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Summary. Heterogeneous types of gene expressions may provide a better insight into the bi-
ological role of gene interaction with the environment, disease development and drug effect at
the molecular level. In this chapter for both exploring and prediction purposes a Time Lagged
Recurrent Neural Network with trajectory learning is proposed for identifying and classifying
the gene functional patterns from the heterogeneous nonlinear time series microarray exper-
iments. The proposed procedures identify gene functional patterns from the dynamics of a
state-trajectory learned in the heterogeneous time series and the gradient information over
time. Also, the trajectory learning with Back-propagation through time algorithm can recog-
nize gene expression patterns vary over time. This may reveal much more information about
the regulatory network underlying gene expressions. The analyzed data were extracted from
spotted DNA microarrays in the budding yeast expression measurements, produced by Eisen
et al. The gene matrix contained 79 experiments over a variety of heterogeneous experiment
conditions. The number of recognized gene patterns in our study ranged from two to ten and
were divided into three cases. Optimal network architectures with different memory structures
were selected based on Akaike and Bayesian information criteria using two-way factorial
design. The optimal model performance was compared to other popular gene classification al-
gorithms, such as Nearest Neighbor, Support Vector Machine, and Self-Organized Map. The
reliability of the performance was verified with multiple iterated runs.

5.1 Introduction

Understanding the function of each gene in the human/animal genome is not a trivial
task. Learning the gene interactions with the changing environment, with the devel-
opment of a disease or under different treatment is an even greater challenge and
critical to improve human life. DNA microarrays allow the measurement of expres-
sion levels for thousands of genes, perhaps all genes of a cell or an organism, within
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a number of different experimental conditions [1]. As an important step, extracting
the knowledge from heterogeneous types of gene expressions may provide a bet-
ter insight into the biological role of gene interactions with disease development
and drug effect at the molecular level. Heterogeneous types of gene expressions
contain different experimental conditions. The experimental conditions may cor-
respond to different time points under different dosages of a drug, measures from
different individuals, different organs or different diseases. The dynamic patterns
of genes expressed under different conditions can be useful indicators about gene
state-trajectories and may reveal possible states and trajectories of disease and treat-
ment effects [2–8]. Also, the analysis of the gene state patterns can help identifying
important and reliable predictors of diseases, such as cancer, in order to develop
therapies and new drugs [9]. Biologists, computer scientists and statisticians have
had more than a decade of research on the use of microarrays to model gene ex-
pressions [2, 10–12]. However, most of the studies are interested in the genes that
co-express in homogeneous conditions, but there are few works on heterogeneous
types of gene expressions. Moreover, most of these studies focus on the mean profiles
of the gene expression time course, which can make the clustering or classification of
gene expressions largely simplified but ignores the important time updated (varied)
information.

One feature of gene expression data in time course microarray experiment is that
it includes a large number of attributes with high correlation and with high level
noise. Because of its massive parallelism, potential for fault and noise tolerance, an
Artificial Neural Network (ANN) based information processing is capable of taking
the task to deal with this feature. ANNs can adapt their structure in response to the
change of the gene expressions under different conditions in order to extract knowl-
edge, which contributes to a deep understanding of gene interactions and identifies
certain causal relationships among the genes with diseases and drugs [13–14].

The study of the heterogeneous gene expressions under different experimental
conditions in a multivariate nonlinear time series may involve the study of dynamic
changing of the statistical variations of non-stationary processes of gene expressions.
There are several types of artificial neural networks for temporal processing, which
can be used to model the natural characteristics of the gene changing under differ-
ent conditions and update the information in the training data over time. Recurrent
Neural Networks (RNNs) have the ability of dealing with time varying input and
output and they can define neurons as states of the network [15]. The output of the
hidden layer is fed back to the input layer via time delay. An internal state of the net-
work encodes a representation of some characteristics or a biological mechanism of
gene interactions, based on the transition function of the state from a recursive neu-
ral network, eventually to control the production of the internal information. State
space model can be viewed as a special case of RNN, which combines a stochastic
process with observation data model uniformly based on the recursive neural net-
work. Hidden Markov processes can also be used to model the gene activity systems
in which the gene states are unobservable, but can be represented by a state tran-
sition structure determined by the state parameters and the state transition matrix
while processing the patterns over time. Time Lagged Recurrent Neural Networks
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(TLRNNs) are extensions of conventional RNNs and outperform them in the terms
of network size. A TLRNN use short memory structure instead of static topology
networks to develop advanced classification systems and use a complex learning
algorithm: Back-Propagation Through Time (BPTT) to learn the temporal pattern
[16–17]. This dynamic learning process is well suited to the heterogeneous time
series gene expression domain. TLRNNs have been used in nonlinear time series
prediction, system identification and temporal pattern classification.

The goal of this chapter is to investigate the performance of heterogeneous types
of multivariate time series data using time lagged recurrent neural networks with dy-
namic trajectory learning. The question we are interested in is whether the dynamic
heterogeneous gene activity patterns can be well identified or classified through the
trajectory learning with a time lagged recurrent neural network. Gene expression
time series data not only exhibit very high noise level, but is also significantly non-
stationary. The study of gene expressions under different experimental conditions
in a multivariate nonlinear time series may involve the study of dynamic changing
of the statistical variations of non-stationary processes of gene expressions. Time
Lagged Recurrent Neural Networks are used to model the natural characteristics of
gene changing under different conditions and update the information in the training
data over time.

To deal with non-stationarity in the gene data, one approach is to build models
based on a short time period or window only, such as Time Lagged Recurrent Neural
Networks, which use the short memory structure to confine the input for temporal
processing. Another way is to try to remove the non-stationarity using data transfor-
mation. Both approaches were performed in the application discussed in this chapter.
With the presence of high level noise in the gene expression, training is difficult, and
the random correlations with recent data can make the model to be based on the ear-
lier data difficult, and it is likely to develop into an inferior model. So before building
the appropriate model, data preprocessing have to be done in order to achieve desired
classification and prediction performance.

In gene expression data under different experimental conditions with different
time points there is a high dependence among the inputs and a high correlation
among the samples, so the training is not statistically independent. One way to deal
with the dependence of inputs is to include additional inputs, called lagged variables
or a tapped delay in the network. Thus, one can train an ordinary network with these
targets and lagged variables. Using only inputs as lagged target values are called
“autoregressive models”, which are widely studied statistical models. Using lagged
variables means that the inputs include more than one time constant, which makes
the network “dynamic” instead of using one time point (present data) with static
structure. The dynamic part is called “memory structure”. Such a neural network
models the human brain’s work in the aspect of short term memory, which essen-
tially helps to remember the recent past events. To use lagged variables, we have to
consider which lags and which input variables to include in the network, how many
hidden units to use, etc. This corresponds to the design of the memory structure of
the network.
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The use of a recurrent neural network with time lag is important from the view-
point of the “curse of dimensionality” and ill-conditioned problems. Trying to take
into account a greater history with a Feed Forward Neural Network means increasing
the number of delayed inputs, which results in an increase in the input dimension.
This is called the “curse of dimensionality”. If we have a small number of data
points then increasing the dimensionality of the space rapidly leads to the point
where the data is very sparse, in which case it provides a very poor representation of
the mapping [13]. Comparing with classical time series model, TLRNNs implement
Nonlinear Moving Average (NMA) models. With global feedback from the output to
the hidden layer, they can be extended to Nonlinear AutoRegressive Moving Average
(NARMA) models.

The rest of the chapter is divided as follows: in Section 5.2 we describe how
the data was acquired and preprocessed. In Section 5.3 TLRNNs, statistical criteria
for searching for the optimal model and related learning algorithms are presented.
Experimental results are given in section 5.4. We survey related work in section 5.5
and finally we provide some concluding remarks in section 5.6.

5.2 Data Acquisition and Preprocessing

5.2.1 Data Extraction

The widely studied set of yeast expression measurements data, produced by Eisen
et al. [18-20] contained 2465 genes. Each data point represented the ratio of ex-
pression levels of a particular gene under two different conditions: CY5 and CY3
with red and green fluorescence intensity, respectively. The gene matrix contained
79 time points over a variety of heterogeneous experimental conditions, which are
important biological parameters. The data was generated from spotted arrays using
samples collected at various time points during diauxic shift, mitotic cell division
cycle, sporulation, temperature, reducing shocks, and so on. We extracted the data
from the Stanford genome research web site (http://www-genome.stanford.edu). In
our study we used two third of the data for training and the rest for testing.

5.2.2 Functional Class Extraction

If one claims to be able to predict some gene patterns or classes with certain accuracy,
one should be questioned about the definition of gene patterns used, whether the
patterns to be identified are biologically meaningful, and whether the biologists and
pathologists actually care about them.

Classification of biological function of gene expression is essentially a classifi-
cation of molecular roles for all genes and proteins. The features of gene expressions
and the complexity of the genetic information make this task daunting, but it can be
dealt with by ontology design, which attempts to classify and further process various
aspects of molecule functions under highly qualitative and rich features of domains.
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Table 5.1. Three gene functional classes and their sizes for Eisen’s data

Class Size

Ribosomal protein genes 121
Transcription protein genes 159
Secretion protein genes 96

Table 5.2. Ten gene functional classes and their sizes for Eisen’s data

Class Size

CELL CYCLE 168
CHROMATIN 48
CYTOSKELETON 72
DNA 103
mRNA 103
NUCLEAR 43
PROTEIN 477
SECRETION 116
TRANSCRIPTION 136
TRANSPORT 129

The training labels of Eisen’s data were extracted from the Saccharomyces cere-
visiae functional catalogue databases. There are over 145 classes of gene functional
classes in the databases. Some types of the gene function classes such as cell cycle
could be used to distinguish types of cancers. So once the construction of a reliable
and effective classifier to learn gene functional patterns has been completed, we can
predict unknown genes and identify different types of diseases.

We studied Eisen’s experimental data at three levels:

• Identify two classes of gene functional patterns: 121 genes that code for riboso-
mal proteins and 2346 genes that code for non-ribosomal proteins.

• Identify three classes of gene functional patterns: the three classes and their sizes
are listed in Table 5.1.

• Identify multiple classes of gene functional patterns: four to ten classes. Evaluate
network performance when the number of gene functional patterns is increased.
The selected classes and their corresponding sizes are given in Table 5.2.

5.2.3 Data Preprocessing

Figure 5.1 gives scatter plots of Eisen’s data with three classes of gene expression
patterns under different experimental conditions. The plots provide us some useful
information of the data, e.g. there is no linear association between alpha 0 and other
variables, there are some outliers and also there are possible potential clusterings,
e.g. triangles are grouped together.
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Fig. 5.1. Scatter plots of three classes of gene expression patterns (see Table 5.1) for Eisen’s
data (p87) under a variety of heterogeneous experimental conditions over 79 time points.
Each experimental condition(time point) corresponds to one color with one shape; x-axis:
experimental condition diauxic shift at alpha 0; y-axis: alpha 7 and so on.

Figure 5.2 provides time series plots for three classes of gene expression patterns
under 79 experimental conditions (time points). The plot shows that the data is non-
stationary, since the means and variances change with time.

5.2.4 Smoothing the Data

As it can be seen in the time series plot (Figure 5.2), the data oscillates with high
frequency and high amplitude and is non-stationary, which makes direct modeling
difficult. To remove these factors the raw time series data was transformed through
first order difference and log compression. First order differencing reduces the non-
stationarity of the time series. It can handle nondeterministic (stochastic) trends and
remove the long-term trend. Log transformation can reduce the number of outliers
and stabilize the variance. Figure 5.3 shows the time series plot after differencing
and log transformation. As it can be seen in the figure, the transformations made the
data more stationary than before transformations (Figure 5.2).

5.2.5 Input Selection

79 inputs may be too many for a Time Lagged Recurrent Neural Network, which
is difficult to train, particularly if the data is noisy, and may result in overfitting
problems, which do not provide good generalization. In order to select the neural
network inputs, a statistical analysis has been carried out to determine the correla-
tions between the inputs (time point) and the outputs (the class or pattern of genes).
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Fig. 5.2. Time series plot of three classes of functional gene expression patterns (see Table 5.1)
for Eisen’s data (p87) under a variety of heterogeneous experimental conditions over 79 time
points. x axis: time points; y-axis: the ratio of expression levels of a particular gene under two
different conditions: CY5 and CY3, respectively. Each gene time series was specified with
given color, such as the gene “ORF YBL090W” was plotted with one color and so on. The
means and variances of the time series are changing over time, which show that the series are
nonstationary.

The Pearson correlation coefficients of inputs and outputs were computed first then
the acceptance threshold was setup based on the p-values: if the p-value of the cor-
relation coefficient was less than 0.0001, then correlation was considered and we
accepted it as input, otherwise we dropped it. The selected inputs and computed
correlation coefficients are given in Table 5.3. This way the number of inputs was re-
duced from 79 time points to 47. Several input permutation runs were also employed
in order to find the combination, which produce the lowest error in the testing set.
After filtering out the low correlation inputs, the data were fed into the Time Lagged
Recurrent Neural Network.

When selecting input variables for a model, one must be careful not to include
false predictors. A false predictor is a variable or input that is strongly correlated with
an output class, but that is not available in a realistic prediction scenario. False pre-
dictors can easily sneak into a model because the process of extracting time lagged
information from a database is difficult. The selection of the number of inputs is a
delicate process. If the number of inputs is too small then noise makes it hard to find
the true patterns in the data. On the other hand, if the number of inputs is too large
then the non-stationarity of the data makes the data with statistics less relevant for
the task when constructing the classifier.

One important advantage of using Time Lagged Recurrent Neural Networks is
that they can use the memory function and the memory layer to confine the input,
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Fig. 5.3. Time series plot of three classes of functional gene expressions for Eisen’s data
(ribosomal, transcription, and secretion) under heterogeneous conditions after differencing
and log transformation. x axis: time points; y-axis: the ratio of expression levels of a particular
gene under two different conditions: CY5 and CY3, respectively. Each gene time series was
specified with given color such as the gene named ORF YBL090W was plotted with one
color and so on. The means and variances stay approximately constant, that indicates that the
transformation made the time series closer to stationary.

which can be considered as further input preprocessors to select the inputs, and can
reduce the redundant information and detect false predictors.

5.3 Design of Time Lagged Recurrent Neural Network

Time Lagged Recurrent Neural Networks are extensions of conventional Recurrent
Neural Networks with short-term memory structures and local recurrent connections.
We used the general network architecture with three layers and the feedback connec-
tion from the hidden layer back to the input layer. The input layer used the inputs
delayed by L time points before presented to the network. Training of the TLRNN
was done with Back-Propagation Through Time with trajectory learning and the
parameters were learned via examples.

5.3.1 Memory Structures

There are several memory structures at the input layer to choose from. We have
applied one time point delay and Gamma memory function to the data. In order to
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Table 5.3. Input selection: Pearson correlation coefficients of inputs and outputs (class) for
Eisen’s data, Prob > |r| under H0: Rho=0

Inputs Correlation coefficients Inputs Correlation coefficients

alpha0 −0.29655 cdc15210 −0.33316
alpha56 −0.26218 spo0 −0.22003
alpha63 −0.21622 spo2 0.63531
alpha70 −0.20749 spo5 0.61170
alpha84 −0.34190 spo7 0.58318
alpha91 −0.26009 spo9 0.41863
alpha98 −0.44897 spo511 −0.67660
alpha105 −0.2258 spoearly 0.67581
alpha112 −0.39606 spomid 0.67611
Elu0 0.39482 heat10 0.57206
Elu60 −0.43226 heat20 0.77191
Elu90 −0.57070 heat40 0.60434
Elu120 −0.63138 heat80 0.57094
Elu150 −0.59320 heat160 0.47246
Elu180 −0.52208 dtt15 −0.25992
Elu210 −0.48014 dtt60 0.51186
Elu240 −0.37021 dtt120 0.75011
Elu270 0.34820 cold20 0.32741
Elu300 −0.25142 cold40 0.38936
cdc1570 −0.26273 cold160 0.59074
cdc1590 −0.32061 diaua 0.33820
cdc15110 −0.40302 diauf 0.65262
cdc15130 −0.32735 diaug 0.67092
cdc15150 −0.23325

search for the best network structure, the Akaike Information Criteria and Bayesian
Information Criteria were applied. The Gamma memory function provided the lower
value of AIC/BIC and the higher classification accuracy.

5.3.2 Learning Algorithms

BPTT can adapt the depth of the memory using different types of learning rules, in-
stead of changing the number of inputs. Initial depth of the memory was setup to 10,
which was later adapted by the network according to the Gamma memory function.
The best learning rule for each layer for the studied data was back-propagation with
gradient descent and momentum, where the momentum was setup to 0.7. As an acti-
vation function, tangent sigmoid worked best for the given data on the hidden layer
and log sigmoid function on the output layer.
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5.3.3 Statistical Criteria for Model Selection

The goal of model selection is to find the best network architecture that can achieve
the balance between data fitting and model complexity in order to avoid overfitting
and to maximize generalization performance. In a Time Lagged Recurrent Neural
Network there are several dynamic parameters, such as the number of hidden neu-
rons, the depth in the samples, and the number of trajectories in the search space that
have to be optimized in order to achieve optimal model. The depth in the samples
parameter can be adapted through BPTT. Two-way factorial arrays were designed
to search for the best values of the trajectory and the number of hidden neurons. In
this application the number of trajectories is ranged from 2 to 20 and the number
of hidden nodes also ranged from 2 to 20. Statistical criteria, such as the Akaike
Information Criteria and the Bayesian Information Criteria were computed in order
to determine the optimal values for optimal network size and structure. We consider
the best neural network to be the one with the highest classification accuracy and the
lowest AIC/BIC. In case AIC and BIC don’t agree we prefer BIC. The best model
was chosen for the rest of the gene classification and future predictions.

5.4 Experimental Results

5.4.1 Two Classes: Ribosome and Non-Ribosome Protein Genes

After 1000 epochs of training the MSE dropped below 0.000059. The mean and
the standard deviation of the correct classification rate for the testing data was
99.427% ± 0.366% with 10 independent runs. This result is even better than the re-
ported result by the prediction algorithm “CLEAVER”, with a correct classification
accuracy of 99.229834% for the same data [12].

Nearest Neighbor with Mahalanobis Distance and Self-Organized Map methods
were also employed for comparison study, which gave the correct classification rates
of 97.39% and 98.53%, respectively. Hierarchical Bayesian Neural Network with
regularization was also employed to the same data, which provided 99.3932% correct
classification rate.

5.4.2 Three Classes: Ribosomal, Transcription and Secretion Gene Functional
Classes

Table 5.4 provides the computed statistical criteria for model selection. The average
values of AIC and BIC of five independent runs are shown. Table 5.5 reports gen-
eralization error rates for the same runs. As it can be seen in Table 5.4 the AIC and
BIC values increase rapidly and approximately linearly with the number of hidden
nodes, but their values only increase slowly with the number of trajectories. The best
AIC and BIC values are highlighted and they are concentrated at 2 and 4 hidden neu-
rons and at 5 and 12 trajectories. Regarding Table 5.5 most of the low error rates are
reported around the upper left corner, which corresponds to low number of hidden
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Table 5.4. Factorial array for model selection with Back-Propagation Through Time and
dynamic trajectory learning for Time Lagged Recurrent Neural Network for Eisen’s data.
Average values of 5 runs of AIC and BIC. T: number of trajectories; H: number of hidden
neurons

T/H 2 4 8 12 15 20

2 1861/2143 3300/4289 7661/8698 11398/12970 14273/16234 19021/21629
5 1846/2127 3828/4367 7638/8694 11404/12978 14316/16263 19092/21699
8 1953/2234 3788/4327 7636/8692 11444/13018 14293/16254 19091/21700
10 1904/2184 3861/4400 7631/8687 11410/12985 14154/16345 19046/21653
12 1773/2250 3722/4582 7688/8744 11460/13033 14195/17325 19128/21735
15 1945/2225 3815/4354 7679/8735 11505/13078 14288/16250 19111/21719
18 1907/2187 3807/4346 7624/8680 11420/12992 14282/16243 19059/21666
20 1936/2217 3834/4373 7665/8721 11445/13018 14378/16339 19139/21747

Table 5.5. Generalization error rate in percentages with Time Lagged Recurrent Neural
Network for Eisen’s data. T: number of trajectories; H: number of hidden neurons

T/H 2 4 8 12 15 20

2 4.42 3.96 5.72 4.70 5.30 5.01
5 3.74 4.97 6.46 5.61 5.09 7.97
8 5.73 4.36 5.29 7.99 6.16 7.72
10 4.53 7.43 5.61 4.63 5.90 8.66
12 5.43 6.53 9.15 9.31 7.36 11.60
15 5.96 4.50 9.71 10.41 5.51 9.41
18 4.39 3.48 5.75 6.23 5.03 5.90
20 6.03 5.26 8.39 6.36 10.58 12.66

nodes with low number of trajectories. This is a good indication, meaning that the
two tables mostly agree with each other. The optimal value from both tables, which
provide the lowest generalization error rate and lowest BIC can be found at 2 hidden
nodes with 5 trajectories and its value is 3.74. However, there is an even lower error
rate at 4 hidden nodes and 18 trajectories, but we don’t prefer it since it has high
AIC/BIC. Since the number of classes to be recognized for this study is only three, it
is not surprising that small number of hidden nodes and small number of trajectories
can provide good performance. Results show that if we increase the number of pat-
terns (classes) to be recognized, the number of trajectories and the number of hidden
nodes have to be increased in order to get optimal performance. Table 5.5 also shows
that the learning capability (generalization performance) of the model varies with
the number of trajectories and the number of hidden neurons and these two may be
largely determined by the complexity of the patterns to be recognized.

Table 5.6 provides results of some other popular learning approaches for gene
expression classification for comparison purposes: results of Nearest Neighbor with
Mahalanobis Distance (NNMD), Self Organized Map (SOM) and Support Vector
Machine (SVM) are shown. Table 5.6 shows the means and standard deviations
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Table 5.6. Correct classification rates with standard deviations of five runs for different
methods for Eisen’s data

Methods Correct classification rate (%) ± STD (%)

NNMD 73.28 ± 0.012
SVM 74.65 ± 0.002
SOM 80.44 ± 0.053
TLRNN 95.61 ± 0.018
JERNN 94.04 ± 0.015

Table 5.7. Correct classification rates of Time Lagged Recurrent Neural Network with Back-
Propagation Through Time and dynamic trajectory learning corresponding to the number of
classes for Eisen’s data

Number of patterns (classes) Correct classification rate (%)

3 96.52
4 87.14
5 85.06
6 76.15

10 62.14

of the correct classification rates for five independent runs. SVM in this case did
not provide the highest performance as opposed to most gene expression studies.
The reasons may come from the heterogeneous expression data and the existence of
multiple classes; TLRNN particularly performs well for this kind of time series data.
We have also applied another popular recurrent neural network, the Jordan/Elman
Recurrent Neural Network (JERNN) for our data set. As it can be seen in Table 5.6
the TLRNN worked best for the heterogeneous time series gene expression data.

5.4.3 Multiple Functional Classes

The data distribution for more broad gene functional classes is given in Table 5.2. The
correct classification rates with TLRNN are given in Table 5.7, which are based on
the optimal structure given by the AIC/BIC. As it can be seen in the table the correct
classification rate decreases with the number of classes, which is not surprising.
Again, as we have discussed above, both the number of hidden nodes and the number
of trajectories increased as the number of classes increased in order to achieve better
performance.

5.5 Related Works

A large number of approaches have been proposed, implemented and tested by
computer scientists and statisticians in order to discover or identify the gene
functional patterns with microarray experiments [26–27]. For example, a genetic
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network approach was discussed and developed by Thieffry and Thomas [28] and
D’haeseleer, et al. [10]. Time series was studied by Socci and Mitra [29] and so on.
Self-organized hierarchical neural network was done by Herrero, et al. [11]. Unsu-
pervised neural network and associated memory neural network was done by Azuaje
[30] and Bicciato, et al. [31], classification and diagnostic prediction of cancers using
gene expression profiling and artificial neural networks was investigated by Khan
et al. [32]. Comparison of discrimination methods for the classification of tumors
using gene expression data was done by Dudoit et al. [33]. We reported Bayesian
neural network and regularised neural network approaches earlier [34–35]. Previous
study showed that traditional statistical models can provide some insight into gene
expressions and has precise results, but the weaknesses of statistical models are
that they can not capture the dynamic changing of gene expressions from time to
time well and are sensitive to noise and assumptions. Neural networks are more
efficient and flexible for studying gene expressions. We, as an addition to our efforts
reported in this chapter currently explore other kinds of neural network models for
discovering correlation in gene patterns, and refine the Jordan/Elman neural network
approach to study the heterogeneous time series gene expression patterns.

5.6 Conclusion

In this chapter, TLRNNs with BPTT and dynamic trajectory learning were proposed
and explored in order to investigate multiple gene functional patterns with heteroge-
neous microarray experiments. Results show that the Time Lagged Recurrent Neural
Network worked better than Nearest Neighbor with Mahalanobis Distance, Support
Vector Machine and Self Organized Map. For the SVM this is a little surprise, since
most well known results using SVM provided the highest performance and it has
properties of dealing with high level noise and large number of attributes, which both
exist in the gene expression data. The possible reasons may be found in the heteroge-
neous time series gene expression data and the existence of multiple classes. Another
reason for the good performance of TLRNN is that it can iteratively construct the
network for temporal patterns, train the weights, and update the time information.
According to the results, the best generalization capability largely depends on the
complexity of the patterns, which can be learned by TLRNN with BPTT and trajec-
tory learning through monitoring the complexity of the trajectory with distinct types
of states. With the increase in the number of gene functional patterns the generaliza-
tion performance decreased. However, with changing the number of trajectories and
the number of hidden nodes, the performance of the model can be improved based
on the statistical criteria for model selection. In order to speed up the search for the
best network architecture for dynamic parameters, such as the number of hidden neu-
rons and the number of trajectories, two or three way factorial design with statistical
criteria can be employed.
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