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Summary. This chapter describes an intelligent soft computing based approach
to layout decision analysis and design. The solution methodology involves the use
of heuristics, metaheuristics, human intuition as well as soft computing tools like
artificial neural networks, fuzzy logic, and expert systems. The research framework
and prototype contribute to the field of intelligent decision making in layout analysis
and design by enabling explicit representation of experts’ knowledge, formal model-
ing of fuzzy user preferences, and swift generation/manipulation of superior layout
alternatives to facilitate the cognitive, ergonomic, and economic efficiency of layout
designers.

12.1 Introduction

The Layout Design (LD) process is geared towards seeking some superior out-
come in the spatial arrangement of modules in a given space while satisfying
a set of given preferences and constraints. A generic approach to the LD prob-
lem is to treat it as an oriented and orthogonal two-dimensional rectangular
packing problem (2D-BPP). In this problem, n rectangular modules of length
Li and width Wi (i = 1 , 2 , . . . , n) are to be packed on a large rectangular
packing space of length Lo and width Wo without overlaps and within the
boundary constraints (Dyckhoff 1990, Garey and Johnson 1979). Each mod-
ule i is of fixed orientation and must be packed with its edges parallel to the
edges of rectangular packing space. Each module i is associated with a utility
ui and the objective is to maximize the total utility of the packing pattern.
This problem is relevant to various facilities planning, cutting, packing, stor-
ing, transporting, scheduling, and resource allocation functions of businesses
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(Islier 1998, Lodi et al. 2002, Martens 2004). Only in facilities planning area,
US businesses spend about a trillion dollars in new facilities annually and their
layouts directly affect more than 20% of the operating costs (Ahmad 2005).
Thus, the research efforts in improving the efficiency and efficacy of tools for
layout decision analysts and decision-makers are imperative and ongoing.

The LD is a tedious process that calls for sophisticated decision analy-
sis and design support. The existing solution approaches largely employ very
rigid and overly simplistic design algorithms and guidelines, largely without an
elaborate methodology for their utilization. Nevertheless, the complex, subjec-
tive, uncertain, and evolving nature of layout design preferences and fitness
objectives means that the synergistic use of available modeling and design
tools as well as an expertise in tradeoffs lies at the heart of any layout design
and analysis process. Consequently, any good automated layout design system
should be flexible and robust enough to facilitate adaptation to the evolving
scenarios as well as incorporation of cognitive and sub-cognitive expertise of
domain experts. However, most traditional approaches to the LD problem
lack the requisite flexibility, efficacy, and robustness, as discussed in detail
in the subsequent sections (Abdinnour-Helm and Hadley 2000, Ahmad 2005,
Badiru and Arif 1996, Osman et al. 2003). The situation is further complicated
by the high cognitive overhead encountered by layout designers in acquiring,
remembering, understanding, and applying the vast body of subjective and
uncertain information/preferences available to them.

Recent developments in the field of intelligent systems have rendered
powerful soft computing tools for tackling with such complex and uncertain
problems as layout design. Such alternatives include an array of emerging com-
puting disciplines such as Decision Support Systems, Expert Systems, Fuzzy
Logic, Neural Networks, Genetic Algorithms, and hybrids like Neuro-Fuzzy-
Genetic systems (Ahmad 2005, Karray and De Silva 2004). These technologies
share the common denominator in their digression from classical reasoning
and modeling approaches through a set of more flexible computing tools
(Negnevitsky 2002). Such approaches are gaining favor in modeling cogni-
tion and intelligent systems, as the underlying procedures are most analogous
to human reasoning (Ahmad 2002, Akoumianakis et al. 2000, Zadeh 1999).
Such technologies have demonstrated the power and philosophy to solve com-
plex and ill-defined problems, offering significant potential in dealing with the
LD problem.

In this chapter, a promising research framework for an Intelligent System
for Decision Support and Expert Analysis in Layout Design (IdeaL) is pre-
sented. The research framework is aimed at addressing some of the major
issues involved in using the sub-cognitive, subjective, and fuzzy design pre-
ferences as a key to enhancing productivity of layout designers. Instead of
pursuing some perfect methods, our emphasis is on the development of a
generic research paradigm and a tool that could be used in furthering the
research in layout planning by supplementing the knowledge, experience, and
design intuition of layout planners. Our approach involves tackling various
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important aspects of the problem through a synergistic utilization of some
promising soft computing techniques, advanced heuristics, and metaheuristics.

The rest of the chapter is organized as follows. Section 12.1 provides moti-
vation for our research. Section 12.2 presents a brief literature review of some
relevant faculties and their significance in this research. Section 12.3 provides
an overview of traditional approaches to the LD problem. Section 12.4 provides
a survey of intelligent and knowledge-based approaches to the LD problem.
Section 12.5 delineates the proposed solution paradigm and its various major
constituents. Section 12.6 outlines results of some case studies undertaken
to test the effectiveness of the proposed paradigm. Section 12.7 lists some
promising research directions. Section 12.8 concludes the chapter.

12.2 Literature Survey

The diverse scope of the LD problem means that a substantial literature is
available in a variety of work domains (Abdinnour-Helm and Hadley 2000,
Ahmad 2005, Akoumianakis et al. 2000, Burke et al. 2004, Karray et al. 2000,
Tompkins et al. 2002, Youssef et al. 2003). This problem has been variously
referred to as topology optimization (Mir and Imam 1992), block placement
(Ahmad 2005), macro cell placement or VLSI layout design (Schnecke and
Vonberger 1997), layout optimization (Cohoon et al. 1991), facilities layout
(Tam et al. 2002), plant layout or machine layout (Hassan and Hogg 1994),
bin-packing (Jakobs 1996), partitioning (Moon and Kim 1998), etc. However,
we may classify LD problems into four major application categories including
Facilities LD, Circuit LD, User Interface LD, and Cutting/Packing. A brief
description of the significance and prevalence of the LD problem within these
contexts is provided here.

In facilities LD, various activities and components are allocated spaces
in the given periphery (Abdinnour-Helm and Hadley 2000). The resulting
layout of facility establishes the physical relationship among activities and
their objectives (Badiru and Arif 1996, Welgama et al. 1995). It may also
have profound effects on such relatively intangible matters as environment
and safety. Consequently, these space allocation decisions are based on vari-
ous commutation, communication, political, social, environmental, and safety
considerations (Meller and Gau 1996). Indeed, an adequately designed facil-
ity layout improves the efficiency, efficacy, productivity, and profitability of an
organization (Norman and Smith 2002). The relative permanency of outcome
and the scale of strategic investment stipulations mean more research efforts
have been dedicated to facility LD than any other LD area.

The bin-packing problem is directed at packing a greater number of items
in the smallest number of fixed size bins (Dyckhoff 1990). As such, the typical
goal is to maximize the space utilization (Kim et al. 2001). Among the several
variants of general bin-packing problem, we limit ourselves to the oriented
and orthogonal two-dimensional rectangular packing problem (2D-BPP). This
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problem provides a basis for devising a generic approach to 2-D layout design
and used for elaborating our research paradigm.

The design of VLSI microchips involves several phases including functional
design, circuit design, physical design, and fabrication (Mazumder and Rud-
nick 1999). An important step in physical design is the macrocell placement
based on a range of subjective and conflicting preferences and constraints
(Moon and Kim 1998). Macrocells are the circuit components lumped together
in functional entities with connection terminals along their borders. These
terminals are connected by signal nets, along which signals or power is trans-
mitted among the various components. As such, the macrocell layout also
characterizes routes selected for the signal nets. During the macrocell place-
ment phase, an estimated amount of routing space or white space is added
between the cells.

12.2.1 Popular Approaches to Mathematical Formulations

A range of formulations for the LD problem has been proposed in the literature
and a good account of these can be found in (Ahmad 2005, Bozer and Meller
1997). The most popular of such formulations include the Quadratic Assign-
ment Problem or QAP (Bazaraa 1975), the Quadratic Set-Covering problem
or QSC (Bazaraa 1975), and the Two-Dimensional Bin-Packing Problem or
2D-BPP (Ahmad 2005).

QAP formulations deal with decisions regarding location of equal area
modules. This approach works by assigning one module to every location and
at most one module to a given location. Due to NP-Complete nature, it is
very hard to procure a verifiably optimal solution for more than 16 modules
(Meller and Gau 1996).

QSC formulation requires data on the size of each module, candidate loca-
tions of each module, and utilities of each module. QSC allows layout designers
to introduce candidate locations of each modules, which helps in eliminating
undesirable placements. It also takes the advantage of the intuition and exper-
tise of the user, while reducing computational efforts by restricting the search
space. Nevertheless, QSC requires a large number of user inputs for every
module under consideration (Bazaraa 1975, Ligget 2000).

The LD problem may also be formulated as an oriented and orthogonal
2D-BPP. It has the advantage of maintaining the integrity and the shape of
modules. Such a formulation requires minimal post-optimization processing
in comparison with other prevailing LD problem formulations. Furthermore,
it constitutes a generic approach to many LD problems (Ahmad 2005, Burke
et al. 2004, Dyckhoff 1990, Garey and Johnson 1979, Lodi et al. 2002).

Existing mathematical formulations of LD problem have substantial limi-
tations that make these formulations somewhat incompatible with most real
world applications. For instance, the QAP does not allow control over the
shape of modules in the resulting layout and QSC requires a large number
of user inputs for every module under consideration (Deb and Bhattacharyya
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2004). These mathematical models offer little practical advantage in deal-
ing with real layouts of any consequence due to the prohibitive size of the
associated mathematical program. Such core issues as ill-structured, subjec-
tive and uncertain character of the layout preferences further exacerbate the
situation (Malakooti and Tsurushima 1989). In addition, such mathematical
programs rely on crisp values of various parameters that are, presumably, mea-
sured accurately and attributed to specific dynamics of the problem (Irani and
Huang 2000, Mir and Imam 2001). In reality, such data is often available only
for some unrealistically simplified layout planning scenarios. Consequently,
these formulations are of little practical advantage when a modestly large
size problem, involving subjective and uncertain preferences, is considered.
Consequently, fast and efficient heuristics that consistently provide superior
solutions are the major focus in this area (Burke et al. 2004).

12.3 Traditional Solution Approaches

Various heuristic and analytical techniques have been published for finding
solutions to the LD problem. The heuristic techniques find solutions to the
problem mostly by treating it as a QAP (Bazaraa 1975, Wu et al. 2002). The
2-dimensional plane is discretized into a grid structure, which results in high
computational costs (Gloria et al. 1994). Other solution approaches include
tree search algorithms (Pierce and Crowston 1971), binary mixed integer-
programming (Love and Wong 1976), and network decomposition (Mak et al.
1998) etc. The NP-Hard and subjective nature of the LD problem means
that traditional hard optimization approaches do not hold much promise.
Nevertheless, a significant body of research is available in this area. Here we
briefly discuss some existing traditional approaches to the LD problem with
an emphasis on their limitations.

12.3.1 Algorithmic Approaches

Here we discuss some popular algorithmic approaches to solving layout design
problem.

The development of a layout through a Graph based approach involves
three main steps. First, developing an adjacency graph using inter-module
interactions of adjacent pairs of modules. Second, constructing the dual graph
of the adjacency graph. Third, converting the dual graph to a block layout
specifying actual shapes and areas of modules. It should be noted that the
combinatorial nature of the number of arcs in the second step makes the
problem particularly difficult to solve. It implies that some heuristics must be
employed to limit the number of arc incidents on each module. In addition,
similar to the QAP approach, even a small size problem involving non-identical
modules cannot be solved with guaranteed optimal solution. Detailed review
of such graph-search approaches and heuristics can be found in the literature
(Foulds 1995, Hassan and Hogg 1994).



326 A.-R. Ahmad et al.

Tree Search methods are more relevant to constraint satisfaction style
formulation of the LD problem (Hower 1997). Such search mechanisms incre-
mentally construct layout solutions by adding one module at a time to a
partial layout while testing for any violation of feasibility constraints. A tree
search method may employ a either breadth-first search by enumerating all
possible ways of adding a new module or depth-first search by creating a full
layout by placing all the modules sequentially (Akin et al. 1997). However,
such an approach is inherently inefficient and requires frequent backtracking
when feasibility constraints are violated, which adds to the computational
complexity (Ligget 2000).

There are various analytical techniques dealing with continuous design
space with relatively minimal computational requirements (Adya et al. 2003,
Mir and Imam (1992, 1996, 2001), Tam et al. 2002, Welgama et al. 1995).
However, analytical approaches have yet to be developed to furnish results
comparable to advanced heuristic/metaheuristic techniques. Nevertheless,
these provide more insights to the structure of the problem leading to
advanced and effective heuristics.

12.3.2 Metaheuristic Approaches

Decision-makers often resort to heuristics for dealing with difficult and uncer-
tain problems. Similarly, the NP-Hard and subjective nature of the LD
problem suggests that heuristics can be very effective in solving the problem.
Accordingly, various heuristic algorithms for solving the difficult 2D-BPP are
available in the literature (Ahmad 2005, Dowsland et al. 2002, El-Bouri et al.
1994, Hopper and Turton 2001, Jakobs 1996, Kim et al. 2001, Leung et al.
2003, Liu and Teng 1999, Lodi et al. (1999, 2002), Martens 2004). In this
regard, the importance of effectively limiting an intractable search space to
some reasonable subset of possible solution topologies cannot be overempha-
sized (Dowsland et al. 2002, Tompkins et al. 2002). Understandably, several
effective metaheuristic solution methodologies are proposed in the literature.
The core of such approaches is quite simple and involves treating the LD
problem as a packing problem by defining an ordering of modules in the
form of a sequence or permutation and a placement or decoding heuristic for
placing modules in the determined order (Ahmad 2005, Leung et al. 2003).
Recent metaheuristics that have shown good results for LD include simulated
annealing (Adya et al. 2003), genetic algorithms (Ahmad 2005, Gloria et al.
1994, Martens 2004), tabu search (Hopper and Turton 2001), random search
(Ahmad 2005, Jakobs 1996, Liu and Teng 1999), naive evolution Hopper and
Turton 2001, and hybrids (Ahmad 2005, Lee and Lee 2002). The key to these
methods generally lies in some effective means for getting out of local min-
ima. However, the speed and effectiveness of such metaheuristic approaches
are largely determined by the speed and effectiveness of decoding heuristics
(Hopper and Turton 2001).
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Earlier research on the relative performance of some of these popular meta-
heuristics in solving the LD problem, at best, provides mixed results (Hopper
and Turton 2001, Leung et al. 2003, Youssef et al. 2003). Nevertheless, some
knowledge of the merits and the demerits of these metaheuristic approaches,
within the context of the LD problem, could result in a more judicious selec-
tion of optimization method. Consequently, here we discuss some merits and
demerits to provide some insights to these popular metaheuristics.

Genetic Algorithms (GA) are primarily used due to the non-deterministic
and global optimization approach that has the potential to provide several
near optimal and diverse layout alternatives (Ahmad et al. 2006, Youssef et al.
2003). GA allow incorporation of domain-specific knowledge into the fitness
of individual solutions as well as in genetic selections and operations (Youssef
et al. 2003). Moreover, GA creates a population of optimized solutions.

GA have been applied to the LD problem in various ways. However, much
of the research deals with relatively simple problems requiring assignment of
identical modules to given locations. Comparative studies of GA with other
metaheuristics show superiority of GA in LD (Hopper and Turton 2001). As
such, GA provide a very promising approach for LD through generation of a
diverse set of superior alternatives (Ahmad 2005, Lee and Lee 2002, Martens
2004, Moon and Kim 1998). Further advantages of GA within the context of
LD are discussed in Sect. 12.5.1.

Simulated Annealing (SA) is a well-known, high-performance, and effective
stochastic optimization technique for combinatorial problems (Mir and Imam
2001, Tam et al. 2002). Any domain specific knowledge is incorporated mainly
in the SA cost function (Youssef et al. 2003). SA starts with a random solu-
tion and makes incremental refinements by moving genes from their current
location to new locations, generating new solutions. Moves that decrease the
cost are accepted while moves that increase the cost are also accepted with
a probability that decreases exponentially with time. Thus, it avoids being
trapped in a local optimum by accepting inferior solutions, too.

SA is known to be a stable metaheuristic approach capable of finding a
global optimal solution (Youssef et al. 2003). However, SA is generally very
slow to converge to good solutions when compared to GA. SA may provide
solutions to an LD problem that is comparable to or marginally better than
GA (Hopper and Turton 2001, Youssef et al. 2003). The downside is that SA
operates on only one solution at a time and has a meager history or memory
for learning from past explorations. In short, SA can be characterized as a
serial algorithm that is not easily amenable to parallel processing without
significant communications overhead. Another implication is the production
of closely related solutions, eluding the requirement of having both superior
and diverse layout alternatives (Ahmad 2005).

Tabu Search (TS) is another successful, effective, and robust metaheuris-
tic approach for solving complex combinatorial and continuous optimization
problems. In a generic sense, TS is an iterative procedure that starts from
some initial feasible solution and attempts to determine a better solution by



328 A.-R. Ahmad et al.

making several neighborhood moves. The set of admissible solutions explored
at a particular iteration forms a candidate list and TS selects the best solution
from the candidate list.

A distinguishing feature of TS is its exploitation of an adaptive and explicit
form of memory in the shape of a tabu list, which is used to prevent back
cycling and influence the search (Youssef et al. 2003). The tabu list is analo-
gous to a window on accepted moves that permit the search beyond the points
of local optimality while making the best possible move.

Naive Evolution (NE) search is somewhat similar to GA in its basic form.
However, it employs only a mutation operator in order to generate successive
populations of solutions. Understandably, it is very easy to implement but
lacks the structured search engendered by crossover operators in GA. The
complexity and subjectivity involved in most LD applications mean that the
even NE may turn out to be an effective and efficient search strategy (Hopper
and Turton 2001).

Random Search (RS) is another naive search strategy where the ordering of
modules is generated randomly (Ahmad 2005, Ahmad et al. 2006, Hopper and
Turton 2001). Again, the subjectivity and complexity in most LD applications
mean that an RS strategy could result in quite superior outcomes. However,
the superiority of such solutions does not match to those generated by such
advanced metaheuristics as SA and GA (Youssef et al. 2003).

12.3.3 Heuristic Approaches

The combinatorial complexity of the LD problem formulations has lead
to development of various efficient heuristics, which may be used alone or
in conjunction with metaheuristics. Indeed, metaheuristics based solution
approaches to the LD problem require effective and efficient placement or
decoding heuristics for determining the physical position of modules in the
resulting layout configuration. In effect, a module placement algorithm takes
one module at a time from a sequence of modules and determines its posi-
tion in the packing space based on pre-specified steps, usually designed to
realize some local improvements in the search process (Healy et al. 1999,
Youssef et al. 2003). An efficient placement strategy that generates superior
layouts is critical for the efficacy of such an endeavor (Dowsland et al. 2002).
Here we discuss some of the most efficient, effective, and documented decod-
ing heuristics, namely Bottom-Left, Improved Bottom-Left, and Bottom-Left
Fill (Burke et al. 2004, Dowsland et al. 2002, Hopper and Turton 2001). In
Sect. 12.5.1, we provide some a new decoding heuristic and demonstrate its
efficiency and efficacy.

The Bottom-Left (BL) placement algorithm calls for placing a module at
the bottom-most and left-most feasible position through successive vertical
and horizontal movements of the module (Ahmad et al. 2006, Chazelle 1983,
Dowsland et al. 2002, Healy et al. 1999, Hopper and Turton 2001, Jakobs
1996, Liu and Teng 1999). Starting from the top-right corner of the packing
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space, each module is pushed as far as possible to the bottom and then as
far as possible to the left (Jakobs 1996). The apparent advantages of such
approaches include speed and simplicity (Dowsland et al. 2002). However, BL
tends to leave holes in the packing rendering poor space utilization.

Various improvement schemes have been proposed for the BL such as the
Improved-BL heuristic (IBL) (Liu and Teng 1999). Such improved strategies
give precedence to a shift towards the bottom and allow module rotations.
However, even these improvised strategies encounter such problems as dead-
area and inferior aesthetic contents.

The Bottom-Left Fill (BLF) placement algorithm is a more sophisticated
version of BL, attempting to fill empty spaces by placing a module into
the lowest available position and maintaining a list of candidate placement
locations. Consequently, BLF overcomes the problem of poor space utiliza-
tion. Nevertheless, the major disadvantage lies in its O(n∧3 ) time complexity
(Burke et al. 2004, Chazelle 1983, Hopper and Turton 2001).

The BL and the IBL are overly simplistic heuristics with inherent defi-
ciencies such as poor space utilization. The optimal packing configuration
may be obtained by the BL even after exhaustive enumeration (Jakobs 1996).
In addition, the BL, the IBL, and the BLF are not very effective in incorpo-
rating qualitative considerations such as the layout symmetry and aesthetics.
Further, these algorithms are more appropriate for the minimization of the
packing height. Consequently, the quest for efficient and effective module
placement strategies is an interesting and popular research direction (Burke
et al. 2004).

12.4 Intelligent and Knowledge-Based Approaches

Intelligent and knowledge-based approaches are very promising in the LD
area. Here we provide a discussion on the promise of these approaches.

12.4.1 Decision Support Systems

Incidentally, the layout design is not an exact science. Indeed, it is irrational
to expect that a specific layout would surpass all others for every evaluation
objective (Turban and Aronson 2001). Consequently, the generation of supe-
rior layout alternatives in a flexible and automated manner is critical to any
LD process (Turban and Aronson 2001). Conceivably, some DSS mechanism
could be beneficial in solving the LD problem.

Decision Support Systems (DSS) represent a class of computerized infor-
mation systems that utilize the knowledge about a specific application domain
to assist decision makers by recommending appropriate actions and strategies
(Turban and Aronson 2001). The DSS problem-solving paradigm provides a
means for assisting decision makers in retrieving, summarizing, and analyzing
decision relevant data. Consequently, it results in a reduction in the cognitive
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overload faced by the decision maker(s). Research has shown that DSS tech-
niques are useful in generating and evaluating a large number of alternative
solutions and effectively helping decision-makers in arriving at better decisions
(Turban and Aronson 2001). Some research can found in the literature that
attempts to solve the problem through the DSS paradigm. Here we describe
a couple of such systems.

Foulds (1995) describes a system called LayoutManager that is reportedly
deemed a decision support system in facilities planning. LayoutManager per-
mits users to select the layout design algorithm and other necessary starting
conditions. The problem specific data must be provided in a standard format
through a text file. Any modifications to the design parameters require direct
editing of this text file. In order to generate a layout alternative, user selects
a starting module, a graph search heuristic, and a rigid fitness metric. Fur-
ther alternatives may be generated through trial and error. The deterministic
layout design heuristics, based on graph search, do not allow diversified and
extensive search of the solution space. The LayoutManager does not provide
any means for giving users any real control over the proceedings. Furthermore,
it does not provide functionalities that would allow users to interactively make
any informed or knowledge-based interventions or even manipulations of the
layout alternatives produced by the system. In short, the system lacks the
flexibility, efficiency, efficacy, scalability, and robustness that would be logical
requisites for a DSS in LD.

Tam et al. 2002 describe a nonstructural fuzzy decision support system
(NSF-DSS) that integrates both experts’ judgment and computer decision
modeling, making it suitable for the appraisal of complicated construction
problems. The system allows assessments based on pairwise comparisons of
alternatives. However, this pairwise comparison approach is inherently inef-
ficient and requires frequent and expensive backtracking. Nevertheless, the
research reported in Tommelein 1997 provides many useful insights and future
research directions in this field.

12.4.2 Expert Systems

Incidentally, the layout design is not an exact science. Indeed, it is irrational
to expect that a specific layout would surpass all others for every evaluation
objective (Tommelein 1997). Consequently, the generation of superior layout
alternatives in a flexible and automated manner is critical to any layout plan-
ning process. Conceivably, some DSS mechanism could be beneficial in solving
the LD problem.

An Expert System (ES) is defined as an intelligent computer program that
applies reasoning methodologies or the knowledge in a specific domain to ren-
der advice or recommendations – much like a human expert (Tompkins et al.
2002) ES are usually characterized by the existence of a large repository of
knowledge for solving problems in a very constricted work domain (Malakooti
and Tsurushima 1989). Such a knowledge repository may comprise of human
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Fig. 12.1. A typical expert system

knowledge and expertise formulated as specific rules and heuristics (Jackson
1999). The distinguishing feature between ES and DSS is the separation of
knowledge and the reasoning method involved in an ES, resulting in greater
modularity in the system (Negnevitsky 2002). As such, ES afford a greater
degree of flexibility, thus making it the paradigm of choice for our research in
automating the LD process. Furthermore, ES provide explanation capability
as a mean of understanding the reasoning behind a decision.

A traditional ES is shown in Fig. 12.1. It has five basic components, namely
a Knowledge Acquisition Module, a Knowledge Base, an Inference Engine, an
Explanation Facility, and an interactive User Interface (Negnevitsky 2002).
The details about individual components and their synergy follow in Sect. 12.5
within the context of the proposed intelligent system for decision support and
expert analysis in layout design. An ES designed specifically to aid decision
makers continuously increases productivity, lowers costs, and spurs innova-
tion (Ahmad 2005). However, existing literature on the application of the ES
paradigm in LD is quite meager. In addition, such systems have considerable
shortcomings, summarized as follows.

Fisher and Nof (1984) present a FAcilities Design Expert System (FADES)
for machine LD applications. The reported prototype contains various heuris-
tics and an inferencing mechanism to select a heuristic appropriate for the
given scenario. Knowledge is represented using first-order predicate logic.
FADES can only solve small-scale problems consisting of equal size mod-
ules. Furthermore, it cannot handle conflicting preferences. Moreover, the
prohibitive computational cost means that the algorithms used in FADES
are not very efficient. Above all, it does not engender a diverse set of layout
alternatives, a key requisite in generation of LD decision alternatives.
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Kumara et al. (1988) present a machine layout design ES (IFLAPS) that
deals with the one-to-one assignment type scenarios. It employs a few simple
rules of thumb consisting of deterministic steps, which means that it neither
affords any actual optimization nor furnishes any diversity in alternatives.
IFLAPS requires a significantly high degree of user inputs and interventions
and it does not provide functionalities to modify or refine the alternative
generated by the system.

Malakooti and Tsurushima (1989) report an ES for multiple-criteria FLD
(ES-MCFL) that employs a forward chaining reasoning mechanism. Authors
argue that despite the quantitative nature of MCDM, the ability to han-
dle multiple conflicting goals might resemble experts’ cognitive treatment of
subjective and uncertain preferences. However, ES-MCFL considers only one
criterion at a time based on priority rules and does not impart the requi-
site flexibility and robustness to the system. Furthermore, it uses mostly crisp
data, crisp logic, and deterministic heuristics. In order to generate alternatives,
users are required to change the priorities and repeat the procedure. Conse-
quently, the solutions do not exhibit diversity. Further, the user interface is
not designed to permit decision-makers to manipulate and refine a given alter-
native. Moreover, the system cannot efficiently handle even modestly large
problems.

Heragu and Kusiak (1990) presents a Knowledge-based Machine Lay-
out (KBML) system that tackles one-to-one assignment type scenario. It is
claimed to be capable of solving relatively larger problems in comparison to
other KBLD systems existing at that time. It employs both quantitative and
qualitative data. However, the crisp nature of data means it cannot adequately
capture subjective and uncertain dynamics of the problem domain. Further-
more, conflicting preferences require user intervention. KBML employs various
models and algorithms, each of which is suitable to some specific scenario, with
a hope that a collection of models would cover most of the scenarios. KBML
requires manual modification in parameters to generate new feasible solutions
and may require several uninformed iterations before producing a workable
solution. Furthermore, the deterministic nature of algorithms does not afford
an adequate level of optimization and diversity in alternatives. In addition, the
computational cost of procuring a viable alternative is still quite prohibitive.

SightPlan is an ES that generates layouts for temporary facilities on
construction sites (Tommelein 1997). However, it neither provides ways to
incorporate soft constraints and preferences nor it cannot handle conflicting
preferences and requires user to manually rectify conflicts. In addition, the
layout solutions do not have any diversity, a key requirement in providing
design support to LD experts.

12.4.3 Limitations of Existing Knowledge-Based Approaches

Most existing Knowledge-based Layout Design (KBLD) systems are not very
robust and flexible, as users might want or as the state of affairs might require.
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Such lack of robustness and flexibility are a result of various factors. Here we
describe some of the more salient factors.

Scope: In general, a relatively simpler version of the one-to-one assignment
type LD scenario is tackled. Such problem formulations have some important
applications in various work domains like machine or job shop LD. However,
these formulations do not suffice for most LD domains. Consequently, the
existing systems do not seem to be effective even in modestly subjective and
complex situations.

Scalability: Existing KBLD systems may handle only small-scale problems
reasonably fast. However, even for modestly large problems, the time required
to solve the problem through these systems could be prohibitive. More general
LD scenarios require solutions for large-scale continuous space layout problems
consisting of unequal size modules with relatively little computational efforts.

Diversity of Alternatives: In general, heuristics employed for obtaining
layout solutions are deterministic in nature. In some KBLD systems, it may
involve adding a few production rules to guide the optimization search process.
Nevertheless, despite some claims to the contrary, these KBLD systems do
not present a diverse set of superior layout alternatives. Nevertheless, the
diversity in alternatives is a key ingredient in providing decision support in
such complex problem domains.

Quality of Alternatives: The quality of solution alternatives is another
core issue in layout decision analysis and design. The deterministic nature of
LD algorithms and the lack of diversity in decision alternatives mean that the
existing KBLD systems require many reruns before a satisficing layout alterna-
tive is obtained. The primary reason is the difficulty in modeling sub-cognitive
and implicit preferences as well as difficulty in quantifying the qualitative
determinants of layout fitness.

Transparency: The existing KBLD systems offer little or no explana-
tion facilities. Towards this end, simply providing the sequence of the rules
employed in reaching a decision may still be considered sufficient. However,
relating the accumulated heuristic knowledge to deeper understanding of the
domain is still elusive.

Learnability and Reusability: It should be noted that developing an ES for
such a complex problem as LD might take efforts equivalent to several scores
of person-years (Walenstein 2002). Conceivably, such gigantic and concerted
efforts are hard to justify if most system improvements and adaptations call
for significant and time-consuming additional labor from its developers (Neg-
nevitsky 2002) Consequently, there is a pressing need for developing ES that
learn and update knowledge in an automated manner. Most existing KBLD
systems do have an ability to learn from experience and user behavior.

Interactivity: The interactivity in KBLD systems would enable swift
change of rules, parameters, algorithms, priorities etc. (Ligget 2000). How-
ever, most existing KBLD systems lack user interface that affords effective and
interactive analysis and design. Apparently, the LD practitioners themselves
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designed most interfaces. Thus, these lag considerably in interactivity, usabil-
ity, and suitability to the work domain.

12.5 Proposed Intelligent Approach to Layout Design

It has been noted that the computer-based layout design algorithms could not
replace human judgment and experience, as these algorithms do not always
capture the qualitative and intelligence aspects of layout design (Tompkins
et al. 2002). Nevertheless, it is often effortless for experts to visually inspect
a layout alternative and endorse its acceptability or otherwise. Conceivably,
there are strong prospects for devising some incomplete models and intel-
ligent methods to supplement human erudition and intuition. For instance,
computerized generations of alternate layouts could provide efficacious sup-
port to the layout analyst by aptly addressing some of the complex problem
dynamics. Indeed, the possibility of significantly enhancing the productivity of
layout analyst and the quality of final solution through automated and expe-
dited production, analysis, and treatment of a large number of superior layout
alternatives has been advocated and sought since long (Bazaraa 1975). The
popular solution approaches have their strengths and weaknesses. The usual
tradeoff involved between the flexibility in incorporating the problem-specific
details and the exhaustiveness of the search in various LD optimization tools
is depicted in Fig. 12.2 [17].

In Fig. 12.2, on one end are enumerative search techniques, which are supe-
rior in terms of exhaustiveness of solution space search. However, such general
techniques incorporate very meager amount of problem-specific information
and their application is marred by the process speed and computational
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complexity. On the other end, human designers command high level of flexibil-
ity and the capability of incorporating detailed problem-specific information
into the design process. However, the cognitive and information process-
ing limitations of human designers translate into inadequate of search in
the solution space. Between these two extremes are techniques that pro-
vide various degrees of flexibility through selection of tools, algorithms, and
parameters that incorporate varying level of details in the representation of
problem-specific information and design process. Conceivably, an intelligently
formulated hybrid approach involving metaheuristics (random search), place-
ment algorithms (local search), soft computing modeling and computational
tools (approximate reasoning), and human intuition could deliver a higher
degree of flexibility and efficacy.

In short, various modeling and computational tools and heuristics could
help in characterizing possible outcomes, and the behavioral data may express
some salient points about the designers’ behavior and preferences (Ahmad
et al. 2004). In this regard, computerized decision support tools may be viewed
as a mechanism for redistribution of cognition (Welgama et al. 1995). Such
tools provide support through various means such as process distribution,
data distribution, plan distribution, etc. (Walenstein 2002).

Our research framework is based on the Expert System (ES) paradigm
for facilitating intelligent decision support in layout design. The emphasis of
this research is not on the pursuit of some perfect system but rather on the
development of a tool that could supplement the knowledge, experience, and
design intuition and other cognitive resources of human layout designer. Our
selection of ES as a research paradigm is inspired by such inherent character-
istics of an ES as the encoded knowledge, the separation of domain knowledge
from the control knowledge, the ability to reason under uncertainty, the expla-
nation facility, the knowledge acquisition capability, and the interactive user
interface. A traditional ES paradigm is shown in Fig. 12.2. However, an effi-
cient and effective means of tackling the subjectivity and uncertainty in the
layout design problem requires complementing the traditional ES paradigm
through various intelligent components. Such intelligent components would
afford effective, efficient, and robust means of capturing and utilizing sub-
jective and uncertain design preferences, while generating a diverse suite of
superior layout alternatives. Consequently, our research paradigm, as depicted
in Fig. 12.3, contains some components that are not associated with traditional
expert systems. These include an Intelligent Layout Generator (ILG), a Pre-
ference Inferencing Agent (PIA), and a Preference Discovery Agent (PDA).
It should be noted that this research framework evolved during the course of
this research as more insights are gained about the structure of the problem
at hand and the underlying dynamics.

As mentioned, an array of efficient algorithms for generating superior
and diverse layout alternatives is an important step in automating the
layout design process. We use a hybrid fuzzy-genetic Intelligent Layout Gene-
rator (ILG) towards this end. The intelligence aspect emerges from the
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employment of fuzzy rules/preferences in obtaining penalties and rewards for
some composite genetic fitness evaluation function. Accordingly, a fuzzy Pre-
ference Inferencing Agent (PIA) seems to be a rational component for such a
decision-aid tool.

As noted, the layout design rules and preferences are both implicit and
dynamic in nature. People learn new concepts and outgrow old ideas, thus
pronouncing the necessity for re-learning of design rules by layout designers.
Such an implicit and evolutionary character of preferences suggests that an
online Artificial Neural Network based Preference Discovery and Validation
Agent (PDA) could augment the overall power of the system by discov-
ering some pattern of design rules and preferences in an automated and
self-updated manner.

It should be mentioned that not all details of these components are made
explicit in this framework for parsimony sake. For instance, our PDA is
designed in a manner that it could furnish the learned knowledge in the form
of usable knowledge by creating preference profiles of decision makers. As
such, PDA would not require any explicit and separate knowledge acquisition
module. Here we provide further details of various components of IdeaL,
including their philosophy and operation.

12.5.1 Intelligent Layout Generator

We present a Genetic Algorithms (GA) based approach for building an Intel-
ligent Layout Generator (ILG) by employing various layout design heuristics,
including some new, fast, and efficacious ones. The intelligence aspect comes
from the employment of penalties/rewards or preference weights, furnished by
a Preference Inferencing Agent, in the evaluation of a genetic fitness function.
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The primary task involved in automating the LD process is to produce
superior layout alternatives for further consideration and treatment by deci-
sion makers (Akoumianakis et al. 2000, Tompkins et al. 2002). In this regard,
past studies have demonstrated that Genetic Algorithms provide a promising
search and optimization approach (Abdinnour-Helm and Hadley 2000, Ahmad
et al. 2006, Youssef et al. 2003). Our system incorporates experts’ knowledge
and user preferences in the LD process through composite fitness functions of
the ILG. This fitness function utilizes crisp preference weights furnished by
the Preference Inferencing Agent.

It should be noted that we carried out preliminary experiments with var-
ious layout design problem formulation including QAP, QSC, and 2D-BPP.
Furthermore, we employed several popular solution approaches including ana-
lytical and heuristic solution methodologies as well as such metaheuristics
based search mechanisms as GA, SA, TS, NE, and RS, etc. Our prelimi-
nary studies resulted in the selection of 2D-BPP as the formulation for this
research due to its more generic and natural characterization of the layout
design problem. In addition, we adopted GA, in conjunction with some effi-
cient placement heuristics, as a solution methodology due to its global scope
and non-deterministic search mechanism as well as potential to furnish a
diverse set of superior layout alternatives.

In short, these preliminary studies were the driving force in the selec-
tion of the approach we employed in this research. It involves hybridization
of the global search mechanism through GA and the local optimization
through deterministic placement heuristics. Indeed, our approach has some
innate characteristics, discussed later on, which are advantageous in providing
effective decision support in layout design.

Most of the existing research applies GA in solving layout problem involv-
ing identical modules to be placed at identical locations. Such a problem can
be treated as a relatively simpler one-to-one assignment of identical modules
to the given cells/locations. In relatively advanced scenarios, the size of mod-
ules is considered fixed while leaving the determination of the shape of module
to the solution procedure. Still, some advanced research work employs GA in
solving problems involving oriented modules with fixed dimensions, which are
to be placed in a two-dimensional plane. However, employing GA in such
more advanced and generic layout design scenarios requires efficient and effi-
cacious decoding or placement heuristics. Such heuristics are important in
order to generate layout alternatives in a timely fashion. Indeed, the impor-
tance of such pre-processor algorithms in terms of efficiency, efficacy, and
reliability cannot be overemphasized. Various decoding or placement heuris-
tics are available in the literature, for instance, BL (Dowsland et al. 2002,
Jakobs 1996), IBL (Liu and Teng 1999), BLF (Chazelle 1983), and DP (Leung
et al. 2003). However, there is a relative dearth of decoding algorithms that
are not only fast but also robust and effective in furnishing superior layout
alternatives with higher aesthetic contents. In order to address this shortcom-
ing, we have proposed some very effective decoding or placement heuristics.
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Details of these algorithms as well as our vision and implementation of ILG
are provided here.

12.5.2 Fitness Evaluation Metrics

As already noted, the LD problem involves such a plethora of subjective and
uncertain considerations that no single objective could solely be used to gener-
ate layout alternatives. However, automated LD systems require some fitness
quantification and evaluation mechanism in order to guide the search to supe-
rior solutions. We, therefore, propose the use of some hybrid fuzzy-genetic
fitness function that would combine multiple objectives arising from vari-
ous layout design considerations. As such, various determinants of the layout
utility are combined through some crisp weights or Significance Parameters
(SP) to penalize deviation from the desired values or Preference Parameters
(PP). These significance and preference parameters may be determined by
the layout planners or through the PIA using the existing knowledge. As
a preliminary research model, we envisaged the following major categories
of design preferences as determinants of layout fitness: Intrinsic Utility of
a module, Inter-Module Interaction, Space Utilization, and Qualitative Fit-
ness or Aesthetic Appeal. Intrinsic utility of a module is the utility a module
brings when it is included in a layout design. For simplicity sake and with-
out any loss of generalization, we ignore inherent utility of a module in our
discussions.

We consider inter-module interaction as an important determinant of lay-
out fitness. IdeaL has been equipped with functionalities for modifying these
inter-module interactions in an interaction matrix, containing the interaction
between all pairs of modules. An element of this matrix is denoted by fi,j and
represents the flow between any two modules Mi and Mj. We calculate it as
the sum of mutual distances between geometric centers of all pairs of modules
or the total Inter-Module Distances (IMD).

The space utilization is among the more popular layout design fitness
metrics and the literature proposes the Contiguous Remainder (CR) or the
‘reusable trim loss’ as a more appropriate measure of space utilization (Jakobs
1996, Liu and Teng 1999). The CR refers to the largest contiguous vacant
portion of the packing space available for further placements (Ahmad 2005,
Jakobs 1996, Liu and Teng 1999). In other words, CR is the empty area on a
bin outside the edges of the boundaries created by the packed modules in a
layout, as shown in Fig. 12.4. Conceivably, a larger value of CR implies that
more space is available for further placements.

The Contiguous Remainder can be calculated by using the following
expressions:

CR = Page Area− Total Module Area− Trapped Dead Space (12.1)
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If H and W are the height and width of the packing space and hi and wi
are the height and width of an module Mi, then:

CR = H ×W −
n∑

i=1

wihi − Trapped Dead Space (12.2)

A dual of CR is the White Space Level (WSL), which is a normalized
function and suits the GA and MCDM paradigm more than the CR and
calculated as follows:

C
�

R = WSL =
CR

n∑
i=1

wihi

× 100 (12.3)

The Trapped Dead Space is an important measure of space utilization in
itself as well as in calculation of other metrics as CR and WSL. Its calculation
however is not straightforward. An algorithm was developed for IdeaL since
no algorithm for the exact calculation of the trapped dead space or the con-
tiguous remainder was found in the published literature. IdeaL calculates the
exact dead space by detecting the trapped spaces through a digital scanning
of the packing created at any instance when a module is placed. This algo-
rithm keeps track of all areas occupied by the placed modules and thus finds
the trapped dead spaces as the areas not occupied by any module. Despite all
the subjectivity and uncertainty involved in calculating the intrinsic utility of
a module, the inter-module interaction, and the space utilization, we classify
these as quantitative measures of layout fitness. The rationale is that these
measures may be quantitatively captured in an automated or semi-automated
fashion with relative ease, given that the required data is complete and known
with certainty.

Aesthetic values are subjective measures of layout quality. Such values can-
not easily be defined in specific terms and usually depend on users’ personal
judgments. Different people may rate the perceived aesthetic appeal of a given
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layout differently. Consequently, we classify aesthetic appeal of a layout as a
qualitative measure of fitness. It should be noted that GA are also known to
be promising search strategy when fitness functions involve qualitative deci-
sion variables [10]. However, to the best of our knowledge, no earlier study
has compared computerized layout design algorithms in terms of ability to
generate solutions with higher aesthetic appeal.

12.5.3 Genetic Algorithms based Optimization

The Genetic Algorithms (GA) based approach for solving the layout design
problem requires determining several critical features including an adequate
encoding scheme, an adequate population size, an adequate set of genetic oper-
ators, an adequate fitness function, an efficient module placement strategy,
and adequate stopping criteria. It should be noted that final set of evolution
operators (selection, crossover, mutation, and replacement) and parameters
(population size, crossover rates, mutation rates, and termination criteria)
would be determined after extensive experimentations with the GA. Never-
theless, it has been argued that the effectiveness of GA methodology is largely
insensitive to the exact values of these parameters (Tate and Smith 1995).

The GA encoding scheme for the layout design is a sequence of mod-
ules similar to the one adopted by Tate and Smith (Tate and Smith 1995).
The sequence S of the module indices (or names). For example: Sequence of
Modules = S = {12 , 4 , 9 , 25 , 11 , 47 , 2 , 8 , 16 , 13 , 31 , 45 , 29 , 19 , 33 ,
5 , 19 , 7 , 34 , 50}. This example shows how a sequence of 20 modules, out
of a set of 50, to be placed in a given bin. The total length l of the sequence S
could be specified either by the expert or possibly be determined by using the
maximum number of modules that could be placed on a single bin, amount
of white space desired, etc.

We used a pre-specified and static population size P in each generation
in evolution process. The initialization step in the GA randomly generates
P sequences of modules (S1 , S2 , . . . SP ). Previous studies have shown that
a population size of 10–20 provides superior results (Tate and Smith 1995,
Jakobs 1996).

In GA, genetic evolution of population creates new layout solutions
through genetic operators (crossover and mutation of individual layouts from
previous generation). The means of performing these operations must be
defined for the layout design problem. A variety of genetic operators could
be suggested for the GA. However, we limit ourselves to genetic operators
used by Tate and Smith (1995) and Jakobs (1996) for solving layout design
problems. These constitute the most popular although only a small extract of
possible operators.

The selection operator selects individual layout solutions for genetic opera-
tions. We used the rank based selection strategy commonly known as Roulette
Wheel selection, one of the most commonly used selection strategies, which is
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biased towards selecting the fitter solutions for further evolution (Negnevitsky
2002).

In mutation, mutating a single solution generates new individuals. In the
context of layout design problem, mutation results in small changes in an
existing layout. The mutation rate is selected to be high (around 50%). The
reason is that any given chromosome contains only a small subset of the
given modules and high mutation rate would ensure that higher chances of
incorporating all or most of the modules in test solutions. Furthermore, higher
cost of placement algorithms pronounces the need of using ‘incremental’ GA.
Consequently, a higher mutation rate ensures diversity in the population of
layouts (Ahmad 2005, Jakobs 1996). The following mutation operators are
used in the ILG:

1. Tate and Smith (1995) proposed following set of mutation operator:
Reverse the subsequence of the sequence in the mutating layout solution
(random selection of the mutating solution and mutating subsequence).

2. Jakobs 1996 used the following set of mutation operator: Exchange
elements of two randomly selected layout subsequences.

3. Replace a randomly selected module with a randomly selected module.

During crossover, one or more offspring layouts are derived from two or
more parent layouts. In the context of layout design problem, crossover results
in combining parts of two existing layouts in order to generate a new layout.
The following crossover operators will be used on two parents (say Sj and Sk)
selected randomly based on their ranks in the population. Previous stud-
ies have demonstrated the success of these operators (Tate and Smith 1995,
Jakobs 1996).

1. Tate and Smith (1995) Crossover consists of following steps:
a. Fill each position in the offspring layout by randomly selecting a gene

present at the same position from the first or second parent layout
(resolving conflicts).

b. Insert leftover genes in order (or in random order) to fill in the blanks
(unresolved conflicts).

2. Jakobs (1996) Crossover consists of following steps:
a. Copy q elements of the sequence Sj at a random position p in the new

sequence Snew. It should be noted that 1 ≤ p, q ≤ n.
b. Fill up the remaining elements of Snew with other elements of Sk.

3. Append a Randomly selected subsequence from one parent to another.

Traditional GA generates P offspring layouts before sorting out the
poor ones by selection. We argue that module placement strategies are
computationally very costly. Consequently, we propose that GA sort out the
worst individual after a new offspring layout is created, regardless of the fitness
of the offspring, on an ongoing basis. As a result, ‘superior’ offspring could
influence the layout solution quality. However, such strategy pronounces the
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need for high mutation rate to ensure population diversity. An approach sim-
ilar to his one has proved to be effective and superior for the layout design
problem in (Jakobs 1996). This strategy results in a ‘steady state’ or ‘incre-
mental’ GA as opposed to a ‘generational’ GA where multiple offspring are
created to replace the current population.

The most taxing and application specific task in any particular problem
domain exploiting GA is definition of the fitness function. The fitness func-
tion is used to differentiate between a ‘good’ and a ‘poor’ layout solution.
A fitness function should be a well-thought function, as the GA will con-
verge on layout solutions deemed ‘fit’ by this fitness function. As discussed,
a layout design problem involves such a plethora of considerations that no
single objective could solely be used to generate alternate layouts. We, there-
fore, propose a genetic fitness function that combines multiple objectives in
terms of rewards/penalties arising from various layout design considerations.
The various determinants of layout utility are combined through some crisp
weights or preference parameters.

We terminated the GA when the improvement in the fitness of new popu-
lation over the preceding population is less than a certain value (say 0.1% or
so) or after a certain number of Generations. However, the user would finalize
this criterion after performing some focused experimentations with GA.

12.5.4 Proposed Decoding Heuristic

As discussed in Sect. 12.3, existing decoding algorithms lack the requisite
efficiency and efficacy. Such shortcomings are more pronounced when layout
evaluation criteria include such aesthetic values. In this section, we outline a
new, efficient, efficacious, and robust placement algorithms developed for con-
structing the actual layouts with higher aesthetic contents [3]. The placement
algorithm works with an ordering of modules obtained through some non-
deterministic and evolutionary metaheuristic-based approach, which is GA in
case of IdeaL. The new module placement algorithm is inspired by the fact
that for any given packing space the number of modules at hand for place-
ment is a small integer. Moreover, if we confine our placement possibilities only
to the corners of ‘in-place’ modules then for a particular module there exist
at most O(n) possible locations. Accordingly, the combinatorial complexity
should not pose a significant problem if some intelligent and fast pseudo-
exhaustive exploration is carried out in a hierarchical manner for enhancing
the space utilization and the layout quality. The primary motivation in our
quest for improved heuristics was our desire to generate layouts with both
higher aesthetic contents and better space utilization. Consequently, we were
willing to make a tradeoff in speed in order to get improved quality. Never-
theless, comparative studies have shown that the proposed algorithm is more
efficient in the metaheuristic-based layout optimization than other existing
heuristics.
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We call the proposed placement algorithm as Minimization of Enclosing
Rectangle Area (MERA). The name is inspired by the underlying notion where
a reduction of the rectangular area of the packing pattern, called Area of
Enclosing Rectangle or AER, is sought during all placement decisions with
a bias term favoring lower placements. The optimization part in the place-
ment strategy is not an extensive or expensive optimization but a sort of a
heuristic refinement – a pseudo-exhaustive search. Such a hierarchical opti-
mization scheme facilitates improvement in space utilization as well as quality
of layouts. It should be noted that IdeaL also contains several intelligent
adaptations of MERA to provide greater flexibility and power to the user.

The algorithm (Ahmad et al. 2006) proceeds by investigating the place-
ment prospects for all four corners of an in-coming module at all four corners
of all in-place modules seeking to find the minimum value of the composite
objective function that includes a bias in favor of placement at the bottom-
left position in the layout, which is a general packing preference in various
placement heuristics or LD contexts such as bin-packing.

In MERA, each in-coming module can be placed at a maximum of 16(i−1)
corner points (a very weak upper bound) where i−1 modules are previously in
place. As such, theoretically the MERA algorithm also has the same O(n∧2 )
cost as for BL and IBL (Jakobs 1996, Liu and Teng 1999). Moreover, some
increase in the computational complexity is considered quite rational if sig-
nificant improvements in terms of both quantitative and qualitative fitness
metrics are realized, as demonstrated by the comparative analyses.

12.5.5 Comparative Evaluation of Decoding Heuristics

In order to test and validate the efficiency, efficacy, and robustness of our place-
ment algorithms in producing layout of higher aesthetic contents, we employed
both automated capturing of quantitative measures as well as visual evalua-
tions by experts in layout design. We employed some randomly generated and
some benchmark problems from the literature for our studies.

A computer program was written in Visual BASIC to implement the
BL, IBL, BLF, MERA, and the GA based optimization component including
various fitness evaluation functions. The computer program is used for com-
parative analyses on Intel Xeon 3.06GHz processor with 256MB RAM under
Windows XP.

Apart from quantitative analyses based on contiguous remainder and
inter-module distances, three facility layout design researchers and practi-
tioners were asked to provide subjective rating of some layout alternatives in
terms of symmetry. These experts have decades long experience in teaching,
researching, and practicing in layout design applications. These experts had
no knowledge of the algorithm/method used for generating these alternatives.
Furthermore, they did not have any indication of fitness metrics/values used
by us. In addition, these experts were under no time constraint for furnish-
ing their ratings. All three experts have decades long experience in teaching,
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researching, and practicing in layout design applications. These ratings were
on a scale of 1–10 with a higher score representing higher aesthetic value per-
ceived by the expert. We want to emphasize that a layout quality rating of
10 represents a highly symmetric layout configuration, which usually cannot
be achieved for problems consisting of randomly generated unequal modules
or when modules dimensions have high variability. Consequently, we found
that a Layout Quality rating of around 5 implies that the layout alternative
is quite superior for the given problem.

We used several benchmark problems from the literature for our com-
parative studies. We initially employed a Random Search approach for our
comparative studies by generating 100 random sequences of modules. As
already mentioned, Random Search and Naive Evolution are among the most
effective search strategies, though not at par with GA or SA, for layout design
problems. The relative performance of the BL, IBL, BLF, and MERA place-
ment strategies for 100 random sequences of each benchmark problem instance
is discussed in (Ahmad et al. 2006). Results have shown that MERA out-
performs the existing algorithms by wide margins. The proposed algorithm
generate superior outcomes in terms of the Contiguous Remainder CR (the
higher the better), the Inter-Module Distances or IMD (the lower the better)
and the layout Quality Rating QR (the higher the better). The performance
gains are more pronounced for larger problems. This superior performance
can be shown as statistically significant using means and standard deviations.

We also employed GA based metaheuristic search in our comparison. The
average of ten GA runs for the 100-module problem with a population size of
50, a mutation rate of 0.8, and a crossover rate of 0.2 is shown in Table 12.1. It
can be seen that MERA outperforms the existing algorithms by wide margins.

Table 12.1. Comparison of Decoding Heuristics with GA search

Objective Tech. Best Fitness
(% difference from optimal)

CR BL + GA 3432 (−31.4%)
(Optimal = 5,000) IBL + GA 3905 (−21.9%)
The Higher the Better BLF + GA 4235 (−11.3%)

MERA + GA 4709 (−5.8%)

IMD BL + GA 553459.5 (+1.7%)
(Reference = 536,000) IBL + GA 521419.6 (+7.4%)
The Lower the Better BLF + GA 483010.3 (+14.2%)

MERA + GA 450759.9 (+19.9%)

QR BL + GA 1.5
(Ideal = 10) IBL + GA 1.75
The Higher the Better BLF + GA 3.5

MERA + GA 5.25
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12.5.6 Fuzzy Preference Inferencing Agent

Here we provide details about modeling of, and inferencing from, subjective
and uncertain preferences as well as the design, implementation, and working
of the Preference Inferencing Agent.

The brain of any ES is an Inference Engine that contains general algo-
rithms capable of manipulating, and reasoning about, the knowledge stored
in the knowledge base for solving problems by devising conclusions (Turban
and Aronson 2001). The inference engine in an ES is kept separate from the
domain knowledge and is largely domain-independent.

A major problem in building intelligent systems is the extraction of know-
ledge from human experts who think in an imprecise or fuzzy manner. The
same is true with the layout design problem where the knowledge associated
with the layout decision analysis and design is usually imprecise, incomplete,
inconsistent and uncertain. In the scope of our research, the term imprecision
refers to values that cannot be measured accurately or are vaguely defined.
Likewise, incompleteness implies the unavailability of some or all of the val-
ues of an attribute, inconsistency signifies the difference or even conflict in
the knowledge elicited from experts, and uncertainty suggests the subjectivity
involved in estimating the value or validity of a fact or rule.

The inherently vague, differing, and conflicting nature of most LD guide-
lines and rules renders fuzzy technology an excellent candidate for modeling
the system dynamics as well as implementation of the inference engine. Indeed,
FL provides a means to work with these imprecise terms and has been success-
fully employed for automated reasoning in expert systems in various subjective
and uncertain work-domains. However, little effort has been done in formal-
izing such an application of fuzzy logic in LD systems. Nevertheless, an FL
based Preference Inferencing Agent seems to be an important component in
any LD decision aid tool (Ahmad 2002, 2005, Karray et al. 2000, Raoot and
Rakshit 1993).

As such, the underlying concept in IdeaL’s inferencing uses a Preference
Inferencing Agent (PIA) comprising of fuzzy sets, rules and preferences for
obtaining penalties and rewards in the layout fitness evaluation function for
ranking and comparison purposes as well as for the automatic generation of
layouts. The potential for utilizing FL arises from the fact that it provides
a very natural representation of human conceptualization and partial match-
ing. Indeed, the human decision-making process inherently relies on common
sense as well as the use of vague and ambiguous terms. FL provides means
for working with such ambiguous and uncertain terms (Negnevitsky 2002).
Consequently, an FL based PIA is expected to deliver much of the flexibility
in the automated LD process that the LD practitioners have always longed
for. As such, we deem PIA as one of the core components, along with ILG, in
tackling and automating the LD process as well as in furthering the research
in this important area. Further details of our vision and realization of the PIA
are given in Sect. 12.5.1.
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The core concept involves employing a PIA comprising of fuzzy sets, rules,
and preferences in obtaining penalties and rewards for the hybrid fitness eval-
uation functions as well as various critical parameters for ILG and PDA.
The primary benefit of fuzzy rule-based system is that its functioning mimic
more of human expert rules. The traditional rigid and myopic fitness func-
tions do not serve well in such complex, subjective, and uncertain problem
domains as layout design. Indeed, multi-criteria fitness functions are deemed
more appropriate for automatic generation, evaluation, and comparison of lay-
out alternatives. However, IdeaL has provisions for decision-maker to specify
Significance Parameter (SP) and Preference Parameter (PP) in both crisp
and fuzzy manner, thereby increasing the flexibility and the ease with which
decision-makers may creatively adapt their preferences.

Fuzzy-Normalized Weighted Sum Loss Function

Here we propose a novel approach to f-MCDM for multi-dimensional multi-
attribute decision problems, in general, and layout decision analysis, in
particular. Our approach draws from the relative simplicity of FWSM and
efficacy of relative fitness values (as in AHP). It is inspired by Taguchi’s
quality loss function where any deviation from the nominal values results in
a reduction in utility. Accordingly, our approach involves employing the nor-
malized values of principal layout fitness metrics and calculating the deviation
from some preferred nominal values. This deviation, in turn, is used to calcu-
late penalties based on the weight or significance Sκ assigned to each fitness
attribute κ. We term this approach as Fuzzy Normalized Weight-Sum Loss
Function (f-NWSLF).

Conceivably, the selection of these benchmarks for normalization in such
subjective and uncertain work domain as layout design remains a contentious
issue and constitutes an open research question. As such, the benchmarks
employed for normalizing each fitness dimension may be contended. However,
the selection of these benchmarks was made after extensive preliminary stud-
ies with a range of intuitively selected benchmarks, which revealed these as
satisficing benchmarks for our purposes.

In essence, the penalty function calculates the weighted sum of penalties,
where weights are the significance Sκ assigned to a fitness attribute κ and
penalty is the deviation of normalized fitness value f̂κ from its preferred value
Pκ. In this manner, we are combining the powers of three effective MCDM
techniques. This penalty function may be made more or less precipice using
a parameter ψ > 1. A value of ψ > 1 would result in a more precipice loss
function, whereas a value of ψ < 1 would result in relatively flat loss function.
It should be noted that if ψ is not a multiple of two then it requires the penalty
function to be absolute deviation from f̂κ. However, currently we are using
the penalty as proportional to the square of deviation (i.e. ψ = 2), as follows:
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Ff−NWSL =
p∑

κ=1

Sκ

{∣∣∣f̂κ − Pκ

∥∥∥
}ψ

It should be noted that certain parameters could have significant interac-
tion with one another affecting more than one value of crisp weights used
subsequently in the layout evaluation phase. In addition, the question of devel-
oping more effective and robust layout fitness metrics remains open for further
research in MCDM field.

Working of Preference Inferencing Agent

In order to elaborate the working of the PIA, we consider a scenario where
the small size of the packing space would not permit placement of all the
given modules in the layout configuration, a common scenario in practice. We
consider the same 100-module problem used in Sect. 12.5.1, but the reduced
size of the packing space precludes the placement of all 100 modules.

In our example, the amount of ‘white space’ and the ‘size of bin’ affect the
maximum number of ‘bin modules’ that could be placed in a single bin or pack-
ing space. This important parameter determines the efficiency and efficacy of
the whole process. For instance, it would affect the length of chromosome
chosen for a GA used in the ILG, determining the search space, dramatically
affecting the efficiency and quality of results. IT is because employing a chro-
mosome size of 100 would result in unnecessary search and slow progression
of the GA based optimization process.

In our example, we let x, y, and z (white space, bin size, and chromo-
some size respectively) be the linguistic variables; A1, A2, and A3 (small,
medium, and large) be the linguistic values determined by fuzzy sets on the
universe of discourse X (white space); B1, B2, B3 and B4 (small, medium,
large and ex-large) be the linguistic values determined by fuzzy sets on the
universe of discourse Y (bin size); C1, C2, and C3 (small, medium, and large)
be the linguistic values determined by fuzzy sets on the universe of discourse
Z (chromosome size). The membership functions for these linguistic variables
are shown in Fig. 12.7. The complete set of fuzzy rules for determining choro-
mosome size using white space and bin size is provided in Table 12.2. Our
example consists of a simple two-input and one-output scenario with the
following two fuzzy rules specified by an expert:

We used the Mamdani-style inference method, as it is the most popular
technique for capturing experts’ knowledge, (Negnevitsky 2002) Using this
technique, the crisp value for the chromosome size came out to be 27 (Ahmad
2005).

In order to evaluate the effect of the chromosome size as determined by
the PIA, we ran 1,000 iterations of the GA with chromosome sizes of 27 and
100 employing MERA as the decoding heuristic. The average time per GA
iteration with a chromosome size of 100 was 15.43 s. In contrast, the average
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Table 12.2. Fuzzy rules for determining the chromosome size

Rule 1: Rule 2:
If x is A2 (white space is medium) If x is A3 (white space is large)
Or y is B3 (bin size is large) Or y is B4 (bin size is ex-large)
Then z is C2 (chromosome size Then z is C3 (chromosome size
is medium) is large)

Bin Size
Small (B1) Medium (B2) Large (B3) Ex-Large (B4)

White Small (A1) Small Small Medium Medium
Space Medium (A2) Small Medium Medium Large

Large (A3) Medium Medium Large Large

time per GA iteration with a chromosome size of 27 was only 0.316 s. It elab-
orates how a simple adaptation of a GA parameter through fuzzy rules and
inferencing could affect the efficiency of the overall process. Furthermore, this
example illustrates how vague linguistic rules can be used to derive impor-
tant and useful crisp values. Likewise, the PIA can be used to furnish other
parameters for subsequent use. Our preliminary studies show that fuzzy logic
constitutes an effective inferencing tool in LD, providing greater flexibility,
expressive power, and ability to model vague preferences.

12.5.7 Preference Discovery and Validation Agent

The reliability and effectiveness of PIA significantly depends on the reli-
ability of preferences. The task of extracting knowledge from experts is
extremely tedious, expensive, and time consuming. In this regard, the implicit
and dynamic nature of preferences as well as efforts required for building
and updating an expert system underscore the need for automated learn-
ing. Indeed, learning is an important constituent of any intelligent system
(Negnevitsky 2002). However, a traditional ES cannot automatically learn
preferences or improve through experience. Here we describe a small-scale Pre-
ference Discovery Agent (PDA) for testing the idea of automated preference
discovery and revision in LD.

An automated learning mechanism could improve the speed and quality
of knowledge acquisition as well as effectiveness and robustness of ES. Inci-
dentally, Artificial Neural Networks (ANN) have been proposed as a leading
methodology for such data mining applications. ANN can especially be useful
in dealing with the vast amount of intangible information usually generated
in subjective and uncertain environments. The ability of ANN to learn from
historical cases or decision-makers’ interaction with layout alternatives could
automatically furnish some domain knowledge and design rules, thus eluding
tedious and expensive processes of knowledge acquisition, validation and revi-
sion. Consequently, the integration of ANN with ES could enable the system
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to solve tasks that are not amenable to solution by traditional approaches
(Negnevitsky 2002).

Fortunately, the layout design problem renders itself to automatic learn-
ing of non-quantifiable and dynamic design rules from both superior layout
designs and test cases. Furthermore, it is possible to automatically learn
some decision-makers’ preferences from their evaluation and manipulation of
accepted or highly ranked layouts using some online ANN based validation
agent. However, in the absence of fully functional core components like ILG
and PIA, which would exploit the layout design preferences, an effective PDA
could not be developed and tested. Consequently, we have given PDA a lower
priority in developing IdeaL. Nevertheless, here we provide design and imple-
mentation of a small-scale prototype of PDA for demonstrating the viability of
concept. In future, we intend enhance capabilities of our PDA and to employ
Reinforcement Learning technology to complement ANN through incremental
learning.

In order to test our concept, we used well-known Multi-Layer Perceptron
Network (MLP). We employed a Feed Forward Multi-Perceptron ANN as we
were able to generate a modest number of instances for training and testing
reported in (Ahmad 2005). In our PDA, we used a fully connected artifi-
cial neural network with one hidden layer. The network consists of two input
neurons, three hidden neurons, and a single output neuron forming a directed
acyclic graph. The inputs to PDA consist of Module Tightness (X1) and Sym-
metry of Distribution (X2), the later one is a subjective measure of fitness and
details of which can be found in (Ahmad 2005, Mak et al. 1998). Furthermore,
the output of the PDA is the rating of the layout (Y) for the given inputs. The
number of hidden nodes in a network is critical to the network performance.
A neural network with too few hidden nodes can lead to underfitting and may
not be able to learn a complex task, while a neural network with too many
hidden nodes may cause oscillation, overlearning/memorization, and hamper
the ability for generalization (Ahmad 2005, Negnevitsky 2002). The decision
on the architecture of an ANN is typically done through a trial-and-error. We
found a hidden layer with three neurons sufficient for our purposes.

We used MATLAB to code our algorithm for training the PDA based on
the popular back-propagation supervised learning paradigm. In this paradigm,
the network can be trained by measurement data from the training set. It
propagates the errors backwards by allocating them to each neuron in accor-
dance to the amount of this error for which the neuron is responsible. The
prediction capability of the trained network can be tested for some test data.
The caveat in using the back-propagation algorithm and the MLP is that
these require a large number of training examples.

We employed the popular Mean Square Error (MSE) as a measure of per-
formance or convergence. We used a learning rate of 0.01 and programmed to
terminate the training of the network after 50,000 epochs or when Absolute
MSE goes below 0.001, whichever occurs first. We generated a random per-
mutation of training data set before proceeding to the training of the PDA.
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Fig. 12.5. Convergence of the training phase of the PDA

Furthermore, we scaled PDA inputs (X1 and X2) and target values (T) in the
[0,1] range. As such, the PDA outputs (Y) are also obtained as scaled values
in the [0,1] range. The convergence of PDA’s training is shown in Fig. 12.5,
demonstrating a sound convergence capability of the PDA. For comparison
purposes, the Pattern Error, or the difference between the target value and
the actual output for the training set of PDA, was less than 4%, indicating the
capability of PDA to learn and generalize from the given training instances.

12.5.8 Knowledge Base

Knowledge is the primary raw material in an ES (Walenstein 2002). The con-
ceptual model of the elicited knowledge is converted to a format suitable
for computer manipulation through a process called the Knowledge Rep-
resentation (Negnevitsky 2002). The processes of knowledge elicitation and
representation are not necessarily sequential. Typically, knowledge elicitation
continues throughout the lifecycle of the system development and its usage as
knowledge may be incomplete, inaccurate, and evolutionary in nature.

The knowledge of IdeaL consists of facts and heuristics or algorithms.
It also contains the relevant domain specific and control knowledge essen-
tial for comprehending, formulating, and solving problems. There are various
ways of storing and retrieving preferences/rules including ‘If-Then’ produc-
tion rules. Representing knowledge in the form of such traditional production
rules enhances the modularity of the system and prompted us to adopt this
approach. However, conventional logic based representation does not allow
simple addition of new decision rules to the ES without any mechanism for
resolving conflicts, thus resulting in inflexibilities that are not conducive to
automated LD systems. This furnished another reason for our choice of fuzzy
logic modeling preferences and building the inference engine for IdeaL.
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12.5.9 Knowledge Acquisition Module

Knowledge acquisition is the accumulation, transmission, and transformation
of problem solving expertise from experts or knowledge repositories to a com-
puter program for the creation and expansion of the knowledge base (Turban
and Aronson 2001). It should be noted that knowledge acquisition is a major
bottleneck in the development of an ES (Jackson 1999). It is primarily due
to mental activities happening at the sub-cognitive level that are difficult
to verbalize, capture, or even become cognizant of, while employing the usual
cognitive approach of knowledge acquisition from experts (Negnevitsky 2002).
Consequently, the task of extracting knowledge from an expert is extremely
tedious and time consuming. It is estimated that knowledge elicitation through
interviews generate between two and five usable rules per day (Jackson 1999).

Knowledge could be derived from domain experts, the existing knowledge,
as well as through some automated machine learning mechanism. We intend
to formulate our PDA in a manner that could provide knowledge about user
preferences in a form readily usable by ILG and PIA. However, the automated
knowledge acquisition has not been tackled rigorously in this research.

12.5.10 Explanation Facility

The ability to trace responsibility for conclusions to their sources is crucial to
transfer of expertise, problem solving, and acceptance of proposed solutions
(Turban and Aronson 2001). The explanation unit could trace such responsi-
bility and explain the behavior of the ES by interactively answering questions.
For instance, an explanation facility enables a user to determine why a piece
of information is needed or how conclusions are obtained.

Explanation Facilities are vital from both system development and mar-
keting perspectives. These facilitate both debugging of the knowledge base as
well as user acceptance and adoption. Such facilities may include user input
help facility, design process information, and interrogation facilities. In its
simplest form, an explanation facility could furnish the sequence of rules that
were fired in reaching a certain decision. Indeed, the capability of an expert
system to explain the reasoning behind its recommendations is one of the
main reasons in choosing this paradigm over other intelligent approaches for
the implementation of our concept.

Once again, a well-designed, interactive, and effective user interface is
an important ingredient in enabling a good explanation facility. In addition,
incorporation of effective explanation capabilities is elusive without conduct-
ing a meticulously designed empirical study with actual users. However, such
an extensive study is beyond the scope of this research. However, IdeaL
contains a basic explanation capability through which experts can trace the
sequence of rules that are used in arriving at certain conclusions. In the future,
we intend to augment this explanation capability with even more informative
and effective techniques.
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12.5.11 User Interface

The user interface (UI) defines the way in which an ES interacts with the
user, the environment, and such related systems as databases. The need for
an interactive and user-friendly UI cannot be overemphasized and it is deemed
to be an important factor in rendering the system easy to learn and easy to use.
Indeed, “the interface is critical to the success of any information system, since
to the end-user the interface is the system” (Healy et al. 1999). Furthermore,
research has shown that interface aesthetics as well as interactivity perform
a larger role in users’ attitudes than users would admit (Ngo et al. 2001). As
such, the perceived usefulness of the interface, or users perception about the
usefulness of the interface in a given work domain, plays an implicit role in
longer-term user acceptance and performance (Ngo.and Law 2003, Schnecke
and Vonberger 1997). Accordingly, we strive for an interactive graphical user
interface (GUI) for IdeaL.

Our GUI has the capability to accept input for the layout design from data
files saved in text, csv, or Excel format (e.g. dimensions of packing space and
modules as well as other parameters). It also has the provision for manual
data entry or overriding of preferences from decision makers. Moreover, it
enables fast and easy as well as informed and interactive manipulation of
layout alternatives by the decision-maker. Some snapshots of Experts’ User
Interface and Knowledge Acquisition Modules as well as the prototype of end
user interface are included in Figs. 12.6 and 12.7 for reference purposes. Details
regarding the UI can be found in (Ahmad 2005).

Fig. 12.6. User interface for developers (Normal view)
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Fig. 12.7. User interface for layout designers

Incidentally, our interface is still evolving. It is because IdeaL is still in
the development stage and most of its existing functionalities are designed
for developers. Consequently, some of its modules contain a higher degree of
complexity to meet ecological requirements of system developers and experts.
Indeed, experts operating in complex and dynamic decision-making ecolo-
gies prefer to have interfaces that are more complex, nevertheless, powerful
(Burns and Hajdukiewicz 2004). However, a prototype of an end-user interface
has been developed, and tested, using the philosophy of Ecological Inter-
face Design and various usability and Human-Computer Interaction guidelines
(Ahmad 2004). We employed a combination of digital and analog displays for
increasing the interface efficacy. Further, our design affords information about
the context through various textual, graphical, analogical, and iconic refer-
ences. Such an interactive interface could become the single most important
factor to the eventual success of IdeaL.

Nevertheless, we intend to enhance the usability and interactivity of the
interface in the near future. For instance, we could have a window showing one
layout and another window showing the modules not included in the layout,
enabling the decision maker to move modules in and out of the layout and/or
rearrange them in the given layout while simultaneously observing changes in
the fitness metrics used to rate that layout. In another mode of interaction,
the user might be allowed to see a pair of highly ranked layouts for direct
visual comparison and manipulation while observing the changes in fitness
values in real time. Some mode of displaying contributions of various deter-
minants of fitness in multi-criteria decision analysis as well as other experts’
rating of a layout could augment both interactivity and efficacy of IdeaL.
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Indeed, IdeaL’s interface affords intervention from decision-makers into the
process of generating alternate layouts by modifying membership functions of
preferences or weights in the fitness function etc. However, as IdeaL contin-
ues to evolve and remove constraints on what could be afforded in its various
modes of interaction would furnish creative ways in which they can support
decision-makers’ work.

12.5.12 Synergy of Intelligent Components

The proposed framework for IdeaL differs from a traditional ES by virtue of
various intelligent components. Consequently, we deem it appropriate to elab-
orate the philosophy and synergic potential of such intelligent components, as
these have been the primary focus of this research. This is because of our belief
that these components furnish a significant amount of realizable automation
in generating and manipulating superior layout alternatives by addressing the
core issues in building the whole system. Furthermore, these components fur-
nish a vehicle for carrying out further research in this direction. A somewhat
detailed discussion of each intelligent component of IdeaL is provided in the
following chapters.

The need for intelligent components arises from limitations of conventional
systems design techniques that typically work under the implicit assumption
of a good understanding of the process dynamics and related issues. Conven-
tional systems design techniques fall short of providing satisfactory results
for ill-defined processes operating in unpredictable and noisy environments
such as layout decision analysis and design. Consequently, the use of such
non-conventional approaches as Fuzzy Logic (FL), Artificial Neural Networks
(ANN), and Genetic Algorithms (GA) is required.

The knowledge of strengths and weaknesses of these approaches could
result in hybrid systems that mitigate limitations and produce more powerful
and robust systems (Ahmad 2005, Cordon et al. 2004, Negnevitsky 2002).
Indeed, the potential of these technologies is limited only by the imagination
of their users (Cordon et al. 2004).

Among the intelligent components of IdeaL, Intelligent Layout Generator
(ILG) generates superior layout alternatives based on pre-specified and user-
specified constraints and preferences as well as preference weights furnished by
PIA. The Preference Inferencing Agent (PIA) incorporates the soft knowledge
and reasoning mechanism in the inference engine. The Preference Discovery
Agent (PDA) complements the ILG and the PIA by automatically discovering
and refining some preferences. The proposed synergy is shown in Fig. 12.8.

In this synergy, the PIA receives fuzzy preferences and rules from var-
ious sources including domain experts, the knowledge base and the PDA.
These fuzzy preferences and rules are defuzzified by the PIA through its
inferencing mechanism, furnishing crisp weights for use in the ILG. The ILG,
in turn, generates superior layout alternatives for ranking and manipulation
by decision-makers. The layout alternatives generated by the ILG could be



12 An Intelligent Expert Systems’ Approach to Layout Decision Analysis 355

Fuzzy Rules

Preference
Inferencing

Agent

Intelligent
Layout

Generator

Preference
Discovery

Agent

Crisp Weights

Layout Alternative (s)

Expert(s)
Knowledge

Base

Expert’s
Ranking

Knowledge Update

Fig. 12.8. The Synergy of the Intelligent Components in IdeaL

validated by the user or by the PDA. Consequently, the experts’ ranking
of layout alternatives serve as learning instances for updating and refin-
ing the knowledge-base, fuzzy rules, and preferences. Incremental learning
technologies like Reinforcement Learning might prove useful here.

These intelligent components combine powers of the three main soft com-
puting technologies representing various complementary aspects of human
intelligence needed to tackle the problem at hand (Cordon et al. 2004). The
real power is extracted through the synergy of expert system with fuzzy logic,
genetic algorithms, and neural computing, which improve adaptability, robust-
ness, fault tolerance, and speed of knowledge-based systems (Ahmad 2005,
Cordon et al. 2004, Negnevitsky 2002).

We want to emphasize that these components have deliberately been
designed to have a generic character. The rationale behind this philosophy is
our belief that a generic approach is more suitable in such subjective, uncer-
tain, and dynamic problem domain as layout design that has applications in
a diverse set of work domains. Consequently, a generic approach would result
in minimal efforts from design engineer in adapting the system for various
layout design problems.

12.6 Bin-Packing Case Studies

Here, we present few test cases to demonstrate the effectiveness of IdeaL
and the proposed decision-making paradigm for layout design. Ironically,
there is not much literature available on benchmark problems that involve
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layout design using modules that are unequal in size, fixed in shape, fixed in
orientation, and involve subjectivity and uncertainty in placement preferences
(Ahmad 2004).

In order to test the viability of IdeaL, we generated several layout alter-
natives for a 25-module problem using various algorithms. This 25-module
problem was procured from a packing industry and has been included in
Sect. 12.5.7. These alternatives were given to an expert for getting subjective
ratings based on space utilization and layout symmetry as well as any possi-
ble manipulation and refinement of those layouts. The expert have more than
20 years of teaching, researching, and practicing experience in layout design
applications. The expert neither had knowledge of algorithms used to generate
these alternatives nor had any information about the fitness metrics used to
evaluate these layouts. Results of those evaluations were used in the training
of PDA, as well, as discussed in Sect. 12.5.7. Few interesting instances of this
exercise are presented here to demonstrate the efficacy of IdeaL.
Case I. The layout alternative presented in Fig. 12.9 was generated by IdeaL
and received a rating a rating of 70 out of 100 from the expert. Apparently, the
layout shown in Fig. 12.9 does not seem to be a superior outcome in terms of
symmetry or space utilization. However, once again, the higher rating by the
expert is a reflection on the fitness potential of the layout alternative following
few simple manipulations. It can be seen that the modified topology shown in
Fig. 12.10 has higher symmetry as well as space utilization.

It involved the following manipulations: move the module-5 to the bottom-
right corner of the bin; move the module-23 on top of modules 5 and 18; move
the module-11 to the right of the module-12; move modules 7, 17, and 21 on
top of module-23; shift modules 1, 4, and 8 downwards and swap position of
modules 1 and 4; move module-14 to the right of module-10. All these nine
moves took less than 2mins. to complete and naturally followed each other.

Fig. 12.9. Case I – layout alternative
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Fig. 12.10. Case I – refined layout

Fig. 12.11. Case II – layout alternative

The resultant layout subsequently received a subjective a rating of 90 out of
100 by the DM.
Case II. The layout alternative presented in Fig. 12.11 was generated by
IdeaL and received a rating a rating of 75 out of 100 from the expert. Once
again, the higher rating by the expert is a reflection on the fitness potential
of the layout alternative following few simple manipulations. It can be seen
that the modified topology shown in Fig. 12.12 has higher symmetry as well
as space utilization.

It involved the following moves: move module-21 to the right of module-
11; move module-17 on top of module-21; move modules 16 and 20 on top
of module-21; move module-1 on top of modules 17 and 22; move module-4
on top of module-1; move module-8 on top of module-4. All these six moves
took less than one and a half minute to complete and naturally followed
each other. When this resultant pattern was given to experts, it received a
subjective rating of 85 out of 100.
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Fig. 12.12. Case II – refined layout

12.7 Future Research

It is hoped that the exclusive and complementary features of various soft
computing technologies will result in a synergistic integration, providing new
insights to practitioners and theoreticians. Here we list some interesting
research directions.

12.7.1 Knowledge Base

Currently, the GA based metaheuristic search approach in IdeaL supports
layout design scenarios involving only one bin or packing space. However, the
system can be modified to support both multi-bin and undersized bin scenar-
ios. Under such scenarios, some peculiarities may transform the dynamics of
the problem and open up some interesting research venues.

In a multi-bin scenario, modules may be placed in a given number of bins,
possibly with some effect on the total utility of the layout design. For instance,
placement of a particular module on the homepage of an e-Store would have
different utility than the case where the same module is placed in one of the
subsequent pages.

In an undersized bin scenario, the size of a bin might not be adequate to
accommodate all modules. As such, only a subset of modules may be accom-
modated in a specific layout alternative. In such scenarios, the intrinsic utility
of modules as well as inter-module interaction would have more significant
role in determining the layout fitness.

12.7.2 Layout Design Heuristics

The need for efficient and effective heuristics in layout design is an ongo-
ing research area where the quest for more useful heuristics would not only
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facilitate improvements in productivity but also provide more insights to the
layout design problem. Heuristics capable of producing solutions with higher
aesthetic contents are also important in such subjective problem domains as
layout design.

In future, we want to investigate means to facilitate fuzzy placement deci-
sions, such as skipping some less promising placement steps for expediting the
design process when the hamming distance between two genes is large. For
instance, if the hamming distance between two modules in a chromosome, say
A and B, is large then there is little promise in exploring placement of module
B at the corners of module A, which are more likely to be occupied already.

12.7.3 Automated Learning

We have demonstrated that automated preference discovery is a pragmatic
strategy that offers value in face of difficulty in explicitly articulating prefe-
rences by the decision maker. The promise of automated preference discovery
provides several potential research streams. For instance, such automatically
discovered preferences need to be adjusted or refined based on users’ interac-
tions with the preliminary or intermediate alternatives. Explicitly articulating
such adjustments in learned preferences by the decision maker might not
always be a feasible or an efficient approach. As such, we also need some
mechanism to automatically update these preferences. ANN may be used in
such an incremental learning mode. However, we believe, few instances of user
interactions might not provide sufficient or efficient re-training of the ANN.
Consequently, we plan to incorporate a Reinforcement Learning (RL) mecha-
nism for automated updating and refining of preferences and test the viability
of automated preference discovery concept under dynamic scenarios.

12.8 Conclusion

In this chapter, we have described the layout design problem, its signifi-
cance and relevance, and the role intelligent systems and soft computing tools
can play in improving the efficacy and efficiency of layout design process. In
particular, we have explained the development and working of a novel intelli-
gent approach to solving this important and intricate problem. Our approach
involves the use of human intuition, heuristics, metaheuristics, and soft com-
puting tools like artificial neural networks, fuzzy logic, and expert systems. We
have explained the philosophy and synergy of the various intelligent compo-
nents of the system. This research framework and prototype contribute to the
field of intelligent decision making in layout design and analysis by enabling
explicit representation of experts’ knowledge, formal modeling of fuzzy user
preferences, as well as swift generation and effective manipulation of superior
layout alternatives. Such efforts are expected to afford efficient procurement
of superior outcomes and to facilitate the cognitive, ergonomic, and economic
efficiency of layout designers as well as future research in related areas.
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