outdated contexts will not be useful
to applications.

Context Correctness Probability. Due to the limitation of sensor technology, the
accuracy of sensed data is difficult to guarantee. However, if we measure contexts
through random sampling in a rather long period with recording the correct rate (the

168 D. Zheng et al.

probability that contexts in computers match situations in real world), we are able to
provide quantity measurement for quality of context in a context-aware system.

Context Consistency Probability. Incorrect contexts often lead to context
inconsistency. Context Consistency Probability measures the consistency rate of
context information (the probability that contexts in computers are consistent), and it
also could be obtained through long period random sampling.

A well-designed context-aware system should have low delay time, high context
correctness probability and high context consistency probability. The three
measurements have correlations with each other: outdated contexts with large delay
time are usually incorrect and conflicting with current context information; and
inconsistent contexts usually contain incorrect ones.

3.3 QoS-Aware Context Processing Procedure

We use logic inference to process contexts in our system. The detailed context
processing procedure is shown in Figure 4.

The first step is the raw context gathering, in which raw contexts from various
sensor sources are collected during a fixed short period. The second step is the
inconsistency resolution. We resolve inconsistency among different raw contexts in
this step because inconsistent raw contexts may lead to high-level inconsistent
contexts that are more difficult to handle. We process raw contexts in a batch by batch
manner instead of a piece by piece manner. Inconsistency in a batch of raw contexts

Sensors

Raw Context
Gathering

Inconsistency
Resolution

Ontology

Raw Level
Refactoring

Context Interpreter

Rule Based
Reasoning

Rules

Otology Based
Reasoning

Ontology

Context Reasoner

Updating Context
Repository

Context
Repository

Triggering
Components

Components

Sensors

Raw Context
Gathering

Inconsistency
Resolution

Ontology

Raw Level
Refactoring

Context Interpreter

Rule Based
Reasoning

Rules

Otology Based
Reasoning

Ontology

Context Reasoner

Updating Context
Repository

Context
Repository

Triggering
Components

Components

Fig. 4. Qos-aware Context Processing Procedure

 Context-Aware Middleware Support for Component Based Applications 169

should be cleaned prior to context reasoning so that the inconsistency of high-level
contexts can be mitigated in certain degree. The third step is the raw level refactoring,
in which we update the context repository with raw contexts, check the dependency
graphs and refactor the ER graphs. Outdated or incorrect high-level contexts will be
deleted in this step. If they are not removed, they will result in serious inconsistency
among contexts after reasoning. Then, we apply rule-based reasoning to generate
high-level contexts. The user-defined rules are of generic rules without negation and
“or” operation. The two reasoners are configured as “traceable” in order to facilitate
updating dependency graphs in context repository, though more memory is required.
After that, we use inferred high-level contexts to update the context repository and
notify components which register context triggers.

4 Policy Based Context-Aware Component Adaptations

As we have discussed before, the Autonomic Manager use the rules stored in the
Adaptation Manager to complete the adaptations. A policy rule is defined as a rule
governing the choices in behaviour of a managed system. Management action policies
are defined as persistent, positive or negative, imperatives or authorities for a set of
policy subjects to achieve goals or actions on a set of target objects. Informally, a
policy rule can be regarded as an instruction or authority for a manager to execute
actions on a managed target to achieve an objective or execute a change. An
adaptation policy rule is usually made up of a trigger for the rule, which is often fired
as a result of a monitoring operation, an action to perform in response to the trigger
and a target for the action, which describes which managed part of the system to
enforce the rule upon. Many policies will also contain some restrictions or guards
confining the rule action to appropriate occasions.

Many traditional adaptable systems are composed of a single adaptation manager
that is responsible for the entire adaptation process; i.e. monitoring, adaptation
selection intelligence and performing the actual adaptation. Since the intelligence to
select appropriate adaptations and the mechanism to perform these adaptations in
embedded directly within the Adaptation Manager, this type of system becomes
inflexible and inappropriate for general use.

By decoupling the adaptation mechanism from the Adaptation Manager, and
removing the intelligence mechanism to select or trigger adaptation, the Adaptation
Manager becomes more scalable and flexible. Since the user and the application are
often most enabled to make informed choices, which are based on high-level
contextual or semantic information about how a system should adapt, then it is logical
that the user and the application help drive the adaptation of the system.

Policy specifications maintain a very clean separation of concerns between the
adaptations available, the decision process that determines when these adaptations are
performed and the adaptation mechanism itself. Policy specification documents are
persistent text-based declarative representations of policy rules, where the document
can usually be edited then interpreted to support the addition of new rules. Policy
declaration files can be read, understood and generated by users, programmers and
applications. In order for an adaptation to occur, the context changes that may trigger
some adaptation must be monitored. The Context Manager should then leverage all

170 D. Zheng et al.

available context knowledge and intelligence to determine if some adaptation is
required. A separate adaptation mechanism, controlled by the Adaptation Manager
can then perform this triggered adaptation as a response to an adaptation request.

5 Conclusions

Ubiquitous computing allows application developers to build a large and complex
distributed system that can transform physical spaces into computationally active and
intelligent environments. Ubiquitous applications need a middleware that can detect
and act upon any context changes created by the result of any interactions between
users, applications, and surrounding computing environment for applications without
users’ interventions. The context-awareness has become the one of core technologies
for application services in ubiquitous computing environment and been considered as
the indispensable function for ubiquitous computing applications. The need for high
quality context management is evident to the component-based middleware for it
forms the basis of the component adaptation and the component deployment in the
pervasive computing. Therefore, we suggest a holistic approach where context
management is an integral part of a more comprehensive adaptation enabling
middleware, thus enabling the development and support of context-aware,
component-based applications. We have proved that such an approach is feasible, by
developing and evaluating several different applications. Experimenting with the
approach, we have identified ontologies and service oriented architectures as relevant
approaches in relation to adaptation enabling middleware.

References

1. Weiser, M.: Some computer science problems in ubiquitous computing, Communications
of the ACM (July 1993)

2. Roy, W., Trevor, P.: System Challenges for Ubiquitous & Pervasive Computing. In:
Proceedings of the 27th International Conference on Software Engineering (May 2005)

3. Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Computing
Journal 5, 4–7 (2001)

4. Microsoft Corporation, An Introduction to Microsoft.NET, White Paper (2001)
5. Sun Microsystems. Entreprise JavaBeans Specification 2.0 (2002)
6. OMG CORBA Components Version 3.0, An adopted Specification of the Object

Management Group (June 2002)
7. OMG. Specification for Deployment and Configuration of Component Based Distributed

Applications (March 2003)
8. IST. COACH WP2: Specification of the Deployment and Configuration, D2.4 (July 2003)
9. Dey, A.: Providing Architectural Support for Building Context-Aware Applications, Ph.D.

Thesis Dissertation, College of Computing, Georgia Tech (December 2000)
10. Dey, A., Abowd, G.D.: Towards a Better Understanding of Context and Context

Awareness. Technical Report, GITGVU-99-22, Georgia Institute of Technology (1999)
11. Schmidt, A.: Ubiquitous Computing- Computing in Context, Ph.D. Thesis, Lancaster

University, UK (2002)

 Context-Aware Middleware Support for Component Based Applications 171

12. Chen, G., Kotz, K.: A survey of context-aware mobile computing research. Department of
Computer Science, Dartmouth College, Dartmouth, Technical report TR2000-381 (2000)

13. CORBA Components Version 3.0:An adopted Specification of the Object Management
Group, OMG (June 2002)

14. Bruneton, T.C.E., Stefani, J.: The fractal component model (2004)
15. OMG, Specification for Deployment and Configuration of Component Based Distributed

Applications (March 2003)
16. Information technology - open distributed computing - odp trading function, ISO/IEC

JTC1/SC21.59 Draft, ITU-TS-SG 7 Q16 report (November 1993)
17. Mikalsen, M., Floch, J., Paspallis, N., Papadopoulos, G.A., Ruiz, P.A.: Putting Context in

Context: The Role and Design of Context Management in a Mobility and Adaptation
Enabling Middleware. In: MDM 2006 (2006)

18. Ayed, D., Taconet, C., Bernard, G., Berbers, Y.: An Adaptation Methodology for the
Deployment of Mobile Component-based Applications. IEEE Computer Society Press,
Los Alamitos (2006)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 172–179, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Design of High-Speed String Matching Based on
Servos’ Array

Wang Jie1, Ji Zhen-zhou2, and Hu Ming-zeng3

1 Department of Computer Science and Technology,Harbin Institute of
Technology, Harbin 150001, P.R. China

wj@pact518.hit.edu.cn
2 Department of Computer Science and Technology,Harbin Institute of

Technology, Harbin 150001, P.R. China
jzz@pact518.hit.edu.cn

3 Department of Computer Science and Technology,Harbin Institute of
Technology, Harbin 150001, P.R. China

mzh@hit.edu.cn

Abstract. String matching is a very important component of many network
applications. Persistent increase of network bandwidth needs high performance
string matching algorithms. Traditional software algorithms cannot fulfill
requirement of content filter in high-speed network. Design of high-speed string
matching based on servos’ array in FPGA is presented by dynamic adjusting
servos to obtain powerful parallel process performance. Through simulations and
implemented on FPGA, feasibility and rationality are validated. With improving
performance of automata algorithm, structure of storage and filter level, it can be
improved further.

1 Introduction

The bandwidth of high-performance network interfaces has often exceeded the
capabilities of workstations to process network data [1]. Content analysis of packets
transmitting is emphasized more and more. So a good design of high-speed string
matching is very important for high-speed network devices, such as gigabit routers,
gigabit firewalls and so on, to reach approximate linear transmission with mirror delay
especially. String matching is a very important component of many problems,
including text editing, data retrieval, letter manipulation, WWW searching engine,
computer virus characteristic codes matching, and data compression [2].

Algorithms for string matching have been researched and all kinds of improved
measures have been employed to enhance matching performance or reduce complexity.
Especially multi-string matching algorithms applied effectually for content fitter.
Along with increase of bandwidth, traditional software method cannot adapt to
high-speed network content filter. In a popular NIDS, such as Snort[3], 70% of total
execution time and 80% of instructions are for string matching routines. So hardware
methods for string matching have been focus on content filter.

 Design of High-Speed String Matching Based on Servos’ Array 173

2 Algorithms for String Matching

There are many algorithms for string matching that have been applied widely. These
algorithms can be classified two kinds: algorithm based on jump table such as BM [4].
algorithm based on automata such as AC [5]. Some improved algorithms are also
presented continuously.

These algorithms are usually implemented based on instructions rested with
performance of CPU and operating system, but unfortunately it cannot generally
achieve speed requirements. If implemented based on FPGA, it can be designed neatly
according to characteristics of algorithms and suitable for high-speed network.

Related to jump table, automata is prone to implement based on FPGA. Automata
will be decided if pattern aggregation is assured. Recently the research of multi-DFAs
has been regarded as an effectual approach to implement high-speed string matching
[6]. but it usually works on CAMs and SRAMs with higher cost.

With increase of size of Block RAMs in FPGA, hardware method of string matching
and parallel strategies can easily implemented on FGPA with smaller extern SRAMs.

This paper provides a structure of servos’ array on FPGA without CAMs which is
suitable for high speed string matching. Initialization of automata will not be discussed
because it can be produced by software programs and downloaded with initialization of
FPGA.

3 Servos' Array on FPGA

A servo is made of an automata and a double data buffer. The size of automata is
decided by number of states when data width if fixed. So the size of one servo is
alterable with number of strings. But the system resource if fixed such as inner RAMs
and gates of FPGA, we provide a structure of servos’ array to furthest utilize fixed
system resource.

3.1 Double Data Buffer

The function of data buffer for servos’ array:

 (1) Provide data stream for servos;
 (2) Control buffer of input data and output data.

Fig.1 shows the nibble stream of data buffer (we suppose data width is 4-bit). Data
buffer not only deals with input data and output, but also provide nibble stream for
servos. But when nibble stream starts outputting, input data and output data for extern
unit need stop. So the two functions work serially.

In graphics process, double data buffer is applied to avoid twinkle during screen
switch. We also design double data buffer for servos’ array: one is foreground and the
other is background. Double data buffer can decrease or dispel data prepare time, and
can also avoid buffer competition for different units.

174 W. Jie, J. Zhen-zhou, and H. Ming-zeng

Input data (4N)

Output data (4N)

Free unit

Nibbles for servos

Fig. 1. The nibble stream of data buffer

Foreground buffer Background buffer

Input data (4N)

Output data (4N)

Free unit Free unit
Foreground-background switch

Nibble stream for servos

Fig. 2. The nibble stream of double data buffer

We denote that foreground buffer provides nibble stream and forbids data in-out,
and background buffer deals with data in-out and prepares data. Generally foreground
buffer is faster than background buffer. So when foreground buffer is done, buffer
switch rapidly processes. Then foreground buffer changes background buffer and
background buffer does contrary. Thus servos need not wait for nibble prepare, and
eliminate effectually “data hunger” (servos wait nibble stream input). Double data
buffer is showed as fig.2.

3.2 Servos’ Array

Suppose the size of total resource is T, and the size of one servo is B, thus the number of
servos is

n= T/B⎢ ⎥⎣ ⎦ (1)

 Design of High-Speed String Matching Based on Servos’ Array 175

All servos can work in parallel mode, so it can improve throughput greatly. Suppose
the maximum of states of a servo is Nmax ,we can always find a modern set which
number of states is Nmax+1, single servo cannot satisfy whether its size is. Thus we can
combine appropriate servos to implement sting mach that is servos’ array.

If number of states of a servo is Nstandard and resource of a servo is Rstandard, and total
resource of system is Rtotal, then maximum of servos is

total standardn= R /R⎢ ⎥⎣ ⎦ (2)

Suppose Pi is a modern set, and corresponding automata is S0. If S0 needs states Np ,
the number of servos ns is

s p standardn = N /N⎡ ⎤⎢ ⎥ (3)

Due to formula (2) and (3), real number of parallel servos is

total sn = n/n⎢ ⎥⎣ ⎦ (4)

All servos need work in phase, and simply combine. We select one serve as master
servo , and the others are slave servos. We can mark servos as 0, 1, … , n-1, and set a
n-bit register MODE to tag a servos is master or slave. Suppose 1 means master and 0
means slave, the MODEi corresponding to Pi is showed as fig.3.

1 110...0

0 ns-11 ns

...0 0

2ns-12ns

... 1 0...0

(ntotal-1 *ns (ntotal-1 *ns-1

...

Fig. 3. Mode Register

Fig. 4. Mode of Servos’ Array

176 W. Jie, J. Zhen-zhou, and H. Ming-zeng

It can be find in fig.1 that it is a master servo every ns servos. The value of mode
register denotes a work mode, so the number of possible modes of n servos is

2m= log n 1+⎢ ⎥⎣ ⎦ (5)

The higher parallel degree is, the smaller single servo is. The mode of servos’ array
can be showed as fig.4.

For example, we set 8 servos for servos’ array, and suppose the maximum of state is
256, then all state of system is 256 * 8 = 2048. Encode a state in 11-bit, for string set P
= { he, she, his, hers},the servos’ array is configured as followed in fig.5(ns = 1).

MODE

States in rams

Fig. 5. Configuration of Servos’ Array

Fig. 6 Simulation Result of Writing to Background Buffer

 Design of High-Speed String Matching Based on Servos’ Array 177

4 Experiments

We simulated and implemented above scheme on Xilinx xc2v3000-4bg728.
Fig.6 shows the simulation result of writing to background buffer and fig.6 shows

the simulation result of nibble stream from front buffer(by ModeiSim).

Fig. 7. Simulation Result of Nibble Stream from Foreground Buffer

Fig.8 shows the simulation result of writing state data into one servo of servos’ array
and fig.9 shows the simulation result of servo which is filtering.

Fig. 8. Simulation Result of Writing State Data into Servos’Array

Fig. 9. Simulation Result of Servo which is Filtering

178 W. Jie, J. Zhen-zhou, and H. Ming-zeng

By above simulations, 8 servos can work successfully. Now correlative resource
report of filter unit is given in table 1(by Synplify). This design can applied for giga-bit
Ethernet data filter (string set is P). The worst time complexity intricacy is O(n), n is
length of packet. Because initialization of automata is done with initialization of FPGA,
we only need consider time of filter. If it is applied for gigabit stateful-inspect firewall,
the max extra delay is 12μs, that is lower than national congeneric products(ms level).

 Table 1. Resource Report of Filter Unit

Filter Part Xc2v3000bg728-
4

Filter | CLK-Estimated Frequency 141.3MHz
Filter | CLK-Requested Frequency 125.0MHz
Filter Register bit(Non I/O) 1559 (5%)
Filter Block Rams 20 of 96 (25%)
Filter Total Luts 1734 (6%)

5 Modifications for Gigabit Ethernet

Based above precept, we can enhance matching performance further to apply for
gigabit Ethernet data filter.

5.1 Data Width

In chapter 3, we suppose data width is 4-bit that can decrease memory space. Along
with improvement of data width, memory space will increase exponentially. If data
width plus 1 bit when number of states is fixed, memory space will expand 4 times
under perfect conditions.

Excellences of nibble input include:

(1) Higher throughput;
(2) Easily implemented only by inner block rams in FPGA;

 (3) Suitable for MAC of 10/100M Ethernet.

In gigabit Ethernet, efficiency is lower by nibble input unless improve servos
frequency. With high performance FPGA coming into the market, this method will be
feasible. At the same time, high performance SRAMs such as ZBT Ram can work
similarly with block rams that sustains bigger memory space.

5.2 Filter Level

Generally content filter works as independent unit. In stateful inspect firewall, content
filter works after MAC process, packet filter and stateful inspect and so on. So for
storage-transmit mechanism, content filter increases delays of packet transmission.

If filter level is on MAC process, no extra delays will be produced. When byte input
for servos’ array is enabled, content filter works with MAC process at the same time.

 Design of High-Speed String Matching Based on Servos’ Array 179

6 Summary

This paper presents a design of high-speed string matching based on servos’ array in
FGPA by dynamic adjusting servos to obtain powerful parallel process performance
than software algorithms. Through simulations and implemented on FPGA, we validate
feasibility and rationality.

Farther study will focus on improving performance of automata algorithm, structure
of storage and filter level.

References

1. Bellows, P., Flid, J., Lehman, T.: GRIP: A Reconfigurable Architecture for Host-Based
Gigabit-Rate Packet Processing. In: FCCM 2002 (2002)

2. Iyer, S., Awadallah, A., McKeown, N.: Analysis of a Packet Switchwith Memories Running
Slower than the Line Rate. In: Proc. IEEE INFOCOM, pp. 529–537 (March 2000)

3. Antonatos, S., Anagnostakis, K.G., Markatos, E.P.: Generating Realistic Workloads for
Network Intrusion Detection Systems. In: The Proc. ACM Workshop on Software and
Performance, Redwood Shores, CA (2004)

4. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the ACM 20,
762–772 (1977)

5. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search.
Commun. ACM 18, 333–340 (1975)

6. Lu, H., Zheng, K., Liu, B.: A Memory-Efficient Parallel String Matching Architecture for
High-Speed Intrusion Detection. IEEE Journal on Selected areas in Communications 24(10),
1793–1804 (2006)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 180–189, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Efficient Construction of Node Disjoint Paths
in OTIS Networks

Weidong Chen1,2, Wenjun Xiao1, and Behrooz Parhami3

1 Department of Computer Science, South China University of Technology,
Guangzhou 510641, China

2 Department of Computer Science, South China Normal University,
Guangzhou 510631, China

3 Department of Electrical and Computer Engineering, University of California, Santa Barbara,
CA 93106-9560, USA

chwd2007@hotmail.com

Abstract. We investigate the problem of constructing the maximal number of
node disjoint paths between two distinct nodes in Swapped/OTIS networks. A
general construction of node disjoint paths in any OTIS network with a
connected basis network is presented, which is independent of any construction
of node disjoint paths in its basis network. This general construction is effective
and efficient, which can obtain desirable node disjoint paths of length at most
D+4 in O(Δ2+Δf(N1/2)) time if the basis network of size n has a shortest routing
algorithm of time complexity O(f(n)), where D, Δ and N are, respectively, the
diameter, the degree and the size of the OTIS network. Further, for OTIS
networks with maximally fault tolerant basis networks, we give an improved
version of a conventional construction of node disjoint paths by incorporating the
above general construction. Finally, we show the effectiveness and efficiency of
these constructions applied to OTIS-Hypercubes.

1 Introduction

Optical transpose interconnection system (OTIS) networks are interesting
interconnection networks for parallel computation and communication. An OTIS
network with n2 nodes is a two-level swapped architecture built of n copies of an
n-node basis network that constitute its clusters. A simple rule for intercluster
connectivity (node j in cluster i connected to node i in cluster j, for all i ≠ j) leads to
regularity, modularity, packageability, fault tolerance, and algorithmic efficiency of the
resulting networks. The OTIS architecture has received considerable attention in recent
years and has a special place among real-world architectures for parallel and distributed
systems[1,11]. A number of algorithms have been developed for routing,
selection/sorting[8,10], numerical analysis[5], matrix multiplication[14], and image
processing[13].

Finding node disjoint paths or parallel paths in interconnection networks is one of
the fundamental issues in design and implementation of parallel and distributed

 An Efficient Construction of Node Disjoint Paths in OTIS Networks 181

computing systems[4,16]. Parallel paths are useful in speeding up the transfer of large
amounts of data between nodes and in providing alternative routes in cases of node or
link failures [6]. From Menger’s Theorem [15], there exist at least k parallel paths
between any two distinct nodes in a network of connectivity k. In a general network, it
is non-trivial to identify the parallel paths guaranteed by a given level of connectivity.
For levels of connectivity greater than two, the identification of parallel paths is
generally done using maximum flow algorithms which take O(N3) time, where N is the
size of the network [16]. However, for the interconnection networks with special
structures such as Hypercube networks, OTIS networks, and so on, flow techniques
taking O(N3) time may be far from efficient.

Although some studies are related to general properties, including fault tolerance, of
OTIS networks [3,9,17,18], so far all research work in this direction is only confined to
OTIS networks with basis networks being maximally fault tolerant, and those proposed
constructions of parallel paths in these OTIS networks are closely dependent upon the
corresponding constructions in their basis networks [2,3,9].

In this paper, in a more general sense, we investigate the construction of the maximal
number of parallel paths between two distinct nodes in any OTIS network whose basis
network is connected. We propose an effective and efficient general construction of
parallel paths in the OTIS network, which is independent of any construction of parallel
paths in its basis network. This general construction can obtain desirable parallel paths
of length at most D+4 in O(Δ2+Δf(N1/2)) time if the basis network of size n has a shortest
routing algorithm of time complexity O(f(n)), where D, Δ and N are, respectively, the
diameter, the maximal node degree and the size of the OTIS network. Further, in the
special case of a maximally fault tolerant basis network, we make an improvement over
a conventional construction of parallel paths in such an OTIS network. Finally, the
effectiveness and efficiency of these construction algorithms applied to
OTIS-Hypercube are shown.

In the next section we describe OTIS networks. Section 3 presents the general
construction of parallel paths in an OTIS network with a connected basis network.
Section 4 gives the improved version of the conventional construction of parallel paths
in those OTIS networks whose basis networks possess the maximally fault tolerant
property. The application of these construction algorithms to OTIS-Hypercubes is
discussed in Section 5. The conclusion is made in Section 6.

2 Preliminaries

Let G be a simple undirected graph (graph, for short) with vertex (node) set V(G) and
edge (link) set E(G). For v ∈ V(G), we denote by degG(v) the degree of v in G, by NG(v)
= {u ∈ V | (v, u) ∈ E(G)} the open neighborhood of v, and by NG[v] = NG(v) ∪ {v} its
closed neighborhood. The maximum degree among the vertices of G is denoted by
Δ(G) and the minimum degree by δ(G). The distance of between two nodes u and v,
denoted by dG(u,v), is the length of a shortest path between u and v. The diameter D(G)
of G is the maximal distance between any two nodes of G. Two paths from u to v are

182 W. Chen, W. Xiao, and B. Parhami

node disjoint (also called parallel paths) if they have no common internal node. The
connectivity of G is the minimal number of nodes in G whose removal can cause G
disconnected or trivial. A graph G of connectivity δ(G) is maximally fault tolerant.
Other notation and terminology used in this paper follow those in [15]. In the remainder
of this paper, we use the terms graph and network interchangeably.

Definition 1. OTIS (Swapped) network [7,17]: The OTIS (swapped) network OTIS-Ω,
derived from the graph Ω, is a graph with vertex set V(OTIS-Ω) = {〈g, p〉 | g, p ∈ V(G)}
and edge set E(OTIS-Ω) = {(〈g, p1〉, 〈g, p2〉) | g ∈V(G), (p1, p2) ∈ E(G)} ∪ {(〈g, p〉, 〈p,
g〉) | g, p ∈V(G) and g ≠p}.

In OTIS-Ω, the graph Ω is called the basis (factor) graph or network. We refer to g as
the cluster address of node 〈g, p〉 and p as its processor address. In an OTIS network, an
intercluster (optical) link connects processor p of cluster g to processor g of cluster p for
all p ≠ g. No intercluster link is incident to processor g of cluster g. An example of
OTIS networks is shown in Fig. 1.

〈3,2〉

〈3,0〉

〈3,3〉

〈3,1〉

〈2,2〉

〈2,0〉

〈2,3〉

〈2,1〉

〈1,2〉

〈1,0〉

〈1,3〉

〈1,1〉

〈0,2〉

〈0,0〉

〈0,3〉

〈0,1〉

Fig. 1. An OTIS network with the basis graph C4 , a cycle of size 4

The following basis topological metrics of OTIS-Ω as functions of the corresponding
metrics of Ω are derived from Definition 1 and similar expressions in [3,9]:

• N=n2, where N=|V(OTIS-Ω)|, n=|V(Ω)|.
• degOTIS-Ω(〈g, g〉)= degΩ(g), and degOTIS-Ω(〈g, p〉)=degΩ(p)+1 for g≠p.
• dOTIS-Ω(〈g, p1〉,〈g, p2〉)=dΩ(p1, p2), and for g1≠g2,

dOTIS-Ω(〈g1, p1〉,〈g2, p2〉)=min{dΩ(p1, g2)+dΩ(g1, p2)+1, dΩ(p1, p2)+dΩ(g1, g2)+2}.
• Δ(OTIS-Ω)=Δ(Ω)+1, and δ(OTIS-Ω)=δ(Ω).
• D(OTIS-Ω)= 2D(Ω)+1.

The following results on parallel paths of an OTIS network have been given in [3].

Theorem 1. (Day and Al-Ayyoub [3]). Let the graph Ω be connected.
(1) If g1 ≠ g2 and degΩ(p) = d, then there are d parallel paths between nodes 〈g1, p〉

and 〈g2, p〉 in OTIS-Ω.
(2) If 〈g1, p1〉 and 〈g2, p2〉 are two nodes in OTIS-Ω such that p1 ≠ p2 and such that

there are d parallel paths between p1 and p2 in Ω, then there are d parallel paths
between 〈g1, p1〉 and 〈g2, p2〉 in OTIS-Ω.

 An Efficient Construction of Node Disjoint Paths in OTIS Networks 183

3 Constructing Parallel Paths in OTIS Networks with Connected
Basis Graphs

In the section, we give an effective and efficient general algorithm for constructing
parallel paths between two distinct nodes 〈g1, p1〉 and 〈g2, p2〉 in an OTIS network with a
connected basis graph Ω.

3.1 Basis Idea

We first notice the following basis fact, which is easily derived from the rule for
intercluster connectivity in OTIS networks: In cluster g1 (g2, respectively), every node
of NΩ[p1] (NΩ[p2], respectively) is linked to one different cluster by an optical link if the
node is not 〈g1, g1〉 (〈g2, g2〉, respectively). Based on this fact, we construct parallel paths
between src=〈g1, p1〉 and dst=〈g2, p2〉 as follows. Each of these paths begins with the
source node src, immediately leaves cluster g1 from a neighbor of src in cluster g1 along
an optical link, and then goes through successively at most two mediate clusters, until
finally enters cluster g2 at a neighbor of dst in cluster g2 along an optical link prior to
arriving at the destination node dst. If these mediate clusters are selected properly so
that each mediate cluster can be passed through only by one of these paths, we will
obtain desired parallel paths. See Fig. 2.

dst

NΩ[p2]

src

NΩ[p1]

Fig. 2. An illustration of constructing parallel paths between src and dst in OTIS-Ω with Ω being
connected for the case of g1≠g2 and g1∉NΩ[p1] and g2∉NΩ[p2]

3.2 Algorithm

For the convenience of describing the algorithm, we need introduce some additional
notations. We denote by PathΩ(p, q) a shortest path from p to q in Ω, and by 〈g,
PathΩ(p, q)〉 a shortest path from 〈g, p〉 to 〈g, q〉 in OTIS-Ω that is completely contained
in cluster g. Let Y and Z be two disjoint subsets of V(Ω). A match M from Y to Z is a
binary relation from Y to Z such that |M|=min{|Y|, |Z|}, and such that (y, z)≠(y’, z’) if and
only if both y≠ y’ and z≠ z’ for all (y, z), (y’, z’)∈M. Obviously, a match M from Y to Z
can be constructed in O(Δ2(Ω)) time if Ω is represented by adjacency lists. In addition,
we assume that a shortest routing algorithm of time complexity O(f(n)) in Ω is given,
where n is the size of Ω.

184 W. Chen, W. Xiao, and B. Parhami

Algorithm 1
Case I (g1=g2=g):
Step 1.1: Construct a path as follows based on a shortest path from p1 to p2 in Ω:
〈g, PathΩ(p1, p2)〉, where PathΩ(p1, p2)=p1→PathΩ(y0, z0)→p2 for some y0 ∈NΩ[p1]

and some z0∈NΩ[p2].
Step 1.2: Let S0=NΩ[p1]∩NΩ[p2]−{y0, z0}. For every x∈ S0, construct a path as

follows: 〈g, p1〉→〈g, x〉→〈g, p2〉.
Step 1.3: Let S1=NΩ[p1]−S0−{y0, g}, S2= NΩ[p2]−S0−{z0, g}. Construct a match M

between S1 and S2. Then, for each (y, z)∈M, construct a path as follows:
〈g, p1〉→〈g, y〉→〈y, PathΩ(g, z)〉→ 〈z, PathΩ(y, g)〉 →〈g, z〉→〈g, p2〉.
Case II (g1≠g2):
Step 2.1: Construct a path as follows based on a shortest path from p1 to g2 and a

shortest path from g1 to p2 in Ω: 〈g1,PathΩ(p1, g2)〉→〈g2, PathΩ(g1, p2)〉, where PathΩ(p1,
g2)=p1→PathΩ(y0, g2) for some y0 ∈NΩ[p1] and PathΩ(g1, p2)=PathΩ(g1, z0)→p2 for some
z0∈NΩ[p2].

Step 2.2: Let S0=NΩ[p1]∩NΩ[p2]−{g1,g2,y0,z0}. For every x∈S0, construct a path as
follows: 〈g1, p1〉→〈g1, x〉→〈x, PathΩ(g1, g2〉 →〈g2, x〉→〈g2, p2〉.

Step 2.3: Let S1=NΩ[p1]−S0−{g1, y0} and S2=NΩ[p2]−S0−{g2, z0}. Construct a match
M between S1 and S2. Then, for each (y, z)∈M, construct a path as follows:

〈g1, p1〉→〈g1, y〉→〈y, PathΩ(g1, z)〉→ 〈z, PathΩ(y, g2〉 →〈g2, z〉→〈g2, p2〉.

3.3 Performance Analysis

The correctness of Algorithm 1 is stated in Theorem 2.

Theorem 2. Let Ω be a connected graph, 〈g1, p1〉 and 〈g2, p2〉 be two distinct nodes in
OTIS-Ω. Then, Algorithm 1 constructs at least d parallel paths between these two
nodes in OTIS-Ω, where d = min{degΩ(p1), degΩ(p2)}.

Proof. First, it is straightforward to check that the number of paths constructed by the
algorithm is at least d. Secondly, in order to show all these paths are pairwise node
disjoint, we note the following two facts: (i) no cluster, except for g1 and g2 (g in the
case of g1=g2=g), is visited by more than one of these paths because S0, S1 and S2 are
disjoint sets, and (ii) all the segments of these paths contained in clusters g1 and g2 (g in
the case of g1=g2=g) are pairwise node disjoint. In any case, the pairwise node disjoint
property of the constructed paths is easily derived based on the aforementioned two
facts, so the details of justifications are omitted.

Recall that degOTIS-Ω(〈g, g〉)=degΩ(g), and degOTIS-Ω(〈g, p〉)=degΩ(p)+1 for g≠p. From
Theorem 2, we know that the number of parallel paths constructed by Algorithm 1
attains the maximum or less one than the maximum.

The performance of Algorithm 1 is given in the following theorem.

Theorem 3. Let n and N be, respectively, the size of Ω and the size of OTIS-Ω,
Δ=Δ(OTIS-Ω), d=dOTIS-Ω(〈g1,p1〉,〈g2,p2〉), and l be the length of any path constructed by
Algorithm 1. Then,

(1) the time complexity of Algorithm 1 is O(Δ2+Δf(N1/2)),

 An Efficient Construction of Node Disjoint Paths in OTIS Networks 185

(2) l≤D(OTIS-Ω)+4, and
(3) if g1≠g2 and d=dΩ(p1, g2)+dΩ(g1, p2)+1, then d≤l≤d+6 holds for all the

constructed paths, with at most |S0| exceptions in Step 2.2.

Proof. (1) We first prove that the time complexity of the algorithm is O(Δ2+Δf(N1/2)).
On the one hand, generating the sets S0, S1 and S2 requires O(Δ2) time, and then
obtaining the match M requires O(Δ2) time. Based on these sets, on the other hand,
constructing all required paths takes O(Δf(n)) time since at most Δ parallel paths need to
be constructed. So, the total running time of the algorithm is Ο(Δ2+Δf(n)), namely,
O(Δ2+Δf(N1/2)) due to N=n2.

(2) In the algorithm, obviously, any path contains at most two sub-paths like
PathΩ(g,p) for some g, p∈V(Ω), at most three optical links, and at most two other links
(a link from 〈g1,p1〉 to its a neighbor in cluster g1, a link from 〈g2,p2〉 to its a neighbor in
cluster g2). Considering PathΩ(x,y)≤D(Ω) for all x, y∈V(Ω), we have
l≤2D(Ω)+5=D(OTIS-Ω)+4.

(3) In the case of g1≠g2, we consider the length l of any path constructed in Step 2.1
and Step 2.3. When d= dΩ(p1, g2)+ dΩ(g1, p2)+1, we have l=dΩ(p1, g2)+ dΩ(g1, p2)+1=d
for the path constructed in Step 2.1, and l≤dΩ(y,g2)+dΩ(g1,z)+5≤dΩ(p1,g2)+dΩ(g1,
p2)+7=d+6 for the path constructed in Step 2.3. Note that the last inequation is based on
y∈NΩ[p1] and z∈NΩ[p2]. Thus, we have d≤l≤d+6, as claimed.

Theorem 2 means there exist at least δ(OTIS-Ω) parallel paths between any two distinct
nodes in OTIS-Ω, since δ(OTIS-Ω)=δ(Ω). From Menger’s Theorem[15], we can derive
that OTIS-Ω is maximally fault tolerant. From Theorem 3(2), moreover, we can obtain
an upper bound of the fault diameter of OTIS-Ω, the diameter of the resulting graph
from OTIS-Ω by removing at most δ(OTIS-Ω)−1 nodes.

Corollary 4. Let Ω be a connected graph. Then, OTIS-Ω is maximally fault tolerant,
and the fault diameter of OTIS-Ω is at most D(OTIS-Ω)+4.

4 Constructing Parallel Paths in OTIS Networks with Maximally
Fault Tolerant Basis Graphs

In this section, we consider how to effectively and efficiently construct parallel paths in
an OTIS network with a maximally fault tolerant basis graph.

4.1 A Conventional Algorithm

Provided that a parallel path construction method in the basis graph Ω is known, there is
a straightforward construction of parallel paths in OTIS-Ω according to [3]. The idea of
the construction in OTIS-Ω is as follows. If the source node and the destination node
are in the same cluster, the construction of parallel paths between these two nodes is
trivial since the construction of parallel paths in Ω is given. Otherwise, for each parallel
path πi(p1,p2) from p1 to p2 in Ω, if the last 2rd node xi on the path (namely, xi∈ NΩ(p2))
such that xi∉{g1,g2} then a path from 〈g1,p1〉 to 〈g2,p2〉 in OTIS-Ω is constructed as
follows: 〈g1,πi(p1,xi)〉 →〈xi,PathΩ(g1,g2)〉→〈g2,xi〉→〈g2, p2〉, where πi(p1, xi) is a

186 W. Chen, W. Xiao, and B. Parhami

Cluster g2

Cluster x1

Cluster x2

Cluster xk

Cluster g1

g1 g2

g1 g2

g1 g2

xk
x2x1

p1

 p2

xk
x2 x1

p2

p1

Fig. 3. An illustration of constructing parallel paths(shown solid) from 〈g1,p1〉 to 〈g2,p2〉 for the
case of g1≠g2 and p1≠p2 and all xi∉{g1,g2} in Algorithm 2

sub-path of πi(p1,p2). See Fig. 3. Notice that even if there exists i such that xi∈{g1,g2},
one desired path can be constructed by cleverly using π i as well as p1 and/or p2.

The construction described in [3] is here called Algorithm 2, which constructs k
parallel paths between 〈g1, p1〉 and 〈g2, p2〉 in OTIS-Ω, where k is the number of parallel
paths from p1 to p2 in Ω generated by the given construction of parallel paths in Ω. See
[3] for the detailed description and proof of the correctness of the algorithm.

Now we give the performance of Algorithm 2. Assume the given construction of
parallel paths in Ω requires O(g(n)) time for each path, and the given shortest routing
algorithm requires O(f(n)) time, where n is the size of Ω. Let σ+dΩ(p1, p2) be an upper
bound of the length of any path between nodes p1 and p2 in Ω generated by the parallel
path construction in Ω. The following theorem establishes the performance of
Algorithm 2.

Theorem 5. Let N be the size of OTIS-Ω, Δ=Δ(OTIS-Ω), d=dOTIS-Ω(〈g1,p1〉,〈g2,p2〉), l be
the length of any path constructed by Algorithm 2. We have,

(1) the time complexity of Algorithm 2 is O(Δg(N1/2)+Δf(N1/2)),
(2) l≤max{D(OTIS-Ω)+1+σ, D(OTIS-Ω)+2}, and
(3) if g1=g2 or, g1≠g2 and d=dΩ(p1, p2)+dΩ(g1, g2)+2, then d≤l≤d+σ holds for all the

constructed paths.

Proof. A proof of Theorem 5 is similar to the one of Theorem 3, and therefore is
omitted.

4.2 An Improved Algorithm

From Theorem 3 and Theorem 5, we can see that there is no much difference between
the performance of Algorithm 1 and one of Algorithm 2. However, we can improve
Algorithm 2 in the length of constructed paths by combining it with Algorithm 1, so
that the resulting algorithm can offer a guarantee that the length l of any constructed
path is not much longer than the distance d between the source node and the destination
node with a few possible exceptions for all the cases.

Recall that the distance d between two nodes 〈g1,p1〉 and 〈g2,p2〉 is dΩ(p1, p2) for
g1=g2, and min{dΩ(p1, g2)+dΩ(g1, p2)+1, dΩ(p1, p2)+dΩ(g1, g2)+2} for g1≠ g2. The two
items in the minimum function are independent from each other. From Theorem 3 and

 An Efficient Construction of Node Disjoint Paths in OTIS Networks 187

5, we think Algorithm 1 is more effective than Algorithm 2 in the case of g1≠g2 and
dΩ(g1, g2)+dΩ(p1, p2)+2>dΩ(p1,g2)+dΩ(g1,p2)+1, whereas Algorithm 2 is more effective
than Algorithm 1 for the other cases. Therefore, Algorithm 2 can be improved by
incorporating Algorithm 1, described as Algorithm 3.

Algorithm 3
If g1≠g2 and dΩ(g1, g2)+ dΩ(p1, p2)+2>dΩ(p1, g2)+dΩ(g1, p2)+1, then construct parallel
paths by Algorithm 1; otherwise, construct parallel paths by Algorithm 2.

The performance comparison among the three algorithms is shown in Table 1. In Table
1, N is the size of OTIS-Ω, D=D(OTIS-Ω), l is the length of any constructed parallel
paths, d is the distance between nodes 〈g1, p1〉 and 〈g2, p2〉, and σ+dΩ (p1, p2) is an upper
bound of the length of any path between nodes p1 and p2 in Ω generated by the given
parallel path construction in Ω. In addition, Case A refers to the case of g1≠g2 and dΩ(g1,
g2)+ dΩ(p1, p2)+2> dΩ(p1, g2)+dΩ(g1, p2)+1, and Case B to the other cases.

Table 1. Performance comparison among three algorithms

Alg. Case A Case B Upper Bound on l Time Complexity
Alg.1 d≤l≤d+6* --- D+4 O(Δ2+Δf(N1/2))
Alg.2 --- d≤l≤d+σ D+1+ max{1,σ} O(Δg(N1/2)+Δf(N1/2))
Alg.3 d≤l≤d+6* d≤l≤d+σ D+1+ max{3,σ} O(Δg(N1/2)+Δf(N1/2))

Note. In Table 1, these two inequations with asterisk hold with at most |S0| exceptions, where
S0=NΩ[p1]∩NΩ[p2]−{g1,g2,y0,z0} in Step 2.2 of Algorithm 1.

5 An Example—Constructing Parallel Paths in OTIS-Hypercubes

In order to show the effectiveness and efficiency of these algorithms applied to an OTIS
network with a specific basis network, in the section, we investigate these algorithms in
the context of OTIS-Hypercubes, whose basis graphs are hypercube networks [12].
Hypercube networks and their many variants, including OTIS-Hypercubes, are popular
graphs as the models of many interconnection networks. Some research works on
OTIS-Hypercubes are reported [2,18]. We use Qk to denote an k-dimensional
hypercube network. Let n is the size of Qk, namely, n=2k .It is known that Qk has a
shortest routing algorithm of time complexity O(logn). Moreover, it has been shown in
[12] that Qk is maximal fault tolerant, and there are k node-disjoint paths between any
two nodes x and y in Qk, each of which can be constructed in O(log n) time. Among
these k paths, dQk (x, y) paths are of optimal length dQk(x, y) and k-dQk (x, y) paths are of
length dQk (x, y)+2.

From Theorem 3 and Theorem 5, the time complexity of each of these three
algorithms applied to OTIS-Qk is O(log2N), since f(n)=O(log n) and g(n)=O(log n) as
well as Δ=log n. The performance comparison among these algorithms applied to
OTIS-Qk is given in Table 2, which straightforwardly comes from Table 1 due to σ=2.
All notations in Table 2 are the same as ones in Table 1.

188 W. Chen, W. Xiao, and B. Parhami

From Table 2, we can see that these algorithms are the same efficient in the context
of OTIS-Qk. However, Algorithm 3 slightly outperforms Algorithm 1 and Algorithm 2
with regard to the length of constructed parallel paths.

Table 2. Performance comparison among three algorithms for OTIS-Qk

Alg. Case A Case B Upper Bound on l
Time

Complexity
Alg.1 d≤l≤d+6* --- D+4 O(log2N)
Alg.2 --- d≤l≤d+2 D+3 O(log2N)
Alg.3 d≤l≤d+6* d≤l≤d+2 D+4 O(log2N)

6 Conclusion

In this paper, we have proposed an effective and efficient construction algorithm for the
node-to-node disjoint path problem in an OTIS network with a connected basis network,
which can find desired parallel paths of length at most D+4 in O(Δ2+Δf(N1/2)) time if the
basis network of size n has a shortest routing algorithm of time complexity O(f(n)),
where D, Δ and N are, respectively, the diameter, the degree and the size of the OTIS
network. Obviously, if the basis network with logarithmic degree has a shortest routing
algorithm of logarithmic time complexity then the time complexity of the algorithm is
O(log2N). The number of parallel paths constructed by the algorithm attains the
maximum or less one than the maximum. In addition, in the special case of maximally
fault tolerant basis networks, we make an improvement over a conventional construction
of node disjoint paths in OTIS networks by incorporating the above algorithm. These
obtained algorithms can replace a number of parallel path constructions in OTIS
networks for specific basis networks. As an application of these algorithms to
OTIS-Hypercubes, desirable node disjoint paths are obtained in O(log2N) time.

It is interesting to find efficient general algorithms for other disjoint path problems,
such as node-to-set disjoint paths problem, set-to-set disjoint paths problem and k-pair
nodes disjoint path problem, in OTIS networks.

Acknowledgement. Research of the first two authors was supported by the Natural
Science Foundation of Guangdong Province, China(No.04020130).

References

1. Chatterjee, S., Pawlowski, S.: All Optical Networks. Comm. ACM 42(6), 74–83 (1999)
2. Day, K.: Optical Transpose k-ary n-cube Networks. J. Systems Architecture 50, 697–705

(2004)
3. Day, K., Al-Ayyoub, A.: Topological Properties of OTIS-Networks. IEEE Trans. Parallel

and Distributed Systems 14(4), 359–366 (2002)
4. Hsieh, H.-J., Duh, D.-R.: Constructing Node-Disjoint Paths in Enhanced Pyramid Networks.

In: Jesshope, C., Egan, C. (eds.) ACSAC 2006. LNCS, vol. 4186, pp. 380–386. Springer,
Heidelberg (2006)

 An Efficient Construction of Node Disjoint Paths in OTIS Networks 189

5. Jana, P.K.: Polynomial Interpolation and Polynomial Root Finding on OTIS-Mesh, Parallel
Computing 32, 301–312 (2006)

6. Kim, J., Moh, S., Chung, I., Yu, C.: Robust Multipath Routing to Exploit Maximally
Disjoint Paths for Wireless Ad Hoc Networks. In: Shen, H.T., Li, J., Li, M., Ni, J., Wang, W.
(eds.) Advanced Web and Network Technologies, and Applications. LNCS, vol. 3842, pp.
306–309. Springer, Heidelberg (2006)

7. Marsden, G., Marchand, P., Harvey, P., Esener, S.: Optical Transpose Interconnection
System Architecture. Optical Letters 18, 1083–1085 (1993)

8. Osterloh, A.: Sorting on the OTIS-Mesh. In: Proc. 14th Int’l Parallel and Distributed
Processing Symp., pp. 269–274 (2000)

9. Parhami, B.: Swapped Interconnection Networks: Topological, Performance, and
Robustness Attributes. J. Parallel and Distributed Computing 65, 1443–1452 (2005)

10. Rajasekaran, S., Sahni, S.: Randomized Routing, Selection, and Sorting on the OTIS-Mesh.
IEEE Trans. Parallel and Distributed Systems 9(9), 833–840 (1998)

11. Rayn, J.: WDM: North American Development Trend. IEEE Comm. 32(2), 40–44 (1998)
12. Saad, Y., Schultz, M.: Topological properties of hypercubes. IEEE Transactions on

Computers 37, 867–871 (1988)
13. Wang, C.-F., Sahni, S.: Image Processing on the OTIS-Mesh Optoelectronic Computer.

IEEE Trans. Parallel and Distributed Systems 11(2), 97–109 (2000)
14. Wang, C.-F., Sahni, S.: Matrix Multiplication on the OTIS-Mesh Optoelectronic Computer.

IEEE Trans. Computers 50(7), 635–646 (2001)
15. West, D.B.: Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs, NJ (2001)
16. Wu, R.-Y., et al.: Node-disjoint paths in hierarchical hypercube networks. Information

Sciences 177, 4200–4207 (2007)
17. Yeh, C.-H., Parhami, B.: Swapped Networks: Unifying the Architectures and Algorithms of

a Wide Class of Hierarchical Parallel Processors. In: Proc. Int’l Conf. Parallel and
Distributed Systems, pp. 230–237 (1996)

18. Zane, F., Marchand, P., Paturi, R., Esener, S.: Scalable Network Architectures Using the
Optical Transpose Interconnection System (OTIS). J. Parallel and Distributed
Computing 60(5), 521–538 (2000)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 190–198, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Pampoo: An Efficient Skip-Trie Based Query Processing
Framework for P2P Systems∗

Li Meifang1, Zhu Hongkai2, Shen Derong1, Nie Tiezheng1, Kou Yue1, and Yu Ge1

1 Department of Computer Science and Engineering,
Northeastern University, Shenyang, China, 110004

Li.Meifang@gmail.com, shenderong@ise.neu.edu.cn
2 Baidu Inc., Beijing, China, 100080
zhuhongkai@baidu.com

Abstract. In this paper, we present Pampoo, a novel distributed framework for
efficient query processing in P2P systems. We propose a new locality preserv-
ing data structure Skip-trie as its substrate. Skip-trie incorporates the advan-
tages of skip graph with features of traditional trie. Thus, Pampoo can
efficiently support various types of queries such as range queries and k nearest
neighbor queries. We study the time cost of search and update operations on
Skip-trie structure under our Pampoo framework. We further briefly present a
repairing strategy to boost the robustness of Pampoo system. Extensive experi-
ments are conducted to verify the effectiveness and efficiency of our approach.

1 Introduction

Distributed peer-to-peer (P2P) computing system has received growing attention for
its wide area real-world applications in recent years, which brings forth the notion of
sharing resources available at the edges of the Internet. The P2P paradigm specifies a
fully distributed, self-organizing network design, where peers collectively form a
system randomly. Therefore, it offers enormous potentials for extensive resource
sharing, with remarkable features in terms of dynamics, scalability, resilience to fail-
ures, self-organizing and load balancing etc.. A large number of systems and architec-
tures that utilize this technology have emerged since its initial success [1, 2, 3, 4].

Therefore, efficient query processing, as a key aspect in P2P systems, is increas-
ingly important at present. Distributed Hash Table (DHT) has been a typical and the
most widely applied strategy for peer routing, owing to its inherent characteristics
such as scalability, load-balancing and fault-tolerance [1,2,5,6,7]. Nevertheless, DHT
can only support exact queries since it adopts the cryptographic hash function such as
SHA-1 to map application keys to their identifier space, which impairs the locality
properties of the semantically close data items. Thus, DHT is marred by its deficiency
in supporting range queries and other complex queries. Currently, several approaches
have been proposed to remedy such shortcoming, such as Prefix Hash Tree[8,9], Skip
Graph/Net[10,11,12], DP-tree[13] etc..

∗ Supported by the National Natural Science Foundation of China (60673139, 60473073,

60573090).

 Pampoo: An Efficient Skip-Trie Based Query Processing Framework for P2P Systems 191

1.1 Motivations and Challenges

In our framework, Pampoo (means peer-bamboo in vigorous growth), we aim to de-
sign an efficient distributed data structure in support of a fairly rich set of possible
data queries such as exact query for a key (e.g. a file name), partial query for a string
(e.g. schema matching, prefix matching), k nearest-neighbor query for a numerical
attribute, range query over various numerical attributes, multidimensional query, top-
k query and point location query in Ad-hoc and sensor networks.

Applications of such queries include DNA databases, fuzzy systems, location-
aware services, approximate searches for file names or data titles. Particularly, range
query is significant in a large field of applications such as prefetching of web pages,
enhanced browsing and efficient searching.

Therefore, in this paper, we mainly focus on a unified architecture in support of range
query, i.e. locating resources whose keys lie within a certain specified range, which can
also easily deal with the former three types of queries since they are the special cases for
range query. For example, a prefix query for ISBN numbers in a book database acm.lib,
we can resort it to range query constrained within the acm.lib range scope.
Our design of Pampoo intends to meet the following desired features:

1) Fault tolerance: the framework should adjust to the failure of some nodes, al-
lowing simple repairing mechanism at small cost.

2) Efficient queries processing: the framework should support query processing
in terms of the number of rounds of communication and number of messages
that must be exchanged in order to complete requested query.

3) Small cost at network changes and data updates: the framework should flexibly
tackle issues in node join/leave, data insertion/deletion as well as a necessary
repairing.

4) Locality preserving: The structure should meet locality preserving in support
of range queries that are based on an ordering of the data. This feature has cer-
tain practical advantages over DHT. For example, a search from c.neu.edu to
k.neu.edu will not require contacting any node outside neu.edu, which not only
reduce the searching scope, but also allow the message to be broadcast within
neu.edu.

1.2 Contributions

The contributions of this paper are threefold:

 First, we propose a novel data structure Skip-trie which incorporates advantages
of skip graph and the locality preserving feature of trie;

 Second, we present our Pampoo framework and study the time cost of search
and update operations on Skip-trie structure;

 Third, we present a repairing strategy in support of the robustness and conduct
extensive experiments to verify our approach.

The rest of this paper is organized as follows. We start by presenting our novel Skip-
trie data structure in section 2; section 3 presents our Pampoo framework and study
the operation cost under it. Extensive experiments are conducted in section 4. Section
5 describes a summary of related work, and finally section 6 draws the conclusion.

192 L. Meifang et al.

2 Skip-Trie Structure

2.1 Backgrounds

Trie, or prefix tree, is a common ordered tree data structure that is used to store an
associative array of keys. The position in the tree shows what key a node is associated
with. All the descendants of any one node have a common prefix of the string associ-
ated with that node, and the root is associated with the empty string. Though trie is
commonly keyed by strings, it can also easily be adapted to serve similar functions of
ordered lists of any construct, e.g., permutations on a list of digits, permutations on a
list of shapes, etc.

Skip graph is a distributed data structure that extends the skip list into a distributed
environment by adding redundant connectivity and multiple handles into the data
structure [10,11]. On average, there are O(log n) levels in skip graph. All keys ap-

pear in sorted order in the list at Level 0. Each Level i, for i > 0, can now contain
multiple linked-lists. Each key maintains a membership vector, which is a random
string of bits. For each i greater than 0, each node appears randomly in one of the
many link lists in level i with two constraints. First, if node X is a singleton at level i
− 1, it doesn’t appear in any of the linked list at levels higher than i − 1. Second, for
every linked list L at level i, there must be another linked list 'L at level i − 1 where
the elements in L are a subset of the elements in 'L . Skip graph is highly concurrent
and resistant to node failures. More importantly, skip graph does not employ a hash-
ing function which allows it to support range queries, since logically similar keys will
become neighbors in the skip graph. However, each key must store pointers to an
average of two neighbors for each of the O(log n) levels. The result is a cost of

O(log n) state per key. Besides, it is unclear how keys are assigned to machines in

the system in skip graph, thus skip graph makes no guarantees about system wide
load-balancing nor does it make any guarantees about the geographic locality of
neighboring keys.

These two limitations of skip graph incur our interest in designing our own data
structure skip-trie to address such problems in our designing of Pampoo framework.

2.2 Skip-Trie: Two-Layered Data Structure

For notational convenience, we assume the data items are (but not confined to) data
base tuples of multi-attribute relations R , suppose the number of attributes in R is

n, 1 2{ , ,..., }nR A A A= , with each attribute iA (1 i n≤ ≤) being represented as a

string (can be other constructs of ordered lists as well). Our Skip-trie is constructed
under two steps. First, we dynamically build a reduced logical trie, aka., a longest
prefix tree based on the strings(e.g. the attributes, the name ID of a peer in a physical
network), which are mapped to trie. Evidently, there are no more than n leaf nodes in
trie since some attributes may be the substring of others. We consider all the strings of
a tuple t in R as a segment, which is uniquely identified by a primary key () key t that

 Pampoo: An Efficient Skip-Trie Based Query Processing Framework for P2P Systems 193

should be an attribute iA within R . Second, we hash the primary keys with an order

preserving hash function, i.e., ()i ih key val= , and construct the skip graph based on

those keys with values (non-redundant skip graph). A hash function is order preserv-
ing i.f.f. it satisfies the following property:

Given two input strings 1s and 2s , 1 2 1 2() ()s s h s h s⇒≺ ≺ , where ≺ is the

prefix operator.
Note here that originally, all the leaf nodes of the trie are assigned some values, but
we only consider those keys with special interest (i.e. the primary keys). It is also
worth noting that since no two primary keys can be identical, thus our skip graph
layer is non-redundant, thus we coin it as NR-skip graph.

The fundamental idea of our approach is to make use of the skip graph for efficient
routing, while trie for the locality preserving. The inherent features of both structures
are capable of supporting range queries, which we have already addressed. The sub-
stantial number of pointers in merely skip graph approach makes it really hard to
implement and maintain. Therefore, in our skip-trie structure, the NR-skip graph is
constructed based only on the primary keys of the underlying trie structure. Given k

primary keys in R , typically k n<< , NR-skip graph will only maintain k nodes
instead of n nodes, thus it is relatively non-densed and the complexity of our data
structure is significantly reduced.

Inspired by the two-layer architecture in [14], we can also think of our skip-trie
structure as being composed of two layers, with NR-skip graph as the upper layer and
trie as the lower one, as is shown in Fig. 1.

233 35141 8Level 0

1

14

23

353
8

1

car dns

care
cat

d

co

c
dn

cars dnssdnsi
com

ca

000 100 101001010110

353
23141Level 3

8

353
23141

8Level 1

353

23
14

1
8Level 2

M embership
vectors

NR-skip
graph layer

Trie layer

Skip-trie
link:

Skip link:

trie link:

Fig. 1. Two-layered Skip-trie data structure

194 L. Meifang et al.

Observing the properties of skip graphs, we also have following theorem.

Theorem 1. In an NR-skip graph on k nodes, the height of every node is (log)kΟ

with high probability.

Proof. It is identical to the theorem that with n nodes, the height of every node in
skip graph is (log)kΟ with high probability.

3 Pampoo: A Skip-Trie Based Framework

In Pampoo, we denote the set of all the peers within the framework as PP , thus each

peer ip PP∈ is associated with a path ip in the trie layer of Skip-trie, which corre-

sponds to a binary string. The path may only involve the inner nodes of the trie, which
is different from the trie-layered P-Grid architecture that each node only associates

with the leaf node. Each peer stores ip the prefixes of its path, thus allowing for

efficient search routing.
Now we will discuss how the different operations are addressed in our Skip-trie

based framework Pampoo.

3.1 Skip-Trie Search Algorithm

In skip graph, the search operation is achieved in a top-down manner. It is initiated by a
top level node -skip layer seeking a key and proceeds down the lower level until it
reaches level 0. However, in our skip-trie structure, we approach this operation quite
differently. To search for a node with key from node X, we start from the trie layer first
and proceed up to the NR-skip graph layer and then down to the trie layer again in a
bottom-up-down manner, quite similar in family tree[15]. We incorporate the idea of
shower algorithm in [14] that aims to process range queries concurrently, and propose
our Skip-trie Search algorithm, which is illustrated as follows.

Algorithm 1. Skip-trie Search Algorithm: SSA(ip , X)

1. Lookup _ ()iprefix path p // ip caches the prefixes of its path

2. If _ ()iX prefix path p⊆ Then

3. Return X
4. End if

5. _ (,)iL p X p ← Longest-prefix-search (,)iX p ,

'X ← Trie-lookup (, _ ())X prefix path X // find the closest nodes 'X //

to X with hashed value

6. _ (,).iL p X p key ← Map-trie-skip_Level_0 (_ (,))iL p X p ,

'.X key ← Map-trie-skip_Level_0 (')X

7. 'X ← Skip-level-search (_ (,). , '.)iL p X p key X key
8. Return Trie-lookup (, ')X X

 Pampoo: An Efficient Skip-Trie Based Query Processing Framework for P2P Systems 195

In this algorithm, we start from the trie layer with the purpose of making use of the
locality property and start the node near the destined node, thus perform the algorithm
in an aggressively greedy way.

Lemma 2. The search operation in Skip-trie with n nodes in trie layer and k nodes in
NR-skip graph layer takes (log)k rΟ + with high probability, where r = maxi-

mal_cost{ Trie-lookup (, _ ())X prefix path X , Trie-lookup (, ')X X } .

Proof. In trie with n nodes, the lookup operation takes ()nΟ amortized time cost,

while in NP-skip layer, it takes (log)kΟ with high probability, thus verifies lemma 1.

Moreover, our Skip-trie Search algorithm is processed in an aggressively greedy way,
the cost of lookup operation in trie of n nodes is (log)nΟ with high probability (see

[16] for details), thus practically the cost is much smaller than in Lemma with high
probability.

3.2 Skip-Trie Update

We Address approaches of node join and node leave and their respective time cost in
this section.

3.2.1 Node Join. Most of the work required to join (i.e., insert) a node is accom-
plished by calls to the search operation described in Section 3.1. When a new node X
joins, we first find the node sharing the longest prefix with X, and then insert the
suffix of X into the trie layer. If the string is a not a primary key, then the operation is
over; however, if it is a primary key, we have further to do the insert operations in the
NR-skip graph layer identical as described in skip graph.

Lemma 3. The insert operation in Skip-trie with n nodes in trie layer and k nodes in

NR-skip graph layer takes (log)k rΟ + in expectation and 2(log)k rΟ + with high

probability, where r is the same as specified in section 3.1.

Proof. Similar to Lemma 2.

3.2.2 Node Leave. The algorithm for deleting a node X is straightforward. If X only
belongs to the trie layer, we simply delete the path. If X also belongs to the NR-skip
layer, then it is non-trivial. First, we have to enumerate the nodes with pointers to X
and update them to the appropriate predecessor and successor. Then we delete the
path in the trie layer.

Lemma 4. The delete operation in Skip-trie with n nodes in trie layer and k nodes in
NR-skip graph layer takes (log)k rΟ + in expectation and 2(log)k rΟ + with high
probability, where r is the same as specified in section 3.1.

Proof. Identical to Lemma 3.

3.3 Repair Strategy

In this section, we describe a self-stabilization strategy in Pampoo that repairs our
Skip-tree in case of node failures. If the node only lies in the trie layer, then we do not

196 L. Meifang et al.

have to take any measures since the system is not affected. However, if the node be-
longs to the NR-skip layer, we have to repair the system for robustness. Thus, the
repair strategy mainly focuses on the NR-Skip layer: each node in NR-skip graph
layer sends message to its neighbors periodically to see if they are alive. If one of the
neighbors fails, then we try to fix the link to the next live neighbor. Our repair strat-
egy works quite similar to that in Skip B-tree[17].

Since load is generally uniform in trie structure, our Skip-trie does not have to han-
dle load balancing problem.

4 Experimental Evaluation

To evaluate the performance of our Skip-trie structure, we implemented Pampoo
framework in Java and ran it over Planetlab [7], a testbed for large-scale distributed
systems. In our implementation, each peer node is identified both physically by a pair
of IP address and port number and logically by its position in the Skip-trie structure.

We compare Skip-trie with PHT with different distribution of data and range que-
ries, since PHT also supports range queries and is easy to implement.

Data distribution skewness

A
v

er
ag

e
n

u
m

b
er

 o
f

m
es

sa
g

es

 Number of insert nodes(k)

In
se

rt
 c

o
st

 (
s)

Fig. 2. Comparison of Skip-trie and PHT in
number of message with different data
distribution

Fig. 3. Comparison of insert cost between
Skip-trie and PHT

Range query

N
u

m
b

er
 o

f
m

es
sa

g
es

(1
0

0
)

N
u

m
b

er
 o

f
m

es
sa

g
es

 (
1

0
0

)

Fig. 4. Comparison of Skip-trie and PHT in
number of message with different range query
on uniform data distribution

Fig. 5. Comparison of Skip-trie and PHT in
number of message with different range query
on skewed data distribution

 Pampoo: An Efficient Skip-Trie Based Query Processing Framework for P2P Systems 197

From Fig. 2, we see that the number of messages in Skip-trie is much smaller that in
PHT. Fig. 3 indicates that when the number of nodes to be inserted is small, we have
fairly small insert cost; however, as the number increase, the time cost grows quickly.

Fig. 4 and Fig. 5 study the number of messages between Skip-trie and PHT under
different data distribution. Skip-trie still performs much better than PHT and is not
much affected by the skewness distribution.

5 Related Work

There are a wealth of work addressing issues in support of range query in P2P sys-
tems. To support approximate range queries, locality preserving hashing to hash
ranges instead of keywords is used in [18]. An improvement of this approach to sup-
port exact range queries is proposed in [19]. The fundamental problem of these ap-
proaches is that the ranges themselves are hashed, and hence, simple key search
operations are not supported or are highly inefficient.

Ganesan et. al. propose storage load balance algorithms combined with distributed
routing structures which can support range queries [20]. Their solution may sup-port
load balance in skewed data distributions, but it does not ensure balance in skewed
query distributions. BATON is a balanced binary tree overlay network which can
support range queries, and query load balancing by data migration between two, not
necessarily adjacent, nodes[11]. In Mercury system, Bharambe et al support multi-
attribute range queries and explicit load balancing, using random sampling[5]; nodes
are grouped into routing hubs, each of which is responsible for various attributes.In
terms of key search efficiency, support for range queries and storage load-balancing,
there are some interesting novel structured overlay network abstractions which exhibit
performance comparable to our trie-structured proposal: Skip Graphs [10, 11] which
are based on skip lists [21].A detailed survey of search mechanisms in P2P systems,
including range queries can be found in [22].

6 Conclusion

In this paper we propose a new two-layered data structure called Skip-trie which has
several desirable properties. Skip-trie supports range queries in that it exploits the local-
ity preserving feature in location of resources. Based on Skip-trie, we build a distributed
P2P framework Pampoo, which aim to support efficient query processing and complex
queries. We have studied the time cost of the basic operations in Skip-trie under our
Pampoo framework and conducted extensive experiments to verify our approach.

Next, we will study the strategy to support top-k queries and multidimensional que-
ries in our Pampoo framework.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable
peer-to-peer lookup service for internet applications. In: SIGCOMM 2001 (2001)

2. Druschel, P., Rowstron, A.: Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In: Middleware (2001)

198 L. Meifang et al.

3. Aberer, K., Punceva, M., Hauswirth, M., Schmidt, R.: Improving data access in P2P sys-
tems. IEEE Internet Computing 6(1), 58–67 (2002)

4. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M.,
Schmidt, R.: P-Grid: A Self organizing Structured P2P System. In: ACM SIGMOD Re-
cord (2003)

5. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Middleware (2001)

6. Cuenca-Acuna, F.M., et al.: PlanetP: Using Gossiping to Build Content Addressable Peer-
to-Peer Information Sharing Communities. Technical Report DCS-TR-487, Rutgers Uni-
versity (September 2002)

7. Ratnasamy, S., et al.: A scalable content-addressable network. In: SIGCOMM 2001 (2001)
8. Ramabhadran, S., Ratnasamy, S., Hellerstein, J., Shenker, S.: Brief Announcement: Prefix

Hash Tree. In: Proc. of PODC 2004 (2004)
9. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-

addressable network. In: Proc. ACM SIGCOMM 2001, ACM Press, New York (2001)
10. Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load balancing and locality in range-queriable

data structures. In: ACM PODC 2004, ACM Press, New York (2004)
11. Aspnes, J., Shah, G.: Skip graphs. In: ACM-SIAM Symposium on Discrete Algo-

rithms(January 2003)
12. Harvey, N., et al.: SkipNet: A scalable overlay network with practical locality preserving

properties. In: Proc.of 4th USENIX Symp. on Internet Technologies and Systems (2003)
13. Mei Li.DP-tree: A Balanced Tree-based Indexing Framework for Peer-to-Peer Systems. In

Proc. Of icnp 2006 (2006)
14. Datta, A., et,: al. Range queries in trie-structured overlays. In: Proc. of P2P 2005 (2005)
15. Zatloukal, K.C., Harvey, N.J.A.: Family Trees:An ordered dictionary with optimal conges-

tion, locality, degree, and search time. In: 15th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pp. 301–310. ACM Press, New York (2004)

16. Naor, M., Wieder, U.: Know thy neighbor’s neighbor: Better routing in skip-graphs and
small worlds. In: 3rd Int. Workshop on Peer-to-Peer Systems (2004)

17. Abraham, I., Aspnes, J., Yuan, J.: Skip B-Trees. In: Proc. of Opodis 2005 (2005)
18. Gupta, A., Agrawal, D., Abbadi, A.E.: Approximate Range Selection Queries in Peer-to-

Peer Systems. In: CIDR 2003. 1st Biennial Conference on Innovative Data Systems Re-
search (2003)

19. Sahin, O.D., Gupta, A., Agrawal, D., Abbadi., A.E., Peer-to-peer, A.: Framework for
Caching Range Queries. In: 20th ICDE 2004 (2004)

20. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned data
with applications to peer-to-peer systems. In: Proc. of VLDB 2004 (2004)

21. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Communications of the
ACM 33(6) (1990)

22. Risson, J., Moors, T.: Survey of Research towards Robust Peer-to-Peer Networks: Search
Methods. Technical Report UNSW-EE-P2P-1-1, University of New South Wales, Sydney,
Australia (September 2004)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 199 – 208, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On the Implementation of Virtual Array
Using Configuration Plane*

Yong-Sheng Yin 1, Li Li 2, Ming-Lun Gao1,2,
Gao-Ming Du1, and Yu-Kun Song1

1 Institute of VLSI Design, Hefei University of Technology, Hefei,
Anhui 230009, China

YinYongSheng@hfut.edu.cn
2 Intitute of VLSI Design, Nanjing University, Nanjing,

Jiangsu 210093, China
{LiLi,GaoMingLun}@nju.edu.cn

Abstract. A new method of designing and using virtual array in pipeline recon-
figurable system is presented. This method is based on the partition of the
configuration data. Using this method not only is helpful to design the virtual
hardware, but also is necessary to investigate the application algorithms ori-
ented this virtual hardware. Basing on the analysis of the space-time graph and
the configuration plane, this paper explores the structure and application of vir-
tual array integrated in the MPRS (Multi-Pipeline Reconfigurable System), an
in-house developed reconfigurable computing system that utilizes virtual pipe-
line. Finally, the design procedure of mapping the application to the virtual
array and the programming procedure of using the MPRS are illustrated by
examples. The experiment results show that the method is feasible and the per-
formance of the MPRS with the virtual array nearly reaches the expected level.

1 Introduction

The fixed size of reconfigurable resource restricts the computing capability of recon-
figurable system, which is one of the most important problems in reconfigurable com-
puting. Based on this fact the concept of virtual hardware [1,2,3,4] have been
presented, which means satisfying infinite resource requirement of algorithms by time
division of finite hardware resource. Paper [1] surveyed a collection of important
projects in this field. The virtualization of hardware is one of the basis objectives of
studying dynamic reconfiguration.

In fact, similar restriction also exists in systolic array. The fact that one array can
only be used to solve the applications under certain fixed size limits the application
range of systolic array. Therefore some methods [5] including emulation method,
partition method, LPGS (Local Parallel, Global Sequential) method, and LSGP (Local
Sequential, Global Parallel) method have been proposed to resolve this problem.

* This work is supported by the National Natural Science Foundation of China under

grant No. 90307011, 60373076.

200 Y.-S. Yin et al.

The traditional LPGS/LSGP methods have been used as references when implement
virtual hardware in reconfigurable systems, though some key processes must be
changed to adapt the reconfigurable factors. Several projects show that the virtualiza-
tion of hardware can be implemented by introducing incremental reconfigurable into
the compute pipeline, designing buffers for intermediate data and creating correspond-
ing control mechanism [4, 6]. In despite of some papers mentioned that the systems
supporting virtual hardware have been completed, but most of them focused on de-
scribing the corresponding changes on the hardware and few of them explained what
preparations of the target applications should be made for the virtualization of hard-
ware, which is the key process when execute a algorithm using virtual arrays [3, 7].

On the other hand, there are some realistic difficulties existing in other projects to
support the proposed method of designing virtual hardware. For instance, RaPiD
implements large scale applications by storing multiple configuration data in local
memory and then cyclically processing the compute data within the processing ele-
ments. This method makes the control logic in each processing unit too complex.
More importantly, the data propagating between the neighbor units loses the inherent
systolic rhythm because of the repeatedly unit-inside processing. All of these make
the design of virtual array more difficult.

2 MPRS Architecture

We have implemented the MPRS that incorporates multiple 1-D arrays as coprocessor
with a main processor. MPRS supports virtual array and the multiple 1-D arrays can
optionally work in chained mode or parallel mode to explore the loop-level parallelism.

The structure of MPRS reconfigurable arrays is shown in Fig.1. The torus chain
and the hierarchy buses are used as the interconnection backbone: torus chain con-
nects the arrays and the buses connect the arrays with the storages. The first-level
buses connect the main memory with the inner buffer. The second-level buses consist
of the intra-array buses and the inter-array buses. The intra-array buses are used to
connect the units in the same array with the buffer corresponding to that array, and the
inter-array buses are used to connect the units in different arrays with buffer corre-
sponding to that unit. In short, the hierarchy buses transport the input/output operation
data, the reconfiguration data and the intermediate results.

In Fig. 1, the shadowed rPUs belong to one single linear array. S_FIFO represents
the buffer used to store the intermediate result; D_FIFO represents the buffer used to
store the operation data; C_FIFO represents the buffer used to store the reconfigura-
tion data. The inter-array input buses make each unit have the capability of inputting
data, but only the last unit of each array has the capability of outputting data.

Interconnecting neighbor rPUs (dashed arrows in Fig. 1) that belong to different ar-
rays enhances the generality of MPRS to wider field of applications. In this way, the
interconnection of MPRS extends from the torus chain to the torus mesh, which can
utilize those mature algorithms based on 2-dimension mesh.The detail description
about MPRS architecture and mapping method can be referred to the paper [8].

 On the Implementation of Virtual Array 201

Fig. 1. MPRS architecture

3 Designing Virtual Array Using Configuration Plane

In the reconfigurable system utilizing virtual pipeline, the intermediate data between
two sequent reconfiguring operations must be stored/restored in the right time, and the
external data (including the configuration data and the computing data) for the pipe-
line must be arranged in correct order. In other word, we must predefine the organiza-
tion and timing of these data.

The requirements on the various sequences of the input/output data should be met
to compute various algorithms using pipeline array, and the same thing should happen
to compute one same algorithm using different pipeline arrays. In fact, these require-
ments are decided by the specific configuring and executing of the physical array. The
distinction of the data sequences is caused by two reasons: one is the data flow direc-
tion; the other is the data flow speed. The data flow direction can be transformed to fit
MPRS anyway, so the data flow speed becomes the main factor need considering
when design virtual arrays.

202 Y.-S. Yin et al.

The data flow speed is corresponding with the number of pipeline registers in the
rPU (reconfigurable Processing Unit). It is difficult to decide the data sequence when
there are two or more registers in the Rpu's data path. The structures of MPRS array
when compute matrix-vector multiplication and 1-D Convolution are shown in Fig.2
respectively. Only one pipeline register is used in the rPU of the former, while three
registers (two is in the output data path and one is in the input data path) is used in the
rPU of the latter. The design of virtual arrays for the latter will be more difficult than
that for the former, because it is more difficult to figure out the organization and tim-
ing of input/output data, even more difficult to decide the time of storing/restoring the
intermediate data.

Fig. 2. Different data flow speed according to the different algorithms implemented on MPRS
(a) matrix-vector multiplication; (b) 1-D convolution

The concept of “configuration plane” is proposed in this paper for those reasons
mentioned above, and the corresponding design method based on the partition of the
configuration plane is presented also. Using this method we can describe the configu-
ration and execution of reconfigurable arrays directly, which make it easier to analyze
the influence of the data flow speed on the virtual array, and to define the organiza-
tion/timing of external data, and to decide the exact time of storing/restoring interme-
diate data. Only after all these key problems have been considered, can we design
hardware structure correctly.

Suppose that an n-stage virtual pipeline is realized with an actual array including
m-stage rPUs, as shown in Fig. 3. The whole array on the top of Fig. 3 is the virtual
array: the real line shows the actual array, and the dashed line shows the virtual array
simulated with the actual array. The space-time plane of the virtual array on the bot-
tom of Fig. 3 shows the data operation of each rPU in each time step.

We partition these operations into several groups marked by a set of horizontal
parallel lines in the time axis. The interval of these horizontal lines indicates the basic
time step of the computing pipeline, and is called as “virtual time slice”. All the op-
erations in one same time slice should be done in one same time step if the actual
array is large enough. However, if that actual array is smaller than the virtual array,

 On the Implementation of Virtual Array 203

those operations must be processed in the different partitioned time steps. We hope
make such partition clear. According to the maximal number k of the pipeline regis-
ters in one rPU, a set of directed biases whose slope is k can be drawn. All the opera-
tions along one same bias can be processed in the pipelined sequence, and then the
final results can be achieved. We call this directed bias “computing slice”. All the
operations can be partitioned into many groups marked by the parallelograms along
the computing slice, and those operations contained in one same parallelogram are the
all operations needed when configure/execute the whole actual array one time. We
call the parallelogram “configuration plane”. It should be noted that only (m-1) opera-
tions on one configuration plane can be processed by the actual array simultaneously
at the same time slice, and the remained one rPU is being configured at the same time.
That is the cost that must pay out for the reconfiguration of array.

Fig. 3. Space-time plane of virtual array

The operation OPij of the rPU represents all possible operations that include input-
ting external data, executing arithmetic and logical operation (among the input data,
local data and intermediate data) and outputting the results. A space-time plane of the
actual array (Fig. 4.) can be achieved by arranging all these operations according to

204 Y.-S. Yin et al.

Fig. 4. Space-time plane of actual array

Fig. 5. Architecture of MPRS considering virtual array

 On the Implementation of Virtual Array 205

the sequence number of configuration plane. From this new plane, we can decide
when the operations of the same original virtual time slice are processed respectively;
also can we decide the organization and timing of input/output data, and the stor-
ing/restoring time and contents of the intermediate data.

According to the analysis of configuration plane, we know that some special com-
ponents should be designed in the MPRS if this system supports virtual array. All
these components are marked with blue color in Fig. 5. The state FIFO is used to store
the intermediate data and the store/restore controller decides when the store/restore
operations start and finish. It should be noted that there are no additional storage de-
vices for the storing/restoring of configuration data, and the configuration FIFO is
reused for this purpose instead. As the precondition of this method, the reconfigurable
array should work in a pure pipelined mode and the length of the virtual array should
be smaller than the depth of the configuration FIFO. These two conditions can be met
in our current MPRS implementation.

The computing time spend on processing the pipelined task using virtual array is
determined by the scale of the actual array and the requirement of the task. Using the
“configuration plane” method, it is easy to figure out (by the control unit of MPRS)
the number of time slices needed to complete the given pipelined task. That number
can be used to program the specific control register automatically, which is necessary
to be definite for the designer of the system supporting virtual hardware.

4 Examples and Results

Matrix operation and motion estimation belong to the uniform linear recurrence appli-
cations fitting the MPRS array. Here we illustrate the design procedure and the pro-
gramming procedure for the MPRS virtual array with these two examples and give the
results finally.

4.1 Design and Programming Steps

The design steps of MPRS array list as follow, and the detail steps can be referred to
another submitting paper “Mapping Algorithms to Multi-Pipeline Reconfigurable
System” for limited space.

(1) Design the serial algorithm;
(2) Design the single assignment program by extending the index of the input

variable;
(3) Construct the DG (Dependency Graph) according to the extended space-time

index;
(4) Draw the DGRV (DG with Reconfigurable Variable) by localization and recon-

figurablization processes;
(5) Design SFG (Signal Flow Graph) through projecting and scheduling the

DGRV;
(6) Mapping the SFG into the multiple MPRS arrays simultaneously when the

MPRS works in the parallel mode or mapping the SFG to the single chained MPRS

206 Y.-S. Yin et al.

array when works in the chained mode. Working in the virtual mode is transparent for
the mapping process;

(7) Reflect the mapping results into the different fields of the configuration word
that will be used to reconfigure the MPRS arrays dynamically when perform
computing.

The programming steps of MPRS list as follow.

(1) Prepare the configuration data achieved from above processes.
(2) Prepare the computing data achieved from the target application.
(3) Create the configuration/computing data file that will used by the main

program. Firstly, draw the space-time plane of virtual array (like Fig. 3) and the
space-time plane of actual array (like Fig. 4) respectively. Secondly, arrange the con-
figuration data in proper sequence according to the configuration plane and organize
the computing data properly according to the space-time plane of actual array. Fi-
nally, create the data files.

(4) Program the specific registers in MPRS to provide enough information for the
system to run properly. This is done by creating main program.

(5) Compile the main program and run the executable code on the MPRS.

4.2 Matrix-Vector Multiplication

After implementing the procedures mentioned above, all the needed data and program
are ready for running on the MPRS that works in the virtual mode.

Suppose that x is a 8-dimention vector, A is a m×8 matrix, and y=Ax is a m-
dimension vector. Here, m represents the scale of matrix-vector multiplication, and its
value changes from 32 to 4096.

In this experiment, various scales of array are used to compare the efficiency of the
virtual array with that of the normal array. In the first situation, the array consists of 4
rPUs; in the second situation, the array consists of 8 rPUs. The execution periods of
SimpleScalar [9] and MPRS on different application scales are shown in Fig. 6(a). In
this figure, the horizontal axis represents the scale of matrix-vector multiplication, and
the vertical axis represents the number of execution periods. MPRS_A shows the
performance of MPRS using normal array, and MPRS_V shows the performance
using virtual array. It can be seen that the number of periods spent by MPRS is much
smaller than SimpleScalar. Fig. 6(b) shows the speedup factor of MPRS vs. SimpleS-
calar. It can be seen that the speedup factor when using virtual array is nearly equal to
that when using normal array.

We can draw another conclusion by analyzing the periods spending respectively on
the MPRS array and on the whole MPRS system. The system overhead should occupy
the larger proportion of the total execution periods if the scale of applications is not
large enough. In this situation, the number of rPU in the array can be effectively re-
duced by using virtual array. Inversely, when the application scale is large enough and
the memory access time is short enough, the expense of speed caused by using virtual
array should be considered fully.

 On the Implementation of Virtual Array 207

Fig. 6. (a) The number of execution periods of SimpleScalar and MPRS; (b) speedup factor

4.3 Motion Estimation

Since motion evaluation (ME) occupies the 98% processing time in video compress-
ing and 42% in decompressing [10], it is important to enhance the execution speed of
ME. One of most popular ME algorithm is the Full Search Block Matching (FSBM).
FSBM can be expressed as follows:

1 1

0 0

(,) | (,) (,) | - ,
N N

i j

MAD m n R i j S i m j n q m n q
− −

= =

= − + + ≤ ≤∑∑

In the parallel work mode, MPRS can complete one FSBM of the standard MPEG
scale (with N＝8，q＝8). Fig. 7 also shows the different results in other systems, in

Fig. 7. Execution cycles of motion evaluation

208 Y.-S. Yin et al.

which the ASICs have the special optimization for the FSBM [11]. Moreover, the
same application in Pentium MMX needs 29000 cycles. It can be concluded that the
speed of our MPRS in ME execution is 10 times faster than the general-purpose proc-
essor, also faster than the MorphoSys who is the similar reconfigurable computing
system, and near the ASIC products．

5 Conclusions

This paper proposes a method of designing virtual hardware and exploiting target
algorithms on it. The correct experiment results demonstrate that the method based on
“configuration plane” is feasible. This new method can be applied to our MPRS sys-
tem as well as to other systems using incremental reconfiguration.

References

1. Plessl, C., Platzner, M.: Virtualization of Hardware - Introduction and Survey. In: Proceed-
ings of the International Conference on ERSA, pp. 63–69 (2004)

2. Hauck, S., Fry, T.W., Hosler, M.M., Kao, J.P.: The Chimaera Reconfigurable Functional
Unit. IEEE Trans. on VLSI Systems. 12, 206–217 (2004)

3. Cronquist, D.C., Fisher, C., Figueroa, M., Franklin, P., Ebeling, C.: Architecture Design of
Reconfigurable Pipelined Datapaths. In: Proceedings of the 20th Anniversary Conference
on Advanced Research in VLSI, pp. 23–40 (1999)

4. Cadambi, S., Weener, J., Goldstein, S.C., Schmit, H., Donald, E.: Managing Pipeline-
Reconfigurable FPGAs. In: ACM/SIGDA International Symposium on FPGAs, pp. 55–64
(1998)

5. Lorenzelli, F., Yao, K.: Integral Matrix-Based Technique for Systematic Systolic Design
Integration. The VLSI Journal 20, 269–285 (1996)

6. Schmit, H., Cadambi, S., Moe, M., Goldstein, S.C.: Pipeline Reconfigurable FPGAs. The
Journal of VLSI Signal Processing 24, 129–146 (2000)

7. Goldstein, S.C, Schmit, H., Budiu, M., Cadambi, S., Moe, M., Taylor, R.R.: PipeRench: A
Reconfigurable Architecture and Compiler. IEEE Computer 33, 70–77 (2000)

8. Yin, Y.S., Li, L., Gao, M.L.: The Reconfigurable System Based on Multi-Pipeline (in Chi-
nese). Microelectronics & computer 10, 88–91 (2005)

9. Burger, D., Austin, T.M.: The SimpelScalar Tool Set, version 2.0. University of Wiscon-
sin-Madison Computer Sciences Department Technical Report #1342 (1997)

10. Miyamori, T., Olukotun, K.: REMARC: Reconfigurable Multimedia Array Coprocessor.
IEICE Trans. on Inf. and Syst. E82–D, 389–397 (1999)

11. Singh, H., Ming-Hau, L., Lu, G., Kurdahi, F.J., Bagherzadeh, N., Chaves Filho, E.M.:
MorphoSys: An Integrated Reconfigurable System for Data-Parallel and Computation-
Intensive Applications. IEEE Trans. on Computers. 49, 465–481 (2000)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 209 – 221, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Analysis on Memory-Space-Memory Clos Packet
Switching Network

Xiangjie Ma, Yuxiang Hu, Junpeng Mao, Julong Lan, Lian Guan,
and Baisheng Zhang

Information Engineering Institute, PLA Information Engineering University
National Digital Switching System Engineering & Technological Research Center

Zhenzhou, Henan, 450002, P. R. China
maxiangjie100@163.com,

{mxj,hyx,mjp,ljl,gla,zbs}@mail.ndsc.com.cn

Abstract. Memory-Space-Memory (MSM) Clos packet switching networks are
the next step in scaling current crossbar switches to many hundreds or few
thousands of ports. Clos networks had been studied and applied quite well in
circuit switching system, with much attentions paid to its non-blocking property
to decrease call blocking rates. In contrast, for packet switching systems, more
care is taken to per-packet based forwarding performance of the switching net-
works. MSM Clos network has the merit of keeping packet sequence and there-
fore is quiet adapt to packet switching fabric. By way of buffering architecture,
MSM Clos network is quite similar to the CIOQ Crossbar based single stage
switching fabric, which promotes us to extend the results of CIOQ matching an
OQ switch [1] to MSM Clos networks. Meanwhile, although the CIOQ switch
can emulate an OQ switch, it needs cell insertion algorithm and stable matching
algorithm with high information complexity and computing complexity. This
has prevented its application seriously in new generation of routers with high
speed linking rates and large port numbers. So we propose a new method of
Per-Input OQ Emulation (PIOE), including both new cell insertion and schedul-
ing algorithm (PVPP-CIP and -CSP) with only per-input local information and
new matching algorithm (3S) with computing complexity of O(1), which is
more practical in both CIOQ Crossbar and MSM Clos networks.

1 Introduction

With the constantly increasing Internet traffic and the development of broadband
access technologies, such as DSL, cable modem and gigabit Ethernet, the next genera-
tion routers should support a large number of connection ports for the following two
reasons [2][5]. (a) increasing number of Internet accessing points leads to increasing
number of input ports and output ports; and (b) Optical transmission technologies
such as DWDM is making increasing number of transmitting links available in Inter-
net. The current widely used single stage Crossbar switching fabric, however, can not
afford to large number of switching ports for surprising high complexity in switching
hardware and scheduling algorithms [3][4][5].

210 X. Ma et al.

The Memory Space Memory Clos network, in contrast, is much scalable in
switching port number than traditional single Crossbar Fabric, and therefore is caus-
ing more and more attention in the next generation of routers. The MSM Clos
network itself, however, is not firstly proposed in packet switching domain. In 1953,
C. Clos from Bell Systems Labs had proposed the famous Clos network to scale the
switching fabric in telephony switches [6]. In circuit switching, more attentions had
been paid to blocking property of Clos network to increase call access rates
[6][7][8][9]. It is a challenging work to find an efficient and fast scheduling scheme to
provide high throughput, starvation-free, acceptable delay, and fairness performance
under various traffic conditions for a Clos packet switching network. In [10][11][12],
the proposed path-switching scheme and static round-robin (Distro) scheduling algo-
rithm, however, cannot handle various traffic conditions well due to their static
nature.

In [1], Shang-Tse Chuang, Ashish Goel etc. studied the speedup problems for
CIOQ single Crossbar switch to emulate an OQ switch. They show that a speedup of

N
12 − is necessary and a speedup of two is sufficient for this exact emulation. Most

interestingly, their result holds for all traffic arrival patterns and is independent with
the switching size. The optimal performance of a CIOQ switch urges us to extend the
results to MSM Clos network, for the homology in buffering mechanism and the
resemblance in architecture between them. We observe and analyze different proper-
ties between a single stage Crossbar fabric and a multistage Clos network, and further
give the conditions for them to mimic each other. Based on this conditions and non-
blocking condition for a reconfigurable Clos network, we provide necessary and suf-
ficient condition for a Clos packet switching network to emulate an OQ switch. Most
surprisingly, our result also has the merit of holding for all traffic arrival patterns and
being independent with switching size.

However, although the perfect performance of an OQ switch is the target pursued
in practical high-speed routers, it has never been achieved in switch with high link
speed and large port numbers. This is because the present cell insertion algorithm and
matching algorithm have disadvantages of high information complexity and comput-
ing complexity in emulating an OQ switch.

We present a method called Per-Input OQ Emulation (PIOE) for MSM CLOS
network to emulate an OQ switch based on per-input priority and fairness, which has
two merits: (a) without global information exchange among inputs and outputs of the
switch, and thus eliminate the information complexity; (b) with an algorithm com-
plexity as low as O(1).

The rest of this paper is organized as follows. In Section II, we introduce some
terminology and definitions. In Section III, we describe MSM Clos network Model. In
Section IV, we find conditions for the single Crossbar Fabric and the Clos network to
mimic each other, and then find the necessary and sufficient condition for Clos
network to emulate an OQ switch. In Section V, we put forward a more practical
emulation method—the PIOE method, including PVPP-CIP & -CSP and 3S scheduling
algorithm. In Section VI, we will have a conclusion of this paper.

 Analysis on Memory-Space-Memory Clos Packet Switching Network 211

2 Terminology and Definitions

Before proceeding, it will be useful to define some terms used in our presentation. We
adopt fixed-length packet concept and call the packets or segment packets ‘cells’
afterwards. This is common practice in high performance routers [14].

Time slot: Refers to the time taken to transmit or receive a fixed length cell at a link
rate of R.

CIOQ Switch: A switch in which there are two stages of buffering on input ports and
output ports of an N×N switch. Arriving cells are firstly placed in queues at the input,
and then switched to the queues at the output.

OQ Switch: A switch in which arriving cells are placed immediately in queues at the
output, where they contend with other cells destined to the same output. The departure
order might be FIFO, in which case we call it an FIFO-OQ switch. Other service
disciplines, such as WFQ [15], GPS [16], virtual clock [17], and DRR [18] are widely
used to provide QoS guarantees. One characteristic of an OQ switch is that the buffer
memory must be able to accept (write) N new cells per time slot where N is the num-
ber of ports, and read one cell per cell time. Hence, the memory must operate at N+1
times the line rate.

Shadow OQ switch: We will assume that there exists an OQ switch, called the
shadow OQ switch, with the same number of input and output ports as the MSM Clos
network. The ports on the shadow OQ switch receive identical input traffic patterns
and operate at the same line rate as the MSM Clos network.

3 Modeling of MSM Clos Networks

The topology architecture of an MSM Clos network is shown in Fig.1. The basic
components in Clos network are switching modules, which can be denoted
by nmX with n input ports and m output ports. The three stage Clos network (we only

study three stage Clos network in this paper, and it is briefly called Clos network in
the rest of this paper) is therefore can be denoted as],,[mnrr XXX nm

with r first

stage nmX (also called input stage, denoted as IM), m second stage
rrX (also called

central stage, denoted as CM), r third stage
mnX (also called output stage, denoted as

OM). The n inputs of each first stage
nmX are connected to n input memories of Clos

network, and m outputs of nmX connecting to one input of the second stage
rrX ;

r outputs of
rrX are connected to one input of r third stage

mnX ; n outputs of
mnX are

connected to n output memories of Clos network.
In sense of graph theory, an MSM Clos network can be denoted by a directed

graph),,(mrnC , with all switching modules and memories as vertices, and with all

connections between all vertices as edges. Then the Clos network can be expressed

212 X. Ma et al.

Fig. 1. Topology architecture of an MSM Clos network

as),,(mrnC),(EVC= , in whichV is composed of five incompatible vertex sets and

four incompatible edge sets. To be precisely, 43210 VVVVVV ∪∪∪∪=

 2 },...,,{

 3,1 },...,,{

4,0 },...,,{

 where,

21

21

21

⎪
⎩

⎪
⎨

⎧

=

=
=

=

ivvv

ivvv

ivvv

V
i
m

ii

i
r

ii

i
nr

ii

i

(1)

3210 EEEEE ∪∪∪= , and iE is edge sets from iV to 1+iV (i =0, 1, 2, 3)，

 3 }r ..., 2, ,1},,...,,{,|{

2 ,1 },|{

0 }r ..., 2, ,1,},,...,,{|{

 where,

44
2)1(

4
1)1(

3

1

100
2)1(

0
1)1(

⎪
⎪
⎩

⎪
⎪
⎨

⎧

==∈=

=∈∈

===∈

=

+−+−

→

+

→
+−+−

→

ijvvvxvyxy

iVyVxxy

ijvyvvvxxy

E

jnnjnjj

ii

jjnnjnj

i

(2)

To describe Clos network conveniently, we shall give some definitions useful in
Clos network.

Definition 1. Path－If a directed graph can be tracked from end to end and pass all
vertices and edges once, we call the directed graph a Path.

Definition 2. Stable Path－Supposing path p is composed of five vertices and four

edges, if all five vertices in p belong to five incompatible vertex sets },,,,{ 43210 VVVVV ,

and all four edges in p belong to four incompatible edge sets },,,{ 3210 EEEE

of),,(mrnC , respectively, we call path p a stable path in Clos network, and denote it

as p̂ . That is to say, stable path p̂ can be defined as follows:

},,,,{ˆ 3
43

2
32

1
21

0
1043210 EvvEvvEvvEvvvvvvvp qllkkjjiqlkji ∈∈∈∈=

Δ

Definition 3. Stable Path Set and Stable Path Total Set－Supposing P to be a
stable path set with all paths having no compatible edges mutually, if all left stable

 Analysis on Memory-Space-Memory Clos Packet Switching Network 213

paths in),,(mrnC are always have compatible edges with one of stable paths in P ,

we call P Stable Path Set in),,(mrnC , and call all possible stable path sets

in),,(mrnC as Stable Path Total Set. We denote stable path set and stable path total

set as SPS ˆ and STPS ˆˆ , which can be expressed as follows:

})ˆ()ˆ(,1;

)ˆ()ˆ(,1,ˆ,...,ˆ,ˆ{ˆ
21

Φ≠∩≥≥>∀Φ=

∩≤<≤∀=

li

jih

pEpEikl

pEpEhjipppSPS

It is very interesting to notice that the stable path set is not unique in),,(mrnC . For

example, in stable path set
iSPS ˆ , two stable paths can exchange their vertices in 2V and

exchange their edges in 1E and 1E , respectively, and then become two new stable

paths. Therefore, we get a new path set (i.e.
jSPS ˆ), which is still a stable path set

for
jSPS ˆ shares the same vertices set and edges set with

iSPS ˆ . This property can be

explained by architecture of Clos network, in which there are m paths from any input
port to any output port. So, there are as many as])![()(nrC rn

m × stable path sets in the

stable path total set in),,(mrnC altogether. Based on the above analysis, we can get

two properties of stable path total set by way of graph theory: one is edge exchanging
closure, which means a stable path set can become a new stable path set by exchang-
ing any of two stable paths, but this new stable path set is still included by stable path
total set. The other is inclusiveness, which means the stable path total set includes all
possible stable path sets in),,(mrnC .

Lemmon 1. The number of stable paths)ˆ(SPSSIZE in a three-stage symmetry Clos

network),,(mrnC is),min(mrnr .

Proof. From the definition of stable path and property of Clos network, the number of
stable paths in Clos network is equal to the minimum value of all four edge sets
in),,(mrnC . This can be expressed as follows:

)}(),(),(),(min{)ˆ(3210 ESIZEESIZEESIZEESIZESPSSIZE =

Therefore,
 ,

,
),min(},,,min{)ˆ(

⎩
⎨
⎧

<
≥

===
nmmr

nmnr
mrnrnrmrmrnrSPSSIZE ■

Lemmon 2. Supposing the Clos network),,(mrnC satisfies nm ≥ , for any integer k

(nrk ≤≤1) and any vertex pair set },...,2,1|),{(kibaM iif == from vertex set

021 },...,,{ VaaaA k ⊂= to
421 },...,,{ VbbbB k ⊂= , there always stable path

set STPSSPS i
ˆˆˆ ⊂ connecting k vertex pairs in

fM .

Proof. Because integer k satisfies mrnrk ≤≤ , from Lemmon 1 we know that
)ˆ(SPSSIZEk ≤ and therefore)()(30 ESIZEESIZEk =≤ , and)()(21 ESIZEESIZEk =≤ re-

spectively. So we always can find four edge sets composed of k edges

214 X. Ma et al.

from 0E , 1E , 2E and 3E to buildup k stable paths to connect k vertex pairs in
fM .

From property of inclusiveness of stable path total set of),,(mrnC , there always

stable path set STPSSPS i
ˆˆˆ ⊂ connecting k vertex pairs in

fM . ■

We notice here that Lemmon 2 is equivalent to the reconfigurable non-blocking con-
dition of the Clos network, which had been proved in prior results [6][9].

4 Emulating an OQ Switch by MSM Clos Network

The non-blocking condition, in Lemmon 2 in Section III, guarantees any number of
vertex pairs connected by a stable path set in the Clos network. Intuitively, this is
quite similar to the non-blocking property of a single stage Crossbar Fabric.

Lemmon 3. Supposing MSM Clos network),,(mrnC satisfies nm ≥ , for single stage

CIOQ Crossbar Fabric)(nrnrC × , we say MSM Clos network),,(mrnC

mimics)(nrnrC × .

Fig. 2. A 4×4 CIOQ Crossbar mimics the MSM Clos network

We do not mean to give strict proof of Lemmon 3 here, but informally provide an
analysis by way of an example in Fig.2. There are four input ports and four output
ports for both MSM Clos network and CIOQ Crossbar. For the same port pair

set)}4,4(),3,3(),2,2(),1,1{(, we can either find a stable path set 4
ˆSPS in MSM Clos

network, or find matching matrix
4

~
M in CIOQ Crossbar, to find stable paths or config-

ure crosspoints to set up connections between all four port pairs. Intuitively, stable
path set

4
ˆSPS and matching matrix

4

~
M have played the same role in the switching fab-

rics. In this sense, we say a non-blocking (i.e. nm ≥) MSM Clos network and CIOQ
Crossbar mimic each other, and call the stable path set is equivalent to the matching
matrix MSPS

~ˆ ⇔ .

 Analysis on Memory-Space-Memory Clos Packet Switching Network 215

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎪
⎪

⎭

⎪
⎪

⎬

⎫

=

=

=

=

==

ˆ

ˆ

ˆ

ˆ

}ˆ,ˆ,ˆ,ˆ{ˆ

4
4

3
2

2
2

1
2

0
44

4
3

3
2

2
1

1
2

0
33

4
2

3
1

2
2

1
1

0
22

4
1

3
1

2
1

1
1

0
11

43214

vvvvvp

vvvvvp

vvvvvp

vvvvvp

ppppSPS

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000

0100

0010

0001

~
4M

Theorem 1. The necessary and sufficient condition for an MSM Clos net-
work),,(mrnC to emulate an OQ switch is with speedup of S , where S satisfies:

⎪
⎩

⎪
⎨

⎧

≥

<×
≥

1

-2

)
1

-(2

nm
nr

nm
mrm

n

S

(3)

Proof: (a) For the case of nm ≥ , we can refer to Lemmon 3 and regard the MSM
Clos network),,(mrnC mimics a CIOQ Crossbar fabric with port number)(nrnrC × .

So, the results in [1] still hold where nrN = , and then we get
nrS 12 −= for an MSM

Clos network to emulate an OQ switch.
(b) For the case of nm < , from Lemmon 1 we know that the number of stable

paths)ˆ(SPSSIZE in a stable path set SPS ˆ is),min(mrnr . Therefore, there are at

most mr stable paths in the MSM Clos network. Fig.3 shows an example of an MSM

Clos network with 4=n , 2=m , 2=r and a CIOQ Crossbar with port number 8×8
and switch fabric of 4×4. Because there is at most 2×2=4 stable paths in the MSM
Clos network, regarding the former case of nm ≥ , four out of eight input ports can
emulate an OQ switch with a speed up of)-(2 4

1 . Thus, if we divide the input ports

into two groups (i.e. the light colored input ports group and the dark colored input
ports group in Fig.3), the emulation can be divided into two phases (i.e. the light col-
ored Phase 1 and dark colored Phase 2) for each group. Therefore, the four input ports
in Group 1 can emulate an OQ switch in Phase 1 with speedup of)-(2 4

1 , while the left

four input ports in Group 2 can also emulate an OQ switch in Phase 2 with speedup
of)-(2 4

1 . Then the total speedup for the MSM Clos network emulating an OQ switch

is)-(2 4
1 +)-(2 4

1 =2×)-(2 4
1 . The proof of any case of nm < is a straight forward ex-

tension of the example with 4=n , 2=m , 2=r , where the speedup needed by an

MSM Clos network is proportional to m
n and)-(2 1

mr
. According to pigeon hole prin-

ciple and Constraint Set Principle, with a speedup of)-(2 1
mrm

n × , an MSM Clos net-

work can emulate an OQ switch. ■

What deserves more attention here is when the speedup S is not an integer in MSM
Clos network. We can use the smallest integer ⎡ ⎤SS = bigger than S as speedup in some

time slots, while using)1(−S as speedup in the other time slots in a circle. To be more

precise, supposing)(GFSS G
F <−= , let a circle length to be G time slots. We adopt a

216 X. Ma et al.

Fig.3. Emulating an OQ switch when 2,2,4 === rmn

Fig.4. Normal time slots and truncated time slots in a circle

speedup of S in FG − time slots and a speedup of)1(−S in F time slots. Meanwhile,

we call these F time slots as truncated time slots. Fig.4 shows the normal time slots
and truncated time slots in a circle.

5 Per-Input OQ Emulation (PIOE) by MSM Clos Network

The current cell insertion algorithms and matching algorithms have the following
disadvantages in emulating an OQ switch:

(a) High Information complexity: In CIOQ emulation with an OQ switch, Shang-
Tse Chuang had relied on the stable matching during the two scheduling phases and
CCF (Critical Cell First) cell insertion policy during arriving phase in each time slot
[1]. The stable matching needs to know the output priority list which relies on infor-
mation of output order of all cells on the input side. The CCF algorithm needs to
know the number of cells with a higher priority on the output side. Meanwhile, both
the stable matching algorithm and the CCF cell insertion algorithm need to know the
departure time of each cell, which is calculated based on the priority information of
all cells in both input side and output side. Thus an input has to communicate with all
the other inputs and outputs to obtain the information needed by each cell during each
time slot, but this is too difficult to implement not only for real time information ex-
change, but also for modularization design, which never means to have so many extra
communications beyond normal packet forwarding.

 Analysis on Memory-Space-Memory Clos Packet Switching Network 217

(b)High Computing complexity: The stable matching that CIOQ switch needs to
find in each scheduling phase can take as many as)(2NO iterations, which is proved

to be equivalent to the number of cells buffering on the input side[Gale and Shapely
[13]. Unfortunately, as the increase of link speed as well as the switch port numbers,
schedulers will have to make more decisions (i.e. there will be more iterations to
guarantee a maximal matching and hence obtain high performance) in a more urgent
time slot (i.e. the time will be only a fraction of the time slot in low link speed case).
In this case, the matching algorithms available in switch with low link speed and less
switch ports just can not be applied to new generation routers.

To overcome these disadvantages, we discuss a method for MSM CLOS switch to
emulate an OQ switch with an acceptable or predictable performance degrading (i.e.
emulation only based fairness of per input port). For example, the method (a) does not
need information exchange among inputs and outputs of the switch, and thus elimi-
nate information complexity; (b) has an algorithm complexity as low as O(1).

We observe that in an OQ switch cells are inserted into and scheduled from input
queues based on the global priority principles (i.e. WFQ [15], Strict Priority [18], or
FIFO among all cells from all input ports), and this leads to cell insertion algorithm
and cell scheduling algorithm requiring global information (cell queueing states
among all inputs and outputs). The emphasis on the priority order in an OQ switch,
however, is almost meaningless for cells coming from different links and buffered in
different input queues, because they have almost no relations with each other. Based
on this fact, we present a method for MSM CLOS network to emulate an OQ switch
based on per-input priority and fairness, which only uses information locally available
on each input. We call this method Per-Input OQ Emulation (PIOE).

In the method of PIOE, we organize cell queueing in a way like Virtual Output
Queueing (VOQ), but use a wide class of queueing policies such as WFQ and Strict
Priority queueing in each VOQ queue of each separate input, just like an OQ switch
does. The PIOE method comprises Per-VOQ Per-Priority based Cell Insertion Policy

(PVPP-CIP), Cell Scheduling Policy (PVPP-CSP), and 3S scheduling algorithm.
To describe more precisely, we shall give two definitions as follows:

Definition 4. VOQ Queue－In each input, cells are buffered in different queues
according to their output port number, and we denote them as

ijQ ,

where },...,2,1{, nrji ∈ for am MSM Clos networks),,(mrnC . It is easy to know that

there are nr VOQ queues in an input port and ()2nr VOQ queues in all input ports.

Definition 5. VOQ Priority Queue－In each VOQ queue, cells are buffered in differ-
ent queues according to their priority number, and we denote them
as),...,2,1(KkQ

kp = , where K is the number of priorities supported by routers.

5.1 PVPP Cell Insertion Policy (CIP) of PIOE

PVPP Cell Insertion Policy: Supposing that cell ijkX arrives at input port i and is des-

tined for output port j and has a priority number k . Upon arrival ijkX is inserted to

218 X. Ma et al.

the end of VOQ priority queue
kpQ of the VOQ queue ijQ . Because cells are inserted

into each input port based on Per VOQ and Per Priority, we call this cell insertion
policy PVPP-CIP.

5.2 PVPP Cell Scheduling Policy (CSP) of PIOE

PVPP Cell Scheduling Policy: Supposing that ijkX represents cells buffered in VOQ

priority queue
kpQ of the VOQ queue ijQ . Upon departure cell ijkX is exported in

sequence of VOQ queues and VOQ priority queues. Because cells are scheduled out
of each input port based on Per VOQ and Per Priority, we call this cell scheduling
policy PVPP-CSP.

PVPP-CIP & -CSP of PIOE are shown in Fig.5. In the left dashed frame, PVPP-
CIP is composed of two phases: one is the VOQ dispatcher, where cells are classified
into each VOQ queue according to their output port number; and the other is the Pri-
ority dispatchers, where cells are classified into each VOQ priority queue according to
their priority number. In the right dashed frame, PVPP-CSP is also composed of two
phases: one is the priority schedulers to export cells from different VOQ priority
queues; the other is the VOQ scheduler, where cells from different VOQ queues are
exported to the output ports.

Fig. 5. PVPP Cell Insertion Policy and Cell Scheduling Policy of PIOE

5.3 Queueing Principle Analysis of PVPP-CIP and –CSP

(a) FIFO queueing principle emulated by PVPP-CIP and –CSP: In FIFO queueing
principle, it does not need classify cells based on priorities; therefore the priority
dispatche and the priority scheduler only maintain one priority queue (i.e. the highest
priority queue

KpQ). Thus each priority dispatcher just writes cells to the end of
KpQ ,

while each priority scheduler just reads cells from head of
KpQ .

(b) Strict Priority and WFQ queueing principle emulated by PVPP-CIP and –CSP:
These two kinds of queueing principles are sensitive to cell’s priority. In PVPP-CSP,

 Analysis on Memory-Space-Memory Clos Packet Switching Network 219

cells are written to priority queues by each priority dispatcher, which is similar for
both Strict Priority and WFQ. In PVPP-CSP, however, priority schedulers read cells
in different ways. Cells in highest priority queues that are not empty are prior to cells
in lower priority queues in Strict Priority queueing principle. While in WFQ queueing
principle, each priority queue is endowed with a weight value),...,2,1(Kkwk = , and

the scheduling times in each scheduling circle are proportional to each kw .

5.4 3S Matching Algorithmin PIOE

To overcome the high computing complexity of stable matching in [13] (i.e. their
solution has a complexity of)(O 2N), and overcome the high information complexity

ofGBVOQ in [1] (i.e. it needs global state information), we design a simple and practi-

cal matching algorithm based on per input port fairness.

Definition 6. Vertex Matching－If a pair of vertices belongs to 0V and 4V of Clos

network, respectively, we call the vertex pair a vertex matching, and denote it
as),(40

ji vvM , where),...,2,1(, nrji ∈ .

There are ()2nr pairs of vertex matching altogether in),,(mrnC ; we can further

divide them into nr incompatible groups, each of which includes all input vertices and
all output vertices of),,(mrnC . We call each group a Stable Vertex Matching (SVM),

and further call all nr groups the Comple SVM Set (CSS) for including all possible

()2nr pairs of vertex matching. The definitions of SVM and CSS are as follows:

),...,2,1()},,(),...,,(),,({ 4
)mod()1(

04
)mod()(1

0
2

4
)mod()(

0
1 nrivvMvvMvvMSVM nrinrnrnrinrii == +−+

From Lemmon 2, we can always find a stable path set SPS ˆ for each SVM in
SPTS of),,(mrnC , and therefore can find nr

iSPS),...,2,1(nri = for all SVM inCSS .

Definition 7. Mapping Table from SVM to SPS－In non-blocking Clos network, we
call each pair of each SVM to each SPS a mapping table and denote it as

),(SPSSVMM .

},...,2,1),,{(),(nriSPSSVMM iiSPSSVM ==

Based on the mapping table our matching algorithm of PIOE is as follows:

Stable SVM SPS (3S) matching algorithm: During thi of matching of PIOE,

we choose),(modmod nrinri SPSSVM in),(SPSSVMM as matching of inputs and outputs.

Fig. 6. 3S matching algorithm of PIOE

220 X. Ma et al.

Obviously, we can see there are two properties for 3S matching algorithm: one is
low computing complexity of)1(O , for just requiring one lookup in mapping table; the

other is absolute fairness among all inputs and outputs, for in a round of nr matching,
all pairs of input and output appear once and only once. That is to say, all inputs are

absolutely fair in 3S matching algorithm.

6 Conclusions

We have studied MSM Clos packet switching network in this paper. Firstly, we dis-
cussed the modeling method of MSM Clos network based on graph theory, and put
forward stable path set and non-blocking property of Clos network (Lemmon 1 and
Lemmon 2). Based on the similarity of single stage CIOQ Crossbar and multistage
MSM Clos network, we discussed the condition for them to mimic each other (Lem-
mon 3). Then we extent the results in CIOQ Crossbar emulation an OQ switch to
MSM Clos networks (Theorem 1). To overcome the disadvantages of cell insertion
algorithm and matching algorithm in CIOQ Crossbar emulating an OQ switch, we
provided a PIOE method with PVPP-CIP & -CSP with low information complexity
and 3S matching algorithm with computing complexity of)1(O .

Acknowledgements

This work was supported in part by the grants from National Basic Research Program
of China (973 Program) with No.2007CB307102 and National Hi-tech Research and
Development Program of China (863 program) with No.2005AA121210. We thank
several members of Information Engineering Institute for their technical suggestions,
including Peng Yi, Yufeng Li and Yang Li, and the anonymous reviewers for their
constructive comments and suggestions.

References

1. Chuang, S.T., Awadallah, A., McKeown, N., Prabhakar, B.: Matching output queueing
with a combined input and output queued switch. IEEE Journal on Selected Areas in
Communicaions 17, 1030–1039 (1999)

2. Chao, H.J.: Next generation routers. IEEE Proceeding 90(9), 1518–1558 (2002)
3. McKeown, N.: The iSLIP Scheduling Algorithm for Input-Queued Switches. IEEE/ACM

Trans. on Networking 7(2) (1999)
4. McKeown, N., Anntharam, V., Walrand, J.: Achieving 100% Throughput in an input-

queued switch. In: Infocom 1996 (1996)
5. Wang, F., Hamdi, M.: Analysis on the Central-stage Buffered Clos-network for packet

switching. In: IEEE International Conference on Communications (2005)
6. Clos, C.: A Study of Non-Blocking Switching Networks. Bell Systems Technical Journal,

406–424 (1953)
7. Tsai, K.H., wang, D.W.: Lower Bounds for Wide-sense Non-Blocking Clos Network. In:

Taipei 1998. Computing and Combinatorics, Springer, Berlin, pp. 213–218 (1998)

 Analysis on Memory-Space-Memory Clos Packet Switching Network 221

8. Lee, T.T., To, P.P.: Non-Blocking Routing Properties of Clos Networks. In: Advances in
switching networks, Amer. Math. Soc., Providence, RI, pp. 181–195 (1998)

9. Lin, G.H., Du, D.Z., Wu, W., Yoo, K.: On 3-Rate Rearrangeability of Clos Networks. In:
Advances in switching networks, Amer. Math. Soc., Providence, RI, Princeton, NJ, pp.
315–333 (1998)

10. Lee, T.T., Lam, C.H.: Path Switching - A Quasi-Static Routing Scheme for Large-Scale
ATM Packet Switches. IEEE J. Select. Areas Communications. 15, 914–924 (2002)

11. Pun, K., Hamdi, M.: Distro: A Distributed Static Round-Robin Scheduling Algorithm for
Bufferless Clos-Network Switches. IEEE GLOBECOM (2002)

12. Chao, H.J., Deng, K-L., Jing, Z.: A Petabit Photonic Packet Switch (P3S). IEEE
INFOCOM 2003 (2003)

13. Gale, D., Shapley, L.S.: College Admissions and the Stability of Marriage. American
Mathematical Monthly 69, 9–15 (1962)

14. Iyer, S., Awadallah, A., McKeown, N.: Analysis of a Packet Switch with Memories Run-
ning Slower than the Line Rate. In: IEEE Infocom 2000 (2000)

15. Demers, A., Keshav, S., Shenker, S.: Analysis and Simulation of a Fair Queueing Algo-
rithm. J. Internetworking: Research and Experience, 3–26 (1990)

16. Parekh, A., Gallager, R.: A Generalized Processor Sharing Approach to Flow Control in
Integrated Services Networks: The Single Node Case. IEEE/ACM Trans. Networking 1,
344–357 (1993)

17. Zhang, L.: Virtual Clock: A New Traffic Control Algorithm for Packet Switching Net-
works. ACM Trans. Comput. Syst. 9(2), 101–124 (1990)

18. Shreedhar, M., Varghese, G.: Efficient Fair Queueing Using Deficit Round Robin. In:
Proc. ACM SIGCOMM, pp. 231–242. ACM Press, New York (1995)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 222 – 232, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Measurement of High-Speed IP Traffic Behavior Based
on Routers

Xiangjie Ma, Junpeng Mao, Yuxiang Hu, Julong Lan, Lian Guan,
and Baisheng Zhang

Information Engineering Institute, PLA Information Engineering University
National Digital Switching System Engineering & Technological Research Center

Zhenzhou, Henan, 450002, P. R. China
maxiangjie100@163.com,

{mxj,mjp,hyx,ljl,gla,zbs}@mail.ndsc.com.cn

Abstract. IP traffic behavior is becoming increasingly complicated and com-
plex with the appearance of new applications and new protocols in Internet. We
give a design to implement fine-granularity and configurable distributed meas-
urement method of multi-protocol traffic behavior. Our study shows that prob-
ing points can be distributed to different the Functional Processing Module
(FPM) along the traffic path through the router, and each FPM can implement
configurable and protocol-sensitive collection of packet information with
accurate timing stamps. We develop a novel traffic mirroring method to avoid
affecting normal packet processing in case of some occasional failures. Our ex-
periments based on practical implementation of measurement in a router show
that less than 15% of total logic resources and less than 20 nanoseconds of tim-
ing precision can be achieved by our methods, which is more efficient and ac-
curate than Special Packet capturing Card with an acceptable cost.

1 Introduction

In order to run networks efficiently, network administrators need to understand how
their networks are used or misused. Therefore, traffic measurement is an important
method to monitor the traffic mix, especially on important links.

Traffic measurement, however, is a challenging area of research. Most routers
report traffic measurement data in NetFlow format [9] that aggregates all packets
belonging to the same flow into a flow record, which is becoming increasingly fragile
for not adapt to most traffic mixes. In traditional low-speed measurement techniques,
Special Packet capturing Cards (SPC) are put on the interested links and observe
packets passing through the link. We can analyze the data samples to compute
performance metrics [1-5], study protocol behavior [3, 6], and understand the
dynamics of traffic demands in the network [7, 8]. To implement measurement of
high speed IP traffic based on routers, we have designed a FPM (Functional Process-
ing Module) measurement method, which can be further divided into two classes:
i-FPM and d-FPM according to the directions of IP traffic through a router. Then we
provide a distributed and robust measurement system of IP traffic behavior, which is

 Measurement of High-Speed IP Traffic Behavior Based on Routers 223

configurable and protocol-sensitive with high accurate timing stamps. By practical
implementation and experiments based on routers, we find that this measurement
method is an efficient hardware implementation method compared with its software
counterpart, which occupies less than 15% of total logic resources and has cell timing
stamps as accurate as 20 nanoseconds.

The rest of this paper is organized as follow. In Section II, we introduce some ter-
minology and definitions. In Section III, we provide measurement method of IP traf-
fic behavior based on routers. In Section IV, we At the end of this paper is the conclu-
sion of our work.

2 Terminology and Definitions

Before proceeding it will be useful to define some terms used throughout this paper:

Router: Refers to a standard packet’ buffering and forwarding router in Internet,
which has N×N ports connecting to outside links.

Cell: Refers to a fixed-length packet, though not necessarily equal in length to a 53-
byte ATM cell. Although packets arriving to switch may have variable length, for the
purposes of this paper we will assume that they are segmented and processed
internally as fixed length cells. This is common practice in high-performance
switches; variable length packets are segmented into cells as they arrive, carried
across the router as cells, and reassembled back into packets before they depart.

Input port: Refers to the incoming end of packets for a router, where packets will be
classified, buffered and updated according to the result of looking up the forwarding
table. The traffic captured by the input port can reflect the original characteristics of
the incoming links of the router.

Output port: Refers to the departing end of packets for a router, where packets will
be buffered, scheduled by priority, and pooled into one link. The traffic captured by
the output port can reflect the influence caused by the processing of the router.

Time slot: Refers to the time taken to transmit or receive a fixed length cell at a link
rate of R, where R represents the speed of each input port and output port.

VOQ queues: Refers to the N sub-queues of each input port, where cells will be
buffered according to their destination output port to avoid the problem of HOL
(Head of Line). To describe the arriving traffic of each input port more accurately,
this paper supposes that the arriving traffic of each input port will firstly separated
into N different sub-traffic, which will be buffed into N VOQ queues, respectively.

3 Measurement of IP Traffic Behavior

We are interested in deploying measurement of IP traffic behavior to incorporate
flexibility of hardware processing and reduce complexity of software processing in a
router. Thus, our measurement study focuses on the following aspects: (1) more paral-
lelism to permit higher linking speed and more protocol characteristics; (2) more

224 X. Ma et al.

measuring functions implemented by hardware to relax the overheads of software; (3)
more accurate timing stamps of cells on the basis of hardware clocks to increase pre-
cision than measurement by software. In this section, we describe the architecture of
universal routers and present our findings.

3.1 Architecture of Universal Router

The basic architecture of universal routers is shown in Figure 1. The building blocks
for a universal router include line cards, forwarding units, scheduling units, input
switch units, System Optical Backboard (SOB), System Internal Communication
(SIC) and System Central Processor (SCP).

Firstly, packets enter the router from each line card, where they will be segmented
into equal length cells and classified into data cells and protocol cells. Secondly, the
protocol cells destined to this local router will be sent to SCP for further processing
through SIC, while the data cells will be transmitted to forwarding units, where they
are stamped with a destination output number according to the result of looking up the
forwarding tables. Thirdly, the stamped cells will be balanced to different input
switch units and switched to their destination output scheduling unit. Lastly, the
switched cells will be buffed into different queues according to their priorities and
scheduled with the order of corresponding scheduling policy and delivered from the
output line card.

Fig. 1. System architecture of a universal router

3.2 Distributed Measurement Methodology by FPM

We conduct a passive online measurement study of IP traffic behavior based on
routers. For the purposes of our measurement, we analyze the detailed implementation
methods of each Functional Processing Module (FPM). We choose conduct our meas-
urement on distributed FPM because (i) all the FPMs on the same side of a router
have the same characteristics of IP traffic behavior for all the processing is completed
at the speed of line rate; and (ii) it is easier to accommodate only a fraction of meas-
urement by each FPM for occupying less hardware logical resources than the central-
ized implementation methods.

 Measurement of High-Speed IP Traffic Behavior Based on Routers 225

As shown in Figure 1, IP traffic are processed and forwarded among different
FPMs in two directions: the incoming direction with FPMs of line cards and forward-
ing units, and departing direction with FPMs of scheduling units and line cards. The
FPMs in the same directions have identical characteristics for sharing the same proc-
essing speed of line rates. So, we can capture the incoming IP traffic for inputting
links on the incoming FPMs (i-FPM) and capture the departing IP traffic for output-
ting links on the departing FPMs (d-FPM). Obviously, forwarding units and schedul-
ing units belong to i-FPM and d-FPM, respectively. Line cards incorporate incoming
and departing traffic simultaneously, so it is not only belongs to i-FPM, but also be-
longs to d-FPM. Input switch units accommodate all the incoming and departing traf-
fic and have the heaviest switching loads, so we do not dispatch any traffic measure-
ment tasks to them.

Line cards provide LAN, WAN or POS serial data-linking layer processing in line
rate, which complete the classifications of cells of different protocols, including IPv4,
IPv6 and MPLS, etc. In addition, line cards also have the functions of supporting ARP
and neighbor-discovering protocols.

Fig. 2. Line Card Structure with traffic measurement

The internal functional modules of line cards are shown in Figure 2. The O/E and
Ser/Des Transition module and Data Linking Layer Processing module complete data
interface processing and data linking layer processing, respectively. In the data in-
coming direction, the Input Processing module segments packets into cells and classi-
fies them according to the address list stored in the Input TCAM module. In the data
departing direction, cells are combined and framed into Ethernet format packets ac-
cording to the MAC address stored in the Output TCAM. Meanwhile, the traffic
measurement modules are denoted in pink color, while a mixing function of normal
cell processing and measurement are denoted in blue color.

The Forwarding Units structure with traffic measurement are shown in Figure 3,
which mainly complete IP layer processing including IP unicasting, multicasting, and
MPLS processing. The TCAM and SRAM (black-colored) module stores the forward-
ing table for all the relative protocols. Meanwhile, the traffic measurement modules
are denoted in pink color, while a mixing function of normal cell processing and
measurement are denoted in blue color.

226 X. Ma et al.

Fig. 3. Forwarding Units structure with traffic measurement

Fig. 4. Scheduling Units structure with traffic measurement

Figure 4 gives the structure of Scheduling Units with traffic measurement func-
tions, and the units aim to provide multiple IP priority queues and allocate different
bandwidth to different priority queues. The traffic measurement modules are denoted
in pink color, while a mixing function of normal cell processing and measurement are
denoted in blue color.

3.3 A Novel Protocol-Sensitive Measurement Method

To achieve the flexibility of hardware measurement without inducing potential insta-
bility and occupying too much logical resources, we explore a novel protocol-
sensitive measurement method, which has the following features: (1) it can be imple-
mented in distributed manner to alleviate the overheads put on each FPM and increase
robustness of data measurement; (2) it can be configurable to measure different proto-
col data and complete corresponding computations of our foregoing IP traffic model;
(3) it should not insert the pipeline of normal data processing directly, which may be
affected in case of occasional failure; (4) it can append cells with high-accurate timing
stamps and send them periodically to the System Central Processor (SCP) for addi-
tional analytical purpose.

 Measurement of High-Speed IP Traffic Behavior Based on Routers 227

As discussed in the preceding sub-section, the measurement method adopts i-FPMs
including the input line cards and the forwarding units to measure protocol traffic of
the incoming direction, and adopts d-FPMs including the output line cards and the
scheduling units to measure protocol traffic of the departing direction. Our designa-
tion and assignation method is shown in Table 1. Line cards are assigned to measure
various routing protocols and ARP traffic because they have advantages to classify
and report them to the SCP. The forwarding units and the scheduling units are used to
measure IPv4, IPv6, and MPLS protocol data as they have corresponding special
processing modules.

To satisfy feature (3) described at the beginning of this sub-section, we adopt a
new traffic mirror method shown in Figure 5. This improvement can isolate the meas-
urement function from normal data processing and reduce influences to the lowest
level.

Table 1. Protocol traffic measured by each i-FPM and d-FPM

i-FPMs d-FPMs

Line Card
(input part)

For-
warding
Units

Sche
duling
Units

Line Card
(output part)

RIP,
RIPng, OSPF,
IS-IS, BGP4,
PIM-SIM,
ARP

IPv4,
IPv6,
MPLS

IPv4,
IPv6,
MPLS

RIP,
RIPng,
OSPF, IS-IS,
BGP4, PIM-
SIM, ARP

Fig. 5. Traffic mirror method in each FPM

According to practical applications in traffic measurement, only the traffic of one
protocol is analyzed in a period of time for a single port. So we explore a measure-
ment method that will not only calculate the traffic behavior of all protocols but also
report the traffic arriving data with accurate timing-stamp according to the protocol
configured by SCP. The PPP protocol packet format used by SCP to configure traffic
measurement of each FPM is shown in Figure 6.

228 X. Ma et al.

Fig. 6. PPP protocol packet format used to configure measurement

Fig. 7. Protocol traffic behavior measurement

Fig. 8. High accurate timing stamp measurement

Figure 7 illustrates the basic computing methods for various protocol cells. There
are mainly two operation processes in this method: one is the online protocol comput-
ing process, which includes modules such as Protocol Index, Protocol Address, K
Accumulators, and Accumulator Enable; the other is periodically reporting process,
which includes modules such as Timing, Counter, and Output FIFO. According to the
model of IP traffic behavior described in section III, the basic for computing and
judging the average arriving rate, the admissible traffic, the uniform traffic, the bal-
anced traffic and the slotted traffic is the arriving traffic Aij(t) (i=1, 2, …, N; j=1, 2,
…, N) of each protocol. So, the BRAM_S module is segmented into N blocks corre-
sponding to N output ports and each block is segmented into K sub-blocks corre-
sponding to K protocols that are to be analyzed. Therefore, each kind of protocol of

 Measurement of High-Speed IP Traffic Behavior Based on Routers 229

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

time slot

nu
m

be
r

of
 c

el
ls

Fig. 9. Arriving traffic of the router over 100 time slots

each port is configured with a separate buffering area in the BRAM_S and its address
is coded by the Protocol Index module. Firstly, the Protocol Index module is triggered
on each arrival of cells and switches the protocol type to its address in BRAM_S, and
simultaneously configures the W/R Control module to the state of “read” and enables
the corresponding Accumulator through the Accumulator Enable module. Secondly,
the data Aij(t) corresponding to the protocol address is sent to the enabled Accumula-
tor. Thirdly, the accumulating result {Aij(t) +1} is written to BRAM_S. The reason
why we have K Accumulators is to support pipeline operations, that is to say this
method can support continuous arriving cells accumulations.

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Port Nunber

一
一
一
一
一
一

归

Fig. 10. Average arriving rates of 16 inputs over 100 time slots

A
ve

ra
ge

 A
rr

iv
in

g
R

at
e

230 X. Ma et al.

The periodically reporting process is used to send the calculating results to SCP at
a configured timing interval T stored and counted in the Timing module. Each report-
ing results are firstly stored in the Output FIFO and then sent to SCP through Board
Processor. After each reporting, all blocks of BRAM_S are cleared to zero.

To satisfy feature (4) we deplore a high accurate timing stamp measurement
method shown in Figure 8. This measurement method also has two processes: one is
the timing stamps appending process and the other is the periodically reporting proc-
ess. The periodically reporting process is identical to that of the protocol traffic be-
havior measurement. The timing stamps appending process includes a Timing Stamp
module, which is clocked by a clock of 155MHz frequency. Because each delay of
appending timing stamps to a cell is no more than 3 clock period, the accuracy for this
measurement method is less than 20 nanoseconds. What’s more, we constrain the
occupation of logical resources to only 15% in our practical implementations.

4 Measurement Results

To verify the measurement method in Section III, we have analyzed and modeled of
the real-time data captured by our designed router with 16×16 port numbers built by i-
FPMs and d-FPMs. Figure 9 describes total arriving traffic for all 16 input ports of the
router over 100 time slots, and we can see from the graph that there are 4 to 12 cells
arriving in most time slots, which means there are 4 to 12 input ports with cells arriv-
ing in these time slots. The average arriving rates for all 16 input ports are shown in
Figure 10, and we can see that there are 10 input ports with an average arriving rate
less than 0.5 and all less than 0.7. To illustrate the unbalancing and burst feature the
arriving traffic behavior, we also give Figure 11 and Figure 12. From Figure 11 we
can see that the Unbalanced Sizing U in 96% time slots is less than 0.1, and only time

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time slot

一
一
一
一
一
一

归

U

Fig.11. Unbalanced Sizing U of 16 inputs over 100 time slots

U
nb

al
an

ce
d

Si
zi

ng
 U

 Measurement of High-Speed IP Traffic Behavior Based on Routers 231

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time slot

一
一
一

一

归

归

B

Fig.12. Burst Sizing B of the 1st inputs over 100 time slots

slot of number 48, 50, 53, and 56 have a value of U more than 0.1 but still less than
0.35. By Figure 12, we can clearly see that the Burst Sizing B of the first input port in
94% time slots is less than 0.1, while only the values of B in time slot of 23, 24, 54,
56, 86, 87 are higher than 0.1 but less than 0.2. Clearly, over these 100 time slots, the
router has benign arriving traffic in the balancing and burst sense.

5 Conclusions

In this paper, we conducted a study of measurement of IP traffic behavior based on
routers. According to the actual distribution and traveling path of IP traffic in routers,
we discussed the measurement method of IP traffic behavior. Compared with other
measurement methods, our method has the following merits: (1) it adopts distributed
implementation mechanism with i-FPM in the incoming traffic direction and d-FPM
in the departing traffic direction; (2) it adopts a traffic mirror mechanism to avoid
affecting normal data processing; (3) it is configurable to measure protocol-sensitive
traffic and can complete corresponding computations of our foregoing IP traffic
model; (4) it can append requested protocol cells with high accurate timing stamps
and report them to System Central Processor (SCP) for further analytical needs.
In our practical designations and experiments, we found that our traffic behavior
model can be easily implemented in hardware and that our traffic measurement
method occupies less than 15% of total logical resources of each FPM and have a
timing stamp as accurate as 20 nanoseconds.

Acknowledgement

This work was supported in part by the grants from National Basic Research Program
of China (973 Program) with No.2007CB307102 and National Hi-tech Research and
Development Program of China (863 program) with No.2005AA121210. We thank

B
ur

st
 S

iz
in

g
B

232 X. Ma et al.

several members of Information Engineering Institute for their technical suggestions,
including Peng Yi, Yufeng Li and Yang Li, and the anonymous reviewers for their
constructive comments and suggestions.

References

1. Benko, P., Veres, A.: A passive method for estimating end-to-end tcp packet loss. In: Pro-
ceedings of IEEE Globecom (2002)

2. Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Measurement and classifica-
tion of out-of-sequence packets in a tier-1 ip backbone. In: Proceedings of Infocom 2003,
pp. 113–114 (2003)

3. Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Inferring TCP connection
characteristics through passive measurements. In: Proceedings of Infocom 2004, pp. 1582–
1592 (2004)

4. Jiang, H., Dovrolis, C.: Passive estimation of TCP round-trip times. ACM Computer Com-
munication Review 32(3), 75–88 (2002)

5. Katti, S., Katabi, D., Blake, C., Kohler, E., Stauss, J.: M&M: A passive toolkit for measur-
ing, tracking and correlating path characteristics. In: Proceedings of ACM Internet Meas-
urements Conference (2004)

6. Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and origins of inter-
net flow rates. In: Proceedings of ACM Sigcomm 2002, pp. 309–322 (2002)

7. Smith, M.A., Ramakrishnan, K.K.: Formal specification and verification of safety and per-
formance of tcp selective acknowledgment. IEEE/ACM Trans. Netw. 10(2), 193–207 (2002)

8. Lee, D., Chen, D., Hao, R., Miller, R., Wu, J., Yin, X.: A formal approach for passive test-
ing of protocol portions. In: IEEE International Conference on Network Protocols, pp. 122–
131 (2002)

9. Cisco NetFlow, http://www.cisco.com/warp/public/732/Tech/netflow

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 233–240, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Design and Implementation of the DVS Based
Dynamic Compiler for Power Reduction*

Xiang LingXiang 1, Huang JiangWei 1, Sheng Weihua2, and Chen TianZhou1

1 College of Computer Science, ZheJiang University, Hangzhou 310027, China
tzchen@zju.edu.cn

http://embedded.zju.edu.cn
2 School of Electrical and Computer Engineering, Oklahoma State University,

202 Engineering South, Stillwater, OK, 74078
weihua.sheng@okstate.edu

Abstract. Recent years, as the wide deployment of embedded and mobile
devices, reducing the power consumption in order to extend the battery life
becomes a major factor that a designer must consider when designing a new
architecture. DVS is regarded as one of the most effective power reduction
techniques. This paper focuses on run-time compiler driven DVS for power re-
duction, especially two key design issues including DVS analysis model and
DVS decision algorithm. Based on the design framework presented in this
work, we also implement a run-time DVS compiler which is fine-grained, adap-
tive to the program’s running environment without changing its behavior. The
obtained system is deployed in a real hardware platform. Experimental results,
based on some benchmarks, show that with average 5% performance loss, the
benchmarks benefit with 26% dynamic power savings and the energy delay
product (EDP) improvement is 22%.

Keywords: dynamic compiler, DVS, low power.

1 Introduction

Performance is always playing a major role in evaluating computer systems, but pur-
suing performance blindly, which normally leads to tremendous energy consumption,
would cause disastrous limitation on development of computer systems [1]. This
contradiction is particularly conspicuous when it comes to battery-powered embedded
devices and mobile computers. Power-aware technologies can be grouped into two
categories: hardware and software. Researches on power-saving of software focus on
system software, which is normally closely related to system architecture, particularly
operating systems and compilers.

Among all of CPU power saving techniques, Dynamic Voltage Scaling (DVS) [2]
is a software controlled, runtime and dynamic technology that changes the supply
voltage and clock frequency of the CPU automatically during the running of an appli-
cation. When and which DVS strategy should be used to save the most energy while

* This work is supported by National Nature Science Foundation of China (60673149).

234 X. LingXiang et al.

performance lose is limited in an acceptable range is the problem that DVS research
tries to solve.

Dynamic compiler is a kind of system software which compiles, modifies and op-
timizes the binary code at runtime. It runs between the binary code of operating sys-
tem and user applications. Compared to static compiler, dynamic compiler doesn’t
need any support from the source code. The feature of runtime complication leads to
better understanding of the application’s behavior and performance in real runtime
environment. IBM DAISY [3], Intel PIN [4] and Valgrind [6] are typical dynamic
compiler frameworks. Besides regular optimization, dynamic compiler can also be
used to drive DVS for energy savings. Because dynamic compiler knows not only
internal structure of a procedure, but also real runtime states, compared to DVS en-
ergy savings driven by operating system and static compiler, dynamic compiler is
much more effective and competitive.

This paper discusses the model of DVS power-aware compiler, and implements a
runtime DVS power-aware compiler under the framework proposed in [5]. By using
the improved DVS decision algorithm, the immediate response of the DVS power-
saving compiler is enhanced remarkably. Finally, some key issues of the design of
this runtime DVS power-aware compiler are probed into deeply.

2 Design of the Dynamic Compiler for Power Reduction

2.1 Application Model

Several recent commercial processors have included DVS capabilities such as Trans-
meta Crusoe, Intel Xscale and Pentium-M. These processors’ DVS setting is in the
form of discrete frequency/voltage pairs. Changing the frequency means changing the
voltage and vice versa. The DVS setting usually can be modified via privileged
instructions.

According to the model proposed by Xie et al. [13], the CPU instructions can be
classified into two categories corresponding to different operands: memory and com-
putation operations. The operand of the former is the memory (in the case of cache
hitting, the actual operand is cache). The latter’s operand is register file. A normal
code region (i.e., a loop, a function) is mixed of these two types of operations. As
illustrated in Fig. 1, if more time spends on computation operations of a code region,
the total executing time is limited to the CPU frequency. Otherwise, the executing
time is limited to the memory speed (in this moment, the CPU idles for the memory
operations). We call the former case as computation bounded code and the latter as
memory bounded code.

For the memory bounded code region, the energy savings can be achieved via re-
ducing the CPU frequency. As shown in Fig. 2a, the time of memory operations (tin-

varient, which is independent of the CPU clock) in the block is much longer than the
time of computation operations (Ndependent/f, in order to simplify the further calculation,
the cache operating time Ncache has been added to Ndependent/f). The difference between
them is called CPU slack time. In this case, as seen in Fig. 2b, if we slow the CPU
(the new frequency is f’), the CPU slack time is eliminated. Although the applica
tion’s execution time tdeadline increases, on the whole the energy consumption due to
increased execution time is still far less than the energy savings as the result of volt-
age and frequency slowdown.

 The Design and Implementation of the DVS Based Dynamic Compiler 235

Fig. 1. Two Categories of Code Regions

Fig. 2. Before and after the CPU frequency is reduced for the memory bounded region

2.2 DVS Analysis Model

We need a DVS algorithm to solve two problems:

1. When the performance degradation is restricted, it selects the suitable code re-
gions to apply DVS. Performance degradation is caused by the delay of the entire
application’s execution time. There are a lot of researches of DVS [7, 8] concerning
the real time application. This paper only considers the performance degradation of
the entire application, ignoring the real time requirement.

2. Determinate an appropriate frequency/voltage setting for the selected code re-
gion to minimize the energy consumption.

In order to obtain the specific algorithm, this paper uses the DVS analysis model
represented in [5]. Suppose the allowable maximum performance loss percentage is
Ploss. We need to obtain the minimum frequency f' of a given candidate code segment,
where f'=β*f. β is the ratio of new frequency of the candidate code segment to original
frequency. We can obtain f' via calculating the corresponding β.

236 X. LingXiang et al.

At the start, we denote the CPU slack time as:

totaltime

Nconcurrent−= invarienttslack time CPU (1)

Obviously, for any DVS candidate region,
f

Nconcurrent>invarientt , so CPU slack

time > 0.
To estimate β, the equation 2 proposed in [5] is used:

totaltime

fN
P

totaltime
P dependent

lossloss

/
k

t
k1 0

invarient
0 ×+×−=β (2)

In this equation, k0 is a constant relative to the hardware configuration. The value

of
totaltime

invarientt
and

totaltime

fNdependent /
 are related to the detailed DVS algorithm.

This analysis model aims at a single code region. Ideally, all regions in the applica-
tion should have specific performance loss Ploss to guarantee energy requirements. But
in fact, for computation bounded code regions, there is no performance loss caused by
DVS adjustment, so in summary, the overall performance loss of the entire applica-
tion is actually less than Ploss. With this DVS analysis model, it is nearly impossible to
make the entire program just at the point of the allowed maximum performance loss
ratio, so as to utilize all the opportunities to save energy. But the cost is absolutely
acceptable while considering there are few energy of this type can be saved.

This model ignores the extra energy consumption caused by DVS switch, which
will make the analysis model complicated if we import it into this model. But the
simplified model reduces calculation overhead and the energy consumption spending
on DVS algorithm.

2.3 Design and Implementation

This section presents the runtime compiler’s architecture. Then, two key design issues
of power-aware dynamic compiler are discussed. The detailed DVS decision algo-
rithm is given at last.

2.3.1 The Runtime DVS Compiler
We modify the dynamic compiler’s architecture in [9] to satisfy the DBI engine and
the DVS decision algorithm. The runtime compiler works between application’s bi-
nary and operating system. It consists of three components, the code divider, the run-
time monitor and the DVS optimizer.

Firstly, the code divider divides the original binary code into regions with fine
grain and inserts profiling codes. At this moment, the application enters cold execu-
tion phase. In this stage, the runtime monitor finds the most frequently executed code
regions (so-called hot region). Once the application enters in a hot region at first time,
the DVS optimizer passes the hot region’s runtime profiling data to DVS decision
algorithm to check whether it is necessary to adjust the CPU frequency. If necessary,
the DVS optimizer changes the DVS setting at latter running of this region.

 The Design and Implementation of the DVS Based Dynamic Compiler 237

2.3.2 Code Dividing
Similar to other dynamic optimizing technologies, we want only to analyze the appli-
cation’s most frequently executed part (hot region). There are numerable mythologies
[10, 11, 12] to find the hot regions of an application. This paper identifies the hot code
in a simply way. By dividing the binary code into several regions, we mark a code
region as hot region when its execution number exceeds a threshold. A code region
can be a single instruction, a block of instructions, branch, loop or function according
to different grains. We choose the function as basic code region in order to be cost
effective.

2.3.3 Profiling Code Placement
To collect the runtime performance data, the profiling code should be inserted in the
application’s binary. An ideal placement strategy can adjust the profiling code’s loca-
tion for accurate analysis. But in fact, we have to place the profiling code at fixed
locations because of the uncertainty of an application’s execution path and the limit of
our DBI engine. In this paper, the profiling code is placed at before the start and after
the termination of a function. Only the long run functions are profiled so the perform-
ance overhead is reduced further.

2.3.4 The DVS Decision Algorithm
From the DVS model above, we know that we must get the two values of

totaltime
invarientt

and
totaltime

fNdependent /
 in equation 2 firstly in order to calculate the current

frequency. It’s unfortunate that no direct calculating means is provided by existing
architectures. For the x86 platform, the optimizer in [5] (for convenience, we refer it
as ParapetRDO) estimates the two values roughly using three PMCs of Pentium-M
processor, BUS_TRAN_MEM, INST_RETIRED and UOPS_RETIRED. But the
Pentium-M processor can only monitor two PMCs simultaneously, so we must run the
application at least two times in order to obtain all three PMCs’ value. Thus, this
algorithm is non-immediate response.

This paper uses an improved algorithm. Based on the observation that the rate of
INST_RETIRED and UOPS_RETIRED is very close to 1 for most code regions, we
using the value of BUS_TRAN_MEM/UOPS_RETIRED to estimate a code region’s
memory boundedness directly. Experimental results show that the higher this rate is,
the higher a code region’s memory boundedness is. The improved algorithm is imme-
diate response.

3 Evaluation and Experimental Results

A prototype of our power-aware compiler is deployed on a laptop with a Pentium-M
processor (which provides 6 DVS settings ranging from 600MHz to 1700MHz). The
OS is Linux kernel 2.6.20. The benchmarks are health[14], bw_mem[15] and mem
(which mainly includes 7 functions. One of them is pure-calculating function. The
other 6 functions have a mass of memory operations and have different memory be-
havior in terms of memory locality and memory boundedness). For evaluation, these
benchmarks are compiled by gcc 4.1 with –O3. In order to reduce measurement error,
we run each benchmark separately for three times and report the average results.

238 X. LingXiang et al.

To eliminate the high overhead of the dynamic binary instrumentation engine (in
this paper, we use Intel PIN with an basic dynamic energy overhead about 14%), the
results reported here are based on the performance and dynamic energy value of each
benchmark running with our dynamic compiler comparing to running with PIN.
Table 1 summarizes the three benchmarks’ statistical information collected by our
dynamic compiler.

Table 1. Statistical information of benchmarks. Average L2 cache misses and Mem bus tran-
sections number are for per 1M upos.

Benchmark Hot
regions

DVS
regions

Function
name

Total
Uops

Average
L2 cache
misses

Average
Memory bus
transections

DVS
setting
(MHz)

mem 7 4 fun_mem_l3 429M 21.8K 11.8K 1000

fun_mem_l4 521M 52.2K 46.5K 600

fun_mem_l5 520M 69.4K 54.4K 600

fun_mem_l6 672M 80.3K 86.8K 600

bw_mem 14 1 rdwr 42M 157.1K 78.8K 600

health 4 0

3%
1%

5%

42%
38%

11%

26%

-3%

37%

22%

36%

-7%

-10%

0%

10%

20%

30%

40%

50%

mem health bw_mem Avarage

Performance loss
Energy savings
EDP improvement

Fig. 3. Performance loss, energy savings and energy delay product (EDP) for benchmarks

As illustrated in the table, the statistical information matches with the benchmarks’
program structure. But in some cases the dynamic compiler would choose a more
suitable frequency setting if the processor provided more DVS settings.

Fig. 3 shows the normalized performance loss, dynamic power savings and energy
delay product (EDP) improvement results for all benchmarks running with our dy-
namic compiler. It’s obvious that the dynamic power-aware compiler works well for
mem and bw_mem. For mem, the energy savings is 42%, the EDP improvement is
36% and the performance loss is 11%. For bw_mem, 38% energy savings and 37%
EDP improvement are achieved with 1% performance loss. In contrast, for health,
energy increases by 3% and EDP decreases by 7%. The contrast is caused by the
reason that mem and bw_mem are high memory boundedness while health does not
contain any DVS region (as seen in Table 1). So the overhead of PIN makes a negative
effect. The results of health are significantly contrary to [5] (60% EDP improvement).

 The Design and Implementation of the DVS Based Dynamic Compiler 239

4 Conclusions

This paper has discussed the run-time compiler driven DVS for power reduction.
Based on the ParapatRDO framework [5], we have designed and implemented a run-
time power-aware compiler using the application model and the improved DVS deci-
sion algorithm described in this paper. The test on the improved DVS decision algo-
rithm shows that it overcomes the non-immediate responsive defect in the Para-
patRDO’s algorithm and reduces the overhead of dynamic compiler. The experimen-
tal results show that with average 5% performance loss, the benchmarks benefit with
26% dynamic power savings and the energy delay product (EDP) improvement is
22%. The energy savings is up to 42% with 11% performance loss. This result indi-
cates that run-time compiler driven DVS is an effective technology for power
reduction.

References

[1] Venkatachalam, V., Franz, M.: Power reduction techniques for microprocessor systems.
ACM Comput. Surv. 37(3), 195–237 (2005)

[2] Qu, G.: What is the limit of energy saving by dynamic voltage scaling. In: Proceedings of
the International Conference on Computer Aided Design (2001)

[3] Ebcioglu, K., Altman, E.R.: DAISY: Dynamic compilation for 100% architectural com-
patibility. In: Proceedings of ISCA 1997 (June 1997)

[4] Luk, C.-K., Cohn, R., Muth, R., Muth, R., Patil, H., Kaluser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: PIN: Building customized program analysis tools with dy-
namic instrumentation. In: Proceedings of PLDI 2005 (June 2005)

[5] Wu, Q., Reddi, V.J., Wu, Y., Lee, J., Connors, D., Brooks, D., Martonosi, M., Clark,
D.W.: A dynamic compilation framework for controlling microprocessor energy and per-
formance. In: Proceedings of the 38th MICRO (November 2005)

[6] Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Binary In-
strumentation. In: Proceedings of PLDI 2007, San Diego, California, USA (June 2007)

[7] Dudani, A., Mueller, F., Zhu, Y.: Energy-Conserving Feedback EDF Scheduling for Em-
bedded Systems with Real-Time Constraints. In: Proceedings of the joint Conference on
Languages, Compilers and Tools for Embedded Systems, pp. 213–222. ACM Press, New
York (2002)

[8] AbouGhazaleh, N., Mossé, D., Childers, B.R., Melhem, R.: Collaborative operating sys-
tem and compiler power management for real-time applications. Trans. on Embedded
Computing Sys. 5(1), 82–115 (2006)

[9] Wu, Q., Martonosi, M., Clark, D.W., Reddi, V.J., Connors, D., Wu, Y., Lee, J., Brooks,
D.: Dynamic-Compiler-Driven Control for Microprocessor Energy and Performance.
IEEE Micro 26(1), 119–129 (2006)

[10] Suganuma, T., Yasue, T., Nakatani, T.A: region-based compilation technique for dy-
namic compilers. ACM Trans. Program. Lang. Syst. 28(1), 134–174 (2006)

[11] Duesterwald, E., Bala, V.: Software profiling for hot path prediction: less is more. In:
Proceedings of the Ninth international Conference on Architectural Support For Pro-
gramming Languages and Operating Systems. ASPLOS-IX, pp. 202–211 (2000)

240 X. LingXiang et al.

[12] Way, T., Breech, B., Pollock, L.: Region Formation Analysis with Demand-Driven Inlin-
ing for Region-Based Optimization. In: PACT 2000. Proceedings of the 2000 interna-
tional Conference on Parallel Architectures and Compilation Techniques, vol. 24 (2000)

[13] Xie, F., Martonosi, M., Malik, S.: Compile-time dynamic voltage scaling settings: Oppor-
tunities and limits. In: Proc. of PLDI 2003 (June 2003)

[14] Carlisle, M.C., Rogers, A., Reppy, J.H., Hendren, L.J.: Early experiences with Olden. In:
Proceedings of the 6th International Workshop on Languages and Compilers for Parallel
Computing (August 1993)

[15] McVoy, L., Staelin, C.: lmbench: Portable Tools for Performance Analysis. Proceedings
of USENIX 1996 Annual Technical Conference (1996)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 241–250, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Optimal Routing Algorithm and Diameter
in Hexagonal Torus Networks∗

Zhen Zhang 1,2, Wenjun Xiao1, and Mingxin He1,2

1 Dept. of Computer Science, South China University of Technology
Guangzhou, China 510641

2 Dept. of Computer Science, Jinan University, Guangzhou, China 510632
zhang2003174@yahoo.com.cn,

wjxiao@scut.edu.cn, mx.he@yeah.net

Abstract. Nodes in the hexagonal mesh and torus network are placed at the ver-
tices of a regular triangular tessellation, so that each node has up to six
neighbors. The routing algorithm for the Hexagonal Torus is very complicated,
and it is an open problem by now. Hexagonal mesh and torus are known to be-
long to the class of Cayley digraphs. In this paper, we use Cayley-formulations
for the hexagonal torus, along with some result on subgraphs and Coset graphs,
to develop the optimal routing algorithm for the Hexagonal Torus, and then we
draw conclusions to the network diameter of the Hexagonal Torus.

1 Introduction

Hexagonal networks belong to the family of networks modeled by planar graphs.
These networks are based on triangular plane tessellation, or the partition of a plane
into equilateral triangles. The closest networks are those based on regular hexagonal,
called honeycomb networks, and those based on regular square partitions, called mesh
networks. Hexagonal networks and honeycomb have been studied in a variety of
contexts. The Honeycomb architecture was proposed in [12], where a suitable ad-
dressing scheme together with routing and broadcasting algorithms were investigated,
higher dimensional hexagonal networks have been defined in [5] and [4] as a gener-
alization of the plane hexagonal networks. Addressing scheme, routing and broadcast-
ing algorithms have been also proposed. An addressing scheme for the processors,
and the corresponding routing and broadcasting algorithms for a hexagonal intercon-
nection network has been proposed in [2]. The performance of hexagonal networks
has been further studied in [3] and [11]. Hexagonal networks has been used in track-
ing mobile users and connection rerouting in Cellular networks[9]. The 2D hexagonal
torus has been used in the HARTS project[13]. But the routing algorithm for the hex-
agonal torus has been an open problem.

∗ This research is supported by the Natural Science Foundation of Guangdong Province, China

(No. 04020130).

242 Z. Zhang , W. Xiao, and M. He

Hexagonal mesh and torus, as well as honeycomb and certain other pruned
torus networks, are known to belong to the class of Cayley graphs which are node
symmetric and possess other interesting mathematical properties[15,16,17,19,7]. In
this paper we use Cayley-graph formulations of hexagonal torus to develop an opti-
mal routing algorithm, and then discuss the network diameter.

2 Knowledge of Cayley Graph

Before proceeding further, we introduce some definitions and notations related to
digraphs Cayley digraphs in particular, and interconnection networks. For more defi-
nitions and mathematical results on graphs and groups we refer the reader to [1] and
[6], for instance, and on interconnection networks to [8] and [10].A digraph Г=(V, E)
is defined by a set V of vertices and a set E of directed edges. The set E is subset of
elements (u, v) of If the subset E is symmetric, that is, (u,v)∈E, implies (v,u)∈E, we
identify two opposite arcs (u,v) and (v,u) by the undirected edge (u,v). Let G be a
group and S a subset of G. The subset S is said to be a generating set of G, and the
elements of S are called generators of G, if every element of G can be expressed as a
finite product of their powers. We also say that G is generated by S. The Cayley di-
graph of the group G and the subset S, denoted by Cay(G,S), has vertices that are
elements of G and arcs that are ordered pairs (g,gs) for g∈E,s∈S. If S is a generating
set of G, we say that Cay(G,S) is the Cayley digraph of G generated by S. When 1∉ S
and S=S-1, the graph Cay(G,S) is a simple graph. Assume that Γ and Σ if for and
(u,v)∈E(Γ) we have (ф(u), ф(v))∈E(Σ). In particular, if ф is bijection such that both
ф and the inverse of ф are homeomorphisms, then ф is called an isomorphism of Γ to
Σ. Let G be a group and S a subset of G. Assume that K is a subgroup of G, denoted as
K≤G. Let G/K denote the set of the right cosets of K in G. The right coset graph of G
with respect to subgroup K and subset S, denoted by Cos(G,K,S)set of the right cosets
of K in G. is the digraph with vertex set G/K such that there exists an edge (Kg, Kg’)
if and only if there exists s∈S and Kgs=Kg’.

Fig. 1. Connectivity pattern for hexagonal mesh network

 Optimal Routing Algorithm and Diameter in Hexagonal Torus Networks 243

3 Hexagonal Mesh and Torus

3.1 Hexagonal Mesh

Let G=Z×Z where Z is the infinite cyclic group of integers, and consider Γ=Cay(G,S)
with S={(±1,0),(0, ±1),(1,1),(-1,-1)}. It is evident that Г is isomorphic to the hexago-
nal mesh network [9][12]. Fig.1 shows a small part of an infinite hexagonal mesh in
which the six neighbors of the “center” node (0,0) are depicted.

Fig. 2. Hexagonal torus with order 9×5

Fig. 3. Hexagonal torus with order 5×9

244 Z. Zhang , W. Xiao, and M. He

Using the Cayley-graph formulation of hexagonal networks, we can easily derive the
distance dis((a,b),(c,d)) between the vertices (a,b) and (c,d) in such networks[18].

The routing algorithm of hexagonal mesh has been developed in [16] as the follow
proposition.

Proposition 1. In the hexagonal mesh Г, dis((0,0),(a,b)) equals max(|a|,|b|) if a and b
have the same sign and |a|+|b| otherwise.

Proof. See [16].

By symmetry of Cayley graphs, we can easily obtain the distance between any two
vertices in the graph Γ from Proposition 1, using dis((a,b),(c,d))=dis((0,0),(c-a,d-b)).
This observation and the preceding discussion lead to a simple distributed routing
algorithm for Г.

3.2 Hexagonal Torus

Let G=Zl×Zk, where Zl and Zk are cyclic groups of orders l and k respectively,
l>0,k>0. Assume that S is defined as in the preceding paragraph. Then △=Cay(H,S)
is the hexagonal torus of order lk. Fig.2 shows hexagonal torus with order 9×5 and
Fig.3 shows hexagonal torus with order 5×9.

Using the results obtained for hexagonal meshes according to Proposition 1, we
can deal with problems on Hexagonal torus which are, in general, more difficult. Let
△ be defined as above. Then we have the following result.

Proposition 2. For the hexagonal torus △ of order lk and integers a and b,
l>a≥0,k>b≥0,we have dist((0,0),(a,b))=min(max(a,b),max(l-a,k-b),l-a+b,k+a-b).

According to the Proposition 2, we can develop a routing algorithm of the hexagonal
torus.

4 Optimal Routing Algorithm for Hexagonal Torus

The hexagonal torus △=Cay(Zl×Zk,S) with S={(±1,0),(0, ±1),(1,1),(-1,-1)}, is vertex
transitive. The routing of any two nodes can transform to the routing of (0,0) to (a,b),
a and b are integers. Let a+ml→a and b+nk→b, with the choice of integer m and n,
we can get

⎣ ⎦ ⎡ ⎤ 12/2/ −≤≤− lal ⎣ ⎦ ⎡ ⎤ 12/2/ −≤≤− kbk

Now we discuss the routing from (0,0) to (a,b).

Definition 1. For any node (a,b) in the hexagonal torus, a is called the x-dimension
coordinate and b is called the y-dimension coordinate. When a+0→a or a+1→a is
called x-dimension increase, and when x-0→x or x-1→x is called x-dimension de-
crease. Also we can define y-dimension increase and decrease.

Proposition 3. The Optimal routing from (0,0) to (a,b) must keep x-dimension and
y -dimension increase or decrease.

Proof. We only consider the case of first increase then decrease.

Case 1. x-dimension first increase then decrease.

 Optimal Routing Algorithm and Diameter in Hexagonal Torus Networks 245

Assume the routing from (0,0) to (a,b) is: (0,0) →...→(ai,bj) →(ai+1,bk) →(ai,bm)
→…→(a,b), and dis((0,0),(a,b))=D. Because the generator S={(±1,0),(0, ±1),(1,1),(-
1,-1)}, bk=bj or bj+1 and bm=bk or bk-1. We can get bm=bj or bj+1 or bj-1, (ai,bm) may
be (ai,bj) or (ai, bj+1) or (ai, bj-1).

If (ai,bm)=(ai,bj), the (ai,bj) →(ai+1,bk) →(ai,bm) is a circle, the routing can change
to (0,0) →...→(ai,bj) →(ai+1,bk) →(ai,bm) →…→(a,b), the distance change to D-2.

If (ai,bm)=(ai,bj+1), the routing can change to (0,0) →...→(ai,bj) →(ai,bj+1)
→…→(a,b), the distance change to D-1, this means the routing keeps x-dimension
increase.

If (ai,bm)=(ai,bj-1), the routing can change to (0,0) →...→(ai,bj) →(ai,bj-1)
→…→(a,b), the distance change to D-1, this means the routing keep x-dimension
decrease.
Case 2. The case of y-dimension first increase then decrease is similar to Case 1.
According to the Proposition 3, the routing between any two nodes can be divided
into x-dimension routing and y-dimension routing. □

Definition 2. We define the functions dist() to denote the distance of two nodes,
distx() to denote the x-dimension distance, disty () denote the y- dimension distance.

Now, we discuss the routing from (0,0) to (a,b) in five cases:

Case 1. One of a or b is zero
Case 2. a>0 and b>0.
Case 3. a<0 and b<0.
Case 4. a>0 and b<0.
Case 5. a<0 and b>0.

4.1 One of a or b is Zero

If a=0 and b>0, x-dimension and y-dimension keep increase to get the routing from
(0,0) to (0,b): (0,0) →(0,1) →...→(0,b).

If a=0 and b<0, x-dimension and y-dimension keep decrease to get the routing
from (0,0) to (0,b) the routing from (0,0) to (0,b) keep x-dimension and y-dimension
decrease : (0,0) →(0,-1) →...→(0,b).

Similarly, we can get the routing in the case of b=0.

4.2 a>0 and b>0

For x-dimension, it has two ways to establish the routing from 0 to a: the increase way
or the decrease way. According to the increase way, distx((0,0),(a,b))=a, while ac-
cording to the decrease way, distx((0,0),(a,b))=l-a. Because ⎡ ⎤ 12/0 −≤< la , we

can get ⎣ ⎦ lall <−≤+ 12/ , it is obviously that l-a>a. So the x-dimension routing

must be increased. Because b>0, the y-dimension routing must be increased too. Syn-
thetically, the routing between (0,0) to (a,b) must be x-dimension increased and
y-dimension increased.

If a≥b , the routing is:
(0,0) →(1,1) →...→(b,b) →(b+1,b) →...→(a-1,b) →(a,b).
If a<b , the routing is:
(0,0) →(1,1) →...→(a,a) →(a,a+1) →...→(a,b-1) →(a,b).

246 Z. Zhang , W. Xiao, and M. He

4.3 a<0 and b<0

The discussion of this part is similar to part 3.2, we can draw the conclusion that the
routing between (0,0) to (a,b) is x-dimension decrease and y-dimension decrease.

If |a|≥|b|, the routing is:

(0,0) →(-1,-1) →...→(b,b) →(b-1,b) →...→(a+1,b) →(a,b).
If |a|<|b|, the routing is:
(0,0) →(-1,-1) →...→(a,a) →(a-1,a) →...→(a,b+1) →(a,b).

4.4 a>0 and b<0

Because ⎣ ⎦ 02/ <≤− bk , we can get ⎣ ⎦ ⎡ ⎤2/2/ kkkbkk =−≥+> , it is

obviously that k+b>|b|. We have already known that l-a>a.
The routing between (0,0) to (a,b) can be implemented in four ways:

1. x-dimension increase and y-dimension decrease, the distance is a+|b|.
2. x-dimension increase and y-dimension increase, the distance is max(a, k+b).
3. x-dimension decrease and y-dimension decrease, the distance is max(l-a, -b).
4. x-dimension decrease and y-dimension increase, the distance is l-a+k+b.

According to the Proposition 2, we know that dist((0,0),(a,b))=min(a+|b|, max(a,
k+b), max(l-a, -b),l-a+k+b), then we discuss the routing problem in two cases:

(1) l-a>k+b

Because l-a>k+b and k+b>|b|, we can get max(l-a,-b)=l-a, l-a+k+b>l-a, and l-
a>max(a, k+b), then dist((0,0),(a,b))=min(a+|b|, max(a, k+b)).

If a≥k+b, dist((0,0),(a,b))=min(a+|b|, a)=a. So the routing is x-dimension in-
crease and y-dimension increase:

⎡ ⎤ ⎡ ⎤ ⎣ ⎦ ⎣ ⎦)12/,12/()2/,2/()12/,12/(...)1,1()0,0(+−+→−→−−→→→ kkkkkk

),(...),1(),(... babbkbbk →→++→+→→

Example 1. The routing from (0,0) to (4,-2) in Fig.2 is as follows:

(0,0) →(1,1) →(2,2)→(3,-2) →(4,-2).
If a<k+b, dist((0,0),(a,b))=min(a+|b|, k+b).

When a+|b|≥k+b, , that is a≥k+2b, we have dist((0,0),(a,b))=k+b. So the routing is
x-dimension increase and y-dimension increase:

⎣ ⎦ ⎣ ⎦),(...)12/,()2/,()12/,(

...)1,(),(...)1,1()0,0(

bakakaka

aaaa

→→+−→−→−
→→+→→→→

Example 2. The routing from (0,0) to (1,-2) in Fig.2 is as follows:

(0,0) →(1,1) →(1,2)→(1,-2)

When a+|b|<k+b, that is a<k+2b, we have dist((0,0),(a,b))=a+|b|. So the routing
is x-dimension increase and y-dimension decrease:
(0,0) →(1,0) →…→(a,0)→(a,-1) →…→(a,b) .

Example 3. The routing from (0,0) to (2,-1) in Fig.2 is as follows:

(0,0) →(1,0) →(2,0)→(2,-1) .

 Optimal Routing Algorithm and Diameter in Hexagonal Torus Networks 247

(2) l-a≤k+b

Because k+b>l-a>a, max(a, k+b)=k+b, l-a+k+b>k+b, and k+b≥max(l-a,|b|), we get
dist((0,0),(a,b))=min(a+|b|, max(l-a, |b|)).

If l-a≥-b, dist((0,0),(a,b))=min(a+|b|, l-a).
When a+|b|≥l-a, that is b≤2a-l, we have dist((0,0),(a,b))=l-a. So the routing is x-

dimension decrease and y-dimension decrease:

⎣ ⎦
⎡ ⎤ ⎡ ⎤).,(...),22/(),12/(

),2/(...),1(),(...)1,1()0,0(

bablbl

blbbbb

→→−→−
→−→→−→→→−−→

Example 4. The routing from (0,0) to (2,-3) in Fig.3 is as follows:

(0,0) →(-1,-1) →(-2,-2)→(2,-3).

When a+|b|<l-a that is b>2a-l, we have dist((0,0),(a,b))=a+|b|. So the routing is
x-dimension increase and y-dimension decrease:

(0,0) →(1,0) →…→(a,0)→(a,-1) →…→(a,b).

Example 5. The routing from (0,0) to (1,-2) in Fig.3 is as follows:

(0,0) →(1,0) →(1,-1)→(1,-2).

If l-a<-b, k+b>-b>l-a, we have dist((0,0),(a,b))=min(a+|b|, |b|)=|b|. So the rout-
ing is x-dimension decrease and y-dimension decrease:

⎣ ⎦ ⎣ ⎦ ⎡ ⎤ ⎣ ⎦
⎡ ⎤ ⎣ ⎦).,(...)1,(),(...)22/,22/(

)12/,12/()2/,2/(...)1,1()0,0(

balaalaall

llll

→→−−→−→→−−−
→−−−→−−→→−−→

Example 6. The routing from (0,0) to (2,-4) in Fig.3 is as follows:

(0,0) →(-1,-1) →(-2,-2)→(2,-3) →(2,-4).

4.5 a<0 and b>0

Because ⎡ ⎤ 12/0 −≤< kb and ⎣ ⎦ 02/ <≤− al , similar to part 4.5 we can get k-b≥b and

l+a≥|a|.
The routing between (0,0) to (a,b) can be implemented in four ways:

1. x-dimension decrease and y-dimension increase, the distance is |a|+b.
2. x-dimension increase and y-dimension increase, the distance is max(l+a, b).
3. x-dimension increase and y-dimension decrease, the distance is l+a+k-b.
4. x-dimension decrease and y-dimension decrease, the distance is max(|a|, k-b).

We know that dist((0,0),(a,b))=min(|a|+b, max(l+a, b), l+a+k-b, max(|a|, k-b)),
then we discuss the routing problem in two cases:

(1) k-b>l+a

If b≥l+a, dist((0,0),(a,b))=min(|a|+b, b)=b. So the routing is x-dimension increase
and y-dimension increase:

⎡ ⎤ ⎡ ⎤ ⎣ ⎦ ⎡ ⎤
).,(...)1,(),(

...)2/,2/()12/,12/(...)1,1()0,0(

balaalaa

llll

→→++→+→
→−→−−→→→

248 Z. Zhang , W. Xiao, and M. He

Example 7. The routing from (0,0) to (-2,4) in Fig.3 is as follows:

(0,0) →(1,1) →(2,2)→(-2,3) →(-2,4).
If b<l+a, dist((0,0),(a,b))=min(|a|+b, l+a).

When |a|+b≥l+a, that is b≥l+2a, we have dist((0,0),(a,b))=l+a. So the routing is
x-dimension increase and y-dimension increase:

⎡ ⎤
⎣ ⎦ ⎣ ⎦).,(...),12/(),2/(

),12/(...),1(),(...)1,1()0,0(

bablbl

blbbbb

→→+−→−
→−→→+→→→→

Example 8. The routing from (0,0) to (-2,2) in Fig.3 is as follows:

(0,0) →(1,1) →(2,2)→(-2,2) .

When |a|+b<l+a, that is b<l+2a, we have dist((0,0),(a,b))=b-a. So the routing is
x-dimension decrease and y-dimension increase:

(0,0) →(-1,0) →…→(a,0) →(a,1) →…→(a,b) .

Example 9. The routing from (0,0) to (-1,2) in Fig.3 is as follows:
(0,0) →(-1,0) →(-1,1)→(-1,2).

(2) k-b≤l+a

Because max(l+a,b)=l+a, l+a+k-b≥l+a, and l+a≥max(|a|,k-b), we get
dist((0,0),(a,b))=min(|a|+b, max(|a|, k-b)).

If k-b≥-a, dist((0,0),(a,b))=min(a+|b|, k-b).
When b-a≥k-b, that is a≤2b-k, we have dist((0,0),(a,b))=k-b. So the routing is x-

dimension decrease and y-dimension decrease:

⎣ ⎦ ⎡ ⎤ ⎡ ⎤).,(...)22/,()12/,()2/,(

...)1,(),(...)1,1()0,0(

bakakaka

aaaa

→→−→−→−
→→−→→→−−→

Example 10. The routing from (0,0) to (-2,2) in Fig.2 is as follows:

(0,0) →(-1,-1) →(-2,-2)→(-2,2).

When b-a<k-b, that is a>2b-k, we have dist((0,0),(a,b))=b-a. So the routing is x-
dimension decrease and y-dimension increase:

(0,0) →(-1,1) →…→(a,0) →(a,1) →…→(a,b).

Example 11. The routing from (0,0) to (-2,1) in Fig.2 is as follows:

(0,0) →(-1,0) →(-2,0) →(-2,1).

If k-b<-a, dist((0,0),(a,b))=min(a+|b|, |a|)=|a|. So the routing is x-dimension de-
crease and y-dimension decrease:

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡ ⎤
).,(...),1(),(

)12/,12/()2/,2/(...)1,1()0,0(

babkbbkb

kkkk

→→−−→−→
−−−→−−→→−−→

Example 12. The routing from (0,0) to (-4,2) in Fig.2 is as follows:

(0,0) →(-1,-1) →(-2,-2)→(-3,2) →(-4,2).

The routing algorithm can get the optimal routing according to the Proposition 3.

 Optimal Routing Algorithm and Diameter in Hexagonal Torus Networks 249

5 Diameter of Hexagonal Torus

For any digraph Г, D(Г) denotes the diameter of Г, defined as the longest distance
between any pair of vertices in Г. In [17] ,we have the following result about the di-
ameter.

Theorem 1. For g∈S,S ⊆ G, ,the mapping ф:g→Kg is a homomorphism from
Cay(G,S) to Cos(G,K,S).

Theorem 2. Assume that G is a finite group, K≤G,Г=Cay(G,S), △=Cos(G,K,S) for
some generating set S of G, and D(ГK) denote the longest distance between vertices
of K in Г. Then we have D(Г)≤D(△)+D(ГK).
Proof. See [17].

Proposition 4. Assume the hexagonal torus△=Cay(Zl×Zk,S),where S={(±1,0),(0,
±1),(1,1),(-1,-1)}, we have ⎡ ⎤ ⎣ ⎦ ⎣ ⎦2/2/)(2/)),(max(klDkl +≤Δ≤ .

Proof. Let K={ ⎣ ⎦)0,2/(k− , ⎣ ⎦)0,12/(+− k ,…,(0,0),(1,0),…, ⎡ ⎤)0,12/(−k }, then

Cos(G,K,S) is an 1-D torus according to Theorem1and, D(Cos(G,K,S))= ⎣ ⎦2/l . The

K in △ is an 1-D torus too, and D(ГK)= ⎣ ⎦2/k . From the Theorem 2, we get

D(△)≤ ⎣ ⎦ ⎣ ⎦2/2/ kl + .For any l≥3,k≥3, either dis((0,0),(1, ⎡ ⎤2/k)or dis((0,0),(⎡ ⎤2/l ,1))

is ⎡ ⎤2/)),(max(kl . Assume k≥l, we can get D(△)≥ ⎡ ⎤2/)),(max(kl according to

the Proposion 2. □

6 Conclusion

The routing algorithm for the Hexagonal Torus is an open problem. In this paper, we
use Cayley-formulations for the hexagonal torus to develop an optimal routing algo-
rithm for the Hexagonal Torus. Then we discuss the diameter of the Hexagonal Torus,
and give an upper bound and a lower bound to the diameter. We are currently investi-
gating the Hexagonal Torus diameter in order to give an accurate value.

References

1. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1993)
2. Chen, M.S., Shin, K.G., Kandlur, D.D.: Addressing, Routing and Broadcasting in Hexago-

nal Mesh Multiprocessors. IEEE Trans. Computers 39(1), 10–18 (1990)
3. Dolter, J.W., Ramanathan, P., Shin, K.G.: Performance Analysis of Virtual Cut-Through

Switching in HARTS: A Hexagonal Mesh Multicomputer. IEEE Trans. Computers 40(6),
669–680 (1991)

4. Decayeux, C., Seme, D.: 3D hexagonal network: modeling, topological properties, ad-
dressing scheme, and optimal routing algorithm. IEEE Trans. on Parallel and Distrib.
Sys. 16(9), 875–884 (2005)

5. García, F., Solano, J., Stojmenovic, I., Stojmenovic, M.: Higher dimensional hexagonal
networks. Journal of Parallel and Distributed Computing 63(11), 1164–1172 (2003)

250 Z. Zhang , W. Xiao, and M. He

6. Heydemann, M.: Cayley Graphs and Interconnection Networks. In: Graph Symmetry: Al-
gebraic Methods and Applications, pp. 167–224 (1997)

7. He, M.X., Xiao, W.J.: A Unified Addressing Schema for Hexagonal and Honeycomb Net-
works with Isomorphic Cayley Graphs. In: IMSCCS 2006. Proc. of 1st Int. Multi-Symp. of
Computer and Computational Sciences, Hangzhou, China, vol. 1, pp. 363–368 (2006)

8. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypecubes. Morgan Kaufmann, San Francisco (1992)

9. Nocetti, F.G., Stojmenovic, I., Zhang, J.Y.: Addressing and Routing in Hexagonal Net-
works with Applications for Tracking Mobile Users and Connection Rerouting in Cellular
Networks. IEEE Trans. Parallel and Distributed Systems 13(9), 963–971 (2002)

10. Parhami, B.: Introduction to Parallel Processing: Algorithms and Architectures, Plenum
(1999)

11. Robic, B., Silc, J.: High performance Computing on a Honeycomb Arcbhitecture. In: Proc.
Int. ACPC Parallel Computation Conf. (1993)

12. Stojmenovic, I.: Honeycomb Networks: Topological Properties and Communication Algo-
rithms. IEEE Trans. Parallel and Distributed systems 8(10), 1036–1042 (1997)

13. Shin, K.G.: HARTS: A Distributed Real-Time Architectrue. Computer 24(5), 25–35 (1991)
14. Tosic, R., Masulovic, D., Stojmenovic, I., et al.: Enumeration of Polyhex Hydrocarbons up

to h=17. J. Chemical Infromation and Computer Sciences 35, 181–187 (1995)
15. Xiao, W.J., Parhami, B.: Some Mathematical Properties of Cayley Digraphs with Applica-

tions to Interconnection Network Design. Int. J. Computer Mathematics 82, 521–528
(2005)

16. Xiao, W.J., Parhami, B.: Further Mathematical Properties of Cayley Digraphs Applied to
Hexagonal and Honeycomb Meshes. Discrete Applied Mathematics (to appear, 2007)

17. Xiao, W.J., Parhami, B.: Hexagonal and Pruned Torus Networks as Cayley Graphs. In:
Proc. International Conf. on Communications in Computing, Las Vegas, June 21-24, 2004,
pp. 107–112 (2004)

18. Xiao, W.J., Parhami, B.: Structural Properties of Cayley Digraphs with Applications to
Mesh and Pruned Torus Interconnection Networks. Int. J. of Computer and System Sci-
ences, Special Issue on Network-Based Computing (to appear, 2007)

19. Xiao, W.J., Parhami, B.: A Group Consruction Method with Applications to Deriving
Pruned Interconnection Networks. IEEE Trans. on Parallel and Distrib. Sys. 18(5), 637–
643 (2007)

Implementation and Performance Evaluation of

an Adaptable Failure Detector in iSCSI

Guang Yang, Jingli Zhou, and Gang Liu

College of Computer Science & Technology,
Huazhong University of Science & Technology,

Wuhan, 430074, China
yangchgang@gmail.com

Abstract. Unreliable failure detectors have been an important abstrac-
tion to build dependable communication applications over iSCSI systems
subject to faults. In this paper, we propose a new implementation of a
failure detector. This implementation is a variant of the heartbeat fail-
ure detector which is adaptable and can support scalable applications.
In this implementation we dissociate two aspects: a basic estimation of
the expected arrival date to provide a short detection time, and an adap-
tation of the quality of service according to application needs.

Keywords: Failure detectors, Adaptable, iSCSI systems.

1 Introduction

Failure detectors are well-known as a basic building block for fault-tolerant iSCSI
systems. The best important factor of such systems is the stabilization. Failure
detectors can provide the environment of stabilization and security. Failure de-
tectors are used in a wide variety of fields, such as network communication pro-
tocols[1], group membership protocols[2,3], computer cluster management[4],etc.
The main issue is that failure detectors encapsulate the indeterminism of dis-
tinguishing a very slow process from a crashed one, leaving agreement protocols
free from timing issues.

We propose a new implementation of failure detector. This implementation is
a variant of the heartbeat detector which is adaptable and can support scalable
applications. Our algorithm is based on all-to-all communications where each
Target periodically sends an “I am alive” message to all Initiators that connect it.
To provide a short detection delay, we automatically adapt the failure detection
time as a function of previous receptions of “I am alive”messages.

2 Unreliable Failure Detectors

In this section, we present a short description of failure detectors and some met-
rics to compare their performances. Failure detectors are characterized by two
properties: completeness and accuracy. Completeness characterizes the failure

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 251–260, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

252 G. Yang, J. Zhou, and G. Liu

detector capability of suspecting every incorrect Target permanently. Accuracy
characterizes the failure detector capability of not suspecting correct Targets.
Two kinds of completeness and four kinds of accuracy are defined in [5], which
once combined yield eight classes of failure detectors.

Strong completeness: There is a time after which every Target that crashes
is permanently suspected by every correct Initiator.

Eventual strong accuracy: There is a time after which correct Targets are
not suspected by any correct Initiators.

In parallel, [6] proposes a set of metrics that can be used to specify the Quality
of Service (QoS) of a failure detector. The QoS quantifies how fast a detector
suspects a failure and how well it avoids false detection.

Detection time (TD): TD is the time that elapses from Target’s crash to the
time when Initiator starts suspecting Target permanently.

Mistake recurrence time (TMR): This measures the time between two con-
secutive mistakes.

Mistake duration (TM): This measures the time it takes the failure detector
to correct a mistake.

3 Failure Detection Strategies

3.1 The Push Strategy

The Push period Δi: Δiis the time between two emissions of an “I am alive”
message.

The timeout delay Δto: Δto is the time between the last reception of an “I
am alive” message from q and the time where p starts suspecting q, until an “I
am alive” message from q is received.

The advantage of this approach is that the detection time is independent from
the last heartbeat. This modification increases the accuracy because it avoids
premature timeout and outperforms the failure detection time.

3.2 The Pull Strategy

The interrogation periodΔi : Δiis the time between two emissions of an “Are
you alive ?” message.

The timeout delay Δto: Δtois the time between the emission of an “Are
you alive ?” message by p to q, and the time where p starts suspecting q, until
p receives an “I am alive” message from q.

3.3 System Model

We suppose an iSCSI system with Ω Initiators and Φ Targets. Ω Initiators and Φ
Targets distributed over an unreliable wide-area network. We assume unbounded

Implementation and Performance Evaluation 253

communication delays and that the communication links can lose messages. In
this iSCSI system, we define a receiving part of failure detector as a set of every
Initiator module, fd1 to fdn, where fdq is attached to an Initiator q ∈ Ω.
Every sending part of failure detector is attached to a Target p ∈ Φ. Our FD
implements a Push-style monitoring algorithm [8] that is based on requests and
acknowledgement messages.

Each fdq maintains a list of Targets Suspectq that are currently supposed of
being crashed. Thus, we say that an Initiator q ∈ Ω suspects a Target p ∈ Φ,
at local time t, the Target p is in the list of suspected Targets maintained by
fdq. A fdq in Initiator makes mistakes by incorrectly suspecting a Target. In
this context, the suspicion resolution is based only on a timeout for some event,
i.e., the detector is a timeout based failure detector. In addition, suspicions are
not necessarily stable: if q suspects p at a given instant, it can later learn that
the suspicion was incorrect. Target p is then removed by fdq from its list of
suspicious Targets.

4 Adaptation of the Delays

4.1 Arrival Date Estimation

The QoS of the detection depends on the Δi and Δto parameters. The timeout
delay Δto is important because it determines the detection time. The estimation
for Δi uses local information that each Initiator possesses. This information is
limited to the observation of heartbeat message arrival dates and the interroga-
tion period Δi. On the other hand the arrival time of heartbeat messages can be
altered by the network load and the host load. In our solution the failure detec-
tor is structured into two layers. The first layer makes an accurate estimation to
optimize the detection time. The second layer can modulate this detection time
with respect to the needs in terms of QoS. In this part, we compare two methods:
the first one is proposed in [6], the second method is the one we propose.

Chen’s estimation. In [6], this technique estimates the arrival time for heart-
beat messages (EA) and adds a constant safety margin.

Each process q considers the n most recent heartbeat messages, denoted
m1,m2... mn. Let A1, A2...An be their receipt times according to q’s local clock.
When at least n messages have been received, EAk+1 can be estimated by:

EA(k+1) ≈ 1
n

(
k∑

i=k−n

Ai − Δi × i

)
+ (k + 1) × Δi (1)

The next timeout delay Δto (which expires at the next freshness point τk+1) is
composed of EA and α the constant safety margin. EA represents the theoretical
arrival date. The safety margin is added to avoid false detections caused by
transmission delay or processor overload.

τ(k+1) = α(k+1) + EA(k+1) (2)

254 G. Yang, J. Zhou, and G. Liu

Our estimation. We estimate the arrival time with the Chen’s method and we
evaluate the safety margin dynamically. Chen’s estimation of EA(i+1) supposes
that we compute an average of n last arrival dates for each estimation, but we can
transform it into a recursive equation: until Initiator receives at least n heartbeat
messages from Target, the Initiator estimates the next arrival time by:

U(i+1) =
Ai

i + 1
× k × Ui

i + 1
(3)

the arrival date average

EA(i+1) = U(i+1) +
i + 1

2
× Δi (4)

with U(1) = A0
And when Initiator has received more than n heartbeat messages, it uses:

EA(i+1) = EAi +
1
n

(
Ai − A(i−n−1)

)
(5)

We suppose that the safety margin is not constant. We adapt the safety margin
each time it receives a message. We employ the prediction error-based margin
(α(i+1)) in this system. Consider that the network traffic presents a significant
variation.The margin α(i+1) will have its value adjusted to the capacity of the
predictor to hit the next sample. As soon as the prediction error changes, the
margin will be quickly recalculated to accommodate that error.

Similarly to Jacobson’s estimation method [7], the margin α(i+1) adapts its
value each time the failure detector receives a message and the network load
has varied, i.e., according to the error of the last estimation. Then, under a new
message reception, at time t, a new margin value is computed by

α(i+1) = αi + c (|EAi − Ai| − αi) (6)

where c is the smoothing constant. In this paper, we set c=0.25 to obtain a fast
reaction to error variation.

The next timeout Δto(i+1), activated by Initiator when it receives mi, expires
at the next freshness point:

τ(k+1) = EA(i+1) + α(i+1) (7)

4.2 Dynamic Adaptation of the Interrogation Delay

Failure detectors are designed to be used over long periods of time. The needs
in terms of QoS are not constant, they vary according to each application. To
adapt the QoS, we can change the interrogation delay Δi. The other reason for
adapting the QoS of the detector is to adapt the bandwidth required by detectors
with respect to the network load.

The idea is to allow the adaptation of Δi during the execution. In order to
achieve this, all the detectors must reach a consensus over the new Δi.

Implementation and Performance Evaluation 255

The reasons to make this change are: the deliberate increase or decrease of
the quality of detection, situations where the network capacity cannot allow to
maintain the current quality of detection anymore, or where the network capacity
increases and allows to obtain a higher quality of detection.

5 Failure Detector Algorithm

5.1 Algorithm

We implement a basic failure detection service, which provides an estimation
for the arrival date of the next heartbeat message optimized with respect to
detection time. This estimation is obtained from the expected arrival date and a
dynamic margin. The aim of this layer is not to avoid all false detections but to
provide a compromise between the number of false detections and the accuracy
of the detection time. Algorithm of FD shows the whole algorithm of our failure
detector.

Algorithm of FD:
1.Initialization:

1.1Suspectt ← ∅

1.2 for all Target
1.3 ΔI(T) = 0 {ΔI(T)moderate the detection}
1.4 τ0(T) = 0 {Initially, all Target will be suspected by Initiator}
1.5 EA0(T) = U0(T) = 0, delay0(T) = initia value,α0 = 0,A0(T) = 0
1.6 K(T) = −1 {K(T)keeps the largest sequence number in all the messages

Initiator received from Target so far}
2.Target:

2.1 at time i × Δi, sends heartbeat mito Initiator
3. Initiator:

3.1 upon receive message mi at time t from Target
3.2 if j > K(T) then K(T) ← j, α(i+1) = αi + c(|EAi − Ai| − αi)
3.3 if j < n then
3.4 U(i+1) = [i/(i + 1)] × [i/(i + 1)]Ui,EA(i+1) = U(i+1) + [(i + 1)/2]Δi

3.5 else EA(i+1) = EAi + (t − A(i−n−1)(T))/i
3.6 end if
3.7 Ai(T) ← t and τ(i+1)(T) = EA(i+1)(T) + α(i+1)(T)
3.8 if Target q ∈ SuspectI then
3.9 SuspectI ← SuspectI − q {trust q }
3.10 Stateq = S → T and ΔI(T) = ΔI(T) + 1
3.11 end if

4. Task:
4.1 upon τ(i+1)(T) = the current time
4.2 wait during ΔI(T) and if no message receive from Target q
4.3 SuspectI ← SuspectI

⋃
q

4.4 Stateq = T → S
The Initiator estimates the expected arrival date EAi and the safety margin

α for the next ”I am alive” message from Target. From these results, Initiator

256 G. Yang, J. Zhou, and G. Liu

determines the next freshness point τi for Target. If Initiator currently suspects
Target, then it stops suspecting it and increases its moderator timeout ΔI(t)
because Initiator knows that its previous timeout on Target was premature.

Task starts when Initiator does not receive an ”I am alive” message from
Target before the next freshness point τ(T). Initiator waits again for a message
from Target during the moderator timeout ΔI(T). If after this delay, Initiator
still does not receive a message from Target, it starts suspecting it.

5.2 Proof

A failure detector must verify the two properties represented by the two Theo-
rems 1 and 2.

Theorem 1(Strong completeness). Eventually every Target that crashes is
permanently suspected by every correct Initiator.

∃t0 : ∀t ≥ t0, ∀p ∈ correct(I), ∀q ∈ crashed, q ∈ suspectp(T) (8)

Theorem 2(Eventual strong accuracy). There is a time after which the
correct Targets are not suspected by every correct Initiator.

∃tbound, ∀t ≥ tbound, ∀p, q ∈ correct(I), q 	∈ suspectp(T) (9)

Strong Completeness
Theorem 1 is verified if Lemma 1 and 2 are verified. That is if there is a

time tmute after which no correct Initiator receives heartbeat messages from the
crashed Target, and if there is a time ttimeout after which all correct Initiators
permanently suspect the Target.

Lemma 1. If Target crashes at tcrash, then there is a time tmute after which
Initiator stops receiving messages from Target.

tmute ≤ tcrash + Δmsg (10)

Proof. We also assume that, at these instants, all the messages sent before the
Global Stabilization Time (GST) have already been delivered and processed.

∃tGST : ∀mi|tsi ≥ tGST : (tri − tsi) < �msg

tsiis the time when Target sends mi and tri is the time when Initiator receives
mi

Suppose a Target crashed at tcrash. Then Target stops sending ”I am alive”
messages.

	 ∃mi|tsi ≥ tcrash

The Initiator cannot receive message i from Target after tri + �msg. Hence
Initiator cannot receive any message from Target after tcrash + �msg.

Lemma 2. For any sequence of i messages received by Initiator from Target,
there is a time τi after which Initiator starts suspecting Target if it does not
receive any message from Target.

Implementation and Performance Evaluation 257

Proof. From Algorithm of FD, when the Initiator receives a message m(i−1)
from Target, it calculates a new τi after which it starts suspecting Target. If
the τi is always bounded there is a time after which Initiator starts suspecting
Target. We must prove that the τi is always bounded. The τi is calculated as
follows:

τi = EAi + α
If i ≤ n

EA(i+1) = EAi + 1
i (Ai − A0)

......
EA(i+1) = (A1 − A0) + 1

2 (A2 − A0 + + 1
k (Ai − A0))

where Ai ,i are bounder. So EAi is bounded.
If i > n

EAi = EA(i−1) + 1
n (A(i−1) − A(i−n−1))

......
EAi = EA(n−1) + 1

n [(A(i−1) + A(i−2) + ... + A(i−n)) − (A(n−1) + A(n−2) +
... + A0)]

EAi < EA(n−1) + 1
n (nA(i−1) − nA0) = EA(n−1) + A(i−1) − A0

The time that heartbeat message arrive Initiator exceeds the time that Target
sends heartbeat messages. tsend(i) represents the arrival time of the I message,
tsend(0) < A0 . From Lemma 1, we can find A(i−1) < tsend(i − 1) + Δmsg. We
can calculate:

EAi < EA(n−1) + Ai−1 − tsend(0) < EA(n−1) + tsend(i − 1)+ Δmsg − tsend(0)
Let Δ1, Δ2, ..., Δi−1 be a series of sending period between the first message

and the mi message.
EAi < EA(n−1) + Δmsg + (Δ(i−1) + Δ(i−2) + ... + Δ1)

We can find EA(n−1) = A0 + Δ(n−1). So
EAi < EA(n−1) + Δmsg + (i − 1)Δmax

Therefore EAi is bounded. From [6], we can conclude: Δ(i+1) + α(i+1) < T U
D ,

namely 0 < αi ≤ T U
D . So αi is bounded.

From Task, every time where Initiator times out and Target is correct then
ΔI(T) is increased. There is a time tbound where ΔI(T) is large enough to avoid
false detection and stops increasing. When ΔI(T) becomes upper than Δmsg

then no false detection can happened.
∃tbound, ∀t ≥ tbound, ΔI(T) ≥ ΔmsgandΔI(T)(t) = ΔI(T)(t + 1)

From Lemma 1 and Lemma 2, the strong completeness is proved. If for each
message mk received from Target, Initiator activates a bound timeout, then there
is a time after which Initiator suspects Target, if it receives no new message from
Target.

Eventual Strong Accuracy
The Theorem 2 is verified if the τi(T) of Initiator is large enough to avoid that

Initiator wrongly suspects Target. From our model, if the lemma 3 is verified
then the Theorem 2 is a direct deduction.

Lemma 3. There is a time after which τi is greater than tsi + Δmsg.

∃tbound, ∀t ≥ tbound, τi ≥ tsi + τmsg (11)

258 G. Yang, J. Zhou, and G. Liu

Proof. From partial results 1, 2 and 3 we can say that:

∀mi

{
tsi < EAi

0 ≤ αi

∃tbound, ∀t > tbound, τi > tsi + Δmsg

The Theorem 2 is verified because if τi is larger than (tsi + τmsg) then Target
cannot be considered as having failed by Initiator.

6 Performances

6.1 Performance Evaluation

Fig 1 illustrates the evolution of the delay when the service starts. It presents
a representative example from the detector on Initiator. Here the initial Δto is
equal to 5700 ms. The detector must then adapt the margin to optimize the
detection time.

The real delay between two receptions of heartbeat messages is nearly con-
stant. In spite of this Chen’s estimation is not a dynamic method so the Δto is
almost constant. Our estimation is always higher than the Chen’s estimation.
This comes from the fact that our expected time evaluation is obtained with the
real arrival dates average, and the real deviations are most often positive.

Fig. 1. Δto evolution at detector initialization

This experimentation shows that our estimation allows to avoid more false de-
tections than Chen’s estimation, and at the same time upholds a better detection
time than Chen’s estimation. This experimentation is summarized in Table 1.

Table 1. Summary of constant load experiment

Our estimation Chen’s estimation
number of false detections 3 3
Mistake duration average (ms) 56 51
Detection Time average (ms) 5016 5089

Implementation and Performance Evaluation 259

This experimentation is in accordance with the previous result: our estimation
is a compromise between a good detection time and the need to avoid false
detections.

6.2 Evaluating the QoS

In this section we verify whether our algorithm can satisfy the QoS of failure
detecting or not.

Table 2 shows the TD is smaller than T U
D when the system work on the condi-

tion that T L
MR and T U

M are same. We set T U
M as 1500ms and T LMR as 10000ms.

Table 2. TD(ms) in the different T U
D

T U
D 4000 4500 5000 5500 6000

TD 2213 2567 2938 3306 3752

Fig. 2. Δto evolution at detector initialization

Fig. 3. Mistake duration

From Table 2, we can know the TD is within the T U
D .

Fig 2 illustrates that when the T L
MR changes the Mistake recurrence time(TMR)

is larger than the T L
MR on the condition that T U

D and T U
M are same . We set T U

D as
5000ms, T U

M as 1200ms and 1500ms. Fig 3 illustrates that when the T U
MR changes

the Mistake duration(TM) is smaller than the T L
MR on the condition that T U

D and
T L

MR are same. We set T U
D as 5000ms, T L

MR as 7000ms and 10000ms.
From above results, our failure detector can satisfy the request of QoS.

260 G. Yang, J. Zhou, and G. Liu

7 Conclusion

In this paper, we have presented a new failure detector implementation in iSCSI.
We dissociate two aspects: the first aspect, called the basic aspect, provides a
basic estimation of the timeout delay Δto and the second aspect, called the Task,
adapts the information provided by the first layer to the application needs. We
have seen that our algorithm provides a good compromise between the optimiza-
tion of the detection time and the need to avoid false detections.

The main characteristic of our implementation of the heartbeat failure de-
tector whose are to be adaptive as well as dynamic, with a detection delay Δto

composed of a short-term dynamic safety margin and a medium-term dynamic
expected arrival date. This failure detector can also change its interrogation de-
lay Δi to adapt its adequacy in terms of network load to the application needs
and the network capacities.

References

1. Requirement for Internet Hosts-Communication Layers. In: Braden, R. (ed.) RFC
1122 (October 1989)

2. Amir, Y., Dolev, D., Kramer, S., Malkhi, D.: Transis: A Communications Sub-
System for High Availability. In: Proc. 22nd Ann. Int’l Symp. Fault-Tolerant Com-
puting, pp. 76–84 (July 1992)

3. Birman, K.P., van Renesse, R. (eds.): Reliable Distributed Computing with the
Isis Toolkit. IEEE Computer Society Press, Los Alamitos (1993)

4. Pfister, G.F.: Search of Clusters, 2nd edn. Prentice Hall, Englewood Cliffs (1998)
5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-

tems. Journal of the ACM (1996)
6. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of failure detectors.

In: Proc. of the First Int’l Conf. on Dependable Systems and Networks (2000)
7. Jacobson, V.: Congestion Avoidance and Control. In: ACM SIGCOMM 1988. Pro-

ceedings of the ACM Symposium on Communications, Architectures and Protocols,
pp. 314–329. ACM Press, New York (1988)

8. Dolev, D., Friedman, R., Keidar, I., Malkhi, D.: Failure detectors in omission failure
environments. In: Symp. on Principles of Distributed Computing, p. 286 (1997)

9. Nunes, R.C., Jansch-Poto, I.: QoS of Timeout-based Self-Tuned Failure Detectors:
the Effects of the Communication Delay Predictor and the Safety Margin. In: DSN
2004. Proceedings of the, International Conference on Dependable Systems and
Networks (2004)

10. Larrea, M., Fernandez, A., Arevalo, S.: Optimal implementation of the weakest
failure detector for solving consensus. In: PODC 2000. Proc. of the 19th Annual
ACM Symposium on Princi-ples of Distributed Computing, July 16-19, 2000, pp.
334–334. ACM Press, New York (2000)

11. Bertier MMarin OSens P.: Implementation and Performance Evaluation of an
Adaptable Failure Detector. In: Proceedings of Fifth IEEE/ACM International
Workshop on Grid Computing (2004)

12. Shi, X.H., Jin, H., Han, Z.F., Qiang, W.Z., Wu, S., Zou, D.: ALTER: Adaptive
failure detection services for grid. In: Cantarella, J.D. (ed.) Proc. of the IEEE Int’l
Conf. on Services Computing, pp. 355–358. IEEE CS Press, Los Alamitos (2005)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 261–270, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Niching Gene Expression Programming Algorithm
Based on Parallel Model

Yishen Lin, Hong Peng, and Jia Wei

School of Computer Science and Engineering, South China University of Technology,
Guangzhou, 510641, China

Linnys@gmail.com, mahpeng@scut.edu.cn,
wei.jia@mail.scut.edu.cn

Abstract. GEP is a biologically motivated machine learning technique used to
solve complex multitude problems. Similar to other evolution algorithms, GEP
is slow when dealing with a large number of population. Considering that the
parallel GEP has great efficiency and the niching method can keep diversity in
the process of exploring evolution, a niching GEP algorithm based on parallel
model is presented and discussed in this paper. In this algorithm, dividing the
population to the niche nodes in sub-populations can solves the same problem
in less computation time than it would take on a single process. Experimental
results on sequence induction, function finding and sunspot prediction demon-
strate its advantages and show that the proposed method takes less computation
time but with higher accuracy.

1 Introduction

Natural biological systems are well adapted to the environment; they can be used to
solve many complex multitude problems. Inspired by the process of biological evolu-
tion in natural systems, evolutionary methods of algorithm designs are applied to
stochastic searches for optimal results.

Gene Expression Programming (GEP) was first introduced by Candida Ferreira
[1]. It combines the characteristics of Genetic Algorithms (GA) and Genetic Pro-
gramming (GP), and overcomes some drawbacks of them. It has performed well for
solving a large variety of problems, including symbolic regression, optimization, time
series analysis, classification, logic synthesis and cellular automata, etc [1, 2, 3 and 4].
The GEP algorithm is a robust but slow process with a large number of individuals
and complex multitude problems. Parallel execution is a better method to reduce com-
putation time and to improve the efficiency in evolution algorithm. There are many
studies in parallel GA [5, 6] and parallel GP [7, 8], but there are few studies in paral-
lel GEP [9].

In this paper, a new algorithm called PNGEP (Parallel Niching GEP) which com-
bines parallel model and niching method is presented. Experimental results on
sequence induction, function finding and sunspot prediction show that this new algo-
rithm gets better performance and higher efficiency than the basic GEP.

262 Y. Lin, H. Peng, and J. Wei

2 Related Works

Basic GEP can get good results in regression and prediction problem [1, 2, 3 and 4].
Niching method is a biologically technology, using this technology in evolution can
get higher efficiency [10, 11 and 12]. However, similar to other evolution algorithms,
GEP is also slow when dealing with a large number of individuals and complex multi-
tude problems. To solve this problem, some researches have imported parallel model
in evolution algorithm, and the hybrid algorithm has better performance [5, 6, 7, 8
and 9].

2.1 Niching Method

Niching method is widely used in GAs like Niching Genetic Algorithm (NGA). NGA
are preserved the diversity inside the population by altering the operators to prevent
premature convergence to an optimum result, like fitness sharing [10], crowding [11]
and deterministic crowding [12] model.

For example, sharing fitness encourages individuals to populate proportionally
over the whole search space by introducing a penalty on the fitness of each individu-
als based on its relative distance to its neighbors. This causes population diversity
pressure that allows a population to maintain individuals at local optima, and reduce
premature convergence [14]. This strategy will also force the final distribution of
individuals to be dispersed throughout the niche. Each individual is under pressure to
maximize distance between itself and its neighbors. This diversity pressure within the
niches retards the exploration of the fitness peak areas in each niche, as fewer indi-
viduals are able to populate and explore the fitness peak areas.

2.2 Parallel Model

There are two parallel models in evolution algorithm: the coarse-grain model and the
fine-grain model. In the coarse-grain model, the parallel program, which consists of a
few computing-intensive processes, has few communication demands, such as the
Message Passing Interface (MPI) model. The fine-grain one is made up of a large
number of processes with low computational requirements but high demands on the
communication in order to coordinate all the processes. The former utilizes fewer
processors with less communication than the latter.

In the GEP algorithm, the individuals must be exchanged from each population,
and the population in different processed must be cooperated with others. It is obvious
that the fine-grain model is appropriate for applications if considering the balance of
computational speed and precision.

This fine-grain model in GEP algorithm is also called the cooperation model. The
processes sometimes exchange information by allowing some individuals to migrate
from one process to another according for optimization. A share individuals’ pool will
be set. This approach re-injects diversity into converging processes. Then, different
processes will be tended to explore different parts of the search space. This parallel
model is in figure 1.

 A Niching Gene Expression Programming Algorithm Based on Parallel Model 263

Fig. 1. Population is divided into several processes; the best individuals of each process will be
exchanged through the share individuals’ pool during the calculations. The cooperation control-
ler controls the evolution of generation in each process.

3 Niching GEP Based on Parallel Model

In this paper, a hybrid algorithm called PNGEP is presented. This algorithm uses the
fine-grain parallel model, which combines the niche theory and genetic mechanism.

3.1 Niching Method

The fundamental step of niching method is like the basic GEP. There is some differ-
ent when the fitness of each individual is evaluated, a clustering of individuals opera-
tion will be done first. Before doing genetic operation, the individuals will be divided
into k niches using the k-means clustering algorithm according to their fitness and
NMSE value. The genetic operation will be done only in the same niche.

The main idea in this method is to define k centroids, one for each cluster. Each
point is belonging to a given data set and associates it to the nearest centroid. Then re-
calculate k new centroids as new centers of the clusters resulting from the previous
step, a new binding has to be done between the same data set points and the nearest
new centroid. A loop has been generated. Finally k niches are set in a population with
different types, such as good, average, poor, etc. Individuals only compete in the same
niche and breed like in any traditional algorithm.

Fig. 2. First k centroids are defined; the individuals are selected and taken to the nearest cen-
troid. Then re-calculate k new centroids of the clusters results and assign the individuals to the
nearest new centroid. A loop has been generated. As a result of this loop the niche sets are
initialization, the niches are marked like figure 2.

Cooperation Controller

……process2 processn

Share individuals pool

process1

264 Y. Lin, H. Peng, and J. Wei

After doing the genetic operation in each niche, the k niches will compound to a
new population and the elitism method will be used. This is one generation’s opera-
tion, a loop will be generated. This clustering niching operation with k-means algo-
rithm is shown in figure 2.

3.2 Parallel Model in Niching GEP

The main idea in this parallel algorithm is to define N sub-populations (processes),
each sub-population with k-niche is mapped into a processor and its individuals are
sometimes exchanged between the sub-populations during the calculations. The to-
pology of this parallel model is shown in figure 3.

Fig. 3. Populations are divided into N sub-population and a sub-population is mapped into k
niches. The best individuals of each sub-population will be exchanged through the share indi-
viduals’ pool during the calculations.

In this parallel model, the best individual will be put into the share individual’s pool
and exchange to each sub-population. Then each sub-population will be re-injected the
best genes. This behaves will be converged to a global/local optimum result.

3.3 Niching GEP Based on Parallel Model

PNGEP has seven genetic operators: mutation, transposition (insertion sequence
transposition, root transposition and gene transposition), recombination (one-point,
two-point and gene recombination). Among these operators, mutation is the most
important and powerful one. PNGEP algorithm is depicted as follows:

Algorithm: PNGEP (Ts, Fs, f, P, Ps, k, N, G)

Input: Ts: the terminal set; Fs: the function set; f:
the fitness function to evaluate the individuals; P: the
sub-population for evaluation; Ps: the parameter for the
genetic operation, such as the mutation rate, the multi-
ple-point crossover rate, etc; k: number of the niches;
N: number of the sub-populations; G: number of the gen-
erations.

Output: The model with the highest fitness.
 1. For each sub-population:
 Initialize the sub-population Pi(i=1 to N) ran-
domly;

Share individuals pool

……

Population1
Niche1 Niche2

…… Nichen

Population2
Niche1 Niche2

…… Nichen

Populationn
Niche1 Niche2

…… Nichek

 A Niching Gene Expression Programming Algorithm Based on Parallel Model 265

 2. For each generation g (g=1 to G)
 Evolution in each sub-population Pi (i=1 to N):
 (1)Inject: inject share-pool-individuals into Pi
random by pool exchange rate;
 (2)Evaluate: for each individual p, compute f(p);
 (3)Divide the individuals into k niches:
 (4)For each niche, generate the new population:

(a) Mutation: generate new individual by mu-
tation old individual.
(b) Transposition: generate new individual by
transposition old individual.
(c) Recombination: generate new individual by
recombination the two old individuals.

 (5) Using the elitism method;
(6) Put the best m individual into share pool.

3. Return the best model with highest fitness.

4 Experiment and Results

In this paper, we compare PNGEP with the basic GEP in three problems [9, 15].
The first one is a problem of sequence induction, where an consists of the nonnegative
integers. The nth term N of the chosen sequence is given by the formula:

12345 234 ++++= nnnn aaaaN (1)

The second is a problem of “V” shaped function requiring floating-point constants.
In this case, the following “V” shaped function is chosen:

aeaay 243.7)ln(251.4 22 ++= (2)

where a is the independent variable and e is the irrational number 2.71828183.

Table 1. Wolfer sunspots series (read by rows)

101 82 66 35 31 7 20 92 154 125

85 68 38 23 10 24 83 132 131 118

90 67 60 47 41 21 16 6 4 7

14 34 45 43 48 42 28 10 8 2

0 1 5 12 14 35 46 41 30 24

16 7 4 2 8 17 36 50 62 67

71 48 28 8 13 57 122 138 103 86

63 37 24 11 15 40 62 98 124 96

66 64 54 39 21 7 4 23 55 94

96 77 59 44 47 30 16 7 37 74

266 Y. Lin, H. Peng, and J. Wei

The third one is the predicting sunspots problem. In this case, 100 observations of
the Wolfer sunspots series are used (Table 1) with an embedding dimension of 10 and
a delay time of one.

4.1 Setting the System

The relative error (equation 3), the absolute error (equation 4) and the normalized
mean square error (NMSE, equation 5) are used to test the evaluation model.

)100*|/)'(|(
1

j

n

j
jj yyyMfitness ∑

=

−−= (3)

|)'|(
1
∑

=

−−=
n

j
jj yyMfitness (4)

2

1

2

1

)(

)'(

∑

∑

=

=

−

−

=
n

j
jj

n

j
jj

yy

yy

NMSE

(5)

In the equations, M is the range of selection; yj is the fact value;
jy is the average of

all yj; jy' is the value return by GEP. The less NMSE shows the good result.

For the sequence induction problem, the first 10 positive integers an are used as fit-
ness cases. The fitness function is based on the relative error with a selection range of
20%, the maximum fitness is 200.

For the “V” shaped function problem, a set of 20 random fitness cases chosen from
the interval [-1, 1] is used. The fitness function is also based on the relative error but
in this case a selection range of 100% is used, the maximum fitness is 2000.

For the sunspot prediction problem, an embedding dimension of 10 and a delay
time of one are used with 90 fitness cases. In this case, the fitness function is based on
the absolute error with the selection range is 1000% and the maximum fitness is
90,000.

Because of the constants have less effect on the expected evolution; there is no
constant using in the PNGEP algorithm. Our experiments show that the evolutionary
results without constants of the three problems are good.

The PNGEP algorithm is written in C# using the threading class. N threads are cre-
ated when the algorithm is initialized. Then N sub-populations are initialization and
each sub-population is mapped into a thread process. When a-generation-running is
done, the sub-populations exchange their individuals with the share stack. The best
individuals will be re-injects diversity into converging sub-populations. Then, differ-
ent sub-populations will be tended to explore different parts of the search space in this
thread synchronization process.

In this paper, Experiments are running on a Hewlet-Packard BL25 blade server
with AMD Opteron 265 1.8G CPU，2G memory, Windows 2003 operation SP1 sys-
tem and Microsoft .NET Framework 2.0 platform.

 A Niching Gene Expression Programming Algorithm Based on Parallel Model 267

Table 2. General settings used in the sequence induction (SI), the “V” function and the sunspot
prediction (SS) problems

SIGEP SIPNGEP VGEP VPNGEP SSGEP SSPNGEP

Number of runs 100 100 100 100 100 100

Number of generations 100 100 200 200 200 200

Population size 200 50 200 50 200 50

Niche number 1 4 1 4 1 5

Sub-population number --- 2 --- 4 --- 4

Number of fitness cases 10 10 20 20 50 50

Function set {+,-,*,/}
{+,-,*,/,

,ex ,log,10x,sin,cos}
{+,-,*,/}

Terminal set {a} {a} {a} {a} {a-j} {a-j}

Head length 6 6 6 6 8 8

Number of genes 7 7 5 5 3 3

Linking function + + + + + +

Chromosome length 140 140 100 100 78 78

Mutation rate 0.044 0.044 0.044 0.044 0.044 0.044

One-point recombination rate 0.3 0.3 0.3 0.3 0.3 0.3

Two-point recombination rate 0.3 0.3 0.3 0.3 0.3 0.3

Multipoint recombination rate 0.3 0.3 0.3 0.3 0.3 0.3

Gene recombination rate 0.1 0.1 0.1 0.1 0.1 0.1

IS transposition rate 0.1 0.1 0.1 0.1 0.1 0.1

IS element length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

RIS transposition rate 0.1 0.1 0.1 0.1 0.1 0.1

RIS element length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Selection range 20% 20% 100% 100% 1000% 1000%

Pool size --- 4 --- 8 --- 8

Pool exchange rate --- 0.2 --- 0.2 --- 0.2

Average best-of-run fitness 151.674 184.370 1648.21 1780.04 88609.6 88643.1

Average best-of-run NMSE 0.0011 0.0005 0.0252 0.0132 0.3233 0.3108

Average running

time(second)
<30 <30 572.52 106.34 215.46 84.73

Success rate 40% 71% --- --- --- ---

4.2 Experimental Analysis

In the experiments, the selection is made by roulette-wheel sampling coupled with
simple elitism and the performance is evaluated over 100 independent runs. The six
experiments are summarized in Table 2.

268 Y. Lin, H. Peng, and J. Wei

The first problem of sequence induction can be exactly solved by the basic GEP
and the PNGEP. The success rate of the basic GEP is 40% and the PNGEP is 71%.
Both algorithms’ running time is less than 30s. The PNGEP’ precision is higher than
the basic GEP.

To find the “V” shaped function, we use function set F = {+, -, *, /, ㏑, ex, log, 10x,
sin, cos}. The basic GEP’s average best fitness is 1648.21, the average best NMSE is
0.0252 and the running time is 572.52s. The PNGEP’s average best fitness is 1780.04,
the average best NMSE is 0.0132 and the running time is 106.34s. The basic GEP’s
running time is about five times longer than the PNGEP.

For the sunspot prediction problem, the basic GEP’s average best fitness is
88609.6, the average best NMSE is 0.3233 and running time is 215.46s. The PNGEP’s
average best fitness is 88643.1, the average best NMSE is 0.3108 and the running time
is 84.73s. The basic GEP’s running time is about four times longer than the PNGEP.
From the comparisons in table 2, we can see that the PNGEP is taken less computa-
tion time but with higher accuracy than the basic GEP.

The basic GEP often enters a local optimization and jumps out of the local optimi-
zation at random probability. On the other hand, PNGEP can jump out of the local
optimization at a greater probability with N sub-population. For the sunspot prediction
problem, the basic GEP search the solution space only with one population, but the
PNGEP using the 4 sub-population. Although the basic GEP individuals’ number is
for times than the PNGEP, the PNGEP’s individuals have more diversity by using the
niche method. The comparison in figure 4 shows that PNGEP has better search ability
than the basic GEP.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

Generation

N
M
S
E

basic GEP

PNGEP-sub1

PNGEP-sub2

PNGEP-sub3

PNGEP-sub4

Fig. 4. The best solution’s evolution in sunspot prediction problem between the basic GEP
algorithm and the 4 sub-population PNGEP algorithm

Niching method tries to keep diversity in the population and to use this diversity as
resource for exploratory evolution. The niche method of parallel model makes GEP
with more flexibility and power of exploring the search space and converging to op-
timal result. From the comparisons of the success rate, the fitness value and the NMSE
value, we can know that the PNGEP algorithm is better than the basic GEP.

 A Niching Gene Expression Programming Algorithm Based on Parallel Model 269

5 Conclusion

In GEP algorithm, programs are represented as linear character strings of fixed-length
which can be expressed as expression trees of different sizes and shapes. This separa-
tion of genotype and phenotype has endowed GEP with more flexibility and power of
exploring the entire search space.

In this paper, a niching GEP based on parallel model is described and the advan-
tages are demonstrated by its application. Experimental results on the sequence induc-
tion, the “V” shaped function and the sunspot prediction problem show that this paral-
lel model of niching GEP algorithm, which called PNGEP, not only gains in the op-
timal results but also in better performance. It has higher precision and better search
ability than the basic GEP. In the future, we will use the MPI parallel model and other
clustering algorithm to improve the performance of this algorithm.

Acknowledgments

This research has been funded by the National Natural Science Foundation of Guang-
dong Province (07006474), Sci & Tech Research Project of Guangdong Province
(2007B010200044) and Sci & Tech Research Project of Guangzhou (2006Z3-
D3051).

References

1. Ferreira, C.: Gene Expression Programming: a New Adaptive Algorithm for Solving Prob-
lems. Complex Systems 13, 87–129 (2001)

2. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial In-
telligence. Angra do Heroismo Portugal (2002)

3. Ferreira, C.: Automatically Defined Functions in Gene Expression Programming. Studies
in Computational Intelligence 13, 21–56 (2006)

4. Jie, Z., Changjie, T., Chuan, L.: Time Series Prediction Based on Gene Expression Pro-
gramming. In: Proceedings of the Fifth International Conference on Web-Age Information
Management, Dalian, China (2004)

5. Gang, P., Iimura, I., Nakatsuru, T.: Efficiency of Local Genetic Algorithm in Parallel
Processing. In: PDCAT 2005. Parallel and Distributed Computing, Applications and
Technologies, pp. 620–623 (2005)

6. Goldberg, D.: Sizing population for serial and parallel genetic algorithms. In: Proceedings
of the Third International Conference on Genetic Algorithms, San Mateo, California, pp.
70-79 (1989)

7. Andre, D., Koza, J.R.: Parallel genetic programming: A scalable implementation using the
transporter network architecture. In: Angeline, P., Kinnear, K. (eds.) Advances in Genetic
Programming 2, Cambridge, MA, pp. 317–337 (1993)

8. Oussaidkne, M., Chopard, B., Pictet, O.: Parallel genetic programming and its application
to trading model induction. Parallel Computing 23, 1183–1198 (1997)

9. Siwei, J., Zhihua, C., Dang, Z.: Parallel Gene Expression Programming Algorithm Based
on Simulated Annealing Method. ACTA Electronic Sinica 33, 2017–2021 (2005)

270 Y. Lin, H. Peng, and J. Wei

10. Goldberg, D., Richardson, J.: Genetic algorithms with sharing for multimodal function op-
timization. In: Proceedings of the 2nd International Conference on Genetic Algorithms, pp.
41–49 (1987)

11. De Jong, K.: An analysis of the behavior of a class of genetic algorithms. Dissertation Ab-
stracts International 36(10), 5140B (1975)

12. Mahfoud, S.W.: Crowding and preselection revisited. Parallel Problem Solving from Na-
ture II, 27–36 (1992)

13. Ferreira, C.: Gene Expression Programming and the Evolution of Computer Programs. In:
Recent Developments in Biologically Inspired Computing, pp. 82–103. Idea Group Pub-
lishing (2004)

14. Yang, H., Ch, F., Li, C., Wang, M.: A density clustering based niching genetic algorithm
for multimodal optimization. In: Machine Learning and Cybernetics. Proceedings of 2005
International Conference, vol. 3, pp. 1599–1604 (2005)

15. Ferreira, C.: Function Finding and the Creation of Numerical Constants in Gene Expres-
sion Programming. In: Proceedings of the 7th Online World Conference on Soft Comput-
ing in Industrial Applications (2002)

ComNET: A P2P Community Network

Zhentao Sun and Wenjun Xiao

Department of Computer Science, South China University of Technology, Guangzhou
510641, P.R. China

robinvane@163.com, wjxiao@scut.edu.cn

Abstract. In addition to searching, browsing is yet another requirement
of P2P file sharing systems. Nevertheless, none of the recent P2P DHTs
can closely connect peers with the same interests together so that it is
not practical to provide browsing service in such systems. In this paper,
we define a new cayley graph to support logical grouping, and based
on this cayley graph, a set of P2P DHT protocols which is suitable for
providing file browsing service is also designed. Performance evaluation
indicates that the new protocols can reach the theoretical lower bound
of routing table size and query path length. Furthermore, the robust-
ness of ComNET is also better than most of the P2P DHTs recently
proposed.

Keywords: P2P, ComNET, Grouping, Browsing service, Cayley graph,
Small-world.

1 Introduction

Almost all recent researches of P2P DHT [1] [2] [3] concentrate on how to lower
the length of query path and reduce the size of routing table. Therefore the users
download behavior are not taken into consideration when they design the sys-
tems. In addition to searching, browsing is one of other important requirements
when people use P2P file-sharing systems, but as we know, none of current P2P
DHT can support efficient file browsing service.

To remedy the disadvantages of the recent structured P2P system, we in-
troduce small-world phenomena [4] into the overlay network. The phenomena
of small-world lead to the phenomena of community, which means that peo-
ple with the same interests know each other with high probability (i.e. highly
clustered). In order to introduce small-world features into P2P DHT, we define
a new cayley graph Γ , and then based on Γ , a new P2P DHT called Com-
NET is also designed. In addition to efficient resource searching mechanism,
ComNET supports explicit peer grouping, and thus supports effective resource
browsing service. Both theoretical analysis and experimental evaluation show
that ComNET can reach the lower bound[3] of routing table size and query path
length at the same time. Moreover, its robustness is also better as compared to
Ulysses[1].

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 271–281, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

272 Z. Sun and W. Xiao

2 Related Research and Design Objectives

2.1 Related Research

The motivation for our research stems from the following fields:

1. Ulysses[1]. Ulysses is a P2P DHT based on the famous butterfly graph and
can reach a diameter of O(log n/ log log n). Nevertheless, in order to clus-
ter similar peers, Ulysses has to introduce another overlay which will cause
performance issues.

2. Content-based shortcut Gnutella[6]. Built on Gnutella, this P2P network
adds links between similar peers and removes rarely used links. However,
this system is still unstructured which means that the overloading problem
can not be solved and explicit peer grouping can not be provided in this
system.

3. Cayley graph as models of small-world networks. W. Xiao and B. Parhami
propose a model of deterministic small-world graph in [7]. They use a alge-
braic method to construct cayley graphs which display small-world features.

2.2 Design Objectives

We are primarily interested in the following features of P2P DHT network.

1. Short query path: The average length of query path would not increase sig-
nificantly as the number of peers in the overlay network become large.

2. Reasonable size of routing table: The minimal routing table size is benefi-
cial to ensure fault-tolerance while the maximal one is relevant for ensuring
bounded maintenance cost[5].

3. Reasonable cluster coefficient(CC1)[4]: Non-zero cluster coefficient leads to
the phenomena of clustering and community. Our resulting P2P system
should have a reasonable CC1.

4. Peer Grouping: Performance of file sharing system can be remarkably im-
proved by structured grouping, and with which, users can easily browse the
files they are more interested in.

5. Self-configuration: It is not possible for a large scale P2P system to employ
centralized server to provide joining, departing and searching services. For
the sake of scalability, distributed network services are preferred.

6. Robustness : P2P systems should have the ability to deal with high dynamic
environment so that its performance will not drop dramatically when there
are faulty peers in the system.

3 The Definition of Static ComNET

Every cayley graph is vertex transitive, and thus using cayley graph as the
static graph of P2P DHT has the benefit of distributing loading to all peers
evenly[8]. The static graph of ComNET Γ is defined in this section and then
some properties of this graph which are essential to P2P systems are explored.

ComNET: A P2P Community Network 273

3.1 Terminology and Notation

In this section, x and y are assumed to be strings composed of digital or asterisk
“*”. We define the following operations and predicates on them:

1. |x|: the length of string x
2. x[i]: the ith(left to right, counting from index 0) character of x
3. lock(x, y, i):|x| ≤ i∨|y| ≤ i∨x[i] = “*”∨y[i] = “*”∨x[i] = y[i]. For example,

if x = “210”, y = “2*11”, then lock(x, y, 0), lock(x, y, 1), lock(x, y, 3), but
¬lock(x, y, 2)

4. lockall(x, y):∀j ∈ IN, lock(x, y, j)
5. AP (x, i, r)1, i ∈ ZZr and x is a binary string: A sub-string of x which is

composed of x[i], x[i+r], x[i+2r], · · · . For example AP (“010*2”, 1, 2) =“1*”.
6. APlock(x, y, i, r): defined as lockall(AP (x, i, r), AP (y, i, r)). For example, if

x=“010*1”, y=“110111”, i=1, r = 2, then AP (x, i, r) = “1*”, AP (y, i, r)=
“111”, and thus APlock(x, y, i, r). In this paper, APlock(x, y, i, r) is referred
to as “x locks on y along dimension i”.

7. APlockset(x, y, r): is the maximal subset of ZZr which satisfies that ∀l ∈
APlockset(x, y, r), AP lock(x, y, l, r). This set is called the locking set of x
on y or in brief, the locking set of x if the context is clear.

8. APlockbut(x, y, i, r):∀j ∈ ZZr ∧ j �= i, AP lock(x, y, j, r)
9. APlockall(x, y, r):∀j ∈ ZZr, AP lock(x, y, j, r)

10. m(α, β, γ) : m(α, β, γ) is obtained by replacing the γth character of α with
the γth character of β.

3.2 The Definition of Cayley Graph Γ

Definition 1. Let H = (G, •), where G = (ZZk
rc

, ZZk
rp

, ZZk). The operation • on
G is defined as ∀(c1,p1, r1), (c2,p2, r2) ∈ G,

(c1,p1, r1) • (c2,p2, r2) = (c1 ⊕ σr1(c2),p1 ⊕ σr1(p2), r1 + r2)

σ is cyclic right shift operation. ⊕ is component-wise addition mod rc and rp.
Unless noted otherwise, + is modulo-k addition throughout this paper.

Corollary 1. (G, •) is a group.

For any (c,p, r) ∈ G, c is referred to as group identifier, p as intra-group iden-
tifier, r as region identifier, and (c,p, r) as vertex identifier.

Group identifier make it possible for P2P DHT to provide peer grouping
mechanism. Moreover, if the peers who share similar interests are clustered with
the same group identifier, it would be more easier for them to reach each other,
and therefore improve the efficiency of browsing operation.
Definition 2. Let S = Sp ∪ Sc ∪ Sr, where Sp = {(0, p0k−1, 0)|p ∈ ZZrp\0}
Sc = {(c0k−1,0, 0)|c ∈ ZZrc\0} Sr = {(0,0, r)|r ∈ ZZk\0}, then Γ = Cay(G, S)
is a cayley graph.
Links in Γ can be categorized to 3 types: Linkp, links between two vertices in the
same group and region; Linkc, links between two vertices in different groups but
in the same region; and Linkr, links between two vertices in different regions.
1 From [1].

274 Z. Sun and W. Xiao

3.3 Some Properties of Γ

The degree of a cayley equals the cardinality of S, that is |S| = |Sp|+|Sc|+|Sr| =
rp − 1 + rc − 1 + k − 1 = rp + rc + k − 3.

Proposition 1. Γ is a (rp + rc + k − 3)-regular graph.

The routing from (c,p, r) to (c3,p3, r3) proceeds in two phases. In the first
phase c and p successively change to c3 and p3. In the second phase, one step
is required to correct the region identifier to r3. The pseudo-code for forwarding
in a vertex is shown in algorithm 1.

Input : Current vertex (c1,p1, r1) and destination vertex (c3,p3, r3)
Output: Identifier of next-hop vertex (c2,p2, r2)
if (c1 = c3 ∧ p1 = p3 ∧ r1 = r3) then1

the destination has been reached2

else3

if (c1 = c3 ∧ p1 = p3) then4

(c2,p2, r2) := (c3,p3, r3)5

else6

if (lock(c1, c3, r1) ∧ lock(p1,p3, r1)) then7

r2 is an integer that does not satisfy lock(c1, c3, r2) or8

lock(p1,p3, r2). Non-r3 integers are preferred;
c2 := c1,p2 := p19

else10

if (¬(lock(p1,p3, r1)) then11

p2 := m(p1,p3, r1), c2 := c1, r2 := r112

else13

c2 := m(c1, c3, r1),p2 := p1, r2 := r114

end15

end16

end17

end18

Algorithm 1. Routing algorithm at a vertex in Γ

We can obtain from the routing algorithm that,

Proposition 2. The diameter of Γ is 2k + k = 3k.

Note that the number of vertices n of Γ is k(rcrp)k. If we let k = log n/ log log n,
then rcrp = (n/ log n

log log n)1/ log n
log n log n < log n. According to proposition 1, the degree

of a vertex is rp + rc + k − 3 < log n/rc + rc + log n/ log log n < log n + 1 +
log n/ log log n, thus

Proposition 3. The degree and diameter of Γ can reach a complexity of O(log n)
and O(log n/ log log n) respectively.

ComNET: A P2P Community Network 275

Proposition 3 shows that Γ reaches the theoretical lower bounds proposed by
paper [3].

Proposition 4. CC1 of Γ equals (C2
rc−1 + C2

rp−1 + C2
k−1)/C2

rc+rp+k−3

We can see that Γ is highly clustered with CC1
 CC1random graph, which
shows the small-world phenomenon.

4 ComNET Protocols

Our P2P DHT uses Γ as its static graph. In this section, algorithms on how
to embed peers into Γ to construct a P2P DHT overlay called ComNET are
presented.

4.1 ComNET Basics

1. The Identifier Space: Every peer in ComNET is identified by a unique 3-tuple
(c,p, r):

c ∈ {(c0c1 · · · cs)| − 1 ≤ s < lc, ci ∈ ZZ2 ∪ {∗}}
p ∈ {(p0p1 · · · pt)| − 1 ≤ t < ∞, pi ∈ ZZ2}
r ∈ ZZk

lc and k are two integral parameters of ComNET.
2. The Topology of ComNET : The topology of ComNET captures the link

structure of Γ . Geometrically, (c1,p1, r1) is adjacent to (c2,p2, r2) if and
only if :
(a) r1 = r2 ∧ APlockall(c1, c2, k) ∧ APlockbut(p1,p2, r1, k), link between

them corresponds to Linkp in Γ
(b) r1 = r2 ∧ APlockall(p1,p2, k) ∧ APlockbut(c1, c2, r1, k), link between

them corresponds to Linkc in Γ
(c) APlockall(c1, c2, k) ∧ APlockall(p1,p2, k), link between them corres-

ponds to Linkr in Γ
Figure 1 shows a ComNET composed of 10 peers

3. Distribute the Hash Table: File names in ComNET are hashed to 3-tuples
(α, β, γ), where γ ∈ ZZk, α and β are fixed strings which satisfy |α| = lc and
|β|
 |p|. For any key (α, β, γ) and peer identifier (c,p, r), if lockall(c, α)∧
lockall(p, β)∧r = k, we say that (c,p, r) is responsible for the key (α, β, γ),
and thus hash items with this key is stored at this peer.

4.2 Routing in ComNET

The routing problem is to find a path to a peer with specified identifer or a peer
that is responsible for a given hash key of a file. Similar to routing in Γ , routing
in ComNET also proceed in 2 phases. Nevertheless, due to high dynamic of P2P
network, fault tolerance should be introduced. Forwarding operations at a peer
in ComNET are shown in algorithm 2 - 5.

276 Z. Sun and W. Xiao

Fig. 1. Example of ComNET topology, where k = 2, lc = 4

1. Basic Routing Algorithm: The routing algorithm corrects one bit of differ-
ences between the identifier of the source and the destination per step. The
routing from P0 to P8 in figure 1 can be visualized as P0 → P3 → P1 →
P9 → P8. Note that the resulting query path might not be the shortest one.
But simple optimization can be obtained based on our routing algorithms.
Since there is always more than one neighbor of the current peer whose iden-
tifier satisfies these algorithms. In this case, if we choose the neighbor with
maximal locking set as next-hop, the length of query path can be reduced.

Input : The current peer (c1,p1, r1) and destination identifier (α, β, γ)
Output: The identifier (c2, p2, r2) of the next-hop peer along Linkr

r2 is an integer that does not satisfies APlock(c1, α, r2, k) or1

APlock(p1, β, r2, k). Non-γ integers are preferred;
c2 satisfies APlockset(c2, α, k) ⊇ APlockset(c1, α, k) ;2

p2 satisfies APlockset(p2, β, k) ⊇ APlockset(p1, β, k);3

Algorithm 2. Finding a next-hop along Linkr in ComNET: LinkRNextHop

Input : The current peer (c1,p1, r1) and destination identifier (α, β, γ)
Output: The identifier (c2, p2, r2) of the next-hop peer along Linkp

r2 = r1;1

c2 satisfies APlockset(c2, α, k) ⊇ APlockset(c1, α, k);2

p2 satisfies APlockset(p2, β, k) ⊇ APlockset(p1, β, k) ∪ {r1}3

Algorithm 3. Finding a next-hop along Linkp in ComNET: LinkPNextHop

Input : The current peer (c1,p1, r1) and destination identifier (α, β, γ)
Output: The identifier (c2,p2, r2) of the next-hop peer along Linkc

r2 = r1;1

c2 satisfies APlockset(c2, α, k) ⊇ APlockset(c1, α, k) ∪ {r1};2

p2 satisfies APlockset(p2, β, k) ⊇ APlockset(p1, β, k)3

Algorithm 4. Finding a next-hop along Linkc in ComNET: LinkCNextHop

ComNET: A P2P Community Network 277

Input : The current peer’s identifier (c1,p1, r1) and destination identifier
(α, β, γ)

Output: The next-hop’s identifier (c2,p2, r2)
if (lockall(c1, α) ∧ lockall(p1, β) ∧ r1 = γ) then1

The destination has been reached2

else3

if (lockall(c1, α) ∧ lockall(p1, β)) then4

c2 satisfies APlockset(c2, α, k) ⊇ APlockset(c1, α, k) ;5

p2 satisfies APlockset(p2, β, k) ⊇ APlockset(p1, β, k);6

r2 := γ;7

if ((c2,p2, r2) is faulty) then8

The destination can not be reached temporarily9

end10

else11

if (APlock(c1, α, r1, k) ∧ APlock(p1, β, r1, k)) then12

(c2,p2, r2) := LinkRNextHop();13

if ((c2,p2, r2) is faulty) then14

Find a non-faulty peer along Linkr that satisfies15

|APlockset(c2, α, k)| + |APlockset(p2, β, k)| ≥
|APlockset(c1, α, k)| + |APlockset(p1, β, k)| −
RetreatThreadhold

end16

else17

if (¬APlock(p1, β, r1, k)) then18

(c2,p2, r2) := LinkPNextHop();19

if ((c2,p2, r2) is faulty ∧ ¬APlock(c1, α, r1, k)) then20

(c2,p2, r2) := LinkCNextHop();21

if ((c2, p2, r2) is faulty ∧ |APlockset(c1, α, k)| +22

|APlockset(p1, β, k)| < (2k − 2)) then
(c2, p2, r2) := LinkRNextHop()23

end24

end25

else26

(c2,p2, r2) := LinkCNextHop();27

if ((c2,p2, r2) is faulty ∧ |APlockset(c1, α, k)| +28

|APlockset(p1, β, k)| < (2k − 2)) then
(c2,p2, r2) := LinkRNextHop()29

end30

end31

end32

end33

end34

Algorithm 5. Routing in ComNET routeDHT

2. Robustness : In order to improve the robustness of our system, line 8-10, 14-16,
20-25 and 28-30 in algorithm 5 are added. The robustness-ensuringmechanism
is triggered when the next-hop peer identified by the basic routing algorithm

278 Z. Sun and W. Xiao

is not working. The basic idea of our robustness-ensuring algorithm is to find
a non-faulty next-hop peer with non-descending locking set, that is to say the
size of the locking sets of the next-hop peer’s group and intra-group identifiers
should be greater or at least equal to those of the current peer respectively.

5 Performance Evaluation

In this section, some important performance metrics are measured by system
simulation. All evaluation is performed within a single process with no network
communication actually exists. System parameters k = 3 and lc = 8 are used
for all network size because they are fixed at programming time, and thus could
not be adjusted according to the network size at runtime.

5.1 Query Path Length

Figure 2 plots the average and maximum query path length of ComNET as a
function of the number of peers. There are two types of simulation: one is to find
the number of hops required for routing between two randomly selected peers;
the other is to find the length of routing path between two random selected
peers with the same group identifier. We can see from figure 2 that when the
number of peers reaches around 4k, the maximum length of routing path and
intra-group routing path are fixed at 9 and 6 respectively. It can be explained
as follows. According to proposition 2, the diameter of ComNET is related to
k through the equation Diameter = 3k = 9. Also it is not difficult to verify
that the maximum length of intra-group routing is 6. Note that, the parameter
k is fixed at programming time, which means that the upper bound of routing
path length in ComNET is a constant O(3k). Figure 3 plots the distribution of
routing path length for a network size of 222. It can be seen from this figure that
the length of 89.39% random routing varies from 6-9, and the length of 94.88%

Fig. 2. Routing path length with different network size. a) plots the length of routing
path between randomly selected peers and b) plots the length of routing path between
randomly selected peers with the same group identifiers.

ComNET: A P2P Community Network 279

Fig. 3. The distribution of query length with 222 peers

intra-group routing varies from 4-6. Low variance of routing path length may
indicate low network jitter which is essential to real time P2P applications.

5.2 Size of Routing Table

Figure 4 plots the average size of routing table with different number of peers.
According to proposition 1, the size of the routing table of a peer, is related to rc

and rp. Thus the size of routing table would increase as the network size increase.
When 220 peers exist in ComNET, the average size of routing table is 21.3.

Fig. 4. The size of routing table

5.3 Robustness

In this section, we compute the probability that a query ends in failure and the
average length of the successful routing in ComNET. All these tests are run in
a network with 222 peers. Figure 5a) plots the probability that routing ends in
failure as a function of the percentage of peer failures. For the same failure rate,
the probability that the ComNET routing algorithm exits in failure is lower than
in Ulysses and Chord. Figure 5a) also plots the percentage of intra-group routing
failure. As compared to random routing, the failure rate of intra-group routing
is higher (57.2% when the peer failure rate is 20%), but is still low as compared

280 Z. Sun and W. Xiao

Fig. 5. a) the probability that routing ends in failure. b) the average length of successful
routing. The network size is 222.

to that in Ulysses and in Chord. Figure 5b) plots the average hops required for
the successful routing. The even curve in this figure indicates that the routing
length is rarely influenced by faulty peers. As compared to ComNET, the routing
length increases very remarkably in Ulysses (from 6.8 to 8.8, growing by 30%).

6 Conclusion and Future Work

In this paper, we define a new cayley graph Γ with small-world features. The
essential properties including degree, diameter and CC1 show that Γ is a small-
world graph and a suitable static model for P2P DHT network. In the latter
sections, the protocols of P2P DHT network ComNET are proposed to capture
the static structure in high dynamic environment. In ComNET, excellent routing
performance is obtained while keeping the routing table small. Furthermore, the
robustness of ComNET is also better than that of other protocols like Ulysses
and Chord. And what is more, explicit peer grouping mechanism in ComNET
enables us to implement effective resource browsing service in P2P DHT network.

Our further work will focus on how to adjust the number of regions (that is k)
according to the network size, balancing zone splitting, finding a way to cluster
a peer to more than one group and implementation of ComNET.

References

1. Kumar, A., Merugu, S., Xu, J., Yu, X.: Ulysses: A robust, low-diameter, low-latency
peer-to-peer network. European transaction on telecommunications 15(6), 571–587
(2004)

2. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of
the butterfly. In: Proc. of ACM PODC 2002, ACM Press, New York (2002)

3. Xu, J.: On the fundamental tradeoffs between routing table size and network diame-
ter in peer-to-peer networks. In: Proc. of IEEE Infocom 2003, vol. 1-3, pp. 2177–2187
(2003)

4. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-
ture (1998)

ComNET: A P2P Community Network 281

5. Aberer, K., Alima, L.O., Ghodsi, A., Girdzijauskas, S., Haridi, S., Hauswirh, M.:
The essence of p2p: a reference architecture for overlay networks. In: Fifth IEEE
International Conference on Peer-to-Peer Computing (2005)

6. Sripanidkulchai, K., Maggs, B., Zhang, H.: Effcient content location using interest-
based locality in peer-to-peer systems. In: Proc. of IEEE Infocom 2003: The confer-
ence on computer communications, vol. 1-3, pp. 2166–2176 (2003)

7. Xiao, W., Parhami, B.: Cayley graph as models of deterministic small-world net-
works. Information Processing Letters 97(3), 115–117 (2006)

8. Qu, C., Nejdl, W., Kriesell, M.: Cayley dhts - a group-theoretic framework for
analyzing dhts based on cayley graphs. In: Cao, J., Yang, L.T., Guo, M., Lau,
F. (eds.) ISPA 2004. LNCS, vol. 3358, Springer, Heidelberg (2004)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 282–291, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Data Grid Model Based on Structured P2P Overlay
Network

Wei Song1,2, Yuelong Zhao1, Wenying Zeng1, and Wenfeng Wang1

1 School of Computer Science and Engineering, South China University of Technology,
Guangzhou 510640, China

2 Faculty of Computer, Guangdong University of Technology,
Guangzhou 510006, China

color_unsw@126.com, ylzhao1@scut.edu.cn

Abstract. Data Grid provides integrated view of distributed data scattered across
networks. Current Data Grid systems are centrally controlled. In this paper, we
present a structured P2P based Data Grid model(P-DataGrid Model, PDG) which
makes use of construction and routing algorithms of P-Grid ,a structured P2P
system . PDG is organized as virtual multi-branch tree with binary tree as main
body. Formal description of PDG is firstly introduced. Then we discuss the
realization issues of PDG such as establishment of model, data storage service,
information service, etc. Among these issues, our emphasis is on joining of
nodes, registration and location of replica. Furthermore, we analyze the
successful probability of location. Constructing Data Grid on structured P2P
overlay can bring great advantages of scalability, decentralized control and
reliability.

1 Introduction

Data Grid is a type of grid system which integrates data scattered across networks,
providing virtual data storage. In currently deployed Grid systems, resources are often
owned by research centers, public institutions, or large enterprises: in such
organizations hosts and resources are generally stable [1]. In these systems, control of
resources is centralized and usually handled by system administrators, which hinders
dynamic and scalable expansion of the Grid infrastructure and resources [2]. Also, most
Data Grid systems are centrally controlled and do not support dynamic data replica
management, Such as Globus toolkit provides simple centered replica catalog service,
and does not provide dynamic data replica creation, selection and consistence
management [3]; SRB uses center server to provide replica location service [4].

As opposed to Grid, P2P systems integrate low-end resources which are also called
“desktop at the edge of the Internet [5]” into unified super computing power and
storage power. But nodes and resources are very dynamic. They frequently join and
leave. So, current P2P technologies, especially resource discovery and location
mechanisms, are more efficient in dynamic environment. Those technologies depend
on P2P logical topology which can be classified into unstructured type and structured
type. Unstructured P2P systems, such as Gnutella [6], resolve search requests by

 Data Grid Model Based on Structured P2P Overlay Network 283

flooding techniques. Whereas Structured P2P systems use distributed hash tables
(DHT) , for example Chord [7], Pastry[8], P-Grid, to establish a certain relationships
among nodes and files. A DHT stores pairs (key, data) for distributed storing to enable
fast searching of data when a key is given which results in better scalability, community
efficiency and routing reliability.

We believe in the future the resource-sharing environment will include not only
high-performance nodes, such as cluster, storage system, database, scientific
instrument, but also low-end nodes, that is, Grid and P2P systems will converge in a
unified resource-sharing environment [9]. This paper proposes a structured P2P based
Data Grid model which is called P-DataGrid Model and PDG for short. It is based on
P-Grid architecture, a P2P information system. Virtual binary tree constitutes main
body of PDG with multi-branch in low layers. By introducing P2P discovery and
location mechanism into Data Grid, data management, such as replica creation,
selection, location and consistence management, will be more dynamic, scalable and
less centralized.

The remainder of the paper is organized as follows. Section 2 introduces related
work. Section 3 focuses on architecture of PDG and formal description is given.
Section 4 discusses realization issues of PDG. Joining process, replica registration and
location are elaborated. Section 5 analyzes the successful probability of replica
location. The final section is the conclusion and future work.

2 Related Works

Our Data Grid model is mainly based on P-Grid system. P-Grid is a next generation
peer-to-peer platform for distributed information management. Papers [10-12] about

Fig. 1. Example P-Grid: Each peer is responsible for part of the overall tree [12]

284 W. Song et al.

P-Grid present the construction and routing algorithms on virtual binary search tree. By
P-Grid construction algorithm in [10], peers construct the binary tree by pair-wise
random interactions dividing gradually the key space in partitions defined by binary
string the so-called peers’ paths (denoted by path (peer)). Every peer takes over
responsibility for one partition. Each peer records two kinds of information. One is that
each peer (denoted by a) maintains a set of references to the other peers that store data
items indexed by keywords k for which path (a) is a prefix. For example, in Fig.1, path
of peer 4 and peer 5 is 010. Peer 4 and peer 5 will store references to all the data items
with index of prefix 010. The other is a routing table. Each item refers to the address of
at least one other peer that is responsible for the other side of the binary tree at that
level. Thus, if a peer receives a binary query string it cannot satisfy, it must forward the
query to a peer that is “closer” to the result. In Fig.1, path (4) =010, path (3) =011. We
can see peer 3 is responsible for the other side of the binary tree at level three. So one
item of peer 4 routing table is 011:3, which mean if peer 4 receives request like 011*, it
will forward the request to peer 3.

3 Conceptual Model of Data Grid Based on Structured P2P
Overlay Network

3.1 PDG Overview

We introduce structured P2P overlay into Grid, and construct main body of PDG as a
virtual binary tree. There are three types of node in PDG: Global Grid Node(GGN) ,
Local Grid Node(LGN)，Normal Grid Node(NGN).

1
7 4 5

2

3

8 11 9

0 1

00 01
010 011

B CA

Fig. 2. Example PDG: Nodes are classified into three types

As showed in the Fig. 2, nodes in large circle are GGN which form the virtual binary
tree by P-Grid construction algorithm. Nodes in small circle are LGN which are
managed by a certain GGN. NGN is on the low layer. GGN and LGN manage the Grid,
provide storage resources and also consume storage. NGN mainly consumes storage
and sometimes provides storage if it is willing to do.

 Data Grid Model Based on Structured P2P Overlay Network 285

3.2 Formal Description of PDG

Definition 1. Grid node (G) is the node which is a member in PDG. There are three
types of nodes: Global Grid Node(GGN) , Local Grid Node(LGN)，Normal Grid
Node(NGN).

Definition 2. GGN is reliable and high performance node which can be provided by
research center, public institute and large company. GGNs work in controlled
environment. Also normal users can offer their high performance resources voluntarily.
GGN manages information of LGN and data file which have the same prefix with
GGN’s path. Only GGN has a path formed in the process of P-Grid construction. Each
GGN maintains five tables.

(1) Global Routing Table. This table forms during the construction of virtual binary
tree. Each item refers to at least one other node which is responsible for the other side of
the binary tree at that level. We assume that each GGN is described by a multi-tuple of
attributes (denoted by ninf) which contains node’s name, address etc. For any ninf we
define node(ninf)=GGN iff getinf(GGN)=ninf.

Table items also can be organized into a sequence (l1, Ninf1) (l2, Ninf2) … (ln, Ninfn),
where li∈ {0, 1} and Ninfi is a set of ninf. We define path (GGN) =l1…ln, prefix (i,
GGN) = l1…l i for 1≤i≤n and refs (i, GGN) = Ninfi. The sets Ninfi , 1≤i≤n are references
to other nodes and satisfy the following property:

ninf∈refs(i, GGN)：prefix (i, node(ninf))= prefix(i-1, GGN) li~

where l~ is defined as l~ =(l +1) mod 2.

(2) Local Routing Table. Each item is a 3-tuple (LGN, KeyLGN, ninf LGN) which
records the information of LGN. KeyLGN denotes hash value of LGN. ninf LGN denotes
attributes of LGN including address.

Manage (a,b) denotes a manages b. Equal(a,b) means a is equal to b.
∀x∀y(∃ i(Equal(path(y), prefix(i, Keyx))) → Manage (y,x)), x∈LGN ,y∈GGN

(3) Replica Node Table. Replica node is redundant node of GGN. In Fig.1, node 4
and node 5 is redundant node each other.

Let Replica (a,b) denote a and b are redundant nodes.
∀x∀y(Equal(path(y), path(x)) → Replica (y,x)), x∈GGN ,y∈GGN

(4) LGN Data File Table. Each item is a 3-tuple (KeyDataFile, KeyLGN, AttrDataFile),
which records the relationship between data file and LGN where data file saved.
KeyDataFile denotes hash value of logical file name. AttrDataFile denotes attributes of file.
∀x∀y∀z (∃ i (Equal(path(y), prefix(i, Keyx))∧Manage(z,x))→Manage(y,x)),
 x∈FILE ,y∈GGN , z∈LGN

(5) GGN Data File Table. Each item is a reference (KeyDataFile, KeyGGN, AttrDataFile)to
the other node that stores suitable data file.
∀x∀y∀z (∃ i (Equal(path(y), prefix(i, Keyx))∧Manage(z,x)) → Manage(y,x)),
 x∈FILE ,y∈GGN, z∈GGN

Definition 3. LGN is node with better performance. It finds a suitable GGN and joins
the tree according to its hash value KeyLGN. LGNs managed by the same GGN can be
replica nodes each other.
∀x∀y(∃ i(Equal(path(y), prefix(i, Keyx)))→Manage (y,x)), x∈LGN ,y∈GGN

∀x∀y∀z (Manage(y,x)∧Manage(z,x)→Replica(y,z)), z∈LGN ,y∈LGN, x∈GGN

286 W. Song et al.

There are three main tables in each LGN.
(1)NGN Routing Table. It records information of NGNs it managed. Each item is a

2-tuple (NGN, ninf NGN)
(2)NGN Data File Table. It records information of data file in NGN it managed.

Each item is a 3-tuple (DataFile, NGN, AttrDataFile).
(3)Local Data File Table. It records information of data stored in its own.

Definition 4. NGN is normal performance node. NGNs provide some storage ability,
and mainly use the storage resource provided by Grid. Each NGN has a local data file
table which contains its own data file information. In addition each NGN knows its
management LGN after it joins in Grid.

Definition 5. Transition among each type of node. Performance of each node is
announced by itself initially, and its type is changed when its performance parameters
change. Each node has a performance monitor which can detect the load of it and
change its type when some values exceed given threshold. Load balancing can be
obtained in this way. Detailed transition mechanism will be designed in future work.

Definition 6. PGD is a multi-branch virtual tree. GGNs form the main body, binary
virtual tree, which is established by P-Grid construction algorithm. LGNs join in the
tree and choose suitable GGN nodes by the same algorithm. NGNs form
multi-branches.

4 Realization of PDG

Realization of PGD includes two aspects. One is the establishment of model, such
as how to initiate the tree, how to re-construct (join, leave, transit) the tree
dynamically. The other is service based on the model, such as data storage service,
information service, trust, quality of service, incentive mechanism. We will discuss
those below.

4.1 Join and Leave

Flexibility of nodes’ joining in and out shows dynamic and scalability of Grid model.
There are two ways to join in Grid. One is entry point server which returns current
available nodes to be entry nodes. Another is out-of-band method which is used when
entry nodes are not available, such as email or communicating face to face. In PDG, we
use the idea in P-Grid that nodes meet randomly, no matter why they meet, because
they are involved in other operations, or because they systematically want to build the
Grid [10]. In another words, all nodes can serve as entry point to the network, that is,
entry point may be GGN, LGN or NGN. Considering different type of nodes will meet
other different type of nodes, we design three functions: JoinGGN(entryGGN,
newnode), JoinLGN(entryLGN, newnode), JoinNGN(entryNGN, newnode). Only
pseudo code of JoinNGN is given in this paper to illustrate the detail process when
entry node is NGN.

 Data Grid Model Based on Structured P2P Overlay Network 287

Fig. 3. Pseudo code of joining process when entry node is NGN

Leaving is the opposite process of joining. No matter what kind of node leaves,
there are mainly two things to be considered. One is to delete or set unavailable of some
items in related tables of its management nodes. The other is to transfer its own
managed information of other nodes or data files to suitable nodes.

4.2 Data Storage Service

Data storage service manages logical name space and supports abstraction of storage
system. It adapts to the change of Grid environment, that is, it allocates, reclaims and
manages distributed storage dynamically. There are some issues to be discussed.

Logical Name Space. It is used to establish global and persistent identities which can
span multiple storage systems. Logical name space service can set up and maintain the
reflection between logical name and physical file name, which brings transparence of
position. Most Grids support to organize data files into layer directory structure. Virtual
multi-branch tree structure of PDG is beneficial to layer management of resource, and
also supports layer structure of logical name space.

Attributes of Logical Name Space. Those attributes include storage position of
replica, local file name, user defined property. When files are registered into logical
name space, related attributes are created synchronously [13]. In PDG, all the tables
that each type of node maintains can manage attributes well.

Selection of Data Abstraction Level. Data, information and knowledge are three
kinds of data entity in Data Grid [13]. The abstraction level of PDG is data, which
integrates data storage resource in Grid, and provides unified storage abstraction, which
makes user not aware of heterogeneity in underlying resource.

Data Storage Service on Demand. Most Data Grids provide global data storage
abstraction, which integrates all the storage resource in Grid into a whole storage space
to user. But in practical application, it is not necessary. First, to normal users, they enter
Grid randomly, and demand for storage resource is limited and temporary. For using
resource efficiently, we should provide optional storage service for user so as to build
user’s local data storage view. Second, it is not always to use resource free.

288 W. Song et al.

Considering paid use, users can only get what they can pay for. In PGD, the character of
multi-branch will satisfy different users’ demands. Different local data storage view
can form in a group of sub-tree. For users, they can customize their storage space, and
this a way to allocation on demand.

Replica Management. To increase the usability and reliability of files, it is necessary
to design good replica management, which includes replica creation, registration,
allocation, location, selection and consistency. Here, we only analyze registration and
location. The remainder problems will be discussed in the other paper.

Registration of Replica. Each node type can create replica itself when necessary.
Information of replica must be registered in related management node. Replica created
by different node type will have different register process. The whole process is
described in Fig. 4.

common_prefix() means to get common prefix of two binary sequences.
Path() means to get a certain node path in virtual binary tree.

Fig. 4. Pseudo code of replica registration

Location of Replica. Suppose the request for a certain replica is from NGN. If the NGN
has, then return. If not, request will be forward to LGN. If LGN not has, request will be
sent to GGN. If GGN not has, the hash value of the file will be generated, and request
will be sent to proper GGN using P-Grid routing algorithm. The whole process is
described in Fig. 5.

4.3 Other Issues

Information service is an important component in any Grid infrastructure. It provides
resource detection, description and monitoring. In PDG, all the tables in each node will
play an important role in information service. Each PDG node has its own monitor to
trail its resource state. When node state differs from threshold, it will change its type
and adjust its resource accordingly. Most nodes in PDG are low-end and less reliable.
Trust mechanism will be established to judge the creditability. Meanwhile bad deeds
from malicious nodes can be restrained. Quality of service is one of the crucial

 Data Grid Model Based on Structured P2P Overlay Network 289

Fig. 5. Pseudo code of replica location

problems in Grid, which promises the best resource allocation. Incentive mechanism
will relate what node can get with what it has offered. The more it has offered the more
public resource it will get. What’s more, it is the support of allocation on demand.

5 Analysis of Location Performance

We analyze the probability of a successful location.

Table 1. Notation used in the analysis

p the probability that a GGN is online
q the probability that a LGN is online
s the probability that a NGN is online
GGNrepmax the max number of replica GGNs
LGNrepmax the max number of replica LGNs
NGNrepmax the max number of replica NGNs
k the depth of binary search tree
dgrid the total number of data objects that can be stored in the Grid
inode the number of references to data items each GGN stored
N the number of GGN

k is given by inequality k≥log2(dgrid/ inode) and N is given by inequality
N≥GGNrepmax *(dgrid/ inode) in paper [10] .

The successful probability to find a GGN that is responsible for a specific search key
starting the search at an arbitrary GGN is (1-(1-p) GGNrepmax)k according to paper
[10].Now we consider a simple case, that is, request is started at GGN, and successful
response also comes from GGN. The successful probability of location is (1-(1-p)

GGNrepmax)k. Assume that dgrid=107 data objects exist, that a reference costs at most 10
Bytes of storage, and every GGN is willing to offer 106 Bytes of storage for indexing,
which means inode

 =105. Further more we assume p =0.7, for GGNs are high

290 W. Song et al.

performance and stable nodes. Table 2 shows the constraint of each parameter, to get
successful probability of over 99%. We can see when the max number of replica GGNs
GGNrepmax is 10 and the depth of binary search tree k is less than 18, successful
probability can reach 99%.

Table 2. The numerical relations among each parameter to reach successful probability of 99%

GGNrepmax k N notes

1 will never reach probability of 99%

4 <=1 102*4

10 <=18 102*10

20 <=287975293 102*20

Next, let us analyze a more complex case. Query is started from NGN, and
successful response returns from NGN. Each LGN and NGN must know its
management nodes. If not, it will turn into a half-connected status which is a situation
we must avoid by some mechanism. To analyze simply, we suppose each LGN and
NGN always know its management nodes. The successful probability to find a LGN is
1-(1-q) LGNrepmax and the successful probability to find a NGN after locating a proper
LGN is 1-(1-s) NGNrepmax. The total successful probability is

(1-(1-q) LGNrepmax)* (1-(1-p) GGNrepmax)* (1-(1-p) GGNrepmax)) k*(1-(1-q) LGNrepmax)*
1-(1-s) NGNrepmax

= (1-(1-q) LGNrepmax) 2* (1-(1-p) GGNrepmax)) k+1*(1-(1-s) NGNrepmax)
Assume q=0.4, s=0.2, GGNrepmax=10, k=9, to get the successful probability of

99%, we can deduce that LGNrepmax must be more than 11 and NGNrepmax must be
more than 27. Combining the two cases, we can see that it is very reasonable for PDG to
have the size of one thousands GGNs, 11 replica for each LGN and 27 replica for each
GGN.

6 Conclusions and Future Work

In this paper we introduce a new Data Grid model which takes advantage of structured
P2P construction and routing mechanisms. Our model organizes resources in tree
architecture which reflects the natural relationship in Grid and makes hierarchy
management easily. Additionally, it greatly lessens the loads of center nodes and
increases searching efficiency. Besides decentralization, also scalability and reliability
are the great benefits.

Scalability: P-Grid construction algorithm promises scalability.
Reliability: From section 5 we have the idea that given a certain size of Grid,

location algorithm always ensures high successful probability of node to response.
Meanwhile, replica nodes have the same tables and data, which also improve reliability
of system.

The work presented in this paper is a first step. Now, we are doing simulation
experiments to analyze related theory and algorithm. Next step, we introduce security
into PDG, including trust, reputation, authenticity, confidentiality and integrity. These
improvements would make PDG a decent environment for collaboration among

 Data Grid Model Based on Structured P2P Overlay Network 291

multiple organizations, institutions and corporations. We also intend to address
allocation on demand and on what nodes had contributed, which utilizes concept of
market competition to maximum benefits that each node gets.

Acknowledgments

This work is supported by National Natural Science Foundation of China with the
Grant NO.60573145, Natural Science Foundation of Hunan Province with the Grant
NO.05JJ30120 and Science Foundation Program of Guangzhou with the Grant
NO.2007J1-C0401.

References

1. Mastroianni, C., Talia, D., Verta, O.: A Super-peer Model for Resource Discovery Services
in Large-scale Grids. Future Generation Computer System 21, 1235–1248 (2005)

2. Lamehamedi, H., Szymanski, B.K.: Decentralized Data Management Framework for Data
Grids. Future Generation Computer Systems 23, 109–115 (2007)

3. The Globus Data Management Group.A Replica Management Service for
High-Performance Data Grids,

 http://www.globus.org/datagrid/deliverables/ReplicaManagementService.pdf
4. Baru, C., Moore, R., Rajasekar, A., et al.: The SDSC Storage Resource Broker. In:

CASCON 1998, Toronto, Canada (1998)
5. Shirky, C.: What is p2p... and What isn’t?

 http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html
6. Clip2. The Gnutella Protocol Specification v0.4 (Document Revision 1.2) (June 2001),

http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf
7. Stoica, I., Morris, R., Karger, D., Frans, M., Kaashoek, Dabek, F., Balakrishnan, H.: Chord:

A Scalable Peer-To-Peer Lookup Service for Internet Applications. In: ACM SIGCOMM
2001 (2001)

8. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and Routing for
Large-scale Peer-to-Peer Systems. In: Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms (2001)

9. Iamnitchi, A., Foster, I.: A Peer-to-Peer Approch to Resource Location in Grid
Environments, http://www.csee.usf.edu/ anda/papers/iamnitchi-bookch.pdf

10. Aberer, K.: P-Grid: A Self-organizing Access Structure for P2P Information Systems. In:
Proc. Int’l Conf. Cooperative Information Systems, Germany. LNCS, pp. 179–194.
Springer, Heidelberg (2001)

11. Aberer, K., Punceva, M.: Improving Data Access in P2P Systems,
 http://www.p-grid.org/publications/papers/IC2002.pdf

12. Aberer, K., Datta, A., Hauswirth, M., Schmidt, R.: Indexing Data-oriented Overlay
Networks, http://www.p-grid.org/publications/papers/VLDB2005.pdf

13. Berman, F., Fox, G., Hey, A.J.G.: Grid Computing: Making the Global Infrastructure a
Reality. Wiley, New York (2003)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 292–300, 2007.
© Springer-Verlag Berlin Heidelberg 2007

PeerTR: A Peer-to-Peer Terrain Roaming Architecture

Sheng Zheng1, ZhanwuYu2, Zhongmin Li2, and Lu Gao2

1 School of Electronic Information, Wuhan University, 129 Luoyu Road, Wuhan, Hubei,
P.R. China, 430079

2 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, 129 Luoyu Road, Wuhan, Hubei, P.R. China, 430079

{zhengsheng2006,yzw2008,zhongmli}@gmail.com,
express_way@hotmail.com

Abstract. Since the large amount of terrain datasets, the terrain visualization
component is separated from terrain datasets in spatial application systems in
which terrain datasets are stored in the remote server and the terrain
visualization component is running on the local host. For this kind of
client/server architecture, the server can guarantee the certain response delay
and fulfill the real-time rendering of large-scale terrain when the numbers of
user are limited. With the numbers of clients quickly increase, the server
performance will drop too rapidly to satisfy the client real-time rending need
because the server loads are added linearly. This paper proposes a kind of
architecture for terrain data transmission in peer-to-peer environment, called
PeerTR, which realizes the large-scale terrain data transmission based on P2P
by means of the broadband and storage resources of spatial application nodes.
In PeerTR, the spatial application node, called TRPeer, is allocated certain size
storage space for buffering terrain data received from server and other nodes.
Meanwhile, buffers will reserve group member ID lists and the index list of
terrain data. TRPeers in the same group share terrain data through exchanging
the index lists. A prototype system is established and experimental results
showed that PeerTR in performances such as the server’s load and data
transmit speed outperforms the mode of Client/Server unicast.

1 Introduction

Recently, many more high resolution terrain data referring to DEM and DOM can be
acquired with the rapid development of spatial detect technique. The volume of this
type of spatial application systems such as digital city and digital earth storing,
processing terrain dataset is growing tremendously[1]. And the amount of terrain data
is often up to GB even TB orders of magnitude. Since the large amount of terrain
datasets, the terrain visualization component is separated from terrain datasets in spatial
application systems in which terrain datasets are stored in the remote server and the
terrain visualization component is running on the local host[2][3]. For this kind of
client/server architecture, the server can guarantee the certain response delay and fulfill

 PeerTR: A Peer-to-Peer Terrain Roaming Architecture 293

the real-time rendering of large-scale terrain when the numbers of user are limited.
With the numbers of clients quickly increase, the server performance will drop too
rapidly to satisfy the client real-time rending need because the server loads are added
linearly.

IP multicast technology can be available to alleviate the load of the server by means
of Multiplexing[4][5]. However, this kind of technology can’t be applied widely
because of some reasons such as realization complication, congestion control,
reliability management and etc. P2P technology makes use of broadband, storage space
and etc of network nodes to provide service for each other, which alleviate the server
load and improve the efficiency of data transmission through appropriate arithmetic. At
present, P2P is applied widely in IPTV[7][8], VOD[9], video meeting[10] [11]and etc.

This paper proposes a kind of architecture for terrain data transmission in
peer-to-peer environment, called PeerTR, which realizes the large-scale terrain data
transmission based on P2P by means of the broadband and storage resources of spatial
application nodes. In PeerTR, the spatial application node, name TRPeer, is allocated
certain size storage space for buffering terrain data received from server and other
nodes. Meanwhile, buffers will reserve peer group member ID lists and the index list of
terrain data. TRPeers in the same group share terrain data through exchanging the index
lists.

In section 2, we describe the architecture of PeerTR and the interior architecture of
TRPeer. In section 3, we give out the terrain data organization, the management and the
fault-tolerant mechanism of group members, the operation of buffer mapand the
scheduling algorithm of terrain data. In section 4, we show a terrain walkthrough
prototype system called GlobeSIGht as the test bed, and give out the test results and
analysis based on the comparison of server loads between the PeerTR system and C/S
unicast system. In section 5, we give some conclusions.

2 Architecture

2.1 Architecture of PeerTR

In PeerTR, the P2P mode isn’t used to replace the C/S mode but as complement.
Terrain roaming node called TRPeer can acquire terrain data by means of two
ways:fetching data directly from server;fetching data from other nodes.

Every TRPeer maintains a partnerlist and acquire terrain data from nodes in
partnerlist.Server node is the partner of all TRPeer. TRPeer exchanges buffer metadata,
which describes the information of buffered terrain data, with partners and then gain
terrain data from parterns according to buffer metadata and scheduling algorithm.The
figure 1 give the architecture of PeerTR in which broken lines represent the
transmission of control message and real lines represent the transmission of terrrain
data.In the figure 1,TRPeer 1_2, TRPeer 1_3, TRPeer 1_k and server is the partners of
TRPeer 1_1.

294 S. Zheng et al.

Fig. 1. Architecture of PeerTR

TRPeer 1_1 obtains terrain data from these nodes.The partnerlist isn’t invarible and
the TRPeer will continually adjust the partnerlist.

2.2 Interior Architecture of TRPeer

TRPeer (as showed in Fig. 2) consists of three modules mainly: Terrain Visualization
Module(TVM), Terrain Data Receiving Module(TDRM), Terrain Data Sending
Module(TDSM).

TVM schedules DEM (Digital Elevation Model) data block and DOM(Digital
Orthophoto Map) data block from TBDB(Terrain block Data Buffer) and realize to
model and render three-dimensional terrain. TDRM take charge of receiving terrain
data from partners and major components in it involve the following functions:

• membership management 、buffer metadata exchange and failure detecting;
• terrain data scheduling in which a provider for wanted data blocks will be

elected from partnership in terms of buffer metadata of the partner;
• terrain data receiving in which the terrain data blocks requested will be

parrallelly received from mutiple partners elected in above scheduling.

TDSM is responsible for sharing terrain data blocks in buffer with other partners and

main components in it involve the following funcitons:

• receiving and processing requests from other TRPeers;
• transimitting the terrain data;
• sending message about the nodes leaving the system.

 PeerTR: A Peer-to-Peer Terrain Roaming Architecture 295

Fig. 2. Interior architecture of TRPeer

3 Implementations

3.1 Organization of Terrain Data

In the terrain visualization system,data organization based on pyramid model is widely
used. Our system adopt the following method to organize and codec terrain data block.

1. Multi-resolution pyramid model based on multiple of 2;

2. Dividing the terrain data of every level into data block with equal interval and
size.The data block divided is the basic unit to be transmit;

3. Data blocks are recorded in the form of nLevel_nBlkNoX_ nBlkNoY . nLevel
records the level to which the block belongs in pyramid; nBlkNoX records line
number and nBlkNoY records row number.

3.2 Management of Partner List

In the PeerTR, each TRPeer has a unique identifier and an IDCache caching other
TRPeer ID. When a TRPeer enters into the PeerTR, it firstly sends a request to the
server node and gets a response with a living TRPeer ID which is choosed according to
optimal policy such as whether nearer the TRPeer requesting. Then the new entering
TRPeer communicates with the TRPeer whose id is acquired from server and gains the
partnerlist from it. Two data structure are defined in order to manage and maintain the
IDCache as follows.

• DS1=< seq_num, id, count_partner， time_to_live >;

• DS2=< seq_num, id, count_partner， time_to_live ,last_update_time>.

296 S. Zheng et al.

TRPeer in system will leave or rejoin dynamically and the states of TRPeer will
change at any moment. TRPeer broadcast a message containing its state to the partners
periodly based on SCAM protocol[12].The message format is a four-tuple structure just
like DS1.After it receives the message, TRPeer firstly lookup the record in its IDCache
whose structure is just like DS2 to match the seq_num in the received message. If the
seq_num is matched, the TRPeer will discard the message. Otherwise, the TRPeer will
compare their id further. The record in the IDCache is updated if the ID exists in the
IDCache and a new record is created in the IDCache while the ID doesn’t exist.

The different sets of nodes satisfy different QoS requirements. It is the most
important to keep the delay as low as possible in the real-time terrain rendering system.
TRPeer should choose neighboring nodes physically to set up the transmission channel
to satisfy the requirement. The nodes in the internet will not be selected when there are
nodes providing terrain data in the intranet. Based on this principle, we designed an
optimal policy to the group members. Its main thought is that TRPeer establishes a
evaluating mechanism for partner in its partner list according to jis , periodly. jis ,
represents the average number of terrain block that node i obtained from node j in unit
time. jis , can be calculate for the log in TRPeer and the bigger value of jis , show node i
can get data more quickly. TRPeer will delete the smallest jis , in its partner list during
each scheduling and fetch a new node ID from server.

Some fault-tolerant policies need be designed to guarantee the data transmitting to
continuous because of the node will leave randomly. There is a server node in the
partner list of TRPeer ,which is a backup node to all the running TRPeer nodes. Once
the one of partners providing data fail to transmit data, the TRPeer quickly put forward
requests to the server and the server will take over the failured nodes.

3.3 Operation of Buffer Map

Buffer map(BM) is used to record and index the terrain block in TRPeer buffer .Buffer
map may be called as metadata about the buffer.Buffer maps are exchanged with each
other among partners.TRPeer get to know the terrain data cached in the other partners
through the buffer map. The terrain data is organized in the form of tile-pyramid model
and data blocks among different levels is denoted in quadtree structure.

We design a kind of algorithm of buffered data mapping.Multiple quadtree will be
set up in terms of the block number in the level 0. Each quadtree will correspond with a
BM and each node in quadtree will be denoted with a bit 1 or 0. 1 denote this block data
exists and 0 denote it doesn’t exist.A byte is used to denote the row number and line
number of node in quadtree. The algorithm for searching data block in BM is as
following:

Setp 1. the required terrain number, nLayer_nBlkNoX_ nBlkNoY, is computed by

terrain visualization module;

Step 2. computing the line X B0B and row Y B0 Bof the root of the quad tree;

 PeerTR: A Peer-to-Peer Terrain Roaming Architecture 297

X B0B=
nLayer2

nBlkNoX
 (1)

Y B0＝ nLayer2

nBlkNoY
 (2)

Setp 3. computing the decimal Morton code MBQ B based on the step2;

Step 4. getting the result from I BbB = 8+4 P

nLayer -1
P+ M BQ B； the result is the bit of the BM that

the required data is mapped in.

 IBbB = 8+4P

nLayer -1
P+ M BQ B (3)

Level = 0

Level = 1

Level = 2

Fig. 3. Quad-tree model of terrain data

3.4 Scheduling of Terrain Block

The purpose to scheduling is to solve how to choose optimal partners to realize efficient
and reliable data transmission in the PeerTR. The scheduling algorithm is very
important to the system performance. The round-robin algorithm can satisfy the system
requirement in the static and homogenous system. However the performance and state
of TRPeer are different, so an algorithm is necessary to adapt with the dynamic
enviroment. The algorithm must meet two requirements: the deadline and the response
time.The requested data block must be obtained before the deanline and the response
time should be as small as possible.

298 S. Zheng et al.

We design an intelligent scheduling algorithm to meet the two requirements above.
The core thoughts in our algorithm is to calculate the number of nodes providing data
download according to BM and download firstly the data blocks whose potential
providers is less. Among the multiple potential suppliers, the one with the highest
bandwidth and enough available time is selected.

4 Results

4.1 Test Bed

We have designed a test bed called GlobeSight, a large-scale terrain roaming system.,
TRPeers can upload or download data to from each other in the test bed. The system
uses eight-level DEM data whose resolution is ninety-meter and terrain image data
whose resolution is thirty-meter about China land area. The data is partitioned by
150*150 and the lowest-resolution image data is partitioned to four pieces. Each
TRPeer has at most four BM lists. The network structure is illustrated in Fig. 4, there
are three groups: group A and B are connected with the terrain data server by CERNET,
and group C connected with terrain server by ADSL.

Fig. 4. Architecture of Test bed

4.2 Results and Analysis

In order to focus on the difference of the server load and data transmission efficiency
between the PeerTR system and C/S unicast system, we make several assumptions to
simplify the test configuration: firstly, the number of nodes in the experiment is fixed;
secondly, the roaming line is uniform in every TRPeer, namely China—Hubei

 PeerTR: A Peer-to-Peer Terrain Roaming Architecture 299

Province—Wuhan City; the lastly, each TRPeer joined the system is random based on
Poisson distribution. In the same configuration, we repeatedly experiments for 10
times and compute the average value of ten group of test results. Fig. 5 shows the
cumulative distribution of the two systems for server loads respectively.n is the number
of TRPeers and m is the number of working threads which measures the server load.

From the test results, we discover that PeerTR is more propitious to relieve the
server load than C/S system. In the PeerTR system, when the number of nodes reaches
20, the server load reaches maximum, then keeps in a stable range, but not increasing
linearly with the increasing of the number of nodes. According to Poisson distribution
law, the probability is more than 96 percent when a new TRPeer joins the system after
the number of nodes reaches 23, and in the three groups (group A, B and C), there are at
least three TRPeers to join every group. The cache in the three TRPeers can generally
accommodate a majority of data needed by the users when they roam. The users in the
local network can download the data from the interior nodes, so the server load can
keep in a steady range after the number of nodes exceeds 20.

Fig. 5. Comparison of server loads between the PeerTR system and C/S unicast system

5 Conclusions

Massive data transmission is the key to realize terrain visualization based on the
network. In this paper, we present PeerTR, a new architecture for terrain data
transmission in peer-to-peer environment, which utilizes the clients to decentralize the
terrain data distribution servers and to alleviate the server loads and network bandwidth
loads. Furthermore, the terrain data can be downloaded from more than a node so that
the download speed is greatly accelerated. Test results show that the mechanism can
realize the massive data transmission at the lower cost compared with the single
broadcast. So the PeerTR can be seen as a general architecture for terrain roaming
system in the peer-to-peer network.

300 S. Zheng et al.

Acknowledgement

This work was supported by the National Key Basic Research and Development
Program of China (No.2004CB318206).

References

1. Zhang, L., Zhang, Y., Yang, C.: Effective solutions to a global 3D visual system in
networking environments. Science in China,Ser.D 48(11), 2032–2039 (2005)

2. Wang, G.-p.: The Implementation of High-bandwidth Network Based Real-time Interactive
Browsing for 3D Massive Terrain Data [J]. Acta Geodaetica et Cartographica Sinica 31(1),
34–38 (2002)

3. Tu, Z., Liu, Y., Su, K.: A Modeling Method for Large Scale Terrain Oriented 3D Display[J].
Acta Geodaetica et Cartographica Sinica 31(1), 72–76 (2004)

4. Stephen, E.D., David, C.: Multicast Routing Datagram Internet works and Extended LANS.
ACM Transactions on Computer Systems 8(2), 85–110 (1990)

5. Deering, S.E., Estrin, D., Farinacci, D.: The PIM architecture for wide-area multicast
routing. IEEE Trans. Networking 4(2), 153–162 (1996)

6. Chu, Y.-H., Rao, S.G., Zhang, H.: A case for end system multicast. In: SIGMETRICS 2000,
Santa Clara, CA, USA, vol. 6, pp. 1–12 (2000)

7. Tran, D., Hua, K.: An efficient peer-to-peer scheme for media streaming. In: Tran, D., Hua,
K. (eds.) Proc.of the IEEE INFOCOM 2003, pp. 1283–1293. IEEE Computer Society Press,
Los Alamitos (2003)

8. Xu, D., Hefeeda, M., Hambrusch, S., Bhargava, B.: On peer-to-peer media streaming. In:
Proc. ICDCS 2002 (July 2002)

9. Guo, Y., Suh, K., Kurose, J., Towsley, D.: P2Cast:P2P patching scheme for Vod service. In:
Proc.of the WWW 2003, pp. 301–309. ACM Press, New York (2003)

10. Zhang, X., Liu, J., Li, B., Yum, T.S.P.: DONet/CoolStreaming:A Data-Driven Overlay
Network for Live Media Streaming. In: IEEE INFOCOM 2005. Miami,USA (2005)

11. Haigang, G., Ming, L., Yingchi, M.: Research Advances in Key Technology of P2P-Based
Media Streaming[J]. Journal of Computer Research and Development 31(1), 2033–2040
(2006)

12. Ganesh, A.J., Kermarrec, A.M., Massoulie, L.: Peer-to-Peer Membership Management for
Gossip-based Protocols. IEEE Transactions on Computers 52(2), 139–149 (2003)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 301–312, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SDRD: A Novel Approach to Resource Discovery in
Grid Environments

Yiduo Mei, Xiaoshe Dong, Weiguo Wu, Shangyuan Guan, and Junyang Li

School of Electronic and Information Engineering, Xi′an Jiaotong University,
Xi′an, 710049, China

meiyiduo@gmail.com,
xsdong@mail.xjtu.edu.cn

Abstract. Scalability and routing efficiency are two crucial aspects of resource
discovery in grid environments. SDRD, a novel approach to resource discovery
in grid environments, is proposed in this paper. Basic model of resource discov-
ery is proposed. Based on the basic model, formal description of SDRD is
given. Sophisticated routing strategies are implemented in SDRD to improve
the scalabilities and routing efficiencies of existing peer-to-peer based discov-
ery approaches to grid resource. Improved Distributed Hash Tables (DHTs) are
adopted within virtual organizations (VOs) to achieve better local routing effi-
ciency. SuperNodes are only in charge of forwarding requests to other Super-
Nodes in different VOs when the desired resources are not present in local VO,
which enhances the scalability due to the lower load on SuperNodes. SDRD
could be applied to other resource management models to offer excellent scal-
ability and high routing efficiency. Results of analysis and simulations show
that SDRD scales well and could offer an efficient decentralized discovery ser-
vice in grid.

1 Introduction

In essence, the grid resources are heterogeneous, dynamic and distributed [1]. These
characteristics create significant difficulties for traditional centralized resource dis-
covery services [2].

Peer-to-peer (P2P) systems are distributed systems consisting of interconnected
nodes [3]. Reference [4] suggested that designers could use the P2P philosophy and
techniques to implement decentralized grid systems, and the monitoring and discov-
ery service (MDS) of Globus Toolkit [6] could be effectively redesigned using a P2P
approach.

Scalabilities and routing efficiencies of existing P2P-based approaches to resource
discovery would suffer from the drawbacks listed below: (1) some works employ
unstructured P2P routing algorithms, thus the routing efficiencies are low and no
locating guarantees are provided; (2) organization strategies of grid nodes in some
works have not considered the physical topology; (3) some works use super nodes to
provide the discovery service, but the load on super nodes in these works is high, thus
super nodes could be potential bottlenecks. As the deployed grid size increases from

302 Y. Mei et al.

tens to thousands of nodes, resources and requests will increase dramatically, because
of the above problems, previous works would not scale well and their routing effi-
ciencies are low.

To address the above problems, we propose SDRD, a Supernode and DHT (Dis-
tributed Hash Tables) based approach to Resource Discovery in grid environments.
Basic model of resource discovery is proposed. Based on the basic model, formal
description of SDRD is given. Sophisticated routing strategies are implemented in
SDRD to improve the scalabilities and routing efficiencies of existing P2P-based
discovery approaches to grid resource. Improved DHTs are adopted within virtual
organizations (VOs) to achieve better local routing efficiency. SuperNodes (super
node of SDRD is represented by the term ″SuperNode″ in this paper) are only in
charge of forwarding requests to other SuperNodes in different VOs when the desired
resources are not present in local VO, which enhances the scalability due to lower
load on SuperNodes. SDRD could be applied to other resource management models
to offer excellent scalability and high routing efficiency. To demonstrate the applica-
bility and efficiency of this approach, we presented experimental results got by using
comparison methodology. Results of simulations show that SDRD scales well, and
could offer an efficient decentralized discovery service in grid.

The rest of this paper is organized as follows. Section 2 summarizes previous
works on P2P-based approaches to resource discovery in grid environments. Section 3
presents formal description of SDRD. In section 4, we introduce key technologies
designed by SDRD. Model analysis is presented in section 5, and this section will
show how to apply SDRD to other resource management model. Finally, we end this
paper with discussions on the experimental results in section 6 and conclusion in
section 7.

2 Related Works

Resource discovery is a hot topic in grid computing fields. Traditional approaches
maintain hierarchically organized servers to index grid resource information. How-
ever, the centralized servers might become a bottleneck. Meanwhile, centralized ap-
proaches have the inherent drawbacks of a single point of failure [10].

Peer-to-peer based approaches to resource discovery in grid environments were
proposed to address the above problems. Reference [2] proposed resource discovery
mechanism based on unstructured P2P networks. However, this approach does not
scale well due to the large amount of query messages generated by flooding. And
unstructured P2P systems can not guarantee that resources could always be located.
Reference [5] proposed a P2P-based data discovery mechanism similar to [2]. Refer-
ence [7] proposed a super-peer model for building resource discovery services, where
a super-peer manages metadata associated to the resources provided by the nodes of a
single VO. This approach might cause high load to the super-peers, which might be-
come the bottlenecks and query hotspots.

In P2P fields, it is widely accepted that DHTs are the building blocks for next-
generation large scale decentralized systems. Current implementations of DHTs are
efficient for 1-dimensional queries. But, extending DHTs to support d-dimensional
range queries in grids is a complex problem [8]. References [9], [10], [11], [12], [13],

 SDRD: A Novel Approach to Resource Discovery in Grid Environments 303

[14] had proposed different solutions to this problem. These works ([9]-[14]) are
referred to as improved DHTs in this paper, which means that these algorithms are
based on DHTs and provide d-dimensional range query support. However, nodes
forward queries according to well-defined rules without any knowledge of underlying
physical topology might cause mismatch between P2P overlay network and the physi-
cal underlying network, which greatly limits the performance gain from various
search or routing techniques [18]. SDRD alleviate the mismatch problem by organiz-
ing nodes according to their geographical proximity.

3 Formal Description of SDRD

In this section, we propose a basic model of resource discovery in grids at first. Then
formal description of SDRD is depicted based on the proposed basic model.

3.1 Basic Model of Resource Discovery in Grids

The proposed basic model of resource discovery is inspired by the Boolean Model in
the information retrieval field [19].

A basic model of resource discovery in grids is a sextuple /PS, QS, F, ZS, Sf, T/,
where

Definition 1. T is a certain time interval, tstart ≤ T ≤ tend, where tstart and tend represent,
respectively, the moment that the grid system is established and destroyed.

The grid is dynamic, which means available resources, available grid nodes, avail-
able services and user requests are variant at different time. To facilitate our descrip-
tion, Assumption 1 was given.

Assumption 1. The grid is relatively static during a short time interval T0, where tstart
≤ t1 ≤ T0 ≤ t2 ≤ tend, see Fig. 1.

tstart time axis
T0

tend

T

t1 t2

Fig. 1. Example of a short time interval T0

Based on Assumption 1, the basic model is revised to the sextuple /PS, QS, F, ZS,
Sf, T0 /.

Definition 2. PS is a set composed of logical views (or representations) for available
resource providers in grid during time interval T0.

Definition 3. QS is a set composed of logical views (or representations) for the user
information needs in grid during time interval T0. Such representations are called
requests.

Definition 4. F is a mechanism for modeling resource providers, requests, and their
relationships.

304 Y. Mei et al.

Definition 5. ZS is a set composed of resource providers which could satisfy request
constraints on the node attribute values. ZS ⊆ PS.

Expression F (PS, q) → ZS, where q ∈ QS, represents that: through mapping proc-
ess F, a resource request q could find a set of nodes ZS, which can provide service
satisfying the request q within a given set PS.

Definition 6. Sf is a ranking function. Expression Sf : ZS → R+, where R+ is the set of
positive integers, represents associating a positive integer with a matched resource
provider according to certain criterion. Such ranking defines an ordering among the
providers with regard to the request.

3.2 Match Value of SDRD

Match value is a criterion which is used to check if a node could satisfy a request. In
SDRD, each node belongs to one single VO. Suppose that there are totally n (n ∈ R+)
VOs in the grid. Let PSi represent VOi, then ∀p ((p ∈ PS) ⇒ ∃k ((1 ≤ k ≤ n) ∧ (p ∈
PSk) ∧ (PSk ⊆ PS))). Furthermore, PSi ∩ PSj = ∅, where 1 ≤ i, j ≤ n and i ≠ j. Let ∏ =
{PS1, PS2, …, PSn}, ∏ is a partition of PS.

A request q (q ∈ QS) is composed of different constraints on the node attribute
values linked by three connectives: not (¬), and (∧), or (∨). A request composed of d
kinds of constraints on the node attribute values is called d-dimensional request [8],
where each constraint condition is represented by ci (1 ≤ i ≤ k). Iff a resource provider
p (p ∈ PS) satisfies all the constraint conditions of a request q (q ∈ QS), we can say
that p can satisfy request q, otherwise, p can not satisfy q.

A request q is essentially a conventional expression which can be represented as a
disjunction of conjunctive vectors (represented by qdc), i.e. in disjunctive normal form
– DNF [19], represented by qdnf (qdc ∈ qdnf). The expression p ⇑ qdc (qdnf) represents p
could satisfy qdc (qdnf), other wise, represented by p ⇓ qdc (qdnf).

Theorem 1. ∃qdc((qdc ∈ qdnf) ∧ (p ∈ PS) ∧ (p ⇑ qdc)) ⇒ (p ⇑ q) is true, i.e. if p could
satisfy qdc(qdc ∈ qdnf), then p could satisfy request q.

Proof. Without loss of generality, suppose that q (qdnf) is represented by B = {qdc1,
qdc2, …, qdcn}, define F: PS × QS → I, I = {false, true}, F represents if provider p (p ∈
PS) could satisfy request q (q ∈ QS). And let set A = {p}, then A ⊆ PS, the Cartesian
product is A × B = {(p, qdc1), (p, qdc2), …, (p, qdcn)}, we define a function f : A × B →
I, and fi represents the degree that p could satisfy qdci, i.e. if p could satisfy qdci, then fi
= true, else fi = false. For q, since qdnf = qdc1 ∨ qdc2 ∨ … ∨ qdcn, F(p, q) = f1 ∨ f2 ∨ … ∨
fn. Because that ∃qdc((qdc ∈ qdnf) ∧ (p ∈ PS) ∧ (p ⇑ qdc)), suppose that p ⇑ qdcm, where
qdcm∈ qdnf and 1 ≤ m ≤ n, so fm = true. Therefore, F(p, q) = unknown ∨ … ∨ true
∨ … ∨ unknown = true, where unknown ∈ I. We could conclude that p can satisfy
request q.

Base on Theorem 1, Formula 1 is given to calculate the match value between a re-
quest q and a resource provider p.

(,) dc dc dnf dc1: if q ((q q) (q));

0: other wise .

p qMatchValue p ⇑= ∃ ∈ ∧⎧
⎨
⎩

 (1)

 SDRD: A Novel Approach to Resource Discovery in Grid Environments 305

3.3 Match Mechanism F of SDRD

Match mechanism F is the core part of SDRD. F is described by a rule-set LSrn, which
is composed of six rules with regard to regular nodes, see Fig. 2 (a), there are restric-
tions among the rules, for example, the results of Rule 1 might activate Rule 2 or Rule
3. This restriction is referred to as rule transition, denoted by arrow lines in Fig. 2.
The rule transition process would terminate at the end of Rule 2, Rule 5 and Rule 6,
and these three rules are depicted with black frame to indicate that they contain the
terminal conditions of rule transition. The rule-set LSsn to describe the SuperNodes′
match mechanism is shown in Fig. 2 (b).

Rule 1

Rule 2

Rule 3

Rule 1

Rule 1

Rule 1

Rule 5

Rule 6...
Rule 4

Rule 1

Rule 2 Rule 1

Rule 1

Rule 1

Rule 5

Rule 6...
Rule 4

rule transition

(a) (b)

Fig. 2. Rule-set

A rule tells the system how to react to a particular situation. Each rule consists of
two parts: condition and action, denoted by X ⇒ Y, where X is the condition and Y is
the action. Explanations to the rules are as follows.

Rule 1. ∀q(((q ∈ QSlocal) ∧ (QSlocal ⊆ QS)) ⇒ ∃p((p ∈ PSlocal) ∧ (PSlocal ⊆ PS) ∧ (Im-
DHTs(Alg, q, p, ZSlocal)) ∧ (ZSlocal ⊆ PSlocal))).

Rule 1 could be set as the beginning of rule transition with regard to LSrn. If a re-
quest q is generated in or issued to local VO, node p will forward q according to well-
defined rules, i.e. one of the improved DHTs, denoted by Alg. Node p is a grid node
in local VO without considering if it is a SuperNode or not. The results will be saved
in ZSlocal by p.

Rule 2. ∃p((p ∈ PSlocal) ∧ (PSlocal ⊆ PS) ∧ (MatchValue(p,q) = 1)) ⇒ ∃ZSlocal ((Re-
turn(ZSlocal)) ∧ (ZSlocal ⊆ PSlocal) ∧ Exit).

Rule 2 could express the following meanings: if the desired resources are located
in local VO, then the discovery process will terminate and ZSlocal are returned. Match-
Value(p,q) is calculated using Formula 1.

Rule 3. ∀p(((p ∈ PSlocal) ∧ (PSlocal ⊆ PS) ∧ (MatchValue(p,q) = 0)) ⇒ ∃SNm((SNm ∈
PSlocal) ∧ (Forward(q, SNm)) ∧ (ZSlocal = ∅))).

If the desired resources are not present in local VO, then regular node p forwards q
to a selected SuperNode m (represented by SNm) in local VO and m will multicast q to
SuperNodes in other VOs according to its SNList.

Rule 4. ∀SNm(((SNm ∈ PSlocal) ∧ ((Receive(q)) ∨ (ZSlocal = ∅))) ⇒ ∃SNList (Multi-
Cast(q, SNList))).

306 Y. Mei et al.

Rule 4 indicates that SuperNode m multicasts q to the SuperNodes in other VOs
according to its SNList (actually GlobalNeighborList introduced in 3.4).

Rule 5. ∃p∃PSi((p ∈ PSi) ∧ (PSi ⊆ PS) ∧ (MatchValue(p,q) = 1)) ⇒
∃ZSglobal(Return(ZSglobal) ∧ Exit).

If the desired resources are located in global scope, then the discovery process will
terminate and ZSglobal are returned to the node initiated the request.

Rule 6. ∀p∀PSi(((p ∈ PSi) ∧ (PSi ⊆ PS) ∧ (MatchValue(p,q) = 0)) ⇒ ((ZSglobal = ∅) ∧
Exit)).

If the desired resources are not present in grid, then the discovery process will ter-
minate and NULL will be returned to the node initiated the request. The above six
rules and Fig. 2 (a) could describe the situations with regard to regular nodes in dis-
covery process of SDRD. The rules describing the SuperNodes′ match mechanism is
shown in Fig. 2 (b).

3.4 Organization of SDRD Overlay

Nodes in SDRD are organized according to geographical proximity or physical topol-
ogy. Nearby nodes cluster into one VO. This could alleviate the mismatch problem
between P2P overlay network and the physical underlying network mentioned in
section 2.

Fig. 3. Example of SDRD overlay

 SDRD: A Novel Approach to Resource Discovery in Grid Environments 307

All the VOs form the middle layer of SDRD overlay, see Fig. 3. Each VO contains
multiple SuperNodes. All the SuperNodes form the top layer of SDRD overlay. Each
VO employs one of the improved DHTs. Every regular node maintains a list called
LocalSNList, which contains IDs of SuperNodes in the same VO. Besides that, a
SuperNode maintains a list called GlobalNeighborList containing IDs of SuperNodes
in other VOs, and only one ID is needed per every other VO, for exmaple, in Fig. 3,
GlobalNeighborList of SuperNodeA contains SuperNodeB, SuperNodeC, SuperNodeD
and SuperNodeE, which is represented by bold lines.

SDRD employs improved DHTs to locate resources in VOs due to the following
reasons.

First, DHTs can eliminate a series of problems generated by using centralized serv-
ers, such as performance bottleneck, a single point of failure.

Second, grids are less dynamic than P2P networks [7]. This feature prevents grids
from churn [16] in DHTs.

Third, compared to unstructured P2P networks, DHTs guarantee that the resources
will always be found if it is available in local VO.

Fourth, routing efficiencies of DHTs are high, thus, DHTs can avoid the network
overhead caused by flooding in unstructured P2P like Gnutella.

In addition, each VO can choose one of the improved DHTs freely, which brings
flexibility to routing in SDRD.

4 Key Technologies

4.1 SuperNodes in SDRD

Super nodes of related works (the term ″super nodes″ refer to the ones in other works)
[1], [7], [15] are in charge of two tasks. First, they have to collect and index grid re-
source information of each VO, and respond to regular nodes′ requests. Second, if the
desired resources are not present in local VO, super nodes forward the requests to
other super nodes in different VOs. This strategy might have two principal draw-
backs. One is that the super nodes might become potential bottlenecks. The other is
that all of the information about resource characteristics (such as CPU load) will be
sent to super nodes when they are changed, which will cause routing hotspot in
networks.

Without the help of super nodes, VOs in SDRD use the improved DHTs to route
the request messages in local VO. Therefore, there is only one task for SuperNode to
do, which is forwarding requests to other SuperNodes in different VOs when the
desired resources are not present in local VO (according to Rule 4 in 3.3). This strat-
egy will eliminate the drawbacks of related works. The scalability of SDRD will
benefit from the lower load on SuperNodes.

In SDRD, SuperNodes are selected based on the criterions below.

• evaluation of a node's service capabilities, including the node's computation re-
sources, storage resources and network bandwidth.

• evaluation of a node's availability, e.g. mean time to failure.
• evaluation of a node's average load.

308 Y. Mei et al.

Generally speaking, nodes with high service capabilities, high availability and low
average load will be selected to SuperNodes.

4.2 Routing APIs

Routing APIs to implement the rules described in 3.3 are introduced in this subsec-
tion. The API used to route requests by a regular node is as follows. Invoked proce-
dures are depicted by bold type.

//Procedure name: regular_node_discovery(q)
call local_DHT(alg, q, LocalResultSet);
if (LocalResultSet != 0)
 call rank(LocalResultSet);
 return LocalResultSet;
else
 call local_SuperNode(m, q);
 if(GlobalResultSet !=0)
 call rank(GlobalResultSet);
 return GlobalResultSet;
 else return NULL;

If SuperNode m initiated the request q itself, the routing API will be the next one.

//Procedure name: super_node_discovery(q)
call local_DHT(alg, q, LocalResultSet);
if (LocalResultSet != 0)
 call rank(LocalResultSet);
 return LocalResultSet;
else
 call multicast(GlobalNeighborList, q);
 k = sizeof(GlobalNeighborList);
 for i=1,…,k
 call merge_results(SuperNodei’s LocalResultSet,
GlobalResultSet);
 if(GlobalResultSet !=0)
 call rank(GlobalResultSet);
 return GlobalResultSet;
 else return NULL;

Significant difference of discovery procedure between SuperNode and regular node
is that there is no need for SuperNode to forward the request to other SuperNodes in
the same VO (recall Fig. 2). SuperNode m multicasts the request q to the SuperNodes
present in m′s GlobalNeighborList.

4.3 SuperNode Multicast

As an example, we will show that how SuperNode m constructs its multicast tree.
Note that, m′s Multicast Group = {m, m′s GlobalNeighborList}. According to the
network latency, m selects SuperNode neighbours in different VOs. After that, m will
construct a multicast tree. Constructing a multicast tree is a Steiner tree problem in

 SDRD: A Novel Approach to Resource Discovery in Grid Environments 309

networks, and several heuristic algorithms could be used to solve this problem, such
as the MPH algorithm [17].

5 Analysis

5.1 Routing Efficiency

Routing efficiency of SDRD is determined by several factors: (1) improved DHTs
used by local VO, i.e. Alg in Rule 1; (2) overhead caused by multicasting request
messages to other SuperNodes in different VOs; (3) improved DHTs used by other
VOs. Suppose that, compared to the time consumed by network transport, the time
consumed by computer process can be omitted. If node p issues a request, and the
routing process exits with Rule 2, time consumption will be TSDRD = TVOlocal, where
TVOlocal represents the time consumed by improved DHTs in local VO. If the routing
process exits with Rule 5 or Rule 6, then time consumption will be as follows: TSDRD =
TVOlocal + max{TVOi + T<m,i>}, where T<m,i> represents time consumed by multicasting,
and m ∈ p′s LocalSNList, i ∈ m′s GlobalNeighborList.

5.2 Apply to Other Models

Table 1 summarizes the models that could adopt SDRD for resource discovery, the
last row of Table 1 shows which part of SDRD is corresponding to the related part in
other models. SDRD could reduce load on super-peers. As a result, the scalability of
these models will be improved due to the lower load on SuperNodes.

Table 1. Models could adopt SDRD

Model Super node Organization Unit
constellation model [1] fixed star solar system
super-peer model [7] super-peer VO ⁄ cluster
P2P based GIS [15] super-peer cluster

SDRD SuperNode VO

6 Experiments

The test bed is the Xi′an Node of the China National Grid, located in Xi′an Jiaotong
University.

6.1 Evaluation of Routing Efficiency and Locating Guarantee in VO

Like [2], we carried out this experiment with simple requests (1-dimensional request)
and perfect matching. We have compared improved DHTs (MAAN [10]) with
random flooding strategies in [2]. The experimental results are shown in Fig. 4.

310 Y. Mei et al.

10
1

10
2

10
3

10
410

0

10
1

10
2

10
3

VO size

M
ea

n
nu

m
be

r
of

 r
es

ul
ts

DHT-based
Flood TTL=4
Flood TTL=5
Flood TTL=6

Fig. 4. Evaluation of routing efficiency and locating guarantees in VO

TTL (Time-To-Live) of flooding strategies is set to 4, 5 and 6 (according to refer-
ence [7]), respectively. Fig. 4 shows that the flooding strategies are less efficient than
the improved DHTs and provide no locating guarantees.

6.2 Evaluation of the Load on SuperNode

We tested SuperNode throughputs to verify if SDRD could decrease the load on super
nodes in other models. This experiment is carried out under the framework of the
constellation model [1]. Number of requests processed by the SuperNode per minute
is shown in Fig. 5. With the help of SDRD, SuperNode (fixed star) could process
much more requests than that of the original approach used by the constellation
model.

0

50

100

150

200

250

300

R
es

po
nd

s
of

 S
up

er
N

od
e

pe
r

m
in

ut
e

Other Model Our Approach

Fig. 5. Evaluation of the load on SuperNode

6.3 Evaluation of Overall Routing Efficiency

Evaluation results of overall routing efficiency for SDRD are depicted in Fig. 6.
We assumed that mean size of VO is 50, there are five types of resources, and re-
sources obey balanced distribution. Four groups of results were present in Fig. 6.

 SDRD: A Novel Approach to Resource Discovery in Grid Environments 311

Test 1 represents the simple requests and perfect matching, the response time in-
creases with the multicast group size. Test 2, test 3 and test 4 shows the response time
with regard to 1-d (1-dimensional) range query, 2-d range query, 5-d range query,
respectively. As shown in Fig. 6, we could see that after the multicast group size
reaches a certain value, for example, 0.9 second with regard to test 3, the response
time increases very slowly and maintains at a certain level even the requests are sent
to more VOs. Therefore, the scalabilities of the models adopting our approach could
be enhanced by this characteristic of SDRD.

0 50 100
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
on

d)

test1
test2
test3
test4

Multicast group size

Fig. 6. Overall routing efficiency evaluation

7 Conclusion

We propose SDRD, a SuperNode and DHT based approach to resource discovery in
grid environments. Sophisticated routing strategies are implemented to improve the
scalabilities and routing efficiencies. Experimental results show that SDRD scales
well and offers an efficient decentralized discovery service in grid.

Acknowledgments

This research is supported by National Natural Science Foundation of China (Grant
No. 60773118), 863 Project of China (Grant No. 2006AA01A109) and Program for
Changjiang Scholars and Innovative Research Team in University.

References

1. Wang, Y., Dong, X., He, X., et al.: A Constellation Model for Grid Resource Management.
In: Cao, J., Nejdl, W., Xu, M. (eds.) APPT 2005. LNCS, vol. 3756, pp. 263–272. Springer,
Heidelberg (2005)

2. Iamnitchi, A., Foster, I.: On Fully Decentralized Resource Discovery in Grid Environ-
ments. In: Lee, C.A. (ed.) GRID 2001. LNCS, vol. 2242, pp. 51–62. Springer, Heidelberg
(2001)

312 Y. Mei et al.

3. Androutsellis-Theotokis, S., Spinellis, D.: A Survey of Peer-to-Peer Content Distribution
Technologies. ACM Computing Surveys 36(4), 335–371 (2004)

4. Talia, D., Trunfio, P.: Toward a Synergy Between P2P and Grids. IEEE Internet Comput-
ing, pp. 96, 94–95 (July/August 2003)

5. Abdullah, A., Othman, M., Sulaiman, M.N., et al.: Data Discovery Mechanism for a Large
Peer-to-Peer Based Scientific Data Grid Environment. In: Laganà, A., Gavrilova, M.,
Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp.
146–157. Springer, Heidelberg (2004)

6. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. J. Comput.
Sci & Technol. 21(4), 513–520 (2006)

7. Mastroianni, C., Talia, D., Verta, O.: A Super-Peer Model for Building Resource Discov-
ery Services in Grids: Design and Simulation Analysis. In: Sloot, P.M.A., Hoekstra, A.G.,
Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 132–143.
Springer, Heidelberg (2005)

8. Ranjan, R., Harwood, A., Buyya, R.: A Study on Peer-to-Peer Based Discovery of Grid
Resource Information, http://www.gridbus.org/reports/pgrid.pdf

9. Ganesan, P., Yang, B., Garcia-Molina, H.: One Torus to Rule them All: Multi-dimensional
Queries in P2P Systems. In: WebDB 2004, pp. 19–24. ACM Press, New York (2004)

10. Cai, M., Frank, M., Chen, J., et al.: MAAN: A Multi-Attribute Addressable Network for
Grid Information Services. Journal of Grid Computing 2(1), 3–14 (2004)

11. Andrzejak, A., Xu, Z.: Scalable, efficient range queries for grid information services. In:
IEEE P2P 2002, pp. 33–40. IEEE Press, Los Alamitos (2002)

12. Schmidt, C., Parashar, M.: A Peer-to-Peer Approach to Web Service Discovery. World
Wide Web: Internet and Web Information Systems 7(2), 211–229 (2004)

13. Tam, D., Azimi, R., Jacobsen, H.A.: Building Content-Based Publish/Subscribe Systems
with Distributed Hash Tables. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Data-
bases, Information Systems, and Peer-to-Peer Computing. LNCS, vol. 2944, pp. 138–152.
Springer, Heidelberg (2004)

14. Crainiceanu, A., Linga, P., Gehrke, J., Shanmugasundaram, J.: Querying Peer-to-Peer Net-
works Using P-Trees. In: WebDB 2004, pp. 25–30. ACM Press, New York (2004)

15. Puppin, D., Moncelli, S., Baraglia, R., et al.: A Grid Information Service Based on Peer-to-
Peer. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 454–464.
Springer, Heidelberg (2005)

16. Rhea, S., Geels, D., Roscoe, T., et al.: Handling Churn in a DHT. In: USENIX Annual
Technical Conference, Boston, MA, USA, pp. 127–140 (2004)

17. Takahashi, H., Matsuyama, A.: An Approximate Solution for the Steiner Problem in
Graphs. Math Japonica 24, 573–577 (1980)

18. Liu, Y., Xiao, L., Liu, X., et al.: Location Awareness in Unstructured Peer-to-Peer Sys-
tems. IEEE Transactions on Parallel and Distributed Systems (TPDS) 16(2), 163–174
(2005)

19. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison
Wesley/Pearson Press, London (1999)

A Comparative Study of Two Java High Performance
Environments for Implementing Parallel Iterative

Methods

Jacques M. Bahi, Raphaël Couturier, David Laiymani,
and Kamel Mazouzi

Laboratoire d’Informatique de l’université de Franche-Comté (LIFC)
IUT de Belfort-Montbéliard - Rue Engel Gros

BP 527 90016 Belfort CEDEX - France
name@iut-bm.univ-fcomte.fr

Abstract. This paper aims at studying two Java high performance environments
in order to implement parallel iterative methods on Grid infrastructures. We ex-
hibit the important features offered by MPJ Express and Jace V2 to tackle the
different issues linked to parallel iterative algorithms. Our study relies on the im-
plementation of a typical iterative application: the multi-splitting method on a
large scale grid platform.

1 Introduction

Currently there is a growing interest in developing Grid applications using the Java
language. Even if its performance are not comparable to those of the C language for
example, many reasons could explain this interest. Among them we can quote the two
following ones. First, the ability of Java to handle the heterogeneity between different
hardware and operating systems. With regard to the highly heterogeneous nature of the
Grid this feature is essential. Second, its ability to support efficient communication.
Becker et al shows in [1] how the Java NIO API [2] provides scalable non-blocking
I/Os which perform very well.

It also appears that most Grid parallel applications use the message-passing
paradigm. In this model, tasks co-operate by exchanging messages and the Message
Passing Interface (MPI) is a standard for implementing message-passing applications.
In this context, and considering the advantages of Java previously exposed, it is not
surprising to see that many research projects aim at developing a message-passing sys-
tem in Java. These projects can be classified into three classes. The projects of the first
class [3] are built upon JNI [4] and use a native MPI implementation as communication
layer. These projects provide efficient communication procedures but are not “pure”
Java. Projects of the second class [5,6] are based on Java RMI. The RMI API is an
elegant high-level “pure” Java solution for remote method invocations of distributed
objects but offers little communication performances. In the third class, projects [1,7]
use a low-level approach based on Java sockets. This ensures good communication per-
formances and a truly “pure” Java portable environment.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 313–321, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

314 J.M. Bahi et al.

Now, from an application point of view it appears that the well-known parallel it-
erative numerical algorithms have been the main class used in scientific applications
so far. Unfortunately, they usually require several inter-processor communications and
synchronizations (to update data and to start the next computation steps for example).
The aim of this paper is to provide a comparative study of two “pure” Java message-
passing environments for implementing parallel iterative numerical algorithms. We fo-
cus on MPJ Express which is developed at the University of Reading [1] and on Jace
an environment we are currently developing at the Université de Franche-Comté. We
present the features offered by these two environments to tackle the different issues
linked to parallel iterative applications. Both of them use the Java NIO socket API and
Jace also allows to implement a particular iterative model called AIACs (Asynchronous
Iteration-Asynchronous Communication) algorithms [8,9]. Our study relies on the im-
plementation, on the Grid’5000 testbed [10], of a typical numerical iterative method:
the multisplitting method. We show that the communication layer of MPJ offers bet-
ter performances than Jace. Nevertheless, the ability of Jace V2 to build asynchronous
implementations allows it to outperform MPJ synchronous implementations.

This paper is organised as follows. In section 2, we present the motivations and sci-
entific context of our work. In section 3, we describe the MPJE and Jace environments.
We particularly describe the new architecture and the new features that we have im-
plemented in the Jace environment (named Jace V2). Section 4 details the experiments
we conducted on the Grid’5000 testbed. We present the multisplitting method (both its
synchronous and asynchronous implementations) and we analyze the results of our test.
We end in section 5 by some concluding remarks and future work.

2 Scientific Context and Motivations

As exposed in the introduction, parallel iterative methods are now widely used in many
scientific domains. In the same way and due, in part, to its ability to tackle the hetero-
geneity problem of the Grid, the Java language is now a good candidate for developping
high performance applications. But what are the main features that a Java programming
environment must offer to develop efficient numerical iterative applications ?

Parallel iterative algorithms can be classified in three main classes depending on how
iterations and communications are managed (for more details readers can refer to [11]).
In the Synchronous Iterations - Synchronous Communications (SISC) model data are
exchanged at the end of each iteration. All the processors must begin the same itera-
tion at the same time and important idle times on processors are generated. The Syn-
chronous Iterations - Asynchronous Communications (SIAC) model can be compared to
the previous one except that data required on another processor are sent asynchronously
i.e. without stopping current computations. This technique allows to partially overlap
communications by computations but unfortunately, the overlapping is only partial and
important idle times remain. It is clear that, in a grid computing context, where compu-
tational nodes are large, heterogeneous and widely distributed, the idle times generated
by synchronizations are very penalizing. One way to overcome this problem is to use
the Asynchronous Iterations - Asynchronous Communications (AIAC) model. Here, lo-
cal computations do not need to wait for required data. Processors can then perform

A Comparative Study of Two Java High Performance Environments 315

their iterations with the data present at that time. Figure 1 illustrates this model where
the grey blocks represent the computation phases, the white spaces the idle times and
the arrows the communications. With this algorithmic model, the number of iterations
required before the convergence is generally greater than for the two former classes.
But, and as detailed in [8], AIAC algorithms can significantly reduce overall execution
times by suppressing idle times due to synchronizations especially in a grid computing
context.

In this context, it appears that communications and synchronizations are crucial
points that any message-passing environment must managed carefully. This communi-
cation management must be based on: an efficient point-to-point communication mod-
ule, an efficient thread management module (for scalability reasons) and the ability to
easily implement AIAC algorithms.

Processor 1

Processor 2

 Time

Fig. 1. The Asynchronous Iterations - Asynchronous Communications model

In the remainder, we present MPJ Express and Jace, two Java message-passing envi-
ronments which aim at offering these features.

3 The MPJ Express and Jace V2 Environments

3.1 MPJ Express

MPJE is structured into a layered design (see figure 2) which allows to use different
communication devices such as NIO or native MPI via JNI. In the following we only
focus on the NIO device driver. In [1] Baker et al show how point-to-point NIO com-
munications perform well and in [12] Pugh et al point out the good scalability of this
package with respect to standard Java sockets.

The communication protocols. The NIO device driver (called mjdev) proposes three
communication protocols.

– The Eager-Send protocol. This protocol is used for small messages (size smaller
than 128 Kbytes). Assuming that the receiving part has got an unlimited memory
for storing messages the number of control messages is minimized.

– The Rendezvous protocol. This protocol is used for large messages (size greater
than 128 Kbytes). In this case, control messages are exchanged since their overhead
is negligible.

– The Shared Memory protocol. This protocol is used when a process is sending a
message to itself (inside the same JVM).

316 J.M. Bahi et al.

Hardware

Operating System

Collective communications

Point to point communications

MPJ API

NIO device driver

Java Virtual Machine (JVM)

NIO package

Fig. 2. The MPJ layered architecture

The buffering API. Java sockets are not able to directly access memory in order to
read/write basic datatypes. Furthermore, the lack of pointers management could make
difficult the use of complex operations such as gather/scatter. To overcome these diffi-
culties, MPJ provides a buffering API in order to pack and unpack data to be sent [13].
Two kinds of buffers can be used: static and dynamic buffers. Static buffers can only
contain primitive datatypes while dynamic buffers can deal with serialized Java objects.
When a buffer is created, read and write operations are available to pack and unpack
data on it.

The communications primitives. Blocking and non-blocking sending methods are
available. These methods are called in the user thread and use the communication
protocols previously described. In the same way, blocking and non-blocking receiving
methods are available. These methods can be initiated by the user thread (eager-send
protocol) or by the NIO selector thread (rendez-vous protocol).

Advantages and drawbacks. The MPJ API is complete and offers a MPI-like style
of programming which makes the porting of existing applications easier. Based on a
solid buffer management its communication layer is efficient and MPJ appears to be
standard for implementing Java message-passing applications. Nevertheless, it appears
that MPJ is not well suited for AIAC algorithms. Indeed, even if it is a thread-safe
environment, its communication layer architecture is mono-threaded. It is shown in [8]
that with this kind of process management it is difficult to implement efficient AIAC
algorithms. Another drawback of MPJ is that the application deployment procedure can
suffer from a lack of scalability since centralized communication schemes are used.

3.2 Jace V2

Jace [6] is a Java programming and executing environment that permits to implement
efficient asynchronous algorithms as simply as possible. Jace builds a distributed virtual
machine, composed of heterogeneous machines scattered over several distant sites. It
proposes a simple programming interface to implement applications using the message

A Comparative Study of Two Java High Performance Environments 317

passing model. The interface completely hides the mechanisms related to asynchro-
nism, especially the communication management and the global convergence control.
In order to propose a more generic environment, Jace also provides primitives to im-
plement synchronous algorithms and a simple mechanism to swap from one mode to
another. Jace relies on four components: the daemon, the worker, the computing task
and the spawner.

The daemon. The daemon is the core of the Jace system, it is launched on each node
taking part in the computation. When a daemon is launched, a remote server is started on
it and continuously waits for remote invocations. This server provides communications
between the daemons and the spawner. It is used to manage the Jace environment like
for example: initializing the workers, monitoring and gathering the results . . . Daemons
are structured as a binomial tree. This hierarchical view of the machines set achieves
more efficient spawning and optimizes global communications.

The worker. The worker is the entity responsible for executing user applications. It is
a Jace service created for each execution by the daemon. Figure 3 shows the internal
architecture of the worker which is composed of two layers:

Grid Infrastructure

Message Manager

NIO RMI

Tasks Manager

User Task’s

Socket TCP/IP

Communication layer

Application layer

Fig. 3. Jace worker architecture

– The Application Layer. This layer provides tasks execution and global conver-
gence detection. A daemon may execute multiple tasks, allowing to reduce distant
communications. Jace is designed to control the global convergence process in a
transparent way. Tasks only compute their local convergence state and call the Jace
API to retrieve the global state. The internal mechanisms of the convergence detec-
tion depend on the execution mode i.e. synchronous or asynchronous.

– The Communication Layer. Communications between tasks are performed us-
ing the message/object passing model. Jace uses waiting queues to store incom-
ing/outgoing messages and two threads (sender and receiver) to deal with
communications. According to the kind of algorithm used, synchronous or
asynchronous, queues managements are different. For a synchronous execution, all
messages sent by a task must be received by the other tasks. Whereas on an asyn-
chronous execution, only the most recent occurrence of a message, with the same

318 J.M. Bahi et al.

source or destination and containing the same type of information, is kept in the
queues. The older one, if existing, is deleted. For scalability issues and to achieve
better performances, the communication layer should use an efficient protocol to
exchange data between remote tasks. For this reason Jace is based on several proto-
cols : TCP/IP Sockets, NIO (New Input/Output) [2,12] and RMI (Remote Method
Invocation).

The Computing Task. As in MPI-like environments, the programmer decomposes the
problem to be solved into a set of cooperating sequential tasks. These tasks are executed
on the available processors and invoke special routines to send or receive messages.
A task is the computing unit in Jace, which is executed like a thread rather than a
process. Thus, multiple tasks may be executed in the same worker and can share system
resources.

We also point out here that Jace implementation relies on the Java object serialization
to transparently send objects rather than raw data.

The Spawner. The spawner is the entity that effectively starts the user application.
After starting daemons on all nodes, computations begin by launching the spawner
program with some parameters (the number of tasks to be executed, the URL of the
task byte-code, the parameters of the application, the list of target daemons, the mapping
algorithm (round robin, best effort)). Then, the spawner broadcasts this information to
all the daemons. For scalability reasons, that is achieved by using an efficient broadcast
algorithm based on a binomial tree [14]. When a daemon receives the spawner message,
it forwards this information to its neighbors and starts a worker to load and execute the
user tasks.

Advantages and drawbacks. As presented above Jace is a multi-threaded environment
very suitable for AIAC algorithms. For scalability reasons its application deployment
procedure is designed in a highly distributed way. Unlike the MPJ one, the Jace com-
munication layer is able to transfer any kind of data objects. This feature provides more
flexibility but requires objects serialization which decreases overall performances.

4 Experiments

4.1 The Application: The Multisplitting Method

Consider the n dimensional linear system: Ax = b. As exposed in figure5, the A matrix
is split into horizontal rectangle parts. Each of these parts is then affected to one pro-
cessor. With this distribution, a processor is in charge of computing its XSub part by
iteratively solving the following subsystem:

ASub ∗ XSub = BSub − DepLeft ∗ XLeft − DepRight ∗ XRight

This resolution can be processed by a direct solver such as SuperLu. Then the solu-
tion XSub must be sent to each processor which depends on it. Now, if rectangle matri-
ces are not disjoint, it appears that some computations will be redundant. This property

A Comparative Study of Two Java High Performance Environments 319

DepLeft DepRight

X
L

eft
X

R
ight

ASub

X
Sub

B
Sub

Fig. 4. Decomposition of the system

is called overlapping and should be taken into account. In this way, three policies can be
applied. Either a processor ignores its components if its neighbors has computed them,
or it ignores the neighbors components or it mixes the shared components (by com-
puting their average for example). This parameter has an influence on the convergence
speed of the algorithm. Interesting reader can find more details in [15].

For our purpose, this application is interesting for many reasons. First, the conver-
gence of the method for both synchronous and asynchronous mode is shown in [15]
(with some restrictions on the A matrix). Second, it appears that the computation/
communication ratio does not let performances be too dependant on the communica-
tion layer. In this way, we must be able to evaluate the whole of the target environments
(memory management, threads management . . .). Finally, this application is not a “toy”
application. It covers several scientific computation areas and its study in different con-
texts is relevant.

4.2 Experiments Results

The experiments have been conducted on the Grid’5000 platform. This testbed is com-
posed of an average of 1, 300 bi-processors that are located in 9 sites in France: Bor-
deaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes, Sophia-Antipolis and Toulouse.
The inter-sites links range from 2.5Gbps up to 10Gbps while most of the sites have a
Gigabit Ethernet Network for local machines. For more details on the Grid’5000 archi-
tecture, interested readers can refer to: www.grid5000.fr. All the nodes run the Linux
Debian distribution with the Sun Java 1.5 Java Virtual Machine.

Figure 5 shows the execution times of the multi-splitting application for different ma-
trix sizes and with 150 nodes of the Grid’5000 testbed. The processors were distributed
over 2 sites and the two Jace implementations (synchronous and asynchronous) rely on
the Socket communication layer.

It appears that the two synchronous versions (MPJ and Jace) present some equivalent
execution times. With respect to the architecture of the two communication layers, these
results can be surprising since no object serialization is performed with MPJ while Jace
requires this kind of process. We can explain these results by the fact that the target ap-
plication is coarse grain and so is less sensitive to communication performances. These

320 J.M. Bahi et al.

 10

 100

 1000

 10000

 1e+06 1e+07

T
im

e
(in

 s
)

Size of the matrix

MPJ
Jace (synchronous)

Jace (asynchronous)

Fig. 5. Time to solve different generated matrices

tests also show the interest of AIAC algorithms since the Jace asynchronous version
clearly outperforms the two synchronous ones. The fundamental properties of AIACs
algorithms can explained these results. In particular, we can see here the efficiency of
asynchronism which allows to obtain a good computations/communications overlap-
ping. This underlines an important feature for Java high performance environments: the
ability of easily implemented AIAC algorithms.

5 Concluding Remarks and Future Work

In this paper, we have presented a comparative study of two Java high performance
environments (MPJ Express and Jace V2) for implementing parallel iterative meth-
ods. Through the implementation of a typical iterative application (the multi-splitting
method) we have shown that the communication layer of MPJ Express is efficient. We
have also shown that the ability of Jace to support the AIAC model is very relevant.

We are currently working on how AIAC algorithms behave on a peer-to-peer (P2P)
architecture. We study the integration of Jace on P2P environments such as JXTA or
ProActive [16] since these environments already propose standard P2P services such as
failure detection, NAT traversing.

References

1. Baker, M., Carpenter, B., Shafi, A.: MPJ Express: Towards Thread Safe Java HPC. In: Cluster
Computing, Barcelona, sept 2006, IEEE Computer Society Press, Los Alamitos (2006)

2. New I/O API, http://java.sun.com/j2se/1.4.2/docs/guide/nio
3. Ma, R., Wang, C.-L., Lau, F.: M-javampi: A java-mpi binding with process migration sup-

port. In: CCGRID 2002. Proc. of the 2nd IEEE/ACM Int. Symposium on Cluster Computing
and the Grid, p. 255. IEEE Computer Society Press, Los Alamitos (2002)

4. JNI, http://java.sun.com/j2se/1.4.2/docs/guide/jni/

 http://java.sun.com/j2se/1.4.2/ docs/guide/nio
http://java.sun.com/j2se/1.4.2/docs/guide/jni/

A Comparative Study of Two Java High Performance Environments 321

5. Morin, S., Koren, I., Krishna, C.M.: Jmpi: Implementing the message passing standard in
java. In: IPDPS 2002. Proc. of the 16th Int. Parallel and Distributed Processing Symposium,
p. 191. IEEE Computer Society Press, Los Alamitos (2002)

6. Bahi, J., Domas, S., Mazouzi, K.: Jace: a java environment for distributed asynchronous iter-
ative computations. In: 12th Euromicro Conference PDP 2004, pp. 350–357. IEEE Computer
Society Press, Los Alamitos (2004)

7. MPP, http://www.uib.no/People/nmabh/mtj/mpp/
8. Bahi, J., Contassot-Vivier, S., Couturier, R.: Performance comparison of parallel program-

ming environments for implementing AIAC algorithms. Journal of Supercomputing 35(3),
227–244 (2006)

9. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods.
Prentice Hall, Englewood Cliffs NJ (1989)

10. Grid’5000, http://www.grid5000.fr
11. Bahi, J., Contassot-Vivier, S., Couturier, R.: Asynchronism for iterative algorithms in global

computing environment. In: 16th Int. Symposium on High Performance Computing Systems
and Applications, Moncton, Canada, pp. 90–97. IEEE Computer Society Press, Los Alamitos
(2002)

12. Pugh, B., Spaccol, J.: MPJava: High Performance Message Passing in Java using Java.nio. In:
Proceedings of the Workshop on Languages and Compilers for Parallel Computing, College
Station, Texas, USA (October 2003)

13. Baker, M., Carpenter, B., Shafi, A.: An Approach to Buffer Management in Java HPC Mes-
saging. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS
2006. LNCS, vol. 3991, Springer, Heidelberg (2006)

14. Gerbessiotis, A.V.: Architecture independent parallel binomial tree option price valuations.
Parallel Computing 30(2), 301–316 (2004)

15. Bahi, J.M., Couturier, R.: Parallelization of direct algorithms using multisplitting methods in
grid environments. In: IPDPS 2005, pp. 254b, 8 pages. IEEE Computer Society Press, Los
Alamitos (2005)

16. Caromel, D., Di Constanzo, A., Mathieu, C.: Peer-to-peer for computational grids: Mixing
clusters and desktop machines. Parallel Computing (2007)

http://www.uib.no/People/nmabh/mtj/mpp/
http://www.grid5000.fr

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 322–329, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SIGRE – An Autonomic Spatial Information Grid
Runtime Environment for Geo-computation

ZhenChun Huang1, GuoQing Li2, Bin Du1, Yi Zeng2, and Lei Gu1

1 Department of Computer Science and Engineering, Tsinghua University, Beijing 100084
2 China Remote Sensing Satellite Ground Station, Beijing 100086
huangzc@tsinghua.edu.cn, gqli@ne.rsgs.ac.cn,

dubin@mails.tsinghua.edu.cn, yzeng@ne.rsgs.ac.cn,
jackflit98@mails.tsinghua.edu.cn

Abstract. Spatial Information Grid is a kind of application grid which tries to
connect resources such as computer, data sources, and processing algorithms,
and builds a distributed, robust, flexible and powerful infrastructure for geo-
computation. It needs a powerful and easy-to-use running environment. In this
paper, an autonomic runtime environment for geo-computation is proposed and
named SIGRE — the Spatial Information Grid Runtime Environment. Based on
it, SIG resources can be distributed, discovered, and matched autonomically.
And a distributed, flexible and powerful data infrastructure which can distribute
data with different types, different sources, and different goals in a uniform
interface easily and flexibly is founded. Based on the implementation of SIGRE
by java language, a SIG testbed is constructed, and the test on it shows that
SIGRE can provide a powerful, easy-to-use, robust and autonomic runtime
environment for SIG, and developers can develop SIG resources and SIG
applications on SIGRE easily and quickly.

Keywords: geo-computation, spatial information grid, runtime environment.

1 Introduction

Geo-computation can be regarded as the application of the computational science
paradigm to study a wide range of problems in geographical and Earth science
context. It is concerned with new computational techniques, algorithms, and
paradigms that are dependent upon and can take advantage of techniques such as Grid
computing, high performance computing and high throughput computer. Based on
grid computing technologies, the Spatial Information Grid (shortly SIG) tries to
connect resources such as high performance computers, high throughput data storages
and spatial data processing algorithms; enable the sharing, co-operation and
collaboration among the resources and their consumers; and build a distributed,
robust, flexible, and powerful infrastructure for geo-computation. Based on SIG,
resources such as computing powers, spatial information data, and processing models
and algorithms can be shared; and distributed geo-computation applications can be
built easily and quickly.

 SIGRE – An Autonomic Spatial Information Grid Runtime Environment 323

In brief, SIG can be regarded as a kind of application grid for the geo-computation
researchers. It is based on the general grid infrastructure; and built by the general grid
infrastructure and dozens of SIG extensions and improvements, such as the SIG job
framework, SIG data infrastructure, SIG registry meta-service extension, and so on. In
SIG, the general grid infrastructure makes it possible to share resources and co-
operating among resources. On the other hand, the SIG extensions and improvements
make the infrastructure more powerful, friendly, and adaptive for the geo-
computation users, and make it easier and quicker to develop SIG applications on the
infrastructure.

As viewed from the physical deployment, SIG is constructed by a lot of distributed
SIG nodes which are connected by network (usually Internet). All resources in SIG
are attached to the SIG nodes, and accessed through the nodes. At the same time,
most of the web-based SIG applications are deployed on the SIG nodes and provide
web UI for their users, too. Whether the SIG resources or the SIG applications need a
basic support running environment, which will be proposed later and named SIGRE
— the Spatial Information Grid Runtime Environment, an autonomic runtime
environment for geo-computation.

Most traditionally, the “runtime environment” is implemented as a set of support
libraries on the target platform for the basic functions of the applications. These
libraries are invoked by the application codes through a well-defined API
(Application Programming Interface) and serve applications the most frequently used
functions. One of the most famous samples is the Unix lib5 runtime environment for
C applications, which carries the basic functions such as file accessing and process
management. And there are different platform-dependent lib5 libraries on different
platforms, and they support the same functions. The Win32 runtime environment is
another sample for this set.

By the growing up of virtual machine techniques, virtual machine is adopted as a
part of the runtime environment, and provides a platform-independent running core
for applications; so that the applications may move from one platform to another
smoothly and quickly without modification. It can be called “VM based runtime
environment”. One of the most famous VM based runtime environment is java
runtime environment which is often called JRE. In JRE, a virtual machine named
JVM (Java Virtual Machine) is included, and interprets the java virtual codes for the
java applications. And at the same time, a set of java runtime libraries are included to
provide frequent functions such as iostream or url supports. The JRE supports
different platforms, and makes it possible to “build one, run anywhere”. The .Net
framework is also another sample of this kind of runtime environments.

Though the VM based runtime environment provides a platform-independent
environment for applications by a well-defined virtual machine and a set of support
libraries, it is still not enough for the applications today, especially for the resources
and applications in grid such as SIG. To develop, deploy and manage resources and
applications based on a VM based runtime environment is still a hard work. So, an
autonomic runtime environment which is able to self-configure, self-manage, self-
heal and self-optimize is needed for better development and execution of the
resources and applications.

In this paper, based on the techniques including web service, grid computing, and
spatial information grid, an autonomic runtime environment named SIGRE (Spatial

324 Z.C. Huang et al.

Information Grid Runtime Environment) is proposed and implemented for geo-
computation. Each SIG node carries out an instance of SIGRE, which provides the
basic running environment including the virtual machine, runtime libraries,
management and optimization components, monitoring and healing components, etc.
All SIGRE instances on the SIG nodes makeup an environment for the execution and
management of resources and applications in SIG, and provide the key functions
including resource discovering, data managing, service quality supporting, etc.

2 Architecture

There are two connotations of SIGRE: the SIGRE instance deployed on a SIG node,
which is called SIGRE instance; and the runtime environment built by all the SIGRE
instances on SIG nodes, which is called SIGRE platform. As viewed from the logical
architecture, SIGRE is built up by the following components: Java virtual machine
and runtime environment; general web server and servlet container; SIG resource and
job framework; SIG data infrastructure support; SIG resource registry and discovery;
SIG service and node monitor; SIG service quality control and management; and so
on. It is shown in Figure. 1.

SIGRE is founded
based on the following
components: JVM and
JRE [1], web server,
and servlet container
[2]; and they should be
downloaded and in-
stalled separately for
the sake of the user’s
free choice on them.
SIG resource and job
framework [3] provides
a basic job framework
and make it possible to
create, run, monitor,
and manage an SIG job
through web service
interface. Most of the SIG resources are implemented and provided as SIG jobs. With
the toolkits provided by SIGRE, it is very simple and easy to develop and deploy an
SIG job so that almost each user who knows a little of Java can share his resources by
develops and deploys new SIG jobs.

Besides the job framework, SIGRE provides some more components to make the
runtime environment more useful and autonomic. They are: SIG resource registry and
discovery service, SIG data infrastructure support, SIG service and node monitor
framework, SIG service quality control and management, etc. The components
provides a lot of basic functions for resources and applications, such as to collect and
distribute the information about services ad nodes, monitor the execution of resources

Web server and servlet container

SIG resource and job framework

SIG
resource

registry and
discovery

SIG data
infra-

structure
support

SIG service
quality

control and
management

Applications for geo-computation

JVM and JRE

SIG
service

and node
monitor

…

SIG resources

Fig. 1. Architecture of SIGRE

 SIGRE – An Autonomic Spatial Information Grid Runtime Environment 325

and nodes, index and discover SIG resources, and control and manage service quality
which can make SIG more friendly and autonomic.

3 The Autonomic Resource Distribution, Discovery and Matching

It is very important for users
and applications to find and
assemble the most suitable
resources. It depends on
several functions provided by
SIGRE: resource discovery,
service and node monitor,
service quality control and
management, etc. The figure 2
shows information flows for
the autonomic resource
distribution, discovery and
matching.

First of all, when the
resource are deployed on
nodes, (1) the static
information about the
resources such as its name,
usage and function will be
registered to the resource
registry and discovery service. (2) Then, when the resources and services are invoked
executed, the performance and status information about them will be probed and
collected by the SIG service and node monitor. (3) And the information organized and
analyzed by the SIG service and node monitor will be provided to the SIG resource
registry and discovery service for service discovery and matching. (4) Furthermore,
the quality and cost of SIG service may be different far away, users may care about
them. So, the SIG service quality control and management will collect the service
quality information from resources, users and applications, analyze them to get the
score, (5) and provide the score to the SIG resource registry and discovery component
so that the users and applications can find the most suitable and high quality resources
by the resource matching. (6) Finally, integrating the static and dynamic information
from SIG resources, service quality control and management component, service and
node monitor, and other parts of SIGRE, the SIG resource registry and discovery
service can discover and match the most suitable SIG resources for users and
applications request. (7)

Around the SIG resource registry and discovery service which is extended based
on the Distributed Grid Resource Registry Meta-Service [4] for geo-computation
users, SIG service and node monitor, SIG service quality control and management
component, and all the deployed SIG resources make up a closed loop. By the closed
loop, the static, history and real-time information about all SIG resources, node status,
service status, service quality, and so on, is collected, analyzed, and proceeded for the

Users and applications

resources resources
Resources

SIG resource
registry and
discovery

SIG service
and node
monitor

SIG service
quality control and

management

resources resources
Nodes

Fig. 2. Information flows for the autonomic
resource distribution, discovery and matching

(1)

(2)

(3)

(3)

(4)

(5)

(6)

(5)

(7)

326 Z.C. Huang et al.

resource matching. Then, the users and applications can find the resources needed: the
resource with the highest performance, the best quality, the lowest cost, the most
robust node, or the widest network bandwidth. With the distributed architecture of
SIG, the closed loop enables the SIGRE to self-configure, self-manage, self-heal, and
self-optimize in the resource discovery and matching.

For example, an application can find a data processing resource based on a super
computer which has at least 16 processors and 8GB memory, a data source which
provides Landset7 image through network with bandwidth at least 10Mbps, and a
WMS service to visualize the processing result. SIGRE and the resource discovery
service will search in the SIG resources by a well-defined p2p protocol and find the
available and most suitable resources for the application. What the application need
do only is to access the resources found and resolve problems for the end users.
SIGRE provides an autonomic run time environment for the SIG applications.

In the other hand, the development and distribution of resources is very simple,
too. Most of the SIG computation resources are implemented as SIG jobs which is
deployed in the SIG job framework and managed by the SIGRE. As soon as a java
class or a script file which implement the job and a job description file are deployed
in the job framework, a SIG job is deployed and can serve the users and applications.
And all information about the job will be collected, analyzed and used by the registry
and discovery service, the service quality control and management component and
other parts of SIGRE. SIGRE can configure and manage itself and resources based on
it. It provides an autonomic runtime environment in resource distribution, discovery
and matching for SIG resources and applications.

4 The Autonomic Data Infrastructure Based on SIGRE

Data sharing and distribution is another important usage for Spatial Information Grid.
And it plays the role of bridge between the data consumer and data supplier, and
brings spatial data on the finger of users. It is required for almost all the SIG
applications to search and access spatial data through a powerful and easy-to-use data
infrastructure. For the construction of SIG data infrastructure, a data sharing
framework for the support of data infrastructure is included in the SIGRE. Based on
it, a data distribution system is designed and implemented. [5] The data distribution
system is built up by data sources, data agencies, registry services in SIGRE, client
support libraries, and other components. Applications can query and access stored
data by a well-defined XML based extensible RSI-data source accessing language
through SOAP protocol which is platform-independent.

In the data infrastructure, each data provider is organized as a data source which
has a uniform service accessing point. The service accessing point is a web service
which is described by a WSDL [6] document and invoked through SOAP [7]
protocol. By invoking the web service in a well-defined XML based protocol; data
stored in the data node can be searched and accessed.

Although users and applications can search and download data from the data
sources directly, it is too deficient for the SIG based data infrastructure which is built
up by data nodes only to be an ideal data infrastructure for geo-computation. The third
layer – agency layer is the most important layer to make the data infrastructure

 SIGRE – An Autonomic Spatial Information Grid Runtime Environment 327

flexible, extensible, autonomic, and powerful. In this layer, there are a series of data
agencies with different goal and different functions serving for the users of the data
infrastructure. For instance, a “catalogue agency” may collects information from data
sources, generates a “catalogue” of data in the infrastructure, and provides a service
for users to find data with some given features in the “catalogue”. It is a “search
engine” like “google” in the data
infrastructure, and provides more
powerful functions for the data
infrastructure.

In order to make the design of data
infrastructure simple and neat, the data
agencies are required to adopt the same
protocol as the data sources. It is called
“eXtensible Data Accessing Language”,
shortly XDAL. Users can accomplish the
operation by invoking the web service
provided by data source or data agency,
passing the request in XDAL format to it,
and analyzing the response in XDAL
format for the result. Figure 3 is a sample
of searching data from satellite “Landset-
7” with a given acquirement date.

Comparing with the ordinary data
distribution system, the SIG based data
infrastructure can distribute data with
different types, different sources, and
different goals in a uniform interface
easily and flexibly. Furthermore, based
on the data infrastructure support of
SIGRE, a lot of “data agencies” will be
continuously deployed in the data
infrastructure and make the infrastructure
more flexible, extensible, autonomic, and
powerful.

5 Implementation, Test and
Future Works

Java language is often adopted by grid
implementation because of its platform-
independent, acceptable performance and
mass of open-source support. So, the
SIGRE is implemented based on the
famous SOAP support library Axis [8] by java language, too. For the sake of easy
deployment, the SIGRE implementation is distributed as a WAR package. It can be
deployed on most of the popular servlet container such as Apache Tomcat [9] and

1、client sends the request of searching an image
<query>
 <conditions relation=”AND”>

<condition op=”EQ”>
 <param>satellite</param>

<value>landset7</value>
</condition>
<condition op=”EQ”>

 <param>date</param>
 <value>2006-01-01</value>

</condition>
</conditions>
<orders>
<sortBy order=”ASC”>ID</sortBy>

</orders>
</query>
2、data source starts the operation, and returns a
operation ID
<response>
 <operationID>001235864631</operationID>
</response>
3、client gets the operation status
<getStatus>
 <operationID>001235864631</operationID>
</getStatus>
4、data source returns the operation status
<status>
 <operationID>001235864631</operationID>
<currentStatus>processing</currentStatus>
</status> <!-- processing -->
<status>
 <operationID>001235864631</operationID>
 <currentStatus>finished</currentStatus>
</status> <!-- finished -->
5、client gets the operation result
<getResult>
 <operationID>001235864631</operationID>
</getResult>
6．data source returns the operation result
<result>
 <operationID>001235864631</operationID>
 <resultSet>

<item>
 <id>0013256782</id>
 <spacecraft>Landset7</spacecraft>
 <senser>ETM+</senser>
 ……

</item>
……

<item>
 <id>0020165784</id>
 ……

</item>
 </resultSet>
</result>

Fig. 3. Sample of searching data

328 Z.C. Huang et al.

provide an autonomic runtime environment for
not only SIG applications but also SIG
resources. Based on the SIGRE, a SIG testbed
is constructed and deployed on Apache Tomcat
servlet container. The testbed integrates three
kinds of computing nodes (high performance
cluster, condor computing pool, and traditional
high-end server, totally more than 100
processors) for its computing infrastructure,
about ten data sources with more than 10TB
data for its data infrastructure, more than forty
algorithms for data processing models, several
WMS servers for data visualization, a web
based management and monitor user interface
for management, and so on. Figure 4 shows
some of the SIG testbed user interfaces.

The test on SIG testbed shows that SIGRE
can provide a powerful, easy-to-use, robust and
autonomic runtime environment for SIG,
developers can develop SIG resources and SIG
applications on SIGRE easily and quickly. For
example, based on the SIGRE data
infrastructure support component, a new data
source can be developed and deployed
successfully in one day at most, and to create a
new application based on SIGRE may take only
hours or less.

As a kind of application grid for geo-
computation context, Spatial Information Grid
needs a powerful and easy-to-use runtime
environment for its users and developers. In this
paper, based on the techniques including web
service, grid computing, and spatial information
grid, an autonomic runtime environment named
SIGRE is proposed and implemented for geo-
computation. Each SIG node carries out an
instance of SIGRE, which provides the basic
running environment including the java virtual
machine, runtime libraries, management and optimization components, monitoring
and healing components, etc. All SIGRE instances on the SIG nodes makeup an
environment for the execution and management of resources and applications in SIG,
and provide the key functions including resource discovering, data managing, service
quality supporting, etc. based on SIGRE, a SIG testbed is constructed and tested. The
test shows that SIGRE can provide a powerful, easy-to-use, robust and autonomic
runtime environment for SIG, and developers can develop SIG resources and SIG
applications on SIGRE easily and quickly.

(a) input data searching arguments

(b) data searching result

(c) processing algorithms integrated

Fig. 4. User interfaces of SIG testbed

 SIGRE – An Autonomic Spatial Information Grid Runtime Environment 329

But, the SIGRE can not make the SIG popular immediately and automatically. A
lot of useful and powerful applications are needed to respond the requirement of SIG
end users. It is very important for the survival and growth of SIG to provide mass of
applications for the users to resolve their problem.

The requirements of the end users are so various that it is difficult to respond them
by limited developed applications. The application development becomes the
bottleneck of SIG popularization. One way to ease the bottleneck is to develop and
deploy more and more powerful applications as soon as possible and as many as
possible so that the requirements of end users can be responded. It is the traditional
way and seems failed. There are two main reasons at least. First, if the application is
more powerful, it is more complex, more expensive, and more difficult to develop.
Second, the requirement of end user is always uncertain and unstable. It is too
difficult to develop a powerful application for the uncertain and unstable requirement
of a mass of end users with a low cost.

Another possible way to ease the bottleneck is to make the application
development easier so that more people, even all end users can develop applications
for themselves. Situational application will be a good choice. In SIG, situational
application is such an application that it is quickly created and deployed based on the
SIG infrastructure and SIG resources for a situational requirement by the end user. It
is often developed and deployed by a series of visual development toolkits. To make
the SIGRE support the development and deployment of situational applications will
be one of our most important future works to make the SIG more useful and popular.
Based on the SIGRE situational application support, users can create and deploy
situational applications for their requirements themselves. It will ease the application
development bottleneck of SIG and make SIG more powerful and popular.

References

1. Java Technology, http://java.sun.com
2. Java Servlet - Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Java_Servlet
3. Huang, Z.C., Li, G.: An SOA based On-Demand Computation Framework for Spatial

Information Processing. In: GCCW 2006. Fifth International Conference on Grid and
Cooperative Computing Workshops, Hunan, China, October 21-23, 2006, pp. 487–490
(2006)

4. Huang, Z.C., Du, B., Gu, L., He, C., Li, S.: Distributed Grid Resource Registry Meta-
Service: Design and Implementation. In: The 7th International Symposium on Autonomous
Decentralized Systems, Chengdu, China, April 4-6, 2005, pp. 531–535 (2005)

5. Huang, Z.C., Li, G.: SIG-DDS: A Grid-based Remote Sensing Data Distribution System.
In: SKG 2006. Second International Conference on Semantics, Knowledge, and Grid,
GuiLin, China, November 1-3, 2006, pp. 93–94 (2006)

6. Web Services Description Language (WSDL) 1.1: http://www.w3.org/TR/wsdl
7. SOAP: The fundamental message enveloping mechanism in Web services,

 http://www.w3.org/TR/SOAP
8. The Apache Software Foundation: Web Services - Axis, http://ws.apache.org/axis/
9. The Apache Software Foundation: Apache Tomcat, http://tomcat.apache.org/

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 330–339, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Flexible Job Scheduling System for Heterogeneous
Grids∗

Lan Cheng, Hai Jin, Li Qi, and Yongcai Tao

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn

Abstract. Job management is the most complicated and kernel component of
grid system. However, due to the dynamic, heterogeneous and dispersed nature
of grid environment, grid job submission and scheduling are always intractable
issues that needs to be addressed, especially across heterogeneous grids. In this
paper, a Flexible Job Scheduling System (FISS) is designed, which exploits and
extends JSDL to support the job submission with different QoS requirements
across heterogeneous grid platforms. Based on the extended JSDL, multiple
types of jobs are supported, including WS, WSRF, GRS. Moreover, it conduces
to the interoperation among heterogeneous grid systems. Experiments are car-
ried out and proven that FISS proposed in the paper can improve the efficiency
and utilization of grid system while satisfying users’ QoS requirements and
achieving the interoperability among heterogeneous grids.

1 Introduction

Grid computing is emerging as a novel infrastructure for the coordinated resource
sharing, problem-solving and services orchestration in dynamic, multi-institutional
Virtual Organizations (VOs) by integrating large-scale, distributed and heterogeneous
resources [1, 2]. Users, ranging from scientific communities, business communities to
general consumers, are utilizing grids to share, manage and process large data sets and
construct large-scale applications. Job scheduling is the most complicated and the
kernel component of a grid system. It accepts users’ job requests, and then interacts
with information center to select and invoke relevant services according to specific
QoS requirements and scheduling policy. Due to the dynamic, heterogeneous and
distributed nature of grid environment, grid job scheduling is confronted with signifi-
cant challenges such as security, quality of service, and lack of central control within
distributed virtual organizations.

In addition, with the rapid development of the grid, a wide variety of grid middle-
wares and grid systems have been developed in numerous research projects all over
the world, such as Globus Toolkits [3], CGSP [4], UNICORE [5], GOS [6]. Though

∗ This paper is supported by National Science Foundation of China under grant 90412010 and

China CNGI project under grant CNGI-04-15-7A.

 A Flexible Job Scheduling System for Heterogeneous Grids 331

developed based on the idea of OGSA which is the de facto standard of grid, most
grid systems have its own implementations for specific application. Hence, existing
grid systems differ from each other in management so that the interoperability among
them is poor. Recently, interoperability among heterogeneous grids is a hot research
point attracting more attentions, which can integrate more grid resources and elimi-
nate the grid resource island. However, to achieve interoperability among heterogene-
ous grids, some issues must be addressed such as security, information service, job
management, and data management. Because most of grid platforms are built for
specific applications, the types of jobs supported by each grid vary greatly. Even
though the jobs in different grid platforms provide similar functionality, the access
interface and types of parameters are different greatly, which bring new challenges to
grid job scheduling.

A grid job scheduling system must be able to provide uniform job submission in-
terface and support various types of jobs, shielding the heterogeneity of grids and
making grid systems look the same. There are already different languages to describe
and submit grid jobs, e.g. JDL of EGEE [7], Globus RSL [8]. However, these job
description languages are designed for particular projects and can not interoperate
each other.

In this paper, a Flexible Job Scheduling System (FISS) is designed, which exploits
and extends JSDL to support job submission of various types of jobs, such as WS,
WSRF, and GRS. Moreover, it conduces to the interoperability among heterogeneous
grid systems by adopting virtualization layer and plug-in technologies. Experiments
are carried out and experimental results prove that FISS proposed in the paper can
improve the efficiency and the utilization of a grid system while satisfying users’ QoS
requirements and achieving the interoperability among heterogeneous grids.

The rest of the paper is organized as follows. Section 2 reviews the related work.
We propose FISS in section 3. Section 4 introduces the components of FISS. The
experimental evaluation is presented in section 5. Finally, we conclude and give some
future work about our research in section 6.

2 Related Work

There are already different languages to describe grid jobs. Some of them are in-
cluded in large projects and adapt to the project requirements, such as Job Description
Language (JDL) for Enabling Grids for E-sciencE (EGEE), Globus Resource Specifi-
cation Language (RSL). The European Data Grid JDL is proposed in the context of
the European Data Grid Project and afterwards adopted by the EGEE project [10]. It
is based on the classed language and can be used as the language substrate of distrib-
uted frameworks. JDL allows specifying grid job attributes such as Job Type, Execu-
table, Arguments, Stdinput/Stdoutput. The Globus Resource Specification Language
(RSL) provides a common interchange language to describe resources and jobs. The
current version is RSL-2, namely, the Web Services versions (GT3 and GT4). RSL-2
is based on XML technology and allows specifying a more extended set of attributes
than its predecessor.

The above mentioned job description languages are designed for their own applica-
tions so that they are poor at interoperation. Since there are a lot of different

332 L. Cheng et al.

languages for describing grid jobs, OGF has presented the Job Submission Descrip-
tion Language (JSDL) to standardize the job submission language [11]. We believe
that the JSDL is a good solution but it has some deficiencies regarding the interopera-
bility issues among heterogeneous grids.

Due to the diverse failures and error conditions in grid environments, scheduling in
grid environment is an NP-complete problem, and many heuristics algorithms have
been proposed to obtain the optimal scheduling, such as Min-min, Max-min [9]. Ex-
isting grid job scheduling algorithms have some features in common, consisting of
two main phases. In the first phase, while receiving user’s job request, job manager
would interact with information center and the set of qualified service resources are
selected. In the second phase, job manager would choose the optimal resource from
the set of qualified resources according to specific scheduling algorithm while consid-
ering both user’s QoS requirements and system QoS features.

In this paper, JSDL is exploited and extended to support uniform job submission
across heterogeneous grid platforms. In addition, a novel job scheduling algorithm is
presented to optimize the job scheduling among different grid platforms.

3 FISS Architecture

In this paper, a Flexible Job Scheduling System (FISS) for heterogeneous grid inter-
operability is presented. FISS creates a virtual job management center to implement
job submission and scheduling among heterogeneous grid platforms. Figure 1 shows
the FISS architecture. It mainly comprises four components: JSDL parser, job waiting
queue, scheduler and plug-ins. In order to make FISS compatible with other grid sys-
tem, JSDL is adopted and extended as the job submission description language. JSDL
parser is used to parse the job’s JSDL document that users submitted. Furthermore, it
queues users’ job by adopting batch scheduling mode. Scheduler schedules the jobs
balancing trade-off between users’ QoS requirements and resource utilization. The
plug-ins is mainly used to bridge the virtual management center and other heteroge-
neous grids. The function of plug-ins includes converting the parameter types,
integrating the service information from various heterogeneous grids, mapping user
identity and data transferring.

4 FISS Implementation Techniques

In this section, the key components of FISS will be introduced and discussed.

4.1 JSDL Parser

Since there are various job submission languages for a variety of job management
systems, the main goal of JSDL is to standardize the job submission. It is used to
describe the requirements of computing-intensive jobs for submission to resources,
particularly in grid environments. JSDL language comprises a vocabulary and norma-
tive XML schema that facilitate the expression of those requirements as a set of XML
elements.

 A Flexible Job Scheduling System for Heterogeneous Grids 333

Fig. 1. FISS Architecture

The JSDL 1.0 elements fall into the following general categories: job identification
requirements, resource requirements, data requirements and extension.

<JobDescription>

 <JobDescription>

 <JobIdentification … />?

 <Application … />?

 <Resources … />?

 <DataStaging … />*

 </JobDescription>

 <xsd: any # # other>*

</JobDescription>

The JobIdentification element contains all elements that identify the job: JobName,
Description, JobAnnotation, and JobProject. If this element is not presented then its
value, including all of its sub-elements, is undefined. The Application element de-
scribes the application and its requirements. It contains the name of the application,
the version and a description. The Application element includes only the generic ele-
ments and more specific application definitions should be defined through specific
extensions (i.e. POSIX compliant normative extension). The Resources elements
describe the resource requirements of the job. The DataStaging element defines the
files that should be moved to the execution host (stage in) and the files that should be
moved from the execution host (stage out). Files are staged in before the job starts
executing and staged out after the job terminates. JSDL provides the overall structure

334 L. Cheng et al.

to define the submission requirements of jobs. This structure may be extended to best
fit more specialized needs.

JSDL works efficiently and flexibly for job submission in homogeneous grid sys-
tem, but poor in submitting across heterogeneous grid platforms. To solve this prob-
lem, we extend JSDL in FISS. JSDL provides two mechanisms for extension: using
attributes and using elements. In the paper, we extend JSDL based on adding new
elements.

<jsdl:PlatformSelection number=”***”>

<jsdl:Platform>

 <jsdl:Value> ***</jsdl:Value>

 <jsdl:URI> *** </jsdl:URI>

</jsdl:Platform>

<jsdl:Platform>

 ……

</jsdl:Platform>

</jsdl:PlatformSelection>

In the extension part of JSDL, the attribute number specifies the number of hetero-
geneous grid platforms onto which jobs are submitted. The element Platform de-
scribes the relative information of specified grid platform, including the platform’s
name, resource access URI, and so forth.

In order to complement JSDL to flexibly support various types of jobs, we add new
element in JSDL as follows.

<jsdl:SelectedServiceTypes>

<jsdl:Value> WS</jsdl:Value>

<jsdl:Value> WSRF</jsdl:Value>

<jsdl:Value> GRS</jsdl:Value>

</jsdl:Platform>

With JSDL, a user can specify the job information and QoS requirements. For the
extended JSDL, we design a JSDL parser, which parses the job JSDL description and
queues the job in different job waiting queues according to the QoS requirements.

4.2 Job Waiting Queue

In order to efficiently schedule jobs to resources belonging to different grid systems
with consideration of users’ QoS requirements and resource utilization, FISS exploits
batch scheduling mode, namely, only while the amount of jobs reach certain number
or after a certain time interval, is the scheduler triggered. Batch scheduling mode
improves system utilization while satisfying users’ QoS requirements.

 A Flexible Job Scheduling System for Heterogeneous Grids 335

4.3 Scheduler

Scheduler is one of the key components of FISS, and it is in charge of finding the
mapping between jobs and grid resources. Scheduler fetches the job from the job
waiting queue. Then, by adopting novel scheduling algorithm similar to Max-min and
Min-min algorithms, FISS interacts with virtual information center and selects the
optimal resources of grid platforms and makes scheduling decision. The rational is
that the completion time of jobs on each resource is first predicted, then like Min-min
algorithm, the job having the minimum estimated completion time (ECT) value is
chosen to be scheduled onto the resource on which job’s EST is minimal. Afterward,
similar to Max-min algorithm, the job having the maximum EST value is chosen to be
scheduled onto the resource on which job’s EST is maximal.

To predict the completion time of jobs, we adopt the following model:

ij ij ij ijEST WT +ET DT= + (1)

The model composes of three parts. WTij denotes the waiting time of job i at resource
j, namely, it must wait until all jobs in waiting queue are finished. ETij represents the
execution time of job. DTij denotes the data processing time in order to executing job,
including the time of fetching the input data and the one of outputting result data.

According to above rule, jobs are scheduled. The scheduling algorithm is shown in
Algorithm 1. The algorithm consists of three parts. First, the minimal ECT of jobs is
found. Then, Min-min and Max-min algorithms are alternately utilized to schedule
jobs. Meanwhile, according to job’s JSDL information, if the user specifies the desti-
nation scheduling platforms, job will be scheduled onto the resource of these grid
platforms respectively. On the contrary, if the user does not specify, job will be as-
signed to the optimal resource regardless of grid platforms.

Algorithm 1. FISS job scheduling algorithm

For each job i in waiting queue do

For each resource j do

 ECTij = CT (job i, resource j);

 MinECTij = Min (MinECTij, ECTij);

 Endfor

Endfor

flag = true;

While ∃job not scheduled in waiting queue do

 If (flag) {

For each job i do

 MinMinECTij = Min (MinMinECTij, MinECTij);

 Endfor

 For k=1 to JobJSDL.PlatformSelection.number do

336 L. Cheng et al.

 Platform[k].Resource j ←Job i; // ECT of
job i in resource j is minimum

 Endfor

 Resource j ← Job i;

flag = ! flag;

 }

 If (flag) {

 For each job i do

 MaxMinECTij = Max (MaxMinECTij, ECTij);

 Endfor

 For k=1 to JobJSDL.PlatformSelection.number do

 Platform[k].Resource j ← Job i; // ECT of
job i in resource j is minimum

 Endfor

 Resource j ← Job i;

 flag = ! flag;

 }

Endwhile

4.4 Plug-in

Plug-in plays an important role in FISS, which serves as a bridge between virtual grid
management center and heterogeneous grid platforms. The main function of plug-in is
to retrieve the information data from the information centers of heterogeneous grids
and translate the data to consistent data representation stored in virtual information
center. In addition, plug-in is responsible for converting the service accessing inter-
face and types of parameter and data transfer between heterogeneous grids. The intro-
duction of plug-in improves the scalability and extensibility of system.

5 Performance Evaluation

5.1 Experimental Environment Settings

We evaluate the validity and performance of FISS in a real heterogeneous grid envi-
ronment. The testbed includes six nodes, four are in Cluster and Grid Computing Lab
(CGCL), and two are in National Hydro Electric Energy Simulation Laboratory
(NHEESL). Grid nodes are respectively deployed by two heterogeneous grid systems:
CGSP [4] and VEGA [6], which are two different grid middleware in China. Their
configurations are shown in Table 1. We compare FISS with two common scheduling
algorithms First-fit and Min-min as follows:

 A Flexible Job Scheduling System for Heterogeneous Grids 337

 First-fit: It belongs to first-come first-service strategy, and schedules the ar-
rived job to the optimal resource according to the order of job arriving.

 Min-min: In Min-min mode, the job with the minimum estimated execution
time (EST) value is selected. Then it is scheduled to the resource on which the
EST value is minimal [12].

Table 1. Experimental Environment

 Nodes
Metric

Node 1 Node2 Node3 Node4 Node5 Node6

CPU P3
1GHz

P3
1GHz

P3
2GHz

P3
2GHz

IA 64
1.3GHz

IA64
1.3GHz

Memory 512MB 512MB 512MB 2GB 2GB 2GB
Grid system CGSP CGSP CGSP VEGA VEGA VEGA

Location CGCL CGCL CGCL CGCL NHEESL NHEESL

5.2 Experimental Results

We compare FISS with First-fit and Min-min while scheduling jobs across different
grid platforms in terms of success ratio of jobs and system throughput. We test three
types of applications in our grid environments, which are both computing-intensive
and data-intensive. One is gene sequence matching application (App.1). The second is
image processing application (App.2). The third is video conversion (App.3). In order
to validate the extended JSDL, we deploy App.1 with Web Service, App.2 with
WSRF and App.3 with GRS. 200 different types of jobs are respectively run at differ-
ent time interval.

Figure 2 shows the success ratio of three types of grid applications. We can con-
clude that FISS has the highest success ratio and First-fit has the lowest. It is because
that FISS considers the trade-off between large jobs and small jobs, avoiding the long
waiting of large jobs. First-fit does not belong to batch scheduling mode and can not
consider the QoS characteristics of both jobs and grid resources. Min-min may result
to that long jobs waiting too long time and finally fail.

Fig. 2. Success Ratio of Grid Applications

338 L. Cheng et al.

0

100

200

300

400

500

600

0 100 200 300 400 500 600

No. of jobs

T
h
r
o
u
g
h
p
u
t

FISS Min-min First-fit

Fig. 3. System Throughput

Figure 3 shows the system throughput of three different scheduling algorithms. It is
clear that with the number of submitted jobs increases, FISS is superior to both Min-
min and First-fit. This is because that FISS can efficiently utilize grid resources with
the increasing of submitted jobs.

6 Conclusions and Future Work

Grid computing is different from conventional distributed systems by integrating
large-scale resources which are mostly heterogeneous. Existing grid systems
are mostly developed for particular application and are poor in interoperation,
which results in new grid resource islands. In this paper, a Flexible Job Scheduling
System (FISS) is designed, which can provide efficient job submission and scheduling
across heterogeneous grids. In view of compatibility with other grids and enabling
integration of more grid platforms in the future, FISS exploits and extends current
widely-accepted standard, Job Submission Description Language (JSDL), for job
description. Considering the trade-off between users’ QoS requirement and system
utilization, FISS adopts novel scheduling algorithm. Experimental results prove that
FISS can achieve the interoperation among heterogeneous grids and meanwhile im-
prove the system utilization while satisfying users’ QoS requirement. As our future
work, we plan to perfect FISS and to validate its efficiency further.

References

1. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure,
2nd edn. Morgan Kaufmann, November (2003)

2. Hwang, S., Kesselman, C.: Grid Workflow: A Flexible Failure Handling Framework for
the Grid. In: HPDC 2003. Proceedings of 12th IEEE International Symposium on High
Performance Distributed Computing, Seattle, Washington, USA,, June 22-24, 2003, IEEE
Computer Society Press, Los Alamitos (2003)

 A Flexible Job Scheduling System for Heterogeneous Grids 339

3. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In: Jin, H.,
Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, pp. 2–13. Springer, Heidelberg
(2005)

4. ChinaGrid Support Platform, http://www.chinagrid.edu.cn/cgsp/
5. Erwin, D. (ed.): UNICORE Plus Final Report - Uniform Interface to Computing Resources.

The UNICORE Forum (2003) http://www.unicore.org/documents/UNICOREPlus-Final-
Report.pdf

6. Xu, Z., Li, W., Li, Z., Yu, H., Liu, D.: Vega grid: A computer systems approach to grid re-
search. In: Proceedings of the 2nd International Workshop on Grid and Cooperative Com-
puting, Shanghai, pp. 480–486 (2003)

7. Pacini, F.: Job Description Language How-to, http://server11.infn.it/workload-grid/ docs/
DataGrid-01-TEN-0102-0_2-Document.pdf

8. Globus Resource Specification Language RSL v.1.0. http:// www-fp.globus.org/ gram/
rsl_spec1.html

9. Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Mellor-Crummey, J., Liu, B., Johnsson,
L.: Scheduling strategies for mapping application workflows onto the grid. In: Proceedings
of Fourteenth IEEE International Symposium on High Performance Distributed Comput-
ing (HPDC-14), North Carolina, USA, July 24-27, 2005, pp. 125–134. IEEE Computer
Society, Los Alamitos (2005)

10. Enabling Grids for E-sciencE (EGEE) Web Site, http://public.eu-egee.org/
11. GGF JSDL Working Group Web Site, https://forge.gridforum.org/projects/jsdl-wg/
12. He, X., Sun, X., von Laszewski, G.: QoS guided min-min heuristic for grid task scheduling.

Journal of Computer Science and Technology 18(4), 442–451 (2003)

n-Cube Model for Cluster Computing and Its

Evaluation

Tian Song, Dongsheng Wang, Meizhi Hu, and Yibo Xue

Tsinghua University, Beijing, 100084, P.R.China
{songt02,hmq02}@mails.tsinghua.edu.cn

Abstract. Cluster systems are widely used in modern high performance
computing. With the rapidly increasing of parallel algorithms, it is an
open problem to analyze and evaluate whether they take good advan-
tage of the computing and network resources of clusters.[1−3] We present
a novel mathematic model(n-Cube Model for Cluster Computing) that
epitomizes the algorithms commonly used on clusters and evaluate this
model using Stochastic Petri Nets (SPN). The state space of our model’s
SPN is also discussed formally. Finally, we take MM5(the Fifth-
Generation Model) as a case and the comparative performance analy-
sis shows the immense vitality of the model.

1 Introduction

Clusters in a local network with high-speed interconnections are more and more
popular in modern high performance computing. They have such properties as
obtaining high performance at a low price and good scalability. It is available
and economical to solve large scientific and engineering problems on clusters.

With many applications move to clusters, it is an open problem to analyze and
evaluate whether the parallel algorithms take good advantage of the computing
and networking resources of clusters.[1−3] The performances of most algorithms
are traditionally evaluated through simulation instead of theoretic analysis since
they emphasize on implementation.[1][3] With the actual case that many algo-
rithms on clusters use the same essence of topology, some models suitable to
theoretic analysis and evaluation have been presented nowadays.[2]

In this paper, we present a novel mathematic model that epitomizes the algo-
rithms commonly used on clusters, in which each peer exchanges mass data with
and only with all its logic neighbors and deals with computing respectively. We
construct a mathematical model based on n-Cube whose structure is good for
theoretic analysis and evaluation. We name this model n-Cube Model for Clus-
ter Computing(nCMCC). The main feature of this model is to gain the maximal
parallelism by regulating the communication. And the model has the same topol-
ogy essence with most cluster algorithms. Therefore, the analysis and evaluation
of its performance correspondingly make sense to the actual applications.

The rest of the paper is organized as follows. In section 2, the definition of our
n-Cube Model for Cluster Computing(nCMCC) is presented and some properties

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 340–351, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

n-Cube Model for Cluster Computing and Its Evaluation 341

of it are also discussed. In section 3, we give the method to construct Stochastic
Petri Nets from the nCMCC in theory. And in section 4, we take MM5(the Fifth-
Generation Model)[10−12] as an application example and evaluate its performance
using Stochastic Petri Nets. Finally, conclusions are given in section 5.

2 n-Cube Model for Cluster Computing

n-cube is a hypercube with n dimensions and 2n nodes. Every node in the n-
cube is exactly connected with another n nodes. This kind of structure can be
used to describe a kind of algorithms on clusters, in which each node exchanges
mass data with the same number of logic neighbors and deals with the data.
The algorithms usually include communication and computing. Since computing
is done respectively by nodes, we mainly emphasize on the modeling of the
communication process. We name this kind of model n-Cube Model for Cluster
Computing (nCMCC), since it is based on n-cube structure.

Definition 1. The nodes of the cluster is represented by the point of the n-cube
and the communication path is represented by the edge of the n-cube. We define
this model as a set of {Va, Vb, E, R } where
– V a

⋃
V b is the set of n-cube nodes, V a

⋂
V b = φ, the node rule gives the

details on how to sort all the nodes into Va and Vb;
– E = (V a × V b)

⋃
(V b × V a), its members are the edges of the n-cube, which

represent the possible communication paths of the nodes in clusters.
– R is the set of communication rules of the nodes in clusters. Detail information

see the communication rule.

Node rule: This rule gives details on how to sort all nodes into Va and Vb.
– Establish a n-dimension coordinate space using the edges of n-cube and then

code all the nodes with the format (b1b2· · ·bn), where bi is a binary number.

Fig. 1. Example of n-Cube Model for Cluster Computing, where n=4

342 T. Song et al.

– Va = {(b1b2· · ·bn) | (b1⊕b2⊕· · ·⊕bn) = 0 }, Vb = {(b1b2· · ·bn) | (b1⊕b2⊕· · ·⊕bn)
= 1 }. That is, ∀node(b1b2· · ·bn), if there are even number of 0 in{b1,b2,· · ·,bn},
then the node belongs to Va; on the contrary,if there are odd number of 0, it
belongs to Vb. (⊕ is a XOR operation.)

Communication rule: This rule gives a mathematical description of the com-
munication between the nodes on clusters.
– The communication happens only between the nodes of Va and the nodes of

Vb. The nodes of the same set can’t communicate with each other.
– At the beginning, Va receive data from Vb. After this stage is over, Va change

to send data and Vb begin to receive. While all these data exchanging is
finished, the communication phrase is over and the nodes begin to compute
the answers respectively.

– No matter receiving and sending data, the orderliness of the communication is
the same. As for node (b1b2· · ·bn)∈ V a, i∈{1,2,· · ·,n}, the ith communication
is between this node and the node (b1b2· · ·b̄i· · ·bn). (b̄i is the complementary
of bi)
The n-Cube, whose nodes are labelled by binary numbers, is called Boolean

n-Cube, which is a tool for the theoretic research of interconnection networks for
multiprocessor systems.[13−15] The theory of Boolean n-Cube can further expend
the nCMCC in many aspects[13] . Figure 1 gives a 4-Cube Cluster Algorithm
Model for example.

Theorem 1. Suppose the communication traffic to each node on clusters is the
same, the nCMCC can gain the maximal parallelism during the communication.

Proof. Since the communication exists between two nodes and the communica-
tion traffic to each node is the same, the most parallelism means that all the
nodes communicate with one another without waiting. As for nCMCC, if the
communication process is a one-to-one(conformal) mapping between Va and Vb
at one step, we can proof the maximal parallelism.

According to the communication rule of definition 1, the ith communication is
between (b1b2 · · · bi · · · bn) and the node (b1b2 · · · b̄i · · · bn). For ∀(b1b2 · · · bi · · · bn)
∈ Va, there is only one corresponding node(b1b2 · · · b̄i · · · bn) in Vb. For any
(b1b2 · · · b̄i · · · bn) ∈ Vb, there is also only one corresponding node (b1b2 · · · bi · · · bn)
in Va. Thus the communication rule is a one-to-one mapping between Va and Vb.
Therefore the nCMCC can gain the maximal parallelism while the nodes commu-
nicate with each other.

The nCMCC has many better properties for analysis and evaluation than the
algorithms only for implementation. First of all, nCMCC can be accurately ex-
pressed. Binary encoding is exactly appropriate to represent the nodes in the
n-cube structure since there are only two scales in every dimension. As long as
the directions are determined, only one coding is qualified to every node. Ac-
cording to the communication rule described previously, it is very simple for one
node to determinately know which one and how to be communicated next time.
Thus the model is practical for both analysis and implementation.

n-Cube Model for Cluster Computing and Its Evaluation 343

Secondly the nCMCC has a very considerable feasibility and scalability. When
the number of logic nodes increases, that is, when n increases, it is expected that
nearly nothing needs to modify in the model.

The nCMCC can gain the maximal parallelism when the communication traf-
fic to each node on clusters is the same. In nCMCC, the communications of
2n−1 pairs can be dealt with synchronously. This is the best case all parallel
algorithms go in for while dealing with the communication. That is to say, this
model can be a theoretic representation of all the algorithms pursuing the max-
imal parallelism.

3 Evaluation Using Stochastic Petri Nets

Stochastic Petri Nets(SPN) is a useful mathematical tool to represent and an-
alyze complex systems with interdependent components.[4−9] It has many good
properties such as concurrency, nondeterminacy, asynchronization, capacity to
depict and analyze distributed systems and so on.

A Stochastic Petri Net (SPN) model associates with each transaction an ex-
ponential firing time.[8] This feature allows SPN an isomorphism with Markov
chain and distinguishes from a normal Petri Net. In this paper we suppose the
reader has some knowledge with SPN.

3.1 SPN Construction

nCMCC is a novel mathematic model for parallel computing. Based on n-cube,
this model has a good structure for expression, definition and theory research.
However n-cube model has some limitations to deal with time parameter and
hard to represent dynamic transitions. Since SPN has many advantages in deal-
ing with dynamic activities, it is chosen to be applied to analyze and evaluate
our model.

Definition 2. A Stochastic Petri Net can be constructed from nCMCC. With
the exponential time parameters, nCMCC SPN = {S, T; F, W, M0, n, λ}, where

– S = {p0, p1, . . ., pΩ} is the set of places, Ω = (2n + 1)2n. Every node of the
nCMCC corresponds (2n+1) places, in which 2n places are used for commu-
nication and 1 place for computing. p0 is an additional place representing
the end state of execution.

– T is the set of transitions, which represents the communication activities and
computing activities.

– F = (S×T)
⋃

(T×S), its members are described by arcs in the graphic.
– W:F−→N+, for f ∈ F, W(f) = 1, this is the weight function of arcs. N is

the set of numbers.
– M0:S−→N, for ∀s∈S, M0(s) = 0;
– n is the dimension of nCMCC.
– λ = {λm, λc} is the set of expected firing rates. λc is the expected firing rate

of computing transition and λm is the expected firing rate of communication
transition.

344 T. Song et al.

Fig. 2. Example of a 2-Cube Cluster Algorithm Model and its SPN

We take 2CMCC for example. 2CMCC is based on the 2-dimension cube, which
has 4 nodes that can be coded as (00), (01), (10), (11). According to the node rule
of definition 1, the 4 nodes are divided into Va = {a1(00), a2(11)} and Vb =
{b1(01), b2(10)}. Based on communication rule of definition 1 and definition
2 , we can construct the 2CMCC SPN. Figure 2 gives the detail of the graphic.

3.2 Some Utility Formulas

Stochastic Petri nets (SPN) are good tools for the performance evaluation. Since
the nCMCC has been mathematically defined and the corresponding SPN can be
easily constructed, we continue to analyze and evaluate the model’s performance
using SPN theory.

The MC of a given SPN can be automatic generated from the SPN.[5] We
assume the number of states in the constructed MC is Ω (The value of Ω can
be found in the definition 2.) and the state set of the MC is {Mi, i = 1,2, , Ω}.
According to our nCMCC and the SPN theory, we can conclude the following
formulas.

For nCMCC SPN = {S, T; F, W, M0, n, λ}, ∀ pi ∈ S, ∀ j ∈ N, P{M(pi) = j}
represents the probability of j tokens in place pi, we can conclude the function
of probability density

P{M(pi) = j} =
∑

k

P{Mk} (1)

Where, P{Mk} is the probability of steady state for Mk in Markov chain.
For ∀ pi ∈ S, ūi denotes the expected number of tokens in a reachable place

pi, when the state is steady. Thus

ūi =
∑

j

j × P{M(pi) = j} (2)

n-Cube Model for Cluster Computing and Its Evaluation 345

To nCMCC SPN, the expected number of tokens is the summation of the
expected number of tokens for every place, tabbed with N , thus

N =
∑

pi∈S

ūi (3)

Average number of tokens is a very useful parameter for evaluating the perfor-
mance of a model. We will give detail explanation later.

Based on Little Formula and principle of Balance, we can conclude the ex-
pected delay time of a subsystem. The result of T is important not only in
evaluating the run time of nCMCC, but also to algorithms on clusters. Suppose
our nCMCC is a subsystem, we can result the following formula.

Given T is the expected delay time of SPN, λ is the expected coming rate,
thus

T = N/λ (4)

Based on the probability of steady state in Markov chain, we can result many
other performance targets in the theory of SPN. Other performance targets
can be found in [5−9]. And the nCCAM SPN can be converted to Generalized
Stochastic Petri Nets(GSPN) and Stochastic high-level Petri Nets(SHLPN) as
needed.

3.3 The State Space of Markov Chain

According to the SPN model constructed above, the state space exponentially
increases along with the increasing of n. How to reduce the explosion of the state
space is a research problem in the theory of SPN, which is beyond our discussion.

Here we present a way to reduce the state space for special dimensions. This
method is depended on the rules of nCMCC, not a general method used in the
theory of SPN. Other methods based on GSPN and SHLPN are the future work
of our research group.

Theorem 2. Given a nCMCC and suppose the communication traffic to each
node on clusters is the same, ai∈Va, if āi∈Va, the behaviors of ai and āi are the
same.

Proof. Assume ai = (x1x2· · ·xn), āi=(x̄1x̄2· · ·x̄n), where xi and x̄i are binary
numbers. For ∀ai and āi ∈ Va, there are no communication between ai and
āi. According to the communication rule of definition 1. At the ith (i <=n
) communication period, the objects of ai and āi are (x1x2· · ·x̄i· · ·xn) and
(x̄1x̄2· · ·xi· · ·x̄n) respectively, which are complementary bit by bit. Since the
communication traffic to each node on clusters is the same, it is reasonable to
say every communication process costs the same time. That is, every pair of
nodes with complementary coding begin and finish the communication at the
same time. So we can say the behaviors of ai and āi are the same.

Taking 4CMCC as an example, we can find four pairs of complementary nodes
in Va. Based on theorem 2, the behaviors of these pairs of nodes are the same.

346 T. Song et al.

Fig. 3. SPN of 4CMCC after reducing state space. It acts as a subnet in the dashed
line.

Thus, it is obvious that Va can be divided into two parts, which behave the
same. This is the way to reduce the state space for this circumstance. Figure 3
gives the a sub SPN for 4CMCC, which is isomorphic with the whole SPN.

4 Case Study

The PSU/NCAR mesoscale model (known as MM5) is a limited-area, nonhydro-
static, terrain-following sigma-coordinate model designed to simulate or predict
mesoscale atmospheric circulation.[10−12] The model is supported by several pre-
and post-processing programs, which are referred to collectively as the MM5
modeling system. The core algorithm of MM5 is implemented using parallelism
computing and mass data exchanging.[10] Currently, most of MM5 implementa-
tion are based on the cluster system.

Evaluating the performance of MM5 algorithm on cluster systems is not only
a research problem but meaningful for practical usage. Traditional method is to
add some functions for evaluation to the implemental software and gather the
statistics of running time. The method needs plenty of time but can’t evaluate
the algorithm’s performance from the model perspective.

The core algorithm of MM5 can be considered as iterative operating on sev-
eral small rectangles which are evenly partitioned from the whole domain. The
implemental algorithm for cluster system dispatches neighbor rectangles to logi-
cal neighbor nodes in the cluster. It is just the kind of algorithms which nCMCC
aims at. MM5 model can be implemented using our communication model of any
dimension. The main difference is how to dispatch the raw data and reclaim the
results among computers, which won’t influence the essence of the algorithm. In

n-Cube Model for Cluster Computing and Its Evaluation 347

this section we will analyze 4CMCC and its SPN to further evaluate the per-
formance from the theory essence, which also makes sense to the algorithm of
MM5.

4.1 Construction of 4CMCC and Its SPN

In a 4-cube, the nodes are encoded from 0000 to 1111 according to the node rule
of definition 1. Figure 1 gives the graphic description of this 4CMCC.

According to the analysis of last section, we know that there is a better way to
construct the SPN for reducing the explosion of state space. Using this method
of reducing the state space, the Stochastic Petri Net constructed from 4CMCC
is shown as a subnet in figure 3, which can be represented as {S, T; F, W, M0,
4, λ}.
– S’ = {p0, p1, · · ·, p72};
– T’ is the set of transitions which are denoted in figure 3;
– F are described by arcs in figure 3;
– The weight function of arcs is constant. W(f) = 1;
– for pi∈S, M0(pi) = 0;
– λ = {λm, λc}. λc and λm are the expected firing rates of computing transition

and communication transition respectively.
Due to the application of MM5, the whole SPN has more transitions and

places. Here, the representation of 4CMCC is a subnet to the whole SPN. λp

and λf are the expected firing rates of dispatching and reclaiming transitions
respectively.

4.2 Analysis and Results

In cluster systems, communication and computing time depends on many factors
such as the bandwidth, the topology, the software algorithms, the computing
capacity, the number of the nodes and so on. These factors can be classified into
two kinds. One is the application specific(such as the amount of data needed to
exchange) and the other is hardware specific.

Suppose the bandwidth and the computing capacity of cluster systems are
denoted by Bw and Pf . The application’s communication cost and computation
cost are denoted by N(σ) and C(σ), where σ is the data scale of an application.
To a certain application, N(σ) and C(σ) are the functions of data scale, which
is the reasonable circumstance. In our analysis, we assume λp = λf = 0.01 (in
figure 3), and λm as a proportional function of Bw/N(σ), λc as a proportional
function of Pf /C(σ). That is:

λm = k1 × Bw/N(σ) (5)

λc = k2 × Pf /C(σ) (6)

there, k1 and k2 are considered as the constant parameters.
We take the software of spnp-GUI downloaded from the Duke University as

our simulation tool in this section. It can output the expected toke number of

348 T. Song et al.

10
0

10
1

10
2

10
3

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16 Expected Delay Time VS.

Expected Firing Rate of Communication Transition

log(N(σ))

T

Fig. 4. Trade-off between computing capacity of nodes and the bandwidth

a given place in steady-state, the utilization for a given transition in steady-
state, and so on. They are referred when computing the expected delay time of
a sub-SPN.

According to the equations (5)(6), we can get

Bw × Pf =
N(σ) × C(σ)

k1 × k2
× (λm × λc) (7)

Since the network bandwidth and computing capacity of nodes on clusters are
the most important two factors that determine the performance of the system,
we can reasonably consider Bw× Pf as a measurement of the whole cluster
systems. In equation (7), if N(σ)×C(σ)

k1×k2
is a fixed value, λm × λc can reflect the

cluster’s whole performance too.
Given λm×λc=100, the simulation result is showed in Figure 4. It implies that

when the cluster’s whole performance remains the same, the expected execution
time of a given application decreases first and then increases with the bandwidth
decreasing. It can be interpreted as following. When the computing capacity of
nodes is relative slow to the bandwidth, the execution time is determined by the
computing capacity of nodes. But with the increasing of the computing capacity,
the bandwidth becomes the bottleneck finally. Based on our nCMCC, we can
find the best trade-off between computing capacity of nodes and the bandwidth.

In figure 5, λm remains the same while λc increases. The expected delay time
decreases distinctly at the first, but when it arrives a specific level, it decreases
so lightly that we can take the level as the approximate final value. That is
to say, given an application, when the bandwidth of the cluster remains the
same, improving the computing capacity of nodes can decrease the execution
time considerably until the network bandwidth becomes the bottleneck. Based
on our nCMCC, we can find the modest computing capacity of nodes to a certain
bandwidth.

n-Cube Model for Cluster Computing and Its Evaluation 349

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

4.5 Expected Delay Time VS.

Expected Firing Rate of Computing Transition

λ
c

T

λ
m

 = 0.25

Fig. 5. The modest computing capacity of nodes to a certain bandwidth

10
0

10
1

10
2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
T

log(N(σ))

Bw : Pf = 1 : 100

10
0

10
1

10
2

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16
T

log(N(σ))

Bw : Pf = 1 : 1

10
0

10
1

10
2

1

1.5

2

2.5
T

log(N(σ))

Bw : Pf = 100 : 1

Fig. 6. Different partitions of the data exchanging and computing to three different
systems

There may be several different algorithms to accomplish an application on the
clusters. With the same essence of the algorithm, different partitions of the data
exchanging and computing may lead to different communication and computing
traffic, that is, different N(σ) and C(σ). It’s reasonable to consider the product of
N(σ) and C(σ) as a representation to an application. To a certain cluster system,
a good algorithm has a partition consistent with the hardware specific factors. In
figure 6, we try to find a theoretic law of partitions between the data exchanging
and computing. Given three different proportions of Bw and Pf , the delay time
of the system may lead to different results along with the changing of N(σ). The
product of N(σ) and C(σ) is assumed to a fixed value of 50.

From figure 6, we can conclude that: when the algorithm leads to more com-
munication than computing, the choice of a cluster with higher bandwidth than
computing capacity of nodes is better. On the contrary, clusters with higher
computing capacity than bandwidth have better performance when the comput-
ing is more than communication. Using our nCMCC, the kind of results can be
shown easily and the quantitative results can be concluded.

350 T. Song et al.

From the last experiments, we get the similar conclusions with the traditional
simulation. It shows that the model is correct and viable. Further more, com-
pared with traditional method, some useful quantitative results can be evaluated
more easily with the aid of SPN.

5 Conclusion and Future Work

It is an open problem to analyze and evaluate whether parallel algorithms take
good advantage of the computing and networking resources of the clusters.[1−3]

In this paper, we present a novel mathematic model nCMCC out of algorithms
commonly used on clusters, referring to the same topology essence of mostly
parallel algorithms.

This research is a contribution to the emerging area of performance evaluation
of clusters. A SPN model of 4CMCC is built for MM5, and the performance of
algorithms on different clusters is analyzed through three sets of experiments. It
comes to a conclusion that good algorithms should base on the specific cluster’s
configuration to make best use of the cluster’s resources. So the configuration
of the network bandwidth and process frequency must be taken into account
carefully.

Based on nCMCC, we can evaluate an algorithm’s performance on the cluster
with SPN easily. Further study for nCMCC will be processed using Stochastic
High-Level Petri Nets(SHLPN) due to the exponential increasing state space of
nCMCC’s SPN.

References

1. Koibuchi, M., Watanabe, K., Kono, K., Jouraku, A., Amano, H.: Performance
evaluation of routing algorithms in RHiNET-2 cluster. In: Cluster Computing.
Proceedings 2003 IEEE International Conference, pp. 395–402 (2003)

2. Bessonov, O., Fougere, D., Roux, B.: Using a parallel cfd code for evaluation of
clusters and MPPs. In: Parallel and Distributed Processing Symposium, Proceed-
ings 2003 International, pp. 65–72 (2003)

3. Nguyen, K.N., Le, T.T.: Evaluation and comparison performance of various MPI
implementations on an OSCAR linux cluster. In: Information Technology: Cod-
ing and Computing [Computers and Communications]. Proceedings. ITCC 2003
International Conference, pp. 310–314 (2003)

4. Xu, K., Fan, X.-b., Lin, C., Wu, J.-p.: Performance model and analysis of a dis-
tributed router. In: Communications, Circuits and Systems. IEEE 2002 Interna-
tional Conference, vol. 1, pp. 786–790 (2002)

5. Lin, C.: Performance evaluation of the computer network and computer system.
Tsinghua University Press (2001)

6. Lin, C., Marinescu, D.C.: Stochastic high-level Petri nets and applications. IEEE
Transactions on Computers 37(7), 815–825 (1988)

7. Lin, C., Qu, Y., Ren, F., Marinescu, D.C.: Performance Equivalent Analysis of
Workflow Systems Based on Stochastic Petri Net Models. In: Proceedings of the
First International Conference on Engineering and Deployment of Cooperative
Information Systems (2002)

n-Cube Model for Cluster Computing and Its Evaluation 351

8. Molloy, M.K.: Performance Analysis Using Stochastic Petri Nets. IEEE Trans.
Comp. C-39(9), 913–917 (1982)

9. Lopez-Benitez, N.: Dependability analysis of distributed computing systems using
stochastic Petri nets. Reliable Distributed Systems, pp. 85 - 92 (1992)

10. Grell, G.A., Dudhia, J., Stauffer, D.R.: A Description of the Fifth-Generation
Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note NCAR/TN-
398+STR, (June 1994)

11. Michalakes, J: The same source parallel MM5. In: Proceedings Second International
Workshop on Software Engineering and Code Design in Parallel Meteorological and
Oceanographic Applications 1998, Greenbelt, MD, USA.

12. MM5 Homepage, http://www.mmm.ucar.edu/mm5/mm5-home.html
13. Ming-Yun, H.: Analysis of Boolean N-cube interconnection networks for multipro-

cessor systems. Doctoral Dissertation
14. Almeida, V.A.F., Dowdy, L.W., Leuze, M.R.: An analytic model for parallel Gaus-

sian elimination on a binary N-Cube architecture. In: Proceedings of the third
conference on Hypercube concurrent computers and applications, pp. 1550 - 1553
(1989)

15. Yang, C.S., Wang, J.F., Lee, J.Y., Boesch, F.T.: Graphic Theoretic Reliability
Analysis for the Boolean n cube networks. IEEE Transactions on circuits and
systems 35(9), 1175–1179 (1988)

http://www.mmm.ucar.edu/mm5/mm5-home.html

An Algorithm to Find Optimal Double-Loop

Networks with Non-unit Steps

Xiaoping Dai1, Jianqin Zhou1, and Kaihou Wang2,�

1 Department of Computer Science, Anhui University of Technology
Ma’anshan, 243002 China

2 Department of Mathematics, Shijiazhuang University of Economics
Shijiazhuang, 050031 China

xpdai@ahut.edu.cn, zhou9@yahoo.com,
khwang@sjzue.edu.cn

Abstract. A double-loop network(DLN) G(N ; r, s) is a digraph with
the vertex set V = {0, 1, . . . , N − 1} and the edge set E = {v → v + r(
mod N) and v → v+s(mod N)|v ∈ V }. Let D(N ; r, s) be the diameter
of G, D(N) = min{D(N ; r, s)|1 ≤ r < s < N and gcd(N ; r, s) = 1} and
D1(N) = min{D(N ; 1, s)|1 < s < N}. Although the identity D(N) =
D1(N) holds for infinite values of N , there are also another infinite set
of integers with D(N) < D1(N). These other integral values of N are
called non-unit step integers or nus integers. Xu and Aguiló et al. gave
some infinite families of 0-tight nus integers with D1(N) − D(N) ≥ 1.

In this work, an algorithm is derived for finding nus integers. The run-
ning time complexity of the proposed algorithm is O(k2)O(N1/4 log N).
It is verified by computer that the algorithm works extremely well. A new
approach is also proposed for finding infinite families of nus integers. As
an example, we present an infinite family of of 0-tight nus integers with
D1(N) − D(N) = 4.

Keywords: Double-loop network, tight optimal, L-shaped tile, non-unit
step integer, algorithm.

1 Introduction

Double-loop digraphs G = G(N ; r, s), with 1 ≤ r < s < N and gcd(N ; r, s) = 1},
have the vertex set V = {0, 1, . . . , N − 1} and the adjacencies are defined by
v → v+r(mod N) and v → v+s(mod N) for v ∈ V . These kinds of digraphs
have been widely studied as architectures for local area networks, known as
double-loop networks (DLN). For surveys about these networks, refer to [3,7].

From the metric point of view, the minimization of the diameter of G corre-
sponds to a faster transmission of messages in the network. The diameter of G is
denoted by D(N ; r, s). As G is vertex symmetric, its diameter can be computed
from the expression max{d(0; i)|i ∈ V }, where d(u; v) is the distance from u to

� The research was supported by Chinese Natural Science Foundation (No. 60473142).

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 352–361, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Algorithm to Find Optimal Double-Loop Networks with Non-unit Steps 353

v in G. For a fixed integer N > 0, the optimal value of the diameter is denoted
by

D(N) = min{D(N ; r, s)|1 ≤ r < s < N and gcd(N ; r, s) = 1}

Several works studied the minimization of the diameter (for a fixed N) with
r = 1. Let us denote

D1(N) = min{D(N ; 1, s)|1 < s < N}

Since the work of Wong and Coppersmith [10], a sharp lower bound is known
for D1(N):

D1(N) ≥ �
√

3N � − 2 = lb(N)

Fiol et al. in [8] showed that lb(N) is also a sharp lower bound for D(N). A
given DLN G(N ; r, s) is called k-tight if D(N ; r, s) = lb(N)+k(k ≥ 0). A k-tight
DLN is called optimal if D(N) = lb(N) + k(k ≥ 0), hence integer N is called
k-tight optimal. The 0-tight DLN are known as tight ones and they are also
optimal. A given DLN G(N ; 1, s) is called k-tight if D(N ; 1, s) = lb(N)+ k(k ≥
0). A k-tight DLN is called optimal if D1(N) = lb(N) + k(k ≥ 0).

The metrical properties of G(N ; r, s) are fully contained in its related L-
shaped tile L(N ; l, h, x, y), where N = lh − xy, l > y and h ≥ x. In Figure 1, we
illustrate generic dimensions of an L-shaped tile.

l
′

∗

0

∗

l

h

y

x

h
′

N = lh − xy

Fig. 1. Generic dimensions of an L-shaped tile

Let D(L) = D(L(N ; l, h, x, y)) = max{l + h − x − 2, l + h − y − 2}. For
obvious reasons, the value D(L) is called the diameter of the tile L. It is known
that an L-shaped tile L(N ; l, h, x, y) can be assigned to a G(N ; r, s) without any
confusion. However, we can not find double-loop network G(N ; r, s) from some
L-shaped tiles. When an L-shaped tile L(N ; l, h, x, y) has diameter lb(N) + k,
we say it is k-tight.

Xu [11] presented three infinite families of 0-tight nus integers with D1(N) −
D(N) ≥ 1. Aguiló et al. [2] derived a method for finding infinite families of nus
integers and then presented some infinite families of 0-tight nus integers with
D1(N) − D(N) ≥ 1. It is known that finding infinite families of nus integers
with D1(N) − D(N) ≥ k is a difficult task as the value k increases.

354 X. Dai, J. Zhou, and K. Wang

The remaining of this paper will be organized as follows. Some lemmas, which
will be used throughout this paper, are introduced in Section 2. In section 3, we
propose a simple and efficient algorithm to search an L-shaped tile L(N ; l, h, x, y)
with diameter �

√
3N � − 2 + k in the order k = 0, 1, 2, · · · . Our algorithm is

based on some theorems of Li and Xu[9,11,12]. The running time complexity
of our algorithm is O(k2)O(N1/4 log N). Based on the algorithm to search L-
shaped tiles, we give an algorithm for finding nus integers. The running time
complexity of the algorithm is also O(k2)O(N1/4 log N). Experiments show that
the algorithm is fast and easy to realize. In section 4, an approach is derived to
construct infinite families of nus integers. Finally, section 5 presents an infinite
family of 0-tight nus integers with D1(N) − D(N) = 4.

2 Preliminary

The following Lemma 1, 2, 3 and 4 can be found in [6 or 8 or 9].

Lemma 1[6,9]. Let t be a nonnegative integer. We define I1(t) = [3t2+1, 3t2+2t],
I2(t) = [3t2 + 2t + 1, 3t2 + 4t + 1] and I3(t) = [3t2 + 4t + 2, 3(t + 1)2]. Then we

have [4, 3T 2 + 6T + 3] =
T⋃

t=1

3⋃
i=1

Ii(t), where T > 1, and lb(N) = 3t + i − 2 if

N ∈ Ii(t) for i = 1, 2, 3.

Lemma 2[8,11]. Let L(N ; l, h, x, y) be an L-shaped tile, N = lh − xy. Then
(a) There exists G(N ; 1, s) realizing the L-shaped tile iff l > y , h ≥ x and
gcd(h, y) = 1, where s ≡ αl − β(l − x)(mod N) for some integral values α and
β satisfying αy + β(h − y) = 1.
(b) There exists G(N ; s1, s2) realizing the L-shaped tile iff l > y , h ≥ x and
gcd(l, h, x, y) = 1, where s1 ≡ αh + βy(mod N) , s2 ≡ αx + βl(mod N) for
some integral values α and β satisfying gcd(N, s1, s2) = 1.

Lemma 3[9]. Let L(N ; l, h, x, y) be an L-shaped tile, N = lh − xy. Then
(a) If L(N ; l, h, x, y) is realizable, then |y − x| <

√
N ;

(b) If x > 0 and |y − x| <
√

N , then

D(L(N ; l, h, x, y)) ≥
√

3N − 3
4 (y − x)2 + 1

2 |y − x| − 2 ;

(c) Let f(z) =
√

3N − 3
4z2 + 1

2z . Then f(z) is strictly increasing when

0 ≤ z ≤
√

N .

Lemma 4[9]. Let N(t) = 3t2 + At + B ∈ Ii(t) and L be the L-shaped tile
L(N(t); l, h, x, y), where A and B are integral values; l = 2t + a, h = 2t + b,
z = |y−x|, a, b, x, y are all integral polynomials of variable t, and j = i+k(k ≥ 0).
Then L is k-tight iff the following identity holds,

(a + b − j)(a + b − j + z) − ab + (A + z − 2j)t + B = 0. (1)

An Algorithm to Find Optimal Double-Loop Networks with Non-unit Steps 355

The following Lemma 5 is the generalization of Theorem 2 in [12], and can be
found in [13].

Lemma 5[13]. Let H(z, j) = (2j − z)2 − 3[j(j − z)+ (A + z − 2j)t + B], and the
identity (1) be an equation of a and b. A necessary condition for the equation
(1) to have integral solution is that 4H(z, j) = s2 + 3m2, where s and m are
integers.

Proof. Suppose that the equation (1) of variable a and b has an integral solution
and rewrite it as the following,

a2 + (b − 2j + z)a + b2 − (2j − z)b + c = 0
where c = j(j − z)+ (A+ z−2j)t+B. Thus, there exists an integer m such that

(b − 2j + z)2 − 4[b2 − (2j − z)b + c] = m2

Rewrite it as an equation of variable b,
3b2 − 2(2j − z)b + 4c + m2 − (2j − z)2 = 0
Thus, there exists an integer n such that
4(2j − z)2 − 12[4c + m2 − (2j − z)2] = n2

This implies that n is even. Let n = 2s.
We have 4(2j − z)2 − 12c = s2 + 3m2, hence 4H(z, j) = s2 + 3m2.
We have this lemma.
�

It is easy to show that the following Lemma 6 is equivalent to Theorem 1 in [12].
Lemma 6 can be found in [13].

Lemma 6[13]. Let n, s and m be integers, n = s2 +3m2. If n has a prime factor
p, where p ≡ 2(mod 3), then there exists an even integer q, such that n is
divisible by pq, but not divisible by pq+1.

Lemma 7[13]. Let N = N(t) = 3t2 + At + B ∈ Ii(t) and the L-shaped tile
L(N ; l, h, x, y) be k-tight(k ≥ 0) and realizable. Let z = |y − x|. Then the
following hold,

Case 1. If A = 0 or A = 2(if i = 2) or A = 4(if i = 3), and
3N − 3

4 (2k + 3)2 > (3t + A−1
2)2, then 0 ≤ z ≤ 2k + 2.

Case 2. If A = 1 or A = 3 or A = 5, and
3N − 3

4 (2k + 2)2 > (3t + A−1
2)2, then 0 ≤ z ≤ 2k + 1.

Case 3. If A = 2(if i = 1) or A = 4(if i = 2) or A = 6, and
3N − 3

4 (2k + 1)2 > (3t + A−1
2)2, then 0 ≤ z ≤ 2k.

Proof. We only prove Case 1. The others are similar.
Let L(N ; l, h, x, y) be k-tight. Then D(L) = 3t + i − 2 + k.
Note that i = A/2 + 1, by Lemma 3, if z ≥ 2k + 3, we have

D(L(N ; l, h, x, y)) ≥
√

3N(t) − 3
4 (2k + 3)2 + 2k+3

2 − 2
> (3t + A−1

2) + 2k+3
2 − 2

= 3t + i − 2 + k
= lb(N) + k.

356 X. Dai, J. Zhou, and K. Wang

Therefore, all k-tight L-shaped tile L(N ; l, h, x, y) must satisfy 0 ≤ z ≤ 2k +
2, z = |y − x|.

We have this lemma.
�
Here we must note that the conditions of Lemma 7 are satisfied by almost all
k-tight optimal and realizable L-shaped tile L(N(t); l, h, x, y). If an L-shaped
tile L(N(t); l, h, x, y) does not satisfy the condition in Case 3. That is,

3N(t) − 3
4 (2k + 1)2 ≤ (3t + A−1

2)2

Hence,
3(t + B) ≤ 3

4 (2k + 1)2 + (A−1
2)2.

We may let A1 = A − 1 and B1 = B + t. Then this is Case 2(i = A+1
2) and

probably the following holds,
3(t + B1) > 3

4 (2k + 2)2 + (A1−1
2)2.

This is equivalent to the condition in Case 2.
Otherwise, we may let A2 = A1 − 1 = A − 2 and B2 = B1 + t = B + 2t. Then

this is Case 1(i = A
2 + 1) and probably the following holds,

3(t + B2) > 3
4 (2k + 3)2 + (A2−1

2)2.
This is equivalent to the condition in Case 1, to which there is no counter

example up to now.

3 An Algorithm to Find nus Integers

Based on computer search, we know that,
The first N with 3-tight optimal double loop digraph is 3316 = 3×332+33+16.
The first N with 4-tight optimal double loop digraph is 53749 = 3 × 1332 +

5 × 133 + 17.
The first N with 5-tight optimal double loop digraph is 417289 = 3 × 3722 +

5 × 372 + 277.
The first N with 6-tight optimal double loop digraph is 7243747 = 3×15532+

5 × 1553 + 555.
The first N with 7-tight optimal double loop digraph is 81190689 = 3×52022+

5202 + 3075.
Observe the above search results, we know that

Theorem 1. For N ≤ 108, if N with k-tight optimal double loop digraph, then
k < log10 N .

We continue to consider the case 1 of Lemma 7. The others are similar.
For N(t) = 3t2+At+B ∈ Ii(t), 3N(t)− 3

4 (2k+3)2 > (3t+ A−1
2)2 is equivalent

to that 3t + 3B > 3
4 (2k + 3)2 + 1

4 (A − 1)2.
For 33 ≤ t < 372, then k ≤ 4.
Given A = 0, 2, 4, then 3

4 (2k + 3)2 + 1
4 (A − 1)2 < 3

4 (2 × 4 + 3)2 + 1
4 × 32 =

93 < 3 × 33 + 3 ≤ 3t + 3B.
Consider t = O(N1/2), t increases much faster than k2 does, therefore,
3t + 3B > 3

4 (2k + 3)2 + 1
4 (A − 1)2 holds for 33 ≤ t ≤ 6000 and A = 0, 2, 4.

For t < 33, we can directly verify that 0 ≤ z ≤ 2k + 2 holds. Based on
Theorem 1, we have the following conclusion.

An Algorithm to Find Optimal Double-Loop Networks with Non-unit Steps 357

Theorem 2. For N ≤ 108, let N(t) = 3t2+At+B ∈ Ii(t), where t = �
√

N/3 �−
1, A = �(N − 3t2)/t, B = N − 3t2 − At ≥ 0. If D(N) = lb(N) + k(k ≥ 0) and
L-shaped tile L(N ; l, h, x, y) is k-tight, z = |y − x|, then the following holds,

Case 1. If A = 0 or A = 2(i = 2) or A = 4(i = 3), then 0 ≤ z ≤ 2k + 2;
Case 2. If A = 1 or A = 3 or A = 5, then 0 ≤ z ≤ 2k + 1;
Case 3. If A = 2(i = 1) or A = 4(i = 2) or A = 6, then 0 ≤ z ≤ 2k.
The numerical computations and the results of Coppersmith reported in [5]

suggest that the order of k might be as low as O(log1/4 N). Therefore, Theorem
1 and Theorem 2 might be also true for N > 108.

We can now describe our algorithm to search nus integers based on Theorem 2.

Algorithm 1. To check whether N is a nus integer.
Step 1. Given N, calculate: t = �

√
N/3 � − 1; A = �(N − 3t2)/t; B = N −

(3t2+At) ≥ 0; lb(N) = �
√

3N �−2; i = lb(N)−3t+2; k = 0; flag = 0, f lag1 = 0.
Case 1. If A = 0 or A = 2(i = 2) or A = 4(i = 3), then z0 = 2;
Case 2. If A = 1 or A = 3 or A = 5, then z0 = 1;
Case 3. If A = 2(i = 1) or A = 4(i = 2) or A = 6, then z0 = 0.
Step 2. Given k, then for 0 ≤ z ≤ 2k + z0, look for k-tight tile L(l, h, x, y) in

the following order:
Loop: while(TRUE)

j = i + k;
Loop: for(z = 0; z < 2k + z0 + 1; z = z + 1)

If the equation (a+ b− j)(a+ b− j + z)− ab+(A+ z − 2j)t+B = 0
has integral solution (a, b), and
if(gcd(2t + a, 2t + b, t + a + b − j, t + a + b − j + z) == 1)
Begin

flag=1;
if (gcd(2t+a, t+a+b−j) = 1 or gcd(2t+a, t+a+b−j+z) = 1
or gcd(2t+b, t+a+b−j) = 1 or gcd(2t+b, t+a+b−j+z) = 1)
then flag1=1 and break these two loops.

End
End
If flag=1, then break the while loop.
k = k + 1;

End
Step 3.There exists a k-tight(optimal) digraph G(N ; r, s). If flag1=0, then

N is a nus integer; and if flag1=1, then N is not a nus integer. The algorithm
ends.

If D(N) = lb(N) + k(k ≥ 0), then there exists k-tight L-shaped tiles , from
Lemma 4 and Lemma 2, equation (1) has integral solution (a, b), such that
L(N ; l, h, x, y) can be realized by G(N ; r, s), where l = 2t + a, h = 2t + b, x =
t + a + b − j, y = t + a + b − j + z, and gcd(l, h, x, y) = 1. From Theorem 2, it
is only need to search k-tight L-shaped tiles for 0 ≤ z ≤ 2k + z0, where z0 is
obtained from A and i.

358 X. Dai, J. Zhou, and K. Wang

If N is a nus integer, from Lemma 2, then gcd(l, x) > 1, gcd(l, y) > 1,
gcd(h, x) > 1 and gcd(h, y) > 1, where l = 2t + a, h = 2t + b, x = t + a +
b − j, y = t + a + b − j + z, for any integral solution (a, b) of equation (1) with
k = D(N) − lb(N), 0 ≤ z ≤ 2k + z0. Therefore, Algorithm 1 is correct.

For the equation: (a + b − j)(a + b − j + z) − ab + (A + z − 2j)t + B = 0. It
can be rewritten as the following,

a2 + b2

2
+ (

a + b√
2

+
−2j + z√

2
)2 =

(−2j + z)2√
2

+ j(z − j) + (2j − z − A)t − B

Note that j = i + k, and 0 ≤ z ≤ 2k + 2, hence b2 ≤ 2[2j2 + j(k + 2 − i) +
(2j − A)t − B].

To solve the equation, we only need to check whether the quadratic equation
(a+b−j)(a+b−j+z)−ab+(A+z−2j)t+B = 0 relating a has integral solution,
where integral b ∈ [−b0, b0], b0 = 21/2[2j2 + j(k + 2 − i) + (2j − A)t − B]1/2.

Note that t = O(N1/2), B = O(N1/2), hence b = O(N1/4), so the computing
cost for searching integral pair (a, b) is O(k2)O(N1/4).

Next we have to check that gcd(2t+a, 2t+b, t+a+b− j, t+a+b− j+z) = 1.
It is well known that the order of the Euclidean algorithm to compute such a
gcd is O(log N). Therefore, the computing cost for checking whether N is a nus
integer is O(k2)O(N1/4 log N).

2814 (found by computer search [2]) is the first nus integer which is related
to 1-tight optimal digraph. With our algorithm, we have found that,

9306759 is a nus integer with D1(N) − D(N) = 4,
539084 is the first nus integer which is related to 2-tight optimal digraph, and
36186111 is the first nus integer which is related to 3-tight optimal digraph.

4 An Approach to Generate Infinite Families of nus
Integers

We now describe our approach to generate infinite families of nus integers.
Step 1. Find an integer N0 , such that G(N0; s1, s2) is k-tight optimal (k ≥ 0),

and D(N0) < D1(N0).
Step 2. Find a polynomial N(t) = 3t2 + At + B, such that N(t0) = N0 and

N(t) ∈ Ii(t),1 ≤ i ≤ 3.
Step 3. For any H(z, j), i ≤ j ≤ k, 0 ≤ z ≤ 2k + z0, where if A = 0 or

A = 2(i = 2) or A = 4(i = 3), then z0 = 2; if A = 1 or A = 3 or A = 5,then
z0 = 1; if A = 2(i = 1) or A = 4(i = 2) or A = 6, then z0 = 0.

Case 1. If 4H(z, j) does not have the form of s2 + 3m2 , where s and m
are integers. From Lemma 6, when t = t0, 4H(z, j) has a prime factor p ≡ 2(
mod 3), and there exists an even integer q, such that 4H(z, j) is divisible by
pq−1 , but not divisible by pq. Suppose we have got the following factors:

pq1
1 , pq2

2 , . . . , pql

l .
Let g0 = lcm(pq1

1 , pq2
2 , . . . , pql

l).

An Algorithm to Find Optimal Double-Loop Networks with Non-unit Steps 359

Case 2. If j = k, A + z − 2j = 0, and 4H(z, j) has the form of s2 + 3m2

, where s and m are integers. For any integral solution (a, b) of the equation:
(a + b − j)(a + b − j + z) − ab + (A + z − 2j)t + B = 0.

Let l(t) = 2t + a = 2(t − t0) + l0, h(t) = 2t + b = 2(t − t0) + h0, x(t) =
t + a + b − j(or y(t) + z) = (t − t0) + x0, y(t) = x(t) + z (or (t + a + b − j) =
(t− t0)+y0. From Lemma 1, as L(N ; l, h, x, y) can not be realized by G(N ; 1, s),
hence gcd(h0, y0) > 1, so there exists a prime factor p of gcd(h0, y0). Suppose
we have got the following prime factors:

p1, p2, . . . , pr.
Let g1 = lcm(p1, p2, . . . , pr).
Step 4. Suppose {G(N(t); s1(t), s2(t)) : t = g2e + t0, e ≥ 0} is an infinite

family of k-tight DLN(not necessarily optimal), then {N(t) : t = ge+ t0, e ≥ 0},
where g = lcm(g0, g1, g2), is an infinite family of k-tight nus integers.

From Step 3, we know that our method can only deal with a part of nus
integers.

5 An Application Example

We now apply our approach to generate an infinite family of nus integers.

Example 1. Take N(t) = 3t2 + 2t − 126, and N(1761) = 9306759.
For D(9306759; 7, 5269) = lb(9306759) = 5282, then G(N ; 7, 5269) is 0-tight

optimal.
On the other side, for D(9306759; 1, 161420) = 5286 = lb(N) + 4, and it

is checked by computer that D1(9306759) = D(9306759; 1, 161420) = 5286, so
9306759 is a nus integer with D1(N) − D(N) = 4. In fact, the following proof
will show that D1(9306759) ≥ 5286.

For A = 2, B = −126, j = 1, z = 0, then A + z − 2j = 0, so the equation (1)
becomes

(a + b − 1)(a + b − 1) − ab − 126 = 0,
which has integral solutions:

S = {(−9, −2), (−9, 13), (−2, −9), (−2, 13), (13,−9), (13, −2)}.
For (−9, −2), gcd(h, y) = gcd(2t + b, t + a + b − j) = gcd(2t − 2, t − 12) = 11

if t ≡ 1(mod 11).
For (−9, 13), gcd(h, y) = gcd(2t + 13, t + 3) = 7 if t ≡ 4(mod 7).
For (−2, −9), gcd(h, y) = gcd(2t − 9, t − 12) = 3 if t ≡ 0(mod 3).
For (−2, 13), gcd(h, y) = gcd(2t + 13, t + 10) = 7 if t ≡ 4(mod 7).
For (13, −9), gcd(h, y) = gcd(2t − 9, t + 3) = 3 if t ≡ 0(mod 3).
For (13, −2), gcd(h, y) = gcd(2t − 2, t + 10) = 11 if t ≡ 1(mod 11).
By Lemma 2(a) and consider the symmetry of L-shaped tile, for t = 3 × 7 ×

11 × e + 1761(e ≥ 0), there is no G(N ; 1, s) realizing the 0-tight L-shaped tile
L(N(t); l, h, x, y) where y = x.

Some L-shaped tiles can not be realized by G(N ; 1, s), but can be realized by
G(N ; s1, s2).

360 X. Dai, J. Zhou, and K. Wang

Take j = 1, z = 0, (a, b) = (−2, 13) ∈ S, let l = 2t + a, h = 2t + b,
x = t + a + b − j, y = x, α = −1, β = 2, s1 ≡ αh + βy(mod N) = 7,
s2 ≡ αx+βl(mod N) = 3t−14. Then for t = 7e+1761(e ≥ 0), gcd(l, h, x, y) =
gcd(2t − 2, 2t + 13, t + 10, t + 10) = 1 and gcd(N, s1, s2) = 1.

Hence, {G(N(t); s1, s2) : t = 7e + 1761, e ≥ 0} is an infinite family of 0-tight
DLN .

For 2 ≤ j ≤ 4, 0 ≤ z ≤ 2(j − 1), t = 1761, H(z, j) has the following factors:
H(0, 2) = 10948 = 17 × 644, where the power of 17 is 1.
H(1, 2) = 5664 = 32 × 177, where the power of 2 is 5.
H(2, 2) = 382 = 2 × 191, where the power of 2 is 1.
H(0, 3) = 21519 = 797 × 27, where the power of 797 is 1.
H(1, 3) = 16234 = 2 × 8117, where the power of 2 is 1.
H(2, 3) = 10951 = 47 × 233, where the power of 47 is 1.
H(3, 3) = 5670 = 2 × 2835, where the power of 2 is 1.
H(4, 3) = 391 = 17 × 23, where the power of 17 is 1.
H(0, 4) = 32092 = 71 × 452, where the power of 71 is 1.
H(1, 4) = 26806 = 2 × 13403, where the power of 2 is 1.
H(2, 4) = 21522 = 2 × 10761, where the power of 2 is 1.
H(3, 4) = 16240 = 5 × 3248, where the power of 5 is 1.
H(4, 4) = 10960 = 5 × 2192, where the power of 5 is 1.
H(5, 4) = 5682 = 2 × 2841, where the power of 2 is 1.
H(6, 4) = 406 = 2 × 203, where the power of 2 is 1.
Let g0 = 26×52×172×472×712×7972, and t = 3×7×11×g0×e+1761(e ≥ 0).
For t ≥ 1761, A = 2, B = −126, 0 ≤ k ≤ 3, we know that 3N(t)− 3

4 (2k+1)2 >

(3t+ A−1
2)2 is equivalent to 3t+3B > 3

4 (2k+3)2+ 1
4 (A−1)2, which is true. From

Lemma 7, if L-shaped tile L(N ; l, h, x, y) is k-tight, z = |y −x|, then 0 ≤ z ≤ 2k.
We know that there is no 0-tight L-shaped tile L(N ; l, h, x, y), |y −x| = 0, which
can be realized by G(N ; 1, s), for t = 3 × 7 × 11 × g0 × e + 1761(e ≥ 0).

For 1 ≤ k ≤ 3(2 ≤ j ≤ 4), 0 ≤ z = |y − x| ≤ 2k, by Lemma 6, H(z, j) does not
have the form of s2+3m2. ByLemma 5, the equation (1) has no integral solutions of
a and b. By Lemma 4, there is no k-tight L-shaped tile L(N(t); l, h, x, y) for (z, j).

As a conclusion, the nodes N(t) = 3t2+2t−126, t = 3×7×11×g0×e+1761(e ≥
0), of an infinite family of 0-tight optimal DLN correspond to nus integers with
D1(N) − D(N) ≥ 4.

We now derive further an infinite family of 0-tight optimal DLN correspond-
ing to nus integers with D1(N) − D(N) = 4.

It is easy to obtain that l = 3612, h = 3517, x = 1841, y = 1845 from 4-tight
optimal DLN G(9306759; 1, 161420). For t = 1761, we have a = 90, b = −5, z =
4. As j = 1 + 4A = 2, B = −126, A + z − 2j = −4, let a = 90, b = 4f − 5.

From the equation (1), we have t = 4f2 − 74f + 1761. Let
l(f) = 2t + a = 8f2 − 148f + 3612,
h(f) = 2t + b = 8f2 − 144f + 3517,
x(f) = t + a + b − j = 4f2 − 70f + 1841,
y(f) = x(t) + z = 4f − 70f + 1845,
l′(f) = l(f) − x(f) = 4f2 − 78f + 1771,

An Algorithm to Find Optimal Double-Loop Networks with Non-unit Steps 361

h′(f) = h(f) − y(f) = 4f2 − 74f + 1672.
It is easy to verify that gcd(y(f), h′(f)) = 1 for f = 49419g, and there exit

α(g) = 34289gf − 63422g + 29 and β(g) = −34289gf + 59994g − 32, such that
α(g)y(f) + β(g)h′(f) = 1.

Note that t − 1761 = f(4f − 74), 49419 = 17 × 3 × 969, and if (32 × 17)|g,
then (3 × 64 × 172)|f(7f − 66).

It follows that N(t) is not k-tight(0 ≤ k ≤ 3) optimal, where N(t) = 3t2 +
2t − 126, t = 4f2 − 74f + 1761, f = 49419g, g = 7 × 11 × 32 × 52 × 17 × 472 ×
712 × 7972e, e ≥ 0.

By Lemma 2(a), we conclude that G(N(t); 1, s(g)) is 4-tight optimal DLN
corresponding to nus integers with D1(N) − D(N) = 4, where

N(t) = 3t2 + 2t − 126, t = 4f2 − 74f + 1761,
s(g) = α(g)l(f) − β(g)l′(f),
l′(f) = l(f) − x(f) = 4f2 − 78f + 1771,
α(g) = 34289gf − 63422g + 29,
β(g) = −34289gf + 59994g − 32,
f = 49419g, g = 7 × 11 × 32 × 52 × 17 × 472 × 712 × 7972e, e ≥ 0.
Suppose e = 0, then f = g = 0, t = 1761, N(1761) = 9306759, s(0) = 29 ×

3612+32× 1771 = 161420. Thus, G(N(1761); 1, s(0)) is a 4-tight optimal DLN
corresponding to a nus integer with D1(N) − D(N) = 4.

References

1. Aguiló, F., Fiol, M.A.: An efficient algorithm to find optimal double loop networks.
Discrete Mathematics 138, 15–29 (1995)

2. Aguiló, F., Simó, E., Zaragozá, M.: Optimal double-loop networks with non-unit
steps. The Electronic Journal of Combinatorics 10, �R2(2003)

3. Bermond, J.-C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: a
survey. J. Parallel Distribut. Comput. 24, 2–10 (1995)

4. Chan, C.F., Chen, C., Hong, Z.X.: A simple algorithm to find the steps of double-
loop networks. Discrete Applied Mathematics 121, 61–72 (2002)

5. Erdös, P., Hsu, D.F.: Distributed loop networks with minimum transmission delay.
Theoret. Comput. Sci. 100, 223–241 (1992)

6. Esqué, P., Aguiló, F., Fiol, M.A.: Double commutative-step digraphs with mini-
mum diameters. Discrete Mathematics 114, 147–157 (1993)

7. Hwang, F.K.: A complementary survey on double-loop networks. Theoret. Comput.
Sci. 263, 211–229 (2001)

8. Fiol, M.A., Yebra, J.L.A., Alegre, I., Valero, M.: A discrete optimization problem
in local networks and data alignment. IEEE Trans. Comput. C-36, 702–713 (1987)

9. Li, Q., Xu, J., Zhang, Z.: The infinite families of optimal double loop networks.
Discrete Applied Mathematics 46, 179–183 (1993)

10. Wong, C.K., Coppersmith, D.: A combinatorial problem related to multimode
memory organizations. J. Ass. Comput. Mach. 21, 392–402 (1974)

11. Xu, J.: Designing of optimal double loop networks. Science in China, Series E E-
42(5), 462–469 (1999)

12. Xu, J., Liu, Q.: An infinite family of 4-tight optimal double loop networks. Science
in China, Series A A-46(1), 139–143 (2003)

13. Zhou, J., Xu, X.: On infinite families of optimal double-loop networks with non-unit
steps, Ars Combinatoria (accepted)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 362–371, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Self-adaptive Adjustment on Bandwidth in
Application-Layer Multicast∗

Jianqun Cui1,2, Yanxiang He2, and Libing Wu2

1 Department of Computer Science, Huazhong Normal University, Wuhan, 430079, China
2 School of Computer, Wuhan University, Wuhan, 430072, China

jqcui@126.com,{yxhe,wu}@whu.edu.cn

Abstract. Traditionally, most ALM researches have been focusing on the
connectivity among the hosts by addressing how messages are routed from one
source to all the other group members. In fact lots of applications require a
certain target bandwidth to provide fluent service. Some ALM protocols
consider the bandwidth as one of the metrics when constructing the overlay. But
these mechanisms just can guarantee the initial performance of ALM trees. The
quality of the multicast service may be unavailable when conditions are
changed. In this paper, a self-adaptive adjustment on bandwidth (SAB)
mechanism is introduced to ensure certain bandwidths for certain applications
during the whole ALM service phase. The main idea of our mechanism is to
relieve the burden of parent nodes from overload before the congestion occurs.
The bandwidth monitor and the tree adjustment algorithms are used to
implement the mechanism. Simulation results show that the SAB mechanism
can get higher performance than normal ALM protocols (such as TAG) in the
unstable environment.

1 Introduction

IP Multicast [1] is the most efficient way to perform group data distribution, as it
eliminates the traffic redundancy and improves the bandwidth utilization on the
network. But today’s Internet service providers are still reluctant to provide a wide-
area multicast routing service due to some reasons such as forwarding state
scalability, full router dependence and so on [2]. In order to overcome current
limitations in IP multicast, application-layer multicast (ALM) has been proposed,
where the group members form an overlay network and data packets are relayed from
one member to another via unicast.

Traditionally, most ALM researches [3, 4, 5, 6, 7, 8] have been focusing on the
connectivity among the hosts by addressing how messages are routed from one source
to all the other group members. In fact lots of applications (such as network video
meetings, live TV programs) require a certain target bandwidth to provide fluent
service. Some ALM protocols [9,10,11] consider the bandwidth as one of the metrics

∗ Supported by the Important Research Plan of National Natural Science Foundation of China

(No. 90104005).

 Self-adaptive Adjustment on Bandwidth in Application-Layer Multicast 363

when constructing the overlay. But these mechanisms just can guarantee the initial
performance of ALM trees and ignore the unstable status of networks. The quality of
multicast service may be unavailable when conditions are changed. Too many
children being added to one parent node, network congestion or host over loading
may lead the multicast application out of service in some nodes. The video streaming
will be broken or frozen in these nodes. If the application-layer multicast mechanism
can adjust the multicast tree structure ahead to balance the bandwidth of whole tree,
the block situation will be avoided.

We present a self-adaptive adjustment mechanism on bandwidth (SAB) to ensure
certain bandwidths for certain applications. Each group member keeps a bandwidth
monitor to probe current bandwidth. The monitor computes bandwidth rank based on
collected results and the bandwidth rank decides the out degree of multicast nodes.
The SAB mechanism can move redundant children to other nodes if necessary to
acquire enough bandwidth which can support the multicast application.

The paper is structured as follows. Section 2 provides an overview of related work
and section 3 introduces the proposed self-adaptive adjustment mechanism.
Performance of the mechanism is verified by simulation in section 4. Finally, we
conclude the paper with a summary of conclusion and future work.

2 Related Work

Many application-layer multicast solutions have been put forward with their
respective strengths and weaknesses [12]. More and more researchers take the
bandwidth into account when building the overlay for the QoS of multicast
application. TAG [10,11] uses the network topology information to construct an
overlay network with low delay penalty and a limited number of identical packets.
Bandwidth is also considered in tree construction as a secondary metric. TAG can
meet the requirement of short physical link and certain bandwidth. FAT [9] scheme
provides a method to build a high-bandwidth overlay tree on top of the inferred
underlay. The experiment results shows FAT can achieve higher bandwidth than
Narada [12] and Overcast [12]. Yang Zhong etc. proposed a proxy-based single
source ALM protocol ProBass [13] which targets media streaming applications,
where out degree constraint and end-to-end distance are two metrics. Out degree
reflects the maximum bandwidth each node can provide.

All of solutions introduced above consider the bandwidth as one of the metrics to
construct the overlay network. But they never check bandwidth changes when the
multicast tree keeps relative stable (no nodes to join or leave). It means the number of
children will not be decreased even if the parent has not enough bandwidth to support
the application. Just when the children think the parent has left the tree, these children
will join to other parents. In fact, the parent may not leave the tree and just can not
afford so many children. So the wrong cognizance will lead more children to rejoin
the tree and the parent will waste its bandwidth. To solve these problems, we propose
a self-adaptive adjustment on bandwidth (SAB) mechanism that can adjust the
number of children automatically based on the measured bandwidth.

364 J. Cui, Y. He, and L. Wu

3 Self-adaptive Adjustment on Bandwidth

The main idea of our SAB mechanism is to relieve the burden of the parent node from
overload before the congestion occurs. Member join algorithms of most ALM
protocols take the factor of the bandwidth into account. For example, choosing node
with maximum bandwidth as new member’s parent or limiting the out degree of a
parent node is an efficient way to construct the overlay network. But members may
have different available bandwidths during the whole phase of the multicast
application for some reasons. So it is necessary to monitor and adjust the available
bandwidth to adapt the change of the environment.

3.1 Bandwidth Rank and Out Degree

We classify the available bandwidth of multicast members into several ranks. For
simplicity, we define the rank of node i as follows:

)/(BrBaIntR ii = (1)

Here, Bai denotes the available bandwidth of the node i. Br is the minimum required
bandwidth of the multicast application. Function Int(x) returns the whole number part
of the number x without rounding. For example, assuming Bai is 2.5 Mbps and Br is
300 Kbps, the bandwidth rank of the node i will be 8. We use the bandwidth rank to
limit the out degree of a multicast member. If the bandwidth rank of the node i is n, it
means the node can add n more children into the multicast tree. So the bandwidth
rank of a fully loaded node should be 0. The relationship between the bandwidth rank
and the out degree is shown as follows:

iii OcROMax +=)((2)

Max(Oi) denotes the maximum out degree of the node i and Oci is the current degree
of the node i. If Oci reaches to Max(Oi), Ri will be 0, which means no children should
be added to the node i.

3.2 Bandwidth Monitor

The minimum required bandwidth Br is a constant for a given application. However,
the available bandwidth is a variable and changed with time. Most of application-
layer multicast protocols just concern the initial bandwidth of members. The initial
bandwidth just can represent the available bandwidth when the node joins the tree.
We need a monitor to watch the available bandwidth at intervals so that we can
balance the tree as soon as possible.

As we all know, available bandwidth can be calculated as follows:

 TransmitSizeBandwidth /= (3)

Here Size refers to the size of a packet and Transmit is the delay of sending the
packet. So we can construct a probe packet with a certain size and send it to one of its
children to measure the approximate sending bandwidth.

 Self-adaptive Adjustment on Bandwidth in Application-Layer Multicast 365

Bandwidth monitor creates the probe packet and transmits it in a certain interval. It
records the transmit delay of the packet to get the current available bandwidth. Then
the monitor use equation (1) to update the bandwidth rank of the node. If the rank is 0,
bandwidth monitor will start the tree adjustment algorithm to abate the burden of the
node. We can find through equation (1) that Ri = 0 does not mean there is no more
available bandwidth. It just denotes that the available bandwidth can not afford one
more child to request for service from the node. So our self-adaptive adjustment can
balance the tree bandwidth before the congestion occurs. Here, self-adaptive means
the bandwidth will be adjusted automatically with the variety of the environment. The
information of the bandwidth rank will be uploaded to the parent for later use.

The Real-Time Control Protocol (RTCP) seems to do the similar job to the
bandwidth monitor. In fact, they are difference. Our bandwidth monitor just need
probe it own bandwidth and send the information to its parent while the receivers
running on RTCP must send RTCP messages to all senders periodically.

The algorithm of the bandwidth monitor will be described in the next section.

3.3 Tree Adjustment Algorithm

Tree adjustment algorithm is used to adjust the number of children. It will be
triggered when the bandwidth rank of the node is decreased to 0. The mechanism is
illustrated in Fig. 1.

 (a) before adjustment (b) after adjustment

Fig. 1. Tree Adjustment

Source S is the root of the multicast tree, and H1 through H8 are hosts in Fig. 1.
Each node of the multicast tree maintains a family table (FT) defining parent-child
relationship and their bandwidth rank. In the family table, P denotes the parent, C
denotes the child and I denotes the node itself. For example, C:H4:3 (Fig. 1 (a))
means H4 is the child of the node and its bandwidth rank is 3. We do not need to
record the bandwidth rank of the parent for the parent is unique.

366 J. Cui, Y. He, and L. Wu

In Fig. 1 (a), H3’s bandwidth monitor finds its rank is 0 and the tree adjustment
algorithm is triggered. H3 sends ADJUST message to its parent. The parent H1 will
choose H5 as the new parent because H5’s rank is highest among all of the children.
When H3 receives the response message PARENT from H1, it will know that it can
move one of its children to H5. Then it sends ADD message to H5 with the
information of the child with maximum rank (H7). If H5 accepts H7 as its child, it
will provide service to H7 right now and sends ADD_OK message to H3. H3 will
remove H7 from the family table and stop transmitting data to H7 after it receives the
ADD_OK message. The adjustment result is shown in Fig. 1 (b).

We choose one of the neighbors as the new parent because it can keep the same
depth of whole multicast tree and neighbors have certain relationship (such as close to
each other) in most application-layer multicast protocols. We can also choose other
child (for example H6) as the new parent. However the solution may enlarge the
depth of the multicast tree and the grandfather of H7 is H3 which may not be helpful
for increasing H3’s bandwidth.

We prefer to the node with maximum bandwidth rank whenever we choose the
removed node or the new parent node. The same reason is that they have enough
bandwidth to process tree adjustment algorithm.

The algorithm of bandwidth monitor and self-adaptive tree adjustment algorithm
are depicted as follows:

All messages are depicted by the message type (such as UPDATE) and the
destination node object. The destination node object has two attributes: address and
rank.

Algorithm: bandwidth_monitor()
Do while true
 bw = probe_bw();
 rank = int(bw/Br);
 node = getNode(FT,I);
 If (rank!= node.rank)
 update_FT_rank(msg.node);
 UPDATE_msg = msg_constructor(UPDATE,node);
 send(getNode(FT,P).address,UPDATE_msg);
 Endif
 If (rank == 0)
 tree_adjustment();
 Endif
 wait_for_next_probe(INTERVAL);
Enddo

All messages are depicted by the message type (such as UPDATE) and the
destination node object. The destination node object has two attributes: address and
rank.

Algorithm: tree_adjustment()
Do while true
 msg = receive_msg();//receive_msg() will be blocked
till a message is received or timeout

 Self-adaptive Adjustment on Bandwidth in Application-Layer Multicast 367

 If (getType(msg) = = UPDATE)
 update_FT_rank(msg.node);
 If isMyself(msg.node) && msg.node.rank= =0
 ADJUST_msg = msg_constructor(ADJUST,msg.node);
 send(getNode(FT, P).address, ADJUST_msg);
 Endif
Else If (getType(msg) = = ADJUST)
 parent_node = maxRank(FT,C);
 PARENT_msg = msg_constructor(PARENT,parent_node);
 send(msg.node.address, PARENT_msg);
Else If (getType(msg) = = PARENT)
 remove_node = maxRank(FT,C);
 ADD_msg = msg_constructor(ADD,remove_node);
 send(msg.node.address, ADD_msg);
Else If (getType(msg) = = ADD)
 add_FT_child(msg.node);
 provide_service(msg.node.address);
 ADD_OK_msg = msg_constructor(ADD_OK, msg.node);
 send(getSourceAddr(msg), ADD_OK_msg);
 Else If (getType(msg) = = ADD_OK)
 remove_FT_child(msg.node);
 stop_service(msg.node.address);
 Endif
Enddo

The disadvantage of our algorithm is that it will cost more local resources to
process the bandwidth probe and move children transparently. Through analyzing the
algorithms of the bandwidth_monitor() and the tree_adjustment(), we find the probe
interval is the main factor which influence the host’s performance. The shorter
interval can probe bandwidth more exactly while it will cost a lot. We can adjust the
probe interval dynamically based on the bandwidth rank to balance the profit and the
cost. A simple mechanism is described as follows:

 probe_intervali+1= (ranki+1)*INTERVAL (4)

The constant INTERVAL is the minimum probe interval. If the bandwidth rank
equals to zero, the probe interval will be the INTERVAL. The probe interval can
increase with the available bandwidth rank increase.

4 Evaluation

In this section, we present simulation results to evaluate the performance of the
proposed self-adaptive tree adjustment mechanism.

4.1 Simulation Environment

We generate Transit-Stub network topology with 1000 nodes using GT-ITM [14]. On
top of the physical network, multicast group members are attached to stub nodes. The

368 J. Cui, Y. He, and L. Wu

multicast group size ranges from 100 to 1000 members. The transit-to-transit, transit-
to-stub, and stub-to-stub link bandwidth are assigned between 10Mbps and 100 Mbps.
The links from edge routers to end systems have bandwidth between 1Mbps and
10Mbps. In simulation environment, the speed of transmitting data in a certain
application is often invariable. However, many factor such as congestion or new
application’s join will change the available bandwidth in the real networks. Here, we
choose some members randomly to change there available bandwidth through another
program running on these members. The program can occupy the different bandwidth
in the different time. The percentage of these members with variable bandwidth is
defined as bandwidth change rate. We can control the percentage. The minimum
required bandwidth of the multicast application is set to 384KB.

4.2 Performance Metrics

Our proposed SAB mechanism can be added to application-layer multicast protocols
to avoid node overload. We choose TAG [10,11] as the basic protocol in the
experiment. TAG is more attractive in most ALM protocols because it takes the
underlying network topology data and the bandwidth into account when constructing
the multicast overlay network. The mean Relative Delay Penalty and Link Stress are
same as TAG for the reason that we just add the bandwidth monitor and the tree
adjustment algorithms to TAG. So we will not evaluate these two performance
metrics which can be found in [10,11]. The performance metrics used for our
experiments are the Member Disconnection Latency (MDL) and the overhead.

The MDL denotes how long the member suffers disconnection in the multicast
service. The latency is longer and the quality of the service will be lower. We report
the mean of the latency of all n members.

Mean MDL=)(
1

1 1
∑∑

= =

−
n

i

m

j
ijij TdTa

n
 (5)

In equation (5), Ta is the time when the node acquire the service again from
disconnection and Td is the disconnection start time. m denotes how many times the
disconnection occurs.

The overhead is defined as the number of control messages processed by multicast
members for maintain the overlay network. We also use the mean of all nodes’
overheads to evaluate the performance.

4.3 Results and Analysis

We will evaluate the mean MDL and overhead in two different conditions. We fix the
value of the INTERVAL (the minimum of the probe interval) with 500 ms in the
experiments.

We attach 500 multicast group members to stub nodes randomly and adjust the
bandwidth change rate from 10% to 80% in the first experiment. The relationship
between the performance metrics and the bandwidth change rate is shown in Fig. 2.

 Self-adaptive Adjustment on Bandwidth in Application-Layer Multicast 369

(a) (b)

Fig. 2. Performance metrics versus bandwidth change rate

In Fig. 2, TAG denotes the original TAG protocol and TAG_SAB denotes TAG
with our SAB mechanism.

From the experimental data showed in Fig. 2(a), we find the mean MDL of two
mechanisms become higher when the bandwidth change rate increases. However, the
mean MDL of our mechanism is much lower than that of TAG. The reason is that our
mechanism avoids a lot of disconnections by probing available bandwidth before the
bandwidth uses up. Just when there are not any nodes can be the new parent of a node
with zero bandwidth rank, the disconnection will occur. A node of TAG may lose all
its children if the node faces a heavy bandwidth burden. So these children have to
send join message again to acquire the multicast service. It will lead mean
disconnection latency increase.

Just as we see through Fig. 2(b), the overhead of our TAG-SAB mechanism is
higher than that of TAG when the bandwidth change rate is not very high. The reason
is that the bandwidth monitor of the SAB mechanism must probe the available
bandwidth periodically. However, the situation changes when the bandwidth change
rate reaches to 50%. A node in TAG who wants to rejoin the multicast tree needs to
send JOIN message to the source node. The source node must probe the spath (the

(a) (b)

Fig. 3. Performance metrics versus group size

370 J. Cui, Y. He, and L. Wu

spath of a node refers to a sequence of routers comprising the shortest path from the
source node to this node according to the underlying routing protocol) to the new
member and execute the path matching algorithm in some nodes. These two steps will
cost a lot.

In the second experiment, we change the group size from 100 to 1000 and fix the
bandwidth change rate with 50%. The result is shown in Fig. 3.

We can get the similar results as the first experiment from Fig. 3. Our self-adaptive
adjustment algorithm does a good job even when the group size grows to 1000.

It can be concluded from the simulation results that our algorithm can decrease
mean member disconnection latency and add no more overhead than TAG when the
bandwidth changes frequently or the group size is large.

5 Conclusion and Future Work

In this paper we have proposed a self-adaptive bandwidth adjustment mechanism of
application-layer multicast. We add bandwidth monitor and tree adjustment
algorithms to ALM protocols to automatically adjust the number of children nodes.
Bandwidth rank is used to measure the available bandwidth ability of the node. The
results show that our mechanism can get higher performance than TAG in the
unstable environment. In fact, our mechanism can add to other application-layer
multicast protocols too. To saving the host resources which is used to process our
mechanism, we bind the probe interval with the bandwidth rank.

For simplicity, the topology of simulation environment is not complex and
sweeping enough. Future work will be done on testing and optimizing our self-
adaptive adjustment mechanism in a more complex simulation environment and real
networks.

References

1. Kosiur, D., Multicasting, I.P.: The Complete Guide to Interactive Corporate Networks.
John Wiley & Sons, Inc., Chichester (1998)

2. Chu, Y., et al.: A Case for End System Multicast. IEEE Journal on Selected Areas in
Communication (JSAC), Special Issue on Networking Support for Multicast (2002)

3. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R., Kubiatowicz, J.: Bayeux: An
architecture for scalable and fault-tolerant wide-area data dissemination. In: NOSSDAV
2001. Eleventh International Workshop on Network and Operating Systems Support for
Digital Audio and Video (2001)

4. Chawathe, Y.: Scattercast: An Architecture for Internet Broadcast Distribution as an
Infrastructure Service. Ph.D. Thesis, University of California, Berkeley (December 2000)

5. Chu, Y.-H., Rao, S.G., Zhang., H.: A Case for End System Multicast. In: Proceedings of
ACM SIGMETRICS (June 2000)

6. Jannotti, J., Gifford, D., Johnson, K., Kaashoek, M., O’Toole, J.: Overcast: Reliable
Multicasting with an Overlay Network. In: Proceedings of the 4th Symposium on
Operating Systems Design and Implementation (October 2000)

 Self-adaptive Adjustment on Bandwidth in Application-Layer Multicast 371

7. Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.: ALMI: An Application Level
Multicast Infrastructure. In: Proceedings of 3rd Usenix Symposium on Internet
Technologies & Systems (March 2001)

8. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Application-level multicast using
content-addressable networks. In: Proceedings of 3rd International Workshop on
Networked Group Communication (November 2001)

9. Jin, X., Wang, Y., Chan, S.-H.G.: Fast overlay tree based on efficient end-to-end
measurements. In: Proceedings of IEEE International Conference on Communications
(ICC), Korea, 16-20 May, 2005 (2005)

10. Kwon, M., Fahmy, S.: Path-aware overlay multicast. Computer Networks: The
International Journal of Computer and Telecommunications Networking 47(1), 23–45
(2005)

11. Kwon, M., Fahmy, S.: Topology-Aware Overlay Networks for Group Communication. In:
Proc. of ACM NOSSDAV, pp. 127–136. ACM Press, New York (May 2002)

12. Yeo, C.K., Lee, B.S., Er, M.H.: A Survey of application level multicast techniques.
Computer Communications, 1547–1568 (2004)

13. Zhong, Y., et al.: Measurement of the effectiveness of application-layer multicasting. In:
Proceedings of Instrumentation and Measurement Technology Conference (IMTC),
Ottawa, Canada (May 17-19, 2005)

14. Doar, M.: A better model for generating test networks. In: GLOBECOM 1996.
Proceedings of IEEE Global Telecommunications Conference, London, UK, pp. 83–96.
IEEE Computer Society Press, Los Alamitos (1996)

15. Subramanian, L., Stoica, I., Balalalshnan, H., Katz, R.H.: OverQoS: Offering QoS using
overlays. In: 1st HorNefs Workshop (October 2002)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 372–381, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Overlay Multicast Routing Algorithm with Delay and
Delay Variation Constraints∗

Longxin Lin, Jie Zhou, and Zhao Ye

School of Computer Science and Engineering, South China University Of Technology,
Guangzhou 510641, China

{lxlin,jiezhou,zhye}@scut.edu.cn

Abstract. Overlay multicast is considered as a very effective technique to
provide large-scale data dissemination over Internet. In overlay multicast, some
applications require the messages should arrive at the destinations within a
specified delay bound and these applications also require that the destinations
receive the messages from source at approximately the same time. It is defined
as the problem of Delay and delay Variation Bounded Multicasting Network
(DVBMN) and has been proved to be an NP complete problem. In this paper,
by improving the CHAINS algorithm, we present a more efficient heuristic
algorithm FCHAINS. We have proved the correctness of our algorithm
theoretically, and shown that our algorithm is obviously better than CHAINS in
terms of time complexity by performance experiments.

Keywords: Multicast, Overlay Network, Delay and Delay Variation.

1 Introduction

Overlay multicast is considered as a very effective technique to provide large-scale
data dissemination over Internet. In overlay multicast, certain nodes form a virtual
network (called overlay network), and multicast delivery structures are constructed on
top of this virtual network. The existed overlay multicast solutions can be divided into
two categories: peer-to-peer architecture and proxy-based architecture. In peer-to-peer
architecture, group members (usually end-hosts) are organized to replicate and
forward packets to each other. There are many typical examples of peer-to-peer
architecture, such as Bayeux [1], Scribe [2], SplitStream [3] and CoolStreaming [4].
In proxy-based architecture, networking service is provided through a set of special
nodes (usually dedicated servers) called Multicast Service Nodes (MSN). The MSNs
communicate with end-hosts and with each other using standard unicast mechanism.
OMNI [5], Overcast [6] and Scattercast [7] belong to this architecture.

∗
 This research is supported by the National Basic Research Program of China

(2003CB314805), the National Facilities and Information Infrastructure for Science and
Technology Program of China (2005DKA64001), and the 2005 Guangdong-Hong Kong
Technology Cooperation Funding Scheme of China: “IPv6 Core Router Research and
Development”.

 Overlay Multicast Routing Algorithm with Delay and Delay Variation Constraints 373

Some group communication applications such as video conferences, online games
and interaction simulations require the messages should arrive at the destinations
within a specified delay bound. Furthermore, they also require that the destinations
receive the messages from source at approximately the same time. The requirements
of these applications can be defined as the problem of Delay and delay Variation
Bounded Multicasting Network (DVBMN). It is to find a subnetwork given a
source and a set of destinations that satisfies the constraints on the maximum
delay from the source to any of the destinations and on the maximum inter-destination
delay variation. The problem has been proved as an NP complete problem [8],
and some heuristics have proposed such as DVBMA [8], DDVCA [9] and
CHAINS [10]. Among these heuristics, CHAINS has the best time complexity
of 2(log(/))O E nk E n m k+ + .

In this paper, we present a new heuristic called FCHAINS (Faster CHAINS). It
improves the CHAINS algorithm further, and the time complexity
is (log(/))O E nk E n mk+ + . The main contribution of CHAINS is using a novel method

with a time complexity of 2()O m k to choose a path for each of the destinations from a set
of k shortest paths (to each destination) such that the delay variation is the smallest. We
present another more effective method with a time complexity of ()O mk to finish the
same task. Because in a real overlay network, compared with k , m can be very large
(even equals to n), so the improvement has the certain value. We have proved the
correctness of our heuristic algorithm solidly in theory, implemented and compared
FCHAINS with CHAINS by experiments, and the results show that our heuristic
algorithm is much better than CHAINS in terms of computation performance.

This paper is organized as follows: The network model and formal definition of
DVBMN is given in section 2. In section 3, we describe CHAINS concept briefly.
The detailed explanation of our heuristic algorithm, its correctness and time
complexity are discussed at section 4. In section 5, performance studies of CHAINS
and FCHAINS are presented, and we conclude in section 6.

2 Network Model and Problem Definition

The overlay network can be modeled by a weighted graph (,)G V E= where V is a set
of vertices representing end-hosts (MSNs, in case of proxy-based overlay), and E is a
set of edges representing unicast paths. We use the terms “host” or “node” to refer to
the vertices and “link” to refer to edges in the overlay graph. For each link in E ,
define a link-delay function :D E R+→ . The link-delay function is associated a delay
with each link in the overlay network. We use the term “multicast” to refer to the task
of distributing a message from a source host to a subset of hosts in the overlay
network. In overlay multicast, a source host s V∈ sends messages to a group of
destination hosts M V s⊆ − . The messages are transmitted through a
subnetwork (,)T TT V E= , where T spans the source node s and all the destination nodes

in M . The subnetwork T may contain nodes other than M and the source node s . A
path (,)TP s v is defined as the path from source s to v M∈ in T . The total delay of

374 L. Lin, J. Zhou, and Z. Ye

sending a message from s to v along the path will be
(,)

()
Tl P s v

D l
∈
∑ . Define two parameters

for DVBMN problem:

1. Source-destination delay bound Δ : the parameter refers to the upper bound on the
end-to-end delay along any path from the source to a destination node.

2. Delay variation tolerance δ : the parameter is the maximum allowed difference
between the end-to-end delays along the paths from the source to any two
destination nodes.
The formal definition about DVBMN is stated below [10].

Given an overlay network (,)G V E= , a source node s V∈ , a multicast group

M V s⊆ − , a link-delay function :D E R+→ , a delay bound Δ , and a delay variation
tolerance δ , to find a multicast subnetwork (,)T TT V E= , which spans s and all the

nodes in M such that:

(,)

()
Tl P s v

D l
∈

≤ Δ∑ for each v M∈ (1)

(,) (,)

() ()
T Tl P s v l P s u

D l D l δ
∈ ∈

− ≤∑ ∑ , ,v u M∀ ∈ (2)

Rouskas and Baldine have proved the DVBMN problem is NP-complete and
presented the first heuristic DVBMA [8], the complexity of the heuristic is 2 4()O k mn ,
where k is the number of shortest paths determined between source and destination
nodes, m is the number of destination nodes, and n is the number of nodes in the
overlay network. Recently, Banik etc. present CHAINS algorithm [10]. The time
complexity of CHAINS is 2(log(/))O E nk E n m k+ + using the best known k shortest

path algorithm [11], where E is the number of edges in the overlay network.

3 CHAINS Concept

CHAINS defines a special parameter Tδ , as follows:

(,) (,)

max () ()
T T

T
l P s v l P s u

D l D lδ
∈ ∈

= −∑ ∑ ， ,v u M∀ ∈ (3)

It also provides a conception called “tightest delay variation”, which is the one that
minimizes Tδ .CHAINS algorithm works as follows:

• It first computes the k shortest paths from source to each of the destinations such
that the delay of each shortest path is less than or equal to the delay bound Δ . The
time complexity of this stage is (log(/))O E nk E n+ .

• Secondly, it selects a shortest path for each destination node from the k shortest
paths available in such a way that the delay variation is the smallest possible.
Consider the overlay network given in Fig.1 [10]. sV is the source node and 2V ,

 Overlay Multicast Routing Algorithm with Delay and Delay Variation Constraints 375

Fig. 1. An example of an overlay network with link delays

Table 1. The list of paths from sV to 2V , 5V and 8V and their corresponding end-to-end delays

source destination path delay
(a) sV - 1V - 2V 31

(b) sV - 7V - 8V - 4V - 2V 32

(c) sV - 7V - 8V - 5V - 2V 35

2V

(d) sV - 7V - 8V - 5V - 4V - 2V 40

(e) sV - 7V - 8V - 5V 26

(f) sV - 7V - 8V - 4V - 5V 32

(g) sV - 1V - 2V - 5V 40

5V

(h) sV - 1V - 2V - 4V - 5V 45

(i) sV - 7V - 8V 20

(j) sV - 1V - 2V - 4V - 8V 43

sV

8V

(k) sV - 1V - 2V - 5V - 8V 46

 5V and 8V are the destination nodes, and Let 50Δ = . First, CHAINS find all the paths

from sV to 2V , 5V and 8V for which the delays are less than or equal to 50. The paths

are shown in Table.1 [10].

CHAINS will choose the paths (d), (g) and (j) and merge these paths to be a

subnetwork as the solution of DVBMN. The main innovation of CHAINS is to
present an algorithm that has a time complexity of 2 2()O m k to choose a path for each
of the destinations from a set of k shortest paths such that the delay variation is the
smallest. The key thoughts will be described as follows:

− Suppose source s wants to multicast messages to destination nodes 1 2, ,..., mv v v and

let there be k different shortest paths for each iv . Let the end-to-end delays of these

paths in the nondecreasing order as
1 2
, ,...,

ki i id d d .

− Define
1 2

{ , ,..., }
ki i i iS d d d= , 1 i m≤ ≤ and let { }1 2

1

, ,...,
m

i mk
i

D S d d d
=

= =∪ , where the elements in

D are nondecreasing. For the thi element id in D , define ()icolor d j= , if i jd S∈ .

376 L. Lin, J. Zhou, and Z. Ye

− Construct an array next of size mk , where []next i corresponds to the thi element of

the set D . { }[] min | , () (), ,j inext i j j i color d color d i j mk= > ≠ ≤ , if there exists such a j ,

otherwise, [] 1next i = − . In Fig.1, for destination nodes 2V , 5V and 8V , the corresponding

sets are 1 {31,32,35, 40}S = , 2 {26,32, 40, 45}S = and 3 {20, 43, 46}S = .The data table is shown

in Table 2.

Table 2. The data Table of CHAINS

 1 2 3 4 5 6 7 8 9 10 11
D 20 26 31 32 32 35 40 40 43 45 46
color 3 2 1 1 2 1 2 1 3 2 3
next 2 3 5 5 6 7 8 9 10 11 -1

− The sequence , (), (()), ((())),...i next i next next i next next next i is defined as a chain starting
from the thi element of D . A chain is valid when it contains exactly m elements and
each element in the chain is of a different color. The value of a valid chain is
defined as the difference between the last and first element of the chain.

− The valid chain whose value is minimum among all the valid chains is the solution
of the problem. CHAINS presents a algorithm with the time complexity of

2 2()O m k to find the valid chain with minimal value. The authors also provide an

improved algorithm with the time complexity of 2()O m k .

Generally, in a real overlay network, m may be very large and k is very small. So,
compared with the 2 2()O m k algorithm, the 2()O m k improved algorithm is not of much
value in terms of time complexity. In this paper, we give a novel algorithm to find the
valid chain with minimal value among all the valid chains. It has ()O mk time
complexity, and we name it FCHAINS (Faster CHAINS). In the next section, we will
describe it in detail.

4 FCHAINS Algorithm

The main difference between FCHAINS and CHAINS is using a different approach to
find the chain with minimal value among all the valid chains. FCHAINS don’t use
next array. Table 3 is an example of FCHAINS data table for Fig.1.

We define a term “ feasible chain ” as follows, which is similar to the term
“ valid chain ” of CHAINS. In this section, we use some of conceptions defined at
section 3.

Table 3. The data table of FCHAINS

 1 2 3 4 5 6 7 8 9 10 11
D 20 26 31 32 32 35 40 40 43 45 46
color 3 2 1 1 2 1 2 1 3 2 3

 Overlay Multicast Routing Algorithm with Delay and Delay Variation Constraints 377

Definition 1. A sequence
1 2

{ , ,..., }
mi i ic d d d= with m different elements of D ，where

1 2
...

mi i id d d≤ ≤ ≤ and () ()
j ki icolor d color d≠ if , 1, 2,...,j k m= and j k≠ , is called a feasible chain .

For a feasible chain c , define the first element of c as ()first c and the last element as
()last c .The value of a feasible chain c , ()value c , is defined as the difference between the
()last c and the ()first c .
According to definition 1, each feasible chain can be a candidate solution of the

problem. Let cS is the set of all the feasible chains. The objective is to find the feasible

chain in cS with the minimum value, and we define such a feasible chain as minc , that

is min() min ()
cc S

value c value c
∈

= .

Definition 2. For each element id D∈ , 1 i mk≤ ≤ , define { () , }i i cC c first c is d c S= ∈ and

we call iC the set of feasible chains starting from id (notes: for some elements of D ,

maybe iC = ∅). The following lemmas are clear:

Lemma 1.
1

mk

c i
i

S C
=

=∪ .

Lemma 2. For 1 i mk≤ ≤ , if the feasible chain
mini ic C∈ and

min
() min{ () }i ivalue c value c c C= ∈ ,

then
minmin 1

() min ()ii mk
value c value c

≤ ≤
= .

Definition 3. For each element ,1id D i mk∈ ≤ ≤ , suppose there is a feasible chain i ic C∈ ,

if ()i jlast c d= and min{ () }
i

k
c C

j k last c d
∈

= = , then we call ic the first feasible chain starting

from id .

Theorem 1. For each ,1id D i mk∈ ≤ ≤ , if ic is the first feasible chain starting from

id then
min

() ()i ivalue c value c= .

Proof. By the definition of ic and
minic , the result is clear.

Definition 4. For each element ,1id D i mk∈ ≤ ≤ , define ' { () , }i i cC c last c is d c S= ∈ and call
'
iC the set of feasible chains ending at id (notes: for some elements of D ,

maybe '
iC = ∅). Clearly, '

1

mk

c i
i

S C
=

=∪ .

Definition 5. For each element ,1id D i mk∈ ≤ ≤ , suppose the feasible chain ' '
i ic C∈ , if

'()i jfirst c d= and
'

max{ () }
i

l
c C

j l first c d
∈

= = , then '
ic is called the last feasible chain ending at id .

Theorem 2. For each ,1id D i mk∈ ≤ ≤ , if there is a first feasible chain starting from id ,

say ic , and let ()i jlast c d= , then there must exist a last feasible chain '
jc ending at jd .

Further assume '()j lfirst c d= , then
min

'() min{ ()} min{ () }j k k k ki k l i k l
value c value c value c c C

≤ ≤ ≤ ≤
= = ∈

and 1() ()l lcolor d color d +≠ . That is, '
jc has the minimal value among all the feasible chains

of
l

k
k i

S C
=

=∪ and the first two elements of '
jc must have different colors.

378 L. Lin, J. Zhou, and Z. Ye

Proof. We first prove the existence of '
jc . By the assumption of the existence

of ic and ()i jlast c d= , ic is also a feasible chain ending at jd , so '
jC ≠ ∅ . By definition 4

and 5, there must exist a last feasible chain '
jc ending at jd .

By the assumption of '()j lfirst c d= , clearly, for each first feasible chain k kc C∈ ,

i k l≤ ≤ , ()k jlast c d= . So, according to '()j jlast c d= and theorem 1, it

follows
min

'() min{ ()} min{ () }j k k k ki k l i k l
value c value c value c c C

≤ ≤ ≤ ≤
= = ∈ . If 1() ()l lcolor d color d += , according

to the definition 5, it follows '
1()j lfirst c d += , however, it contradicts the assumption

of '()j lfirst c d= , therefore 1() ()l lcolor d color d +≠ .

By theorem 2, let the first feasible chain starting from 1d be 1c and
11() jlast c d= , and the

last feasible chain ending at
1j

d is
1

'
jc , let

1 1

'()j lfirst c d= , we denote this process as

1 1 1

'
1 1(, , , ,)j j ld c d c d ; Then, let the first feasible chain starting from

1 1ld + be
1 1lc + and

1 21()l jlast c d+ = , and the last feasible chain ending at
2j

d is
2

'
jc , let

2 2

'()j lfirst c d= , we denote

this process as
1 1 2 2 2

'
1 1(, , , ,)l l j j ld c d c d+ + . Continue to the similar process, we can get a

sequence
1 1 1

'
1 1(, , , ,)j j ld c d c d ,

1 1 2 2 2

'
1 1(, , , ,)l l j j ld c d c d+ + ,…,

1 1

'
1 1(, , , ,)

k k k k kl l j j ld c d c d
− −+ + ,…,

1 1

'
1 1(, , , ,)

N N N N Nl l j j ld c d c d
− −+ + .

Theorem 3. '
min() min{ () |1 }

kj
value c value c k N= ≤ ≤ .

Proof. According to theorem 2, for each k , 1 k N≤ ≤ ,
1

'

1
() min { () }

k
k k

j i i il i l
value c value c c C

− + ≤ ≤
= ∈ .

By the definition of
1 1

'
1 1(, , , ,)

k k k k kl l j j ld c d c d
− −+ + , 1 k N≤ ≤ , we can obtain

11 1

k

k

lN

c i
k i l

S C
−= = +

=∪ ∪ . Lemma

2 implies that '
min() min{ () |1 }

kj
value c value c k N= ≤ ≤ .

Our FCHAINS algorithm is based on Theorem 3. It works as follows:

1. Set min()value c = ∞ .The loop variable j traverses the array D from the first element to

the last.
2. When we find out the first feasible chain 1c with

11() jlast c d= , we also find out the last

feasible chain
1

'
jc ending at

1j
d and

1

'()jfirst c (that is,
1l

d). We will save
1

'
jc to a double

linked list.
3. Compare

1

'()jvalue c with min()value c , and assign the smaller to min()value c .

4. Delete the first element
1l

d of
1

'
jc from the double linked list, increment j by one, and

continue to traverse the array D from
1 1jd + .

5. Loop the steps 2, 3 and 4 until j reaches to the last element of D .
6. minc is the solution.

For example, using the data given in Table 3, the computation process is shown as
Table 4.

 Overlay Multicast Routing Algorithm with Delay and Delay Variation Constraints 379

Table 4. The computation process of FCHAINS, N/A = Not Available

k start element(
1 1kl

d
− +)

1 1kl
c

− + '

kj
c minc

1 1d 1d - 2d - 3d 1d - 2d - 3d 1d - 2d - 3d

2 2d 2d - 3d - 9d 7d - 8d - 9d 7d - 8d - 9d

3 8d 8d - 9d - 10d 8d - 9d - 10d 7d - 8d - 9d

4 9d N/A N/A 7d - 8d - 9d

Then, let’s analyze the algorithm’s time complexity. Because the algorithm has

only one loop and the maximum iteration number is mk , so its time complexity
is ()O mk .

The whole FCHAINS algorithm can be divided into three stages: (1) computes
the k shortest paths [11] for each destination node as in CHAINS, the time complexity
is (log(/))O E nk E n+ . (2) Constructs the FCHAINS data table according to the

known mk shortest paths. The time complexity of this step is ()O mk . (3) Find out
the feasible chain with minimal value using the FCHAINS data table, its
time complexity is ()O mk . So, the whole time complexity of FCHAINS algorithm
is (log(/))O E nk E n mk+ + .

In real network environment, usually k is very small, but n and m may be very
large, so reducing the time complexity from 2()O m k to ()O mk is valuable.

5 Performance Evaluation

For evaluation purposes, we have implemented CHAINS and FCHAINS using C++,
and designed two experiments.

Experiment 1. Performance comparison of finding out the feasible chain with
minimal value. Suppose we have gotten each destination node’s k shortest paths from
source s according to k shortest path algorithm and constructed the FCHAINS and
CHAINS data table respectively. We use the random numbers to represent the actual
path delay, and let 1000Δ = . Then, we evaluate the algorithms’ performance by
adjusting the size of k and m . In order to obtain the random numbers with more
uniform distribution, we have gathered 120,000 random integers with the range of
[10, 1000] from website [13] and taken it as random number sources. The experiment
has be done on a personal computer (2.6 GHz C4 Intel CPU, 512 MB RAM, Linux
Red Hat 9.0). The test results are shown in Table 5.

From Table 5, we observe that FCHAINS outperforms CHAINS in terms of
execution time too much. We also observe that the execution time of CHAINS
increases very quickly with m and k growing, and when m becomes more and more
large, compared with CHAINS, the execution time of FCHAINS is so small that we
can ignore it.

380 L. Lin, J. Zhou, and Z. Ye

Table 5. The results of experiment 1(C: CHAINS, FC: FCHAINS, Running Time: ms)

 k =2 k =4 k =6 k =8
m C FC C FC C FC C FC

100 0.7151 0.027 2.0158 0.052 3.537 0.0778 5.2546 0.1033
500 17.553 0.133 50.681 0.261 91.382 0.3905 137.55 0.5210
1000 70.832 0.268 204.66 0.582 375.50 0.8087 563.87 1.0633
3000 637.66 0.855 1853.8 1.731 3460.4 2.4632 5131.03 3.2586
5000 1797.9 1.437 5169.1 3.116 9682.1 4.4238 14652.3 5.5335
8000 4557.1 3.024 13393 5.865 25014 8.1937 37852.9 11.076
10000 7118.9 3.548 20990 7.290 39201 12.546 59383.2 15.022

Experiment 2. To compare the whole execution time, we have run FCHAINS and
CHAINS algorithms on random graphs constructed by Georgia Tech Internet
Topology Models (GT-ITM) [12]. The nodes in graphs are placed in a grid of
dimension 3100 x 3100 km and the delay for each link is set to the propagation delay
of electrical signal along the link, we can compute link’s delay as the equation (4).

(,)
uv

Length u v
d

c
= (4)

Where c is the speed of light, (,)Length u v can be obtained from the output files of GT-
ITM. We set Δ =0.05s, k =3. For the sake of convenience, we map Δ to link’s length
according to equation (4), so Δ =1500 km. The average node degree for each graph is
kept in the range of 3.5 to 6 through adjusting parameter α . CHAINS and FCHAINS
have tested on various graphs with number of nodes varying from 100 to 1000 and the
percentage of nodes (p) in the multicast group varying from 10 percent to 30 percent.
The experiment’s software and hardware platform is the same as experiment 1. The
results are plotted in Figs.2 and 3. Each point in the plots represents the average value
taken over 10 graphs.

From Fig.2 and 3, we observe that FCHAINS algorithm outperforms CHAINS not
so much as experiment 1 and compared with CHAINS, the improvement rate of
FCHAINS varies from 20% to 30%. Although the improvement is not multi-times, it
is still very effective. The results can be explained easily, because the k shortest paths
algorithm needs to consume much execution time.

Fig. 2. Execution Time graph for p =10% Fig. 3. Execution Time graph for p =20%

 Overlay Multicast Routing Algorithm with Delay and Delay Variation Constraints 381

6 Conclusions

In this paper, we consider the problem of Delay and delay Variation Bounded
Multicasting Network (DVBMN). We discuss the recent heuristic algorithm CHAINS
which has the best time complexity for the same problem so far, and presented a new
improved algorithm FCHAINS, which reduces the time complexity from

2(log(/))O E nk E n m k+ + to (log(/))O E nk E n mk+ + . We prove the correctness of our
heuristic algorithm theoretically. We also implement the two heuristic algorithms and
compare their performance through experiments, the results show that FCHAINS
outperforms CHAINS much more in terms of finding out the feasible chain with
minimal value and the total running time. In our network model, we ignore the
dynamic nature which may exist in a real overlay network, so, the DVBMN problem
may be more complex in fact. As a part of our future work, we will continue to
consider the DVBMN problem when link delay is the function of time.

References

1. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux: an
architecture for scalable and fault-tolerant wide-area data dissemination. In: pp. 11–20.
ACM Press,Port Jefferson, New York, United States (2001)

2. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.I.T.: Scribe: a large-scale and
decentralized application-level multicast infrastructure. Selected Areas in
Communications, IEEE Journal 20, 1489–1499 (2002)

3. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., Singh, A.:
SplitStream: high-bandwidth multicast in cooperative environments. In: Proceedings of the
nineteenth ACM symposium on Operating systems principles, ACM Press, Bolton
Landing, NY, USA (2003)

4. Xinyan, Z., Jiangchuan, L., Bo, L., Yum, Y.S.P.: CoolStreaming/DONet: a data-driven
overlay network for peer-to-peer live media streaming. 3, 2102–2111 (2005)

5. Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, B., Khuller, S.: OMNI: An
efficient overlay multicast infrastructure for real-time applications, vol. 50. Elsevier
Science, Amsterdam (2006)

6. Jannotti, J., Gifford, D., Johnson, K., Kaashoek, F., O’Toole, J.: Overcast: Reliable
Multicasting withan Overlay Network, pp. 197–212 (2000)

7. Chawathe, Y.: Scattercast: an adaptable broadcast distribution framework, vol. 9, pp. 104–
118. Springer, Heidelberg (2003)

8. Rouskas, G.N., Baldine, I.: Multicast routing with end-to-end delay and delay variation
constraints. Selected Areas in Communications, IEEE Journal 15, 346–356 (1997)

9. Sheu, P.R., Chen, S.T.: A fast and efficient heuristic algorithm for the delay-and delay
variation-bounded multicast tree problem, vol. 25, pp. 825–833. Elsevier, Amsterdam (2002)

10. Banik, S.M., Radhakrishnan, S., Sekharan, C.N.: Multicast Routing with Delay and Delay
Variation Constraints for Collaborative Applications on Overlay Networks. Parallel and
Distributed Systems, IEEE Transactions 18, 421–431 (2007)

11. Jimenez, V.M., Marzal, A.: Computing the K shortest paths: a new algorithm and an
experimental comparison. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE 1999. LNCS,
vol. 1668, Springer, Heidelberg (1999)

12. Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an internetwork. In:
INFOCOM 1996, vol. 2, pp. 594–602. IEEE Computer Society Press, Los Alamitos (1996)

13. Random Number Generator Web Site (2007), http://www.random.org/

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 382–391, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Selfish MAC Layer Misbehavior Detection Model for the
IEEE 802.11-Based Wireless Mesh Networks

Hongjian Li1, Ming Xu1, and Yi Li 2

1 Department of Network Engineering, School of Computer Science,
 National University of Defense Technology, Changsha 410073, China
hongjianli@nudt.edu.cn, xuming-64@hotmail.com

2 Staff Room of Automatization Technology, Logistics and Engineering University,
Chongqing 400016, China

necklacemary@163.com

Abstract. CSMA/CA, the contention mechanism of the IEEE 802.11 DCF me-
dium access protocol, has recently been found vulnerable to selfish attacks.
Such attacks can greatly increase a selfish station’s bandwidth share at the ex-
pense of honest stations. Based on the in-depth research of the attack model of
selfish behavior in WMN, the attack strategy of smart selfish nodes was fo-
cused, analyzed and according to its characteristics, a double-mode detection
mechanism was proposed. The one mode is selfish attack detection to sequen-
tial data; the other is attack detection to non-sequential data transmission
ground on statistics. Subsequently the selfish behavior detection model was
proposed with the double-mode detection mechanism, which was finally simu-
lated in ns-2. The simulation results indicated that the new selfish behavior de-
tection model which used the double-mode detection mechanism is preferably
adapt to the selfish attack behavior and can commendably solve the problem of
smart selfish nodes in WMN.

Keywords: selfish behavior, double-mode detection model, IEEE 802.11,
Wireless Mesh Networks.

1 Introduction

As a new broadband wireless network structure, Wireless Mesh Network (WMN) has
its special characteristics which are different from the traditional wireless network.
The obvious advantages of WMN contain deploying network rapidly, improving the
coverage ratio, increasing the capacity and reducing initial investment of the network.
The technology is especially applied to accessing the broadband wireless to the back-
bone network. 1

Operation deviate from legitimate protocol in wireless networks has being received
considerable attention from research communities in recent years. The WMN that is a
three layer IEEE 802.11-based network with gateway, router and client nodes is

1 Supported by the National Basic Research Program of China under Grant No.

2006CB303004.

 Selfish MAC Layer Misbehavior Detection Model 383

generally accepted and being familiar with. However, IEEE 802.11 MAC protocol
has been designed with the thinking of fully cooperative users, therefore it offers little
protection against noncooperative users. Under such circumstances, router and client
nodes may not comply with the protocol without being punished. Misbehavior nodes
can be divided into two categories, selfish nodes to obtain more resources [5], mali-
cious nodes to destroy the legitimate operation [13][12]. This paper focused on the
selfish nodes attack.

The basic IEEE 802.11 MAC layer uses the Distributed Coordination Function
(DCF) to share the medium between multiple stations. Thus the selfish nodes will
reduce the resources of wireless channel which can be used by the legitimate nodes,
thereby affect the network performance, even interrupt the network service. There are
two categories of selfish nodes in WMN, selfish client nodes and selfish router nodes.
Selfish client nodes access WMN with selfish strategy to achieve greater throughput,
reduce power consumption and improve QoS[1]. Selfish router nodes use selfish
strategy to result in the congestion of network or even the denial of service. With the
characteristics of Multi-hop and public access, it is more vulnerable for WMN to
selfish client nodes attack. The selfish attacks in router nodes will also have signifi-
cantly impact on the entire network performance. Therefore, it is highly necessary to
use some appropriate mechanism to detect misbehaviors in WMN.

Based on the detection method of MAC layer selfish behavior in wireless ad hoc
networks proposed in [10], this paper presented a selfish behavior detection model
with double-mode detection mechanism in WMN. Different detection mechanisms
are used for router and client selfish attacks respectively. Finally, the detection model
is simulated and subsequently the analysis of the simulation results is given.

2 Related Work

Solutions to MAC layer selfish attacks can be divided into two categories of active
and passive ones. The former is correcting the protocol to remove the selfish attack
[7][3][2], which is unrealistic in practice. The passive solution is detecting selfish
attacks by statistical means, and then making responses to the selfish nodes to reduce
the impact of attacks, which is the basis of our work.

Kyasanur and Vaidya [7] have addressed the MAC layer misbehavior using correc-
tion mechanism. Their main idea is to let the receiver assign and send back-off values
to the sender in CTS and ACK frames and then use them to detect potential misbehav-
ior. The latter is handled using a correction scheme that adds to the next back-off a
penalty that is a function of the observed misbehavior. Based on the corrected MAC
protocol, the rapid detection method [3] of selfish attacks through access point (AP) is
proposed. Although those above solutions can work well in detecting and preventing
selfish attacks, it is difficult for real practice as with the existing IEEE 802.11 equip-
ment’s compatibility problems.

Early work on MAC layer selfish behavior also includes the discussion about the
weaknesses of the 802.11 physical layer and the virtual carrier sense mechanism [6].
For WLAN, trusted agent [8] is described, which detects the real station ID selfish

384 H. Li, M. Xu, and Y. Li

attacks by statistical method. It shows how a Nash Equilibrium is achieved among
selfish users when the cost for accessing the channel repeatedly is being jammed by
another node in [9] [11]. References [4] detailedly analysed the selfish attacks in the
Ad hoc network. The detection method of selfish attacks in Ad hoc network is pre-
sented in [10]. However, those above researches were mostly done in Ad hoc or
WLAN. There is no good solution to a long period of testing, particularly for more
collaboration nodes and smart selfish node. Work in WMN is rarely at present.

In this paper, we firstly make a deep study on the system and attack detection
model of the selfish attacks in WMN, and then we analyzed the characteristics of
smart selfish node. Based on the detection method in [10], focused on its incapacity
for the collaboration and smart selfish node we proposed a double-mode detection
mechanism to solve that weakness, which formed a new selfish behavior detection
model used in selfish attack detection in WMN.

3 Attack Detection Model in WMN

According to the features of the WMN and the IEEE 802.11 MAC protocol, we use
the following system model of the selfish behavior in WMN and the attack detection
model.

3.1 System Model of Selfish Behavior in WMN

1. The IEEE 802.11 WMN (router nodes and client nodes) works in DCF mode,
which is the operation mode usually deployed.

As shown in Fig. 1,DCF delays frame transmissions right after the channel is sensed
idle for DIFS (DCF InterFrame Spacing) time. It waits for an additional random time,
back-off time, after which the frame is transmitted. The back-off time is bounded by the
contention window size CW. This is applied to data frames in the basic scheme, and to
RTS frames in the RTS/CTS scheme. The back-off time of each station is decreased as
long as the channel is idle. When the channel is busy, the back-off time is frozen. When
the back-off time reaches zero, the station transmits its frame. If the frame collides with
another frame (or RTS), the sender times out waiting for the ACK (or the CTS) and
computes a new random back-off time with a larger CW to retransmit the frame with
lower collision probability. When a frame is successfully transmitted, the CW is reset to
CWmin. The network allocation vector (NAV) of all other stations is set to the frame
duration field value in RTS/CTS and DATA headers.

2. To simplify the question, only selfish client under the normal router or selfish
router without selfish client within its coverage is considered, as shown in Fig. 2,
leaving out of the route-and-client’s combinative selfish behavior.

3. Although the router is managed easier than client, the misbehavior may howbeit
occur due to the attack of the nodes. Thus selfish behaviors both in the router and the
client nodes are considered.

4. The detection system is implemented only on router nodes. No modification or
reconfiguration of wireless adapters has to be made on the client side, which is actu-
ally unpractical in WMN.

 Selfish MAC Layer Misbehavior Detection Model 385

SRC

DST

Other

DIFS

RTS

SIFS

CTS

Data

ACK

SIFS

NAV(RTS)

SIFS

DIFS

NAV(CTS)

CW

Defer Access Backoff

Fig. 1. RTS/CTS/Data/ACK handshaking in DCF mode

Internet

ClientMesh Router Misbehavior
node

Fig. 2. Architecture of selfish nodes in WMN

3.2 Attack Model and Attack Detection Model

The methods and strategies of the selfish behavior attack in WMN are as follows:

1. Selfish nodes do not comply with rules to set the contention window (CW), no

double CW with collision, namely),2*min(max
i

min CWCWCW < , where i is the

number of successive collisions, minCW is min CW, maxCW is max CW.

2. Back-off values are no longer satisfied with uniform distribution in (0, CW).
3. DIFS, PIFS even SIFS are used improperly.
4. NAV value is set to the larger by RTS/CTS duration field.
5. Smart selfish nodes will carefully use the above four selfish methods, or dis-

tantly use the selfish methods to prevent nodes to be found by detection mechanism.

386 H. Li, M. Xu, and Y. Li

The nodes which are instructed by the MAC protocol to defer transmission are able
to overhear transmissions from nodes whose transmission range reside in [10]. Fig. 3
depicts a scenario where node A or B is malicious. At this stage, we assume that A is
the only selfish node. Node A accesses the channel by using a randomly selected
back-off value within its CW. When the back-off counter decreases to zero, A sends
an RTS to B, which replies with a CTS. Node A’s RTS message silences nodes 1and
2. Similarly, node B’s CTS silences nodes 2 and 3. Following the RTS-CTS hand-
shake, A sends a data segment to B. And the procedure repeats. Consider the i-th

transmission of node A. A node in its transmission range finds time point it of RTS

packet reception from

1,1 >++++= − ibTTTTt iDIFSACKSIFSii (1)

where 1−iT denotes the end time point of reception of the previous data segment and

ib is the random back-off value. Thus, the back-off values can be easily derived. A

node within transmission range of B can also compute the back-off value used by
using the overheard ACK of the previous data segment transmission. Then, a node

can measure time point '
it of CTS packet reception and compute the back-off value of

node A by using

1,
1

' >++++=
−

iTTbTTt SIFSRTSiDIFSACKi I
 (2)

where
1-iACLT denotes the end time point of reception of the previous ACK frame.

A B

1 2 3

WMN node Range of
tranmission

RTS
CTS

Fig. 3. Observer nodes

4 DOUBLE-MODE Detection Model

●Selfish behavior of router node
Due to some "smart" selfish node can adjust the strategy of selfish behavior ac-

cording to the detection model in[10], for instance, smart node may stop selfish

 Selfish MAC Layer Misbehavior Detection Model 387

behavior before the very moment the detection system can make a judgment. This
brought trouble to the sequence judgment method. Therefor we bring forward a dou-
ble-mode mechanism in the detection model for judgment: (1) the frequency of
node’s seizing channel behavior during the active time of the node, (2) continuous
sampling result of node’s back-off value. Continuous sampling k times for selfish

node, >=< −110 ,...,, kbbbb , where ib denotes the i-th sampling. Detection model

idsM is created through training. Calculate the average probability of selfish behav-

ior kbM iids /))((∑ , this data is recorded for the Stat. of the seizing channel fre-

quency)/()*)((NkNbM jiidsj ++= ∑ ηη , where j denotes node No., N

denotes the sampling time. Compare them separately with continuous sampling
threshold and statistical threshold to make the judgment.

●Selfish behavior of client node
As the WMN client node is more difficult to control than router node, besides, it

has mobility, the detection model for selfish behavior of client node is as follows:

Monitor Channel
and compute backoff

Misbehavior
Detection

Add to the
blacklist

Multicast node ID
and Reaction

Yes
No

Fig. 4. Detection system

Router nodes sense channel continuously, compute the back-off value, and send
the results to the detection module which then use the double-mode detection mecha-
nisms to detect. Once selfish behavior is found, blacklist the node ID which will be
also broadcasted to other router nodes to adopt appropriate response mechanism.

● Response Mechanism

It is not enough to blacklist and report to others the node ID, some automatic re-
sponse mechanism is still required. For selfish behavior of router node, its neighbor
node will cut off their communications. For client node, if other client nodes detect its
attack behavior, they cut off the communication while making a report to its associ-
ated router which will take corresponding measures (Prohibition or selectively pro-
hibit network access).

388 H. Li, M. Xu, and Y. Li

5 Attack Detection Algorithm in Double-mode Detection Model

Double-mode mechanism attack detection algorithm is as follows

Detection mode 1 (mainly based on [10]): Let the random variable Y stand for the
back-off value of legitimate node, hence it is uniformly distributed in [0, CW]. Also,
let the random variable X stand for the misbehaving node (attacker), so that it has
unknown f(x) with support [0, CW]. Define the probability distribution function

set { }∫ −<=
CW

CWdxxxfxf
0

2/)(:)(εψ , where ε is the parameter for the

adjustment. If node A is selfish, the probability that the X value is less than Y is

∫ =>=<
CW

dxxfxXXYPYXP
0

)()|()(， and P is larger than 0.5. 0f and 1f

denote the continuous probability density function, then define results after k times

sampling kxx ,...,1 as

),...,(

),...,(
ln

10

11

k

k
k xxf

xxf
S = , and

samplingmore
1

0

⇒<≤
⇒<
⇒≥

aSb

HbS

HaS

k

k

k

, where

10 , HH denote the different judgments. The thresholds a and b are dependent onε .

Detection mode 2: It is proposed by this paper in allusion to smart selfish node. kS

is processed again. Make statistics of the node’s intrusion frequency dxxgR
N

∫=
0

)(,

where N denotes the statistical number,)(xg is the k-th judgment result. Similarly,

we need to give a judgment method based on statis-

tics { }∫ −>=
N

N REdxxgxg
0

)()(:)(ετ , where E denotes the expectation value,

ε is a parameter different from the ε in previous sequence detection method. And

then

samplingmore00

10

00

⇒<≤
⇒<
⇒≥

aRb

HbR

HaR

N

N

N

, where 10 , HH denote the different

judgment result. The thresholds are dependent on the choosing ofε .

6 Simulation and Discussion

In NS2.29 we achieved the simulation to detect 802.11 MAC selfish behaviors using
the double-mode detection model proposed by this paper. Table 1 shows the parame-
ters used in NS2. The adopted wireless channels between the situations when routers
communicate with each other and when client access to network are different.

 Selfish MAC Layer Misbehavior Detection Model 389

Table 1. NS2 parameters

Parameter Value
Topology 2000m×2000m
MAC protocol 802.11
Antenna model OmniAntenna
Router Radio range 300m
Client Radio range 150m
Router bandwidth 11Mbps
Client bandwidth 2Mbps
Packet type TCP
Route protocol AODV

Define the fairness of network as))(/(iii LSS +ΣΣ , where iS denotes the num-

ber of the times of selfish node i's successful MAC layer transmission, iL denotes the

number of the times of legitimate node i‘s successful MAC layer transmission. The
density of selfish nodes is the ratio of the selfish nodes’ number to the total nodes’
number in network. The density of router nodes and client nodes are calculated sepa-
rately. Fig. 5 shows that the impact of selfish attack on the network fairness increases
rapidly in WMN without our detection model. The other way round, the network
fairness can be guaranteed in WMN with our detection model when the density of
selfish node is not very high. Comparing with router, the client node in the legitimate
router’s coverage can prevent the selfish behavior attack better.

a b

Fig. 5. Fairness in WMN

Similarly, the detection rate is defined as the ratio of the number of the selfish
nodes that have been detected to the number of the total selfish nodes. Comparing
with the sequence method [10], our double-mode detection method’s sample time is
much less. As shown in fig. 6, our detection model improves the speed of selfish

390 H. Li, M. Xu, and Y. Li

attack detection as well as ensuring the detection effect of the smart selfish node.
When the detection rate is larger than 98%, false detection probability (the ratio of the
number of the legitimate nodes that are misjudged to selfish nodes to the number of
the legitimate nodes) of router is less than 0.9%， false detection probability of client
nodes is less than 0.6%.

a b

Fig. 6. The number of sampling

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Density of selfish nodes

T
h
r
o
u
g
h
p
u
t
(
%
)

selfish nodes overhead

legitimate client legitimate router

Fig. 7. Network overhead

According to the simulation results (Figure 7), we can see that our double-mode
detection model can control the network access of the selfish nodes when the density
of selfish node is not very high.

7 Conclusion

In this paper, we deeply analysed the IEEE 802.11 MAC protocol DCF mechanism,
the selfish behavior attacks model, selfish attack detection model and smart nodes

 Selfish MAC Layer Misbehavior Detection Model 391

selfish attack strategy in WMN. Based on the selfish detection model [10] in Ad hoc
network, a double-mode detection mechanism in WMN is proposed, which formed a
new attack detection model. Finally the model is simulated in NS-2. Simulation re-
sults show that the double-mode detection model is applicable in detecting selfish
behavior and smart selfish node in WMN, it can guarantee the network fairness while
lower the network overhead.

References

1. Guang, L., Assi, C.: Modeling and Analysis of Predictable Random Backoff in Selfish En-
vironment. In: MSWiM 2006, Terromolinos, Malaga Spain, October 2–6, 2006, pp. 86–90
(2006)

2. Guang, L., Assi, C.: Mitigating smart selfish MAC misbehavior in ad hoc networks. In:
Proc. IEEE WiMob (June 2006)

3. Kyasanur, P., Vaidya, N.H.: Detection and Handling of MAC Layer Misbehavior in Wire-
less Networks. In: Proc. 2003 Int’l Conf. Dependable Systems and Networks, pp. 173–182
(2003)

4. Djenouri, D., Khelladi, L., Badache, A.N.: A Survey of Security Issues in Mobile Ad Hoc
and Sensor Networks, Communications Surveys & Tutorials, IEEE, Vol. Communications
Surveys & Tutorials 7(4), 2–28 (2005)

5. Kyasanur, P., Vaidya, N.: Selfish MAC layer misbehavior in wireless networks. IEEE
Transactions on Mobile Computing (September 2005)

6. Bellardo, J., Savage, S.: 802.11 denial-of-service attacks: real vulnerabilities and practical
solutions, In: Proc. USENIX Security Symp., Washington DC, pp. 15–28 (August 2003)

7. Kyasanur, P., Vaidya, N.H.: Detection and handling of MAC layer misbehavior in wireless
networks. In: Proc. Int. Conf. Dependable Systems and Networks, San Francisco, CA, pp.
173–182 (June 2003)

8. Raya, M., Hubaux, J.-P., Aad, I.: DOMINO: a system to detect greedy behavior in IEEE
802.11 hotspots. In: Proc. MobiSys, Boston, MA, pp. 84–97 (June 2004)

9. Cagalj, M., Ganeriwal, S., Aad, I., Hubaux, J.-P.: On selfish behavior in CSMA/CA net-
works. In: Proc. IEEE INFOCOM 2005, Miami, FL, pp. 1514–2513 (March 2005)

10. Radosavac, S., Baras, J.S.: A Framework for MAC Protocol Misbehavior Detection in
Wireless Networks. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng,
Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 33–42. Springer, Heidelberg (2005)

11. Konorski, J.: A Game-Theoretic Study of CSMA/CA Under a Backoff Attack. IEEE/ACM
Transactions on Networking 14(6), 1167–1177 (2006)

12. Aad, I., Hubaux, J.P., Knightly, E.W.: Denial of service resilience in ad hoc networks. In:
Proceedings of ACM MobiCom (September 2004)

13. Gupta, V., Krishnamurthy, S., Faloutsous, M.: Denial of service attacks at the MAC layer
in wireless ad hoc networks. In: Proc. of MILCOM (2002)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 392 – 401, 2007.
© Springer-Verlag Berlin Heidelberg 2007

rHALB: A New Load-Balanced Routing Algorithm for
k-ary n-cube Networks

Huaxi Gu1, Jie Zhang2, Kun Wang3, and Changshan Wang3

1 State key lab of ISN, Xidian University, Xi’an, China 710071
2 Dept. of Computing and Information Systems, University of Bedfordshire, UK

3 School of Computer Science, Xidian University, Xi’an, China 710071U
hxgu@xidian.edu.cn, kwang@mail.xidian.edu.cn

Abstract. A new load-balanced routing algorithm for k-ary n-cube networks is
proposed in this paper. The new algorithm, called rHALB (r Hop Aware Load-
Balanced) routing algorithm, can efficiently balance traffic loads in k-ary n-
cube networks. It is based on the limited global information, which is a tradeoff
between local and global information. rHALB makes use of the number of
potential deadlocked packets to detect the congestion, and can direct the traffic
to bypass any detected hotspots, thus balancing the traffic. Simulations are
carried out on 2D torus networks by using OPNET. The results show that
rHALB achieves a better performance (latency and throughput) under various
traffic patterns than dimension order routing and Duato’s algorithm, which are
popularly used in commercial products, and ROMM, ACQ and GAL, which
were proposed in literature recently.

1 Introduction

The direct interconnection networks have been studied extensively as the critical
components in many fields, such as multiprocessor systems, I/O interconnect and
supercomputers. A survey of such networks can be found in [1,2]. Recently, direct
interconnection networks have become popular architectures for on-chip
communication. The traditionally used bus-based architecture may not be able to meet
the scalability, reliability and high throughput requirement for complex
multiprocessor system in future [3]. Hence, the functional IP blocks can communicate
with each other with the help of the direct interconnection networks[4]. A k-ary n-
cube network is a family of direct interconnection networks. Besides its use in terabit
routers, k-ary n-cube networks have been used in supercomputers (or parallel
computers) such as SGI Origin 2000, iPSC860, CrayT3D and CrayT3E [1, 2].It has
also been used for I/O interconnect in infiniBand architecture [5].

Routing algorithms, which specify how packets travel from the source to the
destination node, are crucial for the performance of the networks. An efficient routing
algorithm can improve the network throughput and reduce the average latency.
Routing algorithms can be generally classified into two categories: deterministic and
adaptive. Deterministic routing has been very popular in practice for its simple

 rHALB: A New Load-Balanced Routing Algorithm for k-ary n-cube Networks 393

hardware implementation. Dimension order (DO) routing [6] is a typical
representative of this kind. It routes the packet first along the lowest dimension and
then along higher dimension until the packet arrives at the destination. Many
commercial products use dimension order routing, such as Intel Paragon, MIT J-
machine and Cray T3D [1, 2]. However, DO cannot avoid congested links, and thus
makes some links overloaded while others idle.

Adaptive routing was proposed to overcome the performance limitations of
deterministic routing. A minimal adaptive routing algorithm can route packets along
any of the shortest path in the topology. Duato proposed an adaptive algorithm in [7].
The algorithm requires at least three virtual channels, which are divided into two
classes a and b. Class b contains two virtual channels, in which deterministic routing
is applied. The rest virtual channels belong to class a, where fully adaptive routing is
used. The packets can adaptively choose any virtual channels available from class a.
If all the virtual channels of class a are busy, the packets enter channels that belong to
class b. Duato’s algorithm is very popular and has been used in many commercial
products [1, 2]. However, it uses DO to provide deadlock freedom, which restricts the
use of some virtual channels. Recently, unrestricted true fully adaptive routing
(TFAR) has gained consideration in the scientific community [8]-[11]. TFAR does
not impose any restriction on routing, so deadlock may occur. TFAR uses deadlock
detection mechanisms to find the deadlock and resolve it by the recovery mechanism.
Most deadlock detection mechanisms use time-out criteria to ensure deadlock
occurrence, which is simple to implement [8, 10, 11].

The routing algorithms mentioned above often focus their attentions on providing
low latency on local traffic. But for some adversarial traffic, such as hotspot or
tornado traffic [2], these algorithms may load some links heavily while letting others
idle. This uneven network utilization often results in an early saturation and hence
degrades the network performance. Therefore, some load-balanced routing algorithms
are proposed to strike a balance between the conflicting goals of providing low
latency on local traffic and providing high throughput on adversarial traffic [12]-[15].
A two-phase randomized routing algorithm is proposed by Valiant in [12]. It uses a
random node as intermediate destination so as to give good performance on worst-
case scenario. But it lost locality and the buffer size of O(n) are required in each node.
ROMM [13] is an improved version of Valiant's algorithm. ROMM chooses the
intermediate node within the minimal quadrant. The packet routes along the minimal
path, with a randomized order of dimension traversal, from the source to the
intermediate node, and repeats the same algorithm from intermediate node to
destination. Arjun [14] proposes a load-balanced routing algorithm called GAL that
adapts globally by sensing global congestion using injection queues at the source
node. GAL routes the packets minimally at low load and on benign traffic and
switches to non-minimal routing as the congestion is detected by the injection queues.
But it has its own shortcomings. For example, its requirement for many injection
queues makes it complex to implement. It also has very high latency when it starts
routing traffic non-minimally [15]. Hence, an improved version of GAL， called
ACQ， is proposed in [15]. Instead of using injection queues, ACQ estimates global
congestion from the channel queues while relying on the implicit network back

394 H. Gu et al.

pressure to transfer congestion information to these queues. ACQ uses a similar
scheme with the Duato’s algorithm to achieve deadlock freedom. This scheme
devotes some amount of virtual channel resource for improbable deadlock situations.
It is not a true fully-adaptive routing. And the global congestion information is
inaccurate in ACQ.

In this paper, we introduce a new load-balanced routing algorithm called rHALB (r
Hop Aware Load-Balanced) routing algorithm. rHALB uses time-out criteria to detect
deadlocks, absorbs the detected deadlocked packet to the local node and retransmits it
at a later time. It is also a true fully adaptive routing algorithm, which facilitates
implementing load-balancing algorithms. rHALB uses the number of the detected
potential deadlock packets to sense the congestion and then leads the packets to
bypass the congested area as early as possible. rHALB is a limited-global-
information-based routing algorithm, which is a compromise between global-
information-based and local-information-based approaches. By using such
information, rHALB requires a relatively simple process to collect and maintain link
information in the neighborhood. Therefore, such an approach can be more cost-
effective than those based on global or local information.

2 Notations

cn the current node;
i
cn neighbor node of cn in the ith direction;

P packet set, p∈P represents a single packet;
(p)

cnS the set of directions in which p can follow minimal path form cn to

destination.

3 rHALB (r Hop Aware Load-Balanced) Routing Algorithm

3.1 Link State Vector and Direction Weight Vector

Before we introduce rHALB algorithm, we present some definitions here.

Definition 1. Let k-ary n-cube k-ary n-cube k-ary n-cubeG =(,) , k-ary n-cubecn ∈ ,
cnΘ is link state

vector for cn and is defined as (0

cnθ , 1

cnθ ...
c

i
nθ … nd

cnθ).
c

i
nθ is determined by the

ToutPkCounter(cn , i), which is associated with output physical channel i at node cn .

Each time a potential deadlocked packet is ejected from the network, the

ToutPkCounter(cn , i) is incremented for i ∈ (p)

cnS . Once the packet is resent

successfully, the ToutPkCounter(cn , i) is decremented for i∈ (p)

cnS . Therefore,
cnΘ

can reflect the congestion degree of links around cn .

 rHALB: A New Load-Balanced Routing Algorithm for k-ary n-cube Networks 395

Definition 2. Let k-ary n-cube k-ary n-cube k-ary n-cubeG =(,) , k-ary n-cubecn ∈ and p ∈ P,

(r, p)
cnΦ is direction weight vector (DWV) at cn for packet p and can be defined as

(0

cnϕ , 1

cnϕ ...
c

i
nϕ … nd

cnϕ). (r, p)
cnΦ is calculated by (1) as follows.

(p) (p)

(p)

 (r=1)

(r 1,p) (r 1,p)

(r, p) (1)[(1)
| | |

c

i i
c c

n nc c

c c

c

i
n

j j

n n
j S j Si i

n n
n nS d S

θ

ϕ ϕ

ϕ αθ α β β
∈ ∉

− −

= + − + −
−

∑ ∑
(p)

] (1<r k/2) (1)
|

 r>k/2
cn

⎧
⎪
⎪
⎪

≤⎨
⎪
⎪
⎪
⎩
no sense ()

where ,α β are coefficients and 0 , 1α β≤ ≤ . From (1), it is obvious that

(r, p)
cnΦ consists of two parts. The first part represents state of links connected to the

current node. The second part shows the states of links around next node. If α is

between 0.5 and 1, (r, p)
cnΦ is mainly determined by the states of the connected links.

Specially, for 1α = , rHALB is completely based on local information. We use β to

adjust the effect of non-minimal path on the direction weight vector (DWV). If β =1,

only states of links in the minimal path are considered when calculating the second
part of DWV.

3.2 The rHALB Algorithm

When the packet p arrives at the current node, rHALB calculates
c

i
n (r, p)ϕ for each i.

It always routes the packets along the shortest path with the increasing order of

c

i
n (r, p)ϕ . rHALB allows for non-minimal paths if all the channels on the shortest path

are busy. A field in the packet is set to MisNum when the packet is generated. Each
time the packet misroutes along the non-minimal path, MisNum is decremented by
one. If MisNum is equal to zero, the packet could not take the non-minimal path
anymore. A description of rHALB algorithm is shown as below.

rHALB algorithm:

1. Receive packet p;

2. Obtain the destination address and calculate ixΔ ;

3. For all i if ix 0Δ ≠ Add i to Shortest-Dimension-Set;

4. If Shortest-Dimension-Set= ∅ Send the packet to the local node and Exit;

5. Calculate
c

i
n (p)ϕ ;

6. Try to send p along i∈ Shortest-Dimension-Set with the increasing order of

c

i
n (p)ϕ ;

396 H. Gu et al.

7. If succeed Exit;
8. If for all i∈ Shortest-Dimension-Set the channels are busy
9. {

10. If
c

i
nθ <Tm and i

c

i

n
θ <Tm

11. Wait until one of the channels in Shortest-Dimension-Set is idle.
12. else
13. {
14. Obtain the MisNum from packet p;
15. If (MisNum>0)
16. {

17. Try to send the packet p along –i until ix 0Δ =

18. If succeed
19. {
20. MisNum--;
21. Exit;
22. }
23. }
24. else
25. Wait until one of the channels in Shortest-Dimension-Set is idle.
26. }
27. }
28. Wait until timeout and deliver packet p to local node as a potential

deadlocked packet;
29. Exit.

3.3 Deadlock Detection and Recovery

Deadlocks can be detected by a simple time-out criterion, which is similar to those

suggested in [8, 10]. A TwaitCounter(cn ,i) is associated with physical channel i at

node cn . It is incremented every clock cycle. Hence it keeps tracks of the number of

cycles during which the node cn cannot send out the packet in the ith direction. When

TwaitCounter(cn , i) is greater than the threshold Tout, the packet is ejected from the

network as a potential deadlocked packet. When the packet is transmitted, either

forwarded to the next node or ejected out of the network, TwaitCounter(cn , i) is

reset.
Instead of dropping the deadlocked packets [10], rHALB uses a software-based

recovery mechanism, which is also used in [8,16]. By using such a mechanism, the
potential deadlocked packet is absorbed by the local node and will be retransmitted at
a later time.

Theorem 1. rHALB is livelock free and it can resolve every detected deadlock.

Proof. In most cases rHALB makes the packet choose the minimal path, thus
providing livelock freedom. rHALB allows for the non-minimal path, but the number

 rHALB: A New Load-Balanced Routing Algorithm for k-ary n-cube Networks 397

of times for a packet to misroute is limited by MisNum. Therefore, after a finite
number of hops, the packet will arrive at the destination. On the other hand, the
rejected packet will be resent in finite time, which is proved in [9]. Thus, rHALB is
livelock free.

Suppose that a deadlock has been detected. rHALB uses the software-based
deadlock recovery mechanism to deliver the potential deadlocked packet to the local
node, thus freeing the resource it occupied. Other packets that form the deadlock
cycle can use the freed resources and continue the travel. Hence, the deadlock is
resolved. □

4 Simulation Study

4.1 Evaluation Methodology

In this section, the performance of the rHALB algorithm will be evaluated by
simulations and will be compared with those of dimension order (DO) routing
algorithm, Duato’s algorithm, ROMM, GAL and ACQ. The simulations have been
done in the environment of OPNET simulation software [17]. Only virtual cut through
switching mechanism is used in the simulations [18], but the algorithms are also
suitable for wormhole switching [19] and store-and-forward switching.

The simulations are based on the following assumptions if not specially stated.
Packet length distribution is a specific distribution SP (Size and Percent) that is based
on the IP (Internet Protocol) packet size and percentages sampled over a two-week
period [20]: 40 bytes (56 percent of all traffic), 1500 bytes (23 percent), 576 bytes
(16.5 percent) and 52 bytes (4.5 percent). Such configurations of simulation
environments are very close to the reality, which makes the results more convincing.

The traffic patterns used in the simulations include the uniform, the hotspot and the
tornado traffic [2]. In the uniform traffic pattern, each node sends packets to all other
nodes with the same probability. In the hotspot traffic pattern, one or more nodes are
designated as the hotspot nodes, which receive hotspot traffic in addition to the
regular uniform traffic. In the tornado traffic pattern, the node (i, j) only sends packets

to node (i, (j / 2 1) mod kk+ −⎡ ⎤⎢ ⎥).

Low dimensional torus is popular in implementations and many routing algorithms
have been proposed for these topologies [21]. Hence, a 2D torus network is used in
the simulations. We have simulated an 8-ary 2-cube network and a 16-ary 2-cube
network, however, only the results of the 8-ary 2-cube network are presented here due
to space constraints. The results obtained for the 16-ary 2-cube network are similar to
those of the 8-ary 2-cube network.

The nodes operate asynchronously and generate packets at time interval that
follows the negative exponential distribution. For a fair comparison, three virtual
channels are used for each algorithm. The value of r and MisNum for rHALB routing
algorithm is 2 and 1 respectively.

Packets arriving at a destination node are consumed immediately. The performance
of the routing algorithms is evaluated in terms of two main metrics: ETE (End To

398 H. Gu et al.

End) delay and network throughput. The ETE delay is defined as the average time
from the packet generation to the time when it reaches the destination. We use
normalised throughput, which is equal to the number of packets that can be
transmitted at the maximum load [22].

4.2 Simulation Results

As Fig.2 shows, under uniform traffic pattern for traffic loads less than 0.4 where little
congestion is present, the six algorithms yield almost identical latency and throughput.
When traffic loads increase to 0.5 and over, the performance gap starts to broaden.
ROMM and ACQ are the first to saturate and yield the highest latency. The
deterministic DO achieves similar network performance as those achieved by adaptive
GAL and Duato’s algorithm. The reason is that DO incorporates more long-term
information about the characteristics of uniform traffic that may lead to more even
distribution of traffic. But ROMM uses a random mediate node and ACQ uses non-
minimal path, both of which break the evenness of the uniform traffic. rHALB turns out
to be the best of the six algorithms, with the lowest latency and the highest throughput.

Fig. 2. Performance of the six algorithms under uniform traffic

We simulate hotspot traffic with two hotspots. The location of the hotspots can be
randomly chosen because of the symmetry of the k-ary n-cube network. The hotspot
receives 9% more traffic than the other nodes. As shown in Fig 3, the adaptive routing
algorithms have advantages in balancing the network load. DO is the first to saturate
and yields the highest ETE latency because it cannot distribute the traffic evenly
among the links around the hotspots. It is obvious that rHALB outperforms the other
routing algorithms in term of balancing the hotspot traffic. This is because rHALB
can route the traffic to bypass the hotspot, thus lowering the burden of the hotspot
node. Therefore, rHALB achieves a throughput three times higher than the
deterministic algorithm with the same number of virtual channels. rHALB also
achieves the lowest latency for the full range of traffic among the six algorithms.

 rHALB: A New Load-Balanced Routing Algorithm for k-ary n-cube Networks 399

Fig. 3. Performance of the six algorithms under hotspot traffic

Fig. 4. Performance of the six algorithms under tornado traffic

The results obtained under the tornado traffic pattern are plotted in Fig.4. Tornado
traffic pattern is one of the typical adversarial traffic patterns. In this pattern, the three
minimal algorithms, DO, ROMM and Duato’s algorithm show their shortcomings.
They all saturate at around 0.25, which is 50% earlier than rHALB. The reason is that
they route all of the packets in the direction of the minimal path, leaving the channels
in the other direction idle. Compared with the minimal algorithms, GAL, ACQ and
rHALB allow for the non-minimal path, thus utilize channels in the non-minimal
paths. The load-balanced routing algorithms ACQ and rHALB offer the best
performance because they can efficiently balance the load across the two directions in
the y dimension.

5 Conclusion

A load-balanced routing algorithm called rHALB for k-ary n-cube networks is
presented in this paper. rHALB makes use of limited global information, which is a
tradeoff between global information and local information. When the traffic is low,
rHALB routes all the packets minimally and thus obtains low latency and high
throughput as seen in other minimal routing algorithms. When the traffic load is high

400 H. Gu et al.

or when some adversarial traffic patterns are present, rHALB switches to non-
minimal routing as congestion is detected by the direction weight vector. Hence,
rHALB can make full use of links that left idle when minimal routing algorithms are
used. Extensive simulations were carried out to compare rHALB with some other
known algorithms such as DO, ROMM, GAL ACQ and Duato’s algorithm in terms of
throughput and latency under various network environments. The simulation results
show that rHALB can delay saturation time and improve the overall performance. It
provides the highest throughput and the lowest latency among the six algorithms on
the three adversarial patterns.

Since we only simulated rHALB with r=2 and MisNum=1, in the future, we will
study the effects of these two parameters on the performance of the rHALB
algorithm. In addition, to apply rHALB algorithm to higher dimensional torus
networks and other popular networks is another research topic in the future.

Acknowledgement

This research was supported by the Zhongxing Telecommunication Equipment
Corporation (ZTE) Research Fund under Grant No. ZXJS200609120159.

References

1. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks, an Engineering Approach.
Morgan-Kaufmann Press, San Francisco (2003)

2. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Morgan-
Kaufmann Press, San Francisco (2004)

3. Bjerregaard, T., Mahadevan, S.: A Survey of Research and Practices of Network-on-Chip.
ACM Computing Surveys 38(1) (2006)

4. Agarwal, A., Mustafa, M., Pandya, A.S.: Study of Network on Chip resources allocation
for QoS. In: Canadian Conference on Electrical and Computer Engineering, pp. 1291–
1295 (May 2006)

5. Pfister, G.: An introduction to the infiniband architecture. In: High Performance Mass
Storage and Parallel I/O, IEEE Press, Los Alamitos (2001)

6. Sullivan, H., Bashkow, T.R.: A large scale, homogeneous, fully distributed parallel
machine, I. In: Proc. of the International Symposium on Computer Architecture, pp. 105–
117 (1977)

7. Duato, J.: A New Theory of Deadlock-Free Adaptive Routing in Wormhole Networks.
IEEE Trans. on Parallel and Distributed Systems 4, 1320–1331 (1993)

8. Anjan, K.V., Pinkston, T.M., Duato, J.: Generalized theory for deadlock-free adaptive
routing and its application to Disha Concurrent. In: Proceedings of the 10th International
Parallel Processing Symposium (April 1996)

9. Martínez, J.M., López, P.L., Duato, J., Pinkston, T.M.: Software-Based Deadlock
Recovery Technique for True Fully Adaptive Routing in Wormhole Networks. In: ICPP
1997, pp. 182–189 (1997)

10. Kim, J., Liu, Z., Chien, A.: Compressionless Routing: A Framework for Adaptive and
Fault-Tolerant Routing. IEEE Trans. Parallel and Distributed Systems 8(3), 229–244
(1997)

 rHALB: A New Load-Balanced Routing Algorithm for k-ary n-cube Networks 401

11. Khonsari, A., Shahrabi, A., Ould-khaoua, M., Sarbazi-Azad, H.: Performance comparison
of deadlock recovery and deadlock avoidance routing algorithms in wormhole-switched
networks. IEE Proceedings-Computers and Digital Techniques, 150(2), 97–106 (2003)

12. Valiant, L.G.: A scheme for fast parallel communication. SIAM Journal on
Computing 11(2), 350–361 (1982)

13. Nesson, T., Johnsson, S.L.: ROMM routing on mesh and torus networks. In: The
Symposium on Parallel Algorithms and Architectures, Santa Barbara, CA, pp. 275–287
(1995)

14. Singh, A., Dally, W.J., Towles, B., Gupta, A.K.: Globally Adaptive Load-Balanced
Routing on Tori. Computer Architecture Letters, 3 (March 2004)

15. Singh, A., Dally, W.J., Gupta, A.K., Towles, B.: Adaptive Channel Queue Routing on k-
ary n-cubes. In: ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), Barcelona, Spain (June 2004)

16. Suh, Y.J., Dao, B.V., Duato, J.: Software-Based Rerouting for Fault-Tolerant Pipelined
Communication. IEEE Trans. Parallel and Distributed Systems 11(3) (March 2000)

17. Kermani, P., Kleinrock, L.: Virtual Cut through: A new computer communication
switching technique. Computer Networks 3, 34 (1979)

18. Gu, H., et al.: Choice of Inner Switching Mechanisms in Terabit Router. In: Lorenz, P.,
Dini, P. (eds.) ICN 2005. LNCS, vol. 3420, pp. 826–833. Springer, Heidelberg (2005)

19. OPNET Modeler documentation, OPNET Technologies, Inc. (2007),
 http://www.opnet.com/

20. Newman, D.: Internet Core Router Test, On the Web (March 6, 2001)
 http://www.lightreading.com

21. Shih, J.-D.: Fault-tolerant wormhole routing in torus networks with overlapped block
faults. IEE Proc. Comput. Digit. Tech. 150(1) (2003)

22. Towles, B., Dally, W.J.: Worst-case traffic for oblivious routing functions. In: SPAA 2002.
12th Annual ACM Symposium on Parallel Algorithms and Architectures, Canada (2002)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 402–413, 2007.
© Springer-Verlag Berlin Heidelberg 2007

P2P File Sharing in Wireless Mesh Networks*

Luo Huiqiong1, Ding Xuyang1, Lao Hansheng2, and Wang Wenmin1

1 School of Computer Science and Engineering, University of
Electronic Science and Technology of China,

Chengdu, 610054, China
2 College of Zhongshan Torch Profession, Zhongshan, 528437, China

Abstract. In wireless mesh networks, the connective time would be relatively
short in multi-hop nodes because of the mobility of peer nodes and the wireless
collision. Therefore, it is important that how peers choose reasonable schemes
to gain more benefits and improve the networks performance when they imple-
ment the peer-to-peer file sharing in limited environment. On the basis of the
researches of peer-to-peer file sharing and the inherent characteristic of wireless
mesh networks, a novel venture investment based file sharing model is pro-
posed. The model provides a mechanism to maximize investment benefit and
minimize investment venture, and makes optimization investment schemes
through a benefit evaluation method. The simulation results show that the ven-
ture investment model can assist networks nodes to invest file sharing effec-
tively and improve the performance of networks.

1 Introduction

The WMNs (Wireless Mesh Networks) is deployed with the end-to-end pattern, and it
can be treated as a small wireless Internet according to its networks topology. In the
Internet, the P2P (Peer-to-Peer) technique makes use of net-works resources, includ-
ing computing resources, bandwidth resources, content resources and so on, to de-
crease the re-source requirements of the networks servers and bring a great deal of
benefits in the same time. Recently, the computing and processing capability, storage
capacity and the communication capability of mobile terminals are increased continu-
ously. As the wide using of these equipments, it is possible to implement P2P File
Sharing in WMNs.

In WMNs, the connective time of peers would be relative short because of the mo-
bility of peer nodes and the wire-less collision. Therefore, it is important that how
peers choose reasonable schemes to gain more benefits and to improve the networks
performance when they implement the P2P file sharing in limited environment. The
P2P file sharing model which is designed according to the characteristic of Internet
can’t apply to WMNs and how to implement the P2P file sharing in WMNs is still not
be solved perfectly.

In this paper, we review some researches and applications related to the P2P file
sharing technology at first. Then, according to the characteristics of the WMNs, we

* This research was supported by the National Natural Science Foundation of China (No.

60673142).

 P2P File Sharing in Wireless Mesh Networks 403

propose a venture investment based P2P file sharing model and simulate the model to
prove its validity. Finally, we analyze the simulation results and draw a conclusion.

2 Related Works

You In the Internet, the primary protocols and models of P2P file sharing are Napster,
BitTorrent, Gnutella, FastTrack, Chord, Freenet and so on. Napster [1] is a mixed and
unstructured P2P file sharing meshwork. Central Server doesn’t save files, but save
the file index preserved by nodes, and clients search peers which preserved files for
downloading. BitTorrent [2] is a mixed, unstructured, and multipoint-to-multipoint
P2P file sharing networks, files or file blocks use the SHA1 Hash as marks, and the
Hash can be used to verify the integrality of files. The central server is called as
tracker, doesn’t save sharing files, but save the information of the shared files and the
shared user information. The information of shared files including tracker’s address,
file block size and file block hash which are saved in the files whose expanded name
is torrent. These files usually promulgate via web. Gnutella [3] is a dispersed, unstruc-
tured P2P file sharing meshwork. Every Gnutella peer defines a local shared folder,
these peers search files with part or the whole filename. The search is processed in
flooding mode until to the scheduled layer. FastTrack [4] is an unstructured file shar-
ing P2P networks with super nodes. When the peers start up, they register on the
server to get the ID list of super nodes, then broadcast query the file store information
in the whole networks via super nodes, and connect the peers to download files ac-
cording to the usable file list returned form the query. Chord is a dispersed, structured
P2P file searching protocol. In this protocol, every peer has its own virtual logical
address. It composes a relative steady and close topological structure according to the
addresses and constructs a DHT (Distributed Hash Table) to store files. Every search
of peers searches the corresponding files according to the DHTs. Freenet [5] is a dis-
persed, loose-structured file sharing model. It doesn’t have any central server, so the
peers don’t work with flooding mode as the Gnutella’s. It only transmits request to the
peers which seemly match with the request. If the matching is constituted, it makes
sure the request chain and returns a response, then transmits files between two peers
directly.

In WMNs, the P2P file sharing model designed according to the characteristic of
the Internet is not suitable completely, because of the mobility of peer nodes and the
wireless collision. Anna Hayes and others use the Gnutella protocol to implement the
P2P file sharing [6], but the file query process of this model increases extra networks
load, and it forms bottleneck when the higher degree nodes join in. All of these will
affect the capability of the networks. Proem [7] defines four protocols to accomplish
the reliable transfer, data sharing, synchronization, node verification, and peers search
in the WMNs. But in fact this scheme is too broadly to actualize expected objectives.
In many investigators’ opinion, the primary barrier of implement the P2P file sharing
is how to query files and lighten the load of queries, and they apply it to seek solving
schemes [8,9,10,11,12]. But different with wire networks, only solving the problem of
files and peers query can’t make the P2P file sharing model applied in the WMNs
normally. It is easy to induce networks congestion when transfers a mount of files

404 L. Huiqiong et al.

concurrently and continuously on multi-hop routes because of the inherent character-
istic of WMNs, as it is shown in the simulations. Therefore, it is important that how
peers choose reasonable schemes to gain more benefits and to improve the perform-
ance of networks while they implement the P2P file sharing in limited environment. If
we regard the file sharing offered by one peer to other peers as the peer’s contribution
to the networks, then which files does the peer choose to store and how many benefits
can be get from could be treated as a venture investment. And how to looking for the
scheme of maximize investment benefit and minimize investment venture on the same
risk level is the point. We built a file sharing model for the WMNs via the optimiza-
tion venture investment in this paper.

3 Venture Investment Based File Sharing Model

Since the performance of the mobile nodes including computing, storage capacity,
communication and so on increase continuously, many resources isn’t exhausted by
their owner in the WMNs. And the free resources can be used to help the server to
store parts of files, and provide shared services to other peers. The essential spirit of
P2P technology is cooperation and mutual benefit. The users provide their own re-
sources in order to use others’ resources and implements win-win finally. In general,
the more pains, the more gains. But how many benefits will be get from the shared
investment is uncertain. So, if the user can choose a wonderful scheme which the user
can make more contributions to the networks, it can get the most expected income
with the venture investment at the same risky level. And how to make a wonderful
scheme is we need to solve.

3.1 Venture Investment Model

Suppose that every user have storage resources for venture investment. They store some
files of the server to offer service to peers and expect to get the maximum benefit.

To build venture investment model, we have to quantify investment venture and
income. According to the investment theory of Markowitz [13,14], the expected re-
turn can be weighed by the rate of return expectation, and the risk can be weighed by
the square deviation. The higher the rate of return expectation is, the more the income
is. While the more square deviation or standard deviation is, the more discrete degree
of the rate of return is, in other words, the higher the uncertain of future income is.
For describing the venture investment model and drawing investment scheme, we
introduce symbols as follows:

ir
~ : It is the random income of unit storage resources while the file i is shared,

ni ,,2,1= ;

ir :]~[irE , it is the income expectation of unit storage resources while the file i is

shared, ni ,,2,1= ;

1+nr : It is the income of unit storage resources while the user does not offer any file

sharing service. Obviously, we can not expect get more returns than it sharing the

files, so 1+> ni rr , ni ,,2,1= ;

 P2P File Sharing in Wireless Mesh Networks 405

ijσ : It is the covariance)~,~cov(ji rr of ir
~ and jr~ , nji ,,2,1, = ;

ip : It is the size of storage resources which is needed for sharing the file i ,

ni ,,2,1= , 1+np is the size of the rest storage resources;

ix : Whether the user shares the file i , 1 means yes while 0 means no,

ni ,,2,1= , and the 1+nx denotes whether the user have rest storage resources, 1

means yes while 0 means no;
0
ix : It is the initial state of user coming into the networks, ni ,,2,1= , 10

1 ≡+nx ,

and the meaning of value is same with ix ;

In order to evaluate the returns and risk of the scheme, we suppose as follows:

(1) There are),2,1(=nn files stored on the file server. And the random in-

comes of unit storage resources of different files are not related.
(2) The expectation of the rate of returns is not known exactly, but lies in a known

interval, nibra iii ,,2,1, =≤≤ , where ia and ib are nonnegative constants. In

fact, the ia and ib can be get from the real statistical results, and the choice of the

venture investment has no relation to the values of ia and ib .

(3) The available storage resources hold the line during the investment process,

marked as 0M .

With
0M

xp
y ii

i = ,
0

0
0

M

xp
y ii

i = , we can get from the hypothesis (3):

∑
+

=

=
1

1

1
n

i
iy , ∑

+

=

=
1

1

0 1
n

i
iy (1)

From the formula (1), the random returns of investment),,,(121 += nxxxx are:

]~[~
1

11
0

111
1

∑∑
=

+++++
=

+=+
n

i
nniinnn

n

i
iii yryrMxprxpr (2)

From the equation (2), the rate of random returns of invest-

ment),,,(121 += nxxxx is:

∑
=

+++=
n

i
nnii yryryR

1
11

~)((3)

According to the formula (3), the expectation and square deviation of the rate of
random returns are:

∑
+

=

=
1

1

)]([
n

i
ii yryRE (4)

406 L. Huiqiong et al.

∑∑
= =

=
n

i

n

j
jiij yyyRVar

1 1

)]([σ (5)

As a rational investor, his aim is the maximum returns expectation and the mini-
mum risk square deviation. So he should make a trade-off between the two aims. We
take ω and ω−1 as the trade-off factors of)]([yRVar and)]([yRE . The factor

ω can be seen as the investor’s risk aversion factor, and the bigger ω is, the more
the investor detests risk. When ω =1, the investor is too conservative, and he only
pays attention to the risk but forget the benefit; When ω =0, the investor is only look-
ing for the benefit. As we know, a rational investor should detest the risk, so we sup-

pose that: 10 ≤< ω . Although the value of ir isn’t known exactly, we know a

rational user usually reduces the risk on the basis of the maximum income. So, he has
to solve the minimax problem shown in the formula (6).

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤<
=≤≤

=

−−

∑

∑∑∑
+

=

= =

+

=

10

,,2,1,

1

..

])1[(maxmin

1

1

1 1

1

1

ω

σωω

ω

nibra

y

ts

yyyr

P

iii

n

i
i

n

i

n

j
jiij

n

i
ii

yr

 (6)

With }1:{
1

1

== ∑
+

=

n

i
iyyY , },,2,1,:{ nibrarR iii =≤≤= . The above optimi-

zation problem can be written into a minimax problem)(ωP in standard form as

follow: ∑∑∑
= =

+

=∈∈
−−

n

i

n

j
jiij

n

i
ii

YyRr
yyyr

1 1

1

1

])1[(maxmin σωω .

To solve the minimax problem)(ωP , we have to solve the problem

∑∑∑
= =

+

=∈
−−

n

i

n

j
jiij

n

i
ii

Yy
yyyr

1 1

1

1

])1[(max σωω at first, viz.:

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−−

∑

∑ ∑∑
+

=

+

= = =
1

1

1

1 1 1

1:..

])1[(max

n

i
i

n

i

n

i

n

j
jiijii

y

yts

yyyr σωω
 (7)

 P2P File Sharing in Wireless Mesh Networks 407

With T
nyyyy),,,(21= , T

nrrrr),,,(21= ,
TI)1,,1,1(=

nR∈ , the opti-

mization problem above can be changed into the unconstrained optimization problem
in equation (8):

]))(1()1[(max 11 VyyyIrrrG TT
nn

y
ωωω −−−+−= ++ (8)

According to the hypothesis (ⅰ), nnijij V ×∈∀)(σσ if ji ≠ ,then 0=ijσ ;

nnijij V ×∈∀)(σσ , if ji = , then 0>ijσ . And for any non-vanishing real vec-

tor T
nxxxX),,,(21= , 0)(>= VXXXf T

 is true. So, the covariance matrix

nnijV ×=)(σ is a positive definite matrix. And because of 0>ω , we can get from

the formula (8) :

02
2

2

<−=
∂
∂

V
y

G ω (9)

From the formula (9), the objective function of the problem G is a strictly concave
function. Therefore, we can get the optimal solution when the first derivation of the
object function equals to 0.

VyIrr
y

G
n ωω 2))(1(1 −−−=

∂
∂

+ (10)

The optimal solution is)(
2

1
1

1 IrrVy n+
− −−=

ω
ω

. So, the optimal value of the

problem G’s object function is:

)()(
4

)1(
)1(1

1
1

2

1 IrrVIrrr n
T

nn +
−

++ −−−+−
ω
ωω (11)

With the original minimax problem and the expression (11), we can get the solution

of the original problem)(ωP via solving the problem shown in the formula (12):

⎩
⎨
⎧

=≤≤
−− +

−
+

nibrats

IrrVIrr

iii

n
T

n
r

,,2,1,:..

)()(min 1
1

1 (12)

This minimization problem is a quadratic programming problem, and we can get
the optimal solution via the simplex algorithm of linear programming when the value

of),,2,1(niri = is confirmed in the real environment. Suppose the optimal solu-

tion is: T
nrrrr),,,(**

2
*

1
* = , the optimal solution of the original minimax prob-

lem)(ωP is:

408 L. Huiqiong et al.

)(
2

1
1

*1 IrrVy n+
− −−=

ω
ω

ω (13)

From the equation (13), in the minimax sense, the expectation and the square devia-
tion of the rate of returns are:

)()(
2

)1(
)]([1

*1
1

*
1 IrrVIrrryRE n

T
nn +

−
++ −−−+=

ω
ω

ω (14)

)()(
4

)1(
)]([1

*1
1

*
2

2

IrrVIrryRVar n
T

n +
−

+ −−−=
ω
ω

ω (15)

Obviously,)]([yREω and)]([yRVarω are both the decreasing function of ω , and

the more the user detests the venture investment, the smaller the expectation and
square deviation of the rate of returns are. We can see from the venture investment
model that the user can find the optimal investment scheme to get the maximal in-

come with the minimal venture if we can make sure the values of ir
~ and ir . There-

fore, we need a relevant returns quantitative model of unit storage resource to confirm

ir
~ and ir .

3.2 Returns Quantitative Model of Unit Storage Resource

Any investment benefit is the cash value of the future returns. There is a payoff ratio
relation between the income and the former investment. So, we can constitute an
income multiplier model according to the log of user’s investment, and quantify the
income of unit storage resource.

Income Multiplier (p) = History Income(HB)∕History Investment (HI) (16)

The formula (16) is the conclusion of the history investment’s payoff ratio, and it
can be used as the quantify reference of current investment. If the user have not do

any investment before, we set 1=p . To evaluate ir , we should evaluate two factors at

first, the income multiplier p and the relative quotiety α of 1+nr . The quotiety

should be set according to the condition of the networks by the user.

)(1+××= ni rpr α (17)

The returns expectation calculated from the formula (17) can’t reflect the future in-
vestment income of the WMNs accurately. There will be deviation more or less be-
tween the real return with the return expectation. The deviation of the investment
returns mostly comes from that how many times does the shared files be used by other
users, so it is reasonable that uses n as the expectation times to evaluate the income
deviation. The value of n can be obtained according to both the complexion of other
users’ download requests and this user’s subjective expectation. With β as the in-

come deviation quotiety aroused by once request, the value of ir
~ can be calculated

from the formula (18).

 P2P File Sharing in Wireless Mesh Networks 409

ii rnr ××+=)1(~ β (18)

A rational user won’t choose the files which isn’t used by others, so 0>n .

4 Simulation

To prove the validity of the venture investment model, we set an experiment envi-
ronment which is similar to the real WMNs, and implement a contrastive simulation
experiment between the central server download model and the venture investment
based file sharing model.

4.1 Simulation Scenario

We choose the OPNET as simulation tool. The range is a rectangular domain which is
1000m×1000m, distributing 50 mobile nodes randomly. These nodes are classified
into 4 kinds according to the investment storage resources, as shown in table1. The
networks has one access point and the coordinates is (500, 500). It connects the server
which offer FTP download. There are 60 files which can be downloaded on the server
and are marked as F1 to F60, the size of every file is 50MB. The coverage radius of
the wireless nodes communication is 250m, the data transfer velocity of every node is
2Mbps. During the simulation, we adopt the IEEE802.11 DCF model offered by
OPNET as the MAC level of mobile nodes, and the DSR protocol as the router
protocol.

Table 1. Nodes Distribution

Kinds of nodes
Available investment stor-

age space
Node

amount
Node marks

Large storage node
(L)

150MB 5 H1－H5

Middle storage node
(M)

100MB 20 M1－M20

Small storage node
(S)

50MB 20 S1－S20

None storage node
(U)

0MB 5 U1－U5

We set every node is none-selfish in simulation. However, there always are some

selfish rational users in the real networks. They always attempt to expands their own
return, and try to use more others users’ resources, but offer less their own resources.
In the application of P2P, it offers some punitive motivation mechanism to make
users want to contribute more to the networks, and get more return [16,17]. We don’t
discuss the motivation mechanism in this paper.

To make the simulation more be similar to the real, we set the simulation parame-
ters according to real networks, as shown in the table2.

410 L. Huiqiong et al.

Table 2. Simulation Factors

Download request ini-
tiation time(sec)

Uniform Distribution
(0, 600)

Download request time-
out(sec)

10

Time-out recall time 3

Download request
maximum restrict time

Unlimited

Mobile nodes

Node velocity(m/s) 0~10(Random)
Data processing velocity

(bytes/sec)
1,000,000

Request response effi-
ciency(request/sec)

1,000

File server
(FTP)

Service method Client Requested
File download from cen-

tral server model
None

File slicing
Venture investment based

file sharing model
25MB/Piece

Related quoti-
ety α

ir : 1+nr 1.5

Income deviation
quotiety β

Per request 0.2

4.2 Simulation Results

The fig.1 and fig. 2 are the statistical results of traffic sent and packets dropped. We
can see that characteristic of the venture based file sharing model is better than it of
the central server download model. When the central server download model simu-
lates to 150s, it causes congestion because of the operation increasing and networks
resources lack. The networks congestion becomes worse in later 100s, the amount of
traffic sent and packets dropped are increased suddenly, and the data packets are re-
transmitted constantly. The curve in fig.1 and the curve in fig.2 reflect this complex-
ion very well. After 250s, the networks congestion is very serious in the central server
download model, and the networks almost in paralysis state. Differently, the networks
load is normal in the venture investment model. From the beginning of the simulation
to 480s, the networks is always in normal state, and there is almost no packet lose.
After 480s, the amount of traffic sent and packets dropped are in a rise trend, and the
congestion comes out incidentally. But it’s better than it of the central server
download model, and the networks still can work normally.

Fig.3 shows the comparative results of the route hops of two models. The route
hops are same at the beginning of the simulation, because there is no available shared
files stored in the venture investment based file sharing model. So, the node should
request the central FTP server to download. When simulation went 150s, the networks
congestion appeared in the central server download model, and the congestion be-
comes more serious in later. Because some connections between nodes and the file

 P2P File Sharing in Wireless Mesh Networks 411

 Fig. 1. Total traffic sent Fig. 2. Total packets dropped

Fig. 3. Number of hops of route Fig. 4. Download response time

server break, these nodes search new routes to connect with the server continuously. It
is why the route hops in the last stages is same with it in the initial stages of the simu-
lation. While the nodes in the venture investment based file sharing model stored
some files or file pieces, they can download the files from the neighborhood nodes
which have stored them and needn’t connect the central FTP server. Therefore, the
route hops in the venture investment based file sharing model are less than it in the
central server download model. The less route hops take advantage to the improve-
ment of the networks performance.

The download request response time is shown in fig.4. From the beginning to 170s,
the download response time in venture investment based file sharing model is similar
with it of the central server download model. During this period, the primary
download method is identical in these two models: the nodes almost download the
files from the central FTP server. Later, the congestion appears in the central server
download model. There are many data packets lost and retransmitted. It affects the
networks performance badly. With the congestion, the request is flooded in many data
packets and can’t be responded in time. But in the venture investment based file shar-
ing model, the request time is steady. Even if the light congestion appeared in 480s,
the request response time is increased lightly, and it is in a normal acceptable range.

412 L. Huiqiong et al.

Above all we can conclude that the venture investment based file sharing model
can decrease the load of central file server and the route hops between peers effec-
tively. It can improve the networks performance.

5 Conclusion

In wireless mesh networks, the connective time would be relatively short in multi-hop
peers because of the mobility of peer nodes and the wireless collision. Therefore, it is
important that how peers choose reasonable schemes to gain more benefits and to
improve the performance of networks while they implement the P2P file sharing in
limited environment. On the basis of the researches of P2P file sharing and the inher-
ent characters of wireless mesh networks, a novel venture investment based file shar-
ing model is proposed. The model selects the optimize investment scheme for the
nodes via the maximization income and the minimization venture of investment. The
simulation results prove the validity of the model.

References

1. Byer, B., Martin, E., Edwards, C., et al.: Napster messages [EB/OL].
 http://opennap.sourceforge.net/napster.txt

2. Cohen, B.: Bittorrent protocol specification [EB/OL].
 http://bitconjurer.org/BitTorrent/protocol.html

3. Frankel, J.: The gnutella protocol specification v0.4 [EB/OL].
 http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf

4. Liang, J., Kumar, R., Ross, K.W.: Understanding kazaa [EB/OL].
 http://en.wikipedia.org/wiki/FastTrack

5. Clarke, I., Sandberg, O., Wiley, B., et al.: FreeNet: A distributed anonymous information
storage and retrieval system [EB/OL].

 http://www.ecse.rpi.edu/Hpmepages/shivkuma/teaching/sp2001/readings/freenet.pdf
6. Hayes, A., Wilson, D.: Peer-to-Peer Information Sharing in a Mobile Ad Hoc Environment.

In: Proceedings of the Sixth IEEE Work-shop on Mobile Computing Systems and Applica-
tions (2004)

7. Schneider, J., Kortuem, G.: An application platform for mobile ad-hoc networks. In: Pro-
ceedings of the Workshop on Application Models and Programming Tools for Ubiquitous
Computing (2001)

8. Schollmeier, R., Gruber, I., Finkenzeller, M.: Routing in mobile ad hoc and peer-to-peer
networks, a comparison. In: International Workshop on Peer-to-Peer Computing, pp. 1–15
(2002)

9. Pucha, H., Hu, Y.C., Das, S.M.: Exploiting the synergy between peer-to-peer and mobile
ad hoc networks. In: Proceedings of HotOS-IX: Ninth Workshop on Hot Topics in Operat-
ing Systems (2003)

10. Niethammer, F., Schollmeier, R., Gruber, I.: Protocol for peer-to-peer networking in mo-
bile environments. In: ICCCN. Proceedings of IEEE 12th International Conference on
Computer Communications and Networks (2003)

11. Hu, Y.C., Pucha, H., Das, S.M.: How to implement DHTs in mobile ad hoc networks? In:
Poster in 10th ACM MOBICOM (2004)

 P2P File Sharing in Wireless Mesh Networks 413

12. Tang, B., Zhou, Z., Kashyap, A., Chiueh, T.-c.: Wireless And Mobile Computing, Net-
working And Communications. In: WiMob 2005. IEEE International Conference on, Au-
gust 22-24, 2005, vol. 3, pp. 268–274 (2005)

13. Markowitz, H.: Portfolio selection. The Journal of Finance 7(1), 77–91 (1952)
14. Markowitz, H.: The optimization of a quadratic function subject to linear constraints. Na-

val Research Logistics Quarterly 3, 111–133 (1956)
15. Johnson, D.B., Maltz, D.A., Hu, Y.-C.: IETF MANET Working Group INTERNET-

DRAFT, The Dynamic Source Routing Pro-tocol for Mobile Ad hoc Networks (DSR).
Draft-ietf-manet-dsr-10 (July 19, 2004)

16. Feldman, M., Lai, K., Stoica, I., et al.: Robust incentive techniques for peer-to-peer net-
works [A]. In: Proceedings of the 5th ACM conference on Electronic commerce[C], New
York, pp. 102–111 (2004)

17. Shneidman, J., Parkes, D.: Rationality and self-interest in peer-to-peer networks. In: Inter-
national Workshop on Peer-to-Peer Systems (IPTPS) (2003)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 414–422, 2007.
© Springer-Verlag Berlin Heidelberg 2007

General Biswapped Networks
and Their Topological Properties*

Mingxin He1,2, Wenjun Xiao1, Weidong Chen1,
Wenhong Wei1, and Zhen Zhang1,2

1 Dept. of Computer Science, South China University of Technology
Guangzhou, China 510641

2 Dept. of Computer Science, Jinan University, Guangzhou, China 510632
mx.he@yeah.net, wjxiao@scut.edu.cn,

chen_wei_dong@21cn.com, hquwwh@tom.com,
zhang2003174@yahoo.com.cn

Abstract. In the paper, we propose a new systematic model, called General
Biswapped Networks (GBSNs), to construct hierarchical interconnection net-
works that are able to maintain many desirable attributes of the underlying basis
networks consisting of clusters. The model is inspired by and extended from
Biswapped Networks (BSNs) and OTIS networks. A network in the new pro-
posed model Gbsw(Ω, Δ) is composed of m copies of some n-node basis net-
work Ω and n copies of some m-node basis network Δ. Such a network uses a
simple rule for connectivity that ensures its semi-regularity, modularity, fault
tolerance, and algorithmic efficiency. In particular, the BSNs are special cases
in which the two basis networks are the same. The Exchanged Hypercube is
another example of GBSNs, i.e., EH(s,t) ≅ Gbsw(H(s), H(t)). The proposed
network model is able to reveal the intrinsic relation between Swapped Net-
works and OTIS architectures. We are to prove the homomorphic relation be-
tween GBSNs and the Cartesian product of its two basis networks. We also
show the key topological parameters of GBSNs that are related to the parame-
ters of its basis networks. We have obtained the results on inter-node distances,
a general simple routing algorithm, Halmitonian cycles for networks composed
of Halmitonian basis networks with even number of nodes or same number of
nodes. Finally, this paper provides a new layout style for hierarchical intercon-
nection networks that offers the researcher an opportunity to explore the topo-
logical properties of networks more intuitively and insightfully.

1 Introduction

An undirected graph is often used to model a processor/communication network in
which the vertices (nodes) correspond to processor/communication units/ports and the
edges (links/arcs) correspond to communication channels. Much work on inter-
connection networks can be categorized as ad hoc design and evaluation. Typically, a
new interconnection scheme is often suggested and shown to be superior to some

* This research is supported by the Natural Science Foundation of Guangdong Province, China

(No. 04020130).

 General Biswapped Networks and Their Topological Properties 415

previously studied network(s) with respect to one or more performance or complexity
attributes. However, it will be more powerful if the network/graph researchers and
engineers can use one or more type of simple graphs to construct a complicated net-
work by a systematical approach. Different type of product graphs (such as Cartesian
products, direct products, strong products, lexicographic products)[5], Hierarchical and
Multistage Cayley graphs and coset graphs[1,2,4,9,11,12], especially semi-products and
wreath products, are among the prime examples of systematic approach. The Optical
Transpose Interconnection System (OTIS)[3,7], Index-Permutation Graph Model[14],
Swapped Networks[8,13], Biswapped Networks (BSNs)[10] are the examples of some
specific models that are used to systematically compose hierarchical interconnection
networks.

In this paper, we propose a new systematic model, called General Biswapped Net-
works (GBSNs), to compose hierarchical interconnection networks. The model is
inspired by and extended from Biswapped Networks that are related to swapped net-
works or OTIS networks, which have been studied by a number of researchers [3,7,8,13].
A network in the newly proposed model Gbsw(Ω, Δ) is composed of m copies of
some n-node basis network Ω and n copies of some m-node basis network Δ. The
process uses a simple rule for connectivity, called biswapping strategy, that ensures
its semi-regularity, modularity, fault tolerance, and algorithmic efficiency. In particu-
lar, the BSNs are the special cases in which the two basis networks are the same. The
Exchanged Hypercube investigated in [6] is another specific example of GBSNs.
Thus, the work presented here extends and generalizes the systematic method BSNs
proposed in [10] for the construction of large, scalable, modular, and robust parallel
architectures, while maintaining many desirable attributes of the underlying basis
networks that comprises its clusters.

The rest of this paper is organized as follows: First, in Section 2, we describe the
model of GBSNs and discuss its relations to known network models by examples in
section 2; Then, in Section 3, we show how the key topological parameters of a
GBSN are related to the parameters of its basis networks and a simple routing algo-
rithm is developed; In Section 4, we show Hamiltonicity of GBSNs and in Section 5
we conclude this paper with some discussions.

2 Definitions and Relations to Known Network Models

Let Ω be any undirected graph (thereafter, use graph to indicate undirected graph for
conciseness) with the vertex set V(Ω) = {g1,g2, . . . , gn} and the arc set E(Ω). And let
Δ be any graph with the vertex set V(Δ) = {h1,h2, . . . , hm} and the arc set E(Δ). The
General Biswapped Network Gbsw(Ω, Δ) = Σ = (V(Σ), E(Σ)) is a graph composed of
m copies of Ω, {Ω1,Ω2, . . . ,Ωm}, and n copies of Δ, {Δ1,Δ2, . . . , Δn}, with additional
external links in between. The vertex and edge sets of Σ is specified as:

V(Σ) = {gij | gij∈Ωi, i=1,2,...,m,j=1,2,...,n}∪{hji | hji∈Δj , i=1,2,...,m, j=1,2,...,n}
E(Σ) = { (giu, giv) | (gu,gv) ∈E(Ω), i=1,2,...,m, u=1,2,...,n, v=1,2,...,n } ∪

{ (hjs, hjt) | (hs,ht) ∈E(Δ), j=1,2,...,n, s=1,2,...,m, t=1,2,...,m } ∪
{ (gij, hji) | gij∈Ωi, hji∈Δj , i=1,2,...,m, j=1,2,...,n }

416 M.X. He et al.

Intuitively, the definition postulates two parts: m clusters of Ω (part 0) and n clus-
ters of Δ (part 1) with inter-cluster links. Denote gij as <0, i, j> and hji as <1, j, i>,
representing <part#, cluster#, node#>, for convenience. The edge set of Σ is com-
posed of three parts: intra-cluster edges in Ωi (part 0), intra-cluster edges in Δj (part
1), and inter-cluster or swapping edges between two parts.

The name “General Biswapped Network” (GBSN) arises from the definition just
introduced: when clusters Ωi and Δj are viewed as supernodes, the resulting graph of
supernodes is a complete m+n-node bipartite graph Km,n, and the inter-cluster links
connect nodes between two parts in which the cluster number and the node number
within cluster are interchanged or swapped.

From the above definition, it is clearly that Ω and Δ plays a symmetric role in the
composition of Gbsw(Ω, Δ). Denote A ≅ B as graph A is isomorphic to graph B, we
have

Proposition 1. Gbsw(Ω, Δ) ≅ Gbsw(Δ,Ω) .

Proof: It stands for the fact that the map from the node <i, c, v> in Gbsw(Ω, Δ) to the

node <1-i, c, v> in Gbsw(Δ,Ω) , in which i∈{0,1}, is a isomorphism. □

Fig. 1 shows some specific examples of GBSNs, in which (a) is Gbsw(K2, C3). The
new layout styles shown in Fig. 1 for hierarchical interconnection networks is origi-
nally created by the authors. We believe that a felicitous layout of networks can
benefit investigators to explore the topological properties of networks more intuitively
and insightfully.

In particular, the Biswapped Networks (BSNs), which is investigated in [10], is the
special case of GBSNs in which the two basis networks are the same, i.e., Bsw(Ω)
≅ Gbsw(Ω,Ω) . It is known that if the basis network Ω is a Cayley graph, so is

 (a) (b) (c) (d)

Fig. 1. Examples of GBSNs. (a) Gbsw(K2, C3) (b) EH(1,2) ≅ Gbsw(H(1), H(2)) ≅ Gbsw(K2,
C4) (c) Gbsw(C3, C4) (d) GOTIS (C3,C4) ≅ Gbsw(C3, C4).

 General Biswapped Networks and Their Topological Properties 417

Bsw(Ω) and the swapped networks (also called OTIS) with self loop in every non-
inter-cluster node are coset graphs of the related biswapped networks.

The Exchanged Hypercube investigated in [6] is another specific example of
GBSNs. In fact an EH(s, t) is composed of s copies of hypercube H(t) and t copies of
hypercube H(s) with inter-cluster links, i.e., EH(s, t) ≅ Gbsw(H(s), H(t)). Fig. 1(b)
shows EH(1, 2) ≅ Gbsw(H(1), H(2)) ≅ Gbsw(K2, C4) .

If we use another different rule to establish the inter-cluster links, more interesting
hierarchical interconnection networks can be constructed. For example, if we keep all
the “supernodes” unchanged, and just change our biswapping strategy to an OTIS
style for those inter-cluster links, i.e., change the third part of links in E(Σ) to

{ (gij, hm+1-j, n+1-i) | gij∈Ωi, hm+1-j, n+1-i∈Δm+1-j , i=1,2,...,m, j=1,2,...,n }
Then we get a new hierarchical interconnection model, i.e., General OTIS Net-

works, and denote it to GOTIS(Ω, Δ).
Fig. 1(c) shows Gbsw(C3, C4) and (d) shows GOTIS (C3, C4). It is evidently that

Gbsw(C3, C4) ≅ GOTIS (C3, C4) .
In fact, above two interconnection models construct the same interconnection net-

works for either Ω or Δ shows a little bit symmetric properties.

Proposition 2. For any graph Ω and Δ, if either there is an auto-isomorphic from
{ g1, g2, . . . , gn } to { gn, gn-1, . . . , g1} for Ω, or there is an auto-isomorphic from {
h1,h2, . . . , hm } to { hm,hm-1, . . . , h1 }, then Gbsw(Ω, Δ) ≅ G OTIS (Ω, Δ) .

Proof: It is evidently from comparing the definition of Gbsw(Ω, Δ) with that of GOTIS

(Ω, Δ). □

In another way, if we rename the node names from {g1,g2, . . . , gn} to {gn,gn-1, . . . ,
g1} for any n-node graph Ω and get Ω', then Gbsw(Ω, Δ) ≅ GOTIS (Ω', Δ). Similarly,
we have Gbsw(Ω, Δ) ≅ GOTIS (Ω, Δ') .

Remark 1. Proposition 2 reveals the intrinsic relation between Swapped Networks and
OTIS architectures, which were investigated by researchers came from different do-
mains. This is the reason why Pharhami said in [8] that “It was recently pointed out
to the author by an anonymous reviewer that swapped networks are the same as opti-
cal transpose interconnection system (OTIS) architectures which have been exten-
sively studied by other researchers. ”

In the last of this section, we show the homomorphic relation between GBSNs and the
Cartesian product of its two basis networks, so that GBSNs may share some topologi-
cal properties of the related Cartesian products[5].

Proposition 3. Gbsw(Ω, Δ) is homomorphic to the Cartesian product of Ω and Δ,
i.e.,Ω□Δ, with a self-loop on each node.

Proof: The Cartesian product Ω□Δ = Π = (V(Π), E(Π)) of two graphs Ω and Δ is de-
fined as follows:

V(Π) = V(Ω)×V(Δ) = {<gi, hj> | i=1,2,...,m, j= 1,2,...,n }
E(Π) = { (<gu, hs>, <gv, ht>) | gu= gv , (hs, ht) ∈E(Δ), or, (gu, gv) ∈E(Ω), hs=ht }

Recall V(Gbsw(Ω, Δ) =Σ) = { gij, hji | gij∈Ωi , hji∈Δj , i=1,2,...,m, j=1,2,...,n }, and
consider the map f from V(Σ) to V(Π) : gij→<gi, hj>, hji→<gi, hj> . It is clearly that f

418 M.X. He et al.

keeps all the intra-cluster connectivity from E(Σ) to E(Π), and exactly maps every
inter-cluster edge (gij, hji) in E(Σ) to the self-loop on node <gi, hj>. This implies f is a

homomorphism from Σ to Π with self-loops. □

3 Topological Properties and Routing Algorithm

Let's fix some notations in what follows. For any graph Γ, the number of its nodes is
denoted as |Γ|. The degree of a node g in Γ is degΓ(g). The distance between nodes g1
and g2 in Γ is given by distΓ(g1, g2). The diameter of Γ, i.e., the maximum distance
between any two nodes in Γ, is D(Γ).

We first show the basic topological parameters of GBSNs related to the parameters
of its basis networks.

Theorem 1. Let Σ = Gbsw(Ω, Δ) , |Ω| = n, |Δ| = m, i=1,2,...,m, j= 1,2,...,n. Then:
(1) |Σ| = 2 |Ω| |Δ| = 2mn
(2) degΣ(gij) = degΩ(gj) + 1 and degΣ(hji) = degΔ(hi) + 1
(3) distΣ(giu, giv) ≤ distΩ(gu, gv), u=1,2,...,n, v=1,2,...,n and

 distΣ(hjs, hjt) ≤ distΔ(hs, ht), s=1,2,...,m, t=1,2,...,m
(4) distΣ(gsu, gtv) ≤ distΩ(gu, gv) + distΔ(hs, ht) + 2, s≠t and

distΣ(hus, hvt) ≤ distΩ(gu, gv) + distΔ(hs, ht) + 2, u≠v
(5) distΣ(gsu, hvt) ≤ distΩ(gu, gv) + distΔ(hs, ht) + 1
(6) D(Σ) ≤ D(Ω) + D(Δ) + 2 .

Proof: (1) and (2) are evidently by the definition of Gbsw(Ω, Δ) given in section 2.
(3) stands for excepting the intra-cluster shortest path in Ω or Δ, there may have

another path connecting two intra-cluster nodes through inter-cluster link that is
shorter than the intra-cluster shortest path.

(4) is true for that for any two nodes gsu, gtv on the different clusters in the same
part, there are two paths connecting them in Σ: gsu → gsv → hvs→hvt→ gtv and gsu →
hus → hut→gtu→ gtv . Both paths have the same length distΩ(gu, gv) + distΔ(hs, ht) + 2 .
Similarly, the distΣ(hus, hvt) inequality stands.

(5) stands for the fact that there is a path between gsu and hvt in Σ: gsu → gsv →
hvs→hvt with a length of distΩ(gu, gv) + distΔ(hs, ht) + 1 .

(6) is a corollary from (3), (4) and (5). □

Remark 2. As a conjecture, the equality in (3), (4), (5) and (6) in Theorem 1 stands for
GBSNs with regular, connected and symmetric basis graphs. It has been proved for
the biswapped networks.

Based on the proof of Theorem 1, we can easily obtain a general and simple routing
algorithm for a GBSN, assuming the availability of the routing algorithms for the
basis networks Ω and Δ. Assume that nextΩ(g1, g2) and nextΔ(h1, h2) are local func-
tions representing the corresponding routing algorithms to obtain the first intermedi-
ate node in the routing path from g1 to g2 in Ω or from h1 to h2 in Δ respectively.
Recall the unified notation <i, c, v> = Node for all nodes in Σ. Then, the algorithm
shown below in a C-like language can be used to derive the first intermediate node on
an almost-shortest routing path in Σ from the source <i, c1, v1> to the target
<j, c2, v2>.

 General Biswapped Networks and Their Topological Properties 419

Algorithm 1. Routing algorithm for Σ = Gbsw(Ω, Δ) :

Node nextΣ (<i, c1, v1>, <j, c2, v2>) {
if i == j { // i = j, routing in the same part
if c1 == c2 && v1 == v2 // destination has been reached
return <i, c1, v1>

else if v1 == v2 // c1 ≠c2, change to the opposite part
return <1-i, v1, c1>

else // keep in the same cluster
return <i, c1, (i==0) ? nextΩ(v1,v2) : nextΔ(v1,v2)>

} else { // i ≠ j, routing between parts
if v1 == c2 // change to the opposite part

return <1-i, v1, c1>
else // keep in the same cluster
 return < i, c1, (i==0) ? nextΩ(v1,c2) : nextΔ(v1,c2)>

 }
 }

Remark 3. For most cases, in specially those with regular and symmetric basis graphs,
the routing algorithm for GBSNs given above is optimal. The modifier “almost” put
before “shortest” implies that there has possibility in cases that the exact inequality in
(3), (4) or (5) of Theorem 1, i.e., <, stands.

4 Halmiltonicity of GBSNs Built of Halmiltonian Basis Networks

A Hamiltonian cycle in a graph is a cycle that visits each node exactly once. A graph
is Hamiltonian if it contains a Hamiltonian cycle. Hamiltonicity is a useful property
for interconnection networks. One of our main results in this paper show that if the
basis graphs Ω and Δ are Hamiltonian, either both Ω and Δ have even number of
nodes, or, have the same number of nodes, then the resulting GBSN is Hamiltonian.

Theorem 2. If the basis graphs Ω and Δ both have even number of nodes and are
Hamiltonian, then so is the graph Gbsw(Ω, Δ) = Σ.

Proof: Assume |Ω| = n = 2s, |Δ| = m = 2t, the Halmilton cycles in Ω and Δ are {g1g2 .
. . gng1} and {h1h2 . . .hmh1} respectively. The Hamiltonicity of Σ will be proved by
the following systematic constructing steps:

Step 1, Select all the inter-cluster edges and the following intra-cluster edges:
{ (<0, i, 2x-1>, <0, i, 2x>) | i=1,2,...,m, x=1,2,...,s } ∪
{ (<1, j, 2y-1>, <1, j, 2y>) | j=1,2,...,n, y=1,2,...,t }

The selected edges with all the nodes in Σ compose st of 8-node sub-cycles.

Step 2, Choose either part, e.g. part 0, break the s of 8-node sub-cycles on each clus-
ter with even number by unselecting the intra-cluster edges, and merge them by rese-
lecting the following edges:

{ (<0, 2y, 2x>, <0, 2y, (2x+1) mod n>) | x=1,2,...,s, y=1,2,...,t }

420 M.X. He et al.

The selected edges with all the nodes in Σ compose t of sub-cycles with 8s nodes
respectively.

(a) Step 1: Find st = 2×3 = 6 of 8-node sub-cycles in Gbsw(C4, C6)

(b) Step 2: Find t = 3 of sub-cycles with 8s = 16 nodes respectively in Gbsw(C4, C6)

(c) Step 3: A Hilmilton cycle with 8st = 8×2×3 = 48 nodes in Gbsw(C4, C60029

(d) Another Hilmilton cycle in Gbsw(C4, C6)

Fig. 2. Constructing Halmilton Cycles in Gbsw(C4, C6)

 General Biswapped Networks and Their Topological Properties 421

Step 3, Choose the opposite part used in step 2, i.e., part 1, break the t of 8s-nodes
sub-cycles on any cluster, e.g., on cluster 1, by unselecting the intra-cluster edges, and
merge them by reselecting the following edges:

{ (<1, 1, 2y>, <1, 1, (2y+1) mod m>) | y=1,2,...,t }
The selected edges with all the nodes in Σ compose a cycle with 8st nodes, which

is a Halmilton cycle in Σ. □

Fig. 2(a) shows the result of Gbsw(C4, C6) after step 1, in which there are 6 of 8-node
sub-cycles; (b) shows the result of Gbsw(C4, C6) after step 2, in which there are 3 of
16-node sub-cycles; (c) shows a Halmilton cycle in Gbsw(C4, C6) after step 3.

Fig. 2 (d) shows another Halmilton cycle in Gbsw(C4, C6) reached by merging
sub-cycles on the opposite part.

Remark 4. The three constructing steps used in the proof of Theorem 2 can be easily
implemented by an algorithm to find Halmilton cycles in those GBSN automatically.

Theorem 3. If the basis graphs Ω and Δ both have the same number of nodes and are
Hamiltonian, then Gbsw(Ω, Δ) = Σ is Hamiltonian.

Proof: The proof is similar as the proof of Theorem 3 in [10] on the Halmiltonicity of

the swapped networks Bsw(Ω) ≅ Gbsw(Ω,Ω). Omitted for conciseness. □

Remark 5. For a GBSN built of two unbalanced Hamiltonian basis graphs of at least
one with odd number of nodes, whether it contains a Hamiltonian cycle is an open
problem. In fact, there is no Hamiltonian cycle in Gbsw(K2,C3) shown in Fig. 1(a).

5 Conclusions

In this paper, we have provided a number of important results on the new hierarchical
interconnection model called “General Biswapped Networks (GBSNs)”. A network
constructed by the new model Gbsw(Ω, Δ) is composed of m copies of some n-node
basis network Ω and n copies of some m-node basis network Δ, using a simple
biswapping strategy. The strategy ensures semi-regularity, modularity, fault tolerance,
and algorithmic efficiency of the constructed network. The work extends and gener-
alizes the systematic method called Biswapped Networks (BSNs) proposed in [10] to
construct large, scalable, modular, and robust parallel architectures, while maintaining
many desirable attributes of the underlying basis networks that comprises its clusters.

We have discussed the relations between GBSNs and a series of interconnection
models including OTIS, Swapped Networks, Biswapped Networks, the Exchanged
Hypercube and Cartesian products of its two basis graphs. This model is able to reveal
the intrinsic relation between Swapped Networks and OTIS architectures. We also
proved the homomorphic relation between GBSNs and the Cartesian product of its
two basis networks. We showed key topological parameters of GBSNs that are re-
lated to the parameters of its basis networks. We also obtained results on inter-node
distances, a simple almost-optimal routing algorithm, Halmitonian cycles for GBSNs
built of Halmitonian basis networks with even number of nodes or same number of
nodes. Finally, we provide a new layout style for hierarchical interconnection

422 M.X. He et al.

networks that can help investigators to explore the topological properties of networks
more intuitively and insightfully.

Because of the generality of this model and the related theorems, we expect that
they will find many more applications beyond what have been discussed in this paper.
We are currently investigating the applications of our method to the problems related
to routing as well as the average inter-node distance in certain subclasses of our net-
works. These results, along with potential applications in the following areas will be
reported in future:

 Load balancing and congestion control
 Scheduling and resource allocation
 Fault tolerance and graceful degradation

These research topics constitute important practical challenges in the design,
evaluation, and efficient operation of parallel and distributed computer systems.

References

1. Akers, S.B., Krishnamurthy, B.: A Group Theoretic Model for Symmetric Interconnection
Networks. IEEE Trans. Computers 38, 555–566 (1989)

2. Annexstein, F., Baumslag, M., Rosenberg, A.L.: Group Action Graphs and Parallel Archi-
tectures. SIAM J. Computing 19, 544–569 (1990)

3. Day, K., Al-Ayyoub, A.: Topological Properties of OTIS-Networks. IEEE Trans. Parallel
and Distributed Systems 13(4), 359–366 (2002)

4. Heydemann, M.: Cayley Graphs and Interconnection Networks. In: Graph Symmetry: Al-
gebraic Methods and Applications, pp. 167–224 (1997)

5. Imrich, W., Klavzar, S.: Product Graphs, Structure and Recognition. John Wiley & Sons,
New York (2000)

6. Loh, P.K.K., Hsu, W.J., Pan, Y.: The Exchanged Hypercube. IEEE Trans. Parallel and
Distributed Systems 16(9), 866–874 (2005)

7. Marsden, G., Marchand, P., Harvey, P., Esener, S.: Optical Transpose Interconnection Sys-
tem Architectures. Optics Letters 18(13), 1083–1085 (1998)

8. Parhami, B.: Swapped interconnection networks: Topological, performance, and robust-
ness attributes. J. Parallel Distrib. Comput. 65, 1443–1452 (2005)

9. Sabidussi, G.: Vertex-transitive graphs. Monatsh. Math. 68, 426–438 (1964)
10. Xiao, W.J., Chen, W.D., He, M.X., Wei, W.H., Parhami, B.: Biswapped Networks and

Their Topological Properties. In: SNPD 2007. Proc. of the 8th Int. Conf. on SE, AI, Net-
working, and Parallel/Distrib. Comput, Qingdao, China, vol. 2, pp. 193–198 (2007)

11. Xiao, W.J., Parhami, B.: Some Mathematical Properties of Cayley Digraphs with Applica-
tions to Interconnection Network Design. Int. J. Computer Mathematics 82, 521–528
(2005)

12. Xiao, W.J., Parhami, B.: Further Mathematical Properties of Cayley Digraphs Applied to
Hexagonal and Honeycomb Meshes. Discrete Applied Mathematics (to appear)

13. Yeh, C.H., Parhami, B.: Swapped Networks: Unifying the Architectures and Algorithms of
a Wide Class of Hierarchical Parallel Processors. In: Proc. Int. Conf. Parallel and Distrib-
uted Systems, pp. 230–237 (1996)

14. Yeh, C.H., Parhami, B.: The Index-Permutation Graph Model for Hierarchical Intercon-
nection Networks. In: Proc. of the Int. Conf. on Parallel Processing, Aizu, Japan, pp. 48–55
(1999)

Design a Hierarchical Cache System for

Effective Loss Recovery in Reliable Multicast

Zhijun Wang, Xiaopeng Fan, and Jiannong Cao

Department of Computing,
The Hong Kong Polytechnic University, Hong Kong
{cszjwang,csxpfan,csjcao}@comp.polyu.edu.hk

Abstract. Packet loss recovery is a key issue in reliable multicast. An
effective way for packet loss recovery is to place repair servers with active
routers along the transmission paths. These repair servers naturally form
a hierarchical cache system due to the hierarchical nature of the multicast
tree. How to design an effective hierarchical cache system to minimize
the packet loss is important. In this paper, we first derive a cooperative
caching efficiency model for a hierarchical cache system. Based on the
model, a heuristic Cooperative Cache Replacement (CCR) algorithm is
proposed to achieve efficient cache performance for reliable multicast sys-
tems. The implementation issues are also discussed in detail. The ns-2
based simulations are conducted to evaluate the performance of the pro-
posed algorithm by compared to the optimal caching time (OCT) based
algorithm. The results show that CCR effectively reduces the packet loss
recovery latency.

Keywords: Reliable multicast, loss recovery, cooperative cache, replace-
ment algorithm.

1 Introduction

Packet loss recovery is important in reliable multicast. One effective way for
packet loss recovery is to place repair servers in active routers along the trans-
mission paths [7][8]. Each repair server allocates certain of buffer space to cache
received packets for possible loss recovery. These repair servers intrinsically form
a hierarchical cache system due to the hierarchical nature of the multicast tree.
Using NAK as the retransmission request is a scalable solution as shown in [8]
and [12]. In this mechanism, when a receiver detects a packet loss, it immediately
sends an NAK message to its nearest up stream repair server for retransmission.
If the packet is cached there, the repair server sends the packet back to the
receiver. Otherwise, the repair server forwards the NAK request to its nearest
up stream server for retransmission. This process is repeatedly done until the
packet is recovered.

The buffer space of a repair server is likely to be shared by multiple multicast
sessions and/or other applications such as Web caching. Usually a repair server
can only cache part of the received packets at a time and hence needs a good

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 423–432, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

{cszjwang,csxpfan, csjcao}@comp.polyu.edu.hk

424 Z. Wang, X. Fan, and J. Cao

cache management scheme to cache those packets which have high probability
to be retransmitted in the near future. Moreover, due to the hierarchical nature
of the repair servers, a cache replacement algorithm should consider the cache
cooperation at different levels to achieve good cache performance. Let us consider
a 2-level hierarchical cache system with equal sized caches as shown in Fig. 1.
Using first-in first-out (FIFO) replacement algorithm [6][9], each coming packet
from the sender is cached in both the level-0 and level-1 caches. The both caches
have the same cached packets. Hence, the level-0 cache has no any help in loss
recovery, because a lost packet is either recovered in the level-1 cache or missed
in the both level-1 and level-0 caches.

Level 0 cache

From sender

Level 1 cache

To receivers

Fig. 1. An example of a two-level hierarchical cache system

Significant efforts have been made on the development of efficient cache re-
placement algorithms for reliable multicast [4] [6] [13] [14] [15]. All these existing
cache replacement algorithms aim to seek the optimized cache performance in
a single cache. However, an optimized cache replacement algorithm for a single
cache may not achieve the optimized cache performance in a hierarchical cache
system. Therefore, a replacement algorithm has to consider cache cooperation
to achieve optimized cache performance in a hierarchical cache system.

This paper aims to address the fundamental design problems for hierarchical
cache system design in reliable multicast. In this paper, we first derive a cooper-
ative caching efficiency model for a hierarchical cache system. The key difference
between our model and existing ones is that the cache efficiency in our model not
only depends on the packet caching time, but also on the packet retrieving la-
tency. Based on the efficiency model, a heuristic Cooperative Cache Replacement
(CCR) algorithm is proposed to achieve effective cache performance in reliable
multicast. The implementation issues of the CCR algorithm including the up
stream cache content estimation and cache management are discussed in details.
Extensive simulations are experimented to evaluate the performance of CCR.
The simulation results show that CCR can effectively reduce the packet loss
recovery latency compared to the OCT algorithm.

The rest of the paper is organized as follows. In section II, we give a brief
review of existing cache replacement schemes in reliable multicast. Section III

Design a Hierarchical Cache System 425

describes the details of the proposed two-level cooperative hierarchical cache
replacement algorithm. The performance comparisons of the proposed scheme
with existing OCT are also presented. Finally, Section IV concludes the paper.

2 Related Work

The simplest cache replacement algorithm is First-In First-Out (FIFO) [6] [9]. In
FIFO, each coming packet is cached in a repair server. If there is no free space, the
oldest packet is dropped. FIFO is still attractive due to its easy implementation.
However, when the traffic load is heavy, each packet can only be cached in a
short time such that it has no chance to be retransmitted before its dropout.
In order to avoid too short caching time, a Probabilistic FIFO (P-FIFO) was
proposed [4][9]. In P-FIFO, when a cache is full, each cached packet has the same
probability to be dropped out to release the space for a new coming packet. The
drop probability depends on the packet arrival rate, the cache buffer size and
the average NAK latency. In order to maximize the caching efficiency, a Timer-
Based Caching Policy (TBCP) [6][9][13] was proposed. In TBCP, a new coming
packet replaces an old one only if the timer of the old packet expires. The key
issue in this algorithm is how to select the timer time based on the NAK latency
distribution. The experimental results show that the algorithm achieves the best
performance by set the timer time to 1.2 round-trip time (RTT). However, there
is no theoretical work to explain this observation. Very recently, an Optimal
Caching Time (OCT) [14] based cache replacement scheme was proposed to
achieve the near optimized cache performance. A caching efficiency model based
on the NAK latency distribution is derived and applied to calculate the optimal
packet caching time.

OCT achieves the near optimized cache performance in a single cache. How-
ever, an optimized cache algorithm designed for a single cache may not lead to
an optimized cache performance in a hierarchical cache system. Although some
cooperative cache replacement schemes have been developed in hierarchical Web
cache systems [3][11], these schemes cannot be directly applied to reliable mul-
ticast system due to the differences of the two systems. Hence it is fundamental
and important to develop cooperative cache replacement algorithms to achieve
the optimized cache performance in reliable multicast.

3 Cooperative Cache Replacement Algorithm in
Two-Level Hierarchical Cache Systems

In this section, we first discuss how to achieve optimal cache performance in a
two-level hierarchical cache system, then derive a cooperative caching efficiency
model. Based on the model, a heuristic Cooperative Cache Replacement (CCR)
algorithm is proposed to achieve effective cache performance in two-level hierar-
chical cache systems.

426 Z. Wang, X. Fan, and J. Cao

3.1 Optimal Cache Performance in Hierarchical Cache Systems

Let us first evaluate the contributions of cached packets in loss recovery. Consider
a two-level hierarchical cache system with a single cache (C0) of size S0 at level-
0 and M caches (Ck) of sizes Sk (k=1, 2, ..., M) at level-1. The cache system
architecture is shown in Fig. 2. Assume the links from the sender to level-1
caches are loss free and the links from the level-1 caches to receivers are lossy.
The packet transmission time including propagation and queue delay from the
sender to C0 is d0, from C0 to level-1 cache Ck is dk, and from level-1 cache Ck

to receiver j is dkj . Suppose that receiver j connected to repair server Ck loses
a packet, i. Without caches, the recovery latency of packet i is

Rnc
i = 2(dkj + dk + d0) (1)

Sender

Level 0 cache

Repair Server Receiver

Loss free link

Level 1 cache

.........

..................

kj

d k

d

d 0

.........

Lossy link

Fig. 2. A general two-level hierarchical cache system architecture

With caches, the recovery latency of packet i is

Rc
i = 2[dkj + dk(1 − δk

i) + d0(1 − δk
i)(1 − δ0

i)] (2)

where δk
i is 1 if packet i is cached in Ck (k = 0,1,...,M), and 0 otherwise. With

caches, the loss recovery latency is reduced by δRi:

δRi = Rnc
i − Rc

i = 2[dkδk
i + d0(δ0

i + δk
i − δ0

i δk
i)] (3)

Eqn. 3 shows the contribution of a cached packet in loss recovery. If a packet
is only cached in a level-1 or 0 cache, the cached packet in the level-1 cache
reduces 2(dk + d0) loss recovery latency and in the level-0 cache reduces 2d0
latency. When a packet is cached in both level-1 and 0 caches, a cached packet
in the level-1 cache can be considered only reducing the loss recovery latency
by 2dk, because a lost packet can be recovered from the level-0 cache if it is
not cached in the level-1 cache. While the level-0 cache can be considered as
no contribution in loss recovery, because a lost packet can be recovered from
the level-1 cache. Hence the contribution of a cached packet depends on cache

Design a Hierarchical Cache System 427

content at different levels. A cooperative efficiency model should take this into
account.

Let pjk be the packet loss probability of the link from level-1 cache Ck to
receiver j; F 0

kj(t) represents the cumulative probability that the NAK latency at
C0 coming from receiver j through the level-1 cache Ck is smaller than or equal to
t time, and F k

j (t) represents the cumulative probability that the NAK latency at
level-1 cache Ck coming from receiver j is smaller than or equal to t time. Assume
packet i has been cached in Ck for tki time and the optimal caching time for packet
i is toki. Then caching packet i has probability pjk[F k

j (toki) − F k
j (tki)]/(toki − tki)

and pjk[F 0
jk(to0i) − F 0

jk(t0i)]/(to0i − t0i) to be retransmitted by receiver j per unit
time in level-1 cache Ck and C0, respectively. Therefore the total reduced loss
recovery latency per unit time (δR) due to the cache system is

δR =
M∑

k=1

∑

j

∑

i

2pjk[
F k

j (toki) − F k
j (tki)

toki − tki
δk
i dk

+
F 0

jk(to0i) − F 0
jk(t0i)

to0i − t0i
(δ0

i + δk
i − δ0

i δk
i)d0]

The optimal cache performance of a cooperative cache system is to seek the
minimum loss recovery latency, that is to maximize the reduced loss recovery
latency, i.e.,

Maximize δR (4)

Subject to nk ≤ Sk, k = 0, 1, .., M. (5)

where nk is the number of cached packets in Ck.
The optimal cache replacement algorithm maximizes the reduced packet loss

recovery latency, δR. To compute δR, each cache needs to know the cache infor-
mation including the cache content as well as the NAK latency distribution of
each other cache at different levels. When a new packet arrives at C0, C0 needs
to compute δR by assuming: (1) the packet is cached in C0; and (2) the packet is
not cached in C0. In each case, C0 first determines which level-1 caches will cache
the packet, and computes δR. Then the values of δR in two cases are compared.
The packet is cached by C0 if and only if δR in the first case is larger than that in
the second case. When a level-1 cache receives the packet, it first needs to know
if the packet is cached in C0 or not, then decides to cache the packet or not by
computing δR. However, frequently exchanging cache information between C0
and level-1 caches is too costly. Moreover, the computation cost is also high in C0
for computing the caching efficiency for every level-1 cache. In the following, we
design a heuristic Cooperative Cache Replacement (CCR) algorithm to achieve
near optimized cache performance in a two-level hierarchical cache system with
minimized communication overhead.

428 Z. Wang, X. Fan, and J. Cao

3.2 Heuristic Cooperative Cache Replacement (CCR) Algorithm

A heuristic Cooperative Cache Replacement (CCR) algorithm is proposed to
seek the near optimized cache performance in a two-level hierarchical cache sys-
tem with minimized communication cost. In CCR, the replacement algorithm
of C0 is an optimized single cache replacement algorithm, while a level-1 cache
seeks the optimized cache performance by taking into account the cooperation
with C0. In C0, the caching efficiency is computed based on the cumulative dis-
tribution of NAK latency [14]. The caching efficiencyU0(τi, t) of packet i already
cached by τi time is defined as

U0(τi, t) =
∑

k

∑

j

pkj

F 0
kj(t) − F 0

kj(τi)
t − τi

(6)

Here the summation is over all possible receiver j connected through all possible
level-1 cache Ck. A new coming packet replaces an old one only if it has higher
caching efficiency than that of the old one. The caching efficiency of a dropout
packet can be modeled by an optimal dropout time t0o which corresponds to a
value of t with maximum U0(0, t) [14]. Therefore, only these caching packets
which have caching time longer than t0o have less caching efficiency than that of
a new coming packet. Hence, a new coming packet is cached by replacing an old
one only if the oldest one is cached longer than t0o.

In level-1 cache Ck, the replacement algorithm minimizes the loss recovery
latency by taking into account the cooperation with C0. The contribution of
a cached packet in Ck not only depends on its caching time, but also on its
retrieving latency. If a packet is not cached in C0, Ck takes 2(dk + d0) time
to retrieve it from the sender. Otherwise, Ck only takes 2dk time to recover it
from C0. Based on these observations, the caching efficiency of a packet which is
cached in C0 is reduced by a factor of dk/(dk +d0). Now the cooperative caching
efficiencyUk(τi, t) for packet i which has been cached for τi time in Ck (k �= 0)
is computed as

Uk(τi, t) =
∑

j

pkj

F k
j (t) − F k

j (τi)
t − τi

× dk + (1 − δ0
i)d0

dk + d0
(7)

In Eqn. (7), the caching efficiency of a cached packet depends not only on the
cumulative distribution of NAK latency, but also on the cooperation with C0
(i.e., δ0

i). The caching efficiency of a packet cached in C0 is reduced by a factor
of dk/(dk +d0). When a new packet arrives, Ck first checks if the packet is cached
in C0 or not, then calculates its caching efficiency. If no cached packet has less
caching efficiency than that of the new one, the new one is dropped. Otherwise,
the old one with minimal caching efficiency is replaced by the new packet. The
caching efficiency calculation in Eqn.(7) takes the cache cooperation into account
and hence improves the cache performance in hierarchical cache systems. In the
follows, we describe the implementation issues of CCR.

Design a Hierarchical Cache System 429

3.3 Implementation of Cooperative Cache Replacement Algorithm

In this subsection, we address three important implementation issues of CCR:
(i) how a level-1 cache knows the cache content of C0; and (ii) how a level-1
cache manages its cache content.

We propose a solution for a level-1 cache to estimate the cache content of C0
here. In our scheme, C0 passes its dropout time t0o and its cache size S0 to every
level-1 cache, Ck. Ck maintains the information (packet sequence number and
arrival time) of every cached packet in C0. Initially, Ck knows that the first S0
packets are cached in C0. Then a coming packet is cached or not by comparing
the caching time of the oldest packet with t0o. Due to each packet takes dk time
from C0 to Ck, Ck can use the packet arrival time at itself instead of knowing
the packet arrival time at C0 to make the decision.

In level-1 cache Ck, all caching packets are stored in two lists: one for the
packets which are not cached in C0, the other for the packets which are cached
in C0. Each list is a sorted list according to the packet arrival time, the newest
packet is at head. The caching efficiency of a packet depends on its caching time.
As shown in [14], there is a critical caching time, when the caching time of a
packet is less than the critical value, the caching efficiency increases as caching
time increases. But if the caching time is over the critical value, the caching
efficiency decreases as caching time increases. So the packets at the list tail or
head usually have the lowest caching efficiency. Hence a new coming packet only
needs to compare the caching efficiency with at most four packets. When a new
packet arrives, Ck first estimates if it is cached in C0. The caching efficiency of
the new packet is calculated by Eqn. (7). Then its caching efficiency is compared
to that of four caching packets (head and tail packets in two lists). If it has higher
efficiency than any of the four packets, the cached packet with lowest efficiency
is dropped from the cache and the new packet is added to the corresponding
cache list head. Otherwise, the new packet is dropped.

3.4 Performance Evaluation

We use Network Simulator 2 (ns-2) [10] to study the performance of the pro-
posed CCR algorithm in two-level hierarchical cache systems. OCT is used for
performance comparison because it has the best cache performance among all
the single cache replacement algorithms as shown in [14]. We use cache hit ra-
tio and loss recovery latency as two performance metrics. The cache hit ratio
is defined as the number of recovered NAKs divided by the total number of
received NAKs in a repair server. The loss recovery latency is defined as the
time interval between a receiver first detecting the packet loss and the receiver
getting the recovered packet. The Pragmatic General Multicast (PGM) [5] is
used as the reliable multicast protocol. NAK is used for packet retransmission,
and a repair server may send the suppressed NAKs to its upstream nodes. In
the simulations, the extra cache space for storing packet sequence number and
arrival time is ignored in both OCT and CCR because the both algorithms need
the same storage space.

430 Z. Wang, X. Fan, and J. Cao

t

pp
t t

Repair Server Receiver

Loss free link

Sender

t 10

0

21

21

22

22

t 11

23p
23t t 24

p
24

Level 0

Level 1

Lossy link

Fig. 3. Two-level network topology

We study the cache performance in a heterogenous network. The network
topology is shown in Figure 3. The system parameters are set as: t0 = 80 ms,
t10 = 20 ms, t11 = 40 ms, t21 = 20 ms, t22 = 80 ms, t23 = 30 ms, t24 = 60 ms;
P21 = 0.005, P22 = 0.02, P23 = 0.01, P24 = 0.03. The bandwidth for each link is
set to 2 Mbps. The traffic is a Poisson traffic with rate 672 Kbps and the packet
size is set as 226 Bytes.

10 20 30 40 50 60 70 80 90 100

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

Level 0 Cache Size (Pkts)

Lo
ss

 R
ec

ov
er

y
D

el
ay

 (
s)

OCT
CC

Fig. 4. Loss recovery latency, heteroge-
nous network, Ck = 40

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Level 0 Cache Size (Pkts)

C
ac

he
 H

it
R

at
io

OCT−L0
CC−L0
OCT−L1
CC−L1

Fig. 5. Cache hit ratio, heterogenous net-
work, Ck = 40

Figs. (4) - (7) show the loss recovery latency and cache hit ratio of CCR
and OCT at level-1 cache size of 40 and 50, respectively. From these figures,
we observe the similar results as those in the homogenous case. This indicates
that CCR works well in heterogenous networks. One interested thing is that the
level-1 cache hit ratio increases as the size of C0 increases. When the size of C0
increases, the cache hit ratio of C0 increases, and hence the number of NAKs
reaching the sender is reduced. This results in less traffic load and shorter queue
delay in the sender. In this case, the receivers can sense packet loss earlier, and
hence the average NAK latency in level-1 caches is reduced. Therefore cache hit
ratio is increased due to the short effective packet caching time (the dropout
time). When the size of level-1 caches increases from 40 to 50, the cache hit

Design a Hierarchical Cache System 431

10 20 30 40 50 60 70 80 90 100
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Level 0 Cache Size (Pkts)

Lo
ss

 R
ec

ov
er

y
D

el
ay

 (
s)

OCT
CC

Fig. 6. Loss recovery latency, heteroge-
nous network, Ck = 50

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Level 0 Cache Size (Pkts)

C
ac

he
 H

it
R

at
io

OCT−L0
CC−L0
OCT−L1
CC−L1

Fig. 7. Cache hit ratio, heterogenous net-
work, Ck = 50

ratio of level-1 caches increases and hence the loss recovery latency is reduced
in both CCR and OCT. The cache hit ratio in C0 is almost not changed. The
performances of both CCR and OCT are similar in two different level-1 cache
sizes.

The simulation results show that the proposed CCR algorithm is superior to
the optimized single cache algorithm OCT in both homogenous and heterogenous
networks.

4 Conclusions

Packet loss recovery plays a critical role in reliable multicast. One effective way
for packet loss recovery is to place repair servers with active routers along the
transmission paths. Usually a repair server can only cache part of the received
packets at a time, hence a good cache management policy is necessary to improve
the cache performance. The existing cache management policies in reliable mul-
ticast were designed to achieve optimized cache performance in a single cache.
However, the repair servers in reliable multicast is a hierarchical cache system,
an optimized cache replacement designed for a single cache may not lead to
optimized cache performance in the whole system. Therefore it is fundamental
important to design a hierarchical cooperative cache system to achieve optimized
cache performance in the whole system.

In this paper, we proposed a cooperative cache replacement (CCR) algorithm
for hierarchical caching system to achieve near optimized cache performance in
reliable multicast. The key difference between our proposed cache replacement
algorithm and the existing ones is the efficiency model in which the caching
efficiency of a packet not only depends on its caching time but also on the
packet retrieving latency. The implementation details of the CCR algorithm
in two-level hierarchical cache systems are discussed. Various simulations are
conducted in both homogenous and heterogenous networks. The results show
that CCR effectively reduces the loss recovery latency and significantly increases
the cache hit ratio in low level caches.

432 Z. Wang, X. Fan, and J. Cao

Acknowledgments. The authors would like to express their gratitude to Dr.
Feng Xie and Dr. Gang Feng from Nanyang Technological University for kindly
providing their OCT simulation codes with us.

References

1. Cao, G.: Proactive Power-aware Cache Management for Mobile Computing System.
IEEE Transactions on Computers 51(6), 608–621 (2002)

2. Cao, P., Irani, S.: Cost-aware WWW Proxy Caching Algorithms. In: Proceedings
of USENIX Symp, Internet Technology and Systems, pp. 193–206 (1997)

3. Che, H., Tung, Y., Wang, Z.: Hierarchical Web Caching Systems: Modeling, De-
sign and Experimental Results. IEEE Journal of Selected Areas in Communica-
tions 20(7), 1305–1314 (2002)

4. Feng, G., Yeung, K.L., Kheong, S.C.: Optimal Cache Allocation and Probabilistic
Caching for Local Recovery in Reliable Multicast. In: Proceedings of IEEE ICC,
IEEE Computer Society Press, Los Alamitos (2000)

5. Gemmell, J., Montgomery, T., Speakman, T., Crowcroft, J.: The PGM Reliable
Multicast Protocol. IEEE Networks 17(1), 16–22 (2003)

6. Kasera, S., Kurose, J., Towsley, D.: Buffer Requirements and Replacement policies
for Multicast Repair Service. In: Proceedings of Second International Workshop on
Networked Group Communication (2000)

7. Kasera, S., Bhattacharyya, S., Keaton, M., Kiwior, D., Zablele, S., Kurose, J.,
Towsley, D.: Scalable Fair Reliable Multicast Using Active Services. IEEE Net-
work 14(1), 48–57 (2000)

8. Lehman, L., Garland, S., Tennenhouse, D.: Active Reliable Networks. IEEE IN-
FOCOM (1998)

9. Leung, K.L., Wong, H.T.: Caching Policy Design and Cache Allocation in Active
Reliable Multicast. Computer Networks 43(2), 177–193 (2003)

10. ns-Network Simulator, http://www.isi.edu/nsnam/ns
11. Rizzo, L., Vicisano, L.: Replacement Policies for a Proxy Cache. IEEE Transactions

on Networks, 8(3), 158-170 (2000)
12. Towsley, D., Pingali, S.: A Compairson of Sender-Initiated and receiver-initiated

Reliable Multicast Protocols. IEEE Journal of Selected Areas of Communica-
tions 15(3), 398–406 (1997)

13. Zhen, X., Birman, K., Renesse, R.: Optimizing Buffer management for Reliable
Multicast. In: Proceedings of International Conference on Dependable Systems
and Networks (DSN) (2002)

14. Xie, F., Feng, G., Yang, X.: Optimizing Cache Policy for Loss Recovery in Reliable
Multicast. In: Proceedings of IEEE INFOCOM, IEEE Computer Society Press,
Los Alamitos (2006)

15. Yeung, K., Wong, H.: Caching Policy Design and Cache Allocation in Active Re-
liable Multicast. Computer Networks 43(2), 177–193 (2003)

http://www.isi.edu/nsnam/ns

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 433–440, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Novel Design of Hidden Web Crawler Using
Reinforcement Learning Based Agents

J. Akilandeswari1 and N.P. Gopalan2

1 Department of Computer Science and Engineering, Sona College of Technology, Salem,
Tamil Nadu, India

akila_rangabashyam@yahoo.com
2 Department of Computer Applications, National Institute of Technology,

Tiruchirappalli, Tamil Nadu, India
gopalan@nitt.edu

Abstract. An ever-increasing amount of information on the Web today is avail-
able only through search interfaces: the users have to type in a set of keywords
in a search form in order to access the pages from certain Web sites. These
pages are often referred to as the Hidden Web or the Deep Web. Since there are
no static links to the Hidden Web pages, search engines cannot discover and
index such pages and thus do not return them in the results. However, accord-
ing to recent studies, the content provided by many Hidden Web sites is often of
very high quality and can be extremely valuable to many users. In this paper, an
effective design of Hidden Web crawler ALAC that can autonomously dis-
cover pages from the Hidden Web is discussed. Here, a theoretical frame-
work is presented to investigate the resource discovery problem. This article
proposes an effective crawling strategy for identifying hidden web sites auto-
matically. The crawler design employs agents fuelled with reinforcement learn-
ing. The prototype is experimentally evaluated for the effectiveness of the
strategy and the results are very promising. The crawler ALAC has found
567 searchable forms after searching 3450 pages which substantiate the ef-
fectiveness of the policy.

Keywords: Web Crawler, Hidden Web, Intelligent Agent, Reinforcement
Learning, Web mining.

1 Introduction

Recent research shows that though the surface web has linked billions of static
web pages, a part of Web content cannot be reached by following hyperlinks [2, 4]. A
large part of the Web is available behind search interfaces and is reachable only when
users fill up those forms with set of keywords or queries. These pages are often re-
ferred to as the Hidden Web [3] or Deep Web [2]. Search engines’ crawlers typically
cover only Publicly Indexable Web (PIW). A deep web site is a web server that pro-
vides information maintained in one or more back- interfaces [4]. According to many
research studies, the size of the Hidden Web rapidly increases as more organizations
put their valuable content online through an easy-to-use Web interface [2] and is
now estimated as 550 times larger than the surface web [1]. The content provided by

434 J. Akilandeswari and N.P. Gopalan

many Hidden-Web sites is and web databases, each of which is searchable through
one or more HTML forms. The information from these sites is of very high quality
and can be extremely valuable to many users [2]. For example, PubMed pro-
vides many high-quality papers on medical research which can be of helpful to medi-
cal practioners and medical researchers.

Given this dynamic nature of web with new sources constantly being uploaded and
old information are either removed or modified, it has become very important to
automatically discover hidden web sites through an easy to use interface. The tradi-
tional web crawler automatically traverse, retrieve pages and build a large repository
of web pages. The application of hidden web crawler differs from the traditional
crawler. The usage of the former is for obtaining web databases that are of high qual-
ity and many researches or organizations may use the database for integration. To
corroborate, a breadth first crawler indexes only 23 searchable forms in bioinformat-
ics domain after crawling 10000 pages. This scenario urges to develop a crawler that
navigates through various web sites which should have the following properties:

1. automatically find the hidden resources
2. should accurately specify a schema that describes the relevant forms

which is very hard even in a well formed domain
3. need to perform a broad search
4. search process must be efficient and avoid visiting large unproductive

portions of the web
5. must produce high quality results

This paper discusses the design of such a web crawler for indexing hidden web
pages or databases in a particular domain. The whole problem has two tasks: resource
discovery and content extraction [5]. The first task deals with automatically find-
ing the relevant web sites containing the hidden information. The second task
deals with obtaining the information from those sites by filling out forms with
relevant keywords. The proposed work describes on how to locate relevant forms
that serve as the entry points to the hidden web data.

The crawler design has two approaches: exhaustive crawling and topic specific
crawling [6]. The first approach is time consuming and gives low harvest rate.
The second approach can be the best approach since the users who access the hidden
web will be searching based on some particular topic. Focused crawlers have in-
creased crawling efficiency in terms of quality indices [7]. In [6,8] an adaptive form
focused crawler is built that identifies the relevant web resources. In that work, differ-
ent classifiers are used to identify the topic specificity, to determine the promising
links to follow, to discriminate between searchable and non-searchable forms. The
use of these classifiers at different stages may consume more time.

Our paper focuses on designing a crawler using learning agents whose design goal
will be to find the hidden resources automatically producing high quality results. The
crawler’s search process must be efficient and circumvent visiting large unpro-
ductive portions of the web. That is, the crawler avoid visiting

i. web pages that are not forms that lead to databases
ii. web forms that are not relevant to the topic of query
iii. web pages that are spam
iv. web forms that are duplicated in mirror sites

A Novel Design of Hidden Web Crawler Using Reinforcement Learning Based Agents 435

This paper discusses the new architecture designed for efficient discovery of the
hidden web resources. The results show that the crawler ALAC is performing better
with respect to harvest rate. The result also indicates that the automatic resource
discovery improves as the agent learns progressively.

The remainder of this paper is organized as follows: section 2 discusses the
related work. In section 3, the architectural framework of ALAC is described. In sec-
tion 4, the experimentation and evaluation details are discussed. Finally, in section 5,
future directions and conclusions are detailed.

2 Related Work

The pioneering work on hidden web crawler design [5] focused on extracting
content from searchable electronic databases. They introduced an operational model
of HiWE(Hidden Web crawler). In the paper, they have discussed different directions
on research in designing the crawler for content extraction. There are works on
focused crawlers [7,9,10] which describe the resource discovery on particular domain
or topic by PIW crawlers. In [4], useful observations and implications are discussed
which are very much helpful for researchers. Their survey reports on locating entry
points to hidden web, coverage of deep web directories and so on. They also
give a clear observation that the crawler strategy for deep web are likely to be differ-
ent from surface web crawlers. In [6], form focused crawler for hidden web is
described. In [11] an adaptive strategy was employed in designing the classifiers. The
proposed work explores the use of learning agents which exploits parallelism and
improves the harvest rate.

3 Architectural Framework

Form distribution in a particular domain is of sparse nature [6]. This nature made the
crawler to crawl only in the particular domain and thus avoids visiting unproductive
paths by learning feature of links. The simplified architecture of the crawler is given
in Fig.1.

The learner is implemented as a learning agent, which does two tasks. One is to
identify the pages as belonging to particular domain. Another task is to classify the

Fig. 1. Simplified Architecture

Forms
Database

pages

Links

Feedback

Forms

Forms ClassifierLearnerCrawler

436 J. Akilandeswari and N.P. Gopalan

links which gives immediate benefit and links which give delayed benefit. Once the
learner agent identifies the relevant forms in the visited pages, the form classi-
fier again classifies the search interfaces as searchable forms and non searchable
forms. This form classification module is important because it is unnecessary to
explore irrelevant forms such as login forms, and registration forms. The relevant
forms are then stored in the forms database for further investigations. The learner
gives progressive feedback to crawler which helps in formulating the crawling policy.

3.1 Learner

The learning module has two sub modules: page classifier and link classifier.

Page classifier. The pages are classified according to [8]. The page classifier is
trained using reinforcement learning algorithm. The authors of [12] have proved that
the reinforcement learning based agents provide good results in terms of harvest rate
and freshness. The purpose of this classifier is to avoid investigating unproduc-
tive pages. When the pages are classified as relevant, links in the pages are examined.

Link Classifier. The links are evaluated for its relevance [12] in the document using
eqn [1].

 l_rel(d,p) =

∑ ∑

∑

∈ ∈

∩∈

dk pk
pkdk

dpk
pkdk

ff

ff

))((min 22
 (1)

where d is domain based keywords, p is the page under investigation, and k
is the frequency of search terms in the feature space.

The feature space considered for computation of link relevance is URL, anchor
text, text around the hyperlink. The frequency of the search terms in the feature space
is computed. While considering the URL as feature space, the frequency is
computed as follows: if any of the search terms are found as substring in the URL,
then the frequency of that search term is incremented. The computation of link rele-
vance described above will identify the pages with immediate benefit. That is, follow-
ing the link will provide the search interface belonging to that particular domain. The
objective of the link classifier is also to identify the links which give delayed benefit
i.e. the links that eventually lead to searchable interfaces. Learning component of the
classifier is involved in classifying the link with delayed benefit.

As in page classifier, the learning component employed in link classifier is rein-
forcement learning. The learner learns using the same feature set described above and
assigns an integer value as score which is the normalized distance of the relevant form
from the link to be followed. The learner in this prototype does not need any
training sets. It learns from the progressive crawling and modifies its current
state using the feedback given from the crawler module as depicted in the
Fig. 1. The classifier then gives the links to the crawler, which then prioritizes
immediate benefited links over delayed benefited links. Priority queue is imple-
mented for prioritizing.

A Novel Design of Hidden Web Crawler Using Reinforcement Learning Based Agents 437

Forms Classifier. This module identifies the located forms as searchable and non
searchable forms. Non searchable forms are the interfaces for login, subscription, and
registration. This module uses decision tree classifier which is proved to have lowest
error rate [6]. The features considered for classifying the forms are: checkboxes,
password tags, submit buttons, textboxes, number of items in select box, submission
method and search keyword in the form [6].

3.2 Learning Methodology

The adaptability of the agent in the learner is incorporated through reinforce-
ment learning. The relevance of the link to be followed is computed based on the
above mentioned methodology. The term reinforcement learning refers to a frame-
work for learning optimal decision making form rewards or punishment. It differs
from the supervised learning in that the learner is never told the correct action for a
particular state, but simply gives the feedback as how good or bad the selected
action was, expressed in terms of scalar reward [13]. A task is defined by a
set of states which are the set of already retrieved documents s ε S, a set of ac-
tions which are the documents to be retrieved a ε A, a state-action transition function
T : S X A → S and a reward function R : S X A → R. The goal of reinforcement
learning is to learn a policy, a mapping from states to actions, Λ : S → A, that
maximizes the sum of its reward over time. The infinite-horizon discounted
model is chosen to compute the long-term reward for a given sequence of
rewards from separate steps.

⎟
⎠

⎞
⎜
⎝

⎛=Λ ∑
∞

=

−
Λ

1

1)(
k

k
k rEU γ (2)

where Λ is policy and k is the steps. The evaluation is optimal if it yields the maxi-
mum possible expected long-term reward. Let Q* (s,a) be the value of selecting a link
a from set of states s and thereafter following the optimal policy. The state space is
the set of links in the document under consideration.

)),((),(),(* asTVasRasQ γ−=∗ (3)

where V* is the value of each link and is computed as

t
t

t rsV ∑
∞

=

=
0

)(γπ (4)

and rt is the reward received t time steps after starting in state s and following policy
π. The optimal policy can be defined in terms of Q by selecting from each state the
action with the highest expected future reward π* (s) = argmax Q*(s,a). The Q
function is a mapping from selecting from an action to a scalar value.

4 Experimentation and Evaluation

The web crawler design exploits computational parallelism to achieve efficiency
through multithreading programming. The agent framework is implemented using

438 J. Akilandeswari and N.P. Gopalan

java based aglets platform. The parameters are kept transparent from the users to
keep the search interface as simple as possible. The input to the search interface is
the keywords which describe the domain, and a starting URL to initiate the crawler.
To compute the energy given to the agent, latency is considered which is the
time spent on learner module.

Latency =
TIMEOUT

ltime

MAX

ptime)()(∗ (5)

where time(p) is the time taken to download the page by the crawler, time(l) is the
time taken in the learner module to output the links to the crawler, MAX is the limit
set on total number of pages to be crawled, and TIMEOUT is the expiry time of the
socket connection.

The system is assessed and compared with two other crawler designs:

• Topic specific crawler A (TSC A): the crawler follows all the links from
the page which is classified as being on topic.

• Topic specific crawler B (TSC B): crawler that follows links only
to specific levels of depth. In the experiment, the depth is set as 2.

The new crawler design is evaluated based on number of relevant forms harvested,
time taken to download forms, and learning effectiveness. Three domains are consid-
ered for testing: hotels, music and bioinformatics whose data can be retrieved by
filling out forms.

0

10

20

30

40

1 2 3 4 5 6

No. of pages craw led * 50

S
co

re
s

Fig. 2. Learning Effectiveness

The fig. 2 above shows the learning effectiveness of the learner module. The above
graph clearly depicts that at early stages the crawler is ineffective, but after gaining
learning experience, the reward or the score computed is satisfactory. As the crawler
visits more number of pages the scores are maximized accordingly.

Fig. 3 shows the behavior of the crawler based on the number of relevant forms re-
trieved. During the initial crawls all the three schemes are performing equally. After
gaining the learning strategy ALAC is outperforming the other two schemes. Table 1
shown below depicts the number of relevant forms retrieved after traversing 10000
pages in the domains: hotels, music and bioinformatics.

A Novel Design of Hidden Web Crawler Using Reinforcement Learning Based Agents 439

0
600

1200
1800
2400
3000
3600
4200
4800

1 2 3 4 5 6

No. of Pages

N
o

.
o

f
F

o
rm

s

TSC-A

TSC-B

ALAC

Fig. 3. Number of relevant forms retrieved Vs Total number of forms visited

Table 1. Number of relevant forms retrieved

 Hotels Music Bioinformatics
TSC-A 159 127 236
TSC-B 675 348 543
ALAC 1038 769 1350

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5

No. of forms retrieved * 25

T
im

e
T
ak

en

Fig. 4. Performance based on time taken to retrieve forms

In fig. 4, the performance of the crawler based on time taken to retrieve the forms
is depicted. In the early stages, due to the slow learning rate, the time consumed to
retrieve first 100 forms is more. Later it is improvising over the time. Our crawler has
taken 2.79 minutes to retrieve 91 forms in bioinformatics domain and later it took
0.56 seconds to retrieve 100 forms. The above results show the effectiveness of the
crawler design based on the factors discussed above.

440 J. Akilandeswari and N.P. Gopalan

5 Conclusion and Future Direction

The explosive nature of Web needs a crawler which can identify Web pages that are
of high quality to the users. This article proposed a new architectural framework for
hidden web crawler ALAC, which automatically identifies the hidden resources. The
framework suggested uses learning agents mining the documents online thus reducing
the time taken for retrieval. The evaluation results show that the crawler is able to
perform efficiently by focusing the search in particular domain. It is able to learn
effectively which indeed reduces the time consumed in retrieving searchable forms.
The crawler design is compared with two other traditional crawler designs and the
results are promising in terms of harvest rate.

Actually the design can be extended to incorporate multiple agents in the learner
and crawler to exploit the parallelism. As an extension the design can be incorporated
to employ intelligent extraction framework to automatically dig out the contents or
the databases of the deep web resource.

References

1. BrightPlanet. Com, The deep web: Surfacing hidden value (July 2000),
 http://brightplanet.com

2. Bergman, M.K.: The deep web: Surfacing the hidden value,
 http://www.press.mich.edu/jep/07-01/bergman.html

3. Florescu, D., Levy, A.Y., Mendelzon, A.O.: Database techniques for world wide web: A
Survey. SIGMOD record 27(3), 59–74 (1998)

4. Chang, K.C.-C., He, B., Li, C., Patel, M., Zhang, Z.: Structured databases on the Web: Ob-
servations and Implications, Technical Report, UIUC

5. Raghavan, S., Garcia-Molina, H.: Crawling the Hidden Web. In: Proc. of the 27th VLDB
Conference (2001)

6. Barbosa, L., Freire, J.: Searching for hidden-web databases. In: Eighth Intl. workshop on
the Web and Databases (2005)

7. Chakrabarti, S., van den Berg, M., Dom, B.: Focused crawling: A New Approach to Topic
specific Web Resource Discovery. Computer Networks 31(11-16), 1623–1640 (1999)

8. Akilandeswari, J., Gopalan, N.P.: A Web Mining System using Reinforcement Learning
for Scalable Web Search with Distributed. Fault-tolerant Multi-agents, WSEAS transac-
tions on Computers 4(11), 1633–1639 (2005)

9. Diligenti, M., Coetzee, F., Lawrence, S., Giles, C.L., Gori, M.: Focussed Crawling using
Context Graphs. In: Proc. of the 26th Intl conf. on Very Large Databases, pp. 527–534
(2000)

10. Miller, R.C., Bharat, K.: Sphinx: A framework for creating personal, site specific web
crawlers. In: Proc. for the 7th Intl WWW conf. (1998)

11. Barbosa, L., Freire, J.: An Adaptive Crawler for Locating Hidden-Web Entry Points. In:
Proc. of Intl WWW conf., pp. 441–450 (2007)

12. Rennie, J., McCallum, A.K.: Using Reinforcement Learning to Spider the Web Efficiently.
In: Proc. of 16th Intl. conf. on Machine Learning (1999)

13. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 237–285 (1995)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 441–449, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Look-Ahead Adaptive Routing on k-Ary n-Trees

Quanbao Sun, Liquan Xiao, and Minxuan Zhang

PDL, School of Computer, National University of Defense Technology, China
alpha_slt@163.com

Abstract. Supporting multicast at hardware level is a future trend of
interconnection networks, and the latency of hardware-based multicast is
sensitive to network conflict. In this paper, we study the method to forecast and
reduce the conflict between unicast and multicast traffic on k-ary n-trees. We
first derive a switch grouping method to describe the relationship among
switches being passed through by a unicast routing path or a multicast tree.
Then we analyze the sufficient condition for conflict-free routing. Based on
these observations, a look-ahead adaptive routing strategy for unicast packet is
proposed. The simulation results indicate that the proposed strategy can lower
the multicast latency and the unicast latency simultaneously.

1 Introduction

A high bandwidth and low latency network is essential for high performance parallel
system. The k-ary n-tree [1] is a kind of bidirectional multistage interconnection
networks which provides high degree of connectivity leading to high bandwidth and
has being used in some of the most powerful computers in the world [2].

Multicast is an important operation in multicomputer communication systems and
can be used to support several other collective communication operations [3]. The
unicast based approach has higher latency as it does not exploit the concept of
minimizing the traffic by multicasting. Supporting multicast at hardware level has
been suggested to further enhance the performance, which also is a future trend of
interconnection networks [4][5]. The k-ary n-tree inherits the tree structure which can
be used to efficiently support multicast operation, and several hardware-based
multicasting schemes on it have been proposed [6][7][8]. The previous researches on
hardware-based multicast only consider the routing of multicast packet.

Multicast latency is more sensitive to network conflict than unicast latency. Our
previous work has proposed two parent selecting strategies which can be used in
multicast tree building algorithm to reduce the conflict among multicast packets [9].
When both unicast and multicast traffic is present, the strategy which can reduce the
conflict between these two kinds of traffic is also very attractive. The minimal routing
of unicast packet between a pair of processing nodes on a k-ary n-tree experiences
two phases: an ascending phase followed by a descending phase, and only in the
ascending phase the packet can use multiple output port. But from the operation
characteristic of tree-based multicast we can see that the conflict related to multicast
occurs mostly in the descending phase. Therefore, we need a method, which can
forecast and reduce the conflict (occurs in the descending phase) between unicast and

442 Q. Sun, L. Xiao, and M. Zhang

multicast traffic, to guide the output port selecting for ascending unicast packet. This
paper focuses on the solution of this problem. We derive a switch grouping method to
describe the relationship among switches being passed through by a unicast routing
path or a multicast tree on k-ary n-trees and analyze the sufficient condition for
conflict-free routing. Based on these observations, we propose a look-ahead adaptive
routing strategy for unicast packet. At last, the proposed routing strategy is evaluated
by a synthetic workload driven simulator.

The rest of this paper is organized as follows: Section 2 will introduce the
definition of k-ary n-trees and the routing scheme on it. The switch grouping method
and the proposed look-ahead adaptive routing algorithm will be described in
section 3. Section 4 will give the simulation model and simulation results. Finally,
Section 5 concludes the paper.

2 Preliminaries

2.1 k-Ary n-Trees

A k-ary n-tree is composed of two types of vertices: kn processing nodes and nkn-1 k*k
communication switches. Each processing node is an n-tuple {0,1,···,k-1}n, while each
switch is defined as an ordered pair <ω,l>, where ω∈{0,1,···,k-1}n-1 and l∈{0,1,···,n-
1}. Two switches, <ω0,ω1,···,ωn-2,l> and <ω0’,ω1’,···,ωn-2’,l’>, are connected by an
edge if and only if l’ =l+1 and ωi=ωi’ for all i≠l. There is an edge between the switch
<ω0,ω1,···,ωn-2,n-1> and the processing node <p0,p1,···, pn-1> if and only if ωi=pi for
i∈{0,1,···,n-2} [1]. An example of a 4-ary 3-tree is shown in Fig 1.

Fig. 1. An example of 4-ary 3-tree

2.2 Routing Scheme

Unicast. Minimal routing between a pair of processing nodes on a k-ary n-tree can be
slimly accomplished by sending the packet to one of the nearest common ancestors of
both source and destination, and from there following a unique downward path to the
destination. That is, each packet experiences two phases, an ascending phase followed
by a descending phase.

 Look-Ahead Adaptive Routing on k-Ary n-Trees 443

The goal of adaptive routing on a k-ary n-tree is to achieve load balance across the
different physical links in the ascending phase. The ascending phase can be viewed as
an output port allocation problem since the packet can traverse using any uplinks. The
full adaptive routing strategy proposed in [10] allows unicast packet using any idle
output port in the ascending phase.

Multicast. To deliver a packet to a number of destination nodes, the packet header
must carries the destination set information which is used by switches to make
appropriate routing decision. The concept of multi-destination packet passing and
multi-port encoding has been proposed for implementing fast hardware-based
multicast [11]. These two strategies lead to a long packet header as the number of
processing nodes getting larger, which are not suit for large-scale systems. Using
forwarding table with a bit vector of destination ports for each multicast address is
another way to implement multicast packet routing [8], which is more attractive
because it is suit for large-scale systems. For multicast operation, a packet is sent to
all destination ports except the port on which the packet arrives. In this paper we use
forwarding table to route the multicast packet.

3 Look-Ahead Adaptive Routing

From the routing scheme on k-ary n-trees we can see that the conflict related to
multicast occurs mostly in the descending phase, but only in the ascending phase a
unicast packet can use multiple output port. In this section, we introduce the look
ahead adaptive routing algorithm for unicast packet based on the switch grouping
method.

3.1 Grouping the Switches

A conflict occurs when two packets arrive at the same switch and request the same
output port simultaneously. To forecast and avoid the conflict, the relationship among
the switches which are passed through by a unicast routing path or a multicast tree
should be found firstly. The following definitions and theorem are needed to describe
this relationship.

Definition 1: Given an k-ary n-tree FT(k, n), for two switches at the same stage
SW=<ω0,ω1,…, ωn-2, l> and SW’=<ω0’,ω1’,…, ωn-2’, l>, gcs(SW,SW’)=ωα,…, ωn-2 is
the greatest common suffix of SW and SW’ if ωα,…, ωn-2=ωα’,…, ωn-2’ and ωα-1≠ωα-1’.
The length of gcs(SW,SW’) is n-1-α. If α>n-2, it denotes that the labels of two
switches have no common suffix.

Definition 2: We define a relation R as follows: Given an k-ary n-tree FT(k, n), for
two switches at the same stage SW=<ω0,ω1,…,ωn-2,l> and SW’=<ω0’,ω1’,…,ωn-2’,l>,
we say SW R SW’ if the length of gcs(SW,SW’) (recorded as | gcs(SW,SW’)|) is n-1-l.

From definition 1 and definition 2 we can see that the relation R is an equivalence
relation. According to the topology character of k-ary n-trees, we can divide all
switches at stage l into kl equivalence-classes base on relation R. There are kn-1-l
switches in each equivalence class. The equivalence class to which the switch SW
belongs is recorded as [SW]. For example, all switches in stage 1 of the 4-ary 3-tree

444 Q. Sun, L. Xiao, and M. Zhang

(as shown in Figure 1) can be divided into 4 equivalence classes: {<0,0,1>, <1,0,1>,
<2,0,1>, <3,0,1>}, {<0,1,1>, <1,1,1>, <2,1,1>, <3,1,1>}, {<0,2,1>, <1,2,1>, <2,2,1>,
<3,2,1>} and {<0,3,1>, <1,3,1>, <2,3,1>, <3,3,1>}.

Theorem 1: Given an k-ary n-tree FT(k, n), P is a path from the source processing
node S to the destination processing node D. Suppose P passes through the switch
SW=<ω0,ω1,…, ωn-2, l> and switch SW’=<ω0’,ω1’,…, ωn-2’, l> in the ascending and
descending phase respectively, then SW R SW’.

Proof: Let the switch SWlca=<s0,s1,…, sn-2, m> be the lowest common ancestor of S
and D through which the path P passes. The path Ps from S to SWlca passes through
SWS=<ω0,ω1,…, ωn-2, m+1> , and the path PD from SWlca to D passes through
SWD=<ω0’,ω1’,…, ωn-2’, m+1>, according to the definition of k-ary n-tree we can
easily get that ωi=ωi’ for all i≠m, then |gcs(SWS,SWD)|=n-1-(m+1). The rest may be
deduced by analogy, if P passes through the switch SW=<ω0,ω1,…, ωn-2, l> and
SW’=<ω0’,ω1’,…, ωn-2’, l>, then ωi=ωi’ for all i∉[m,l-1], therefore, |gcs(SW,SW’)| =
n-1-l and SW R SW’.

Following from Theorem 1, we can easily get Lemma 1.

Lemma 1: Given a k-ary n-tree FT(k, n), suppose a multicast tree passes through the
switch SW=<ω0,ω1,…, ωn-2, l> at the stage l , then SW R SW’ for each
SW’=<ω0’,ω1’,…, ωn-2’, l> through which the multicast tree passes.

Theorem 1 and lemma 1 show that the switches, which are at the same stage and
are passed through by a unicast routing path or a multicast tree, belong to the same
equivalence class.

3.2 Conflict-Free Routing

Theorem 1 and Lemma1 indicates that if packet p1 conflicts with packet p2 in the
descending phase at stage l, then p1 and p2 must passes through the switches
belonging to the same equivalence class at stage l in the ascending phase. From the
switch labeling strategy and Definition 2 we can see that if two packets p1 and p2
don’t pass through switches belonging to the same equivalence class at stage l, then
these two packets don’t pass through switches belonging to the same equivalence at
stage l’ for all l’≤ l. This characteristic of k-ary n-tree is shown in Lemma 2.

Lemma 2: Given an k-ary n-tree FT(k, n), suppose two packets (unicast or
multicast), p1 and p2, pass through SW=<ω0,ω1,…, ωn-2, l> and SW’=<ω0’,ω1’,…, ωn-2’,
l> in the ascending phase respectively, if [SW]≠[SW’], then no conflict between m1
and m2 will occurs at stage l’ for all l’≤ l. If l=n-2 and the destination (destinations) of
p1 is not overlap with that (those) of p2, then no conflict will occurs between p1 and p2
in the whole network.

3.3 Look-Ahead

For a multicast tree, the workload of a branch is close to that of others. Therefore, if
some link in a certain multicast tree is heavy loaded, to some degree, we can say that
the multicast tree is heavy loaded. Following from lemma 2, to reduce the conflict
between unicast and multicast packets, an ascending unicast packet would better

 Look-Ahead Adaptive Routing on k-Ary n-Trees 445

doesn’t use the uplink which leads to a switch that is passed through by a heavy
loaded multicast tree, which is the basic idea of look-ahead adaptive routing.

Here we suppose that the wormhole switching technology is employed and a
packet is divided into a number of fixed size flits to be transmitted one after another.
The multicast-load of a link can be defined as the number of multicast flits being hold
in the input buffer associating with the link. Instead of allowing ascending unicast
packet to use any idle output port, look-ahead adaptive routing strategy forbids
ascending unicast packet using the output ports associating with heavy loaded link. A
question that arises is under which circumstance a downlink can be considered heavy
loaded. What we need is a threshold value: if the link load exceeds this threshold, then
the link is considered to be heavily loaded. The selecting of the threshold value is an
important issue. If the threshold value is too small, the number of links that are
forbidden being used by ascending unicast packet is large, which may lead to higher
unicast latency. Otherwise, a large threshold value leads to higher multicast latency. If
the threshold value is larger than the input buffer length, look-ahead adaptive routing
is equal to full adaptive routing.

Let us give an example to explain the look-ahead adaptive routing strategy. Given
a 4-ary 3-tree and a process groups G1={<1,0,0>,<1,2,2>,<2,0,2>,<2,3,0>}, the
multicast tree used by G1 (recorded as T1) is shown in Fig 2. Suppose a unicast packet
from processing node <1,0,3> to processing node <2,3,2> is requesting for the up-
ports of switch <1,0,2> and the link e1 is heavy loaded. If the packet is sent to up-port
associated with e1, based on theorem 1, the packet will pass through switch <2,0,1> in
the descending phase, and conflict between the unicast packet and the multicast
packet being transmitted in T1 may occurs at edge e2. Otherwise, this conflict on e2

doesn’t occur.

Fig. 2. An example of look-ahead adaptive routing

4 Evaluation

To investigate the performance of the proposed look-ahead adaptive routing
algorithm, a discrete event-driven simulator has been built using the OMNeT++ [12]
simulation platform. The simulation is observed by the tool Akaroa [13]. The
simulation model and results are described in this section.

446 Q. Sun, L. Xiao, and M. Zhang

4.1 Simulation Model

To accurately measure the communication latency, we employ a flit level simulation.
The time taken by a flit to be forwarded from one switch to another is assumed to be
one simulation time unit (we call it as one cycle). To improve the traffic flow, we
have considered four unicast virtual channels and one multicast virtual channel per
physical channel with 32 flits buffer per virtual channel. A fixed packet size of 8 flits
is assumed. A multicast packet must wait in the input buffer until being delivered to
all destination ports. To achieve higher switch throughput, the fan-out splitting of
multicast packet is allowed. The integrated arbitration strategy used in the simulator is
MURS-mix [14], but here we use WBA [15] strategy for multicast arbitration instead
of RR.

The packet arrival time at each processing node is assumed to be uniformly
distributed. The destination of unicast and multicast packets are also assumed to be
uniformly distributed. To compare the performance in different group sizes, we have
used the normalized network load to determine the generation rate of the packet. The
normalized network load, denoted by Traffic, is the amount of flits delivered per time
unit per processing node. The multicast delay refers to the interval between the packet
initiation time and the time until all destinations receive the entire packet. If there is
more than one flit in a packet, the head flit is followed by several body flits and a tail
flit. Otherwise, the head flit is also a tail flit. The injection rate of unicast head flit (ru)
and multicast head flit (rm) can be obtained using the formula 1 and formula 2
respectively, where Mu (Mm) denotes the ratio unicast (multicast) to network load, Lu
(Lm) denotes the length of unicast (multicast) packet, Sg denotes the size of the
multicast group.

(1)u
u

u u u

trafficM

traffic M L traffic M
r

⋅
− ⋅ ⋅ + ⋅

= (1)

((1))m
m

m m m g

trafficM

trafficM L trafficM S
r

⋅
− ⋅ ⋅ + ⋅ ⋅

= (2)

4.2 Simulation Results

In our experiment, a 4-ary 3-tree is simulated, and the performance of look-ahead
adaptive routing (LAR) is compared with that of full adaptive routing (FAR). The size
of multicast group is set to 8, 16, 32, and 64. The Mm is set to 0.5 and 0.2 separately.
As simulator termination criteria, the max relative error is set to 5%, and the
confidence level is set to 95%.

Firstly, we perform experiments to determine the optimum value for the
threshold. Fig 3 shows the multicast and unicat latency under different threshold
value when the Mm =0.5 (Traffic=0.5) and Mm =0.2 (Traffic=0.6). If threshold is
larger than 32, LAR is equal to FAR. From the latency curve we see that, for good
performance, the threshold should be 8. This value will be used throughout the rest
of the paper.

 Look-Ahead Adaptive Routing on k-Ary n-Trees 447

4 8 16 24 FAR
0

20

40

60

80

100

120

140

160

Threshold

C
om

m
un

ic
at

io
n

La
te

nc
y

(c
yc

le
)

Sg=8-Multicast

Sg=8-Unicast
Sg=16-Multicast

Sg=16-Unicast

Sg=32-Multicast

Sg=32-Unicast
Sg=64-Multicast

Sg=64-Unicast

4 8 16 24 FAR

30

40

50

60

70

80

90

100

110

Threshold

C
om

m
un

ic
at

io
n

La
te

nc
y

(c
yc

le
)

Sg=8-Multicast

Sg=8-Unicast

Sg=16-Multicast

Sg=16-Unicast

Sg=32-Multicast

Sg=32-Unicast

Sg=64-Multicast

Sg=64-Unicast

 (a) (b)

Fig. 3. The impact of link threshold on communication latency: (a) Traffic=0.5, M m =0.6, (b)
Traffic=0.6, M m =0.2

In the first set of result, the Mm is set to 0.5. Fig 4 shows the communication
latency versus the network load. When Sg =8, the performance of LAR is very close to
that of FAR. When Sg =16, the multicast latency of LAR is a little lower than that of
FAR. For large group size (32 and 64), the multicast throughput of LAR is higher
than that of FAR by about 20%. Fig.4 indicates that for higher Mm, LAR can also

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

Network Load

C
om

m
un

ic
at

io
n

 L
a

te
n

cy
 (c

yc
le

)

Communication Latency Comparision (Sg=8)

FAR-Multicast
FAR-Unicast
LAR-Multicast
LAR-Unicast

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

250

Network Load

C
om

m
un

ic
at

io
n

L
at

en
cy

 (c
yc

le
)

Communication Latency Comparision (Sg=16)

FAR-Multicast
FAR-Unicast
LAR-Multicast
LAR-Unicast

 (a) (b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

250

Network Load

C
om

m
un

ic
at

io
n

La
te

nc
y

(c
yc

le
)

Communication Latency Comparision (Sg=32)

FAR-Multicast
FAR-Unicast
LAR-Multicast
LAR-Unicast

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

Network Load

C
om

m
un

ic
at

io
n

La
te

nc
y

(c
yc

le
)

Communication Latency Comparision (Sg=64)

FAR-Multicast
FAR-Unicast
LAR-Multicast
LAR-Unicast

 (c) (d)

Fig. 4. Communication latency comparison of FAR and LAR (M m =0.5)

448 Q. Sun, L. Xiao, and M. Zhang

lower the unicast latency compared with FAR. Especially, the unicast throughput of
LAR is higher than that of FAR by about 15% when Sg =64.

In most classes of parallel applications, multicast communication constitutes only a
small portion of the total network traffic. In the next set of simulation results, the Mm
is set to 0.2. Fig. 5 shows that the multicast throughput of LAR is higher than that of
FAR by about 10%, 25%, 27%, and 30% respectively for Sg =8, 16, 32, and 64. The
unicast latency of LAR is also a little lower than that of FAR when Sg is larger
than 16.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

Network Load

C
om

m
un

ic
at

io
n

L
at

en
cy

 (c
yc

le
)

Communication Latency Comparision (Sg=8)

FAR-Multicast
FAR-Unicast
LAR-Multicast
LAR-Unicast

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

Network Load

C
om

m
un

ic
at

io
n

La
te

nc
y

(c
yc

le
)

Communication Latency Comparision (Sg=16)

FAR-Multicast
FAR-Unicast
LAR-Multicast
LAR-Unicast

 (a) (b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

Network Load

C
om

m
un

ic
at

io
n

La
te

nc
y

(c
yc

le
)

Communication Latency Comparision (Sg=32)

FAR-Multicast
FAR-Unicast
LAR-Multicast
LAR-Unicast

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

Communication Latency Comparision (Sg=64)

Network Load

C
om

m
un

ic
at

io
n

La
te

nc
y

(c
yc

le
)

FAR-Multicast
FAR-Unicast
LAR-Multicast
LAR-Unicast

 (c) (d)

Fig. 5. Communication latency comparison of FAR and LAR (M m =0.2)

5 Conclusion

In this paper we study the methods to forecast and reduce the conflict between unicast
and multicast on k-ary n-trees. Based on the switch grouping method, we analysis the
sufficient conditions for no conflict routing and propose the look-ahead adaptive
routing strategy. The simulation results indicate that the proposed strategy can lower
the multicast latency and the unicast latency simultaneously.

 Look-Ahead Adaptive Routing on k-Ary n-Trees 449

References

1. Petrini, F., Vanneschi, M.: k-ary n-trees: High Performance Networks for Massively
Parallel Architecture. In: International Parallel Processing Symposium, Geneva,
Switzerland, pp. 87–93 (April 1997)

2. Petrini, F., Feng, W.c., Hoisie, A., Coll, S., Frachtenberg, E.: The Quadrics Network: High
Performance Clustering Technology. IEEE Micro 22(1), 46–57 (2002)

3. Panda, D.K.: Issues in Designing Efficient and Practical Algorithms for Collective
Communication in Wormhole Routed Systems. In: 1995 WorkShop on Challenges for
Parallel Processing, pp. 8–15 (1995)

4. Ni, L.M.: Should Scalable Parallel Computer support Efficient Hardware Multicast? In:
Proceeding of the ICPP Workshop on Challenges for Parallel Processing, pp. 2–7 (1995)

5. http://www.supercomp.de/isc2005/index.php?s=tutorial&unterseite=overview
6. Panda, D.K., Sivaram, R.: Fast Broadcast and Multicast in Wormhole Mutistage Networks

with Multidestination worms. Tech. Rep. OSU-CISRC-04/95-TR21, Department of
Computer and Information Science, Ohio State University (1995)

7. Varavithya, V., Mohapatra, P.: Tree-Based Multicasting on Wormhole Routed Multistage
Interconnection Networks. In: Proceedings of the International Conference on Parallel
Processing (1997)

8. Kumar, S.: Optimizing Communication for Massively Parallel Processing, PhD thesis,
department of computer science, university of Illinois at Urbana-Champaign (May 2005)

9. Sun, Q., Zhang, M., Xiao, L.: Hardware-Based Multicast with Global Load Balance on k-
ary n-trees, in Proceedings of the International Conference on Parallel Processing (2007)

10. Aydogan, Y.: Adaptive Source Routing and Route Generation for Multicomputers, Master
thesis, department of computer engineering and information science. Bilkent University

11. Lin, X., Ni, L.M.: Deadlock-free Multicast Wormhole Routing in Multicomputer
Networks. In: Proceedings of the International Symposium on Computer Architecture, pp.
116–124 (1991)

12. http://www.omnetpp.org/
13. http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/
14. Mhamdi, L., Vassiliadis, S.: Integrating Uni- and Multicast Scheduling in Buffered

Crossbar Switches. In: Workshop on High Performance Switching and Routing (2006)
15. Prabhakar, B., Mckeown, N., Ahuja, R.: Multicast Scheduling for Input-Queued Switches.

IEEE Journal of Selected Arears Communication 15(5), 855–866 (1997)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 450–459, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Beehive Algorithm Based QoS Unicast Routing
Scheme with ABC Supported∗

Xingwei Wang, Guang Liang, and Min Huang

College of Information Science and Engineering, Northeastern University, Shenyang,
110004, P.R. China

wangxw@mail.neu.edu.cn

Abstract. In this paper, a QoS unicast routing scheme with ABC supported is
proposed based on beehive algorithm. It deals with inaccurate network status
information and imprecise user QoS requirement, introduces edge bandwidth
pricing, edge evaluation and path evaluation, and tries to find a QoS unicast
path with Pareto optimum under Nash equilibrium on both the network provider
utility and the user utility achieved or approached.

1 Introduction

QoS (Quality of Service) routing with ABC (Always Best Connected) supported is
essential [1]. However, it is hard to describe the network status exactly. The user QoS
requirements are affected largely by a lot of subjective factors and often can not be
expressed accurately. ABC means a user can get the best available connection any-
time and anywhere, however, ‘best’ itself is fuzzy, depending on many factors, such
as user QoS requirement, cost a user willing to pay, user preference, terminal ability
and access network availability. With network operation commercialization, ABC is
not a user's own wishful thinking and thus need to consider both the network provider
profit and the user profit with win-win supported [2]. In this paper, a QoS unicast
routing scheme with ABC supported is proposed based on the beehive algorithm [3],
trying to find a QoS unicast path with Pareto optimum under Nash equilibrium on
both the network provider utility and the user utility achieved or approached.

2 Model Description

A network is represented as a graph),(EVG , V is node set and E is edge set.

()||,,3,2,1,, VjiVvv ji …=∈∀ , there maybe exist several edges between them. The

node parameters are merged into the edge ones. Eel∈∀ , consider total bandwidth

∗ This work is supported by the National High-Tech Research and Development Plan of China

under Grant No. 2006AA01Z214; the National Natural Science Foundation of China under
Grant No. 60673159; Program for New Century Excellent Talents in University; Specialized
Research Fund for the Doctoral Program of Higher Education; the Natural Science Founda-
tion of Liaoning Province under Grant No. 20062022.

 A Beehive Algorithm Based QoS Unicast Routing Scheme with ABC Supported 451

lbwt , available bandwidth lbw , delay ldl , delay jitter ljt , error rate lls , bandwidth

unit cost lct and bandwidth price lp . A QoS unicast routing request is described as

>< bdpyrqlsrqlsrqjtrqjtrqdlrqdlrqbwrqbwvv HLHLHLHLds ,],_,_[],_,_[],_,_[],_,_[,, ,

its elements representing the source node, the destination node, the user bandwidth,
delay, delay jitter and error rate requirement, the cost the user willing to pay
and the bid the user willing to offer respectively. },,,{ pfge pypypypypy∈ and

},,,{ pfge bdbdbdbdbd∈ correspond to the specific cost the user willing to pay and the

specific bid the user willing to offer respectively when the user QoS level takes a
specific value from }PoorFair,Good,Excellent,{ .

In order to promote a user to consume bandwidth rationally, the edge bandwidth
price can be divided into three different regions, i.e., low, sound, and high. Assume

lη represents the loading level of le and is computed as follows:

l

ll
l bwt

bwbwt −
=η . (1)

If 0ηη <l , le is considered to be low-loaded, its corresponding bandwidth price is at
the low region and can be decreased according to the formula (2); if 1ηη >l , le is
considered to be high-loaded, its corresponding bandwidth price is at the high region
and can be increased according to the formula (3); otherwise, le is considered to be
moderate-loaded and its corresponding bandwidth price is at the sound region. Here,

0η and 1η are preset experience value, 10 10 <<< ηη .

⎪⎩

⎪
⎨
⎧

≤≤
×+

<
=

− 0
min

min
min

1
ηηη

ηα

ηη

β ll

l

ll

l
A

p
p . (2)

()⎩
⎨
⎧

≤≤−×
<<

= −×−
max0

)(

1max
max

2
02 ηηη

ηηη
ηηδ

l

ll
l leB

p
p . (3)

min
lp and max

lp are the lower bound of the low region and the upper bound of the
high region respectively, minη represents the upper bound of the edge loading level
corresponding to min

lp , and max
lη represents the lower bound of the edge loading

level corresponding to max
lp .

Assume 0
lp represents the bandwidth baseline price of le , 0

lη is the edge loading
level corresponding to 0

lp , max0min
lll ppp ≤≤ .

For 0min ηηη ≤≤ l , lp is Cauchy distribution alike[4] with 2=β , 0
ll pp = when

0ηη =l , min
ll pp = when minηη =l . Then, A and α can be derived as follows:

2

0

0

1 −×+
=

ηα
A

pl . (4)

452 X. Wang, G. Liang, and M. Huang

2

min

min

1 −×+
=

ηα
A

pl . (5)

)1(2

02

0
02

min
min

min0
0 −

−− ×
×−×

−
+×= η

ηη ll

ll
l

pp

pp
pA . (6)

2

0
02

min
min

min0

−− ×−×
−

=
ηη

α
ll

ll

pp

pp
 . (7)

For max0 ηηη ≤≤ l , lp is normal distribution alike[4], 0
ll pp = when 0ηη =l ,

max
ll pp = when maxηη =l . Then, B and δ can be derived as follows:

()()2
0020 ηηδ −×−−×= eBpl . (8)

()()2
0max2max ηηδ −×−−×= eBpl . (9)

0
lpB = . (10)

2
0max

0

max

)(

)2ln(

ηη
δ

−

−
−= l

l

p

p

 .
(11)

The membership degree function is introduced to describe the adaptability of the

candidate edge conditions to the user QoS requirements. The edge bandwidth, delay,

delay jitter and error rate adaptability membership degree function are defined as the

following formulas (12) to (15) respectively.

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>

≤<+
−

−
×−

+≤<
−

−
×

=

Hl

HlLH

LH

lH

LHlL

LH

Ll

l

rqbwabw

rqbwabwrqbwrqbw
rqbwrqbw

abwrqbw

rqbwrqbwabwrqbw
rqbwrqbw

rqbwabw

abwg

_1

_)__(
2

1
)

__

_
(21

)__(
2

1
_)

__

_
(2

)(

2

2

1

 . (12)

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤<
−

−
≤

=

Hl

HlL
k

LH

lH

Ll

l

rqdldl

rqdldlrqdl
rqdlrqdl

dlrqdl
rqdldl

dlg

_0

__)
__

_
(

_1

)(2

 . (13)

 A Beehive Algorithm Based QoS Unicast Routing Scheme with ABC Supported 453

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤<
−

−
≤

=

Hl

HlL
k

LH

lH

Ll

l

rqjtjt

rqjtjtrqjt
rqjtrqjt

jtrqjt
rqjtjt

jtg

_0

__)
__

_
(

_1

)(3

 . (14)

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤<
−

−
≤

=

Hl

HlL
k

LH

lH

Ll

l

rqlsls

rqlslsrqls
rqlsrqls

lsrqls
rqlsls

lsg

_0

__)
__

_
(

_1

)(4

 . (15)

The evaluation matrix TggggG][4321= to le can be gotten by the formulas

(12) to (15). According to the application nature, the corresponding weight matrix
][4321 λλλλ=Λ is given, 1λ , 2λ , 3λ and 4λ are the relative significance

weights of bandwidth, delay, delay jitter and error rate to the application QoS respec-
tively, 1,,,0 4321 ≤≤ λλλλ , 14321 =+++ λλλλ . Then, the user satisfaction degree

to the QoS of le is computed as follows:

GStl Λ= . (16)

The mapping relationship between lSt and Ql is defined as follows:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<
<≤
<≤

≥

=

3

23

12

1

α
αα
αα

α

l

l

l

l

StPoor

StFair

StGood

StExcellent

Ql . (17)

1α , 2α and 3α are preset experience values. According to Ql , the corresponding
py value can be determined from },,,{ pfge pypypypy .

Define the user satisfaction degree to the cost he paid as follows:

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

>×

≤×<
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

×−

≤×

=

pyabwp

pyabwppy
pypy

abwppy

pyabwp

Dp

ll

ll

k

ll

ll

l

0

1
1

1
1

χ
χ

χ

 . (18)

454 X. Wang, G. Liang, and M. Huang

labw is the actually allocated bandwidth for the user on le ,

HlL rqbwabwrqbw __ ≤≤ ; 1>χ , k is a preset experience value.
The user utility on le is computed as follows:

lll DpStuu ×+×= 21 ϖϖ . (19)

1ϖ and 2ϖ are preference weights for lSt and lDp respectively, 1,0 21 ≤≤ ϖϖ ,
121 =+ϖϖ .

Eel∈∀ , the initial value of its being selected probability is computed as follows:

se
prl

1
)0(= . (20)

Here, se is the number of those edges sharing the same endpoints with le , that is,
all edges sharing the same endpoints have the same being selected probability at the
beginning in this paper. Since the proposed scheme in this paper is based on the bee-
hive algorithm [3], when routing, the edge being selected probability is increased or
decreased through feedback by means of judging the reaction valve values of the bees
themselves and the external stimulation signal values. After the)1(+bn th bee is
produced, the being selected probability)1(+bnprl of le is updated as follows:

2
1

2
1

2
1)1(

++

+

+
=+

bnbn

bn
l S

S
bnpr

θ
 . (21)

⎪⎩

⎪
⎨
⎧ ++

=
++

otherwiseS

ethbn
veheHop

bSb
S l

tlbn

0
bn

0

1

21
1

 passing bee)1(the
)),((

*
τ

 . (22)

⎩
⎨
⎧

+
++

=
+

+
+ otherwise)),((*

 passing bee)1(the)),((**

10

121
1

tlbn

ltlbn0
bn veheHop

ethbnveheHopff

σθ
λθ

θ . (23)

Here, 1+bnS is the stimulation signal value produced by)1(+bn th bee, 0S is its
baseline value, τ is a constant, 1>τ , 1b and 2b are its preference weights,

1,0 21 ≤≤ bb , 121 =+ bb ,)(lehe is the starting end node of le ,)),((1 tlbn veheHop +
represents the distance (hop number) between)(lehe and tv along the path from sv
to tv traversed by the)1(+bn th bee; 1+bnθ is the reaction valve value to dv of the

)2(+bn th bee itself, 0θ is its baseline value, λ and σ are constants, 10 << λ ,
10 << σ , 1f and 2f are its preference weights, 1,0 21 ≤≤ ff , 121 =+ ff .

Assume that there are k candidate edges between two nodes provided by dif-
ferent network providers and consider the following seven attributes for each edge:
the available bandwidth, delay, delay jitter, error rate, loading level, bandwidth
price and being selected probability, constitute a 7×k evaluation matrix as
follows:

 A Beehive Algorithm Based QoS Unicast Routing Scheme with ABC Supported 455

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅
⋅⋅⋅

=

721

272221

171211

kkk fff

fff

fff

F . (24)

zyf represents the yth attribute of the zth candidate edge,

71,1 ≤≤≤≤ ykz . yfmin, and yfmax, are the minimum and maximum of the yth at-

tribute value respectively. In order to eliminate the influence of the attribute magni-
tude and reserve the information about the attribute variation value, do normalization
to “the larger the better” and “the smaller the better” attributes according to the for-
mulas (25) and (26) respectively:

yy

zy

zy ff

f
f

min,max,

'

+
= . (25)

yy

zyyy

zy ff

fff
f

min,max,

min,max,'

+
−+

= . (26)

}{minmin, zyzy ff = . (27)

}{maxmax, zy
z

y ff = . (28)

Based on the above, the network provider utility is computed as follows:
Step1: Get the network providers of k candidate edges and construct the corre-

sponding 7×k evaluation matrix F .
Step2: Modify F : normalize the delay, delay jitter, error rate and loading level at-

tribute according to the formula (26); normalize the available bandwidth, bandwidth
price and being selected probability attribute according to the formula (25).

Step3: Compute the standard deviation ys for each attribute according to the for-

mula (29); compute the weight for each attribute according to the formula (31).

2

1

1

2')(
1

⎟
⎠
⎞

⎜
⎝
⎛ −×= ∑

=

k

z
yzyy ff

k
s . (29)

∑
=

×=
k

z
zyy f

k
f

1

'1
 . (30)

∑
=

=
t

y

y

s

s
w

1κ
κ

 .
(31)

456 X. Wang, G. Liang, and M. Huang

Step4: Compute the zth network provider utility z
lnu on its provided candidate

edge le according to the formula (32).

∑
=

×=
t

y
zyy

z
l fwnu

1

' . (32)

The network provider and the user play game on an edge. The network provider
has two gaming strategies: whether it is willing to provide the bandwidth of the can-
didate edge to the user or not. The user also has two gaming strategies: whether he is
willing to accept the provided bandwidth of the candidate edge or not. The gaming
matrixes of the user and the zth network provider on its provided candidate
edge le are defined as follows respectively:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×−

×
=

0ln

lnln

0

00

l

l

l

l

l

l

uu

uu
uu

uu

uu

uu

UU
μ

γ
 . (33)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

×−
=

0ln

lnln

0

00

z
l

z
l

z
l

z
l

z
l

z
l

z

nu

nu

nu

nu

nu

nu

NU

γ

μ
 . (34)

The rows in zNU and UU correspond to the user gaming strategies: accept or
not, the columns correspond to the zth network provider gaming strategies: provide
or not. z

lnu
0

 and
0l

uu represent the lowest acceptable utilities of the zth candidate
network provider and the user on the candidate edge le respectively, which are preset
experience values. z

lnu and luu represent the zth network provider utility and the
user utility on le . If the zth network provider is willing to provide le but the user
rejects it or the user is willing to accept le but the zth network provider does not
provide it, the user or the zth network provider will be punished, μ is a penalty
factor bigger than 1. If the zth network provider does not provide le but the user is
willing to accept it or the user rejects le but the zth network provider is willing to
provide it, the user or the zth network provider will lose its utility, γ is a loss factor
smaller than 1. If the zth network provider does not provide le at the same time the
user rejects it, their utilities are 0. If the strategy pair >< **,qp satisfies the following
inequality, the strategy pair >< **,qp is the solution under Nash equilibrium [5]:

⎪⎩

⎪
⎨
⎧

≥
≥

qpqp

pqqp

bb

aa

 . (35)

If >< **,qp is >< acceptprovide, , le will be selected, otherwise rejected.

 A Beehive Algorithm Based QoS Unicast Routing Scheme with ABC Supported 457

The user utility sdUU , the zth network provider utility z
sdNU and all network

provider utility sdNU on the path sdP from sv to dv are computed as follows:

∑
∈

=
sdl Pe

lsd uuUU . (36)

∑
∈

=
sdl Pe

z
l

z
sd nuNU . (37)

∑
=

z
z
sd

sd

NU

NU
1

1
 .

(38)

The cost of the path sdP is computed as follows:

∑
∈

×=
sdl Pe

llsd abwctCT . (39)

Considering the user utility, the network provider utility and the path cost compre-
hensively, the path evaluation function

sdPJ of sdP is defined as follows:

3

3
2

2
1

1 Ω
×+

Ω
×+

Ω
×= sd

sdsd

P

CT

NUUU
J

sd
βββ . (40)

Here, 1β , 2β and 3β are the preference weights to the user utility, the network

provider utility and the path cost respectively, 1,,0 321 ≤≤ βββ , 1321 =++ βββ ;

1Ω , 2Ω and 3Ω are tuning coefficients, making sdUU1Ω , sdNU2Ω and

3ΩsdCT into the same magnitude order. According to the formula (40), the smaller

the value of
sdPJ , then the bigger the value of sdUU , z

sdNU , sdNU and

)(sdsd NUUU + , the much possible for them to achieve or approach Pareto optimum

under Nash equilibrium, and achieve the smaller value of sdCT .

3 Algorithm Description

In this paper, the objective of the proposed scheme is described as follows:

}{maxmize sdUU . (41)

}{maxmize z
sdNU . (42)

}{maxmize sdNU . (43)

}{maxmize sdsd NUUU + . (44)

458 X. Wang, G. Liang, and M. Huang

}{minmize sdCT . (45)

s.t.

LlPe
rqbwabw

sdl

_}{min ≥
∈

 . (46)

H
Pe

l rqdldl
sdl

_≤∑
∈

 . (47)

H
Pe

l rqjtjt
sdl

_≤∑
∈

 . (48)

H
Pe

l rqlsls
sdl

_)1(1 ≤−− ∏
∈

 . (49)

The proposed QoS unicast routing algorithm based on the beehive algorithm in this
paper is described as follows:

Step1: Initialization: set the maximum number of the bees BN (covering both the
short distance bees and the long distance bees [3]); the number of the produced bees
by far 0=bn ; the baseline bid 0

lbd of the user to le ; computing the initial value of
the edgee sel ' being selected probability; the period of the long distance bees being
produced itv ; the life cycle of the long distance bees ltv ; the life cycle of the short
distance bees stv ; the counter of the hop number 0=hp ; the current best path

ϕ=bestPt and its evaluation value ∞=
0PJ .

Step2: If BNbn < , go to Step3; otherwise, go to Step18.
Step3: If hp can be exactly divided by itv , produce the long distance bee bnBe

from sv ; otherwise, produce the short distance bee bnBe .
Step4: Set the followings carried by bnBe : ∞=bw , 0=dl , 0=jt , 0=ls , the current

node svcn= , path }{ svPt= , the set of those edges connecting with cn : ϕ=ne , the set
of the candidate edges for the next hop: ϕ=ce .

Step5: If ivcn= , put all edges connecting with iv into ne and delete those edges
from ne which cause loop, that is, })({ Ptetaneeenene lll ∈∧∈−= ,)(leta is another
endpoint of le besides iv .

Step6: If bnBe is a long distance bee, go to Step7, otherwise go to Step8.
Step7: If ltvhp > , bnBe died, go to Step17; otherwise, go to Step9.
Step8: If stvhp > , bnBe died, go to Step17; otherwise, go to Step9.
Step9: If ϕ=ne , go to Step14, otherwise select one le from ne at random.
Step10: If Ll rqbwabwbw _},min{ < or Hl rqdldldl _>+ or Hl rqjtjtjt _>+ or

Hl rqlslsls _)1)(1(1 >−−− , }{ lenene −= , go to Step9; otherwise, compute the loading
level of le .

Step11: If le is high-loaded, compute the user satisfaction degree lSt to the QoS of

le , get its corresponding QoS level Ql , determining the user`s specific bd from
},,,{ pfge bdbdbdbd to le , compute lp according to the formula (3), go to Step12;

 A Beehive Algorithm Based QoS Unicast Routing Scheme with ABC Supported 459

if le is low-loaded, compute lp according to the formula (2); if le is moderate-loaded,
go to Step13.

Step12: If 0
lbdbd< , }{ lenene −= , go to Step9; otherwise, bdpl = , bdbdl =0 .

Step13: Compute the user edge utility luu and the network provider edge util-
ity z

lnu ; the user and the network provider play game on the edge le : if Nash equilib-
rium is achieved and its corresponding gaming strategy is >< acceptprovide, ,

}{ lecece ∪= , }{ lenene −= , otherwise }{ lenene −= ; go to Step9.
Step14: If ϕ=ce , bnBe died, go to Step17; otherwise, according to)(bnprl , select

one le from ce as the next hop, do: },min{ labwbwbw= , ldldldl += , ljtjtjt += ,
)1)(1(1 llslsls −−−= ,)(letacn= , }{}{ cnePtPt l ∪∪= , ϕ=ne , ϕ=ce , 1+= hphp .

Step15: If dvcn≠ , go to Step5.

Step16: Compute the user utility sdUU , the zth network provider utility z
sdNU

and the network provider utility sdNU respectively; compute the path cost sdCT ;

compute the path evaluation value
sdPJ . If

0PP JJ
sd

< , PtPtbest = ,
sdPP JJ =

0
.

Step17: By Pt , compute)1(+bnprl , 1+= bnbn , go to step2.
Step18: If ∞<

0PJ , output bestPt as the problem solution, routing succeeded; other-
wise, routing failed. The algorithm ends.

4 Performance Evaluation and Conclusion

Simulations of the proposed QoS unicast routing scheme have been done on NS2
(Network Simulator 2) and simulation results have shown that it is both feasible and
effective with better performance [6]. In future, our study will focus on improving its
practicality, developing its prototype system and extend it to multicast scenario.

References

1. Chuan, X.G., Zi, H.G., Qian, Z., Wen, W.Z.: A seamless and proactive end-to-end mobility
solution for roaming across heterogeneous wireless networks. IEEE Journal on Selected Ar-
eas in Communications 22(5), 834–848 (2004)

2. Wang, X.W., Hou, M.J., Wang, J.W., Huang, M.: A microeconomics-based fuzzy QoS uni-
cast routing scheme in NGI. In: Yang, L.T., Amamiya, M., Liu, Z., Guo, M., Rammig, F.J.
(eds.) EUC 2005. LNCS, vol. 3824, pp. 1055–1064. Springer, Heidelberg (2005)

3. Horst, F.W., Muddassar, F., Yue, Z.: BeeHive: An efficient fault tolerant routing algorithm
under high loads inspired by honey bee behavior. In: Dorigo, M., Birattari, M., Blum, C.,
Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 83–
94. Springer, Heidelberg (2004)

4. Yang, L.B.: Principles and Applications of Fuzzy Mathematics, 3rd edn, South China Uni-
versity of Technology Press Guang Zhou (2002)

5. Shi, X.Q.: Game Theory. Shanghai University of Finance Economics Press Shanghai (2000)
6. Liu, C.: Rearch and Simulated Implementaion of Fair Intelligent QoS Routing Mechanism

in NGI [D]. Northeastern University, Shenyang (2006)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 460–467, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Effective Real-Time Rate Control Scheme for Video
Codec

Wei Sun and Haoshan Shi

School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China
sun65488@gmail.com, shilaoshi@nwpu.edu.cn

Abstract. To reduce the complexity of the bit allocation scheme for real-time
video codec and keep an acceptable video quality, an effective rate control
scheme combined with the fast mode decision is proposed. The length of each
GOP(group of pictures) is dynamically determined according to the content of
the video clip. The algorithm employs a MAD-tracing based model to allocate
bit budget between frames within the same GOP. More motional and active
macroblocks(MBs) get more bits than other MBs in the same frame. The me-
dian result then can be reused to accelerate fast mode decision procedure. Ex-
perimental results show the proposed methods can enhance the overall quality
of compressed video.

Keywords: rate control (RC), dynamic GOP length, fast mode decision, video
compression.

1 Introduction

In recent years, with the development of the wireless communication system and the
rapidly growing demands for video services, several video coding standards have
been established (e.g., MPEG-2, MPEG-4, H.264/AVC, AVS). Rate control has al-
ways been the central piece especially in the real-time video transmission due to the
timing constraint and network bandwidth variation. The bit budget has to be allocated
suitably in video sequences to keep reasonable video quality. Rate control includes
two steps: bit allocation and bit allocation achievement (which is usually implemented
by quantization parameter (QP) adjustment).

TM5[1] in MPEG-2 is a benchmark in rate control scheme, in which the size of
GOP is fixed and a constant bit allocation is executed among GOP. GOP has usually
been the basic unit for bits allocation. Some subsequent solutions, such as MPEG-4
Annex L rate control and TMN8 [2], also share the same idea and make some
amendments (e.g., more accurate bit estimation, adapted with network conditions).
TMN8 makes the assumption that the video sequence is nearly stationary in the same
GOP and all GOP have similar statistic characteristics, which is not always right in
practical applications where the motions in different frames may change dramatically
especially when scene-change happened.

Further work has been done in the following ways. First, different bit allocation
schemes within GOP scope have been developed with the idea that high-motional
frames get more bits and vice versa [3]. Others use new rate-distortion(R-D) models

 An Effective Real-Time Rate Control Scheme for Video Codec 461

to change some parameters in quantization procedure like QP and λ to achieve an
optimized bit allocation [4] [5] [6]. Some annoying quality fluctuation may happen if
bit budget were only allocated within fixed-GOP. Dynamic GOP technique has been
studied in [7] [10]. Many of aforementioned algorithms are not suitable for real-time
video communication due to the large computational complexity.

In this paper, an effective rate control algorithm based on JVT-G012 [8] combined
with fast mode decision is proposed for real-time video communication.

2 Mode Decision and MAD Reuse

The mode decision in H.264 is on the basis of eq. (1):

+=),,(),,,(MODEcsSSDMODEcsJ MODEλ),,(MODEcsRMODE ⋅λ , (1)

where s and c are the original blocks and rebuilt ones respectively, MODEλ is the La-

grange multiplier. The SSD(Sum of squared Differences)is computed as

[]∑ −=
ji

jicjisSSD
,

2),(),((2)

The term MODE includes all of the possible modes for a block to choose. The origi-
nal full-search of all modes is time-consuming and some fast mode decision schemes
have been proposed like [11][12]. Methods like [13] choose to check the MAD(mean
absolute difference) or MSE(mean square error) of current block to make a better
prediction of best mode. At the same time, rate control schemes have to predict the
MAD change in video clips through several prediction models(like linear model in
G012) to allocate bit budget. If a sufficient reuse of MAD were executed, not only the
bit allocation is more accurate, but the mode decision is accelerated.

2.1 A New MAD Computation Method

A new MAD calculation method is done based on eq. (3):

|),(),(|
*

1
)),(,(1

1 1

yyxxpyxp
HW

yxmviMAD i

W

x

H

y
i Δ−Δ−−=ΔΔ −

= =
∑∑ , (3)

in which),(yxpi represents the pixel value of current block,),(yxmv ΔΔ and

),(1 yyxxpi Δ−Δ−− are motion vector and pixel value of corresponding blocks in the

previous picture respectively. W and H are the size of current block which is deter-
mined by the situation in previous block. Fig. 1 shows an example of the decision
procedure for the shape of current block.

The block-size decision of current block starts from the top-left pixel of the picture.
Through the motion vector of previous picture, the top-left pixel finds itself the corre-
sponding pixel in the previous picture and the size of block in which its corresponding
pixel belongs is duplicated. So the shape of current block is chosen and should over-
lap with its corresponding ones. If some pixels is “lost” in corresponding block (this

462 W. Sun and H. Shi

Fig. 1. The decision of current block’s shape

Fig. 2. Lost pixels in previous picture

always happens at the boundary of pictures), as in Fig.2. The MAD of un-overlapping
part is calculated according eq. (4), plus to the overlapping part.),(yxpi is the pixel

value of un-overlapping part. WΔ and HΔ are width and height of un-overlapping
part.

|),(|
*

1
),,(

1 1
∑∑
Δ

=

Δ

=ΔΔ
=

W

x

H

y
iun yxp

HW
nmiMAD (4)

3 Proposed Rate Control Scheme

The GOP-length in traditional video coding standards is usually fixed, which works
fine in typical test sequences like “foreman” and “stefan”. However PSNR may
change dramatically at low bit rates for non-typical sequences (NTS) where scene-
change may happen randomly in a GOP. A NTS is generated by inserting sequence

 An Effective Real-Time Rate Control Scheme for Video Codec 463

Fig. 3. Simulation using the NTS with an input frame rate of 30 fps, an encoded frame rate of
15 fps, coded by AVC reference software JM10.1

“foreman” into sequence “stefan” irregularly. Fig. 3 illustrates the impact of fixed
GOP on the new test sequence. The visual quality of decoded video drops greatly
when scene-change happens within a GOP. Using dynamic GOP length can alleviate
the NTS problem. In our experiments, GOP structure is like: I, P, P, P, P……, with
none B frames used, which is preferable in real-time video encoding.

3.1 Dynamic GOP Length Control

In section 2, the MAD of every partitioned block in current picture have been calcu-
lated and stored. Then the scene-change indicator)(iThre is decided as follows:

0)(=iThre

for (m=0; ; m++)
if))1((*1),(biaMADWeightmiMAD average +−>

then)(iThre ++;

“a” and “b” are the two parameters in the MAD linear model of G012 which is up-
dated after encoding every frame.)(iMADaverage is defined as follows:

∑
=

=
M

m
average miMAD

M
iMAD

1

),(
1

)(, (5)

where M is the number of blocks worked out in section 2. A scene-change may hap-
pen if the following condition is satisfied:

MiThre *75.0)(> . (6)

Then buffer occupancy of HRD (hypothetical decoder model [8]) is checked. If buffer
occupancy is under 25%, another GOP structure is started, and current frame is en-
coded to I frame. The factor of buffer occupancy prevents network congestion. If the
buffer occupancy is beyond 25%, the GOP structure remains unchanged.

464 W. Sun and H. Shi

3.2 MB Layer Rate Control

Human eyes are more sensitive on the moving objects. The more motional region
deserves more bit budget than other regions during encoding. The activity factor of
each sub-MB)(mRATIO is defined as follows:

)(

),(
)(

iMAD

miMAD
mRATIO

average

= (7)

The following is a brief description of QP-modified scheme:

if 3.1)(>mRATIO

1)(−= cQPmQP ;

else if 5.0)(<mRATIO

1)(+= cQPmQP ;

cQP and)(mQP is the frame quantization parameter worked out in frame layer rate

control and quantization parameter for the current block.

4 Fast Mode Decision

First, the sequence number of various modes is defined in Table 1.
With stored MAD, the proposed fast mode decision is done as follows:

1. if QPWeightmiMAD *2),(<

 then)1(−= iMODEMODE pred

and)}()(|{ predcandidate MODESNMODESNMODEMODE <=

and SKIP mode is calculated first.
2. if QPWeightmiMAD *3),(>

 then)}()(|{ predcandidate MODESNMODESNMODEMODE >=

and Intra 16*16 mode is calculated first.
3. otherwise
 Mode decision is done according [14].

Table 1. Mode and Sequence Number (SN)

MODE SKIP 16*16 16*8 8*16 8*8 8*4

SN 0 1 2(1) 2(2) 3 4(1)

MODE 4*8 4*4 INTRA 4*4 INTRA 16*16

SN 4(2) 5 6 7

 An Effective Real-Time Rate Control Scheme for Video Codec 465

5 Experimental Results

Experiments have been conducted to evaluate the proposed rate control scheme com-
pared with G012 using JVT reference software JM10.1 [9]. The test sequence is
aforementioned NTS with following parameter settings: QCIF (4:2:0) format, an
encoded frame rate of 15 fps. The PSNR result is shown in Fig.4. A better average
PSNR (up to 1.1dB) performance is achieved as shown. Fig.5 is the picture of two co-
located frames in Fig.3 using proposed scheme. The subjective quality improves a lot
than G012.

0 1 0 2 0 3 0 4 0 5 0
2 0

2 2

2 4

2 6

2 8

3 0

3 2

3 4

3 6

3 8

4 0
 JV T-G 012
 P ropos ed

F ram e N um ber

P
S

N
R

/d
B

Fig. 4. PSNR of each frame encoding with G012 and proposed rate control scheme

Fig. 5. Pictures of the co-located frame in Fig. 3 using proposed rate control scheme

To verify the performance of revised fast mode decision scheme, four typical QCIF
image sequences are selected out to be compared here, which are “akiyo”, “foreman”,
“Stefan” and “coastguard”. “akiyo” is a slow-speed sequence, and “foreman” is a
middle-speed one. “Stefan” and “coastguard” are fast-speed sequences. Each of them
has 100 frames, with GOP structure of IPPPP……. The sequences are encoded at
various conditions with rate control. To simplify comparison, we have used average
PSNR gain (ΔPSNR), bit-rate reduction (Δbitrate) and time reduction (Δtime)
which are defined as follows:

466 W. Sun and H. Shi

refproposed YPSNRYPSNR)()(PSNR −=Δ

%100*
proposed

refproposed

bitrate

bitratebitrate
bitrate

−
=Δ

%100*t
proposed

refproposed

time

timetime
ime

−
=Δ

proposedtime and reftime are the time spend on mode decision using proposed rate

control scheme and G012 scheme respectively(other definition are the same).

Table 2. Performance of proposed scheme in 32Kbps and 15frames/s

Sequence Akiyo Foreman Stefan Coastguard
ΔPSNR 0.2 -0.2 0.05 0.1

Δbitrate(%) 2.21 -3.61 6.03 3.09
Δtime(%) -4 -8 -16 -12

Table 3. Performance of proposed scheme in 64Kbps and 30frames/s

Sequence Akiyo Foreman Stefan Coastguard
ΔPSNR -0.4 0.01 0.03 0.04

Δbitrate(%) 4.21 -1.22 1.23 1.07
Δtime(%) -6 -11 -14 -11

Table 4. Performance of proposed scheme in 128Kbps and 30frames/s

Sequence Akiyo Foreman Stefan Coastguard
ΔPSNR -0.3 0.07 0.09 0.03

Δbitrate(%) 1.67 -2.37 1.98 3.01
Δtime(%) -4 -6 -11 -9

From Table 2-4, we can observe that the most decreased PSNR is 0.4 dB and the

most increased bit-rate is 6.03% when compared with the reference algorithm in [14].
In some cases, the PSNR increases and the bit-rate decreases. The whole decreased
encoding time in mode decision changes with the sequence of video, the least de-
creased time is 4% and the most decreased time is 16%. We can also observe clearly
that the acceleration of proposed algorithm has direct relationship with the character-
istic of the video sequences: the acceleration of sequences with small motion vectors
is lower than that of sequences with big motion vectors.

6 Conclusion

This paper presents an improved and effective rate control scheme for real-time video
combined with MAD reuse. The experimental results show the proposed methods get
better PSNR quality and better subjective quality compared with the AVC rate control

 An Effective Real-Time Rate Control Scheme for Video Codec 467

schemes. And fast mode decision is speed up by up to 16% than the referential algo-
rithm. Further work will be done on self-adjustment of several parameters in
the scheme.

References

1. MPEG-2 Test Model 5,Doc. ISO/IEC JTC1/SC29 WG11/93-400 (1993)
2. ITU-T, Video codec test model, near-term, version 8 (TMN8), H.263 AdHoc Group, Port-

land (1997)
3. Xie, B., Zeng, W.: A Sequence-Based Rate Control Framework for Consistent Quality

Real-Time Video. IEEE Trans. Circuits Syst. Video Technol. 16, 56–71 (2006)
4. Jiang, M., Ling, N.: On Lagrange Multiplier and Quantizer Adjustment for H. IEEE Trans.

Circuits Syst. Video Technol. 16, 663–669 (2006)
5. Yuan, W., Lin, S.: Optimum Bit Allocation and Rate Control for H.264/AVC. IEEE Trans.

Circuits Syst. Video Technol. 16, 705–715 (2006)
6. He, Z., Kim, Y.K., Mitra, S.K.: Low-delay rate control and smoothing for video coding via

p-domain source modeling. IEEE Trans. Circuits Syst. Video Technol. 11, 928–940 (2001)
7. Gu, X., Zhang, H.: Implementing Dynamic GOP in Video Coding, Multimedia and Expo,

2003. In: ICME 2003, Proceedings, vol. 1, pp. 349–352 (2003)
8. Li, Z., Pan, F.: Adaptive Basic Unit Layer Rate Control for JVT, Joint Video Team (JVT)

of ISO/IEC MPEG & ITU-T VCEG, Pattaya II, Document JVT-G012, Thailand (2003)
9. Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG Reference Software

JM 10.1
10. Li, H., Liu, G.: Adaptive scene-detection algorithm for VBR video stream, IEEE Trans.

Multimedia 16, 624–633 (2004)
11. Jeon, B.: Fast mode decision for H.264, JVT-J033, Joint Video Team (JVT) of ISO/IEC

MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) 10th Meeting:
Waikoloa, Hawaii (2003)

12. Chang, A., Au, O.C., Yeung, Y.M.: A novel approach to fast multi-block motion estima-
tion for H.264 Video Coding. In: ICME 2003. Proc. of IEEE Int. Conf. on Multimedia &
Expo (2003)

13. Chen, J., He, Y.: A fast mode decision algorithm in H.264. In: Proceedings of PCS 2004,
San Francisco, p. 46 (2004)

14. Tourapis, H.C., Tourapis, A.: Fast motion estimation within H.264 codec. In: ICME 2003,
Baltimore, Maryland, USA (2003)

An Anti-statistical Analysis LSB Steganography

Incorporating Extended Cat-Mapping

Wenxiao Chen, Jing Cai, and Siwei Li

Department of Communication and Information Engineering
Nanjing University of Posts and Telecommunications P.R. China

njzykvsh@163.com
caijinghere@gmail.com
lisiwei5555@sina.com

Abstract. In this paper, we propose a modified LSB steganography
which resists most of the popular statistical analysis-based steganaly-
sis,such as SPA(Sample Pair Analysis) and RS. The modified algorithm
does not solely depends on embedding secret message into the cover im-
age as the conventional LSB watermarking method does, but increases or
decreases the candidate pixel’s value by two in accordance with the num-
ber of the pixel’s surrounding pixels whose LSB is positive. We discuss
on the basic principle of the proposed algorithm and experiments show
that the improved LSB steganography has a good robustness to statisti-
cal analysis. An extended cat-mapping is introduced in this paper which
will better encrypt the secret message than the standard cat mapping.
Experiments show the histogram of the encrypted image will be flat and
resembles the white noise’s histogram, which significantly enhances the
security of the algorithm.

1 Introduction

Steganography is a hot research subject in the field of information security. It
is an art of secret communication[1] and makes the secret communication avail-
able by embedding messages into cover objects(objects not containing any secret
message).It is essential that the stego object(objects containing the secret mes-
sage) does not contain any detectable artifacts that could be detected by an
observer. With the proliferation of digital images and given the high degree of
bit redundancy present in the image, an increasingly rising attention is given
to digital image and digital images are used as the cover image for steganog-
raphy. In the past years, a lot of researches have been done and some effective
watermarking methods have been developed. Among them, LSB (Least Signif-
icant Bit) steganography is one of the simplest watermarking algorithms with
high embedding ratio of secret information. It is a simple approach to embed
messages into a cover image.The major advantages of LSB steganography are its
simplicity and high watermarking bit ratio.However, with the deepening of the
steganalysis research, there emerge some steganalysis methods which can effec-
tively detect LSB steganography. Fridrich developed the RS steganalysis. This

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 468–476, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Anti-statistical Analysis LSB Steganography 469

method makes statistical analysis of the alterations of regular groups and singu-
lar groups in the image to estimate the length of the message embedded. Sorina
Dumitrescu proposed SPA, another steganalysis to detect LSB steganography
via sample pair analysis. When the embedding ratio is more than 3%. Generally
speaking, RS and SPA steganalysis are the two most reliable detection methods
of LSB steganography until now[8]. If we look through these steganalysis, we
will find that both RS and SPA detecting methods generally take advantage of
the relation between the image’s LSB plane before and after the standard LSB
embedding, analyze the statistical difference and derive out the length of the em-
bedded message. This sort of statistical analysis is often fatal to the traditional
LSB information hiding scheme, which solely depends on embedding message
into the least significant bit of an image.

However, we see most of the steganalysis mentioned above are constructed on
the basis of some statistical prerequisites. If we destroy these statistical analysis
prerequisites, adjust the embedding algorithm, then the stego will no longer be
so easily detected by such statistical analysis-based steganography. In effort to
achieve this goal, an improved LSB steganography algorithm which is reliably
robust to such statistical detection is proposed in this paper. The algorithm
increases or decreases the candidate pixel’s value by two in accordance with the
number of the pixel’s surrounding pixels whose LSB is positive. Actually, it is
embedding message into the second LSB layer of the image. Next section,we will
describe this algorithm in detail.

2 Proposed LSB Steganography

Suppose, s denotes one secret bit to be embedded, u denotes the corresponding
pixels whose 2nd LSB layer is to carry the secret bit s. Let v be the pixel which
has already been embedded with s. We use |u| to denote the value of the pixel
u, and |v| to denote the value of pixel v. The position of the corresponding pixel
is selected by another algorithm which requires a key k to control the generation
of the candidate pixels’s position in the cover image. Let’s discuss this later. The
existence of key k adds to security of the watermarking system.

The proposed LSB algorithm goes like this: If the current secret bit s, zero or
one, is identical to the 2nd LSB of the current candidate pixel’s value |u|, the
pixel keeps its original value. If not, check whether the value of current pixel
is 255 or 0. If 255, decrease the value by two. If 0, set the value to be 2. If |u|
equals to neither 255 nor 0, the proposed algorithm will modify the value of pixel
u by the checking the number of its surrounding pixels whose LSB is 1. Pixel
u’s 4 surrounding pixels are those pixels which are nearest to u and are on the
left-hand side, right-hand side, up-hand side, down-hand side of pixel u.Figure.1
shows pixel u′s(black) 4 surrounding pixels(gray).

If the candidate pixel u is on the edge of the cover image, then we only count
its available surrounding pixels. The algorithm will check these 4 pixels. If there
is an even number of surrounding pixels whose LSB is 1, decrease |u| by two. If
there is an odd number of surrounding pixels whose LSB is 1, increase |u| by two.

470 W. Chen, J. Cai, and S. Li

Fig. 1. Four surrounding pixels of a given pixel

2.1 Basic Principle of Proposed Algorithm

As a matter of fact, the proposed algorithm is to randomly increase or decrease
the candidate pixel’s value in a sense. The value change of the candidate pixel
is determined by the number of its surrounding pixels whose LSB is positive.
Therefore it is independent on the secret bit information. From the statistical
point of view, for a particular pixel u, the number of its surrounding pixels who
has a positive LSB is random and the possibility is even.

We still use |u| to denote the candidate pixel’s value which ranges from
0 to 255. Let’s denote the number of pixels which has an odd pixel value
(1,3. . . 255) by Neven and denote the number of pixels which has an even pixel
value (0,2. . . 254) by Neven. For a given image, the possibility for an even-valued
and an odd-valued pixel to appear are almost identical. Let’s denote the pos-
sibility of even-valued pixel to appear by Peven and denote the possibility of
odd-valued pixel by Podd. From the statistical perspective, Podd = Peven.

If we embed a secret bit into a candidate pixel, we first check its surrounding
pixels. However, no matter whether we increase or decrease the candidate pixel’s
value, both Neven and Neven will remain unchanged because we increase or
decrease by two instead of one. Thus we still have the equation : Podd = Peven.

Experiments show that the proposed algorithm will not generate statistical
difference from the original image as the conventional LSB algorithm does. The
results also indicate the modified LSB algorithm has an embedding ratio as high
as the traditional algorithm. The degradation it brings to the image is just the
same as the standard LSB coding method does.

2.2 Embedding Process

A pre-processing of the watermark can be performed in effort to improve security.
Before embedding the secret message into the cover image, we first the transform
the message via Arnold transformation.

In this paper, we extend the standard Arnold transformation to encrypt the
secret watermark. Experiments show that the extended Arnold transformation

An Anti-statistical Analysis LSB Steganography 471

will significantly change the histogram of the encrypted image and will turn it
into a chaotic state which resembles the white-noise. Even if the intruders detect
out the message, it is just like a Gauss noise that is useless. This feature largely
enhances the security of the encrypted watermark image. We will see this later.

2.3 Pre-processing of Watermark

The 2-dimensional Arnold transformation, usually called cat mapping is to trans-
form one matrix into another. It can be viewed as a discrete chaotic system.
Without loss of generality,let M be a N × N matrix, the element (i, j) can be
shifted to another position (i′j′) in the matrix by

[
i′

j′

]
= P

[
i
j

]
mod N

where P =
[

a b
c d

]

where mod N represents the modulo operation and (i, j) represents a particular
pixel’s coordinates in the image and so does (i′j′). In order to guarantee the cat
mapping is a one-to-one mapping, the value of the matrix P should meet the
requirement of |P | = 1. So, the matrix P can be simply denoted by

P =
[

1 a
b 1 + ab

]
,

where both a and b are integers. Therefore the Arnold transformation can be
written as [

i′

j′

]
=

[
1 a
b 1 + ab

] [
i
j

]
mod N

The Arnold transformation or cat mapping is widely used as a method to encrypt
image in the field of watermarking. The basic principle of the cat mapping is
to rearrange the location of pixels within the image. It achieves its objectives of
encryption by disturbing the position of pixels. But experiments shows that cat
mapping could not change the histogram of the encrypted image thus providing
opportunities for observers to speculate the original image. In this paper, we
extend the cat mapping by taking into account the pixel value but not only the
coordinates of the pixel.

The extended cat mapping is defined as following:
⎡

⎣
i′

j′

v′

⎤

⎦ =

⎡

⎣
1 a
b 1 + ab
p q

⎤

⎦

⎡

⎣
i
j
v

⎤

⎦ mod N,

where v represents the pixel’s value and v′ represents the modified pixel value.
Here both p and q are integers.

472 W. Chen, J. Cai, and S. Li

Fig. 2. Histograms of images via standard cat mapping and extended cat mapping

We can see the extended cat map changes the pixel’s value while rearranging the
coordinates of the pixel. Experiments show that the histogram of the encrypted
image has white-noise characteristics. Figure.2 shows this feature. It is easy to see
that the the second part of fig.2 which displays the histogram of the transformed
image via the extended cat mapping is more flat and resembles pseudo-random
sequence’s histogram.

The reverse transformation is also easy to implement. It requires the param-
eters of a, b, p, q as the key of the watermark encryption system. Even if the
intruders successfully detect out the embedded watermark, without the valid
key, it is only a pseudo-random sequence which is useless to the intruders, there-
fore significantly enhances the watermarking system’s security.

2.4 Embedding Procedure

Step1. Transform the watermark image via the Extended Arnold Transforma-
tion Equation.
Step2. Select the positions to embed message with the initial user’s key k.
Step3. Check whether the cover image is a color image or a gray-scale image.
If it is a gray-scale image, embed the message to the only color space. If it is
a color image, separate it into different color spaces and embed secret message
into the color spaces respectively.
Step4. We first embed the message length n into the cover image I. This in-
formation tells the receiver how many bits should be extracted from the stego
image. The mount of pixels required to store can be got by �log2 n� + 1.
Step5. Select a candidate pixel u to embed the current message bit s. Use the
above algorithm to modify the pixel value |u|.
Step6. Select next candidate pixel and repeat the operation of Step5 until all
message are embedded. Now, we get the stego image I ′.

Figure.3 shows the proposed 2nd LSB layer embedding procedure.

3 Extraction Process

Actually,extraction is the reverse process of the embedding process. We first ex-
tract the 2nd least significant bit of the candidate pixels and then transform the

An Anti-statistical Analysis LSB Steganography 473

Fig. 3. Proposed 2nd LSB layer embedding procedure

disordered watermark via the extended cat mapping.The extraction is relatively
simple and is not the focus of this paper, so we do not give a lengthy description
here.

4 Experimental Results

In order to test the proposed algorithm’s robustness against statistical analysis,
we choose a host of standard test images to embed messages. The types of
message we embedded include a grayscale ’copyright’ bitmap as well as some
random pseudo sequence generated by Matlab. Figure.4 are some of the test
images and message image we chose.

For the purpose of compassion, all these cover images are watermarked by the
standard LSB method and the proposed algorithm with the same embedding
ratio. Figure.5 shows the histograms of the stego Lena image watermarked by

Fig. 4. Some of the test images and copyright message

474 W. Chen, J. Cai, and S. Li

Fig. 5. Histograms of stego image with Standard LSB And Modified LSB

standard LSB method and the proposed LSB algorithm respectively. From the
Fig.5, we see that when using the traditional LSB coding method, the histogram
of the stego image(which is shown by the red dots) departs from the original
image’s histogram (which is shown by the blue line) significantly. It is because
in the areas where the original bit does not equals to the watermark bit, the
standard the LSB coding method produces a constant error. This always rising
error leads to the difference between the histograms of the cover image and the
stego image. It obviously provides opportunities for attackers to analyze and
detect the message embedded via histograming. However, when applying the
proposed algorithm, the error produced is minimized, nearly zero. The improved
algorithm decreases or increases the pixel value in accordance with the number
of the current pixel’s surrounding pixels whose LSB is positive thus from the
statistical point of view, the possibility to increase and decrease is even ,therefore
it produces a near-zero error in the histogram. When applying the proposed
embedding method, the histogram of the stego image is almost identical to that of

An Anti-statistical Analysis LSB Steganography 475

the original image. It leads the statistical analysis attackers to make an incorrect
judgment thus, to a large extent, enhances the robustness of the watermark.

4.1 Robustness Against RS and SPA

We implemented the proposed algorithm with 120 various types of sample images
of BMP format. These images are embedded with 10%, 40%, 70% secret messages
respectively. Table.1 shows the experimental results of resisting RS detection and
SPA detection. We see, with the uniform detecting threshold of 3%, both RS and
SPA test could not detect most of the stego images.

Table 1. RS and SPA Detection Results

Message Embedding Ratio 10% 40% 70%

RS(threshold of 3%) 0/120 0/120 1/120

SPA(threshold of 3%) 0/120 1/120 2/120

4.2 Degradation of PSNR

The Peak Signal to Noise Ratio (PSNR) is an important measurement to gauge
the degradation which is brought to the image by watermarking. It reveals the
difference between the original image and the stego image. The difference declines
as the PSNR gets larger. Typically, the Peak Signal to Noise Ratio is defined as

PSNR = 10lg(
MAX(xij)

2

MSE
)

where M and N are the length and width of the cover image respectively,and
MSE is the mean-square error between stego or an attacked stego image and
the original image. xij denotes the pixel value of the cover image and x

′
ij denotes

the pixel value of the stego image. Table.2 shows the PSNR of the stego image
when using the ’copyright’ message and random pseudo sequence of different
embedding ratio as the embedding message.

Table 2. PSNR of different embedding ratio

Embedding Ratio Copyright10% 40% 70%

Standard LSB PSNR 58.3% 64.2%55.7%56.2%

Improved LSB PSNR 54.3% 60.2%51.7%50.2%

We see that the proposed 2nd LSB layer embedding method does not intro-
duce large PSNR degradation to the image compared with the standard LSB
steganography while improving the watermark’s robustness to statistical analysis
significantly.

476 W. Chen, J. Cai, and S. Li

5 Conclusion

This paper presents a modified LSB Steganography which will defeat most of
the popular statistical analysis-based Steganalysis,such as SPA and RS. The
modified algorithm increases or decreases the candidate pixel’s value by two
in accordance with the number of the pixel’s surrounding pixels whose LSB is
positive. experiments show that the proposed LSB Steganography has a good
robustness to statistical analysis.We also introduced an extended cat-mapping
in effort to enhances the security of the algorithm.

Acknowledgement

This researchwork is supportedbytheSTITP foundationprogram(No.070020612)
of Nanjing University of Post and Telecommunication(P.R. China).

References

1. Fridrich, J., Goljan, M., Du, R.: Detecting LSB steganography in color and gray-
scale image. Magazine of IEEE Multimedia, 22–28 (2001)

2. Fridrich, J., Goljan, M., Du, R.: Reliable detection of LSB steganography in color
and grayscale images. In: Proc. ACM Workshop Multimedia Security, Ottawa, ON,
Canada, pp. 27–30 (October 2001)

3. Dumitrescu, S., Xiaolin, W., Wang, Z.: Detection of LSB Steganography via Sample
Pair Analysis. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 355–372.
Springer, Heidelberg (2003)

4. Zhang, T., Ping, X.: A New Approach to Reliable Detection of LSB Steganography
in Natural Images. Signal Processing 83(10), 2085–2093 (2003)

5. Westfeld, A.: Detecting low embedding rates. In: Petitcolas, F.A.P. (ed.) IH 2002.
LNCS, vol. 2578, pp. 324–339. Springer, Heidelberg (2003)

6. Fridrich, J., Du, R., Meng, L.: Steganalysis of LSB Encoding in Color Images. In:
Proc. IEEE Intl. Conf.Multimedia and Expo, CD-ROM, IEEE Press, Piscataway,
N.J (2000)

7. Yu, J.J., Han, J.W., et al.: A Secure Steganographic Scheme against Statistical
Analyses. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939,
pp. 497–507. Springer, Heidelberg (2004)

8. Provos, N.: Defending Against Statistical Steganalysis. In: 10th USENIX Security
Symposium, Washington, DC (2001)

9. Westfeld, A. Tzmann, A.P.: Attacks on Steganographic Systems[C]. In: Proc. of 3rd
International Workshop on Information Hidding, Dresden, Germany (1999)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 477–486, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Geographic Probabilistic Routing Protocol for Wireless
Mesh Network

Ning Xiao, Ling Ding, Minglu Li, and Minyou Wu

Computer Science Department, Shanghai Jiao Tong University, Shanghai 200240, China
{xiaoning,dingling,mlli,mwu}@sjtu.edu.cn

Abstract. This paper presents GPR (Geographic Probabilistic Routing proto-
col), an opportunistic routing protocol worked between mesh routers in WMNs
(Wireless Mesh Networks). In GPR, nodes detect the link condition by probe
packets. In order to send a packet, the sender selects a candidate subset. The
nodes who successfully received the packet send ACK according to their
priority. If there are no ACKs from other candidates, instead of sending ACK
immediately, the candidate broadcasts ACK and transmits the packet at
transmission-probability. The extensive simulation results show that GPR is
promising to achieve higher throughput and better scalability compared to the
reference method.

1 Introduction

Wireless Mesh Networks (WMNs) are multi-hop wireless networks. An optimal rout-
ing protocol for WMNs should select a multi-hop path quickly, avoid traffic conges-
tion, and work well as the network scale increases [1]. The traditional approach to
route traffic in WMNs is to adopt shortest path routing schemes which are similar to
the methods used in wired networks. While these schemes are effective in wired net-
works, where a transmission link is either successful or failed; they can not cope with
the unreliable or unpredicted medium of wireless networks. Opportunistic routing [2,
3, 4, 5] is a novel research area for wireless networks to deal with the trustless me-
dium. Opportunistic routing broadcasts packets firstly and then chooses the next hop
receiver based on which neighbor has successfully received them.

One of the key challenges in opportunistic routing is to maximize the distance a
packet advanced in one transmission without causing much duplicate transmissions or
incurring significant coordination overhead [3]. A lot of researches make efforts to get
over this challenge. Most of these methods piggyback the information about the re-
ceiver information to the data packet and diffuse them in the networks [3, 4, 5].
MORE [2] induce network encoding into opportunistic routing to renew packets so
there are no duplicate transmissions.

Most of the previous works do not provide an opportunistic routing to work in
large scale networks. The reason is that the coordination overhead increases as the
network scale does. This paper proposes Geographic Probabilistic Routing (GPR), a
novel opportunistic routing works well in large scale networks. Instead of preventing
ACK lost, GPR reckons that missing ACK message is inevitable in wireless networks
and estimates the probability at which this situation would happen. GPR is based on

478 N. Xiao et al.

the geographic routing [13, 14, 15] since the geographic distance a packet moved
forward can be simply and clearly weighed. We evaluate GPR through NS-2 simula-
tions with diverse network topologies and make the following findings:

• GPR provides a way for node to decide whether a packet should be forwarded
when it does not know which nodes had also received the packet. In simulations,
GPR’s throughput increases more than 50% at the expense that the duplicate
transmissions fluctuate in the range of 0.57~1.36. The throughput declines
slowly as the number of simultaneous flows increases while the duplicate
transmissions keep in the same area.

• GPR performs well as the network scale grows. Since the coordination overhead
does not increase significantly as the network scale grows, GPR can work prop-
erly in large scale networks. In our simulations, when averagely packets come
through 3 relay nodes to get to the destination, GPR deliveries more than 50%
of the total packets successfully.

The rest of the paper is organized as follows. In section 2 we present the related
works. We give a simple motivation example in section 3 and describe GPR in details
in section 4. We illustrate our simulations and the results in section 5. The conclusion
is given in section 6.

2 Related Works

In opportunistic routing, there is an intuitive tradeoff between duplicate transmissions
and coordination overhead. We can increase the communication between the sender
and receivers to decrease duplicate transmissions, or communicate as little as possible
at the expense of multiple retransmissions. Researchers have brought out their way to
achieve these purposes.

ExOR [4][5] is the first completely opportunistic routing protocol. In 2003, S.
Biswas advanced the primal scheme of ExOR [5] which we called as ExOR-1. In this
scheme, candidates send ACK messages in turns and decide whether to forward the
packet according to the ACKs it has received. ExOR-1 does not give an effective way
to constrained duplicated transmission when the ACKs are not received correctly.

In 2005, S. Biswas brought forward another scheme of ExOR [4] that we named as
ExOR-2. It strictly schedules the routers’ access to the medium before a batch of
packets (10-100 packets per batch) is broadcast by the initial sender. ExOR-2 uses the
batch map to record which packets each node has received and diffuses it with the
data packets; every relay node only forwards the packets that have not been acknowl-
edged by nodes closer to destination. ExOR-2 effectively decreases duplicated trans-
missions and provides significant throughput improvement. However, supporting
multiple simultaneous flows is still an open question in ExOR-2.

SOAR [3] introduced the priority-based forwarding mechanism to prohibit dupli-
cate transmissions. It spreads ACK message in the network in a cheap way to con-
strain duplications and improves the throughput significantly. In SOAR, there must be
more intra-flow interference for the relay nodes when there are multiple packets
transmitted between the same source-destination pair.

 Geographic Probabilistic Routing Protocol for Wireless Mesh Network 479

MORE [2] combines network encoding and opportunistic routing to support multi-
ple simultaneous flows. Using this method, source node creates random linear combi-
nations of packets and broadcasts the coded packets continually. The relay nodes
combine the independent packets and forward them. The destination sends ACK mes-
sage to source along the shortest path when it can decode the independent packets.
Cooperation network coding into opportunistic routing is a novel idea in this area.

3 Motivation Example

In the part, we explain the motivation of GPR. As shown in Fig.1, source S has a
packet for destination D. Three nodes relay the packet for S, and does it in this turn:
node 1, node 2 and node 3. The direction of links shows the transmission direction
and the transmission reliabilities are labeled above them. Every node knows their
forward reliability and backward reliability with its neighbors. S sends the packet
containing the candidate subset and the corresponding forwarding reliabilities. Re-
ceived the packet, nodes 1-3 send ACK messages along the following process:

(1) Node 1 receives the packet successfully, it sends ACK message and forward the
packet; other nodes drop the packet if they receive the ACK message.

(2) Node 2 receives the packet and waits for node 1’s ACK message. If it does not
hear the ACK, node 2 need to decide whether to send ACK itself. There are mainly
two reasons that node 2 does not receive ACK message from node 1: first, node 1
does not receive the data packet, the probability this situation happens is: 1－0.3 =
0.7; secondly, node 1 successfully receives the packet and sends ACK, but node 2
missed it and this happens at the probability: 0.3×(1－0.7) = 0.09. So node 2 send
ACK at probability: 0.7 / (0.7+0.09) = 0.886.

(3) Node 3 waits for the other two nodes’ messages to decide whether to forward
the packet. Like node 2, it calculates the probability to send ACK if no message have
been heard. Node 3 transmits the packet when it does not hear any message from
other nodes at probability: (0.7+0.5) / (0.7+0.12+0.5+0.25) = 0.764.

If source S heard ACK message from any of the candidates, it drop the duplicate
for the packet. We will explain GPR including nodes in detains in the next section.

0.5 0.6

0.7

Fig. 1. The motivation example of GPR

480 N. Xiao et al.

4 Geographic Probabilistic Routing Protocol

As explained above, in GPR the candidates estimate the probability to forward a
packet if it does not hear ACK from other candidates. Since it chooses the candidate
set based on the neighbors’ location information, GPR works in the following scene:

At first, every node in GPR is static. This is because lots of mesh routers are de-
ployed and not moved again in the WMNs. Secondly, the network is dense enough
that each node can get the candidate nodes. Thirdly, the nodes know the topology of
the network. This can be achieved by using GPS devices and so on.

GPR cooperates with extended 802.11 mac protocol to achieve probabilistic for-
warding. Extended 802.11 mac protocol listens to the mac layer ACKs, calculates the
transmission-probability and retransmits the packets. In the following sections, we
describe the GPR and extended mac protocol in detail.

4.1 Communication Condition Estimation

At first, we give the definition of the forward reliability and the backward reliability;
then explain how to get them.

• Pij(i): the forward reliability from node i to its neighbor node j which is knew by
node i;

• Pji(i): the backward reliability from its neighbor node j to node i itself which is
knew by node i.

GPR can be divided into information gathering period and packet transmission pe-
riod. After the deployment of mesh routers, nodes begin to gather the initial informa-
tion about the link property. During this phase every node sends probe packet per
second. The packets from node i contain the list of its neighbors and the correspond-
ing backward reliability Pji(i) (node j is node i’s neighbor). Node j received the probe
packets does two things: firstly, it updates its backward reliability Pij(j); then, if the
probe packet contains the node backward reliability Pji(i), node j renews its forward
reliability Pji(j) with it. Given the beaconing frequency is known, these reliabilities are
measured by the number of messages received successfully in the last 10 seconds over
the number of messages expected to be received during this time interval.

GPR uses EWMA (Exponentially Weighted Moving Average) [3] as the link esti-
mator. EWMA is a linear combination of infinite history with exponential weights.
Let

tP be the current reliability estimation, n is the number of known missed packets,

m is the number of received packets, and w is the window size. Then the reliability is
updated as (1):

)1(11 αα −×+×= ++ ttt PPP (1)

where 10 << α ,
nm

m
Pt +

=+1
 and m and n are reset to 0 when m+n > w.

When node i gets its forward reliability Pij(i) and backward reliability Pji(i) with
neighbor j, the ETXij (i) (Expected Transmission Times)[6] between these two
nodes is:

 Geographic Probabilistic Routing Protocol for Wireless Mesh Network 481

)()(

1
)(

iPiP
iETX

jiij
ij ×

=
 (2)

After the information gathering period, every node has constructed its neighbor ta-
ble. The table contains the nodes it hears directly and the corresponding estimated
link reliabilities. When the node has a packet to send, it chooses the nodes from this
table to form the candidate subset.

During the packets transmission period, the probe packets are still sent, so the
neighbor tables contain the most recent link information. And, if a node has not
been heard for a predefined time, we judge it as failed. Nodes update their
neighbor tables and clear the failed neighbor’s entry, thus there would be no packet
sent to it.

4.2 Candidate Subset

As mentioned at the beginning of section 4, the nodes in the network keep the topol-
ogy map of the network. When a node has packets to send, its can get the location of
the destination and its neighbors, then uses these information to get the candidate
subset. The routing algorithm will be explained in detailed using Fig. 2.

In Fig.2, nodes 1-7 are the neighbors of source S. When S wants to send packets to
destination D, it looks up in the neighbor table, and selects the neighbors that fall
within an angle θ in the direction of D. The value of θ is picked big enough to guaran-
tee that there are nodes fall into this area in a dense network, but must be smaller than
180°. Thus no packet is sent in the backward direction. To ensure packets do not cycle
in a loop, every time the packet is forwarded, it must never be send to nodes farther
than the destination. If the packet is received by a node projected beyond the direct
line between source-destination pair, it is dropped.

There may be a lot of nodes can be chosen as relay nodes, and some of them have
very low transmission reliabilities. We choose the relay nodes by ETD (Expected
Transport Distance) calculated by (3):

)(/cos* sETXDistETD sisisi α= (3)

As showed in the Fig.3, α is the relative inclination between the line from S to D
and the line from S to the intermediate node i. Distsi is the distance between source S
and node i. Thus Distsi*cosα is the effective forward distance from S to node i in the
direction of the destination. ETD is the expected transmission distance between S and
node i over a time interval. In other words, GPR chooses the relay node which can
make the largest expected positive forward distance.

Once get the candidate subset, S sorts the candidate nodes in the decreasing order
of their effective forward distance in the direction of D. So a candidate node making
the largest forward distance in direction of destination D sends ACK firstly. The i-th
forwarding node in the list sending their ACK messages after (i-1)×δ. δ is the time to
listens to ACK message from a higher prior node. To limit the delay variance and
reduce overhead, we limit the maximum number of forwarding nodes to 4.

482 N. Xiao et al.

Fig. 2. A simple topology Fig. 3. Example of ETD

4.3 Probabilistic Forwarding

In Fig.2, nodes 4-7 compose the candidate subset for the packet. Source S adds the
forwarding list contains nodes’ id and the forward reliabilities Psi(s) (i = 4…7) in the
packet header. The priority of the forwarding nodes is demonstrated by their position
in the list.

When a node receives this packet, first of all, it checks if it is in the forwarding list:
the nodes do not be contained in the list just drop the packet; the nodes in it send
ACK message orderly. As the example in section 3, if a node receives the ACK mes-
sages from the others, it drops the packet. Otherwise it estimates the transmission-
probability. If the low priority node does not receive ACK from the high priority
ones, there are two major reasons: the high priority nodes do not receive the packet;
or the high priority ones receive the packet and send ACK, but it has missed them.
Since the low priority node sends back ACK only if the high priority ones had missed
the packet, the low priority node sends ACK in accordance with (4):

(j = 1)

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−+−

−
=

=

∑

∑
−

=

−

=
1

1

1

1

)))(1)(())(1((

))(1(

1

j

i
ijsisi

j

i
si

j

j

jPsPsP

sP
T

T

(j > 1) (4)

Tj is the transmission-probability of node j for the packet. When a node does not
receive any ACK message, instead of transmitting the packet immediately, it broad-
casts ACK and sends the packet at the possibility calculated by (4).

In the lossy wireless network, there could be no candidates received the packet thus
no ACK was heard by the sender. In these cases, GPR uses mac layer retransmission
to send the packet again. In order to be compliant with 802.11 mac protocol, the
maximum retransmission times is set to 4.

4.4 Decreasing Duplicated Transmission

Because of the unreliable wireless medium, the following undesired situation would
happen. One of the relay candidates sends ACK message and forwards the packet.
While the other candidate receives this ACK and drops the packet, just the sender
misses it and retransmits the packet in vain. This is a major reason for duplicates. In
order to decrease this kind of duplications, every relay node remembers the packet it
has processed. If it receives a packet more than once, the node only sends the ACK to

 Geographic Probabilistic Routing Protocol for Wireless Mesh Network 483

inform the others that it received the packet. Instead of forwarding it once again, the
relay candidate just drops the packet quietly.

5 Simulation and Evaluation

We simulated our protocol using NS-2 [10] and compared it with the SOAR [3]. In
this part we describe the simulation results and evaluation in particular.

5.1 Simulation Environment

Data Link Layer Model: We extended IEEE 802.11 mac protocol and disabled the
RTS/CTS to cooperate with GPR. As the baseline comparison, SOAR works with
IEEE 802.11 disabled the RTS/CTS [3] as well. In the simulation, we think the trans-
mission reliability only changes with distance. The transmission range of mesh router
changes between 70m to 300m randomly in the simulation environment. Table.1 is
the transmission reliability at different distances:

Table 1. The transmission reliability at different distances

Distance 70m 80m 90m 100m 110m 120m 130m 140m
Transmission
Reliability

1.000 0.883 0.785 0.701 0.628 0.565 0.508 0.457

Distance 150m 160m 170m 180m 190m 200m 210m 220m
Transmission
Reliability

0.412 0.370 0.311 0.296 0.263 0.233 0.205 0.178

Distance 230m 240m 250m 260m 270m 280m 290m 300m
Transmission
Reliability

0.153 0.130 0.107 0.086 0.066 0.047 0.029 0.012

Link Estimation: We use EWMA (Exponential Weighted Moving Average) to esti-
mate the link condition with α = 0.8, w = 1. To simplify the calculation, we calculate
the transmission reliabilities based on the received packet in the last 10 seconds.
Network Topologies: Firstly, for simple evaluation of GPR and SOAR work in a
multiple flows wireless network, we simulate GPR and SOAR on the 3×3 and 5×5
grid topologies with two flows. Then we run simulations on various random topolo-
gies to verify that GPR works well as the network scale increases.

To compare the performance of GPR and SOAR, we choose the following metrics:

• Throughput or Packet Delivery Ratio: This is defined as the ratio of the num-
ber of packets received by the destination, to the number of packets originated
by the source.

• Delay: The average duration takes from a packet is initially sent by the source to
it is successfully received at the destination for the first time.

• Path Length: Path length is defined as the number of hops a packet takes to
reach its destination.

484 N. Xiao et al.

5.2 Results and Evaluations

In grid topologies, we generated 2 CBR flows send data at the rate of 6Mbps, using
the diagonal nodes as source-destination pairs. The smallest distance between any two
neighbored nodes is 70m. The elementary results are showed by Table.2 and Table.3.

From these two tables, we see that the throughput decrease in wireless network as
the path length grows. In the 3×3 grid topology, GPR takes advantage of the source-
destination pairs are within the largest transmission range of each other. GPR in-
creases the throughput by 22.41%, decreases the delay by 86.17% compare to SOAR.
In the 5×5 grid topology, we see the throughput decreases with path length grows.
Table.3 shows that GPR’s throughput decrease slower than SOAR’s, but the delay
increases obviously. This is because some of the packet’s holding and waiting time in
relay nodes increases significantly than the others.Table.3 shows the throughput of
GPR increases about 211% than that of SOAR.

Table 2. The elementary results for a 3×3 grid topology with 2 flows

Routing Protocol Throughput Average Delay Path Length
GPR 95.44% 0.013 2.050
SOAR 78.04% 0.094 2.267

Table 3. The elementary results for a 5×5 grid topology with 2 flows

Routing Protocol Throughput Average Delay Path Length
GPR 46.67% 1.173 4.135
SOAR 15.02% 0.437 5.023

Next, we run simulations on networks with 20-60 nodes placed randomly in differ-
ent square areas. In each scene we selected 2, 3, 5 pair of nodes at random and gener-
ate CBR traffic with 6 Mbps data rate.

Fig.4 shows the throughput in different network scales with different number of
flows. We see that the throughput decreases as the network scale increases, but GPR’s
decreases slowly than SOAR’s. When 20 nodes uniformly distributed on a
250m×250m square, GPR can output SOAR from 54.08% to 312.07% as the network
load increases. When the scale of network reaches 60 nodes in area of 450m×450m
square, SOAR can not work at all while GPR still works properly.

Fig.5 plots the average delay of GPR and SOAR in different network scales and
varied flow conditions. As the network scale reaches 60 nodes, SOAR can not work
properly and Fig.5 shows this as delay reaches the maximum. In all kinds of network
conditions, GPR outputs SOAR from 6.5% to as much as 35 times.

Fig. 6 shows the average path length the packets come through in diversity network
conditions. It also shows SOAR does not work at all using the maximum value when
the network scale reaches 60 nodes. We see that GPR decreases the average path
length compared to SOAR. This verifies that GPR makes every transmission as long
as possible to get the largest distance a packet can advance.

 Geographic Probabilistic Routing Protocol for Wireless Mesh Network 485

Fig. 4. The throughput of GPR and SOAR with different flow numbers in different network
scales

Fig. 5. The average delay of GPR and SOAR
with different flow numbers in different net-
work scales

Fig. 6. The average path length of GPR and
SOAR with different flow numbers in differ-
ent network scales

6 Conclusion

In this paper, we present a novel opportunistic routing protocol, called GPR. It uses
the geographic information of source-destination pair to get candidate subset. The
relay nodes listen to the ACK messages from other candidates before their turn to
send ACK and transmit the packet. If there was no ACK messages have been re-
ceived, the nodes acknowledge the packet and relay it at the transmission-probability.
In this way, the duplicate transmissions decreases with little coordinate overhead.
GPR cooperates with the mac layer to prevent duplicate transmission or packet loss
because nodes make the transmission decision incorrectly. We use simulations prove
that the throughput of GPR can increase over 300% than reference method. The simu-
lations also verify that GPR is scalable as the network scale increases.

Acknowledgement

This research was supported by the National Basic Research Program of China (973
Program) under grant No. 2006CB303000, National Natural Science Foundation of
China under Grant No. 60473092 and No. 90612018.

486 N. Xiao et al.

References

[1] Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: A survey. Computer
Networks Journal (2005)

[2] Chachulski, S., Jennings, M., Katti, S., Katabi, D.: Trading Structure for Randomness in
Wireless Opportunistic Routing. In: Proc. of ACM SIGCOMM, ACM Press, New York
(August 2007)

[3] Rozner, E., Seshadri, J., Mehta, Y., Qiu, L.: Simple Opportunistic Routing Protocol for
Wireless Mesh Networks. In: Proc of the 2nd IEEE Workshop on WiMesh, IEEE
Computer Society Press, Los Alamitos (2006)

[4] Biswas, S., Morris, R.: ExOR: Opportunistic multi-hop routing for wireless networks. In:
Proc. of ACM SIGCOMM, ACM Press, New York (August 2005)

[5] Biswas, S., Morris, R.: Opportunistic routing in multi hop wireless networks. In: ACM
HotNets (August 2003)

[6] Couto, D.D., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric for multi-
hop wireless routing. In: Proc. of ACM MOBICOM, ACM Press, New York (September
2003)

[7] Draves, R., Padhye, J., Zill, B.: Comparison of routing metrics for multi-hop wireless
networks. In: Proc. of ACM SIGCOMM, ACM Press, New York (August 2004)

[8] Jain, S., Das, S.: Exploiting path diversity in the link layer in wireless ad hoc networks. In:
Proc. of the 6th IEEE WoWMoM Symposium, IEEE Computer Society Press, Los
Alamitos (June 2005)

[9] Johnson, D.B., Maltz, D.A., Broch, J.: DSR: The dynamic source routing protocol for
multihop wireless ad hoc networks. In: Ad Hoc Networking (2001)

[10] The network simulator – ns-2, http://www.isi.edu/nsnam/ns/
[11] Perkins, C.E., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector

routing (DSDV) for mobile computers. In: Proc. of ACM SIGCOMM, ACM Press, New
York (1994)

[12] Perkins, C.E., Royer, E.M.: Ad hoc on-demand distance vector routing. In: Proc. of the
2nd IEEE Workshop on Mobile Computing Systems and Applications, IEEE Computer
Society Press, Los Alamitos (February 1999)

[13] Mauve, M., Widmer, J., Hartenstein, H.: A Survey on Position Based Routing in Mobile
Ad-hoc Networks. IEEE Network Magazine 15(6), 30–39 (2001)

[14] Basagni, S., et al.: A Distance Routing Effect Algorithm for Mobility (Dream). In: Proc.
4th Annual ACM/IEEE Int. Conf. Mobile Computing and Networking, MOBICOM,
IEEE Computer Society Press, Los Alamitos (1998)

[15] Kranakis, E., Singh, H., Urrutia, J.: Compass Routing on Geometric Networks. In: Proc.
11th Canadian Conf. Comp. Geo., Vancouver (1999)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 487–496, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards a New Methodology for Estimating Available
Bandwidth on Network Paths

Shaohe Lv, Xiaodong Wang, Xingming Zhou, and Jianping Yin

National Laboratory for Parallel and Distributed Processing National University of Defense
Technology, Changsha Hunan, 410073, China

chi.shaohe@gmail.com, xdwang@nudt.edu.cn, xmzhou@nudt.edu.cn,
jpyin@nudt.edu.cn

Abstract. This paper presents a novel methodology, called COPP, to estimate
available bandwidth over a given network path. COPP deploys a particular
probe scheme, namely chirp of packet pairs, which is composed of several
packet pairs with decremental inter-packet spacing. After each pair chirp is
received, COPP discovers all turning points, e.g. such packet pair that is interfe-
red more seriously in contrast to its adjacent pairs, and give each point a distinct
weight according to the degree to which the pair and its consecutive neighbors
are interfered by cross traffic to yield an estimate. The final estimate is the
average of the results of all chirps in a measurement episode. Two decision
rules are developed to determine whether a packet pair is turning point. We test
COPP in various simulations and find that COPP can provide accurate results
with relatively less overhead while adapt to network variations rapidly.

1 Introduction

Estimating the bandwidth of an Internet path has become a hot issue recently.
Knowledge of the path bandwidth can be put to good use in various scenarios, such as
congestion control, server selection and network security and so on. It is observed that
bandwidth monitoring and estimation have become increasingly important.

There have two metrics are commonly associated with bandwidth estimation —
capacity and available bandwidth (avail-bw). The capacity of a link is the maximum
transmission rate that link can transfer packets in the absence of competing traffic. In
contrast, the avail-bw of a link at a time instance is defined as the maximum
transmission rate that link can provide without interfering the existing traffic.

Consider a path, e.g. a sequences of links that forward packets from sender to
receiver. The link with the minimum capacity determines the capacity of the path,
while the link with the minimum available bandwidth limits the avail-bw, which we
refer to as narrow and tight link respectively. In a time scale, the avail-bw of the path
is the average of all the avail-bw at every time instance within the underlying scale. In
this paper, we only focus on the measurement of path avail-bw in an interval.

 Packet pair technique [1, 3, 5] has been used as one of the primary procedures to
measure the capacity of a path. Recently, there has much work [10, 13], including the
techniques we will propose, striving to estimate available bandwidth based on packet
pair. When we focus on capacity, one of the most crucial issues is how to eliminate

488 S. Lv et al.

the interference caused by co-existing cross traffic. But for available bandwidth, what
we mainly concern is that whether packet pair properly reflects the network dynamics,
i.e. capturing the avail-bw and the burst of cross traffic. Aiming for this, we deploy a
particular probe scheme named chirp of packet pairs which shows promising
performance in simulation experiments.

Note that the time-varying nature of avail-bw requires that the measurement must
be executed quickly in order to capture or adapt the network variation. In addition, as
a reflection of network status, the actual avail-bw may be different from the measured
one if the overhead is too high to change the network. Therefore, except the accuracy,
we also concern the time and overhead in generating a final estimate of measurement
tools. By exploiting the information in probes more efficiently, COPP that we
introduce yields better tradeoff between good accuracy and low overhead.

The rest of this paper is organized as follows. In section 2, we briefly review the
related work in estimating path avail-bw. In section 3, the description of COPP will
be presented. We discuss the analysis of packet-pair that served as the fundament of
COPP in section 4. Then we discuss the weighting process in section 5. And the
simulation results are presented in section 6. Finally, we conclude in section 7.

2 Related Work

We briefly survey the many tools and techniques that have been proposed for
estimating avail-bw of network paths. As for capacity estimation, we refer interesting
readers to [11], which we omitted here due to space limitations.

Early techniques such as Cprobe measured the asymptotic dispersion rate rather
than avail-bw. Many of the recently presented techniques fall into two categories:
packet rate model (PRM) and packet gap model (PGM). There are several tools [10],
actually, are mixture of PGM and PRM. PGM-based tools [13], in general, send pairs
of equal-sized probe packets, and the increasing intra-pair spacing is used to estimate
the volume of cross traffic, which is then subtracted from the capacity to yield the
avail-bw. Tools such as [2, 6], also based on PGM, which is different for these tools
send several trains and the one-way delay (OWD) of every probe packet is used to
estimate the utilized bandwidth instead of the pair spacing. PGM assumes that the
tight link is also the narrow link, and is susceptible to queue latencies at links except
the tight link. Additionally, the errors introduced in capacity estimation would be
propagated if the assumption in PGM that the capacity is known is violated. We pick
Spruce [13] as the representative PGM-based tool for our experiments.

PRM-based tools [9, 12], are based on the observation that probe traffic sent at a
lower rate than the avail-bw would be received at the sending rate (on average) —
means that the probes would experience little interference. In contrast, if the sending
rate exceeds the avail-bw, the received rate would be less than the sending rate and
the probe packets tend to queue behind previous probe or cross packets—means that
the probe packets are interfered more seriously. Thus, avail-bw can be measured by
searching the turning point at which the interference varied remarkably. The
increasing trend of OWD is used to determine this interference in Pathload [12],
which is picked as the representative PRM-based tool for our experiments. The tech-
nique we present is also PRM-based but uses a pair as a minimum process unit rather
than a single packet or train used in previous tools.

 Towards a New Methodology for Estimating Available Bandwidth on Network Paths 489

1Pair NPair2Pair
......

1−NPair

1−KPair KPair 1+KPair

Fig. 1. Chirp of packet pairs: A Illustration Fig. 2. The range to analyze the degree of
interference of pair K when it is a turning
point

3 COPP Methodology

In this section, we describe the basic idea and the measurement process of COPP.
Some key issues such as the decision rules to determine whether a packet pair is
turning point are discussed in next section.

We use measurement episode to indicate the time interval when a final avail-bw is
reported by COPP. In each episode, several chirps of packet pairs are issued. For our
purpose, a pair chirp as shown in Fig.1 preserves the follow property: the intra-pair
spacing is gradually reduced to increase the sending rate of corresponding pair
continuously, from the lower estimate bound to the upper bound, whereas the inter-
pair spacing is kept large enough to avoid the interference between different pairs.
The name COPP is, originally, from the probe scheme, e.g. Chirp Of Packet Pairs.

We use the term turning point to denote such packet pair that has been interfered
more seriously compared to its previous neighbor. Associated with every turning
point, there has a turning bandwidth (TB) that is the sending rate of the previous pair
of the underlying turning point. Exploiting the decision rules depicted in section 4,
COPP can discover all turning points and the corresponding TB. After each chirp is
sent and traversed the measured path, COPP can obtain a temp partial estimate.

From the basic PRM observation, we know that turning point appears when the
relationship between the sending rate of two consecutive pairs and avail-bw is altered.
However, the burst nature of cross traffic may also trigger some “new” turning point.
Thus, we should distinguish different “kind” of turning points and dispose them
differently. More details are discussed in section 5. We now only present the solution
of COPP: giving each point a distinct weight according to the degree to which the
underlying point and its neighbors are disturbed. The follow equation 1 exhibits the
derivation of the partial estimate for a chirp denoted by A, where kTBTBTB ,..., 21 and

kwww ..., 21 denote all turning bandwidth and corresponding weight respectively in

the chirp.

∑∑
==

=
k

i
i

k

i
ii wwTBA

11

/)*((1)

Equation 2 shows the calculation of the final result in a measurement episode
denoted by Avail-BW, where n is the amount of chirps launched in the episode and

kA is the partial estimate of the k-th chirp.

nABWAvail
n

k
k /_

1
∑

=

= (2)

There have several parameters to be set such as the packet size, the estimate bound,
the amount of pair in a probe, the amount of pair in an episode, the function to

490 S. Lv et al.

generate weight and the threshold used in decision rules, and so forth. Limited by
space, we only discuss the analysis and selection of the threshold in section 5.3. The
optimal settings depend on the underlying networks. The aim of the discussion in
section 5.3, therefore, is to show the method or principle in parameter selection rather
than to present a universal choice. We are in the process to implement the automatic
setting of parameters according to the different network conditions.

4 Analysis of Packet-Pair

Packet-pair is at the heart of many bandwidth estimation techniques. We first ana-lyze
the relationship of the one-way delays of two arbitrary packets traversed the same
path, and further between the inter-packet spacing of a packet pair when started to be
sent and when received. Then the decision rules to determine whether a pair is turning
point can be derived.

4.1 Packet One-Way Delay Visiting

Since a network path is composed of several store-and-forward links, we first discuss
the one-way delay of packet experienced in the single-link case. The total time spend
in transmission through a link,

kL , consists of transmission latency, queue latency and

propagation latency. The last metric is the time consumed in propagating signals
through the link at the velocity of light and is free from different packet, which

suggests n
k

m
k pp = where i

kp denotes the propagation latency of the ith packet at the

link. The middle metric, denoted by m
kq , is the queue time of the mth packet from

arriving at the link to starting to be processed. The first metric is the time between
when the first bit of the packet starts to be transmitted and when the last bit already
departs from the link, which can be represented as

kCL / where L is the packet size and

kC is the capacity of link
kL .

As for a path, Equation 3 pictures the OWD of the m-th packet with size L after
traversed the path consisting of n links.

∑
=

++=
n

k

m
k

m
k

k
m pq

C

L
OWD

1

)((3)

We now focus on the relationship of the one-way delays of two arbitrary packets
with the same size and transmitted across the same path of N physical links, i.e. the
mth and nth packet. Note that the propagation latency of the two packets at each link
is identical, the difference of the two one-way delays can be denoted by equation 4.

∑∑∑
===

−=−=−
N

k

n
k

N

k

m
k

N

k

n
k

m
knm qqqqOWDOWD

111

)((4)

4.2 The Packet-Pair Spacing Analysis

Consider a path of link
nLLL ..., 21

 with capacity
nCCC ..., 21

respectively. We use k
mt

to denote the arrival time of the kth packet at link
mL . Specially, kt0 marks the point

 Towards a New Methodology for Estimating Available Bandwidth on Network Paths 491

of the kth packet starts to be sent. Hence, for a packet pair (P1, P2) with size L, the
intra-pair spacing at sender is denoted as 1

0
2
0 ttSpacing s −= and the spacing at receiver

of the measured path as 12
nnr ttSpacing −= . In addition, the one-way delay of the kth

packet in the pair is represented by kk
nk ttOWD 0−= . Then the spacing variation, SV,

between at sender and receiver can be denoted by follow:

)()()()(1
0

12
0

21
0

2
0

12 ttttttttSpacingSpacing nnnnsr −−−=−−−=− (5)

Then we obtain the equation (6):

12 OWDOWDSpacingSpacingSV sr −=−= (6)

From Equation 4, one can observe that the one-way delay variation of different
packets is determined by the difference of their total queue latency. According to
Equation 5 and 6, the intra-pair spacing variation between at sender and receiver of a
path is also identified by the underlying different queue latency. We know that the
queue latency figures the interference from other traffic. The one-way delay variation
of different packets and the intra-pair spacing variation, therefore, characterize the
difference of interference experienced by the corresponding packets. Based on above
investigation, the rules to determine whether a packet or pair is interfered seriously by
cross traffic and whether a pair is turning point can be derived.

4.3 Decision Rules

Since there has no interaction of different probe pairs, the first packet of pair fairly
reflects the state of the network consists of cross traffic only while the second packet
captures the interaction of probe and competing traffic. In the simulation network
described in section 6.1, we conduct a number of probe pairs, e.g. 1000 pairs, at the
rate equal to avail-bw (4.6Mbps). We also select the cross packet just before the first
packet of each pair as comparison. Fig.3 shows the cumulative distribution of the
OWD of the probe and cross packets where FP and SP and CP refer to the case of
first and second probe and cross packets respectively. We can see that the curve of FP
and CP is close and differ from SP remarkably, which confirms the above states and
one can further conjecture that the network status can be inferred from the infor-
mation carried in all first packets.

Defining the threshold as kADMD /)(−=ε where MD and AD denotes the

maximum and average one-way delay of all the first packets respectively and k is an
empirical value. We believe that MD and AD represent the general experience of
packet traversed the network with cross traffic only. The effect on estimate of
different k will be inspected in section 5.

With the help of threshold, we first present the rule to determine whether a packet
is distorted seriously: the jth packet is distorted seriously only if the underlying one-
way delay satisfies ε+> ADOWDj

. Further, we define that a packet pair is interfered

seriously by cross traffic if and only if the second packet of the pair is dis-torted
seriously.

We now present the crucial rules to determine whether a packet pair is turning
point. The first decision rule is as follows: The jth pair is turning point if it is
interfered seriously and the previous one (the (j-1)th pair) is not interfered seriously.

492 S. Lv et al.

0

0.2

0.4

0.6

0.8

1

0.06 0.07 0.08 0.09 0.1 0.11 0.12

One-Way Delay (s)

C

D

F

FP

CP

SP

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

Estimate

B

a

n

d

w

i

d

t

h

Actual ABW

k=6

k=3

k=2

Fig. 3. The cumulative distribution of the one-
way delay of probe and cross packets

Fig. 4. Distinct Estimates of Different value
of k, where x-axis represents different
estimates and y-axis represents the bandwidth
in Mbps

The second rule attempts to define whether a pair is turning point when the pair is
not interfered seriously: if the variation of the intra-pair spacing of the jth and (j-1)th
pair at sender and receiver satisfies ε≥− −1jj IVIV while the (j-1)th pair is also not

interfered seriously, then the jth pair is turning point.
One should be noted here is that COPP need the cooperation of the two side of the

measured path result from the use of one-way delay. Sender is in charge of sending
probe traffic and calculating bandwidth, whereas receiver should send a special
feedback packet indicates that the time instances when a probe packet is received.
Thus, all timestamps at the emission and arrival of all probes are available to sender,
from which the one-way delay and intra-pair spacing can be derived. In addition,
since one-way delay is only used in comparison, there is no need to synchronize the
time clock between sender and receiver.

5 Weighting Process

In this section we present the process giving each turning point a distinct weight. We
first visit the difference of different kinds of turning points categorized by the
corresponding main causality. Then the details of the weighting process are discussed.
Finally we investigate the effect of the value k in the definition of threshold.

5.1 Turning Point Visiting

Available bandwidth characterizes the interaction between the ongoing and upcoming
traffic. Several research show that Internet traffic exhibits LRD or self-similar
property [7], which means that burst is a common property that must be addressed
when we concern avail-bw on Internet path. The burst busy period when the network
is busy in handling the cross traffic would reduce the avail-bw while the opposite
burst idle period means that no cross traffic exists would increase the avail-bw.
However, the effect of short-term burst on available bandwidth in a long-term time
interval is limited and not deterministic.

 Towards a New Methodology for Estimating Available Bandwidth on Network Paths 493

Thus, it is of great importance to distinguish the turning point that is mainly due to
burst from that mainly due to that the relation between probe sending rate and avail-
bw is altered in the expected case. Further, in the context of the burst traffic, there
have three kinds of turning points:

• Expected case: pair P is sent at rate higher than avail-bw while its previous
neighbor is sent at rate lower than avail-bw, then the interference experienced by
the two pairs would be obvious different, and the pair P is interfered more
seriously and just the turning point.

• Busy period: when sent at rate below avail-bw, but encountering the burst busy
period, probe pair P would be distorted more seriously than its former one, which
suggests that the pair P should be identified as turning point.

• Idle period: when sent at rate exceeds avail-bw, but encountering the burst idle
period, probe pair would experience little interference. Then the following pair P
sent at higher rate would be interfered more seriously compared to this pair, which
means that pair P is just the turning point.

Note that no interference occurs between consecutive pairs. So for those packet
pairs around turning point that is mainly due to busy period, there has little inter-
ference experienced because their sending rate is still lower than avail-bw. As for
those turning points that are mainly originated from idle period, both preceding and
following pairs are interfered seriously for their sending rates exceed avail-bw. As for
the expected case, the preceding pair would be distorted lightly since its sending rate
is below avail-bw while the following one could experience severe interference since
its sending rate exceeds the avail-bw. This means that the different kinds of turning
point can be distinguished by the interference experienced by the point and its prior
and follow neighbors.

5.2 The Weighting Process

We pick the turning point and the pairs that precede and follow the point as the range
used to determine the degree to which the interference experienced by the packets
within the range as shown in Fig.2 where pair P is turning point. The degree denoted
by ρ can be calculated as Nm /=ρ where m and N denotes the amount of packets

that are distorted seriously and the total amount of packets in the range respectively.
In addition, in our experiments, N is 6.

According to the analysis of the prior section 5.1, the three kinds of turning points
can be ordered and distinguished by the degree from little to large as busy period,
expected case and idle period. Thus, functions taking the degree of each turning point
as input can be used to give distinct weights to different kinds of points. In order to
avoid that the turning points except in the expected case determine the estimate of
avail-bw, the weight associated with these points must be relatively little. Finally, the
weight function should be satisfied the follow property: the domain is (0, 1] and the
maximum output is associated with when the input is 0.5; the output is gradually
reduced until closed to 0 but always exceeds 0 when the difference of the input and
0.5 becomes increasingly large. Equation 7 show an example of the weight function,
which is used in the follow simulation experiments. The function ⎣ ⎦y is a downhill

494 S. Lv et al.

truncation function, for example ⎣ ⎦ 109.10 = and ⎣ ⎦ 101.10 = . Note that the equation 7 is

an empirical selection after a number of careful experiments and we do not claim that
this function can be applied in all situations. Actually, the performance of the same
function in distinct network is different and the general choice is too hard to find.
Fortunately, the performance difference is not very distinct [19].

⎣ ⎦

⎣ ⎦⎪
⎪
⎩

⎪
⎪
⎨

⎧

>−
∈−
∈
<

=

55.010/)1(10

]55.0,5.0(1

]5.0,45.0[

45.010/10

)(

xx

xx

xx

xx

xf
 (7)

5.3 Threshold Discussions

Out of question, threshold defined in section 4.3 plays a crucial role in the execution
of decision rules and weighting process. We examine the effect of different threshold
by varying the value k in its definition. Fig.4 shows the different estimate with
variable threshold under the network setup described in section 6.1.Clearly, the results
are relatively better than other cases when k is 3.

When k is too small, actually, the corresponding threshold would be too large.
Then only little packet pairs sent at rate exceeds available bandwidth could become
turning points. On the other hand, due to the large threshold, there have fewer probes
around the turning point that satisfy the condition to be identified as the packets
distorted seriously, which suggests that the corresponding ρ would be reduced. For
those turning points due to idle period, of which the sending rate exceeds avail-bw
and ρ is greater than 0.5, the underlying weight would increase since the reducing

ρ will make their ρ more close to 0.5. However, the weights of the other two kinds
of turning points of which the degree are less than 0.5 originally, are decreased for the
degree is reduced to be far more away from 0.5. In a word, the final estimate would
exceed the actual avail-bw due to the over-weight of the turning point caused by idle
period and the under-weight of the other two kinds of turning point.

Similar analysis could be applied to the case of too large k, and the final estimate
would be too small. The conclusion is that the case of k is 3 is preferred, which is our
selection in section 6.

6 Experiments

In this section, we used ns-2 [8] to validate COPP mechanism described in the above
section. The comparison among Pathload, Spruce and COPP shows that COPP can
adapt to network variation and provide accurate estimates with fewer overheads.

6.1 Simulation Setup

Fig.5 shows the experimental topology, where the measured path from Sender to Sink
consists of n+1 links. Cross traffic is transmitted over n connections from

iS to

),...2,1(niRi = . Except the connection from
nS to

nR that has n-1 links overlapped with

measured path, all the other connections have only one link overlapped with measured

 Towards a New Methodology for Estimating Available Bandwidth on Network Paths 495

path. The bottleneck link of the measured path is at the center of the path with
capacity 10Mbps, and all the remaining links are with capacity 15Mbps.

All link of the measured path has the same amount of cross traffic that consists of
several Pareto traffic with shape parameter as 1.6. In addition, The cross traffic over
every link of measured path have the same traffic class distribution (95% TCP and
5% UDP) as well as the packet size distribution, e.g. there are three type packet sizes,
1500/700/40Bytes that consumes the 5%, 85% and 10% percentages of total amount
of cross traffic respectively.

In simulations, a chirp in COPP consists of 25 packet pairs and the estimate scale is
[400K, 10M] which means that the difference between the sending rates of adjacent
pairs is 400 Kbps. Equation 7 shows the function generating the weight. Additionally,
after four chirps are processed, COPP report the average result as the final estimate.

We pick Pathload and Spruce as the references to COPP in experiments. We use
the setting of them same as their authors suggest in [12, 13]. As for Pathload, a stream
is composed of 100 packets with size of 800Bytes and the amount of stream to yield
an estimate is determined by the iterative algorithm in Pathload. To obtain an
estimate, whereas, Spruce needs 100 pairs with size of 1500Bytes. We test these tools
in several topology but only report the results based on the case of n=5 since all
conclusions inferred are similar regardless of different simulation setup.

1−nR

nR

1R

2S1S

nS

SinkSender

hopsn 1−

0L nL1L

2

3

4

5

6

7

0 20 40 60 80 100 120
Time (second)

B
a
n
d
w
i
d
t
h

(
M
b
p
s
)

Actual ABW

COPP

Pathload

Spruce

Fig. 5. Experiment Topology and the mea-
suring path from Sender to Sink consist of
n+1 links

Fig. 6. Comparison among the estimate
results of COPP, Pathload and Spruce

6.2 Experimental Results and Analysis

By controlling cross traffic, we make the avail-bw varied in time 30s, 50s, 70s and
90s whereas kept stable in the interval between two time points. Fig.6 shows the
estimate results and actual avail-bw. Several conclusions can be drawn. First, almost
all tools can provide approximately correct estimates, but their accuracy is distinct.
For Pathload, the estimate can be changed remarkably when the actual bandwidth is
invariant which suggests that the stability should be improved. As for Spruce which
use probe of size 1500Bytes, the estimates are below the actual value commonly. Our
technique, COPP, provides the best estimates in most case. Second, for agility, COPP
is more agile when the variation of network is very acute, as for small variation, the
performance of all techniques are comparable.

In almost 90% experiments, one can see that the estimate of COPP with three
chirps in an episode is fairly accurate. The total amount of overheads is thus trivial for

496 S. Lv et al.

network. As compared to other two techniques, the overhead of COPP is less than
Pathload significantly and at most equal to Spruce. We also compare the intrusiveness
of three tools in short-term interval. Note that the minimum process unit in Pathload is
a sequence of 100 packets while in COPP and Spruce is a packet pair, and further all
pairs in Spruce are sent back-to-back, we can conjecture that COPP is not more
intrusive than the other two tools. In summary, COPP is an accurate and non-intrusive
tool and can reflect the dynamic variation of network quickly in most cases.

7 Conclusions

This paper presents a novel methodology for estimating available bandwidth over a
network path, called COPP. The relationship between sending rate and avail-bw is
characterized through the experienced interference of probes inferred from the
variation of pair dispersion and/or OWD. We describe the maim process of COPP and
derive two decision rules to determine whether a packet pair is turning point from the
analysis of packet-pair. We also investigate the settings of estimation parameters. We
evaluate COPP by simulation and find that it can provide relatively accurate estimate
with less overhead and adapt to network variation. The focus of our future work is to
evaluating COPP in realistic network and integrating it with network applications.

References

1. Dovrolis, C., Ramanathan, P., Moore, D.: Packet Dispersion Techniques and A Capacity
Estimation Methodology. IEEE/ACM Transactions on Networking (October (2004)

2. Min, L., Jinlin, S., Zhongcheng, L., Zhigang, K., Jian, M.: A New End-to-End Measurement
Method For Estimating Available Bandwidth. In: proceedings of ISCC 2003 (2003)

3. Liu, X., Ravindran, K., Loguinov, D.: What Signals do Pakcet-Pair Dispersion Carry? In:
proceedings of IEEE INFOCOM 2005 (2005)

4. Man, C., Hasegawa, G., Murata, M.: Available Bandwidth Measurement via TCP
Connection. In: IFIP/IEEE MMNS, IEEE Computer Society Press, Los Alamitos
(September 2004)

5. Jacoboson, V.: Congestion Avoidance and Control. In: Proc., SIGCOMM, USA
(September 1988)

6. Lakshminarayanan, K., Padmanabhan, V., Padhye, J.: Bandwidth Estimation in Broadband
Access Networks. In: IMC, Internet Measurement Conference (October 2004)

7. Karagiannis, T., Molle, M., Faloutsos, M., Broido, A., Nonstationary, A.: Poisson View of
Internet Traffic. In: proceedings of IEEE INFOCOM (April 2004)

8. NS version 2. Network Simulator, Http://www.isi.edu/nsnam/ns
9. Kiwior, D., Kingston, J., Spratt, A.: Pathmon: a Methodology for Determining Available

Bandwidth over an Unknown Network. Tech Report (2004)
10. Melander, B., Bjorkman, M., Gunningberg, P.: A New end-to-end Probing and Analysis

Method for Estimating Bandwidth Bottlenecks. In: GLOBECOM (2000)
11. Prasad, R., Dovrolis, C., Moore, D.: Bandwidth Estimation: Metrics, Measurement

Techniques and Tools. IEEE Computer Society Press, Los Alamitos (2003)
12. Jain, M., Dovrolis, C.: End-to-End Available Bandwidth: Measurement Methodology,

Dynamics, and Relation with TCP Throughput. In: proceedings of SIGCOMM (August 2002)
13. Strauss, J., Katabi, D., Kaashoek, F.: A Measurement Study of Available Bandwidth

Estimation Tools. In: proceedings of ACM IMC (2003)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 497–507, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Design and Realization of Multi-protocol
Communication Model for Network Security

Management System

Shouling Dong and Jiaming Luo

School of Computer Science and Engineering,
South China University of Technology,

Guangzhou, 510640, P.R. China
{sldong,sejmluo}@scut.edu.cn

Abstract. The purpose of this paper is to set up an efficient and secure data
transmission channel to transfer the security data between the management plat-
form and the distributed security agents on the internet. We analyses the basic
principle and characteristic of the data security transfer and multi-protocol
communication model in the distributed management network base on new
network management and security data transfer technology, and proposed the
actual system structure of this model. Furthermore, this model carries on a lot
instructive test and get well along with opening interface, real-time manage-
ment, expansibility, human interface and crossing flat ability, which guarantee
the successful application of a distributed network management system. More-
over, the system applies itself successfully to campus network testing.

1 Introduction

In today's network, various stand-alone security servers and/or proxies are used to
provide some sort of piecemeal security, such as an authentication server or an au-
thorization and access controller [1]. However, these servers only resolve certain
types of security problems. It makes the system administrators’ work complicated and
inefficient because multiple equipments should be monitored concurrently in order for
them to make a judgment on the integrated security status of the entire information
assets. If the stand-alone security servers are worked separately, it would result in the
waste of resources, also makes the lack of linkage between the systems and correla-
tion analysis.

Recently, there has been a great interest in developing security systems that man-
age the entire security equipments [2]. With the prevalence of the Internet and net-
work technology, people began to consider network management base on Web, a
Web-based network management system is to allow the Web browser for network
management.

Web-based network management model has the realization of two ways. One way
is called the manager/agent fashion, which has a main management platform to con-
trol stand-alone security servers or devices. Multiple devices, known as agents, are
distributed in the network environment, such as mail filtering system, IDS server,

498 S. Dong and J. Luo

firewall etc. The management platform plays the role of a manager in this fashion to
centralize the management of security devices so that the devices can work coopera-
tively. For example, comprehensive knowledge of the security status of the devices
can easily be provided to the system administrator. The second way is to achieve
embedded. Web function was embedded into device, each device has its own Web
address, and administrators can directly access the device through browser, which is
usually used for the small office network.

As concerned above, it is possible to use manager/agent fashion, creating a unified
remote management center to solve the above problem.

In order to manage the distributed remote agent, it needs to address the following
issues.

Different form traditional distributed network management systems, management
center needs to cross firewall safety. There are multiple networks protocols and mul-
tiple routings, such as HTTPS, SMTP, FTP, SNMP, SSH and so on. It is more con-
venient to cross firewalls or monitoring procedures and arrived at the client by using
multi protocols. Some devices may need to be accessed through different transport
protocols. [12] For example, a mail filtering system may get e-mail samples that are
transferred through SMTP. Deployment files may be transferred through FTP. We
present the multi-protocol Communication technology. We can choose different pro-
tocols to communicate over a connection between client and server depending on
their network environments, so that the data can traverse firewall to the distributed
network management system.

Security issue is often considered in distributed systems too [10]. Different kinds
of data are transferred between the management platform and the distributed security
agents on the Internet, such as deployment files, logs, e-mails, notifications etc. It is
necessary to create an efficient and secure data transmission channel to transfer the
data. We discuss the secure data transmission channel to solve the problem.

The remainder of the paper is organized as follow. The next section gives the de-
sign of multi-protocol communication model; section 3 describes the realization of the
model on mail filter system; Appraisal of the model is presented in section 4; finally,
section 5 providing some concluding remarks.

2 Design

2.1 Design Goal

The security management platform must receive data for management form remote
front-agent. The data will be analyzed, processed and saved in some way or arithme-
tic. Manager would modify the deployment and attributed base on the data, then some
data may return to the agents.

There will be many data need to be transferred between security management plat-
form and agents. The data may be various according to the types of the agents. Data
need to be transferred between security management platform and an email filtering
system agent, for example, may include the device’s running state, server running
state, agent’s configure information, filter arithmetic parameter, samples, data logs
and etc. These data can reduce to four types below:

 Design and Realization of Multi-protocol Communication Model 499

(1) XML format
Such as system attributes, system parameters, configure information, user info, and

system security events may in the format of IDMEF in XML Schema.
(2) Email format
Samples of mails, including spam mails, virus files and etc.
(3) Data logs
System running log files in agents and security management platform.
(4) Alarm and notification arise from agents

In order to make transmission between agents and the management platform more
effective, it’s necessary to choose different network protocols and security levels to
transmit data according to some communications policies. Thus, we propose multi-
protocol communication model for agent and management platform.

The design goal of the system is to use common system structure to provide a
common, flexible solution to the transmission of security data in network environ-
ment, thereby raising the level of distributed network management and interoperabil-
ity and scalability of communication model in network management system. It mainly
includes the following design objectives.

(1) Provide multi-protocol (including HTTP, RMI, FTP and SMTP) adaptation of
the transmission channel, for the efficiency of transmission between front-end agents’
equipments and back-end security management platform.

(2) With certification, authentication, access control, digital signature, data encryp-
tion and other security mechanisms and communications control in the transmission
channel to provide data security assurances for end-to-end transmission.

(3) Implement definitions and interface of data transmission based on the XML
standard, as well as the security transmission protocol standards.

(4) Management Console can use different transmission protocols and policies to
all kinds of information, which can be configured automatically by the system or by
user, User can also customize security level of transmission of information.

(5) Communication model is portable and scalable, and high universality. Through
standard data interfaces, it can integrate with a variety of third party front-end data
acquisition systems.

2.2 Characteristics of Multi-protocol Communication Model

Base on JMX. JMX is so scalability, low implementation cost, and compatibility that
it is suitable for developing a distributed network management system [3].

The design bases on JMX three level management framework and network data se-
cure tunneling technology [4], [5]. The model consists of communication server,
secure transmission tunneling, and communication client.

The server component is in JMX distributed service level, which provide distrib-
uted management interface accessible from remote management application. Secure
data transfer tunnel constructs a generic and secure transmission model for manage-
ment using the SSL (Secure Socket Layer) [6]. The client component manages and
monitors resources implemented by standard or dynamic MBeans.

Figure 1 illustrates the structure of the distributed network management system.

500 S. Dong and J. Luo

Fig. 1. Structure of the distributed network management system

Generic Interface of Protocol Adapter. The goal of our model is to define generic
and unified interfaces. By implementing the interface we can use a connector base on
a protocol that is not defined in the JMX Remote API standard. A typical example of
this is a connector based on a protocol that uses HTTP/S. Other protocols are also
possible.

This generic interface makes it possible to use various protocols to communicate
with client and server dynamically.

See section 2.4 for more information.

Data Secure Transmission. The data need to be transferred over a secure channel,
which means the data should be encrypted, authenticated etc.

We take account of the security mechanism of the system so that the connection
between client and server uses the Secure Socket Layer (SSL). See section 2.4 for
more information about the secure transmission structure.

2.3 Framework

According to the ideas above, multi-protocol secure transmission mechanism is de-
signed and developed base on JMX framework.

In JMX framework, the whole design is simplified since JMX provide an integra-
tive network management application development environment, and a useful, flexi-
ble, and dynamic framework. It also provides a series of JAVA classes and tools,
which make developing dynamic and extensible network management software
simpler.

Figure 2 shows our design of the multi-protocol communication model base on
JMX.

Let’s pay attention to the distributed service level of the model of which is the
most important part. The interfaces and components in distributed service level

 Design and Realization of Multi-protocol Communication Model 501

provide connectors through which administrator, agent and MBean can interact with
each other. MBean is exposed by agent level, and massages are transmitted by proto-
col like HTML or SNMP through protocol adapter. This level issues the manage in-
formation from management platform to many agent service components. It integrates
manage information from various agent service components into logical views, com-
municates with users and provides safeguard.

Here connectors and protocol adapters provide interface for remote manager to ac-
cess agent through different protocol or remote method calls.

Fig. 2. The multi-protocol communication model

JMX agents can have any adapters and connectors, so secure management platform
can access agent in multiple way.

JMX provides API to access Mbean resources, and it can be used to define user’s
protocol adapter. User-defined protocol adapter can quickly add to the agents that are
already in use, so it can ensure the dynamic activities. It is the sticking point of the
network management.

For our project, we use HTTP, FTP, RMI, and SMTP protocol.

2.4 Secure Data Transmission Channel

Secure Data Transfer channel module is one part of multi-protocol communication
model, in the design of the channel is to meet the requirements for data transmission
of a variety of network management applications, that is, data communications confi-
dentiality, integrity, data source authentication, and prevent malicious attacks; In
addition, the transmission channel for security management application provides a
convenient interface, so that the channel can be very simple integration to other net-
work management system in China.

This secure transmission channel includes certification, data source authentication,
message integrity assurance, data encryption, data decryption and transmission con-
trol. Figure 3 illustrates this structure.

502 S. Dong and J. Luo

Fig. 3. Logical structure of secure transfer tunnel

Now we discuss each part of the structure.

Protocols. In the network environment, there are a lot of data transmission protocols,
such as file transfer agreement (FTP), Simple Mail Transfer Protocol (SMTP), the
HTTP protocol. These have their different characteristics in transmission speed, data
encryption algorithm, transmission security, data format support, and other areas, by
choosing a different protocol can bring different aspects of facilities.

It is very common to use FTP for file transfer, this approach has the advantage of
widespread applicability, easy to use, users do not need additional preparation of the
application software (usually integrated into the operating system or network proto-
col); the drawback is the lower transmission reliability when transferring large files.
Hence it is not suitable for the application that requires large files transmission and
high precision.

With the development of Web technology, using the traditional approach is bound
to affect the actual application and promotion of file transfer; WWW technology’s
application also requested a new file transfer protocol and methods, which lead to the
use of HTTP for file transfer.

Using SMTP, the host of sender and the mail server directly connected, thereby es-
tablishing a channel from the sender to the receiver directly, avoiding network
firewall.

With the Java Remote Method Invocation (RMI) form enables application called
Remote Application Packaging of the square France.

This shows that the different methods or protocols suit different application needs.
The multi-protocol communication model should consider the advantages of various

 Design and Realization of Multi-protocol Communication Model 503

transmission protocols, choosing different protocols and communications policies
[13] under various data formats, systems’ situations, and consider expansion of the
system. After the system development to support more data formats and additional
transmission requirements, it also can guarantee the transmission between manage-
ment platform and the agents to be safe, accurate and timely. The model provides
secure communications for a variety of transmission protocol support, including
HTTP, FTP, SMTP, and RMI.

Certification. The main function of the certification part is to complete the certification
between client and server. In general, Certification could be one-way or two-way [8].
The secure transmission channel was only server-to-client authentication, which is
completed in the first phase of the connection. This is an effective way to avoid the
“MAN-In-The-Middle” attacks. To enhance system security, servers need to provide
CA presented to it by the CA certificate, and the client verifies the CA certificate from
the server, if the certificate errors, authentication failure.

Authentication and Data Integrality. The main function this part is to complete the
data source authentication and message integrity checking. The technologies,
including digital signature technology and symmetric information authentication code
technology, that is, HASH technology, Key commonly used hash algorithm HMAC-
SHA and HMAC-MD5.

Encryption/Decryption. The main function of Encryption/decryption part is to
guarantee the confidentiality of data, sender and receiver use common encryption /
decryption algorithm, the shared key, encrypt data after earlier identification, and the
receiver decrypts data using the same data decryption algorithm as the sender’s.

Transmission Control. Transmission control part is mainly responsible for the
communication of data processing flow control. It is responsible for the storage of
algorithm group, the shared key; responsible for the process of data in accordance
with specific strategies and flows, responsible for handling errors and control flow,
and so on.

In this system, the servers and the client of the communication model both have
the transmission control procedures. When server-side components have started,
they will regularly report their conditions of the system to client. Once the client
doesn’t connecting communication servers, it will send a warning message. In
addition, client has error control processes to deal with data loss in the process of
transmission or other abnormal situation, through several attempts to reconnect,
retransmission and clean data, in order to ensure the restoration after the mistakes
as much as possible.

2.5 Agent Server Components

Agent components provide registration of Mbean, communications between long-
distance customer management applications and managed objects, and transmiting
information etc.

504 S. Dong and J. Luo

3 Realization of the Model

We realize the model between management platform and agents of e-mail filtering
system. The management platform adopts MVC design pattern, uses Servlet and JSP
technology. It uses Tomcat server to run Servlets and JSP in Web applications. The
Mbeans of the agent will be run with Jboss.

The data that can be managed include agents’ running status, server’s running
status, deployment files, filtering algorithm parameter, mail samples, data logs, etc.
These data reduce to several data formats: XML [7], e-mail, and log files.

3.1 Realization of the Multi-protocol Transmission Channel

RMI Connector. It contains three components: RMIConnectorClient, RMIConnector
Server and RMIClientFactory. RMIClientFactory Establishes a connection to server by
calling RMIConnectorClient, then the RMIConnectorServer will return a RMI client
object. The management center can invoke local methods which defined in Mbeans.

SMTP Connector. SMTP protocol connector use Sun JavaMail component.
Management center use SMTP to send the data from management center in the form
of e-mail attachments to the accounts specified by management procedures. The agent
receives mail and attachments through the POP3 protocol.

FTP Connector. The first step, establish FTP Connecter Server in agents. Second,
establish FTP Connecter Client in management center. The third, when agent server
started, register FTP Conneter MBean, and started listening service ports (such as 21).
The forth, client sends a request to FTPConnector Server for a two-way data transfer.

HTTP Connector. HTML server (such as Tomcat 4.0) has achieved the SSL (Secure
Socket Layer) [9], [11]. Therefore, client and server-side can be in HTTPS
connection.

3.2 Protocol Adapter

Figure 4 shows the module chart of multi-protocol adapter, which is in agent
server. The protocol server in agent level may startup first to detect the request
from client.

ProtocolTest is used to test whether the protocol is usable and the time for trans-
mission, and makes a result for protocol factory.

ProtocolFactory chooses one protocol to use according to the test result from pro-
tocol test module.

Commpolicy module has self-adapting transmitting policy and real-time network
status logs that can help protocol factory to choose which protocol is the best to use.

ProtocolClient creates a connection with protocol server and transfers encrypted
data. Both protocol client and server use unified interface. Users can add their own
defined protocol or delete some of the protocols easily.

CommunicateMrg manages the whole transmission process and handle errors.

 Design and Realization of Multi-protocol Communication Model 505

Fig. 4. Module chart of multi-protocol adapter

4 Appraisal of the Multi-protocol Model

We realize the model in our distributed network management system and make some
instructive test. The test result shows that the multi-protocol mechanism gets along
well with the system. Data can be transmitted by every protocol we defined. When
one protocol is unable to use, the system can detect another protocol automatically. It
supply friendly interface, figure 5 shows one configuration interface of the system. It
allows user to configure parameters of protocols, such as the username and password
of FTP.

Fig. 5. Deployment page of FTP

506 S. Dong and J. Luo

Fig. 6. Protocol testing

It has perfect security, using SSL to encrypt. It is transparent to users, while they
can browse the websites as usual. It can be extensible because of generic interface of
protocol adapters. When a new protocol is needed, the user can define their own pro-
tocol, with no changes on others.

We measured the time required for transmitting the data. It took less than 1 second
to test the health of protocols and less than 2 seconds to send a general deployment
file of 2K from management platform to the agent, so it gets along well with real-time
management. Figure 6 shows the interface for testing protocol.

5 Conclusion

This paper discusses the model of secure data transfer between management platform
and the distributed security agents using multi-protocol technology in network man-
agement. This communication mechanism bases on JMX framework, and fully con-
siders the validity and security of data transfer. We realize the model. It provides
good performance and expansibility under campus network testing. Base on our work,
it is possible to establish data transmission strategy more intelligently, according to
systems and networks’ real-time status data, which would be our next work.

Acknowledgments for the Paper

Our colleagues and teachers have contributed greatly to the Research of the distrib-
uted network management system. Thanks all of you for your help and constructive
criticisms. Many thanks to Pu Wang and Gongming Jiang.

 Design and Realization of Multi-protocol Communication Model 507

References

1. Erfani, S.: Security Management System Functional Architecture for Enterprise Network.
0-7803-5864-3, IEEE, Honolulu, HI, 977-978 (2000)

2. Lim, Y., Kim, M., Jeong, A.: An Enterprise Security Management System as an ASP Solu-
tion. In: ICHIT 2006, 0-7695-2674-8/06, Cheju Island, Korea, pp. 548–555. IEEE Com-
puter Society Press, Los Alamitos (2006) 0-7695-2674-8/06

3. JMX 1.2 Specification. Sun Microsystems,Inc. (April 2007),
 http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

4. Sullins, B.G., Whipple, M.B.: JMX in Action. Manning Publications Company, Greenwich,
Connecticut (2002)

5. Perry, S.J.: Java Management Extensions. O’Reilly, Sebastopol, USA (June 2002)
6. Freier, A.O., Karlton, P., Kocher, P.C.: The SSL Protocol Version 3.0 (November 1996),

http://home.netscape.com/eng/ssl3/draft302.txt
7. Dong, S., Tan, Y., Zhang, L.: Extensible network security policy management system.

Journal of Dalian University of Technology, China, 172-175 (2005)
8. Prem Kumar, G., Venkataram, P.: Security management architecture for access control to

network resources. IEE Proc.-Comput. Digit. Tech. 144(6) (November 1997)
9. Berbecaru, D.: On Measuring SSL-based Secure Data Transfer with Handheld Devices.

IEEE Computer Society Press, Los Alamitos (2005)
10. Cao, F., Dini, P.: Providing Secure End-to-End Session Tracking in Distributed Multi-

Protocol Environments. IEEE Computer Society Press, Los Alamitos (2006)
11. Mraz, R.: Secure Blue: An Architecture for a Scalable, Reliable High Volume SSL Internet

Server. IEEE Computer Society Press, Los Alamitos (2001)
12. Epstein, S.: Using Multi-Protocol Encapsulation Technology to Develop Optimum Data

Broadcast Systems. 2000 The Institution of Electrical Engineers (2000)
13. de Albuquerque, J.P., Krumm, H., de Geus, P.L.: Policy Modeling and Refinement for

Network Security Systems. IEEE Computer Society Press, Los Alamitos (2005)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 508–517, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Enhanced and Authenticated Deterministic Packet
Marking for IP Traceback

Dan Peng, Zhicai Shi, Longming Tao, and Wu Ma

Information Engineering Institute, Dalian University, 116622, Dalian Liaoning, China
{pdlu10501003,szc1964,vilon888,mwps}@163.com

Abstract. The rising threat of cyber attacks, especially distributed
denial-of-service (DDos), makes the IP traceback problem very relevant to
today's Internet security. In this paper, a novel deterministic packet marking
scheme called PN-DPM for IP traceback is presented. Through a unique
technique: path numbering, our scheme provides ISPs a feasible solution to make
IP traceback as a value-added network service, which allows the victim not only
to detect and filter spoofed DDOS attacks immediately, but also to obtain more
accurate information about the source of the attacks from the corresponding ISPs
by the authenticated marks, even after the attacks has been completed. Our
techniques feature low network and router overhead, low computational load for
victim, and support incremental deployment. In contrast to previous work, our
technique has significantly higher feasibility by considering much more aspects
of IP traceback technology from practical perspective.

1 Introduction

Due to the deficiencies of TCP/IP architecture, cyber attacks always follow the
development of network. Furthermore, IP header fields, including the 32-bit source IP
header field can be readily modified. So the attackers can forge the source address of a
packet, effectively hiding its true origin. Especially in recent years, Distributed
Denial-of-Service (DDoS) attacks, one of the most effective attack ways, pose a major
threat to the availability of Internet services. A DDoS attacker can greatly reduce the
quality of a target Internet service or even can completely break the network
connectivity of a server by persistently overloading critical network or system
resources of the target, such as network bandwidth, router processing capability, or
CPU/memory at the target machine. Moreover, to hide the sources of attack traffic and
circumvent DDoS defense mechanisms relying on inspecting IP header fields, DDoS
attack programs generally fill IP header fields, especially the 32-bit source IP address,
with randomized values. To defend against spoofed attacks, especially DDOS, a
technique called IP traceback to locate the actual source of attack packets is proposed
and evolving rapidly in recent years.

While many IP traceback techniques have been proposed, they mostly have
shortcomings that limit their usability in practice (we discuss more details on related
work in section 2). One promising solution, referred as DPM, was first proposed in [1]
and an enhanced scheme was shown in [2][3]. DPM is a deterministic packet marking
algorithm which is scalable and simple to implement, and introduces no bandwidth and

 Enhanced and Authenticated Deterministic Packet Marking for IP Traceback 509

practically no processing overhead. In addition, attacks which are composed of just a
few packets can be traced back by DPM. Unfortunately, as we will show in our analysis
in section 3, this approach has an internal shortcoming when confronts some new
network techniques, such as Network Address Translation (NAT). This approach is
also vulnerable to compromised routers [4].

In this paper we present a new IP marking scheme called PN-DPM to solve the IP
traceback problem. Besides all the advantages of DPM, through encoding the paths
between the edge DPM routers of domain or subnet and their upstream routers, the
victim can use the path Identifiers not only as path fingerprints to detect and filter
DDoS traffic, but also as the efficient authentication of routers' marking. Furthermore,
after reconstructing the edge marking and decoding the path identifiers, more accurate
information can be utilized for post-mortem capability, which may be provided as a
value-added service by ISPs.

2 Related Work

Many DDoS defense mechanisms have been proposed in recent years. These schemes
can be roughly categorized into four classes: attacker-end based, network-based,
victim-end based, and hybrid [5]. Firstly, owning to no direct benefit to the source ISPs
themselves, Attacker-end based and network-based schemes may not be put into
practice in the near future. Secondly, due to the lack of built-in security mechanisms in
the current Internet infrastructure, the victim-end schemes may always be
circumvented by attackers when the defense mechanisms are acknowledged. Lastly,
hybrid schemes may be the best solution, in which ISPs provide some network support
to the victim as value-added services, and victim can utilizes them to defend against or
trace the attack traffic. Up to now, several hybrid schemes have been proposed, but they
mostly have not considered ISPs’ benefit for network support. In a scheme [5], each
participating router marks a hash value in the Identification field of an IP packet,
according to the router's IP address and the old hash value in the IP header. In this way,
an IP packet will arrive at its destination along with a unique identifier representing the
path it has traversed. Since the marking is deterministic, packets traversing the same
path will share an identical path identifier. With this scheme, the path identifier of a
packet will provide the victim the ability to identify spoofed IP packets. Since most of
current DDoS attack tools generate spoofed IP packets, this schemes can effectively
defend against spoofed DDOS. However, it did not have the post-mortem capability of
locating the sources of attacks to charge the attackers, and deal with other types of
DDOS attacks, such as Distributed Reflector DOS (DRDOS) which not mainly
consisted of spoofed packets.

IP traceback technique was mainly developed to be as a DDOS countermeasure. But
it focuses on identifying the origins of spoofed attacks, rather than stopping these
attacks. Thus, it does not provide immediate help to victims. According to the
processing mode, IP traceback can be classified into two categories: deterministic and
stochastic [4]. And the Deterministic Packet Marking (DPM) and Probabilistic Packet
Marking (PPM) are the representative schemes respectively. There have been many
modifications and discussions on PPM since it appeared. Yet PPM has many
drawbacks such as heavy computation load, high false positive, spoofed marking and

510 D. Peng et al.

so on [4]. Furthermore, PPM was fully designed to locate the sources of DOS or DDOS
attacks which consisted of a large number of attack packets. Besides low router and
network overloading like PPM, the task of ingress address reconstruction in DPM as a
simple and direct solution to IP traceback, is much simpler than the task of path
reconstruction in PPM. As a result, DPM not only may handle large-scale DDoS
attacks better, but also has the potential to tackle reflector-based DDoS attacks, and
attacks which are composed of just a few packets. Moreover, a service provider can
implement this scheme without revealing its internal network topology.

A DDOS-defending mechanism based on IP traceback can be classified as a hybrid
scheme. The type of this defending scheme not only can provide immediate help to
victims, but also can be used to identify the origins of spoofed attacks. An IP traceback
method based on PPM is employed to construct the attack graph, and subsequently IP
packets marked with one of network edges in the attack graph are discarded [6]. This
scheme suffers from the large number of packets required to construct the attack graph.
And, it may misclassify legitimate packets as attack packets if legitimate packets ever
traversed the network edge in the attack graph. Up to now, no scheme based on DPM has
been developed to defend against DDOS. Our scheme is inspired by the above works.

3 Enhanced and Authenticated Deterministic Packet Marking

Our proposed algorithm is essentially a packet marking algorithm. We first observe the
drawbacks of Deterministic Packet Marking (DPM) which was proposed in [1][2][3],
and then try to address them in our proposal.

3.1 Observations of DPM

In DPM, The 16-bit Packet ID field and the reserved 1-bit Flag in the IP header will be
used to mark packets. Each packet is marked when it enters the network. This mark
remains unchanged for as long as the packet traverses the network. The packet is
marked by the interface closest to the source of the packet on the edge ingress router, as

128.235.55.5

128.235.104.19

128.235.55.1

128.235.104.1

1 0 .0 . 1 5 .0 1

B A C K B ON E
 R OU T ER S

D P M E n a b le d
E d g e R o u te r s

Vict im
Attacker

Attacker

Fig. 1. Deterministic Packet Marking (DPM)

 Enhanced and Authenticated Deterministic Packet Marking for IP Traceback 511

shown in Fig.1.The interface makes a distinction between incoming and outgoing
packets. Incoming packets are marked; outgoing packets are not marked. This ensures
that egress router will not overwrite the mark in a packet placed by an ingress router.

We make the following observation about the ingress-marking schemes in DPM.
Now, the 32-bit address field of the current IP protocol limits the number of possible
addresses, the tremendous growth of the Internet threatens to eventually make IP
addresses a scarce resource. Many organizations’ networks use private addresses in
their own networks, and only have several public addresses to communicate with other
organizations. Moreover, with the technique of Network Address Translation (NAT)
appearing, the computers not only can use IP address at will, but also can access the
public network, such as Internet. In this situation, the same ingress address marks may
appear if the DPM enabled routers in DPM are placed in private networks, as shown in
Fig.2, and DPM will have higher false positive. If the DPM enabled routers in DPM are
only placed in public networks, the ingress mark may be only a address of a subnet or
domain, and this provide less accurate information about source of attacking traffic. We
observe that it is a result of using one-dimension address space in DPM, which can not
reflect the hierarchy of current routing infrastructure. Furthermore, a fundamental
shortcoming of previous DPM marking schemes is that the packet markings are not
authenticated. If a router is compromised, it can forge markings and hence lead the
reconstruction to wrong results. Even worse, the victim will not be able to tell if a router
is compromised just from the information in the packets it receives. Finally, the
marking field is only 17 bits. The small space for storing mark severely limits the
capability of traceback in DPM.

R 1

R 2 R3

R 7

R 6

N et 1

N et 2

R 4

R 5

R 8

A1

A2

A3
A4

B1

C 1

Net3

R 9

N et4

2 0 2 .1 9 9 .1 5 2 .1

D PM

D PM

2 0 2 .19 9 .1 5 2 .1

N E T

DPM---DPM Enabled Router NET---NET Enabled Router

Fig. 2. A Scenario of The Same Address Marks Appearing in DPM

3.2 Overview of PN-DPM

To reflect the hierarchy of current routing infrastructure for gaining more accurate
information of the sources of attack packets, a two-dimension address mark scheme is
proposed. In our scheme, there are two types of the participating routers: DPM-enabled
routers and PNM-enabled routers, as shown in Fig.3. DPM-enabled routers are
deployed at the edge of a domain or subnet to mark each packet traversing them by the

512 D. Peng et al.

R 5

R 4

R1

Net1

R 3

A 1

A 2

A 3
A 4

NET 4

R 2
NET5

PNM
DPM

PNM Enbaled Router
DPM Enbaled Router

PNM

PNM

DPM

PNM

DPM

192.168.0.1

200.185.10.1

2 0 0 . 1
8 5 . 2

0 . 1

202.199.155.1

Interface1

Interface2
Interface1

I n t e r f a c e 2

Fig. 3. Deterministic Packet Marking Based Path Numbering (PN-DPM)

incoming interface; PNM enabled routers which are closest to the source of the packet
mark each packet traversing them with the path identifiers representing the pathes
which link them and the correspongding DPM-enabled routers. The path identifier is
obtained by a path numbering algorithm (we discuss more details in section path
numbering).

To allocate enough space in IP header for storing the mark, the 16-bit Identification
field, the 14-bit Fragmentation related fields, and the reserved 1-bit Flag in the IP
header is chosen to be overloaded, when it is certain that a packet is not a fragment or
DF is set. Issues related to the overloading of this field have been studied and reported
[7]. For fragmented packet, instead, Option field is used [8]. A new sub-section in
option field with a new flag for IP traceback was shown in Fig.4.

XXX10001 Length

PI T
F Dis

I
n
d
e
x

Address
fragment

Fig. 4. Fragmented packet mark in Option field

Ver Hlen TOS(DS) EC Total Length

Path Identifier (PI) T
F

D
F Dis Index

Address
fragment

TTL Protocol Checksum

Source Address

Destination Address

Options

Fig. 5. Un-fragmented packet mark in IP header fixed part

 Enhanced and Authenticated Deterministic Packet Marking for IP Traceback 513

Total overhead for the new sub-section is six bytes, as shown in Fig.5. In our
scheme, the 16-bit Identification field is used to store the path identifier. For final
receiver knowing if the packet is not fragmented, the DF (do not fragmentation) keep as
it old value. The one bit at left side of DF is used for marking flag. The 14-bit
Fragmentation related fields, including 1-bit MF (more fragment) and 13-bit offset
field, are divided into three sub-fields. The first sub-field is 4-bit long and is used to
store the value of distance. It is believed that 4 bits are sufficient since a large domain
can be divided into some small domains readily in our scheme. The last two sub-fields
are respectively 2-bit index and 8-bit address fragment of the IP address.

3.3 Path Numbering

The work of path numbering is inspired by path fingerprint filtering scheme [5]. In our
scheme, path numbering can provide efficient authentication of routers' markings.
Moreover, it can be seen as an enhanced path fingerprint, which can be treated not only
as a filtering identifier but also as a clue to further traceback.

Step 1: Authentication with CRC-CCITT
CRC is a simple and widely used error-detecting technique in data transmitting. It uses
the redundant data of the received data to check if some errors have been introduced
during data transmission. CRC-CCITT is one industry standard of CRC. In our scheme,
the net-id (NA) of the interface of the PNM enabled router, which is closest to the
source of the packets; the incoming interface’s IP addresses of the corresponding DPM
enabled routers(IA); and the distance (D), from the PNM enabled router ,which is
closest to the source of the packets, to the corresponding DPM enabled router are
treated as the data being transmitted. The redundant data of the combination of these
datas, which is produced by CRC-CCITT, was treated as the path identifier. Each
incoming interface of PNM-enabled router is assigned some numbers according to the
outgoing net. When traverses the path, the packet will be marked with the number of
the PNM-enabled router as the path identifier. Due to the static property of the router
numbers and small amount of paths in a marking domin, we can compute the numbers
of routers and assign them to PNM-enabled router in advance. When victims receive
the marked packets, they can compute to check the integrity of the mark using
CRC-CCITT, after reconstructing ingress IP address.

To show the procedure of path numbering, a concrete example will be demonstrated.
In Fig.3, we assume that one ingress address (interface 1)of R1 is IA1(R1), the other
(interface 2) is IA2(R1), the ingress address of R2, IA(R2). According to CRC-CCITT,
the divisor’s Polynomial is P(X)=X16+ X12+ X5+1, and the function,
HCRC(Y)=Y*216/P(X), is a binary modulo 2 division. In our scheme, the identifier of
the path is

PI(Ii(Rx1), Ij(Rx2))= HCRC((IAi(Rx1)*2n+NET(IAj(Rx2)))* 24+D) (1)

Where Ii(Rx) is the incoming interface i of router Rx, IAi(Rx) is the IP address of Ii(Rx),
NET(X) is the net-id of the IP address X, and n is the bit number of NET(I(Rx2)). For
example, for NET(I(R5)), n=24.

514 D. Peng et al.

Then we compute the numbers of the incoming interface (i) of the PNM enabled
routers, Ni,j (Rx).

Ni,j(Rx)= PI(I(DPM j(Rx)), Ii(Rx)) (2)

Where Ii(Rx) is the i incoming interface of Rx, I(DPMj(Rx)) is the incoming interface
of the DPM enabled router linked to Rx, of which one outgoing interface is linked to
net j.

So each incoming interface of PNM enabled routers has some numbers
representing the paths. When it is going to mark a packet, it should choose one of
them according to the path. The path information can be acquired by the destination
address of the packet and the router’s routing table. For example, a packet traverses
from the source A2 to the destination net4 across R4-R3-R1. According to net4 and
the routing table, the incoming interface 1 of R4 will mark the packer with N 1,4 (R4)=
PI(I2(R1), I1(R4)).

Step 2: Using Time-Released Key Chains
Although step 1 can provide a certain of authentication, it is incomplete for that path
identifier and ingress addresses can be forged together in DPM enabled routers and
their downstream routers. Then the victim can’t distinguish between true and spoofed
marks. To solve this problem, we encrypt the path identifier by using the time-released
keys authentication scheme. A similar scheme was proposed by Perrig et al. for
multicast source authentication [9]. So the numbers of the PNM enabled routers in our
step1 are encrypted.

This scheme can be viewed as that each PN-enabled router shares a secret key with
each potential victim. The victims can download the keys of the corresponding routers
for the latest time interval according the ingress IP addresses from the ISPs’ website,
and then it is able to compute all the keys for previous time intervals. So path identifiers
can be decrypted to authenticate the ingress address.

3.4 Formal PN-DPM Description

In this section, we introduce the formal pseudo code for PN-DPM. As seen from Fig.6
and Fig.7, the path identifier marking procedure is presented as follows. When a IP
packet traverse from a host, the incoming interface of PNM-enabled router closest to
the source of the packet sets the packet’s distance field and the TF-flag to 0. Besides
these operations, it set the path-identifier field to its own corresponding encrypted
number, according to the packet’s outgoing net. Afterwards, if the TF-flag is unset,
each PNM-enabled router increases the distance field. Otherwise, nothing does to the
packet. Whenever a DPM-enabled router receives an IP packet, it first examines the
TF-flag field. If it is 0, the receiving router sets the TF-flag bit to 1, generate a small
random number from 0 to 3 as the value of the index field, and insert the corresponding
address part mark into the address fragment field.

In the recovery procedure, the PI and distance field can be seen as the digest field in
DPM [2].So the similar procedure of ingress address reconstruction is presented in our
scheme.

 Enhanced and Authenticated Deterministic Packet Marking for IP Traceback 515

1: let p denote an incoming IP packet
2: let p.pi, p.tf, p.df, p.dis, p.index, and p.af denote the PI, Dis, index
 and Addres Fragment field in packet p's IP header, respectively.
3: if the PNM enabled router R is closest to the source of p then
 if p.df = =1 then
 if p 's incoming interface is i, outgoing net is net j
 then {p.pi= Ni,j(Rx) ; p.tf=0; p.dis=0;}
 else
 if (option field has enough free space)
 {create a PN - DPM Option structure;
 fill corresponding mark field in option structure;
 fill option field;
 fill length field;
 append the structure to Option field;
 else
 send a specified ICMP to destination side;
 else
 if p.tf = =0 then p.dis=p.dis+1;
 return;

}

Fig. 6. PNM Enabled Router’s Mark Inserting Algorithm

1: let p denote an incoming IP packet
2: let p.pi, p.tf, p.df, p.dis, p.index, and p.af denote the PI, Dis, index
 and Address Fragment field in packet p's IP header, respectively.
3: let R and IAj(R) denote a DPM enabled router and i corresponding
 part of its ingress address
4: if p.tf= =0 then generate a small random number j from 0 to3;
 If p.df= =1 then
 {p.tf=1; p.index=j; p.af= IAj(R); }
 Else
 If (option field has a PN - DPM Option structure) then

 fill corresponding mark field in option structure;
 else
 send a specified ICMP to destination side;
return;

Fig. 7. DPM Enabled Router’s Mark Inserting Algorithm

4 Discussions and Analysis

As well-know, A CRC is always used in the same way as a checksum to detect
accidental alteration of data during transmission or storage. CRCs are popular because
they are simple to implement in binary hardware, are easy to analyze mathematically,
and are particularly good at detecting common errors caused by noise in transmission
channels. However, CRCs cannot be safely relied upon to fully verify data integrity in
the face of intelligent (rather than random) changes for the linear relation between the
CRC redundancy data and the data transmitted. An effective way to protect messages
against intentional tampering is by the use of a message authentication code such as
HMAC.

In our scheme, CRC-CCITT can be merely seen as a hash function H that the input is
IP addresses IA , net-id NA ,and the distance D, and the output is PI and D.

516 D. Peng et al.

(PI,D)=H(IA,NA,D)

PI=CRC-CCITT(IA,NA,D) (3)

Because the false positive of CRC-CCITT is near the expected value 1/216, and the
total expected value of false positive of H in our scheme is 1/24*216, for the effect of the
distance field. So, it is effective. The practical work of authentication is provided by
using the time-released keys authentication scheme which can be seen as a type of
HMAC. The linear relation between the (IA,NA,D) and PI introduced by the
CRC-CCITT, can be eliminated largely by a elaborately chosen HMAC function.

The number of attackers, which PN-DPM can traceback, with the false positive rare
limited to 0, is evaluated. Let us examine the origin of false positive. If there is only one
ingress address with a given digest, there will be no false positives because of the
properties of our proposed hash function. Therefore, the rate of false positives is nearly
0 when the number of attackers, A, is less or equal to the number of possible digests,
220. Another important consideration is the expected number of packets required for the
reconstruction. This number will be related to n, the number of segments that the
ingress address was split. The expected number of packets, E[N],required to be marked
by a single DPM-enabled interface in order for the victim to be able to reconstruct its
ingress address is given by a Coupon Collector problem discussed in [10],

E[N]=n(1/n + 1/n-1 + 1/n-2 + …+ 1) (4)

In our scheme, the required number is 8, which is very small.

5 Conclusion

In this paper, we have presented a new deterministic packet marking scheme for IP
traceback. Through a unique technique: path numbering, our scheme effectively
addresses shortcoming of existing DPM in some degree. And our scheme has
significantly good performance in dealing with large-scale DDOS attacks as a IP
traceback technique by the above analysis. In addition, the path identifier can be used
directly as a path fingerprint to detect and filter various types of attacks by the victims,
not only for DOS or DDOS attacks since the number of packets required is small.
Furthermore, the more accurate information of the path identifier, PI, can be provided
as a value-added service by ISPs for post-mortem traceback, that may strongly motivate
ISPs to deploy the scheme owing to the direct benefit.

References

[1] Belenky, A., Ansari, N.: IP Traceback with Deterministic Packet Marking. In: IEEE
Communications Letters, pp. 162–164 (2003)

[2] Belenky, A., Ansari, N.: Tracing multiple attackers with deterministic packet marking
(DPM). In: Proc. IEEE Pacific Rim Conf. Commun.,Comp. and Sig., pp. 49–52. IEEE
Computer Society Press, Los Alamitos (2003)

[3] Belenky, A., Ansari, N.: Accommodating fragmentation with deterministic packet marking
for IP traceback. In: Proc. IEEE GLOBECOM, pp. 374–1378. IEEE Computer Society
Press, Los Alamitos (2003)

 Enhanced and Authenticated Deterministic Packet Marking for IP Traceback 517

[4] Gao, Z., Ansari, N.: Tracing cyber attacks from the practical perspective. IEEE Commun.
Mag., 123–131 (2005)

[5] Fu-Yuan, L., Shiuhpyng, S.: Denfending against spoofed DDoS attacks with path
fingerprint. Computers & Security 24, 571–586 (2005)

[6] Sung, M., Xu, J.: IP traceback-based intelligent packet filtering: a novel technique for
defending against internet DDoS attacks. IEEE Transactions on Parallel and Distributed
Systems 14(9), 861–872 (2003)

[7] Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Network support for IP traceback.
IEEE/ACM Trans. Networking, 226-237 (2001)

[8] Dae-Sun, K., Choong-eon, H., Yu, X.: An Intelligent Approach of Packet Marking at Edge
Router for IP Traceback. Lecture Notes in Artificial Intelligence, 303–309 (2005)

[9] Perrig, A., Canetti, R., Song, D., Tygar, D.: Efficient and secure source authentication for
multicast. In: Network and Distributed System Security Symposium (2001)

[10] Feller, W.: An introduction to Probability Theory and its Applications, 3rd edn. Addison-
Wesley, Reading (1968)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 518–524, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Designing Method for High-Rate Serial
Communication*

Gongxuan Zhang, Ling Wang, and Bin Song

School of Computer Science & Technology, Nanjing University of Science & Technology
210094 Nanjing, China

{gongxuan,arch601,face601}@mail.njust.edu.cn

Abstract. In this paper, after briefly introducing the characteristics of
MSP430F149 MCU, we present the design of a new high speed serial commu-
nication method based on MSP430F149. The new method can correctly identify
the parity bit without the knowledge of the parity mode (odd/even/address bit).
We provide the relevant design of both the hardware and the software. This se-
rial communication scheme can support speeds up to 1.5Mbps.

1 Introduction

Serial communication is widely used in MCU-based industrial control systems. The
serial communication rate of most MCU is usually below 1Mbps. However, some
modern systems often demand serial communication with higher rates. For instance,
one elevator data collection system designed by the authors requires a rate of
1.5Mbps. In addition, the parity mode of the elevator is unknown. To collect the ele-
vator’s data, the TSHBIA CV150 elevator is connected to the data collection system
through a RS480 interface. The collected data is processed and send to other follow-
ing systems through a RS232 interface. Therefore the MCU is required to support a
serial communication rate of 1.5Mbps. MSP430F149 MCU provides two USARTs. In
this paper, we shall present the software and the hardware design of the system to
meet the 1.5Mbps serial rate requirement.

The rest of the paper is organized as follows. In section 2 MSP430F149 Architecture
is presented. In section 3, the Hardware Design for High-Rate Serial Communication is
presented. Section 4 presents Software Design for High-Rate Serial Communication.
Conclusion is given in section 5.

2 MSP430F149 Architecture

MSP403F149 MCU is a member of the latest family of 16-bit ultra-low power con-
sumption MCUs provided by Texas Instruments Inc. It can be supplied by a low and
wide power voltage range from 1.8V to 3.6V. It provides 60KB FlashROM, 2KB
RAM, and supports serial on-chip programming. This provides the flexibility for

* This is supported by ‘National 863 Plan’, No. 2006AA01Z447.

 A Designing Method for High-Rate Serial Communication 519

users to compile programs and to control design parameters. MSP403F149 can be
erased up to 100,000 times and has a strong protection against interference.

MSP430F149 comes with powerful interrupt functionality. It provides multiple
registers for output, function selection, and interrupts, which enables the reuse of
functional ports and universal I/O ports – The function of an I/O port needs to be
specified before it can be accessed. This mechanism enhances the ports’ functionality
and flexibility. MSP430F149 has two universal synchronous/asynchronous re-
ceive/transmit communication interfaces (USART). It also has a convenient develop-
ment and debugging environment with embedded JTAG debugging interface, which
only requires a PC and a JTAG debugger to develop. The developing languages in-
clude C language and Assembly language.

3 Hardware Design for High-Rate Serial Communication

Figure 1 illustrates the serial communication scheme for the elevator data collection
system designed by the authors. The system’s serial rate is 1.5Mbps. The hardware
design shares some common features of a typical serial communication system. Port
P1.0 is used to control the transmission and reception of MAX485. In the following
sections, we shall focus our discussion on those features in Figure 1 that are particu-
larly designed to support a 1.5Mbps serial communication rate.

3.1 3V – 5V Voltage Level Conversion

There exist several methods to implement the 3V-5V voltage level conversion. For
instance, we could use PHILIPS 74LVC4245 octal dual supply translating transceiver
chip and some simple voltage transition chip such as 74LVC07. We use a different
voltage conversion circuit as shown in Figure 2. The key of the design is to insure that
all the circuits have fast transition speeds. As shown in Figure 2, Port TXD0 and P1.0
of MSP430F149 are output ports which can support the conversion from 3V to 5V
when connected to certain pull-up resistance. For the input port RXD0, a proper
choice to support the conversion from 5V to 3V is to use 74HC05 OC gates. The pull-
up resistance R3 and R4 are connected to 3.3V and 5V, respectively with values

 TXD
RXD
P1.0

MSP430F

149

3V~5V

Conversion

Photoelec-
tricity Insula-
tion

MAX485

8M
crystal circuit

Fig. 1. The high-rate serial communication scheme

520 G. Zhang, L. Wang, and B. Song

around 1K ohms. If their values are too high, it is hard for 74HC05 to pull up to high
output voltage, especially under high-speed voltage transition.

Fig. 2. The transition voltage circuit of 3V~5V

3.2 Crystal Frequency Selection

In the ideal case, the crystal frequency should be an integer times of the serial com-
munication rate. However, this is not an absolute rule. The crystal frequency ought to
be selected with respect to the specific design scenario. Some articles show that the
crystal of MSP430 can reach 8MHz up to 10MHz with a smallest frequency division
factor of 3. Given that the serial rate in our system is 1.5Mbps, we used 6MHz crystal
frequency at the beginning. The source clock of the baud rate generator is SMCLK
whose frequency is also set to 6MHz with a frequency division factor of 4. Thus, with
a character length of 8 bits and with parity check, the serial port receiving program
has a time window of 44 MCLK to process each received character.

As we know, MSP430 MCU is based-on RISC, so some instructions are simulated.
The average period of the simulated instructions is 4 MCLK. That means the serial
receiving program can only use about 10 instructions to process a single character.
This imposes a fairly tight time constraint. Through repeated experiments with crystal
frequencies from 6MHz to 12MHz (the frequencies might exceed the normal level,
but can still run in this system), we eventually selected 8MHz as the final choice.
With the 8MHz clock, the frequency division factor is not longer an integer. So we

 A Designing Method for High-Rate Serial Communication 521

need to set the baud rate selector properly. See Section 4 for the detailed discussion
on setting the baud rate selector.

4 Software Design for High-Rate Serial Communication

The tasks of software design for this high-rate serial communication system are: 1)
Initializing the corresponding registers, 2) Receiving the data coming from the serial
port in a timely manner, 3) Decoding the parity bits and saving the data. The emphasis
of our discussion on software design is on completing the above tasks within the time
of 44 MCLK (8MHz).

4.1 Initialization of Serial Port Registers

The key of serial communication is to set the baud rate selector0、baud rate selector1
and baud rate modulate controller UMCTL. With an 8MHz crystal and a 1.5Mbps
serial rate, the frequency division factor is about 5.333333. So the value of baud rate
selector0 is 5, and the value of baud rate selector1 is 0. The method to set the UMCTL
is shown in Table 1.

Table 1. UMCTL Set

Fraction addition Carry to next
integer

UMCTL Bits

0.333333+0.333333=0.666666 no m0 0
0.666666+0.333333=0.999999 no m1 0
0.999999+0.333333=1.333332 yes m2 1
1.333332+0.333333 =1.666665 no m3 0

In the same way, we can conclude that the value of UMCTL is 24H. The initializa-

tion of serial port program is provided below.
/********************

 serial port initialization function
***********************/

void InitUsart1(void)
{
 unsigned char i;
 WDTCTL = WDTPW + WDTHOLD;// stop watch dog
 BCSCTL1&=~XTOFF; // use high crystal XT2
 do{
 IFG1&= ~OFIFG; // clear OSCFault flag
 for (i = 0xff; i > 0; i--);
 }while ((IFG1 & OFIFG) == OFIFG); //waiting for OS

Fault flag reset
 BCSCTL2 |= SELM1+SELS; // the clock source of MCLK

and SMCLK is XT2
 UCTL1&=~SWRST;

522 G. Zhang, L. Wang, and B. Song

 UCTL1 = PENA+CHAR; // define character length and
parity mode

UBR01 = 0x05 // define baud rate selector0
 UBR11 = 0x00; // define baud rate selector1
 UMCTL1 = 0x24; // define baud rate adjust con-

trol register
UTCTL1 = SSEL1; // the clock source of baud rate

generator is SMCLK
 URCTL1=URXEIE; // allow receive erro
 ME2|=UTXE1+URXE1; // allow receive and send
 P3SEL |= 0xC0; // P3.6 P3.7 is TXD/RXD of USART1

P3DIR |= 0x40;
 }

4.2 Serial-Port Data and Decoding of the Parity Bit

To identify parity bit, we can use any parity mode to receive data, for example the
odd mode, and save the parity error state (PE) when receiving the character. This way
the following processing program can ascertain the parity bit value in terms of the
number of 1’s in each character and the PE state. To improve the realtimeness of the
data processing and the flexibility of control, we combine C language and Assembly
language in our programming.

/***/
/*main function*/
/***/
#define ReceiveCount 100
#include <msp430x14x.h>
extern void re_tx(unsigned char*pbuff,unsigned int

re_count);
/*serial receiving function (assemble function)—

prototype announce*/
extern unsigned char judge_odd_even(unsigned char test-

char);
/*The function of counting number of 1 of character

(assemble function)*/
 void trans_re(unsigned char *pbuff,unsigned int

trans_count);
unsigned int re_count=ReceiveCount;
unsigned char buffer[2* ReceiveCount];
void main(void)
{ InitUsart1()•
 re_tx(buffer,re_count); /*call serial receive func-

tion*/
 trans_re(buffer,re_count);/*call parity identify fun-

tion*/
}
;***
; filename: usart1.s43 serial receive function
; receive specified character by querying mode
 NAME usart

 A Designing Method for High-Rate Serial Communication 523

 #include <msp430x14x.h> ;head file
 PUBLIC re_tx1
 RSEG CODE ; code is relocated
re_tx1
 bit.b #URXIFG1,&IFG2 ;5
 jz re_tx1 ;not receive, loop ;2
 mov.b &URCTL1,1(R12)

 bic.b #PE+FE+OE+BRK+RXERR,&URCTL1
 bit.b #PE,&URCTL1 ;5

jz jnoerror ; no error ;2
 bic.b #PE+FE+OE+BRK+RXERR,&URCTL1 ;5
 mov.b #00h,1(R12) ; error #00h ;5
 jmp jnext ;2
jnoerror

 mov.b #0FFh,1(r12) ; right #FFH -->;5
jnext
 mov.b &RXBUF1,0(R12) ;6
 incd.w r12 ;1
 dec.w r14 ;1
 jnz re_tx1 ;2
 ret
 end
;***
;filename: odd_even.s43 the function of counting the

number of 1 of character
;
NAME judge_odd_even
 #include <msp430x14x.h>
 PUBLIC judge_odd_even
 RSEG CODE
judge_odd_even
 mov.b r12,r13
 clr.b r12
 mov.b #08h,r14
loop_rra rra.b r13
 jc xorr12
 jmp jnext
xorr12 xor.b #0ffh,r12
jnext dec.b r14
 jnz loop_rra
 ret
 end
void trans_re(unsigned char *pbuff,unsigned int

trans_count)
{
 unsigned int test_count;
 unsigned int odd_even;
 unsigned int twice_count;

for(test_count=0;test_count<trans_count;test_count++)

524 G. Zhang, L. Wang, and B. Song

 { twice_count=test_count+test_count;
 odd_even=judge_odd_even(pbuff[twice_count++]);
 if(odd_even==odd)// the number of 1 is odd
 {

if(pbuff[twice_count]==0xff)pbuff[twice_count]=0x00;
 else

if(pbuff[twice_count]==0x00)pbuff[twice_count]=0xff;
 else{}
 }//if
 else
 {
 }//else
 }//for

}

5 Conclusion

Without the knowledge of the parity mode, the proposed high-rate serial interface can
successfully receive data at 1.5Mbps when connected to TOSHIBA CV150 Elevator
system. It meets the system design requirement and provides good performance.

References

1. Hu, D.: The Super-low Energy Resume MCU of MSP430 Series, Beijing University of
Aeronautics and Astronauatics Press, Beijing (2001)

2. Wei, X.: The Interface Technology and System Design Instance of MSP430 Series, Beijing
University of Aeronautics and Astronauatics Press, Beijing (2002)

3. TI Corporation: Mixing C and Assembler With the MSP430 Application, Beijing (2002)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 525–534, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Comprehensive Efficient Flooding Algorithm Using
Directional Antennas for Mobile Ad Hoc Networks

Xianlong Jiao, Xiaodong Wang, and Xingming Zhou

PDL, National University of Defense Technology, Changsha, China, 410073
jiaoxianlong1982@gmail.com, {xdwang,xmzhou}@nudt.edu.cn

Abstract. Flooding is often used as a building block for route discovery in
routing protocols for mobile ad hoc networks. The traditional implementations
of flooding suffer from the broadcast storm problem. To solve the broadcast
storm problem, some efficient flooding schemes have been proposed. However,
there also exist many problems in these schemes, such as signal collision. In
this paper, we propose a comprehensive efficient flooding algorithm called CEF
to extend our previous work in [1]. We attempt to solve the problems which are
not solved by our previous proposed algorithm. We have implemented our
algorithm in ns-2 simulator, and the results show that our algorithm achieves
better performance than Pure Flooding, EF1 (the algorithm proposed in [2]) and
our previous proposed algorithm due to smaller number of signal collisions.

Keywords: Flooding, Directional Antenna, Ad Hoc.

1 Introduction

Mobile ad hoc networks are consisted of mobile nodes with limited bandwidth,
computing ability and energy, which is different from the traditional wired networks.
Many routing protocols such as TORA [3], AODV [4] and DSR [5] are proposed for
this kind of networks. Network wide flooding is an important utility function in
mobile ad hoc networks, which tries to send packets from a source node to all other
nodes in the ad hoc networks, so it’s often used as a building block for route
discovery in on-demand ad hoc routing protocols.

In [6], the author introduces the broadcast storm problem which is raised when all
nodes relay the received packet after they receive it. This will cause contention and
collision in the shared wireless channel. To solve the broadcast storm problem, some
efficient flooding schemes have been proposed such as [7], [8] and [9]. The author of
[10] compares various flooding techniques in mobile ad hoc networks, and classifies
these techniques into four categories: Simple flooding, Probability based methods,
Area based methods, and Neighbor knowledge based methods.

In this paper, we propose a comprehensive efficient flooding algorithm called CEF
to extend our previous work EFDA in [1]. EFDA is based on EF1 algorithm (the
algorithm proposed in [2]). We assume that every node is provided with a single-
beam directional antenna in EFDA. In CEF, we attempt to solve the problems existing
in EFDA and aim to achieve better performance such as the number of collisions,
delivery rate and so on.

526 X. Jiao, X. Wang, and X. Zhou

The rest of the paper is organized as follows. In Section 2, we give an overview of
the related works concerning flooding techniques and directional antennas. Our
algorithm is described in Section 3. In Section 4, we evaluate the algorithm and give
the detailed results. Finally, we present the conclusion and future work in Section 5.

2 Related Works

Many works have been researched on flooding protocols. One of the notable works is
[2], in which Hai Liu et al. proposed an efficient flooding scheme based on 1-hop
information in mobile ad hoc networks. Their algorithm achieved the local optimality
in two senses: 1) the number of forwarding nodes in each step is the minimal; 2) the
time complexity for computing forwarding nodes is the lowest, which is O(nlogn),
where n is the number of neighbors of a node. They compared their algorithm with
three deliverability-guaranteed schemes through simulation: Pure flooding, Edge
Forwarding (it requires 1-hop information) [7], and CDS-based flooding [9] (it
requires 2-hop information). Comparison of one of the performance (that is the
number of collision) encourages us to consider utilizing the directional antenna to
further optimize the flooding algorithm.

Recently directional antenna has been exploited in many papers for optimizing the
performance. In [11], Akis Spyropoulos et al. demonstrated the benefits of using
directional antennas in ad hoc networks. They presented an energy-efficient algorithm
for routing and scheduling in ad hoc network with nodes using directional antennas.
Their algorithm can decrease the total energy consumption and thus increase network
lifetime by a factor, which is proportional to the antenna gain. The authors of [12]
evaluated the tradeoffs involved in using directional antennas in ad hoc routing. They
evaluated the performance of DSR using directional antennas. They identified several
issues that emerged from executing DSR over directional antennas. Their analysis
showed that by using directional antennas, ad hoc networks might achieve better
performance. Jian Tang et al. studied several interference-aware routing problems in
multihop wireless networks using directional antennas in [13]. They have presented
new definitions for the link and path interference that are suitable for designing better
routing algorithms.

Other work concerning directional antenna includes [14], [15], and [16]. As what is
discussed in [14], use of directional antennas allows concentration of the beam toward
the intended destination without wasting energy in unwanted directions. Further,
because the beam is generated only toward a certain direction, it creates less
interference to other nodes that are outside the beam, which enables greater
information capacity in the network. Much work is exploiting directional antennas for
optimizing energy consumption, and we consider using directional antennas for
optimizing the signal collisions in this paper. There are three components for a
directional antenna: beam-radius, beam-width and beam orientation. For simplicity,
we fix the beam-radius as the transmission range and only adjust the beam-width and
beam orientation to achieve good performance.

 A Comprehensive Efficient Flooding Algorithm Using Directional Antennas 527

3 Comprehensive Efficient Flooding Using Directional Antennas

3.1 System Model

In our system, a mobile ad hoc network with N nodes is considered. These nodes are
distributed over a specific area, and are equipped with a directional antenna for
transmission. There are three parameters which are related to the directional antenna:
the beam radius, the beam-width, and the beam orientation. Each node can adjust the
beam-width and beam orientation of the directional antenna. For simplicity, we
assume that the beam radius is identical for each node, and is fixed as the
transmission range of the wireless node. Furthermore, F(S) represents the forwarding
nodes set of S, and N(S) describes the neighbor nodes set of S.

V

W

S

U

X

Z

Y

V

W

S

U

X

Z

Y

V

W

S

U

X

Z
Y

(a) (b) (c)

Fig. 1. Examples of different beam-widths and beam orientations

When a node adjusts beam-width or beam orientation, the coverage area of the
transmission signal can be different. As can be seen in Fig. 1(a), node S can cover all
the nodes when the beam-width is large enough. In Fig. 1(b), S decreases the beam-
width, and only covers Z, U, Y, W. If S changes the beam orientation, the coverage
area will be similar to the one shown in Fig. 1(c).

3.2 Further Modified Optimized Forwarding Node Selection Algorithm

In this section, we detail the further modified optimized forwarding node selection
algorithm. The boundary merge algorithm and the forwarding node selection algorithm
which is used in EF1 is directly exploited in our algorithm without any change.

EF1 optimizes the forwarding nodes set through removing from F(U) the nodes
covered by {S} ∪ {V|V∈ (F(S) ∩ N(U)) and id(V) ≤ id(U)} (defined as node-set
(U)). In our algorithm, when we use this method to optimize the forwarding node set,
we also determine the beam-width and beam orientation of the directional antenna.
Consider the example given in Fig. 2(a), and assume that F(S) = {U, V, W}. In
Fig. 2(a), we assume that id(U)<id(V) and id(U)<id(W). We first define a subset of
N(U) as NNC(U), which contains the neighbors of U which are not covered by node-
set (U). J and D are in the overlapping area, and the id of U is the smallest. Therefore,
NNC(U)={J, A, C, D}, while NNC(V)= {B, I} and NNC(W) ={F, G, H}. Through
comparing the angles formed by S, U and the nodes in NNC(U), we can determine the

528 X. Jiao, X. Wang, and X. Zhou

U

WS

V

(a)

B

A C

D

F

G

H

I

J

B

A C

D

F

G

H

I

J

(b)

S W

U

V

Fig. 2. Examples for determining the beam-width and beam orientation of directional antenna

U

V

W
S

(a) (b)

A

B

E

F

D

C

I

H

G

J

U

V

W
S

A

B

E

F

D

C

I

H

G

J

Fig. 3. Problems in EFDA

two sides of the sector. For example, the angles formed by S, U, and NNC(U) are
{ ∠ SUD, ∠ SUC, ∠ SUA, ∠ SUJ}. We order these angles in non-decreasing order
according to their sizes. If there are two angles which are equal in size, then we put
forward the angle whose id is smaller. After ordering these angles, we can find the
smallest angle ∠ SUD and the biggest angle ∠ SUJ. Therefore two sides of the
sector can be determined through this method. As there are two sectors which match
the condition, we need to further determine the right sector. Since the forwarding
node should forward the message to the uncovered area, the sector should not include
node S. So we can further determine the beam-orientation and the beam-width of the
directional antenna as shown in Fig. 2(b).

The optimization discussed above is adopted in our previous work in [1]. However,
there are also some problems in the optimization, as we only consider the signal
collision existing in the 2-hop area. Take Fig. 3 as an example to explain the problem.
In Fig. 3(a), we assume that F(S)={U, V, W}, F(U)={A, B, C}, F(V)={D, F}, and
F(W)={G, H}. The signal collision at node I can be avoided, as B and C are both the
neighbors of node U, and they will receive the message attached with F(U)={A, B,
C}. Since B∈(F(U) ∩ N(C)) and id(B) ≤ id(C), C will not transmit the message to
node I. Nevertheless signal collision will probably occur at node I in Fig. 3(b).

 A Comprehensive Efficient Flooding Algorithm Using Directional Antennas 529

FModOptFwdNodes Algorithm
Input: message m from S.
Begin

if m was received before, then discard m;
else

Deliver m to upper layer;
if this node, say U, is in forward-list in m
 Compute F(U);
 Remove from F(U) the nodes that are covered by node-set(U);

Order the angles formed by S, U and U’s neighbors in NCS(U)(these
neighbors are in NNC(U) and choose U as the source node through the
HELLO message) in non-decreasing order, and determine the two sides of
the sector according to the smallest angle and the biggest angle;

Choose the sector which doesn’t include S, and determine the beam-
width and the beam-orientation of its directional antenna;

Attach F(U) to m and transmit m out with the directional antenna.
End

Fig. 4. FModOptFwdNodes Algorithm

Consider node C and node D in Fig. 3(b). For node C, node I is not covered by node-
set(C), so node C will further forward the message to node I. For node D, node I is
also not covered by node-set(D), so node D also will consider node I for further
transmitting messages. Therefore signal collision will probably occur at node I.

Here we present a solution to the problem. As each node periodically broadcast the
HELLO message to exchange the information of its ID and its geographic location,
we add a tag into the HELLO message to denote that whether a node is a forwarding
node. Initially the tag is set as 0. When a node receive the flooding message and find
that it’s a forwarding node, it change the tag as 1 to denote that it’s a forwarding node,
add the flooding message ID into the HELLO message, and wait some time to further
forward the flooding message. When a node receives a HELLO message from its
neighbor, it checks the value of the tag in the HELLO message. If the value is 1, then
it examines whether it has received the flooding message before according to the
flooding message ID attached in the HELLO message. If it has received the flooding
message before, it doesn’t change the tag value of its HELLO message. If it hasn’t
received the flooding message before, since it may receive multiple HELLO messages
with the value of tag as 1, it chooses the node whose ID is the smallest, adds the node
ID into the HELLO message, and changes the tag as 2 to denote that it has chosen a
source node to transmit the flooding message to it. Then it changes the value of the
tag back to 0 when it’s ready to send the next HELLO message. So if a node finds that
the value of tag in the received HELLO message is 2, it checks whether it is the
chosen source node. It can further determine the nodes it should transmit the flooding
message to. As shown in Fig. 3(b), node I will receive the HELLO messages coming
from node C and node D with the value of tag as 1(since node C and node D are both
forwarding nodes). Node I will choose node C as the source node, so D is only in
charge of sending the flooding message to node J. Therefore signal collision at node I
can be avoided. Since the information about the beam-radius and the beam orientation

530 X. Jiao, X. Wang, and X. Zhou

can be maintained for the next flooding, the operations discussed above are only
needed at the beginning for initialization. We will discuss the situation when nodes
move in next section.

We further modify the ModOptFwdNodes algorithm proposed in EFDA which is
based on the optimized forwarding node selection algorithm proposed in EF1. It is
incorporated with the directional antenna characteristic and the HELLO message. Fig. 4
shows the further modified optimized forwarding node selection algorithm
FModOptFwdNodes. NCS(U) is a subset of NNC(U), which removes the nodes from
NNC(U) which don’t choose U as the source node. The added operations are written in
italic type. When a node receives a flooding message, this algorithm will be invoked.

3.3 Further Modified Topology Update Algorithm

When nodes move in mobile ad hoc networks, the neighbor relation may change, and
accordingly the forwarding nodes set will be different. In [2], the author proposes an
efficient algorithm that can incrementally update the forwarding node set as the
topology changes. The forwarding node set is maintained at each node and is always
ready for use. Here, we must update the beam-width and the beam orientation of the
directional antenna when nodes move.

V

WS

U
B

A C

D

F

G

H

I

J

(c) Case 2.1

V

WS

U
B

A C

D

F

G

H

I

J

(a) Case 1.1

A

V

WS

U
B

A C

D

F

G

H

I

J

(b) Case 1.2

J

A

V

WS

U
B

A C

D

F

G

H

I

J

(d) Case 2.2

J

V

WS

U
B

A C

D

F

G

H

I

J

(e) Case 3.1

K

K

V

WS

U
B

A C

D

F

G

H

I

J

(f) Case 3.2

K

K

Fig. 5. Cases for determining the beam-width and the beam orientation

There are three cases to consider: 1) a neighbor in NCS(U) moves out of NCS(U);
2) a neighbor in NCS(U) moves but still in NCS(U); 3) a node outside NCS(U) moves
in NCS(U). Every case has two sub-cases as shown in Fig. 5

For case 1, if the angle formed by S, U and the neighbor is neither the biggest nor
the smallest, then there is no need to update the beam-width and the beam orientation
(case 1.1). If the angle is the biggest or the smallest, then find the biggest angle or the

 A Comprehensive Efficient Flooding Algorithm Using Directional Antennas 531

smallest angle among the other nodes in NCS(U) (case 1.2). As we have already
ordered these angles, we can acquire these two angles easily. According to the biggest
angle and the smallest angle newly computed, we can update the beam-width and the
beam orientation of the directional antenna. For case 2, there are also two sub-cases. If
the angle formed by S, U and the neighbor is neither the biggest nor the smallest, then
we don’t update the beam-width and the beam orientation (case 2.1). Handling of case
2.2 that the angle is the biggest or the smallest is similar to handling of case 1.2. There
is some difference that we still need to compare the angle formed by S, U and the
neighbor which has moved with other angles, since the neighbor is still in NCS(U). For
case 3, if the angle formed by S, U and the node is smaller than the biggest angle and
bigger than the smallest angle, then no update is needed (case 3.1). If the angle is
bigger than the biggest angle or smaller than the smallest, we can update the beam-
width and the beam orientation with this angle and the smallest angle (or the biggest
angle) (case 3.2). The further modified topology algorithm is shown in Fig. 6.

Further Modified Topology Update Algorithm
Input: V that changes its location to U.
Output: updated F(U), beam-width and beam orientation
Begin

if V∉F(U) and V is now in N(U)
 Find arcs in B that are affected by disk V;
 //Suppose k arcs B[i], B[i+1], … , B[i+k-1] are affected.
 BoundaryMerge({B[i], B[i+1], … , B[i+k-1]}, d(v));
if V∈F(U)
 Find arcs in N(U) that are affected by V’s leaving;
 //suppose k arcs are affected.
 Compute the boundary of the affected k arcs;
 Find arcs in B that are affected by V’s current place;
 //suppose l arcs B[i], B[i+1], … , B[i+l-1] are affected.
 BoundaryMerge({B[i], B[i+1], … , B[i+l-1]}) are affected.
Update F(U) based on the new boundary B.
For cases 1.1, 2.1, and 3.1, there is no need to update the beam-width and

the beam orientation.
Adjust the beam-width and the beam orientation of the directional antenna

according to cases 1.2, 2.2, and 3.2.
End

Fig. 6. Further Modified Topology Update Algorithm

4 Performance Evaluation

We use ns-2 simulator [17] which is downloaded from the web site to evaluate our
algorithm. VINT project develops ns-2 simulator, and then Monarch extends the
simulator for wireless network. We exploit Lucent’s WaveLAN with a nominal bit
rate of 2Mb/sec. Two-ray ground model is used as the radio propagation model.

532 X. Jiao, X. Wang, and X. Zhou

Motion follows the random way point model. Directional antennas have been
incorporated into this simulator.

Our algorithm CEF is compared with Pure Flooding, EF1, and EFDA. As the
forwarding nodes are the same as EF1 and EFDA, we only test two metrics: the
number of collisions and the deliverability ratio. To analyze the performance in static
and mobile scenarios, we study these two metrics against three parameters: the
number of nodes, transmission range, and pause time. These two metrics are defined
as follows.

1) the number of collisions: the sum of collisions that each node experience
before it receives the flooding message correctly.

2) deliverability ratio: the number of nodes that successfully receive the flooding
messages over the total number of nodes in the network.

We consider networks with various sizes (200, 400, 600, 800, 1000) in static and
mobile scenarios. These nodes are randomly placed on a rectangular field. The source
node is randomly chosen for sending the flooding message. For every size of
networks, 100 separate runs are executed and we use the means. Other parameters are
shown in Table 1 which is similar to that of EF1.

Fig. 7 shows the number of collisions and deliverability ratio against the number of
nodes, transmission range and pause time. From Fig. 7, we can see that the
performance of Pure Flooding is significantly decreased with the increase of the
number of nodes. The density of the network will increase with the number of nodes.
As every node forwards the flooding message in Pure Flooding, a larger number of
signal collisions will occur and more re-transmissions will be needed with the
increase of the density of the network. It is so called the broadcast storm problem. As
a result, some nodes will not receive the message. EF1, EFDA, and CEF all maintain
good performance, as the number of forwarding nodes of these three algorithms is the
minimal, and the number of signal collisions is smaller than Pure Flooding especially
after the number of nodes reaches 600. Furthermore, CEF further consider the
problem of signal collision which is not solved in EFDA, so CEF achieves the best
performance. When transmission range increases, every node will have more
neighbors, and it will increase the probability of signal collision when these neighbors
are forwarding the flooding message. So there will be more signal collision with the
increase of the transmission range in Pure Flooding. For EF1, EFDA, and CEF, the
change is not significant in the curves of the number of collisions, and CEF also

Table 1. Simulation Parameters

Parameter Value
Mac Layer IEEE 802.11
Data Packet Size 256 bytes
Bandwidth 2 Mb/s
Transmission Range 100~300 meter
Number of Node 200~1000
Pause Time 10~ ∞ s
Size of Square Area 1,000,000 meter2
Number of Trails 100

 A Comprehensive Efficient Flooding Algorithm Using Directional Antennas 533

0

500

1000

1500

2000

2500

3000

3500

200 400 600 800 1000

the number of nodes

t
h
e

n
u
m
b
e
r

o
f

c
o
l
l
i
s
i
o
n
s

Pure Flooding EF1 EFDA CEF

50

60

70

80

90

100

200 400 600 800 1000

the number of nodes

d
e
l
i
v
e
r
a
b
i
l
i
t
y

r
a
t
i
o

(
%
)

Pure Flooding EF1 EFDA CEF

0

500

1000

1500

2000

2500

3000

3500

4000

100 150 200 250 300

transmission range

t
h
e

n
u
m
b
e
r

o
f

c
o
l
l
i
s
i
o
n
s

Pure Flooding EF1 EFDA CEF

50

60

70

80

90

100

100 150 200 250 300

transmission range

d
e
l
i
v
e
r
a
b
i
l
i
t
y

r
a
t
i
o

(
%
)

Pure Flooding EF1 EFDA CEF

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 static

pause time (s)

t
h
e

n
u
m
b
e
r

o
f

c
o
l
l
i
s
i
o
n
s

Pure Flooding EF1 EFDA CEF

50

60

70

80

90

100

10 20 30 40 static

pause time (s)

d
e
l
i
v
e
r
a
b
i
l
i
t
y

r
a
t
i
o

(
%
)

Pure Flooding EF1 EFDA CEF

Fig. 7. The number of collisions and deliverability ratio against the number of nodes,
transmission range, and pause time

performs the best as a result of the reason discussed before. Notice that deliverability
ratio increases with increase of the transmission range in all three curves, as nodes have
more chances to receive the flooding message when the transmission range increases. In
Fig. 7, we can observe that the number of collisions of Pure Flooding increases
significantly with the decrease of pause time. As a node will move more frequently with
the decrease of pause time, the neighbors of the node will also change frequently, and the
probability of signal collisions will increase. As discussed before, every node will
forward the flooding message in Pure Flooding, more signal collisions will occur and
more nodes will not receive the message as a result of signal collision and mobility. The
number of signal collisions of EF1, EFDA, and CEF is much smaller than Pure Flooding.
When nodes move more frequently, the forwarding nodes will change more quickly, and
therefore more retransmission are needed due to increase of signal collision. So the
deliverability of EF1 drops quickly after pause time reaches 30s, and CEF maintains the
best performance due to the smallest number of collisions.

5 Conclusion and Future Work

In this paper, we proposed a comprehensive efficient flooding algorithm using
directional antennas for mobile ad hoc networks to extend our previous work. Our
previous proposed algorithm EFDA is based on EF1 that only uses 1-hop neighbor
information. However, there are some problems in EFDA, and we attempt to solve
these problems in this paper with the target of reducing the number of signal
collisions. The results of extensive simulation show that signal collisions can be
reduced by using the directional antenna and exchanging the HELLO message. Our
algorithm achieves better performance than Pure Flooding, EF1, and EFDA as a result
of smaller number of signal collisions. In future, we will study the benefit in other
metrics brought by the directional antenna (such as energy consumption), and
incorporate our flooding algorithm into ad hoc routing protocols.

534 X. Jiao, X. Wang, and X. Zhou

References

1. Jiao, X., Wang, X., Zhou, X.: Efficient Flooding for Wireless Ad Hoc Networks with
Directional Antennas. In: Proceedings of ISCIT (to be published, 2007)

2. Liu, H., Wan, P., Jia, X., Liu, X., Yao, F.: Efficient Flooding Scheme Based on 1-hop
Information in Mobile Ad Hoc Networks. In: Proceedings of IEEE INFOCOM, IEEE
Computer Society Press, Los Alamitos (2006)

3. Park, V.D., Corson, M.S.: A Highly Adaptive Distributed Routing Algorithm for Mobile
Wireless Networks. In: Proceedings of IEEE INFOCOM, IEEE Computer Society Press,
Los Alamitos (1997)

4. Perkins, C.E., Belding-Royer, E., Das, S.R.: Ad hoc On-Demand Distance Vector (AODV)
Routing. In: RFC 3561 (2003), http://www.ietf.org/rfc/rfc3561.txt

5. Johnson, D.B., Maltz, D.A., Hu, Y., Jetcheva, J.G.: The Dynamic Source Routing Protocol
for Mobile Ad Hoc Networks (DSR). In: IETF Internet Draft (2002), http://www.ietf.org/
internet-drafts/draft-ietf-manet-dsr-07.txt

6. Ni, S., Tseng, Y., Chen, Y., Sheu, J.: The broadcast storm problem in a mobile ad hoc
network. In: Proc. of ACM/IEEE MOBICOM, IEEE Computer Society Press, Los
Alamitos (1999)

7. Cai, Y., Hua, K.A., Phillips, A.: Leveraging 1-hop Neighborhood Knowledge for Efficient
Flooding in Wireless Ad Hoc Networks. In: 24th IEEE International Performance
Computing and Communications Conference (IPCCC), Phoenix, Arizona (2005)

8. Yang, C.-C., Chen, C.-Y.: A Reachability-Guaranteed Approach for Reducing the
Broadcast Storms in MANETs. In: Proceedings of IEEE Semiannual Vehicular
Technology Conference, IEEE Computer Society Press, Los Alamitos (2002)

9. Wu, J., Li, H.: On Calculating Connected Dominating Set for Efficient Routing in Ad Hoc
Wireless Networks. In: Proc. of the 3rd Int’l Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications (DiaLM) (1999)

10. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc
networks. In: Proc. of ACM MOBIHOC, ACM Press, New York (2002)

11. Spyropoulos, A., Raghavendra, C.S.: Energy Efficient Communications in Ad Hoc
Networks Using Directional Antennas. In: Proceedings of IEEE INFOCOM, IEEE
Computer Society Press, Los Alamitos (2002)

12. Choudhury, R.R., Vaidya, N.H.: Performance of ad hoc routing using directional antennas.
Journal of Ad Hoc Networks (2005)

13. Tang, J., Xue, G., Chandler, C., Zhang, W.: Interference-Aware Routing in Multihop
Wireless Networks using Directional Antennas. In: Proceedings of IEEE INFOCOM,
IEEE Computer Society Press, Los Alamitos (2005)

14. Hou, Y.T., Shi, Y., Sherali, H.D., Wieselthier, J.E.: Online Lifetime-Centric Multicast
Routing for Ad Hoc Networks with Directional Antennas. In: Proceedings of IEEE
INFOCOM, IEEE Computer Society Press, Los Alamitos (2005)

15. Orda, A., Yassour, B.-A.: Maximum-Lifetime Routing Algorithms for Networks with
Omnidirectional and Directional Antennas. In: Proc. ACM International Symposium on
Mobile Ad Hoc Networking & Computing (MOBIHOC), ACM Press, New York (2005)

16. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Energy-aware wireless networking with
directional antennas: The case of session-based broadcasting and multicasting. IEEE
Transactions on Mobile Computing 1(3), 176–191 (2002)

17. THE VINT PROJECT. The UCB/LBNL/VINT Network Simulator—ns (version 2),
http://mash.cs.berkeley.edu/ns

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 535–544, 2007.
© Springer-Verlag Berlin Heidelberg 2007

GTCOM: A Network–Based Platform for Hosting
On-Demand Desktop Computing

Guangbin Xu1, Yaoxue Zhang2, Yuezhi Zhou3, and Wenyuan Kuang1

1 Department of Computer Science and Technology, Tsinghua University, Beijing,
100084, China

{xugb04,kuangwy04}@mails.tsinghua.edu.cn
2 Department of Computer Science and Technology, Tsinghua University, Beijing,

100084, China
zyx@moe.edu.cn

3 Department of Computer Science and Technology, Tsinghua University, Beijing,
100084, China

zhouyz@mail.tsinghua.edu.cn

Abstract. The current trend of computing paradigm is heading toward the per-
vasive computing. Nevertheless, with the rapid advancements in hardware,
software, and network, the desktop computing will still prevail in the next dec-
ade. In light of this, this paper designed and implemented a platform for hosting
desktop computing in a network environment, namely, GTCOM. GTCOM can
transparently provide a full functionality as a desktop computer and allow com-
puting services including operating systems to be acquired and utilized on-
demand from the server. Since all management tasks are centralized on the
server, GTCOM can provide user-needed services through zero-managed cli-
ents. We implemented a prototype system based on Godson-2 platform. The
experimental results demonstrate only negligible overhead is induced which
shows feasibility and effectiveness of our approach.

1 Introduction

Centered on humans’ need, computing technology experienced in turn the mainframe
computing, the desktop-based network computing, and is now heading toward the
pervasive computing. Desktop-based or PC-based computing made a great success in
the past decades. In our view, this situation may prevail for another decade. However,
while the capability of desktop computing is increasingly enhanced, the complexity of
hardware and software and hence its management increases, and so does the total cost
of ownership (TCO) of computers, especially to owners such as enterprises. One main
difference of pervasive computing is that users can transparently acquire correspond-
ing computing services anytime, anywhere. In other words, computing is autonomic.
There is no need for users to care about the locations of computing services or the
management of computing services because they acquire them transparently in an
on-demand manner. Therefore, how to provide an on-demand service-acquiring envi-
ronment in which users will not be distracted by things other than their needs, such as

536 G. Xu et al.

efforts of management and maintenance, while preserving the merits of desktop com-
puting is a challenge for system researchers.

Numerous approaches have been designed to provide PC-like functionality while
to render management complexity. The typical solutions are the network computer
[1], the NetPC [2], X-terminal [3], thin clients [4], and virtual machine monitor
(VMM)-based methods. The network computer, typically JavaStation by Sun, cannot
support full-featured desktop computing. The thin client technologies are claimed as
being able to provide a full-featured desktop with a lower TCO. In this approach, all
desktop computing tasks are processed on the central server. This increases the re-
source requirement of the central server. Some applications, for instances, the media
playback application, cannot be supported efficiently. Also, some merits of desktop
computing such as users’ isolated performance guarantees, privacy, and user-level
personalization are lost. The VMM-based methods like VMVare[5], Xen[6], and
Disco[7] can provide PC’s functionality by running different OSs over virtual ma-
chines and are claimed of a better management efficiency by facilitating deployment
and migration at the system level. However, it still manipulates hosted OSs as
locally-resident resource as a PC, for users, the management complexity is the same.
In addition, the vitalization they adopt compromises performance, making some killer
applications such as video games can not run fluently.

This paper presents GTCOM, a platform for on-demand desktop computing on a
network which allows users to transparently acquire needed computing through one
machine. While having full desktop-experienced computing with negligible perform-
ance degrading, users can be free from any management effort. GTCOM considerably
outperform competing commercial and freely available solutions considering the
functionality and performance combined.

The remainder of this paper is structured as follows. In Section 2, we give an over-
view of the GTCOM architecture and outline how GTCOM works. Section 3 de-
scribes the key aspects of our design and implementation. Section 4 addresses the
implementation of a prototype based on the Godson-2 platform. Section 5 evaluates
the performance of the GTCOM prototype comparison with the desktop computer.
Finally, Section 6 concludes.

2 Approach and Overview

The GTCOM system, deriving from the concept of Transparent Computing[8], is
constructed with a conventional client/server architecture. It consists of dozens of
GTCOM client machines and servers. The client machines and the servers are con-
nected by pervasive networks. The client machines could be various pervasive com-
puting devices, such as common personal computers, but with different amounts of or
even without secondary storage. A typical GTCOM system is illustrated in Fig. 1.

No operating system (OS) or application is pre-installed on clients. Instead, they
are centrally stored and managed as computing services in servers. Nevertheless, all
the user-needed application computing is performed locally on clients rather than on
servers. According to the user’s choice, the client will automatically fetch the needed
services from a server through block-streaming, and then execute on the local

 GTCOM: A Network–Based Platform for Hosting On-Demand Desktop Computing 537

Fig. 1. The Computing Environment of GTCOM

hardware platform. Therefore, the GTCOM system allows programs, even operating
systems, to be acquired and be utilized as computing services on demand.

The functionality of GTCOM fall into two stages: boot time and runtime. When
powered on, GTCOM clients will boot remotely through a multi-OSs remote booting
protocol named the Enhanced Network-based Client Boot Protocol (ENCBP), which
can boot different OSs across networks. Another key concept in GTCOM is the
VDisks, which are block-based virtual storage devices that actually reside on the
server as image files and are accessed through network protocols. By replacing
the standard BIOS disk access function, VDisk allows the operating system to boot as
on a physical disk. In addition, before entering the runtime period, the OS will first
load the network device and then the VDisk driver. The OS then can seamlessly ac-
cess the VDisk contents through the VDisk driver transparently.

The virtual memory and swapping mechanism is a dynamically memory caching
mechanism across a network, which is a key component of GTCOM to enhance run-
time performance and enable resource block-streaming. Since the executed applica-
tions may need a larger memory than the local physical memory of a client machine,
and there is supposed to be no secondary storage device in the client, we therefore
extended the paging and schedule technique widely adopted in traditional operating
systems to the client/server environment.

3 Detailed Design

3.1 ENCBP: The Multi-OSs Remote-Booting Protocol of GTCOM

In GTCOM, the first issue need to be addressed is how to remote boot an operating
system when powered on. We present a multi-OS remote-booting protocol for

538 G. Xu et al.

(
4)

(
7)

ENCBP Client

Send DHCP request

BAgent interprets and exe-
cutes BOSS

Send request to download
OS image (signature included)

Download and execute OS
kernel

ENCBP Server

Reply DHCP Ack (signa-
ture and BOSS)

Service to the request,
transfer OS image

ENCBP BAgent
Initialization

Send request to download
PreOS (signature included)

Service to the request,
transfer PreOS image

Receive PreOS and initial-
ize PreOS environment

Mono-kernel

Other Kernels

Fig. 2. The process flow of ENCBP

GTCOM—ENCBP, which is based on the client/server model. ENCBP works starting
from the client being powered on to the time that machine control power has shifted
to the executed OS. In GTCOM, the ENCBP client (EClient) codes are added to the
BIOS firmware of the client machine. EClient will take over the control after the
POST process, and hence the ENCBP protocol flow starts, as illustrated in Fig. 2.

The instance of EClient codes functions as a booting agent, namely, BAgent, The
initialization step includes verifying the validation and integration of EClient codes,
and setting up the local executing environment and networking environment. After
that, the BAgent obtains network identification by DHCP protocol. There are signa-
tures for subsequent interaction with the server and a booting OS select (BOSS) script
encapsulated in the extended DHCP options. BOSS is maintained on the server, and it
consists of the description information of available operating systems on the server,
including their kernel structure type. The BAgent then executes BOSS by explanation,
indicating the user to choose the operating system he/she wants to use. Next, accord-
ing to the kernel type of the chosen OS, the BAgent will download and boot the ker-
nel image if a mono-kernel OS is chosen. Otherwise (e.g., if it is a hybrid kernel), the
BAgent will download and execute an OS pre-execution environment, namely,
PreOS. PreOS contains corresponding OS loaders for hybrid kernel-type OSs, such as
WINDOWS2000. This is because there is no clear kernel image of them. In this case,
the OS kernel image will be downloaded and booted through the PreOS. Then the
whole process of ENCBP will end. In order to improve the security and efficiency of
the protocol, all the transitions adopt a sector-based transferring protocol which inte-
grates data encryption and signature verification.

 GTCOM: A Network–Based Platform for Hosting On-Demand Desktop Computing 539

3.2 The Block-Streaming-Supporting VDisk

VDisks are virtual block-based devices in GTCOM clients, which are accessed
through the IP-based VDisk access protocol (VDAP) network protocol. In other
words, it is a network storage mechanism. VDisk provides a linear addressable data
block storage access for GTCOM clients, whose contents are actually contained in
VDisk images dwelling on the server.

When the file system of a client needs to request some blocks of a VDisk, it will
request them in the form of the start block number, the block length, and the operation
type (Read/Write/Ack) from the VDisk driver. The VDisk driver will construct a
VDAP packet and encapsulate parameter information including the start block num-
ber, the block length, the operation type, user ID, disk num, and checksum into the
packet. The VDAP packet then will be sent to the server. After this, the VDisk service
on the server receives and parses the VDAP packet. The VDisk Service will then
verify the users and the VDisk type. After which, the request is conducted using the
corresponding VDisk images. Subsequently, the VDisk service constructs a response
packet with an operation type of acknowledgement according to the result obtained,
and then returns it to the sending clients. After receiving the response packets, the
VDisk driver on the GTCOM client will distill resulting blocks from the packets and
then hand these to the file system. Fig.3 is the illustrative view of the data access of
GTCOM through VDisk.

VDisk Driver is a client program which receives the block requests from the OS
and redirects them to the VDisk service on the server through VDAP. The VDisk
Driver functions similarly to a real hard disk driver, which receives the block request
but then serves the request by reading or writing the blocks stored on the VDisk im-
age on the server, instead of a real hard disk.

The VDisk service takes charge of implementing a disk request to the concrete disk
blocks. Consequently, given logical blocks number (LBN) can be flexibly mapped
into different disk images or partitioned according to different management strategies.

Fig. 3. VDisk-based data access in GTCOM

540 G. Xu et al.

The VDisk mechanism has several advantages. Its implementation is simple be-
cause it just redirects the block level access request, unlike network file systems in
which it must accomplish the file system semantics. Moreover, it is independent of a
file system layout and also of operating systems. This flexibility and transparency are
very important to the on-demand desktop computing of GTCOM. Finally, the VDisk
can be flexibly mapped to similar or different disk images by the VDisk service on the
server. Thus, it can transparently achieve sharing and privacy to users.

3.3 Virtual Memory and Swapping

Virtual Memory and Swapping (VMS) is a mechanism GTCOM uses to remotely fetch
data that are absent in local memory through page-mapping over the network. Since all
the programs and data are stored in the server, when the cache miss generated and the
needed pages do not exist in the local memory, the GTCOM client needs to dynami-
cally translate and fetch pages remotely from the server. In essence, VMS extended the
paging memory management techniques that are widely used in modern operating
systems to a client/server environment. Each time a program is executed, the OS cre-
ates a new process for it. Meanwhile, a corresponding process space is allocated to
retain data and instruction of the process. During the running of the process, whenever
a data or instruction page is missed and the interrupt is called, if a page cannot be
found in the local memory, VMS inquiry swaps the area in the server through the
VDisk Driver. If the page is in it, then it will be fetched directly. Otherwise, it will be
fetched from the VDisk image on the server and be sent back to the client.

Through the mechanisms of VMS and VDisk, GTCOM allows GTCOM clients to
block-stream program execution and data access during run-time.

4 Implementation

The prototype system of GTCOM was built on Godson-2[9], which is one of China’s
first-generation CPUs.

As shown in Fig. 4, the prototype consists of five Godson2 clients and three serv-
ers. As mentioned, all computing tasks are conducted locally on clients. Servers are
not responsible for any applied computing. They are only used for providing software
resource that clients will request on-demand. Users can choose to run any available
OS after they power on the clients. The OS and application will then be fetched dy-
namically from the servers. During the whole process, users just transparently use the
client as a desktop computer installed with a multiple OSs.

We subdivide the GTCOM server functionality into three in implementation to fa-
cilitate implementation and to bring flexibility for tuning performance afterwards. The
three functional servers are the network computing access server (NCAS), the OS and
applications server (OSS), and the virtual storage server (VSS). NCAS runs the
server-side of ENCBP. It is responsible for receiving network access requests, config-
uring parameters automatically for them, and distributing BOSS script, signature, and
PreOS. NCAS also maintains the OS status information for client boot. OSS stores
various operating systems and application images for clients’ use. After booting, OSS
provides read-only VDisk system images. VSS provides virtually extended memory
and read/write storage through VMS and VDisk.

 GTCOM: A Network–Based Platform for Hosting On-Demand Desktop Computing 541

Redhat Linux 8. 0

ENCBP Service
Access Control

Redhat Linux 8. 0

OS&Application Re-
pository

Redhat Linux 8. 0

Virtual Memory&
User Space Service

NCAS OSS VSS

Godson-2

client
Firmware

Godson-2

client
Firmware

Extended
DHCP Request

Extended DHCP
Response

OS Request

Download OS

VDisk LAN

Godson-2

client
Firmware

Godson-2

client
Firmware

VMS

Godson-2

client
Firmware

 App
 OS

 App
 OS

 App
 OS

 App
 OS

 App
 OS

Fig. 4. Architecture of Godson-2 based GTCOM prototype system

ENCBP is developed into two versions: multicast and unicast. The BAgent of
ENCBP is designated to download OS images from the OSS. We also classified
VDisk into three functional types supporting desktop computing: private disk, sharing
disk, and shadow disk, accordingly. The sharing disk is used mainly for storing read-
only pristine system data and can be read by all users and GTCOM clients. The pri-
vate disk stores persistent users’ proprietary data. The shadow disk is used for storing
historically-modified system data which can support system rollback when needed.
The concept of a shadow disk is similar to the ELEPHANT file system in [10]. Their
main difference is that we implement on the gratuity of a disk block other than the file
gratuity. The private disk, sharing disk, and shadow disk combined can provide a full
view of a normal hard disk. The VDisk driver is embodied as an interrupt handler in
real mode used to access the VDisk during booting time and a more complex device
driver during runtime which inserted into the commodity operating system in which it
registers itself as a type of block device in order to work correctly.

5 Evaluation

We conducted a series of experiments according to two different stages of the
GTCOM client: boot time and runtime. We began by benchmarking GTCOM’s boot-
ing efficiency against a real Godson2 PC counterpart, demonstrating that the desktop
computing provided by GTCOM has comparable boot performance against a PC, only
a negligible delay is induced. Then in order to test the runtime performance of
GTCOM, we tested the VDisk throughput against the hard disk of the Godson-2 PC
with several experiments using a different memory size and buffer option. These tests
demonstrate that we can get the same disk throughput as a normal desktop PC when
an optimized hardware configuration of GTCOM is adopted. We then evaluated the
functionality performance by conducting a set of experiments in which various appli-
cation programs were executed on the clients. The results showed that GTCOM can
transparently provide the same functionality to end use as a normal PC, in which only
negligible overheads are induced.

542 G. Xu et al.

In all these experiments, the GTCOM prototype consisted of up to five (due to the
available amount) Godson2-based clients and three Intel x86-based normal PCs used
as three functional servers described in the previous section. All the clients and serv-
ers were connected by a 3COM 10/100M LAN switch. The GTCOM clients were
constructed with a specialized Godson2 product without a local disk following this
hardware configuration: CPU: Godson2 360MHZ; RAM: DDR 133, 256MB (indi-
cated otherwise); network card: INTEL EEPRO100 100Mbps, chipset GT64240B,
and BIOS ROM: AMD29F040 32pin. The three servers had the same configuration:
CPU: AMD Athlon (TM) 64 Processor 2800＋; RAM: Dual DDR 400, 1G MB; Hard
Disk: Software RAID0 based on two Seagate Barracuda 7200 RPM; and Onboard
network card: Realtek 8139 100Mbps. The counterpart PC was the above GTCOM
client plus a local disk (Seagate ST380011A). The operating system of the server was
RedHat 8. The operating system of GTCOM client was Debian GNU/LINUX 3.0 for
MIPSEL. All the numerical results presented are averaged values from 10 repetitive
testing rounds.

We measured time delays for booting GTCOM clients and the counterpart PC for
comparison. The booting delay time is defined as the time when the power button has
been pushed to the time the XWindow appears. The results are shown in Fig. 5.

As shown in Fig. 5, the GTCOM boot times are comparable to that of the stand-
alone Godson-2 PC, and the booting delay is generally within the acceptable span of
users. However, the booting time delay of a GTCOM client using ENCBP in two
modes is a little bit longer than that of a PC. That is because the boot process of a
GTCOM client involved some overheads of network interactions.

Secondly, we tested the throughputs capability of VDisk and real local hard disks
for evaluating GTCOM clients’ runtime performance. The throughput capability is
defined as throughputs within one second when running the random read/write tasks.

1 2 3 4 5
40

50

60

70

80

90

100

110

120

130

140

Number of devices

D
el

ay
(s

)

Godson-2 booting time

 ENCBP unicast
 ENCBP multicast
 Local boot

Fig. 5. Booting times of the Godson-2 based GTCOM clients and a Godson-2 PC

 GTCOM: A Network–Based Platform for Hosting On-Demand Desktop Computing 543

1 2 4 8 16 32 64 128
0

2

4

6

8

10

12

14

16

Size of request block(KB)

T
hr

ou
gh

pu
t(

M
B

/s
ec

on
d)

Random read/write throughput, buffered

LDisk(128MB)
VDisk(128MB)
VDisk(256MB)
VDisk(512MB)
VDisk(1GB)
VDisk(2GB)
VDisk(2GB, no buffering)

Fig. 6. Throughput comparison of different memory-sizes GTCOM clients with a PC

Table 1. Testing results of GTCOM-hosted desktop computing

Applications/OS Testing cases description Delay/
Situation
(1 client)

Delay/
Situation
(2 clients)

Delay/
Situation
(5 clients)

Operating system:
Debian LINUX 3. 0

From power-on to the presenta-
tion of XWindow

85.01 (s) 89.72 (s) 101.21 (s)

Startup 29.79 (s) 37.56 (s) 55.63 (s)
Opening a 1MB MS Word file 4.03 (s) 5.51 (s) 7.87 (s) Document process:

Openoffice2.0 Opening an 18.7MB MS
PowerPoint file

23.30 (s) 33.47 (s) 46.89 (s)

WWW: Mozilla Firefox 1.05 Startup 25.41 (s) 32.11 (s) 45.83 (s)
Copying a 50MB file between

two directories
31.71 (s) 37.13 (s) 49.90 (s)

File copy
Copying 20005KB between

two directories
13.12 (s) 15.74 (s) 29.91 (s)

Video play:MPlayer
Playing MPG, DAT, BIN,

VOB, ASF, WMF, AVI etc.
Fluent Fluent Fluent

Audio play: XMMS Playing mp3, wav, etc. Fluent Fluent Fluent

Instant message: Gaim
Using instant message tool kits

includes MSN, ICQ, etc.
Normal Normal Normal

The values were measured by an IOMeter configured with default option. We tested
according to a different memory size and with/without a buffer on the server. The
testing results are shown in Fig. 6. Except for the 2GB memory case which was
measured both with and without buffering on the server, all cases are conducted with
buffering. As shown, although a PC can have better performance (i.e., throughput)
than a GTCOM client in most cases. Nevertheless, when there are small amounts of
GTCOM clients running simultaneously and having relatively abundant memory,
such as the case when there are four running GTCOM clients with 1GB memory, the
GTCOM client can get even more throughput than the Godson2 PC. This is because if
we adopt a high-speed network environment such as the 100MB LAN in this

544 G. Xu et al.

experiment, a sufficient memory for caching, and an appropriate buffering strategy,
the disk will become the speed bottleneck when accessing stored data. Therefore，the
GTCOM can get a similar performance as a normal desktop PC only if the configura-
tion is reasonable.

In order to evaluate the GTCOM in user’s viewpoint, we also executed a collection
of the most-used PC application programs. The results are shown in Table 1.

6 Conclusion

In this paper, we proposed a new system, GTCOM, for hosting on-demand desktop
computing over networks. While the fully personalized functionality of a PC can be
transparently provided, users can be free from management tasks. In GTCOM, all
computing services used by users including OSs are acquired over networks on-
demand. This is achieved by introducing: the ENCBP to remotely boot multiple OSs
from GTCOM clients, the Virtual Disk mechanism and the Virtual Memory and
Swapping mechanism to block-stream the services. We implemented a simplified
Godson-2 based prototype to evaluate the GTCOM. We also conducted a series of
experiments on the prototype. The results showed that GTCOM is an effective ap-
proach to host on-demand desktop computing over networks with negligible over-
head, and is a feasible paradigm to be applied for providing on-demand computing
services toward pervasive computing.

References

1. Comerford, R.: The battle for the desktop. IEEE Spectrum 34(5), 20–28 (1997)
2. Scheifler, R.W., Gettys, J.: X Windows System, 3rd edn. Digital Press (1992)
3. Richardson, T., Stafford-Fraser, Q., Wood, K.R., Hopper, A.: Virtual Network Computing.

IEEE International Computing 2(1), 33–38 (1998)
4. Schmidt, B.K., Lam, M.S., Northcutt, J.D.: The interactive performance of SLIM: a state-

less, thin-client architecture. In: 17th ACM Symposium on Operating System Principles
(SOSP), Kiawah Island Resort, SC, vol. 34, pp. 32–47 (December 1999)

5. Devine, S., Bugnion, E., Rosenblum, M.: Virtualization system including a virtual machine
monitor for a computer with a segmented architecture. US Patent, 6397242, Oct (1998)

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.: Xen and the Art of Virtualiza-
tion. In: SOSP 2003 (October 2003)

7. Bugnion, E., Devine, S., Govil, K., Rosenblum, M.: Disco: Running commodity operating
systems on scalable multiprocessors. In: Proceedings of the 16th ACM SIGOPS Sympo-
sium on Operating Systems Principles. ACM Operating Systems Review, vol. 31(5), pp.
143–156. ACM Press, New York (October 1997)

8. Zhang, Y.: Transparence Computing: concept, architecture and implementation. Chinese
Journal of Electronics 32(12)A (December 2004)

9. Hu, W., Zhang, F., Li, Z.: Design and Performance Analysis of the Godson22 Processor.
Journal of Computer Research and Development 43(6), 959–966 (2006)

10. Santry, D., Feeley, M., Hutchinson, N., Veitch, A., Carton, R., Ofir, J.: Deciding when to
forget in the elephant file system. In: SOSP 1999. Proceedings t. of the 17th ACM Sympo-
sium on Operating Systems Principles, Kiawah Island, South Carolina, South Carolina
(December 1999)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 545–550, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Multi-robot Task Allocation
Using Compound Emotion Algorithm

Wei Yuan1 and Bi Zeng2

1 Faculty of Computer,Guangdong University of Technology
Guangzhou, China

yuan619wei@126.com
2 Faculty of Computer,Guangdong University of Technology

Guangzhou, China
z9215@163.com

Abstract. A new approach is proposed in this thesis based on Compound Emo-
tion Algorithm--CEA for the multi-robot task allocation. By comparing both the
Greedy Algorithm and Random Algorithm in the average amount of communi-
cations among robots, the average amount of communications between robots
with certain rate of messages got lost, and the total waiting time for the “HELP”
message senders for response, The simulated results show that the Compound
Emotion Algorithm works well.

1 Introduction

Mobile robots are applied to wide range of areas such as military, urban search and
rescue. As the application increased in more and more complicated environment, The
capabilities of a single robot is very limited, the cooperation among a group of robots
to extend the application. Therefore, it is important to study how tasks allocated dy-
namically among robots ,and to avoid the rapid increase of bandwidth because of the
increase of communications. so that large increases in the number of robots does not
translate to a large increase in required bandwidth. And certain rate of messages got
lost in the transmissin should be considered. This approach requires less communica-
tion bandwidth than other methods, enabling it to scale to large team sizes, and mak-
ing it appropriate for low-power or stealth applications.

2 Algorithms Analysis

2.1 Existing Algorithms

For a group of robots to effectively perform a given system-level task, the designer
must address the question of which robot should do which task and when. The process
of assigning individual robots to sub-tasks of a given system-level task is called task
allocation, and it is a key functionality required of any MRS. Dynamic task allocation
is a class of task allocation in which the assignment of robots to sub-tasks is a dy-
namic process and may need to be continuously adjusted in response to changes in the

546 W. Yuan and B. Zeng

task environment or group performance.There are many multi-robot task allocation
algorithms, they emphase on different points. Greedy and Random are the typical
Algorithms which focus on one robot sends out “HELP” message and others take
response, and both of them are based on contract net protocol. For the Greedy Algo-
rithm ,the basic principle is: when one robot can’t achieve it’s task, then it will send a
“HELP” message, all the idle robots take the response immediately, and the message
sender will transfer the task to the responser whose fitness is the best. Random Algo-
rithm has the same principle with the former, the little difference is that the Random
Algorithm selects responsers randomly without considering their fitnesses. According
to the pinciple, Greedy Algorithm requires more bandwidth especially the robot team
is large. There are many fitness computing mothed. but people usually use the time to
the message sender indicates the fitness. In the Random Algorithms the message
sender does not send the task to the best-fitness responser, so it needs more time to
wait for the responser’s arrival.

2.2 Compound Emotion Algorithm

The dynamic task allocation scenario we study considers a world populated with tasks
and robots that are equally capable of performing each task but can only be assigned
to one at any given time. For example, the tasks could be targets of different priority
that have to be tracked, different types of explosives that need to be located, etc. Ad-
ditionally, a robot can be idle--each robot is always performing a task or searching for
a task at any given time. The purpose of task allocation is to assign robots to tasks in a
way that will enhance the performance of the system, which typically means reducing
the overall bandwidth and the average amount of communications. Here, we suppose
every robot’emotion has two emotion genes the “anger’ and the “gratitude”, the “an-
ger” gene means the robot gets anger when the message sender broadcasts the
“HELP”message frequently or the robot does not get the task. the “gratitude ” gene
means the message sender thanks for the response’s help who finally gets the task.
Every robot’s emotion is affected by the two emotion genes. Every time when the
message sender broadcasts “HELP” message, the robots whose emotions are below a
certain threshold can have the right to response, in this way the low-emotion robot
will have the opportunity to get “gratitude”and upgrade it’s emotion. but the one
whose emotion is above a certain threshold can't response, and it only can minus a
"anger" gene from its emotion, this means to reduce its emotion, if its emotion below
a certain threshold it can reponse again.

The protocol begins when the requester robot broadcasts a HELP message with its
location and a percept that a robot must have to be a responser, and end with other
robot gets the task finally. Here, we use broadcast mothed for the communition which
can deeply reduce the bandwidth. Therefore, the Algorthim is based on a 2-way
TCP/IP handshake, the contents are detailed in Figure1.

The Compound Emotion Agorithm is also based on contract net protocol. the nota-

tion used is as follows. Given a team of n robots, },...,{ 1 nrr ,each robot ir in the

team maintains a level of EMOTION im , such that 10 ≤≤ im . At the time point t ,

one robot ir broadcasts the “HELP” message, all the idol robot would get the

 Multi-robot Task Allocation Using Compound Emotion Algorithm 547

Fig. 1. The communication between message sender and responser

message. here we suppose
kr is the idol robot. each robot

kr will first account for

their EMOTION km , if
kr robot’s EMOTION km is lower than a certain threshold

Γ , then the robot
kr send the response. but, if

kr robot’s EMOTION km is not lower

than a certain threshold Γ , the “anger” gene will be triggered, this make the
kr ro-

bot’s EMOTION km becomes as below:

DidealDangermm kkk /*−= (1)

here, anger is the “anger ” gene.
kD is the fitness of robot

kr , here we also use the

time to the message sender indicates the fitness , Dideal is the ideal fitness. thus, the
messager sender receives the responses, it will select the best-fitness robot, and trans-
fer the task to responser, then the “gratitude” gene will be triggered and also send to
the best-fitness robot who finally gets the task. and this will make the robot’s
EMOTION becomes as below:

gratitudemm kk += (2)

“gratitude” gene here is relative to the responsers’ number. According the Function
(1), we can see that, when the robot gets anger, DidealDanger k /* will be sub-

tract from the EMOTION
im . thus, the EMOTION of the robot drops quickly whose

postion is near the messager sender, and the “HELP” message sender can easily trans-
fer its task to the near robot than to the remote one. otherwise, bandwidth will become
low when only allowing the robot whose EMOTION is lower than a certain threshold
Γ to take response.

548 W. Yuan and B. Zeng

3 Simulated Results

In this part ,we make a comparison of the three algorithms using simulation software.
Every results is tested 100 times. there are three aspects to be tested:

First, the comparison of average amount of communications between robots with
different robot numbers. the numbers of robots are separately 5, 10, 15, 20 and 30,
which we assume that each robot to search task, a 50% possibility is unable to com-
plete the task and need to abandon. the contents are detailed in Figure 2 and Table 1.
with the results, Random Algorithms grows quickly than others.

Sencond, the comparison of total waiting time for the “HELP” senders for re-
sponse. the numbers of robots are separately 5, 10, 15, 20 and 30. the contents are
detailed in Figure 3 and Table 2. In the Random Algorithm messager senders don’t
transfer the task to the best-fitess responsers, so they possibily need a much longer

Table 1. Average amount of communications between robots

0

20

40

60

80

100

120

140

160

5 10 15 20 30

Robot Number

A
v
e
r
a
g
e

a
m
o
u
n
t

o
f

c
o
m
m
n
i
c
a
t
i
o
n

Greedy

Compound

Emotion

Random

Fig. 2. Average amount of communications between robots

Table 2. Total waiting time for the “HELP” senders for response

 Multi-robot Task Allocation Using Compound Emotion Algorithm 549

0

50

100

150

200

250

300

350

5 10 15 20 30

Robot number

T
o
t
a
l

w
a
i
t
i
n
g

t
i
m
e

Greedy

Compound

Emotion

Random

Fig. 3. Total waiting time for the “HELP” senders for response

30

35

40

45

50

0% 5% 10% 25%

Message lost rate

A
v
e
r
a
g
e

a
m
o
u
n
t

o
f

c
o
m
m
u
n
i
c
a
t
i
o
n

Greedy

Compound

Emotion

Random

Fig. 4. The comparison of the average amount of communications between robots with certain
rate of messages got lost

Table 3. The comparison of the average amount of communications between robots with cer-
tain rate of messages got lost

time to wait for the responsers’arrival. and Greey Algorithm performs better, because
it transfers the task to the best-fitness responser and no threshold .

Third, the comparison of the average amount of communications between robots
with certain rate of messages got lost. the lost rate are separately 0%, 5%, 10% and

550 W. Yuan and B. Zeng

25%. the robot number is 15. the contents are detailed in Figure 4 and Table 3. Ran-
dom Algorithm also grows quickly than others, because any time when the requester
robot broadcasts a HELP message with its location all the idle robots can take re-
sponse without considering any threshold. Random Algorithm works worse because it
doesn’t consider fitness and Compound Emotion Algorithm works between them.

4 Conclusion

In this paper we introduce a new method for the multi-robot allocation, and made a
comparison with other algorithms in the simulating environment. with its property,
Compound Emotion Algorithm appropriate for low-power or stealth applications. In
fact we just tested it in the simulating environment, not in the real robots, that is to say
we did not consider the weather conditions and road pavement situations etc in the
real enviroment which would affect the robots’performances. otherwise all the robots
here are homogeneity, this heterogeneity was not tested in simulation. so we need to
study these problems in our future work.

Acknowledgment

The authors are grateful to Guangdong Provincial Natural Science Foundation of
China (05001801) for decisive support.

References

[1] Gerkey, B.P., Mataric, M.J.: Sold!: Auction methods for multirobot coordination. IEEE
Transactions on Robotics and Automation 18(5), 758–768 (2002)

[2] Parker, L.E.: Alliance: An architecture for fault tolerant multirobot cooperation. IEEE
Transactions on Robotics and Automation 14(2), 220–240 (1998)

[3] Smith, R.G.: The contract net protocol: High-level communication and control in a distrib-
uted problem solver. IEEE Transactions on Computers 29(12), 1104–1113 (1980)

[4] Ortony, A.: On making believable emotional agents believable. In: Trappl, R., Petta, P.,
Payr, S. (eds.) Emotions in Humans and Artifacts, pp. 189–211, ch. 6. The MIT Press,
Cambridge (2002)

[5] Ortony, A.: Subjective importance and computational models of emotions. In: Hamilton,
V., Bower, G.H., Frijda, N.H. (eds.) Cognitive Perspectives on Emotion and Motivation,
pp. 321–343, ch. 13. Kluwer Academic Publishers, Dordrecht (1988)

[6] Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge
University Press, Cambridge (1988)

[7] Gerkey, B.P.: On Multi-Robot Task Allocation. PhD thesis, University of Southern Cali-
fornia (August 2003)

[8] Parker, L.E.: Alliance: An architecture for fault tolerant multirobot cooperation. IEEE
Transactions on Robotics and Automation 14(2), 220–240 (1998)

[9] Nadig, D., Iyengar, S.S., Jayasimha, D.N.: A new architecture for distributed sensor inte-
gration. Proceedings IEEE Southeastcon 1993, pages 8 (April 1993)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 551–559, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Security Threats and Corresponding Measures to
Distributed Storage Systems*

Lanxiang Chen, Dan Feng, and Liang Ming

School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China

dfeng@hust.edu.cn, lxiangchen@gmail.com

Abstract. There are various threats in distributed storage systems, but there is
no comprehensive category. There are some research works on threat modeling
and the challenges of protecting storage systems, but there is no corresponding
security measure to these threats and challenges. In this paper, elements of
storage security and a comprehensive category of threats are presented, which
goes from hardware level to software level, from kernel level to application
level, from local to network. The corresponding security measures to these
threats are provided. And the seven steps process of security is proposed which
gives methodology to implement these security measures. Finally, some
important storage security issues and future directions to storage security are
concluded.

Keywords: storage security, security threat, security measure, process of
security, threat modeling.

1 Introduction

The 2006 11th CSI/FBI survey [1] indicates that virus attacks, unauthorized access,
laptops (or mobile hardware) and theft of proprietary information (i.e., intellectual
property), these four categories account for more than 74 percent of financial losses.
New security threats are emerging as storage is increasingly distributed across wide
area networks.

Prior to claiming the storage security, it is important to identify the threats.
Enumerating the threats helps system architects set up corresponding security
measures. There are various threats [2-7], but there is no comprehensive category.
Storage Network Industry Association (SNIA) has subdivided storage security into
Storage System Security (SSS), Storage Resource Management (SRM), Data In-
Flight (DIF), Data At-Rest (DAR) [5]. The 451 Group [8] has identified the threats as
theft of privileged access, accidental changes, privileged access abuse, data
tampering, application tampering, and hardware theft from the perspective of

* This work was supported by the National Basic Research Program of China (973 Program)

under Grant No.2004CB318201, the Program for New Century Excellent Talents in
University NCET-04-0693 and NCET-06-0650, Wuhan Project 20061002031 and
200750730307, and the National Science Foundation of China No.60503059 and
No.60603048.

552 L. Chen, D. Feng, and L. Ming

enterprises. Swiderski et al. [9] classify threats into spoofing, tampering, repudiation,
information disclosure, denial of service, and elevation of privilege based on their
effect. Gruener et al. [7] give an incomplete subset of possible threats and their
locations. All these categories are incomplete. For completeness, we categorize
security threats from hardware level to software level, from kernel level to application
level, from local to network.

In addition, there are some research works on threat modeling [2-4, 9] and the
challenges of protecting storage systems [2, 7]. Reference [2] gives two
comprehensive processes to design storage protection solutions which are based on
classical security principles (Confidentiality, Integrity, Availability, Authentication,
or CIAA) and the data lifecycle model. Myagmar also gives some threat modeling
approaches [3, 4]. But they don’t give corresponding security measures to these
threats and challenges.

In this paper, elements of storage security and a comprehensive category of threats
are presented, which goes from hardware level to software level, from kernel level to
application level, from local to network. The corresponding security measures to these
threats are provided. And the seven steps process of security is proposed which gives
methodology to implement these security measures. Finally, we conclude some
important storage security issues and future directions to storage security.

The remainder of this paper is organized as follows. Section 2 discusses the
security threats of distributed storage systems and corresponding security measures.
Section 3 discusses some important storage security issues. Future directions to
storage security are discussed in Section 4.

2 The Security Threats of Distributed Storage Systems and
Corresponding Measures

In this section, we will discuss the security threats of distributed storage systems and
corresponding security measures. Elements of storage security and a comprehensive
category of threats are presented. The corresponding security measures to these
threats are provided. And the seven steps process of security is proposed which gives
methodology to implement these security measures.

2.1 Elements of Storage Security and Security Threats of Storage Systems

In contrary to SNIA [5], who has subdivided storage security into SSS, SRM, DIF and
DAR described above, we subdivide storage security into the security of storage
devices, storage systems, storage network, and storage application. They make up of
the whole storage security as Figure 1. There are various threats in any element of
storage security.

When designing a storage protection solution, the security engineer should weigh
the value of each security measure versus the threats presented in the specific
environment. It is important to understand all the threats presented in a storage system
before designing any storage protection solution because the threats determine the
corresponding security measures.

 The Security Threats and Corresponding Measures to Distributed Storage Systems 553

Fig. 1. Elements of storage security

For completeness, we categorize security threats from hardware level to software
level, from kernel level to application level, from local to network. They are threats
that come from storage devices, storage systems, storage network, and storage
application. They are illustrated as Figure 2.

2.2 Corresponding Security Measures

The earliest security measure is just simple authentication, such as user/password.
Since the earliest network is not as pervasive and advanced as this moment and attack
means are little. Along with the development of network, besides conventional
cryptography and access control techniques, there are a series of security mechanisms
and techniques, such as anti-virus, firewall, credential-based authentication and
authorization, redundancy, backup, versioning, immutable, tamper-proof, intrusion
detect and protection, logging, audit and accounting etc.

The core techniques of storage security must go from storage devices and storage
system, through storage network, to storage application. The overall security of a
distributed storage system is a system project: a system is only as secure as its
weakest link, any link will be the attack point, and it is going to be attacked at its
weakest point.

The security of storage devices refers to availability and reliability of storage
devices. The availability refers to that the system would facilitate the restoration of
fault-tolerant, and take out of the demotion state when devices fail down. It is
assessed by the Mean-Time-To-Repair (MTTR). The reliability refers to that the
system would still complete data storage task in the demotion state when devices fail

554 L. Chen, D. Feng, and L. Ming

down, through Mean-Time-To-Failure (MTTF) to assess. For threats coming from
storage devices, it can be evaded through redundancy, backup, versioning etc.
Redundancy such as RAID [10] can improve reliability of storage devices. Remote
backup [11] can avoid risks coming from disaster, terrorist etc. If some partitions of
storage devices fail down, then versioning [12] can help roll back to the former
version.

The security of storage systems refers to the security of system software, such as
operating system, file system and application software etc. The security measures are
access control, authentication and authorization, anti-virus software, firewall and
intrusion detection and protection etc.

The security of storage network ensures the security of storage network, through
cryptography, access control, authentication and authorization, intrusion detect and
protection etc.

The security of storage application ensures the logic security of data stored in
storage devices, through cryptography, access control, authentication and
authorization, immutable, tamper-proof, logging, audit and accounting etc.

To different security threats, the corresponding security measures are summarized
as Table 1.

Fig. 2. The security threats of distributed storage systems. 1. The threat comes from storage
devices; 2. The threat comes from storage systems; 3. The threat comes from storage network;
4. The threat comes from storage application.

 The Security Threats and Corresponding Measures to Distributed Storage Systems 555

Table 1. Security threats and corresponding measures

Security threats
come from

Corresponding security measures

Storage devices Redundancy, backup, versioning
Storage systems Access control, authentication and authorization, anti-virus,

firewall, intrusion detection and protection
Storage network Cryptography, access control, authentication and authorization,

intrusion detect and protection
Storage

application
Cryptography, access control, authentication and authorization,
immutable, tamper-proof, logging, audit and accounting

2.3 Methodology - The Seven Steps Process of Security

The seven steps process of security is proposed to implement security measures.
Besides CIAA, there are authorization, redundancy/ backup/versioning,
audit/accounting, and intrusion detect and protection. Figure 3 illustrates these steps.
It is described as follows.

Step 1: authentication to verify whether you are what you claim.
Step 2: authorization to tell you what you are permitted to do.
Step 3: audit/accounting to audit what you have done.
Step 4: integrity ensures the correctness of the data and prevents unauthorized

modification of data. It will be detected when data is modified.
Step 5: confidentiality ensures that only those who hold the proper key to access to

data. Even data has been compromised, adversaries can not get any valuable
information.

Step 6: redundancy/backup/versioning ensures data availability uninterruptedly when
disaster, terrorist etc. occurs.

Step 7: intrusion detect/immutable/tamper-proof defends in advance to prevent attack
and vicious tampering.

Integrity can be implemented through cryptographic hashes, keyed hashes and public
key signature etc. Confidentiality can be implemented through cryptographic
algorithms, such as DES [13] and AES [14] etc. Along with the seven steps process of
security, it should provide corresponding key management and sharing, including key
generation, distribution, storing, recovery and revocation.

It is important to note that it will invite disaster in that if the chosen storage
protection solution does not match the threats and vulnerabilities in the actual system
resulting in wasted investment, performance degradation, data compromise, service
denial, or worse. So it may not need all these seven steps security measures, the
security engineer should tailor each security measure according to the specific
environment.

After the previous steps have been completed, it is time to think about management
and administration interfaces. There are many inside threats coming from authorized
users, such as mistake or purposive operations. First, the storage system must be
designed sophisticatedly to prevent intended attacks from insider. Then managers and
administrators should take part in some special technical training.

556 L. Chen, D. Feng, and L. Ming

Fig. 3. The seven steps process of security

“Today, storage infrastructures (disk, arrays, IP and SAN fabrics, NAS and tape)
are highly vulnerable to attack because of the gap between known security techniques
and their level of implementation.” Hibbard et al. said [5]. Exactly, it is inadequate to
have these security measures. The most important thing is to implement them
sophisticatedly.

3 Some Important Storage Security Issues

The main goals of distributed storage system are high scalability, security, while
maintaining simplicity and performance, and keeping the cost of implementation low.
To achieve these goals, there are some important issues of storage security.

3.1 Appropriate Security Model

Security model determines trusted components, key paths, threat points of systems.
And all these will determine security measures. Conventional security model is based
on two parties. One party is on both control path and data path which tends to be
bottleneck. Object based store system (OBS) [15-17] is based on three parties, which
separates control path from data path and puts most meta-data management to object

 The Security Threats and Corresponding Measures to Distributed Storage Systems 557

store device (OSD) to provide scalability. However, the tri-party security model needs
more trusted components and results in more threat points.

Appropriate security model includes appropriate trusted component, appropriate
control path and data path, appropriate security measures and policies in appropriate
threat point.

3.2 Comprehensive Security Measures

To secure a distributed storage system, besides conventional cryptography and access
control techniques, there are a series of security mechanisms and techniques, such as
redundancy, backup, versioning, immutable, tamper-proof, intrusion detect and
protection, logging, audit and accounting etc. A system is only as secure as its
weakest link, any link will be the attack point, and it is going to be attacked at its
weakest point. So it is important to set up comprehensive security measures. On the
other hand, it will invite disaster in that if the chosen storage protection solution does
not match the threats and vulnerabilities in the actual system, it also results in wasted
investment, performance degradation, data compromise, service denial, or worse. It
should carry out corresponding measures according to specific application
environment.

3.3 High Performance Implementation

Any security measure will reduce performance, cryptography, access control,
immutable, tamper-proof, intrusion detect and protection, and audit will take certain
time and space cost, while redundancy, backup, versioning and logging will take
certain space cost. High performance implementation refers to reduce the impact of
security measures on performance and keep the cost of implementation low.

In addition, efficient access control techniques, efficient encryption and integrity
schemes, efficient key management schemes, and transparent to user are also the
important issues of storage security.

4 Future Directions to Storage Security

High scalability, high performance and security are the requirements of distributed
storage systems. Along with more complex network and larger scale storage system,
hybrid security measures, intelligent and self-organization security, and the
standardization of storage security are inevitable directions.

4.1 Hybrid Security Measures

Respond to complex environment and various attack means, one security measure is
inadequate to ensure security. It needs hybrid security measures to cope with different
threats. As detailed above, the security engineer should think about the specific
threats to their system first, then set up corresponding security measures.

558 L. Chen, D. Feng, and L. Ming

4.2 Intelligent and Self-organization Security

Smart storage needs intelligent security. Intelligent and self-organization security refers
to that storage systems themselves organize security measures according to specific
application environment and organize defense and recovery mechanisms according to
specific threat without human intervention and management as possible or practical.

Future smart storage devices utilize themselves’ computing capability to provide
more semantic support. How to utilize the intelligence of devices to improve the self-
organization capability of storage systems is also the future direction.

4.3 The Standardization of Storage Security

When deciding which security measures are provided for a storage system, the
security engineer should weigh the value of each security measure versus the threats
and vulnerabilities presented in the specific environment. Engineers should consult
storage security standards since they may provide useful policies. These standards can
improve the quality and interoperability, and provide broader heterogeneous
approaches of various storage systems. The standardization of storage security has
made its debut in recent years.

The combination of iSCSI and Fibre Channel could bring a security threat if
handled poorly by customers and storage networking vendors. The storage network
security standard - Fibre Channel Security Protocol (FC-SP) [18] addresses many of
these concerns, and is backed by many storage networking vendors. FC-SP includes
protocols to authenticate and establish secrets for Fibre Channel entities, protocols for
frame-by-frame integrity and confidentiality, and protocols to define and distribute
security policies within the fabric. The SNIA’s Storage Management Initiative
Specification (SMI-S) [19] provides a common approach to manage devices in a
storage network, using the common information model (CIM) as a foundation and
SSL for secure management. Both standards facilitate storage protection by building
consensus between vendors to allow interoperability and broader heterogeneous
approaches. IEEE [20] proposes a draft P1619 which describes a tweakable wide-
block encryption for disk sector level.

Some protectors advocate non-standard storage implementations based on security-
by-obscurity [21]. Since a widely implemented standard must be solid since any
vulnerability in a standard implementation would be very attractive to attackers to use as
part of a class-break exploit (standard becomes a threat). We do not think so. As
standards will help the storage security realm build consensus between vendors, which
will allow interoperability and broader heterogeneous approaches. There is an analogy
between the standardization of storage security and the standardization of cryptographic
algorithms, it provides interoperability while convinces users of their security. If I don’t
know what you have done for security, how can I believe that it is secure?

References

1. Gordon, L.A., Loeb, M.P., Lucyshyn, W., Richardson, R.: Computer Crime and Security
Survey. Compute Security Institute (2006)

2. Hasan, R., Myagmar, S., Lee, A.J., Yurcik, W.: Toward a Threat Model for Storage
Systems. StorageSS (2005)

 The Security Threats and Corresponding Measures to Distributed Storage Systems 559

3. Myagmar, S., Lee, A.J., Yurcik, W.: Threat Modeling as a Basis for Security Requirements
(SREIS). In: Symposium on Requirements Engineering for Information Security (2005)

4. Myagmar, S.: Threat Modeling Networked and Data-Centric Systems. University of
Illinois at Urbana-Champaign, Department of Computer Science M.S. Thesis, August
(2005)

5. Hibbard, E.A., Budnik, L., Austin, R.: Introduction to Storage Security A SNIA Security
White Paper. White Paper (October 14, 2005)

6. Edmonds, A.: Towards Securing Information End-to-End: Networked Storage Security
Update and Best Practices. White Paper (February 2003)

7. Gruener, J., Kovar, M.: The Emerging Storage Security Challenge. Yankee Group Report
(September 2003)

8. The 451 Group, Storage Security Market: Emerging Opportunities, Unseen Threats. (May
2003)

9. Swiderski, F., Snyder, W.: Threat Modeling. Microsoft Press (2004)
10. Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., Patterson, D.A.: RAID: High-

performance, reliable secondary storage. ACM Computing Surveys 26(2), 145–185 (1994)
11. Chervenak, A., Vellanki, V., Kurmas, Z.: Protecting file systems: A survey of backup

techniques (1998)
12. Zhu, N., Chiueh, T.: Design, implementation, and evaluation of repairable file service. In:

Proceedings of Dependable Systems and Networks (DSN) (2003)
13. National Institute of Standards and Technology, Data Encryption Standard (DES), FIPS

Publication 46-3 (October 1999)
14. National Institute of Standards and Technology (NIST).Federal Information Processing

Standards Publication 197 (FIPS PUB 197): Specification for the Advanced Encryption
Standard (AES) (November 2001)

15. Information technology - SCSI Object-Based Storage Device Commands -2 (OSD-2). T10
Working Draft, (October 2004), http://www.t10.org/ftp/t10/drafts/osd2/osd2r00.pdf

16. Du, D., He, D., Hong, C., Jeong, J., Kher, V., Kim, Y., Lu, Y., Raghuveer, A.,
Sharafkandi, S.: Experiences in Building an Object-Based Storage System based on the
OSD T-10 Standard. In: MSST 2006. Proceedings of the 23nd IEEE / 14th NASA
Goddard Conference on Mass Storage Systems and Technologies, College Park, MD (May
2006)

17. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C., Ceph, A.: scalable,
high-performance distributed file system. In: Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI). Seattle, WA (November 2006)

18. Information technology - Fibre Channel Security Protocol. T10 Working Draft (February
2006), http://www.t11.org/ftp/t11/pub/fc/sp/06-157v0.pdf

19. Storage Network Industry Association (SNIA) - SNIA Storage Management Initiative
Specification (SMI-S) (December 23, 2003)

20. IEEE, Draft proposal for tweakable wide-block encryption (May 2007), http://ieee-
p1619.wetpaint.com/?t=anon

21. Chirillo, J., Blaul, S.: Storage Security: Protecting, SANs, NAS and DAS. Wiley (2002)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 560–568, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Research on Dynamic Load Balancing Algorithms for
Parallel Transportation Simulations

Dongliang Zhang1,2, Changjun Jiang1,2, and Shu Li1,2

1 Department of Computer Science and Technology, Tongji University, Shanghai, China,
201804

2 The Key Laboratory of “Embedded System and Service Computing”, Ministry of Education,
China, Shanghai 201804

Abstract. To the issue of dynamic load balancing in parallel transportation
simulations, we describe two algorithms for different types of task partitions,
parallel lines partition and grid partition. In the algorithms, load balance is
obtained by iteratively moving the boundary lines according to the relative
balance of adjacent sub-domains. Assuming real traffic distribution as the
experimental work load, we test the performance of the algorithms. And the
result we observe confirms the value of the methods. Based on the discussion of
the communication overheads under different types of partitions, due to the
relative small amount of boundary lines, grid partition can decrease the
communication overheads and is a more adaptive partition model.

Keywords: load balance, parallel computing, transportation simulation.

1 Introduction

As an important component of Intelligent Transportation Systems (ITS), the large-scale
transportation simulation system is widely used in researching and designing
transportation control systems. However, a large scale transportation simulation needs
a large amount of calculation. The development of distributed and parallel computing
technology provides sufficient calculating resource for traffic simulation. In recent
years, the research on parallel traffic simulation has gained much progress [1, 2, 3].

In parallel computing, load balancing is an effective way to minimize the processing
time and maximize the utilization of calculation resource [5, 6]. In a distributed and
parallel transportation simulation system, the work loads of processors are often
unbalanced, and so the efficiency of calculation is quite low. The main task of a
transportation simulation is to simulate the behavior of vehicles on the road network.
And in a view of large scale, the simulation of transportation is much similar to that of
molecular dynamics [4]. We can take vehicles as molecules with special moving rules
in a two dimensional square. The typical approach to parallelizing these computations
is to decompose the spatial region into sub-domains, and associate each sub-domain
with a processor. The computational work for a given processor at each time step
depends on the number of vehicles in the corresponding spatial domain. Due to the
ununiformity of the traffic load in the real word, the simulation tasks differ between

 Research on Dynamic Load Balancing Algorithms 561

sub-domains. In the simulation, when a vehicle is running across the boundary of two
sub-domains, the source processor needs to pass it to the destination processor. So the
transfer of vehicles changes the distribution of simulation work loads during the
simulation procedure. To balance the loads between processors, the boundary lines
need to be relocated.

In this paper, we partition the traffic map using parallel lines and quadrilateral grids
separately, and for these two kinds of partition two corresponding algorithms are
proposed. In the algorithm for parallel lines partition, our approach is to adaptively
repartition the space by moving the vertical lines. The algorithm is introduced for
determine how to move the given vertical line depends on the relative loads of
sub-domains which have that line in common. And in the algorithm for quadrilateral
grids partition, our approach is to repartition the space by moving the vertex in the grid.
And the algorithm is focused on how to move a given vertex depends on the relative
loads of sub-domains which have that vertex in common. These lines or vertex
movement, as well as the transfer of any vehicle from one processor to another, can be
carried out in parallel. Furthermore, we discuss the communication overheads induced
by the algorithms, and the adaptability of each algorithm.

The rest of the paper is organized as follow: in section 2 we describe the algorithms
for parallel lines partition and quadrilateral grids partition separately. In section 3 we
present testing results of the two algorithms. Finally, section 4 provides the
performance of the algorithms and some conclusion comments.

2 Algorithms

2.1 Load Balancing Algorithm Using Parallel Lines Partition

Using parallel vertical lines to partition the simulation region, just like using longitude
to divide the map, has an obvious advantage in minimizing the message channel
between processors. Using this type of partition, every processor has utmost two
adjacent processors to communicate. And the decrease of message channels may cut
down the communication time greatly at some occasions. Figure 1 illustrates the basic
model of parallel lines partition.

Fig. 1. This figure shows the basic model of parallel lines partition

562 D. Zhang, C. Jiang, and S. Li

We assume the total work load is W. And we use an arbitrary vertical line L to divide

the work load into W1 and W2, let W and maxW be the average work load and

maximize work load among the processors separately. Then we define

max1 /lI W W= − be the measure of imbalance of the workloads, and let idealI be the

ideal imbalance. Obviously, if the workloads are evenly distributed, lI would be quite

small. Then we define another component:

1 2W W

W
δ −=

Here δ determines which side has the heavier load between two sub-domains. Then
define:

(1) 2l lε δΔ = − × (0<ε <1)

Here lΔ is the shift of L and ε is a parameter which controls how aggressively we seek
to the balance.

We need to make several remarks:

1. When moving the line L, the work loads change monotonously and we can surely
find an optimal position for balance.

2. When using more than one line, we can firstly adjust the lines which have an odd
index, and then adjust the even lines.

The main steps of the algorithm are:

Step I. Calculate lI according to the method mentioned above, if l idealI I< , stop

the algorithm, otherwise turn to Step II.
Step II. For each odd line, calculate lΔ .

Step III. Adjust L by lΔ , and recalculate the work loads of the two sides.

Step IV. For each even line, calculate lΔ .

Step V. Adjust L by lΔ , and recalculate the work loads of each part, then turn to
Step I.

2.2 Load Balancing Algorithm for Quadrilateral Grids Partition

Using quadrilateral grids or triangle grids to partition the simulation region is a widely
accepted method. In this paper, we choose quadrilateral grids to divide the traffic map,
and we describe the algorithm based on the basic partition model shown in figure 2.

As is illustrated in fig.2, Let P be an arbitrary grid point, and E1, E4, E2, E3 are the
neighbor grid points. Let the work loads of the four grid area which shares P be W1,

W2, W3, W4, separately, and let W , maxW be the average and maximize workload

separately. Then the definition of imbalance is quit similar to that of prior
algorithm:

max1 /lI W W= − . And let the ideal value of lI be
idealI .

 Research on Dynamic Load Balancing Algorithms 563

Fig. 2. The basic model of quadrilateral grids partition

Obviously, if we adjust P to P′ , 1P V′ ， 2P V′ ， 3P V′ ， 4P V′ will
repartition the region, and so the work load of each sub-domain will be modified.

We define parameter 1δ ：

(1 2) (3 4)
1

1 2 3 4

W W W W

W W W W
δ + − +=

+ + +

Here 1δ presents which pair has the heavier load, the up pair or the down pair. Then we
let pE1 denotes the vector from P to E1 and pE4 be the vector from P to E4, then a
vector 1offset ：

1 1 1 0
1

1 4 1 0

pE
offset

pE

δ δ
δ δ

⎧ >⎪= ⎨ <⎪⎩

In the same way , using W1+W3 and W2+W4 ，we define 2δ , vector pE2, pE3, and
2offset . Then the offset of point P is defined as follow：

1 2
(1)

2

offset offset
P ε +Δ = −

Note that we move the point P by vector pE1, pE2, pE3 and pE4, and the four
sub-domains will remain convex.

Obviously, only by moving P will not necessarily reach the balance status. For
example, if 1 4 2 3W W W W≈ ≈ , we must adjust the locations of the points E1, E2,
E3, E4. The movement of these points is quite similar to that of P. We take E1 for
example, define:

1

1 3

1 3E

W W

W W
δ −=

+

564 D. Zhang, C. Jiang, and S. Li

And let E1V1 be the vector from E1 to V1 and E1V2 be the vector from E1 to V2, and
then the vector 1offsetE and the offset 1EΔ are defined as follow:

1 1 1 0
1

1 4 1 0

pE
offsetE

pE

δ δ
δ δ

⎧ >⎪= ⎨ <⎪⎩

1 (1) 1E offsetEεΔ = −

The adjustment of E2, E3 and E4 is similar to that of E1, and we do not make any
further discussion.

Based on the definition above, for a partition of M N× grid, we number all the
points on the edges and inside of the region as (0 ,0)ijP i M j N≤ ≤ ≤ ≤ by its location.

And all the work loads are numbered as (1 ,1)Wij i M j N≤ ≤ ≤ ≤ . For all the points,

we apply a red-black coloring scheme to adjacent points to adjusting their location. We
choose this type of scheme because in this strategy multi-processors can work
synchronously without any conflict.

The algorithm is described as follow:

Step I. Calculate the work loads of all the sub-domains, and the imbalance degree

lI . If l idealI I< , stop the algorithm, else turn to Step II.

Step II. For all the inside points,
ijP (1 1i M≤ ≤ − , 1 1j N≤ ≤ −), choose the ones in

odd rows and odd columns and the ones in even rows and even columns.
Adjust these points themselves and the adjacent points.

Step III. For all the inside points, choose the ones in odd rows and even columns and
the ones in even rows and odd columns. Adjust these points themselves and
the adjacent points. And then turn to Step I.

3 Experimental Result and Analysis

We take the real traffic map of Shanghai China as the experimental task region. And we
present the real distribution in a 1024 1024× bit map, in which each colored pixel
stands for a number of vehicles. From white to red the color of each pixel stands for the
density of vehicles from low to high. The balancing result based on the parallel lines
partition is illustrated in figure 3.

Figure 4 illustrates the detail of the balancing procedure and the distribution of work
loads between processors.

Figure 5 and figure 6 illustrate the balancing result based on a 4 4× quadrilateral
grid partition.

From the experimental result we can see that using parallel lines to partition the
domain, the balancing algorithm can gain a rather good result. But this type of partition
may lead to big communication overheads between some processors. So in order to
compare the algorithm, we design another model to estimate the communication
overheads between processors.

 Research on Dynamic Load Balancing Algorithms 565

Fig. 3. This figure shows the status before balancing (a) and 100 algorithm cycles later (b) based
on parallel lines partition

Fig. 4. This figure shows the relationship between the imbalance and calculating cycles
(0.9ε =) in 100 cycles based on parallel lines partition. Inset in this figure are three histograms
showing the initial, midpoint, and final load distributions.

566 D. Zhang, C. Jiang, and S. Li

Fig. 5. This figure shows the status before balancing (a) and 32 algorithm cycles later (b) based
on a 4× 4 grid partition

Fig. 6. This figure shows the relationship between the imbalance and calculating cycles
(0.9ε =) in 100 cycles based on a 4× 4 quadrilateral grid partition. Inset in this figure are four
histograms showing the initial, midpoints, and final load distributions.

 Research on Dynamic Load Balancing Algorithms 567

Fig. 7. This figure shows the basic communication overhead estimating model

In the parallel simulation of transportation, vehicles may run across the boundary
lines and need to be transferred from one processor to another. So the communication
overheads can be estimated by accounting the number of vehicles near the boundary
lines. As is shown in figure 7, we name the adjacent area of a partition line a
communication region, and by accounting the vehicles inside the area we estimate the
approximate communication overhead for each processor. In the experiment we set the
width of the communication region to two pixels in the bit map. Figure 8 illustrates the
result on the communication overheads estimation.

Through calculating the amount of vehicles in the communication areas, we estimate
the communication overhead between each pair of adjacent processors. And as

Fig. 8. This figure shows the communication overhead of 8 parallel lines partition (a) and
3 3× grid partition (b), different colors represent the communication overheads with different
processors.

568 D. Zhang, C. Jiang, and S. Li

illustrated in figure 8, we use different colors to represent the communication with
different processors. In figure 8(a), we can see the communication of each processor is
composed of utmost two parts, but is much larger than that in figure8(b).

In figure 8(b), the communication overhead of processor 5 is composed of four parts,
because it is in charge of the central sub-domain in the 3 3× grid. However the over
communication head is not very large. This is because the four boundary lines of its
sub-domain are quite short after balancing.

4 Conclusion

On the problem of dynamic load balancing in parallel transportation simulation, we
propose an algorithm for parallel lines partition and an algorithm for quadrilateral grids
partition. Based on the real traffic density distribution, we make several experiments to
test the performance of each algorithm. The result shows that the algorithm using
parallel lines partition can obtain a relative low imbalance in 100 algorithm cycles, and
the algorithm using quadrilateral grids partition can obtain a relative high imbalance.
But this does not necessarily mean that the former is more advisable and in the later
experiment of comparing the communication overheads of an 8 parallel lines model
and a 3 3× grid model. We find that the communication overhead of the former is much
bigger than that of the later and is not adaptable in real application unless on a quit fast
network.

References

1. O’Cearbhaill, E.A., O’Mahony, M.: Parallel implementation of a transportation network
model. Journal. Parallel Distributed Computing 65, 1–14 (2005)

2. Nagel, K., Rickert, M.: Parallel implementation of the TRANSSIMS micro-simulation.
Parallel Computing 27, 1611–1639 (2001)

3. Klefstad, R., Zhang, Y., Lai, M., Jayakrishnan, R., Lavanya, R.: A Distributed, Scalable, and
Synchronized Framework for Large-Scale Microscopic Traffic Simulation. In: Proceedings
of the 8th International IEEE Conference on Intelligent Transportation Systems, pp. 813–818
(2005)

4. Deng, Y., Peierlsy, R.F., Riveraz, C.: An Adaptive Load Balancing Method for Parallel
Molecular Dynamics Simulations. Journal of Computational Physics 161, 250–263 (2000)

5. Rus, P., Tok, B., Mole, N.: Parallel computing with load balancing on heterogeneous
distributed systems. Advances in Engineering Software 34, 185–201 (2003)

6. Genaud, S., Giersch, A., Vivien, F.: Load-balancing scatter operations for grid computing.
Parallel Computing 30, 923–946 (2004)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 569–579, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Embedded System’s Performance Analysis
with RTC and QT

Fulong Chen1,2 and Xiaoya Fan1

1 School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
chenfulong@mail.nwpu.edu.cn

2 Department of Computer Science and Technology, Anhui Normal University,
Wuhu 241000, China

fanxy@nwpu.edu.cn

Abstract. Maximal, minimal and mean response time are several performance
metrics of embedded system. Some embedded systems have not real-time
constraints, e.g. printer and router, but their mean case performance is more
important, and some others have those constraints and need evaluating their
utmost performance. In this paper, with real-time calculus and queuing theory,
both mean and utmost case performances of embedded multitasking system are
analyzed as referred target for design, verification, decision and optimization.

Keywords: embedded system, performance analysis, real-time calculus,
queuing theory.

1 Introduction

With the development of computer theory and technology, more and more smart and
embedded devices are applied in many areas, e.g. automobiles electronics, handheld
game systems, industrial environments, telecommunication or fabrication equipments,
aircraft electronics, medical systems, military applications, authentication systems,
consumer electronics, smart buildings, robotics and so on. Embedded systems can be
defined as information processing systems embedded into these enclosing products
[1]. Hence, embedded computer has also been called the disappearing computer,
which form the basis of the so-called pervasive computing era.

As shown Fig.1, Sensors receive signals or information from the physical
environment, and send them to A/D converters or sample-and-holders, which convert
continuous sequences of analog values to discrete sequences of digital values. The
kernel of the whole embedded system-information processor processes those digital
values and generates some digital results. These results can be sent to display device,
which displays these results, and also be used to control the external environment
through actuators, which convert digital signals to analog ones.

During developing of embedded system, it is very important to evaluate its
performance. By evaluating memory requirements, timing properties, processor
speed, bus utilization, etc., developers can find the bottleneck components so as to
select appropriate hardware or software resources that meet the system’s functional

570 F. Chen and X. Fan

and non-functional requirements and cost low. Furthermore, by evaluating
performance of actual embedded application system, testers can verify whether the
performance meets the design requirements and constraints those are presented by
customers.

There are three solutions for evaluating performance of embedded system:

 Measurement-by executing some test benchmarks or instances, testers can get
Execution Time (ET) and other performance parameters for evaluating the actual
system. In the past years, many universities, institutes and corporations have
been devoted to studying the technologies of benchmark performance for
embedded system. Some performance evaluation tools and benchmarks, e.g.
Dhrystone, EEMBC, NullStone, MediaBench, MiBench, etc., have been
developed and released. With these tools and benchmarks, some performances
of hardware and software of embedded system can be evaluated. However, many
system functions and attributes are hard to be obtained by testing due to the
variety of the architectures of embedded system.

 Simulation-by executing some programs for simulating the evaluated system and
its load, monitoring members can get more precise performance parameters. But
this solution’s cost is higher when its model is constructed. At present, for
embedded system, there are many simulation tools such as Carosse-Perf, SES
Workbench [2], STRESS, schedalyzer, ARTS, PERTS [3], RTC Toolbox [8] and
so on.

 Analysis-by making use of some mathematical theories and methods, analyzers
can study and describe the relation of performance and system before design,
and get loose performance metrics. According to this approach, its cost for
modeling is the lowest. Real-Time Calculus (RTC) and Queuing Theory (QT)
are two kinds of system level analysis tools for evaluating performance of real-
time embedded system. Performance of embedded system includes best, worst
and mean ones. RTC is fit for analyzing best performance and worst
performance, and QT is more propitious to analyzing mean performance.

In section 2, Real-Time Calculus is introduced, and performance of embedded
system in utmost state is analyzed. In section 3, basic queuing theory is introduced,
and by making use of this basic theory and method, performance of embedded system
in steady state is also analyzed.

Fig. 1. Architecture of Embedded System

Information
Processor

A/D Converter
Sample-and
-Holder

Sensors Environment

Display Device

D/A Converter

Actuators

 Embedded System’s Performance Analysis with RTC and QT 571

2 Real-Time Calculus (RTC) and Performance Analysis of
Embedded System in Utmost State

2.1 RTC

RTC is on basis of Linear System Theory, Calculus for Network, Adversarial
Queuing Theory [7], and composed of input/output event streams model, resource
(service) model and processing model (Fig. 2)

Fig. 2. Modeling of Real-Time Calculus System

 R(t):number of events that arrived in time interval [0, t),represents input
event stream function;
 R' (t):number of events that left in time interval [0, t), represents output
event stream function;
 C(t):maximal number of events that could have been processed by processor
P in time interval [0,t], represents available resources or services function;
 C' (t): maximal number of events that processor P could still process by in
time interval [0,t], represents remaining resources or services function.

If the description of resource/service and event streams is available, then C(t) and
R(t) are determinate. So

)}()()({inf)('
0

uCtCuRtR
tu

−+=
≤≤

 (1)

)(')()(' tRtCtC −= (2)

2.2 Performance Analysis of Embedded System in Utmost State

Provided that, in the interval [0, Δ],)(Δuα represents maximum number of arriving

events,)(Δlα represents minimum number of arriving events,)(Δuβ represents

maximum number of available services (resources), and)(Δlβ represents minimum
number of available services (resources), according to RTC, the following processing
model can be got:

),,,()(' luluuu f ββααα α=Δ (3)

FIFO

R(t) P R' (t)

C(t)

C' (t)

572 F. Chen and X. Fan

),,,()(' lulull f ββααα α=Δ (4)

),,,()(' lulull f ββααβ β=Δ (5)

),,,()(' luluuu f ββααβ β=Δ (6)

Here,
ufα ,

lfα ,
ufβ and

lfβ depend on real processing model. For example, in

greedy shaper component model, σββ =Δ=Δ)()(lu ,so

))((inf)('
0

σλαα
λ

+−Δ=Δ
Δ≤≤

uu
 [9,10]. Through this method, with RTC Toolbox [8],

for a known processing model, its arrival curves [lu αα ,], leave curves [lu ',' αα],

service curves [lu ββ ,] and availability curves [lu ',' ββ] are obtained. If the

performance doesn’t meet the requirements of actual embedded application system,
designers need adjust input events stream so as to change arrival curves [uα , lα] and

reconfigure resources so as to change service curves [uβ , lβ], or, reconstruct new

processing model so as to change
ufα ,

lfα ,
ufβ and

lfβ .

3 Queuing Theory and Performance Analysis of Embedded
System in Steady State

3.1 Basic Queuing Theory

In Queuing theory, a random service system is taken into account. By studying the
probability parameters of customers waiting in queue, analyzers can get the
performance of queuing system in steady state. A queuing system can be described as
Fig.2. Any customer that wants to pass through the system need finish the following
processes: arriving, waiting, served and leaving. The interval between two customers
arriving orderly satisfy Determinate Length Distribution (DLD), Negative
Exponential Distribution (NED, called Poisson stream), Erlang Distribution (ED) or
general random distribution. Customers wait in the queue according to wait or loss
rule. In wait rule, customers are served according to First Come First Serve (FCFS),
Last Come First Serve (LCFS), Priority Serve (PS), general random serve, etc. There
is one server or multi-servers in the system. The former is called Singer Server
Queuing System (SSQS), and the latter goes by the name of Multiple Servers
Queuing System (MSQS). The served time length of each customer may be subject to
DLD (D), NED (M), k ranks ED (Ek) or general random distribution (G). In
1950s,D.G.Kendall introduced A/B/C/n queue model- A stands for input stream, B
stands for served time, C stands for number of servers, n stands for queue length. For
instance, for M/M/1/∞ queue, the first M means that customers arrive in Poisson
stream, the second M stands for Markovian or memoryless (exponential) served time

 Embedded System’s Performance Analysis with RTC and QT 573

distribution, 1 stands for only one server, and ∞ is indicated that the length
corresponding to the queue is limitless. In Queuing system, mean queue length L,
mean steady queue length Lq, mean stay (or response) time T and mean wait time Tq
are four performance metrics in common use for performance analysis. Queuing
system has been used for multi-process controlling [11], VoIP QoS analysis [12],
Evaluation for UML [13], multiple access method [14], simulator [15], dispatching
strategy [16], railway computer interlocking system performance evaluation [17],
estimation of the storage space [18], Evaluation of anonymity providing techniques
[19], staff software maintenance centers [20], etc.

Service Sytem

leave
Queue ServerCustomer

arrive

Fig. 3. Specification for Service System

3.2 Embedded Multitasking Sequential Processing Model

An embedded system and some tasks can be considered as a Markovian queuing
process, or a birth and death process. The embedded system is the server, and tasks,
which are waiting in a queue to get services, are customers. Each task, located in the
memory or external environment and requesting service, is considered as a customer
arrival in queue. The rate of arrival of the tasks is the birth rate and the rate of their
leaving the system after finishing their services is the death rate. It is assumed that the
death rate can be influenced by some queuing control strategies but the birth rate
cannot. It is the goal to change the death rate, or the users' service rate, in a way that
the number of served tasks would be maximized after some finite time.

Assumed that tasks arrival rate is subject to Poisson distribution, the processor
processes tasks according to FCFS, the spent time is subject to NED, and then an
M/M/1/∞ queue model can be constructed (Fig.4).

Processor
Tasks

Fig. 4. Embedded Multitasking Sequential Processing Model

In this model, the following parameters are defined:

 λ—arrival rate stands for number of tasks arriving in unit time;
 μ—service rate or departure rate stand for number of tasks processed in unit

time;

574 F. Chen and X. Fan

 ρ—server utilization or service intensity , ρ=λ/μ.
λandμof embedded system can be solved, see [21]. Then, mean response time T of
tasks can be got through Little formula [22]:

λμρμ −
=

−
= 1

)1(

1
T (7)

3.3 Embedded Multitasking Non-preemptive Model

In Fig.4, if there are n ranks of different priorities for tasks, each rank of tasks are
Poisson stream, arrival rate is λi, 1≤i≤n, processing time is not determinate, but mean
processing time 1/μi=E[si] and γi = E[si

2] can be acquired, kindred tasks are processed
according to FCFS, different kinds of tasks are processed according to non-
preemptive rule, then that model becomes a Non-Preemptive M/G/1/∞ Model.

Given ∑
=

=
n

i
i

1

λλ , ∑
=

=
n

i i

i

1

/1
λμ
λμ , ∑

=

=
n

i

ii

1 λ
γλγ
，

∑
=

=
n

i i

i
ju

1 μ
λ

, then mean wait time of

j-th rank of tasks:

)1)(1(2
)(

1 jj
q uu

jT
−−

=
−

λγ
 (8)

And mean response time:

j
q jTjT

μ
1

)()(+= (9)

Mean wait time of whole system：

∑
=

=
n

j

qj
q

jT
T

1

)(

λ
λ

 (10)

And mean response time of whole system：

∑
=

=
n

j

j jT
T

1

)(

λ
λ

 (11)

3.4 Embedded Multitasking Preemptive and Non-blocked Model

In Preemptive and Non-blocked Model, high rank of tasks can snatch the processor
from low rank of tasks, which will go back to the queue and wait for next process.
Then the system becomes a feedback Jackson Queuing Network [22](Fig.4 (a)).
Provided γ is arrival rate of whole system, q is the probability of preemption, μ is
processor’s service rate, then tasks arrival rate λ of processor queue can be obtained
according to Equation (12):

 Embedded System’s Performance Analysis with RTC and QT 575

q
q

−
=⇒+=

1

γλλγλ (12)

The processor utilization is

)1(q−
==

μ
γ

μ
λρ

(13)

So mean number of tasks of whole system is:

γμ
γ

ρ
ρ

−−
=

−
=

)1(1 q
L

(14)

According to Little formula, mean respone time of whole system is:

γμγ −−
==

)1(

1

q

L
T

(15)

It is obvious that relation between T and q is showed by Fig. 4(b), and while
q=0,this model becomes that one of Fig.3; while q→1-γ/μ,T→∞.

3.5 Embedded Multitasking Non-preemptive and Blocked Model

Now see non-preemptive and blocked model (Fig.5). Tasks arrive at the system in
arrival rate γ. Processor processes them in service μ1.Tasks can be blocked by so-
called block task during processing as a result of some I/O operations
or synchronization. Supposed that blocked probability is q, and rate of release
from block is μ2, blocked tasks will go back to processor queue and wait for next
process after completing their I/O operations or synchronization, then real arrival
rateλ1 of processor queue and real arrival rateλ2 of block queue have the following
relation:

21 λγλ +=
(16)

12 λλ q=
(17)

Fig. 5. Embedded Multitasking Preemptive and Non-blocked Model Model

0 1-γ/μ q

T

(b)

λ

q γ μ

1-q

(a)

Processor
Tasks

576 F. Chen and X. Fan

q
Tasks

1

Processor

2

Blocker

1

1- q

2

Fig. 6. Embedded Multitasking Non-preemptive and Blocked Model

So,

q−
=

11

γλ

(18)

q

q

−
=

12

γλ

(19)

Accordingly, processor service intensity 1ρ and block service intensity 2ρ are:

)1(11

1
1 q−

==
μ

γ
μ
λρ (20)

)1(22

2
2 q

q

−
==

μ
γ

μ
λρ

(21)

Mean length of processor queue 1L is:

qq
L

)1(1 11

1
1

(22)

Mean length of blocker queue 2L is:

γμ
γ

ρ
ρ

−−
=

−
=

)1(1 22

2
2 q

q
L

(23)

Mean length of whole system queue is:

γμ
γ

γμ
γ

−−
+

−−
=+=

)1()1(

21
21 q

q

qq
LLL (24)

So, mean response time of whole system is:

 Embedded System’s Performance Analysis with RTC and QT 577

γμγμγ −−
+

−−
==

)1()1(

1

21 q

q

qq

L
T (25)

Range of q is:

)1,min(0
21

1

μ
γ

γμ
μ

−
+

<≤ q

(26)

3.6 Embedded Multitasking Preemptive and Blocked Model

Both preemption and block are considered, see Fig.6.Tasks arrive at the system in γ.
Processor processes them in μ1.Low rank of tasks can be preempted by high ones, and
also be blocked due to some I/O operations or synchronization. On the assumption
that preempted probability is q1, blocked probability is q2, and rate of release from
block is μ2.After those interruptions, tasks will go back to processor queue and wait
for next process. Then, real arrival rateλ1 of processor queue and real arrival rate of
block queueλ2 have the following relation:

2111 λλγλ ++= q (27)

212 qλλ =
(28)

Tasks

1

1

q2

2

Processor

Blocker

q1

1- q1-

2

Fig. 7. Embedded Multitasking Preemptive and Blocked Model

So,

21
1 1 qq −−

= γλ

(29)

21

2
2 1 qq

q

−−
=

γλ

(30)

578 F. Chen and X. Fan

Mean response time of whole system is:

γμγμ

γ
μ
λ

μ
λ

μ
λ

μ
λ

γ
ρ

ρ
ρ

ρ

γγ

2212

2

211

2

2

2

2

1

1

1

1

2

2

1

1

21

)1(

)1(

1

11

11

qqq

q

qq

LLL
T

−−−
+

−−−
=

−
+

−
=

−
+

−
=

+
==

(31)

To all appearances, non-preemptive and blocked model (q1→0), preemptive and

non-blocked model (q2→0) and sequential processing model (q1→0, q2→0) are three
special cases of preemptive and blocked model.

4 Conclusions and Future Work

With RTC and QT, utmost and mean performance of embedded system can be
assured loosely and quickly so as to select appropriate design scheme, verify and
optimize system. RTC tool has been offered [8].However QT tool for embedded
system is not available.In the future, QT tool of different models will be submitted for
evaluating performance of embedded system.

Acknowledgments. This paper is supported by the National Technology Research
and Development 863 Program of China (No. 2005AA1Z1193),the National Natural
Science Foundation of China (No. 60573143) ,the Soft Science of Anhui Province of
China(No.06035021) and Youth Fund of Anhui Normal University(No. 2006xqn54).

References

1. Marwedel, P.: Embedded System Design, pp. 1–7. Springer, Heidelberg (2006)
2. Castelpietra, P., Song, Y.Q., Lion, F.S., et al.: Analysis and Simulation Methods for

Performance Evaluation of a Multiple Networked Embedded Architecture. IEEE
Transactions on Industrial Electronics 49(6), 1251–1264 (2002)

3. Audsley, N.C., Burns, A., Richardson, M.F., et al.: STRESS:a Simulator for Hard Real-
time Systems. Software-Practice and Experience 24(6), 543–564 (1994)

4. Li, Y.T.S., Malik, S.: Performance Analysis of Embedded Software Using Implicit Path
Enumeration. IEEE Transactions on Computer-aided Design of Integrated Circuits and
Systems 16(12), 1477–1487 (1997)

5. Malik, S., Martonosi, M., Li, Y.T.S.: Static Timing Analysis Of Embedded Software. In:
34th Design Automation Conference, pp. 147–152 (1997)

6. Lee, J.Y., Park, I.C.: Timed Compiled-Code Functional Simulation of Embedded Software
for Performance Analysis of SOC Design. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 22(1), 1–149 (2003)

 Embedded System’s Performance Analysis with RTC and QT 579

7. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard real-time
systems. In: 2000 IEEE International Symposium on Circuits and Systems, pp. 101–104.
IEEE Computer Society Press, Los Alamitos (2000)

8. ETH Zurich.Real-Time Calculus(RTC) Toolbox, http://www.mpa.ethz.ch/rtctoolbox,2007-
4-1

9. Thiele, L.: Performance Analysis of Distributed Embedded System. Technical
report,ARTIST 27 UNU-IIST Spring School in Xi’an,China (April 3-25, 2006)

10. Thiele, L.: Introduction to Real-Time Calculus. Technical report,ARTIST 27 UNU-IIST
Spring School in Xi’an,China (April 3-25, 2006)

11. Egerstedt, M., Wardi, Y.: Multi-Process Control Using Queuing Theory. 41st IEEE
Conference on Decision and Control 2, 1991–1996 (2002)

12. Pitts, J.M., Wang, X., Yang, Q., Schormans, J.A.: Excess-rate queuing theory for
M/M/1/RED with application to VoIP QoS. Electronics Letter 42(20), 1188–1189 (2006)

13. Perdos, A., Chatzigeorgiou, A., Stephanides, G.: Evaluation of a Queuing Theory and
Systems Modeling Course Based on UML. In: 6th International Conference on Advanced
Learning Technologie, pp. 507–509 (2006)

14. Jamshidifar, A.A., Khorram, E., Afshar, A.: Applying queuing theory to multiple access
method for store and forward satellites. In: 2nd International Conference on Recent
Advances in Space Technologies, pp. 416–419 (2005)

15. Granados, D., Garcia, A.J.: A Web based simulator on elementary queuing theory. In: 5th
International Conference on Information Technology Based Higher Education and
Training, pp. 83–86 (2004)

16. Zong, Q., Xing, G., Chen, D., Ya, S.: The queuing theory based research of dispatching
strategy for elevator group control system during up-peak. 5th World Congress on
Intelligent Control and Automation 6, 5307–5311 (2004)

17. Guo, J., Zhu, C., Yang, Y.: Performance evaluation of railway computer interlocking
system based on queuing theory. In: 4th International Conference on Parallel and
Distributed Computing, Applications and Technologies, pp. 420–423 (2003)

18. Yang, C.-W., Huang, K.-S., Yu, G., Jan, D.-Y.: Using queuing theory to estimate the
storage space of stocker in automated material handling systems. In: Semiconductor
Manufacturing Technology Workshop, pp. 102–104 (2002)

19. Kesdogan, D.: Evaluation of anonymity providing techniques using queuing theory. In:
26th Annual IEEE Conference on Local Computer Networks, pp. 316–322. IEEE
Computer Society Press, Los Alamitos (2001)

20. Antoniol, G., Casazza, G., Di Lucca, G.A., Di Penta, M., Rago, F.: A queue theory-based
approach to staff software maintenance centers. In: 2001 IEEE International Conference on
Software Maintenance, pp. 510–519 (2001)

21. Luo, G., Zhao, Z., Zhao, H.: Testing and Evaluation of Network Capability with Queueing
Theory in a Embedded System. Journal of Shenyang Normal University (Natural Science),
China 23(1), 54–56 (2005)

22. Lin, C.: Computer Nerwork and Computer System Perforance Evaluation, pp. 224–260.
TsingHua University Press, China (2001)

Scheduling Meetings in Distance Learning�

Jian Wang, Changyong Niu, and Ruimin Shen

Department of Computer Science and Engineering
Shanghai Jiaotong University, Shanghai 200030, China

{jwang,cyniu,rmshen}@sjtu.edu.cn

Abstract. Peer-to-peer technique becomes mature gradually, and mul-
tiple domain-involved applications emerge, such as IPTV, distance learn-
ing, chatting network. In the context of distance learning, small scale
of teachers would serve large scale of geographically located students.
Normally, knowledge points are associated with different difficulty lev-
els. And students usually are interested in varied subsets of knowledge
points. Also teachers are capable of serving knowledge point subsets. The
objective to schedule meeting among students and teachers according
to their respective interests and capabilities is to reduce total learning
duration. After formulating meeting schedule as Integer Programming
problem, this paper proposes three heuristic algorithms to approximate
the optimal solution. To the best of our knowledge, such problem is
firstly investigated in distance learning context. Performance evaluation
demonstrates their behaviors and PKPA algorithm excels two others
substantially.

Keywords: Scheduling, Timetable, Integer Programming, Heuristics,
Distance Learning.

1 Introduction

Scheduling is of common combinatorial optimization and planning problem,
and finds usage in almost every resource-constrained scenarios. The timetable
scheduling, one of important scheduling problems, exists in realistic life, such as
lecture, transportation, examination, meeting. Due to heavy problem complexity
and involved domain context, such problem is widely solved with heuristics.

Peer-to-Peer technique has been thoroughly studied in the past decade. And
multiple domain-involved applications emerge such as IPTV, distance learning,
chatting network, content-based service. The Peer-to-Peer overlay distributes
learning content, consisting of audio, video, and handwriting, to large population
of consumers efficiently. Consequently, distance learning achieves big progress in
terms of scale of service capability. Among involved students and teachers in
distance learning, there exists scheduling issue for efficient resource usage.

Knowledge points in distance learning are normally associated with difficulty
levels. Students request different subset of them due to interest or difficulty
� This work is supported by the NFSC under Grant No.60672066, China.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 580–589, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Scheduling Meetings in Distance Learning 581

level. In addition, the teachers do also specialize in subset of knowledge points
whose size is often large. The objective of scheduling meetings among involved
students and teachers according to their respective interests and capabilities is
to reduce total learning duration. Of course, such scheduling strategy can apply
into virtual lab or virtual collaboration on the Internet, too.

To the best of our knowledge, scheduling meetings in context of distance learn-
ing is firstly investigated. The remainder of this paper is organized as follows. Sec-
tion 2 reviews representative works on timetable scheduling. Section 3 formally
formulates scheduling meeting problem and three heuristic algorithms are pro-
posed consequently in section 4. The performance of algorithms are numerically
evaluated in section 5. The paper concludes in section 6 with future work.

2 Related Work

As scheduling is concerned, the most relevant works are timetable ones. Tabu [1]
deals with problem of assigning teachers to courses in a secondary school. Such
timetable is to be built when teaching assignments are not fixed. It considers the
characteristics of the school week, finite teachers and rooms, individual subject
requirement, prerequisites, as well as characteristics and regulations of country-
specific education system into account and finds a schedule for a set of meetings
between teachers and groups of students over a set of time periods using tabu
searching algorithm. Timetable is so difficult to solve due to large search space
and highly constrained requirements. Thus, works [2] and [3] strive to approxi-
mate the optimal solution for timetable problem by genetic algorithms.

TGA [4] presents two-phase genetic algorithm to solve timetable problem for
universities, and it uses two populations for class scheduling and room allocation,
respectively. Consequently, it achieves better performance than simple genetic
algorithm. Work [5] utilizes Particle Swarm Optimization technique to solve the
discrete problem of timetable scheduling. And PSO performs well in discrete
problem. Furthermore, the timetable problem is solved with efficient heuristic
numerical algorithm in [6]. The main objective of timetable is to find feasible
time slots with respect to multiple constraints.

TCDMP [7] is a Timetable-Constrained Distance Minimization Problem,
which is a sports scheduling problem applied for tournaments and the total
travel distance on individual teams must be minimized. MICSP [8] tends to
address curriculum planning problem, which is defined as constructing a set of
courses for each semester - over a sequence of semesters - in order to satisfy the
academic requirements such as for undergraduate university degree. Obviously,
both have different objectives to be optimized compared to timetable works.
Interestingly, scheduling meetings in distance learning also differs from existing
works due to intrinsic objective. As students interested in same knowledge point
can be served by one teacher, where such sharing is easy in peer-to-peer overlay,
the objective in this paper is to minimize total learning duration with relatively
few constraints. The total learning duration denotes the time period from the
instant the learning begins to the time all students complete learning.

582 J. Wang, C. Niu, and R. Shen

3 Problem Formulation

In distance learning, activities are often conducted in group form. The group is
formed by students with common interest, as well as supervised teachers. Given
a large set of knowledge points, students involved with common knowledge point
form a group. In collaborated virtual experiment scenario, specific experiment
is correlated with student subsets as well as teachers. Thus, group is common
form in distance education, especially when number of overall students is large.
Due to finite number of teachers, it is imperative to schedule learning groups in
a sequence time-efficiently.

3.1 Assumptions and Constraints

For formulating scheduling meeting problem easily, the notations and assump-
tions are introduced as following.

� P : set of knowledge points, and P = {p1, p2, · · · , pl}
� T : set of teachers, and T = {t1, t2, · · · , tm}
� S: set of students, and S = {s1, s2, · · · , sn}
� Xti : subset of knowledge points that can be served by teacher ti, and Xti ⊆

P, 1 ≤ i ≤ m
� Ysj : subset of knowledge points that is requested by student sj , and Ysj ⊆

P, 1 ≤ j ≤ n
� Each knowledge point pk, 1 ≤ k ≤ l incurs same unit learning time

Assuming student in group interacts with supervised teacher during learning
session, it is useless to prerecord lectures of knowledge point set such that student
requests content of his favorites on demand, consequently. Thus, the constraints
of scheduling meetings are given.

� Each teacher ti can serve at most one knowledge point at any time.
� Each student sj can enjoy at most one knowledge point at any time.

The problem to investigate is: Given knowledge point set P, teacher set T and
their corresponding serving capabilities {Xti , 1 ≤ i ≤ m}, student set S and their
corresponding knowledge requests {Ysj , 1 ≤ j ≤ n}, how does the scheduling
strategy arrange students and teachers to study knowledge point together (i.e.
meeting) in minimum total learning time.

3.2 Formulation

A decision variable zr
ijk is introduced to denote whether student sj can enjoy

knowledge point pk served by teacher ti at time round r

zr
ijk =

{
1 student sj enjoys pk served by teacher ti at time round r

0 otherwise
(1)

Scheduling Meetings in Distance Learning 583

Consequently, the main objective is to minimize number of rounds for schedul-
ing all involved teachers and students to complete all learning requests.

minimize R (2)

Subject to

n∑

j=1

l∑

k=1

zr
ijk ≤ 1, ∀i ∈ {1, 2, · · · , m}, ∀r ∈ {1, 2, · · · , R} (3)

m∑

i=1

l∑

k=1

zr
ijk ≤ 1, ∀j ∈ {1, 2, · · · , n}, ∀r ∈ {1, 2, · · · , R} (4)

m⋃

i=1

l⋃

k=1

R⋃

r=1

{pk|zr
ijk = 1} = Ysj , ∀j ∈ {1, 2, · · · , n} (5)

n⋃

j=1

l⋃

k=1

R⋃

r=1

{pk|zr
ijk = 1} ⊆ Xti , ∀i ∈ {1, 2, · · · , m} (6)

|
m⋃

i=1

n⋃

j=1

R⋃

r=1

{r|zr
ijk = 1}| ≤ τ, ∀k ∈ {1, 2, · · · , l} (7)

zr
ijk ∈ {0, 1}, ∀r ∈ {1, 2, · · · , R}, ∀i ∈ {1, 2, · · · , m},

∀j ∈ {1, 2, · · · , n}, ∀k ∈ {1, 2, · · · , l}
(8)

The formulation is a comprehensive integer linear programming. Equation (3)
reflects the constraint that each teacher can serve at most one knowledge point
at any time, and that of student in Equation (4). Equation (5) declares that
individual learning request set Ysj must be satisfied. In addition, Equation (6)
shows that teacher serves knowledge set no more than his capability Xti . Equa-
tion (7) enforces cost efficiency as the one knowledge point can at most be taught
τ times. At last, Equation (8) indicates that the formulation is an integer pro-
gramming. Since such problem is intrinsically complex, this paper resorts to
heuristic algorithms to approximate the optimal solution.

4 Heuristic Algorithms

A simple example is given for above formulation before proposing three heuristic
algorithms. In Figure 1, there are four students {s1, s2, s3, s4}, three knowledge
points {p1, p2, p3}, as well as three teachers {t1, t2, t3}. Student requests and
teacher capabilities are reflected by those edges in graph. For instance, student
s3 requests knowledge point set {p1, p2}, while teacher t2 could serve knowledge
point set {p2, p3}.

584 J. Wang, C. Niu, and R. Shen

s
4

p
3

t
3

t
2

t
1

p
2

p
1

s
1

s
2

s
3

Fig. 1. An example relation graph for knowledge point learning

As scheduling meeting is concerned, there requires 2 rounds to complete
knowledge learning process. In round 1, teacher t2 serves the knowledge point
p3 that is interested by students s4, while teacher t1 serves p1 that is enjoyed by
s1, s3. Then in round 2, teacher t2 serves p2 that is interested by s2, s3, s4. Obvi-
ously, there may exist multiple scheduling arrangements corresponding to same
number of rounds. Such phenomenon contributes finding scheduling arrangement
of minimum time quickly.

As size of students and knowledge points becomes larger, it is impracticable
to find the optimal solution for the problem due to large computation load.
Thus, three heuristic algorithms are proposed to approximate optimality quickly.
They are feeded with same input and derive round number R individually. For
clarity, the input is described as: knowledge point set P , student set S and
corresponding request {Ysj }, teacher set T and corresponding capabilities {Xti}.
For convenience, the edge between student sj and his knowledge request {Ysj }
is uniquely labeled by each element in {Ysj }. Similarly, such labeling strategy
applies to edges between teacher ti and capability {Xti}.

In brief, three following algorithms are greedy-based. The τ -constraint defined
in Equation (7) is relaxed in algorithms. Each iteration attempts to maximize
number of students that can be served, although PSA, PTA, PKPA start it-
eration at position of student, teacher and knowledge point, respectively. In
addition, each algorithm contains two layers of loop. The outer loop guarantees
each individual student to be satisfied. And inner loop attempts to maximize
served students in one round.

4.1 Preferential-Student Algorithm (PSA)

The idea is that in each iteration, first find student sj with maximum knowledge
points pending for studying. Then among those points, choose the one pk that
can be served by maximum available teachers. Finally, select the teacher ti with
minimum capability among corresponding teachers.

Scheduling Meetings in Distance Learning 585

1: E = ∪n
j=1Ysj , round = 0

2: WHILE E �= ∅
3: D = {s|s ∈ S, Ys = ∅}, S = S − D
4: A = ∅, B = ∅, C = ∅, W = ∅
5: WHILE S − A − B �= ∅
6: s = argmaxx∈S−A−B|Yx|
7: p = argmaxx∈Ys−W |Ω(x)|
8: IF Ω(p) == ∅
9: B = B ∪ {s}

10: CONTINUE
11: END
12: t = argminz∈Ω(p)|Xz |
13: C = C ∪ {t}, V = {s|s ∈ S − A − B, p ∈ Xs}
14: A = A ∪ V, W = W ∪ {p}
15: Yz = Yz − {p}, ∀z ∈ V
16: END
17: E = ∪n

j=1Ysj

18: round = round + 1
19: END
20: RETURN round

Fig. 2. Preferential-Student Algorithm

Definition 1. Let Ω(p) = {t|p ∈ Xt, t ∈ T, t is available} denote the teacher
subset, where each is available and is capable to serve knowledge point p.

In Figure 2, E represents collection of pending student requests and S denotes
students that still have requests. The S will be divided into two set A and
B. A contains the students that can learn in current round, while B contains
those not. Step 6 selects the student s with largest size of request set. Step
7 chooses the knowledge point p of s that has maximum available teachers. If
such p does not exist, the student s joins into set B. Otherwise, the teacher of
minimum capability t corresponding to p is chosen. Consequently, the unavailable
teacher set C, knowledge point served W , the learning student set A as well as
knowledge request of necessary students Yz are updated in sequence. Whenever
S − A − B == ∅ (i.e. the current students are divided into groups), the inner
loop stops. Thus, E is updated and round is increased by one before next loop.

4.2 Preferential-Teacher Algorithm (PTA)

This algorithm takes inverse design direction compared to PSA. The idea is that
in each iteration, first find maximum capability teacher ti, then select knowledge
point pk ∈ Xti with maximum interested students.

In Figure 3, E represents the pending knowledge requests and S denotes those
students that have knowledge points to learn. The teacher set will also be di-
vided into two groups B and C. B contains those teachers not interested by
current student S. In addition, A denotes allocated students while W denotes

586 J. Wang, C. Niu, and R. Shen

1: E = ∪n
j=1Ysj , round = 0

2: WHILE E �= ∅
3: D = {s|s ∈ S, Ys = ∅}, S = S − D
4: A = ∅, B = ∅, C = ∅, W = ∅
5: WHILE T − B − C �= ∅
6: t = argmaxz∈T−B−C|Xz |
7: p = argmaxz∈Xt−W |{s|s ∈ S − A, z ∈ Ys}|
8: IF p == ∅
9: B = B ∪ {t}

10: ELSE
11: V = {s|s ∈ S − A, p ∈ Ys}
12: A = A ∪ V, C = C ∪ {t}, W = W ∪ {p}
13: Yz = Yz − {p}, ∀z ∈ V
14: END
15: END
16: E = ∪n

j=1Ysj

17: round = round + 1
18: END
19: RETURN round

Fig. 3. Preferential-Teacher Algorithm

allocated knowledge points. Step 6 selects maximum capable teacher t. Step 7
selects knowledge point p of t interested by maximum students in S − A. If
such p is not found, the teacher t joins into B. Otherwise, allocated students
A, allocated teachers C, allocated knowledge points W , and knowledge point
request Yz are updated consequently. The inner loop stops when all teachers
are grouped. Of course, E and round updated in order for next round of the
inner loop.

4.3 Preferential-Knowledge Point Algorithm (PKPA)

The idea of third algorithm is in each iteration, first find knowledge point pk

with maximum unallocated interested students. Then select available teacher ti
that can serve pk and has minimum corresponding capability.

In Figure 4, pending knowledge point set E and pending students S are ini-
tialized. The allocated students A, allocated teachers C, and allocated knowl-
edge points W are set to empty. Step 6 selects the knowledge point p interested
by maximum unallocated students. If p is not interested, that means no more
knowledge points can be allocated. Otherwise, minimum capable teacher for
knowledge point p is selected. If no available teacher exists, p joins into W .
Otherwise, A, C, W, Yz are modified accordingly. The inner loop stops when all
knowledge points are inspected or no unallocated student exists. Within outer
loop, E, round are updated conveniently.

Scheduling Meetings in Distance Learning 587

1: E = ∪n
j=1Ysj , round = 0

2: WHILE E �= ∅
3: D = {s|s ∈ S, Ys = ∅}, S = S − D
4: A = ∅, C = ∅, W = ∅
5: WHILE P − W �= ∅
6: p = argmaxz∈P−W |{s|s ∈ S − A, z ∈ Ys}|
7: V = {s|s ∈ S − A,p ∈ Ys}
8: IF V == ∅
9: BREAK

10: END
11: t = argminz∈T−C,p∈Xz |Xz|
12: IF t == ∅
13: W = W ∪ {p}
14: ELSE
15: A = A ∪ V, C = C ∪ {t}, W = W ∪ {p}
16: Yz = Yz − {p}, ∀z ∈ V
17: END
18: END
19: E = ∪n

j=1Ysj

20: round = round + 1
21: END
22: RETURN round

Fig. 4. Preferential-Knowledge Point Algorithm

5 Performance Evaluation

We evaluate three heuristic algorithms running on a computer with 1.5 GHz
CPU and 512 MB memory. The algorithms are implemented upon the Mat-
lab. Scheduling meeting problem has six configuring parameters: l:number of
knowledge point, m: number of teachers, n: number of students, f : size of
Xti , 1 ≤ i ≤ m, g: size of Ysj , 1 ≤ j ≤ n, τ : cost tradeoff parameter. We re-
lax τ in three proposed algorithms. In addition, each result is averaged over
10 runs through random sampling. We vary one configuring parameter while
fixing others in order to reveal individual impact on algorithm performance.
Each Xti and Ysj are randomly sampled on knowledge point set P . In addition,(⋃n

j=1 Ysj

)
⊆ (

⋃m
i=1 Xti) is ensured such that feasible solution exists.

l:number of knowledge point. In Figure 5, m = 6, n = 40, f = 6, g = 5. As
number of knowledge point increases, the groups become less overlapping. Three
algorithms need more rounds to complete the arrangement. Note that PKPA
performs better than two others.

m:number of teachers. In Figure 6, l = 20, n = 40, f = 6, g = 5. Obviously,
as the number of teachers grows up, more probably concurrent groups appear.
Of course, the rounds derived by three algorithm decrease, although PKPA does
the best.

588 J. Wang, C. Niu, and R. Shen

10 20 30 40 50
4

6

8

10

12

14

Number of knowledge points

R
ou

nd
s

PSA
PTA
PKPA

Fig. 5. Rounds vs. number of knowledge
point

6 9 12 15 18
5

6

7

8

9

10

11

Number of teacher

R
ou

nd
s

PSA
PTA
PKPA

Fig. 6. Rounds vs. number of teacher

20 40 60 80 100
5

6

7

8

9

10

Number of student

R
ou

nd
s

PSA
PTA
PKPA

Fig. 7. Rounds vs. number of student

4 6 8 10 12
5

5.5

6

6.5

7

7.5

8

8.5

Number of each teacher services

R
ou

nd
s

PSA
PTA
PKPA

Fig. 8. Rounds vs. number of each teacher
services

3 5 7 9 11
4

6

8

10

12

14

Number of each student requests

R
ou

nd
s

PSA
PTA
PKPA

Fig. 9. Rounds vs. number of each student requests

n:number of students. In Figure 7, l = 20, m = 11, f = 6, g = 5. Increasing
number of students means more requests need to be handled by teacher set. So
the rounds increase definitely.

Scheduling Meetings in Distance Learning 589

f :number of each teacher services. In Figure 8, l = 20, m = 11, n = 40, g = 5.
Normally, teacher with larger service capability would decrease corresponding
rounds since more probably the request can be satisfied.

g:number of each student requests. Figure 9 is similar to Figure 7. Here l =
20, m = 11, n = 40, f = 12. The number of the whole requests increases as g
becomes large. Thus, rounds increases for three algorithms.

Summary: In five figures corresponding to each configuring parameter except
for τ , the PKPA algorithm always outperforms two others. Potential reasons
are: 1) selecting maximum student in each iteration. 2) choosing teacher with
minimum capability would let other teacher can still contribute in following
selections within same iteration.

6 Conclusion

This paper formulates scheduling meetings problem in distance learning scenario.
Then three heuristic algorithms are proposed to quickly approximate the optimal
solution. And the evaluation reveals that PKPA performs the best. In future
work, one is to derive mathematical analysis of such formulation further, and
the other is to incorporate τ into heuristic algorithm design.

References

1. Alvarez-Valdes, R., Parreno, F., Tamarit, J.M.: A Tabu Search Algorithm for As-
signing Teachers to Courses. Top 10(2), 239–259 (2002)

2. Burke, E., Newall, J-P.: Multi-Stage Evolutionary algorithm for timetable problem.
IEEE Transaction of Evolutionary Computer 3(1), 63–74 (1999)

3. Li, J.-n.: An Evolutionary algorithm for Solving Curriculum Schedule Problem of
University. Microcomputer Development 13(10), 96–98 (2003)

4. Ueda, H., Ouchi, D., Takahashi, K., Miyahara, T.: A Co-evolving Timeslot/Room
Assignment Genetic Algorithm Technique for University Timetabling. In: Proceed-
ings of the 3rd International conference on Practice and Theory of Automated
Timetabling, Konstanz, Germany, August,16-18, 2000, pp. 48–63 (2000)

5. Chu, S.-C., Chen, Y.-T., Ho, J.-H.: Timetable Scheduling Using Particle Swarm
Optimization. In: Proceedings of the First International Conference on Innovative
Computing, Information and Control, Beijing, China, August 30 - September 01,
2006, pp. 324–327 (2006)

6. Xie, F.-r.: A heuristic Numerical Algorithm for Solving the Problem of Curriculum
Scheduling. Operations Research and Management Science 14(5), 36–40 (2005)

7. Rasmussen, R.V., Trick, M.A.: The Timetable Constrained Distance Minimization
Problem. In: Proceedings of third International conference on CPAIOR, Cork, Ire-
land, May 31-June 2, 2006, pp. 167–181 (2006)

8. Wu, K., Havens, W.S.: Modeling an Academic Curriculum Plan as a Mixed-Initiative
Constraint Satisfaction Problem. In: Proceedings of 18th Canadian Conference on
Artificial Intelligence, Victoria, Canada, May 9-11, 2005, pp. 79–90 (2005)

Domain Level Page Sharing

in Xen Virtual Machine Systems�

Myeongjae Jeon1, Euiseong Seo1, Junghyun Kim2, and Joonwon Lee1

1 CS Division, Korea Advanced Institute of Science and Technology
{mjjeon,ses,joon}@calab.kaist.ac.kr

2 Samsung Electronics Co., Ltd.
junghyunx2.kim@samsung.com

Abstract. The memory size limits the scalability of virtual machine
systems. There have been some researches about sharing identical pages
among guest systems to reduce memory usage. However, they require
memory overcommitment feature through swap mechanism which some
virtual machines including Xen do not have. In this paper a new approach
is proposed to share identical pages with designated sharing area. This
approach reduces the memory usage as well as redundant I/O operations.
Moreover, understanding the characteristics of certain shared pages be-
comes easier. The conceptional design was evaluated by simulation based
on real-world applications.

Keywords: virtual machine, parallelism, memory management.

1 Introduction

The virtual machine systems, of which the heyday has been thought to be ended
in 1970s, are now being resurrected due to the rapid improvement of hardware
performance and storage capacity.

However, the scalability of virtual machines is limited by the hardware re-
sources. The resources are able to be categorized into two groups; one is time
sharing resources and the other one is space sharing ones. The shortage of time
sharing resource is somewhat tolerable because it only induces some latency
of processing time. The shortage of space sharing resources, however, such as
memory and storage sometimes prohibits the addition of guest systems.

To overcome the scalability limitation from memory sharing, some approaches
have been introduced following a way that a guest system shares existing identi-
cal pages which were allocated to other guest systems. However, these solutions
are beneficial only with memory overcommitment feature. The overcommitment
of memory in virtual machine systems means that the sum of the memory sizes
that are allocated to guest systems is allowed to exceed the real hardware mem-
ory size. The most intuitive method to support memory overcommitment is
� This work was supported by KOSEF grant funded by the Korea government(MOST)

(No. R01-2006-000-10724-0) and also partially funded by the MIC, Korea, under the
ITRC support program supervised by the IITA.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 590–599, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Domain Level Page Sharing in Xen Virtual Machine Systems 591

using swap mechanism as in traditional operating systems. However, Xen [1]
which is the representative of massive virtual machine system does not employ
swap mechanism because of its design philosophy. Thus, the overcommitment of
memory in Xen is restricted. As a result, the described solutions are not able to
be directly adopted in Xen architecture.

This paper suggests page sharing scheme that the shared area is placed not in
the guest operating systems but in the special designated area. This approach
will aid the implementation of memory overcommitment in Xen because it helps
to understand the property of shared contents well and to manage the size of
shared memory area easily. There are permanent shared regions like operating
system kernel and essential libraries. Thus, by checking the size of permanent
shared area and shared counts, Xen can decide how much memory will be over-
committed safely.

The rest of this paper is organized as follows: Section 2 reviews existing re-
search on page sharing among guest systems and Xen architecture also. Section
3 describes our approach for domain level page sharing scheme to support mem-
ory overcommitment in Xen. Section 4 presents the evaluation results. The new
design concept for memory overcommitment without swap mechanism by us-
ing our approach is proposed in Section 5. Finally, section 6 summarizes our
conclusions.

2 Back Ground

2.1 Xen Architecture

Guest systems in Xen are called domains. Xen virtual machine manager which
is also called as hypervisor is located between hardware and domains and it
distributes various resources to each domain. There is a special domain which
is called Domain-0. It acts as control center that starts, stops and terminates
other domains. The other domains which are ordinary guest systems are called
Domain-U.

In virtual systems real memory can not be directly provided to each guest
system because it may hinder the isolation among guest systems. Thus, Xen
provides some real memory pages to each guest system as much as the virtual
physical memory size of the corresponding guest system. To distinguish clearly,
in terms of Xen, real memory is called machine memory and the virtual physical
memory for each domain is called pseudo-physical memory. As in native envi-
ronment, operating system in each domain distributes pseudo-physical memory
to user-level tasks.

I/O requests from each guest system are actually handled in the Linux kernel
located at Domain-0. Xen forwards I/O requests of all Domain-U to Domain-
0. The forwarded requests will be handled with standard kernel functions in
Domain-0. This model makes Xen have simple design and provide full standard
and powerful interfaces to guest systems.

As a medium of delivering the I/O request, a structure called I/O ring lies
in between Domain-0 and Domain-U. I/O ring consists of request and response

592 M. Jeon et al.

queues. Each queue is a circular queue and follows producer/consumer style.
Domain-U produces I/O requests and put them to a queue in I/O ring. And
then Domain-0 takes the requests at the other end of the queue and processes
them. On the contrary, the processed results are put into I/O ring by Domain-0
and Domain-U gets the results for the requests they made from I/O ring.

Xeno Linux which is the modified Linux kernel for Xen employs front-end
block device driver instead of standard block device driver to handles I/O re-
quests for block devices such as hard disk and CD-ROM. Front-end block device
driver puts the I/O requests of Domain-U into I/O ring. And it is responsible
to get the results from I/O ring and to deliver them to the corresponding user
level task in the domain.

Analogously Domain-0 requires a part to take request from I/O ring and to
put the result into I/O ring. For this Domain-0 has back-end device driver. Back-
end device driver gets a request from I/O ring and processes it with the existing
kernel functions of Xeno Linux in Domain-0. After the processed result is queued
in I/O ring, back-end device drivers a notification to the domain which made
the request.

Xen itself can be light-weighted because I/O processing is done through exist-
ing operating system in Domain-0. However, it makes also Xen hardly have swap
mechanism at machine memory level. Thus, the sum of memory which is allo-
cated to all guest systems should be always less than machine memory capacity.
Hot-plug memory and ballooning [2], with which guest systems give and take
machine memory to and from other guest systems on demand, were proposed
for more efficient memory use. It is, however, just a temporary solution because
the actual allocated memory size of all guest systems is always less than that of
machine memory after all.

2.2 Page Sharing Among Guest Systems

VMware ESX server[3] was a pioneer product that aimed to run massive guest
systems. Accordingly, reducing memory consumption was directly related to its
performance. VMware ESX server achieved much reduction of memory usage by
Content-based page sharing scheme[4].

After a guest system gets a newly allocated page which is loaded with a certain
disk block, Content-based page sharing compares the newly allocated and loaded
machine page to all existing pages with MD5 hash function [5]. If there is a
page with the identical content, then the mapping table in the guest system is
modified so that the corresponding pseudo-physical page in the guest system
points to the existing real hardware page instead of newly allocated one. This
method needs not alteration of guest operating systems. It can be implemented
with modification of only virtual machine manager.

However, executable files or data files stored in disks which are the primary
target of Content-based page sharing do not change frequently. Thus, processing
read requests for the already loaded pages to be shared is waste of resource.
Moreover, a page which is located at the same disk block of a read-only filesystem
has same contents naturally and does not require MD5 hash function to compare

Domain Level Page Sharing in Xen Virtual Machine Systems 593

the newly allocated page with the existing one of which target block is the same
with that of the newly allocated one.

Although it was proposed before VMware ESX server, page sharing in Disco
[6] is more efficient than VMware ESX in terms of processing redundant disk
read requests. Disco captures DMA requests from guest systems and compares
them to the recorded requests that were processed earlier. It becomes possible
because Disco dominates all the hardware directly. If there is an existing page
containing the requested block, the DMA operation for the request will not be
actually started and the guest system which generates the request will share the
existing page. This is fairly effective for not only memory saving but reducing
read operations also. Intercepting DMA requests requires that virtual machine
managers directly handle both hardware and I/O requests from guest systems
by itself. Thus, this approach is hard to be straightly adopted in Xen, which
handles I/O requests through the proxy guest system.

To achieve the improvement of scalability from all mentioned page sharing
schemes, memory overcommitment should be supported by the virtual machine
manager. Thus, they are not suitable to Xen which does not provide swapping of
physical memory, which is an essential feature for the memory overcommitment,
for the virtual systems.

3 Page Sharing for Xen

3.1 Design Overview

In most cases, Domain-U uses a small set of well-known operating systems such
as Linux, FreeBSD and Microsoft Windows.In such environment many domains
share read-only filesystems that contain operating system and frequently used
program files and libraries. Each domain has their own writable filesystems for
storing data and temporary files.

In this configuration, multiple pages scattered in different domains mostly
happen to contain same disk block. The aim of this paper is to reduce memory
usage and disk block read operations through the sharing of the multiple identical
pages. This should be done with little overhead and fit to Xen architecture.

Before back-end block device driver processes it, our approach checks the read
request whether there exists a machine page containing the target disk block or
not. If it can not be found, the read request will be processed in the original
path. On the contrary, if there exists the page in machine memory, the read
request will not be processed and the page will be returned to front-end block
device driver at Domain-U as the result for the request. Without distinction of
the requesting domain, machine memory which was allocated to Domain-0 will
be used as the page for the read request.

The suggested method quickly and precisely identifies page contents without
requiring complex hash functions. It also reduces redundant read operations.
The I/O handling in a virtual machine system is much slower than those in
native systems [7]. Thus, the suggested scheme is expected to improve system
performance as well as save memory usage.

594 M. Jeon et al.

3.2 Work Flow

The original processing flow of a disk read request in Xen is described as follows
with Figure 1:

Domain0

XEN

DomainU1

Device

Back-End
Device Driver

Front-End
Device Driver

Native
Linux
Driver

Hash
Table

���� request

���� search

���� request

���� request DMA

���� load page

���� update

���� response

				 update
Page table

I/O
Ring

Domain0

XEN

DomainU1

Device

Back-End
Device Driver

Front-End
Device Driver

Native
Linux
Driver

Hash
Table

���� request

���� search

���� request

���� request DMA

���� load page

���� update

���� response

				 update
Page table

I/O
Ring

Fig. 1. Procedure for processing I/O requests in the suggested page sharing scheme

1. ➀. The requester domain prepares an empty pseudo-physical page and gives
access grant and address of the page to I/O ring. The I/O request is also
put into I/O ring at this time.

2. ➂. Back-end block device driver at Domain-0 maps the machine page mapped
from the pseudo-physical page given from the requester domain to a pseudo-
physical page in Domain-0. And it calls native Linux block device driver to
load the target block into the mapped page.

3. ➃. The native Linux driver initiates DMA operation for the request.
4. ➄. DMA (in real hardware) reads the target block from disk and put it into

the target page.
5. ➆. After the finish notification from DMA, back-end block device driver

delivers the result message to I/O ring and signal the requester that the
operation is completed.

In our scheme the requesting domain does not give its machine address to
Domain-0. On the contrary, Domain-0 provides its machine pages to the domain
which requests block read from read-only filesystem. By manipulating mapping
table the machine page which originally allocated to Domain-0 can be seen and
used by the requester. Domain-0 can change the mapping states of machine pages
to pseudo-physical pages by calling hyper-call. Hyper-call is function interfaces
that connect Domain-0 and Xen hypervisor. In the suggested scheme, the flow
of processing read request which is not in the memory is described as follows
with Figure 1:

Domain Level Page Sharing in Xen Virtual Machine Systems 595

1. ➀. ditto
2. ➁. Domain-0 analyzes the read request. It searches block number table of

existing pages. If it can not find a corresponding page, it allocates a new
machine page for the request and maps the machine page address into a
pseudo-physical page in Domain-0.

3. ➂. ditto
4. ➃. ditto
5. ➄. ditto
6. ➅. Upon completion of DMA operation, back-end block device driver add

the device ID, block number and corresponding machine page address to the
block number table.

7. ➆. ditto
8. ➇. Front-end block device driver maps the target pseudo-physical page ad-

dress in ➀ to the machine page address.

In the suggested scheme, as ➅ in Figure 1 a table to stores the device ID
and block number of loaded pages is added and managed. In case there occurs
a read request and the search result for the table returns a page that have
the corresponding block, the processing of the read request is done only with
manipulating corresponding mapping information. It is described as follows with
Figure 1.

1. ➀. ditto
2. ➁. Domain-0 analyzes the read request. It searches block number table of

existing pages. If it can find a corresponding page then it gets the machine
address of that page from the table.

3. ➆. ditto
4. ➇. ditto

In the suggested scheme constructing of loaded block table, searching the table
and allocating machine page for the newly loaded block are all done in Domain-
0. Domain-0 is the best for the roles because Domain-0 actually processes all the
I/O requests from all domains and controls all domains.

3.3 Data Structures

For the search of existing page contents we designed a data structure as illustrated
in Figure 2. In Domain-0, there is a linked list of which element is each device ID.
In other words, a device has an element in the list. A minor device [8] in Linux
kernel is used for the unit of a device here. In a hard disk a minor device means
not the disk itself but the partition in the disk. As a result, each of the elements
corresponds to a mounted filesystem respectively. This is called device list.

A linked list is attached to each element of the device list. This is block list.
An element in a block list has a block ID and also a machine page address of
which a page currently containing the block. All the block elements in a certain
device are gathered in the list which is attached to the device element in device
list.

596 M. Jeon et al.

Device #

1

2

3

.

.

.

.

.

.

.

.

N

Device #

1

2

3

.

.

.

.

.

.

.

.

N

Block # MFN Ref Counter D

72 74b6 3

Block # MFN Ref Counter D

72 74b6 3

Block # MFN Ref Counter

80 3ca1 2

Block # MFN Ref Counter

80 3ca1 2

Dom ID PFN

3 74b6

Dom ID PFN

3 74b6

Dom ID PFN

4 1805

Dom ID PFN

4 1805

Dom ID PFN

5 3c868

Dom ID PFN

5 3c868

Dom ID PFN

3 3c6a

Dom ID PFN

3 3c6a

Dom ID PFN

4 1029

Dom ID PFN

4 1029

Fig. 2. Data structure for page sharing information

Each element of the block list also has a linked list respectively which is to
store sharing information of the block. This is called allocation list. An element
in this list has mapping information of a machine page, the pseudo-physical page
which logically contains the block content and the domain which participates in
the sharing of the machine page. If a domain which participates in the sharing
frees a pseudo-physical page which references a machine page, the element for
the domain will be removed from the allocation list. If all elements are removed,
the corresponding machine page will be freed from Domain-0 also and it can be
served for another disk block. A reference counter in an allocation list records
the current number of sharing domains for a machine page.

Domain-0 works in with Xen hypervisor to allocate a new machine page, make
a share of an existing machine page for other domains and deallocate an existing
page without domains in use. On the contrary to data structure managed by
Domain-0 in Figure 2, mapping tables are only accessible and writable in Xen
hypervisor. Thus, Xen provides hyper-calls, which are analogous to system calls
in traditional operating system, to Domain-0 for manipulating the mapping. The
suggested method also uses these hyper-calls to manipulate the mapping tables.
This approach makes actual sharing operations easier which are just modifying
mapping tables.

4 Evaluation

Unfortunately, the suggested method has not been fully implemented yet since
the structure of Xen related to the page management is rather complex and we
lack of information on it. Thus, we evaluated the suggested scheme by simulation
based on the real-world implementation of the described data structures and the
functions. The simulation environment is described in Table 1. The target system
was Xen 3.0 and Xeno Linux for it.

4.1 I/O Reduction and Page Sharing

Actually the amount of saved memory differs not from the sharing mechanism
but from the property of workload and number of active domains. Thus, in this
paper, the evaluation was not for comparison with existing page sharing schemes
but for showing example benefits solely from the suggested page sharing.

Domain Level Page Sharing in Xen Virtual Machine Systems 597

Table 1. Evaluation environment

Virtual Machine Monitor Xen 3.0

Guest OS Linux Kernel 2.6.14 (Xeno Linux)

Memory for Sharing in Domain 0 128 MBytes

Memory for each Domain U 64 MBytes

Shared File System executables and libraries

The workload for the evaluation is comprised of widely-used applications
in the real-world. They are randomly started and finished in each domain.
The applications for the evaluation are Open-Office (Officeware), Firefox (Web-
browser), Gimp (Image editor) and VLC (Video player) and the executable file
sizes of those applications are respectively 153.7 Mbytes, 27.2 Mbytes, 9.8 Mbytes
and 9.1 Mbytes.

Each Domain-U has individual 64 Mbytes memory respectively. Domain-0
has 128 Mbytes memory. All the memory in Domain-0 except the portion for
operating system and system programs is used for shared area.

The result was compared with the result under the original Xen system for
each evaluation. The amount of shared pages is hard to be expressed easily
because it changes continuously as time flows. Thus, the number of sharing
which is also same as the number of reduced read operations is used for the
comparison.

After an hour of execution, the results in Figure 3 were obtained. Each bar
means the actual read requests processed in each environment.

0

10

20

30

40

50

60

70

80

90

100

110

2 4 6 8 16

Number of DomainU

N
o

rm
al

iz
ed

 D
is

k
R

ea
d

 C
o

u
n

t

No Sharing With Sharing

Fig. 3. Number of processed read requests under the suggested scheme

The use of shared area has the effects similar to buffer cache increment which
prepares the frequent contents in advance by other domains. Each program was
executed multiple times in the evaluation. Thus, the addition of shared area
reduces much read requests. Comparing with the results under no sharing, only
about 10% of total read requests are actually processed.

The ratio of actually processed requests tends to decrease as the number of do-
mains in the sharing increases. This tendency, however, changes to the opposite

598 M. Jeon et al.

when there exist too many participating domains. With 16 domains, a little in-
crease of the ratio happens. This is due to the fact that the working space exceeds
the shared area when it contains many domains. Because each of them runs many
applications concurrently and opens various files for the applications, the working
set size for the shared filesystem increases as the number of running domains in-
creases. Thus, adequate amount of shared area to the expected working set should
be prepared for the best result.

4.2 Analysis of Overhead

To find an identical page in 128 Mbytes of shared area, we searched 32768 ele-
ments. If the search is done with well known B+ Tree, 32-order 4-depth tree is
enough and the computational overhead for searching the tree is trivial.

To analyze the spatial overhead, we tracked the magnitude of it while the
number of shared pages increases. The results show that the size of manage-
ment structure grows linearly to the increase of shared area. For 128 MBytes of
shared area shared with 4 domains, about 700 KBytes of memory is used for the
management overhead. This is 0.005% of shared area capacity.

5 Concept of Non-Swap Overcommitment

Since Xen does not allow memory overcommitment, the actual improvement of
scalability will be not gained, even if the implementation will be completed. To
achieve the scalability improvement with the suggested method, Xen should have
also memory overcommitment feature in it.

The most intuitive approach for memory overcommitment in virtual machine
hypervisors is to employ swap mechanism. To support swap mechanism in vir-
tual machine hypervisors, they should have device drivers for swap devices and
filesystem drivers for swap filesystems. However, this policy does not fit the
lightweight virtual machine hypervisors.

As a result, to increase the number of running domains without using swap
mechanism, the feature is needed which allows the newly starting domain to use
the surplus memory from the suggested page sharing method.

However, a blind overcommitment of the surplus memory may cause critical
problems. When a pseudo-physical page which shares a machine page is freed,
a new machine page should be mapped to the pseudo-physical page. If there is
no available machine page due to the over-commitment at this time, the domain
which owns the pseudo-physical page will be unable to proceed any more.

Thus, we propose a notion of permanent share. In read-only shared filesystem,
there are files which should be always loaded in memory during the run-time such
as operating system kernels and core libraries. Sharing for these files is named
permanent share.

A permanent share is not being freed until the sharing domain is terminated.
Thus, it is safe to provide surplus machine page, which is produced from perma-
nent shares, to newly starting domains. This approach is expected to improve

Domain Level Page Sharing in Xen Virtual Machine Systems 599

the scalability of virtual machine systems significantly, because modern operat-
ing systems and core libraries have quite large executable file sizes.

Categorizing files with the permanent share property can be done transpar-
ently by analyzing the using patterns. However, when the categorizing fails, the
domain with freed share may be unable to proceed its execution. Thus, accurate
judgment of permanent share characteristics is a remaining issue.

6 Conclusion

Consolidating virtual servers into few virtual machine systems enables flexible
configuration of cluster or distributed systems. The scalability of the server con-
solidation, however, is primarily limited by memory size.

This paper suggested a new page sharing design for Xen. It analyzes the block
read requests that were forwarded from guest systems to controlling guest system
and shares existing pages by modifying mapping tables when there exist identical
pages. This scheme was verified with simulation using mock-up implementation.

As a further work, we also suggested a concept model of memory overcom-
mitment without swap by using the suggested page sharing scheme based on
permanent sharing notion where we are currently working on.

References

1. Barham, C.P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of vritualization. In: Proceedings of the
19th ACM symposium on Operating systems principles, pp. 164–177. ACM Press,
New York (2003)

2. Schopp, J.H., Fraser, K., Silbermann, M.J.: Resizing memory with balloons and
hotplug. In: Proceedings of the Linux Symposium, vol. 2, pp. 313–319 (2006)

3. Rosenblum, M.: Vmware’s virtual platform: A virtual machine monitor for com-
modity pcs. In: Proceedings of the 11th Hotchips Conference (1999)

4. Waldspurger, C.A.: Memory resource management in vmware esx server. In: Pro-
ceedings of the 5th Symposium on Operating Systems Design and Implementatioe
(December 2002)

5. Rivest, R.L.: The MD5 message-digest algorithm. RFC 1321, MIT, RSA Data Se-
curity (April 1992)

6. Bugnion, E., Devine, S., Govil, K., Rosenblum, M.: Disco: Running commodity
operating systems on scalable multiprocessors. ACM Transactions on Computer
Systems 15(4), 412–447 (1997)

7. Cherkasova, L., Gardner, R.: Measuring cpu overhead for i/o processing in the xen
virtual machine monitor. In: Proceedings of USENIX 2005 Annual Technical Con-
fernce, pp. 387–390 (2005)

8. Bovet, D.P., Cesati, M.: 13. In: Understanding the Linux Kernel. 3rd edn. O’Reilly,
536–537 (2006)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 600 – 607, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Parallel First-Order Dynamic Logic and Its
Expressiveness and Axiomatization∗

Zhiguo Zhang and Yunfei Jiang

Faculty of Information Science and Technology
Sun Yatsen University

Guangzhou City, 510275 China
lnszzg@mail.sysu.edu.cn

Abstract. For modeling the parallel actions, the quantified dynamic logic
(QDL) is extended to Parallel First-order Dynamic Logic (PaFDL) with parallel
action compositions. The composition is introduced as an operator ∩ on actions
in the same syntax as in Peleg’s CQDL but its semantics is defined differently
from those of CQDL. The expressive power of PaFDL is proved to be the same
as that of QDL. An axiomatic system is given and its first-order soundness and
completeness are proved. Compared with other parallel or concurrent Dynamic
Logics, PaFDL has a very easy and intuitive understanding for parallel actions
as they are in the sequential models.

Keywords: Dynamic logic, First-order logic, Parallel actions, Expressiveness,
Axiomatization.

1 Introduction

Propositional dynamic logic (PDL) was first proposed by Fischer and Ladner [FiL79]
for describing the sequential program dynamic characteristics such as correctness,
termination, and equivalence. It has received considerable attention, and many of its
aspects have been thoroughly investigated [Nis79, Har84, HKT00]. Many
investigations concern with complexity and axiomatization [Bal01, Dan84, KoP81,
Lan05, LaL05, Lei81, Pra78]. PDL has been also extended to first-order level with
many deep investigations [BeS01, GrS91, Har79]. Applications of dynamic logic to
program verification and reasoning about actions and knowledge are also studied
[PrS96, HRS87]. For modeling concurrent behaviors of multiagent systems,
propositional dynamic logic has been extended to concurrent propositional dynamic
logic (CPDL) and concurrent quantified dynamic logic (CQDL) by Peleg [Pel87a,
Pel87b] with an extension of parallel actions. Peleg’s approach views concurrency in
its purest form as the dual notion of nondeterminism. Nondeterminism introduces
splitting at a state into several branches, and letting the process choose between the
different possible continuations. Analogously, concurrency means again splitting a
node into several branches, but requiring the process to execute all possible

∗ This work is partially supported by Guangdong Key Laboratory of Information Security.

 Parallel First-Order Dynamic Logic and Its Expressiveness and Axiomatization 601

continuations. This is basically the classical concept of and/or decomposition, which
occurs widely in logic, game theory, etc. It is shown that CPDL is strictly more
expressive than PDL. A complete axiom system and its decidability for CPDL are
provided. Some other investigations on concurrency of dynamic logic are presented in
[Dan84].

In this paper, we introduce a parallel first-order dynamic logic (short for PaFDL)
by adopting the syntax of Peleg’s CQDL and give it a different semantics for parallel
action compositions. The expressiveness of PaFDL is proved to be the same as QDL
which is proposed by Harel et al. in [HKT00]. A sound and complete axiomatic
system is provided for a restricted set of formulas of the form A→〈α〉B. In the
following, we give the syntactic definitions in Section 2, define their semantics
in Section 3, and discuss the expressiveness in Section 4, the axiomatization in
Section 5, and finally conclusion in Section 6.

2 Syntax

The syntax of parallel first-order dynamic logic (PaFDL) is based upon two kinds of
symbols: logical symbols including the connectives ¬ and ∨, the punctuation marks (,
), 〈, 〉, [and], the equality symbol =, the existential qualifier ∃ and the universal
qualifier symbol ∀, a countable set V of variables, the truth symbols true and false;
extralogical symbols including a countable set P of predicate symbols, a countable set
F of function symbols, and a countable set Π0 of atomic action symbols. Each of
function and predicate symbols has associated with it a natural number which is called
its arity. 0-ary function symbols are called constants and 0-ary predicate symbols are
called propositional constants. These countable sets constitute the basis for PaFDL.
Complex formulas and complex programs over this basis are defined as follows.

Definition 1. (Basis) A basis for PaFDL is B=(F,P,Π0) of sets of symbols, where F, P
and Π0 are understood to be the sets of function symbols, predicate symbols, and
action symbols respectively as described above.

Definition 2. (Terms) The set TB of all terms of PaFDL over a basis B=(F,P,Π0) is
inductively defined by:

(1) Every variable from V is a term. (V⊆TB)
Every constant from F is a term.

(2) If t1, …, tn (n≥1) are terms and f∈F is an n-ary function symbol, then f(t1, …, tn) is
also a term.

Definition 3. (Formulas) The set Φ of all well-formed formulas of PaFDL over a
basis B=(F,P,Π0) is inductively defined by:

(1) Every propositional constant from P is a formula. (P⊆Φ)
The truth symbols false and true are formulas.
If t1 and t2 are terms, then t1=t2 is a formula.
If t1, …, tn (n≥1) are terms and p∈P is an n-ary predicate symbol, then p(t1, …, tn)
is also a formula.

602 Z. Zhang and Y. Jiang

(2) If A is a formula then (¬A) ("not A") is a formula.
If A and B are formulas then (A∨B) ("A or B") is a formula.
If A is a formula and x is a variable, then (∃xA) and (∀xA) are formulas.
If α is an action and A is a formula then [α]A ("every execution of α from the
present state leads to a state where A is true") is a formula

Definition 4. (Actions) The set Π of all actions of PaFDL over a basis B=(F,P,Π0) is
inductively defined by:

(1) Every atomic action is an action. (Π0 ⊆ Π)
(2) If α and β are actions then (α;β) ("do α followed by β") is an action.

If α and β are actions then (α∪β) ("do α or β, nondeterministically") is an action.
If α and β are actions then (α∩β) ("do α and β, in parallel") is an action.
If α is a action then α* ("repeat α a finite, but nondeterministically determined,
number of times") is an action.
If A is a formula then A? ("proceed if A is true, else fail") is an action

The syntax for actions we adapted is exactly the same as Peleg’s CQDL. However,
we will have a different view of concurrency for parallel actions as described in the
following sections.

3 Semantics

First we define a function patching operator as follows: if f: D→E is any function,
x∈D and v∈E, then f[x/v]: D→E is the function defined by

otherwise

if

)(
)](/[

def yx

yf

v
yvxf

=

⎩
⎨
⎧

=

We also need to define the domain Bool as
 Bool = {true, false}.
As default, we always include this domain in our description.

Definition 5. (Interpretation) Let B=(F,P,Π0) be a basis for PaFDL. An interpretation
of B is a pair I=(D,I0), where D is a non-empty set (called the domain or world of
states of I) and I0 is a mapping which assigns

(1) To every constant c∈F an element I0(c)∈D;
(2) To every function symbol f∈F of arity n≥1 a total function I0(f): D

n→D;
(3) To every propositional constant a∈P an element I0(a)∈Bool, where Bool is the

domain of truth values;
(4) To every predicate symbol p∈P of arity n≥1 a predicate I0(p): Dn→Bool.

Definition 6. (Assignment) Let B=(F,P,Π0) be a basis for PaFDL and I=(D,I0) be an
interpretation of B. A total function σ: V→D mapping variables to the domain D of I
is called an assignment. In some context, an assignment is also called state. The set of
all assignments for I is denoted by ΣI or simply by Σ.

The definition of interpretation then can be extended to include:
(5) To every action symbol α∈Π0 a binary relation I0(α)⊆Σ×Σ.

 Parallel First-Order Dynamic Logic and Its Expressiveness and Axiomatization 603

An interpretation and an assignment together induce a mapping from every term to
an element in the domain of the interpretation and from every formula to a truth value
and from every action to a binary relation over assignments. It is clear that the
interpretation must be extended inductively as follows to supply the intended
meanings for the complex terms, actions and formulas:

Definition 7. (Semantics) Let I=(D,I0) be an interpretation of a basis B=(F,P,Π0) for
PaFDL. To I is associated a functional, also denoted by I, which maps every term
t∈TB to a function I(t): Σ→D and every formula A∈Φ to a function I(A): Σ→Bool
and every action α∈Π to a binary relation I(α)⊆Σ×Σ. Each parts of this functional
are defined inductively over TB, Φ and Π as follows:

Semantics of terms
(1) If c∈F is a constant, then I(c)(σ)=I0(c) for all assignments σ∈Σ.

If x∈V is a variable, then I(x)(σ)=σ(x) for all assignments σ∈Σ.
(2) If t1, …, tn (n≥1) are terms and f∈F is an n-ary function symbol, then I(f(t1, …,

tn))(σ)=I0(f)(I(t1)(σ),…,I(tn)(σ)) for all assignments σ∈Σ.

Semantics of actions
(1) For any atomic action a in Π0, I(a)= I0(a).
(2) (s,t)∈I(α;β) iff there exists a state z such that (s,z)∈I(α) and (z,t)∈I(β).
(3) (s,t)∈I(α∪β) iff (s,t)∈I(α) or (s,t)∈I(β).
(4) (s,t)∈I(α∩β) iff (s,t)∈I(α;β) and (s,t)∈I(β;α).
(5) (s,t)∈I(α*) iff there exists a non-negative integer n and there exist states z0, …, zn

such that z0=s, zn=t and for all k=1..n, (zk−1, zk)∈I(α).
(6) (s,t)∈I(A?) iff s=t and I(A)(t)=true.

Semantics of formulas

(1) For any propositional constant a in P, then I(a)(s)=I0(a) for all s in Σ.
I(false)(s) = false and I(true)(s) = true, for any s in Σ.
If t1, t2 are terms, then I(t1=t2)(s)=true if I(t1)(s)=I(t2)(s), I(t1=t2)(s)=false if
I(t1)(s)≠I(t2)(s), for all s in Σ.
If t1, …, tn (n≥1) are terms and p∈P is an n-ary predicate symbol, then I(p(t1, …,
tn))(s)= I0(p)(I(t1)(s),…,I(tn)(s)) for all assignments σ∈Σ.

(2) I(¬A)(s)=true if I(A)(s)= false, I(¬A)(s)= false if I(A)(s)=true, for all s in Σ.
I(A∨B)(s)=I(A)(s)∨I(B)(s), for all s in Σ.
I([α]A)(s)=true if s in {r: for all states t, if (r,t)∈I(α) then I(A)(t)=true},
I([α]A)(s)= false otherwise, for any s in Σ.
If A∈TB is a formula and x∈V is a variable, then
I((∃xA))(s)=

⎩
⎨
⎧ =∈

otherwise

])/[)((thatsuchdomaintheofelementanisthereif

false

truedxsADdtrue I

for all s in Σ.
If A∈TB is a formula and x∈V is a variable, then

604 Z. Zhang and Y. Jiang

I((∀xA))(s)=
⎩
⎨
⎧ =∈

otherwise

])/[)((thatsuchdomaintheofallforif

false

truedxsADdtrue I

for all s in Σ.

We can define a new modal operator 〈〉 as follows:

〈α〉A =def ¬[α]¬A.

Now consider a formula A. We shall say that A is valid in I or that I is a model of
A, or "I╞ A", iff for all states s in ΣI, I(A)(s)=true. A is said to be logically valid, or
"╞ A", iff for all interpretation I, I╞ A. We shall say that A is satisfiable in I or that
I satisfies A, or "I⎬A", iff there exists a state t such that I(A)(t)=true. A is said to be
logically satisfiable, or "⎬A", iff there exists a model I such that I⎬A.

4 Expresiveness of PaFDL

We investigate the expressive power of PaFDL relative to quantified dynamic logic
(QDL) with no ∩ operator. First we introduce a definition that allows us to compare
different dynamic logics. If DL1 and DL2 are two different dynamic logics over the
same basis, we say that DL2 is as expressive as DL1 and write DL1≤DL2 if for each
formula A in DL1 there is a formula B in DL2 such that I(A↔B)(s)=true for all I and
all s. Intuitively, < and ≡ mean “strictly less expressive than” and “of equal expressive
power” respectively.

Lemma 1. QDL≤PaFDL.

Proof. This is directly from the syntactic definition of PaFDL. Actually, PaFDL is
extended from QDL.

Lemma 2. PaFDL≤QDL.

Proof. We should prove that for any A in PaFDL there is a formula B in QDL such
that I(A↔B)(s)=true for all I and all s. Any formula A in PaFDL can be either
containing operator ∩ or not. If A contains no operator ∩, then A is in QDL by the
syntactic definition of PaFDL.

Now suppose that A contains the operator ∩. Without losing the generality and for
simplification we consider only the case A is [α∩β]B. Given any interpretation I and
s∈ΣI, by the semantic definition of PaFDL,

I([α∩β]B)(s)=true
iff

s∈{r: for all states t, if (r,t)∈I(α∩β) then I(B)(t)=true}
iff

s∈{r: for all states t, if (r,t)∈I(α;β) and (r,t)∈I(β;α) then I(B)(t)=true}
iff

I([α;β]B)(s)=true and I([β;α]B)(s)=true

 Parallel First-Order Dynamic Logic and Its Expressiveness and Axiomatization 605

iff
I([α;β]B∧[β;α]B)(s)=true.

Clearly [α;β]B∧[β;α]B is in QDL.

Theorem 1. (Expressiveness) QDL≡PaFDL.

Proof. This is directly from the above two lemmas.

This theorem shows that PaFDL has the same expressive power as QDL. Intuitively,
PaFDL understands parallel actions in just the interleavable way as in QDL.

5 Axiomatization of PaFDL

Here we introduce an axiomatic system for the PaFDL calculus with an interpretation.
Let B=(F,P,Π0) be a basis for PaFDL and I=(D,I0) be an interpretation of B. All
semantically valid in I formulas of form A→〈α〉B are taken as axioms. This may lead
some confusions with calculus because we consider that calculus has nothing to do
with semantics. However, we usually can understand intuitively what the interpreted
formulas to be true.

Axiom schemes

(A1) All instances of valid PaPDL formulas;
(A2) All instances of valid first-order formulas;
(A3) All formulas of form A→〈α〉B which satisfies
 “for all s and t such that (s,t)∈I(α), I(A)(s)=true implies I(B)(t)=true”,
 where α is an atomic action.

Inference rule
(MP) modus ponens: from A, A→B infer B

If X is a set of formulas and A is a formula then we say that A is deducible from X
in I, or "X ├I A", if there exists a construction sequence A0, A1, …, An=A for A from
the set of axioms and the inference rule (MP). Further, we say that A is deducible in I
or “├I A” iff Ø├I A. X is said to be consistent in I iff not X├I false.

Theorem 2. (First-order Soundness) For any PaFDL formula of the form A→〈α〉B, for
first-order A and B and action α containing first-order tests only,

├I A→〈α〉B implies I╞A→〈α〉B

Proof. The proof of the soundness proceeds by induction on the compositions of
actions.

Theorem 3. (First-order Completeness) For any PaFDL formula of the form A→〈α〉B,
for first-order A and B and action α containing first-order tests only,

I╞A→〈α〉B implies ├I A→〈α〉B

606 Z. Zhang and Y. Jiang

Proof. The proof of the completeness is simplified as the following induction. For
atomic α, it is clear that I╞A→〈α〉B implies ├I A→〈α〉B. For any composed action α
= α1⋅α2, where operator “⋅” indicates one of “;”, “∩”,“∪”, we can prove the
conclusion for α holds in the condition that the induction hypotheses for α1 and α2
both hold. And more for α* we can prove the same conclusion.

6 Conclusion and Discussion

The Parallel First-order Dynamic Logic (PaFDL) is introduced with the syntactic and
semantic definitions. The same syntax as Peleg’s CQDL is adopted and semantics of
PaFDL is defined differently from those of CQDL. The expressive power of PaFDL is
proved to be the same as that of QDL. An axiomatic system is given and its first-order
soundness and completeness are proved.

Compared with other parallel or concurrent Dynamic Logics, PaFDL has a very
easy and intuitive understanding for parallel actions as they are in sequential models.
According to Theorem 1, PaFDL has the same expressive power as its sequential
counterpart QDL, not as the concurrent version CQDL. This indicates that PaFDL
depicts parallel actions in a much like way the sequential models take.

Many other properties remain to be investigated including complexity, more
extended axiomatization, and applications in reasoning about parallel actions and
changes.

References

[BeS01] Beckert, B., Schlager, S.: A sequent calculus for first-order dynamic logic with trace
modalities. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI),
vol. 2083, pp. 626–641. Springer, Heidelberg (2001)

[Bal01] Balbiani, P.: A new proof of completeness for a relative modal logic with composition
and intersection. Journal of Applied Non-Classical Logics 11, 269–280 (2001)

[Dan84] Danecki, R.: Nondeterministic propositional dynamic logic with intersection is
decidable. In: Skowron, A. (ed.) Computation Theory. LNCS, vol. 208, pp. 34–53.
Springer, Heidelberg (1985)

[FiL79] Fischer, M., Ladner, R.: Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences 18, 194–211 (1979)

[GrS91] Groenendijk, J., Stokhof, M.: Dynamic Predicate Logic. Linguistics and
Philosophy 14(1), 31–100 (1991)

[Har84] Harel, D.: Dynamic logic. In: Gabbay, D., Guenthner, F. (eds.) (editors): Handbook of
Philosophical Logic, vol. II, pp. 497–604. D. Reidel, Dordrecht (1984)

[Har79] Harel, D.: First-Order Dynamic Logic. LNCS, vol. 68. Springer, Heidelberg (1979)
[HKT00] Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge

(Massachusetts) (2000)
[HRS87] Heisel, M., Reif, W., Stephan, W.: Program verification using dynamic logic. In:

Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1987. LNCS, vol. 329, Springer,
Heidelberg (1988)

[KoP81] Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theoretical
Computer Science 14, 113–118 (1981)

 Parallel First-Order Dynamic Logic and Its Expressiveness and Axiomatization 607

[Lan05] Lange, M.: A lower complexity bound for propositional dynamic logic with
intersection. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.)
Advances in Modal Logic, vol. 5, pp. 133–147. King’s College Publications, London
(2005)

[LaL05] Lange, M., Lutz, C.: 2-EXPTIME lower bounds for propositional dynamic logics with
intersection. Journal of Symbolic Logic 70, 1072–1086 (2005)

[Lei81] Leivant, D.: Proof Theoretic Methodology for Propositional Dynamic Logic. In: Díaz,
J., Ramos, I. (eds.) Formalization of Programming Concepts. LNCS, vol. 107, Springer,
Heidelberg (1981)

[Nis79] Nishimura, H.: Sequential method in propositional dynamic logic. Acta Informatica 12,
377–400 (1979)

[Pel87a] Peleg, D.: Concurrent dynamic logic. Journal of the ACM 34, 450–479 (1987)
[Pel87b] David, P.: Communication in Concurrent Dynamic Logic. J. Comput. Syst. Sci. 35,

23–58 (1987)
[Pra80] Pratt, V.: A near-optimal method for reasoning about action. Journal of Computer and

System Sciences 20, 231–254 (1980)
[Pra78] Pratt, V.: A practical decision method for propositional dynamic logic. In: Proceedings

of the 10th Annual ACM Symposium on Theory of Computing, pp. 326–337. ACM Press,
New York (1978)

[PrS96] Prendinger, H., Schurz, G.: Reasoning about action and change: A dynamic logic
approach. Journal of Logic, Language, and Information 5(2), 209–245 (1996)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 608 – 616, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Efficient Voice User Interface System Using VoiceXML
and ASP.NET 2.0

Byung-Seok Kang1 and Gi-Jong Yoo2

1 Department of Electronics Engineering, Korea University
1, 5-ga, Anam-dong, Sungbuk-gu, 136-701, Seoul, Korea

kbsgasu@korea.ac.kr
2 Graduate School of Education, Ajou University

San 5, Wonchon-dong, Yeongtong-gu, 443-749, Suwon, Kyonggi-do, Korea
mathink@naver.com

Abstract. The web-based application by VoiceXML service on the Internet is
gradually being accepted for the human-machine interaction because it provides
the speech-enabled function and makes telephone access a reality. Many
companies are interested in building the effective dynamic Voice User Interface
(VUI) system into the architecture of the already existing web application. The
previous papers [1, 2] suggest that they demonstrate how to design and
implement using VoiceXML and Active Server Pages. However, they have
used only one server script language, so it is not efficient. For that reason, we
have built another design that is more efficient for VoiceXML. Experimental
results demonstrate that ASP.NET 2.0 shows the highest communication
success rate and the lowest response time for web surfing.

1 Introduction

Today the computer distinguishes itself as a key player in the everyday human
activity, be it business, research, engineering, or entertainment. The invention of the
World Wide Web gave the computer even greater importance. By bringing the entire
globe under its orb, the World Wide Web opened before us a new world characterized
by the use of computer applications in every field. Voice and web technologies
assumed a definite shape in the last decade of the 20th century and soon sparked a
series of unprecedented changes in the way people interact long distance. There are a
host of competent technologies, such as VoiceXML 2.0, that facilitate fast and
accurate transfer of information all over the world. Furthermore, the Microsoft new
computer language Active Server Page.NET 2.0 is powerful for designing the VUI
system.

Many companies and personal users are using VXML for their customer web
service. D. Mecanovic proposes the Voice User Interface Design for a telephone
application [1]. They proved that the long and descriptive prompts make navigation
difficult and female text-to-speech (TTS) voice is preferred in dynamic VUI. R.
Vankayala and H. Shi [2], in their paper “Dynamic Voice Use Interface using VXML
and Active Server Pages” implemented and demonstrated an existing e-Commerce

 Efficient Voice User Interface System Using VoiceXML and ASP.NET 2.0 609

web application by using the BeVocal.com server and Microsoft IIS Web server.
Furthermore M. Tsai [5] deploys a web-based Mandarin dialogue system, in which a
user can use either a telephone channel or VoIP by personal computer to access the
voice server. But no one suggested which programming language is the most efficient
when it is used with VXML for existing web application services. In this paper, we
perform comprehensive experiments to find out the best implementation tool to build
an efficient VUI system. Specifically, we consider four tools: ASP, ASP.NET 2.0,
JSP, and PHP. Experimental results demonstrate that ASP.NET 2.0 has the highest
communication success rate and the lowest response time. This paper is organized as
follows. Section 2 discusses some background information. Next, the design utilizing
VoiceXML with some famous web programming languages is presented in section 3.
Simulation results are presented in Section 4 to show that our proposed design can
provide a good performance in the communication success rate and reduce the
response time. Finally, Section 5 concludes the paper.

2 Background

2.1 VoiceXML System

While HTML assumes a graphical web browser with display, keyboard, and mouse,
VoiceXML assumes a voice browser with audio output, audio input, and keypad
input. Audio input is handled by the voice browser's speech recognizer. Audio output
consists both of recordings and speech synthesized by the voice browser's text-to-
speech system.

A voice browser typically runs on a specialized voice gateway node that is
connected both to the Internet and to the public switched telephone network (see
Figure 1). The voice gateway can support hundreds or thousands of simultaneous
callers, and can be accessed by any one of the world's estimated 1,500,000,000
phones, ranging from antique black candlestick phones up to the very latest mobiles.

The user interacts with a Web site over the phone using a VoiceXML Browser,
which is hosted on a Gateway. Instead of rendering and interpreting HTML, the
VoiceXML Browser renders and interprets VoiceXML. The Gateway is the key

Fig. 1. VoiceXML serving architecture

610 B.-S. Kang and G.-J. Yoo

bridge technology, responsible for VoiceXML Browser, ASR Resource, TTS
Resource, Telephony Resource, Audio Resource and TCP/IP Resource.

2.2 ASP.NET 2.0

Active Server Pages.NET (ASP.NET) is a web development technology from
Microsoft. Part of the .NET Framework, ASP.NET allows developers to build
dynamic web applications and web services using compiled languages like VB.NET
and C#. Using Visual Studio, the development tool from Microsoft, web developers
can develop very compelling applications using ASP.NET, with the ease of drag-and-
drop server controls. Currently in its next major release, ASP.NET 2.0 is slated to be
released in November 2005.

ASP.NET 2.0 is a compiled common language runtime code running on the server.
Unlike its interpreted predecessors, ASP.NET 2.0 can take advantage of early
binding, just-in-time compilation, native optimization, and caching services right out
of the box.

Two aspects of ASP.Net 2.0 makes it fast (compiled code and caching). In the past,
the code was interpreted into "machine language" when website visitor viewed web
page. Now, with ASP.Net 2.0 the code is compiled into "machine language" before
visitor ever comes to web site. Caching is the storage of information that will be
reused in a memory location for faster access in the future. ASP.Net 2.0 allows
programmers to set up pages or areas of pages that are commonly reused to be cached
for a set period of time to improve the performance of web applications. In addition,
ASP.Net 2.0 allows the caching of data from a database so the website isn't slowed
down by frequent visits to a database when the data doesn't change very often.

3 Design and Implementation Using VoiceXML and ASP.NET 2.0

This section gives the main implementation details of our site. We describe our
algorithm and four designed systems.

3.1 System Architecture

To build VUI systems, we use VoiceXML café, “BeVocal.com” [6] for a VoiceXML
server. The BeVocal Café is a world-class, web-based development environment that
provides all the tools and resources developers need to create their own innovative
speech applications.

In our VUI systems, two web servers (Microsoft IIS and Apache web server), two
operating systems (Windows 2003 server and Linux server), four web programming
languages (ASP, ASP.NET 2.0, JSP, and PHP), and two database systems (MS-SQL
2005 and MySQL 5.0) are used. Figure 2 shows the VUI system architecture.

3.2 Algorithm of the Web Surfing System

To demonstrate the behavior of VUI systems, the following application scenario is
adopted. Once a user calls a VUI homepage, the VUI system says “Welcome to my
homepage. Which do you want? Notice, Free board, Public data or On-line poll?” If

 Efficient Voice User Interface System Using VoiceXML and ASP.NET 2.0 611

Fig. 2. VUI architecture

the user selects a free board (b), the system says “Do you want to write or not?”. If the
user chooses “yes”, the system shows a “write article” page; otherwise, the system
asks you a next question. Detailed application scenario is illustrated in Figure 3.

The source code which is below is the detail for main page in Figure 3’s
application scenario [7]. During some system design we describe a part of source
code under ASP.NET 2.0.

Fig. 3. Application scenario in VUI systems

612 B.-S. Kang and G.-J. Yoo

Sample Source Code of Main Page

<%@ Page Language="C#" MasterPageFile="~/Default.master"
Title="Simulation no.4 - ASP.NET 2.0 with C#" %>

<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">
<form id="main" scope="dialog">
 <prompt bargein="true">
 Welcome to visit my homepage. Which do you want?
 </prompt>
 <grammar> Notice | Free Board | Public Data | Survey </grammar>
 <noinput>
 No response, say one more please.
 <reprompt/>
 </noinput>
 <noinput count="4">
 Disconnect the phone.
 <disconnect/>
 </noinput>
 <nomatch>
 Say one more please.
 <reprompt/>
 </nomatch>
 <filled namelist="user_input" mode="all">
 <if cond="user_input == 'Notice'">
 <goto next="/List.aspx?TblName=Notice" fetchhint="safe"/>
 <elseif cond="user_input == 'Free Board'"/>
 <goto next="/List.aspx?TblName=Notice" fetchhint="safe"/>
 <elseif cond="user_input == 'Public Data'"/>
 <goto next="/List.aspx?TblName=Notice" fetchhint="safe"/>
 <elseif cond="user_input == 'Survey'"/>
 <goto next="/Poll_List.aspx" fetchhint="safe"/>
 <else/>
 <disconnect/>
 </if>
 </filled>
</form>
</VXML>

If users request the web service through voice interface, the BeVocal server should

interpret the voice and connect with this site for response. Then the web server shows
the correct web page and waits for the next request. Figure 4 shows some sample web
pages.

First, in figure 4(a), visitors view a notice board. Second, Figure 4(b) shows a
guest write the free board. Third, figure 4(c), users connect to the public data for
download some useful data. Finally in figure 4(d), users view the result of online poll
page.

 Efficient Voice User Interface System Using VoiceXML and ASP.NET 2.0 613

 (a) (b)

 (c) (d)

Fig. 4. (a) View notice list. (b) Write the free board. (c) Download some data. (d) The result of
online poll.

4 Simulations

In the implemented VUI systems, we measure the average response time and the
success rate. The average response time is the elapsed time to obtain the result page
when a user requests a page, and the success rate is the probability that a correct page is
obtained. Figure 5, 6 shows the average response time as the number of web pages
surfed by users using VUI system or not. As you can assume, VUI is much more
efficient than usual web application system in using circumstances (figure6). It is shown
that ASP.NET 2.0 has the shortest response time and JSP and ASP exhibit longer
response time than PHP and ASP.NET 2.0. This can be explained by two reasons: 1)
JSP, ASP, and PHP interpret common language runtime codes whenever a user requests
a page. On the other hand, ASP.NET 2.0 pre-compiles common language runtime codes
before the user visits the web site, and thus it can display the result page immediately
without any interpretation; 2) ASP.NET 2.0 employs a caching scheme to allocate
frequently used code and data in main memory when a user visits a web site.

614 B.-S. Kang and G.-J. Yoo

Fig. 5. Average response time not using VUI system

Fig. 6. Average response time using VUI system

 Efficient Voice User Interface System Using VoiceXML and ASP.NET 2.0 615

Fig. 7. Success rate

Figure 7 show the success rate as the number of speeches. It can be found that
ASP.NET 2.0 has the highest success rate compared with other tools. All of these
experimental results demonstrate that ASP.NET 2.0 is the most suitable programming
language in VUI system.

5 Conclusion and Future work

This paper describes which web programming language reduces the response time
with VXML. We design four other VXML systems. We also propose the guideline to
use the VUI service without changing previous infra structure. Experimental results
indicate that ASP.NET 2.0 can significantly reduce the average response time and
provide higher success rate, compared with other tools, i.e., JSP, PHP, and ASP. In
our future work, we will investigate VUI systems using VoiceXML 3.0 which is a
new release from the W3C's voice browser working group [4].

References

1. Mecanovic, D., Shi, H.: Voice User Interface Design for a Telephone Application using
VoiceXML. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005.
LNCS, vol. 3399, pp. 1058–1061. Springer, Heidelberg (2005)

2. Vankayala, R., Shi, H.: Dynamic Voice User Interface Using VoiceXML and Active Server
Pages. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006.
LNCS, vol. 3841, pp. 16–18. Springer, Heidelberg (2006)

616 B.-S. Kang and G.-J. Yoo

3. VoiceXML Forum (June 2007), http://www.voicexml.org
4. W3C Voice Brower Activity (June 2007), http://www.w3c.org/Voice
5. Tsai, M.-j.: The VoiceXML dialog system for the e-commerce ordering service. In: Proc. of

the Ninth International Conference, May 24-26, 2005, vol. 1, pp. 95–100 (2005)
6. BeVocal Café, VoiceXML development environment (June 2007), http://www.bevocal.com
7. XML Web Services Created Using ASP.NET and XML Web Service Clients (June 2007),

http://msdn2.microsoft.com/en-us/library/7bkzywba.aspx

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 617–623, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Array Modeling in Java Virtual Machine

Wu Weimin1, Li Kailun2, and Su Qing3

1 Computer Faculty, Guangdong University of Technology, Guangzhou 510006, China
2 Guangzhou Branch, People’s Bank of China, Guangzhou 510050, China

Abstract. Array is an important feature in Java and Java Virtual Machine. In
spite of its importance, it has not been modeled by any existing Java Virtual
Machine Models. In this paper, we define an extending model which uses an
existing model as a basis and give the hierarchy of these two models, to model the
array. In the extending model, we model the array in three steps. The first step is
adding array related instructions in a formal way. The second step is refining the
type compatibility to include array types. The last step is implementing array
loading process also in a formal way. In the last part of thesis, we give the future
work of extending other important features in Java and Java Virtual Machine.

1 Introduction

Java is an object-oriented programming language with a widespread use, and the java
compiler translates Java source code to bytecode, which executes on the Java Virtual
Machine (JVM).[1]

Compared to other object-oriented languages, there are many distinct features in
Java, and array is one of them. And array is also an important feature in Java and JVM.
The distinction and importance of it are as follows. First, in Java programming
language, array is a most frequently used data structure to contain elements. Second, in
Java type system, array type is a kind of reference type (the other two are class type and
interface type). Third, in object creating, other then any other kinds of objects, array is a
full-fledged object and is dynamically created, and it generally includes basic type
array and object reference array. Fourth, in object loading, array loading is different
from class or interface loading. Last but not least, in JVM instruction set, the JVM uses
special bytecode to handle array. [2]

For this distinct and important feature in Java and JVM, it is significant to describe it
in essence to help us in designing, programming, etc. The best and precise way to
describe the essence is to build a model in a mathematical way. And because the JVM
involves type, object creating and loading, and instruction set, so the most suitable
model to build on is JVM model. After building the model, we can take the advantages
as follows. First, it can help us precisely find the compiling error or runtime error which
is directly or indirectly caused by misusing of array. Second, it can help us know what
happens to the array behind the scene in a mathematical way, and thus help us design
more robust programs.

618 W. Weimin, L. Kailun, and S. Qing

So far, several formalizations of the JVM model have been proposed. However, they
provide only insight into one or few aspects of the machine, not the whole machine, and
the array is not modeled in any of these models. So it means we need to extend an
existed model to support array. The most rigorous and comprehensive one among these
model is the machine proposed by Egon Borger and Wolfram Schulte (for clarity, we
call it BSM, namely, Borger and Schulte Model). [3]. This machine can be validated
and verified by standard techniques because it is defined by Abstract State Machines
(ASM), which have a simple but precise semantic foundation. [4]

In BSM, the model can be described as a hierarchy of four submachines. Fig. 1.
shows the hierarchy. The basic stack machine VMI supports instructions which are
used for compilation of imperative programs. Typical instructions are: load and store a
variable, apply arithmetic and relational operators, and jump. VMI is upgraded to VMC
by including instructions which are used for the compilation of Java static features,
such as class fields, class methods and class initializers. VMC can be extended to VMO
which supports instructions for Java object-oriented features, such as instance creation,
instance field access, instance calls with early or lately binding and type casts. And the
topmost machine VME provides instructions with respect to exception [3]. And this
structural decomposition is based on the orthogonality of various language features of
Java. [5,6]

VMI: Loc vars, expr, stm

VMO: fields methods casting constructors

VME: throw try/catch try/finally

VMC: fields,methods,initializations

Fig. 1. Structural Decomposition of BSM

2 The Model of Extending BSM

Based on the current situation of JVM and the importance of array in JVM, we extend
the BSM to support the function of array. And we call this extending model the
Extending BSM (short for EBSM).

We add a VMA machine which supports array on top of the topmost model VME to
extend the BSM. The main reason is as follows: when we extend the machine to support
array, we should refine some functions and add some functions. If we separate these
functions in four levels, then the description of the functions will not be centralized and
the difference between BSM and EBSM will not be clear enough. And if we create a
new level above the BSM, then these two problems will be solved. Fig. 2. shows the
structural decomposition of EBSM.

 Array Modeling in Java Virtual Machine 619

VMI: Loc vars, expr, stm

VMO: fields methods casting constructors

VME: throw try/catch try/finally

VMC: fields,methods,initializations

VMA: array

Fig. 2. Structural Decomposition of EBSM

3 VMA Modeling

We implement the VMA machine by three steps. First, we add 20 instructions which
involving array into the instruction set of the JVM. Second, we refine the type
compatibility to include the array type. Third, we refine the loading method to add the
process of loading and linking array.

3.1 Adding Array Instructions

There are about 20 array related instructions in JVM. They can be divided into three
kinds. The first kind is loading and storing array elements, contains aaload, aastore,
baload, bastore, caload, castore, daload, dastore, faload, fastore, iaload, iastore, laload,
lastore, saload, sastore. The most difference among these instructions are the type of the
operand. Details of these instructions can be seen in [2]. The second kind is creating
array, contains anewarray, newarray, multianewarray, which mean creating array of
reference type, creating array of basic type and creating multiple array respectively.
The third kind is getting length of array, which has only one instruction: arraylength.
The first and the second kind are more important than the third kind, so we describe
these two kind instructions in detail.

3.1.1 Instructions of Loading and Storing Array Elements
Because the execVM part of the BSM, which defines the process of instruction
executing, uses the free data type to abstract the difference between non-array type,
including reference type and basic type, so the first kind of instructions can be abstract
to loadarrayelem and storearrayelem, which mean loading array element and storing
array element respectively. Prog. 1. shows this kind of instructions.

Prog. 1. Instructions of loading and storing array elements

execVM (redef)==…

loadarrayelem()•

if newopd•wr•wi=opd• #w #wr =r• #wi=i then

newopd(#newopd+1):=r[i]

620 W. Weimin, L. Kailun, and S. Qing

pc:=pc+1

storarrayelem()•

if newopd•wr•wi•wv=opd• #w #wr=r• #wi=i• #wv=v then

r[i]:=v

pc:=pc+1

3.1.2 Instructions of Creating Array
To implement the instructions of creating array, we should first define a type called
AState to denote the state of an array. Prog. 2. shows the AState type and its related
State and InitialState.

Prog. 2. AState Type

Type AState:= NotInited | Inited

State aState:ANm • AState

Initial State aState(c)=NotInited

To implement the instruction newarray, we define five steps. First, we get the array
type according to the basic type in parameter using the function arraytype. Second, if
the class of the array is not already loaded, we should first load the class of the array
type using callLink function. Third, we set the class and dimension of the new created
reference using function aOf and countOf respectively. Fourth, we initialize the array
using the default values. Last, we update the operand and the PC register. The
implementation of instruction anewarray is similar to the newarray. For clarity, we do
not describe it in detail.

The most distinct differences between newarray and multianewarray is the latter
uses a function initArrayElem to init the elements of the multiple array using function
elemType which returns the element type of the array argument. The element may also
be an array, so this call may be recursive. Prog. 3. shows the instructions of newarray
and multianewarray.

Prog. 3. Instructions of newarray and multianewarray

execVM (redef)==…

newarray(t) •

at := arraytype(t)

if newopd •wc = opd • # wc =c then

if aState(at) := NotInited

 callLink(cLd(meth), cNm(f))

aOf(r) := at

countOf(r) := c

for all e in afield(at)

elem(r ,e) := default(e)

 Array Modeling in Java Virtual Machine 621

newopd :=new opd • [r]

pc := pc +1

where r = new (dom(aOf))

multianewarray(t, d) •

at := multiarraytype(t, d)

if newopd •wc1…•wcd = opd • # wc1 =c1 •… # wcd =cd then

if aState(at) := NotInited

 callLink(cLd(meth), cNm(f))

aOf(r) := at

i := 1

countOf(r) := ci

for all e in afield(at)

elem(r ,e) :=(i = d) ?default(e): initArrayElem
(elemtype(at),ci+1)

newopd :=newopd • [r]

pc := pc +1

where r = new (dom(aOf))

initArrayElem(at, ci)

aOf(r) := at

countOf(r) := ci

for all e in afield(at)

elem(r ,e) := (i = d) ?default(e)

:initArrayElem(elemtype(at),ci+1)

where r = new (dom(aOf))

3.2 Type Compatibility of Array Type

Because the propagateVM part (which defines the process of verifying byte code) and
the execVM part of the BSM involves type compatibility, so we refine the function
compat and the operator ‘≤‘to include type compatibility of array.

Prog. 4. shows the refined function and operator. According to the JVM
specification[2], it is compatible when two arrays are of the same dimension and the
element types of the two arrays are type compatible. In model, the function isArray
returns true if parameter is actually an array, and the function dim returns the dimension
of the array argument.

622 W. Weimin, L. Kailun, and S. Qing

Prog. 4. Type compatibility of array type

isArray(C1) • isArray(C2) • dim (C1) = dim (C2) •elemType
(C1) • elemTy elemType(C2)

• Compat(C1, C2) = true Compat(C1, C2) = true

isArray(C1) • isArray(C2) • dim(C1) = dim(C2) •elemType
(C1) • elemType(C2) elemType(C2)

• C1 • C2 C1 • C2

3.3 Array Loading

For array loading, if the element type of the array is a reference type, then according to
the JVM specification[2], JVM first loads the element type (may lead to recursively
loading), and then adds the array type to the name space of the environment. If the
element type of the array is a basic type, then just adds the array type to the name space
of the environment.

Because no matter what classLoaders (system or user-defined) are defined, the
function of loading and linking are eventually found in findSystemClass, defineClass
and resolveClass in class called classClassLoader, so we refine the InvInstance method
taken each of these three method names as argument in the execVM of BSM for array
loading. Prog. 5. shows the refining rule for findSystemClass. We refine similarly the
execution rules for the other two methods. For clarity, we do not show it in Prog. 5. The
black part of the program shows what we have refined.

Prog. 5. Instructions of array loading

execVM (redef)==…

InvInstance(bind, findSystemClass) •

if cinitd(cNm(findSystenClass)) •newopd •[ld, cn] = opd
•ld <> null then

 let c = (sysLd, cn) in

if unloaded(c) then

 if ¬ isArray(c) then

 loadVM(c)

 else

 bc := elementType (c)

 if(isReferenceType(Class(bc))) then

 loadVM(bc)

 addArrayToEnv(c, lc)

 else

 addArrayToEnv(c, lc)

else if ¬ cinitd(c) then

 Array Modeling in Java Virtual Machine 623

 if ¬ isArray(c) then

linkVM(c)

 else

 bc := elementType (c)

 if(isReferenceType(Class(bc))) then

 linkVM(bc)

 addArrayToEnv(c, lc)

 else

 addArrayToEnv(c, lc)

else

 opd := newopd•[ldEnv(c)]

pc := pc +1

4 Conclusion

Array is an important feature in Java and JVM. The best and precise way to describe the
essence of it is to build a model in mathematical way. In this paper, we define an
extending model which uses an existing model as a basis and give the hierarchy of these
two models, to model the array. In the extending model, we model the array in three steps.

Acknowledgment

The future work is to model the other important features in Java and JVM which have
not been modeled by existing JVM . models.

References

1. Gosling, J., Joy, B., Steele, G.: The Java(tm) Language Specification. Addison-Wesley,
Reading (1996)

2. Lindholm, T., Yellin, F.: The Java(tm) Virtual Machine Specification. Addison-Wesley,
Reading (1996)

3. Borger, E., Schulte, W.: Modular Design for the Java Virtual Machine Archicture. In:
Archicture Design and Validation Methods (2000)

4. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Borger, E. (ed.) Specification and
Validation Methods, Oxford University Press, Oxford (1995)

5. Borger, E., Schulte, W.: Defining the Java Virtual Machine as platform for provably correct
Java compilations. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450,
Springer, Heidelberg (1998)

6. Borger, E., Schulte, W.: A programmer friendly modular definition of the semantics of Java.
In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of Java(tm), Springer, Heidelberg (to
appear, 1999)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 624– 639, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Configuration Modeling Based Software Product
Development

Yi-yuan Li, Jian-wei Yin∗, Yin Li, and Jin-xiang Dong

College of Computer Science and Technology, Zhejiang Univ., Hangzhou 310027, China
zjulyy@yahoo.com.cn, zjuyjw@zju.edu.cn, cnliying@zju.edu.cn,

djx@zju.edu.cn

Abstract. Software product line is an effective way to implement software
production for mass customization. How to organize and configure the software
artifacts in software product line to rapidly produce customized software
product meeting individual demands is one of the key problems. Corresponding
to the phases of feature selection and software artifact binding in the process of
software production, the feature configuration model and software artifact
configuration model are constructed to provide a uniform framework of
constraint description for feature model and domain application requirement.
The results of problem solving are the sets of feature and software artifact
meeting feature constraints and application requirements. The proposed method
of configuration modeling and problem solving provide a theoretical foundation
to rapidly produce software product on the base of configuration of reusable
domain assets.

Keywords: Feature configuration, Software artifact configuration,
Configuration rule, Problem solving.

1 Introduction

Currently the manufacture of software engineering is suffering from such problems as
individual customized requirements and frequent changes of business requirements.
As a result, it seems that traditional software development mode - which is to develop
software product specifically for certain application’s requirements - costs more and
has less efficiency and maintainability. In this software development mode, it’s hard
to meet the requirements of software development in large scale customization
environment. The purpose of software production for mass customization is to
produce and maintain a family of software products with similar functions, figure out
both their commonalities and variability and manage these features [1]. It represents
the trend of software factory’s evolution.

Software product line is an effective way to implement software production for
mass customization. It’s a set of software systems with common controllable features
[2]. The core idea of software product line engineering is to develop a reusable
infrastructure that supports the software development of a family of products [3]. A

∗ Corresponding author.

 Configuration Modeling Based Software Product Development 625

software product line typically consists of a product line architecture, a set of
components and a set of products [4]. The characters of software development
applying software product line principles are to maintain the common software assets
and reuse them during the development process, such as domain model, software
architecture, process model, components, and so on. Each product derives its
architecture from the product line architecture, instantiates and configures a subset of
the product line components and usually contains some product-specific code.

The purpose of developing software product family applying software product line
principles is to rapidly produce individual customized software product with low cost
and high quality. From the viewpoint of technique, how to organize and configure the
assets of software product line to create a software product meeting the application
requirements is one of the key problems to realize mass customization of software
product. Product configuration is an important technique to solve this problem [5]. It
can be represented as a design process to form an actual product based on a set of
predefined components and the constraint relationships between them, which is
generally an automatic or semi-automatic interactive decision-making process.

The abstract nature of the source codes makes the components which play as
“parts” of the software product present the characteristics of non-standardization and
variety during the development of software product. Classical product configuration
model and problem solving methods is mostly oriented to such domain with uniform
industry standard and interface definition as traditional manufacture [6, 7, 8]. It can’t
meet the demands of mass customization for software industry. Literatures [9, 10, 11]
propose the translation of feature model into propositional formulas to be used for the
automated analyses of feature model. D. Benavides et al use constraint programming
to translate the feature model into a Constraint Satisfaction Problem(CSP) to get the
potential software products [12, 13]. The above researches analyze the feature model
by means of description of the feature constraints in logic. They ignore the effect on
the software product development derived from the variability of software artifacts
implementing the feature function. The configuration modeling and problem solving
methods orienting software product line remain to be further researched.

This paper proposes to construct the models of feature configuration and software
artifact configuration, which correspond to the phases of feature selection and
software artifact binding in the process of software production respectively. The
results of problem solving are the sets of feature and software artifact meeting
application requirements. Thus the rapid production of software product on the base
of configuration of reusable domain assets is available.

2 The Configuration Model for Software Product Line

In general, there are two relatively independent development cycles in organizations
that apply software product line principles: product line development (domain
engineering) and product instantiation (application engineering) [14]. On the base of
domain analysis, domain engineering is responsible for the design, development and
evolution of the reusable assets, such as architecture, reusable components and so on.
Feature oriented domain analysis is the mainstream of the software product line
modeling. Its main purpose is to identify all commonalities and variability in software
product line. The outputs of modeling are all potential products of product line. Then

626 Y.-y. Li et al.

the domain reference architecture can be constructed from several logical layers, such
as subsystem, process and module, to develop design model, process model and
component entities realizing corresponding function of features. Application
engineering, on the other hand, based on the requirement analysis, relates to adapt the
product line architecture to fit the system architecture of the product in question,
instantiate and configure a subset of the product line assets to reuse. It usually
contains some product-specific code. Instantiated products constitute a family of
software products in domain. The difference between software products in family
represents the variability of software product line.

Thus it can be concluded the development of software product applying software
product line principles is a process of feature implementation based on feature
selection. It possesses the characteristic of dynamic. On one hand, because of the
constraint on features, not all the features in feature model will be selected into the
feature set oriented to specific application. On the other hand, there may exist more
than one software artifact that implements the functions presented by a certain feature
but with different quality of service for choices. Only those meeting specific non-
functional requirements of application can be selected to construct the target system.
The ultimate software product is the dynamic result of the selection of features and
software artifacts to meet specific constraint and domain application demands.

2.1 Elementary Definition

Product configuration is a kind of design activity which takes the models of
configuration and requirement as the input, takes the configuration result oriented to
the ultimate product as the output. Hereinto configuration model describes the
components and their relationships which may appear in the configuration result,
requirement model describes the constraints that the ultimate product must meet,
while the configuration result represents the selected components and their
relationships in ultimate product. Then the process of software product development
applying software product line principles can be regarded as a process of
configuration modeling and problem solving which takes domain oriented feature
model and reference architecture as configuration model, takes the domain application
requirements oriented by software product as requirement model, takes the selection
of features and its implementing artifacts under specific constraints as configuration
rules, while takes customized software product oriented to concrete domain
application as configuration result. This paper mainly researches the construction and
problem solving of the software product line oriented configuration model.

2.2 Elementary Conception

Definition 1. The object according with the following definitions is called as term:
(1) Constants are terms;
(2) Variables are terms;

(3) If ()()
1
, ..., 1

n
f t t n ≥ is a n -tuple function, in which

1
, ...,

n
t t are terms, then

()
1
, ...,

n
f t t is also a term;

(4) All the terms are created by using the above rules in finite times.

 Configuration Modeling Based Software Product Development 627

Definition 2. Atom can be represented as ()
1
, ...,

n
p a a , where p is a n -tuple

predication, and ()
1
, ..., 1

n
a a n ≥ are terms. The atom having no variables is called as

ground atom, while the atom having variables is called as predication atom.

Definition 3. The object according with the following definitions is called as literal:
(1) Atoms are literals, an atom is satisfied if and only if its value equals true;
(2) Negative atoms are also literals. It is called as negative literal. A negative literal

is satisfied if and only if the value of the atom in it equals false.

Definition 4. Clause can be interpreted as the disjunction of several literals. It can be
represented as follows:

1 1
... ...

m n
not p not p q q ∨ ∨ ∨ ∨ ∨

Where both
i

not p and
j

q are literals.

2.3 Configuration Rule

Rule is a representation of the configuration knowledge of software product line. It
describes the constraint relationship that the principles of configuration knowledge
must meet in the selecting process.

Definition 5. An elementary rule can be formatted as follows:

1 1
, ..., , , ...,

m n
h p p not a not a←

Where () { }H r h= is called as rule head, () { }
1
, ...,

m
B r p p+ = and

() { }
1
, ...,

n
B r not a not a− = are called as positive literal and negative literal in rule

body respectively, () () ()B r B r B r+ −= ∪ is called as rule body. An elementary rule

corresponds to a clause and can be interpreted as the disjunction of such literals as

1 1
, ..., , , ..., ,

m n
not p not p a a h , i.e.

1 1
... ...

m n
not p not p a a h∨ ∨ ∨ ∨ ∨ ∨ . Thus an

elementary rule is satisfied when the rule head h is satisfied or at least one literal in
rule body is not satisfied.

Definition 6. A first order domain weight rule can be formatted as follows:

() (){ }
() ()

() ()

1 1 1

1 1 1

1 1 1

1

1

1

: , ..., :

: , ..., : ,

 : , ..., :

s s s

m m m

n n n

h h h h s h h h h

p p p m p p p

b b

a a a n a a a

LB h x Q w h x Q w UB

x p x Q w p x Q w
LB UB

not a x Q w not a x Q w

≤ = = ≤

∀ = =
← ≤ ≤

= =

⎛ ⎞
⎜ ⎟

⎧ ⎫⎜ ⎟⎪ ⎪
⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎩ ⎭ ⎠

Where x is the variable vector in rule and can be omitted in ordinary condition;

()
i

i h
h x , ()

j
j p

p x , ()
k

k a
a x are predications, where

x
x is the variable vector in

predication and can be omitted when it is a constant;
x

LB ,
x

UB are real number and

628 Y.-y. Li et al.

satisfy
x x

LB UB≤ ;
i

x
w is also a real number. It is the weight value given to such

predications as ()
i

i h
h x , ()

j
j p

p x and ()
k

k a
a x , and can be omitted when 1

i
x

w = ;

i
x

Q is a series of domain values used to restrict the range of such predications as

()
i

i h
h x , ()

j
j p

p x and ()
k

k a
a x . It can be signed as

1 2
: : ...

i i i
x x x

Q q q= . A first order

domain weight rule is satisfied when
1

i

i

h h h

h i s

LB w UB
≤ ≤

≤ ≤∑
 is satisfied,

 or

1 1
j k

j k

b p a b

p j m a k n

LB w w UB
≤ ≤ ≤ ≤

≤ + ≤∑ ∑
 is satisfied, is not satisfied,

.

In the above definitions, the atoms in rules can correspond to the features in feature
model, the variables can correspond to the software artifacts that implement the
function of feature, domain is used to restrict the value range of variables in

predications,
i

x
w describes the value of the non-functional properties of the software

artifacts bound to features, while
x

LB and
x

UB are used to limit the value range of

the non-functional properties.

2.4 Configuration Model

Configuration constraints are the conditions the configuration result must satisfy. Its
function is to make the configuration result valid. It can be described by the above
rules. If regard the atoms and functions in rules as the principles of configuration
knowledge and their function relationships, regard the rules as the constraint
relationships used to select the principles of configuration knowledge, then the
configuration knowledge of software product line can be described by logical
program.

Definition 7. A logical program P is a set of elementary rules, each of which must be
satisfied.

Definition 8. Program P represents the configuration model M of a software

product. It is signed as ()P M . Atoms is the set of atoms in ()P M . If

()C M Atoms⊆ and C M P M , then ()C M is called as a configuration of

M , where means logical restriction.

Definition 9. If P is a program, the mapping function : 2 2Atoms Atoms

p
f → between

two sets of atoms is defined as:

() ()(),
p r p

r P

f S f S f S
∈

= ∪

Then : 2 2Atoms Atoms

p
f → is a deduction closure on program P , where S is a subset

of the atoms in P ,
r

f is a reasoning step on P for reduction. When all the atoms in

 Configuration Modeling Based Software Product Development 629

the rule are ground atoms, the first order domain weight rule can be interpreted by

function : 2 2 2Atoms Atoms Atoms

r
f × → as:

()
()()

()() ()()

,

,

i

i

j k

j k

h h h

h Atoms H r S

r

b p a b

p Atoms B r C a Atoms B r S

LB w UB

f S C h

LB w w UB
+ −

∈ ∩

∈ ∩ ∉ ∩

≤ ≤

=

≤ + ≤

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑ ∑

Where C is a deduction closure on program
S

P , which is a program reasoned from

P after reduction. The function ()
p

g S is defined as:

() (){ }: 2 2Atoms Atoms

p p p
g S f S f P= →∩ i s a deduct i on cl osur e on

Then if and only if ()
p

S g S= ， S is a stable model of P .

The visual meaning of the definition is that when use the subset S of the atoms in

P to reduce each rule in program, the program P is simplified to
S

P . If the

deduction closure on
S

P accords with S , then S is a configuration of the

configuration model M represented by P .

3 Configuration Problem Solving

The development process of software product applying software product line
principles can be divided to the phase of feature selection under the feature constraint
and the phase of software artifact binding. The former constructs the feature set and
their relationships meeting the constraints in terms of the functional requirements of
application based on the feature model, while the latter gets the software artifacts
implementing the selected features to assembly a software product. Corresponding to
the two phases of software development, the software product line oriented product
configuration can be separated to the phase of feature configuration and the phase
software artifact configuration, which obtain the set of features and the set of software
artifacts meeting the application demands respectively.

3.1 Problem Solving of Feature Configuration

The problem solving of feature configuration corresponds to the process of feature
selection, where features and their constraint relationships are the primary objects
being considered. In this condition, the instantiation of the variables in the rules is not
taken into account for the moment, that is to say, all the atoms in the rules are ground
atoms. The problem solving process of feature configuration mainly includes the
following steps:

630 Y.-y. Li et al.

(1) Construct the set of configuration rules in terms of the application demands and
feature model;

(2) Solve the configuration rules to get the feature set meeting the functional
requirements of specific domain application.

3.1.1 Construct the Rules of Feature Configuration
If not take the instantiation of the variables in the rules into account temporarily, some
elementary rules of feature configuration are formed by setting values to such

parameters as
i

x
w ,

x
LB and

x
UB in the first order domain weight rule.

Definition 10. An inconsistency rule (IR) can be formatted as follows:

1 1
, ..., , , ...,

m n
p p not a not a←

It can be derived from the first order domain weight rule in the condition 1
i

x
w = ,

0
h h

LB UB= = , 1
b

LB = ,
b

UB m n= + . That is to say, the rule head of the

inconsistency rule is empty. When at least one literal in the rule body is not satisfied,
the inconsistency rule is satisfied. In the process of feature configuration, the visual

meaning of the inconsistency rule is that the condition that the feature set
1

{ , ..., }
m

p p

appears in the configuration result, while the feature set
1

{ , ..., }
n

a a does not appear in

the configuration result at the same time impossibly takes place.

Definition 11. A reality rule (RR) can be formatted as follows:
h ←

It can be derived from the first order domain weight rule in the condition 1
i

x
w = ,

1
h h

LB UB= = , 0
b b

LB UB= = . That is to say, the rule body of the reality rule is

empty. When the rule head h is satisfied, the reality rule is satisfied. In the process of
feature configuration, the visual meaning of the reality rule is that the feature h must
appear in the configuration result.

Definition 12. A choice rule (CR) can be formatted as follows:

1 1 1
| ... | , ..., , , ...,

s m n
h h p p not a not a←

It can be derived from the first order domain weight rule in the condition 1
i

x
w = ,

1
h

LB = ,
h

UB s= , 1
b

LB = ,
b

UB m n= + . When at least one atom in
1

{ , ..., }
s

h h is

satisfied or at least one literal in the rule body is not satisfied, the choice rule is
satisfied. In the process of feature configuration, the visual meaning of the choice rule

is that if the feature set
1

{ , ..., }
m

p p appears in the configuration result and the feature

set
1

{ , ..., }
n

a a does not appear in the configuration result, then a subset of
1

{ , ..., }
s

h h

must be selected to appear in the configuration result. The reduction result of choice
rule can be represented as an elementary rule with the format

1 1
, ..., , , ...,

i m n
h p p not a not a← , where { }

1
, ...,

i s
h h h S∈ ∩ .

 Configuration Modeling Based Software Product Development 631

Definition 13. An exclude rule (ER) can be formatted as follows:

1 1 1
... , ..., , , ...,

s m n
h h p p not a not a⊕ ⊕ ←

It can be derived from the first order domain weight rule in the condition 1
i

x
w = ,

1
h h

LB UB= = , 1
b

LB = ,
b

UB m n= + . When only one atom in
1

{ , ..., }
s

h h is

satisfied or at least one literal in the rule body is not satisfied, the exclude rule is
satisfied. In the process of feature configuration, the visual meaning of the exclude

rule is that if the feature set
1

{ , ..., }
m

p p appears in the configuration result and the

feature set
1

{ , ..., }
n

a a does not appear in the configuration result, then a feature in

1
{ , ..., }

s
h h must be selected to appear in the configuration result. The reduction result

of exclude rule can be represented as an elementary rule with the format

1 1
, ..., , , ...,

i m n
h p p not a not a← , where { }

1
, ..., 1

s
h h S∩ = .

The rules of feature configuration consist of two parts, one is the feature model
oriented configuration rule, and the other is the domain application requirement
oriented configuration rule.

The feature model oriented configuration rule is used to describe the feature
constraints and can be represented with the above elementary rules of feature
configuration and their combination. For instance, the exclusive relationship of two
child features with different parent feature can be represented by the inconsistency
rule, such as the condition that features A and B are exclusive and the parent feature
of A is not that of B can be described as ,A B← . The exclusive relationship of two
child features with same parent feature can be represented by the exclude rule, such as
the condition that features A and B are exclusive and both of them are the optional
child features of feature C can be described as A B C⊕ ← . It is reduced to B C←
if the child feature B is selected. The mandatory feature can be represented by the
elementary rule or the reality rule, such as the condition that the child feature B of
the feature A is a mandatory feature can be described as B A← . The optional
feature can be represented by the choice rule, such as the condition that the features

, ,B C D are the optional child features of feature A can be described as

| | |B C D A∅ ← . It is reduced to B A← if the child feature B is selected.

The domain application requirement oriented configuration rule is used to describe
the functional requirement of specific application and can be represented with a set of
reality rules. For instance, if function f is asked to realize by some domain

application, and it is modeled as an optional feature F in the feature model during the
process of domain analysis, then this requirement can be described as F ← . The
feature model oriented configuration rule and the domain application requirement
oriented configuration rule provide the precondition and the target for the problem
solving of feature configuration respectively.

3.1.2 Problem Solving of the Rules of Feature Configuration
Let P denotes the logical program corresponding to feature model, R denotes the
rule set of feature configuration in P , A denotes a expanding set with the initiated

632 Y.-y. Li et al.

value ∅ and satisfies ()A A Atoms A+ −∪ = , where (){ }A a Atoms P a A+ = ∈ ∈ ,

(){ } A a Atoms P not a A− = ∈ ∈ , then the steps of problem solving are described as

follows:

Step1: Get all the reality rules in the rule set R and put the literals in rule head into

the expanding set A , i.e. r RR∀ ∈ , let ()A A H r= ∪ , 'R R= ;

Step2: Let 'A A= , and for each non reality rule r in the rule set 'R , designate 'r
is the reduced result of r after reasoning, then

(1) if there exists no negative literals in the rule body and the atoms of the positive

literals appear in A+ , then put the literals in the rule head of the reduced rule into the
expanding set A and replace the original rule with the reduced rule, i.e. if

()B r− = ∅ , and ()()a Atoms B r+∀ ∈ satisfies a A+∈ , then let ()'A A H r= ∪ ,

{ } { }' ' 'R R r r= − + ;

(2) if there exists negative literals in the rule body and the atoms of the negative

literals appear in A+ , then delete this rule from the rule set 'R , i.e. if

()()a Atoms B r−∃ ∈ satisfies a A+∈ , then let { }' 'R R r= − ;

(3) if the atoms of the positive literals in the rule body appear in A+ , and the atoms

of the negative literals in the rule body do not appear in A+ , then no matter whether

the atoms of the negative literals in rule body appear in A− , put the literals in the rule
head of the reduced rule into the expanding set A and replace the original rule with

the reduced rule, i.e. if ()()a Atoms B r+∀ ∈ satisfies a A+∈ and

()()a Atoms B r−∀ ∈ satisfies a A+∉ , then let ()'A A H r= ∪ ,

{ } { }' ' 'R R r r= − + ;

(4) if the rule head is satisfied, for instance, toward exclude rule, ()a H r∃ ∈

satisfies a A∈ , toward choice rule, ()'H H r∃ ⊆ satisfies 'H A⊆ and

()' 1Atoms H ≥ , then put the literals in rule body into the expanding set A and

replace the original rule with the reduced rule, i.e. ()()a Atoms B r+∀ ∈ , let

{ }A A a= ∪ , and ()()a Atoms B r−∀ ∈ , let { } A A not a= ∪ ,

{ } { }' ' 'R R r r= − + ;

Step3: repeat Step2 until 'A A= ;

Step4: if A A+ −∩ ≠ ∅ , then it can be concluded that there is no stable solving
model for the feature configuration model and the solving process finishes.

Contrarily if () ()'Atoms R Atoms A⊆ , then A+ is the stable solving model.

 Configuration Modeling Based Software Product Development 633

Otherwise let 'R R= , and { }A A a= ∪ or { }A A not a= ∪ , where

() ()a Atoms R Atoms A∈ − , then re-execute Step2.

The visual meaning of the solving arithmetic is that the literals in the rule head of
the reality rules are regarded as facts to be put into the configuration result, while the
rest rules are reasoned to expand the result set on the condition that the rule body or
the rule head is satisfied. During the process, conflicts need to be detected. The
condition that the conflict exists denotes that there are no stable solving model that
accords with A . If there is no conflict and A covers the atom set of the simplified
logical program after the reduction of the rules, the atom set of the positive literals in
A is the configuration result. Otherwise A need to be tentatively expanded to be

further validated.

3.2 Problem Solving of Software Artifact Configuration

The problem solving process of software artifact configuration mainly includes the
following steps:

(1) Construct the set of configuration rules in terms of the feature set resulting from
the problem solving of feature configuration;

(2) Solve the configuration rules to get the software artifact set meeting the
requirements of specific domain application.

3.2.1 Construct the Rules of Software Artifact Configuration
The rules of software artifact configuration are constructed on the base of the problem
solving of the feature configuration. It is a process of getting software artifacts to set
up variables of feature implementation in terms of the result set of feature
configuration and confirming the value range of variables and the bound of weight
constraint in terms of the non-functional requirements of specific domain application.

The atoms in the rule set of the logical program P corresponding to the feature
model represent the features. There may exist several optional schemes and software
artifacts to implement the function presented by the feature, so the atoms in the rules
of software artifact configuration are not the ground atoms p but the predication

atoms ()p x having the variables corresponding to the software artifacts. The

meaning of the predication ()p x can be described as the function represented by

feature p is implemented by the software artifact vector x . The software artifacts

implementing the same feature function may have distinct quality of service, such as
performance, resource consuming, and so on. The selection of the software artifacts
rests with the non-functional requirements of the specific domain application.

Thus the construction process of the rules of software artifact configuration is
composed of several steps as follows, including reducing the rule set of feature
configuration, confirming the value range of variables, instantiating the variables and
confirming the bound of weight constraint:

Step1: For each rule in the reduced rule set 'R derived from the problem solving
of feature configuration, if there exists negative literal in the rule body and the atoms

634 Y.-y. Li et al.

in the negative literal appear in A+ , then delete the rule, i.e. 'r R∀ ∈ , if ()B r− ≠ ∅

and ()()a Atoms B r−∈ satisfied a A+∈ , then { }' 'R R r= − , and delete the negative

literals in the rule body of the rest rules, i.e. 'r R∀ ∈ , let ()B r− = ∅ . Thus there are

no negative literals in the rule set of software artifact configuration;
Step2: Get the corresponding software artifacts for each predication atom, namely

feature, in the configuration result A+ of feature configuration;
Step3: Confirm the constants or the variables in the rule set. If the feature

represented by the predication atom has multiple software artifacts to implement the
function, then it can be denoted by a predication atom with variable, otherwise, it is
denoted by a ground atom, the constant in which represents the software artifact
implementing the feature function;

Step4: For each predication atom with variable, get the candidate software artifacts
implementing the corresponding feature function to determine the value range of the
variable;

Step5: Confirm the weight value of the corresponding predication atom in terms of
the non-functional attribute value of the software artifact;

Step6: Confirm the range of weight constraint in terms of the non-functional
requirements of specific domain application to build the choice constraint of the
software artifacts under the general restriction.

3.2.2 Problem Solving of the Rules of Software Artifact Configuration

Definition 14. Each constant or the function of the constants in logical program P is
called a ground term of P . GTerms denotes the set of the ground terms. If all the
variables in the logical program P are replaced by the ground terms, then the result
program after replacement is called the instantiation of P .

Let P denotes the logical program corresponding to configuration model of
software artifact, R denotes the rule set of software artifact configuration in P , T is
the configuration result of software artifacts, F is the feature set implemented by the
software artifacts. The values of T and F are initiated to ∅ , then the steps of
problem solving are described as follows:

Step1: Get the set of all the variables and the predication atoms the variables
pertaining to in the rule set, which are signed as V and D respectively;

Step2: Let 'T T= , 'F F= , for each rule with no variables and weight values in
the rule set,

(1) if the rule is a reality rule and the ground atoms in the rule head do not appear
in D , then put the ground atoms and their ground terms in the rule head into the set
F and T respectively, and delete the rule from the rule set. i.e. r NR∀ ∈ , if

()()a Atoms H r∀ ∈ satisfies a D∉ and 1
a

w = , then let ()F F H r= ∪ ,

()()T T GTerms H r= ∪ , { }R R r= − ;

(2) If the ground atoms in the rule do not appear in D and the ground atoms and
their ground terms in rule body appear in the set F and T respectively, then put the
ground atoms and their ground terms in the rule head into the set F and T

 Configuration Modeling Based Software Product Development 635

respectively, and delete the rule from the rule set. i.e. r NR∀ ∉ , if ()a Atoms r∀ ∈

satisfies a D∉ and 1
a

w = , ()()a Atoms B r∀ ∈ and ()()t GTerms B r∀ ∈ satisfies

a F∈ and t T∈ , then let ()F F H r= ∪ , ()()T T GTerms H r= ∪ , { }R R r= − ;

Step3: Instantiate the variables in the rule set in terms of the value range and delete
the instantiated variables and the predication atoms pertained to by the variables from
the set V and D respectively. Then replace the original rule with the instantiated
rules. Each variable has a series of domain values, so the rule with variables can be
instantiated as more than one ground term. As a result, several rule sets are achieved
after the instantiation of all the variables. Let n represents the amount of the rules

with predication atom in the rule set R , then
i

r R∀ ∈ , 1 i n≤ ≤ , if iInst represents

the amount of the achieved rules after the rule ir is instantiated, then the amount of

the achieved rule sets after the rule set R is instantiated is
1

n

i

i

Inst
=

∏ . All the atoms in

the instantiated rule sets are ground atoms;
Step4: In each rule set after instantiation, for each rule with the weight constraint,
(1) if the ground atoms and their ground terms in the rule body appear in the set F

and T respectively, and the weight value meets the corresponding weight constraint,
then set the rule body as empty to be a reality rule and replace the original rule in the

rule set, i.e. if ()()a Atoms B r∀ ∈ satisfies a F∈ , ()()t GTerms B r∀ ∈ satisfies

t T∈ , and
 is satisfied, 1

j

j

b p b

p j m

LB w UB
≤ ≤

≤ ≤∑ , then let 'r r= , ()'B r = ∅ ,

{ } { }'R R r r= − + , otherwise, delete the ground atoms and their ground terms in the

rule body from the set F and T respectively, i.e. if
1

j

j

p b

p j m

w LB
≤ ≤

<∑
 is satisfied,

 or

 is satisfied 1
j

j

p b

p j m

w UB
≤ ≤

>∑
,

, let ()()F F Atoms B r= − , ()()T T GTerms B r= − ;

(2) if the rule body is empty, the ground atoms and their ground terms in the rule
head appear in the set F and T respectively, and the weight value meet
corresponding weight constraint, then do nothing, otherwise, delete the ground atoms
and their ground terms in the rule head from the set F and T respectively, i.e. if

1
i

i

h h

h i s

w LB
≤ ≤

<∑
 is satisfied,

 or
1

i

i

h h

h i s

w UB
≤ ≤

>∑
 is satisfied,

, let ()()F F Atoms H r= − ,

()()T T GTerms H r= − ;

Step5: Repeat Step2 and Step4 until 'F F= and 'T T= ;

Step6: Let A+ denotes the result set of problem solving of feature configuration in

chapter 2.1.2, if F A+= , then T is the result set of problem solving of software
artifact configuration, otherwise, it represents that there exists no valid result set of

636 Y.-y. Li et al.

software artifacts meeting the non-functional requirements of specific domain
application.

The visual meaning of the solving arithmetic is that if the scheme of feature
implementation is unique, then the corresponding software artifacts are regarded as
the realities to be added into the configuration result, otherwise, the weight constraint
of the rest rules are examined to be met or not on the base of the instantiation of the
variables representing the software artifacts in terms of the candidate schemes of
feature implementation. If the obtained feature set corresponded by the set of software
artifacts accords with the result set of feature configuration, then it denotes that there
exists valid result set of software artifacts meeting the non-functional requirements,
otherwise, it shows the existing scheme of feature implementation can’t meet the non-
functional requirements of domain application.

4 Case Study

Figure 1 shows an expanded feature model of mobile phone software product line. It
is composed of some functional features like game, password protection, contact list
and web browser etc. Among them, password protection and web browser is optional
features. Meanwhile, multiple games can be the choice, but to some limitation, such
as a small memory capacity, G3 and G4 can only be chosen one arbitrarily. In the
process of feature analysis, each function feature has related requirements
specification, design model and implementation component. Some functional
features, for example, G2, even have various implementation schemes with distinct
quality of service.

If web browser and G3 are required by some specific application, then in terms of
the feature model of mobile phone software product line and the functional demands,
the rule set R of the feature configuration is listed as follows:

MP ← , WB ← , 3G ← , GS MP← ,
CL MP← , | |WB PWP MP∅ ← , 1G GS← , 2G GS← ,

3 4G G GS⊕ ← , 4 G3G not← , 3 G4G not←

According to the solving steps of feature configuration, { }A MP= is available

after Step1 is executed. Similarly there exists
, , 3 , , ,

'
, 1 , 2 , 3 , 3 G4

MP WB G GS MP CL MP
R

WB MP G GS G GS G GS G not

← ← ← ← ←
=

← ← ← ← ←
⎧ ⎫
⎨ ⎬
⎩ ⎭

and

{ }, , , , 1, 2, 3, 4A MP GS CL WB G G G not G= after executing Step2 and Step3. Then

the condition that () ()'Atoms R Atoms A⊆ and A A+ −∩ ≠ ∅ are satisfied, so the

set { }, , , , 1, 2, 3A MP GS CL WB G G G+ = is a stable model for the rule set of feature

configuration.

 Configuration Modeling Based Software Product Development 637

Mobile Phones
（MP）

Games
（GS）

Game1
（G1）

Web Browser
（WB）

RAM
<=4M

RAM
<=2M

Implementation PhaseComponent Artifacts

Password Protection
（PWP）

Contact List
（CL）

Game2
（G2）

Game3
（G3）

Game4
（G4）

exclude

Feature
Non-functional
Constraint

Feature Configuration
Dependency

Reference of Software
Artifact

Optional RelationshipMandatory Relationship

Feature
Model

RAM<=10M

c1g2 c2g2

RAM
<=4M

RAM
<=3M

RAM
<=4M

Implementation Phase Component Artifacts

cg1 cg3 cg4

cpwp ccl cwbcmpcgs

Fig. 1. Expanded Feature Model of Mobile Phone Software Product Line

If the total memory space consumed by the games is asked to no more than 10M to
make the software system run normally, then the rule set of software artifact
configuration is constructed on the base of the result set of problem solving of feature
configuration and listed as below in the condition that only component artifacts are
taken into account:

()mp
MP c ← ， () ()wb mp

WB c MP c← ， () ()cl mp
CL c MP c← ，

() ()gs mp
GS c MP c← ， () ()1

1
g gs

G c GS c← ，

() ()2 2
2 : 1 : 2

g g gs
G x c c GS c← ， () ()3

3
g gs

G c GS c← ，

() () (){ } ()1 2 2 3
0 1 4, 2 : 1 2 : 2 4, 3 3 10

g g g g gs
G c G x c c G c GS c≤ = = = = ≤ ←

According to the solving steps of software artifact configuration, { }V x= and

{ }2D G= are set up after Step1 is executed. It satisfies

{ }, , , , 1, 3F MP WB CL GS G G= and { }1 3, , , , ,mp wb cl gs g gT c c c c c c= after executing

Step2. If Step3 is executed, V = ∅ and D = ∅ are established, and

638 Y.-y. Li et al.

the rule () ()2 2
2 : 1 : 2

g g gs
G x c c GS c← is instantiated as () ()2

2 1
g gs

G c GS c←

and () ()2
2 2

g gs
G c GS c← , the rule

() () (){ } ()1 2 2 3
0 1 4, 2 : 1 2 : 2 4, 3 3 10

g g g g gs
G c G x c c G c GS c≤ = = = = ≤ ← is

instantiated as () () (){ } ()1 2 3
0 1 4, 2 1 2, 3 3 10

g g g gs
G c G c G c GS c≤ = = = ≤ ← and

() () (){ } ()1 2 3
0 1 4, 2 2 4, 3 3 10

g g g gs
G c G c G c GS c≤ = = = ≤ ← . The instantiated

rules are combined to four rule sets, two of which have no resolution, while the other

two can be deduced to get the conclusion that { }
2

1
, , , , 1, 3, 2

g
c

F MP WB CL GS G G G= ,

{ }
2

1 1 3 2
, , , , , , 1

g
c mp wb cl gs g g g

T c c c c c c c= or { }
2

2
, , ,

g
c

F MP WB CL GS= ,

{ }
2

2
, , ,

g
c mp wb cl gs

T c c c c= respectively after Step4 and Step5 are executed. Obviously

2
1

g
c

F A+= is satisfied, so
2

1
g

c
T is the result set of software artifact configuration meeting

the requirements of specific domain application.

5 Conclusion

How to organize and configure the assets in software product line to rapidly produce a
software product meeting the individual requirement is a key problem to realize the
mass customization of software product applying software product line principles.
Based on the analysis of the development process of software product applying
software product line principles, this paper propose the concept of software product
line oriented product configuration. Corresponding to the phases of feature selection
and software artifact binding in the process of software production, the feature
configuration model and software artifact configuration model are constructed to
provide a uniform framework of constraint description for feature model and domain
application requirement. The results of problem solving are the sets of feature and
software artifact meeting feature constraints and application requirements. The
division of the product configuration to the models of feature configuration and
software artifact configuration accords with the development process of software
product applying software product line principles in logic. It can reduce the size of the
rule set and decrease the complexity of the problem solving to increase efficiency.
The case study of the mobile phone software product line illustrates the construction
and problem solving process of the software product line oriented configuration
model. The further work is to refine the arithmetic of problem solving to reuse the
configuration result and investigate the construction and problem solving of software
product line oriented product configuration in distributed collaborative environment.

Acknowledgement

The work has been supported by the National High-Tech. R&D Program, China
(No.2006AA01Z170, No.2006AA01Z171, No.2007AA01Z124) and the highlight
R&D Program of Zhejiang Province (No. 2006C11206).

 Configuration Modeling Based Software Product Development 639

References

1. Krueger, C.W.: Software Mass Customization. BigLever Software, Inc. (2001)
2. Clements, P.C., Northrop, L.: Software Product Lines - Practices and Patterns. Addison-

Wesley, Reading (2001)
3. Jaring, M., Bosch, J.: Representing Variability in Software Product Lines: A Case Study.

In: Chastek, G.J. (ed.) Software Product Lines. LNCS, vol. 2379, pp. 15–36. Springer,
Heidelberg (2002)

4. Bosch, J.: Design & Use of Software Architectures - Adopting and Evolving a Product-
Line Approach. Addison-Wesley, Reading (2000)

5. Bourke, R.: Product Configurators: Key Enabler for Mass Customization - An Overview
(2000), http://www.pdmic.com/articles/midrange/Aug2000.html

6. Samson, W., Henrik, E., Gennari, J.: Ontology-Based Configuration of Problem-Solving
Methods and Generation of Know PROTÉGÉ-II to Protocol-Based Decision Support”.
Artificial Intelligence in Medicine 7, 257–289 (1995)

7. Soininen, T., Tiihonen, J., Mannisto, T.: Towards a General Ontology of Configuration.
AI/EDMS 12(4), 357–372 (1998)

8. Studer, R., Eriksson, H., Gennari, J.H.: Ontologies and The Configuration of Problem-
Solving Methods. In: Proceedings of 10th Knowledge Acquisition for Knowledge-base
Systems Workshop, Banff (1996)

9. Mannion, M.: Using First-Order Logic for Product Line Model Validation. In: Chastek,
G.J. (ed.) Software Product Lines. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg
(2002)

10. Sun, J., Zhang, H., Li, Y.F., Wang, H.: Formal Semantics and Verification for Feature
Modeling. In: ICECSS 2005 (2005)

11. Zhang, W., Zhao, H., Mei, H., Propositional, A.: Logic-based Method for Verification of
Feature Models. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 115–130. Springer, Heidelberg (2004)

12. Benavides, D., Ruiz-Cortés, A., Smith, B., O’Sullivan, B., Trinidad, P.: Computational
Issues on the Automated Analysis of Feature Models Using Constraint Programming.
International Journal of Software Engineering and Knowledge Engineering (2006)

13. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Using Constraint Programming to Reason on
Feature Models. In: Proceedings of the 7th International Conference on Software
Engineering and Knowledge Engineering (2005)

14. Kang, K.C., Kim, S., Lee, J., Kim, K., Kim, G.J., Shin, E.: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures. Annals of Software
Engineering 5, 143–168 (1998)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 640–649, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Formal Semantic Meanings of Architecture-Centric
Model Mapping

Xiao Yang, Jinkui Hou, and Jiancheng Wan

School of Computer Science and Technology, Shandong University,
Jinan, 250061, China

{yangx,houjk}@mail.sdu.edu.cn, wanjch@sdu.edu.cn

Abstract. Over the past few years, Model-driven Development (MDD) has
become an active research area of software engineering, in which model
transformation is a key technology. However, there is currently no mature
foundation on the definition of mapping rules as well as cardinal principles to
verify the mapping relations between such models. Based on software
architecture, category theory is used to explore the mapping relations between
models at different abstract levels, so that the interconnections and mapping
relations between component-based models and the compositions of these
relations have rigorous meanings. The morphism composition and functors are
used to trace the relationships between component models at different abstract
levels. Formal description of model mappings is suitable to the automatic
software development. It can be a measurement for validating the mapping
rules between different models, and thus can make an effective support to
MDD.

1 Introduction

Over the past few years, Model-driven Development (MDD) has become an active
research area of software engineering [1], in which model transformation is a key
technology. Represented by OMG’s MDA, numerous research institutions and
enterprises have been investing a large amount of money and manpower in the model
transformation study. Currently, a number of products based on MDA have proved
that a lot of benefits can be obtained from it, such as rapid development, architecture
advantages, improvement of code consistency and maintainability, enhancement of
system’s portability across middleware vendors, and it also shows great potential in
these areas.

Most of the existing and proposed approaches [2] for model transformation focus
on providing a concrete solution for the transformation between models at different
abstract levels, and there's currently no mature foundation on the definition of
mapping rules as well as cardinal principles to validate the mapping relations between
such models. More in-depth study and formal methods about this issue are expected
to support complicated model transformation [3]. Consequently, a unifying
framework for the mapping description techniques seems imperative. Such a
framework should be formal, in order to avoid ambiguities; offer a sufficiently high

 Formal Semantic Meanings of Architecture-Centric Model Mapping 641

level of abstraction, in order to concentrate on the meaning of concepts instead of on
representational aspects; and be sufficiently expressive. These requirements suggest
category theory as an excellent candidate.

Category theory is a mathematical framework suitable for representing relationships
between knowledge [4], which has been viewed by the computer sciences as a means
of achieving representation independence and abstraction, while providing conceptual
subdiscipline unification [5]. Category theory has been widely used to facilitate
specification construction [6]. It provides the right level of mathematical abstraction to
address languages for describing software architectures [7]. The abstract framework of
category theory is shown to provide semantics for the configuration of complex
systems from their component parts. Diagrams express configuration by representing
the results of applying combinators to recursively defined system components. These
ideas are extended to provide a precise semantics for both components structuring and
models mapping in this paper. We propose adaptations to the categorical framework in
order to manage model mapping and transformation.

The rest of this paper is organized as follows: some basic concepts of category and
algebraic specification are given briefly in Section 2; the formal semantic meanings of
component model mapping are developed in Section 3; a case study about email client
model mapping is shown in Section 4; related works in this area are presented in
Section 5; The paper ends with conclusions and future works.

2 Category Theory and Algebraic Specification

In computing science, more abstract viewpoints are often more useful, because of the
need to achieve independence from the overwhelmingly complex details of how
things are represented or implemented. Category theory allows the study of the
essence of certain concepts as it focuses on the properties of mathematical structures
instead of on their representation. One of the basic principles summarized in [8] is
that complex systems can be usefully identified with diagrams, system components
and connectors corresponding to nodes, and interconnections being established
through the edges of the diagrams. Category theory is ideal for this purpose, as it
provides a rich body of theory for reasoning about objects and relations between
them. Moreover, category theory lends itself well to automation, so that, for example,
the composition of two specifications can be derived automatically, provided that the
category of specifications obeys certain properties. Most of the category definitions of
this section are adapted from [4].

Definition 1. Category. A category is composed of two collections:

(1) the objects of the category, which is called C-objects;
(2) the morphisms (arrows) of the category, which is called C-arrows;
These two collections must respect the following properties:
(a) each morphism f is associated with an object A that is its domain and an object

B that is its codomain. Notation: f: A→B.
(b) for all morphisms f: A→B and g: B→C, there exists a composed morphism

g f: A→C and the composition law is associative, i.e. for all h: C→D, h (g f)=
(h g) f.

642 X. Yang, J. Hou, and J. Wan

(c) for each object A of the category, there exists an identity morphism idA such
that:

∀ f: B→A, idA f = f and ∀ f: A→B; f idA= f.

Many categorical definitions and proofs employ diagrams. As remarked before,
quite complex facts can be visualized by the use of these diagrams.

Definition 2. Diagram. A diagram in a category consists of a collection DC of C-
objects and a collection DA of C-arrows such that for any arrow a∈DA, cod a∈DC
and dom a∈DC, where cod a represents the codomain of a and dom a represents the
domain of a.

Definition 3. Commutative diagram. A diagram is said to commute if every path
between two objects in its image determines through composition the same arrow.
The case is shown in Fig.1.

C

f

g

BA

h

Fig. 1. Diagram commutes iff h is the composite g f

A powerful construction operation called colimit is defined over diagrams.

Definition 4. Colimit. A colimit for a diagram in a category is a C-object C
along with a co-cone{fi : Di→C | Di ∈ } from D to C such that for any other co-cone
{f 'i: Di→c' | Di ∈ } from D to a vertex C’, there is a unique C-arrow f : C→C’ such
that for every object Di in , the diagram shown in Fig.2. commutes; i.e., f fi = f’i.

Di

f

fi’

C’

C

fi

Fig. 2. Definition of a colimit

A practical interpretation for the colimit is given by Goguen in [5]: “Given a
species of structure, say widgets, then the result of interconnecting a system of
widgets to form a super-widget corresponds to taking the colimit of the diagram of
widgets in which the morphisms show how they are interconnected.”

 Formal Semantic Meanings of Architecture-Centric Model Mapping 643

Definition 5. Functor. A functor F from a category to a category is a function
which assigns to each C-object a, a D-object F(a), and to each C-arrow f: A→B, a D-
arrow F(f): F(A)→F(B), such that identity arrows and composites are preserved, i.e.,
F(idA)= idF(A); for all C-objects A, and F(g f)= F(g) F(f); whenever g f is defined
in .

Category theory can be used to compose formal specifications from smaller,
reusable pieces. When used for specification construction, there is usually a
requirement that the morphisms preserve theoremhood. That is, if a morphism
between two specifications is defined, there is an obligation to prove that the axioms
of the source specification are theorems of the target specification under the
translation. Thus we can define an architecture model as a diagram of specifications,
and prove properties of this architecture at a relatively abstract level.

3 Formal Semantic Meanings for Architecture Model

In MDD, the model description must be precise enough to grasp the essential
behavior of the component, which also must be sufficiently abstract to ensure that,
according to the requirements of the model, different vendors can respectively
develop their component products that can compete with each other. A category
theoretic foundation is shown in this section for the conceptual component modeling
elements.

3.1 Component Signature and Component Specification

From a mathematical point of view, component signatures are structures defined as
follows.

Definition 6. Component signature. A component signature is a 6-tuple < Σ , A, Γ ,
fa, fp, D> where

(1) Σ =<S, Ω > is a data signature in the usual algebraic sense, i.e. a set S of sort
symbols and a S*×S-indexed family Ω of function symbols;

(2) A is a S*×S-indexed family of attribute symbols of the component, each
attribute is typed by a data sort in S;

(3) Γ is an S*-indexed family of port symbols.
(4) fa: A→SA, SA ⊂ S is a total function, which shows the properties of the attribute;
(5) fp: Γ→ST, ST ⊂ S is a total function, which shows the properties of the ports;
(6) D: Γ →2A is a total function, for each g∈ Γ , D(g) is the collection of the

attributes which can be modified via port g.

Definition 7. Component signature morphism. Given two component signatures

1θ =< 1Σ , A1, 1Γ , fa1, fp1, D1> and 2θ =< 2Σ , A2, 2Γ , fa2, fp2, D2>, a morphism σ :

1θ → 2θ from 1θ to 2θ consists of:

(1) a morphism of algebraic signatures vσ : 1Σ → 2Σ ;

644 X. Yang, J. Hou, and J. Wan

(2) for each f: s1, …, sn → s in A1, an attribute symbol aσ (f): vσ (s1), …, vσ (sn)

→ vσ (s) in A2;

(3) for each g: s1,…,sn in 1Γ , an action symbol γσ (g): γσ (s1),…, γσ (sn) in 2Γ ;

(4) for each g∈ 1Γ , aσ (D1(g))=D2(aσ (g)).

The last conditions show that the attributes affected by a certain port must be
preserved through a component signature morphism.

Definition 8. Component specification. A component specification CS is a pair
(θ , Δ), where θ is a component signature < Σ , A, Γ , fa, fp, D> and Δ , the body of
the specification, is a quadruple (I, F, B, Φ), where

(1) I is a θ -proposition (constraining the initial values of the attributes);
(2) F assigns to every port g∈ Γ a non-deterministic command, i.e. F maps every

attribute a in D(g) to a set expression F(a);
(3) B assigns to every port g∈ Γ a θ -proposition as its guard.
(4) Φ is a (finite) set of θ-formulae (the axioms of the description), which is a

collection of the functional and non-functional goals of the component.

We distinguish between functional requirements and nonfunctional requirements.
Functional requirements describe the system behavior as well as the collaboration
among system components to accomplish the system behavior. nonfunctional
requirements pertain to how a system performs its functions and include concerns
such as quality, quantity, and timeliness.

Definition 9. Component specification morphism. A morphism ω : CS1→CS2 of

component specification CS1= < 1θ , 1Δ > and CS2= < 2θ , 2Δ >, consists of a signature

morphism σ : 1θ → 2θ such that,

(1) ∃ p∈Φ1, ω (p)∈Φ2;

(2) ∃ g1∈ 1Γ , al∈Dl(gl), B2(σ (g1)) ⊃ σ (F1(g1, a1))=F2(σ (g1),σ (a1));

(3) I2 ⊃ ω (I1).

(4) ∃ g1∈ 1Γ , B2(σ (g1)) ⊃ σ (B1(g1)).

Requirements shown above allow guards to be strengthened but not to be
weakened.

3.2 Component Relations and The Hierarchy Component Models

Relationships between components impose accessibility constraints on their attributes
and, thus, restrict the way components can be interconnected. In the component-based
model-driven development [9], there are many kinds of relations between component
models, such as compose, use, extend, as well as the mapping relations between
component models at different abstract levels [10].

A specification morphism m: A→B from a specification A to specification B maps
any element of the signature of A to an element of the signature of B that is
compatible (i.e., sort with sort etc). The compose relationship express how that

 Formal Semantic Meanings of Architecture-Centric Model Mapping 645

component is part of the given ones. On this basis, a compose relation between two
components S1 and S0 is achieved in category theory by identifying a morphisms c1
from S1 to S0, which express that S1 is a subcomponent of S0. This case is expressed
by Fig 3 (a). Through this morphism, the configuration diagram returns a new
component that represents the overall system. Some constraints, however, apply. The
use and extends relationship may describe a dependency between two
implementations or between two specifications. It actually applies to different yet
closely related component relationships. These dependency relationships between
components at the same level are represented by the morphisms given in Fig. 3 (b)
and (c), which shows that the implementations of some functions in R1 (or C2) are
based on the functions specified in R2 (or C1). The mapping relations describe the key
relationship between abstract component specifications and concrete component
specifications. It is also formalized via morphisms in category theory. As shown in
Fig.3. (d), the morphism between S and T is as an illustration, where T is the direct
corresponding part to S at a more concrete level. The mapping relationship can be
defined informally as follows: Abstract component S is mapped to concrete
component T if and only if T exhibits the behavior specified by S.

S1

c1

S2

c2

R3R1

R2

f1 f2

S

T

mS0

(a) (b) (d)

C3

C2

a1 a2

(c)

C1

Fig. 3. Component specifications morphisms

The composition of component specifications can be modeled hierarchically in a
category theoretic framework. Large complex systems are put together, or configured,
from smaller parts, some of which have already been put together from even smaller
parts. The composition operation then defines and constructs an aggregated
component describing the overall system from the individual components and their
interactions. Colimits can be used to construct systems from simpler components in
our category of component models. We consider systems composed of a number of
components coordinating their activities. The components of a system are represented
by recursively defined objects and configured by combinators. Under such
interpretation, a categorical diagram represents a system of components. A colimit of
a diagram, if it exists, allows one to represent the whole system as a single component.

Properties can be associated to each specification. These are the properties that we
expect the component to respect; that we need to prove on the component. We can
represent these properties in the same framework as the specifications and this allows
us to use category theory and particularly categorical computations to manage them.
The property of the colimit specifications gives the composition for the properties.
The advantage of this approach is that the management of properties and their status
(proved, to be proved) is handled in a uniform way through the management of
morphisms and proof obligations.

646 X. Yang, J. Hou, and J. Wan

3.3 Architecture Models and Mapping Functors

Software architecture is a world populated by components, connectors, configurations,
etc [6]. As a simple example, an architecture theory could be defined by the objects
and the composition rules. These rules provide the semantics of the architecture, and
can be used to both interpret the meaning of structures and to identify equivalent or
included substructures. These notions can be formalized as a category.

Definition 10. Architecture Model. An architecture model is a 5-tuple <CO, CR, OT,
RT,┝>, where

(1) CO is a collection of components;
(2) CR is a collection of binary relations defined over CO;
(3) OT is a collection of component specifications, and for every component

o∈CO, type(o)∈OT, herein the operation type returns the component’s type;
(4) RT is a collection of binary relation types defined over OT, for each r∈CR,

type(r)∈RT;
(5) ┝ is a satisfaction relation between OT-sentences and OT-models [10] such

that ┝ defines a well order.

Component specifications and cs-morphisms constitute a category for architecture
model, henceforth denoted by AM. Obviously, the category AM is cocomplete.

Category theory also provides us with the means to establish relationships between
different architectural models: functors. An architecture mapping from AM1 to AM2 is
simply a mapping of component specifications of AM1 to component specifications of
AM2 that preserves relations between these components.

Definition 11. Architecture mapping functor. An architecture mapping functor
denoted F: AM1→AM2 from architecture model AM1=<CO1, CR1, OT1, RT1,┝> to
AM2=< CO2, CR2, OT2, RT2,┝> is a function F: AM1→AM2, in such a way that

(1) for every component o∈CO1, F(o)∈CO2;
(2) for every component specification o, o’ ∈ CO1, o→o’ ∈ CR1 implies

F(o) → F(o’)∈CR2;
(3) F(f g)=F(f) F(g); whenever g, f∈CR1 and f g is defined;
(4) for all OT1 sentence s, AM1┝ s if and only if AM2┝ F(s).

According to the theory of model-driven development [11], a mapping functor
between two architecture models at different abstract levels for the same system is a
mapping in case the axioms of the source are logically implied by the axioms of the
target under the translation. Thus, architecture mapping preserve the properties of the
source architecture models. Functors map the objects and morphisms of one category
to corresponding objects and morphisms of another category. Consistency between
the sorts and operations of the component specifications are maintained.

4 A Case Study

In this section, a component-based model for email client was used as a simple case to
illustrate the feasibility of the approach proposed in this paper.

 Formal Semantic Meanings of Architecture-Centric Model Mapping 647

Based on hierarchy component model, the structure of the source model was
depicted within categorical diagram in the left part of Fig.4., which involving seven
components types: (1) MainUI is in charge of the UI layout and art design of the
interaction between the mail client and users, through which users can receive email,
check email, send email and compose email; (2) EmailManagement is responsible for
the storage, reading and display of all the e-mails stored locally; (3) Editor is used to
composing text format or html format e-mail; (4) Client is responsible for sending and
receiving e-mail; (5) Protocol is identified for the setting of mail protocols; (6)
AddressBook is used for the management of address book; (7) Account is responsible
for account management. Herein, EmailManagement and Editor are two composite
components. In the component EmailManagement, a general-used component named
GeneralList used to handle mail-lists, a DataAccess component used to access email
information, and a component FileView used to show details of different kinds of e-
mails as well as the corresponding component ManageUI for user interface were
introduced as four sub-components. Herein, the component FileView was composed
of three sub-components: HtmlView to deal with Html format documents, component,
TextView to manage text format documents and MultimediaView to process
multimedia documents. In the component Editor, the sub-component EditorUI is
responsible for the user interface, and two subcomponents named TextEdit and
HtmlEdit respectively are used to compose different formats emails.

HtmlEdit

EditorUI

Account

TextEdit

ManageUI
GeneralList

EmailManagemantFileView

c1

Target Architecture ModelSource Architecture Model

MainUI

ClientProtocol

AddressBook

Editor

DataAcessMultimediaView

TextView

HtmlView

T-EditorUI

T-Account

T-ManageUI

T-GeneralList

T-FileView

T-MainUI

T-Client T-Protocol

T-AddressBook

T-Editor

T-DataAcess
T-MultimediaView

T-TextMp T-HtmlMp

T-EmailManagemant

m2

f2

c2

c8

c3

c4

c5

c6

c7

c9

c10

f3

f1

f4

f6

f7

f5

f8

a2

a1

a3

a4

a6

a5

a7 t-f1

t-f2

t-f3

t-f4 t-f5

t-f7

t-f8

t-a1

t-f6

t-a2

t-a3

t-a4

t-a5

t-a6

t-a7

t-a10

t-a8

t-a9

t-a11

t-a10
t-a12

t-a13

m1

m3

m4

Fig. 4. Component model mapping of email client

648 X. Yang, J. Hou, and J. Wan

We assume that the target platform does not support composite components, such
as the programming language C++ does not support nested definition of the Class,
and the EJB specification, only permits several javabeans be included in a jar
package, but do not support the definition of composite EJB. In such case, the
mapping relations between the majority of the source atomic components and the
components types of the target platform can easily built. As for the composite
components, the decomposition mapping relations must be built through stepwise
layers-decomposition. In order to optimize the target architecture, there is generally a
need to integrate target components specifications, and thus will form the composition
mapping from the source model to the target model. In this case, the functions for
html document editing and browsing were combined into a component T-HtmlMp in
the target architecture. Similarly, the functions for text document editing and
browsing were combined into a component T-TextMp.

The corresponding target architecture model was represented within categorical
diagram in the right part of Fig.4. The mapping relations from the source to the target
can be observed by component names. Only a part of mapping morphisms are drawn
in Fig. 4, which satisfy the commutative law of category diagram, such as t-f1 m1=
m3 f1, tf3 t-a7 m2=m3 f3 a7, and so on. This property shows that the
transformation following these mappings persevere consistency of dependency
relations among the components.

5 Related Work

In the past few years, a large number of approaches for model transformation have
been proposed. Most of these approaches lay emphasis on providing a concrete
solution for the transformation from source model to target model. In the work by
Bezivin et al [12], the impact on the efforts to define mapping rules caused by the gap
between the source and the target modeling languages is mentioned briefly from the
view of meta-model semantics, but no general solutions are given. The central role of
formalism extension mechanisms in managing the abstraction-level gap between
modeling languages as well as the platform-level details of specific implementations
is shown in Caplat and Sourrouille’s work [3]. The gap between the modeling
languages can be narrowed using this mechanism, but cannot be completely
eliminated. The mapping relations between models are still difficult to define directly.
On the other hand, category theory has been widely used to facilitate specification
construction. In Gerken’s work [6], category theory and algebraic specifications were
used to develop a formal definition of architecture and it also showed how
architecture theory can be used in the construction of software specifications. The
problem of interconnection relationships in large systems was addressed using
category theory in Guo’s paper [10], which also gives a framework of the
dependencies modeling. The work by Fiadeiro and Maibaum [7] have showed how
elementary concepts of category theory can be used to formalize key notions of
software architecture independently of the formalism chosen for describing the
behavior of components. Despite the popularity of category theory in specification
construction, little attention was given to understanding the relationship between
levels of abstraction for component-based model mapping.

 Formal Semantic Meanings of Architecture-Centric Model Mapping 649

6 Conclusion and Future Work

In this paper, a unifying framework for component-based model mapping was
presented. The framework is based on category theory due to its formality and its high
level of abstraction. An important contribution is the formalization of mappings
between architecture modes at different abstract levels. In order to specify and verify
such a model mapping to ensure semantic compatibility, we postulate that through
formality, the terms “component” and “architecture” both can be precisely defined
and some important properties of systems can be investigated with precision.
Furthermore, we use category theory to develop a formal definition of architecture
mapping and some important properties are exploited. It can be a measurement for
validating the mapping rules between models at different abstract levels, and thus to
provide an effective support to model driven software development.

Future works are as follows: (1) further to formalize the definition of component
specification and architecture model, and thus to strengthen the abilities of semantic
expressiveness and consistent verification between models; (2) more study about the
preserving of semantics features in model mapping for the enhancement of accuracy.

References

1. Brent, H., Peri, T.: Model-driven development: The good, the bad, and the ugly. IBM
Systems Journal 45(3), 451–461 (2006)

2. Krzysztof, C., Simon, H.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), 621–644 (2006)

3. Caplat, G., Sourrouille, J.L.: Model Mapping Using Formalism Extensions. IEEE
Software 22(2), 44–51 (2005)

4. Barr, M., Wells, C.: Category Theory for Computing Scince. Prentice-Hall, Englewood
Cliffs (1990)

5. Goguen, J.: A Categorical Manifesto. Mathematical Structures in Computer Science 1(1),
49–67 (1991)

6. Mark, J.G.: Specification of Software Architecture. Journal on Software Engineering and
Knowledge Engineering 10(1), 69–95 (2000)

7. Fiadeiro, J.L., Maibaum, T.: A Mathematical Toolbox for the Software Architect. In: Proc.
8th International Workshop on Software Specification and Design, pp. 46–55 (1995)

8. Eilenberg, S., MacLane, S.: General theory of natural equivalences. Transactions of the
American Mathematical Society 58(1), 231–245 (1945)

9. Colin, A., Joachim, B., Christian, B., et al.: Component-Based Product Line Engineering
with UML, Addison-Wesley Professional, Pearson Education, Boston (2002)

10. Guo, J.: Using category theory to model software component dependencies. In: ECBS
2002. Proc. of the 9th Annual IEEE Int’l Conf. and Workshop on the Engineering of
Computer-Based Systems, pp. 185–192. IEEE Computer Society, Los Alamitos (2002)

11. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley, Boston (2003)

12. Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA approach for Web
service platform. In: Proc. of Enterprise Distributed Object Computing Conference,
Monterey, California, USA, pp. 58–70 (2004)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 650–657, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Exploiting Thread-Level Parallelism of Irregular
LDPC Decoder with Simultaneous Multi-threading

Technique

Xing Fang1, Dong Wang1, and Shuming Chen2

1 School of Computer, National University of Defense Technology,
410073, Changsha, Hunan Province, P.R. China

{fangx8009,nudt_jum}@163.com
2 School of Computer, National University of Defense Technology,

410073, Changsha, Hunan Province, P.R. China
smchen@nudt.edu.cn

Abstract. Irregular LDPC (Low Density Parity Check) code is a powerful error
correction code in wireless communication applications. However, irregular
LDPC decoder has limited instruction-level parallelism. This paper exploits the
thread-level parallelism of irregular LDPC decoders with simultaneous multi-
threading (SMT) techniques. The simulations with random constructed parity
check matrixes under different signal-to-noise ratios and three block lengths show
that it can attain 16.7%~45.3% performance improvement by SMT technique with
the area cost increasing by about 17.73%, which supposes that SMT is an efficient
technique to improve the performance of irregular LDPC decoders.

1 Introduction

LDPC codes have caused major attention in the research community in recent years
because of their excellent error correction capability and performance [1] [2] [3].
Traditionally, LDPC decoders are implemented with Application Specific Integrated
Circuits [4] [5]. However, these implementations lack of flexibility, and require the
parity check matrix with regular expressions. With the development of Software De-
fined Radio and the emerging of new methods to create LDPC codes, it is urgent to
research the software implementation of LDPC decoder.

However, exploiting the instruction-level parallelism of LDPC decoders meets two
problems. First, irregular LDPC decoders consist of multi-layer loops the branch
operations limit the instruction-level parallelism. The uncertain iteration times of
inner loops make the thing even worse, and reduce the probability of exploiting in-
struction-level parallelism through loop-unrolling and software-pipeline. Secondly,
the inner loops of LDPC decoders require three Loads/Stores operations for each non-
zero operand of sparse matrixes, two of which are typically expressed as indirect
subscripts, such as S(i(j)), which makes the function units in the state of waiting for
the operand for most of time.

This paper would focus on exploiting thread-level parallelism of irregular LDPC
decoders. SMT implements multiple virtual hardware threads on a single chip, and

 Exploiting Thread-Level Parallelism of Irregular LDPC Decoder 651

uses the idle function units to increase processors cost efficiency. This paper maps an
irregular LDPC decoder onto a SMT digital signal processor (DSP) to exploit thread-
level parallelism of irregular LDPC decoders.

The rest of this paper is organized as follows: Section 2 introduces the decoding
algorithm; Section 3 introduces the dual-thread implementation of the irregular LDPC
decoder; Section 4 gives a brief description of the hardware platform and the architec-
ture parameters; Section 5 gives the prime experimental results and analysis; Section
6 concludes the paper.

2 Description of Irregular LDPC Decoders Algorithm

LDPC codes can be decoded by Gallager algorithm of iterative Two Phase Message
Passing. Widely used decoding algorithms include sum of products (SP), min-sum
(MS) and Jacobian based BCJR. Compared to these algorithms, the offset min-sum
(OMS) decoding algorithm is less computation intensive, and can achieve the same
bit-error rate (BER) as that of floating point SP and BCJR with 0.1dB SNR penalty.
Since OMS is suited to be implemented on fixed-point DSP [6], we use OMS decod-
ing algorithm in this paper.

In the following description, we use N(m) to denote the symbol-node set associated
with the check-node m; M(n) to denote the check-node set associated with the symbol

node n; L(xn) to denote a posterior probability for symbol node n; nm,λ
 to denote the

log likelihood ratio transferred from a variable node to a check node; nm,Λ
 to denote

the log likelihood ratio transferred from a check node to a variable node. An iteration
of the algorithm is illustrated in Figure 1 using the Tanner graph associated with the
LDPC code, where symbol nodes are shown as circles and check nodes as squares.

Fig. 1. An iteration of decoding algorithm on a Tanner graph associated with the LDPC code

The decoding process consists of four steps as follows:

1) Initialization

()nnm xL=,λ (1)

2) Processing at check nodes

a) For each ()mNn ∈ , compute

652 X. Fang, D. Wang, and S. Chen

() ()0,minmax
~

',}\{)(',
1 βλφ −=Λ ∈

−
nmnmNnnm (2)

b) Compute the LLR:

() ()
()
∏

∈

− Λ=Λ
}\{'

',,
1

, sgn
~

nmNn
nmnmnm λφ (3)

3) Processing at symbol nodes

a) For each ()nMm ∈ , update：

()
()

nmn
nMm

nmnmnnm xL ,
'

,', Λ−=Λ−Λ+= ∑
∈

λλ (4)

b) Hard decision

() 1:0?0ˆ >= nnx λ (5)

4) Export the result or start a new iteration. If 0ˆ =xH or the maximum itera-
tion number is reached, then export the result, else start a new iteration
from step 2.

In equation (2), β is a correcting offset equal to a positive constant. The selection

of β depends on the code parameter.

3 Multithreaded Implementation

From the last section we can see that, in the same iteration the process on a check
node or on a variable node is independent from the process on other nodes. And the
termination criteria can also be partitioned into two parts, as shown in equation (6):

⎪
⎩

⎪
⎨

⎧

=

=
⇒=⎥

⎦

⎤
⎢
⎣

⎡
⇒=

0

&&

0

00

2

1

2

1

xH

xH

x
H

H
Hx (6)

So we can easily divide the algorithm into two threads in term of different nodes
sets. The pseudo code of the dual-thread implementation is shown in Fig. 2.

4 Hardware Experiment Platform

Simultaneous multi-threading (SMT) technique [7] is often implemented in many
superscalar processors, such as Intel Hyper-threading technique [8]. The MOSI
(Multi-operation Splitting Issue) micro-architecture technique proposed in [10] pro-
vides a way to implement SMT on very long instruction word (VLIW) processors.

 Exploiting Thread-Level Parallelism of Irregular LDPC Decoder 653

P: the maximum iteration
N: the block length

M: the number of check nodes
 Thread 0 Thread 1

for i =0 to N/2-1

for each im,λ in the row i

initialize with equation (1)

end

calculate ix̂ with equation (5)

end

barrier ();

for iteration =0 to P

Calculate stop criteria with equation (6)

barrier ();

if stop criteria is true

break;

for j =0 to M/2-1

Calculate equation (2)-(3)

end

barrier ();

for k =0 to N/2-1

Calculate equation (4)-(5)

end

barrier();

end

for i =N/2 to N-1

for each im,λ in the row i

initialize with equation (1)

 end

calculate ix̂ with equation (5)

end

barrier ();

for iteration =0 to P

Calculate stop criteria with equation (6)

barrier ();

if stop criteria is true

break;

for j =M/2 to M-1

Calculate equation (2)-(3)

end

barrier ();

for k =N/2 to N-1

Calculate equation (4)-(5)

end

barrier();

end

Fig. 2. The pseudo code of dual-thread implementation of irregular LDPC decoder

We implement a SMT digital signal process (DSP) prototype YHFT DSP/900,
which consist of two hardware threads and is based on MOSI micro-architecture tech-
nique, as depicted in Fig. 3. It consists of eight function units, and can execute up to 8
instructions simultaneously. Except for the instruction fetch buffers, the register files
and the write-back buffers, other on-chip resource is shared between two hardware
threads.

The fast hardware barrier implemented in YHFT DSP/900 is depicted in Fig. 4.
When a hardware thread writes to the memory-mapped synchronization register and
if the state of the synchronization register is 0, the synchronization register is
changed to 1, and the hardware thread enters waiting state; otherwise the synchroni-
zation register is changed to 0, and all waiting hardware threads are released from
the waiting state.

654 X. Fang, D. Wang, and S. Chen

D
M
A

Serial port
0

Host port

Serial port
1

L
evel 2 C

ache

Interrupt
control

Timer2

Timer1

L
evel 1 D

ata C
acheALU4

ALU3
ALU2

ALU1

LS2

LS1

MU2

MU1

Level 1 Program Cache

Decode Unit

Control
Register

File

256

CPU
Core

External
Memory
Interface

Dispatch Unit

Fetched instruction buffer

Write-back buffer

General Register File

256

Fig. 3. The architecture block diagram of the SMT DSP: YHFT DSP/900

Fetched Instruction
Buffer 1

Fetched Instruction
Buffer 2

Dispatch Unit

Decode Unit

Address Calculation

Address Compare

Synchronization
Control
0? 1? 0

Memory access

Fig. 4. Hardware barrier mechanism implemented in the SMT DSP: YHFT DSP/900

When a hardware thread enters waiting state, no more instructions of the hardware
thread will be dispatched until the thread is released. To ensure the execution correct-
ness, we insert a certain number of NOP instructions after the synchronization opera-
tion. The number of NOP instructions depends on the delay from the instruction
dispatch to the synchronization. In our implementation, we set this number to be 10.

Table 1 lists main architecture parameters of the hardware platform, in which the
access miss latency of L1P cache and L1D cache is known, but the miss latency of L2
cache is influenced by many factors (primary the uncertain access delay of off-chip
DRAM memories). In this simulation experiment, we use the average miss latency of
L2 cache as the simulation parameter.

 Exploiting Thread-Level Parallelism of Irregular LDPC Decoder 655

Table 1. The main architecture parameters of the hardware platform

Parameters Values
Clock frequency 200MHz
of threads 2
Thread priority Round robin
L1P Cache 4KB 2-way associative/LRU/read allocate
L1P miss 5 Cycles
L1D Cache 4KB/256B/2-way associative /LRU /read allocate
L1D miss 4 Cycles
L2 Cache 64KB/1024B/4-way associative /LRU /read-write allocate/
L2 Cache miss 68 Cycles

5 Experiment Results

5.1 Algorithm Verification

We verify our algorithm by comparing the result with the result of the reference soft-
ware provided by Radford M. Neal available at [11]. We use sparse matrixes gener-
ated randomly as our parity check matrixes, with the check distribution of the parity
check matrix is:

countpropcountpropcountprop ××× // =0.2x2/0.7x3/0.1x7

In which prop is the proportion of symbol nodes associated with count check
nodes. In this paper, we use code rate of 1/2, and three block lengths for irregular
LDPC codes: N=500, 2500, 10000.

5.2 Performance Analysis

The decoding rate comparison of single-thread irregular LDPC decoders against dual-
thread irregular LDPC decoders under three block lengths and different signal-to-
noise ratio (SNR) is shown in figure 5. It is shown that the dual-thread decoder attains
performance speedup of 47.8%, 17.3% and 16.7% for the block length of 500, 2500
and 10000 respectively.

0

50

100

150

200

250

1.5 2 2.5 3 3.5 4

Signal to noise ratio (dB)

D
e
c
o
d
i
n
g

R
a
t
e
(
k
b
p
s
)

N=500,single-thread

N=500,dual-threaded

N=2500,single-thread

N=2500,dual-threaded

N=10000,single-thead

N=10000,dual-threaded

Fig. 5. The decoding rate of irregular LDPC decoders under three block lengths

656 X. Fang, D. Wang, and S. Chen

The decoding rate is influenced by the average iteration time and the execution
time of iteration. The average iteration time of different block lengths is shown in
figure 6. Thereby, when the channel status is well, we can use smaller block lengths
to improve the decoding rate. When the channel status is bad, we can use larger block
lengths to get better decoding rate and bit error rate.

The influence of the pipeline stalls caused by cache misses are shown in figure 7.
We can see from figure 7 that using simultaneous multi-threading techniques can
improve the real execution time by about 43%. But when the block length is large, the
total execution time is dominated by pipeline stalls caused by cache misses, which
impairs the benefits of simultaneous multi-threading.

0

10

20

30

40

50

60

1.5 2 2.5 3 3.5 4

Signal to noise ratio (dB)

A
v
e
r
a
g
e

i
t
e
r
a
t
i
o
n

t
i
m
e

N=500 N=2500 N=10000

Fig. 6. Average iteration times of irregular LDPC decoder under three block lengths and differ-
ent SNR

5.3 Cost

Under SIMC 0.18μm process and synthesized by DC of Synopsys®, YHFT-DSP 900
area is about 14,462,947μm2, which increases by about 17.73% than single-thread
processor YHFT-DSP/700[9]. The frequency of YHFT-DSP 900 can reach about
250MHz at the best case.

0

200

400

600

800

1000

1200

N=
50
0,
S-
T

N=
50
0,
D-
T

N=
25
00
,S
-T

N=
25
00
,D
-T

N=
10
00
0,
S-
T

N=
10
00
0,
D-
T

A
v
e
r
a
g
e

i
t
e
r
a
t
i
o
n

t
i
m
e
/
b
i
t

Execution time Cache miss latency

Fig. 7. The impact of cache misses latency on performance of irregular LDPC decoder

 Exploiting Thread-Level Parallelism of Irregular LDPC Decoder 657

6 Conclusion

The experiment results of this paper exhibits that exploiting the thread-level parallel-
ism of irregular LDPC decoders on DSPs based on SMT techniques is an efficient
way to improve decoding rate. With different block lengths and signal-to-noise ratio,
we attain 16.7% ~ 45.3% decoding rate improvements, while the area cost only in-
creases by about 17.73%.

When the block length is large, long latency caused by cache misses will dominant
the total execution time. So in the future research, we will focus on more efficient
prefetch strategies to alleviate the impact of cache misses.

Acknowledgement

This work is supported by National Science Foundation of China (60473079).

References

1. Gallager, R.G.: Low Density Parity Check Codes. MIT Press, Cambridge, MA (1963)
2. Gallager, R.G.: Low-density parity-check codes. IRE Transactions on Information The-

ory IT-8, 21–28 (1962)
3. MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE Trans-

actions on Information Theory 45, 399–431 (1999)
4. Karkooti, M., Radosavljevic, P., Cavallaro, J.R.: Configurable, High Throughput, Irregular

LDPC Decoder Architecture: Tradeoff Analysis and Implementation. In: ASAP 2006.
IEEE International Conference on Application-specific Systems, Architectures and Proces-
sors, IEEE Computer Society Press, Los Alamitos (2006)

5. Rovini, F.R.M., L’Insalata, N., Fanucci., L.: VLSI Design of a High-Throughput Multi-
Rate Decoder for Structured LDPC Codes. In: Proceedings of the 2005 8th Euromicro con-
ference on Digital System Design, pp. 202–209 (August 2005)

6. Chen, J., Dholakai, A., Eleftheriou, E., Fossorier, M., Hu, X.: Reduced-complexity decod-
ing of LDPC codes. IEEE Transactions on Communications 53, 1288–1299 (2005)

7. Dean, T., Susan, E., Henry, L.: Simultaneous multi-threading: Maximizing on-chip paral-
lelism. In: Proceedings of the 22nd Annual International Symposium on Computer Archi-
tecture, Italy, pp. 392–403 (1995)

8. Marr, D.T., Binns, F., Hill, D.L., Hinton, G., Koufaty, D.A., Miller, J.A., Upton, M.: Hy-
per-threading technology architecture and microarchitecture. Intel Technology Journal 6(1),
4–15 (2002)

9. Chen, S., Li, Z., Wan, J., et al.: Research and Development of High Performance YHFT
Digital Signal Processor. Journal of Computer Research and Development (Chinese) 43
(2006)

10. Wan, J., Chen, S.: MOSI: A SMT Microarchitecture Based on VLIW Processor. Chinese
Journal of Computer Science 29(3) (March 2006)

11. http://www.cs.utoronto.ca/ radford/LDPC-2006-02-08

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 658–665, 2007.
© Springer-Verlag Berlin Heidelberg 2007

P2P Distributed Cooperative Work Model Based on
JXTA Platform

Gao Bao-Qing, Fu Xiu-Fen, and Xu Su-Xia

School of Computer, Guangdong University of Technology, Guangzhou 510075, China

Abstract. Distributed cooperation work system performs more effectively than a
centralized cooperation work system in many aspects. In this paper, we analyze
the existing problems in cooperation work models nowadays, and then present a
P2P distributed cooperation work model based on JXTA platform, which can
greatly simplify the development of distributed collaboration work system and
enable the system possess of better scalability, platform- -independence and
flexible applicability. At last, we obtain an analysis compared to other models
and make suggestions to improve the model.

Keywords: CSCW JXTA P2P Distributed Collaboration Concurrency Access
Control.

1 Introduction

P2P (peer to peer) is becoming a research hotshot in recent years because of its
characteristics such as load balancing, robustness and self-organization, etc.
Especially in the CSCW, it gives us a more attentive selection than Client/Server and
traditional distributive architecture. Nowadays some business applications based on
p2p have appeared in market, including Skype and Microsoft Office Tool Groove.
The cooperative application based on p2p can satisfy various cooperation demands
with a more natural and cute manner, which is especially suitable for mobile office
environment. On the basis of analysing traditional CSCW model, this paper obtains
a distributive CSCW model based on JXTA and makes detailed discussion for its
layers and working theory, more detailed analyses to the policies used in the model at
last.

2 CSCW Model and Existing Problems

CSCW[1] is computer supported coopera- -tive work, which means that exhausting
computer and communication technology to support geographically dispersed workers
to cooperate in a common task. CSCW system can be divided into two classes:
centralized and distributive architecture (also called all coping architecture).

 P2P Distributed Cooperative Work Model Based on JXTA Platform 659

2.1 CSCW Model

In fact, centralized architecture means Client/Server (or Browser), as shown in Fig1,
this architecture is generally composed of one or more servers and more clients
interacting with servers, at the same time, which transforms operation events produced
by users into instructions that can be recognized by servers and sent to servers to be
executed in a unified fashion. At last, servers dispatch and execute these operation
instructions, then return processed results to clients to display. Because all processes
are centralized in one or a small quantity of servers, collaboration management and
Real-time cooperation’s concurrent access control can be easily realized

In distributive cooperation architecture, the original functions of servers are
balanced to more clients, so that every client has double identity, which enable free
interactions between clients (peers) to manipulate their common collaborative task.
Every client (peer) only receive cooperation events and execute them in local machine,
so the entire collaborative application will gain more rapid responses, but concurrency
access control will be more complicated.

Fig. 1. Centalized CSCW architecture

2.2 Existing Problems in CSCW Model

So far, most of CSCW application systems are based on Client/Server (or browser) [2],
such as Microsoft Exchange, IBM Lotus Notes and etc, but the fault of this architecture
is obvious. For example, when transferring a mass of multi-media data, the
performance of server may be the bottle-neck of a system. The display of Clients'
collaborative operation result will be lagging in the environment severely requiring
real-time interaction where shared operated object is located in a server. Distributed
cooperative architecture is able to support load balancing and get better responses
effect. On the other hand, data redundancy in p2p distributed system can avoid single
point failure to ensure robustness.

P2P network is a kind of typical DCE (Distributed Computing Environment).
Peers, PeerGroup and other conceptions defined in JXTA especially accord with
essential characters of CSCW. For example, communication between peers

660 G. Bao-Qing, F. Xiu-Fen, X. Su-Xia

corresponds to collaboration between group members and PeerGroup to work-group in
realistic life. The collaboration work based on P2P solves the problem of Architecture
Mismatch [3] between traditional cooperation architecture and cooperation view
provided to users.

3 JXTA Technology

3.1 Simple Instruction About JXTA

JXTA is a new technology proposed by SUN Microsystem according to the fault of
current p2p system. JXTA mainly supplies fundamental services needed in p2p
application in order to establish a general p2p distributed computing platform, so
advanced p2p distributed service and application can be built in a simple but effective
manner. JXTA adopts two layered topology network using super node frame, through
its core p2p protocols, by which a virtual cross-platform ad-hoc network can be easily
built over current physical network facilities, as shown in Fig.2.

Fig. 2. JXTA virtual all connected network

3.2 Key Conceptions in Developing p2p Distributed Application Using JXTA

JXTA IDs: In the JXTA address mapping model, every resource in network has a
unique JXTA ID which is generated while a peer is built. In p2p network, cooperation
service and shared operated object are recognized and searched by JXTA IDs.

Peers: A peer may be any entity which can interpret core protocols defined in JXTA.
Peer can be thought as an equal priority collaborator.

Messages: Message is a basic unit of transferring data in communication between
peers. Peers interact with each other by sending and receiving messages. Two
formatted messages, XML and binary messages, are supported by JXTA, developer can
make a choice according to different requirements.

 P2P Distributed Cooperative Work Model Based on JXTA Platform 661

Peer Groups: Peer Group is a self-organized team composed of some peers by
common interest or a common collaborative task. A Peer Group is actually a dynamic
peer set which can penetrate firewall and NAT (Network Address Translator) to
support communications between heterogeneous networks, as shown in Fig.2.

Pipes: Pipe is a kind of virtual communicating channel between JXTA service and
application. Two peers are connected by a pipe, in which peers' data stream flows.
JXTA supports different kinds of pipes to fulfill various p2p communication scenes.

4 P2P Distributed CSCW Model Based on JXTA

This paper proposes a CSCW model based on JXTA, which is used to describe the
whole structure and functional layers, as shown in Fig.3. In the model, fixed computing
facilities are configured with J2SE JXTA and small scale or mobile devices configured
with J2ME JXTA. In the next section, the paper will make an instruction about every
layer and detailed analyses on concurrency access control unit used in the model.

Fig. 3. CSCW model based on JXTA

1) The last two layers are JXTA core protocol layer and fundamental p2p service
layer, which provide many important bottom services including peer monitoring, peer
finding, shared resource distributed index and etc. In p2p network, every peer
dynamically enters or exits and peers aren't able to identify remote peer (mostly
because of NAT), so safe problem is outstanding comparatively. JXTA provides a
relatively perfect safe frame including network security include user login based on
account and password, the authentication infrastructure, simple visit control,
encryption and TSL/SSL. Especially for peers running on J2SE or J2EE which support
a more perfect security frame.

2) The third layer is composed of groupware[1] components and concurrency
access control module. It is not geared to the needs of concrete application, but used to
supply some universal cooperation functions like concurrency access control, priority
control and interactions between sites that are implemented as fundamental services, so
developers make use of this developing concrete cooperation application. Teamwork

662 G. Bao-Qing, F. Xiu-Fen, X. Su-Xia

Services Components are fundamental elements to realize collaboration such as
Publish/Subscribe, file sharing and exploring and asynchronous message service. The
concurrency control module is specifically designed for the deficiency of JXTA in the
field of real-time coordination; concrete comments will be stated in next section.

3) The fourth is application tier, which includes business logic and service
configuration module. Logical business layer is implemented by Java Bean, which
mainly contains a business logic adapter. According to different cooperation models
(including dialogue model, process model, activity model etc.) ,users can use service
configurator to set related groupware components to support changing cooperating
requirement, making business implementation without considering details of
cooperation implementation.

4) The toppest tier is user interface adapter which is mainly used to provide users
with visual service interface. Considering that, when users play PC or other mobile
devices their computing capability will be distinctly different, so this tier provides
different interface visualization API according to the type of device.

4.1 Model Feasibility and Characteristic Analysis

1) Using JXTA as a fundamental platform in developing p2p distributed application, on
the one hand, developers can shake off the complicated job building the frame from the
beginning and have more time to be absorbed in developing all kinds of novel and
creative applications; On the other hand, the combination of JAVA and XML enables
JXTA to be powerful enough to make the interaction between vertical applications. At
the same time, to solve the digital producer copyright problem that gravely restricts the
development of p2p, JXTA packages the supporting copyright administration and the
core function used for centralized peer management, which makes the developing of
successful business application become possible.

2) Benefit from using layered structure, when requirements dynamically change,
what we need to do is only to revise business realization, because that groupware layer
only cares for realization of p2p cooperating in bottom tier, the business logic care for
business realization only. Also, when there is any change during the realization of
cooperating model, it will not affect the above realization of business logic. By this
design, to some extent, most developed component can be reused.

3) The P2P technology is famous for Napster sharing music, at present most P2P
applications are confined to the sharing of documents basically. The design of JXTA is
also affected by this idea more or less, so that, JXTA does not provide a comparatively
perfect concurrency access control mechanism of real-time collaboration. Therefore,
the fourth tier of figure3 has added a concurrency control module specially.

At present, most centralized CSCW models mainly use the traditional concurrency
control policies [2] which mainly includes two kinds: (1) serial method; (2) lock
method including optimistic lock and pessimistic lock; Because traditional methods
come from distributed database concurrency control algorithm which does not consider
interaction of user interface and only are designed for no-interactive transaction process
system, so if the policy is used in groupware system, unnatural Human- --computer
interaction, Machine-Machine interaction will be brought on inevitably, and it will
block the user interface also.

 P2P Distributed Cooperative Work Model Based on JXTA Platform 663

4) According to above-mentioned problems, Ellis.etc proposed a new kind of
concurrency access control method based on Operation- --Translation in 1989. In this
algorithm, all operations are defined to a set of partial order relations. For two any
operations, such as A and B, if they are interdependent in term of a causal relationship
and A keeps ahead B, then, they have this partial order A->B and vice versa. Disordered
concurrent operations are allowed, but corresponding translation is necessary
according to the relation between operations in order to keep the consistency of sharing
operation object in different sites. But in actual application, sometimes, it’s very
difficult to get all translation rules between all operations. So, this method is not
suitable for all circumstances.

The model adopts a new kind of tree-based concurrency control policy [5], every
peer maintains current shared operation object by this tree-structure in local. In fact,
this tree is document object model DOM structure (Fig.4), any programming language
can use a corresponding XML interpreter to transform a application document into this
form, this method of work is feasible therefore.

In the process of real-time coordination, every site (peer) preserves the times of
operation (logic clock [4]) handled in local. When receiving operation messages from
other sites, the site uses its local logic clock to make a compare with the logic lock of the
sending messages from source site. if the former is not smaller than the latter, then we
think that logical concurrency operations mentioned in last section has occurred, now, the
corresponding arbitration module generates a total order of concurrency operation events
according to these events' priority, at the same time, the total order message with higher
priority is sent to other sites to ensure that operations are executed in the same order in
every site, thereby, entire concurrent operation control is achieved.

Fig. 4. Tree-structured document model

In this concurrency access control policy, the shared operation object is presented in
a tree-structured form, so it has a common adaptability and can control the concurrent
granularity freely. By doing this, using this method, the system has more rapid
responses and better interactive nature. Currently, using this model, a simple
cooperative text editor has been implemented, as shown in Fig.5, in order to validate

664 G. Bao-Qing, F. Xiu-Fen, X. Su-Xia

Fig. 5. p2p cooperative text editor

the applicability and performance while handling complicated interactions, a
coordination image editor system will be built next step.

5) Verification of model’s function and applicability: In order to verify the model's
response time and its applicability when network scale is increasing, experiment has
measured peers' average response time under the condition that network works on
different flow load and has different total nodes. Test configuration parameters as
shown in table.1, in which different peers may run on. the same host.

Table 1. Configuration Parameters

Ordinary peer
Pentium 4 2.0G，512M Memory
OS： Windows XP sp2

Rendezvous peer
Celeron 1.7G, 512M Memory
Linux 2.4.1s/Federa-Linux 5.0

JXTA Build(all
pees)

JXTA 2.4.1

JDK Build(All
peers)

JDK 1.6 Hotspot VM

Considering that network scale is limited, only one rendezvous peer is configured.

According to the experiment data, we got Fig.6. We can see that when message sending
(simulating collaborating operation) frequency declines and the network flow load
decreases, peers' response time is shorten. At the same time, the whole performance of
the system upgrades as the increasing of network scale (by adding nodes). This is just
one of the most different characteristics from Client/Server architecture, and that’s the
priority of P2P.

6) Existed problems with the model: Every peer is equal to another peer in role, the
mechanism work better for peer cooperation though it may be not suitable for

 P2P Distributed Cooperative Work Model Based on JXTA Platform 665

Fig. 6. Response time comparison

cooperation with relation of dependence. So some corresponding improvement to this
problem is necessary. For example, the management mechanism based on role will be
considered to be added to enhance the applicability of the model. Moreover, the P2P
network topology is dynamically changing sharply, which may confront with problems
that routine software system does not have. All of this need deeper researcher in future.

5 Conclusions

By the analysis of existed problems in current CSCW system and JXTA's advantage in
developing p2p distributed CSCW system, we propose a CSCW model based JXTA,
by which many bottom-tier communication details developers confront are shielded.
Besides, according to deficiency in handling real-time cooperation, concurrency access
control unit based tree-structure is led into the model to get more rapid user interface
responses. Research priority next step is: Improving JXTA network’s efficiency in data
transmitting, makes the model be able to have certain error detecting and error
correction ability during the period when exception happens in collaboration.

References

1. Shi, M., Xiang, Y., Yang, G.: The theory and application of CSCW[M], Publishing House of
Electronics Industry, Beijing (2000)

2. Hauswirth, M., Podnar, I.: On P2P Collaboration Infrastructures. Infrastructure for
Collaborative Enterprise. In: 14th IEEE International Workshops, pp. 66–71 (2005)

3. di Milano, P., da Vinci, P.L.: Peer-to-Peer for Collaborative Applications. In: Proc. Of IEEE
Distributed Computing Systems Workshop, pp. 359–364 (2002)

4. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communication
of the ACM 21(7), 558–565 (1978)

5. Ionescu, M., Marsic, I.: An Arbitration Scheme for Concurrency Control in Distributed
Groupware,[C]. In: An ACM CSCW 2000 Workshop. Proceedings of The Second
International Workshop on Collaborative Editing Systems, Philadelphia, PA, vol. 12(3), pp.
329–350 (December 2003)

EasyPAB: An Extensible IDE Framework for

Parallel Applications

Yu Ce1, Sun Jizhou1, Huang Yanyan2, Wu Huabei1,
Xu Zhen1, and Sun Min1

1 School of Computer Science&Technology, Tianjin University, Tianjin 300072, China
2 Network Center, Hebei University of Technology, Tianjin 300130, China

yuce@tju.edu.cn

Abstract. Modeling and programming parallel applications are becom-
ing unavoidable for next generation of software architects and program-
mers, owing to the popularization of multi-core processors and Linux
Clusters for high performance/availability computing. As an aid to de-
sign and development of various parallel applications running on dif-
ferent parallel computing infrastructure, an extensible IDE (Integrated
Development Environment) framework named EasyPAB (Easy Parallel
Application Builder) is introduced in this paper. It combines the princi-
ple and technology of parallel design patterns and architectural skeleton
to simplify the design and development of parallel applications and sup-
ports both message-passing-based and shared-memory-based platforms,
by providing a unified user interface for modeling visually while gen-
erating different types of code skeletons according to specific runtime
environment automatically. The implementation of EasyPAB is based
on plug-in architecture which is compatible with Eclipse, thus third par-
ties are free to supplement or improve it.

Keywords: Parallel Computing, Design Pattern, Architectural Skele-
ton, EasyPAB, Eclipse, IDE.

1 Introduction

The development of methodology and tools of software engineering for parallel
computing is far behind that of hardware technology. The industry tendency
shows that most personal computers (both desktops and laptops) and servers
in the future will be equipped with multi-core or many-core processor(s)[KT1],
meaning that every computer will be ready for parallel computing. And as for
high end market, Linux Clusters are adopted by more and more commercial
and research organizations. Any program, which is designed to run on such
parallel computing platforms and to take full advantage of the computing ca-
pability, has to be parallelized. Unfortunately, parallel programming is so dif-
ficult for most programmers who only have experiences in traditional serial
programming.

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 666–675, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

EasyPAB: An Extensible IDE Framework for Parallel Applications 667

Aiming at different aspects of parallel programming, types of programming
models, specifications, libraries and tools have been brought forward and im-
plemented, such as MPI and PVM (for explicit message-passing programming),
OpenMP[CM1] (for multi-threaded shared memory programming), HPF (higher
level distributed memory programming), etc. General theories, such as parallel
design pattern and architectural skeleton[AG1][DA1][WL1] technology, have also
been widely discussed. Several platforms or framework for the development of
parallel applications[CG1][HJ1] were designed basing on the above technologies
and libraries, such as VisualLinda[KT1], Visper[SK1], SWARM[DV1], etc.

Indeed, paradigms mentioned above have relieved the burden of programmer
for a certain degree, yet there is no practical IDE (Integrated Development Envi-
ronment) for both architects and programmers to build parallel applications. In
this paper, we introduces an extensible IDE framework named EasyPAB (Easy
Parallel Application Builder). It is based on Eclipse[Ge1], an open source plat-
form on which users can build their own IDE for any kind of application.

EasyPAB is an extensible IDE framework designed for both message-passing-
based and shared-memory-based parallel computing infrastructures, such as
Cluster and SMP, and supports kinds of parallel programming models, such as
MPI, PVM, OpenMP and multi-thread. For higher level of design and develop-
ment, EasyPAB merges technologies of parallel design pattern and architectural
skeleton. The features above are organized and implemented as individual plug-
ins that can be added dynamically and become part of EasyPAB. This plug-in-
based architecture is consistent with Eclipse. The user interface of EasyPAB is
inherited from the workbench of Eclipse, so its layout and most operations are
very similar with popular IDEs such as IBM RAD or Microsoft Visual Studio.
With the help of EasyPAB, architects or developers can focus on the higher
level abstract and solution of applications and needn’t care of the complexity of
traditional parallel computing technologies.

The rest of the paper is organized as follows. Section 2 reviews and analyzes
several essential considerations during the development of parallel applications
that EasyPAB concerns. Section 3 describes the architecture of EasyPAB by
introducing its three layers and corresponding components. Section 4 discusses
the implementation of EasyPAB, shows the plug-ins for visual modeling and
source code editor. Section 5 gives the summary and future plan.

2 Modeling and Programming Parallel Apps

When modeling and programming a parallel application, the following precon-
ditions will be taken into account: the features of infrastructure on which it
will run; existing libraries or tools which can be utilized; advanced patterns,
models and methodologies which are suitable with the special applications. Tra-
ditionally, these questions have to be answered one by one, and only experienced
developers can master them all. The design of EasyPAB is to provide an inte-
grated environment so that all the works can be easily done as a whole.

668 Y. Ce et al.

Runtime Environment – Parallel Computing Infrastructure
Many types of parallel computing environments have been widely used, including
SMP, Cluster, PVP, DSM, MPP, etc. Computers shipped with modern multi-
core processor(s) can also be regarded as SMP. As for the design and developing
of parallel applications, the most important feature of parallel computing infras-
tructure is data exchange mode between tasks. From this point of view, parallel
computing infrastructure can be classified into two categories: Shared Memory
based, such as SMP and DSM, or Message Passing based, such as Cluster and
MPP. EasyPAB is designed to support both two types of parallel computing in-
frastructure and serve the architects and developers with a unified user interface.

Usable Middleware – Parallel Programming Libraries and Tools
The most significant difference between parallel applications and serial applica-
tions is that the former have multi-process or multi-thread. Namely, there will be
more than one task, which belong to same application and have to communicate
with each other, running concurrently. Communication between tasks is the base
of any parallel application, while the implementation and management of it are
very complex. So some organizations designed and provided specifications and
libraries to simplify the work on communications, among them, OpenMP, PVM
and MPI are most widely used.

OpenMP is designed for shared memory systems, and it is just a specification,
everyone may implement his own library. PVM and MPI are designed for message
passing systems. As for most applications, these libraries are sufficient. EasyPAB
utilizes them directly instead of developing fire-new ones. To hide the difference
among the heterogeneous runtime environments, EasyPAB includes a middle
layer encapsulating these existing parallel programming libraries.

General Modeling System - Parallel Design Patterns
Design pattern is used to describe recurring problems and the reusable solutions
to each problem. The concept of a design pattern for parallel programming[SM1]
is based on the realization that a large number of parallel applications (especially
medium- and coarse-grained applications) are built using commonly occurring
parallel techniques such as a task-farm or a divide and conquer structure. Paral-
lel design patterns are methodologies, and only experts with rich experiences can
use them properly. Besides, parallel design patterns are more useful in analyz-
ing and modeling phase of complex applications than in implementation phase.
EasyPAB employs mature parallel design patterns to guide the modeling of par-
allel applications, and cooperate with other technologies such as architectural
skeleton to generate the code framework.

Development Assistor – Parallel Architectural Skeletons
The technology of Parallel Architectural Skeletons is an approach of realizing and
using parallel design patterns[WL1]. A parallel architectural skeleton is a set of
attributes that encapsulate the structure and the behavior of a parallel design
pattern in an application independent manner. These attributes are generic for
all patterns. Many of these attributes are parameterized where the value of a
parameter depends on the needs of an application. Some of these parameters

EasyPAB: An Extensible IDE Framework for Parallel Applications 669

are statically configurable while the others are dynamic. User extends a skeleton
by specifying the application-dependent static parameters, as needed by the
application at hand. Parallel architectural skeleton technology acts as the base
of code generation function of EasyPAB.

3 Architecture of EasyPAB

EasyPAB is designed to provide a unified interface for building parallel applica-
tions using different programming models on different parallel computing plat-
forms, to help the developers model the applications and generate code frame-
work and necessary runtime configurations. Logically, the architecture of Easy-
PAB is partitioned into four layers, and the components included in each layer
and their dependencies are shown in Fig.1.

Fig. 1. Architecture of EasyPAB

In the bottom layer, the support for each specific parallel computing infras-
tructure is implemented as a plug-in with the runtime configuration files and
executable scripts which can call the functions of the management systems.

EasyPAB ParallelLib consists of modules which package different types of
parallel libraries. Depending on different types of parallel computing infrastruc-
ture, it provides support for MPI, PVM and OpenMP respectively, and provides
a unified interface for the upper layer. EasyPAB MP is designed to support
explicit multithread programming, by providing a component of lock-free data
structures which allow two or more threads can access the same shared variable
without caring of accessing conflict.

EasyPAB Core is the core layer of the framework. Logically, it is divided
into three parts: EasyPAB CodeManager, EasyPAB Skeleton and EasyPAB DP.
EasyPAB DP stores and manages the description of design patterns for parallel
applications. On one hand, the abstract definition of solution of each design pat-
tern is used to generate source code skeleton; on the other hand, the comments
and examples of each design pattern may be referred by advanced developers. As
mentioned above, all the information is stored using a new XML-based language
which designed specially for this framework. EasyPAB Skeleton assists the gen-
eration of code for parallel applications. Cooperating with a wizard component

670 Y. Ce et al.

named V Wizard from the upper layer, this component can generate skeleton of
code according to the selected design pattern and customization of developer.
The storage of information of all skeletons is same as EasyPAB DP. Fig.2 shows
the details of code generation process.

Fig. 2. Generation of Source Code Skeleton

EasyPAB CodeManager manages the source code generated by EasyPAB and
modified by developers. During the initial process of design and development
of each application, user must specify the runtime environment and parallel
programming library he plans to use. According to those choices, this component
will maintain corresponding type of codes automatically.

EasyPAB UI is the user interface of EasyPAB, and it inherits the general
layout and most common functional feathers of Eclipse, so users will feel familiar
with the IDE. Besides, it has its own feathers designed specially for building
parallel applications, including the support for visual modeling and distributed
deployment. Main views of EasyPAB are listed as the following:

V Wizard helps architects or developers create new projects for parallel appli-
cations. It provides a series of dialog boxes through which user can specify the
structure of the specific application, and EasyPAB will generate code skeletons
automatically.

Fig. 3. Visual Modeling System

Fig.3 shows the modeling system of EasyPAB, and V Wizard acts the View in
the figure. The modeling system is based on MVC architecture, where the mod-
els are descriptions of specific algorithms or reusable modules, acting as the up
layer of EasyPAB Skeleton. The models are displayed to developers in the View
in forms of sets of Construction Blocks which are organized following the Rules

EasyPAB: An Extensible IDE Framework for Parallel Applications 671

predefined. EasyPAB defined three types of models, namely programming model,
process model and communication model. The GUI of modeling system is shown
in next section.

V Console gathers and displays the information during the process of parallel
programming, such as output of parallel program compiling, debugging or par-
allel task deployment. The information could help users to know the details of
the program development and make it easier to find the solving method if there
are problems existing.

V Nodes manages the computing resource in the parallel computing infras-
tructure. It will gather and display the information of each available computing
node for user using. User could select the available hosts to use in the view.
Since the status of computing resource is dynamic, the information in this view
is changed accordingly.

V Navigator manages the resource of parallel application project which in-
cludes source code, executive files and configuration files. It supports resource
creation, modification, deletion, orientation and search. Through the Navigator
View, user could get a general picture of the project resource.

V Editor is the area in which user can edit the source code or the other files
in the parallel project. In addition to providing all the functionality of an editor,
it also supports the key words syntax highlighting and content assistance, this
helps user to develop the program quickly.

V Deploy deploys the binaries of some compiled application to physical com-
puting nodes. This view helps the user to complete the parallel task deployment
automatically. The process of deployment depends on the user defined deploy-
ment configuration.

V Config is a visual interface to configure the runtime environment which
includes available host configuration, deployment configuration and parallel ar-
chitecture parameter configuration.

4 Implementation

EasyPAB is not implemented from scratch, but built on an open source platform
- Eclipse[Ge1], contributed by IBM. Eclipse is an extensible platform for building
IDEs and provides a core of services for controlling a set of tools working together
to support programming tasks. Tool builders contribute to the Eclipse platform
by wrapping their tools in pluggable components, called Eclipse plug-ins, which
conform to Eclipse’s plug-in contract.

As the above figure shows, each component of EasyPAB is implemented as
a plug-in which is named following the architecture of EasyPAB mentioned in
previous section. In EasyPAB ParallelLib layer, EasyPAB MP plug-in includes
lock-free data structures for explicated multithread programming, and Easy-
PAB OMP, EasyPAB MPI and EasyPAB PVM plug-ins encapsulate existing
implementation of OpenMP, MPI and PVM respectively. Each component in
EasyPAB Core layer is implemented as an individual plug-in with the same

672 Y. Ce et al.

Fig. 4. EasyPAB Plug-ins basing on Eclipse SDK

name shown in Fig.1. All the components in EasyPAB UI layer are integrated
into one plug-in, and each component is implemented as a view.

EasyPAB CodeManager plug-in provides methods to generate the source code
skeleton of the parallel appliction automatically based on the user specified pa-
rameters of parallel architectural skeleton. EasyPAB Skeleton plug-in has real-
ized several typical parallel architectural skeletons which can be used directly.
Each parallel architectural skeleton is saved as XML format and has unique
key word to be distinguished from each other. It describes the characteristic
and the range of usage of the skeleton. It reflects the framework of the parallel
strategy and realizes the code of the parallel skeleton. When EasyPAB starts,
it will search and load the EasyPAB Skeleton plug-in dynamically. The unique
key word of each parallel architectural skeleton will be extracted and shown in
the user interface to help the user to search or select the skeleton. The dynamic
loading process is benefit to add or update the parallel architectural skeleton
in the library. In this way, user could select the proper parallel architectural
skeleton from the library based on the specific applications and specify the pa-
rameters of the parallel architectural skeleton, EasyPAB CodeManager plug-in

Fig. 5. User Interface for Visual Modeling

EasyPAB: An Extensible IDE Framework for Parallel Applications 673

will generate the source code skeleton automatically. It simplifies the process of
parallel programming and saves the time for the developer.

The plug-in shown in Fig.5 is named ParaModel and acts the user interface of
modeling system of EasyPAB, and it depends on EasyPAB Skeleton and Easy-
PAB CodeManager plug-ins. Users can model their parallel application using
this plug-in by reusing existed solutions provided by EasyPAB Skeleton plug-in.
When modeling is accomplished, EasyPAB will generate the skeleton of source
code according to specific runtime environment automatically with the help of
EasyPAB CodeManager plug-in. The models constructed are saved as XML files.

The model shown in Fig.5 is a programming model, which is suitable for
description of specific algorithms or the behavior inside one process. While the
other two types of model, process model and communication model, are designed
to illustrate the relationship between different process and their communication
activities, respectively. Each type of model has its own perspective.

There are four sets of Construction Blocks defined in EasyPAB: structure, ac-
tion, control, and message. The structure construction blocks are used to describe
process, process group, port, etc. The action construction blocks are designed for
description of communication and dynamic process structure. The control con-
struction blocks are used to show the control flow of the application or algorithm,
such as circulation, conditional branch, or sequence. The message construction
blocks are the entities which express the messages interchanged between different
processes or process groups, mostly in form of arrows.

Fig. 6. User Interface for Source Code Edition

Fig.6 shows the source code editor plug-in, and here the runtime configuration
is MPI applications running on Linux clusters. After modeling and generation
of source code framework, developers can use this plug-in to modify the source
code to implement their special applications.

EasyPAB has good expansibility owing to the configurable characteristics
which focus on the realization of the data interface. The system uses config-
uration files to set the runtime environment. It provides three kinds of configu-
ration files: available host configuration file which records the available host in

674 Y. Ce et al.

the parallel computing environment, deployment configuration file which saves
the information about parallel task deployment, and parallel architecture pa-
rameter configuration file which includes the parameters of the specific parallel
architectural skeleton. All of these files are described as XML format which can
be parsed easily. Through the configuration files, the system could separate the
program abstract model and the part of code realization.

5 Conclusion and Future Work

EasyPAB provides an extensible IDE framework for modeling and programming
parallel applications. The implementation is based on Eclipse, a powerful open
source platform for customizing special IDEs. With the help of EasyPAB, de-
velopers can model the application visually using the modeling system, then the
graphs of model will be translated into parallelized code skeleton automatically.
The code skeleton is generated and organized according to the design patterns
and parallel architectural skeletons which fit that application. After the devel-
opers fill in the necessary functional or computing code segments, EasyPAB will
compile and deploy the executable binaries according to specific runtime en-
vironment. Tested runtime environment including IBM Cluster1350 (a suit of
Linux Cluster), and single servers equipped with Intel/AMD dual-core proces-
sors (Windows/Red Hat Linux).

The primary characters and innovations of EasyPAB include its extensible
architecture, layered abstraction of parallel applications and algorithms, visual
modeling technology, and implementation mechanism. The architecture of Easy-
PAB is extensible so that not only it can be developed incrementally, but also
other developer can contribute their own features to it. The layered abstraction
is based on the technologies of design patterns for parallel application and paral-
lel architectural skeletons, and supporting automatic generation of source code
framework. The visual modeling system provides reusable modules to developers
and helps them reuse existing solutions or construct their own applications. The
implement of EasyPAB is based on Eclipse, and open source project, so everyone
can improve it with new programming models, design patterns, parallel archi-
tectural skeletons, as well as support for new parallel computing infrastructures.
There are two ways to extend EasyPAB, one is to enhance the functionality of
the IDE basing on the Eclipse extension points, and the other is to develop a
new plug-in based on Eclipse plug-in architecture.

But EasyPAB is still under development and desiderates more supplements
and improvements, such as plug-ins for supporting newly emerged parallel plat-
forms, supporting for more design patterns and skeletons, functions for debug-
ging and performance analysis, etc. In the future work, we will focus on the visual
modeling language and related translation technologies, to make EasyPAB be
ready for practical use.

Acknowledgement. This work was supported by Key Technologies R&D Pro-
gram of Tianjin, China (No. 06YFGZGX06000).

EasyPAB: An Extensible IDE Framework for Parallel Applications 675

References

[AG1] Akon, M.M., Goswami, D., Li, H.F.: A model for designing and implementing
parallel applications using extensible architectural skeletons. In: Malyshkin, V.
(ed.) PaCT 2005. LNCS, vol. 3606, pp. 367–380. Springer, Heidelberg (2005)

[CM1] Chapman, B., Merlin, J., Pritchard, D., Bodin, F., Mevel, Y., Sorevik, T., Hill,
L.: Program development tools for clusters of shared memory multiprocessors.
Journal of Supercomputing 17(3), 311–322 (November 2000)

[CG1] Coxi, P.T., Glaser, H., Maclean, S.: A visual development environment for par-
allel applications. In: Visual Languages, Proceedings. 1998 IEEE Symposium,
September 1–4, 1998, pp. 144–151 (1998)

[DV1] Bader, D.A., Kanade, V., Madduri, K.: SWARM: A Parallel Programming
Framework for Multicore Processors. In: MTAAP 2007. Workshop on Multi-
threaded Architectures and Applications, Long Beach, CA, March 26-30, 2007,
pp. 26–30 (2007)

[DA1] Goswami, D., Singh, A., Preiss, B.R.: From Design Patterns to Parallel Ar-
chitectural Skeletons. Journal of Parallel and Distributed Computing 62(4),
669–695 (2002)

[Ge1] Geer, D.: Eclipse becomes the dominant Java IDE. Computer 38(7), 16–18
(2005)

[HJ1] Hawick, K.A., James, H.A.: A Java-based parallel programming support envi-
ronment. In: Williams, R., Afsarmanesh, H., Bubak, M., Hertzberger, B. (eds.)
High-Performance Computing and Networking. LNCS, vol. 1823, pp. 363–372.
Springer, Heidelberg (2000)

[KT1] Koike, H., Takada, T., Masui, T.: VisuaLinda: a framework for visualizing paral-
lel Linda programs. In: Visual Languages, Proceedings. 1997 IEEE Symposium,
September 23-26, 1997, pp. 174–178 (1997)

[KR1] Asanovic, K., Bodik, R., Catanzaro, B., Gebis, J., Husbands, P., Keutzer, K.,
Patterson, D., Plishker, W., Shalf, J., Williams, S., Yelick, K.: The Landscape
of Parallel Computing Research: A View from Berkeley. Technical Report No.
UCB/EECS-, -183.Electrical Engineering and Computer Sciences University of
California at Berkeley, 2006.12 (2006)

[SM1] Siu, S., De Simone, M., Goswami, D., Singh, A.: Design patterns for parallel
programming. In: PDPTA 1996. Proceedings of the 1996 International Confer-
ence on Parallel and Distributed Processing Techniques and Applications, pp.
230–240 (1996)

[SK1] Stankovic, N., Zhang, K.: A distributed parallel programming framework. Soft-
ware Engineering, IEEE Transactions 28(5), 478–493 (2002)

[WL1] Wei, Z., Li, H.F, Goswami, D.: Composable skeletons for parallel programming.
In: PDPTA 2004. Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, pp. 1256–1261 (2004)

The Implementation of Parallel Genetic

Algorithm Based on MATLAB�

Chen Guifen1,2, Wan Baocheng2, and Yu Helong1,2

1 Institute of computer science and technology in Jilin university, 130118
Changchun, China

2 Institute of information technology in Jilin agriculture university, 130118
Changchun, China

Abstract. This paper introduces the usage of MATLAB Distributed
Computing Engine(MDCE). The relationship between the volume of the
data transmitted and the transmission time is tested and the analysis
of the data shows that there is a significant linear relationship between
the two. Then we give an implemen-tation plan of the parallel genetic
algorithm (PGA), and we also carried on the computation of a TSP
example which shows a higher speedup and a better per-formance. All
these show that the it is efficient and effective to use MATLAB to develop
distributed computing application program.

Keywords: distributed computing, genetic algorithm, MATLAB.

1 Introduction

MATLAB is an outstanding scientific and engineering computing software owned
by MathWorks Inc. It becomes the standouts in computing software fields be-
cause its high-speed calculation, reliable, rich features and convenience program-
ming. With the popularity of computer networks, most computers are connected
into a network, and distributed computing has entered the times of pc(personal
computer). Developing distributed and parallel applications based on MATLAB
would take full advantage of the rich functions of Matlab and greatly reduce
the difficulty and cost of development, and highly improve efficiency[1]. Math-
works Corporation has timely promoted of the distributed computing engine
and toolbox[2, 3], moreover Matlab is a cross-platform product, and therefore
Matlab actually constitute the distributed computing engine and toolbox in het-
erogenous environment. Message Passing interface (MPI)[4], the most important
parallel program tool at present, has already become the industry standard in
parallel programming. Matlab has also provided the basic support for MPI func-
tions. The distributed computing engine and toolbox, the commercial product
pro-moted by the MathWorks Inc, has some unmatched advantages compared
with other matlab development environment[1, 5].
� Supported by National “863”project “agriculture knowledge grid” (No.

2006AA10Z245) and National “863”project “research and application of maize
farming system”(No. 2006AA10A309).

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 676–683, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Implementation of Parallel Genetic Algorithm Based on MATLAB 677

As an important member in the Evolutionary Algorithms (EA) family and
meta-heuristic optimization method, GA shows good performance in a great
deal of com-plex optimization problems[6, 7]. Solving some practical issues will
slow down the process of the evolution of Sequential GA due to more number of
individuals and substantial calculation in need, this will make it is hard to meet
the practical require-ment. Therefore parallel the GA becomes a study hotspot
in GA[8, 9]. Though Matlab provids a GA toolbox[10], it does not realize the
parallel GA.

Aimed at this study hotspot, we easily develop the parallel GA make use of
two toolbox together. The rest of the paper is organized as follows. Section 2
introduces some contents on MDCE. Section 3 gives a detailed description of the
implementation process of the PGA followed by a practical example to test the
validity of the algo-rithm. Finally, a brief summary is made.

2 Matlab Distributed Computing Engine

Before carrying out the distributed computing, we need to configure the com-
puting environment. The basic process is: first, start the MDCE service in each
computer involved, and then start Job Manager, start Worker leech on to one of
the Job Manag-ers (Matlab Session involved in computing in the background will
be started at the meanwhile). All the Workers leeched onto one of the Job Man-
age constitute a Matlab distributed computing environment, and several such
environments can be constructed. Having started the Matlab in some computer,
created a Job Manager example, we could carry out distributed and parallel
computing take advantage of them. The basic architecture is as showed in Fig.1.

The workflow is as follow: Discomposing the task into several and then sub-
mitted them to Job Manager, then Job Manager will appropriately distribute
them for evalua-tion to workers according to the number of the workers and how
many workers are available. After workers complete the tasks, results will be

MATLAB Client

Distributed
Computing

Toolbox

Job Manager

MATLAB Worker
Distributed Computing

Engine

MATLAB Worker
Distributed Computing

Engine

...

MATLAB Worker
Distributed Computing

Engine

Fig. 1. Architecture of MDCE

678 C. Guifen, W. Baocheng, Y. Helong

Client

Client

Job

Manager

Worker

Worker

Worker

Job

All Results

Job

All Results

Job

All Results

Job

All Results

All Results

Job

Fig. 2. AWorkflow of Distributed Computing

return to the Job Manager. After all the workers complete the tasks distributed
to them, the job manager returns the results of all the tasks in the job to the
client session. As is showed in figure 2.

Next, we will configure the Matlab distributed computing environment with
two computers as an example. Similarly we can extend to more computers.
We choose Windows XP SP2, node1 and node2 as our host computers’ names.
MDCE and tool-box are both version 3.1. Create a Job Manager on node1, then
create a Worker in both nodes. Do as follow: click the start button-¿run, type the
command cmd, a DOS window will appear, then input the following commands:

(1) Install MDCE
mdce install
(2) Start MDCE
mdce start
(3) Create Job Manager
start jobmanager-name jm-romotehost node1
(4) Create Worker
startjobmanager -name w1 -jobmanager jm -jobmanagerhost node1 -romotehost
node1
startjobmanager -name w2 -jobmanager jm -jobmanagerhost node1 -remotehost
node2

Now, start the Windows Task Manager at the nodes, you will see both pro-
cesses mdced.exe and matlab.exe in the process option card. Note that close the
firewall in the process of configuration and running MDCE.

3 Realization of the Parallel GA

At present, there are three main types of parallel GAs : global single-population
mas-terslave GAssingle-population fine-grained and multiple-population coarse-
grained GAs. In this paper, we give a realization of a coarse-grained parallel GA
based on Matlab. The description of the algorithm is as follow.

The Implementation of Parallel Genetic Algorithm Based on MATLAB 679

Algorithm PGA:
Randomly generate a population P of size PopSz
Divide the population into num subpopulations of size sPopSz
Send each subpopulation and the parameter values to all nodes
for K cycles

dopar(on nodes)
for generation=1 to G do

Run sequentially GA on subpopulation;
endfor
Send some individuals to the neighboring node

endpar
endfor(for cycles)

Parameters involved above are explained as follow.
PopSz: size of the population.
sPopSz: size of the subpopulation.
num: number of nodes. K: times for the iteration of the population.
G: times for the iteration of the subpopulation.

In order for convenient use, the paralleled GA is realized in the form of func-
tion, which is similar with the genetic algorithm function provided by Matlab.
The PGA function is as follow:

function [x, fval, population] = pag(jm, FUN, GenomeLength, Aineq,
Bineq, Aeq, Beq, LB, UB, nonlcon, options)

Now we just simply explain the difference between the PGA function and the
function ga. The first input parameter jm is a jobmanager object, input the
following command in the Matlab command window.

jm = findResource(’scheduler’, ’configuration’, ’jobmanager’,
’name’, ’jm’).

Parameter options could be attained from the function gaoptimset . The field
related to stopping criteria will be discard, and the others will retain the same
as before. Bute three fields(K,G and sPopSz)will be added.

This function mainly creates a parallel task object and sets some parameters
related. The key is the task pgas established on it, which is the parallel executed
m function file placed on the workers of each node. Now submit the file to the
parallel job object and run it. Then fetch all the results ,which are made some
appropriate process and returned to the output parameters. Finally, the parallel
job object was destroyed.

Note: To make the function pgas run on both nodes, the FileDependencies
field of the parallel job object should be set first,and then temporarily send the
pgas to both nodes. Of course, copy the file pgas.m to both nodes advance will
do, too. The form of the function is as follow,

function [x, fval, population] = pgas(FUN, GenomeLength, Aineq,
Bineq, Aeq, Beq, LB, UB, nonlcon, options).

680 C. Guifen, W. Baocheng, Y. Helong

The meaning of the input and output parameters is the same as the function
pga. This function is the core of the PGA , whose body is designed and developed
by the PGA algorithm mentioned above and the MPI function provided by
MATLAB. It mainly make use of the two MPI functions labSend and labRecieve.
We could use the command :

[x fval exitflag output popu] = ga(opt.FUN, opt.GenomeLength, Aineq,
Bineq, Aeq, Beq, LB, UB, nonlcon, opt)

to make genetic operation on each node. With circle structure, migration for the
evolved subpopulation is made. Note that the sending command is standard
form, which means that block occur or not depends on the state of the system.
However, the receiving command is block form.

When a ring migration happens in the subpopulation, the number of the nodes
should be even so that the blocking time can be reduced. In order to achieve
that, the data should be transmitted as follow: as an example of six nodes, the
data will be transmitted first between nodes linked by solid lines, then between
nodes linked by dotted lines. No matter how many nodes there are, the total
transmission time is nearly 2 times of single transmission time .As is showed in
figure 3.

1

3

5

2

4

6

Fig. 3. AWorkflow of Distributed Computing

4 Testing Examples and Performance Analysing

Testing environment: CPU is PentinmIV 2.6GHz, the memory on the nodes that
run jm is 1G, and the others are 512M.

First we test the relationship between transmission data volume and trans-
mission time carried out by the MPI function labReceive provided by MATLAB.
Transmis-sion time will be averaged between ten times. Data is showed as follow:

The model is f(x) = p1x+p2 using linear regression, x represents the volume of
data transmitted, while f(x) represents transmission time. The results returned
by MATLAB are showed in table 2.

The result indicates that the data transmitted by MATLAB obey a linear
relation-ship. The increase 1 kb, about 0.1 millisecond will be cost. The linear

The Implementation of Parallel Genetic Algorithm Based on MATLAB 681

Table 1. Transmission data volume and transmission time

transmission data volume(kb) time(ms) transmission data volume(kb) time(ms)

703 65 1653 151
800 74 1800 166
903 83 1953 178
1013 93 2113 193
1128 105 2278 208
1250 115 2450 223
1378 125 2628 240
1513 139 2813 257

Table 2. Results of regression model

coef value with 95% confidence bounds R-square

p1 0.09075 (0.09018, 0.09133)
p2 1.329 (0.3123, 2.345)

0.9999

relationship supplies a basis for the analysis of the performance of the MATLAB
parallel program.

Take TSP Att48[12] as an example, distance of the shortest path is 33524 in
this problem. PGA is runing on the cluster constituted by one computer, two
com-puters,four computers and eight computers respectively.

Theoretical calculation results and the test results are showed in table 3.
Parameters in the sequential GA use the defaulted value of GATOOl. Select
ring migration. The migration individuals, whose number is half of the number
of the subpopulation, are randomly selected.

In order to test the state of the executive time of each section of the algorithm,
some points in pga are chosen. Start the stopping clock on each nodes where the
implemen-tation of pga begins, point before the migration of the population or
after the evolution of the subpopulation, point after evolution of the population
or before evolution of the subpopulation, point where the PGA ended on each
node. The operation result statistic is showed in table 4. The total volume of
transmission data is 25 × 2 × 48 × 81024 = 937.5 kb. The transmission time is
86 milliseconds according to the formula men-tioned above. It takes about 50

Table 3. PGA parameters

Number of nodes 2 4 8

K 25 25 25
G 40 20 10

Size of each subpopulation 100 100 100

682 C. Guifen, W. Baocheng, Y. Helong

Table 4. test results of PGA

Number of node 1 2 4 8

Optimum value 35061 34842 33869 33621
Total time(s) 9.4811 7.887 5.7582 4.6218
Pgas time(s) / 5.9857 3.6845 2.3816
Start time(s) / 1.0614 1.032 1.019

Total time of sequential ga in subpopultation / 4.5877 2.3629 1.1037
Total of time(with block waiting time)(s) / 0.13486 0.17882 0.19734

Table 5. speedup(without starting time)

Number of nodes speedup speedup(without start time)

1 1 1
2 1.6 1.9
4 2.6 3.6
8 4.0 7.1

percent of the total transmission time(with block wait-ing time). However, the
block waiting time increases as the nodes increase, but the increasing trend is
slow.

The total time consumed is about 2 seconds less than the pga consumed,
as has nothing to do with the factors such as the number of nodes. It may
be considered that the starting time of the whole parallel job is constant. Not
including starting time, the pga speedup is showed in table 5.

5 Results and Discussion

(1) From the passage above we can see that developing distributed and parallel
algorithm based on MATLAB platform will greatly reduce amount of the
code and certainly increase the reliability of the code for a great deal of
toolbox functions provided by MATLAB and what the users need to do is
mainly to stitch these function or make a little modify. So the developing
difficulty is decreased and the developing efficiency is increased. For scientific
and engineering computing applications users, it is very favorable.

(2) For relatively fewer nodes, the practical result indicates that developing par-
allel program based on MDCE of MATLAB platform is more efficient.

(3) Grid Computing , considered to be the 3rd generation Internet technology, is
trend of development of network technology in the future. The integration of
the MATLAB and Grid Computing is a developing direction of the MATLAB
distributed computing.

(4) Experiments are not carry out with relatively more nodes, where situation
may change a little. Multi-nodes case is the future research direction.

The Implementation of Parallel Genetic Algorithm Based on MATLAB 683

References

1. Kepner, J., Ahalt, S.: MatlabMPI. Journal of Parallel and Distributed Comput-
ing 64, 997–1005 (2004)

2. The Mathworks, Inc.: MDCE3.1 System Administrator’s Guide
3. The Mathworks, Inc.: Distributed Computing Toolbox 3.1 User’s Guide
4. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard

(November 15, 2003) http://www.mpi-forum.org/docs
5. Hoffbeck, J.P., Sarwar, M., Rix, E.J.: Interfacing MATLAB with a parallel virtual

processor for matrix algorithms. The Journal of Systems and Software 56, 77–80
(2001)

6. Michalewicz, Z.: Evolution Programs——Genetic Algorithms + Data Structures.
Science Press, Beijing (2000)

7. Chen, G., Wang, X.: Genetic Algorithm and Application. Posts & Telecom Press,
Beijing (1996)

8. Prahlada Rao, B.B., Hansdah, R.C.: Extended Distributed Genetic Algorithm for
Channel Routing. In: IEEE Trans on Neural Networks, pp. 726-733 (1933)

9. Hea, K., Zhengb, L., Donga, S., Tangc, L., Wud, J., Zheng, C.: PGO: A parallel
computing platform for global optimization based on genetic algorithm. Computers
& Geosciences 33, 357–366 (2007)

10. The Mathworks, Inc.: Genetic Algorithm Toolbox 2.1 User’s Guide
11. Cantú-Paz, E.: A Survey of Parallel Genetic Algorithms. Technical Report. Depart-

ment of Computer Science and Illinois Genetic Algorithms Laboratory,University
of Illinois at Urbana-Champaign (1997)

12. Jiao, L., Du, H.: Immune Optimization, Sciense Press (2006)
13. Lim, D., Ong, Y.-S., Jin, Y., Sendhoff, B., Lee, B.-S.: Efficient Hierarchical Paral-

lel Genetic Algorithms using Grid computing. Future Generation Computer Sys-
tems[J] 23, 658–670 (2007)

http://www.mpi-forum.org/docs

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 684–692, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Composing Software Evolution Process Component*

Fei Dai and Tong Li

School of Information Science and Engineering, Yunnan University, Kunming 650091, China
flydai.cn@gmail.com, tli@ynu.edu.cn

Abstract. Composing software evolution process components into a complete
software evolution process can effectively improve quality and efficiency of the
software evolution process. However, existing researches do not propose a
systematic method for composing software evolution process components. We
propose a software evolution process component model (EPCM) which is based
on 3C model and the concept of a software evolution process component (EPC).
Based on EPCs, we propose three types of software evolution process component
composition operations, namely, sequence composition, selection composition
and concurrence composition.

Keywords: Petri Net, Component Model, Software Evolution Process,
Component Composition, Process Reuse.

1 Introduction

As more and more successful software systems become legacy systems, software
evolution becomes more and more important. On the one hand, software evolution has
become an important characteristic in the software life cycle. On the other hand,
software process plays an important role to increase efficiency and quality of software
evolution. The term software evolution process denotes a set of interrelated software
processes under which the corresponding software is evolving. A software evolution
process provides a framework for managing activities that can very easily get out of
control in software evolution, so we use software evolution processes to improve the
effectiveness and efficiency of software evolution. Li [1] defined a formal evolution
process meta-model (EPMM) based on extended Petri Net which is added with
object-oriented technology and Hoare Logic to construct software evolution process
models with four-level architecture. However, as more and more software evolution
process modes are constructed by process designers based on EPMM [1], how we can
reuse these existing software evolution models poses a challenging and exciting
question for us.

* The project is supported by National Natural Science Foundation of China under Grant No.

60463002 and Education Science Foundation of Yunnan Province, China under Grant No.
04Z290D.

 Composing Software Evolution Process Component 685

The term software evolution process reuse can be described as “usage of one process
description in the creation of another process description” [10]. Osterweil presented a
widely accepted view that software processes are software too [2]. According to
Osterweil’s idea, a software evolution process can be made up of many serial or parallel
software evolution process components. Thus we apply component technology to
software evolution processes and propose the concept of a software evolution process
component (EPC). An EPC is actually an internally high cohesive and consistent
software evolution process that can be reused with other EPCs to assemble a more
powerful EPC. In order to describe an EPC, a software evolution process component
model (EPCM) based on 3C model is proposed. Comparing to traditional software
reuse, four essential steps for software evolution process reuse based on EPCs are
needed. Firstly, we need to describe an EPC. Secondly, we need to search EPCs from
software evolution process component library (EPCL) according to process
requirements. Thirdly, we need a mechanism to tailor EPCs. Fourthly, we need a
mechanism to compose EPCs into a software evolution process. In this paper,
composing software evolution process component is focused on.

This paper is organized as follows. In the next section, a software evolution process
models is proposed. In section 3, we propose three types of EPC composition
operations, namely sequence composition, selection composition and concurrence
composition. Finally, we conclude in section 4 with a brief summary and discussion of
the future work.

2 Evolution Process Component Model

EPCM is the foundation of EPCL and is the key factor in realizing software evolution
process reuse. Recently, the component models can be classified into three different
categories according to their usage: (1) Model for component
description/classification, such as REBOOT model [5]; (2) Model for component
specification/composition, such as 3C model [4] and JBCOM [6]; (3) Model for
component implementation, such as COM/DCOM [7][8], CORBA/OM [3], and
Enterprise JavaBeans [9].

Obviously, it is difficult for us to build a comprehensive model to meet all software
evolution processes defined by other process description languages. Thus we propose
a component model to only meet the need of evolution process description language
(EPDL) [1]. 3C model is a prescriptive component model that was proposed by Will
Tracz on the “Reuse in Practice Workshop” in 1989. In 3C model, a component
consists of three parts: concept, content, and context [4]. The concept is the abstract
description of what a component does. The content describes how a component
implements the concept. The context depicts the dependencies between the
component and its environment. Based on 3C model, we propose EPCM which is
shown in Figure 1.

686 F. Dai and T. Li

Specification

R
eq

u
ire

P
ro

v
id

e

Process Definition

Fig. 1. Evolution Process Component Model

EPCM is a formal evolution process component model. The definition of EPCM is
as follows:

Definition 1 EPCM is a 4-tuple epcm= (Req, Pro, Spec, PD)
1. Req and Pro are called the interfaces of EPC. Req denotes the required functions of

EPC； Pro denotes the provided functions of EPC. They correspond to the concept in
3C model.

2. PD (Process Definition) is called the body of EPC, which is defined by EPDL [1]. It
corresponds to the content in 3C model.

3. Specification is called the specification of EPC, which is used to describe the EPC
briefly; it corresponds to the context in 3C model.
According to EPCM, the definition of EPC is as follows:
Definition 2 A EPC is a 7-tuple epc = (C, A; F, M0, ae, ax , S,)

1. (C, A; F) is a net without isolated elements, A∪ C ≠ Φ ;
2. C is a finite set of conditions; ∀ c∈C is called a condition;
3. A is a finite set of activities; ∀ a∈A is called an activity;
4. p=(C, A; F, M0), called the body of epc, is a software evolution process with

M0= Φ ;
5. ae, ax∈ A are called the entrance and the exit of EPC respectively, if ∃ step sequence

G1G2…Gn-1 (G1, G2, …, Gn-1
⊆ A) and ∃ cases M1, M2, …, Mn

⊆ C, such that
[ae >M1, M1[G1>M2, …, Mn-1[Gn-1>Mn, Mn[ax > and (Mn- ax)= Φ ;

6. S, called the mini specification, is a set of strings which is used to describe the epc
briefly;

c1 ei c3

c2 ej c4

axae

Fig. 2. An Evolution Process Component

 Composing Software Evolution Process Component 687

From the definition above, we see that p corresponds to the PD in EPCM; ae.I
corresponds to the Req in EPCM; ax.O corresponds to the Pro in EPCM; S corresponds
to the Spec in EPCM. Here ae.I denotes the input data structure of ae, ax.O denotes the
output data structure of ax [1]. Graphically, we represent activity as rectangle and
condition as circle respectively. An EPC is shown in Figure 2.

The definition of EPC shown in Figure 2 is as follows:

epc = (C, A; F, M0, ae, ax , S);

C = (c1, c2, c3, c4);

A = (ei, ej);

F=((ae,c1), (ae,c2), (c1,ei), (c2,ej), (ei,c3), (ej,c4),
(c3, ax), (c4, ax));

M0 =Φ ;

ae= ae;

ax = ax;

S=(…..);

The description of EPC shown in Figure 2 is defined by EPDL [1] as follows:

PROCESS An Evolution Process Component

Begin

ENTRANCE { ae }

EXIT { ax }

MINI SPECIFICATION

S={....};

CONDITION SET

C:={c1, c2, c3, c4};

ACTIVITY SET

A:={ ae, ei, ej, ax };

ARC SET

F:={(ae,c1), (ae,c2), (c1,ei), (c2,ej), (ei,c3), (ej,c4),
(c3, ax), (c4, ax)};

MARKING {Φ } ;

END;

688 F. Dai and T. Li

3 A Systematic Method for EPC Composition

EPC composition is defined as composing EPCs into a complete software evolution
process. After process designers find out the required EPCs from EPCL, EPC
composition is the next step. In this paper, we define three types of EPC composition
operations, namely sequence composition, selection composition, and concurrence
composition. In the following, we will compose R and S into T using these three
composition operations. R and C are EPCs as shown in Figure 3.

c1 ei c3

c2 ej c4

R
ej

c2 c1

ei

ae ax

S

axae

Fig. 3. Evolution Process Component R and C

3.1 Sequence Composition

Sequence composition is defined as composing R and S into T and T’s execution
sequence is that after R terminates, S then executes. During sequence composition,
process designers should avoid interface conflict. The term interface conflict means
that the interfaces between EPCs are mismatched. The following conditions are used
for interface checking. By interface checking, process designers can check whether all
the interfaces among EPCs are matched. If EPCs satisfy the following conditions, they
are considered to be interface conformance. If EPCs are interface conformance, they
can be composed into a more powerful EPC. The following algorithm 1 is used for
sequence composition and Figure 4 shows the process of sequence composition.

The conditions are as follows:

-R.ae = S.ax ;
-R.ae is a part of S.ax

Algorithm 1 Fun SequenceComposing(R, S)

//Supposing that R.ax and S.ae are interface conformance

Begin

 // New(c) denotes the added conditions.

T.C = R.C + S.C + New(C);

T.A = R.A + S.A;

// New(F) denotes the added flow relations.

 Composing Software Evolution Process Component 689

T.F = R.F + S.F + New(F);

T.M0 = R.M0 + S.M0;

T.ae = R.ae;

T.ax = S.ax;

T.S =R.S ∪ S.S;

return T;

End;

ej

c2 c1

ei

 ae ax

c1 ei c3

c2 ej c4

ae ax

Fig. 4. Sequence Composition

3.2 Selection Composition

Selection composition is defined as composing R and S into T and T’s execution

sequence is that only R or S can execute according to process requirements. The

following algorithm 2 is used for selection composition and Figure 5shows the process

of selection composition.

Algorithm 2 Fun SelectionComposing(R, S)

Begin

T.C = R.C + S.C + c5 + c6;

T.A = R.A + S.A + a1 + a2;

// New(F) denotes the added flow relations.

T.F = R.F + S.F + New(F);

T.M0 = R.M0 + S.M0;

T.ae = a1;

T.ax = a2;

690 F. Dai and T. Li

a1.I = R.ae.I + S.ae.I;

a1.O= R.ae.O + S.ae.O;

a1.L= R.ae.L + S.ae.L;

a2.I= R.ax.I + S.ax.I;

a2.O= R.ax.O + S.ax.O;

a2.L= R.ax.L + S.ax.L;

T.S =R.S ∪ S.S;

return T ;

End;

Algorithm 2 will introduce new activities and new conditions when running selection
composition. It is necessary to notice that the newly added activities are virtual
activities and the newly added conditions are virtual conditions. These activities have
no actual operations in T except for passing a token from a condition to another
condition. These conditions have no other meanings in T except for connections.

R
c1 ei c3

a2

c2c1ae ax

a1

ae

c2 ej c4

axaxae

ej

ei

Sc5 c6

Fig. 5. Selection Composition

3.3 Concurrence Composition

Concurrence composition is defined as composing R and S into T and T’s execution
is that R and S can execute concurrently. The following algorithm 3 is used for
concurrence composition and Figure 6 shows the process of concurrence
composition.

 Composing Software Evolution Process Component 691

Algorithm 3 Fun ConcurrenceComposing(R, S)

Begin

T.C = R.C + S.C + c5 + c6 + c7 + c8;

T.A = R.A + S.A + a1 + a2;

// New(F) denotes the added flow relations.

T.F = R.F + S.F + New(F);

T.M0 = R.M0+ S.M0;

T.ae = a1;

T.ax = a2;

a1.I = R.ae.I + S.ae.I;

a1.O= R.ae.O + S.ae.O;

a1.L= R.ae.L + S.ae.L;

a2.I= R.ax.I + S.ax.I;

a2.O= R.ax.O + S.ax.O;

a2.L= R.ax.L + S.ax.L;

T.S =R.S ∪ S.S;

return T;

End;

c2c1 ae ax

ae

c1 ei c3

c2 ej c4

axaxae

ej

ei

S

a1
a2

Rc5

c6

c7

c8

Fig. 6. Concurrence Composition

692 F. Dai and T. Li

4 Conclusions

In this paper, the main idea is to compose EPCs into a complete software evolution
process. In order to achieve the goal, we firstly propose an evolution process
component model and define an evolution process component. Based on evolution
process components, we propose three types of software evolution process component
operations, namely, sequence composition, selection composition and concurrence
composition.

However, there still remains much work. Firstly, a process operating system which
is used to mange software evolution processes will be investigated. Secondly, after
composing or tailoring EPCs, software evolution process’s simulation will be
researched.

References

1. Li, T.: Modeling formal software evolution process [Ph.D Thesis]. DeMontfort University
(2007)

2. Osterweil, L.J.: Software Processes are Software too. In: Proceedings of the 9th
International Conference on Software Engineering, pp. 2–13. ACM Press, New York (1987)

3. Object Management Group home page [online].Available WWW URL,
 http://www.omg.org

4. Implementation Working Group Summary, Reuse in Practice Workshop. Pittsburgh,
Pensylvania (July 1989)

5. Weighted Term Spaces for Related Search. In: CIKM 1992. proceedings of the 1st
International Conference on Information and Knowledge Management, pp.5–8 (November
1992)

6. JadeBird Project Group, JadeBird Component Model, Technical report, Department of
Computer Science and Technology, Peking University (1997)

7. Microsoft Corporation. The Component Object Model Specification, Version 0.9, (October
24, 1995) Available WWW URL: http://www.microsoft.com/oledev/

8. Microsoft Corporation. Distributed Component Object Model Protocol COM/1.0, draft
(November 1996) Available WWW. URL: http://www.microsoft.com/oledev/

9. Sun Microsystems, Inc., Enterprise JavaBeans Specifications Version 1.1, Available
WWW. URL: http://java.sun.com/products/ejb/docs.html

10. Hollenbach, C., Frakes, W.: Software Process Reuse in an Industrial Setting, Fourth
International Conference on Software Reuse, Orlando, FL, IEEE Computer Society Press,
Los Alamitos, CA, pp. 22-30 (1996)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 693–702, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Asynchronous Spiking Neural P System with Promoters

Zhimin Yuan and Zhiguo Zhang*

Department of Computer Science
Sun Yatsen University

Guangzhou City, 510275 China
lnszzg@mail.sysu.edu.cn

Abstract. A new class of parallel computing devices called asynchronous
spiking neural P systems with promoters is introduced. Unlike the regular
spiking neural P systems, they work without help of the universal clock but they
include a set of promoters. The computing power of these systems is proved to
be Turing complete when they are considered as number generators. When they
are considred as language generators, it is proved that any regular language can
be a coding morphic image of the generated language of an asynchronous
spiking neural P system.

Keywords: Molecular Computing, Membrane Computing, P System, Parallel
Computing, Asynchronous P System, Turing Complete.

1 Introduction

Membrane systems (currently called P systems) are parallel computing devices
inspired by the structure and the functioning of living cells (see [9]). Recently, a new
class of membrane systems called spiking neural P system (SN P system, for short),
with motivations related to the way neurons communicate by means of spikes, was
introduced in [2]. An SN P system consists of a set of neurons placed in the nodes of a
graph and sending signals (spikes) along synapses (edges of the graph), under the
control of firing rules. One also uses forgetting rules, which remove spikes from
neurons. One neuron is designated as the output neuron of the system and its spikes
can exit into the environment. SN P systems can behave both as number generators
and language generators.

The SN P systems as number generators was investigated in several papers (see,
e.g., [2, 8]). Most of them considered the intervals between consecutive spikes (with
several alternatives) as the numbers computed by the systems and all are proved to be
Turing complete. The representations of finite, regular, and recursively enumerable
languages were obtained in [4].

The SN P systems as language generators was also discussed in several references
(see, e.g., [7, 8]). The generated language can be considered as spike trains (the
sequence of moments when a neuron emits a spike) or trace languages (recording the

* Corresponding author, his work is partially supported by Guangdong Key Laboratory of

Information Security.

694 Z. Yuan and Z. Zhang

labels of the neurons where the “marked” spike is present). [5] has shown that each
regular language is the morphic image of a trace language intersected with a very
particular regular language, while each recursively enumerable language over the one-
letter alphabet is the projection of it. Similar conclusions were also obtained in [3], if
we generalized the system by using extended rules (several spikes can be produced by
a rule).

SN P systems are defined to work in synchronous model and universal clock plays
an essential role for the result generated by the systems depends on it. In [12], a class
of asynchronous SN P systems is mentioned. Global clock is remained but any neuron
of the systems is assumed to be free to use a rule or not in each time unit. The systems
are proved to be Turing complete by using extended rules.

In this paper, we introduce a class of asynchronous SN P systems with promoters
(APSN P system, for short), a new parallel computing devices model which is more
realistic and applicable. The universal clock is ignored but a set of promoters are
introduced. The new system works in the following way: each neuron gets fired
(applies the rule) as soon as the required spike and promoter arrives, but spikes
(sends produced spike and promoter to the related neuron) at any time. We assume
that no neuron can receive spikes and promoters from more than one neuron at a time
and the neuron keeps closed if it contains the rule got fired but not spiked.

APSN P systems can behave as the number and language generators as SN P
systems. Instead of considering the intervals between consecutive spikes, we assume
the total number of spikes in the output neuron in the halting configuration is the
number generated. The systems are proved to be Turing complete by using only
restrict rules (rules only produce one spike) when acting as number computing
devices and we will also show that each regular language is the morphic image of the
trace language for certain APSN P system.

In the next section, we give the preliminary definitions used in the subsequent
section of the paper. Section 3 introduces the asynchronous spiking neural P system
with promoter. In Section 4, we prove that APSN P system are computationally
complete, while in Section 5 we show that each regular language is the morphic
image of the trace language for certain APSN P system. We end (Section 6) with a
few comments and suggestions for further investigation.

2 Preliminary Definitions

We introduce here some notations used later in the paper. For an alphabet V, V*
denotes the set of all finite strings of symbols from V; the empty string is denoted
by λ , and the set of all nonempty strings over V is denoted by V+. When V = {a} is a
singleton, then we write simply a* and a+ instead of {a}*, {a} +.

A morphism h: * *
1 1V V→ such that () { , }h a a λ∈ for each

1a V∈ is called projection,

and a morphism h: * *
1 2V V→ such that

2() { }h a V λ∈ ∪ for each
1a V∈ is called a weak

coding; it is a coding if
2()h a V∈ for all

1a V∈ .

A Chomsky grammar is given in the form G=(N,T,S,P), where N is the
nonterminal alphabet, T is the terminal alphabet, S N∈ is the axiom, and P is the

 Asynchronous Spiking Neural P System with Promoters 695

finite set of rules. For regular grammars, the rules are of the form , ,A aB A a→ → for

some , ,A B N a T∈ ∈ .

We ignore here the empty string by convention. We denote by FIN, REG, CF, CS,
RE the families of finite, regular, context-free, context-sensitive, and recursively
enumerable languages respectively. The family of Turing computable sets of numbers
is denoted by NRE (these sets are length sets of RE languages, hence the notation).

The universality result in this paper is based on the notion of simulating a register
machine. Such a device – in the non-deterministic version – is a construct M = (m, H,
l0, lh, I), where m is the number of registers, H is the set of instruction labels, l0 is the
start label (labeling an ADD instruction), lh is the halt label (assigned to instruction
HALT), and I is the set of instructions; each label from H labels only one instruction
from I, thus precisely identifying it. The instructions are of the following forms:

• li: (ADD(r), lj, lk) (add 1 to register r and then go to one of the instructions with
labels lj , lk non-deterministically chosen),

• li: (SUB(r), lj, lk) (if register r is non-empty, then subtract 1 from it and go to the
instruction with label lj, otherwise go to the instruction with label lk),

• lh: HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way: we start
with all registers empty (i.e., storing the number zero), we apply the instruction with
label l0 and we continue to apply instructions as indicated by the labels (and made
possible by the contents of registers); if we reach the halt instruction, then the number
n present in register 1 at that time is said to be generated by M. (Without loss of
generality we may assume that in the halting configuration all other registers are
empty; also, we may assume that register 1 is never subject of SUB instructions, but
only of ADD instructions.) It is known that register machines generate all sets of
numbers which are Turing computable.

A spiking neural P system (abbreviated as SN P system), of degree m≥1, is a
construct of the form

1 0(, ,..., , ,)mO syn iσ σ∏ = ,

where:

1. O = {a} is the singleton alphabet (a is called spike);
2.

1,..., mσ σ are neurons, of the form

(,),1i i in R i mσ = ≤ ≤ ,

 where:
 a) 0in ≥ is the initial number of spikes contained by the neuron;

 b) Ri is a finite set of rules of the following two forms:
 (1) / ;cE a a d→ , where E is a regular expression over O, 1c ≥ ,and 0d ≥ ;

 (2) sa λ→ , for some 1s ≥ , with the restriction that ()sa L E∈ for no rule of

type (1) from Ri;
3. {1, 2,..., } {1, 2,..., }syn m m⊆ × with (,)i j syn∉ for 1 i m≤ ≤ (synapses);

4.
0 {1,2,..., }i m∈ indicates the output neuron.

696 Z. Yuan and Z. Zhang

The rules of type (1) are firing (we also say spiking) rules, and they are applied as
follows: if the neuron contains k spikes, ()ka L E∈ and k ≥ c, then the rule

/ ;cE a a d→ can be applied, and this means that c spikes are consumed, only k-c

remains in the neuron, the neuron is fired, and it produces a spike after d time units (a
global clock is assumed, marking the time for the whole system, hence the
functioning of the system is synchronized). If d=0, then the spike is emitted
immediately, if d =1, then the spike is emitted in the next step, and so on. In the case
d≥1, if the rule is used in step t, then in steps t, t + 1, t + 2,…, t + d−1 the neuron is
closed, and it cannot receive new spikes (if a neuron has a synapse to a closed neuron
and tries to send a spike along it, then the spike is lost). In step t + d, the neuron
spikes and becomes open again, and hence can receive spikes (which can be used in
step t + d + 1). A spike emitted by a neuron

jσ replicates and goes to all neurons
jσ

such that (i, j)∈syn. If in a rule / ;cE a a d→ we have () { }cL E a= , then we write it in

the simpler form ;ca a d→ .

The rules of type (2) are forgetting rules, and they are applied as follows: if the
neuron contains exactly s spikes, then the rule sa λ→ can be used, and this means
that all s spikes are removed from the neuron.

In each time unit, in each neuron that can use a rule we have to use a rule, either a
firing or a forgetting one. Because two firing rules 1

1 1/ ;cE a a d→ and 2
2 2/ ;cE a a d→

can have
1 2() ()L E L E∩ ≠ ∅ , it is possible that two or more rules can be applied

in a neuron, and then one of them is chosen non-deterministically. Note however
that we cannot interchange a firing rule with a forgetting rule, as all pairs
of rules / ;cE a a d→ and sa λ→ have disjoint domains, in the sense that

()sa L E∉ .

The rules are used in the non-deterministic manner, in a maximally parallel way at
the level of the system: in each step, all neurons which can use a rule, of any type,
spiking or forgetting, have to evolve, using a rule.

3 Asynchronous Spiking Neural P System with Promoter

We pass now from the previous definition of a SN P system to a new model of
parallel computing system in which global clock is removed and a set of promoters is
introduced. The new system works in the following way: each neuron gets fired as
soon as the required spike and promoter arrives, but spikes at any time. The promoter
is produced by a spiking rule and along with the spike, it passes to all neurons
connected by a synapse to the spiking neuron. The promoter will enable certain
(spiking or forgetting) rules and after spiking the rule the promoter may stay in the
neurons, leave from it or melt in it. The formal definition is as follows:

Definition 1. We consider a asynchronous spiking neural P system with promoters (in
short, an APSN P system), of degree m≥1, in the form

1 0(, , ,..., , ,)mO P syn iσ σ∏ =

 Asynchronous Spiking Neural P System with Promoters 697

where:

1. O={a}is the singleton alphabet (a is called spike);
2. P is the set of signal-promoters, with the restriction that a P∉ ;
3.

1,..., mσ σ are neurons, of the form
'(, , ,),1 ,i i i i in S R R i mσ = ≤ ≤

where:
 a) 0in ≥ is the initial number of spikes contained by the cell;

 b)
iS P⊆ , is the initial promoters contained by the cell;

 c)
iR is a finite set of rules without promoter of the following two forms:

 (1) / rE a aq→ , where E is a regular expression over O, 1r ≥ , q λ= (no

promoter is produced) or q P∈ (one promoter is produced);

 (2) sa λ→ , for some 1s ≥
 d) '

iR is a finite set of rules with promoter of the following two forms:

(1)
,/ |r

p tarE a aq→ , where E is a regular expression over O, 1r ≥ , q λ= or

q P∈ , p P∈ , { , , }tar here go melt∈ ;

(2)
,|r

p tara λ→ , where E is a regular expression over O, 1r ≥ , p P∈ and

{ , , }tar here go melt∈ ;

4. {1, 2,..., } {1, 2,..., }syn m m⊆ × with (,)i j syn∉ for 1 i m≤ ≤ (synapses among

cells);
5.

0 {1,2,..., }i m∈ indicates the output neuron.

Since the definition of usual spiking neural P system has been given in the previous
section. We only explain the difference between the two.

Promoter is introduced and rules are classified into two parts: with and without
promoters. Promoters can be distinguished, but they are present in the set sense, i.e.
we cannot have more than one copy of the same promoter in one neuron. The
promoter only generated by firing rules, not forgetting rules. Once it is generated, it
will go along with the spike into the neurons that have connections with the one
where is produced. The most important function of a promoter is that it enables the
“rules with promoters”. For instance, although regular expression E covers the content
of the neuron, the rule of the form

,/ |r
p tarE a aq→ cannot be applied if promoter p

does not exist. When the enabled rule spikes, the promoter will stay in previous
neutron (if tar=here), go to relative ones (if tar=go), or simply disappear (if
tar=melt). Promoter does not make any sense to the “rules without promoters” which
defined the same as the rules in usual SN P system except that they can produce one
promoter. If one promoter enters the neuron in which no rule is required for it, it will
stay there forever without any use.

The firing rule can produce a promoter along with a spike. We define the rules of
the form / rE a aq→ and

,/ |r
p tarE a aq→ are firing rules, while sa λ→ and

,|r
p tara λ→ are forgetting rule. Any firing rule can produce one promoter, but it is not

indispensable, i.e. the rules of the form / rE a a→ are also included here.

698 Z. Yuan and Z. Zhang

Another difference of the rule from SN P system is that we remove the restriction
that forgetting rule cannot be interchanged with a spiking rule, i.e. one of the spiking
and forgetting rules will be chosen to be applied randomly in some situations.

Universal clock has been removed is the biggest variation, which enables the
device works in an asynchronous mode. In SN P system, getting fired and spiking are
two important actions take place in a step. The neuron gets fired at the next clock time
when it receives the right number of spike, and spikes after certain time interval that
is indicated in the rule. The neuron is closed (it can neither receive further spikes nor
fire again) between the time of getting fired and spiking. Since global clock is ignored
in APSN P system, we assume that the neuron gets fired as soon as some rule in it is
applicable, (i.e. the neuron contains the required number of spikes and certain kinds
of promoter if necessary) but it spikes at any time. The neuron is closed during the
time when it has got fired but not spiked. Another assumption is no neuron can
receive spikes or promoters from more than one neuron at a time. If the spike and
promoter (if any) one neuron has received enable the rule in it, the neuron will be
closed immediately, thus the spikes and promoters from other neuron may be missing.
If the spike and promoter do not enable any rule, then the neuron keeps open, waiting
for other spikes and promoters to arrive.

4 APSN P System as Number Generator

An APSN P system can behave as a number generator. Initially, some spikes and
promoters are contained in system. Then the system will run asynchronous until it
reaches the halting configuration (all neurons are open, but no rule is applicable). The
number of spikes in the output neuron is the number system has been generated. If the
system can’t reach the halting configuration, we define the computation failed.

We denote by ()aN Π the set of numbers computed by a APSN P system Π , and by

(, ,)r
m k p qNAPSN rule cons forg the family for all sets ()aN Π computed as above by

APSN P system with at most r promoters and m neurons, each neuron having at most
k rules, each of the spiking rules consuming at most p spikes, and each forgetting rule
removing at most q spikes. When one of the parameters m, r, k, p, and q is not
bounded, then it is replaced with *

APSN P system will be proved to be powerful for it can generate all the numbers a
Turning Machine can receive.

Theorem 1.
* (, ,)r

k p qNRE APSN rule cons forg⊆ for all 5, 4, 1, 1r k p q≥ ≥ ≥ ≥ .

Proof. The proof of is based on constructing an SN P system Π that simulates a given
register machine M. We construct two modules to simulate ADD and SUB instruction
of register machine. These modules are presented in Figures 1, 2. The neurons labeled
li are associated with the instruction label in M (and all these neurons contain the same
rules). The neurons labeled ri are associated with the registers in M and the number of
the spikes in neuron ri is exactly the value in register ri in M. Other neurons labeled by
ci are also introduced for some special use.

Initially, (1) all neurons contain no object (but some contain certain promoters),
with the single exception of the neuron l0 (the label of the initial instruction of M),

 Asynchronous Spiking Neural P System with Promoters 699

which contains only one spikes (one copy of a) and (2)all neurons label with li hold
some promoters: if li is correspond to ADD instruction, then neuron li contains
promoter d; if li is correspond to SUB instruction, then neuron li contains promoter b;
and if li is correspond to HALT instruction, then neuron li contains promoter h.

1 ,

2 ,

,

,

| |
|
|

|
|

d here

d here

b here

h here

d b h
a ac
a ac
a ar
a

2l

1

2

,

,

|

|
c melt

c melt

a a

a

1c

2

1

,

,

|

|
c melt

c melt

a a

a

2c

1 ,

2 ,

,

,

|
|

|
|

d here

d here

b here

h here

b
a ac
a ac
a ar
a

1l

r

2 ,

2
1 ,

|

/ |
r melt

r melt

a ac

aa a ac

1 ,

2 ,

,

,

| |
|
|

|
|

d here

d here

b here

h here

d b h
a ac
a ac
a ar
a

3l

1 ,

2 ,

,

,

|
|

|
|

d her

d her

b here

h here

d
a ac
a ac
a ar
a

1l r

2 ,

2
1 ,

|

/ |
r melt

r melt

a ac

aa a ac

1 ,

2 ,

,

,

| |
|
|

|
|

d he

d he

b here

h here

d b h
a ac
a ac
a ar
a

3l

1

2

,

,

|

|
c melt

c mel

a a

a

1c

2

1

,

,

|

|
c melt

c melt

a a

a

2c

1 ,

2 ,

,

| |
|
|

|
|

d h

d h

b her

h here

d b h
a ac
a ac
a ar
a

2l

Fig. 1. Module ADD Fig. 2. Module SUB

Simulating an ADD instruction : ((), ,)i j kl ADD r l l

In neuron l1, the only promoter exist is d. Thus, one of the
rules 1 ,|d herea ac→ , 2 ,|d herea ac→ will be applied indeterminately. If

rule 1 ,|d herea ac→
applied, the spike will go to l2, (for the spike pass through c1, while

be forgotten in c2). If rule 1 ,|d herea ac→
applied, the spike will go to l3 (for the spike

pass through c1, while be forgotten in c2). Note that neuron ri receive promoter c1 or
c2 as well, and it will stay there forever without any use.

Simulating an SUB instruction : ((), ,)i j kl SUB r l l

The only promoter exist in l1 is b. Thus,
,|b herea ar→ is the only rule that can be

applied. After neuron l1 spikes, a spike along with promoter r will enter neuron ri,
where either promoter c1 or c2 will be generated depending on the number of spikes in
neuron ri. If neuron ri does not contain any spike,

2 ,|r outa ac→ will be applied. After

neuron ri spikes, the number of the spikes in neural ri does not change (remains zero),
and neuron l3 will get fired. If neuron ri contains at least one spike,

700 Z. Yuan and Z. Zhang

2
1 ,/ |r outaa a ac+ → will be applied, the number of spike in it will decrease by 1 and

neuron l2 will get fired. The neuron labeled with c1, c2 have the some function as in
ADD module.

Ending a computation

When neuron lh (which contains promoter h) receive a spike. The rule
,|h herea λ→ will

be applicable, for no other promoter but h is available. After it applies, there will be
no spike in the system and the computation halts. The number of spikes in neuron r1 is
exactly the value of register 1 of M. Consequently, () ()aN N MΠ = and this completes

the proof. □

5 APSN P System as Language Generator

APSN P system generates language by following the traces of a distinguished spike in
its journeys. We “mark” one spike in a neuron and follow its path during the
computation, recording the labels of the neurons where this spike is present after the
previous neuron has spiked. The string of labels of the neurons through which the
marked spike has passed through is the language generated by the system when a
computation successfully finished. The computation is successful only if the system
reaches the halting configuration or the marked spike has disappeared.

Because global clock is omitted, we assume only one copy of the symbol
associated with labeled neuron is generated no matter how long the marked spike
stays there, which is different from the definition of trace language in usual SN P
system. Since no neuron has the synapse to itself, the identical symbol cannot appear
consecutively in the language generated in this way. The output neutron

0i can be

omitted here.
We denote by ()aT Π the language of all strings describing the traces of the marked

spike in Π , and by (, ,)r
m k p qTAPSN rule cons forg the family for all sets ()aT Π

computed as above by APSN P system with at most r promoters and m neurons, each
neuron having at most k rules, each of the spiking rules consuming at most p spikes,
and each forgetting rule removing at most q spikes. As usual, the parameters r, m, k,
p, q is replaced with * if it is not bounded.

In the following, we will prove each regular language is the morphic image of the
language generated by an APSN P system.

Theorem 2. For each regular language *L V⊆ , there is an APSN P system Π , such
that (())L h T⊂ Π , for some coding h; actually,

1 1() (, ,)L

L L

r
m kT TAPSN rule cons forgΠ ∈ , for

some constants , ,L L Lr m k depending on language L.

Proof. Let us take a regular grammar
1(, , ,)G N V A P= generating the language L

with
1{ ,..., }nV b b= . There exist another regular grammar such that ' ' ' '

0(, , ,)G N V A P= .

We constructed 'G as follows: Firstly, let 'N N= ，
' '

0 ,V V b P P= ∪ = . If the set 'P

 Asynchronous Spiking Neural P System with Promoters 701

contains a rule of form ()p i p pA b A A N→ ∈ , we delete it, and add a new nonterminal A’

into N’ and two rules of the form ' '
0,p i pA b A A b A→ → into 'P . If set 'P contains a

couple of rules of form ,p i q q i rA b A A b A→ → , we delete the rule
q i rA b A→ , and add a

new nonterminal ''A into 'N and two rules of the form '' ''
0 ,q i rA b A A b A→ → into 'P .

We did it continuously until no rules of the form above exist in 'P . At last, we add a
new start symbol A0 into N’ and a rule

0 0 1A b A→ in to P’.

Thus, we have ' ' ' '
0(, , ,)G N V A P= with '

0 1{ , ...)mN A A A= ,
0 1{ , ,...,)nV b b b= , and

{ , }p i q p iP A b A A b= → → for 0 , ,0p q m i n≤ ≤ ≤ ≤ . For
0: ,i ih b b b λ→ → , we have

L(G)=h(L(G’)) . '()L G cannot generate such language that
i iXbbY ,but

0i iXb b bY (X,Y are

the strings in which no identical symbol appear consecutively). Next, we will prove
there is an APSN P system Π that generates '()L G .

We labeled the neuron with nonterminal
ib and use terminal

pA as promoters. We

construct the following Π simulating 'G

0
(, , ,..., ,)

nb bO P synσ σ∏ = ,

where:
1. O={a};
2. 'P N= ;
3. (0, , ,),1 ,

ib R i nσ = ∅ ∅ ≤ ≤
0 0(1, , ,)b A Rσ = ∅ , where

,{ | ,
pq A meltR a aA= →

, ,| , | }
p lA melt A melta aλ λ→ → for , ,p i q p iA b A A b l p→ → ≠ ;

4. { , | ,p i q q jsyn i j A b A A b= < > → → or }q j rA b A→ for 1 , ,p q r m≤ ≤ and1 ,i j n≤ ≤ .

The computation begins in neuron
0bσ . The trace of the marked spike is the language

generated by the system. If the “marked” spike disappeared because of forgetting rule
instead of being missing during computation, the generated trace language belongs
to '()L G . Otherwise, it does not belong to '()L G .

Therefore, '() ()L G T⊂ Π , and we have '() (()) (())L G h L G h T= ⊂ Π for

: ,i ih b b→ 0b λ→ . □

6 Conclusion

We have introduced a class of parallel computing devices called asynchronous
spiking neural P system with promoter: universal clock has been ignored and each
neuron gets fired as soon as some rule in it is applicable, but it spikes at any time. We
have proved that APSN P system is universal when it is considered as a number
generator. We have also shown that each regular language is the morphic image of the
language generated by an APSN P system if it behaves as a language generator.

Many topics remain to be investigated, starting with the problem whether or not
asynchronous SN P system is Turing complete without using promoters. Another
variant of interest is to see whether or not languages from other families (e.g. CF, CS,
and RE) can be represented starting form languages generated by APSN P system. It

702 Z. Yuan and Z. Zhang

is also of interest to consider using other ways (instead of tracing the spike) to
generate the language and discussing the power of such language.

References

[1] Cavaliere, M., Sburlan, D.: Time-independent P systems. In: Mauri, G., Păun, G., Pérez-
Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp.
239–258. Springer, Heidelberg (2005)

[2] Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundamenta
Informaticae 71(2-3), 279–308 (2006)

[3] Chen, H., Ishdorj, T.O., Păun, Gh., et al.: Spiking neural P systems with extended rules.
In: Gutiérrez-Naranjo, M.A., et al. (eds.) Proceedings of Fourth Brainstorming Week on
Membrane Computing, Sevilla, pp. 241–265 (2006)

[4] Chen, H., Freund, R., Ionescu, M., et al.: On string languages generated by spiking neural
P systems. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Proceedings of Fourth Brainstorming
Week on Membrane Computing, Sevilla, vol. I, pp. 169–194 (2006)

[5] Chen, H., Ionescu, M., Păun, A., Păun, Gh., Popa, B.: On trace languages generated by
spiking neural P systems. Proc. Fourth Brainstorming Week on Membrane Computing,
Sevilla (2006)

[6] Păun, Gh.: Twentry Six Research Topics About Spiking Neural P Systems. In: Fifth
Brainstorming Week on Membrane Computing, Sevilla, Spain (2007)

[7] Păun, Gh.: Languages in membrane computing. Some details for spiking neural P
systems. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 20–35.
Springer, Heidelberg (2006)

[8] Păun, Gh., Perez-Jimenez, M.J., Rozenberg, G.: Spike trains in spiking neural P systems.
Intern. J. Found. Computer Sci. 17(4), 975–1002 (2006)

[9] Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61,1
(2000) 108-143, and TUCS Research Report 208 (1998)

[10] Sburlan, D.: Clock-free P systems. In: Pre-Proceedings of WMC5, Fifth Workshop on
Membrane Computing, Milano, pp. 372-383 (2004)

[11] Cavaliere, M.: Toward asynchronous P systems. In: Pre-Proceedings of WMC5, Fifth
Workshop on Membrane Computing, Milano, pp. 161-173 (2004)

[12] Cavaliere, M., Egecioglu, O., Ibarra, O.H., Woodworth, S., Ionescu, M.: Gh. Păun,
Asynchronous Spiking Neural P Systems, Technical Report 9/2007, Microsoft Research -
University of Trento, Centre for Computational and Systems Biology

[13] The P Systems Web Page, http://psystems.disco.unimib.it

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 703–712, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Fingerprint Classification Method Based on Analysis of
Singularities and Geometric Framework

Taizhe Tan, Yinwei Zhan, Lei Ding, and Sun Sheng

Faculty of Computer, Guangdong University of Technology, Guangzhou 510090, China
tantaizhe@263.net

Abstract. According to the former contributions, the authors present a novel
fingerprint classification method based on analysis of singularities and geomet-
ric framework. First, a robust pseudoridges extraction algorithm on fingerprints
is adopted to extract the global geometric shape of fingerprint ridges of pattern
area. Then, by use of the detected singularities and with the help of the analysis
of the global geometric shape of fingerprint ridges of pattern area, the finger-
print image is classified into different pre-specified classes. This algorithm has
been tested on the NJU fingerprint database which contains 2500 images. For
the 1000 images in this database, the classification accuracy is 92.2%.

Keywords: fingerprint classification, global geometric shape, singularity.

1 Introduction

Nowadays, automatic fingerprint identification is one of the most reliable and
important biometric technology. However, automatic fingerprint identification is
computationally demanding especially for a large database. So an effective fingerprint
indexing scheme can greatly help facilitate efficient matching for large fingerprint
database. Fingerprint classification, which classifies fingerprint images into a number
of pre-defined categories, provides an indexing scheme to improve the efficiency of
the matching task [1~2, 22].

Over the past few decades, a significant number of approaches have been devel-
oped for the purpose of fingerprint classification. The methods of fingerprint classifi-
cation can fall into the following categories:(i) the knowledge-based approach[1,
3~4], (ii) the structural approach[5~9], (iii) the frequency-based approach[10],(iv) the
syntactic approach[11~13], and (v) the artificial neural network approach[14~17].
Furthermore, the hybrid approach[1~2] that combines two or more of the foregoing
approaches are combined, is used to accomplish the classification task.

Most of the approaches mentioned above are subjected to one kind of disadvan-
tage. One apparent weakness of these approaches is that they are not able to deal with
the usual noisy characteristic of fingerprint images well. For instance, due to the core
and delta points used in classification might be uncertain in noisy images or be
dropped in non-whole images, only using the singularities for fingerprint classifica-
tion might not be viable. Many approaches may be susceptible to the large variations
of ridge orientation within the patterns of the same class, or they would only work

704 T. Tan et al.

within a fixed state of orientation and position. In a fingerprint image, the local ridge
features carry the individuality information about the fingerprints and the global pat-
tern configurations, which form special patterns of ridges and furrows in the central
region of the fingerprint, carry information about the fingerprint class. Therefore, the
global pattern configurations should be used for fingerprint classification. Generally,
global fingerprint features can be derived from the orientation field and global ridge
geometric framework. The orientation field of a fingerprint consists of the ridge orien-
tation tendency in local neighborhoods, and it is highly structured and can be roughly
approximated by a core-delta model[2]. Therefore, singularities and their relationship
can be used for fingerprint classification. On the other hand, the global ridge geomet-
ric framework also provides important clues as to the global pattern configuration of a
fingerprint image [4].

This paper presents a fingerprint classification method based on the analysis of sin-
gularities and geometric framework. First, a robust pseudoridges extraction algorithm
on fingerprints is adopted to extract the global geometric shape of fingerprint ridges
of the pattern area. Then, by using the singularities and the global geometric shape
features, the fingerprint image is classified into six classes (arch, tented arch, left
loop, right loop, whorl and twin). Because it is difficult to get the correct and com-
plete information of singularities used in the other classification method, this method
is not merely based on the singularities and thus improves the classification accuracy.
The global geometric shape of fingerprint ridges is extracted by directly tracing the
orientation field, the traced orientation field is smoothed locally, and the global ridge
geometric framework traced remains constant under large variations of local ridge
orientation, Therefore, the fingerprint classification algorithm is robust. Moreover,
our algorithm is invariant under transition and rotation.

In the following sections, the paper presents the details of our fingerprint classifi-
cation method. In section 2, the global geometric shape extraction method is
introduced. Section 3 presents our classification scheme. Experimental results and
conclusions are given in section 4.

2 Global Geometric Shape Extraction

In our fingerprint classification scheme, the feature information such as the global
ridge geometric framework, fingerprint singularities and the symmetrical axis of the
core point will be used for fingerprint classification, but the methods for getting these
features are not the emphasis of this paper, which have been reported in our other
papers[18] [21]. The essential ideas for above several features extraction are given the
brief introduction as follows:

2.1 Fingerprint Pseudoridge Tracing

According to the method presented in [18], the pseudoridge tracing is started from the
core point and only uses the flow field information, avoiding complicated computa-
tion of thinned ridges, minutia and other trivial processing. Because the fingerprint is
flow-modal, the flow field reflects the global tendency of fingerprint ridges and is
continuous except in the individual singularity[19], as is different from the gray

 Fingerprint Classification Method Based on Analysis of Singularities 705

ridges, some of which are conjoint, some disconnected and other furcated. Besides the
ridge structures in poor quality fingerprint images are not robust. Hence, it is more
reasonable to trace the flow field than to trace the ridges directly. In order to make the
traced pseudoridges more accurate, the paper suggests a skillful and effective method
for the orientation field estimate. On only the exact points traced but not the whole
fingerprint image, orientation field estimates are performed, the operation time will be
reduced as a result. The paper also exploits a method of adaptive tracing, in which if
the variation of flow field is dull, the tracing step is large, otherwise (for example,
near the core points), the tracing step is small. This characteristic is useful in checking
the singularities. Moreover, our algorithm operation is invariant under transition and
rotation for it is irrelative with a fixed state of orientation and position.

In paper [18], an effective point direction estimatation approach is also proposed.
The approach utilizes the ridge orientations around an aim point to smooth the aim
point direction skillfully, which reflects the general orientations of the neighbor ridges
and alleviates the local noises accordingly. Thus, the proposed point direction esti-
matation approach ensures the pseudoridge tracing algorithm is robust to the noise
images. The specific idea is as follows:

The point direction of a point is usually specified for a region (block) that centered
at this point. In this paper, the 16×16 pixels region is used to compute the point
directions. To get a more reasonable point direction of an aim point, a smoothing
technology should be introduced to alleviate the effect of noise. The directions of the
points, which are located in the neighborhood of every 8 pixels along X and Y coor-
dinates of aim points, are used to smooth the aim point direction, and the mask size
for smoothing point directions is 5×5. Thus, the smoothing area is more reasonable,
the smoothing degree is stronger, and the result is better.

2.2 Symmetrical Axis of the Core Estimation

In addition, the orientation cθ of the symmetrical axis of the region near the core is
one of the main features of modal area. It can be used for fingerprint classification
and taken into account for fingerprint matching in which the rotation angle is adjusted
between the input image and the template image. Therefore, it is an important issue to
compute the symmetrical axis of the region near the core reliably. Some literatures
only discuss the case that the core point is in the upper section of the image, so it is
variational under rotation. In this paper, the idea of V. S. Srinivasan et al.[20] is
adopted and improved to compute the more accurate consecutive orientation rather
than the coarser disperse orientation. The key idea is that the orientation cθ is the
statistical dominant direction among a coarsely chosen disperse orientations in the
region of core point.

Based on the methods presented above, figure 1 shows some examples of pseu-
doridges extraction for typical fingerprints, and figure 2 shows some examples of
symmetrical axis of the core estimation. In figure 1, the different color lines denote
the results gained by different tracing ways (clockwise tracing or anti-clockwise trac-
ing). And in figure 2, the black-white line denotes the correct orientation cθ of the
symmetrical axis of the region near the core, and the green line denotes the orientation
which is determined by other factors (for example, the second maximum of the
percentage for every template).

706 T. Tan et al.

3 Fingerprint Classification Scheme

The Detection of singular points which is used in fingerprint classification has been
reported in literature [21]. In this section, a refined fingerprint classification scheme is
introduce as follows:

For the purpose of classification, the utilization of a global geometric feature to de-
scribe uniquely the general shape of fingerprint ridges within a particular class has
been proposed. That each fingerprint class possesses a distinct geometric feature
which is descriptive of the class’ global ridge shape has been discovered. However, it
is also observed that this global geometric feature of a particular class might also exist
in another class. Nevertheless, it has been made a conjecture that this is due to a pro-
gression of the class ridge patterns from the simple to the complicated in which a
distinct feature of a complicated or high class would not be found in a simple or lower
class. Therefore，based on this understanding, in order to resolve the above feature
ambiguity problem, operation in a top-down manner must be adopted [8], namely, the
complicated or high class is determined in advance, secondly, the simple or lower
class is determined. So, the order for fingerprint classification proposed in this paper
is that the global geometric feature of the twin class is extracted firstly, and secondly
the whorl class’ is detected, then the other classes. The specific steps are as follows:

Firstly, the potential turns which are near the core points are found out from a set
of the traced pseudoridges points above. The method is that the region, around which
the distances between every vertices gained by tracing pseudoridges are very small
and the number of vertices is considerable, is found out and the center point of this
region is treated as the turn point.

Secondly, the global geometric framework (pseudoridge) traced is smoothed. The
control vertices between which the distance is less than a threshold value are incorpo-
rated. Further, the above processed control vertices which are in a line on the whole
and also in a predefined range are incorporated. After smoothing processing, the fake
turning points would be reduced enormously and the subsequent computation is also
cut down.

Finally, a set of vertices vectors which forms the turned ridges is found out from
the set of vertices vectors in which the pseudoridge’ corresponding control vertices
are re-employed as approximating tangent vectors with each pair of vertices repre-
senting a vector in the direction of increasing indices. Assuming V to be the set of
vertices vectors, a turn is made if

908.0−<CosValue (1)

where,

jiandVvvvvvvCosValue jijiji ≠∈⋅⋅= ,|||| (2)

Then, the vertices vectors which make up the turns should be signed and used for the
following fingerprint classification.

(1). Classification of the twin type
The twin type should be determined by the unique feature that the twin type takes the
shape of two non-monotonic turns or turns with opposite signs. See Fig. 3, if the
number of the detected turns is two or more than two and there is a set of sequence

 Fingerprint Classification Method Based on Analysis of Singularities 707

vertices vectors which make up the turns: Va, Vb and Vc, where, Vc is the joint vec-
tor of two turns, and where the angle between the line from the center point of Vc to
the center point of Va and the line from the central point of Vc to the central point of
Vb is an obtuse angle, then the fingerprint is classified as a twin type. Otherwise, the
next step should be carried through.
(2). Classification of the whorl type
In contrast with the twin type, a whorl ridge exhibits a spiral-like shape and takes the
form of at least two monotonic turns or turns with similar signs. See figure 4, simi-
larly, if the number of the detected turns is also two or more than two and there is a
set of sequence vertices vectors which make up the turns: Va, Vb and Vc, where, Vc
is the joint vector of two turns, and where the angle between the line from the central
point of Vc to the central point of Va and the line from the central point of Vc to the
central point of Vb is an acute angle, then the fingerprint is classified as a whorl type.
Otherwise, the next step should be carried through.

Fig. 1. Examples of pseudoridges extraction for typical fingerprints

(3). Classification of the loop type
If the number of turn is only one, then the core point should be checked by the turn
point computed above. Namely, if the core point is near the turn point, then the core
point is true, otherwise, the turn point replaces the core point. Subsequently, using the
method presented above, the symmetrical axis of the region near the core is estimated.
The position interrelation between the traced pseudoridge and the symmetrical axis of
the core is determined. If the start point and the end point of pseudoridge are all on
the left of the symmetrical axis, then the fingerprint is classified as a left loop type, if
the start point and the end point of pseudoridge are all on the right of the symmetrical
axis, then the fingerprint is classified as a right loop type.

In order to examine the case in which the pseudoridge’s end point terminates on a
side of the symmetrical axis (left or right) and forms another side’s (right loop or left

708 T. Tan et al.

loop) trend, if the two end points are on each side of the symmetrical axis respec-
tively, then the direction angle between the vector with the start point as well as its
neighborhood point of pseudoridge and the symmetrical axis, and the direction angle
between the vector with the end point as well as its neighborhood point of
pseudoridge and the symmetrical axis, are both computed. If both position relations
constituted by this two direction angles form the left loop trend and the direction
angles are larger than a threshold value, then the fingerprint is classified as a left loop
type. Or if both position relations constituted by this two direction angles form the
right loop trend and the direction angles are larger than a threshold value, then the
fingerprint is classified as a right loop type. Otherwise, the fingerprint is classified as
a tented arch type.

Fig. 2. Examples of the symmetrical axis of core

(4). Classification for the other cases
In other situations, the following cases should be considered:

A. If there are two core points or more than two core points, then a whorl type is
assigned;
B. If there are a core point and a delta point, then judge the following conditions.

(ⅰ) If the angle, α , between the line segment from the core to the delta and the
symmetric axis is less than a predefined threshold value, Өthreshold, then a tented
arch type is identified;

(ⅱ) If α is more than Өthreshold and the delta point is on the left of the core’s sym-
metric axis, then the fingerprint is classified as a right loop type;

 Fingerprint Classification Method Based on Analysis of Singularities 709

(ⅲ) If α is more than Өthreshold and the delta point is on the right of the core’s
symmetric axis, then the fingerprint is classified as a left loop type
C. If there are no core points and no delta points, or no turns in the traced pseu-
doridge, then a arch type is identified.

If the conclusion in the step (3) and the conclusion in the step B of (4) are same,
then this conclusion is reserved, otherwise, the following steps should be carried
through.

If the traced pseudoridge is mostly on the right of the line segment from the core to
the delta, then the fingerprint is classified as a right loop type;

Fig. 3. Global geometric shape feature of
the twin type

Fig. 4. Global geometric shape feature of the
whorl type

Arch

Tented Arch

left loop

right loop

whorl

Fig. 5. Sketch maps of some fingerprint classes

710 T. Tan et al.

If the traced pseudoridge is mostly on the left of the line segment from the core to
the delta, then the fingerprint is classified as a left loop type;

Otherwise, the fingerprint is classified as a tented arch type.
If the conclusion in the step (2) and the conclusion in the step A of (4) are same,

then this conclusion is reserved, otherwise, the conclusion in the step A of (4) is
preferential.

Lastly, if none of the above conditions is satisfied, then the fingerprint is rejected.

4 Experimental Results and Conclusions

The classification algorithm described above has been tested on the 1000 typical fin-
gerprints of NJU fingerprint database which contains 2500 images taken from 250
different fingers, 10 images per finger, and these fingerprint images are of varying
quality in order to provide a realistic situation. The results are shown in table 1. The
first column shows the class index, and the first row gives the assigned class using the
current approach. The class index of one fingerprint in the database does not necessar-
ily belong to only one class. According to the experimental results, the accuracy is
87% without rejection, if the tented arch and the arch are combined into one class, the
accuracy rises to 92.2%. And a lower error rate can be achieved by adding the reject
option based on the quality of the images.

Table 1. Experiment results tested on NJU fingerprint database

Assigned Class
True Class

Left
loop

Right
loop

Whorl
Tented
Arch

Arch
Twin
loop

Left loop 244 2 9 3 18 1
Right loop 3 259 7 1 11 2
Whorl 3 2 180 0 1 5
Tented Arch 4 5 1 96 45 0
Arch 0 2 1 2 69 0
Twin loop 2 0 8 0 0 78

The causes of mistake classification are that some images are of low quality due to

noises, or that fingerprint images collection is not in its integrity, or that traced pseu-
doridges is wrong due to the geometric framework being around the central area
where the modal area varies complicatedly. Meanwhile, our fingerprint database is
not a special fingerprint classification database, so, our method should be tested and
improved on the normal database for fingerprint classification (NIST-4 database) and
that of the latent fingerprints.

At first glance, the fingerprint classification problem appears to be rather simple.
But because of large intraclass and small interclass variations in global pattern con-
figuration and poor quality of input images, the issue of fingerprint classification is
still a real challenge.

 Fingerprint Classification Method Based on Analysis of Singularities 711

Since the framework makes use of a global shape feature, it is less susceptible to
the image noise, and combines but not completely uses the local feature such as core
and delta points, the classification algorithm proposed in this paper also works well
when false singular points exist or true singularities are missing. Moreover, our
algorithm operation is irrelative to a fixed state of orientation and position, so it is
invariant under transition and rotation. In the future, the focus will be put on improv-
ing the algorithm and investigating a practical fingerprint classification scheme which
is based on the pattern similarity.

References

1. Kawagoe, M., Tojo, A.: Fingerprint pattern classification. Pattern Recognition 17(3), 295–
303 (1984)

2. Sherlock, B.G., Monro, D.M.: A Model for Interpreting Fingerprint Topology. Pattern
Recognition 26(7), 1047–1055 (1993)

3. Karu, K., Jain, A.K.: Fingerprint Classification. Pattern Recognition 29(3), 389–404 (1996)
4. Hong, L., Jain, A.K.: Classification of Fingerprint Images. In: 11th Scandinavian Confer-

ence on Image Analysis, Kangerlussuaq, Greenland (June 7-11, 1999)
5. Wilson, C.L., Candela, G.T., Watson, C.I.: Neural Network Fingerprint Classification. J.

Artificial Neural Networks 1(2), 203–228 (1993)
6. Candela, G.T., Grother, P.J., Watson, C.I., Wilkinson, R.A., Wilson, C.L.: PCASYS: A

Pattern-Level Classification Automation System for Fingerprints. NIST Tech. Report
NISTIR 5647 (August 1995)

7. Senior, A.: Hidden Markov Model Fingerprint Classifier. In: Proceedings of the 31st Asi-
lomar conference on Signals, Systems and Computers, pp. 306–310 (1997)

8. Chong, M.M.S., Ngee, T.H., Jun, L., Gay, R.K.L.: Geometric framework for Fingerprint
Classification. Pattern Recognition 30(9), 1475–1488 (1997)

9. Maio, D., Maltoni, D.: A Structural Approach to Fingerprint Classification. In: Proc. 13th
ICPR, Vienna, VC, pp. 578–585 (1996)

10. Fitz, P., Green, R.J.: Fingerprint Classification Using Hexagonal Fast Fourier Transform.
Pattern Recognition 29(10), 1587–1597 (1996)

11. Hankley, W.J., Tou, J.T.: Automatic Fingerprint Interpretation and Classification via Con-
textual Analysis and Topological Coding. In: Cheng, G.C., et al. (eds.) Pictorial Pattern
Recognition, pp. 411–456. Thompson Book Co. (1968)

12. Moayer, B., Fu, K.S.: A Syntactic Approach to Fingerprint Pattern Recognition. Pattern
Recognition 7, 1–23 (1975)

13. Kameshwar Rao, C.V., Black, K.: Type Classification of Fingerprints: A Syntactic Ap-
proach. IEEE Trans. Pattern Anal. and Machine Intell. 2(3), 223–231 (1980)

14. Bowen, J.D.: The Home Office Automatic Fingerprint Pattern Classification Project. In:
Proc. IEE Coll. on neural network for image processing applications (1992)

15. Hughes, P.A., Green, A.D.P.: The use of Neural Network for Fingerprint Classification. In:
Proc. 2nd Int. Conf. on Neural Network, pp. 79–81 (1991)

16. Kamijo, M.: Classifying Fingerprint Images using Neural Network: Deriving the Classifi-
cation State. In: Proc. 3rd Int. Conf. on Neural Network, pp. 1932–1937 (1993)

17. Moscinska, K., Tyma, G.: Neural Network based Fingerprint Classification. In: Proc. 3rd
Int. Conf. on Neural Network, pp. 229–232 (1993)

18. Tan, T., Yu, Y., Cui, F.: A Robust Pseudoridges Extraction Algorithm for Fingerprints. In:
Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004.
LNCS, vol. 3338, pp. 532–538. Springer, Heidelberg (2004)

712 T. Tan et al.

19. Wang, L., Dai, M.: Localization of singular points in fingerprint images based on the
Gaussian-Hermite moments. Journal of Software 17(2), 242–249 (2006)

20. Srinivasan, V.S., Murthy, N.N.: Detection of Singular Points in FingerPrint Images. Pat-
tern Recognition 25(2), 139–153 (1992)

21. Tan, T.Z., Ning, X.B., Yin, Y.L., et al.: A Improved New Method For Detection of the
Fingerprint Singularities. In: 4th Chinese National Conference on Biometric Recognition,
Beijing, China, pp. 184–187 (2003)

22. Cappelli, R., Maio, D., Maltoni, D., Wayman, J.L., Jain, A.K.: Performance Evaluation of
Fingerprint Verification Systems. IEEE Transactions on PAMI 28(1), 3–18 (2006)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 713–722, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Study on Embedded Vehicle Dynamic Location
Navigation Supported by Network and Route Availability

Model

Zhang Dong1,2, Qian Depei1, Liu Ailong2, Chen Tao2, and Yang Xuewei2

1 School of Electronics and Information Engineering, Xian JiaoTong University, Xian,
P.R. China

Navgrid@163.com
2 Xian Research Institute of Surveying and Mapping, Xian, P.R. China

Abstract. The Route Availability (RA) in vehicle navigation is a primary
metric to measure the usability of the vehicle navigator. Few researches have
been reported on usability-based route analysis. Unlike common independent
navigator, this paper constructed a dynamic mechanism upon on network
communication chain supporting real time vehicle navigation, which includes
road traffic information collection, data updating, dynamic information
broadcasting, availability route programming. Concretely, the concept of
programming Route Group (RG) is first introduced. Then, the concept of route
segment and the availability metric of each segment are defined. Upon these
definitions, a route availability measurement model using probability method is
presented. Based on this model, a comprehensive metric, Z, for analyzing and
comparing route availability is proposed to address the dynamic change in the
road network. A new route programming algorithm called Z-algorithm is
designed. Comparison of the Z-algorithm and traditional route programming
algorithms such as the Dijkstra algorithm shows that the route obtained from
the Z-algorithm is more applicable and satisfies usability requirement of vehicle
navigation.

1 Introduction

The main purpose of the navigator is to lead drivers to their destination by voice or
graphic guidance according to the computed route. The route is the major factor
throughout the whole flow. The main aspects of performance evaluation for vehicle
navigator include: flexibility in looking up the destination, map display rate and visual
effect, accuracy and coverage of road net, route availability, and real-time
responsiveness of route programming (Dong, Z., 2005), where the route availability,
difficult to evaluate, is the most important metric.

There are about 20 representative types of different route programming algorithms
used currently (Pierre-Yves, G., 2003). For calculating the shortest path between two

points, Floyd’s algorithm is used commonly with a time complexity of O(n
3

). The
double Sweep Algorithm can resolve the top-k routes between one node and others.
The Bellman-Ford-Moore Algorithm, though with a better time complexity, is not

714 Z. Dong et al.

good in practice (Retcher, G., 2006). A* algorithm is the most widely used heuristic
algorithm. Its main characteristic is that it uses the known information combined with
the distance from the current point to the end in calculating the next point. In the
searching period, the most possible next point is selected firstly in calculation for
reducing calculation times and improving efficiency. In navigation systems, the
Dijkstra algorithm, brought forward in 1959, has been considered as one of the most
efficient algorithms for finding the shortest path so far (Jagadeesh G. R, 2002). The
shortest distance between a node and all of others in a graph can be calculated with a

time complexity of O(n 2), in which n is the number of nodes.

Fig. 1. Route by simple algorithms

In real navigation, the route just is a choice, and we can not evaluate whether it is
good or not. Often, the computed route is not the best or indeed not applicable to
guide the driver to the destination. Fig. 1 shows an experiment result came from
Dijkstra algorithm, which is from the northwest corner to the southeast of the 3rd
Ring Road in Beijing, China. Obviously the route is not applicable although the path
computed is the shortest, because: (1) Cover the downtown area where the traffic is
heavy to pass. (2) There are too many traffic restrictions and traffic lamps on the
route. (3) A great number of segments of the route are lower classes with awful
pass ability.

For numerous drivers, more applicable route is to go maybe with a longer distance.
The experiment shows: (1) In navigation process, it is not enough only to give out a
route to driver without availability. (2) We should study route availability concept,
mathematical presentation, measurement model and application methods, etc. (3) It is
necessary to obtain dynamic traffic conditions of a route segment at different time.

However, few systemic studies on these issues have been reported in the
navigation field. In fact, navigation in unfamiliar environments is a common and
demanding cognitive activity. Due to a series of errors, such as late lane changes,
inappropriate traffic management, real time passing situation, etc, always driver can
not get available route (May, A.J., 2003). Some navigation works with centre support
was reported, but no dynamic information was used (Hunaiti Z., 2006). The study
need for route availability include: availability definition, measurement model, effect

 Study on Embedded Vehicle Dynamic Location Navigation Supported by Network 715

factors, modified algorithm, and corresponding availability experiments, etc.
Therefore, we should analyze the route availability from applicable point of view.

2 Route Availability Model

2.1 Mathematical Representation of Route Availability

Definition 1. Programming Route Group (RG):

RG k (PA, PB)=SET(RR i) 1≤i≤k (1)

Here, PA is the starting point, and PB is the ending point. Because of traffic
restriction and distraction from the route, the route programming from PA to PB
needs to be realized several times, presented as k times, and the actual route passed

through by vehicle is a collection of k Real-time Routes (RR). RR i denotes the i th

route, and k=1 denotes the vehicle following a single selected route from PA to PB.

Regarding the rationality and availability of the i th route, the analysis results show
that some segments of the route are rational and practicable and the others are not, or
difficult to pass through. So it is necessary to divide the route into segments as:

Definition 2. Segmentation of the route RR i :

RR g
i (PT, PB)=SET(RR j

i) 1≤j≤g (2)

Here, PT is the position where distracting from the selected route; RR g
i indicates that

RR i is composed of g segments, RR j
i denotes the j th segment of RR i , and g=1

denotes the route consisting of a single segment.

From the above definition, RR g(j)
k(i) (PA, PB) is used to denote that there are k

programmed sub-routes from PA to PB in actual navigation, and the current i th sub-

route consists of g segments, and the current segment is the j th .

Definition 3. Route Availability (RA):

RA (PA, PB) = D rn / (D rn + D rs) (3)

Based on the concepts of sub-route and segment, we can give out Route Availability
presentation.

Here D rn is the length for a vehicle to pass smoothly, D rs is the length difficult to

pass through because of lower class road, traffic jams, or temporary road conditions

and traffic restriction, etc. Obviously, D rn and D rs are dynamically changing. For a

segment, it is important to evaluate the pass smooth degree in a period of time, and
the data mainly comes from experience data and traffic information broadcast system.

Accordingly, the availability of the sub-route RR i can be defined as:

716 Z. Dong et al.

RA (RR i) = D Irn / (D Irn + D Irs) (4)

Here D Irn is the length of the route segment within the i th sub-route on which the

vehicle to pass normally, and D Irs is the one that the vehicle passes abnormally. Route

availability is related to user’s demand, relevant algorithms, changing road net
condition, traffic jam condition, other random events, etc.

2.2 Availability Measurement Based on Probability Model.

Definition 3 is only suitable for a statistical estimation of the route availability. In the

real driving situation, availability measurement is much more complicated. The i th

sub-route will not be available if any RR j
i of the segments can not be passed through.

Here, RG (PA, PB)={RR g(j)
1 , RR g(j)

2 , ……, RR g(j)
k }, and RR g(j)

i ={RR 1
i , RR 2

i , ……,

RR g
i } are g segments of a sub-route RR i .

The availability measurement is defined by the probability that the vehicle can pass
a route normally, denoted approximately with the probability model. In order to
perform the measurement, the user demand model and conjunction relation among
segments need to be defined according to the previous availability model.

Definition 4: Conjunction of route segments:

C j
i = C (RR j

i , RR 1j
i
+) or C (RR g

i , RR l
1i+) (5)

The conjunction relation among route segments, expressed as C, is actually
represented by the connecting point between route segments, usually an intersection.
Therefore, a route can be presented as a series of segments, separated by intersections.
Let C j

i be the conjunction between road segments j to j+1 in the sub-route i. When
j=g, it denotes that the last segment of sub-route i is connected with the first segment
of sub-route i+1.

This paper uses RBD model to analyze route RR availability as shown in Fig. 2,
which is the most common sub-system partitioning method used in system availability
and credibility analysis (Sathaye, A., 2000, Balkovich, E., 1987) .

Fig. 2. Virtual RBD model for real-time route partition

Here, route segment RR j
i and connection relation C j

i are independent. Suppose the

abnormal-passing probability of route segment RR j
i is f s (RR j

i), and that of

conjunction C j
i is f r (C j

i). Then, the route availability based on probability model

can be presented as:

C 1
1 - RR 1

1 - C 2
1 - RR 2

1 - - - - C j
i - RR j

i - C 1j
i
+

 Study on Embedded Vehicle Dynamic Location Navigation Supported by Network 717

RA (PA, PB) = ∏
==

g,k

1j,1i

 (1- f r (C j
i))· ∏

==

g,k

1j,1i

 (1-f s (RR j
i)) (6)

The acquiring mechanism of f r (C j
i) and f s (RR j

i) is complicated. Similar to D rn

and D rs in Definition 3, the probability data comes from: (1) Integrated experience

data of f '
r (C j

i) and f '
s (RR j

i) based on the historical statistical data in certain period

of time. (2) Traffic condition information broadcasting systems. The navigator can
receive real-time traffic jam information and adjust the weights of the road segments
dynamically to ensure availability of the programmed route.

3 Dynamic Information Acquisition and Broadcast Based on
Network

3.1 Dynamic Information Network Flow

Fig.3 shows dynamic route programming and navigation framework, unlike
independent navigator without any real time information supporting. Here, there are
three parts: Unit I, Unit II, and Unit III which communicate each other via the channel
following GSM or CDMA protocol.

Wireless

Network

Wireless

Network

Collection
Upload

User
Real road information supporting

Receiving
Broadcasting
Management

Weight
modifying

Dynamic
information

centre

New route
(availability)

DBRoad
 real status

Navigator

Mobile
user

Personal
service

Broadcasting
rules

Dynamic
information

receiving

FlowUsers

Department
Information

exchange

GSM

CDMA

GSM

CDMA

Unit I

Unit II

Unit III

Network
Environment
Management

Fig. 3. Dynamic navigation mechanism based on network environment

Unit I achieves dynamic traffic collection and uploading. The information mainly
comes from two ways. Regular information exchange among special departments is
secondary, because the situations are governable and not frequent such as Road
segment in Construction, compulsive traffic Forbidden Rules, road Close via Whether
reasons or traffic Accident, respectively presented as { RiC,FR, CiW,CiA}, etc. The
main information resources with obvious dynamic characteristics are collected
through vehicle uploading. Primary comments are Current discrete Status of present
road segment of vehicle defined as CS ranking as discrete three levels, fluent passing,
weak-jam and strong-jam.

718 Z. Dong et al.

Unit II is dynamic information management centre for data receiving, data
management, and broadcasting.

Unit III is user client to meet real vehicle navigation based on dynamic road traffic
data. For any application, dynamic information receiving in term of broadcasting
rules, weight modifying and route programming with availability form the integrate
dynamic flow.

3.2 Dynamic Information Acquisition Chain

Dynamic information includes data set {RiC, FR, CiW, CiA} and CS. {RiC, FR,
CiW, CiA} can be announced by special management departments such as offices of
communications. The collection of CS is complicated correspondingly.

The variable CS is evaluated as 1, 2, or 3, which mean fluent passing, weak-jam, or
strong-jam. In fact, only the situation of CS=3 possibly can be reported to the centre
through a simple program button on the screen. The experience data combined with
mobile map data to ensure availability computation.

Frame format，meeting GSM or CDMA communication protocol，is defined as:
$CS, FType, <DATA> * hh <CR> <LF>.
Here, “ $CS” denotes frame head flag; “ FType” denotes frame type of 5 bytes

ASCII code； <DATA> is binary data segment composed with Struct CSpackage,
every character is from 0x30 to 0x3F；“*” means interval symbol；“hh” is check
sum; <CR><LF> present enter and new line.

The final experience data will be transformed to the abnormal-passing probability

f s (RR j
i) of route segment RR j

i , and the f r (C j
i) of conjunction C j

i from {RiC, FR,

CiW, CiA} and CS, in a certain period of time. The ways of farther step, transforming

the f s (RR j
i) and f r (C j

i) to road weight and modified road length employed in route

programming algorithm directly, will be shown in section 4.

3.3 Real-Time Information Broadcasting.

Traffic information broadcast system provides real time traffic jam information or
other road conditions. The broadcasting package is similar to CSpackage.

The data broadcasting adopts similar communication protocol format with data
uploading. Frame format for broadcasting is defined analogously as:

$ED, FType, <DATA> * hh <CR> <LF>.
Here, <DATA> is binary data segment composed with Struct EDpackage. The

broadcasting rule is very important because of great amount of vehicles and
complicated road situations. Experiment shows no system barrage arise when parallel
1000 vehicles is online synchronously.

4 Dynamic Route Programming Supported by Network and
Availability Metric

Dynamic route programming mainly includes the programming algorithm supported
by dynamic traffic information to satisfy availability demands.

 Study on Embedded Vehicle Dynamic Location Navigation Supported by Network 719

4.1 Dynamic Route Programming Based on Availability

The route programming algorithm involves several elements, denoted as F(PA, PB,

CA, RND, RCT, RCI, RTR) and f s (RR j
i), f r (C j

i). Here, CA, RND, RCT, RCI,

RTR denote current point, road net data, road classification table, crossing

information, route topological relationship, respectively, f s (RR j
i) and f r (C j

i)

denote dynamic passing information of route segment RR j
i and that of conjunction

C j
i . At the same time, real route programming can take several modes, I={I1, I2, I3,

I4, I5}, corresponding to distance priority, normal pass priority, less toll priority,
expressway priority, and time priority, respectively. One route programming can
involve one mode or combination of several modes. Each involved mode has a
corresponding weight, so the weight vector R={R1, R2, R3, R4, R5 } reflects the

influence of each mode. The combination of modes, RA ' , is represented as:

RA '= I·[]R5R4,R3,,R2,R1
T (7)

The distance L is the major criterion when selecting the next node in route
programming. In real computation, the L should be adjusted according to L-Scale
which is determined by the route programming modes and the dynamic information
of availability demands. Actually, L-Scale is a changing factor of distance L in real
computation.

L-Scale = RA '⊕ (∏
==

g,k

1j,1i

 (1- f r (C j
i))· ∏

==

g,k

1j,1i

 (1-f s (RR j
i))) (8)

Here, ‘⊕’ is an integrated computation operator, maybe include comparison,
logical operation, plus, etc., and takes consideration of both factors: the routes
programming mode RA ' such as distance priority, time priority, etc., and the route
segment availability metric RA (CA, PB). RA (CA, PB) is a special data set updated
dynamically with the time and can be accessed through the link to the route segment
ID mentioned above.

In actual computation, we replace the distance comparison factor L with integrated
comparison metric Z, and Z is then represented as:

 Z=L*（L-Scale） (9)

Here: when f s (RR j
i)﹤15%, Z=L*100%; when f s (RR j

i)﹥85%, Z=∞.

4.2 Integrated Z-Algorithm

An improved algorithm, Z-algorithm, based on the above dynamic mechanism and
integrated metric Z is shown as:

720 Z. Dong et al.

[Z-algorithm]

Input: {PA,PB,CA,RND,RCT,RCI,RTR,f s (RR
j
i),f r (C

j
i)}

Output•Real-time programming Route: RR
Begin•{

InputDestination(CString &PA,&PB);
GetPosition(Cstring &CA); //Current position;
RouteProgramming:
ConstructNodeSet(Struct &S1,&S2); //Set up a
temporary node set S1 and a permanent node set S2;
S1=null; S2={all nodes};
BroadcastJudgement(Bool &SegofRoad);//Segment holds
relative dynamic information or not;
ReceivefromCentre(Struct &EDpackage); //Dynamic
information acquisition;
L1:
SearchNode(Cstring &P1 from S2);//A new extended
node P1 from S2;
ConstructMetric(long* Z); //Availability metric
Z=L(P1)*(L-Scale(P1)) with received data;
If(P1∈S1)and(Z<value of P1 in S1) then Replace
P1; //Replace P1 if it has existed in S1 with
smaller Z;
If(P1∈S2) then Delete P1;//Delete P1 if it is
inS2;
If P2=null then RR=S1; //Get route RR;
else goto L1;

…… }
End

5 Experiment and Analysis

The experiments are conducted by means of an embedded navigator Nav-1 which was
developed with above algorithms by our lab. Nav-1 consists of a touch screen with a
320X240 resolution, audio output, 64MB SDRAM, and a 512MB CF storage. The
CPU is a 206MHz Inter Strong ARM SA1110 processor, powered by 12V DC. It is
198mm in width, 122mm in height and 37.6mm in thickness, and weights 600g.

The Dijkstra algorithm is suitable for single programming mode, such as R1=1 or
R5=1. The route RR1 (as shown in Fig.1) programmed goes along the diagonal
direction with a shorter distance when R={1,0,0,0,0}. Z-algorithm can be used for

mixed modes to meet user’s multi-demands. The route RR ' (as shown in Fig.4) under
R={0,1,0,0,1} goes along the circle road with the higher class, but the distance is
larger than RR1. In the progress, the vehicle received the dynamic, that the road of ID
34512 was in strong traffic jam, and another new route RR2 was programmed real
time which is more available.

The first navigator using the Dijkstra algorithm generated the route RR1 and the Z-
algorithm generated RR ' -RR2. RR2 is the late route. Obviously, RR1 and RR '<RR2,

 Study on Embedded Vehicle Dynamic Location Navigation Supported by Network 721

Fig. 4. Route produced by Z-algorithm

but we can find that RR1 and RR ' are not available and RR2 is suitable to pass
smoothly for numerous user.

In the experiment, the route was re-programmed ten times when driving along
RR1. The second car using our Z-algorithm was able to reach the destination along
RR2 with one route re-programming and 45 minutes ahead of the arrival of first car.

6 Conclusion

This paper has researched a new dynamic navigation mechanism, including dynamic
route programming satisfying availability demands supported by dynamic real time
traffic information. The acquisition information, came from two different ways, can be
effectively transferred to centre, and transformed to statistical experience data stored in
updating DB. According to special rules and protocol, the dynamic passing information
can be broadcasted to user client and dynamic navigation is realized. From our
experiments, we have learned that the route availability model proposed in this paper is
rational and applicable. The method presented in this paper for measuring road
availability is practical. Our modified Z-algorithm, based on the road availability and
real time navigation, achieves a better navigation performance for smooth passing in
real situation and shows better computation efficiency. But we have to know that road
availability is only one metric of rationality. The rationality issue is more complicated
and involves more factors which have to be taken into consideration. Our future
research will focus on models and algorithms with more factors in real route
navigation, such as segments availability data collection and management.

References

1. May, A.J., Ross, T., Bayer, S.H.: Drivers’ Information Requirements when Navigation in an
Urban Environment. The Journal of Navigation 56, 89–100 (2003)

2. Sathaye, A., Ramanni, S., Trivedi, K.S.: Availability Models in Practice. In: FTCC-1.
Proceedings of the Int. Workshop on Fault-Tolerant Control and Computing, Shoel, Korea,
pp. 823–829 (2000)

722 Z. Dong et al.

3. Balkovich, E., Bhabhalia, P., Dunnington, W., Wyant, T.: Vaxcluster Availability
Modeling. Digital Technical Journal 5, 69–79 (1987)

4. Gilliéron, P.-Y., Konnen, J.: Enhanced Navigation System for Road Thematics. In:
Proceedings of the 3rd Swiss Transport Conference, Switzerland (2003)

5. Retcher, G., Kealy, A.: Ubiquitous Positioning Technologies for Modern Intelligent
Navigation Systems. The Journal of Navigation 59, 91–103 (2006)

6. Hunaiti, Z., Garaj, V., Balachandran, W.: A Remote Vision Guidance System for Visually
Impaired Pedestrians. The Journal of Navigation 59, 497–504 (2006)

7. Jagadeesh, G.R., Heuristic, S.T.: Techniques for Accelerating Hierarchical Routing on Road
Networks. IEEE Transactions on intelligent Transportation Systems 3(4), 301–309 (2002)

8. Dong, Z., Ailong, L., De, Z.: The Present Situation of Vehicle Navigation Techniques in
China and the Multi-Topological Formation and Route Computing of National Navigation
Map. In: Proceedings of the XXII International Cartographic Conference, La Cruna, Spain,
pp. 1733–1738 (2005)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 723–732, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Convolution Filter Based Pencil Drawing
and Its Implementation on GPU

Dang-en Xie1, Yang Zhao2, Dan Xu1,∗, and Xiaochuan Yang3

1 School of Information Science & Engineering, Yunnan University 650091, China
2 School of Information Science, Yunnan Normal University 650092, China

3 South China University of Technology 510641, China
Tel.: +86-871-5737873 Fax: +86-871-5737873

danxu@vip.sina.com, xde820@gmail.com, xcy1198@163.com

Abstract. Traditional pencil drawing methods have their own drawbacks, such
as modeling complexity and higher time-consuming. Thus, they are difficult to
be suitable for the real-time applications. In the paper, we present a new pencil
texture generating method based on the pencil filter. The method can
conveniently generate the pencil drawing effect by convoluting the input image
with the pencil filter. Moreover, the method is implemented on GPU, and then
satisfies the requirement of real-time synthesis. Optical flow technique is used
to guarantee the interframe coherence in video stylization.

Keywords: pencil filter, pencil drawings, Graphics Processing Unit (GPU),
optical flow, non-photorealistic rendering.

1 Introduction

In the past decade, researchers in computer graphics community began to simulate
traditional artistic media and styles, such as paintings [1], watercolor [2, 4], charcoal
rendering [3, 5]. This is a new technique called Non-photorealistic rendering (NPR).
Its purpose is not to aspire to the photorealism but to simulate the artist’s work and
represent the artistry, even the drawbacks of the artwork. To some extent, NPR is the
complementarity of the photorealistic rendering.

Pencil drawing rendering is an important branch of NPR, which is firstly presented
in the 90s last century [7, 8, 9, 10]. A key step of pencil drawing rendering is how to
simulate the pencil texture. Sousa [8] attempted to model the physical behavior of
pencil, paper and eraser. Their approach attained the pencil texture vividly. Later,
Mao [6] simulates pencil texture using the line integral convolution (LIC) method.
Also, they gain satisfied effect. LIC is a texture based vector field visualization
technique which was first presented by Cabral and Leedom in 1993[10]. Given a 2D
vector field represented as a regular Cartesian grid, the LIC algorithm takes as input a
white noise image of the same size as the vector field and generates an output image
wherein the texture has been locally blurred in the direction of the vector field.

∗ Corresponding author.

724 D.-e. Xie et al.

Although the traditional pencil texture generating methods obtain good effect, they
all have disadvantages of deficiency and time-consuming. Physical modeling is very
complexity. LIC method needs to calculate the visualization vector field of the input
image, and then convolute the pixel one by one, so it also costs much time. Generally,
using the LIC method to generate a pencil drawing needs about 20 minutes (here the
image size is 1024*768) [10]. Both of the methods are not suitable to the real-time
applications.

In this paper, we present a new method for simulating pencil texture by pre-
calculating a special convolution filter, named pencil filter. It may have different
appearances according to different stroke orientations and different stroke sizes. Once
the pencil filters are made ready, we convolute the pixel of the black noise image with
each corresponding filter, and then the pencil drawing image is accomplished. The
proposed approach saves lots of time because pencil filters are generated in advance
and the convolution operation is more efficient than traditional methods.

Obviously, the method can be extended to process video. To preserve interframe
coherence of a video segment, the optical flow technique is adopted, which will be
described in detail in Section 4. Additional, for real-time stylization applications, the
paper performs an achievement of the method on GPU (Graphics Processing Unit).

2 Image Based Pencil Drawing

All existing pencil drawing techniques can be classified primarily into two kinds:
geometry-based and image based. Geometry-based techniques take 3D scene
descriptions as their input. Image based techniques directly process 2D images to get
pencil drawing expressions. Our method belongs to the latter. Figure 1 shows the
framework of our pencil drawing algorithm. Each processing box corresponds to a
step of the algorithm:

Fig. 1. The frame map of the algorithm

2.1 Generating the Pencil Filter

By observing and analyzing the real pencil texture (see Figure 2(a)), we simply suppose
that: 1) graphite marks present stochastic distribution according to the coarseness of
papers; 2) graphite marks stretch along the stroke tracks; 3) graphite marks on
perpendicular direction of a stroke present obviously black-white staggered distribution.

 Convolution Filter Based Pencil Drawing and Its Implementation on GPU 725

 (a) (b)

Fig. 2. Comparison of the real pencil texture (a) with the pencil filter generated texture (b)

Fig. 3. Properties of the pencil stroke model

Considering the above supposes, we create a mathematic model for pencil filter.
Assume that the stroke length is len, the stroke direction isθ and the stroke width is
2D. As shown in Figure 3, if we know the stroke length and the stroke orientation, we

can easily calculate the template size by ⎡ ⎤ ⎡ ⎤)cos*sin*(θθ lenlen × .
The next problem is how to decide the value of each element in the pencil filter. As

shown in Figure 4, firstly, calculate the distance d from each point P to the central
axis l of a stroke. Then calculate the distance r from the point P to the center O of the
stroke. The value of each element in the pencil filter lies on the relation between d and
D, and also the relation between r and len/2.

Here, we take the upper right quarter of the template as an example (Figure 4(a)).
Obviously, only three kinds of points are presented in the template. Points in the
green area (e.g. P in Figure 4(b)) satisfy the conditions that r is less than len/2 and d is

Fig. 4. Define a pencil filter

726 D.-e. Xie et al.

less than D, so we choose D-d as their values. Points in the gray area (e.g. Q in Figure
4(c)) satisfy the condition that d is large than D, which means the stroke can’t covered
this area, so their values are set to be zero. Points in the blue area (e.g. R in Figure
4(d)), satisfy the conditions that r is large than len/2 and d is less than D. Blue area is
near to the stroke end, and the graphite marks is thin there, so the value in the
template is less than D-d and none zero. We calculate the distance dx from point R to
the end of line l, and then we choose D-dx as the value of this area. In this way, it
decreases the value of the stroke end effectively, and the decrement is in proportion to
the distance r. When D-dx is less than zero, the value should be set to zero.

Viewing the pencil filter generating procedure, it properly simulates the real pencil
texture:

1. The points near the stroke central line l have greater values. The larger the
distance, the smaller the value. That is in accord with the real pencil texture
property.

2. When the point beyond the stroke width, the value is set to zero. It insures the
pencil stroke width;

3. The filter kindly simulates the stroke ends’ physical property—graphite marks
tapered with the disappear of the pressure on papers;

4. The points which have the equal distance to the central axis line have the equal
value in the template. It insures the strength direction along the stroke.

2.2 Generating the Black Noise Image

To make sure the pencil texture has stochastic distribution, we generate the black
noise image from the reference image. Our method for generating the black noise
image is similar with the method for adding white noise in Mao [10]. We use the tone
of the input image to guide the distribution of the black noise. Let Iinput be the intensity
of a pixel in the input image, P is a floating-point number generated with a pseudo-
random function, and then the intensity Iinput of the corresponding pixel in the noise
image is decided in the following way:

255, [0.0,1.0]
, , (0.0,1.0]

255
0,

input
noise

Iif P T P
I T k k

otherwise

⎧
≤ ∈ ⎛ ⎞⎪= = ⋅ ∈⎨ ⎜ ⎟

⎝ ⎠⎪
⎩

, (1)

 (a) (b)

Fig. 5. The black noise image ((a) is the original image; (b) is the corresponding black noise
image)

 Convolution Filter Based Pencil Drawing and Its Implementation on GPU 727

in which k is a coefficient for controlling the density of the black noise. In this way
we can promise the pencil drawings have the stochastic distribution character, and
also promise the density of the black noise correspond to the intensity of the input
image. If the intensity of the current pixel is lower, the value of T is smaller, and the
probability of P large than T is larger, so the value of Inoise has more probability to be
0. On the contrary, the output value Inoise is 255. Figure 5(b) is the black noise image
generated from the input image shown in Figure 5(a).

2.3 Extract the Contour Lines

A simplest artistic expression is extruding the outlines of the artwork. It is also an
important step for generating the pencil drawing. In computer, we need to extract the
contour lines for simulating the action of extruding outlines.

Gradient operators, such as Sobel, Robert, Prewitt and Kirsch operators are
commonly used in digital image processing to extract edges of an image. Considering
Kirsch operator [11] has the bigger weighted factors, we prefer to choose the Kirsch
gradient operator to extract the contour lines in this paper, so that we can obtain the
contour lines clearly.

The Kirsch operator has 8 filters. Formally, the Kirsch operator is defined by:

{ }{ } 70,35max,1max),(=−= iTSyxK ii (2)

in which,

1 2

3 4 5 6 7

() () (),

()

() () () () ()

i i i i

i i

i i i i i i

S f A f A f A

f A A

T f A f A f A f A f A

+ +

+ + + + +

= + +

= + + + +
st ands f or t he pi xel val ue on pos i t i on

(3)

(4)

 (a) (b) (c) (d)

Fig. 6. The contour lines maps with different value of μ

In practice, we are used to change the values of the Kirsch operator according to
different images. Let Ki be the filter of the Kirsch operator, then we have:

]1,0(,70, ∈=∗= μμ iKK ii (5)

Here, μ is a coefficient for controlling the weight value in the filter. One can adjust

the value of μ interactively, but we suggest that the value of μ should between 0

728 D.-e. Xie et al.

and 1. Figure 6 shows the different contour line maps with the different value of μ .

Figure 6(b), (c) and (d) are show the results that μ is 1, 0.5 and 0.3, respectively.

Generally, if an image has more details, the value of μ should be smaller. A

smaller μ can prevent the contour line conglutination. On the contrary, if an image has

little details, a larger μ should be set in order to make sure the consistency of the

contour lines.

3 Implementation on GPU

In this paper, we transplant the pencil filter based stylization algorithm onto GPU.
With the GPU’s powerful parallel processing ability, we have achieved the real-time
video synthesis for pencil drawing style. In this section, we will describe the GPU
implementation of our algorithm in detail.

3.1 Convolution on GPU

It is difficult to generate pencil filter directly on GPU because the instructions and the
registers are limited in GPU. Fortunately, we can generate the weight values of pencil
filter in advance (like what shown in Figure 7). This idea makes a way to using our
method on GPU. Firstly we load the weight values of pencil filter into GPU, which is
generated in CPU in advance, and then convolution is executed for each pixel.

 0 0.1509 0.3767

0.1509 0.6431 0.1509

0.3767 0.1509 0

 0 0.0000 0.3293

0.3293 0.6827 0.3293

0.3293 0.0000 0

 0 0 0 0.1001 0.0608

 0 0 0.1038 0.3543 0.1001

 0 0.1038 0.3543 0.1038 0

0.1001 0.3543 0.1038 0 0

0.0608 0.1001 0 0 0

Fig. 7. pencil filters using our method generated with the template parameters (left: D=1, len=3,

θ =45o; middle: D=1, len=3, θ =30o; right: D=1, len=5, θ =45o)

Many effective means can achieve the convolution on GPU. Generally, we can
store the weight values of the convolution template as a constant or uniforms type,
and then execute the convolution operation. This method seems simple and feasible,
but the fact is that if we solidify these constants into GPU’s shader program, we can
not easily expand the program function later on. It’s not suitable to our method
because we need to use the weight values to simulate the different property of the
pencil stroke, such as stroke length, stoke width and stroke orientation. To solve the
problem, we load the template data as a texture image, and call the image as Filter
Texture. When a video fragment is synthesized in real-time, the corresponding filter
texture will be chosen according to the user’s need, and then convolution is executed.
The convolution process can be expressed by:

∑
∑

−−
−−

=
),(

),(),(

00

00

ttssk

tstexttssk
colorfiltered (6)

 Convolution Filter Based Pencil Drawing and Its Implementation on GPU 729

where the current pixel position is (s0, t0), tex is a function for searching the
corresponding filter texture. To save the memory, we store the total value of the
template on the alpha channel.

3.2 Generating the Black Noise Image on GPU

At present, there’s no function supplied for generating the floating-point pseudo-
random number in GPU. Therefore, we generate a noise texture image in advance; the
pixel value of the noise image is making up of floating-point random number. GPU
can thereby get the floating-point random number by sampling the noise texture
image. Then, we can generate the black noise image on GPU according to the
approach described in section 2.2.

4 Stylization for Video Segment

The method described in Section 2, also can be used for rendering video segments.
First, capture each frame from the input video. Then, use the same way to process
each frame like what is used to deal with a single picture. Finally, rebuild the video
with the processed frames. This procedure usually brings a negative effect to the
result video because it cannot preserve the interframe coherence.

 (a) (b)

 (c) (d)

Fig. 8. Calculate the optical flow field((a) (b) are two adjacent frames. (c) is the optical flow
vector field.(d) is the enlarged image of the red region of (c).)

To solve the problem, we use Horn’s method [12] to estimate the optical flow field of
each two adjacent frames. Figure 9 shows the optical flow vector field. As synthesis a
frame, we compare the magnitude of the current pixel with an appointed threshold. If
the former is small, then we believe this pixel is almost still. So we need only to copy
the previous frame’s corresponding pixel to the current pixel. Otherwise, we recalculate
the value of the current pixel following with the method described in Section 2.
Generally, the scene’s change is very small in a pair of adjacent frames. So the

730 D.-e. Xie et al.

magnitudes of optical flow vectors are often to be zero or very small on most pixel
positions, especially in the background. In this way, we can basically keep the
interframe coherence of the video.

5 Experiment Result

A pencil drawing generating system on Windows environment has been built with the
Matlab tool. Basically when the input image is specified, the system can generate the
pencil drawing picture automatically. Users are allowed to specify some parameters
interactively. These parameters control the stroke orientation, the stroke length, the
density of the black points and the coefficients of the Kirsch operator. Figure 9 are some
results generated by our method for static pictures. Figure 10 shows some video frames
of real-time rendering results on GPU. In existing system, we do not allow the users to
change the parameters during process a video stream. Instead, we set the default values
for parameters in advance. Thus, the result quality is not good as static pictures because
the default values are not usually suitable for all the frames.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Fig. 9. Experiment results on CPU(figure(a),(d),(g) are original images; figure (b),(e),(h)are the
pencil drawing images with single stroke orientation 450;figure (c),(f),(i) are the pencil drawing
images with different stroke orientations.

 Convolution Filter Based Pencil Drawing and Its Implementation on GPU 731

Compared with the LIC method, our method saves lots of time. The primary reason is
our method needn’t to calculate the visualization vector field of the input image, and
also needn’t to do the hundreds of iterations. Our method only needs to do the
convolution once for each pixel, and the kernel operator elements (Figure 7) usually
have many zeros.
The system is developed using Matlab7.04. All experiments run on a 1.73GHz Pentium
PC with 512M RAM. Cg(C for graphics) language is used for GPU programming.

Fig. 10. Real-time rendering result on GPU for some frames of the movie Ice Age

6 Conclusion

This paper presents a simple and efficient method for simulating pencil texture. Using
the method, we accomplished an image based pencil drawing algorithm. Also, the
method is successfully implemented on GPU to support real-time video stylization. The
proposed method has the following advantages: (1) Efficient. The time cost for
rendering a 1024*768 image on Matlab is 43.26 seconds; it is far less than LIC method,
which needs about 20 minutes. (2) Convenient. Only single convolution is needed for
pencil drawing image synthesis. (3) Bring a new way for real-time synthesis. It brings a
significant reference for the other computer hardware, such as FPGA.

Acknowledgement

This work is supported by NSFC (No. 60663010) and NSF (No. 2006F0017M) of
Yunnan province. All images are downloaded from the Internet. The video fragments
are captured from the movie of “Ice Age”.

References

1. Hertzmann, A.: Painterly Rendering with Curved Brush Strokes of Multiple Sizes. In:
SIGGRAPH 1998 conference proceedings, pp. 453–460 (1998)

2. Laerhoven, T.V., Reeth, F.V.: Real-time simulation of watery paint. Computer Animation
and Virtual Worlds 16, 3–4, 429–439 (2005)

732 D.-e. Xie et al.

3. Lee, H., Kwon, S., Lee, S.: Real-Time Pencil Rendering. In: Proc. of the 4th Intl’
Symposium on Non-Photorealistic Animation and Rendering, pp. 37–45 (2006)

4. Luft, T., Deussen, O.: Interactive watercolor animations. In: Proc. Pacific Graphics 2005,
pp. 7–9 (2005)

5. Majumder, A., Gopi, M.: Hardware accelerated real time charcoal rendering. In: Proc.
NPAR 2002, pp. 59–66 (2002)

6. Mao, X., Nagasaka, Y., Imamiya, A.: Automatic Generation of Pencil Drawing from 2D
Images Using Line Integral Convolution. In: Proceedings of the Senventh International
Conference on Computer Aided Design and Computer Graphics CAD/GRAPHICS 2001,
pp. 240–248 (2001)

7. Takagi, S., Fujishiro, I., Nakajima, M.: Volumetric modeling of colored pencil drawing. In:
Pacific Graphics 1999 conference proceedings, pp. 250–258 (1999)

8. Sousa, M.C., Buchanan, J.W.: Observational Model of Blenders and Erasers in Computer-
Generated Pencil Rendering. In: Graphics Interface 1999 conference proceedings, pp. 157–
166 (1999)

9. Sousa, M.C., Buchanan, J.W.: Computer-Generated Graphite Pencil Rendering of 3D
Polygonal Models. In: EUROGRAPHICS 1999 conference proceedings, pp. 195–207
(1999)

10. Cabral, B., Leedom, C.: Imaging Vector Field Using Line Integral Convolution. In:
SIGGRAPH 1993 conference Proceeding, pp. 263–270 (1993)

11. Castleman, K.R.: Digital Image Processing, pp. 390–391. Publishing House of Electronics
Industry, Beijing (2002)

12. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17,
185–203 (1981)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 733–742, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Improved LLE Algorithm for Motion Analysis*

Honggui Li1 and Xingguo Li2

1 Electronic Department, Physics College, Yangzhou University, Yangzhou
225002, China

hgli@yzu.edu.cn
2 Department of Electronic Engineering, Nanjing University of Science & Technology,

Nanjing 210094, China
xgli@njust.edu.cn

Abstract. Improved LLE algorithm is proposed. Usually there is translation in
practical data. The form of translation relies on the type of data. Data alignment
is a very important step for linear or nonlinear dimensionality reduction
methods. Original LLE algorithm uses Euclidean distance to find neighbors,
and Euclidean distance is not a good measurement for translated data.
Euclidean distance, Hausdorff distance and SSP distance are discussed, and
SSP distance is used for improved LLE algorithm. Two methods are put
forward for improving LLE algorithm. One is aligning input data of original
LLE algorithm, the other is modifying LLE algorithm itself. SSP distance is
used to find neighbors, translated data based on SSP distance is used for gaining
reconstruction weight, and the plot for each dimension of LLE representation is
used for visualization of LLE representation. Motion analysis experiments
results show, improved LLE algorithm is better than original LLE algorithm for
translated data, and obtains better visualization of LLE representation.

Keywords: LLE, NDR, Motion analysis.

1 Introduction

Data analysis and visualization are very important for many areas of science and
technology [1]. Finding compact representations of high-dimensional data is the
fundamental problem of dimensionality reduction. The motivation of dimensionality
reduction includes: reducing storage requirements, eliminating noise, extracting
feature for recognition and projecting data to a low-dimensional space. Human brain
representations the world through dealing with data form large numbers of sensory
inputs. Coherent structure in the world leads to strong correlations between inputs,
which will result in observations that lie on a smooth low-dimensional manifold. If
the data can be represented as points in a high-dimensional vector space, it should
inherently have a much more compact representation.

* This paper is sponsored by the project (No. 04KJB510167) from the education department of

Jiangsu, China.

734 H. Li and X. Li

Dimensionality reduction method can be divided into two kinds: linear
dimensionality reduction methods and nonlinear dimensionality reduction (NDR)
methods. Linear dimensionality reduction methods include: PCA (principal
component analysis), ICA (independent component analysis), LDA (linear
discriminate analysis), LFA (local feature analysis), and so on. Nonlinear
dimensionality reduction methods also can be categorized into two kinds: kernel-
based methods and eigenvalue-based methods. Kernel-based methods include: KPCA
(kernel principal component analysis), KICA (kernel independent component
analysis), KDA (kernel discriminate analysis), and so on. Eigenvalue-based methods
include: LLE （ ）locally linear embedding [1], ISOMAP[2], Laplacian Eigenmap[3],
and so on.

LLE is a fast NDR algorithm, which finds local geometry in high dimension space
and generates a projection to lower dimensional space that preserves original local
geometry. LLE algorithm is inherent translation, scale and rotation invariant. The
implementation of LLE is simple and is based on standard linear algebra methods.
The coordinates of low-dimensional LLE representation spaces usually have
meaningful attributes.

LLE is perfect in theory and can obtain good low-dimensional representation of
man-made data and some practical data. LLE can’t always give good low-
dimensional representation of practical data. Translation of data is usually appeared
in practical data. The form of data translation depends on the type of data. For
example, the translation of speech signal is lies on a horizontal line, and the
translation of image signal is lies on an image plane. LLE uses Euclidean distance
to find neighbors, and Euclidean distance is not a good measurement for translated
data. So an improved LLE algorithm is needed. There will be two methods for
improving LLE algorithm. One is aligning properly input data of original LLE
algorithm to eliminate the influence of data translation, the other is modifying LLE
algorithm itself.

The rest part of this paper is arranged as follows. LLE algorithm is introduced
briefly in section 2. Similarity measurement will be discussed in section 3. Improved
LLE algorithm is depicted in section 4. Experiments and results are in section 5.
Section 6 is conclusion.

2 LLE Algorithm

The input is matrix { }NxxxX ,...,, 21= , where D
i R∈x . The output is matrix

{ }NyyyY ,...,, 21= , where d
i R∈y and Dd << . For each vector iy , repeat

following three steps:

(1) Find K nearest neighbors { }iKii xxx ,...,, 21 ;

(2) Find weight matrix { }KjNiWij ,...,2,1;,...,2,1| ===W , which

minimizes following cost function,

 Improved LLE Algorithm for Motion Analysis 735

() ∑ ∑
= =

−=
N

i

K

j
ijiji W

1

2

1

xxWε (1)

where W also satisfies conditions: 1
1

=∑
=

K

j
ijW and 0=ijW if jx is not a

neighbor of ix ;

(3) Find d dimension embedding vector iy , which minimizes following cost

function,

() ∑ ∑
= =

−=Φ
N

i

K

j
jiji W

1

2

1

yyY (2)

3 Similarity Measurement

Usually Euclidean distance or normalized dot products are used for finding K
nearest neighbors in LLE algorithm [1]. Translation of data is one of the commonest
phenomena, and Euclidean distance is unsuitable for translated data.

3.1 Euclidean Distance

The definition of Euclidean distance between two vector ix and jx is

() ()()∑
=

−=−=
D

n
jijiE nnD

1

2

2
xxxx (3)

Figure 1(a) is the original silhouette of gait image. Figure 1(b) is the horizontal
translation versions of figure 1(a). Figure 1(c) is the Euclidean distance between
original image and its horizontal translation versions. Figure 1 shows, directed
Euclidean distance between two images is not a good distance measurement.

Figure 2(a) is another original silhouette of gait image for same person. Figure 2(b)
is the horizontal translation versions of figure 2(a). Figure 2(c) is the Euclidean
distance between horizontal translation versions of figure 2(a) and figure 1(a). Figure
2(c) shows, the minimum Euclidean distance is obtained when the horizontal shift is 1
pixel. Figure 2 also shows, directed Euclidean distance between two images is not a
good distance measurement.

3.2 Hausdorff Distance

Hausdorff distance is a kind of distance measurement between two point sets [4]. Let

{ }maaaA ,...,, 21= and { }nbbbB ,...,, 21= denote two finite point sets. The

definition of Hausdorff distance is

736 H. Li and X. Li

() () ()()ABBABA ,,,max, hhH = (4)

()BAh , is directed Hausdorff distance, and it is defined as

() baBA
BbAa

−=
∈∈

minmax,h (5)

The modified Hausdorff distance is defined as

() ∑
∈ ∈

−=
Aa

Bb
ba

A
BA min

1
,modh (6)

Modified Hausdorff distance using the average of single point distances, so is
robust for outliers. Hausdorff distance is useful for shape matching. Hausdorff
distance eliminates the influence of point translation to some extent.

3.3 SSP Distance

BenAbdelkader directly models human motion, and believes the dynamic feature of
gait is encoded in pairwise image similarities of gait images, and gives the definition
of self-similarity plot (SSP) [5]. The definition of SSP is

() () ()
()
∑

∈<
−++=

1

21
,

,
21 ,,min,

tByx
tt

rdydx
yxdyydxxttS OO (7)

where, 1t and 2t are numbers of silhouette images,
1t

B is the bounding box of

silhouette image 1t , r is a small search radius, and
1t

O and
2t

O are silhouette

images. When SSP is used for gait alignment, we let 12 =t and
1t

f is aligned with

dx and dy .

The definition of SSP distance between two vector ix and jx is

() ()()()jiEjiS TDD xxxx ,min, = (8)

where ()jT x is the translation version of jx . The operator T is depends on the

type of data. SSP distance removes the influence of data translation to a great extent.

4 Improved LLE Algorithm

Two methods can be used for improving LLE algorithm. One is aligning input data of
original LLE algorithm, the other is modifying original LLE algorithm itself.

 Improved LLE Algorithm for Motion Analysis 737

4.1 Aligning Input Data of LLE Algorithm

For linear or nonlinear dimensionality reduction methods, data alignment is very

important step. The input of LLE algorithm is matrix { }NxxxX ,...,, 21= , where
D

i R∈x . The alignment version of X is

(a)

(b)

(c)

Fig. 1. (a) Original image, (b) Horizontal translation version of original image, (c) Euclidean
distance between original image and its horizontal translation versions

(a)

(b)

(c)

Fig. 2. (a) Original image, (b) Horizontal translation version of original image, (c) Euclidean
distance between original image figure 1(a) and horizontal translation versions of original
image figure 2(a)

738 H. Li and X. Li

() () () (){ }NSSSS TTTT xxxX ,...,, 21= (9)

()iST x satisfies

()() ()RiSRiSE DTD xxxx ,, = (10)

Rx is a reference vector, and it may be 1xx =R . A more sophisticated Rx is

needed.

4.2 Improved LLE Algorithm

The input is matrix { }NxxxX ,...,, 21= , where D
i R∈x . The output is matrix

{ }NyyyY ,...,, 21= , where d
i R∈y and Dd << . For each vector ix , repeat

following three steps:

(1) Using SSP distance to find K nearest neighbors { }iKii xxx ,...,, 21 ;

(2) Find weight matrix { }KjNiWij ,...,2,1;,...,2,1| ===W , which

minimizes following cost function,

() ()∑ ∑
= =

−=
N

i

K

j
ijSiji TW

1

2

1

xxWε (11)

()ijST x is the translation version of ijx , which satisfies

()() ()ijiSijSiE DTD xxxx ,, = (12)

W also satisfies conditions: 1
1

=∑
=

K

j
ijW and 0=ijW if jx is not a neighbor of

ix ;

(3) Find d dimension embedding vector iy , which minimizes following cost

function,

() ∑ ∑
= =

−=Φ
N

i

K

j
jiji W

1

2

1

yyY (13)

(4) Visualization of lower-dimensional embedding vector iy . Classical method for

visualization of lower-dimensional embedding is the plot of 1D, 2D or 3D LLE

 Improved LLE Algorithm for Motion Analysis 739

representations. Another available method is the plot for each dimension of lower-
dimensional LLE representation.

5 Motion Analysis Experiments and Results

Gait images come from CMU MOBO database [6]. CMU MOBO database has 25
persons, 6 visual angles and 4 kinds of walk: slow walk, fast walk, slow incline walk
and slow walk with a ball.

5.1 Comparison Between Improved and Original LLE Algorithm

Figure 3(a) is the 1D LLE representation of gait sequence using original LLE
algorithm. Figure 3(b) is the 1D LLE representation of gait sequence using original
LLE algorithm and input data alignment. Figure 3(c) is the 1D LLE representation of
gait sequence using improved LLE algorithm. Figure 3 shows, three methods have
similar good 1D LLE representation.

Figure 4(a) is the 1D LLE representation of gait sequence using original LLE
algorithm. Figure 4(b) is the 1D LLE representation of gait sequence using original
LLE algorithm and input data alignment. Figure 4(c) is the 1D LLE representation of
gait sequence using improved LLE algorithm. Figure 4 shows, original LLE algorithm
can not give good 1D LLE representation, and input data alignment or improved LLE
algorithm has similar good 1D LLE representation.

Figure 5(a) is the 1D LLE representation of gait sequence using original LLE
algorithm. Figure 5(b) is the 1D LLE representation of gait sequence using original
LLE algorithm and input data alignment. Figure 5(c) is the 1D LLE representation of
gait sequence using improved LLE algorithm. Figure 5 shows, only improved LLE
algorithm can have good 1D LLE representation.

Experiments results show, input data alignment based LLE algorithm is better than
original LLE algorithm, and improved LLE algorithm is better than input data
alignment based LLE algorithm.

5.2 Visualization of Low-Dimensional LLE Representation

Figure 6(a) is the plot for 1D LLE representation of gait sequence using improved
LLE algorithm, figure 6(b) is the plot for 2D LLE representation of gait sequence
using improved LLE algorithm, and figure 6(c) is the plot for 3D LLE representation
of gait sequence using improved LLE algorithm.

 (a) (b) (c)

Fig. 3. 1D LLE representation of gait sequence using original LLE algorithm, input data
alignment and improved LLE algorithm

740 H. Li and X. Li

 (a) (b) (c)

Fig. 4. 1D LLE representation of gait sequence using original LLE algorithm, input data
alignment and improved LLE algorithm

 (a) (b) (c)

Fig. 5. 1D LLE representation of gait sequence using original LLE algorithm, input data
alignment and improved LLE algorithm

 (a) (b) (c)

Fig. 6. 1D, 2D and 3D LLE representation of gait sequence using improved LLE algorithm

 (a) (b) (c) (d) (e)

 (f) (g) (h) (i) (j)

Fig. 7. 1st~10th dimension of LLE representation for gait sequence using improved LLE
algorithm

 Improved LLE Algorithm for Motion Analysis 741

Figure 6(a) shows, Zero-crossing, local maximum and local minimum of 1D LLE
representation represents gait cycle, and the shape of 1D LLE representation
represents space extension of gait [7]. Figure 6(b) and figure 6(c) show, 2D and 3D
LLE representation also represent gait cycle and dynamic features of gait.

Figure 7(a) is the first dimension of LLE representation using improved LLE
algorithm, figure 7(b) is the second dimension of LLE representation using improved
LLE algorithm, and so on.

Figure 7 shows, different dimension of LLE representation represents different
dynamic feature of gait in different scale. The smaller dimension of LLE
representation shows dynamic features of gait in lager scale, the larger dimension of
LLE representation shows dynamic features of gait in smaller scale.

6 Conclusions

Improved LLE algorithm is provided. Generally there is shift in practical data. The
form of shift depends on the type of data. Data alignment and registration is a very
important step for linear or nonlinear dimensionality reduction methods. Original LLE
algorithm uses Euclidean distance to find neighbors, and Euclidean distance is not a
good measurement for translated data. Euclidean distance and Hausdorff distance are
discussed, and the definition of SSP distance is given and is used for improved LLE
algorithm. Two methods are brought out for improving LLE algorithm. One is
aligning input data of original LLE algorithm, the other is modifying LLE algorithm
itself. In improved LLE algorithm, SSP distance is used to find neighbors, translated
data based on SSP distance is used for obtaining reconstruction weight, and the plot
for each dimension of LLE representation is used for visualization of LLE
representation. Motion analysis experiments results show, improved LLE algorithm is
better than original LLE algorithm for translation data and gains better visualization
of LLE representation.

In further work, improved LLE algorithm will be used for gait analysis and
recognition, gesture analysis and recognition, satellite cloud image analysis and
recognition, video analysis, and so on. Because ISOMAP algorithm is still not robust
for data translation just as LLE algorithm, improved ISOMAP will be studied in
further work.

Acknowledgement

I would like to thank Ralph Gross for warm-hearted help of CMU MOBO database
download from their web site and excellent suggestions of gait recognition, especially
view dependent and independent of gait cycle detection.

References

1. Roweis, S.T.: Nonlinear Dimensionality Reduction by Locally Linear Embedding.
Science 290, 2323–2326 (2000)

2. Tenebaum, J.B.: A Global Geometric Framework for Nonlinear Dimensionality Reduction.
Science 290, 2319–2323 (2000)

742 H. Li and X. Li

3. Belkin, M., Niyogi, P.: Laplacian Eigenmaps and Spectral Techniques for Embedding and
Clustering. Neural Information Processing Systems 14, 585–591 (2002)

4. Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust Face Detection Using the Hausdorff
Distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95.
Springer, Heidelberg (2001)

5. BenAbdelkader, C., Cutler, R., Davis, L.: Motion-based Recognition of People in EigenGait
Space. In: Proc. of the Fifth IEEE Int. Conf. on Automatic Face and Gesture Recognition,
pp. 254–259. IEEE Press, New York (2002)

6. Gross, R., Shi, J.: The CMU Motion of Body (MoBo) Database. Technical Report, CMU-
RI-TR-01-18, Robotics Institute, Carnegie Mellon University (2001)

7. Li, H., Li, X.: LLE Based Gait Analysis and Recognition. In: Li, S.Z., Lai, J.-H., Tan, T.,
Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 671–679.
Springer, Heidelberg (2004)

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 743–752, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Hybrid GA Based Online Support Vector Machine
Model for Short-Term Traffic Flow Forecasting

Haowei Su and Shu Yu

College of Computer Science and Engineering, South China University of Technology,
Guangzhou 510640, P.R. China

gzsuhw@tom.com, yushu_scut@126.com

Abstract. In this paper, a hybrid genetic algorithm (GA) based online support
vector machine (OSVM) prediction model for short-term traffic flow forecast-
ing is proposed, according to the data collected sequentially by the probe vehi-
cle or the loop detectors, which can update the forecasting function in real time
via online learning way, and the parameters used in the OSVM were optimized
by GA. As a result, it is fitter for the real engineering application. The GA
based OSVM model was tested by using the I-880 database, the result shows
that this model is superior to the back-propagation neural network (BPNN)
model.

1 Introduction

Intelligent Transportation System (ITS) emerges as the times requires. The basic idea
of the ITS is: on the precondition that the current road situation is not varied, and
recur to the high precision and real time predictive method of traffic flow P

[1-4]
P, so as to

achieve effective control of traffic and transport guide from the largest extent to ease
the problem of traffic jams.

According to the theory, the traffic flow forecasting research can be divided into
two types. One type is determined based on the mathematical model P

[5]
P, but the short-

term traffic flow prediction is more influenced by the stochastic interferential factors
than the long-term one, the uncertainty is greater and the disciplinarian laws are less
obvious. Thus using the short-term traffic prediction models based on the classical
mathematical methods, the precision of forecast can not satisfactorily meet the de-
mand of real-time traffic control and guidance in ITS.

The second type is knowledge-based intelligent model of forecasting methods P

[6]
P, in

which the typical representative one is the BPNN model. As BPNN learning algo-
rithm used gradient descent algorithm and weights regulation to minimize the objec-
tive function, the objective function was set by the square sum of the margin between
the input and output values, so the BPNN led to excessively emphasize the learning
mistakes and the over fitting problem appeared inevitably.

Based on the fact that the traffic flow prediction is equivalent to the function esti-
mates and approximation P

[7]
P, it can be handled as the function estimates issue. Support

vector machine (SVM) is a new type of learning machine P

[8]
P, using structured risk

minimization (SRM) principles to perform regression or pattern recognition. SVM

744 H. Su and S. Yu

can solve some flaws of the neural networks, and has many unique advantages in the
fields of small samples and high-dimensional nonlinear manifested P

[9-10]
P.

Currently, the traffic flow forecast based on support vector machine is a new and
hot research field, but still at a preliminary stage. In 2004, a traffic forecasting method
was proposed by Wang Jisheng et al P

[11]
P, which based on support vector machines

theory. The model was solved via the LIBSVM algorithm and the results were better
than the BPNN. Zhang Chaoyuan et al P

[12]
P proposed a least square support vector

machine version model to forecast the traffic flow time series, and the algorithm
based on the LS-SVM was presented.

The traffic flow prediction has a major characteristic of real-time nature. On the ba-
sis of research on support vector machine learning, Yin Ying et alP

 [13]
P designed a least

square support vector machine simulation and real-time traffic flow forecasting sys-
tem using Matlab language, which gave a new way for visualization expression of the
traffic flow guidance data. A real-time traffic flow prediction model based on support
vector machine was given by Xu Qihua and Yang P

[14]
P. Through sequential minimal

optimization (SMO) algorithm, this model can effectively forecast for noise traffic
data. In the literature P

[15]
P, after the analysis of the characteristics of urban traffic flow,

the authors introduced the kernel machine methods, and compared performance of the
compound and conventional kernels was also shown. A short-term traffic flow fore-
casting model based on support vector machine was proposed by Yang Zhaosheng et
al P

[16]
P in 2006, on the basis of concluding variety of traffic flow forecasting models

and the mature thought about the nonlinear, complexity and uncertainty of traffic
system. Compared with the BPNN model, the results showed that in the fields of
accuracy, convergence time, generalization and optimality, SVM-based model is
superior to neural network-based models. SVM-based forecasting method was applied
to the field of traffic incident detection P

[17]
P, and had shown good results.

The parameters selected in the SVM are much important to the efficiency of the
prediction model, especially in the real application. In order to gain the optimal pa-
rameters, a global optimize process should be implement.

Genetic algorithm (GA) P

[18]
P is a global stochastic algorithm, which derives from the

ideas of selection process in nature and genetic mechanism. GAs were successfully
applied to many fields P

[19]
P, because of their superiority of implementation on mas-

sively parallel architecture, compared with traditional optimization methods in search-
ing for the global optimum of complex problem. However, it is not easy to regulate
GA’s convergence so that GA often suffers from premature convergence P

[20]
P.

By contrast with GA, simulated annealing (SA) P

[21]
P algorithm employs certain prob-

ability to escape from local optima and the search process can be controlled by the
cooling schedule. Since the complementary strengths of GA and SA, how to integrate
GA with SA to achieve more efficient optimization results was widely studied in both
theory and application areas P

[22]
P.

Therefore, in this paper, an online learning approach using support vector machine
model was proposed, which can dynamically update the forecasting function via the
data collected continuously by the probe vehicle or loop detectors. And the parame-
ters used in the OSVM were determined by the hybrid GA. The goal is to develop a
rapid, real-time, and optimal short-term traffic flow prediction model with high gen-
eralization ability.

 Hybrid GA Based Online Support Vector Machine Model 745

2 Hybrid GA Based Online Support Vector Machine

2.1 Least Square Support Vector Machine

In 1999, Suykens PP

[23]
PP presented the least square support vector machine algorithm, in

which the main idea is to introduce the least square system into the standard SVM.
Assuming study set is

{ }liRyRyss i
n

iiiii ,,,,,x),,x(|S 21=∈∈== ,

where the regression function expressed as:

by +⋅=)x(w)x(ϕ (1)

The LS-SVR proposed by Suykens et al is to solve the following problem:

⎪⎩

⎪
⎨

⎧

=++⋅=

+= ∑
=

liebyts

eQ

iii

l

i
i

,,,,)x(w..

w)e,w(min

21

22

1

1

22

ϕ

γ

(2)

It can be known from formula (2), that the balance equation is expressed as:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

+ − yαIZZ1

1 00
1

b
T

T

γ

(3)

where []T
l)x(,),x(),x(Z ϕϕϕ 21= , []Tlyyy ,,,y 21= ,

[]T1,,1,1=1 , []T
leee ,,, 21=e , []T

lααα ,,, 21=α .
From the Mercer condition:

ijjiji k Ω≡=⋅)x,x()x()x(ϕϕ , lji ,,,, 21= , (4)

here),(⋅⋅k is a kernel function, which is often used as Gauss kernel

))/(xxexp()x,x(22
2σjijik −−=

IΩ 1−+ γ is called as kernel correlation matrix, let IΩA 1−+≡ γ , then formula (4) can

be written as:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
yαA1

1 00 bT

 (5)

the regression function in formula (1) is:

bkbby
l

i
ii

l

i
ii +=+=+⋅= ∑∑

== 11

)x,x()x()x()x(w)x(αϕϕαϕ (6)

b,α are called the regression parameters.
It can be seen from formula (6) that the key to get the regression parameters is the

computation of the matrix, 1−A .

746 H. Su and S. Yu

2.2 Online SVM Learning Algorithm

Conducting short-term traffic flow forecasting, the system continuously collects the
data on the flow and return to the prediction model in sequence, after that the model
should be adaptively adjusted according to the new collected sample.

When new samples),(11 ++ ll yx were added to the learning set, the kernel correla-

tion matrix was changed into:

⎥
⎦

⎤
⎢
⎣

⎡
=+

cB

BT
l

l

A
A 1

 (7)

where
lA , 1+lA were kernel correlation matrix of learning set S and }{S 1+ls∪

[]NNNNNyB ,,, 121111 ++++ ΩΩΩ=

If 1−
lA can be used to obtain 1

1
−
+lA without the totally recalculating, then the online

SVM learning task is done. In fact, this is the improvement to the online LS-SVR
algorithm which was the LS-SVR based research result of liu et al P

[20]
P. In paper P

[21]
P

there can be shown:

[]
[] [] ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−⎥⎦
⎤

⎢⎣
⎡ −

=⎥
⎦

⎤
⎢
⎣

⎡
=

−−−−−

−−−
−

−
−

+
11111

111
1

1

1
1

1

T
ll

T
l

T
l

T
l

T
l

T
l

l

BBAcBAcBBA

cBBABABB
c

A

cB

BA
A

(8)

[] 11111
1

1 −−−−−
−

+−−=⎥⎦
⎤

⎢⎣
⎡ − l

T
l

T
ll

T
l BABBAcBAABB

c
A (9)

From (8-9)，on the basis of the original results, the prediction function should up-
date as following, according to the new samples added:

bkf
l

i
ii +=∑

+

=

1

1

)x,x()x(α (10)

2.3 Hybrid GA

The hybrid GA was used to optimal the parameters γ and σ in the OSVM, the

object value is the training accuracy.
GA initializes a population. The population evolves from parent generation to child

generation by three basic operators: the selection, the crossover and the mutation.
Then the parent and child populations are united as an extended population. SA is
used as a Bolzmann reduction operator to reduce the extended population to original
size, so a reduced population comes into being. To control the population diversity,
the diversity function is used to quantify the degree of parent and reduced population
diversity, and in terms of which the one with superior diversity must have a higher
probability to be chosen as the new population. The structure of the presented algo-
rithm can be seen in the follows:

 Hybrid GA Based Online Support Vector Machine Model 747

Begin
 While not stop do

Initialize Population (0P)
0=k

While not stop do
Do n/2 times

 {
Select two parents from kP
Generate two children by using crossover
Mutate the two children
Introduce the children in the child population CH
}
Make the extended population CHPk ∪
Introduce the n/10 best individuals of the extended population in the

elitist pool
Make the reduced population ''P by reduce the extended population to

the original size
Choose kP or ''P to be 1+kP in terms of their degree of population

diversity
 Modify temperature (kc)

 1+= kk
 End

 End

End

Both the variable and object function are continuous. In order to improve the accu-

racy and the convergence speed of GA, we use real coding. So one representation of

the solution of an individual can be],[],[σγ== 21 xxX .

Selection: the selection operator used is “roulette wheel selection”. The probability of

reproduction for the individual i is given by: ∑
∈

=
Ii

iFiFiP)(/)()(.

Crossover: the crossover operator used is convex crossover.

0,0,1, 1121
21122

22111 >>=+
+=′
+=′

λλλλ
λλ
λλ

XXX

XXX

Mutation: The mutation operator used is as followed: drXX ⋅+=′ , d is the

approximately grads, the i th variable of d can be computed by

i

nii
i x

xxxxf
d

Δ
Δ+

=
),,,(1

r is a non- negative random real number.

748 H. Su and S. Yu

The reduction operator consists of sampling a Boltzmann probability distribution in
the extended population (the union of the parent and child populations). The value of
this probability distribution depends on the fitness function of the individuals in the
population. If the size of the population is n , in the case of maximization, it works as
follows:

While not n individuals have been selected do
{

Choose randomly an individual i from the extended population

If FiF >)(then

Select individual i for the reduced population
Else

Select individual i with probability equal to)
)(

exp(
kc

FiF −

}
End

Where)(iF is the fitness value of the ith individual and F is the mean value of

fitness function F in the parent population.

3 Hybrid GA Based OSVM Model for Short-Term Traffic Flow
Forecasting

The probe vehicle or loop detectors can be used to collect the traffic information [24]
P.

Subject to random factors (e.g. transmission errors, etc.), it can not be avoided to lose
data accuracy such as data errors and data loss, so the data preprocessing need to be
implemented to correction errors, of which the threshold test and traffic flow theory-
based check are two commonly used methods. At last, the data should be normalized
treatment to improve the efficiency of computation.

The short-term traffic flow forecasting process can be described as followed:

Step1: Chose N traffic flow samples as initial training set
{ }Niyss iiii ,,,),,x(|S 21=== ,

According to formula (1)-(6) of LS-SVM algorithm, the initial prediction regres-

sion function is obtained. Then the prediction value for traffic flow jy is:

bky
N

i
jiij +=∑

=1

)x,x(α (11)

Step2: Alone with the data collected continuously, the prediction regression function
should be updated in time. Assuming a new samples are chosen to add in the training
set, so

{ }121 +=== NNiyss iiii ,,,,),,x(|S

 Hybrid GA Based Online Support Vector Machine Model 749

According to formula (7)-(10) of OSVM algorithm, the regression function can be

reconstructed, the prediction value for traffic flow jy is:

bky
N

i
jiij +=∑

+

=

1

1

)x,x(α (12)

The Guass kernel

))/(xxexp()x,x(22
2σjijik −−=

was used as the kernel function.

Step3: Use hybrid GA to optimal the parameters of the online support vector ma-
chine.

4 Model Validation and Comparison

In order to analyze the forecast results better, five error indicators are introduced:

Relative Error：

)(

)()(

tv

tvtv
rerr

real

realpred −
= ,

Mean Relative Error:

∑
−

=
t real

realpred

tv

tvtv

N
mrerr

)(

)()(1 ,

Mean Absolute Relative Error:

∑
−

=
t real

realpred

tv

tvtv

N
marerr

)(

)()(1 ,

Root Mean Square Relative Error:

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

t real

realpred

tv

tvtv

N
rmrerr

2
1

)(

)()(,

Equalization Coefficient (EC):

()
() ()∑∑

∑

+

−
−=

t
real

t
pred

t
realpred

tvtv

tvtv

EC
22

2

1
)()(

)()(

EC means the difference between the predicted and actual fit in a well fitting, when
it is above 0.90.

In order to compare the prediction results of SVM based model with that of popu-
lar neural network based method, we construct the BPNN model for the traffic flow
forecast. The BPNN-based traffic flow prediction model is composed of data proces-
sor, input layer, output layer and hidden layer. It can be seen in the Fig.1.:

750 H. Su and S. Yu

Da
ta

 P
ro

ce
ss

or

Raw Dat a

Input
Layer

Hi dden
Layer

Out put
Layer

Fig. 1. BPNN-based traffic flow prediction model

The formula of the prediction model is as following:

1

1

1

1

−

=

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−+

−
=

∑

∑
in

i
jiij

i

j
jt

t

xw

v

Q γ
θ)exp(

)exp(

(13)

here, tQ is the forecast value, ijw is the weight of connection between input layer

and hidden layer,
jθ is the threshold of hidden layer unit, jtv is the weight of connec-

tion between hidden layer and output layer,
iγ is the threshold of output layer unit.

To validate the correctness and accuracy of the forecasts model, the I-880 database
P

[25]
P was used to test. Since there were large amount of raw data in this database, we

simply randomly selected some samples in a short period in each day, and the data
were regulated for computational convenience. The BPNN-based short-term traffic
flow prediction model was programmed by using Matlab7.0.1 neural network tool-
box, the hybrid GA based OSVM forecast model was programmed by using Micro-
soft Visual C++ 6.0 complier. The operating environment is: CPU Pentium 1.5 MHz,
Memory 1G, Microsoft Windows XP operation system.

Table 1. Results of two models

Evaluate Indicators
Model

mrerr% marerr% rmrerr% EC
OSVM 0.51 5.25 6.84 0.97
BPNN 0.77 1.46 13.28 0.933

According to the results of Table 1, the hybrid GA based OSVM model gave

higher accuracy than the BPNN-based model, and reached a high value of EC fitting.
Besides the OSVM updated forecast function via online learning algorithm, which
was more suited for the practical application. In generalized performance, the OSVM
model is also superior to the BPNN-based model. The basis of OSVM was support
vector machines, so the forecast error is relatively stable even the fitting error was
large. But neural network appear over fitting easily, when fitting errors are reduced
the forecast error will get larger soon. Moreover, the training of OSVM in fact is a

 Hybrid GA Based Online Support Vector Machine Model 751

convex quadratic programming problem, which can obtain the global optimal solution
with hybrid GA optimized parameters. Contrarily, gradient descent algorithm was
used for neural network, which often result in local optimal solution.

5 Conclusions

The performance of many components in intelligent transportation systems depends
heavily on the quality of short-term traffic forecasts. Considering the real-time,
nonlinear, complexity and uncertainty in traffic problems, a new hybrid GA based
online support vector machine was proposed for designing short-term traffic flow
prediction model. This method was based on least square support vector machine, and
used online learning strategy to dynamic update forecast function, which was more
suited for the practical application. Moreover, the designed online learning algorithm
used hybrid GA to optimal the parameters. The I-880 database was used to test the
hybrid GA based OSVM model and the BPNN-based model, and the results shown
that the hybrid GA based OSVM was superior to the BPNN work in accuracy, gener-
alized ability and optimization. The further work is to find an effective strategy to
dump the useless history data in the training set, in order to avoid reducing the con-
vergence speed when the learning samples increase in number.

References

1. Zhu, Z., Yang, Z.S.: Real time traffic flow prediction model based on ANN. China Journal
of Highway and Transport 11(4), 89–92 (1998)

2. Yang, Z.S., Gu, Y.: Real time and dynamic traffic flow forecast research. Journal of
Highway and Transportation Research and Development 15(3), 4–7 (1998)

3. Yang, Z.S.: Theories and models of urban traffic guidance system. China Communications
Press, Beijing (2000)

4. Li, C.J., Yang, R.G., Zhang, J.S.: Traffic flow forecasts based on wavelet analysis. Journal
of Computer Applications 23(12), 7–8 (2003)

5. He, G.J., Li, Y., Ma, S.F.: Short-term traffic flow prediction based on mathematic models.
Systems engineering-theory & practice 12, 51–56 (2000)

6. He, G.Q.: Introduction to ITS systems engineering. China railway publishing house, Bei-
jing (2004)

7. Yang, Z.S., Jiang, G.Y.: Theories and models of urban traffic guidance system based on
high-order neural networks. Journal of Highway and Transportation Research and Devel-
opment 6, 16–19 (1998)

8. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
9. Cheng, H., Cheng, L.H., et al.: The Appliance of BP-Network and SVM in Approach of

Non-linear Function. Aeronautical Computer Technique 34(3), 27–30 (2004)
10. Xu, Q.H., Shi, J.: Aero-Engine Fault Diagnosis Based on Support Vector Machine. Journal

of Aerospace Power 2, 298–302 (2005)
11. Wang, J.S., Gao, B.C., Shi, L.P.: Application of support vector machines in traffic volume

forecast. Information Technology 4, 8–10 (2004)
12. Zhang, C.Y., Hu, G.H., Xu, T.Z.: Traffic flow time series prediction based on LS-SVM.

Journal of Yunnan University 26, 19–22 (2004)

752 H. Su and S. Yu

13. Yin, Y., Zhang, C.Y., Hu, G.H., Xu, T.Z.: Design of Real-Time Traffic Flow Simulating
and Forecasting System Based on SVM. Journal of Computer Engineering and Applica-
tions 10, 197–199 (2005)

14. Xu, Q.H., Yang, R.: Traffic Flow Prediction Using Support Vector Machine Based
Method. Journal of Highway and Transportation Research and Development 22(12), 131–
134 (2005)

15. Jiang, G., Xiao, J.: Real-time Forecast of Urban Traffic Flow Based on Kernel Machine
Method. Computer Engineering 32(17), 48–51 (2006)

16. Yang, Z.S., Wang, Y., Guan, Q.: Short-term traffic flow prediction method based on SVM.
Journal of Jilin University 36(6), 881–884 (2006)

17. Qin, P.P.: Comparison of SVM and Neural Network Model for Incident Detection. Journal
of Computer Engineering and Applications 34, 214–232 (2006)

18. Holland, J.H.: Adaptation in natural and artificial system. MIT Press, Cambridge, MA
(1975)

19. Joine, J., Houck, C.: On the use of non-stationary penalty functions to solve nonlinear con-
strained optimization problems with GAs. In: Proceedings of the First IEEE Conference on
Evolutionary Compution, pp. 548–579. IEEE Press, Los Alamitos (1994)

20. Kirpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

21. Kovac, A., Glavic, P.: Retrofit of complex and energy intensive processes-I. Computers &
Chemical Engineering 19, 1255–1270 (1995)

22. Kralj, A.K., Glavic, P.: Retrofit of complex and energy intensive processes. Computers &
Chemical Engineering 21(Suppl.), 517–522 (1997)

23. Suykens, J.A.K., Vandewalle, J.: Least Squares Support Vector Machine Classifiers. Neu-
ral Process Letter 9, 293–300 (1999)

24. Zhang, C.B., Yang, X.G., Yan, X.P.: Traffic Data Collection System Based on Floating
Cars. Computer and Communications 5(24), 31–34 (2006)

25. Petty, K.: The analysis software for the FSP project,
 http://ipa.eecs.berkeley.edu/ pettyk/FSP

M. Xu et al. (Eds.): APPT 2007, LNCS 4847, pp. 753–763, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Composed Fuzzy Rough Set and Its Applications in
Fuzzy RSAR

Weigen Qiu1,2 and Zhibin Hu1

1 Computer Faculty of GuangDong University of Technology, GuangZhou, GuangDong,
510090, P.R. China

2 State Key Laboratory of Intelligent Technology & Systems, Department of Computer
Science & Technology, Tsinghua University, Beijing 100084, P.R. China

Abstract. Pawlak rough set theory is a powerful mathematic tool to deal with
imprecise, uncertainty and incomplete dataset. In this paper, we study the fuzzy
rough set attribute reduction (fuzzy RSAR) in fuzzy information systems. Firstly,
we present the formal definition of a kind new rough set form-the composed
fuzzy rough set. The second, some properties of extension forms of Pawlak rough
set are also discussed. Lastly, we illustrate the fuzzy RSAR based on composed
fuzzy rough set, and a simple example is given to show this approach can retain
less attributes and entailing higher classification accuracy than the crisp
RST-based reduction method.

Keywords: Fuzzy information system, Composed fuzzy rough sets, Fuzzy rough
set, attribute reduction.

1 Introduction

It is well known many classification problems involve high-dimensional descriptions
of input features. However, some existing methods tend to destroy the underlying
semantics of the features after reduction or require additional information beyond the
given data set. A technique that can reduce the dimensionality by using information
contained within the data set and preserving the meaning of the features is clearly
desirable. Rough Sets Theory (RST) can be used as such a tool to discover data
dependencies and reduce the number of attributes contained in data set by purely
structural methods [4].

With more than twenty years development [5], RST has indeed become an
expanding research area, recent theoretical developments are collected in papers [7].
However, in traditional Pawlak RST, an equivalence relation seems to be a very
stringent condition which limits its applications fields. As well known, the fuzzy set
theory and rough set theory represent different aspects of uncertainty and aim to two
different purpose, so many attempts have been made to combine these two theories
[1,2,9]. Because the values of attributes may often be both crisp and real-valued in
more and more application cases, therefore the traditional RST encounters a problem.
Based on information entropy, paper [8] presents a discretization algorithm of

754 W. Qiu and Z. Hu

real-valued attributes values information system for selecting cut points. Because the
discretization process itself often requires some additional information beyond the
aimed data sets, the paper [4] introduce a new concepts for fuzzy-rough attribute
reduction based on fuzzy rough sets.

In this paper, a kind new rough set concept is presented and the composed fuzzy
rough set is formally defined and its properties are discussed. The fuzzy rough attribute
reduction based on the composed fuzzy rough set is illustrated with a simple example.
This approach can retain less attributes and entail higher classification accuracy than
the crisp RST-based reduction method. The rest of this paper is organized as follows.
Section 2 discusses some related basic theory with this paper later, such as fuzzy set,
Pawlak rough set theory, information system, and so forth. Section 3 mainly explores
some extension Pawlak rough set models. Firstly some properties of generalized fuzzy
rough set are discussed. The second, the composed fuzzy rough set is initiated and
formally defined; its some properties are also discussed in detailed. The four section
illustrate the fuzzy RSAR based the composed fuzzy rough set; and an example is given
to show its efficiency and accuracy in classification. In section 5 we make a conclusion
on the paper.

2 Preliminaries

Let U= {u1, u2, …, un} stands for the finite and nonempty set of objects. The power
P(U) can be viewed as a subset of fuzzy power ℱ(U), X∈ℱ(U) can be represented as
form X={(u, μX(u))| u ∈U}, where for every u∈U, the value μX(u)∈[0, 1]. X is also
represented as form X=(μX(u1), μX(u2), …, μX(un)) when U is finite set, or as X=ʃμX(u)/u
when U is infinite set. For arbitrary λ∈I=[0, 1], the λ-level Xλ and the strong λ-level

Xλ+ are respectively Xλ={u∈U|μX(u)≥λ} and Xλ+={u∈U|μX(u)>λ}, X=
Iλ∈

∨ (λ∧Xλ)

=
Iλ∈

∨ (λ∧Xλ+), , X0=U, X1+=Ø [7]. A fuzzy binary relation R over U is a function R:

U×U→[0, 1], its membership function is represented by μR(x, y). The class of all fuzzy
binary relations of U will be denoted as ℱ(U×U).

Let R be an ordinary equivalence relation on U, U/R denotes the equivalence classes

by R. For every u∈U, [u]R∈U/R denotes the equivalence class of u, the pair (U, R) is

called as the Pawlak approximation space. Let X⊆U,

 R X={u|[u]R⊆X}, R X={u|[u]R∩X≠Ø} (2.1)

Where R X is called the lower approximation of X, while R X is the upper

approximation of X, (R X, R X) is called as rough set of X. αR(X) =card(R X)

/card(R X) denotes the accuracy of approximation, R X- R X as the boundary set of

X. The fuzzy set X
~

 over U is defined as following [7]:

 Composed Fuzzy Rough Set and Its Applications in Fuzzy RSAR 755

 X~μ (u)=
)card([u]
X)card([u]

R

R ∩ , for every object u∈U (2.2)

So, X~μ (u)=1 iff u∈ R X; X~μ (u)=0 iff u∈U- R X; otherwise 0< X~μ (u)<1 iff

u∈R X- R X. However, if X is fuzzy rough set or R is fuzzy equivalence relation over

U, the above calculation formula of membership function X~μ (u) may need some

changes in form.
Information system (IS) is an ordered quadruple S=(U, A, f, V), where U={u1, u2,

…, un} is a non-empty finite objects set, A={a1, a2, …, am} is a non-empty finite

attributes set. V= Aa∈∪ Va is a set of attributes values, where Va is the domain of

attribute a∈A. f: U×A→V is an information function, where for all (u, a)∈U×A, f(u,
a)∈Va, Inf(u)={(a, fa(u))|a∈A} is called as an information vector of u.

Let P⊆A, Ind(P)={(u, v)∈U×U| for all a∈P, f(a, u)=f(a, v)}. If (u, v)∈Ind(P), then

u and v are indiscernible under attributes subset P. For every u∈U, its equivalence

class is denoted as [u]P={v|(u, v)∈Ind(P)} and U/P={[u]P|u∈U}. Let P, Q⊆A, the

positive region POSP(Q) =
U/QX∈

∪ P X contains all objects of U that can be classified to

classes of U/Q by using the knowledge in attributes P. For P, Q⊆A, we call Q depends

on P in a degree k (0≤k≤1), where

 k=γP(Q)=
card(U)

(Q))card(POS P (2.3)

If k=1, then call Q depends totally on P; if 0<k<1, then call Q depends partially on P

with the degree k, denoted by P⇒k Q; and if k=0 then call Q does not depend on P.

3 Extensions of Pawlak Rough Set Model

Let U={u1, u2, …, un} and W={w1, w2, …, wm} be two finite and nonempty sets, R∈

ℱ(U×W) is fuzzy relation from U to W. When U and W are finite nonempty sets, R can

be represented by n*m matrix R=(rij)n×m where rij=μR(ui, wj)∈[0, 1], for all i=1, 2, …, n,

j=1, 2, …, m [3]. For each λ∈[0, 1], matrix (λrij)n×m denotes the cut relation Rλ, where

λrij=1 iff rij≥λ, otherwise λrij=0. If R∈P(U×W), then for all u∈U, we call RW(u)={w

∈W|(u, w)∈R} as the successor neighborhood of u.

Definition 1. Let U be two finite and nonempty sets, R∈ℱ(U×W). Y∈ℱ(W), u∈U,

the generalized fuzzy rough set (
R

apr Y, Rapr Y) can be defined as following:

756 W. Qiu and Z. Hu

 R
apr Y(u)=

Ww
min

∈
{max(1-R(u, w), Y(w))}

 Rapr Y(u)=
Ww

max
∈

{min(R(u, w), Y(w))} (3.1)

Where the triple (U, W, R) is called as generalized fuzzy approximation space.

Theorem 1. Let R∈ℱ(U×W), then for all Y∈ℱ (W) and arbitrary α ∈[0, 1],

(
R

apr Y)α=
+−α)(1R

apr Yα, (Rapr Y)α= αRapr Yα

(
R

apr X)α+=
α)(1R

apr
−

Yα+, (Rapr Y)α+=
+αRapr Yα+

Proof. For arbitrary α∈[0, 1],

(
R

apr Y) α={ u ∈U|
R

apr Y(u)≥α}

= { u ∈U |
Ww

min
∈

{ max(1-R(u, w), Y(w))}≥α}

= { u ∈U| for all w ∈W, max(1-R(u, w), Y(w))≥α}
= { u ∈U| for each w ∈W, 1-R(u, w)≥α, or Y(w)≥α}
= { u ∈U| { w ∈W | 1-R(u, w)≥α}∪{ w∈W | Y(w)≥α}=W }
= { u ∈U| { w ∈W | R(u, w)>1-α}⊆{ w∈W | Y(w)≥α} }

= { u ∈U| (RW(u))(1-α)+⊆Y α}=
+−α)(1R

apr Y α

(Rapr Y) α={ u ∈U | Rapr Y(u)≥α}

= { u ∈U |
Ww

max
∈

{ min(R(u, w), Y(w))}≥α}

= { u ∈U |∃w ∈W, min(R(u, w), Y(w))≥α}
= { u ∈U |∃w ∈W, R(u, w) ≥α and Y(w)≥α}

= { u ∈U | (RW(u)) α∩ Y α ≠Ø}=
αRapr Y α

(
R

apr Y) α+= { u ∈U |
R

apr Y(u)>α}

= { u ∈U |
Ww

min
∈

{ max(1-R(u, w), Y(w))}>α}

= { u ∈U | for each w∈W, max(1-R(u, w), Y(w))>α}
= { u ∈U | for each w∈W, 1-R(u, w)>α, or Y(w)>α}
={ u∈U | { w∈W | 1-R(u, w)>α}∪{ w∈W | Y(w)>α}=W }
={ u∈U | { w∈W | R(u, w)≥1-α}⊆{ w∈W | Y(w)>α}=W }

= { u ∈U | (RW(u))1-α⊆Yα+}=
α)(1R

apr
−

Y α+

(Rapr Y) α+= { u ∈U | Rapr Y(u)>α}

= { u ∈U |
Ww

max
∈

{ min(R(u, w), Y(w))}>α}

 Composed Fuzzy Rough Set and Its Applications in Fuzzy RSAR 757

= { u ∈U |∃w ∈W, min(R(u, w), Y(w))>α}
= { u ∈U |∃w ∈W, R(u, w)>α and Y(w)>α}

= { u ∈U | (RW(u))α+∩Y α+≠Ø}=
+αRapr Y α+

Remark 1. From the theorem 1 and the decompose theory, we can immediately

conclude that the following conclusion.

1)
R

apr Y =
[0,1]α∈
∨ (α∧(

+−α)(1R
apr Y α))=

[0,1]α∈
∨ (α∧(

α)(1R
apr

−
Y α+))

2) Rapr Y =
[0,1]α∈
∨ (α∧(

+αRapr Y α+))=
[0,1]α∈
∨ (α∧(

αRapr Y α))

In paper [6], Wu construct the generalized fuzzy rough sets exactly starting from the

above formulas 1) and 2). Our results in the paper show these two approaches are

totally equivalence.
Let the fuzzy equivalence classes set U/R={F1, F2, …, F k}, we consider the

approximations problem for every X∈ℱ(U), let RApr X denotes upper approxim

-ation and
R

Apr X lower approximation respectively. Because the membership values

of individual object to the approximations are not explicitly available directly, so we
need obtain them from another point. Let Fi∈U/R denoted by Fi={(u, μFi(u))|u∈U},
consider the following fuzzy set forms:

 R
Apr X=

k,1,i
Σ

= RXμ (F i)/F i RApr X=
k,1,i

Σ
= RXμ (F i)/F i (3.2)

Where RX and RX are short writing of fuzzy sets
R

Apr X and RApr X,

respectively. For every F∈U/R= {F1, F2, …, F k}, the membership degree values

RXμ (F) and RXμ (F) can be respectively calculated by the following:

RXμ (F)=
Uv

min
∈

max (1- Fμ (v), X(v)), RXμ (F)=
Uv

max
∈

min (Fμ (v), X(v)).

On the other hand, for every u∈U,

RXμ (u)=
U/RF

max
∈

min (Fμ (u), RXμ (F)), RXμ (u)=
U/RF

max
∈

min (Fμ (u), RXμ (F)).

If R is a crisp equivalence relation over U and U/R={F1, F2, …, F k}. Let X∈P(U),

then the RXμ (F) and RXμ (F) can be computed as follows.

RXμ (F)=
Uv

min
∈

max (1- Fμ (v), X (v)) =
Fv

min
∈

X (v)

RXμ (F)=
Uv

max
∈

min (Fμ (v), X (v)) =
Fv

max
∈

X (v)

758 W. Qiu and Z. Hu

It means that RXμ (F) =1 iff F⊆X, otherwise RXμ (F)=0; and RXμ (F)=1 iff

F∩X≠Ø, other wise RXμ (F)=0. Therefore,

RXμ (u)=
U/RF

max
∈

min (Fμ (u), RXμ (F)) =max { Fμ (u) | u ∈F and F⊆X}

RXμ (u)=
U/RF

max
∈

min (Fμ (u), RXμ (F)) = max { Fμ (u) | u ∈F and F∩X≠Ø}

Above statements show that our viewpoint is a natural generalization of Pawlak

rough set from crisp case to the fuzzy circumstance. Below the paper, we will present

the more general statement of above extension. Let U= {u1, u2, …, un} and W={w1, w2,

…, wm} be two finite and nonempty universe,

 R=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

nmn2n1

2m2221

1m1211

rrr

rrr
rrr

= (r i j) n×m=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

n

2

1

r

r
r

=(r’1, r’2,…, r’ m) (3.3)

Where for all i=1, 2, …, n, j=1, 2, …, m, rij=μR(ui, wj), RW(ui)= ri=(ri1, ri2, …, rim),

RU(wj)=r’j=(r1j, r2j, …, rnj)
T, R’=(r’ij)m×n�ℱ(W×U), where r’ji=rij.

Definition 2. Let U and W be two finite and nonempty sets, R∈ℱ(U×W). X∈ℱ(W),

then RApr X,
R

Apr X∈ℱ(W) can be defined as following. For all v∈W,

 R
Apr X(v)=

Uu
max

∈
min(R’(v, u),

Ww
min

∈
max(1-R(u, w), X(w))),

 RApr X(v)=
Uu

max
∈

min(R’(v, u),
Ww

max
∈

min(R(u, w), X(w))) (3.4)

The pair (
R

Apr X, RApr X) is called as the composed fuzzy rough set of X, and the

triple (U, W, R) as the composed fuzzy approximation space.

Proposition 4. Let U and W be two finite and nonempty universes, R∈ℱ (U×W). Then

for all X∈ℱ (W),

R
Apr X= R'apr (

R
apr X), RApr X= R'apr (Rapr X).

Where
R

apr and Rapr are respectively generalized fuzzy rough lower and upper

approximation operators, R'apr is upper approximation operator related with R’.

 Composed Fuzzy Rough Set and Its Applications in Fuzzy RSAR 759

If U=W and R is a fuzzy equivalence relation, then R=R’ and R’ (v, u) =R (u, v). For

each u∈U, Fu=
Uv
Σ
∈

R (u, v)/v. Furthermore,

 R
Apr X=

Uu
Σ
∈

(
Uv

min
∈

max(1-R(u, v), X(v)))/Fu

 RApr X=
Uu
Σ
∈

(
Uv

max
∈

min(R(u, v), X(v)))/Fu (3.5)

Therefore, from above definition 2,

R
Apr X (v) =

Uu
max

∈
min (R’ (v, u),

Ww
min

∈
max (1-R(u, w), X(w)))

=
Uu

max
∈

min (Fuμ (v), RXμ (Fu))

RApr X (v) =
Uu

max
∈

min (R’ (v, u),
Ww

max
∈

min(R (u, w), X(w)))

=
Uu

max
∈

min (Fuμ (v), RXμ (F))

Proposition 5. Let U be finite and nonempty set, R∈P (U×U), then for all X∈P(U),

R
Apr X= R X, RApr X= R X

Proof. Since R∈P (U×U), X∈P(U), then for arbitrary u∈U, there exists a unique

equivalence class [u]R=
Uv
Σ
∈

R(u, v)/v. Therefore, for all X∈P(U) and u∈U,

R
Apr X (v) =

Uu
max

∈
min(R’(v, u),

Ww
min

∈
max(1-R(u, w), X(w)))

=
Uu

max
∈

min(R (v, u), min (
R[u]w

min
∉

max (1-R(u, w), X(w)),
R[u]w

min
∈

max(1-R(u, w), X(w))))

=
Uu

max
∈

min(R (v, u),
R[u]w

min
∈

X (w))

=max (
R[v]u

max
∈

min(R (v, u),
R[u]w

min
∈

X(w)),
R[v]u

max
∉

min(R (v, u),
R[u]w

min
∈

X(w)))

=
R[v]w

min
∈

X (w) = R X(v)

RApr X (v) =
Uu

max
∈

min(R’(v, u),
Ww

max
∈

min(R(u, w), X(w)))

=
Uu

max
∈

min(R (v, u), max(
R[u]w

max
∈

min(R(u, w), X(w)),
R[u]w

max
∉

min(R(u, w), X(w))))

=
Uu

max
∈

min(R (v, u),
R[u]w

max
∈

X(w))

=max (
R[v]u

max
∈

min(R (v, u),
R[u]w

max
∈

X(w)),
R[v]u

max
∉

min(R(v, u),
R[u]w

max
∈

X(w)))

=
R[v]w

max
∈

X (w) = R X (v).

760 W. Qiu and Z. Hu

That is
R

Apr X= R X, RApr X= R X.

Theorem 2. Let R∈ℱ(U×W), then for all X∈ℱ(W), and arbitrary α∈[0, 1],

1) (
R

Apr X) α= α)(R'apr
+−α)(1R

apr Xα, 2) (RApr X)α= α)(R'apr
αRapr Xα,

3) (
R

Apr X) α+=
α)(R'apr

α)(1R
apr

−
Xα+, 4) (RApr X)α+=

+α)(R'apr
+αRapr Xα+.

Proof. For arbitrary α∈ [0, 1],

1) (
R

Apr X) α= {v ∈U|
R

Apr X(v)≥α}

= {v ∈U|
Uu

max
∈

min (R’ (v, u),
Ww

min
∈

max(1-R(u, w), X(w)))≥α}

= {v ∈U|∃u ∈U, R’ (v, u)≥α and
Ww

min
∈

max(1-R(u, w), X(w))≥α}

= {v ∈U| (R’v)α∩(
R

apr X)α≠Ø }=
α)(R'apr (

R
apr X)α= α)(R'apr

+α)-(1R
apr Xα

2) (RApr X)α={v ∈U| RApr X(v)≥α}

= {v ∈U|
Uu

max
∈

min(R’(v, u),
Ww

max
∈

min(R(u, w), X(w)))≥α}

= {v ∈U|∃u ∈U, R’(v, u)≥α and
Ww

max
∈

min(R(u, w), X(w))≥α}

= {v ∈U| (R’v)α∩(Rapr X)α≠Ø }=
α)(R'apr (Rapr X)α= α)(R'apr

αRapr Xα

3) (
R

Apr X) α+= {v ∈U|
R

Apr X (u)>α}

= {v ∈U|
Uu

max
∈

min (R’ (v, u),
Ww

min
∈

max (1-R(u, w), X(w)))>α}

= {v ∈U|∃u ∈U, R’ (v, u)>α and
Ww

min
∈

max (1-R (u, w), X(w))>α}

= {v ∈U| (R’v) α+∩(
R

apr X)α+≠Ø }=
+α)(R'apr (

R
apr X) α+=

α)(R'apr
α)-(1R

apr Xα+

4) (RApr X)α+={ v∈U| RApr X(v)>α}

= {v∈U|
Uu

max
∈

min(R’(v, u),
Ww

max
∈

min(R(u, w), X(w)))>α}

= {v∈U|∃u∈U, (R’(v, u)>α and
Ww

max
∈

min(R(u, w), X(w))>α)

= {v∈U| (R’v)α+∩(Rapr X)α+≠Ø }=
+α)(R'apr (Rapr X)α+=

+α)(R'apr
+αRapr Xα+

Remark 2. From above theorem 2, then

1)
R

Apr Y=
[0,1]α∈
∨ (α∧(

α)(R'apr
+α)-(1R

apr Yα))=
[0,1]α∈
∨ (α∧(

α)(R'apr
α)-(1R

apr Xα+)),

2) RApr Y=
[0,1]α∈
∨ (α∧(

α)(R'apr
αRapr Xα))=

[0,1]α∈
∨ (α∧(

+α)(R'apr
+αRapr Xα+)).

 Composed Fuzzy Rough Set and Its Applications in Fuzzy RSAR 761

4 Attribute Reduction Based on Composed Fuzzy-Rough Set

An information system S=(U, A, f, V) is called as decision table system, if A=C∪D
and C∩D=∅, where C is the conditional attributes set and D≠∅ is the set of decision
attributes. The issue of decision table mainly focuses on how to obtain whole rules by
as less rules and attributes as possible from the information table. The main approach is
attribute reduction including the reduction of attributes-values and deletion of
redundant rules. In fuzzy case, fuzzy rough set attributes reduction (Fuzzy RSAR)
should be built on the notion of the composed fuzzy lower approximation. Let fuzzy
decision table system S=(U, C∪{d}, f, V), for arbitrary P⊆C, the fuzzy positive region

POSP({d})=
U/{d}F∈
∪

P
Apr F, where ({d})POSPμ (u) =

U/{d}F
sup
∈

PFμ (u), Then the

dependency function γP({d}) can be calculated by the following:

 γP({d})=
|U|

|({d})POS| P =
|U|

(u)μΣ ({d})POSUu P∈ (4.1)

In fuzzy case, we use the fuzzy positive region POSC({d}) rather than |U| as the

denominator of normalization, then

 γ({d})=
|({d})POS|
|({d})POS|

C

P =
(u)μΣ
(u)μΣ

({d})POSUu

({d})POSUu

C

P

∈

∈ (4.2)

An data set example from stock market [10] is given to illustrate the operation of

fuzzy RSAR, in which U={u1, u2, u3, u4, u5, u6, u7, u8}, two real-valued attributes are

feature a (profit ratio of per stock) and feature b (harvest ratio of per capital), decision

2-valued attribute is d (representing invest or not), fuzzy equivalence class over U

are (Ha, La) partitioned by attribute a and (Hb, Lb) partitioned by attribute b,

respectively.

Table 1. Stock Information Table

a：profit ratio b：harvest ratio of per capitalU
La Ha Lb Hb

d：investment

1 1 0 1 0 Y
2 0.7 0.3 0.2 0.8 N
3 0.8 0.2 0.9 0.1 Y
4 0.9 0.1 1 0 Y
5 0.1 0.9 0.2 0.8 N
6 0.8 0.2 1 0 Y
7 0.1 0.9 0.2 0.8 N
8 0.8 0.2 0.2 0.8 Y

762 W. Qiu and Z. Hu

Setting A={a}, B={b}, C={a, b} and Q={d}, then the following equivalence classes

are obtained from the above decision table.

U/Q={X, Y}={{u1, u3, u4, u6, u8}, {u2, u5, u7}}.

U/A= {La=(1.0,0.7,0.8,0.9,0.1,0.8,0.1,0.8), Ha= (0.0,0.3,0.2,0.1,0.9,0.2,0.9,0.2)},

U/B= {Lb= (1.0,0.2,0.9,1.0,0.2,1.0,0.2,0.2), Hb= (0.0,0.8,0.1,0.0,0.8,0.0,0.8,0.8)},

U/C= {La∩Lb, La∩Hb, Ha∩Lb, Ha∩Hb}

= {(1.0, 0.2, 0.8, 0.9, 0.1, 0.8, 0.1, 0.2), (0.0, 0.7, 0.1, 0.0, 0.1, 0.0, 0.1, 0.8),

(0.0, 0.2, 0.2, 0.1, 0.2, 0.2, 0.2, 0.2), (0.0, 0.3, 0.1, 0.0, 0.8, 0.0, 0.8, 0.2)}.

The first step is to calculate the lower approximations of the sets A, B and C. For

simplicity, only A will be considered here. For object u1 and decision equivalence class

X= {u1, u3, u4, u6, u8} and Y={u2, u5, u7},

AXμ (u1)=
U/AF

max
∈

min (μF (u1),
Uy

min
∈

max {1-μF(y), μ X (y)})=0.3

AYμ (u1)=
A/UF

max
∈

min (μF(u1),
Uy

min
∈

max{1-μF(y), μX(y)})=0.0

Hence, (Q)POSAμ (u1) =0.3. For the other objects, (Q)POSAμ (u2)=0.3, (Q)POSAμ (u3)

=0.3, (Q)POSAμ (u4) =0.3, (Q)POSAμ (u5)=0.8, (Q)POSAμ (u6)=0.2, (Q)POSAμ (u7)=0.8,

(Q)POSAμ (u8)=0.3. Then rA(Q)=
|U|

(u)μΣ (Q)POSUu A∈ =3.3/8=0.4125. Calculating for B

and C gives rB(Q)=5/8=0.625, rC(Q)=5.4/8=0.675. Because there are only
two condition attributes in this example, so its core and reduction are set {a, b}. The
result is exactly in accordance with that of come from by the method of fuzzy cluster in
paper [10].

5 Conclusions

As a suitable mathematical model to handle partial knowledge in data set, traditional
RSAR encounters some critical problems when the noise and real-valued attributes
value is included in the information system. The fuzzy RSAR method can alleviate
these important problems and has been applied in more than one field with very
promising results. In this paper, we study the fuzzy RSAR methods used in fuzzy
information systems. We extend the rough set model to fuzzy case and present the
formal definition of the composed fuzzy rough set. We also illustrate the fuzzy RSAR
method and give a simple example to show its higher efficiency and accuracy.

References

1. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal General
Systems 17(2-3), 191–209 (1990)

2. Jensen, R., Shen, Q.: Fuzzy rough attribute reduction with application to web categorization.
Fuzzy Sets and Systems 141, 469–485 (2004)

 Composed Fuzzy Rough Set and Its Applications in Fuzzy RSAR 763

3. Liu, G.L.: The Axiomatic Systems of Rough Fuzzy Sets on Fuzzy Approximation Space (in
Chinese). Chinese Journal Of Computers 27(9), 1187–1191 (2004)

4. Pawlak, Z.: Rough sets. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining, pp.
3–8. Kluwer Academic Publishers, Boston (1997)

5. Slowinski, R.: Intelligent Decision Support: Handbook of Applications and Advances of the
Rough Sets Theory, pp. 287–304. Kluwer Academic Publishers, Dordrecht (1992)

6. Wu, W.-Z., Mi, J.-S., Zhang, W.-X.: Generalized fuzzy rough sets. Information Sciences 151,
263–282 (2003)

7. Zhang, W., Wu, W., Liang, J., Li, D.: Theory and Methods of the Rough Sets (in Chinese).
Sciences Publisher Press, Beijing (2001)

8. Hong, X., Zhong, C.H., Xiao, N.D.: Discretization of Continuous Attributes in Rough Set
Theory Based on Information Entropy(in Chinese). Chinese Journal of Computers 28(9),
1570–1573 (2005)

9. Yao, Y.Y.: A comparative study of fuzzy sets and rough sets. J. of Information
Science 109(1-4), 227–242 (1998)

10. Zhang, S., Sun, J., Zhang, J.: A Study on the Reducing Method of Rough Set Decision Table
Based on Fuzzy Cluster (in Chinese). Computer Engineering and Applications 15, 175–177
(2004)

Author Index

Ailong, Liu 713
Akilandeswari, J. 433
An, Hong 40
Anhar, Mahmoud Lotfi 14
Armendáriz-́Iñigo, J. Enrique 131

Bahi, Jacques M. 313
Baocheng, Wan 676
Bao-Qing, Gao 658
Bode, Arndt 1

Cai, Jing 468
Cao, Jiannong 423
Ce, Yu 666
Chapman, Barbara 3
Chen, Fulong 569
Chen, Lanxiang 551
Chen, Pinghua 80
Chen, Shuming 650
Chen, Tao 50
Chen, Weidong 180, 414
Chen, Wenxiao 468
Cheng, Lan 330
Cheung, K.S. 111
Chow, K.O. 111
Chun-yuan, Zhang 30
Cong, Ming 40
Couturier, Raphaël 313
Cui, Jianqun 362

Dai, Fei 684
Dai, Kui 70
Dai, Xiaoping 352
Dai, Zibin 50
Deng, Zijian 60
Depei, Qian 713
Derong, Shen 190
Ding, Lei 703
Ding, Ling 477
Dong, Fang 121
Dong, Jin-xiang 624
Dong, Liu 30
Dong, Shouling 497
Dong, Xiaoshe 301
Dong, Zhang 713

Dou, Yong 90
Du, Bin 322
Du, Gao-Ming 199
Du, Yunfei 18
Du, ZhiHui 100

Fan, Xiaopeng 423
Fan, Xiaoya 569
Fang, Xing 650
Feng, Dan 551
Fu, Hongyi 18

Gao, Lu 292
Gao, Ming-Lun 199
Garćıa-Muñoz, Luis H. 131
Ge, Yu 190
Gopalan, N.P. 433
Gu, Huaxi 392
Gu, Lei 322
Guan, Lian 209, 222
Guan, Shangyuan 301
Guifen, Chen 676

Han, Wei-Hong 161
Hansheng, Lao 402
He, Mingxin 241, 414
He, Yanxiang 362
Helong, Yu 676
Hongkai, Zhu 190
Hou, Jinkui 640
Hu, Meizhi 340
Hu, Yuxiang 121, 209, 222
Hu, Zhibin 753
Huabei, Wu 666
Huang, Min 450
Huang, ZhenChun 322
Huiqiong, Luo 402

Jamali, Mohammad Ali Jabraeil 14
Jeon, Myeongjae 590
Jia, Yan 161
Jiang, Changjun 560
Jiang, Yunfei 600
JiangWei, Huang 233
Jiao, Xianlong 525

766 Author Index

Jie, Wang 172
Jin, Gang 70
Jin, Hai 330
Jizhou, Sun 666
Juan-Maŕın, Rubén de 131

Kailun, Li 617
Kang, Byung-Seok 608
Kim, Junghyun 590
Kuang, Wenyuan 535

Laiymani, David 313
Lan, Julong 121, 209, 222
Lee, Joonwon 590
Li, GuoQing 322
Li, Honggui 733
Li, Hongjian 382
Li, Yin 624
Li, Junyang 301
Li, Li 199
Li, Minglu 477
Li, SanLi 100
Li, Shu 560
Li, Siwei 468
Li, Tong 684
Li, Wei 50
Li, Xingguo 733
Li, Yi 382
Li, Yi-yuan 624
Li, Zhenkun 80
Li, Zhongmin 292
Liang, Bo 40
Liang, Guang 450
Lin, Longxin 372
Lin, Yishen 261
LingXiang, Xiang 233
Liu, Gang 251
Liu, Guangcong 80
Liu, Weiguo 151
Liu, Yijun 80
Low, Malcolm Yoke Hean 151
Luo, Jiaming 497
Lv, Shaohe 487

Ma, Wu 508
Ma, Xiangjie 209, 222
Mao, Junpeng 209, 222
Mazouzi, Kamel 313
Mei, Yiduo 301
Meifang, Li 190

Meng, Tao 50
Min, Sun 666
Ming, Liang 551
Ming-zeng, Hu 172
Muñoz-Escóı, Francesc D. 131

Niu, Changyong 580

Pang, Zhengbin 141
Parhami, Behrooz 180
Peng, Dan 508
Peng, Hong 261

Qi, Li 330
Qing, Su 617
Qiu, Weigen 753

Ren, Yongqing 40

Schmidt, Bertil 151
Seo, Euiseong 590
Shen, Ruimin 580
Sheng, Sun 703
Sheng-xin, Weng 30
Shi, Haoshan 460
Shi, Zhicai 508
Song, Bin 518
Song, Tian 340
Song, Wei 282
Song, Yu-Kun 199
Su, Haowei 743
Su-Xia, Xu 658
Sun, Quanbao 441
Sun, Wei 460
Sun, Zhentao 271

Tan, Taizhe 703
Tao, Chen 713
Tao, Longming 508
Tao, Yongcai 330
TianZhou, Chen 233
Tiezheng, Nie 190

Wan, Jiancheng 640
Wang, Changshan 392
Wang, Dong 650
Wang, Dongsheng 340
Wang, Jian 580
Wang, Kaihou 352
Wang, Kun 392

Author Index 767

Wang, Lei 70
Wang, Li 40
Wang, Ling 518
Wang, Panfeng 18
Wang, Shaogang 141
Wang, Wenfeng 282
Wang, Xiaodong 487, 525
Wang, XiaoYing 100
Wang, Xingwei 450
Wang, Yaobin 40
Wang, Zhijun 423
Wang, Zhiying 70
Wei, Jia 261
Wei, Wenhong 414
Weihua, Sheng 233
Weimin, Wu 617
Wenmin, Wang 402
Wu, Dan 141
Wu, Libing 362
Wu, Minyou 477
Wu, Weiguo 301

Xia, Fei 90
Xiao, Liquan 441
Xiao, Ning 477
Xiao, Wenjun 180, 241, 271, 414
Xie, Dang-en 723
Xie, Guobo 80
Xiu-Fen, Fu 658
Xu, Dan 723
Xu, Guangbin 535
Xu, Ming 382
Xue, Yibo 340
Xuewei, Yang 713
Xuyang, Ding 402

Yang, Guang 251
Yang, Wenjing 18
Yang, Xiao 640
Yang, Xiaochuan 723
Yang, Xiaodong 141
Yang, Xuan 50
Yang, Xuejun 18
Yang, Zhiyi 4
Yanyan, Huang 666
Ye, Zhao 372

Yen, David W. 2
Yi, Li 30
Yin, Jian-wei 624
Yin, Jianping 487
Yin, Yong-Sheng 199
Ying, Huang 30
Yoo, Gi-Jong 608
Yu, Shu 743
Yu, Zhanwu 292
Yu, Zhiwen 4
Yu, Zhiyong 4
Yuan, Wei 545
Yuan, Zhimin 693
Yue, Kou 190

Zeng, Bi 545
Zeng, Wenying 282
Zeng, Yi 322
Zhan, Yinwei 703
Zhang, Baisheng 209, 222
Zhang, Dongliang 560
Zhang, Fan 4
Zhang, Gongxuan 518
Zhang, Jie 392
Zhang, Minxuan 441
Zhang, Shensheng 60
Zhang, Tuanqing 4
Zhang, Xizhe 60
Zhang, Yaoxue 535
Zhang, Zhen 241, 414
Zhang, Zhiguo 600, 693
Zhao, Yang 723
Zhao, Yuelong 282
Zhen, Xu 666
Zhen-zhou, Ji 172
Zheng, Di 161
Zheng, Sheng 292
Zhou, Haifang 18
Zhou, Jianqin 352
Zhou, Jie 372
Zhou, Jingli 251
Zhou, Peng 161
Zhou, Xingming 487, 525
Zhou, Yuezhi 535
Zhu, ZiYu 100

	Title Page
	Preface
	Organization
	Table of Contents
	Scalability for Petaflops systems
	Chip Multi-Threading and the SPARC Evolution
	The Multicore Programming Challenge
	Replication-Based Partial Dynamic Scheduling on Heterogeneous Network Processors
	Introduction
	Related Work
	RPDS Algorithm
	Problem Formalization
	Processing Model
	Algorithm Procedure

	Performance Evaluation
	Evaluation Metrics
	Simulation Tool
	Experimental Results

	Conclusions

	The Optimum Location of Delay Latches Between Dynamic Pipeline Stages
	Introduction
	Single Function Pipelines
	Methodology
	Algorithm
	Concluding Remarks

	A Novel Fault-Tolerant Parallel Algorithm
	Introduction
	Related Work
	FPAPR
	The Basic Idea of FPAPR
	Fault Processing in FPAPR

	Examples of FPAPR Implementation
	EP
	DT

	Performance Analysis of FPAPR
	Experiment Results
	EP
	DT

	Conclusions and Future Work

	The Design on SEU-Tolerant Information Processing System of the On-Board-Computer
	Introduction
	Architecture
	Design of Multi-level Fault-Tolerant System Architecture
	System-Level Design of SEU Mitigation
	The Module-Level Mitigation Design on SEU
	The Chip-Level Mitigation Design on SEU

	Analysis of the Reliability
	The Reliability of a Single Board
	The Reliability of the Dual System

	Conclusion
	References

	Balancing Thread Partition for Efficiently Exploiting Speculative Thread-Level Parallelism
	Introduction
	Speculative Thread-Level Parallel Execution Model
	Candidate Threads
	Speculative Execution Model for Loops
	Speculative Execution Model for Subroutines

	Analysis Method
	Basic Criterion for Selecting Threads
	Analysis Method for TLS Parallelism

	Experiment Analysis
	Experimental Environment and Tools
	Experiment Results

	Conclusions
	References

	Design and Implementation of a High-Speed Reconfigurable Modular Arithmetic Unit
	Introduction
	Design and Application of RMAU Unit
	Analysis of Modular Operation Based on Block Ciphers
	Hardware Architecture of RMAU
	Design Scheme of RMAU

	Analysis and Realization of 16-Bit Multiplier
	Analysis of Booth Algorithm
	Analysis of Leapfrog Wallace Tree

	Design of Adder Array Hardware Architecture
	Analysis of Adder Unit
	Hardware Architecture of Adder Array

	Analysis and Implementation of Module Modification Circuit
	Analysis and Comparison of Performance
	Performance Evaluation of RMAU
	Contrast with Other Designs

	Conclusion
	References

	Virtual Disk Monitor Based on Multi-core EFI
	Introduction
	Related Work
	Multi-core EFI Architecture
	EFI
	Multi-core EFI

	System Design
	Structure
	Program Model
	Mechanism

	Experiment
	Test Case 1
	Test Case 2

	Conclusion

	An Optimal Design Method for De-synchronous Circuit Based on Control Graph
	Introduction
	Related Work
	Design Step for De-synchronous Circuit
	The Model of De-synchronous Circuit
	Optimization of the Control Path
	Combining Control Signals of Latches
	The Performance Evaluation Function Based on Control Graph
	The Optimization Algorithm

	Experiment Result
	Conclusions

	Evaluating a Low-Power Dual-Core Architecture
	Introduction
	The Dataflow Coprocessor Architecture Review
	RISC Coprocessor
	The Experimental Comparison of the Two Coprocessors
	Conclusion

	Reducing Storage Requirements in Accelerating Algorithm of Global BioSequence Alignment on FPGA
	Introduction
	Needleman-Wunsch Algorithm Overview
	Storage Optimization Strategy
	Design and Implementation
	Experiments and Performance Comparison
	Reducing Local Memory Requirements
	Increasing PE Number
	Experimental Result

	Conclusion

	Multi-cluster Load Balancing Based on Process Migration
	Introduction
	Process Migration Techniques
	Deputy/Remote Mechanism
	Migration Procedure

	Multi-cluster Load Balancing Implementation
	Multi-cluster Architecture
	Information Collection
	Cross-Cluster Process Migration
	Load Balancing Strategy

	Performance Evaluation
	Conclusions and Future Work

	Property-Preserving Composition of Distributed System Components
	Introduction
	Augmented Marked Graphs
	Composition of Augmented Marked Graphs
	Application to Distributed Systems
	Conclusion
	References

	A Distributed Scheduling Algorithm in Central-Stage Buffered Multi-stage Switching Fabrics
	Introduction
	Related Work
	Buffer Setting
	Flow Control

	Scheduling Algorithm in Multi-stage Switching Fabrics
	Buffer Assignment
	Congestion Control
	Load Balance in Central-Stage
	Analysis of the Scheduling Algorithm

	Analysis of Simulation
	Traffic Model
	Performance Comparison Between Algorithms with Fix-Size Packets Under Different Traffic Models

	Conclusions and Future Work
	References

	Improving Recovery in Weak-Voting Data Replication
	Introduction
	System Model
	Basic Recovery Protocol
	Amnesia Support
	Compacting Recovery Information
	Simulation Results
	Related Work
	Conclusions

	Exploring Data Reusing of Failed Transaction
	Introduction
	Basic Idea
	Example Software Implementation
	The Hardware Approach
	Test Results and Analysis
	Total Transaction Throughput
	Potential of Data Reusing

	Conclusion and Future Work

	A Parallel BSP Algorithm for Irregular Dynamic Programming
	Introduction
	Irregular DP Algorithms
	The Bulk Synchronous Parallel (BSP) Model
	Parallel BSP Algorithm
	Performance Evaluation
	Conclusions and Future Work
	References

	Context-Aware Middleware Support for Component Based Applications in Pervasive Computing
	Introduction
	Architecture of the Context-Aware Middleware for Component-Based Pervasive Computing
	Component Based Middleware StarCCM
	Architecture of Component Based Context-Aware Middleware

	QoS-Aware Context Management
	Architecture of the Context Management Infrastructure
	Context Quality Measurements
	QoS-Aware Context Processing Procedure

	Policy Based Context-Aware Component Adaptations
	Conclusions
	References

	Design of High-Speed String Matching Based on Servos’ Array
	Introduction
	Algorithms for String Matching
	Servos' Array on FPGA
	Double Data Buffer
	Servos’ Array

	Experiments
	Modifications for Gigabit Ethernet
	Data Width
	Filter Level

	Summary
	References

	An Efficient Construction of Node Disjoint Paths in OTIS Networks
	Introduction
	Preliminaries
	Constructing Parallel Paths in OTIS Networks with Connected Basis Graphs
	Basis Idea
	Algorithm
	Performance Analysis

	Constructing Parallel Paths in OTIS Networks with Maximally Fault Tolerant Basis Graphs
	A Conventional Algorithm
	An Improved Algorithm

	An Example—Constructing Parallel Paths in OTIS-Hypercubes
	Conclusion
	References

	Pampoo: An Efficient Skip-Trie Based Query Processing Framework for P2P Systems
	Introduction
	Motivations and Challenges
	Contributions

	Skip-Trie Structure
	Backgrounds
	Skip-Trie: Two-Layered Data Structure

	Pampoo: A Skip-Trie Based Framework
	Skip-Trie Search Algorithm
	Skip-Trie Update
	Repair Strategy

	Experimental Evaluation
	Related Work
	Conclusion
	References

	On the Implementation of Virtual Array Using Configuration Plane
	Introduction
	MPRS Architecture
	Designing Virtual Array Using Configuration Plane
	Examples and Results
	Design and Programming Steps
	Matrix-Vector Multiplication
	Motion Estimation

	Conclusions
	References

	Analysis on Memory-Space-Memory Clos Packet Switching Network
	Introduction
	Terminology and Definitions
	Modeling of MSM Clos Networks
	Emulating an OQ Switch by MSM Clos Network
	Per-Input OQ Emulation (PIOE) by MSM Clos Network
	PVPP Cell Insertion Policy (CIP) of PIOE
	PVPP Cell Scheduling Policy (CSP) of PIOE
	Queueing Principle Analysis of PVPP-CIP and –CSP
	S^3 Matching Algorithmin PIOE

	Conclusions
	References

	Measurement of High-Speed IP Traffic Behavior Based on Routers
	Introduction
	Terminology and Definitions
	Measurement of IP Traffic Behavior
	Architecture of Universal Router
	Distributed Measurement Methodology by FPM
	A Novel Protocol-Sensitive Measurement Method

	Measurement Results
	Conclusions
	References

	The Design and Implementation of the DVS Based Dynamic Compiler for Power Reduction
	Introduction
	Design of the Dynamic Compiler for Power Reduction
	Application Model
	DVS Analysis Model
	Design and Implementation

	Evaluation and Experimental Results
	Conclusions
	References

	Optimal Routing Algorithm and Diameter in Hexagonal Torus Networks
	Introduction
	Knowledge of Cayley Graph
	Hexagonal Mesh and Torus
	Hexagonal Mesh
	Hexagonal Torus

	Optimal Routing Algorithm for Hexagonal Torus
	One of a or b is Zero
	$a>0$ and $b>0$
	$a<0$ and $b<0$
	$a>0$ and $b<0$
	$a<0$ and $b>0$

	Diameter of Hexagonal Torus
	Conclusion
	References

	Implementation and Performance Evaluation of an Adaptable Failure Detector in iSCSI
	Introduction
	Unreliable Failure Detectors
	Failure Detection Strategies
	The Push Strategy
	The Pull Strategy
	System Model

	Adaptation of the Delays
	Arrival Date Estimation
	Dynamic Adaptation of the Interrogation Delay

	Failure Detector Algorithm
	Algorithm
	Proof

	Performances
	Performance Evaluation
	Evaluating the QoS

	Conclusion

	A Niching Gene Expression Programming Algorithm Based on Parallel Model
	Introduction
	Related Works
	Niching Method
	Parallel Model

	Niching GEP Based on Parallel Model
	Niching Method
	Parallel Model in Niching GEP
	Niching GEP Based on Parallel Model

	Experiment and Results
	Setting the System
	Experimental Analysis

	Conclusion
	References

	ComNET: A P2P Community Network
	Introduction
	Related Research and Design Objectives
	Related Research
	Design Objectives

	The Definition of Static ComNET
	Terminology and Notation
	The Definition of Cayley Graph γ
	Some Properties of γ

	ComNET Protocols
	ComNET Basics
	Routing in ComNET

	Performance Evaluation
	Query Path Length
	Size of Routing Table
	Robustness

	Conclusion and Future Work

	Data Grid Model Based on Structured P2P Overlay Network
	Introduction
	Related Works
	Conceptual Model of Data Grid Based on Structured P2P Overlay Network
	PDG Overview
	Formal Description of PDG

	Realization of PDG
	Join and Leave
	Data Storage Service
	Other Issues

	Analysis of Location Performance
	Conclusions and Future Work
	References

	PeerTR: A Peer-to-Peer Terrain Roaming Architecture
	Introduction
	Architecture
	Architecture of PeerTR
	Interior Architecture of TRPeer

	Implementations
	Organization of Terrain Data
	Management of Partner List
	Operation of Buffer Map
	Scheduling of Terrain Block

	Results
	Test Bed
	Results and Analysis

	Conclusions
	References

	SDRD: A Novel Approach to Resource Discovery in Grid Environments
	Introduction
	Related Works
	Formal Description of SDRD
	Basic Model of Resource Discovery in Grids
	Match Value of SDRD
	Match Mechanism F of SDRD
	Organization of SDRD Overlay

	Key Technologies
	SuperNodes in SDRD
	Routing APIs
	SuperNode Multicast

	Analysis
	Routing Efficiency
	Apply to Other Models

	Experiments
	Evaluation of Routing Efficiency and Locating Guarantee in VO
	Evaluation of the Load on SuperNode
	Evaluation of Overall Routing Efficiency

	Conclusion
	References

	A Comparative Study of Two Java High Performance Environments for Implementing Parallel Iterative Methods
	Introduction
	Scientific Context and Motivations
	The MPJ Express and Jace V2 Environments
	MPJ Express
	Jace V2

	Experiments
	The Application: The Multisplitting Method
	Experiments Results

	Concluding Remarks and Future Work

	SIGRE – An Autonomic Spatial Information Grid Runtime Environment for Geo-computation
	Introduction
	Architecture
	The Autonomic Resource Distribution, Discovery and Matching
	The Autonomic Data Infrastructure Based on SIGRE
	Implementation, Test and Future Works
	References

	A Flexible Job Scheduling System for Heterogeneous Grids
	Introduction
	Related Work
	FISS Architecture
	FISS Implementation Techniques
	JSDL Parser
	Job Waiting Queue
	Scheduler
	Plug-in

	Performance Evaluation
	Experimental Environment Settings
	Experimental Results

	Conclusions and Future Work
	References

	n-Cube Model for Cluster Computing and Its Evaluation
	Introduction
	n-Cube Model for Cluster Computing
	Evaluation Using Stochastic Petri Nets
	SPN Construction
	Some Utility Formulas
	The State Space of Markov Chain

	Case Study
	Construction of 4CMCC and Its SPN
	Analysis and Results

	Conclusion and Future Work

	An Algorithm to Find Optimal Double-Loop Networks with Non-unit Steps
	Introduction
	Preliminary
	An Algorithm to Find nus Integers
	An Approach to Generate Infinite Families of nus Integers
	An Application Example

	Self-adaptive Adjustment on Bandwidth in Application-Layer Multicast
	Introduction
	Related Work
	Self-adaptive Adjustment on Bandwidth
	Bandwidth Rank and Out Degree
	Bandwidth Monitor
	Tree Adjustment Algorithm

	Evaluation
	Simulation Environment
	Performance Metrics
	Results and Analysis

	Conclusion and Future Work
	References

	Overlay Multicast Routing Algorithm with Delay and Delay Variation Constraints
	Introduction
	Network Model and Problem Definition
	CHAINS Concept
	FCHAINS Algorithm
	Conclusions
	References

	Selfish MAC Layer Misbehavior Detection Model for the IEEE 802.11-Based Wireless Mesh Networks
	Introduction
	Related Work
	Attack Detection Model in WMN
	System Model of Selfish Behavior in WMN
	Attack Model and Attack Detection Model

	DOUBLE-MODE Detection Model
	Attack Detection Algorithm in Double-mode Detection Model
	Simulation and Discussion
	Conclusion
	References

	rHALB: A New Load-Balanced Routing Algorithm for k-ary n-cube Networks
	Introduction
	Notations
	rHALB (r Hop Aware Load-Balanced) Routing Algorithm
	Link State Vector and Direction Weight Vector
	The rHALB Algorithm
	Deadlock Detection and Recovery

	Simulation Study
	Evaluation Methodology
	Simulation Results

	Conclusion
	References

	P2P File Sharing in Wireless Mesh Networks
	Introduction
	Related Works
	Venture Investment Based File Sharing Model
	Venture Investment Model
	Returns Quantitative Model of Unit Storage Resource

	Simulation
	Simulation Scenario
	Simulation Results

	Conclusion
	References

	General Biswapped Networks and Their Topological Properties*
	Introduction
	Definitions and Relations to Known Network Models
	Topological Properties and Routing Algorithm
	Halmiltonicity of GBSNs Built of Halmiltonian Basis Networks
	Conclusions
	References

	Design a Hierarchical Cache System for Effective Loss Recovery in Reliable Multicast
	Introduction
	Related Work
	Cooperative Cache Replacement Algorithm in Two-Level Hierarchical Cache Systems
	Optimal Cache Performance in Hierarchical Cache Systems
	Heuristic Cooperative Cache Replacement (CCR) Algorithm
	Implementation of Cooperative Cache Replacement Algorithm
	Performance Evaluation

	Conclusions

	A Novel Design of Hidden Web Crawler Using Reinforcement Learning Based Agents
	Introduction
	Related Work
	Architectural Framework
	Learner
	Learning Methodology

	Experimentation and Evaluation
	Conclusion and Future Direction
	References

	Look-Ahead Adaptive Routing on k-Ary n-Trees
	Introduction
	Preliminaries
	k-Ary n-Trees
	Routing Scheme

	Look-Ahead Adaptive Routing
	Grouping the Switches
	Conflict-Free Routing
	Look-Ahead

	Evaluation
	Simulation Model
	Simulation Results

	Conclusion
	References

	A Beehive Algorithm Based QoS Unicast Routing Scheme with ABC Supported
	Introduction
	Model Description
	Algorithm Description
	Performance Evaluation and Conclusion
	References

	An Effective Real-Time Rate Control Scheme for Video Codec
	Introduction
	Mode Decision and MAD Reuse
	A New MAD Computation Method

	Proposed Rate Control Scheme
	Dynamic GOP Length Control
	MB Layer Rate Control

	Fast Mode Decision
	Experimental Results
	Conclusion
	References

	An Anti-statistical Analysis LSB Steganography Incorporating Extended Cat-Mapping
	Introduction
	Proposed LSB Steganography
	Basic Principle of Proposed Algorithm
	 Embedding Process
	 Pre-processing of Watermark
	Embedding Procedure

	Extraction Process
	Experimental Results
	Robustness Against RS and SPA
	Degradation of PSNR

	Conclusion

	Geographic Probabilistic Routing Protocol for Wireless Mesh Network
	Introduction
	Related Works
	Motivation Example
	Geographic Probabilistic Routing Protocol
	Communication Condition Estimation
	Candidate Subset
	Probabilistic Forwarding
	Decreasing Duplicated Transmission

	Simulation and Evaluation
	Simulation Environment
	Results and Evaluations

	Conclusion
	References

	Towards a New Methodology for Estimating Available Bandwidth on Network Paths
	Introduction
	Related Work
	COPP Methodology
	Analysis of Packet-Pair
	Packet One-Way Delay Visiting
	The Packet-Pair Spacing Analysis
	Decision Rules

	Weighting Process
	Turning Point Visiting
	The Weighting Process
	Threshold Discussions

	Experiments
	Simulation Setup
	Experimental Results and Analysis

	Conclusions
	References

	Design and Realization of Multi-protocol Communication Model for Network Security Management System
	Introduction
	Design
	Design Goal
	Characteristics of Multi-protocol Communication Model
	Framework
	Secure Data Transmission Channel
	Agent Server Components

	Realization of the Model
	Realization of the Multi-protocol Transmission Channel
	Protocol Adapter

	Appraisal of the Multi-protocol Model
	Conclusion
	References

	Enhanced and Authenticated Deterministic Packet Marking for IP Traceback
	Introduction
	Related Work
	Enhanced and Authenticated Deterministic Packet Marking
	Observations of DPM
	Overview of PN-DPM
	Path Numbering
	Formal PN-DPM Description

	Discussions and Analysis
	Conclusion
	References

	A Designing Method for High-Rate Serial Communication
	Introduction
	MSP430F149 Architecture
	Hardware Design for High-Rate Serial Communication
	3V – 5V Voltage Level Conversion
	Crystal Frequency Selection

	Software Design for High-Rate Serial Communication
	Initialization of Serial Port Registers
	Serial-Port Data and Decoding of the Parity Bit

	Conclusion
	References

	A Comprehensive Efficient Flooding Algorithm Using Directional Antennas for Mobile Ad Hoc Networks
	Introduction
	Related Works
	Comprehensive Efficient Flooding Using Directional Antennas
	System Model
	Further Modified Optimized Forwarding Node Selection Algorithm
	Further Modified Topology Update Algorithm

	Performance Evaluation
	Conclusion and Future Work
	References

	GTCOM: A Network–Based Platform for Hosting On-Demand Desktop Computing
	Introduction
	Approach and Overview
	Detailed Design
	ENCBP: The Multi-OSs Remote-Booting Protocol of GTCOM
	The Block-Streaming-Supporting VDisk
	Virtual Memory and Swapping

	Implementation
	Evaluation
	Conclusion
	References

	Multi-robot Task Allocation Using Compound Emotion Algorithm
	Introduction
	Algorithms Analysis
	Existing Algorithms
	Compound Emotion Algorithm

	Simulated Results
	Conclusion
	References

	The Security Threats and Corresponding Measures to Distributed Storage Systems
	Introduction
	The Security Threats of Distributed Storage Systems and Corresponding Measures
	Elements of Storage Security and Security Threats of Storage Systems
	Corresponding Security Measures
	Methodology - The Seven Steps Process of Security

	Some Important Storage Security Issues
	Appropriate Security Model
	Comprehensive Security Measures
	High Performance Implementation

	Future Directions to Storage Security
	Hybrid Security Measures
	Intelligent and Self-organization Security
	The Standardization of Storage Security

	References

	Research on Dynamic Load Balancing Algorithms for Parallel Transportation Simulations
	Introduction
	Algorithms
	Load Balancing Algorithm Using Parallel Lines Partition
	Load Balancing Algorithm for Quadrilateral Grids Partition

	Experimental Result and Analysis
	Conclusion
	References

	Embedded System’s Performance Analysis with RTC and QT
	Introduction
	Real-Time Calculus (RTC) and Performance Analysis of Embedded System in Utmost State
	RTC
	Performance Analysis of Embedded System in Utmost State

	Queuing Theory and Performance Analysis of Embedded System in Steady State
	Basic Queuing Theory
	Embedded Multitasking Sequential Processing Model
	Embedded Multitasking Non-preemptive Model
	Embedded Multitasking Preemptive and Non-blocked Model
	Embedded Multitasking Non-preemptive and Blocked Model
	Embedded Multitasking Preemptive and Blocked Model

	Conclusions and Future Work
	References

	Scheduling Meetings in Distance Learning
	Introduction
	Related Work
	Problem Formulation
	Assumptions and Constraints
	Formulation

	Heuristic Algorithms
	Preferential-Student Algorithm (PSA)
	Preferential-Teacher Algorithm (PTA)
	Preferential-Knowledge Point Algorithm (PKPA)

	Performance Evaluation
	Conclusion

	Domain Level Page Sharing in Xen Virtual Machine Systems
	Introduction
	Back Ground
	Xen Architecture
	Page Sharing Among Guest Systems

	Page Sharing for Xen
	Design Overview
	Work Flow
	Data Structures

	Evaluation
	I/O Reduction and Page Sharing
	Analysis of Overhead

	Concept of Non-Swap Overcommitment
	Conclusion

	Parallel First-Order Dynamic Logic and Its Expressiveness and Axiomatization
	Introduction
	Syntax
	Semantics
	Expresiveness of PaFDL
	Axiomatization of PaFDL
	Conclusion and Discussion
	References

	Efficient Voice User Interface System Using VoiceXML and ASP.NET 2.0
	Introduction
	Background
	VoiceXML System
	ASP.NET 2.0

	Design and Implementation Using VoiceXML and ASP.NET 2.0
	System Architecture
	Algorithm of the Web Surfing System

	Simulations
	Conclusion and Future work
	References

	Array Modeling in Java Virtual Machine
	Introduction
	The Model of Extending BSM
	VMA Modeling
	Adding Array Instructions
	Type Compatibility of Array Type
	Array Loading

	Conclusion
	References

	Configuration Modeling Based Software Product Development
	Introduction
	The Configuration Model for Software Product Line
	Elementary Definition
	Elementary Conception
	Configuration Rule
	Configuration Model

	Configuration Problem Solving
	Problem Solving of Feature Configuration
	Problem Solving of Software Artifact Configuration

	Case Study
	Conclusion
	References

	Formal Semantic Meanings of Architecture-Centric Model Mapping
	Introduction
	Category Theory and Algebraic Specification
	Formal Semantic Meanings for Architecture Model
	Component Signature and Component Specification
	Component Relations and The Hierarchy Component Models
	Architecture Models and Mapping Functors

	A Case Study
	Related Work
	Conclusion and Future Work
	References

	Exploiting Thread-Level Parallelism of IrregularLDPC Decoder with Simultaneous Multi-threading Technique
	Introduction
	Description of Irregular LDPC Decoders Algorithm
	Multithreaded Implementation
	Hardware Experiment Platform
	Experiment Results
	Algorithm Verification
	Performance Analysis
	Cost

	Conclusion
	References

	P2P Distributed Cooperative Work Model Based on JXTA Platform
	Introduction
	CSCW Model and Existing Problems
	CSCW Model
	Existing Problems in CSCW Model

	JXTA Technology
	Simple Instruction About JXTA
	Key Conceptions in Developing p2p Distributed Application Using JXTA

	P2P Distributed CSCW Model Based on JXTA
	Model Feasibility and Characteristic Analysis

	Conclusions
	References

	EasyPAB: An Extensible IDE Framework for Parallel Applications
	Introduction
	Modeling and Programming Parallel Apps
	Architecture of EasyPAB
	Implementation
	Conclusion and Future Work

	The Implementation of Parallel Genetic Algorithm Based on MATLAB
	Introduction
	Matlab Distributed Computing Engine
	Realization of the Parallel GA
	Testing Examples and Performance Analysing
	Results and Discussion

	Composing Software Evolution Process Component*
	Introduction
	Evolution Process Component Model
	A Systematic Method for EPC Composition
	Sequence Composition
	Selection Composition
	Concurrence Composition

	Conclusions
	References

	Asynchronous Spiking Neural P System with Promoters
	Introduction
	Preliminary Definitions
	Asynchronous Spiking Neural P System with Promoter
	APSN P System as Number Generator
	APSN P System as Language Generator
	Conclusion
	References

	Fingerprint Classification Method Based on Analysis of Singularities and Geometric Framework
	Introduction
	Global Geometric Shape Extraction
	Fingerprint Pseudoridge Tracing
	Symmetrical Axis of the Core Estimation

	Fingerprint Classification Scheme
	Experimental Results and Conclusions
	References

	Study on Embedded Vehicle Dynamic Location Navigation Supported by Network and Route Availability Model
	Introduction
	Route Availability Model
	Mathematical Representation of Route Availability
	Availability Measurement Based on Probability Model.

	Dynamic Information Acquisition and Broadcast Based on Network
	Dynamic Information Network Flow
	Dynamic Information Acquisition Chain
	Real-Time Information Broadcasting.

	Dynamic Route Programming Supported by Network and Availability Metric
	Dynamic Route Programming Based on Availability
	Integrated Z-Algorithm

	Experiment and Analysis
	Conclusion
	References

	Convolution Filter Based Pencil Drawing and Its Implementation on GPU
	Introduction
	Image Based Pencil Drawing
	Generating the Pencil Filter
	Generating the Black Noise Image
	Extract the Contour Lines

	Implementation on GPU
	Convolution on GPU

	Stylization for Video Segment
	Experiment Result
	Conclusion
	References

	Improved LLE Algorithm for Motion Analysis*
	Introduction
	LLE Algorithm
	Similarity Measurement
	Euclidean Distance
	Hausdorff Distance
	SSP Distance

	Improved LLE Algorithm
	Aligning Input Data of LLE Algorithm
	Improved LLE Algorithm

	Motion Analysis Experiments and Results
	Comparison Between Improved and Original LLE Algorithm
	Visualization of Low-Dimensional LLE Representation

	Conclusions
	References

	Hybrid GA Based Online Support Vector Machine Model for Short-Term Traffic Flow Forecasting
	Introduction
	Hybrid GA Based Online Support Vector Machine
	Least Square Support Vector Machine
	Online SVM Learning Algorithm
	Hybrid GA

	Hybrid GA Based OSVM Model for Short-Term Traffic Flow Forecasting
	Model Validation and Comparison
	Conclusions
	References

	Composed Fuzzy Rough Set and Its Applications in Fuzzy RSAR
	Introduction
	Preliminaries
	Extensions of Pawlak Rough Set Model
	Attribute Reduction Based on Composed Fuzzy-Rough Set
	Conclusions
	References

	Author Index

