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Summary. Intelligent agent technology provides a promising basis to develop next
generation tools and methods to assist decision-making. This chapter elaborates on
the emergent requirements of decision support in light of recent advancements in
decision science and presents a conceptual framework that serves as an agent-based
architecture for decision-support. We argue that in most decision-making problems,
the nature of the problem changes as the situation unfolds. Initial parameters, as
well as scenarios can be irrelevant under emergent conditions. Relevant contingency
decision-making models need to be identified and instantiated to continue explo-
ration. In this paper, we suggest a multi-model framework that subsumes multiple
submodels that together constitute the behavior of a complex multi-phased decision-
making process. It has been argued that situation awareness is a critical component
of experience-based decision-making style. Perception, understanding, and anticipa-
tion mechanisms are discussed as three major subsystems in realizing the situation
awareness model.

8.1 Introduction

Decision science involves understanding cognitive decision processes, as well
as methods and tools that assist decision-making (Davis et al. 2005). Signifi-
cant amount of research has been conducted on decision theory and associated
processes. This chapter focuses on how intelligent agent technology can pro-
vide basis for a unified synthesis of deductive, practical, and experience-based
mechanisms to constitute a multi-level decision support system. In this con-
text, logical, practical, and experience-based decision-making are analogous
to rational choice model (von Neumeann and Morgenstern 1953), heuristics
and biases (Tversky and Kahneman 1974), and naturalistic decision-making
(Klein 1997).

Decision-making involves making tradeoffs among competing attributes or
goals, analyzing complex situations within constraints of time and resources,
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projecting into future state of the environment despite uncertainty, and
making judgments, even if they are heuristic (Zachary 1998). The evolution
of decision-making theory can be viewed as a steady withdrawal from the
rational choice model to bounded rationality, and most recently to natural-
istic decision-making (NDM) theory. While rational choice model (Parsons
and Wooldridge 2002) involves the maximization or optimization of the
expected utilities, bounded rationality emphasizes the constraints of time,
resources, and cognitive capacities. Bounded rationality worldview involves
the use of heuristics and biases (Tversky and Kahneman 1974) to capture
cognitive shortcuts used in decision-making. Naturalistic decision-making, on
the other hand, is based on the premise that humans assess situations by
using prior experience. Zsambok (1997) argues that situation assessment and
experience-based decision-making is more appropriate than option generation
under conditions that involve uncertain and dynamic environments, shifting or
competing goals, time stress, and ill-structured problems. Note that decision-
making styles can shift between analytic, heuristic, and experience-based
several times within a single problem (Hamm 1988). Furthermore, Hammond
(1986) demonstrates that task features, such as complexity of the task struc-
ture, ambiguity, and form of representation, determine the decision-making
style. More specifically,

1. In most realistic decision-making scenarios, the nature of the problem
changes as the situation unfolds. Initial parameters, as well as scenarios
can be irrelevant under emergent conditions.

2. Our knowledge about the decision problem being studied may not be cap-
tured by any single decision-making style. Instead, the available knowledge
is viewed as being contained in the collection of all possible decision-
making experiments that are plausible given what is known and what is
learned.

3. Dealing with uncertainty is paramount to making decisions within the
context of complex evolving phenomena. Dynamic adaptivity in decision-
making styles is necessary to deal with emergent conditions or evolving
decision-making process in a flexible manner.

Based on these observations and a recent recommendation (Davis et al. 2005),
the contributions of this chapter are two-fold.

1. An agent-supported multisimulation approach that aims to simultane-
ously analyze multiple alternative Course of Actions (COAs), and, if
necessary, update the scenario to deal with new phases of problem.

2. Delineation of the design considerations for the agent-based naturalistic
decision-making.

Intelligent agents are proven to be useful in decision-making, especially within
the context of game theory (Parsons and Wooldridge 2002) and mecha-
nism design (Wooldridge 2002). Designing mechanisms refers to developing
agent interaction protocols, called strategies, which satisfy desirable properties
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such as Pareto efficiency, stability, and social welfare maximization among a
collection of agents. Power (Power 2002) describes how model-based decision
support can be supported by simulation systems in general and agent-based
simulation systems in particular. Tolk (2004) enumerates a comprehensive list
of military decision-making functions for which agents can provide valuable
support.

Proper simulation-based decision support methodologies that are consis-
tent with the way experts use their experience to make decisions in field
settings could improve modeling for Course of Action (COA) analysis. Each
COA is simulated faster than real time, the results are collected, and COA
analysis can be performed. Additional requirements for simulation systems
when being used for this sort of analysis are summarized in (Tolk and
Kunde 2003). Exploring the effectiveness of alternative COAs at the tactical
and operational levels requires dynamic updating, branching, and simulta-
neous execution of simulations, potentially at different levels of resolution.
We propose a strategy in integrating human-centered decision-making with
multisimulation-based COA analysis. Three modes are identified:

1. Human-in-the-loop with naturalistic decision-making approach,
2. Agent-augmented naturalistic decision-making,
3. Agent-based naturalistic decision-making.

The first mode involves an operator that interacts with the simulation to
choose alternative COAs based on situational awareness gathered from the
results obtained during the simulation. The second mode aims to augment
the decision-making process of the operator with intelligent agents that carry
out routine tasks that pertain experience the situation in a changing context,
reasoning about and diagnosing the situation to make recommendations for
plausible COAs. In the third mode, intelligent agents replace the operator,
and they perform the perception, understanding, and anticipation functions
to model the situation awareness capabilities of the operator.

In many situations simulation specialists build a simulation and then con-
duct the special study and report their results to management. Evan and
Olson (2002) discuss examples of how simulation has been used to support
business and engineering decision-making. Their examples are prototypical for
our findings: simulation systems without agents designed for reliable decision
support are not universal tools, but special — and often expensive — means
of operations research. The methods and technology described in this chap-
ter help to make simulation systems flexible and reliable enough to become
decision support systems.

The rest of the chapter is structured as follows. Section 8.2 presents
the major decision-making styles, the decision-making process, and intelli-
gent agents. Section 8.3 enumerates a set of requirements for next generation
for intelligent simulation-based decision support systems based on the nature
and types of emergent problems in various application domains. Section 8.4
introduces the macro-architecture for the proposed decision-support system.
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We show how alternative decision styles can be supported within a multi-
level view of the decision-making problem. Section 8.5 focuses on the design
of situation-aware agents that are capable of augmenting humans to make
experience-based decisions. It also presents selected research domains for the
next generation of such systems. Section 8.6 presents a case study to substan-
tiate the utility of the presented decision support approach. Finally, Sect. 8.7
concludes by discussing potential avenues of research and application.

8.2 Decision Science and Intelligent Agents

For our approach, we view decision-making as a cognitive reasoning process.
The first subsection presents the characteristics of major decision-making
styles. The second subsection overviews the process and its phases. The last
subsection characterizes the role that intelligent agents can play to support
each phase of the process (Fig. 8.1).

8.2.1 Decision-making Styles

Decision-making is viewed as a process that entails two distinct activities.
The first one is to decide what state of affairs is desired and second how this
state will be achieved. In modern decision science, there are mainly three
decision-making styles.

e Rational Choice Model (RCM): This model of decision-making
emerged in such diverse fields as economics, political science, management
science, and operation research.

Decision making style

Rational Choice Model RCM is not an
(RCM) is an acceptable standard acceptable and
accurate standard

\ I
RCM is an accurate descriptor RCM is not an
‘ accurate descriptor

Naturalistic Decision Making
I Classical Paradigm I (NDM) Model

Bounded Rationality Model
(Heuristics and Biases)

Fig. 8.1. Decision-making styles
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von Neumeann and Morgenstern (1953) introduced the idea that
rational choice should maximize expected subjective utility. From the per-
spective of game theory, this classic approach to decision analysis can be
viewed as an analytical approach that optimizes the outcome of a deci-
sion. Building on the rationality principle, game theory has been applied
to various problems (Geyer and van der Zouven 1998, Shubik 1964).
However, evidence exists that classical game theory fails in cases where
opponents have different value systems (Knight et al. 1991). Different types
of game theories (e.g., sequential games, repeated games (Banks and Sun-
daram 1990, Leimar 1997)), differential games, evolutionary games, and
hyper-games (Fraser and Hipel 1984), have been applied in the context
of RCM.
Bounded Rationality (BR): In making decisions, humans operate
within a complex and often changing environment with limited cogni-
tive capabilities, time, and other resources. Hence, decision-making is only
rational within the bounds imposed on decision makers (Simon 1982).

Tversky and Kahneman (1974) identified a number of heuristics and
biases that humans use to make decisions. These studies aim to bring
classical and analytic decision theorists into conformity with findings in
cognitive psychology. The premise of bounded rationally is based on the
observation that heuristics (Davis et al.2005) often yield cost-effective com-
pared to classical methods in terms of time and mental effort. Furthermore,
changes in the environment will cause the judgment to be obsolete.
Naturalistic Decision-making (NDM): The empirical work of Gary
Klein (1997) on expert behavior in high-pressure environments resulted in
a new school of thought in decision-making. The NDM paradigm argues
that people assess situations by using prior experience and knowledge.

Furthermore, unlike RCM and BR decision-making styles, in NDM sit-
uation assessment is considered to be more important compared to option
generation. Hence, the approach is to perform pattern matching to match
observed problem facets to the mental model of the problem formed by the
decision maker. Sokolowski (Sokolowski 2003) discusses the application of
NDM for agent supported decision-making.

8.2.2 Intelligent Agents

In the context of this chapter, we use the definition of Ferber (1999), who
defines software agents as entities that are capable of acting in purely software
and/or mixed hardware/software environments

1.

AN S

can communicate directly with other agents,

are driven by a set of goals, objectives and tendencies,

possess skills to offer services,

perceive its environment, and

can generate autonomous behavior that tends toward satisfying its objec-
tives.
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An overview of additional views is documented in Murch and Johnson (1998).
Furthermore, we assume that the environment will be

— not-accessible (versus accessible),
— stochastic (versus deterministic),
— dynamic (versus static),

— sequential (versus episodic),

— and continuous (versus discrete)

to represent the environments specifies in the last section for realistic decision-
making problems.

In this context, we understand agents as autonomous software modules
with perception and social ability to perform goal-directed knowledge process-
ing over time, on behalf of humans or other agents in software and physical
environments. When agents operate in physical environments, they can be
used in the implementation of intelligent machines and intelligent systems
and can interact with their environment by sensors and effectors. The core
knowledge processing abilities of agents include: reasoning, motivation, plan-
ning, and decision-making. The factors that may affect decision-making of
agents, such as personality, emotions, and cultural backgrounds can also be
embedded within agents. Additional abilities of agents are needed to increase
their intelligence and trustworthiness. Abilities to make agents intelligent
include anticipation (pro-activeness), understanding, learning, and commu-
nication in natural and body language. In this chapter, we advocate the use
of (1) practical situation-aware agents that diagnose the situation via percep-
tion, understanding, and anticipation capabilities and (2) agents that facilitate
simulation-based analysis of alternative COAs.

8.3 Requirements for Developing Computational
Frameworks for Decision Support

Advances in decision science and the nature of problems being tackled impose
new requirements on next generation decision-support systems.

8.3.1 Decision Styles and Problem Domain Characteristics

The nature of the decision style further imposes constraints on the decision-
making models within a multi-model. Table 8.1 depicts the three main
decision styles discussed in the earlier section along with the problem domain
characteristics they target.

For instance, the RCM style provides an acceptable and accurate frame-
work for problems in which actors, their preferences, utilities for actions, and
the outcomes are well-defined. The problem is expected to be stable, and
the number of options and players are small. Furthermore, the cognitive lim-
itations of the decision maker and the lack of resources are not considered
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Table 8.1. Features of decision-making styles

Problem Domain
Characteristics

1- Well-defined problems
2- Low uncertainty

3- Stable environment

4- Small number of players
and options

5- Time is not a
parameter /factor

1- Resource limitations
(cognitive, computational
etc.)

2- Time stress is a factor
3- Medium level certainty
4- Incomplete information
about the environment

1- Ill-structured problems
2- Uncertain, dynamic
environments

3- Shifting, ill-defined,
competing goals

4- Action/feedback loops
5- Time stress and high
stakes

6- Multiple players

7- Organizational goals and
norms are factors (Zsambok
1997)

Tool Design Features

a- High-level design
templates for various
recurring problems

b- Graphical interfaces for
specifying utilities, actors,
preferences, and outcomes

a- Models that encode
heuristics and biases such as
availability,
representativeness, and
anchoring and adjustment
heuristics [1]

a- Perceiving situations in an
environment

b- Matching perceptions
against learned experiences
c- Understanding the overall
situation via comprehension
mechanisms

d- Exploring possible
outcomes by emulating
mental simulation

d- Anticipating future
state(s) of the environment
before making a decision

to inhibiting factors in decision-making. Having decision-making tools that
enable formal specification of the structure of decision-making problem is
feasible under these conditions.

Therefore, interactive tools that provide graphical facilities to capture
options, preferences, utilities etc. can be useful. On the other hand, NDM
decision-making style is introduced for problem domains that are ill-defined.
The level of uncertainty in the environment leads to shifting and possibly
competing goals. The characteristics of the domain are common in decision-
making environments where there is a time stress, high stakes, and continuous
action/feedback loops.

To support experts in making decisions in such environments, a decision-
support system needs to provide facilities to augment pattern matching for
situation recognition, understanding of the overall situation from the perceived
disconnected elements, and make projection to potential future states. The
projection phase simply involves tool support for mental simulation of the
plausible actions.
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8.3.2 Multisimulation in Support of Naturalistic Decision-making

Many real-world decision-making phenomena can not be modeled by one
single model; rather, they require the use of a set of complementary decision-
making models representing multiple perspectives that are able to describe
the whole process possibly at different resolutions and phases when applied
orchestrated (Bigelow and Davis 2003, Oren (1987, 1991, 2001), Zeigler et al.
2000, Yilmaz and Oren 2004). We distinguish contribution of multimodels and
multisimulation that are dealt with in the following in more detail.

Multimodels

Models are purposeful abstractions of reality. Complex challenges require the
use of several different views — or abstractions — to cover the full spectrum.
This motivates the use of multimodels. While one big model is feasible, it is
likely that this model would be as complicated as the real problem and the
modeling would not result in any advantage. Several smaller models combined
with each other overcome both shortcomings. Basic definitions and brief expla-
nations of the envisioned multimodel types — as they are shown in Table 8.2 —
follow here:

A multimodel is a modular model that subsumes multiple submodels that
together constitute the behavior of a complex multi-phased decision-making
process. A multimodel encapsulates several aspects of reality (i.e., submodels)
in one model. For instance, conflict resolution problems discussed in (Yilmaz
et al. 2006) emphasized the importance of dropping the notion of decision-
making using a single conflict management procedure for the management and
resolution of complex conflicts. Tolk (2004) discusses similar issues for agent
mediated decision support in the military domain. The discussion on the use
of multi-aspect, multi-stage, multi-resolution multimodels implies a certain
type of conflict dynamics; that is, a set of stages in the process associated
with proper conflict management procedures for each stage.

Note however, that as a situation unfolds, the parameters of the deci-
sion and payoff matrices, the state space of the problem, the attitudes, and
preferences may change. Therefore, the time path of a decision-making pro-
cess should map onto a time path of decision-making styles embedded within
the models. Critical questions that need to be answered include the issues
pertaining to the mechanism by which decision-making styles are selected,
when and how shifts occur in updating multimodels, and to whom the judg-
ment to determine the shift should be given. In single aspect models only one
aspect of reality can exist at a given time (to be represented by an appropri-
ate submodel) and transitions can occur from one submodel to another one
under monitored conditions. Special cases of multimodel formalism are the
metamorphic model and the evolutionary model.

A metamorphic model has a fixed number of submodels with a predeter-
mined transition order between the submodels. The transition conditions can
include the processes of the metamorphosis.
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An evolutionary model can have several submodels. The number of sub-
models at the beginning may be fixed or unknown. Subsequent submodels
are variant models of their predecessors. The transitions from a submodel
to another one can be achieved as rule-based, pattern-directed, or goal-
directed activities. Evolution, being an irreversible change in an open system,
is important in the study of decision-making. Mutations, pathological or not,
—including social mutations— can be modeled as evolutionary models.

A multi-aspect model consists of several submodels where two or more
submodels can be active at a given time. Since each submodel can represent an
aspect of reality, several aspects —even contradictory ones— can be represented
at the same time. The multi-aspect modeling methodology appears to be
very promising to encapsulate several aspects of phenomena and their mutual
influences. In a multi-aspect model, submodel(s) inactive at a given time are
latent or dormant submodels. In decision-making, for instance, anticipatory
study of the effects of latent submodels may deter later catastrophes.

A multistage model is a set of variable number of submodels that can
be used to represent reality at different emerging stages of a system. In con-
ventional decision-making studies, one model is used for the duration of the
lifespan of a system. However, in social systems, the fluidity of the situation
may necessitate exploring with more than one model at every emerging stage
of the analysis.

As shown in Table 8.2, there are various design decisions in multimodel
design. Alternative names are given in parentheses.

Based on the completeness of submodels, there are two cases: (1) one can
either know all the submodels at the beginning i.e., at modeling stage, or (2)
there can be emergent conditions where the need for additional submodels.

Based on the number of active submodels, one needs to consider two cases:
(1) only one submodel is active at a given time or (2) two or more submod-
els are active at a given time. Simultaneous existence of two or more model
components would facilitate simulation of multiple aspects of the phenomena
under study.

Based on the location of information necessary for the activation of sub-
models there are two cases: the necessary information can be (1) within the
submodels or (2) it can be external to submodels.

The transitions between submodels can be goal-directed (goal directing the
submodel transition rule and goal-directed submodel transition mechanism
should be specified) or pattern-directed. Natures of information necessary for
the activation of submodel(s) entail the selection conditions of a submodel.

Pattern-directed activation entails a meta-pattern to guide (1) selection
of known submodels and (2) request of new submodels corresponding to
an interruption of the decision-making process using a human-in-the-loop
mechanism.
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Multisimulation

We define multisimulation as a simulation of several aspects of reality in a
study. It includes simulation with multimodels, simulation with multi-aspect
models, and simulation with multistage models. Simulation with multimodels
allows computational experimentation with several aspects of reality; however,
each aspect and the transition from one aspect to another one are consid-
ered separately. (In special cases, multimodels can be metamorphic models or
evolutionary models). Simulation with multi-aspect models (or multi-aspect
simulation) allows computational experimentation with more than one aspect
of reality simultaneously. This type of multisimulation is a novel way to
perceive and experiment with several aspects of reality as well as exploring
conditions affecting transitions. While exploring the transitions, one can also
analyze the effects of encouraging and hindering transition conditions. Sim-
ulation with multistage models allows branching of a simulation study into
several simulation studies; each branch allowing to experiment with a new
model under similar or novel scenarios.

In our approach, there can be multiple strategy components that are
qualified at the time of decision-making. Each different strategy component
characterizes a distinct aspect. Multisimulation can be used to branch out
multiple simulations, where each simulation uses a specific component con-
figured with an exclusively selected strategy component. Similarly, multiple
distinct stages of the problem can be qualified at a given point in time during
the simulation by virtue of the evaluation of an updating constraint. In such a
case multisimulation enables branching multiple distinct simulations each one
which generates the behavior of distinct plausible stage within the problem
domain.

Multisimulation with multimodels, multi-aspect models or multistage mod-
els needs mechanisms to decide when and under what conditions to replace
existing models with a successor or alternative.

Staging considers branching to other simulation studies in response to a
scenario or a phase change during experimentation. Graphs of model fami-
lies facilitate derivation of feasible sequence of models that can be invoked or
staged. More specifically, a graph of model families is used to specify alterna-
tive staging decisions. Each node in the graph depicts a model, whereas edges
denote transition or switching from one model to another. Figure 8.2 depicts
the components of the abstract architecture of a possible multisimulation
engine.

A meta-simulator is a scheduler that generates staged composition of mod-
els by traversing the model stage graph and coordinates their simulation and
staging within distinct simulation frames. Each frame simulates a distinct sub-
set of models derived from the model stage graph. Note however, that not all
staged compositions are feasible or useful. Hence, the meta-simulator needs
to consult with the model recommender before model staging to determine if
emergent trigger or transition condition in the simulation is consistent with
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Fig. 8.2. Abstract components of the multisimulation engine

the precondition of the model to be staged. More than one model in a family
can qualify for staging; in such cases separate simulation frames need to be
instantiated to accommodate and explore plausible scenarios. Given a collec-
tion of models (or more generally, a family of models), a stage graph can be
generated automatically by an optimistic approach that connects every avail-
able node (model) to every other node within the domain of problem. The
edges in a model stage graph denote plausible transitions between models as
the problem shifts from one stage to another. One can consider each model
as a separate conflict management protocol (i.e., compromise over actions,
compromise over outcomes, negotiation, and mediation) or a phase in the
conflict process (i.e., escalation, resolution), where a phase (i.e., resolution)
can constitute alternative models (i.e., mediation, negotiation, third-party
intervention).

The subsets of staged models can be identified by traversing and enumer-
ating the graph in some order (i.e., depth-first). Infeasible paths may be due
to an unreachable node, or it may result due to conflicts between the transi-
tion condition and precondition of the target model. Infeasible paths due to
incompatible sequences of models are common. Each edge (say from n; to n;)
indicates that there is some legitimate solution that includes n; followed by
n;; yet, it does not imply that every solution containing n; followed by n;
is legitimate. As argued above, each model in a family of models is associ-
ated with a precondition. A precondition denotes the conditions required for
a model to be instantiated. Hence, the feasibility of staging a successor model
depends on the satisfiability of its precondition (relevance) by the condition
of the transition and the post-condition of the predecessor model. As a result,
not all enumerated staged sequences of model components are feasible.
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Model recommendation in multisimulation can simply be considered as
the exploration of the model staging space that can be computed by a reach-
ability analysis of the graph. There are two modes for the usage: (1) offline
enumeration of paths using the graph and performing a staged simulation of
each model in sequence one after the other, unless a model staging operation
becomes infeasible due to conflict between the transition condition and the
precondition of the successor model and (2) run-time generation of poten-
tial feasible paths as the simulation unfolds. In both cases, an online model
recommender plays a key role to qualify a successor model. The first case
requires derivation of sequence of models using a traversal algorithm. The
edges relate families of models. Therefore, the actual concrete models, the
preconditions of which satisfy the transition condition need to be qualified,
since transition to some of these model components may be infeasible due to
conflict between a candidate model and inferred situation. Identifying such
infeasible sequences is computationally intractable; otherwise, it would have
been possible to determine if the conjunction of two predicates is a tautology
by using a polynomial time algorithm.

Experience in the component-based simulation paradigm, however, indi-
cates that for most model components preconditions are simple. Hence, it is
possible to eliminate some models that violate the transition condition. For the
remaining possible transitions it is possible to select one of the three strategies:
(1) omit all difficult qualification conditions, (2) decide on an edge-by-edge
basis which specific models of a model family to include, and (3) include all dif-
ficult edges. Omitting all difficult associations between transitions and model
preconditions is conservative. This strategy excludes all infeasible models. The
cost is the exclusion of some feasible edges. Hand-selecting those associations
between transition conditions and models facilitate inclusion of feasible mod-
els. Nonetheless, the costs involved with this level of accuracy are the potential
human-error and effort needed to filter out infeasible models. Choosing to
include all difficult associations is liberal, in that it ensures inclusion of all
feasible models. The cost is the inclusion of some infeasible models, hence the
inclusion of some undesirable staged compositions that enforce models to be
simulated even when their qualification conditions are violated. Nevertheless,
it is possible to screen out such models using an online model recommender.

The second more ambitious yet flexible approach is to delay the enumer-
ation process until a model is qualified at run-time. Runtime generation of
feasible staging using the graph of model families requires monitoring and
evaluation of transition conditions as the simulation unfolds. A planning layer
connected to simulator would be capable of identifying, qualifying, and, if nec-
essary, selecting and instantiating a model based on the specified preferences
and options. Furthermore, in the case of an impasse or lack of knowledge
on preferences among qualifying model switch strategies, a planning layer
can guide exploring alternative contexts (games) in some order. The meta-
scheduler follows the recommendations made by the planner to instantiate
distinct simulation frames.
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Candidate models and associated simulations are maintained by focus
points. A focus point manages branch points in the simulation frame stack.
Suppose that a goal instance (i.e., stage transition condition) is at the top of
the stack. If only a single model qualifies for exploration, then it is pushed
onto the stack. Yet, if more than one model matches the condition, a simula-
tion focus point is generated to manage newly created simulation branching
(discontinuity) points. Each one of these simulation focus points has his own
context. When a path is exhausted, the closest focus point selects the next
available model to instantiate the simulation frame or return to the context
that generated the focus point. As simulation games are explored, a network
of focus points is generated. Determining which focus point should be active
at any given time is the responsibility of the meta-scheduler. When more than
one model is qualified, then scheduler needs to decide which one to instanti-
ate. Control rules can inform its decision. Three steps involve in deploying a
new simulation frame in such cases: matching, activation, and preference. The
matching step should both syntactically and semantically satisfy the request.
The activation step involves running a dynamic set of rules that further test
the applicability of models with respect to contextual constraints. Finally, the
preference steps involve running a different set of rules to impose an activation
ordering among the active frames.

8.4 Agent-Based Intelligent Decision Support —
A Unifying Framework

We present a unified exploratory multisimulation technology, which suggests
a simulation world-view shift. After evaluating general observations, we will
focus on aspects of situation awareness and experience-based reasoning.

8.4.1 Architectural Constraints for a Unifying Framework

Experimentation with exploratory multisimulation contrasts sharply with
establishing a base-case model and scenario to perform sensitivity and factor
analysis, where the user is interested in understanding the variance of pre-
dictions under priory selected configurations. Exploration involves performing
computational experiments under uncertainty to gain intuition about possible
outcomes, if decisions on using certain models based on emergent conditions
are true. The premise of exploratory multisimulation is based on the view that
the results of a simulation are not viewed as a prediction of what we would
expect to occur, but rather the results of a computational experiment. By
making recommendations for staging and branching to alternative models as
well as scenarios, dynamic simulation update mechanisms enable exploratory
multisimulation.

As exploration is based on a number of such recommendations, our knowl-
edge about the problem being studied cannot be captured by any single model,
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scenario, or experiment. Instead, the domain knowledge needs to be viewed
as being contained in the collection of possible modeling experiments and
ensemble of models that are plausible given what is known or learned during
the simulation experiment. Multisimulation subsumes multi-resolution sim-
ulation, where entities are capable of simultaneously operating at different
levels, while maintaining consistency at each level of abstraction.
Embedding such a decision-centered simulation methodology into opera-
tional systems is a significant challenge. Operational necessity and integration
concepts are discussed have been discussed among others by Daly and Tolk
(2003). In decision-making situations, operators should be able to identify
and investigate the impact of COAs to evaluate the effectiveness of decisions.
To this end, a decision support system based on exploratory multisimulation
technology that will operate within the framework of NDM. NDM is emerging
as a field of research, providing a descriptive view of how people behave in
dynamic, uncertain, and often fast-paced environments. This model focuses
on experienced agents, working in complex, uncertain conditions, who face
personal consequences for their actions. Figure 8.3 depicts the organizational
layout of the components that constitute the solution. In the following sec-
tions we will clearly identify the technologies, (basic, applied research, or

Operational .
operator
C4l system P G
action(s), C4l Data,
message(s) App. Logic,
i Visualization,
Environment —zzor »{ Communication
the battiefield : : Evaluator
results
expectancies,
references,
percepls, ible COAS
goals)
cues
Support {08,
Module
COAs
Clontrol: start, pause, mode!l update,
simulation branch, backtrack ete.

Multisimulation-based Naturalistic
Decision Support System

Fig. 8.3. Architecture of the decision-support system
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exploratory development) forming the proposed solution. The premise of the
approach is that decision makers (i.e., operators) need tools to augment their
decision-making process. Such a decision support tool, however, needs to be
consistent with how experts use their experience to make decisions in opera-
tional settings. To this end, we choose an NDM framework, which provides a
descriptive view of how people behave in dynamic, uncertain, and often fast
paced environments. NDM focuses on experienced agents, working in com-
plex, uncertain conditions, who face personal consequences for their actions
(Zsambok 1997). Development and insertion of this technology into opera-
tional systems forms the basis of the technical objective. The novel aspects of
the approach are based on the following technologies.

e Exploratory multisimulation that realize the mental simulation component
of Recognition-Primed Decision (RPD). Dynamic model and simulation
updating is a novel strategy that enable evaluating multiple COAs via
simulation branching.

e A computational model for situation-aware RPD, which is a special case
of NDM, and

e Agent-supported COA generation based on practical agent reasoning
technology.

The operational C4I system shown in Fig. 8.3 embodies a multisimulation-
based decision support subsystem that aims to evaluate various COAs on
behalf of the operator. The operator interprets the situation in consultation
with the computational RPD model to generate valid and accurate percepts
based on his experience. RPD component provides a computational mecha-
nism for situation recognition and pattern recognition. The output of the RPD
Making (RPDM) module is a set of goals, expectancies, and clues. This output
is evaluated by the operator to generate a set of preferences and/or action(s)
to be carried out by the simulation component of the decision support sys-
tem. The preferences and actions are used by the COA generator component
that deploys an agent—based planning algorithm to generate a set of plans.
These plans are then simulated by the exploratory multisimulation engine.
The simulation results are then evaluated interactively by the operator using
the COA filter that uses the provided performance metrics.

8.4.2 Situation Awareness and Experience-based Reasoning

The decision support system is designed to support three modes of operation —
operator-driven, agent-augmented, and agent-supported multisimulation.

Mode 1: Operator-driven Multisimulation

The first mode is the operator acting on his/her own interpretation of the
situation to devise COAs. The strategy is as follows:
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Perceive and understand the situation

Anticipate/project future status

Decide on plausible COAs

Update the simulation model to predict outcomes under alternative COAs.

ANl .

The first three steps in the above strategy refer to diagnosis of the situa-
tion. The diagnosis activity is initiated in response to uncertainty about the
nature of the situation. The life cycle for experience-based decision-making
of the operator involves three main stages as shown in Fig. 8.4: the recogni-
tion, revision, and exploration phases. The architecture embodies an extended
version of the RPD model (Klein 1997). The model, which is based on Recog-
nition Primed Decision Model, is an example of NDM, and it attempts to
emulate what people actually do under conditions of time pressure, ambigu-
ous information, and changing conditions. According the architecture, the
sensory input is processed by the experience the situation component to per-
ceive the elements of the situation. If the situation is prototypical, the NDM
submodel instantiates a skeleton mental model, from which expectancies and
goals can be derived. Simple if-then rules can be used to derive plausible
actions based on goal-action pairs. These goal-action pairs are based on prior
experience, and they are encoded within the mental model. If the observed
situation and perceived inputs are not categorized to be prototypical, then
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a diagnosis (i.e., pattern matching) procedure that synthesizes the features
of the percepts to causal factors is enacted to facilitate comprehending the
situation until a prototypical or analog case is identified.

The exploration phase of the life cycle requires evaluating the selected
action. Humans often perform mental simulation of the possible outcomes if
and when the decision is implemented. In our system, the evaluation is per-
formed via multisimulation. If the action is found to be irrelevant to the goal
as a result of the projection or mental simulation, the mental model is further
revised to either update the goal or identify a different action. The challenge
in this mode is in providing a front-end interface to multisimulation to pause,
update, reconfigure, and restart the simulation with the new parameters, mod-
els, and even scenarios. In this mode, the operator will browse through the
available COA in the library or query based on the perceived situation. The
recognition and revision phases are manual, whereas evaluation is supported
by multisimulation. However, the update operations over the multisimulation
are still manual.

Mode 2: Agent-Augmented Multisimulation

In this mode, the operator is active in perceiving the situation, under-
standing it, and projecting the status for decision-making. However, unlike
the operator-centered mode, intelligent agents are responsible for dynami-
cally updating the model. Our design strategy for enabling this operation is
based on an ontology-driven approach that provides introspective access to
dynamic object patterns. More specifically, the multisimulation provides the
facilities that

1. establish a self-representation of the system using dynamic object pattern

ontologies,

offer means by which this representation can be updated, and

3. assure that the manipulations to the self-representation influence the
behavior of the system.

o

In effect, the system’s self-representation is connected to the behavior of the
actual application. Hence, the structure of an application is divided into
two components: (1) system level and (2) meta-system level. The system
level includes the stable components of the model, application level software
objects, and the structural and behavioral dependencies between the compo-
nents it includes. The meta-system level includes components that are subject
to change, and the ontology is based on the dynamic object pattern. The
meta-system level provides an interface to facilitate configuring or updating
the ontology that subsequently drive the simulation. The meta-system level
provides three categories of functions:

e Reflection: System level can access information about the system via
facilitator agents associated with the system. This information can then
be used to guide the behavior of the system.
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e Introspection: System level can access and update the parameters of
existing meta-simulation entities. This enables seamless and transparent
update of the behavior of the system, since the behavior is influenced by
the meta-system entities.

e Intercession: System level can change, exchange, insert, or remove meta-
system entities and their connections to the system level. This feature
enables dynamically including or inserting new components into the appli-
cation at run-time

Mode 3: Agent-Supported Multisimulation

This mode of the decision support system involves the exclusive use of agents,
and there is no operator in the loop. That is, the recognition, revision, and
exploration components of the decision-making lifecycle are supported by
intelligent agents. This mode requires further research on developing means
to facilitate situational awareness for implementing the recognition and revi-
sion components of the decision-making life cycle. The recognition, revision,
and exploration phases of the situation awareness layer, shown in Fig. 8.3,
suggest three main functional areas that revolve around a mental model of
the problem domain. More specifically, a well-defined mental model provides

1. knowledge about the concepts, attributes, associations, and constraints
that pertain to the application domain,

2. a mechanism that facilitates integration of domain elements to form an
understanding of the situation, and

3. a mechanism to project to a future state of the environment given the
current state, selected action, and the knowledge about the dynamics of
the environment.

Endsley (1995) defines situation awareness as the perception of elements in
a particular environment within time and space, the comprehension of their
meaning and the projection of their status in the near future.

8.5 Considerations for the Design of the Situation
Awareness Subsystem

Situation awareness, as depicted here, provides a set of mechanisms that
enable attention to cues in the environment, expectancies regarding future
states. In realistic settings, establishing an ongoing awareness and understand-
ing of important situation components pose the major task of the decision
maker. Therefore, situation awareness is the primary is basis of the decision-
making process in experience-based decision-making process (i.e., NDM).
Situation awareness, the mechanisms of which are shown in Fig. 8.5, is an
important cognitive skill that is essential for expert performance in any field
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involving complexity, dynamism, uncertainty, and risk. The percepts are the
interfaces to the environment; through them, the environment is perceived.
The failure to perceive a situation correctly may lead to faulty understanding.
Ultimately, this misunderstanding may degrade an individual’s ability to pre-
dict future states and engage in effective decision-making (Gaba and Howard
1995). It is therefore an essential part of the NDM.

8.5.1 Perception

The way we perceive reality affects our feelings, decisions, and actions. Since
Plato’s allegory of the cave explained in Book 7 of “The Republic,” it
is well known that perception is very important (Bloom 1968). Wikipedia
encyclopedia explains philosophy of perception as follows:

“The philosophy of perception concerns how mental processes and
symbols depend on the world internal and external to the perceiver.
Our perception of the external world begins with the senses, which
lead us to generate empirical concepts representing the world around
us, within a mental framework relating new concepts to preexist-
ing ones. Because perception leads to an individual’s impression of
the world, its study may be important for those interested in better
understanding communication, self, id, ego —even reality.” (Wikipedia
(Phi-Per) 2004)

There are two types of perception, i.e., external and internal perceptions.
Philosophy of perception is concerned with external or sensory perception.

“External or sensory perception, tells us about the world outside our
bodies. Using our senses of sight, hearing, touch, smell, and taste, we
discover colors, sounds, textures, etc., of the world at large.

Internal perception tells us what’s going on in our bodies. We can
sense where our limbs are, whether we’re sitting or standing; we can
also sense whether we are hungry, or tired, and so forth.” (Wikipedia
(Phi-Per) 2004)

Both types of perceptions can involve thought processes. Introspection is the
detailed mental self-examination of feelings, thoughts, and motives.
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Table 8.3. Categories of perception

Current images of

Past or current state Future state
Others (people and/or  Perceived image of Behavioral anticipation
events) others and events of others and events
Self (decision maker(s), Perceived image of self =~ Behavioral anticipation
supporters, followers, and/or events related of self and/or events
and/or events related with one’s own side related with one’s own
with one’s own side) side

“In psychology and the cognitive sciences, perception is the process
of acquiring, interpreting, selecting, and organizing sensory informa-
tion. Methods of studying perception range from essentially biolog-
ical or physiological approaches, through psychological approaches
to the often abstract ‘thought-experiments’ of mental philosophy.”
(Wikipedia (Phi-Per) 2004)

A categorization of perception is given in Table 8.3. Perception of an entity
at a time t gives an image of it at that time. At time t, we can refer to the
perception as the current perception (or current image), if there is only one
perception.

However, at a time ¢, based on the perspective, there may be different
interpretations of an entity, hence several perceptions. From now on, for the
sake of simplicity, unless it is specified otherwise, current perception (or cur-
rent image) is considered to be unique. Current image can refer to external
perceptions; hence it can be about others (people, groups, nations, events,
facts, etc.). When current image refers to internal perceptions, then it is
about the self (or own group of decision makers, supporters, followers; and/or
events related with one’s own side.) Current images may refer to past, cur-
rent, or future states. There can be several current images, at different times
ti, 1=1, 2, 3,..., n; until future becomes current.

This is similar to for example, seven day meteorological forecasts. At each
day, there can be a forecast of a certain day until that day. And due to the
variability of meteorological conditions, the forecasts may be different. When
that specific day occurs, what we experience is the current image of the cur-
rent state. If we are interested to interpret past events, current images of a
certain past may be defined. However, there can be several images of a cer-
tain past based on the points of views of the people involved. Current images
of (past, current, or future states) can reflect possibly different interpreta-
tions of the current perceptions. Hence, especially in a conflict situation, the
opponents may even have antagonistic interpretations of the same situation.
Furthermore, emotions such as anger affect the disposition of the decision
makers.
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8.5.2 Understanding

Understanding or comprehension of the situation is based on synthesizing the
perceived disjoint elements to form a coherent representation of the entity,
the elements of which are observed. For instance, the tactical commander of a
military unit needs to comprehend that the appearance of enemy aligned in a
specific pattern and in a particular location depicts certain specific objectives.
Augmenting decision makers by providing capabilities that integrate perceived
domain elements to facilitate comprehension of the situation requires taking
the following design consideration. In the study of natural phenomena, the
role of simulation is often cited as “to gain insight” which is another way
of expressing “to understand.” Understanding is one of the important philo-
sophical topics. From a pragmatic point of view, it has a broad application
potential in many computerized studies including program understanding,
machine vision, fault detection based on machine vision as well as situation
assessment. Therefore, systematic studies of the elements, structures, archi-
tectures, and scope of applications of computerized understanding systems
as well as the characteristics of the results (or products) of understanding
processes are warranted.
Dictionary definitions of “to understand” include the following:

to seize the meaning of,

— to accept as a fact, believe,

to be thoroughly acquainted with,

— to form a reasoned judgment concerning something,

— to have the power of seizing meanings, forming reasoned
judgments,

— to appreciate and sympathize with, to tolerate,

— to possess a passive knowledge of a language

The following is a good starting point for the specification of the scope of
machine understanding;:

[43

. if a system knows about X, a class of objects or relations on
objects, it is able to use an (internal) representation of the class in at
least the following ways: receive information about the class, generate
elements in the class, recognize members of the class and discriminate
them from other class members, answer questions about the class, and
take into account information about changes in the class members.”
(Zeigler 1986)

From this point of view, knowing and computerized understanding can be
taken as synonyms. However, one should remark here that knowing (some-
thing, somebody, some event, etc.) refers to the result of the process of
acquiring knowledge and not the knowledge processing activity required to
know. A system A can understand an entity B if three conditions are satisfied
(see Fig. 8.6):
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Fig. 8.6. Elements of an understanding system

1. A can access C, a meta-model of Bs. (C is the knowledge of A about Bs.)

2. A can analyze and perceive B to generate D. (D is a perception of B by
A with respect to C.)

3. A can map relationships between C' and D.

Therefore, an understanding system needs to have the following three basic
elements: a meta-model of the entities to be understood, a perception element
and an analyzer and a comparator to map a perception of an entity to be
understood with the meta-model.

8.5.3 Role of Anticipation in Decision-Making

Anticipation is an important characteristic of intelligence. Pro-active behavior
requires anticipatory abilities. Without anticipation a system can only be
reactive; but a dead frog can also be reactive. A seminal work on anticipatory
systems is the one written by Rosen (1985). A brief introduction to and serious
concerns about anticipation follows:

“Strictly speaking, an anticipatory system is one in which present
change of state depends upon future circumstances, rather than
merely on the present or past. As such, anticipation has routinely been
excluded from any kind of systematic study, on the grounds that it
violates the causal foundation on which all of theoretical science must
rest, and on the grounds that it introduces a telic element which is
scientifically unacceptable. Nevertheless, biology is replete with situa-
tions in which organisms can generate and maintain internal predictive
models of themselves and their environments, and utilize the predic-
tions of these models about the future for purpose of control in the
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present. Many of the unique properties of organisms can really be
understood only if these internal models are taken into account. Thus,
the concept of a system with an internal predictive model seemed to
offer a way to study anticipatory systems in a scientifically rigorous
way.” (Rosen 1985)

A systematic review of 12 definitions of anticipation is available from Berkley
Initiative in Soft-Computing, Special Interest Group (BISC-SIG) in Anticipa-
tory Systems with the following warning:

“The following 12 definitions, or descriptions, of anticipation should be
understood as working hypotheses. It is hoped and expected that the
knowledge community of those interested in anticipation will eventu-
ally refine these definitions and suggest new ones in order to facilitate
a better understanding of what anticipation is and its importance for
the survival of living systems.” (BISC-SIG 2004)

An important aspect from the point of view of BISC-SIG is the emphasis on
soft computing requirements in anticipation. Perception ability is a required
characteristic of agents. Hence, they can be designed to perceive current state
of self and others. They can also be designed to create current images of future
states. An anticipatory system is a system whose next state depends on its
current state as well as the current images of its future states. This definition
is a radical departure from the original definition given by Rosen (1985): “An
anticipatory system is a system determined by a future state. The cause lies in
the future.” Nonetheless, our definition is in line with the following definition
also given by Rosen:

“An anticipatory system is a system containing a predictive model of
itself and/or of its environment that allows it to change state at an
instant in accord with the model’s predictions pertaining to a later
instant.” (Rosen 1985)

However, we would like to stress the distinction on dependency of next states
on current images of future states rather than the future value of the states.

Perception requires mechanisms that enable interpretive capabilities. Per-
ception invariably involves sensory qualities, and introspection entails access-
ing sensations and perceptions the agent would introspect. Perceptions are
derived as a result of interpretation of sensory inputs within the context of
the current world and agent’s self model. The prototype inference, orientation
accounting, and situational classification mechanisms (Sallach 2003). could be
used to realize the interpretation capabilities of an agent. The interpretation
process results in perceptions. An anticipatory agent needs to deliberate upon
perceptions through introspection and reflection to anticipate.

Introspection is deliberate and attentive because higher-order intentional
states are themselves attentive and deliberate. An introspective agent should
have access mechanisms to its internal representation, operations, behavioral
potentials, and beliefs about its context. Reflection uses the introspective
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Fig. 8.7. Basic components for anticipatory agents

mechanisms to deliberate its situation in relation to the embedding environ-
mental context. These features collectively result in anticipation capabilities
that orient and situate an agent for accurate future projections. Figure 8.7
presents interpretation and introspection as critical components within the
micro-architecture of an anticipatory agent. A computationally anticipatory
agent needs to incorporate interpretation facilities as a precursor to (1)
comprehend and draw accurate inferences about the world, (2) have social
pragmatism by considering the likely responses of others in its context in
response to a communication or act, and (3) have situational definition [40] as
a direct input to action recommendation. An anticipatory agent uses a domain
model M, as the internal representation of the environment and agent’s self
in order to project to the future. The model and the anticipation that results
from the introspection and reflection processes are used to derive a number
of realities by the futures generator. The generator is a function that maps
environmental parameters and past vector of states onto a set of future states
of the environment.

Naturally, an inductive process would be used to realize the function, as
the generation of future plausible realities (environmental contexts) results in
a set of new models that vary from each other based on assumptions on differ-
ent plausible events or possible interactions between the environment and the
agent itself. This perspective is consistent with the definition of anticipation
process that is given in (BISC-SIG 2004). According to the definition, antici-
pation (1) is a realization within the domain of possibilities and/or (2) involves
the generation of a multitude of dynamic models and the resolution of their
conflict. As such, the recommender subsystem is responsible for evaluating
alternative anticipated models and to decide on choosing a specific strategy
based on the goals and motivations of the agent. Next, a recommender sys-
tem should select a desirable future state upon which the agent would make
decisions and react using its enactor component.

Developing anticipatory agents with run-time recommenders is difficult,
because interpretation of emergent conditions requires mining the state of the
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simulation to recognize situations within the domain theory (schema) of an
application. That is plausible and desirable future states need to be quali-
fied based on the motives and goals of the agents. Learning takes place as
recommendations are made. Adaptive models that assume certain discernible
patterns in the recommendations may be used to discover situations and asso-
ciated relevant models so as to reinforce qualification of specific future states
based on previous experience. Various domain specific representational issues
and inadequacies make this very difficult for particular applications. One form
of representational inadequacy pertains to intrinsic difficulty of determining
(and utilizing) the features that are potentially relevant for model selection.
Another form of representational inadequacy involves on deciding the right
level of detail. A major difference between traditional deliberative agents and
an anticipatory agent is that an anticipatory agent makes guesses about the
future state of the environment to guide its behavior, whereas conventional
deliberative agents make their decisions based on the observed conditions
within the current context.

8.5.4 Additional Research Domains

So far, we focused on decision makers as individuals. In the netted organiza-
tions supporting complex systems of today, this is no longer the rule. What is
needed are good models for shared situation awareness, which in turn request
good communication models between decision makers, representing agents, or
supporting agents. Tolk and Gaskins (2006) published some tentative results
in the light of the development of the Global Information Grid, a highly inter-
connected web-based infrastructure to support operations in the defense and
security domains.

Recent work shows the challenge of building human behavior models in
complex and cognitive domains. Cannon-Bowers et al. (1993) introduced the
concept of shared mental models to describe the fluid, implicit interaction
often observed in successful teams. Teams must predict and cope with task
difficulty and change by altering their strategies. Shared mental models are
the mechanisms that help teams make sense of situations and facilitate coordi-
nated team performance and decision-making. Team members typically do not
share a single mental model. Rather, there are likely multiple mental models
co-existing among team members. Such shared mental models are character-
ized by a variety of factors including the characteristics of the team, the nature
of the task, the type of equipment, and the interaction among the team mem-
bers. However, these factors are generally categorized as either task work or
teamwork mental models. Task work mental models include the understand-
ing of activities and action sequences of the task, whereas teamwork mental
models refer to the understanding of communication needs, compensatory
behaviors, performance monitoring, and internal coordination strategies of
the team. It has been shown that shared mental models relate positively
to team processes, in particular decision-making, as well as performance.
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Furthermore, team processes were found to fully mediate the relationship
between shared mental models and performance. Although empirical support
is limited, emerging findings suggest that appropriate team mental models
have positive effects on team processes and effectiveness. Such findings sug-
gest that the development of shared mental models is a promising leverage
point for distributed learning techniques aimed improving team effectiveness.
How these research results can be incorporated into agents in the light of these
findings, is the subject of current research.

One of the most critical aspects of distributed decision-making environ-
ments is the role of information transfer between team members, i.e., com-
munication. Researchers have studied the communication process for many
years, and have constructed models to depict that process. Since Shannon and
Weaver (1949) proposed one of the earliest models of the communication pro-
cess based on telephone communications in 1949, research has focused on how
information is transmitted and what are disturbing factors, such as noise or
external events. A critical component of the model is noise, which may serve to
confound the message. Noise may consist of any unwanted stimulus that ren-
ders the message less comprehensible. For example, on the modern battlefield,
noise may occur because of conflicting information, irrelevant information, or
competing sources of information.

Since Shannon and Weaver’s early work, other models of the communica-
tion process have been proposed, addressing the weaknesses of the five-step
process. Some of these models reflected the increasingly complex nature of
team communication. As time went on, network models of communication
emerged, further increasing the complexity (and therefore the model valid-
ity) of representations of the human communication process. When dealing
with distributed decision-making in teams, these models must replace the
presumably perfect connections between communicating agents. However, as
with shared situational awareness, the research on this topic is just in its
beginnings.

8.6 Case Study

In this study, a multi-resolution coordinated mission for Unmanned Air Vehi-
cles (UAV, which are airplanes that are flying without a human pilot on
board) is being considered. The C41I system is represented with yet another
simulation developed in Matlab/Simulink environment. The model is called
MUAV, which is a collaborative UAV testbed (Niland 2006). The agent-
augmented multisimulation based decision-making scenario examined in this
scenario involves an operator that interacts with both the MUAV soft-
ware that represents the C4I system and the multisimulation. Figure 8.8
presents the major components of the simulation, which is based on the
High Level Architecture (HLA) and its common information infrastructure,
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Fig. 8.8. UAV coordination mission study

the Run-Time Infrastructure (RTI). HLA is an international standard for
distributed simulation (IEEE 1516-2000).

The scenario starts at the low resolution with a number UAVs sweeping
an area that contains multiple targets. Targets are classified as low resolu-
tion (i.e., tank battalions) and high-resolution entities (i.e., individual tanks).
Individual UAVs can detect and destroy high-resolution entities such as tanks.
However, in the case of a detection of an aggregate entity such as a battalion,
UAVs aggregate into teams by virtue of a team formation strategy to establish
multi-resolution entities, called Teams. The strategy level federate uses inputs
of from the operator to (1) cluster entities to identify aggregates and (2) uses
agent based team formation protocol, called contract-net, to establish teams.
Next, applicable strategies or COAs are recommended by the operator so that
teams at the operational and tactical simulation level can be configured by the
appropriate behavioral model. If more than one COA is applicable then mul-
tiple simulations are initiated, as shown in Fig. 8.9. The multiple simulations
at the operational level include behavior from High-resolution Team (HRT),
the engagement that represents the tactical strategy used to engage with the
targets at the high resolution simulation, the targets, and the visualization
behavior. For the low-resolution on higher tactical level, a Matlab/Simulink
simulation was used. For the high-resolution simulation of HRT, the MAK
Stealth (3D Game Engine) off-the-shelf software was used.

The tactical federate uses intelligent agent support to configure the HRT
of a given operational simulation with any of the following strategies. As
such, the Coordination Strategy lets the COA protocol vary independently
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Fig. 8.9. Multiple simulations at the operational level

of the team that uses it. The possibility of configuring teams with multiple
COAs enables performing multisimulation, where each simulation facilitates
exploring the efficiency and effectiveness of a specific COA. For instance, in
our case study we considered two COAs for sweeping the battlefield: Region
and Fringe strategy. Figure 8.10 presents the rules of the region strategy,
whereas Fig. 8.11 illustrates the rules of Fringe Point Strategy.

In our study, staging from one strategy to another based on the observed
conditions is as critical as initiating multiple simulations in the first place.
Fig. 8.9 presents demonstrates the connections between HRT and Strategy
Federate via a Low Resolution Team (LRT) that coexists with HRT encap-
sulated within a Multi-resolution Team entity. LRT uses observer agents to
monitor the HRT to evaluate the state of the engagement. Corresponding to
the time path of the change of a problem should be a time path of the appro-
priate submodel families. But, the question is what should be the sequence of
this shift pattern of models of family? Or should there be trigger mechanisms
indicating when a shift should occur? The tactical federate uses an anticipator
agent defined in terms of a Bayesian model to decide the correct strategy and
instructs the Multi-resolution team to reconfigure its HRT with the selected
strategy.



222 L. Yilmaz and A. Tolk

= _ Eiwmi °
q
] ® 4 °
| P
°
™ [
oll® L ol ®
L L4 4 (o
q o
0 s bl
'Y °
| " e | |
Initial Area before Regions 7 Regions Established By Leader TAV Request Region
—ir= Rules of Region Strategy .
3 o (R = Radius of Sensing) i
\ ° |
e :
e TAYV is allowed to attack in another e
ot UAVS region if it 1s a distance R away i
o « » . . i
from “some” center Point of a Region |
\ ° ° TAVS fly up and down their Region and |
% can never leave it unless attacking a j
y target close to their own region '
= IfFight Takes Place In another region ‘:

other than the TAVS own, It must move

back to its own region after the fight and X

TUAVs in their Regions resume Region Sensing This schemes center
With Sensing Range point of a region

Fig. 8.10. Presentation of the rules of the region strategy
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Fig. 8.11. Illustration of the fringe point strategy



8 A Unifying Multimodel Taxonomy 223
8.7 Conclusions

The use of intelligent agents in decision support is common. However, existing
work on agent-based decision support mostly focuses on rational choice mod-
els, where agents are programmed to seek optimal utilities during negotiation
and bargaining. Recent advancements in decision science suggest that pursu-
ing synthesis of alternative decision styles within a coherent framework could
have profound effects on the approach to decision-support. Empirical stud-
ies of Eisenhardt and Zbaracki (1992) involving mid-to high-level strategic
decision makers found that context and environmental circumstances effect
the decision-making style employed by the decision makers. In most decision-
making scenarios, the nature of the problem changes as the problem unfolds.
Initial parameters, as well as scenarios can be irrelevant (i.e., real-time train-
ing scenarios) under emergent conditions. Relevant contingency models need
to be identified and instantiated to continue exploration. Another aspect that
is currently under research, in particular in the ontological community and
composability researcher, is the question how model families and multimodels
that comprise multi-resolution models (which are models that vary in scope,
structure, or resolution) can be used in an orchestrated way in support of
decision support. First results are summarized in (Tolk et al. 2007, Tolk et al.
2008), but the research and discussion is ongoing.

In this paper, we suggested a multi-model framework that that subsumes
multiple submodels that together constitute the behavior of a complex multi-
phased decision-making process. Three distinct decision styles are embedded
within a horizontal agent-based decision-support system architecture. Strate-
gies and design considerations for developing experience-based, practical
reasoning, and deductive rational choice models of decision-making are exam-
ined. It has been argued that situation awareness is a critical component of
Naturalistic Decision-making style that is based on experience based reason-
ing. Perception, understanding, and anticipation mechanisms are discussed as
three major subsystems in realizing situation awareness model. These meth-
ods and technology will contribute to make agent-based simulation a valuable
tool for decision support systems, as their support will become more flexible,
credible, and configurable to the users needs.
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