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Summary. Microarray expression studies measure, through a hybridisation process, the
levels of genes expressed in biological samples. Knowledge gained from these studies is
deemed increasingly important due to its potential of contributing to the understanding of
fundamental questions in biology and clinical medicine. One important aspect of microarray
expression analysis is the classification of the recorded samples which poses many challenges
due to the vast number of recorded expression levels compared to the relatively small num-
bers of analysed samples. In this chapter we show how fuzzy rule-based classification can be
applied successfully to analyse gene expression data. The generated classifier consists of an
ensemble of fuzzy if-then rules which together provide a reliable and accurate classification
of the underlying data. Experimental results on several standard microarray datasets confirm
the efficacy of the approach.

8.1 Introduction

Microarray expression studies measure, through a hybridisation process, the levels
of genes expressed in biological samples. Knowledge gained from these studies is
deemed increasingly important due to its potential of contributing to the under-
standing of fundamental questions in biology and clinical medicine. Microarray
experiments can either monitor each gene several times under varying conditions
or analyse the genes in a single environment but in different types of tissue. In this
chapter we focus on the latter where one important aspect is the classification of the
recorded samples. This can be used to either categorise different types of cancerous
tissues as in [8] where different types of leukemia are identified, or to distinguish
cancerous tissue from normal tissue as done in [2] where tumor and normal colon
tissues are analysed.

One of the main challenges in classifying gene expression data is that the number
of genes is typically much higher than the number of analysed samples. Also is it not
clear which genes are important and which can be omitted without reducing the clas-
sification performance. Many pattern classification techniques have been employed
to analyse microarray data. For example, Golub et al. [8] used a weighted voting
scheme, Fort and Lambert-Lacroix [6] employed partial least squares and logistic
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regression techniques, whereas Furey et al. [7] applied support vector machines.
Dudoit et al. [5] investigated nearest neighbour classifiers, discriminant analysis,
classification trees and boosting, while Statnikov et al. [16] explored several sup-
port vector machine techniques, nearest neighbour classifiers, neural networks and
probabilistic neural networks. In several of these studies it has been found that no
one classification algorithm is performing best on all datasets (although for several
datasets SVMs seem to perform best) and that hence the exploration of several clas-
sifiers is useful. Similarly, no universally ideal gene selection method has yet been
found as several studies [14, 16] have shown.

In this chapter we apply fuzzy rule based classification concepts to the classifica-
tion of microarray expression data and show, based on a series of experiments, that
it affords good classification performance for this type of problem. Several authors
have used fuzzy logic to analyse gene expression data before. Woolf and Wang [19]
used fuzzy rules to explore the relationships between several genes of a profile while
Vinterbo et al. [18] used fuzzy rule bases to classify gene expression data. However,
Vinterbo’s method has the disadvantage that it allows only linear discrimination. Fur-
thermore, they describe each gene by only 2 fuzzy partitions (‘up’ and ‘down’) while
we also explore division into more intervals and show that by doing so increased
classification performance is possible.

8.2 Methods

While in the past fuzzy rule-based systems have been mainly applied to control
problems [17], more recently they have also been applied to pattern classification
problems. Various methods have been proposed for the automatic generation of fuzzy
if-then rules from numerical data for pattern classification [9–11] and have been
shown to work well on a variety of problem domains.

Pattern classification typically is a supervised process where, based on set of
training samples with known classifications, a classifier is derived that performs
automatic assignment to classes based on unseen data. Let us assume that our pattern
classification problem is an n-dimensional problem with C classes (in microarray
analysis C is often 2) and m given training patterns xp = (xp1,xp2, . . . ,xpn), p =
1,2, . . . ,m. Without loss of generality, we assume each attribute of the given training
patterns to be normalised into the unit interval [0,1]; that is, the pattern space is an
n-dimensional unit hypercube [0,1]n. In this study we use fuzzy if-then rules of the
following type as a base of our fuzzy rule-based classification systems:

Rule R j: If x1 is A j1 and . . . and xn is A jn

then Class Cj with CFj, j = 1,2, . . . ,N,
(8.1)

where R j is the label of the j-th fuzzy if-then rule, A j1, . . . ,A jn are antecedent fuzzy
sets on the unit interval [0,1], Cj is the consequent class (i.e. one of the C given
classes), and CFj is the grade of certainty of the fuzzy if-then rule R j. As antecedent
fuzzy sets we use triangular fuzzy sets as in Figure 8.1 where we show a partition of
the unit interval into a number of fuzzy sets.
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Fig. 8.1. Example triangular membership function (L = 3)

Our fuzzy rule-based classification system consists of N fuzzy if-then rules each
of which has a form as in Equation (8.1). There are two steps in the generation
of fuzzy if-then rules: specification of antecedent part and determination of conse-
quent class Cj and the grade of certainty CFj. The antecedent part of fuzzy if-then
rules is specified manually. Then the consequent part (i.e. consequent class and the
grade of certainty) is determined from the given training patterns [13]. In [12] it is
shown that the use of the grade of certainty in fuzzy if-then rules allows us to gener-
ate comprehensible fuzzy rule-based classification systems with high classification
performance.

8.2.1 Fuzzy Rule Generation

Let us assume that m training patterns xp = (xp1, . . . ,xpn), p = 1, . . . ,m, are given
for an n-dimensional C-class pattern classification problem. The consequent class Cj

and the grade of certainty CFj of the if-then rule are determined in the following two
steps:

1. Calculate βClass h( j) for Class h as

βClass h( j) = ∑
xp∈Class h

µ j(xp), (8.2)

where
µ j(xp) = µ j1(xp1) · . . . ·µ jn(xpn), (8.3)

and µ jn(·) is the membership function of the fuzzy set A jn. In this chapter we
use triangular fuzzy sets as in Figure 8.1.

2. Find Class ĥ that has the maximum value of βClass h( j):

βClass ĥ( j) = max
1≤k≤C

{βClass k( j)}. (8.4)

If two or more classes take the maximum value, the consequent class Cj of the
rule R j can not be determined uniquely. In this case, specify Cj as Cj = φ . If a single
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class ĥ takes the maximum value, let Cj be Class ĥ. The grade of certainty CFj is
determined as

CFj =
βClass ĥ( j)− β̄
∑h βClass h( j)

(8.5)

with

β̄ =
∑h �=ĥ βClass h( j)

C−1
. (8.6)

8.2.2 Fuzzy Reasoning

Using the rule generation procedure outlined above we can generate N fuzzy if-
then rules as in Equation (8.1). After both the consequent class Cj and the grade of
certainty CFj are determined for all N rules, a new pattern x = (x1, . . . ,xn) can be
classified by the following procedure:

1. Calculate αClass h(x) for Class h, j = 1, . . . ,C, as

αClass h(x) = max{µ j(x) ·CFj|Cj = h}, (8.7)

2. Find Class h′ that has the maximum value of αClass h(x):

αClass h′(x) = max
1≤k≤C

{αClass k(x)}. (8.8)

If two or more classes take the maximum value, then the classification of x is
rejected (i.e. x is left as an unclassifiable pattern), otherwise we assign x to Class h′.

8.2.3 Rule splitting

It is generally known that any type of rule-based system suffers from the curse of
dimensionality. That is, the number of generated rules increases exponentially with
the number of attributes involved. Our fuzzy rule-based classifier is no exception, in
particular considering that for successful classification of microarray data typically
at least a few dozens genes are selected. For example, based on the selection of
50 genes, the classifier would generate 250 = 1.1259 ∗ 1015 rules even if we only
partition each axis into two which is clearly prohibitive both in terms of storage
requirements and computational complexity. We therefore apply a rule splitting step
and limit the number of attributes in a fuzzy if-then rule to 2. As the number of

combinations of attribute pairs is

(
50
2

)
= 1225 for 50 genes and as for two fuzzy

sets for each attribute 22 = 4 rules are necessary in total we need only 4 ∗ 1225 =
4900 rules, a significantly lower number than 250. Of course, techniques can be
employed to further decrease this number; although we refrained from it in our
experiments a rule pruning step similar to the one outlined in [18] can be applied
to arrive at a smaller and more compact classifier rule base.
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8.3 Results and Discussion

Before we report on the experimental results we obtained from our classification
method we wish to point out a few important differences of our work compared to the
fuzzy classifier employed by Vinterbo et al. in [18]. The algorithm in [18] represents
a fairly simple fuzzy classification approach and provides only linear separation of
classes. That is, separate classes can be divided by a hyperplane in feature space.
In contrast, with our classifier it is also possible to perform non-linear separation.
While at the moment this might be of little effect (due to the limited size of data
samples) as has been shown in [3] with increasing sizes of datasets this could prove
useful in the near future. Furthermore, our classifier employs the concept of grade
of certainty which not only provides improved classification performance but can
also provide an additional feedback and/or a means for pattern rejection (due to
too low classification confidence). Finally, the classifier in [18] only employed 2
fuzzy partitions per gene to model up and down regulation. While this might seem
intuitive it does not necessarily afford best classification performance. In our work
we experimented with up to five partitions per attribute.

To demonstrate the usefulness and efficacy of our proposed approach we evalu-
ated our proposed method on several gene expression data sets that are commonly
used in the literature. In the following we characterise each dataset briefly:-

• Colon dataset [2]: This dataset is derived from colon biopsy samples. Expres-
sion levels for 40 tumor and 22 normal colon tissues were measured for 6500
genes using Affymetrix oligonucleotide arrays. The 2000 genes with the highest
minimal intensity across the tissues were selected. We pre-process the data fol-
lowing [5], i.e. perform a thresholding [floor of 100 and ceil of 16000] followed
by filtering [exclusion of genes with max/min < 5 and (max-min) < 500] and
log10 transformation.

• Leukemia dataset [8]: Bone marrow or peripheral blood samples were taken from
47 patients with acute lymphoblastic leukemia (ALL) and 25 patients with acute
myeloid leukemia (AML). The ALL cases can be further divided into 38 B-
cell ALL and 9 T-cell ALL samples and it is this 3-class division that we are
basing our experiments on rather than the simpler 2-class version which is more
commonly referred to in the literature. Each sample is characterised by 7129
genes whose expression levels where measured using Affymetrix oligonucleotide
arrays. The same preprocessing steps as for the Colon dataset are applied.

• Lymphoma dataset [1]: This dataset contains gene expression data of diffuse
large B-cell lymphoma (DLBCL) which is the most common subtype of non-
Hodgink’s lymphome. In total there are 47 samples of which 24 are of germinal
centre B-like and the remaining 23 of activated B-like subtype. Each sample is
described by 4026 genes, however there are many missing values. For simplicity
we removed genes with missing values from all samples.

• Ovarian dataset [15]: This data stems from experiments designed to identify
proteomic patterns in serum that distingiush ovarian cancer from non-cancer. The
proteomic patterns were obtained through mass spectroscopy and there are 91



214 G. Schaefer et al.

non-cancer and 162 ovarian cancer samples. While this is not a gene expression
dataset it shares many commonalities with such which is the reason why we have
included it in our study. The relative amplitude of the intensity at each of the
15154 molecular mass/charge (M/Z) identities was normalised against the most
and least intense values according to: NV = (V −Min)/(Max−Min) where NV
is the normalised and V is the original value while Min and Max are the minimum
and maximum intensities in the data stream [14].

Although all datasets except for the Leukemia set represent 2-class problems due
to the large number of genes involved any rule based classification system would
consist of a very large number of rules and hence represent a fairly complex process.
Also, not all genes are equally important for the classification task at hand. We there-
fore sort the significance of genes according to the BSS/WSS (the ratio of between
group to within group sum of squares) criterion used in [5] and consider only the top
50 respectively 100 genes as input for our classification problem.

In a first step we train our classifiers on all samples available and perform the
resulting classification performance. This of course provides only a partial indication
as the training data and test data are identical. We therefore perform standard leave-
one-out cross-validation where classifier training is performed on all available data
except for the sample to be classified and this process is performed for all samples 1.
Fuzzy rule based classifiers with partition sizes L between 2 and 5 partitions for each
gene were constructed following the process described in Section 8.2. To evaluate the
achieved results we also implemented nearest neighbour and CART classifiers. The
nearest neighbour classifier we employ searches through the complete training data
to identify the sample which is closest to a given test input and assigns the identified
sample’s class. CART [4] is a classical rule based classifier which builds a recursive
binary decision tree based on misclassification error of subtrees.

The results on the four datasets are given in Tables 8.1 to 8.4 where detailed
performance on training and unseen (leave-one-out) test data is shown. Given are the
number of correctly classified samples (CR), the number of incorrectly classified or
unclassified samples (FR), and the classification accuracy (Acc.), i.e. the percentage
of correctly classified samples.

Looking at the results for the Colon dataset which are given in Table 8.1, on
training data the fuzzy classifier with L = 5 and the nearest neighbour classifier both
achieve 100% classification accuracy based on 50 genes while for the case of 100
genes also the fuzzy classifier with L = 4 achieves perfect classification. More inter-
esting of course is the performance on test data, i.e. the results of the leave-one-out
cross validation we performed. Here for the case of 50 selected features the fuzzy
classifier with 3 partitions performs best with a classification accuracy of 85.48%
which corresponds to 9 incorrectly classified cases while nearest neighbour classifi-
cation and CART produce 13 and 14 errors respectively. However when selecting the
100 top genes the nearest neighbour classifier performs slightly better than the fuzzy
system. It is interesting to compare the performance of the fuzzy rule-based classifier

1 It should be noted that the top 50 respectively 100 genes were selected solely based on
the training set
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Table 8.1. Classification performance on Colon dataset given in terms of number of correctly
classified samples (CR), falsely classified or unclassified samples (FR), and classification
accuracy (Acc.). Results are given both for training data and for leave-one-out cross validation.
Experiments were performed with 50 and 100 selected genes respectively and with a varying
number L of partitions per gene. For comparison results obtained using a nearest neighbour
classifier and a rule-based CART classifier are also listed

training data test data
n classifier CR FR Acc. CR FR Acc.

50

fuzzy L = 2 55 7 88.71 50 12 80.65
fuzzy L = 3 56 6 90.32 53 9 85.48
fuzzy L = 4 59 3 95.16 52 10 83.87
fuzzy L = 5 62 0 100 48 14 77.42
nearest neighbour 62 0 100 49 13 79.03
CART 59 3 95.16 48 14 77.42

100

fuzzy L = 2 53 9 85.48 44 18 70.97
fuzzy L = 3 59 3 95.16 51 11 82.26
fuzzy L = 4 62 0 100 50 12 80.65
fuzzy L = 5 62 0 100 46 16 74.19
nearest neighbour 62 0 100 52 10 83.87
CART 60 2 96.77 45 17 72.58

Table 8.2. Classification performance on Leukemia dataset, laid out in the same fashion as
Table 8.1

training data test data
n classifier CR FR Acc. CR FR Acc.

50

fuzzy L = 2 68 4 94.44 66 6 91.67
fuzzy L = 3 71 1 98.61 68 4 94.44
fuzzy L = 4 72 0 100 67 5 93.06
fuzzy L = 5 71 1 98.61 66 6 91.67
nearest neighbour 72 0 100 70 2 97.22
CART 72 0 100 47 25 65.28

100

fuzzy L = 2 67 5 93.06 63 8 87.50
fuzzy L = 3 71 1 98.61 71 1 98.61
fuzzy L = 4 72 0 100 69 3 95.83
fuzzy L = 5 72 0 100 67 5 93.06
nearest neighbour 72 0 100 70 2 97.22
CART 72 0 100 45 27 62.50

when using different numbers of partitions for each attribute. It can be seen that on
this dataset the best performance is achieved when using 3 partitions (although on
training data alone more partitions afford better performance). In particular it can be
observed that the case with L = 2 as used in the work of Vinterbo et al. [18] produces
the worst results and hence confirms that increasing the number of fuzzy intervals as
we suggest leads to improved classification performance. However, it can also be
seen that applying too many partitions can decrease classification performance as is
apparent in the case of L = 5 on test data.
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Table 8.3. Classification performance on Lymphoma dataset, laid out in the same fashion as
Table 8.1

training data test data
n classifier CR FR Acc. CR FR Acc.

50

fuzzy L = 2 47 0 100 45 2 95.74
fuzzy L = 3 47 0 100 46 1 97.87
fuzzy L = 4 47 0 100 47 0 100
fuzzy L = 5 47 0 100 44 3 93.62
nearest neighbour 47 0 100 45 2 95.74
CART 45 2 95.74 36 11 76.60

100

fuzzy L = 2 47 0 100 44 3 93.62
fuzzy L = 3 47 0 100 44 3 93.62
fuzzy L = 4 47 0 100 44 3 93.62
fuzzy L = 5 47 0 100 39 8 82.98
nearest neighbour 47 0 100 47 0 100
CART 43 4 91.49 38 9 80.85

Table 8.4. Classification performance on Ovarian cancer dataset, laid out in the same fashion
as Table 8.1

training data test data
n classifier CR FR Acc. CR FR Acc.

50

fuzzy L = 2 224 29 88.54 224 29 88.54
fuzzy L = 3 249 4 98.42 249 4 98.42
fuzzy L = 4 251 2 99.21 249 4 98.42
fuzzy L = 5 248 5 98.02 247 6 97.63
nearest neighbour 253 0 99.60 252 1 99.60
CART 243 10 96.05 228 25 90.12

100

fuzzy L = 2 223 30 88.14 221 32 87.35
fuzzy L = 3 248 5 98.02 248 5 98.02
fuzzy L = 4 250 3 98.81 249 4 98.42
fuzzy L = 5 250 3 98.81 249 4 98.42
nearest neighbour 253 0 99.60 252 1 99.60
CART 251 2 99.21 239 14 94.47

Turning our attention to the results on the Leukemia dataset which are given in
Table 8.2 we see a similar picture. Again the worst performing fuzzy classifier is that
which uses only two partitions per gene while the best performing one as assessed by
leave-one-out cross validation is the case of L = 3. CART performs fairly poorly on
this dataset with classification accuracies on the test data reaching only about 65%
(despite perfect classification on training data) while nearest neighbour classifica-
tion performs well again confirming previous observations that despite its simplicity
nearest neighbour classifiers are well suited for gene expression classification [5].
The best classification results are achieved by the fuzzy classifier with L = 3 for the
case of 100 selected genes with a classification accuracy of 98.61% and the nearest
neighbour classifier with 97.22% for 50 selected genes.

Table 8.3 lists the results obtained from the Lymphoma dataset. Here all clas-
sifiers except CART achieve perfect classification on the training data. Perfect
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classification on test data is provided by the fuzzy classifier with L = 4 for 50
selected genes and by nearest neighbour classification based on 100 genes.

Finally, we examine the results obtained from the Ovarian dataset which are
given in Table 8.4. Here we can see that once again CART provides the poorest
classification while nearest neighbour classification achieves the best performance,
misclassifying only 1 sample for both 50 and 100 selected genes. In contrast for
the best fuzzy classifier 4 samples are misclassified or rejected which confirms pre-
vious observations that different classifiers are better suited for different datasets.
Again, the case with L = 2 achieves significantly worse results for the fuzzy classifier
compared to other partitions.

In summary we see that our fuzzy rule-based classifier provides good classifi-
cation performance on all four datasets clearly outperforming classical rule-based
classification and performing fairly similar to a nearest neighbour classifier. How-
ever, it should be noted that in our experiments the nearest neighbour classifier
always provided a prediction while for our fuzzy classifier we rejected samples
which could not uniquely classified (the false rate FR comprises both incorrectly
classified and rejected cases). By randomly classifying rejected patterns we could
have achieved improved classification accuracy, however this is not in our interest
as a random classification hardly provides any insight in the actual expression level
data. We also wish to again point out that restriction to ‘up’ and ‘down’ regulated
partitions for fuzzy classification as in [18] has a negative impact on the classifica-
tion performance. Our experiments suggest that selecting 3 or 4 fuzzy partitions for
each gene can provide much improved classification accuracy. On the other hand us-
ing too many partitions as in the cae of L = 5 can also have negative effects on the
classification performance.

8.4 Conclusions

In this chapter we proposed the application of fuzzy rule based classification for the
analysis of gene expression data. The generated classifier consists of an ensemble
of fuzzy if-then rules which together provide a reliable and accurate classification
of the underlying data. In addition the structure of our classifier has the potential
to contribute to the understanding of the underlying data as it is based on a combi-
nation of simple, human-understandable rules. Furthermore, for each classification
the grade of certainty is provided, which represents the level of confidence the sys-
tem has in the prediction of a specific sample, and which could hence be utilised in
further stages of analysis.
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