
7

Covariance-Model-Based RNA Gene Finding: Using
Dynamic Programming versus Evolutionary
Computing

Scott F. Smith

Dept. of Electrical and Computer Engineering, Boise State University, Boise, Idaho,
83725-2075, USA
sfsmith@boisestate.edu

Summary. This chapter compares the traditional dynamic programming RNA gene finding
methodolgy with an alternative evolutionary computation approach. Both methods take a set of
estimated covariance model parameters for a non-coding RNA family as given. The difference
lies in how the score of a database position with respect to the covariance model is computed.
Dynamic programming returns an exact score at the cost of very large computational resource
usage. Presently, databases are prefiltered using non-structural algorithms such as BLAST in
order to make dynamic programming search feasible. The evolutionary computing approach
allows for faster approximate search, but uses the RNA secondary structure information in the
covariance model from the start.

7.1 Introduction

The initial focus of interpreting the output of sequencing projects such as the Human
Genome Project [1] has been on annotating those portions of the genome sequences
that code for proteins. More recently, it has been recognized that many significant
regulatory and catalytic functions can be attributed to RNA transcripts that are never
translated into protein products [2]. These functional RNA (fRNA) or non-coding
RNA (ncRNA) molecules have genes which require an entirely different approach to
gene search than protein-coding genes.

Protein-coding genes are usually detected by gene finding algorithms that gener-
ically search for putative gene locations and then later classify these genes into
families. As an example, putative protein-coding genes could be identified using
the GENESCAN program [3]. Classification of these putative protein-coding genes
could then be done using profile hidden Markov models (HMMs) [4] to yield fam-
ilies of proteins (or protein domains) such as that in Pfam [5]. It is not necessary
to scan entire genomes with an HMM since a small subset of the genome has al-
ready been identified by the gene finding algorithm as possible protein-coding gene
locations. Unlike protein-coding genes, RNA genes are not associated with promoter
regions and open reading frames. As a result, direct search for RNA genes using only

S.F. Smith: Covariance-Model-Based RNA Gene Finding: Using Dynamic Programming versus Evolutionary
Computing, Studies in Computational Intelligence (SCI) 94, 183–208 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

184 S.F. Smith

generic characteristics has not been successful [6]. Instead, a combined RNA gene
finding and gene family classification is undertaken using models of a gene family
for database search over entire genomes. This has the disadvantage that RNA genes
belonging to entirely novel families will not be found, but it is the only currently
available method that works. It also means that the amount of genetic information
that needs to be processed by the combined gene finder and classifier is much larger
than for protein classifiers.

Functional RNA is made of single-stranded RNA with intramolecular base pair-
ing. Whereas protein-coding RNA transcripts (mRNA) are primarily information
carriers, functional RNA often depends on its three dimensional shape for the per-
formance of its task. This results in conservation of three dimensional structure,
but not necessarily primary sequence. The three dimensional shape of an RNA
molecule is almost entirely determined by the intramolecular base pairing pattern
of the molecule’s nucleotides. There are many examples of RNA families with very
little primary sequence homology, but very well conserved secondary structure (see
pp. 264–265 in [7]). It is very difficult to find RNA genes without taking conservation
of secondary structure into account.

Most homology search algorithms such as BLAST [8], Fasta [9], Smith-
Waterman [10], and profile HMMs only model primary sequence and are therefore
not well suited for RNA gene search. These algorithms are in the class of regular
grammars in the Chomsky hierarchy of transformational grammars [11]. In order
to capture the long-range interactions embodied in RNA secondary structure, one
needs to move up one level in the Chomsky hierarchy to a context-free grammar.
The extension of the regular-grammar-based HMM to a context-free grammar is a
covariance model (CM) [12].

The structure of covariance models and model parameter estimation from a
secondary-structure-annotated multiple alignment of a RNA gene family is the sub-
ject of the next section. The use covariance models for gene search by a specific
non-coding RNA database (Rfam) will be examined in Section 2. It will be seen that
the traditional dynamic-programming method of scoring database locations with re-
spect to a covariance model is so computationally intensive that filters are normally
first used to reduce the amount of searched database by orders of magnitude. The
advantages and drawbacks of these filters are discussed in Section 3. An alternative
to filtering is introduced in Section 4, where an evolutionary-computation CM-based
search method is shown. Finally, conclusions are drawn and discussion of work that
remains to be done is undertaken.

7.2 Review of Covariance Models for RNA Gene Finding

Covariance models can be viewed as an extension of profile hidden Markov mod-
els such that covariation in nucleotides at model positions that are widely separated
in sequence, but physically connected as base pairs is captured statistically. Profile
hidden Markov models are a specific form of hidden Markov model in which state
transitions have a unidirectional flow from the start (5’ in RNA/DNA or N-terminal

7 CM-Based RNA Gene Finding 185

in proteins) to the end (3’ in RNA/DNA or C-terminal in proteins) of the model’s
consensus sequence. Similarly, a CM has unidirectional flow state transitions, but a
more complicated connection topology. Profile hidden Markov models have five dif-
ferent types of states (start, match, insert, delete, and end). A CM has seven distinct
state types (start, match pair, match/insert left, match/insert right, delete, bifurcate,
and end). Finally, both types of models associate a group of states with each se-
quence position in the consensus sequence of the model. For the profile HMM, one
match, one insert, and one delete state is associated with each consensus position
(with possible exception of the first and/or last position). For the CM, a group of
states (called a node) is associated with each consensus based-pair of positions and
consensus unpaired position.

Both profile HMM and CM parameters are estimated from a group of nucleotide
or protein sequences know as a family. In the case of the CM, it is also necessary
to have a consensus secondary structure. This secondary structure may either be ob-
served experimentally, or predicted from the sequence. In the case of non-coding
RNA genes, prediction could be done with the Mfold [13] or RNAPredict [14] pro-
grams for example. The sequences may be either in the form of a multiple alignment
or unaligned. For clarity of exposition, it is assumed here that the sequences are
available in aligned form. In this case, the structure of the HMM or CM is deter-
mined by selecting alignment columns as either conserved or as insertion columns.
Conserved columns are associated with some form of match state in the model. The
most abundant symbol (nucleotide or amino acid) in each conserved column is taken
as the consensus symbol for that position in the consensus sequence. The consensus
sequence has length equal to the number of conserved multiple alignment columns.

7.2.1 CM Model Structure Determination

A multiple alignment that could be used to form a CM for the U12 family of non-
coding RNA genes is shown in Figure 7.1. Included in the alignment are the seven
sequences used by the Rfam database (described later) to form its CM of the family.
These sequences are called seed sequences in Rfam and the resulting model has been
used to find seven additional U12 family members. The four rows following the
seven sequences contain consensus information. These four rows show consensus
secondary structure, consensus sequence, CM node type assigned to the consensus
column, and CM model branch letter code (used for reference to Figure 7.3 below)
respectively. In the consensus structure rows, the symbol “-” indicates an unpaired
conserved column, the symbols< and > represent the left (5’-side) and right (3’-side)
halves of two base-paired conserved columns, and “.” represents a non-conserved
column. Note that there is no indication of which < column base pairs with which >
column. This is because the structure is assumed to not have any pseudoknots. If the
actual structure does have pseudoknots, then some of the base-paired columns have
to be treated as if they were not base-paired. This results in some loss of power in
the model, but the CM is not capable of representing pseudoknots and the increase
in computational complexity of a model that can handle general pseudoknots is too
high. If pseudoknots are disallowed, then the base-pairing notation is unambiguous.

186 S.F. Smith

Non-pseudoknotted structures have all base pairs such that all other base pairs are
either completely inside or completely outside of them.

Of the six types of CM nodes, three do not emit consensus symbols (S = start,
B = bifurcation, and E = end), two emit a single consensus symbol (L = left and
R = right), and one emits two consensus symbols (P = pair). Therefore, only L,
R, and P node types appear in the node type rows of Figure 7.1. L and R nodes
are associated with a single multiple alignment column. Each P node is associated
with two columns, one with secondary structure notation < and one with notation >.
The multiple alignment shown has 156 columns, 149 of which represent consensus
sequence positions. Four of the columns are assigned to R nodes, 63 to L nodes,
and 41 pairs of columns to P nodes for a total of 4 + 63 + 2*41 = 149 consensus
columns. Any time that a column could be assigned to either an L or an R node, the
L node is preferred by convention, so there are generally many more L than R nodes
in covariance models.

First, let us consider models that do not allow for insertions or deletions with
respect to the consensus sequence. Such a profile HMM in shown in Figure 7.2 and a
CM drawn at a level of detail that does not show insertion and deletion possibilities
is shown in Figure 7.3. The HMM has only match (M) states. The arrow at the top of
the figure shows that the model is written to process nucleotide sequences in the 5’
to 3’ direction. Each match state is associated with four emission probabilities, one
for each of the four possible nucleotides. The nucleotide with highest probability is
shown in parentheses inside the box for the M state and is equivalent to the consensus
symbol for the conserved column of the multiple alignment represented by the M
state. All transition probabilities is this model are equal to 1 since there is never any
transition choice.

The node structure of the CM for the U12 RNA family is shown in Figure 7.3.
The arrows pointing to the right and/or left of the R, L, and P nodes represent emis-
sion of a consensus symbol. This is a condensed version of the node structure where
the numbers next to the emission arrows indicate that there is a vertical chain of that
many nodes of identical type. The circled lower-case letters correspond to the branch
codes in Figure 7.1. The first two consensus columns in Figure 7.1 (on the 5’ end)
correspond to two L nodes near the top of Figure 7.3 and the last three consensus
columns in Figure 7.1 (on the 3’ end) correspond to three R nodes just below in
Figure 7.3. These two L nodes and three R nodes are all in branch “a”. CM node di-
agrams always take the form of a binary tree. The top node in the tree is always an S
node (called the root start node) and the bottoms of all terminal branches are always
E nodes. Branches split into two at B nodes and the two children of any B node are
always S nodes (called a left child start node and right child start node respectively).

Two of the branches in Figure 7.3 are surrounded by dashed boxes (branches
a and b). All of branch a and the top portion of branch b are shown in expanded
form in Figure 7.4. As shown by the arrows, the left side of a CM branch should
be read from top to bottom and the right side of a branch from bottom to top in
order to read consensus symbols in left-to-right multiple-alignment order (5’ to 3’
order). The a branch shows the first two consensus symbols are UG and the last
three consensus symbols are CCG. The nodes actually represent a set of emission

7 CM-Based RNA Gene Finding 187

1 .UGCCUUAAACUUAUGAGUAAGGAAAAUAACAACU......CGGGGUGAC
2 .UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAUU......CGGGGUGAC
3 .UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAUU......CGGGGUGAC
4 AUGUCUUAAACUUAUGAGUAAGGAAAAUAACGAUUGUUAUUCGGGGUGAU
5 .UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAUU......CGGGGUGAC
6 AUGCCUUAAACUUAUGAGUAAGGAAAAUAACGAUU......CGGGGUGAC
7 AUGUCUUAAACUUAUGAGUAAGGAAAAUAACGAUUGUUAUUCGGGGUGAU
.--<<<<<---------->>>>>--------<<<<......<<<<-----
.UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAUU......CGGGGUGAC
.LLPPPPPLLLLLLLLLLPPPPPLLLLLLLLPPPP......PPPPLLLLL
.aabbbbbbbbbbbbbbbbbbbbccccccccdddd......ddddddddd

1 GCCCGAGUCCUCACUACUGAUGUGAGAGGAAUUUUUGUGCGGGUACAGGU
2 GCCCGAGUCCUCACUGCUUAUGUGAGAAGAAUUUUUGAGCGGGUAUAGGU
3 GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCGGGUAAAGGU
4 GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCUGGUAAAGGU
5 GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCGGGUAAAGGU
6 GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCGGGUAAAGGU
7 GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCUGGUAAAGGU
->>>>>>>><<<<<------->>>>>-----------<<<<<<<---<<<
GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCGGGUAAAGGU
LPPPPPPPPPPPPPLLLLLLLPPPPPLLLLLLLLLLLPPPPPPPLLLPPP
dddddddddeeeeeeeeeeeeeeeeefffffffffffggggggggggggg

1 CGUCCCC.GGGUGACCCGCUUACUUCGCGGGAUGCCCAGGUGCAAUGAUCUGCCCG
2 UGCAAUCUGAGCGACCCGCCUACUUUGCGGGAUGCCUGGGUGACGCGAUCUGCCCG
3 CGCCCUCAAGGUGACCCGCCUACUUUGCGGGAUGCC....................
4 CGCCCCUAAGGUGACCAGCCUACUUUGCGGGAUGCCUAGGAGUCGCGAUCUGCCUG
5 CGCCCUCAAGGUGACCCGCCUACUUUGCGGGAUGCC....................
6 CGCCCUCAAGGUGACCCGCCUACUUUGCGGGAUGCCUGGGAGUUGCGAUCUGCCCG
7 CGCCCCUAAGGUGACCAGCCUACUUUGCGGGAUGCCUAGGAGUCGCGAUCUGCCUG
<<<<----->>>>>>>->>>>>>>--<<<<<<<<<--------->>>>>>>>>---
CGCCCUCAAGGUGACCCGCCUACUUUGCGGGAUGCCUAGGAGUCGCGAUCUGCCCG
PPPPLLLLLPPPPPPPRPPPPPPPLLPPPPPPPPPLLLLLLLLLPPPPPPPPPRRR
gggggggggggggggggggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhaaa

Fig. 7.1. U12 multiple alignment of seven seed family members

A: 0.2
C: 0.1
G: 0.2
U: 0.5

A: 0.7
C: 0.1
G: 0.1
U: 0.1

A: 0.1
C: 0.6
G: 0.2
U: 0.1

5’ 3’

M
(U)

M
(A)

M
(C)

ES

Fig. 7.2. A profile HMM with no insert or delete states

188 S.F. Smith

S
B

E
P

L
R

2
3

11

2
9 9
9

7 7
3

1
7 7
5

85 5
10

55
7

8 8
6

a

b
c

d e

f

g

h

Fig. 7.3. Condensed U12 CM node structure

S

LU

L

R

R

R

B

G

G

C

C

S

PC

P

P

P

P

C

A

A

U

LA

U

U

A

G

G

5’

3’

5’

3’

3’

5’

3’

5’
a b

Fig. 7.4. Expanded portions of U12 CM node structure

probabilities. The L node directly below the root start node emits U with highest
probability, by the probabilities of A, C, and G may be nonzero. L and R nodes have
four such match probabilities (one for each possible nucleotide) and P nodes have
sixteen probabilities (one for each possible pair of nucleotides). At the node structure
level, the CM is similar to the HMM without insert or delete states in that transitions
from a child node to a parent node happen with probability 1. At the bifurcations, the
two submodels represented by the two subtrees are simply joined as one contiguous
sequence with the left child subsequence on the left and the right child subsequence
on the right.

Profile HMMs are normally augmented with insert and delete states as shown in
Figure 7.5. The delete states (D states) are silent states that do not emit any sym-
bols. These states simply allow one or more consensus positions in the model to be

7 CM-Based RNA Gene Finding 189

A: 0.2
C: 0.1
G: 0.2
U: 0.5

A: 0.7
C: 0.1
G: 0.1
U: 0.1

A: 0.1
C: 0.6
G: 0.2
U: 0.1

5’ 3’

D D D

I I II

S
M E

(U)
M

(A)
M

(C)

Fig. 7.5. A profile HMM with insert and delete states

skipped. The deletion penalty is imposed by the normally lower transition probabil-
ities associated with the arrows to, from, and between D states as compared to the
higher transition probabilities between M states. Affine delete gap penalties are avail-
able by having higher transition probabilities on D-to-D transitions than on M-to-D
or D-to-M transitions. This allows multiple sequential deletions to be penalized less
heavily than the same number of scattered deletions. This is consistent with observed
gaps in nature and with gap penalties used in algorithms such as Smith-Waterman.
The insert states (I states) have loop arrows inside the state diamond symbols to re-
mind us that insert states always have self-loop transitions (both in HMMs and in
CMs). This allows more than one possible insertion between consensus symbols.
Affine insertion gap penalties are possible with differing self-loop and I-to-M/M-to-I
transition probabilities. Unlike constant gap initiation and gap continuation penal-
ties commonly used in algorithms such as Smith-Waterman, the gap penalties in an
HMM or CM are position specific and can be different for insertions versus deletions.
This leads to more flexibility, but also a large number of free parameters.

While it is possible to also include I-to-D and D-to-I transitions, Figure 7.5 omits
these. Direct insertion to deletion transitions are rarely observed in real data and
inclusion of these transitions just adds to the number of free parameters. The lack
of these transitions is referred to as “plan seven” in the HMMER literature [15] (a
program which estimates and scores profile HMMs). Seven refers to the number
transitions leaving the D-I-M state triple associated with a consensus model position
(including the I-state self loop). The alternative “plan nine” HMM architecture is not
as commonly used. The standard CM is equivalent to a plan nine HMM in the sense
that direct deletion to insertion transitions (and vice versa) are allowed. Investigation
of the effect of removing these transitions in the CM case do not appear to have been
undertaken to date.

190 S.F. Smith

S: S

IL IR

B: B

E: E

L: ML

IL

D R: MR

IR

D

P: ML

IL

D MR

IR

MP

Fig. 7.6. Internal state structures of CM nodes

The equivalent to adding I and D states to the HMM is to allow non-consensus
states within the nodes of the CM. Figure 7.6 shows the internal state structure of
the six types of CM nodes. Each type of node contains a consensus state plus zero to
five non-consensus states. The S, B, L, R, E, and P nodes have consensus states S, B,
ML, MR, E, and MP respectively. Emitting nodes (L, R, and P) have D (delete) states
that allow the consensus emitting state to be bypassed. The P node also contains
two states that allow only the right or left half of the consensus pair to be missing
in the database sequence. The ML state in the P node allows the right half of the
consensus pair to be absent and the MR state allows the left half to be absent. IL
and IR states allow additional database symbols to be inserted between consensus
positions. These insert states have self-loop transitions, as indicated by the circular
arrows inside the IL and IR state boxes such that any number of symbols may be
inserted. The choice of which insert states to place in which node types is done
such that there is no ambiguity as to which insert state in which node is responsible
for insertions between a given couple of sequentially adjacent consensus locations.
There are three sub-types of S nodes. The root S node has both IL and IR states. The
right child S node has only an IL state. The left child S node has no insert states.

There are two levels of states within each node. The consensus state, D state (if
present), and delete-related states (ML and MR in P nodes) are in the top level. The
bottom level contains any insert states (IL or IR) that may be present. This implies
that any insertions are added to the database sequence before any consensus matching
is done (since the model is evaluated from the leaves toward the root). All top level

7 CM-Based RNA Gene Finding 191

states in a given node have transitions to all states in the parent node. Bottom level
states (insert states) only have transitions to top level states in the same node and to
themselves. As a result, the arrows entering or leaving a node in Figure 7.6 represent
a bundle of transitions whose number depends on the type of parent or child node.
The IL- or IR- to-D transitions are clearly seen in Figure 7.6, but the D-to -IL or
-IR transitions are only implicitly shown. These transitions make the standard CM
architecture equivalent to a plan nine profile HMM.

7.2.2 Mapping a Database Sequence to a Covariance Model

In order to fit a database sequence to a covariance model one starts at the E states and
works up the CM tree toward the root S state. Each E state models a null sequence
and with no database symbols mapped to it. Transitioning from a child state to a
parent state maps zero, one, or two database symbols to the model. Non-emitting
parent states map no symbols, single-emitting states (IL, IR, ML, and MR) map a
single symbol to the model, and the pair-emitting state (MP) maps two symbols. The
transition adds a log-likelihood ratio transition score to the overall model score. If the
parent state is an emitting state, a log-likelihood ratio emission score is also added.

Figure 7.7 shows the effect of moving from a top-level state T in a child node
(of any type) to the top-level MR state in a parent R node. This has the effect of
matching a database symbol to a model consensus symbol and inserting zero or more
database symbols between the existing mapped database symbols and the consensus-
matched symbol. If at least one database symbol is to be inserted, the first transition
is from the child-node top-level state to the IR state of the parent R node. The length
of the mapped sequence increases by one and the overall score increases by the T-
to-IR transition score plus the IR state emission score for the inserted symbol (the
emitted symbol is G in Figure 7.7). If an additional database symbol is inserted, the
mapped sequence again increases in length by one and the overall score increases
by the IR-to-IR transition score plus the IR state emission score of the new symbol.
This continues until all inserted symbols are finished. Finally, the consensus-matched
symbol (U in the figure) increases the mapped sequence length by one and increases
the score by the IR-to-MR transition score plus the MR state emission score for the

. . .

. . . MRIRT

UCG

T,IR IR,IR IR,IR IR,MR
Transition Probabilities:

Database
Sequence:

Model:

T = Model for subtree rooted at
a top-level state of child node

= Database symbols
mapped to T subtree

IR

Fig. 7.7. Building to the right with an R node

192 S.F. Smith

. . .

. . .

IL T

G

T,ILIL,IL
Transition Probabilities

Database
Sequence

Model

IL,ILIL,ML

ML IL

U C

Fig. 7.8. Building to the Left with an L node

MPIRIRT

GCG

T,IL IR,IR IR,IR IR,MP

. . .

. . .

. . .

. . .MP IL

UC U

IL

IL,ILIL,IL

Fig. 7.9. Building both ways simultaneously with a P node

matched symbol. Not shown in the figure is the alternative that the model position is
deleted. In this case, a single transition is made from the T state to the D state. The
mapped sequence length remains unchanged and the score increases by the T-to-D
transition score only.

The effect of moving from a top-level state T in a child node to the top-level ML
state in a parent L node is shown in Figure 7.8 and is an exact mirror of the situation
in Figure 7.7 for an R parent node. It can be noted that structure generated by a model
with only a single branch of R nodes or L nodes is very similar to the profile HMM.
Each node contains one match, one insert, and one delete state. In fact, the single-
emission nodes of the CM are simply modeling the primary sequence homology of
the non-base-paired portions of consensus alignment. Also note, there is no need to
have IR states in L nodes or to have IL states in R nodes. Insertions to the outside of
the sequence represented by a top-level state are generated by the next node up the
tree (possibly by the root start node, which is why the root start node has both IR and
IL states).

All of the advantage of using a CM over an HMM is embodied in the MP states
of the P nodes. It is the sixteen distinct emission probabilities for each of the possible
nucleotide pairs that allows covariation to be detected. Typically, there will be one
pair with very high probability (indicating both sequence homology and secondary
structure homology) and other canonical or wobble base pairs with lesser, but still
high, probabilities. Figure 7.9 shows the effect of a transition from a child-node top-
level state T to the MP state of a parent P node. The IL state can be visited zero
or more times and the IR state can be visited zero or more times in between. The
number of IL visits does not need to equal the number of IR state visits. Even though
MP appears twice in Figure 7.9, this is a single visit of the MP state which emits
two match symbols. The score increases by the sum of the transition score and the
emission score for each of these transitions.

7 CM-Based RNA Gene Finding 193

. . .

. . . B IL IL TR

C G

Transition Probabilities

TL

TR,ILIL,ILIL,ILIL,BTL,B

Fig. 7.10. Joining two submodels with a B node

Using the S, L, R, P, and E nodes it is possible to construct a single branch of a
CM tree that can describe any secondary structure as long as all base pairs are fully
nested. For instance, the structures «-«---»>-> and «<--»-> can be described,
but «-»-««--»» and «-»«<--» >-«-» can not. The later two structures require
one and two bifurcations respectively. Roughly speaking, the branches of the CM
model tree correspond to stem-loops in the RNA secondary structure. Figure 7.10
shows how a B state joins two submodels represented by its left and right child states
(the TL and TR states). These states are always start states and are part of a left-child
S node and a right-child S node respectively. It is necessary that either the left-child
S node contain an IR state or the right-child S node contain an IL state in order to
allow inserted database symbols to the right of the rightmost consensus position of
the left-child submodel. Since left emissions are always preferred to right emissions
by tradition whenever either would be possible, right-child S nodes are chosen to
contain an IL state and left-child S nodes do not contain any insert states.

Depending on the number of insert and delete state visits the length of the se-
quence mapped by a transit of the model can be longer or shorter than that of the
consensus sequence. In order to find the optimal mapping of a database sequence
to the model, one should consider all possible insertion and deletion patterns. If the
database sequence is an entire chromosome, the database sequence could be several
hundred million bases in length. It would be possible in theory to search insertion pat-
terns that include total inserted symbol counts of many millions of database symbols.
In practice, true RNA genes are unlikely to have so many insertions and even if they
did, they would be rejected by a scoring scheme that would add up large numbers of
gap extension penalties. In order to make database search possible with determinis-
tic algorithms such as dynamic programming, dynamic programming a cutoff on the
maximum database sequence length that can be represented at any state in the model
is made. Often this cutoff is less than one and one half times the consensus sequence
length of the RNA family. The length of the database sequence mapped to a CM state
is equal to the consensus sequence length represented by the model subtree rooted at
that state plus the net number of insertions less deletions made up to that state.

The traditional method of using a CM for database search is to use dynamic
programming. A score is calculated for the database subsequences ending at every
possible position in the database and for every possible subsequence length up to the
length cutoff discussed above. At each possible database position, the maximum over
all subsequence lengths explored for that position is taken as the database position

194 S.F. Smith

score. Database position scores exceeding a selected threshold cause the database
position to be declared as the ending position of a putative gene for the RNA family
represented by the CM.

The dynamic programming algorithm starts at the E states. These states represent
null sequences and are assigned a score of zero for all possible database subsequence
end positions and the mapped subsequence length is taken to be zero. Score evalua-
tion then progresses from the E states up the tree towards the root S state. The scores
at the root S state are the scores used to determine the putative gene locations. At
each model state, the best possible score for a database subsequence ending at each
possible database position and for every possible database subsequence length be-
tween zero and the length cutoff are evaluated. These best scores are used by parent
states to calculate the best possible scores for the submodel rooted at the parent node.

A more formal description of the dynamic programming algorithm used to gen-
erate scores for a database sequence with respect to a covariance model of an RNA
family is given in Figure 7.11. The algorithm uses a triple-nested loop over database
end position, subsequence length, and CM state. All database end positions j in
the range 0 to the length of the database sequence L are examined. All database
subsequence lengths in the range 0 to the length cutoff D are examined (with sub-
sequence lengths that would extend past the start of the database sequence ignored).
Finally scores are generated for each state number v, where there are M+ 1 states
and the root start state is numbered 0. States are indexed such that the index of a
child state is always higher than that of a parent state. Evaluating state scores in re-
verse state index order ensures that the score for a submodel at a child state is always
available when needed by its parent state. The scores calculated at each position,
subsequence length, and state are given by s(j,d,v).

For E states, the score is zero for null subsequences and minus infinity for any
other subsequence. This ensures that any subsequence other than the null subse-
quence is discarded by the maximum operation when finding the best score further
up the tree. Delete and start states are computationally identical. Neither adds any
database symbols to the mapping. Only the transition score trans(c,v) from the child

for j = 0 to L
for d = 0 to min(D,j)
for v = M to 0
case type(v) is
E: if d == 0 then s(j,0,v) = 0; else s(j,d,v) = -Infinity
D or S: max(over children c)[s(j,d,c) + trans(c,v)]
L: if d == 0 then s(j,0,v) = -Infinity; else s(j,d,v) =
emit(l,v) + max(over children c)[s(j,d-1,c)+trans(c,v)]

R: if d == 0 then s(j,0,v) = -Infinity; else s(j,d,v) =
emit(r,v) + max(over children c)[s(j-1,d-1,c)+trans(c,v)]

P: if d < 2 then s(j,d,v) = -Infinity; else s(j,d,v) =
emit(l,r,v) + max(over children c)[s(j-1,d-2,c)+trans(c,v)]

B: max(over k in 0 to d)[s(j-k,d-k,lc)+s(j,k,rc)]

Fig. 7.11. Algorithm for dynamic-programming CM scoring

7 CM-Based RNA Gene Finding 195

state c to parent state v is needed here. The L, R, and P state types add database sym-
bols to the mapping and therefore change the database position and/or subsequence
length mapped when compared to the mapping passed from the child state. L-type
states include both IL and ML states, R-type states include both IR and MR states,
and P-type states only appear as MP states. L- and R-type states add one symbol to
the mapping, so the resulting mapping can not have length less than 1. Therefore the
score is set to minus infinity for length 0. P-type states add two symbols to the map-
ping and therefore a score of minus infinity (meaning impossible) is set for lengths of
0 or 1. For L-type states, the resulting database end position remains unchanged, but
mapping a symbol on the left increases the subsequence length by one, so the score
for length d depends on a child score for length d−1. For R-type states, adding a
symbol on the right moves the end position one place right, so the score for length
d and position j depends on child length d−1 and position j−1. For P-type states,
the score for length d and position j depends on child length d−2 and position j−1.
For L-, R-, and P-type states, the change in score is both an emission score (emit)
and a transition score (trans). The emission score depends on the database symbols
found on the right (r) and left (l) respectively. Finally, bifurcation finds the best two
submodels whose lengths add up to the subsequence length score to be evaluated and
which are contiguous along the database.

It should be clear that the amount of computation involved in the dynamic pro-
gramming algorithm is very large. In fact, this is the central drawback to application
of the algorithm. The remainder of this chapter explores current use of covariance
models for RNA gene finding and approaches to reducing the computational cost of
CM-based database search.

7.3 Application of CM-Based RNA Gene Finding:
The Rfam Database

Over five hundred families of non-coding RNA sequences have been identified and
modeled in the publically-available Rfam database [16]. Groups of sequences are
formed into families using reference to the literature, aligned, and annotated with
secondary structure using either experimentally-derived or computer-predicted struc-
tures. These carefully hand curated multiple alignments are referred to as “seed”
alignments in Rfam. The structure of the CM model tree is then generated from the
consensus secondary structure annotation of the alignment. Transition and emission
scores for the CM are estimated from observed frequencies of nucleotides and gaps
at the various multiple alignment columns. A prior distribution is then combined
with the observed frequencies in an attempt to correct for limited sample size. This
has the effect of eliminating log-likelihood ratio scores that are minus infinity due to
observed counts of zero. Such scores are undesirable because they rule out certain
patterns merely because they did not happen to be observed in the training data even
though there is no theoretical reason to believe that they are impossible.

A package of programs used by Rfam to estimate covariance models and for
database search is called Infernal [17]. This package is publicly available, including

196 S.F. Smith

source code. The Rfam site includes both alignments of the original seed sequences
for families and combinations of seed sequences and new sequences found through
database search. The database also includes the parameter files of the estimated
covariance models. These parameter files are particularly useful when exploring
methods other than dynamic programming for CM-based database search since the
parameters can be transformed into other formats suitable for alternative searches.

The amount of computational power needed for direct search of the available
genomic data using dynamic programming and covariance models is excessive. In
order the trim the amount of data searched by orders of magnitude, a filtering op-
eration is first applied to the database. In the case of Rfam, the filtering method is
to use BLAST [8] to score the database with respect to the consensus sequence of
the model. It is hoped that the new RNA genes will have enough primary sequence
homology with the existing family members that their score will be raised enough
above the background noise to be retained in the portion of data passed to the full
CM search. The extent to which this hope is true in practice is not very well studied.
In the following section of this chapter, another proposed filtering method from the
literature will be discussed. In section 4, we will discuss an evolutionary computation
alternative to filtering the database (and to using preset length cutoffs).

In examining the possibility of using evolutionary computation, data extracted
from the Rfam database is used. In particular, fourteen sequences belonging to the
U12 ncRNA family (accession number RF00007) are used for testing. The parameter
file for this Rfam family is also used. Of the fourteen sequences, seven are from the
seed family used to estimate the model parameters and seven were found through
database search using the model. The U12 family [18] [19] [20] are small nuclear
RNA (snRNA) which form a complex with specific proteins to function as part of the
minor spliceosome. The function of U12 is to remove introns from pre-mRNA. The
U12 ncRNA acts in a way similar to that of the U2 ncRNA in the major spliceosome.

7.4 Filters to Reduce Database Search Cost

A major problem with using a filter to reduce the amount of genomic data to be
searched with a CM is that there may not be enough primary sequence homology
to keep the true gene in the retained data set. With the BLAST method of database
reduction, there is no known way to set the score threshold to guarantee retention.
However, Weinberg and Ruzzo [21] have recently come up with a way to guarantee
that a profile HMM filter will not discard any portion of the database that contains
a subsequence that the dynamic- programming CM search would score as a putative
RNA gene. The procedure involves extracting from the CM parameter files equiva-
lent profile HMM parameters that ignore the joint probability information inherent
in the P state emission probabilities. The maximum additional score that could come
from the secondary structure information in the CM with a perfect database match
can be calculated and subtracted from the score threshold to be used with the CM
search. The result is the minimum primary sequence score contribution that must
come from the database sequence in order for the overall CM score to exceed the

7 CM-Based RNA Gene Finding 197

CM threshold. Portions of the database which do not meet this minimum score con-
tribution are found when the HMM score does not exceed this minimum primary
sequence contribution.

Disadvantages of the HMM method are that the HMM is much slower than
BLAST (although significantly faster than full CM search) and that the reduction
in database size varies greatly from one RNA family model to another. No compre-
hensive study of the speedup of this method has been undertaken. The Weinberg and
Ruzzo paper looks at only 34 of the over 500 families. Extrapolating from this pa-
per, it is still predicted to take tens of CPU years with a modern desktop computer to
search all Rfam families on the 8-gigabase database of the study. Since both the num-
ber of known RNA families and the amount of genomic data are rapidly expanding,
this amount of computation is still too much.

Weinberg and Ruzzo [22] have also recently come up with an heuristic filter that
is an alternative to BLAST and appears to perform better than BLAST. This heuris-
tic filter is based on a profile HMM and as such does not use secondary structure
information at the filtering stage.

7.5 An Alternative to Filters Using Evolutionary Computation

In this section, the use of evolutionary computation (EC) as an alternative to filtering
followed by dynamic programming search is examined. Secondary structure infor-
mation will be used from the start on the entire database. Also, no sequence length
cutoff is employed. The results of the non-exhaustive EC-based search will also be
compared to those of a simple hill-climbing algorithm which is also non-exhaustive,
but does not have the ability to escape local minima. The ability to jump out of a
local minimum is shown to be crucial to the algorithm.

7.5.1 Dynamic Programming Efficiency

To motivate why the traditional dynamic-programming exhaustive search might not
be the most efficient way to find RNA genes using a CM, the observed usage of
search space regions is first examined. Dynamic programming finds the best score
at each model state for each database end position and each database subsequence
length ending at that position (up to a predefined cutoff length). The first observation
made is that only a small range of the subsequence lengths evaluated at a given
state are normally observed in real data. These subsequence lengths cluster about the
consensus sequence length for the submodel represented by the subtree rooted at the
state. In what follows, length deviation will be defined as the length of the database
subsequence generating a score at a given state minus the length of the consensus
sequence represented by the state. Length deviation is therefore equivalent to the
number of inserted symbols minus the number of deleted model positions in the
submodel mapping of a given state.

The actual usage of subsequence lengths at various states of the Rfam U12 CM
model for the fourteen known U12 family members (seven seed and seven discov-
ered members) is shown in Table 7.1. The “top” and “bottom” designations and the

198 S.F. Smith

Table 7.1. Subsequence length use in observed U12 data

Consensus Obs Obs DP DP
State Branch Length Max Min Max Min

root S a 149 +6 −6 +11 −149
bottom R a 145 +6 −6 +16 −145
top P b 20 +4 −3 +140 −20
bottom L b 1 +1 0 +159 −1
top L c 47 +6 −4 +113 −47
bottom L c 40 +6 −4 +120 −40
top P d 22 +6 −1 +138 −22
bottom L d 1 0 0 +159 −1
top P e 17 0 −3 +143 −17
bottom L e 1 0 0 +159 −1
top L f 77 +1 −3 +83 −77
bottom L f 67 +1 −2 +93 −67
top P g 37 +1 −1 +123 −37
bottom L g 1 0 0 +159 −1
top L h 29 0 −2 +131 −29
bottom L h 1 0 0 +159 −1

branch letter refer to Figure 7.3. For example, “bottom R” and branch “a” is the con-
sensus MR state in the R node and the bottom of the “a” branch of the CM tree.
The consensus sequence length is 145 for the model subtree rooted at this MR state
since two more R nodes and two more L nodes are in the CM tree above it and the
overall consensus sequence length is 149. Using dynamic programming, all subse-
quence lengths in the range 0 to 160 are investigated at every state (since the cutoff
length for this model is chosen to be 160 in Rfam). The last four columns of the table
show length deviations from the consensus length at each model state. The dynamic
programming (DP) maximum and minimum length deviations are always 160 minus
the consensus length and the negative of the consensus length respectively. The ob-
served maximum and minimum length deviations are shown in the fourth and fifth
table columns respectively. These are seen to cluster near zero and to be generally
much smaller than the dynamic programming limits.

One possible way to make the dynamic programming algorithm more efficient
by about one to two orders of magnitude is to specify state-dependent minimum and
maximum length deviations (or equivalently, minimum and maximum subsequence
lengths). This requires extra complexity in the search code. The model input file
needs to be augmented with the state-dependent search limits. These limits would
need to be determined by a program that automatically extracts the observed length
deviations at each state from the seed sequence multiple alignment. A buffer region
about the observed deviations needs to be added to allow for deviations of true family
members that are outside the range observed in the seeds. The statistical analysis
needed for a good choice of buffer region size is nontrivial.

7 CM-Based RNA Gene Finding 199

7.5.2 CM-Based Search Without Dynamic Programming

Another way to improve efficiency is to expand the search about the zero length
deviation solution [23]. This could be done with either deterministic (such as hill-
climbing) or randomized (such as genetic algorithm) search methods. In either case,
the initial step is to determine the scores of an ungapped mapping of a database
subsequence to the covariance model at every database position. This is equivalent
to evaluating every consensus state for zero length deviation only and assigning
a score of minus infinity if the length deviation is not zero or the state is a non-
consensus state. Unlike filtering with BLAST, Fasta, or an HMM, the ungapped
scoring method employs base-pairing information from the start on all portions of
the database. It is also several orders of magnitude faster than the full dynamic
programming CM search due to a number of factors. First, only consensus states
are evaluated for about a factor of three reduction in evaluated states. Second, there
is no need to add state transition scores in this initial sweep of the database since
they only contribute an additive constant to the score at every database position, for a
computational reduction of about a factor of two. Third, only one subsequence length
is evaluated for a reduction by a factor of the cutoff length (often two to three orders
of magnitude). Forth, bifurcation states are very expensive relative to other states
since they need to check every possible allotment of subsequence length between
the two branches. This results in bifurcations having a computational complexity
that is higher than other states by a factor about equal to the cutoff length. Since the
function of the bifurcation is not needed without gaps, this saves another two to three
orders of magnitude. Overall, ungapped scoring of a database is somewhere in the
range of three to eight orders of magnitude faster than full dynamic programming
scoring. The proportionate speedup is greater for models with very long consensus
sequences (and long length cutoff), which are exactly the models that take longest
with the conventional scoring method.

The clustering of the true subsequence lengths about zero length deviation as
shown in Table 7.1 for U12 is a general phenomenon. What is less clear is whether the
scores of the best solutions improve monotonically as the length deviation is changed
from zero to its true value. If all possible insertions of two contiguous symbols
are attempted and all possible deletions of three contiguous symbols are attempted,
then a large number of scores are generated for length deviations of +2 and −3. If
all possible combinations of simultaneous double insertions and triple deletions are
tried, then a much larger number of scores for length deviations of −1 are created.
The alignment patterns with the double insertion and triple deletion may be much
different than that of a single deletion (which also has a length deviation of −1).
Thus it is not clear that an algorithm that searches by trying every possible single
insertion and every possible single deletion at each model position will necessarily
move closer to the true solution. In fact, it has been found for the U12 family that
such a simplistic hill-climbing approach does not work as well as a randomizing
algorithm that is capable of escaping from local minima.

In addition to the possibility of focusing the search on model mappings with
relatively few insertions and deletions, there is also the possibility of focusing the

200 S.F. Smith

search around database locations that have high scores with suboptimal alignments.
The initial ungapped sweep of the database should give generally higher scores near
true RNA gene family members than on unrelated portions of the database. This is a
result of matching at least some part of the database sequence that does not happen to
have gaps relative to the consensus sequence. The search can start with an expansion
about the ungapped alignment for a relatively large number of high-scoring database
positions. As some database positions start to show score improvements and others
not, the search can move to focus only on those database positions showing either
very high initial scores or somewhat lower, but improving, scores. Finally, once the
number of database positions in narrowed sufficiently, it is possible to resort to full
dynamic programming search of the neighborhoods around the very highest scoring
positions.

It is helpful to have a fixed-length representation of the alignment of a database
subsequence to the consensus sequence of the CM. The representation used here is
taken from the literature on protein threading using evolutionary computation [24].
A vector of non-negative integers of length equal to the length of the consensus se-
quence is used. If a vector element is 0, then the corresponding consensus model
symbol is deleted. If the vector element is 1, then the model symbol is matched and
there are no inserted database symbols to the right of this consensus position. If the
vector element is a value n greater than 1, then n−1 database symbols are inserted.
Figure 7.12 shows the correct alignment vectors for the seven seed sequences of the
U12 family (see Figure 7.1 for comparison). Each alignment is a vector of 149 inte-
gers and the break of six spaces is only in the figure to show correspondence between
the values and the original multiple alignment (the actual representation contains no
such spaces). The goal of the search algorithm is to expand the search around the
initial solution vector (149 ones) toward the true alignment vectors as in Figure 7.12.
Notice that there is nothing more to do in the case of database sequences 2 and 6 since
the optimal alignment has no gaps with respect to the consensus sequence. There is
no way to represent insertions to the left of the first position, so the representation is
the same whether the sequence has a symbol in the first column or not. This is not a
problem, since the alignment is local. The putative gene start position can be off by
several bases due to initial insertions.

There are two components to a candidate search solution, the alignment vec-
tor and the location in the database sequence of the first alignment position. An
alignment vector change is assumed to take a form that results in either adding or re-
moving one or more contiguous insertions or deletions. Adding contiguous insertions
involves increasing a single vector element by one or more. Removing contiguous
insertions is done by decreasing a single vector element by one for more such that
the resulting element value is greater than 0. Adding contiguous deletions is ac-
complished by changing a range of consecutive vector elements to 0. Removing
contiguous deletions occurs when a range of consecutive zeros are all changed to 1.

When considering a change to a given candidate solution to potentially im-
prove the score of the solution, two classes of variations are possible which will be
called compensating and non-compensating. Non-compensating changes are those
for which the alignment of the model to the database remains unchanged to the left

7 CM-Based RNA Gene Finding 201

1 1111111111111111111111111111111111 111111111
2 1111111111111111111111111111111111 111111111
3 1111111111111111111111111111111111 111111111
4 1111111111111111111111111111111117 111111111
5 1111111111111111111111111111111111 111111111
6 1111111111111111111111111111111111 111111111
7 1111111111111111111111111111111117 111111111
.--<<<<<---------->>>>>--------<<<<......<<<<-----

1 11
2 11
3 11
4 11
5 11
6 11
7 11
->>>>>>>><<<<<------->>>>>-----------<<<<<<<---<<<

1 1111111011
2 11
3 11111111111111111111111111111111111100000000000000000000
4 11
5 11111111111111111111111111111111111100000000000000000000
6 11
7 11
<<<<----->>>>>>>->>>>>>>--<<<<<<<<<--------->>>>>>>>>---

Fig. 7.12. U12 seed sequence alignment vectors

of the alignment vector alteration and compensating changes are those for which the
model/database alignment is unchanged to the right. Non-compensating changes are
the result of alignment vector changes with the database location of the first position
unchanged. Compensating changes occur when the database start position is changed
by an amount with equal magnitude but opposite sign to that of the total change in
alignment vector values. Figure 7.13 shows how a compensating change to a candi-
date solution might improve a score whereas a non-compensating change does not.
Initially the alignment vector is 11111111 and the database start position is at the first
A in the portion of the database sequence shown (GGAAUCACUG) as shown at the
top of the figure. The correct alignment vector is 11131111 and the correct database
start position is two places further to the left. The initial alignment causes the last
four database symbols shown to correctly align with the last four consensus symbols
of the model. If a close (but not exactly correct) change to the alignment vector is
tried such that the candidate vector is 11311111 without a compensating change to
the database start position, the alignment gets worse. This non-compensating change
is shown in the middle of the figure. If the same close change to the vector is tried,
but with database start position compensation, then the situation is as in the bot-
tom portion of the figure. Since the sum of the vector element values increased by 2

202 S.F. Smith

G G A A U C A C U G

G G A A A C U G

Database

Model

Alignment Vector: 1 1 1 1 1 1 1 1

Correctly Aligned
Database Start Position

G G A A U C A C U G

G G A - - A A C

Database

Model

Alignment Vector: 1 1 3 1 1 1

Database Start Position

U G

1 1

G G A A U C A C U G

G G A A A C U G

Database

Model

31 1 1 1 1 1 1

Database Start Position

- -

Fig. 7.13. Compensating and non-compensating candidate solution changes

when going from 11111111 to 11311111, the compensating change is to decrease the
starting position by 2. Now all but one of the positions aligns and the score should
increase. Sometimes, the portion of the alignment that is contributing to a high score
for the initial solution is due to a good alignment to the left of the vector change and
uncompensated change may improve a score. Other times, the high-scoring align-
ment portion may be to the right of the vector change and compensated change may
improve the score. In general, both should be tried.

7 CM-Based RNA Gene Finding 203

The fitness function of an individual is the score of the database subsequence
associated with the individual with respect to the covariance model. The database
subsequence associated with an individual starts at a database location specified
by the individual and continues for a length equal to the sum of element values
of the alignment vector. The alignment vector specifies a unique path through the
covariance model states and the score is found as the sum of log-likelihood ratio
scores for each of the state transitions and symbol emissions for this unique tree
parse. The search space is the set of all possible starting locations within the database
as well as all possible combinations of non-negative alignment vector values such
that the sum of the vector values plus the starting location does not exceed the end
of the database. Single-point crossover is employed and as well as single mutations.
The single mutations take either the form of changing a single alignment vector
element to some other non-negative value (changing the number of insertions at a
point) or taking a range of values and changing them to 0 (creating a contiguous
deletion region). Single mutations can either be compensating or non-compensating
as described above with a fifty percent probability of each likely a good choice.
The probabilities of single mutations to small element values should be higher than
those of large values (an exponentially decreasing probability would be a reasonable
choice). Similarly, the probabilities of small deletion regions should be greater than
large regions.

7.5.3 Experimental Results

In order to try out the idea of using a GA to search for good CM alignments in
a database, an artificial dataset has been created which contains a mixture of U12
RNA genes and other ncRNA genes. This was done to keep the test database small
and at the same time provide tempting incorrect targets for the algorithm searching
for U12 genes. The other ncRNA genes contain stem-loop structures that are likely to
be more similar to U12 genes than randomly chosen segments of genome. In future
research, the GA search method should be applied to a real search, but this research
has not yet progressed to that point. This is partly due to the fact that the current
version of the software is written in MATLAB and needs to be rewritten in C and
optimized for large-scale use.

The test dataset contains 15880 bases, such that about ten percent of the sequence
is composed of true U12 genes and the remainder of randomly selected other ncRNA
genes taken from Rfam. Since the true U12 genes are in the Rfam database, they are
all able to pass the BLAST filter (true genes that might exist and can not get past the
filter can not be in Rfam by definition). The initial ungapped scoring of each database
position with the CM for U12 is shown in Figure 7.14. The true U12 genes start at
database locations 446, 1039, 2475, 3858, 6096, 7406, 8196, 8880, 9705, 10774,
11624, 12428, 13493, and 14615. Twelve of these locations have peaks in the initial
database sweep at or near the true position with scores that are the twelve highest
scores out of the 15732 scores (148 positions at the end of the database are not scored
with respect to the 149 position model). Two of the true U12 genes have peaks that
are harder to discern from the background. The peak at 8196 has a score of about 5

204 S.F. Smith

Fig. 7.14. Ungapped scores at each database position

and is the 17th highest peak and the peak at 446 has a score of just under 0 and is
the 22nd highest peak. These scores are base-2 log values and therefore have units
of bits. Neither a score of 0 nor 5 would be considered statistically significant in any
reasonable database search. A search algorithm that can generate a better alignment
for these two marginal cases is of primary interest, although improvements in the
alignment of the other twelve is also indicative of a generally successful algorithm.
The U12 gene at 446 was a seed sequence used to estimate the CM, but the gene
at 8196 was not. Four of the true U12 genes do not have any gaps with respect to
the consensus sequence and therefore the score from the initial ungapped database
sweep is already optimal.

The 100 highest-scoring locations from the upgapped database scores are used as
starting points for two search algorithms. The first is a simple hill-climbing algorithm
and the other is a genetic algorithm. Each algorithm is permitted 700 candidate
solution evaluations per starting point. The GA is run for 20 generations with 35
individuals per generation and the hill-climbing algorithm is run for six rounds of 116
evaluations each. It turns out that additional rounds for the hill-climbing algorithm
would not be helpful since the algorithm has converged on a solution in all 14 true
U12 gene cases by the sixth round. The choice of 700 evaluations per location is
based on observed convergence of the GA.

With a step size of 1 for alignment vector changes in the hill-climbing algorithm,
there are 4*149 = 596 possible changes per round. These changes are to increase
or decrease a single vector element by 1 without start location compensation and
increase or decrease a single element with compensation. Since this would use up
almost all of the allocated evaluations in a single round, an alternative strategy is
employed. Every fifth alignment vector element is allowed to change rather than
every element. This can result in slightly suboptimal alignments if a true insertion
or deletion is not at the allowed change location, but the suboptimality is small (see

7 CM-Based RNA Gene Finding 205

Figure 7.13 for the effect of making a change in a position slightly different than
the correct position). Using every fifth position results in 4*29 = 116 evaluations per
round.

The GA uses both mutation and single-point crossover to create new individuals.
The fittest individual is retained in the new generation (elitism). Four new individuals
per generation are produced by single-point crossover without mutation of two in-
dividuals randomly selected from the twenty fittest with crossover points uniformly
distributed along the alignment vector. All remaining individuals are produced us-
ing mutation without crossover. Twenty five individuals per generation are generated
with a single mutation of an individual chosen randomly from the five fittest, where
the mutation takes the form of increasing or decreasing an alignment vector position
by 1. Half of these mutations are randomly selected to be compensating and the other
half non-compensating. Finally, five individuals are produced each generation with
a single mutation uniformly chosen in the range +7 to −1. Half of these mutations
are compensating and half not.

Table 7.2 shows the scores of the best solutions in the final round or generation
for the hill-climbing and GA algorithms. The hill-climbing algorithm is determinis-
tic, so only one run is made because the result is always the same. The GA result
is the mean over ten runs of the best solution in the final generation. The table also
shows the source of the U12 gene sequence in terms of EMBL accession code and
the nucleotide positions of the gene within the EMBL sequence. The seven seed
sequences are identified with a cross-reference number to the sequences shown in
Figure 7.2 of this chapter.

Overall, the performance of the two algorithms is rather similar. However, the
two genes of greatest interest 442 and 8196 show that the hill-climbing algorithm
did not improve the scores at all, whereas the GA made significant gains. The scores

Table 7.2. Experimental results on U12 dataset

Dataset Hillclimb GA Accession Nucleotide Fig 7.2
Position Score Score Code (EMBL) Positions Seed No.

446 −0.74 43.68 L43844.1 2–149 1
1039 146.37 145.66 AC087420.4 142608–142466
2475 124.95 123.88 AC112938.11 234142–234291
3858 146.37 143.34 AL591952.9 131760–131611
6096 110.92 133.57 AL669944.8 2483–2625
7406 159.12 158.12 AC133939.4 22042–22191
8196 5.24 40.85 AC132590.3 81080–80927
8880 147.13 147.13 AL772347.6 146375–146226
9705 164.47 164.47 L43843.1 2–150 2

10774 159.12 159.12 L43846.1 332–480 3
11624 160.80 160.30 J04119.1 2–150 7
12428 110.92 125.88 L43845.1 358–512 4
13493 164.47 164.47 Z93241.11 76642–7679 6
14615 164.47 164.47 AL513366.11 57717–57871 5

206 S.F. Smith

of the optimal alignments for these two sequences are 78.48 and 81.79 respectively,
so the GA was only able to get about half of the score increase possible when mea-
sured in bits. Even so, the scores changed from statistically insignificant to very
statistically significant. Two other cases, sequences 6096 and 12428 also show more
improvement with the GA than with the hill-climbing algorithm. These results seem
to indicate that there is some advantage to an algorithm with randomization that can
jump out of local optima when doing CM-based RNA gene search.

7.6 Conclusions and Future Direction

We have seen that traditional dynamic programming scoring of database sequences
with respect to ncRNA gene family covariance models can be rather inefficient due
to consideration of may candidate alignment solutions that are far different that
those observed in real genomic data. Dynamic programming scoring also requires
the use of an arbitrary cutoff on the maximum allowed length of putative genes in
the database and a primary-sequence-only filtering of the database in order to reduce
required computational resources to a feasible level. Both the cutoff and filtering can
cause loss of sensitivity. Dynamic programming further applies equal computational
effort to all portions of the database retained by the initial filtering operation.

An alternative scoring method using genetic algorithms does not impose a length
cutoff and uses the secondary structure information in the covariance model pa-
rameters right from the start. This method also has the potential to allow regions
of the database which are not showing score improvement to be abandoned before
excessive computational resources are applied in those regions. An exploratory in-
vestigation of the alternative scoring method has been applied to a set of known U12
genes and the results are encouraging. This experiment also gives some evidence
that deterministic search algorithms which can not escape local optima may not be
successful.

Much remains to be done to turn this alternative scoring idea into a standard func-
tional RNA gene search methodology. Investigations on more ncRNA gene families
need to be undertaken to determine how to best choose which database locations
should be passed to the search algorithm based on the initial ungapped scan of the
database. The details of when to abandon a search at a given database location need
to be worked out. The experimental investigation above did not even attempt this as a
fixed number (700) of evaluations was undertaken at each position. Other stochastic
search methods such as simulated annealing need to be investigated to see if they
might outperform the genetic algorithm. A parameter sweep needs to be undertaken
for such things as the optimal number of individuals per generation and the ratio of
crossed-over to mutated individuals.

Improvement to the search may also take the form of better direction for the mu-
tation operator. There is information in the covariance model parameters as to the
relative likelihood of an insertion or deletion at a particular point in the consensus
sequence of the model. This information could be used to make mutations at these
locations statistically more likely during mutation. Also, it may be possible to guess

7 CM-Based RNA Gene Finding 207

good mutation points by examining the contribution to the overall score of a can-
didate solution as a function of location in the consensus sequence normalized to
the maximum score possible at the location. A drop off in this score-contribution
measure at a particular location may be indicative of an insertion or deletion at that
location.

In general the use of covariance models for RNA gene search is not nearly as
well developed as the use of profile hidden Markov models for protein domain clas-
sification. With the increasing recognition of the importance of untranslated RNA to
biological function, there should be significant interest in computational methods to
study the function and structure of these molecules.

References

1. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic
sequence of the human genome. Nature 431:931–945

2. Gesteland R, Cech T, Atkins J (2006) The RNA world. Cold Spring Harbor Laboratory
Press, New York

3. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic
DNA. J Mol Biol 268:78–94

4. Eddy S (1998) Profile hidden Markov models. Bioinformatics 14:755–763
5. Finn R, Mistry J, Schuster-Bn̈ockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon

S, Marshall M, Khanna A, Durbin R, Eddy S, Sonnhammer E, Bateman A (2006) Pfam:
clans, web tools and services. Nucleic Acids Research 64:D247–D251

6. Rivas E, Eddy S (2000) Secondary structure alone is generally not statistically significant
for detection of noncoding RNAs. Bioinformatics 16:583–605

7. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis.
Cambridge University Press, Cambridge UK

8. Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search
tool. J Mol Biol 215:403–410

9. Pearson W, Lipman D (1988) Improved tools for biological sequence comparison. Proc
Natl Acad Sci 85:2444–2448

10. Smith T, Waterman M (1981) Identification of common molecular subsequences. J Mol
Biol 147:195–197

11. Chomsky N (1959) On certain formal properties of grammars. Information and Control
2:137–167

12. Eddy S, Durbin R (1994) RNA sequence analysis using covariance models. Nucleic
Acids Research 22:2079–2088

13. Zucker M (1989) Computer prediction of RNA structure. Methods in Enzymology
180:262–288

14. Wiese K, Hendricks A, Deschênes A, Youssef B (2005) Significance of randomness in
P-RnaPredict - a parallel algorithm for RNA folding. IEEE Congress on Evolutionary
Computation

15. Eddy S (2003) HMMER user’s guide. http://hmmer.janelia.org
16. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy S, Bateman A (2005) Rfam:

annotating non-coding RNAs in complete genomes. Nucleic Acids Research 33:D121–
D124

208 S.F. Smith

17. Eddy S (2005) Infernal user’s guide. ftp://selab.janelia.org/pub/software/infernal/
Userguide.pdf

18. Shukla G, Padgett R (1999) Conservation of functional features of U6atac and U12
snRNAs between vertebrates and higher plants. RNA 5:525–538

19. Tarn W, Steitz J (1997) Pre-mRNA splicing: the discovery of a new spliceosome doubles
the challenge. Trends Biochem Sci 22:132–137

20. Otake L, Scamborova P, Hashimoto C, Steitz J (2002) The divergent U12-type spliceo-
some is required for pre-mRNA splicing and is essential for development in Drosophila.
Mol Cell 9:439–446

21. Weinberg Z, Ruzzo W (2004) Faster genome annotation of non-coding RNA families
without loss of accuracy. Int Conf Res Computational Molecular Biology (RECOMB)
243–251

22. Weinberg Z, Ruzzo W (2006) Sequence-based heuristics for faster annotation of non-
coding RNA families. Bioinformatics 22:35–39

23. Smith S (2006) Covariance searches for ncRNA gene finding. IEEE Sym Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB) 320–326

24. Yadgari J, Amir A, Unger R (2001) Genetic threading. Constraints 6:271–292

