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Summary. Gene regulatory networks describe how cells control the expression of genes,
which, together with some additional regulation further downstream, determines the produc-
tion of proteins essential for cellular function. The level of expression of each gene in the
genome is modified by controlling whether and how vigorously it is transcribed to RNA, and
subsequently translated to protein. RNA and protein expression will influence expression rates
of other genes, thus giving rise to a complicated network structure.

An analysis of regulatory processes within the cell will significantly further our under-
standing of cellular dynamics. It will shed light on normal and abnormal, diseased cellular
events, and may provide information on pathways in dire diseases such as cancer. These path-
ways can provide information on how the disease develops, and what processes are involved in
progression. Ultimately, we can hope that this will provide us with new therapeutic approaches
and targets for drug design.

It is thus no surprise that many efforts have been undertaken to reconstruct gene regulatory
networks from gene expression measurements. In this chapter, we will provide an introductory
overview over the field. In particular, we will present several different approaches to gene
regulatory network inference, discuss their strengths and weaknesses, and provide guidelines
on which models are appropriate under what circumstances. In addition, we sketch future
developments and open problems.

2.1 Introduction

Biology has undergone a seminal shift in the last decade, with a transition from fo-
cusing on simple, small components of cells, such as DNA, RNA and proteins, to
the analysis of relationships and interactions between various parts of a biological
system. The traditional approach to much of molecular biology breaks up a system
into its various parts, analyzes each part in turn, and hopes to reassemble the parts
back into a whole system. In contrast, the systems biology approach aims at under-
standing and modeling the entire system quantitatively, proposing that the system is
more than the sum of its parts and can only be understood as a whole.
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Gene regulatory networks control a cell at the genomic level, they orchestrate
which genes and how vigorously these genes are transcribed to RNA, which in turn
functions as a template for protein synthesis. Genes and proteins do not act inde-
pendently. Instead, they interact with each other and form complicated regulatory
networks. Proteins which function as transcription factors can positively or nega-
tively influence the expression of another gene, and thus the production of other
proteins. Some proteins act independently, others only become active in a complex.
Gene regulatory networks describe these regulatory processes, and thus the molec-
ular reaction of a cell to various stimuli. High throughput experimental techniques
to measure RNA and protein concentrations enable new approaches to the analysis
of such networks. The analysis of these data requires sophisticated techniques par-
ticularly tailored to the task. New statistical, qualitative and quantitative methods are
being developed for this purpose.

At the modeling side, several levels of detail have traditionally been used to
describe gene regulation. Starting with very simple models which allow for quali-
tative statements only, in recent years there is a tendency to describe the dynamic
response of a system in more detail. Also, besides the analysis of given network
models, the inference of parameters of a gene regulatory network from experimental
data has become one of the big challenges in computational biology. As the num-
ber of parameters usually far exceeds the number of measurements available for this
purpose, leading to under-determined problems, modelers have begun to use hetero-
geneous data sources for network inference and to include biological knowledge into
the parameter estimation.

In the following, we will give an overview over different models and describe
the challenges and current developments, with a focus on mathematical and compu-
tational techniques. In addition, we will present a novel method particularly suitable
for the typical setting where one has only a low number of data points to estimate
model parameters, but when still quantitative modeling is desired. We will show
how inference from data can be carried out using the models discussed, and we will
present algorithms for the computations involved.

Modeling of gene regulatory networks is a quickly evolving field, with new de-
velopments and algorithms being published almost daily. We can thus only provide
an introduction to the subject matter with a rough overview, and in no way cover
the field exhaustively. We will provide links to further literature where appropriate
throughout the chapter, providing the reader with references for additional and more
detailed information.

Before going into detail with the mathematical modeling of regulatory networks,
we will briefly review the biological background in the following section. For more
details see for example Alberts et al. [5], Cooper [28], Berg and Singer [13], or
Collado-Vides and Hofestädt [27].

2.1.1 Biological Background

To understand the role regulatory networks play, we will start with the main play-
ers in a cell, the proteins. They consist of long folded chains of amino acids and
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attend various tasks essential for survival of the cell. For example, they function as
transporters, induce chemical reactions as enzymes, take part in metabolic pathways,
recognize and transmit external signals, or act as ion channels in the cell mem-
brane [5]. Proteins are permanently produced, this process is called gene expression.
It consists of two stages, transcription and translation, and is highly regulated at
different levels.

The information which proteins a cell can generally produce is encoded in its
genome, the entirety of genes located on the DNA. During transcription, information
from a gene is transcribed into an intermediate product called messenger RNA, or
shortly mRNA. It serves as a template to produce a protein in the second step, the
translation. The velocity and rate of this process is highly regulated and can vary in
a wide range, making the organism flexible to adapt to external influences such as
nutrition supply and to changes in environmental conditions such as temperature or
salinity. It also enables the cell to respond to various stimuli and to maintain basic
metabolic processes necessary for survival [27].

Regulation happens at different levels in the cell. We start with probably the most
important mechanism, the regulation of transcription initiation. This is the main reg-
ulatory mechanism in prokaryotes. In eukaryotic cells, regulation is complicated by
other effects such as alternative splicing or transport processes, we will neglect this
here for simplicity. In transcription, an enzyme called RNA-polymerase (RNAP) is
needed to catalyze the production of mRNA from an existing DNA template. This
is initiated by binding of RNAP to the promoter, a regulatory region in front of
the gene’s coding region. Promoters contain specific binding sites for transcription
factors, that is, for proteins regulating gene expression. Binding of RNAP and thus
transcription initiation are facilitated by these transcription factors. Operators are
DNA regions with binding sites for repressors, transcription factors which inhibit
binding of the polymerase. A repressor-operator complex can influence the expres-
sion rates of multiple genes simultaneously. Some genes which encode for proteins
involved in the same regulatory process are organized in operons, they are located
side by side and are regulated by one single promoter. Their expression patterns are
thus highly correlated. Transcription factors can also affect the process of RNA pro-
duction by inducing conformational changes of the DNA, which can either activate
or inhibit the polymerase [5].

Transcription factors do not always act independently, they can influence each
other. When this influence is positive, one says that the transcription factors coop-
eratively enhance each other, their collective influence exceeds the sum of single
influences. For example, some transcription factors are inactive until they form an
active complex with other proteins. A transcription factor bound to DNA can facili-
tate the binding of another transcription factor by electrostatic attraction. Transcrip-
tion factors can also inhibit each other. This is the case, for example, when several
transcription factors compete for the same binding site, or when an occupied bind-
ing site prevents binding at another binding site, because the sequences of both sites
overlap or because two transcription factors repel each other.
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Regulation also happens after the gene is transcribed to mRNA. This is called
post-transcriptional regulation. An example is the binding of a protein to mRNA,
thus changing the secondary structure of the molecule, and hence stabilizing it or
marking it for degradation. Analogously, regulation of protein concentration after
translation is called post-translational modification. Mostly, a chemical group is
appended to the protein, which induces a conformational change and activates or
inactivates the protein. Many transcription factors taking part in signal transduction
pathways have to be chemically modified to become active. These chemical modifi-
cations happen at a much faster time scale than the time scale for gene expression,
which has consequences for quantitative models.

In addition to the production of RNA and protein, chemical degradation also
affects concentrations of these molecules. RNA is quite unstable, and proteins are
also degraded after some time. This is usually described as a first order decay process,
thus degradation is assumed to be proportional to the component’s concentration.
Degradation rates are sometimes measured, and may then be included in models of
gene regulation.

Figure 2.1 shows an example for regulation of gene expression at different levels.
The four genes X ,Y,Z1 and Z2 encode proteins which function as transcription fac-
tors. Protein X and the chemically modified protein Z2 compete for the same binding
site within an operator O. The repressor-operator complex inhibits transcription of
the genes X and Y . Proteins Y and Z1 form a complex that acts as a transcription
factor for the operon Z containing the genes Z1 and Z2.

*
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Fig. 2.1. Sample regulatory network consisting of four genes X , Y , Z1 and Z2. Regulation of
gene expression happens at different levels: Protein X binds to an operator O and has thus a
negative influence on the transcription rates of genes X and Y . Protein X and the chemically
modified protein Z2 compete for the same binding site. The proteins Y and Z1 form an active
complex, this complex acts as a transcription factor promoting expression of the operon Z,
which in turn contains the genes Z1 and Z2
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2.1.2 Modeling Gene Regulatory Networks

How can gene regulatory processes be represented in a computer? Our aim is
twofold — inference of regulatory networks from data on the one hand, but also the
simulation of a network’s behavior on the other hand.

Recent advances in high-throughput biological techniques provide the basis for
large scale analysis, which gives new insight into activities of cellular components
under various biochemical and physiological conditions. DNA chips make the simul-
taneous measurement of concentrations of thousands of different RNA molecules
possible, fermentation experiments yield data series of hundreds of metabolites, and
large-scale measurements of protein concentrations are gradually becoming feasible.
Moreover, the amount of protein-protein interaction and transcription factor binding
site data is rapidly growing.

In computer models, gene regulatory networks are usually represented as directed
graphs, with nodes corresponding to genes, and edges indicating interactions be-
tween the genes. In this chapter, we will discuss four different classes of models. In
each section, we introduce a specific model or model class, and treat the inference
problem. Subsequently, advantages and limitations of the models as well as possible
extensions are discussed.

Boolean networks, described in Section 2.2, are probably the simplest models
conceivable for regulatory networks. They assume that each gene is in one of two
states, either active or inactive. Interactions between genes are modeled through
Boolean logic functions, and updates are carried out simultaneously for all genes
in discrete time steps. The updates are deterministic, and Boolean networks provide
only a qualitative description of a system.

Relevance networks are described in Section 2.3. These approaches are based on
pairwise distances (or similarities) between gene expression measurements, and try
to reconstruct the networks using a threshold on the distance between genes.

Bayesian networks, discussed in Section 2.4, are probabilistic models. They
model the conditional independence structure between genes in the network. Edges
in a network correspond to probabilistic dependence relations between nodes, de-
scribed by conditional probability distributions. Distributions used can be discrete or
continuous, and Bayesian networks can be used to compute likely successor states
for a given system in a known state.

Finally, differential equation models, described in Sections 2.5 to 2.7, provide a
quantitative description of gene regulatory networks. Models used here range from
simple linear differential equation models to complicated systems of nonlinear partial
differential equations and stochastic kinetic approaches. In Section 2.5, we describe
ordinary differential equation models. In Section 2.6, we present a novel method
combining Bayesian networks and differential equations, and show first results on
data from the yeast cell cycle network. Differential equation models going beyond
ordinary differential equations are described in Section 2.7.

Finally, the last Section 2.8 gives a summary and an outlook, and provides a
comparison between the model classes introduced.
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2.2 Boolean Networks

Boolean networks offer a binary, discrete-time description of a system. They can be
seen as a generalization of Boolean cellular automata [102], and have been intro-
duced as models of genetic regulatory networks by Kauffman [52] in 1969. Let us
start by stating a formal definition of a Boolean network:

Definition 1 (Boolean Network). A Boolean network is defined as a tuple G =
(X ,B), where X = (x1,x2, ...,xn) ∈ {0,1}n is a vector of Boolean variables, and B is
a set of Boolean functions B = { f1, f2, ..., fn}, fi : {0,1}n �→ {0,1}.

In gene expression networks, the xi correspond to the genes and the fi de-
scribe the interactions between them. In Boolean network models, one assumes
that each gene can be modeled as being in one of two states, on (expressed, 1)
or off (not expressed, 0). The functions B are used to update the nodes at discrete
time-steps, all nodes X are updated synchronously using the Boolean functions B,
that is, xi(t + 1) = fi(x1(t), ...,xn(t)). We call a snapshot of the values of the nodes
x(t) = (x1(t),x2(t), ...,xn(t)) at time t the expression pattern or state of the network
at the respective time point.

A Boolean network can be graphically represented in several ways, emphasizing
different aspects of the network. An example is shown in Figure 2.2 for a small
sample network consisting of three nodes A, B and C. The graph representation in
Figure 2.2A shows how the nodes influence each other. Pointed arrows indicate an
activation, see for example the positive regulation of node A by node B with the
corresponding Boolean logic rule A′ = B. In this example, the next value of node
A, denoted A′, will be equal to the current value of node B. Flat arrows indicate an
inhibition, see for example the rule B′ = ¬A. Here, the next value of node B will
be the negation of node A, that is, B′ = 1 if A = 0 and B′ = 0 if A = 1. The value
C′ is computed from the current values of A and B together using the logical “OR”
operation, hence C′ = 1 if A = 1 or B = 1, and C′ = 0 otherwise. The corresponding
logical Boolean rules are given in Figure 2.2B. Figure 2.2C shows the state transition
table of the network, it is a tabular representation of all possible “input” states of the
network and, for each input, the resulting “output” or subsequent state. Figure 2.2D
shows this table in a graph representation, visualizing the networks state space and
its dynamics by connecting each input state with its corresponding output state. In
this latter graph, it can be seen that the particular network in this example converges
to a cycle of size four from any initial state.

2.2.1 Inferring a Boolean Network from Data

We will now discuss the problem of inferring a Boolean network from time series
data. To formalize this, we define the Consistency Problem:

Definition 2 (Consistency Problem). Let (I,O) be a pair of observed expression
patterns of an unknown network G = (X ,B), such that O = B(I), that is, O is the
expression pattern of the network G after one time step when starting at state I.
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Fig. 2.2. Different representations of a sample Boolean network consisting of three nodes.
(A) Graph representation, (B) logical Boolean rules, (C) state transition table and (D) state
transition graph. In (A), pointed arrows indicate an activation, for example, gene A will be
activated if gene B is active. Flat arrows indicate an inhibition, for example, gene B will
be deactivated if gene A is active. Gene C is activated if either gene A or gene B is active,
as denoted by the “or” symbol “∨” in the figure. In Figure 2.2B, the same relationship is
expressed in boolean logical rules. Figure 2.2C shows a tabular representation of all possible
input states and the resulting next states of the network. Figure 2.2D visualizes the state space
in a graphical form, showing how the eight possible states of the network are interconnected.
For example, if the network is in state (A = 1,B = 0,C = 0), then the next state of the network
will be (A = 0,B = 0,C = 1)

Then, a network G′ = (X ′,B′) is consistent with (I,O), if O = B′(I). G′ is consistent
with a set of expression pairs D = {(I j,O j)} j=1,...,m, if it is consistent with each pair
(I j,O j) in D. The Consistency Problem is the problem to decide, whether a Boolean
network consistent with given data D exists, and output one if it exists [2].

The Identification Problem for Boolean networks in addition asks whether the
network is unique:

Definition 3 (Identification Problem). Given the number of genes n and a set of m
input-output pairs D, the Identification Problem is the problem to decide whether a
unique Boolean network consistent with D exists, and output it if it does [2].

The number of possible networks with a given number of nodes n is huge, hence
exhaustive search is usually prohibitive. For a network of n nodes, for each node,
there will be 22n

possible functions of n inputs. Even if we restrict the Boolean
functions to functions with at most k < n inputs, there will be 22k

possible functions,
and each node has n!/(n− k)! possible ordered combinations of k different inputs.
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The number of possible networks for given n and k will thus be(
22k n!

(n− k)!

)n

, (2.1)

which grows exponentially with the number n of nodes in the network. However, if
the indegree k of the network is fixed, the following can be shown:

Theorem 1 (Akutsu, 1999). The consistency problem and the identification problem
can be solved in polynomial time for Boolean networks with maximum indegrees
bounded by a constant k.

If k is close to n, the consistency and identification problems are NP-hard [3].
Also the number of data points required to estimate the Boolean functions from

data grows exponentially with the network size. Surprisingly, for networks of fixed
indegree k, O(logn) input/output patterns are sufficient on average for the network
identification, with constant around k2k in front of the logn [2]. This is why much
effort has been spent on devising learning algorithms for Boolean networks with
fixed maximum indegree. Several algorithms have been proposed for network infer-
ence, for example [2,3,54]. In the following, we will sketch the REVEAL algorithm
by Liang, Fuhrmann and Somogyi [58], which is based on information theoretic
principles.

The REVerse Engineering ALgorithm REVEAL

The strategy employed in the REVEAL algorithm is to infer regulatory interac-
tions between nodes from measures of mutual information in state transition tables.
The observed data D is considered a random variable, and information theoretic
properties are then used to derive the network topology.

Given a random variable X with k possible, discrete outcomes x1, ...,xk, the Shan-
non entropy H of X is defined in terms of the probabilities p(xi) of the possible
outcomes as

H(X) = −
k

∑
i=1

p(xi) log p(xi), (2.2)

where the sum is over the different outcomes xi with associated probabilities p(xi)
[80]. The entropy is a measure of the uncertainty associated with a random variable.
In a system with two binary random variables X and Y , the individual and combined
entropies are defined as

H(X) = − ∑
x∈{0,1}

p(x) log p(x) (2.3)

H(Y ) = − ∑
y∈{0,1}

p(y) log p(y) (2.4)

H(X ,Y ) = − ∑
(x,y)∈

{0,1}×{0,1}

p(x,y) log p(x,y), (2.5)
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where p(x), p(y) and p(x,y) are the individual and combined probability
distributions of the random variables X and Y , respectively. Note that, for sets
a = {X1,X2, . . . ,Xn} of random variables Xi, we will use the notation H(a) to denote
the joint entropy H(X1,X2, . . . ,Xn), derived by naturally extending equation (2.5)
for more than two variables. Similarly, for two sets a and b of random variables,
H(a,b) = H(a∪b).

The conditional entropy H(X |Y ) is a measure of the remaining uncertainty asso-
ciated with a random variable X , given that the value of a second random variable Y
is known. The conditional entropies H(X |Y ) and H(Y |X) are related to the individual
and combined entropies through

H(X ,Y ) = H(Y |X)+ H(X) = H(X |Y )+ H(Y ), (2.6)

or, in words, the combined entropy of X and Y is the sum of the individual entropy
of a single variable and the information contained in the second variable that is not
shared with the first. The mutual information is then defined as

M(X ,Y ) = H(X)−H(X |Y) = H(Y )−H(Y |X), (2.7)

it is a measure of the information about one variable, that is shared by the second
variable. Mutual information measures, how much knowing one of the variables X
and Y reduces our uncertainty about the other.

REVEAL extracts relationships between genes from mutual information in gene
expression measurements. The idea is, that when M(X ,Y ) = H(X), then Y com-
pletely determines X . Rewriting M(X ,Y ) according to equation (2.7), it follows that

Y completely determines X ⇐⇒ H(Y ) = H(X ,Y ), (2.8)

hence the computation of M(X ,Y ) is not even necessary.
Now let a set of m input-output patterns D = {(I1,O1), (I2,O2), ..., (Im,Om)} be

given. REVEAL then estimates the entropies from the data, and compares the single
and combined entropies H(b) and H(a,b) for each node a and each subset of the
genes b. If b exactly determines a, that is, if H(b) = H(a,b), then a corresponding
rule is added to the network. The pseudocode for REVEAL is given in Algorithm 1.

The worst-case running time of REVEAL is O(mnk+1): Time O(m) to estimate
the entropies from the input data, and this must be done for each node and all subsets
of the nodes of size up to k (lines 1–3).

2.2.2 Advantages and Disadvantages of the Boolean Network Model

As we have seen, the Boolean network model provides a straightforward model of
regulatory networks, and under the condition of bounded indegree, efficient algo-
rithms for network inference exist. Boolean networks are attractive due to their sim-
plicity, they are easily applied and quickly implemented. The underlying assumptions
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Algorithm 1 REVEAL
1: for each node a do
2: for i = 1 to k do
3: for each subset b of size i of the nodes X do
4: compute the entropy H(b) from the inputs
5: compute the joint entropy H(a,b) from the inputs b and outputs a
6: if H(b) = H(a,b) then
7: b exactly determines a, add a corresponding rule to the inferred network
8: proceed with the next node a
9: end if

10: end for
11: end for
12: end for

however seem very strict, in particular, modeling genes as being in one of only two
states, either on, or off, certainly is an oversimplification of true biological networks.
Similarly, true networks are time-continuous and asynchronous, whereas Boolean
networks assume time-discrete, synchronous updates.

Still, recent research results indicate that many biologically relevant phenom-
ena can be explained by this model, and that relevant questions can be answered
using the Boolean formalism [82]. Focusing on fundamental, generic principles
rather than quantitative biochemical detail, Boolean networks can capture many
biological phenomena, such as switch-like behavior, oscillations, multi-stationarity,
stability and hysteresis [48, 94, 96], and they can provide a qualitative description
of a system [92]. Recent modeling results combined with the first experimental
techniques to validate genetic models with data from living cells show that models
as simple as Boolean networks can indeed predict the overall dynamic trajectory
of a biological genetic circuit [16]. It seems that for understanding the general
dynamics of a regulatory network, it is the wiring that is most important, and
often detailed dynamic parameters are not needed [103]. For example, Albert
and Othmer [4] have predicted the trajectory of the segment polarity network in
Drosophila melanogaster solely on the basis of discrete binary models. Similarly, Li
et al. [57] have modeled the genetic network controlling the yeast cell cycle using a
binary model.

A serious limitation of the Boolean network approach is that, although a steady
state of a Boolean network will qualitatively correspond to a steady state of an
equivalent continuous model based on differential equations, not all steady states
of the continuous model will necessarily be steady states of the Boolean model
[40]. Conversely, periodic solutions in the Boolean model may not occur in the
continuous model. This problem limits the utility of Boolean modeling of gene
networks [85].

Clearly, Boolean networks are not suitable when detailed kinetic parameters are
desired, and the focus is on the quantitative behavior of a system. Their key advantage
and limitation at the same time is their simplicity, enabling them to capture the overall
behavior of a system, but limiting the analysis to qualitative aspects. On the other
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hand, this simplicity allows the model to be applied to relatively large regulatory
networks, when more detailed methods would be infeasible simply due to the lack
of sufficient experimental data. At the same time, the simple two-state structure of
each node in the Boolean network poses the problem that experimental data, which
are usually measured on a continuous scale, need to be binarized, requiring delicate
decisions about how this is best done.

Another shortcoming of Boolean networks is that they are deterministic in na-
ture. However, true biological networks are known to have stochastic components,
for example, proteins are produced from an activated promoter in short bursts that
seem to occur at random time intervals, and probabilistic outcomes in switching
mechanisms can be observed [65]. Furthermore, in realistic situations, we are usu-
ally dealing with noisy inputs and experimental measurement errors, which may lead
to inconsistent data.

Finally, the dynamics of gene networks strongly depends on whether and how
intra-cellular transport and diffusion of RNA and protein are modeled [60,61], which
seems to play a particularly important role in eukaryotic cells [85]. The incorporation
of such processes in Boolean network models is difficult, if not impossible [85].

2.2.3 Extensions of the Boolean Model

Several extensions of the Boolean network model have been proposed to overcome
some of its limitations. To overcome the problems stemming from noisy and in-
consistent data, from a learning-theoretic perspective, one relaxes the consistency
problem to find a network that makes as few errors as possible. The resulting prob-
lem is known as the best-fit problem [17, 82] and is underlying many algorithms in
machine learning.

To deal with the probabilistic nature of gene expression data, a popular extension
of Boolean networks are the so-called Probabilistic Boolean Networks (PBN) [81].
The basic idea of PBNs is to aggregate several Boolean functions together, so that
each can make a prediction of the target genes. One then randomly selects one of
the functions, with probability being proportional to some weights assigned to the
functions. PBNs can be interpreted as several Boolean networks operating in parallel,
and one gets selected at random for a given time step. Thereafter, all networks are
synchronized to the new state, so that each can make the next transition should it be
selected [81].

Silvescu and Honavar [83] describe a generalization of Boolean networks to
address dependences of genes that span over more than one time unit. Their model
allows each gene to be controlled by a Boolean function of expression levels of
at most k genes at T different time points, and they describe an algorithm for the
inference of such networks from gene expression data. Other generalizations allow
multi-valued networks, where each gene can be in one of several discrete states, and
not just on or off [86].



44 L. Kaderali and N. Radde

2.3 Relevance Networks and Information Theoretic Approaches

While Boolean network models are based on the assumption that genes can only be
in one of two states, expressed or not expressed, relevance network approaches [20]
look at similarity or dissimilarity between pairs of genes on a continuous scale. Two
steps are involved in network reconstruction using a relevance network approach:

1. All pairs of genes are compared using some measure of similarity or dissimi-
larity. For example, all genes can be compared against each other using pair-
wise correlation coefficients, or information theoretic measures such as mutual
information can be used.

2. The complete set of pairwise comparisons is filtered to determine the relevant
connections, corresponding to either positive or negative associations between
genes.

The resulting network can then be represented in a graphical form. We will
only briefly present one representative algorithm based on the relevance network
approach, the ARACNe algorithm by Basso et al. [11, 63].

2.3.1 The ARACNe Algorithm

Similar to REVEAL, ARACNe (Algorithm for the Reconstruction of Accurate Cel-
lular NEtworks) [11, 63] is based on mutual information to identify regulations
between genes. In a first step, it also identifies statistically significant gene-gene
coregulation by mutual information. ARACNe can do this for discrete and con-
tinuous random variables, mutual information is estimated using Gaussian kernel
estimators [12]. The algorithm is hence not limited to Boolean networks such as
REVEAL. A statistical test is then used to determine relevant edges in the network,
Monte Carlo randomization of the data is used for the computation of p-values, and
edges are filtered based on a p-value threshold.

In a further step, ARACNe then prunes the network to eliminate indirect rela-
tionships, in which two genes are coregulated by one or more intermediary genes.
This is done using the data processing inequality (DPI), which essentially states that
if three random variables X , Y and Z depend from one another in a linear fashion
X → Y → Z, then the mutual information M(X ,Z) ≤ min[M(X ,Y ),M(Y,Z)]. This is
used to find and remove indirect edges X → Z from the network.

The authors of ARACNe claim that relationships in the final reconstructed net-
work have a high probability of representing direct regulatory interactions or inter-
actions mediated by post-transcriptional modifiers. They show results on microarray
gene expression data from human B cells, reconstructing a network with approxi-
mately 129,000 interactions from 336 expression profiles [11].

2.3.2 Advantages and Disadvantages of Relevance Network Approaches

Similar to Boolean networks, relevance networks are relatively simple models of
gene regulatory networks. They use straightforward and easy to compute measures
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of pairwise similarity or dissimilarity between genes to reconstruct the network, such
as correlation coefficients or information theoretic measures. In contrast to Boolean
networks however, they are continuous models, that is, genes can have expression
values on a quantitative scale.

One of the disadvantages of these approaches is, that they do not consider time,
and thus disregard dynamic aspects of gene expression. Hence, these models can
not infer causality, and it is not clear how to carry out simulations with an inferred
network. Although algorithms such as ARACNe operate on a continuous scale for
the gene expression levels, the method does not return any kinetic parameters, and
is not based on chemical reaction kinetics. Furthermore, the relevance network ap-
proach is based on pairwise similarity only, and it may thus miss interactions between
multiple genes. Finally, the choice of threshold for the inclusion of edges is some-
what arbitrary, and varying threshold parameters slightly may change the network
considerably.

On the other hand, depending on the similarity measure used, relevance network
approaches are less sensitive to noise than differential equations models. Although
the data processing inequality used in ARACNe is not sufficient to identify indirect
regulations, and hence the algorithm may sometimes remove direct relations as well,
the pruning step helps the algorithm to derive sparse networks.

The simplicity of the relevance network approach makes it applicable to large
networks. ARACNe, for example, is an algorithm with polynomial time complexity,
and the authors report its use on networks with several hundred genes [11, 64]. It
remains to be seen, how reliable the inferred interactions are for such large-scale
applications.

2.4 Bayesian Networks

While Boolean networks assume a fixed functional dependence between different
nodes, conditional models look at statistical correlation between genes. Conditional
models try to explain the correlation between two genes by other genes in the net-
work. These models are particularly simple in the Gaussian setting, since in this case
networks can be learned from data using classical statistical tests [33, 84]. The most
popular conditional model is the Bayesian network model, which is widely used to
model and infer gene regulatory networks [69].

Definition 4 (Bayesian Network). A Bayesian Network is a directed, acyclic graph
G = (X ,A), together with a set of local probability distributions P. The vertices X =
{X1, ...,Xn} correspond to variables, and the directed edges A represent probabilistic
dependence relations between the variables. If there is an arc from variable Xi to
Xj, then Xj depends probabilistically on Xi. In this case, Xi is called a parent of Xj.
A node with no parents is unconditional. P contains the local probability distributions
of each node Xi conditioned on its parents, p(Xi|parents(Xi)).

Figure 2.3 shows a simple Bayesian example network with three nodes A, B
and C, each assumed to be in one of two states, either on or off. The conditional
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A B

C

0.2 0.8

p(B)
ON OFF

p(A|B)
ONB OFF

ON 0.2 0.8
OFF 0.01 0.99 P(C|A,B)

A B ON OFF
ON ON 0.0 1.0

OFF OFF 0.99 0.01

ON OFF 0.8 0.2
OFF ON 0.9 0.1

Fig. 2.3. Sample Bayesian Network with three nodes with two possible states each (ON and
OFF). Given next to each node are the conditional distributions for the node, conditioned on
its parents, as indicated by the arcs. For example, the probability that A is off given that B is
on, p(A = off|B = on) is 0.8

probabilities p(A|B), p(C|A,B) and the unconditional probability p(B) in this binary
case are easily tabulated, as shown in the figure.

Note that the probability distributions of the nodes in Bayesian networks can be
of any type, and need not necessarily be restricted to discrete or even binary values
as in our example.

Given a Bayesian network, it is easy to compute the joint probability distribution
of all variables in the network:

Definition 5 (Joint Distribution). The joint distribution of a set of variables
X1,X2, ...,Xn is the product of the local distributions,

p(X1,X2, ...,Xn) =
n

∏
i=1

p(Xi|parents(Xi)). (2.9)

In our example, the joint probability distribution is given by

p(A,B,C) = p(B)p(A|B)p(C|A,B), (2.10)

and, for example, the joint probability that all nodes are on is p(A = on,B = on,
C = on) = p(B = on)p(A = on|B = on)p(C = on|A = on,B = on) = 0.2×0.2×0.0=
0.0. It is important to note at this point that the joint probability distribution can only
be resolved this way if the network does not contain any directed cycles.

Bayesian networks provide a graphical representation of statistical dependences
between variables, but more importantly, they also visualize independence relations
among variables. Conditional independence of variables is represented in the graph
by the property of d-separation, for directional separation [70]:
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Definition 6 (d-separation). Let a Bayesian network G = (X ,A) with local
probability distributions P be given. Two nodes Xi and Xj, i �= j, are d-separated
in the graph G by a given set S ⊆ X \ {Xi,Xj} of the nodes X, if and only if the
variables Xi and Xj are independent given the values of the nodes in S.

Informally, d-separation means that no information can flow between nodes Xi and
Xj, when the nodes in S are observed. Xi and Xj are independent conditional on S
if knowledge about Xi yields no extra information about Xj, once the values of the
variables in S are known.

Two Bayesian network structures may actually represent the same constraints of
conditional independence – the two networks are equivalent. For example, the struc-
tures X1 → X2 → X3 and X1 ← X2 ← X3 both represent the assertion that X1 and X3

are conditionally independent given X2 [46]. When inferring networks from data, we
cannot distinguish between equivalent networks, that is, causal relationships cannot
be derived. This should be kept in mind when working with Bayesian networks – the
best we can hope for is to recover a structure that is in the same equivalence class as
the true network. Formally, Bayesian networks in the same equivalence class can be
characterized as having the same underlying undirected graph, but may disagree on
the direction of some edges. See for example [72] for details.

With these definitions and precautions at hand, we now come to the problem of
learning a Bayesian network from given data.

2.4.1 Learning a Bayesian Network from Data

Learning a Bayesian network from given data requires estimating the conditional
probability distributions and independence relations from the data. In order to do
this, we would have to test independence of a given gene pair from every subset of
the other genes. Examples for such constraint based learning approaches are given,
for example, in [70] for networks involving only a few genes. For bigger networks,
this approach quickly becomes infeasible, simply because of the number of tests that
would be required.

The difficult issue is the decomposition of the joint probability distribution into
conditional distributions among the relevant variables. This decomposition yields the
network topology, estimating the distinct conditional probability distributions given
the dependence structure is then relatively easy. In fact, given that the identification
problem for Boolean networks is NP-hard, it is probably no surprise that inferring
the dependence structure of a Bayesian network from given data is NP-hard as well.
For this reason, the inference problem is usually tackled using heuristic approaches.
Methods used include Bayesian and quasi-Bayesian approaches [19, 46, 55, 88, 91]
as well as non-Bayesian methods [71, 89]. In the following, we will focus on the
Bayesian approach. We will discuss the problems of structure learning and parameter
learning for Bayesian networks in turn, starting with the easier parameter learning
problem.
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Learning Probabilities for a given Network Topology

Assume we are given the graph G = (X ,A), and all we ask for is details of the con-
ditional distributions P. Let us furthermore assume that the conditional distributions
are parameterized by some parameter vector ω , and that the general form of the dis-
tribution is known. Hence, we are asking for the values of ω given example data
D assumed to have been generated by an underlying Bayesian network with topol-
ogy G. The Bayesian approach then is to ask for the posterior distribution of the
parameters, given the network topology and the data. Using Bayes’ theorem,

p(ω |D ,G) =
p(D |ω ,G)p(ω |G)

p(D |G)
. (2.11)

The evidence p(D |G) =
∫

p(D |ω ,G)p(ω |G)dω averages over all possible parame-
ters ω and normalizes equation (2.11). It can be neglected when scoring parameter
values relative to one another, since it is independent of ω . The likelihood p(D |ω ,G)
describes the probability that a network with given structure G and parameters ω has
generated the data D , and will depend on the functional form of the local distribu-
tions P used in the Bayesian network, for example normal distributions or discrete
distributions. Finally, p(ω |G) is a prior distribution on the network parameters ω ,
and is often chosen to be conjugate to the likelihood for computational reasons. If
prior knowledge is available here, this can easily be included in the Bayesian network
framework through p(ω |G).

Heckerman [45] gives the example of multinomial distributions p(D |ω ,G),
hence each node is assumed to be discrete, having ri possible values x1

i , ...,x
ri
i . Under

the assumption that there are no missing data in D and furthermore assuming that
the parameters of the multinomial distributions for the different nodes are indepen-
dent from one another, the computation of the posterior distribution is easy when a
Dirichlet prior is used. In this case, the posterior distribution can be shown to be a
Dirichlet distribution as well. One can then maximize the posterior to find the most
likely parameters ω of the network, or average over possible configurations of ω to
obtain predictions for the next state of the network.

Learning the Network Topology

Let us now consider the problem of learning the structure of a Bayesian network from
given data. To evaluate different structures, we consider the posterior probability of
a network topology G given the data D :

p(G|D) =
p(D |G)p(G)

p(D)
. (2.12)

The term p(D) is the evidence, and can be written as an average p(D) =∫
p(D |G)p(G)dG over all possible model structures. Again, when scoring network

structures relative to one another, we need not compute it and can neglect this term.
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The likelihood p(D |G) can be computed by marginalizing p(D |ω ,G) over all
possible parameters ω of the local distributions,

p(D |G) =
∫

p(D |ω ,G)p(ω |G)dω , (2.13)

hence the local parameters ω are treated as nuisance parameters and are integra-
ted out.

Finally, p(G) is a prior distribution over network structures. In principle, this
prior can be used to encode any biological knowledge that is available on the system
under consideration. The simplest conceivable structure prior is to assume that every
structure is equally likely. Alternatively, a structure prior can be defined by assigning
confidences 0 < w(x,y) ≤ 1 to the edges (x,y) of the fully connected graph, and
scoring structures using the prior

p(G) =
1
N ∏

(x,y)∈A

w(x,y), (2.14)

where N is a normalizing constant to make the right hand side a proper distribution,
and A is the set of directed edges (arcs) of the network. Many alternative structure
prior distributions have been proposed in the literature. For example, Heckerman
et al. [47] suggest using a prior network and penalizing the prior probability of any
structure according to some measure of deviation between the prior network and
the topology of interest. Madigan et al. [59] describe an approach to elicit prior
knowledge from experts and encode it into the prior. Bernard et al. [14] use tran-
scription factor binding site information to define a prior distribution, thus including
knowledge from other data sources into the network inference.

Different strategies can then be employed to search the model space for the net-
work topology with highest posterior probability given the data. Exhaustive search is
usually prohibitive, since the number of possible network topologies with n variables
is equal to the number of acyclic directed graphs with n nodes, which is growing
exponentially with n [76]. This is why researchers have used heuristic search al-
gorithms, such as greedy search, simulated annealing, gradient descent procedures,
genetic algorithms and Monte Carlo methods [25].

2.4.2 Advantages and Disadvantages of the Bayesian Network Model

Bayesian networks are attractive models for gene regulatory networks since they
are stochastic in nature. They can thus deal with noisy measurements and stochastic
aspects of gene expression in a natural way [29, 65], and they are easily extended to
deal with missing data [45]. Furthermore, they provide an intuitive and easy to grasp
visualization of the conditional dependence structure in given data, and are much
easier for humans to understand than full conditional distributions. At the same time,
depending on the probability distributions used (continuous or discrete), they can
model quantitative aspects of gene regulatory networks.

Still, the level of detail they provide on the system modeled is rather coarse [29].
Furthermore, learning Bayesian networks from data is NP-hard, hence heuristic
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search methods have to be used, which do not guarantee that the globally optimal
solution is found [29]. Probably their main disadvantage is that they disregard dy-
namical aspects completely, and that they require the network structure to be acyclic,
since otherwise the joint distribution cannot be decomposed as in equation (2.9).
However, feedback loops are known to play key roles in causing certain kinds of
dynamic behavior such as oscillations or multi-stationarity [44,48,85,94,96], which
cannot be captured by the Bayesian network model. In spite of these limitations,
Bayesian networks have been used for example to infer regulatory interactions in the
yeast cell cycle [36, 87].

2.4.3 Extensions of Bayesian Networks

Efforts have been made to overcome the mentioned limitations. Bayesian networks
can be extended to capture the dynamic aspects of regulatory networks by assuming
that the system evolves over time. Thus, gene expression is modeled as a time series,
and one considers different vectors X(1), ...,X(T ) at T consecutive time points. One
then assumes that a variable Xi(t) of a particular gene i at time t can have parents
only at time t −1. The cycles in the Bayesian network then unroll, and the resulting
network is acyclic and the joint probability in equation (2.9) becomes tractable again.
The resulting networks are called Dynamic Bayesian Networks [37, 67, 106].

Dynamic Bayesian Networks have been combined with hidden variables to cap-
ture non-transcriptional effects [73]. Similarly aiming at the inclusion of information
from additional data sources into the Bayesian network learning process, Bernard
and Hartemink [14] include transcription factor binding location data through the
prior distribution, while evidence from gene expression data is considered through
the likelihood.

Other extensions of Bayesian networks try to deal with the typical setting en-
countered with microarray data – where many genes are measured, but only few time
points are available. Regularization approaches are used to avoid overfitting in this
situation, different methods have been proposed for Bayesian networks. For exam-
ple, Steck and Jaakkola [90] discuss parameter choices for a Dirichlet prior for the
marginal likelihood (2.13), and show that sparse networks are learned for specific
choices of parameters. Bulashevska and Eils [18] achieve regularization by con-
straining the form of the local probability distributions, they restrict interactions to
Boolean logic semantics, and utilize Gibbs sampling to learn the model from the data.

2.5 Quantitative Models using Ordinary Differential Equations

We have seen that Bayesian networks highlight the stochastic nature of gene reg-
ulation, but are static models since they comprise no explicit time dependence in
their definition. In contrast, we will now turn to ordinary differential equations
(ODEs), which provide a deterministic, quantitative description of the time evolu-
tion of a system. ODEs are used in many scientific fields to describe a system’s
dynamic behavior. They provide a detailed time- and state continuous description of
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the system under consideration. In recent years, ODEs have also been established as
models for gene regulatory networks, ranging from simple linear models to complex
nonlinear systems.

We start with a formal definition of a continuous dynamical system:

Definition 7 (Continuous dynamical system). A continuous dynamical system is a
triple (U,Φt ,T ). The state space U is an open subset of Rn and the set T ∈R is the
set of time points. The function Φt is called evolution function and maps for every
time point t ∈ T a state x ∈ U onto a state x ∈ U, hence Φt : T ×U → U. Φt is
assumed to be a smooth function.

In our models, T = R, and then Φt is called a flow. It is assumed to be the solution
of an autonomous first order differential equation of the form

ẋ(t) = f (x(t)), where x(t) ∈ U, f ∈ C 1. (2.15)

We assume the vector field f (x(t)) to be continuously differentiable, that is, f (x(t))∈
C 1, since this guarantees uniqueness of a solution of equation (2.15), given an initial
state x(t0). In gene regulatory network models, the state vector x(t) contains con-
centrations of all n network components at time t. Hence, the state space U is often
restricted to the positive quadrant U = Rn

+.
Several suggestions have been made how to choose the function f (x(t)), we will

highlight the main models in the following.

Linear Models

Chen et al. [24] in 1999 were among the first to use ordinary differential equations to
model gene expression networks. They used a simple linear function f (x(t)) = Ax(t)
with an n× n-matrix A with constant entries. Here, every regulation in the network
is described by one single parameter ai j, one thus has to estimate n2 parameters to
infer the corresponding network structure. Linear ODEs have the advantage of being
analytically tractable, thus time-consuming numerical integration can be avoided.
On the other hand, systems of the form ẋ(t) = Ax(t)+ b do not show a rich variety
of dynamic behavior. They only have one isolated stationary state xs = −A−1b in
which the temporal change of x vanishes. Once reaching this state, the concentra-
tions of the network components remain constant. (This is the usual case when A is
invertible. If A−1 does not exist, the situation is more complicated, since the equa-
tion ẋ(t) = 0 then either has no solution or many non-isolated stationary states). If
xs is stable in the sense that small perturbations of the system at rest in xs disappear
and the system returns to xs after some time, it is globally stable, that is, the sys-
tem eventually approaches this state from any initial concentration vector x(t0). If xs

is not stable, then the solution x is not bounded, leading to infinitely increasing or
decreasing concentrations. For these reasons, linear models are not well suited for
regulatory networks, in which the concentrations are expected to be bounded and
should not become negative. Furthermore, oscillations or multi-stationarity, which
are both important properties of true biological networks, are nonlinear phenomena
and cannot be captured with linear models.
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Nevertheless, linear models are still used to reverse engineer gene regulatory net-
works from experimental data, in particular for large systems including a lot of genes
(see, for example, [10, 43, 56, 77, 99]). Gustafsson et al. [43] try to infer the regula-
tory network of the yeast cell cycle using microarray measurements of the whole
yeast genome, which contains about 6000 genes. They argue, that even if the nature
of interactions between genes is nonlinear, it can be approximated around a specific
working point with its linearization, which then provides a good starting point for
further considerations.

Additive Models based on Chemical Reaction Kinetics

For smaller networks, more detailed and complex models with more free parame-
ters are feasible. Thus instead of linear models, for networks containing only a few
components, ODEs of the form

ẋi(t) =
n

∑
j=1

fi j(x j(t))− γixi(t) i = 1, . . . ,n (2.16)

with nonlinear regulation functions fi j : R → R and a first order degradation term
γixi(t) are frequently used (see, e.g. [31]).

Like linear models, these are additive models, where the influences of differ-
ent regulators are added and are thus assumed to act independently. This is often
a necessary simplification to keep the number of variables tractable, but in fact
numerous effects within a cell are non-additive. For example, some proteins form
multimers and only become functional in these complexes, several different tran-
scription factors can compete for a single binding site, or they act in cooperation and
amplify each other. Efforts have been made to overcome these limitations of additive
models, and cooperative effects are described as logical AND and OR gates, respec-
tively [6, 79]. However, including interactions between different regulators makes
the model far more complicated since the regulation functions fi j(x j) then become
multi-dimensional.

The regulation functions fi j(x j) describe the effect of a regulator j on the tempo-
ral change of the concentration of component i. According to equation (2.16), a gene
regulatory network is characterized when all individual dependences between regu-
lated components and regulators, that is, between ẋi and x j, are known. Many efforts
have therefore been made to derive an appropriate parameterization of a regulation
function. These approaches are often based on chemical reaction kinetics, in which
the binding process of a transcription factor TF to a specific binding site BS of the
DNA is considered a reversible chemical reaction with reaction constant K:

TF + BS
K� T F-BS-complex︸ ︷︷ ︸

C

(2.17)

The temporal changes of concentrations over time are expressed with differential
equations:
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d
dt

[TF ] = −k1[T F ][BS]− k2[C] (2.18)

d
dt

[BS] =
d
dt

[TF ] (2.19)

d
dt

[C] = − d
dt

[T F ] (2.20)

Here, [·] denote concentrations, and k1 and k2 are rates for complex formation and
dissociation, respectively. Solving for the reaction constant K = k1/k2 in equilibrium
leads to the following relation between K and the steady state concentrations of all
components involved in the reaction, known as the law of mass action:

K =
[Cs]

[TFs][BSs]
(2.21)

Rewriting and substituting the difference between the total concentration of binding
sites and that of the free binding sites for the complex concentration [Cs], that is,
inserting [Cs] = [BSt ]− [BSs], leads to

1− [BSs]
[BSt ]

=
[BSb]
[BSt ]

=
[T Fs]

K−1 +[TFs]
. (2.22)

The fraction of occupied binding sites [BSb] thus increases hyperbolically with the
transcription factor concentration.

For one single binding site, the left hand side of equation (2.22) can be interpreted
as the probability of this site to be occupied by a transcription factor. Therefore,
when the number of free transcription factors far exceeds the number of bound ones,
and thus the number of free transcription factors can be approximated with the total
amount of transcription factors, [T Fs] ≈ [T Ft ], the probability PC of the binding site
to be occupied can be written in terms of [T Ft ] as

PC([T Ft ]) =
[T Ft ]

[T Ft ]+ K−1 . (2.23)

This probability is proportional to the effect on the transcription rate of xi and also
to the amount of protein, provided that mRNA lifetime and translation rates are
constant, leading to the following parameterization:

ẋi(x j) = ki j
x j

x j + K−1 . (2.24)

Here, we have changed the notation according to equation (2.15). Relation (2.24) is
known as the Michaelis Menten kinetics [6]. Taking also cooperative effects between
several transcription factors x j into account, we can write the regulation function
as a Hill function

fi j(x j) = ki j
x

mi j
j

x
mi j
j + θ mi j

i j

(2.25)
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Fig. 2.4. Sigmoidal regulation function according to equation (2.25)

with Hill coefficients mi j accounting for cooperativity between transcription factors,
and with threshold values θi j which are related to the reaction constant K in equa-
tion (2.24) (see [31]). Function (2.25) is monotonically increasing or decreasing, and
approaches the regulation strength ki j for large concentrations x j. The coefficient
ki j is positive when j activates i, zero when the concentration of j has no influence
on i, and negative in case of an inhibition. Figure 2.4 illustrates equation (2.25) for
the case of an activation with different values for the Hill coefficients m. A coeffi-
cient m = 1 corresponds to independent regulation (according to equation (2.24)).
An exponent m > 1 indicates cooperative interaction between transcription factors
x j, causing a sigmoidal shape. Compared to m = 1, the effect on the regulated com-
ponent is lower for small regulator concentrations, but increases quickly around the
threshold θ , so that it exceeds the curve for m = 1 for concentrations x j > θ . When
transcription factors influence each other negatively, for example they compete for
a single binding site, this is expressed by an exponent m < 1, and the correspond-
ing curve shows a steep slope for low regulator concentrations. It rapidly flattens for
higher concentrations due to mutual inhibition.

To our knowledge, equation (2.25) was first proposed by Jacob and Monod in the
year 1961 [49], and experiments carried out by Yagil and Yagil in 1971 supported
the theory [105]. The latter estimated values of Hill coefficients and dissociation
constants for different enzymes in Escherichia coli, one of the best studied bacterial
model organisms, which is found, for example, in the human gut.

Let us stop here for a moment and reconsider the modeling approach according to
equation (2.15). Although it looks rather general, it implies that there is a functional
relation between the state of the system at time t, that is, the concentration vector x(t)
in our case, and the temporal change of this state at time t. This is a strong assumption
which underlies all approaches used for network inference from expression data. For
models based on chemical reaction kinetics, it implies that regulating reactions are in
chemical equilibrium, otherwise there would be no unique relation between x(t) and
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ẋ(t). This assumption is feasible for gene regulatory networks, when one considers
the time scales in the system: Regulation via binding of a transcription factor to
DNA happens at a time scale of seconds, and is thus much faster than the whole
gene expression process, which lasts several minutes or even hours [6].

From a mathematical point of view, one of the main requirements on the reg-
ulation functions is that they should be bounded (concentrations should not rise
to infinity) and monotone. Different parameterizations are used in the literature to
guarantee these properties. Equation (2.25) is the direct result from chemical reac-
tion kinetics, but exponents such as the Hill-coefficient mi j are often hard to estimate
from a numerical point of view. Thus other parameterizations such as ki j(1+e−x j)−1

[22, 104] or ki j tanh(x j) [32] can be found. Several authors use step functions of
the form

fi j(x j) =
{

0 if x j ≤ θi j

ki j otherwise
(2.26)

to approximate equation (2.25) [30, 31, 34, 40, 66, 92]. This is the limit function
for large Hill coefficients m → ∞, and these models are known as piecewise linear
differential equations (PLDEs). Equation (2.26) provides a partition of the state space
into cuboids, separated by the threshold values θi j . Within each cuboid, the model
is linear and thus analytically tractable. On the other hand, problems concerning
the behavior of the system at the thresholds θi j can occur and may lead to additional
steady states or limit cycles [30,31]. Note also that a step function is not differentiable
at the thresholds and therefore does not satisfy the conditions in system (2.15).

In contrast to simple linear models, systems of the form (2.16) with bounded
regulation functions are stable in the sense that there exists a trapping region in state
space which eventually attracts all trajectories. This is an important feature in order
to provide a global description of the biological system. Furthermore, monotonicity
of the regulation function leads to a Jacobian matrix with constant signs (It should
be noted at this point that positive self-regulation might lead to exceptions from this
rule and must be treated carefully in this context – It can lead to changing signs of
the Jacobian matrix depending on the location in state space, and thus statements
about systems with constant J hold only for the parts of the state space in which
J has constant signs). For ODE systems with positive Jacobian matrix, important
statements about their dynamic behavior can be made. For example, Gouzé and
Thomas emphasized the role of feedback circuits in the corresponding interaction
graph [41, 93]. A positive circuit is required for multi-stationarity or hysteresis, and
a negative feedback loop with at least two components is needed for periodic be-
havior. Thus feedback mechanisms in regulatory networks are fundamental network
substructures which are related to certain dynamic behavior.

S-Systems

A further widely used class of ordinary differential equation models are S-systems
[100], in which regulatory influences are described by power law functions:



56 L. Kaderali and N. Radde

dxi(t)
dt

= αi

n

∏
j=1

x j(t)gi j −βi

n

∏
j=1

x j(t)hi j (2.27)

The kinetic orders gi j and hi j ∈ R and the rate constants αi and βi ≥ 0 have to be
estimated in these models, these are 2n2 + 2n parameters. The first term describes
the effect of positive regulators, the second one refers to inhibitors, respectively. In
contrast to additive models, here, single influences are multiplied. S-systems have
been shown to capture many relevant types of biological dynamics [53]. A hyper-
bolic regulation such as described by equation (2.24) can be well approximated with
exponents 0.5 and −0.5, respectively [95]. Steady states of (2.27) can be determined
analytically, making these models attractive for network inference. Nevertheless,
most of the model parameters are exponents, which are typically hard to estimate nu-
merically. Cho et al. [26] and Kikuchi et al. [53] have used S-systems to reconstruct
regulatory networks from gene expression data with genetic algorithms. Thomas
et al. [95] developed an algorithm to estimate the rate constants from experimental
data. They evaluated their approach with a simulated three gene system.

2.5.1 Network Inference

We now turn to the network inference problem for ordinary differential equation
models, which is usually formulated as an optimization problem with an objective
function that is minimized with respect to the network parameters ω . A common
choice for this objective function is the sum of squared errors between measurements
and model predictions. The corresponding optimization problem has the form

min
ω

(
F1(ω) =

T

∑
t=1

n

∑
i=1

‖ xi,model(ω ,t)− xi,exp(t) ‖2

)
. (2.28)

Here, xi,model(ω ,t) denotes the model prediction for the concentration of network
component i at time t, which is compared with the corresponding experimental result
xi,exp(t). In order to minimize F1 with respect to the parameter vector ω , numerical
integration of the system is required to calculate xi,model(ω ,t). Usually, optimization
of equation (2.28) can not be carried out analytically, and one has to apply heuristic
methods such as gradient descent or genetic algorithms. This means that the nu-
merical integration has to be carried out several times, and computing time quickly
becomes the limiting factor [101]. This can be avoided by optimizing the sum of
squared errors of time derivatives rather than of the concentrations directly:

min
ω

(
F2(ω) =

T

∑
t=1

n

∑
i=1

‖ ẋi,model(ω ,t)− ẋi,exp(t) ‖2

)
(2.29)

In this formula, ẋi,model(ω ,t) is obtained from the model equations, and ẋi,exp(t) is the
corresponding slope estimate from the experimental data. Contrary to the minimiza-
tion problem (2.28), solving problem (2.29) does not require numerical integration
of the ordinary differential equations. Instead, one needs an appropriate method to
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estimate the slopes ẋi,exp(t) from the data. For this purpose, it can be useful to smooth
the data in a preprocessing step, in particular in case of high levels of noise in the
data.

Since quantitative models such as ordinary differential equation models depend
on many parameters, but the number of samples available for parameter estimation
is usually small in comparison, the main problem in this setting is overfitting. This
means that the model is overtuned to specific characteristics of the training data,
which do not reflect actual properties of the true underlying model, but are noise.
Such overfit models will show bad performance on validation data which has not
been used for training.

Different algorithms have been proposed to counter overfitting. Early stopping
divides the data into three classes. The training data are used for learning, and this
process is interrupted by testing performance of the learned model on the validation
set. The procedure is stopped when performance on the validation data does not
improve any further. As the result depends on both, training- and validation data, a
third dataset is required to validate the inferred model.

Another method, called weight decay in the context of neural networks, regu-
larizes the objective function by adding a term which penalizes models with many
degrees of freedom. Popular criteria used for this purpose are Akaike’s information
criterion (AIC) [1]

FAIC = −2lnL + 2k (2.30)

and the Bayesian information criterion (BIC)

FBIC = −2lnL + k ln(n), (2.31)

where in both equations k is the number of free model parameters, L the value of the
error function and n the sample size. These criteria were used as objective functions
in the inference of the yeast cell cycle network in Nachman et al. [68] and Chen
et al. [22], respectively.

More biologically motivated approaches restrict the search space by including
biological knowledge into the learning process. This can be done by introducing
constraints to the optimization problem, such as upper limits for the number of reg-
ulators for every gene, or ranges for model parameters. Alternatively, similar to the
criteria introduced above, one can modify the objective function by adding a term
penalizing networks with a large number of strong regulatory interactions (see, for
example, [98]). In Section 2.6, we will introduce an inference method which uses
this latter approach.

2.5.2 Advantages and Disadvantages of ODE Models

Continuous dynamical systems provide a very detailed quantitative description of a
network’s dynamic, as they are time- and state-continuous models. They can show
a rich variety of dynamic behaviors, such as multi-stationarity, switch-like behavior,
hysteresis or oscillations. For nonlinear systems based on chemical reaction kinet-
ics, parameters can directly be interpreted as kinetic rates of a chemical or physical
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reaction, for example, as degradation rates or velocities of binding reactions [44].
Some of these rates are experimentally accessible, which provides either a possibil-
ity to evaluate the model afterwards, or to restrict the range of the corresponding
parameter values prior to the inference process. For example, binding coefficients
between macromolecules can often be measured in vitro, and they differ only slightly
in vivo [85]. Other rate constants, such as rates of phosphorylation of a transcription
factor subsequent to a stimulus, are hard to verify experimentally [15, 29, 85].

When analyzing ODEs, one can exploit the well-established theory of differential
equations [42]. To examine, for example, the long-term behavior of an ODE system,
methods have been developed to calculate steady states or limit cycles and to de-
termine their basins of attraction. Bifurcation analysis aims at predicting parameter
values for which the qualitative behavior of the system changes, because the stability
of steady states or periodic solutions changes when varying parameters, or solutions
appear and disappear. Many tools have been developed to conduct such an analysis
numerically [35].

A drawback of differential equation models is the relatively large number of
parameters which have to be estimated in the network inference process. Time
courses with many time points are needed for this purpose, but such data is rarely
available. Many high-throughput techniques aim at measuring a lot of components
simultaneously, but good time resolution is hard to obtain. This is the main reason
why inference of ODEs from experimental data is currently restricted to small
networks with only few components.

Another problem lies in the quality of experimental data. Microarray data are
mostly used to infer gene regulatory networks. They contain a lot of noise, and may
not be appropriate to make quantitative statements. Thus, when modeling regulatory
networks with differential equations, it is often inevitable to include prior biological
knowledge or to make simplifying assumptions. Of course, this often makes the
approach specific for a certain biological system and not ad hoc applicable to other
organisms or subsystems.

2.6 Bayes Regularized Ordinary Differential Equations

We would now like to give an example from our own work, combining ordinary
differential equations with a (dynamic) Bayesian network approach. The underly-
ing model used is a system of differential equations, but we embed the differential
equations in a probabilistic framework with conditional probabilities as in Bayesian
networks, and use Bayes’ theorem for the inference. In our approach, the differential
equations are used to specify the mean of the conditional probability distributions
for the genes at a given time point, conditioned on the expression pattern at a pre-
vious time point. We then estimate the parameters of the differential equations, and
thus determine the conditional probability distributions and the network topology.
This topology is assumed to be fully connected initially, but we will show how to
drive the solution to sparse networks using a specifically designed prior distribution
on the ODE parameters.
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Two aspects make such a Bayesian approach attractive for the inference of gene
regulatory networks from gene expression data. The stochastic approach captures
the stochastic nature of biological processes within a cell and the noise due to the ex-
perimental procedure. Moreover, prior knowledge can be included into the posterior
distribution by choosing appropriate prior distributions reflecting our knowledge of
the system. Furthermore, the probabilistic nature of the approach makes it possible to
compute confidences for model parameters and also predictions of the network [50],
work on this is ongoing in our groups.

To become more concrete, we consider an additive ODE model with sigmoidal
regulation functions of the form

ẋi(t) = si − γixi(t)+
n

∑
j=1

ki j
x

mi j
j

x
mi j
j + θ mi j

i j

. (2.32)

The parameters si and γi are basic synthesis- and degradation rates, they determine
the dynamics of component i when all regulators of i are absent. Coupling of the
differential equations is due to the sum of regulation functions, compare equation
(2.25). The sum in (2.32) is over all genes in the network and reflects the influence
of the j-th gene on gene i. The network is thus assumed to be fully connected, unless
the corresponding parameters ki j become zero. More details on this model can be
found in [38, 74].

We discretize this equation with a simple Euler discretization, that is, we ap-
proximate the time derivatives on the left hand side by difference quotients, and we
furthermore add a noise term ri(t) to the output. We then get

xi(t + ∆ t) = xi(t)+ ∆ t

[
si − γixi(t)+

n

∑
j=1

ki j
x j(t)mi j

x j(t)mi j + θ mi j
i j

]
︸ ︷︷ ︸

hi(ω)

+ri(t). (2.33)

The noise term ri(t) is assumed to be normally distributed with mean 0 and vari-
ance σi(t)2. The assumption of normally distributed noise corresponds to assuming
that the noise stems from many small, independent sources, which is arguably a
reasonable approximation at least for the experimental noise. ∆ t is a discretization
parameter, the smaller the time step ∆ t, the better does equation (2.33) approxi-
mate the continuous system (2.32). Biological data sets usually comprise large time
steps, when using differential equations models one therefore interpolates over time
in order to get sufficiently small time resolution.

Assuming independence of all noise terms for every time point and all network
components from one another, the likelihood L decomposes into a product over all
time points t1, ...,tT and all n network components:

L = p(D | ω) =
T

∏
z=1

n

∏
i=1

1√
2πσi(tz)2

exp

[
− 1

2σi(tz)2 (hi(ω)− xi(tz))
2
]

(2.34)

Clearly, the independence and normality assumptions are a simplification. Noise on
x(t) will lead to correlated, non-normal noise on x(t + ∆ t). Furthermore, modeling
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errors will accumulate over time, and are certainly correlated. On the other hand,
the assumptions are probably reasonable for experimental noise, and clearly they are
a trade-off between model complexity/computational tractability and a detailed and
realistic model, and similar assumptions are frequently used in Bayesian learning
approaches.

If no prior knowledge is included into the learning process, an optimal parameter
vector ω can be computed by maximization of equation (2.34) with respect to ω .
This is known as maximum likelihood estimation (MLE):

ω̂MLE = argmax
ω

L (ω) (2.35)

In case all variances are equal, that is, σi(t) = σ for all i = 1, . . . ,n and for all
t = t1, . . . ,tT , ω̂MLE is equivalent to the result one gets when minimizing the sum
of squared errors between measurements and model predictions with respect to ω .
This is easily seen when taking the negative logarithm of (2.34), and dropping terms
independent of ω .

To include prior knowledge into the inference process, we use Bayes’ theorem
to compute the posterior probability distribution, that is, the conditional distribution
over the parameter vector ω , given the data:

p(ω | D) =
p(D | ω)p(ω)

p(D)
. (2.36)

Here, the right hand side includes a product of the likelihood L and the prior distri-
bution p(ω) over the model parameters. Maximizing equation (2.36) with respect to
ω once again leads to a point estimate for ω , this is known as maximum a-posteriori
(MAP) estimation:

ω̂MAP = argmax
ω

p(ω | D) (2.37)

When no prior information about the system under consideration is available, the
prior distribution p(ω) is often chosen to be an improper uniform distribution, and
ω̂MLE then equals ω̂MAP. In the following section, we will detail our choice of prior
distribution over model parameters.

2.6.1 Prior Distributions for Network Parameters

We now need to specify prior distributions for the model parameters si, γi, ki j, θi j

and mi j.
The parameters si and γi are basic synthesis and degradation rates for the network

components. Both parameters should neither become negative nor too large. We
therefore choose independent gamma distributions for these two parameters. The
gamma distribution is given by

g(x) =
arxr−1

Γ (r)
exp[−ax]. (2.38)
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Here, Γ (r) is the gamma function. The shape of the distribution depends on the
shape parameter r > 0. The parameter a > 0 determines the scale of the distribu-
tion. The smaller a, the more spread out is the distribution. The parameters a and
r must be carefully chosen depending on the numerical range of the experimental
measurements, and prior knowledge on synthesis and degradation rates can be in-
cluded through specific settings.

For the parameters ki j, a hierarchical prior distribution is used, which has specif-
ically been designed to favor sparse networks. Biologically motivated, most of the
ki j should be close to zero, and only few ki j should differ significantly from zero –
corresponding to only few significant edges in the network. This is achieved using
independent mean-zero normal distributions as prior distributions on ki j, with stan-
dard deviations distributed according to a gamma distribution. The idea here is that
most of the normal distributions should be concentrated strongly around zero in or-
der to keep the corresponding ki j small, and should only in few cases be allowed to
become wider, if the data indicates so. This expectation of narrow normal distribu-
tions is reflected by the gamma distribution on the standard deviations of the normal
distributions. Combining these two distributions and marginalizing over the standard
deviation s,

p(k) =
n

∏
i=1

∫ ∞

0
N (k|µ = 0,σ = s)g(s)ds, (2.39)

where

N (k|µ ,σ) =
1√

2πσ
exp

[
−1

2
(k− µ)2

σ2

]
(2.40)

is the normal density with mean µ and variance σ2.
When drawing samples from the distribution p(k), most of the values will be

small, since they stem from normal distributions with mean zero and a small vari-
ance. Figure 2.5 shows the distribution p(k) resulting from the integration (2.39) for
the two-dimensional case (n = 2). As can be seen, this prior favors solutions were
only one parameter ki is distinct from zero over solutions where both k1 and k2 differ

Fig. 2.5. The two dimensional hierarchical prior distribution with parameters r = 1 and a =
1.0001 for edge weights ki j



62 L. Kaderali and N. Radde

significantly from zero. This is distinct from standard regularization schemes used
such as the L2 penalty, which would correspond to a Gaussian prior – and which
would give the same penalty to points at equal distance from the origin, independent
of the number of nonzero components. Note also that this prior is stronger than a
Laplace prior on k.

At this point, we remark that the choice of prior distribution on network parame-
ters clearly influences results of the computation, and it is not necessarily guaranteed,
that this reflects biological reality. This is a classical example of the bias-variance
tradeoff, where a stronger prior will lead to a stronger bias in learning, but less vari-
ance, and vice versa. In the setting of network learning described here, a strong prior
driving the network to sparse solutions is needed to avoid overfitting of the model,
this is discussed in more detail in [75], where we compare maximum likelihood and
maximum a-posteriori under various settings on simulated data.

We use fixed values for the exponents mi j and threshold parameters θi j for numer-
ical reasons, this corresponds to assuming a delta distribution on these parameters.
The reason for this decision is numerical instability of the optimization routine when
m and θ are optimized, and insufficient experimental data to learn these parameters
properly.

The negative logarithm of the posterior distribution (2.36) is then minimized
using conjugate gradient descent. Alternatively, one could sample from the posterior
distribution using a Markov chain Monte Carlo approach, work on this is presently
ongoing and will be published elsewhere. For technical details on both approaches
see [50, 51], where the same hierarchical prior distribution as the one used here on
the ki j is used in combination with a Cox regression model to predict survival times
of cancer patients from gene expression measurements.

2.6.2 Application to the Yeast Cell Cycle Network

In this section, we will show results of an application of the Bayesian approach
described above to a dataset on the yeast cell cycle. More details as well as an
additional evaluation of the method on simulated data can be found in [75].

The yeast cell cycle is one of the best studied eukaryotic regulatory systems.
A proper functioning of this regulatory mechanism is essential for the organism to
survive. Core elements of its machinery are highly conserved in evolution among
eukaryotes, making studies on a model organism such as budding yeast worthwhile,
as many results can be transfered to higher organisms. Many publications on the
yeast cell cycle exist, see, for example, [8].

We examined eleven genes from a publicly available dataset by Spellman et al.
[87], these genes are known to be central to the cell cycle [57]. The dataset contains
log ratios between synchronized cells and control experiments of the whole yeast
genome, approximately 6000 genes were measured several times during the cell
cycle, in total over 69 time points. The reference network we use for evaluation of
our results is a reduction of the network described in Li et al. [57].



2 Inferring Gene Regulatory Networks 63

Results

Time series data of eleven genes was used, including cln1, cln2, cln3, clb5, clb6,
cdc20, cdc14, clb1, clb2, mcm1 and swi5. Measurements corresponding to nodes in
the reference network involving several genes were represented by the mean value
of the genes, missing values were estimated by linear interpolation over time. Con-
jugate gradient descent was used to fit the model to the data, with prior distribution
parameters a = 0.1 and r = 0.01 for the synthesis and degradation rates, and a = 5
and r = 1.7 for the prior on the ki j. Fixed values of θi j = 1 and mi j = 2 were used for
the threshold parameters and Hill coefficients of the ODE model. Since we expect
sparse solutions, the gradient descent was started near the origin, see [75] and [50]
for technical details.

To evaluate our results, we compared the inferred network structure with the
reference network. Figure 2.6 shows the reference network (left) and the network
inferred with the Bayesian approach (right). The 16 edges with highest weights are
marked in bold, continuous bold lines indicate true positives, dashed bold lines cor-
respond to false positives. Thin lines appear in the reference network, but are not
revealed in our approach. 12 of 16 regulations are true positives, the remaining four
interactions are not stated in the literature. Note that, in the latter case, it is not
clear whether there is no such regulation or whether it exists but has not been de-
scribed yet. The corresponding values for specificity, that is, the fraction of revealed
true regulations, and sensitivity, the fraction of true negatives, are 0.55 and 0.85,
respectively.

Receiver Operator Characteristics (ROC) curves can be used to assess the in-
ferred network structure more quantitatively. By using a cutoff value c on the weights
ki j and including only edges with |ki j|> c in the network, one can compute sensitivity
and 1− specificity. Sensitivity and 1− specificity can then be plotted against one an-
other for different cutoff values c, assuming that the reference network is the correct
underlying network. The resulting ROC curves provide a comprehensive overview
over all combinations of sensitivity and specificity that can be achieved with a given
model. ROC curves can further be summarized by computing the Area Under the
ROC Curve, the AUC. The AUC is a numerical value between 0.5 and 1, where
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Fig. 2.6. Regulatory network of the yeast cell cycle (left) (see [75] and [57]) and the network
inferred with the Bayesian approach (right). True positives are marked in bold, false positives
are marked with bold dashed lines, false negatives correspond to thin lines
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0.5 would be equivalent to guessing for each edge whether it is present or not, and
an AUC of 1 would correspond to a prediction with perfect sensitivity and speci-
ficity. We computed AUC values for our approach, the corresponding AUC value
is 0.68, indicating that the main regulatory interactions are revealed. The approach
outperforms maximum likelihood estimation, which yields an AUC value of 0.61,
showing that the sparsity constraint introduced through the prior distribution helps
the learning process.

Computational demands of the approach are comparable to demands of other
differential equations model approaches. For small networks with 5 to 10 nodes,
running times are typically in the range of a few minutes, depending on the number
of time points available. For large networks, the limiting factor is usually not com-
puting time, but insufficient amounts of data to reliably estimate parameters of the
differential equations.

2.7 Other Approaches

In this section, we will give an overview over models that go beyond ordinary dif-
ferential equations. We will focus on three further model classes, delay differential
equations (DDEs), partial differential equations (PDEs), and stochastic equations.
DDEs are used to account for time delays in regulatory mechanisms, which is of-
ten necessary when the system consists of reactions taking place at different time
scales. Spatial inhomogeneities within a cell are captured with PDEs, which contain
derivatives of time and space, and include, for example, diffusion processes. Unfor-
tunately, without further knowledge concerning diffusion coefficients and locations
of transcription and translation, it is not possible to learn parameters for such models
using only microarray data.

Stochastic equations try to model the stochastic nature of single reactions and
provide the most detailed level of description. Here as well, far more information is
needed than microarray expression data can provide. Thus, all three model classes
are not ad hoc suitable for the inference of large scale regulatory networks from
expression data, and have mostly been investigated only theoretically or used to
model very specific regulatory mechanisms so far. No “standard method” exists to
estimate parameters for these models, and we will therefore only point out some
basic concepts and difficulties with these models rather than give a recipe on how to
infer networks using them.

2.7.1 Delay Differential Equations

All modeling approaches discussed so far implicitly assume a local time dependence
and spatial homogeneity. To include transport processes into the model, time-delay
differential equations (DDEs) or partial differential equations (PDEs) are used (see,
e.g. [23, 29, 85]). This is particularly interesting for eukaryotic organisms, where
macromolecules such as mRNA have to be transported from one cell compartment
into another prior to translation, or proteins are produced somewhere in a cell and
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become active somewhere else. How important such factors may be can be seen from
recent reports indicating that the spatial distribution of proteins within a cell seems
to have an effect on the embryonic development in eukaryotes [29].

Active transport processes, which require energy and can be in opposition to the
concentration gradient, are modeled with DDEs of the form

ẋ(t) = f (x(t),xdelay(t)), (2.41)

with

xdelay(t) =
∫ 0

−∞
x(t − τ)G(x(t − τ))dτ. (2.42)

In these systems, the left hand side depends on the current state x(t) and the state
vector xdelay(t), which is a weighted integral over past states. The sum of the weights
is normalized, that is, ∫ 0

−∞
G(x(t − τ))dτ = 1. (2.43)

In the simple case where one can assume a fixed duration τ0 between binding of a
transcription factor to a binding site within a promoter of a gene and the effect it has
on the amount of protein, the distribution over weights can be modeled using a delta
distribution:

G(x(t − τ)) = δ (τ0) (2.44)

and hence ∫ 0

−∞
x(t − τ)G(x(t − τ))dτ = x(t − τ0). (2.45)

In equation (2.41), f : Rn ×C1 → Rn is a functional operator which maps n contin-
uously differentiable functions defined on R onto a vector in Rn. This makes DDEs
more difficult to analyze than ODEs, in which f : Rn → Rn is an ordinary function
which maps a vector x(t) onto another vector ẋ(t).

In order to solve equation (2.41), not only an initial state vector x(t0), but an
entire interval of initial data is required. Thus, the state space is infinite dimensional.
This also leads to infinitely many eigenvalues when linearizing the system in order
to analyze the behavior of steady states. The characteristic equation is not a simple
polynomial, but involves exponential functions. No standard method to solve such
equations exists, and stability analysis of steady states can be a hard task. In general,
not much is known about effects that are caused by time delays. Most work in this
field examines the stability of a steady state depending on time delays for a certain
system. Chen and Aihara [23], for example, consider an oscillating two-gene model
and claim that time delays increase the stability region of oscillations in their model,
making the oscillations robust against parameter changes. Santillán and Mackey [78]
built a model of the tryptophan operon in Escherichia coli, one of the prototypic gene
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control systems. They also included time delays into their nine differential equations,
and they estimated 28 parameters. Simulations were carried out numerically with a
fourth order Runge-Kutta method. A lot of specific knowledge about the operon
as well as steady state approximations were included into the parameter estimation
processes, hence the estimation method cannot ad hoc be generalized and used for
arbitrary organisms.

2.7.2 Partial Differential Equations

PDEs describe spatial inhomogeneities and diffusion processes and distinguish be-
tween different cell compartments, for example nucleus and cytoplasm [29]. The
corresponding differential equations consist of a sum of functions fi(x(t)), which
describe the regulatory network as in equation (2.16), and a term for the diffusion
process:

∂xi

∂ t
= fi(x(t))+ δi

∂ 2xi

∂ l2 , with 0 ≤ l ≤ λ , i = 1, . . . ,n. (2.46)

In contrast to ODEs, this equation contains derivatives with respect to both time
and space. The variable δi is the diffusion constant, and l is the position in the cell.
Boundary conditions such as

∂ 2

∂ l2 xi(0,t) = 0 and
∂ 2

∂ l2 xi(λ ,t) = 0 (2.47)

ensure that components stay within the cell.
The lack of appropriate analysis methods and missing experimental data pro-

viding information on transport processes make both DDEs and PDEs currently
inappropriate for the inference of regulatory networks from gene expression data.
Also little is known about “typical durations” of mRNA or protein transport, and data
about spatial distributions of cell components is only gradually becoming available
with recent developments in live-cell imaging techniques.

2.7.3 Stochastic Kinetic Approaches

Finally, a stochastic kinetics modeling approach provides the by far most detailed
level of description [29, 44, 85], but also has the highest computational cost [44].

Probabilistic models were developed to explain the observed variety in experi-
ments, in particular when the number of molecules is small [62]. In these models,
concentrations are discrete and change according to some probability distribution.
The probability of a system to be in state X at time t + ∆ t is given by

p(X ,t + ∆ t) = p(X ,t)

(
1−

m

∑
j=1

α j∆ t

)
+

m

∑
j=1

β j∆ t, (2.48)

see, for example [29]. Here, X is a discrete concentration vector and p(X ,t) is a
probability distribution. The term α j∆ t is the probability that a reaction j takes place
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in the time interval ∆ t, and the sum runs over all m possible reactions. The second
term is the probability that the system will be brought to state X from any other state
via a reaction j. Taking the limit ∆ t → 0 leads to the well known Master equation,
a first order differential equation that describes the evolution of the probability to
occupy a discrete set of states:

∂ p(X ,t)
∂ t

=
m

∑
j=1

(β j −α j p(X ,t)) (2.49)

Modeling gene regulatory networks with these equations requires much more
information than with ordinary differential equations since every single reaction is
considered. Moreover, the computational costs are very high since a large number
of simulations is needed to approximate p(X ,t) [44]. The Master equation can in
some cases be approximated with stochastic differential equations. These so called
Langevin equations assume that internal fluctuations cancel out on average, and the
system can be described by a deterministic ODE and a noise term. Numerical solu-
tions are obtained for these equations using Monte Carlo simulations. Alternatively,
a stochastic simulation approach provides information on individual behavior in-
stead of examining the whole distribution p(X ,t). Gillespie developed an efficient
algorithm to describe a spatially homogeneous chemical system with a stochastic
approach, the stochastic simulation algorithm [39], which is equivalent to the spa-
tially homogeneous Master equation. This algorithm was used by McAdams and
Arkin [65], who examined the influence of statistical variations during regulatory
cascades on cellular phenomena across cell populations, and by Arkin et al. [7], who
considered the influence of fluctuations in the rate of gene expression on the choice
between lytic and lysogenic growth in phage λ . The latter is the pioneering work on
the role of fluctuations in gene expression.

2.8 Conclusion

In this chapter, we have attempted to give an overview over a number of different
models used for gene regulatory network reconstruction. We started with simple bi-
nary models, which assume that each gene is in one of two possible states, expressed
or not expressed. We then extended the scope all the way to complex quantitative
models, which can capture kinetic properties of the chemical reactions underlying
gene regulation. All these models have their own specific strengths and weaknesses.
So, when faced with an actual biological system to be analyzed or simulated, what is
the appropriate model to use?

The answer is – it depends. It depends on the biological question we are interested
in, and it will also depend on the experimental data we have at our disposition or
can measure on the system considered. Furthermore, it will depend on the kind of
biological knowledge we already have on the system under consideration.
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There are three central questions that should be considered when choosing a
model. These are:

1. What do we hope to learn from the model?
2. How large is the system we need to model?
3. Do we have the right data, and is there additional knowledge we can use?

The first question asks for the ultimate objective driving our modeling attempts.
Occam’s razor is the principle to choose the simplest model that can explain the data
we have, and very similarly, we should choose the simplest model that can answer the
questions we ask. So, if our interest is in qualitative properties such as “Does com-
ponent j interact with component i in the network?” or “Do two components have
the same regulators?”, then qualitative models such as Boolean networks probably
provide the appropriate framework. If the questions are of a quantitative nature, such
as “What happens when changing the affinity of a transcription factor to a specific
binding site?” or “How does a change in concentration of component i affect the
dynamic behavior of the system?”, then obviously quantitative models are required.

At the same time, one should be highly alert to the complexity of the modeling
task. This brings us to the second question above. Large genetic systems are ex-
tremely difficult to model, and extrapolating a detailed differential equations model
for a single gene with its several kinetic parameters to larger systems will quickly
render the model prohibitively complicated [16]. The sheer quantity of parameters
in such models will make their application impossible to networks involving more
than just a few genes. So, there also is a tradeoff here. When the complexity of the
biological system modeled is low, thus single genes or only few genes are of interest,
computer modeling can go into much detail and quantitative differential equation
models or even stochastic molecular simulations are feasible, permitting simulations
of detailed single gene dynamics and time courses of gene activity. On the other
hand, when mid-size to large genetic networks are desired, models must focus on
less detail and concentrate on the overall qualitative behavior of the system. This
may still allow inference about the state dynamics of a system in terms of a flow
pattern grasping the qualitative aspects of state transitions, but quantitative models
for the entire system are usually impossible, simply because of the lack of sufficient
data to estimate all parameters in those models.

In our experience, differential equations models quickly reach their limit when
more than a handful of genes are modeled, and while additional constraints such
as the sparsity constraint introduced in Section 2.6 can extend the feasible network
size slightly, these approaches are not useful for large-scale network inference with
several hundred to thousands of components. However, they provide a very detailed,
quantitative model for small networks. Bayesian networks permit slightly larger net-
work models, but here too, one needs to be cautious about overfitting and insufficient
data when more than a few dozen genes are modeled. Boolean models and relevance
network approaches finally permit the largest number of genes to be included in net-
work models, and application involving thousands of genes have been reported, see,
for example, [21]. It remains to be seen how reliable such large-scale networks are.



2 Inferring Gene Regulatory Networks 69

For a numerical evaluation and comparison of different approaches on simulated data
see, for example, [9].

This brings us to the third question, concerning the available data for the mod-
eling task. The large bulk of work on transcriptional network reconstruction has
concentrated on deterministic, coarse-grained models. Even when quantitative mod-
els are used, the conclusions drawn from them are usually of a qualitative nature.
This is mainly due to the incomplete knowledge on the chemical reactions underly-
ing gene regulation, and the lack of detailed kinetic parameters and concentration
measurements required for these models [29]. Often, the lack of suitable data is
the limiting factor in network inference. However, this can sometimes be allevi-
ated by the inclusion of additional biological knowledge in the learning process.
For example, if information on transcription factor binding sites is available, this
may be used to reduce the search space for model topologies. The inclusion of such
prior knowledge is an ongoing research problem. If quantitative data of good quality
is available, maybe supported by additional data sources such as measurements of
kinetic parameters and prior biological knowledge on interactions in the network,
detailed quantitative models are often feasible [7].

Even though large scale techniques such as DNA microarrays can provide
genome-wide expression measurements, microarrays provide effectively only more
or less qualitative data at present. In addition, they measure many genes under few
different conditions or time points, whereas for network inference, one would rather
have few (relevant) genes under many conditions and time points.

However, this data bottleneck can reasonably be expected to be relieved in the
near future. With the advent of novel experimental techniques to measure RNA
and protein concentrations, accompanied by large databases providing access to this
and other published and unpublished data, quantitative models will increasingly be
used in the future, bringing us closer to the ultimate goal, the simulation of whole
cells [97].
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