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Summary. This chapter describes initial efforts and research directions in decision
support systems that allow collaboration and cooperation between intelligent agents
in a multi-agent system and humans. Description of previous research is included
to show how developments in the agent software framework was implemented based
on cognitive hybrid reasoning and learning models where decision support systems
are used to support the human’s roles. Cooperation is a type of relationship within
structured teams when an agent is required to coordinate with, and explicitly trust,
instructions and information received from controlling agents. Collaboration involves
the creation of temporary relationships between different agents and/or humans that
allow each member to achieve his own goals. Due to the inherent physical separation
between humans and agents, the concept of collaboration has been identified as the
means of realizing human-agent teams to assist with decision making. An example
application and preliminary demonstration to show the current status is also pre-
sented. Future research needed to advance the field of intelligent decision support
systems is identified.

14.1 Introduction

Decision Support Systems (DSSs) emerged in the early 1970s to assist and
support humans in the decision making process. DSSs were initially gener-
ated by computer programmers in an attempt to capture the knowledge of
subject matter experts in an information management system that could ide-
ally be used to assist management in making decisions without the need for
consultation or detailed analysis. The number of applications has expanded as
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computers have become ubiquitous and essential in professional and personal
tasks. Recent advances in Artificial Intelligence (AI) have provided a new set
of techniques and methods for DSSs that increase their scope and effectiveness.
The chapters in this book attest to the intriguing possibilities of Intelligent
Decision Support Systems (IDSSs) as combinations of DSSs and AI techniques
to effectively support human decision making in complex environments. In this
chapter we discuss some of the potential future developments in IDSSs.

One of the more promising areas of AI research for incorporation in IDSSs
is intelligent software agents (or just agents). As indicated by Russell and
Norvig (2003), an agent is anything that can be viewed as perceiving its envi-
ronment through sensors and acting upon that environment through effectors.
Agent-oriented development can be considered as the successor of object-
oriented development when applied in AI problem domains. Agents embody
a software development paradigm that attempts to merge some of the the-
ories developed in AI research within computer science. Bratman’s Beliefs,
Desires, Intentions (BDI) reasoning model (Bratman 1999) has demonstrated
the potential of becoming the method of choice for realizing truly autonomous
agents. Beliefs represent the agent’s understanding of the external world;
desires represent the goals that it needs to achieve; and intentions are the
courses of action that the agent has committed to follow in order to satisfy
its desires (Rao and George, 1995).

When defining the intelligence of agents, researchers generally state the
properties that a system of agents should exhibit. Firstly, autonomy means
operating without the direct intervention of humans. Secondly, social abil-
ity means interacting with other agents. Thirdly, reactivity means perceiving
their environment and responding to any changes that occur in it. Finally,
pro-activeness means exhibiting goal-directed behavior (Wooldridge 2002).
The social ability of agents provides the potential to create stand-alone or
cooperative agents that communicate with other agents as required. Different
techniques have been developed allowing agents to form teams, and agents
can be dynamically assigned a particular role depending on the situation and
their suitability. Recent advances in this field have focused on the formation
of rather unique teams with human and machine members based on cogni-
tive principles. One major advantage of such teams is an improved situation
awareness capability for the human when dealing with unknown or hostile
environments (Urlings, 2003).

This chapter focuses on the design of intelligent agent architectures. Agent
teaming ability is illustrated with a simulation environment relevant for Air-
borne Mission Systems. Agent teaming has gained popularity in recent years
and is categorised into the prominent domain of Multi-Agent System (MAS).
It is believed that three important aspects, ‘Communication, Coordination
and Cooperation’, play an important role in agent teaming. Multi-agent
teaming takes inspiration from human organisational models of team oper-
ation, where leadership, communication, cooperation and collaboration skills
empower the success of the team. In addition, future research directions and
needs are identified.
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14.2 Models of Decision Making

Information overload occurs when the amount of information available to
the user for decision making is more than can be processed in a relevant
time period. It is often associated with real-time decision making in which
information changes rapidly, the quantity of information is large, and the
relationships between the data items are difficult to discern. The Observe –
Orient - Decide - Act (OODA) loop, also know as the four box method, shown
in Fig. 14.1, is one approach used to aid humans in making decisions when
overloaded with information. The cycle was originally labeled by Boyd as the
OODA loop to assist pilots, as military decision-makers, to achieve knowledge
superiority and avoid information overload in order to win the battle (Coram
2002). Boyd studied air-to-air engagements of the Korean War (1950–1953)
in which US fighter pilots, despite flying F-86 Sabre aircraft with wider turn
radii, had a consistent 10:1 victory ratio over MiG-15 aircraft that had much
better manoeuvrability.

While conventional wisdom suggested that US pilots were successful
because they were better trained, Boyd suspected it was due to much more.
His hypothesis was that a US pilot would win almost every dogfight because
he could complete loops of decision-making much faster than his adversary.
Boyd constructed such a loop with the four distinct steps shown in Fig. 14.1
(Curts and Campbell, 2001):

Observe - US pilots could see their adversaries earlier and better because the
cockpit design of their aircraft ensured better visibility.

Fig. 14.1. Boyd’s observe-orient-decide-act loop
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Orient - Since the adversary was acquired first, US pilots could then react
by orienting themselves towards the adversary much faster.

Decide - After reacting with their initial orientation, the better level of train-
ing then allowed them, as decision makers, to proceed faster to the next
combat manoeuvre.

Act - With the next combat manoeuvre decided upon, US pilots could then
rapidly input aircraft controls, with the resultant faster initiation of a
desired manoeuvre (the F-86 Sabre was more nimble than the MiG-15
because of its fully hydraulic controls).

Boyd conceptualised the principles of the OODA loop in his two famous brief-
ings “patterns of conflict” and “a discourse on winning and losing”, which are
considered the most dazzling briefings ever to come from a military mind.
These presentations began as one-hour and grew to fifteen-hour briefings over
two days and were given over 1,500 times. Thousands of copies have pen-
etrated US military and defense circles, particularly at senior levels. Boyd
never formally published his observations, but he has been recognized as the
greatest military theoretician since Sun Tzu and as the architect of Amer-
ica’s strategy in the 1990–1991 Gulf War (Coram 2002, Hammond 2004). The
OODA loop has become a standard model of the decision-making cycle not
only for the military, but also by many business and research communities
around the world (Hammond 2004).

In comparison, Noble Prize winner Herbert Simon studied management
decision making and developed a more generalized model of decision mak-
ing (Simon 1977). Simon’s model is shown in Fig. 14.2 with four phases (the
final phase added by later researchers) of Intelligence – Design – Choice –
Implementation. During the intelligence phase, the user seeks and acquires
information needed for the decision problem. Design involves developing crite-
ria important to the decision and establishing relationships between variables
of interest. The user makes a selection during choice, and the decision is imple-
mented during the final phase. The phases proceed relatively sequentially, with
feedback loops as the user returns to a previous stage before moving forward
again. Boyd’s model and Simon’s model both involve feedback loops and are
similar in that the first phase involves acquiring information, the second devel-
oping a model to relate the information, the third making a choice, and the
fourth acting on the information.

14.3 Intelligent Decision Support Systems

Incorporating AI techniques within DSSs to form IDSSs is not new. How-
ever, recent advances have enabled better accessibility to AI technology that
has resulted in an increased number of IDSS applications, particularly those
using multi-agent systems. These types of applications can aid the decision
maker in selecting an appropriate action in real-time under stressful con-
ditions by enabling up-to-date information, reduced information overload,
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INTELLIGENCE
• Observe reality
• Gain understanding of the problem
• Acquire information needed for the decision

DESIGN
• Develop criteria important to the decision
• Develop alternatives
• Identify relevant uncontrollable events
• Specify the relationships between criteria,

alternatives, and events
• Measure the relationships in a meaningful way

CHOICE
• Logically evaluate the decision alternatives
• Develop recommended actions that best meet

the decision criteria

IMPLEMENTATION
• Consider the decision analyses and evaluations
• Weigh the consequences of the recommendations
• Gain confidence in the decision
• Develop an implementation plan
• Secure needed resources
• Put implementation plan into action

Fig. 14.2. Simon’s three phases of decision making, with the last phase added later

and a dynamic response. Intelligent agents can be used to enable commu-
nication required for collaborative decisions and to treat uncertainty in the
decision problem. AI researchers possess a comprehensive toolbox to deal with
issues such as architecture and integration (Mackworth 2005). Several recent
examples include:

Petroleum production: Based on Case Based Reasoning (CBR) using bioin-
formatics (Bichindaritz and Marling 2006, Chan 2005);

Clinical healthcare: Using collaborative decision making and knowledge
exchange (Frize et al. 2005);
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Forest fire prevention: Based on fuzzy modeling (Iliadis 2005);
Diagnosing breast cancer: Using Linear Genetic programming (LGP);
Multi Expression Programming (MEP) and Gene Expression programming

(Jain 2000).

Intelligent Agents (IA) are perhaps the mostly widely applied AI method
in IDSSs in recent years due in part to their characteristics of mobility and
autonomy. This utilization has significantly advanced many applications, par-
ticularly Web-based systems (see for example, Phillips-Wren and Jain 2005).
In addition, learning can be incorporated into agent abilities to extend the
capability of systems (Valluri and Croson 2005).

14.3.1 Agent Teaming

An agent-enabled IDSS can be designed using a multi-agent system to provide
simultaneous data analysis and to enhance the fidelity of feedback to the
user. The architecture of the proposed system resembles that of a simple
thermostat, containing a monitor and a feedback circuit. Building blocks of
this type lead to expert systems and the creation of production rules in the
form of logical expressions to embody knowledge. These rules are entered into
the knowledge repository as a set of inferences. MYCIN (Simon 1977) and
DENDRAL (Feigenbaum et al. 1971) were early commercial versions of DSSs
using an expert system as its source of knowledge/inference. An IDSS that uses
a multi-agent system to monitor and log the environment prior to deciding on
the type and amount of feedback requires significant planning. To interact, the
system needs to react to changes at its input from a sensor (using an event-
driven model) and produce outputs to drive actuators (again using an event-
driven model). These agents can be instantiated using off-the-shelf expert
system shells (Negnevitsky 2005). This means that knowledge needs to be
represented in terms of rules generated by a subject mater expert prior to use.
Such rules should be expressed in terms of Relationships, Recommendations,
Directives and Strategies. Separate agents are generally used to collect and
refine the test data required to build and test the system. An additional
interface agent (or team of agents) is used to interface the inference engine
and another agent (or team of agents) to generate feedback and reports.

There are three primary challenges that must be overcome to effectively
form agent teams: Communication, Negotiation, and Trust. Communication
is concerned with the means of communication between agents such that they
can understand each other. Early agent development relied on the idea that
intelligence is an emergent property of complex interactions between many
simple agents. For example, the Open Agent Architecture (Cheyer and Martin
2001) is based on agents in a community of agents cooperating to achieve
their design objectives. Communication between agents must be efficient and
robust enough to recover easily from errors, and specialized Facilitator agents
are responsible for matching requests with the capabilities of different agents.
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Another approach is given by Aglets (Lange 1997) as Java objects that can
move from one host on the network to another. Such mobile agents are par-
ticularly useful in distributed systems. Finally, Swarm (Group 2005) provides
a hierarchical structure that defines a top level observer swarm; a number of
model swarm are then created and managed in the level below it.

The second challenge to forming agent teams is Negotiation. Generally,
development of teams involves separating the requirements of a team from
the requirements of individual agents. This includes assigning goals to the
team as a whole, and then allowing the team to figure out how to achieve it
autonomously. A team is constructed by defining the number of roles that are
required in order to achieve the goals of the team. Additionally, agents can be
specifically developed to perform one or more roles. An important feature of
this approach is that agents are assigned with roles at runtime and can also
change roles dynamically as required. Hence, one agent may need to perform
one or more roles during its operation. MadKit (Ferber et al. 2006) is a multi-
agent platform built upon an organizational model called Agent/Group/Role,
and agents may be developed in many third party languages. The widely
used ‘JACK Teams’ (AOS 2006) provides a team-oriented modeling frame-
work. Specifically, this allows the designer to focus on features such as team
functionality, roles, activities, shared knowledge and possible scenarios.

The third major challenge to agent team formation is Trust, specifically
how an agent should handle trust in regards to other agents. For example,
should an agent trust the information provided by another agent, or trust
another agent to perform a particular task. The level of trust is not easily mea-
sured, although loyalty can be used to weight information and consequently
the strength of bond that is created. The fragility of that bond reflects on
the frequency and level of monitoring required for the team to complete the
related portion of a task. For further details on trust, the reader may refer to
Tweedale and Cutler (2006).

One would expect to gain major benefits from intelligent agent technology
through its deployment in complex, distributed applications such as virtual
enterprise management and the management of sensor networks. However,
while the agent paradigm offers the promise of providing a better framework
for conceptualising and implementing these types of systems, there is a need to
recognise the underlying programming paradigms and supporting standards,
design methodologies and reference architectures needed before these applica-
tions can be developed effectively. As noted above, standards are beginning to
appear, but more experience and is needed with real applications, and the soft-
ware community needs to be educated in their use. Given the nature of these
applications, a sudden shift to an agreed-upon standard in the community
seems unlikely. Rather, as the field matures we would expect to see a gradual
shift from object-oriented to the agent paradigm in intelligent domains.

The underlying theories of cognition will continue to prove adequate for
large-scale software developments. The key theories (BDI and production sys-
tems) date from the 1980s and have a long pedigree in terms of their use
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in commercial-strength applications. This longevity indicates that their basic
foundation is both sound and extensible as clearly illustrated in the progres-
sion of BDI implementations from PRS (Francois et al. 1996) to dMARS
(d’Inverno et al. 1997) to JACK (AOS 2005) and to JACK Teams (AOS
2006). New cognitive concepts may gain favour (e.g. norms, obligations, or
perhaps commitment), but we believe that these concepts will not require the
development of fundamentally new theories.

While we believe that the existing theories are sufficiently flexible to
accommodate new cognitive concepts, we perceive a need to develop alter-
native reasoning models. In the case of the JACK implementation of BDI,
a team reasoning model is already commercially available in addition to the
original agent reasoning model. On the other end of the spectrum, a low-
level cognitive reasoning model (COJACK) has been recently developed. This
model enables the memory accesses that are made by a JACK agent to be
influenced in a cognitively realistic manner by external behaviour moderators
such as caffeine or fatigue. Interestingly, COJACK utilises an ACT-R like the-
ory of cognition, which in turn is implemented using JACK’s agent reasoning
model. From a software engineering viewpoint, it should be the reasoning
model that one employs that shapes an application, not the underlying cogni-
tive theory. There is the opportunity through the provision of “higher level”
reasoning models like OODA and their incorporation into design methodolo-
gies to significantly impact productivity and, hence, market penetration of
these technologies.

14.3.2 Collaborating Agents to Simulate Teamwork

A number of researchers have integrated cognitive decision-making models
with agents (Klein 1989b, Yen et al. 2001) to capture the decision making
abilities (Klein 1989a) of domain experts based on the recognition of similarity
between the current situation and past experiences. In the first (recognition)
phase, a decision maker develops situation awareness and decides upon a
course of action. In the second (evaluation) phase, a decision maker evaluates
each course of action. Klein (1989a, b) introduced a model that evolved into
an agent environment under teamwork setting into the Recognition-Primed
Decision (RPD) Agent architecture (Fan et al. 2005b). Klein’s cognitive model
was extensively tested in highly stressful, time-pressured, decision making
environments such as those faced by firefighters or military personnel under
attack. He proposed that these types of decision makers base their responses
on past experience and situations that are similar to the new situation. Han-
ratty et al. showed an agent architecture for a RPD Agent (Hanratty et al.
2003) as consisting of four modules. The communication manager module gov-
erns the inter-agent communication and organises conversations. The expert
system module is a rule-based forward chaining system containing knowledge
related to the other agents and external world. The process manager module
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is responsible for scheduling and execution of plans. The collaborative module
facilitates the collaboration between humans and RPD agents (Klein 1989a).

Software called Recognition-Primed Collaborative Agent for Simulating
Teamwork (R-CAST) was developed based on the RPD model using sim-
ilarities between past experience and current situation. The Pennsylvania
State University has filed a patent on the software embodied in R-CAST,
an extension of the Collaborative Agent for Simulating Teamwork (CAST)
architecture (Fan et al. 2005a). CAST was designed to simulate teamwork
by supporting proactive information exchange in a dynamic environment,
while R-CAST extended CAST architecture with a recognition-primed deci-
sion making model. R-CAST consists of a number of modules for handling
the collaboration among RPD-agents, between RPD-agent and human, and
among humans. The Shared Mental Model (SMM) consists of team processes,
team structure, shared domain knowledge, and information-needs graphs. The
Individual Mental Model (IMM) stores mental attitudes held by agents. Infor-
mation is constantly updated using sensor inputs and messages from agents.
The Attention Management (AM) module is responsible for the decision-
maker agent’s attentions on decision tasks. The Process Management (PM)
module ensures that all team members follow their intended plans. The
functions of the other modules are described by Yen et al. (2001).

The developers of R-CAST and RPD Agent have tested their software in
a military command-and control simulation involving intelligence gathering,
logistics and force protection (Hanratty et al. 2003). Under normal time pres-
sure, the human teams made correct decisions about the potential threat. As
time pressure increases, team performance suffers due to the lack of informa-
tion sharing resulting in incorrect decisions about whether to attack/avoid the
incoming aircraft. The researchers demonstrated that the R-CAST agent sys-
tems helped human-agents in making the right decisions under time-pressured
conditions. This concept is demonstrated using a scenario in which team mem-
bers have to protect an airbase and supply route that are under attack by
enemy aircraft. The scenarios were configured with different patterns of attack
and at different tempos. Two human team members were dependent on a third
human whose role was to gather information and communicate to them. The
defence teams cannot attack if they do not know whether the incoming aircraft
is friend or foe. The supply team takes action to avoid a possible incoming
threat. When the information gatherer was supported by the R-CAST soft-
ware system, the information was processed and shared quickly. As a result,
the human-agent teams were able to defend themselves from enemy attack.

14.3.3 JACK Intelligent Agents

JACK Intelligent Agents is a development platform for creating practical rea-
soning agents in the Java language using BDI reasoning constructs. It allows
the designer to use all features of Java as well as a number of specific agent
extensions. Any source code written using JACK extensions is automatically
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compiled into regular Java code before being executed. Each agent has beliefs
about the world, events to respond reactively, goals that it desires to achieve,
and plans that define what to do. When an agent is executed, it waits until it
is provided with a goal to achieve or receives an event to which it can respond
reactively; it then reasons using its beliefs and decides whether to respond. If
a response is required, it selects an appropriate plan to execute in order to
respond. JACK agents can exhibit: Goal-directed behavior, where the agent
focuses on the objective and not the method chosen to achieve it; Context sen-
sitivity, keeping track of which options are applicable at each given moment
using beliefs; Validation of approach, ensuring that a chosen course of action
is pursued only for as long as applicable; and Concurrency, behaviours in the
agent are executed in separate, parallel and prioritized threads.

JACK provides a language for developing agent-based systems using agent-
oriented paradigms, and the language is complete with a compiler, a powerful
multi-threaded runtime environment and a graphical environment to assist
with development. Beliefs have been implemented as relational databases
called beliefsets; however, developers can also use their own Java-based
data structures if needed. Desires are realized through goal events that are
posted in order to initiate reasoning. This is an important feature because it
causes the agent to exhibit goal-directed behaviour rather than action-directed
behaviour, meaning that the agent commits to the desired outcome and not
on the method to achieve it. An intention is defined as a plan to which the
agent commits to after choosing from a library of pre-written plans. The agent
is able to abort a plan at any time depending on its beliefs and also consider
alternative plans.

JACK Teams is an extension to the JACK platform that provides a team-
oriented modelling framework. The JACK Teams extension introduces the
concept of Team reasoning, where agents encapsulate teaming ‘behaviour and
roles’ required to define what each agent is required to do within the team.
Using this Teams extension of JACK, individual agent functionality is also
available within a team. Team-oriented programming enables the designer
to specify: What functionality a team can perform; What roles are needed in
order to form a team; Whether an agent can perform a particular role within a
team; Coordination of activities between team members; Knowledge between
team members.

Roles are bound to agents at runtime. This means that it is possible to
have different combinations of agent-role relationships. For example, on one
hand, one role can be performed by many different agents (in which case one
agent must be selected at runtime), on the other hand, one agent can also
perform many roles simultaneously as required.

Belief propagation allows beliefs to be shared between members of a team.
This means it becomes possible for sub-teams to inherit beliefs with impor-
tant information from higher-level teams and conversely, enclosing teams to
synthesize beliefs from lower-level sub-teams. JACK Teams was developed to
support structured teams; therefore, the role obligation structure of a team
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must be defined at compile-time. Consequently, sub-teams can only commu-
nicate and share information if it has been previously defined in their team
structure.

14.3.4 Teaming

The team in this concept can initially be considered to consist solely of soft-
ware agents. However, ultimately the team will include human agents or
operators in either a collaborative or commanding mode. The communica-
tion aspects in agent teaming address traditional teaming properties such as
exchange of information as well as agent and mutual performance monitor-
ing. Research focus is needed in communication and collaboration between
software and human agents.

The structure of teams is traditionally defined during the system design
and is required to remain constant during operation. Within teams, agents
are required to cooperate and explicitly trust other team members. The idea
of introducing dynamic, temporary team-like links that can be established
or destroyed at runtime also needs to be considered. This approach allows
the achievement of greater autonomy since different systems, each executing
different agent teams, are able to collaborate in order to achieve their goals.
Additionally, agent teaming should be considered to contain a ‘human-centric’
nature. Current research trends in agent development needs to focus on how
agents interact within teams.

One of the major issues in early human-machine automation was a lack
of focus on human users and their cognitive processes. Recent developments
in intelligent agents have become a popular way to respond to these early
deficiencies. Early agent models or theories were attractive solutions due to
their human-like intelligence and decision-making behaviour. Existing agent
models can act as stand-alone substitutes for humans and their human
decision-making behaviours.

At this point we come back to one of the problems in early human-machine
automation – the human-like substitute could fail at a critical point due to cul-
tural diversity or lack of coordination, leaving the human no chance to regain
control of the situation (usually as a result of impaired situation awareness).
A solution was developed by AI researchers who created a machine-assistant
operating in an advisory or decision support role and that assisted human
operators during critical or high workload situations. This software led to the
development of intelligent agent technology. This technology has matured and
is now robust enough to implement machine-assistant behaviour (agents that
are more independent, co-operative or capable of assisting associates).

Urlings (2003) claims that in order to compose effective human-agent
teams and in order to include intelligent agents as effective members in this
team, a paradigm shift in intelligent agent development is required similar
to the change from the technology-driven approach to the human-centered
approach in automation. He provides an example based on the operational



398 J. Tweedale et al.

analysis domain. He proposes that the traditional development of agent tech-
nology failed to distinguish between a software agent and a human, preventing
them from being interchangeable, even though they are ‘inherently different’.
By establishing the difference between agents and humans, Urlings states
that in a typical human-agent team both entities are not comparable but
are complementary to each other by means of cooperative sharing of tasks
while working in concert.

This work on first principles of human-centered automation is explained
as follows: Humans are responsible for outcomes in human-agent teams; The
human must therefore be in command of the human-agent team; To be in
command, the human must be actively involved in the team process; To
remain involved, the human must be adequately informed; The human must
be informed about (able to monitor) agent behavior; The activities of the
agents must therefore be predictable; The agents must also be able to moni-
tor performance of the human; Each team member (humans and agents) must
have knowledge of the intent of the other members (Urlings 2003).

We believe that human-centric agents could benefit from human cogni-
tion theories as an extension of their inherent reasoning. Researchers have
demonstrated that teams can work effectively using a shared mental model,
and R-CAST offers a promising technique for human-agent collaboration. A
number of researchers in the multi-agent community are developing human-
machine teaming systems for use in difficult and critical decision making under
high workload situations. Human-machines teams are still led by humans, but
we expect that human-control will be slowly transferred to machine-control
as machines become autonomous and intelligent.

14.4 The Human-Centric Approach

In order to understand where human-agent collaboration fits into current
agent trends, we need to have a close look at the classification of agents. We
think that one such classification provides an accurate description of current
agent trends. Nwana (1996) chooses to classify agent topology using categories
such as mobility, reasoning, autonomy and hybrid.

Agents may have characteristics from multiple categories. For example
mobile agents can posses learning attributes. Here we will focus on the third
category since it is the leading area of current research in agents as well as
the foundation needed for Teaming (coordination and cooperation). In this
category, autonomy represents ‘taking initiative’ instead of simple respon-
sive action towards the environment. Cooperation represents the ‘interaction’
needed to form intelligence, and the key element of intelligence is ‘learning’.
Nwana (1996) extends these three ideal attributes with the integration of
the other categories. The resulting overlap in characteristics produces purely
collaborative agents, collaborative learning agents, interface agents and ulti-
mately smart agents. Purely collaborative agents are autonomous entities
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that coordinate their activities while not necessarily collaborating with other
agents (proactively collaborating activities). Collaborative learning agents are
self-performance improving (learning by observation) agents by observing oth-
ers (agents or humans). Interface agents’ typologies emphasize autonomy and
learning, giving rise to application areas such as support and assistance to
a user by adapting to the specific skill set so that the user ‘feels’ comfort-
able. Finally a ‘smart agent’ as described by Nwana (1996) should learn and
interact with its external environment.

Reasoning models of agents play an important part in their existence;
they have been categorized as deliberative and reactive. Purely reactive rea-
soning is very much like stimulus-response type, where the action is chosen
based on previously defined action-response pairs. Reactive agents are most
suited to less dynamic environments and for quicker response in real-time. On
the other hand, deliberative reasoning is inspired from cognition theories and
imitates human-like reasoning in agents. Deliberative reasoning is generally
slower than reactive reasoning, but it has advantages of giving more human-
like intelligence. This was one of the reasons why the early deliberative agent
paradigms such as BDI became popular and widely-accepted in the agent
community.

Although the BDI paradigm is widely used to mimic human intelligence,
BDI agents can not be fitted in to the above definition of truly ‘smart agents’
since they still lack the primary ideal characteristics of ‘Coordination and
Learning’. We expect that one of the major steps of the next generation of
agents will comprise coordination (Teaming) and, ultimately, learning.

We think that another major step in agent teaming research will be to
introduce a ‘human-centric’ nature within an agent’s architecture. The current
trend in agent development is focused on its agent-only interaction, meaning
that agent teaming is comprised of joint-goal operations that consist of agents
as sole subordinates of the team without any human intervention. Here we
distinguish between the need of a human in the loop as a colleague and as
a sometimes supervisory role. This demands agent architectures to embody
social ability in order to interact with the human part of the team. In Hop-
kins and DuBois (2005), Wooldridge describes social ability as “the ability
to interact with other agents and possibly humans via some communication
language.”

We would like to suggest that ‘interaction’ with humans cannot only be
via some communication language, but also can be by other means such as
observation and adaptation. We would also like to suggest that truly smart
agents can be complementary to a human by adopting skills similar to a
human (and that may include communication, learning and coordination)
rather than being a simple replacement to a human. Such a view encourages
research focused on developing the agent’s human-centric nature by combining
one or more ideal attributes such as coordination, learning and autonomy.
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14.5 Steps Toward Next Generation

The BDI agent model has the potential to be a method of choice for complex
reactive systems. Future trends in agent technology can be categorized on the
basis of ‘Teaming’ which can be divided into Multi-Agents (Teaming) and
Human-Centric Agent (Human-Teaming). These two research streams have
two commonalities, namely, collaboration and cooperation. Along with these,
a human-centric agent possesses ideal attributes such as learning as discussed
previously in the definition of a truly smart agent. Recent work on the BDI
agent such as Shared Plans/Joint Intentions and JACK teams (AOS 2004)
facilitates agent-only teaming. Furthermore, the addition of an ideal attribute
such as learning enables agents to come closer to the goal of a human-centric
smart agent.

Agent collaboration provides the opportunity for agents to share resources
during their execution. Such resources are not normally available within
current multi-agent system designs because resources are allocated for the
use of specific teams. Team structures and team members are defined explic-
itly when the system is being designed. Using collaboration, agents are able
to recognize when additional resources are needed and negotiate with other
teams to obtain them. Collaboration is a natural way to implement human-
agent teaming due the temporary and unpredictable nature of human team
members.

14.6 Building a Teaming Framework

The case study presented in this section describes the proposed first steps in
understanding how to implement human-agent teaming in an intelligent envi-
ronment. A prototype implementation framework has been developed that
allows an agent to establish collaboration with another agent or human. The
framework is based on CHRIS (Sioutis and Ichalkaranje 2005), an agent rea-
soning and learning framework developed as an extension of JACK at the
University of South Australia (Sioutis 2006). CHRIS equips a JACK agent
with the ability to learn from actions that it takes within its environment.
It segments the agent reasoning process into five stages based on a com-
bination of functions extracted from Boyd’s OODA loop (Hammond 2004),
Rasmussen’s Decision Ladder (Sioutis et al. 2003) and the BDI model (Rao
and George 1995). Boyd’s Orientation stage has been implemented as a col-
laboration module, which itself has been limited between the State and the
Identification operation as shown in Fig. 14.3.

The path on the left shows the process involved in establishing a collabo-
ration contract between two or more agents. The path on the right indicates
that agents need to continuously perform assessment in order to ensure that
collaboration is progressing as previously agreed upon and also whether the
collaboration is yielding the required effect toward achieving each agent’s
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Fig. 14.3. Reasoning and collaboration

own goals. Both of these operations are highly dependent on trust, which
is updated accordingly.

This implementation is based on using JACK team agents. Negotiation is
performed using an authoritative Collaboration Manager Agent. Subordinate
agents simply need to be able to perform the Cooperation role. The current
implementation only supports goal-based collaboration relationships, where
an agent negotiates for another agent to achieve a particular goal. Finally, an
event called RequestCollaboration is used to ask the Collaboration Manager
Agent for collaboration.

14.6.1 Decision Making Using a Human-Agent Team

A demonstration program was written that provides limited human-agent
collaboration. It uses two agents. The first agent called Troop connects to
a computer game called Unreal Tournament (UT) using UtJackInterface
(Sioutis 2003) and controls a player within the game. The second agent is
called HumanManager and is used to facilitate communication with humans
encountered within the game. The program demonstrates how the Troop
agent is given the goal hierarchy shown in Fig. 14.4. This Decision Making
Agent is used to decide whether the entity will Defend or Attack. The
Troop agent can only perform the Defend or Attack goal (mutually exclusive).
This agent decides how to handle the Attack goal and then asks the Collabora-
tion Manager Agent to organise other (friendly) human players encountered
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Fig. 14.4. Goal hierarchy used for demonstration

in the game to take responsibility for the alternate goal. The sequence of
operations for the demonstrations is:

1. The agents Troop, Collaboration Manager Agent and HumanManager are
created and a scenario.def file is used to form a team with the Cooperation
role between the Collaboration Manager Agent and the HumanManager.

2. The Win goal is activated and the Defend and Attack sub-goals are sub-
sequently activated automatically in parallel. Attack is handled by the
Troop agent that subsequently attacks any enemy that comes within the
field of view. For demonstration purposes, the Attack goal succeeds after
the agent attacks five enemy players.

3. A RequestCollaboration message is sent to the Collaboration Manager
Agent for the Defend goal. The Collaboration Manager Agent then exe-
cutes an @team achieve for any sub-teams that perform the Cooperation
role. The HumanManager agent then negotiates and performs assessment
with the human in order to satisfy the Defend goal.

The human’s point of view is acknowledged by:

(a) Asking the Human
(b) The Human Refuses
(c) The Human Accepts

The human is able to communicate with agents via text messages through
UT. Figure 5a illustrates what appears on the human’s monitor when a mes-
sage is received from the agent. The sequence diagram shown in Fig. 5b
illustrates that if the human refuses to join the team, the collaboration fails
and hence both the Defend and Win goals both fail. On the other hand, the
sequence diagram shown in Fig. 5b illustrates that when a human accepts to
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Fig. 5a. The CMA model of a human’s decision cycle (Asking the human)

Fig. 5b. The CMA model of a human’s decision cycle (The human refuses)

Fig. 5c. The CMA model of a human’s decision cycle (The human accepts)
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join the team, collaboration is formed and the human is assigned with the
Defend goal. The result of the Win goal then depends on whether the human
reports that he/she was successful in achieving the Defend goal.

14.7 Concluding Remarks

Intelligent agent technology is at an interesting point in its development (Val-
luri and Croson 2005). Commercial-strength agent applications are increas-
ingly being developed in domains as diverse as meteorology, manufacturing,
war gaming, capability assessment and UAV mission management. Further-
more, commercially-supported development environments are available and
design methodologies, reference architectures and standards are beginning to
appear. These are all strong indicators of a mature technology. However, the
adoption of the technology is not as rapid or as pervasive as its advocates have
expected. Intelligent agent technology has been promoted as the paradigm of
choice for the development of complex distributed systems and as the natural
progression from object-oriented programming. Is intelligent agent technology
simply in need of a ‘killer application’ for demonstration, or are there more
fundamental reasons as to why a technology that promises so much has not
been more widely adopted? What does the future hold for this technology?

The development of intelligent agent applications using current generation
agents is not yet routine. Certainly providing more intuitive reasoning models
and better support frameworks will help, but we see behaviour acquisition
as a major impediment to the widespread application of the intelligent agent
paradigm. The distinguishing feature of the paradigm is that an agent can
have autonomy over its execution, i.e. an intelligent agent has the ability to
determine how it should respond to requests for its services. This is contrasted
with the object paradigm, where there is no notion of autonomy and objects
directly invoke the services that they require from other objects. Depending
on the application, acquiring the behaviours necessary to achieve the required
degree of autonomous operation can be a major undertaking. The problem can
be likened to the knowledge acquisition bottleneck that beset the expert sys-
tems of the 1980s. Thus, there is a need for principled approaches to behaviour
acquisition, particularly when agents are to be deployed in behaviour-rich
applications such as enterprise management. Cognitive Work Analysis has
shown promise in this regard, but further studies are required.

Alternatively, the requirement for autonomous operation can be weak-
ened and a requirement for human interaction introduced. Rather than having
purely agent-based applications, cooperative applications involving teams of
agents and humans could be developed. Agent-based advisory systems can be
seen as a special case of cooperative applications, but we see the interaction
operating in both directions, i.e. the agent advises the human, but the human
also directs and influences the reasoning processes of the agent. Existing archi-
tectures provide little in the way of support for this two-way interaction. Such
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interactions require that the goals and intentions of both the human and the
agent are explicitly represented and accessible, as well as the beliefs that they
have relating to the situation. This approach provides a convenient way to
address the difficulties associated with behaviour acquisition associated with
autonomous operation. By making the agent’s longer term goals and inten-
tions visible, as well as the rationale behind its immediate recommendation,
this approach also provides a mechanism for building trust between humans
and agents. It should also be noted that in many applications, such as cockpit
automation and military decision making, full autonomy is not desirable; an
agent can provide advice, but a human must actually make the decision. In
these cases, we expect to see an increasing number of applications designed
specifically for human teams, agent teams or a combination of both.

Learning has an important role to play in both cooperative and autonomous
systems. However, the reality is that learning is extremely difficult to achieve
in a general and efficient way, particularly when dealing with behaviours. The
alternative is to provide the agent with predefined behaviours based on à pri-
ori knowledge of the system and modified manually from experience gained
with the system. This has worked well in practice and we expect that it will
remain the status quo for the immediate future.

In summary, we expect that intelligent agents will retain their architectural
foundations but that the availability of more appropriate reasoning models
and better design methodologies will see them increasingly used in mainstream
software development. Furthermore, better support for human-agent teams
will provide the impetus for the development of a new class of intelligent
decision support applications (Tweedale et al. 2007).
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