
13

DNA Encoding Methods in the Field
of DNA Computing

Aili Han1,2 and Daming Zhu2

1 Department of Computer Science and Technology, Shandong University at Weihai, Weihai
264209, China

2 School of Computer Science and Technology, Shandong University, Jinan 250061, China
hanal@sdu.edu.cn

Summary. Bioinformatics studies the acquisition, process, store, distribution, analysis, etc of
biological information so as to understand the meanings of biological data by means of mathe-
matics, computer science and biological techniques. Some researches on Bioinformatics, such
as the properties of DNA and the Watson-Crick’s law, provide a probability of computing
with DNA molecules. DNA computing is a new computational paradigm that executes par-
allel computation with DNA molecules based on the Watson-Crick’s law. The procedure of
DNA computing can be divided into three stages: encoding information, computation (molec-
ular operations) and extraction of solution. The stage of encoding information is the first and
most important step, which directly affects the formation of optimal solution. The methods of
encoding information can be divided into two classes: the methods of encoding information in
graphs without weights and the methods of encoding information in graphs with weights. The
previous researches, which belong to the first class, such as Adleman’s encoding method [1]
for the directed Hamiltonian path problem, Lipton’s encoding method [2] for the SAT prob-
lem, and Ouyang’s encoding method [3] for the maximal clique problem, do not require the
consideration of weight representation in DNA strands. However, there are many practical
applications related to weights. Therefore, weight representation in DNA strand is an impor-
tant issue toward expanding the capability of DNA computing to solve optimization problems.
Narayanan et al [6] presented a method of encoding weights by the lengths of DNA strands.
Shin et al [6] proposed a method of encoding weights by the number of hydrogen bonds in
fixed-length DNA strand. Yamamoto et al [7] proposed a method of encoding weights by the
concentrations of DNA strands. Lee et al [9] proposed a method of encoding weights by the
melting temperatures of fixed-length DNA strands. Han et al [10, 11] proposed a method of
encoding weights by means of the general line graph. They also gave a method of encod-
ing weights [12] by means of the relative length graph and several improved DNA encoding
methods [13–16] for the maximal weight clique problem, the traveling salesman problem, the
minimum spanning tree problem and the 0/1 knapsack problem. In this chapter, I collect and
classify the present methods of encoding information in DNA strands, which will benefit the
further research on DNA computing.

Supported by the Natural Science Foundation of Shandong Province of China.

A. Han and D. Zhu: DNA Encoding Methods in the Field of DNA Computing, Studies in Computational Intelligence
(SCI) 94, 293–322 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

294 A. Han and D. Zhu

13.1 Introduction

Bioinformatics studies the acquisition, process, store, distribution, analysis, etc of
biological information so as to understand the meanings of biological data by means
of mathematics, computer science and biological techniques. Some researches on
Bioinformatics, such as the properties of DNA, the Watson-Crick’s law, provide a
probability of computing with DNA molecules, so DNA computing is an applied
branch of Bioinformatics. The results of researches on Bioinformatics will improve
the capabilities of DNA computing.

DNA computing is a computational paradigm that uses synthetic or natural DNA
molecules as information storage media, in which the techniques of molecular biol-
ogy, such as polymerase chain reaction, gel electrophoresis, and enzymatic reaction,
are used as computational operators for copying, sorting, and splitting/concatenat-
ing information, respectively. Based on the massive parallelism of DNA computing,
many researchers tried to solve a large number of difficult problems. In 1994, Adle-
man [1] solved a 7-vertex instance of the directed Hamiltonian path problem by
means of the techniques of molecular biology. This creative research opened up a
new way to computation with DNA molecules. A major goal of subsequent research
in the field of DNA computing is to understand how to solve NP-complete problems.
To address this goal, Lipton [2] abstracted a parallel molecular model on the basis
of Adleman’s experiment and applied it to solve the SAT problem; Ouyang et al [3]
solved the maximal clique problem by means of DNA molecules; Head et al [4]
solved the maximal independent set problem using operations on DNA plasmids;
Sakamoto et al [5] presented a molecular algorithm of Boolean calculation by means
of DNA hairpin formation. These previous researches on DNA computing do not
require the consideration of weight representation in DNA strands.

However, there are many practical applications related to weights, such as the
shortest path problem, the traveling salesman problem, the maximal weight clique
problem, the Chinese postman problem, and the minimum spanning tree problem.
Therefore, weight representation in DNA strand is an important issue toward ex-
panding the capability of DNA computing to solve optimization problems. There
exist previous works to represent weights in DNA molecules. Narayanan et al [6]
presented a method of encoding weights by the lengths of DNA strands. Shin et al [6]
proposed a method of encoding weights by the number of hydrogen bonds in fixed-
length DNA strand. Yamamoto et al [7] proposed a method of encoding weights by
the concentrations of DNA strands. Lee et al [9] proposed a method of encoding
weights by the melting temperatures of fixed-length DNA strands. Han et al [10, 11]
proposed a method of encoding weights by means of the general line graph. They
also gave a method of encoding weights [12] by means of the relative length graph
and several improved DNA encoding methods [13–16] for the maximal weight clique
problem, the traveling salesman problem, the minimum spanning tree problem and
the 0/1 knapsack problem.

In this chapter, we collect and classify the present DNA encoding methods in the
field of DNA computing, which will benefit the further research on DNA computing.

13 DNA Encoding Methods 295

13.2 Preliminaries to DNA Computing

In order to easily understand DNA encoding methods and the corresponding DNA
algorithms, we first present some basic knowledge related to DNA computing.

13.2.1 Orientation of DNA Molecule

When DNA molecules combine with each other to form a DNA strand, 5′-phosphate
group of one nucleotide always combine with 3′-hydroxyl group of another nu-
cleotide by phosphodiester bonds, shown as P in Fig. 13.1. This is called as 5′-3′
orientation or 3′-5′ orientation [17, 18]. The nucleotide with 5′ free-end being lo-
cated at the most left end and 3′ free-end being located at the most right end is
marked as 5′-X1X2 . . .Xn-3′, and the nucleotide with 3′ free-end being located at
the most left end and 5′ free-end being located at the most right end is marked as
3′-X1X2 . . .Xn-5′, where Xi denotes one letter in the alphabet {A, G, C, T}. Take
Fig. 13.1 as an example. The DNA strand shown in Fig. 13.1(a) is marked as 5′-
AGC-3′, and the DNA strand shown in Fig. 13.1(b) is marked as 3′-CGA-5′. Note
that 5′-AGC-3′ and 3′-CGA-5′ are the same DNA molecules. In this chapter, we
use the following representation: The DNA molecule 5′-X1X2 . . .Xn-3′ is written as
X1X2 . . .Xn, and 3′-X1X2 . . .Xn-5′ is written as −X1X2 . . .Xn [10, 11, 13, 14]. Note that
−X1X2 . . .Xn = XnXn−1 . . .X1.

Definition 13.2.1.1 For any DNA strand s, let h represent a mapping function from
each base to its complement, or h(A) = T , h(G) = C, h(C) = G, h(T) = A. The ob-
tained DNA strand h(s) is called the complement of s, and its reversal −h(s) is called
the reverse complement of s. The mapping function h is called the complementary
mapping from s to s′ [10, 11, 14].

Take the DNA strand s = AGC as an example. The complement of s is h(s) =
TCG, and the reverse complement is −h(s) = −TCG = GCT . Obviously, the DNA
strand AGC can combine with −TCG to form a double-stranded DNA (dsDNA)
through hydrogen bonds, as shown in Fig. 13.2. It can be concluded that any DNA
strand s can combine with its reverse complement −h(s) to form a dsDNA through

Fig. 13.1. Orientation of DNA molecule. (a) 5′-3′ orientation and (b) 3′-5′ orientation

296 A. Han and D. Zhu

Fig. 13.2. A double-stranded DNA

hydrogen bonds. Note that DNA double strand consists of two DNA sequences
α1α2 . . .αk and −β1β2 . . .βk that satisfy the Watson-Crick’s law, that is, for each
i = 1, 2, . . . , k, k∈Z, αi and βi must be complements, and the two complementary
sequences anneal in an antiparallel fashion.

13.2.2 Basic Operations in DNA Computing

A tube [17] is defined as a multiset of words on the alphabet {A, C, G, T}. A multiset
means a set in which the repeated words are regarded as different elements. For
example, the multiset {AGC, AGC, GCTA} has three elements, and the set {AGC,
AGC, GCTA} has two elements since the repeated words in a set are regarded as one
element. Actually, a tube is a multiset of DNA strands. The basic operations [17] in
DNA computing are as follows.

(1) Merge: For two tubes N1 and N2, it forms the unite N1 ∪N2 (multiset).
(2) Ampli f y: For a given tube N, it copies N into two shares (only for multiset).
(3) Separate: For a given tube N and a word w, w ∈ {A,C,G,T}∗, it generates

two tubes: +(N,w) and −(N,w), where +(N,w) consists of all the strands including
w, and −(N,w) consists of all the strands excluding w.

(4) (N, ≤n): For a given tube N and an integer n, it generates a tube of all strands
in N whose lengths are less than or equal to n.

(5) B(N,w) and E(N,w): For a given tube N and a word w, B(N,w) generates a
tube of all strands in N that begin with w, and E(N,w) generates a tube of all strands
in N that end with w.

(6) Detect: For a given tube N, it returns true if there exists at least one DNA
strand in N, otherwise it returns false. This can be done through gel electrophoresis.

All the above operations can be implemented by means of the present biological
techniques.

13 DNA Encoding Methods 297

13.3 DNA Encoding Methods for the Problems Related
to Graphs without Weights

Based on the massive parallelism of DNA computing, the previous researchers fo-
cused on NP-complete problems. These previous researches do not require the con-
sideration of weight representation in DNA strands. Some of them are given in the
following.

13.3.1 DNA Encoding Method for the Hamiltonian Path Problem

In 1994, Adleman [1] solved an instance of the directed Hamiltonian path problem
by means of the molecular biology techniques. A 7-vertex graph was encoded in
DNA strands and the operations were performed with standard DNA protocols and
enzymes. This experiment demonstrates the feasibility of carrying out computations
at the molecular level.

The Hamiltonian Path Problem

For a directed graph G = (V,E), a path is called a Hamiltonian path if and only if it
contains each vertex in G exactly once. A directed graph G with designated vertices
vin and vout is said to have a Hamiltonian path if and only if there exists a path
e1e2 . . .en that begins with vin, ends with vout and enters every other vertex exactly
once.

Fig. 13.3 shows a graph which for vin = 0 and vout = 6 has a Hamiltonian path,
given by the edges 0→1, 1→2, 2→3, 3→4, 4→5, 5→6. If the edge 2→3 were
removed from the graph, the resulting graph with the same designated vertices would
not have a Hamiltonian path. Similarly, if the designated vertices were changed to
vin = 3 and vout = 5, there would be no Hamiltonian path.

For a directed graph G = (V,E), the Hamiltonian path problem (HPP) is to deter-
mine whether there exists a Hamiltonian path in it, that is, to find a directed path that
starts with a given vertex, ends with another one, and visits every other vertex exactly
once. HPP has been proved to be NP-complete. There are well known algorithms for
deciding whether a directed graph with designated vertices has a Hamiltonian path,
but all known deterministic algorithms for HPP have exponential worst-case com-
plexity. In 1994, Adleman [1] designed a non-deterministic DNA algorithm for HPP
which runs in a polynomial time.

Fig. 13.3. The directed graph solved by Adleman

298 A. Han and D. Zhu

DNA Encoding Method

Given a directed graph G = (V,E) with designated vertices vin = v0 and vout = v6, as
shown in Fig. 13.3, Adleman [1] proposed the following DNA encoding method for
solving the Hamiltonian path problem.

(1) Each vertex vi in G was associated with a random 20-mer DNA strand denoted
by si.

(2) For each edge ei j = (vi,v j) in G, a DNA strand si j was created which was 3′
10-mer of si (unless i = 0 in which case it was all of si) followed by 5′ 10-mer of s j

(unless j = 6 in which case it was all of s j).
The choice of random 20-mer DNA strand for encoding vertices in G is based

on the following rationale [1]. First, choosing randomly several DNA strands from
420 20-mer DNA strands would unlikely share long common subsequences, which
might result in unintended binding during the ligation step. Second, some deleteri-
ous features such as hairpin loops would unlikely arise in the several 20-mer DNA
strands selected from 420 20-mer DNA strands. Finally, choosing 20-mers assured
that binding between splint strands and edge strands would involve ten base pairs
and would consequently be stable at room temperature.

DNA Algorithm

Given a directed graph G = (V,E) with designated vertices vin = v0 and vout = vt .
Based on the DNA encoding method, Adleman [1] designed the following DNA
algorithm to solve the Hamiltonian path problem.

(1) Merge: All the DNA strands h(si) and si j are mixed together in a single
ligation reaction. Based on the Watson-Crick’s law, generate random paths through
the graph G.

(2) Ampli f y: The product of step 1 was amplified by polymerase chain reaction
(PCR) using primers s0 and h(st). Thus, only those DNA molecules encoding paths
that begin with v0 and end with vt were amplified. Keep only those paths that begin
with vin and end with vout through the operations of B(N,h(s0)) and E(N,h(st)).

(3) (N, ≤20n): Keep only those paths that enter exactly n vertices.
(4) +(N, h(si)): Keep only those paths that enter all the vertices at least once

through the operation +(N, h(si)), 1 ≤ i ≤ n, where n is the number of vertices in G
(5) Detect: If any paths remain, return true, otherwise return f alse. See the basic

operations in section 13.2.2.
For more details, please see the reference [1].

13.3.2 DNA Encoding Method for the SAT Problem

Based on Adleman’s experiment, Lipton [2] showed how to solve another famous
NP-complete problem, the SAT problem. The advantage of the results is the huge par-
allelism inherent in DNA computing, which has the potential to yield vast speedups
over conventional silicon-based computers.

13 DNA Encoding Methods 299

The SAT Problem

Consider the Boolean formula F = (x∨ y)∧ (¬x∨¬y), where the variables x and y
are allowed to range only over the two values 0 and 1, ∨ is the logical OR operation,
∧ is the logical AND operation, and ¬x denotes the negation of x. Usually, one thinks
of 0 as f alse and 1 as true. The SAT problem is to find the Boolean values for x and
y that make the formula F true.

In general, a Boolean formula is of the form C1 ∧C2 ∧·· ·∧Cm, where Ci(1 ≤ i ≤
m) is a clause; a clause is of the form x1 ∨x2 ∨·· ·∨xk, where xi is a Boolean variable
or its negation. The SAT problem is to find the values for the variables that make the
formula have the value 1, that is, to find the values for the variables that make each
clause have the value 1. The SAT problem has been proved to be NP-complete.

DNA Encoding Method

Given a Boolean formula F containing n variables x1, x2, . . . , xn, Lipton [2] designed
the following DNA encoding method for the SAT problem.

(1) Construct a graph G with vertices a1, x1, x′1, a2, x2, x′2, . . . , an+1, and with
edges from ai to both xi and x′i and from both xi and x′i to ai+1, as shown in Fig. 13.4.

For the constructed graph G, each stage of a path has exactly two choices: If it
takes the vertex with an unprimed label, or xi, it encodes a 1; if it takes the vertex
with a primed label, or x′i, it encodes a 0. For example, the path a1x′1a2x2a3 encodes
the binary number 01. Obviously, each path starting with a1 and ending with an+1 in
G encodes an n-bit binary number.

(2) Each vertex vi (1 ≤ i ≤ 3n + 1) in G is assigned a random DNA strand si of
length 20.

The DNA strand si corresponding to vertex vi has two parts. The first half is
denoted by s′i and the second half is denoted by s′′i . That is, s′is′′i is the code corre-
sponding to vertex vi, vi∈{a1,x1,x′1,a2,x2,x′2, . . . ,an+1}.

(3) For each edge ei j = (vi,v j), −h(s′′i s′j) is used to encode it, where −h(x)
denotes the reverse complement of x.

Fig. 13.4. The graph corresponding to a Boolean formula that contains 2 variables x1, x2

300 A. Han and D. Zhu

DNA Algorithm

For the DNA algorithm proposed by Lipton [2], let S(t, i,a) denote all the sequences
in tube t for which the ith bit is equal to a, a∈{0,1}. This is done by performing one
extraction operation that checks for the sequence corresponding to xi {if a = 1} or
x′i {if a = 0}. Consider the Boolean formula F = (x∨ y)∧ (¬x∨¬y). The following
steps can solve it.

(1) Construct a graph G with vertices a1, x1, x′1, a2, x2, x′2, a3, and with edges
from ai to both xi and x′i and from both xi and x′i to ai+1, 1 ≤ i ≤ 2. Each vertex in G
is assigned a random DNA strand of length 20. For each edge ei j = (vi,v j), −h(s′′i s′j)
is used to encode it.

(2) Let t0 be the tube including the sequences corresponding to a1x1a2x2a3,
a1x′1a2x2a3, a1x1a2x′2a3, a1x′1a2x′2a3.

(3) Let tt1 be the tube corresponding to S(t0,1,1). Let the reminder be tt ′1, and tt2
be S(tt ′1,2,1). Pour tt1 and tt2 together to form t1.

(4) Let tt3 be the tube corresponding to S(t1,1,0). Let the reminder be tt ′3 and tt4
be S(tt ′3,2,0). Again pour tt3 and tt4 together to form t2.

(5) Detect DNA in the last tube t2. If there is any DNA in t2, the formula is
satisfiable.

Now consider the SAT problem on n variables and m clauses. Suppose that, as
is usual, each clause consists of a fixed number of variables or their negations. Let
C1, C2, . . . , Cm be the m clauses. A series of tubes t0, t1, . . . , tm are constructed
so as to let tk be the set of n-bit numbers in which each element x satisfies that
C1(x) = C2(x) = · · · = Ck(x) = 1, where Ci(x) is the value of Ci on x.

(1) Construct a graph G with vertices a1, x1, x′1, a2, x2, x′2, . . . , an+1, and with
edges from ai to both xi and x′i and from both xi and x′i to ai+1, 1 ≤ i ≤ n. Each vertex
in G is assigned a random DNA strand of length 20. For each edge ei j = (vi,v j), the
DNA strand −h(s′′i s′j) is used to encode it.

(2) Let t0 be the tube including all n-bit sequences.
(3) Construct tk+1, k = 0, 1, . . . , m − 1, step by step. Let Ck+1 be the clause

x1 ∨ x2 ∨ . . .xl , where xi is a literal or its negation. For each literal xi, if xi is equal
to x j, then form S(tk, j,1); if it is equal to ¬x j, then form S(tk, j,0). The reminder of
each extraction is used for the next step. Pour all the reminders together to form tk+1.

(4) Detect DNA in the tube tm. If there is any DNA in tm, the formula is satisfiable.
For more details, please see the reference [2].

13.3.3 DNA Encoding Method for the Maximal Clique Problem

In 1997, Ouyang [3] solved the maximal clique problem using the techniques of
molecular biology. A pool of DNA molecules corresponding to the ensemble of six-
vertex cliques was built, followed by a series of selection processes. The algorithm
is highly parallel and has satisfactory fidelity.

13 DNA Encoding Methods 301

The maximal Clique Problem

Mathematically, a clique is defined as a subset of vertices in a graph, in which each
vertex is connected to all other vertices in the subset. The clique including the most
vertices is called the maximal clique. The maximal clique problem asks: Given an
undirected graph with n vertices and m edges, how many vertices are in the maximal
clique? The corresponding decision problem has been proved to be NP-complete.
Take the graph shown in Fig. 13.5(a) as an example. The vertices (5, 4, 3, 2) form
the maximal clique, that is, the size of the maximal clique is four.

DNA Encoding Method

For an undirected graph G = (V,E) with n vertices, Ouyang [3] designed the follow-
ing DNA encoding method to solve the maximal clique problem.

(1) Each clique in G is represented as an n-bit binary number. A bit set to 1
represents the vertex being in the clique, and a bit set to 0 represents the vertex being
out of the clique. Thus, the set of all the cliques in G is transformed into the ensemble
of n-bit binary numbers, which is called the complete data pool [3].

(2) Each bit in a binary number corresponds to two DNA sections: one for the
bit’s value (Vi) and another for its position (Pi). The length of Vi is set to 10 base pairs
if the value of Vi is equal to 0, and 0 base pair if the value of Vi is equal to 1. Thus,
the ensemble of DNA strands representing the complete data pool is constructed.

(3) The restriction sequence is embedded within Vi if the value of Vi is equal to 1.
Thus, for a DNA strand representing an n-bit binary number, there are n value

sections (V0 to Vn−1) sandwiched sequentially between n+1 position sections (P0 to
Pn). The last position section Pn is needed for PCR amplification.

DNA Algorithm

In order to easily understand the DNA algorithm for the maximal clique problem,
the definition of complementary graph [3] is given as follows.

Definition 13.3.3.1 For an undirected graph G = (V,E), the graph G′ = (V,E ′) only
containing all the connections absent in G is called the complementary graph of G.

Take the graph shown in Fig. 13.5(a) as an example, Fig. 13.5(b) is its comple-
mentary graph. According to definition 13.3.3.1, any two vertices connected in the

Fig. 13.5. A graph and its complementary graph. (a) An undirected graph G and (b) The
complementary graph G′ of G

302 A. Han and D. Zhu

complementary graph are disconnected in the original graph and therefore cannot
be members of the same clique; this means that the corresponding bits cannot both
be set to 1. Based on this, Ouyang [3] devised the following DNA algorithm for the
maximal clique problem.

(1) Generate the random sequence of each Pi and Vi, and then construct the com-
plete data pool by means of the technique of parallel overlap assembly (POA) [3].

The construction starts with 2n DNA strands: P0V 0
0 P1, P0V 1

0 P1, −h(P1V 0
1 P2),

−h(P1V 1
1 P2), P2V 0

2 P3, P2V 1
2 P3, −h(P3V 0

3 P4), −h(P3V 1
3 P4), etc. Each DNA strand con-

sists of two position motifs and one value motif, PiViPi+1 for even i and −h(PiViPi+1)
for odd i, where the value of Vi can be 0 or 1. The 2n DNA strands were mixed to-
gether for thermal cycling [3]. During each thermal cycle, the position string in one
DNA strand is annealed to the reverse complement of the next DNA strand. After a
few thermal cycles, a data pool with all combinations of V0V1V2 . . .Vn−1 was built.
The POA procedure was followed by PCR, and the molecules with P0 and Pn at their
ends were exponentially amplified.

(2) Eliminate all the numbers containing connections in the complementary
graph from the complete data pool. The remainder corresponds to all the cliques in
the original graph.

Guided by the complementary graph, the data pool was digested with restric-
tion enzymes. These enzymes break DNA at specific restriction sites, which were
embedded within the sequences for Vi = 1. Consider 0-2 connection in the comple-
mentary graph, that is, there were xx. . . x0x0, xx. . . x0x1, xx. . . x1x0, and xx. . . x1x1
in the data pool. The data pool was divided into two tubes, t0 and t1. In t0, the DNA
strands containing V0 = 1 were cut with A f l II. Thus, t0 contained only xx. . . x0x0
and xx. . . x1x0. In t1, the DNA strands containing V2 = 1 were cut with Spe I. Thus,
t1 contained only xx. . . x0x0 and xx. . . x0x1. And then, t0 and t1 were put into tube t,
which contained xx. . . x0x0, xx. . . x1x0 and xx. . . x0x1. That is, tube t did not contain
xxx1x1.

(3) Sort the remaining data pool to find the data containing the largest number of
1’s. The clique with the largest number of 1’s tells us the size of the maximal clique.

For more details, please see the reference [3].

13.4 DNA Encoding Methods for the Problems
Related to Graphs with Weights

The previous works deal with the problems related to graphs without weights. The
significance of these researches is that they demonstrate how DNA can be used
for representing information and solving the problems in the complexity class NP.
However, there are many practical applications related to weights. Representation
of weight information is one of the most important but also challenging problems
in DNA computing. Some of the methods representing weights in DNA strands are
given in the following.

13 DNA Encoding Methods 303

13.4.1 Encoding Weights by the Lengths of DNA Strands

In 1998, Narayanan et al [6] proposed a DNA encoding method of representing
weights for the shortest path problem. For a connected, weighted graph G = (V,E),
the shortest path problem is to find a path with minimum cost (weight) that begin
with a specified vertex and end with another one.

DNA Encoding Method

For a connected, weighted graph G = (V,E) with n vertices and m edges. Narayanan
et al [6] designed the following DNA encoding method for the shortest path problem.

(1) For each vertex vi (i = 1, 2, . . . , n), assign a unique DNA sequence si with
fixed length to encode it.

(2) Sort all the edges in G by distance (weight), and put their distances into a
vector D. For each distance d in D, a DNA sequence sd is randomly selected whose
length l is associated with the location of distance d and a constant factor k. Consider
k = 3 and D = {2, 5, 9, 10}, 2 is represented by a strand of length 3, 5 is represented
by a strand of length 6, and so on.

(3) For each edge ei j = (vi,v j), the DNA strand sid j is created in the following
way: if i = 1, create the strand sid j as ALL si + ALL sd + HL s j; if i > 1, create the
strand sid j as HR si +ALL sd +HL s j, where ALL represents the whole DNA strand,
HL the left half, HR the right half, and + the join operation.

DNA Algorithm

For a connected, weighted graph G = (V,E), the following steps adapted from
Adleman’s DNA algorithm [1] can extract the shortest path between the initial
vertex v1 and the destination vertex vt .

(1) Merge: Put all the DNA strands h(si) and sid j into a tube, and perform a DNA
ligase reaction in which random paths through G are formed.

(2) Ampli f y: The strands beginning with v1 are amplified through a polymerase
chain reaction using primers s1 and h(st).

(3) B(N,s1): Keep only the strands beginning with v1.
(4) E(N,st): Keep only the strands ending with vt .
(5) All the obtained strands are sorted through gel electrophoresis. The shortest

strand corresponds to the desired solution.
For more details, please see the reference [6].

13.4.2 Encoding Weights by the Number of Hydrogen Bonds

Shin et al [7] presented an encoding method that uses fixed-length codes for repre-
senting integer and real values. In this method, the relative values of G/C contents
against A/T contents are taken into account to represent weights in the graph, which
is based on the fact that hybridization between G/C pairs occurs more frequent than

304 A. Han and D. Zhu

those between A/T pairs because there are 3 hydrogen bonds between G and C,
whereas 2 hydrogen bonds between A and T . Generally, the ligation between DNA
sequences is influenced by DNA length and the G/C contents [7]: The longer the se-
quences, the more often they get hybridized; the more G/C pairs the sequences have,
the more probability they get hybridized.

Shin’s method was applied to the traveling salesman problem. For a connected,
weighted graph, the traveling salesman problem is to find a minimum cost (weight)
path that begins with a specified vertex and ends there after passing through all other
vertices exactly once.

DNA Encoding Method

For a connected, weighted graph G = (V,E), the DNA encoding method proposed
by Shin [7] is as follows.

(1) For each vertex v j, which is the common vertex of edges ei j and e jk, the DNA
sequence s j consists of 4 components: 10 bp weight sequence h(W ′′

i j), 10 bp position
sequence P′

j, 10 bp position sequence P′′
j , and 10 bp weight sequence h(W ′

jk), where
x′ denotes the first half of x, and x′′ denotes the last half of x.

(2) For each edge ei j = (vi,v j), the DNA sequence si j also consists of 4 compo-
nents: 10 bp link sequence h(P′′

i), 10 bp weight sequence W ′
i j, 10 bp weight sequence

W ′′
i j , and 10 bp link sequence h(P′

j). The orientation of edge code is opposite to that
of vertex code.

For more details, please see the reference [7].

DNA Algorithm

The DNA algorithm proposed by Shin [7] consists of two parts: a genetic algorithm
for optimizing the DNA codes, and a molecular algorithm for simulating the DNA
computing process.

Algorithm for genetic code optimization

The codes are optimized using the following genetic algorithm.
(1) For each vertex vi, generate randomly the vertex position sequences Pi, 1 ≤

i ≤ n.
(2) For each edge ei j = (vi,v j), generate the edge link sequences, that is, the

reverse complements of the last half of the vertex position sequence Pi and the first
half of the vertex position sequence Pj.

(3) For each weight wi j on edge ei j, generate randomly the edge weight se-
quences Wi j.

(4) Generate the vertex weight sequences according to the edge weight
sequences.

(5) While (generation g ≤ gmax) do {Evaluate the fitness of each code; Apply
genetic operators to produce a new population}.

(6) Let the best code be the fittest one.

13 DNA Encoding Methods 305

In the genetic algorithm, the amount of G/C contents in edge sequences is opti-
mized in step 5 so as to let the edges with smaller weights have more G/C contents
and thus have higher probability being contained in the final solution. The fitness
function is to promote the paths with lower costs (path lengths) so that the minimum
cost path could be found. Let Nei j denote the number of hydrogen bonds in edge ei j,
Sh denote the total number of hydrogen bonds in all edges, Wei j denote the weight
on edge ei j, and Sw denote the sum of the weight values. The fitness function is de-
fined as follows: if |Nei j/Sh −Wei j/Sw| ≤ θ , then Fi = |Nei j/Sh −Wei/Sw|; otherwise,
Fi = 0, where the threshold value θ is determined by experiments.

Molecular algorithm

The molecular algorithm adopted the same as the iterative version of molecular pro-
gramming [19]. The iterative molecular algorithm (IMA) iteratively evolves fitter
sequences rather than simply filtering out infeasible solutions. This procedure is
summarized as follows.

(1) Encoding: Determine the code sequence using the algorithm of genetic code
optimization.

(2) While (cycle c ≤ cmax) do {Synthesis: Produce candidate solutions by molec-
ular operators; Separation: Filter out infeasible solutions by laboratory steps}.

(3) Keep only those paths that begin with Vin and end with Vin.
(4) Keep only those paths that enter exactly n+1 vertices, where n is the number

of vertices in the graph.
(5) Keep only those paths that enter all the vertices at least once.
(6) Select the path that contains the largest amount of G/C pairs, which corre-

sponds to the minimum cost path.
For more details, please see the reference [7].

13.4.3 Encoding Weights by the Concentrations of DNA Strands

Yamamoto et al [8] presented a method of encoding weights by the concentrations
of DNA strands, and used it to the shortest path problem.

DNA Encoding Method

For a connected, weighted graph G = (V,E), the DNA encoding method proposed
by Yamamoto [8] is as follows.

(1) Each vertex vi in G is associated with a 20-mer DNA sequence denoted by si.
(2) For each edge ei j = (vi,v j) in G, a DNA strand si j that is 3′ 10-mer of si fol-

lowed by 5′ 10-mer of s j is created. The relative concentration Di j of si j is calculated
by the following formula: Di j = (min/wi j)α , where min represents the minimum
weight in G, wi j represents the weight on edge ei j, and α is a parameter value.

306 A. Han and D. Zhu

DNA Algorithm

Based on the DNA encoding method, the DNA algorithm [8] for the shortest path
problems is as follows.

(1) For each vertex vi in G, set the concentration of h(si) to a certain value. Note
that the concentrations of all the DNA strands h(si) are set to the same value.

(2) For each edge ei j in G, calculate the relative concentration Di j of si j according
to the formula Di j = (min/wi j)α .

(3) Put all the DNA strands h(si) with the same concentration and all the DNA
strands si j with different concentrations Di j to construct random paths through G.

(4) Amplify the DNA paths that begin with the start vertex and end with the
destination vertex.

(5) Determinate the DNA strand of encoding the shortest path.
For more details, please see the reference [8].

13.4.4 Encoding Weights by the Melting Temperatures of DNA Strands

Lee et al [9] introduced a DNA encoding method to represent weights based on
the thermodynamic properties of DNA molecules, and applied it to the traveling
salesman problem. This method uses DNA strands of fixed-length to encode different
weights by varying the melting temperatures, in which the DNA strands for higher-
cost values have higher melting temperatures than those for lower-cost values.

DNA Encoding Method

For an instance of the traveling salesman problem, Lee et al [9] gave the following
method of encoding weights.

(1) Each city sequence is designed to have a similar melting temperature. That
is, city sequences contribute equally to the thermal stability of paths.

(2) Cost sequences are designed to have various melting temperatures according
to the costs. A smaller cost is represented by a DNA sequence with a lower melting
temperature.

(3) Road sequences that connect two cities are generated using the sequences of
departure cities, costs, and arrival cities. The first part of the road sequence is the
complement of the last half of the departure city, the middle part represents the cost
information, and the last part is the complement of the first half of the arrival city.

There are several empirical methods to calculate the melting temperatures. One
of them is the GC content method that uses the content of G and C in DNA strand as
a main factor determining melting temperature.

For more details, please see the reference [9].

DNA Algorithm

The DNA algorithm modifies the PCR protocol to employ temperature gradient in
the denaturation step. The denaturation temperature is low at the beginning of PCR

13 DNA Encoding Methods 307

and then it increases gradually. With help of the denaturation temperature gradient
PCR (DTG-PCR), the more economical paths of lower Tm can be amplified more
intensively. The DNA algorithm presented by Lee et al [9] for the traveling salesman
problem is as follows.

(1) Generate the answer pool through the operations of hybridization and liga-
tion.

(2) Select the paths satisfying the conditions of the traveling salesman problem
through the operations of PCR with primers and affinity-separation.

(3) Amplify the more economical paths through the operation of DTG-PCR.
(4) Separate the most economical path among the candidate paths.
(5) Read the final path through sequencing.
For more details, please see the reference [9].

13.4.5 Encoding Weights by Means of the General Line Graph

Han et al [10,11] proposed a DNA encoding method to represent weights and applied
it to the Chinese postman problem, an instance of optimization problems on weighted
graphs. For a weighted, undirected graph G = (V,E), Han et al first convert it into its
general line graph G′ = (V ′,E ′), and then design the DNA encoding method based
on G′.

The Chinese Postman Problem

The Chinese postman problem is to find a minimum cost tour that a postman sets out
from the post office, walks along each street to deliver letters, and returns to the post
office. If the layout of streets is an Euler graph, the Euler tour is just what we want;
otherwise, he needs to walk along some streets more than once. The Chinese postman
problem can be abstracted as follows: For a connected, weighted, undirected graph
G = (V,E), vi ∈V , 1 ≤ i ≤ n, e j ∈ E , 1 ≤ j ≤ m, where the weight on edge e j is wj ,
wj ≥ 0, wj ∈ Z, it is to find a minimum cost (weight) tour that begins with a specified
vertex and ends there after passing through all the given edges. That is, the Chinese
postman problem is to find a shortest tour that goes through all the edges in G.

Construction of General Line Graph

Definition 13.4.5.1 For an undirected graph G = (V,E), vi ∈ V , 1 ≤ i ≤ n, e j ∈ E ,
1 ≤ j ≤ m, a mapping function f is constructed to satisfy: (1) For each edge e j ∈ E ,
there exists only one vertex v′j to satisfy f (e j) = v′j; (2) If any two edges ei and e j

are adjacent, draw an undirected edge between v′i and v′j; (3) If vi is with odd degree,
maximum one self-loop is added to each of the vertices which are mapped from
the edges linked to vi. The function f is called the mapping function from edges to
vertices, and the obtained graph is called the general line graph of G.

Take the weighted, undirected graph G shown in Fig. 13.6(a) as an example. The
procedure of mapping from edges to vertices is as follows. (1) The edges e1, e2, . . . ,

308 A. Han and D. Zhu

Fig. 13.6. A weighted graph G and its general line graph G′. (a) A weighted graph G and (b)
The general line graph G′ of G

e8 are respectively mapped to the vertices v′1, v′2, . . . , v′8. (2) Adding the undirected
edges. The vertex v′1 is linked to v′2, v′8, v′7 since the edge e1 is adjacent to e2, e8,
e7. The vertex v′2 is linked to v′3, v′8, v′1 since the edge e2 is adjacent to e3, e8, e1.
Similar operation is done for other vertices v′3, v′4, . . . , v′8. (3) Adding the self-loops.
A self-loop is respectively added to v′1, v′2 and v′8 since v2 is with odd degree and v2

is linked to the edges e1, e2 and e8. A self-loop is respectively added to v′5 and v′6
since v6 is with odd degree and v6 is linked to the edges e5, e6 and e8. The obtained
general line graph G′ is shown in Fig. 13.6(b).

By means of the mapping function from edges to vertices, Han et al [10, 11]
convert the problem of searching for the shortest tour that pass through each edge
at least once into that of searching for the shortest tour that pass through each ver-
tex at least once. Note that the shortest tour may be not only one. For example,
the shortest tours in Fig. 13.6(a) are v1e1v2e2v3e3v4e4v5e5v6e8v2e′8v6e6v7e7v1 and
v1e1v2e′8v6e8v2e2v3e3v4e4v5e5v6e6v7e7v1, where e′8 denotes the reversal of e8. In or-
der to easily observe, we use edge sequence to denote the shortest tour in G, such as
e1e2e3e4e5e8e′8e6e7, and use vertex sequence to denote the shortest tour in G′, such
as v′1v′2v′3v′4v′5v′8v′8v′6v′7.

DNA Encoding Method

Given a connected, weighted, undirected graph G = (V,E), vi ∈V , 1 ≤ i ≤ n, e j ∈ E ,
1 ≤ j ≤ m, where the weight on edge e j is wj, wj ≥ 0, wj ∈ Z. If wi is a real
number, all the weights are multiplied by a certain integer (i.e. 10) and then they
are rounded into integers. The main idea of the DNA encoding method proposed by
Han et al [10,11] is as follows: The given graph G is firstly converted into its general
line graph G′ = (V ′,E ′), v′i ∈ V ′, 1 ≤ i ≤ m, where v′i is mapped from ei. For each
vertex v′i, use DNA strand si of length wi to encode it. For each edge e′i j = (v′i,v′j),
use the DNA strand si j, which is the reverse complement of the last half of si and
the first half of s j, to encode it. Note that the DNA strands to encode vertices are
of different lengths. The detailed encoding method [10, 11] for the Chinese postman
problem is as follows:

13 DNA Encoding Methods 309

(1) All the edges e j (1 ≤ j ≤ m) are mapped to vertices v′j. If ei and e j are
adjacent, an undirected edge is drawn between v′i and v′j. If vi is with odd degree,
maximum one self-loop is added to each of the vertices which are mapped from the
edges linked to vi.

(2) For each vertex v′i, use DNA strand si of length wi to encode it.
(3) For each edge e′i j = (v′i,v′j), use the reverse complement of the last half of

si and the first half of s j to encode it. Specifically, si and s j are firstly divided into
two substrands with equal length, or si = s′is′i′, s j = s′js′j ′. And then use the DNA
strand si j = −h(s′i′s′j) to encode edge e′i j = (v′i,v′j), where si j is with the length
of |si|/2+|s j|/2. Here, suppose that weights in the weighted graph are all even. If
there exists one or more weights are odd in a practical problem, all the weights are
multiplied by 2. Thus, a half of the optimal solution is the desired results.

Note that, for any undirected edge e′i j = (v′i,v′j), if walk from v′i to v′j, the code
si j is the reverse complement of s′i′ and s′j, or −h(s′i′s′j); if walk from v′j to v′i, the
code s ji is the reverse complement of (−s j)′′ and (−si)′, or s ji = −h((−s j)′′(−si)′) =
h(s′i′s′j) = −si j. That is, only need one code si j = −h(s′i′s′j) to encode edge e′i j =
(v′i,v′j).

Take the weighted graph G shown in Fig. 13.6(a) as an example. We specifically
analyze the proposed DNA encoding method. First of all, the general line graph G′
is converted from the given graph G, as shown in Fig. 13.6(b). For the vertices v′1,
v′2, . . . , v′8 in the general line graph G′, the following DNA strands s1,s2, . . . ,s8 with
the lengths of 18, 40, 36, 20, 28, 60, 84, 14 are respectively selected to encode them.

s1 = CAGTT GACATGCAGGATC
s2 = CAACCCAAAACCTGGTAGAGATATCGCGGGTTCAACGTGC
s3 = TAGTACTGATCGTAGCAACCTGGTACCAAGCTT GAC
s4 = CGCATGCAGGATTCGAGCTA
. . .
s8 = T GGTT T GGACTGGT
For each edge e′i j = (v′i,v′j), the DNA strand si j = −h(s′i′s′j) is used to encode it.

For example, the code of e′12 = (v′1,v
′
2) is as follows.

s12 = −h(s′1
′s′2) = h(TGCAGGATCCAACCCAAAACCTGGTAGAG)

=ACGTCCTAGGTT GGGTT T T GGACCATCTC
Obviously, s12 is with the length of 18/2+40/2= 29. The joint among the DNA

strands of encoding edge e′12 = (v′1,v
′
2) and vertices v′1, v′2 is shown in Fig. 13.7.

On the basis of Fig. 13.7, the next is to extend rightward to s3 or s8, and to extend
leftward to s7 or s8. The extension of the DNA strand s1s2 rightward is shown in Fig.
13.8, and its extension leftward can similarly be drawn up.

Fig. 13.7. Joint of DNA strands s1, s2 and s12

310 A. Han and D. Zhu

Fig. 13.8. Extension rightward of DNA strand s1s2. (a) Joint of DNA strands s1, s2, s3, s12,
s23 and (b) Joint of DNA strands s1, s2, s8, s12, s28

Fig. 13.9. Alternant DNA strand and double strand

Fig. 13.10. Double-stranded DNA corresponding to the optimal solution

On the basis of Fig. 13.8(a), the next is to extend rightward to s4, and to extend
leftward to s7 or s8, and so on. Thus, with the help of the property of reverse com-
plementation between vertex codes and edge codes, the DNA strands may extend
continually to form various random paths including the optimal solution.

In the DNA encoding method [10,11], the paths generated in a single ligation re-
action are double-stranded DNA instead of alternant DNA strand and double strand.
An alternant DNA strand and double strand is shown in Fig. 13.9, and a double-
stranded DNA is shown in Fig. 13.10. It is well known that the stable structure
of DNA molecules is DNA double strand. In an alternant DNA strand and double
strand, the part of DNA strand can combine with other molecules through hydrogen
bonds based on the Watson-Crick’s law. Since DNA double strand are more stable
than alternant DNA strand and double strand, the proposed DNA encoding method
can more easily generate the optimal solution. In addition, the proposed DNA encod-
ing method uses DNA strands of different lengths to encode different vertex. It also
has characteristics of easy encoding and low error rate. But when the values of the
weights are very large, the lengths of the DNA strands are very long which result in
higher space complexity. For more details, please see the reference [10, 11].

13 DNA Encoding Methods 311

DNA Algorithm

For the general line graph G′ converted from the given graph G, suppose that v′1 is
the original vertex just as well because, for any shortest tour C going through all the
edges in G′, the length of the route beginning with v′1 and ending there along C is
equal to that of the route beginning with v′i (i �= 1) and ending there along C.

In order to easily generate the optimal solution, the DNA algorithm proposed
by Han et al [10, 11] searches for the shortest path instead of the shortest tour. The
reason is that the length of a shortest tour that begins with v′1 and end there after
passing through all the edges in G′ is equal to that of a shortest path that begins with
v′1 and end there after passing through all the edges in G′. Moreover, the polymerase
chain reaction (PCR) in the biological techniques is generally carried out on a linear
template; there is no circular template so far. The detailed DNA algorithm [10, 11]
for the Chinese postman problem is as follows.

(1) Merge: The DNA strands si and si j (1 ≤ i, j ≤ m) are mixed together in a
single ligation reaction. Based on the Watson-Crick’s law, generate various DNA
molecules corresponding to the random paths.

(2) Ampli f y: The product of step 1 is amplified by polymerase chain reaction
(PCR) using primers −h(s′′1) and −h(s′1). Thus, only those DNA molecules encoding
paths that begin with v′1 and end with v′1 were amplified.

(3) B(N,s1): Separate all the paths with the departure vertex v′1, or separate all
the DNA molecules with 5′ end being s1.

(4) E(N,s1): Separate all the paths with the arrival vertex v′1, or separate all the
DNA molecules with 3′ end being s1.

(5) +(N,si): For each vertex v′i (2 ≤ i ≤ m), separate all the paths including v′i.
(6) Separate the shortest path through gel electrophoresis.
(7) Determinate the nucleotides sequence of the shortest path, which corresponds

to the optimal solution.
For more details, please see the reference [10, 11].

13.4.6 RLM: Relative Length Method of Encoding Weights

Han [12] presented a method of encoding weights in DNA strands for the problems
related to graph with weights, which is referred to the relative length method (RLM),
and applied it to the traveling salesman problem. The RLM method can directly
deal with weights of either real numbers or integers, even very small and very big
positive weights, and the lengths of DNA strands used in the RLM method are not
proportional to the values of weights.

Definitions Involved in the RLM Method

Definition 13.4.6.1 For a weighted graph G = (V,E), vi ∈ V , 1 ≤ i ≤ n, e j ∈ E ,
1 ≤ j ≤ m, all the weights are sorted in a nondecreasing order, and the equal weights
are at the same position. Thus, all the weights are divided into p groups (p ≤ m)
according to their ranking. The p groups are numbered from 1 to p, respectively. The
group number is called the order number of the weight.

312 A. Han and D. Zhu

Definition 13.4.6.2 For a weighted graph G = (V,E), vi ∈ V , ei j ∈ E , 1 ≤ i, j ≤ n,
where the weight on edge ei j is wi j, all the weights wi j are remarked as wi j,k, where
k is the order number of wi j. For each remarked weight wi j,k, we add k−1 nodes on
edge ei j. The obtained graph G′ is called the relative length graph of G.

Obviously, if the weight wi j is remarked as wi j,k, the edge ei j will be divided into
k segments. The bigger the order number, the more the segments of the edge. That is,
the segment number of an edge represents the relative length of the edge. Note that
the segment number of an edge is not directly proportional to the weight on the edge.
For example, the segment numbers of edges with weights 2, 1000 and 1002 are 1, 2
and 3, respectively.

RLM Method of Encoding Weights

With the help of the relative length graph, Han [12] devised a method of encoding
weights in DNA strands for the traveling salesman problem. For a weighted graph
G = (V,E) with n vertices and m edges, vi ∈V , ei j ∈ E , 1 ≤ i, j ≤ n, where the weight
on edge ei j is wi j, the RLM method [12] is as follows.

(1) All the weights are divided into p groups (p ≤ m) according their order
numbers, and each weight wi j is remarked as wi j,k if it belongs to the kth group
(1 ≤ k ≤ p).

(2) For each remarked weight wi j,k, we add k− 1 nodes on edge ei j. The added
nodes are marked as vei j,1, vei j,2, . . . , vei j,k−1, respectively. The obtained graph G′ is
the relative length graph of G.

(3) For each vertex and each added node, we use DNA strand si of length 2c
(c ∈ Z, c ≥ 5) to encode it. The DNA strand si is divided into two sub-strands with
equal length, or si = s′is′i′. See the DNA encoding method in section 13.4.5.

(4) For each edge ei j (including the edges that are connecting the nodes newly
added in step 2), we use DNA strand si j = −h(s′′i s′j) to encode it, where −h(s)
denotes the reverse complement of s. Thus, when the vertex-node codes and the edge
codes are mixed together, they can combine with each other to form dsDNAs since
any DNA strand s can combine with its reverse complement −h(s) to form dsDNA.

Take the graph G shown in Fig. 13.11(a) as an example. All the weights are sorted
in a nondecreasing order, or 1.2, 2, 2.5, 3. Thus, they are divided into 4 groups, and
the order numbers of weights 1.2, 2, 2.5, 3 are 1, 2, 3, 4, respectively. Therefore, the
weights w12, w13, w14, w15, w23, w34, w35, w45 are remarked as w12,1, w13,3, w14,4,
w15,2, w23,4, w34,2, w35,1, w45,3, respectively. For each remarked weight wi j,k, we add
k−1 nodes on edge ei j. For example, we add two nodes on e13 since w13 is remarked
as w13,3, we add three nodes on e14 since w14 is remarked as w14,4, and so on. The
obtained graph G′ is the relative length graph of G, as shown in Fig. 13.11(b).

For each vertex vi in Fig. 13.11(b), we use DNA strand si of length 10 (c =
5) to encode it. Here, the added nodes are also viewed as vertices. Consider the
vertex v1 and the node ve13,1. The DNA strands s1 = T TAGCGCATG, se13,1 =
GTTACGTGAG are selected to encode them, respectively.

For each edge ei j, we use DNA strands si j = −h(s′′i s′j) to encode it. The edge
linking the vertex v1 and the node ve13,1 are encoded by the following DNA strand.

13 DNA Encoding Methods 313

Fig. 13.11. A weighted graph its relative length graph. (a) A weighted graph G and (b) The
relative length graph G′ of G

se1,e13,1 = −h(s′′1s′e13,1) = −h(GCATGGTTAC) = GTAACCATGC
Thus, the DNA strands s1, se13,1 and se1,e13,1 can combine with each other. Based

on the property of reverse complementation between the vertex-node codes and
the edge codes, the dsDNAs may extend continually to form various random paths
including the optimal solution. For more details, please see the reference [12].

DNA Algorithm

Given a weighted graph G = (V,E) with n vertices and m edges, vi ∈ V , ei j ∈ E ,
1 ≤ i, j ≤ n, where the weight on edge ei j is wi j , wi j ≥ 0. Suppose that v1 is the
start vertex just as well. The DNA algorithm [12] for the traveling salesman problem
using the RLM encoding method is as follows.

(1) Construct the relative length graph G′ of the given graph G = (V,E). For each
vertex or node in G′, use DNA strand si of length 2c to encode it. For each edge ei j

in G′, use the DNA strand si j = −h(s′′i s′j) to encode it.
(2) Merge: All the DNA strands si and si j are mixed together in a single lig-

ation reaction. Based on the Watson-Crick’s law, randomly form various dsDNAs
corresponding to the random paths.

(3) B(N,s1): Separate all the paths beginning with the start vertex v1, or separate
all the DNA molecules with 5′ end being s1.

(4) E(N,s1): Separate all the paths ending with the destination vertex v1, or
separate all the DNA molecules with 3′ end being s1.

(5) +(N,si): For each vertex vi (2 ≤ i ≤ n), separate all the paths including vi.
(6) Separate the shortest path by means of gel electrophoresis.
(7) Determinate the nucleotide sequence of the shortest path. Suppose that the

nucleotide sequence corresponds to v1, vei, vei+1, . . . , v2, ve j, ve j+1, . . . , v1. Delete
the nodes vex from the vertex sequence, the obtained vertex sequence v1, v2, . . . , v1

corresponds to the optimal solution.
The RLM method [12] is an improvement on the previous work [6]. The main

improvements are as follows. (1) The lengths of DNA strands used in the RLM
method are not proportional to the values of weights, which makes the RLM method
can easily encode weights of positive real numbers or integers, even very small or
very large number. That is, the weights that can be encoded by the RLM method may
be in a very broad range since weights are encoded in DNA strands only according
to their order numbers. For example, if the weights are 30, 1.8, 400, their order

314 A. Han and D. Zhu

numbers are 2, 1, 3, respectively. Thus, the edges are respectively divided into 2,
1, 3 segments, and the DNA strands to encode them are with the lengths of 20, 10,
30, respectively. (2) The RLM method can distinguish the paths with almost same
weights, such as 1000 and 1001, because with the help of the relative length graph,
the difference between the lengths of DNA strands used to encode paths is always
above or equal to 2c (c ≥ 5). For more details, please see the reference [12].

13.4.7 Method of Encoding Nonlinear Solutions

Han et al [16] presented a DNA encoding method for the minimum spanning tree
problem, an instance of optimization problems on weighted graphs. The minimum
spanning tree problem cannot be directly solved based on the molecular biology
techniques because the degrees of some vertices in a minimum spanning tree may be
above to 2, which cannot be directly represented by linear DNA strands.

The Minimum Spanning Tree Problem

For a connected, weighted, undirected graph G = (V,E), a spanning tree is a tree that
contains all vertices of G, the weight of the spanning tree is the sum of the weights on
edges in it, and the minimum spanning tree (MST) is a spanning tree with minimum
weight. The MST problem is to find a MST for a connected, weighted, undirected
graph.

The MST problem is very important because there are many situations in which
MST must be found. Whenever one wants to find the cheapest way to connect a set of
terminals, such as cities, electrical terminals, computers, or factories, by using roads,
wires, or telephone lines, the solution is a MST for the graph with an edge for each
possible connection weighted by the cost of that connection. The MST problem has
been studied since the fifties, there are many exact algorithms for it. Han et al [16]
presented a DNA solution to the MST problem.

DNA Encoding Method

In order to clearly describe the DNA encoding method [16] for the MST problem,
we first give the definition of recognition code.

Definition 13.4.7.1 For a connected, weighted graph G = (V,E) with n vertices, a
DNA strand used to distinguish a vertex from others is called the recognition code of
the vertex.

The length l of recognition code should satisfy: 4l−1 < n ≤ 4l, or l = �log4n�,
where 4 stands for the number of letters in the alphabet {A, T , G, C}.

For a connected, weighted graph G = (V,E), vi ∈ V , ei j ∈ E , where each weight
wi j on edge ei j is an integer, the DNA encoding method proposed by Han et al [16]
for the MST problem is as follows.

(1) Let l = max{�log4n�, 6}. For each vertex vi, use DNA strand ri of length l to
encode it. Here, l denotes the length of recognition code, and 6 is an empirical value
which indicates the minimum length of recognition code.

13 DNA Encoding Methods 315

Fig. 13.12. The DNA strand si j of encoding edge ei j . (a) In the case of wi j being larger than l,
(b) In the case of wi j being less than l and (c) In the case of wi j being equal to l

If n > 46, the recognition codes of length �log4n� are needed to distinguish each
vertex from others; otherwise, each vertex can be distinguished from others using
the recognition codes of length 6. Here, select l = 6 instead of l < 6 because too
short recognition codes would result in high error rate. For example, if the number
of vertices in G is 4 and l = 1, each vertex can be distinguished from others but in
the DNA algorithm, when the recognition codes combine with one part of the DNA
strands corresponding to edges, they may combine with another part of the DNA
strands because they are too short and easy to be successfully matched to several
parts of the DNA strands based on the Watson-Crick’s law.

(2) For each edge ei j, the DNA strand si j of length 2p = 2×max{wi j, l} are used
to encode it. Here, the first l letters of si j are the same as ri, and the last l letters of
si j are the same as r j. In addition, the first wi j letters of si j is marked as swi j1, and the
last wi j letters of si j is marked as swi j2. Note that, when wi j is larger than l, the DNA
strand si j is with a length of 2p = 2×wi j, as shown in Fig. 13.12(a). Here, ri or r j

should not be the substring of the center part of si j. When wi j is less than l, the DNA
strand si j is with a length of 2p = 2× l, as shown in Fig. 13.12(b). And when wi j is
equal to l, the DNA strand si j used to encode edge ei j is shown in Fig. 13.12(c).

(3) For any two adjacent edges ei j, e jk, add one DNA strand sai jk as an additional
code, which is the reverse complement of swi j2 and sw jk1, or sai jk = −h(swi j2sw jk1).
Obviously, the additional code sai jk is with a length of wi j + wjk. Thus, the DNA
strands si j and s jk can combine with the additional code sai jk to form a fragment of
dsDNA. Note that, for the edges ei j, e ji, add one DNA strand sai ji = −h(swi j2sw ji1)
as an additional code, which is with a length of 2wi j.

For more details, please see the reference [16].

DNA Algorithm

The MST problem cannot be directly solved based on molecular biology techniques
because some degrees of vertices in a MST may be above to 2, which cannot be
directly represented by linear DNA strands. Take the graph G shown in Fig. 13.13(a)
as an example, a MST of G is given in Fig. 13.13(b). The degrees of vertices v2 and
v5 in the MST are 3, which cannot be directly represented by linear DNA strands. In
order to generate DNA strands of encoding a MST, each edge in the MST is copied
to form an Euler graph G′, as shown in Fig. 13.13(c). The Euler cycle in G′ can
be found out by means of the molecular biology techniques, and the MST can be
obtained from the Euler cycle.

316 A. Han and D. Zhu

Fig. 13.13. A weighted graph and its minimum spanning tree and Euler graph. (a) A weighted
graph G, (b) A minimum spanning tree T of G and (c) The Euler graph G′ of T

For a connected, weighted graph G = (V,E), vi ∈V , 1≤ i≤ n, ei j ∈E , where each
weight wi j on edge ei j is an integer, the DNA algorithm proposed by Han et al [16]
for the MST problem is as follows.

(1) Let l = max{�log4n�, 6}. For each vertex vi, use DNA strand ri of length l to
encode it. For each edge ei j, let p = max{wi j, l}, use DNA strands si j of length 2p to
encode it, in which the first l letters are the same as ri, the last l letters are the same
as r j, and the center part does not include the substrings ri or r j . In addition, the first
wi j letters of si j is marked as swi j1, and the last wi j letters of si j is marked as swi j2.

(2) For any two adjacent edges ei j, e jk, add one DNA strand sai jk as an additional
code, which is the reverse complement of swi j2 and sw jk1, or sai jk = −h(swi j2sw jk1).
Note that, for any edge ei j, add one DNA strand sai ji =−h(swi j2sw ji1) as an additional
code.

(3) Merge: All the DNA strands si j and sai jk (1 ≤ i, j ≤ n) are mixed together.
Based on the Watson-Crick’s law, generate randomly various part dsDNAs.

(4) Denature: All the part dsDNAs are converted into the DNA strands by means
of heating.

(6) −(N,si): All the DNA strands with any additional code are discarded. Let m
denote the number of edges in G, and si denote one additional code. All the DNA
strands without any additional code can be obtained through the following DNA
program: For i:=1 to m do {−(N,si)}. Note that in the DNA encoding method, all
the upper DNA strands do not include any additional code.

(7) +(N,ri): Separate the DNA strands in which the number of recognition codes
being at 5′ end is equal to n, and the number of recognition codes being at 3′ end is
also equal to n. Let cri denote the reverse complement of the recognition code ri,
or cri = −h(ri), 1 ≤ i ≤ n. All the DNA strands generated in step 6 are mixed with
cri so as to make the DNA strands combine with cri to form part dsDNAs. Thus, all
the DNA strands including ri can be obtained by the operation +(N,ri). The number
of the recognition codes in the DNA algorithm is n, so all the DNA strands with n
recognition codes can be obtained through the following DNA program: For i:=1 to
n do {+(N,ri)}.

(8) Separate the DNA strands with the minimum weight through gel elec-
trophoresis.

(9) Determinate the nucleotide sequence of the DNA strand with minimum
weight, which corresponds to the Euler cycle. The minimum spanning tree can be
obtained from the Euler cycle.

13 DNA Encoding Methods 317

For more details, please see the reference [16].

13.4.8 DNA Encoding Method for the Maximal Weight Clique Problem

Based on Ouyang’s DNA algorithm [3] for the the maximal clique problem, Han et al
[13] proposed an DNA encoding method for the maximal weight clique problem. For
an undirected, weighted graph G = (V,E), vi ∈V , ei j ∈ E , where the weight on vertex
vi is wi, wi ≥ 0, the maximal weight clique problem (MWCP) is to find a subset of
mutually adjacent vertices, i.e. a clique, which has the largest total weight. Suppose
that each weight wi on vertex vi is an integer. If one of the weights is a real number,
all the weights are multiplied by a certain integer (i.e. 10) and then they are rounded
into integers.

DNA Encoding Method

For an undirected, weighted graph G = (V,E) without parallel edges, that is, there
is maximum one edge between any two vertices in G, the DNA encoding method
proposed by Han et al [13] for the maximal weight clique problem is as follows.

(1) For each vertex vi ∈ V , use two DNA strands si1 and si2 to encode it. The
DNA strand si1 consists of three parts: s′i1, swi and s′′i1, where swi is with a length of
wi, and s′i1 or s′′i1 is with a length of 10, that is, the DNA strand si1 = s′iswi s′′i is with a
length of 20 + wi. The strand si2 is the reverse complement of swi, or si2 = −h(swi).
Obviously, si2 can combine with the center part of si1 to form a fragment of dsDNA.
After encoding each vertex, the restriction sequences are embedded at both sides of
swi and si2. The codes of vertex vi are shown in Fig. 13.14(a).

(2) For each edge ei j ∈ E , use the DNA strand sei j = −h(s′′i1s′j1) to encode it,
which is the reverse complement of the last part of si1 and the first part of s j1.
Obviously, the DNA strand sei j is with a length of 20. Thus, the DNA strands cor-
responding to vertices vi and v j can combine with the DNA strand corresponding to
edge ei j to form a stable dsDNA, as shown in Fig. 13.14(b).

For more details, please see the reference [13].

DNA Algorithm

For an undirected, weighted graph G = (V,E), vi ∈ V , ei j ∈ E , where the weight on
vertex vi is wi, wi ≥ 0, let nc denote the number of edges in the complementary graph
G′ of G. The DNA algorithm proposed by Han et al [13] for MWCP is as follows.

Fig. 13.14. Joint of the vertex codes and the edge code. (a) DNA strands si1 and si2 of encoding
vertex vi and (b) Joint of DNA strands si1, si2, s j1, s j2 and sei j of encoding vertices vi, v j and
edge ei j

318 A. Han and D. Zhu

(1) For each vertex vi ∈ V , use two DNA strands si1 and si2 to encode it. The
DNA strand si1 = s′i1swis′′i1 is with a length of 20+wi, and the strand si2 = −h(swi) is
with a length of wi. For each edge ei j ∈ E , use the DNA strand sei j = −h(s′′i1s′j1) to
encode it.

(2) Merge: All the DNA strands si1, si2 and sei j are mixed together in a single
ligation reaction. Based on the Watson-Crick’s law, generate randomly the various
dsDNAs.

(3) Ampli f y: The dsDNAs starting with v1 and ending with vn are amplified
through polymerase chain reaction (PCR). Let sumw = Σi=1→nwi. Only those ds-
DNAs whose length is equal to or less than sumw are saved. The set of the saved
dsDNAs is called the complete data pool.

(4) Digest: All the dsDNAs in the complete data pool are digested with restriction
enzymes. The enzymes break DNA at specific restriction sites, which were embed-
ded within the sequences for vi (1≤i≤n). See step 2 in the DNA algorithm for MCP
in section 13.3.3.

(5) (N, ≤sumw): Separate all the dsDNA whose length is less than or equal to
sumw. By nc sequential restriction operations with different enzymes, all the DNA
fragments connected by the edges in the complementary graph G′ are digested. Each
time of digesting the DNA fragments, let sumw = sumw−min{wi,wj}.

(7) Separate the longest dsDNAs in the remaining data pool through gel elec-
trophoresis.

(8) Determinate nucleotides sequence of the longest dsDNAs, which corresponds
to the optimal solution.

The DNA algorithm for MWCP [13] is an improvement on Ouyang’s algorithm
for MCP [3]. The main improvements are as follows. (1) On the basis of Ouyang’s
DNA computing model, Han et al [13] add weight representation in DNA strands.
(2) In Ouyang’s algorithm for MCP, the space complexity is O(nn), where n denotes
the number of vertices in the given graph. In Han’s algorithm for MWCP, the space
complexity is O(dn

max), where dmax denotes the maximum of vertex degrees in the
given graph. (3) In Ouyang’s algorithm, all the combinations of vertices are in the
complete data pool, whereas in Han’s algorithm, those vertices disconnected by edge
in G are not in the complete data pool. For more details, please see the reference [13].

13.4.9 DNA Encoding Method for the 0/1 Knapsack Problem

Han et al [15] presented a DNA encoding method for the 0/1 knapsack problem.
Given a set of n items and a knapsack of capacity c, where each item i has a profit
pi and a weight wi, the 0/1 knapsack problem is to select a subset of the items which
satisfies: the sum of weight does not exceed the knapsack capacity c and the sum of
profit is maximal.

DNA Encoding Method

For an instance of the 0/1 knapsack problem, let I = {1, 2, . . . , n}, P = {p1, p2, . . . ,
pn}, W={w1, w2, . . . , wn}, and the knapsack capacity c = c0. Suppose that each

13 DNA Encoding Methods 319

profit pi and each weight wi are integers. If one of the profits is not an integer, all
the profits are multiplied by a certain integer (i.e.10) and then they are rounded into
integers. If one of the weights is not an integer, all the weights and the knapsack
capacity are multiplied by a certain integer and then they are rounded into integers.
Also suppose that wi ≥ pi for all i. If there is any wi < pi, all of the weights and the
capacity are multiplied by a certain integer. The DNA encoding method proposed by
Han [15] for 0/1 knapsack problem is as follows.

(1) For each item i (1 ≤ i ≤ n), use two DNA strands si1 and si2 of different length
to encode it. The DNA strand si1 = s′i1spis′′i1 is with a length of wi, where the center
part spi is with a length of pi, the first part s′i1 is with a length of (wi − pi)/2!, and
the last part s′′i1 is with a length of wi − pi − (wi − pi)/2!. The DNA strand si2 is the
reverse complement of spi, or si2 = −h(spi). Thus, si2 can combine with the center
part of si1 to form a fragment of dsDNA.

(2) For any two items i and j (1 ≤ i, j ≤ n), add one DNA strand sai j as an
additional code, which is the reverse complement of the last part of si1 and the first
part of s j1, or sai j = −h(s′′i1s′j1). Thus, the DNA strands of encoding items i and j can
combine with the additional code sai j to form dsDNA.

For more details, please see the reference [15].

DNA Algorithm

Based on the DNA encoding method, the DNA algorithm proposed by Han [15] for
the 0/1 knapsack problem is as follows.

(1) For each item i (1 ≤ i ≤ n), use the DNA strands si1 = s′i1spis′′i1 and si2 =
−h(spi) to encode it. For any two items i and j (1 ≤ i, j ≤ n), add one DNA strand
sai j = −h(s′′i1s′j1) as an additional code.

(2) Merge: All the DNA strands si1, si2 and sai j (1 ≤ i, j ≤ n) are mixed together.
Based on the Watson-Crick’s law, generate randomly various dsDNAs.

(3) (N, ≤c): All the dsDNAs whose length is above to the knapsack capacity c
are discarded.

(4) Denature: The remaining dsDNAs are converted into the DNA strands by
means of heating.

(5) +(N,h(sai j)): All the DNA strands without any additional code are discarded.
Let w denote the reverse complement of an additional code, or w =−h(sai j), w ∈ {A,
C, G, T}∗, 1 ≤ i, j ≤ n. All the DNA strands generated in step 4 are mixed with w so
as to make the DNA strands combine with w to form part dsDNAs. Thus, the DNA
strands without any additional code can be separated away. That is, by means of the
operation +(N,w), all the DNA strands without any additional code can be separated
away. Note that in the encoding method, all the upper DNA strands do not include
any additional code.

(6) Delete the additional codes from the remaining DNA strands. All the DNA
strands with additional code are put in a tube. Let s = uyv denote one of the DNA
strands with additional codes, where u, y, v represent a fragment of one DNA strand,
respectively. Put the DNA strands −h(u) and −h(v) into the tube. After annealing,

320 A. Han and D. Zhu

Fig. 13.15. Deletion of the Additional Codes

the strand u combine with −h(u), the strand v combine with −h(v), and fold y, as
shown in Fig. 13.15. And then the restriction enzymes are put into the tube to delete y.

(7) Separate the DNA strands with the maximum profit by means of gel elec-
trophoresis.

(8) Determinate the nucleotides sequence of the DNA strand with the maximum
profit, which corresponds to the optimal solution.

The DNA algorithm [15] for the 0/1 knapsack problem has the following charac-
teristics: (1) The length of DNA strand si1 which is used to encode item i are equal
to the weight wi, and its center part spi is with a length of the profit pi. Thus, the
length of the dsDNAs generated in the DNA algorithm is equal to the sum of the
weights. By means of the operation (N,≤c), all the dsDNAs whose length is above
to the knapsack capacity c can be discarded. (2) It uses one additional code to link
the DNA strands of encoding two items, and the DNA strands si2 and s j2 are still
linked to the additional code after the dsDNAs are denatured. Since the additional
codes can be deleted from the strand si2 (1 ≤ i ≤ n) by means of the deletion op-
eration and the length of the remaining fragment of si2 is equal to the sum of the
profits, so the fragment with the maximum profit can be separated by means of gel
electrophoresis which corresponds to the optimal solution. For more details, please
see the reference [15].

13.5 Conlusion

Bioinformatics studies the biological information by means of mathematics, com-
puter science and biological techniques. The results of these researches provide a
probability of computing with DNA molecules. As an applied branch of the thriving
multidisciplinary research area of Bioinformatics, DNA computing has characteris-
tics of higher parallelism and lower costs. Based on the massive parallelism of DNA
computing, many researchers tried to solve a large number of difficult problems.
These researches demonstrate how DNA can be used for representing information
and solving the computational problems and enrich the theories related to DNA com-
puting, in which the methods of representing weights in DNA strands are one of the
most important but also challenging issues in DNA computing. Some methods of
encoding weights in DNA strands are given in this chapter, which will benefit the
further researches on DNA computing, and the rapid development of Bioinformatics
will certainly improve the capabilities of DNA computing.

13 DNA Encoding Methods 321

References

1. Adleman L M (1994) Molecular Computation of Solutions to Combinatorial problems.
Science 266:1021–1024

2. Lipton R J (1995) DNA solution of hard computational problems. Science 268:542–545
3. Ouyang Q, Kaplan P D, Liu S, et al (1997) DNA solution of the maximal clique problem.

Science 278:446–449
4. Head T, Rozenberg G, Bladergroen R S, et al (2000) Computing with DNA by operating

on plasmids. Biosystems 57:87–93
5. Sakamoto K, Gouzu H, Komiya K, et al (2000) Molecular computation by DNA hairpin

formation. Science 288:1223–1226
6. Narayanan A, Zorbalas S, et al (1998) DNA algorithms for computing shortest paths. In:

Proceedings of the Genetic Programming, Morgan Kaufmann 718–723
7. Shin S Y, Zhang B T, Jun S S, et al (1999) Solving traveling salesman problems using

molecular programming. In: Proceedings of the Congress on Evolutionary Computation.
IEEE Press 994–1000

8. Yamamoto M, Matsuura N, Shiba T, et al (2002) Solutions of shortest path problems by
concentration control. Lecture Notes in Computer Science 2340:203–212

9. Lee J Y, Shin S Y, Park T H, et al (2004) Solving traveling salesman problems with DNA
molecules encoding numerical values. BioSystems 78:39–47

10. Han A, Zhu D (2006) DNA Encoding Method of Weight for Chinese Postman Problem.
In: Proceedings of 2006 IEEE Congress on Evolutionary Computation. IEEE Press 2696–
2701

11. Han A, Zhu D (2007) DNA Computing Model Based on a New Scheme of Encoding
Weight for Chinese Postman Problem. Computer Research and Development 44:1053–
1062

12. Han A (2006) RLM: A New Method of Encoding Weights in DNA Strands. In: Proceed-
ings of the Sixth International Conference on Hybrid Intelligent Systems. IEEE Press
118–121

13. Han A, Zhu D (2006) A New DNA-Based Approach to Solve the Maximum Weight
Clique Problem. Lecture Notes in Computer Science 4115:320–327

14. Han A, Zhu D (2006) A New DNA Encoding Method for Traveling Salesman Problem.
Lecture Notes in Computer Science 4115:328–335

15. Han A, Zhu D (2006) DNA Computing Model for the Minimum Spanning Tree Prob-
lem. In: Proceedings of the 8th International Symposium of Symbolic and Numeric
Algorithms for Scientific Computing. IEEE Press 372–377

16. Han A (2006) DNA Computing Model for the 0/1 Knapsack Problem. In: Proceedings of
the Sixth International Conference on Hybrid Intelligent Systems. IEEE Press 122–125

17. Paun G, Rozenberg G, Salomaa A (1998) DNA Computing: New Computing Paradigms.
Springer, Berlin. Translated by Xu Jin, Wang Shudong, Pan Linqiang (2004) Tsinghua
University Press, Beijing

18. Setubal J, Meidanis J (1997) Introduction to Computational Molecular Biology. Cole
Publishing Company, Thomson. translated by Zhu H, et al (2003) Science Press, Beijing

19. Zhang B T, Shin S Y (1998) Molecular algorithms for efficient and reliable DNA
computing. In: Genetic Programming, Morgan Kaufmann 735–742

20. Xu J, Zhang L (2003) DNA Computer Principle, Advances and Difficulties (I): Biological
Computing System and Its Applications to Graph Theory. Journal of Computer Science
and Technology 26: 1–10

21. Yin Z (2004) DNA Computing in Graph and Combination Optimization. Science Press,
Beijing

322 A. Han and D. Zhu

22. Wang L, Lin Y, Li Z (2005) DNA Computation for a Category of Special Integer Planning
Problem. Computer Research and Development 42:1431–1437

23. Chen Z, Li X, Wang L, et al (2005) A Surface-Based DNA Algorithm for the Perfect
Matching Problem. Computer Research and Development 42:1241–1246

24. Braich R S, Chelyapov N, Johnson C, et al (2002) Solution of a 20-variable 3-SAT
problem on a DNA computer. Science 296:499–502

25. Lancia G (2004) Integer Programming Models for Computional Biology Problems.
Journal of Computer Science and Technology 19:60–77

26. Ibrahim Z, Tsuboi Y, Muhammad M S, et al (2005) DNA implementation of k-shortest
paths computation. In: Proceedings of IEEE Congress on Evolutionary Computation.
IEEE press 707–713

27. Jonoska N, Kari S A, Saito M (1998) Graph structures in DNA computing. In: Computing
with Bio-Molecules–Theory and Experiments. Penn State 93–110

