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Summary. In this chapter, a novel gene regulatory network inference algorithm based on the
fuzzy logic network theory is proposed and tested. The key motivation for this algorithm is
that genes with regulatory relationships may be modeled via fuzzy logic, and the strength of
regulations may be represented as the length of accumulated distance during a period of time
intervals. One unique feature of this algorithm is that it makes very limited a priori assump-
tions concerning the modeling. Hence the algorithm is categorized as a data-driven algorithm.
With the theoretical guidelines to quantify the upper limits of parameters, the algorithm is im-
plemented to infer gene regulatory networks for Saccharomyces cerevisiae and Saccharomyces
pombe. The computation results not only prove the validity of the data-driven algorithm, but
also offer a possible explanation concerning the difference of network stabilities between the
budding yeast and the fission yeast.

10.1 Introduction

One of the most challenging problems in bioinformatics is to determine how genes
inter-regulate in a systematic manner which results in various translated protein prod-
ucts and phenotypes. To find the causal pathways that control the complex biological
functions, previous work have modeled gene regulatory mechanisms as a network
topologically [1]. The importance of networking models is that normal regulatory
pathways are composed of regulations resulting from many genes, RNAs, and tran-
scription factors (TFs). The complicated inter-connections among these controlling
chemical complexes are the driving forces in maintaining normal organism functions.
A precise structural presentation of components should illustrate the key properties
of the system.

Based on the network representation of gene regulations, a number of infer-
ence models have been proposed. They include Bayesian networks [2], hybrid Petri
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net [3], growth network [4], genetic circuits [5], inductive logic programming [6],
and hybrid networks [7]. These models have focused on different aspects of gene
regulatory behaviors, and each model has contributed good inference results in cer-
tain aspects. The ongoing research on these models is focused on the challenges of
data integration, non-linear data processing, noise tolerance, synchronization, and
model over fitting [8].

Research on genome-wide gene regulations has used dynamic microarray data
which quantify the genomic expression levels at each sample time. Given a series of
microarray data, researchers have attempted to find the spatial and temporal modes
of regulations regarding different conditions or different stages of cell cycles on
different species [8]. But because of the hybridization process and the synchroniza-
tion issues of time-series microarray, the data, very often contain missing, noisy,
or unsynchronized data subsets. Thus data normalization and pre-processing tech-
niques have become necessary to reduce the noise. Other techniques like SAGE [9],
TFs mappings [10], and antibiotic arrays [11] have been designed to discover the
regulatory mechanisms.

In this chapter, a novel network model, the fuzzy logic network (FLN), is pro-
posed and thoroughly examined. The feasibility of applying this model to inferring
gene regulatory networks is investigated. The FLN is a generalization of the Boolean
network, but it is capable of overcoming the unrealistic constraints of Boolean values
(ON/OFF symbolically). With distinctive properties in processing real life incom-
plete data and uncertainties, researchers have applied fuzzy logic to gene expression
analysis, and by the use of specific scoring matric, Saccharomyces cerevisiae gene
regulatory networks with biological verifications were inferred [12–14]. This chapter
expands these previous research work.

The rest of the chapter is organized as follows: In Section 10.2, the definition of
the FLN is introduced, and the critical connectivity of the FLN is deduced using the
anneal approximation. Then, the structure of the inference algorithm is discussed
in Section 10.3. Finally, in Section 10.4, the algorithm is used to infer the gene
regulatory networks for Saccharomyces cerevisiae and Saccharomyces pombe. The
inference results are compared and analyzed in this section. The chapter concludes
in Section 10.5.

10.2 Fuzzy Logic Network Theory

The proposed FLN theory is based on theoretical deductions at the second level of
fuzzy uncertainty. This means that the variables have been normalized into [0,1]
interval, and statistical methods are built on the basis of fuzzy variables as well as
their relationships.

The FLN is defined as follows:
Given a set of N variables (genes), Σ(t) = (σ1(t),σ2(t), . . . ,σN(t)), (σi(t) ∈

[0,1], (i = 1,2, . . . ,N), index t represents time), the variables are to be updated by
means of the dynamic equations:

σi(t + 1) = Λi(σi1(t),σi2(t), . . . ,σiK (t)), (1 ≤ i ≤ N) (10.1)



10 Gene Regulatory Network Inference Using the FLN 239

Table 10.1. Four commonly used fuzzy logical functions including their AND (∧), OR (∨),
and NOT ( ).

Fuzzy Logical Functions a∧b a∨b a

Max-Min min(a,b) max(a,b) 1-a

GC a×b min(1, a+b) 1-a

MV max(0, a+b− 1) min(1, a+b) 1-a

Probabilistic a×b a+b−a×b 1-a

where Λi is a fuzzy logical function, and K represents the number of regulators
for σi.

For an FLN, the logical functions may be constructed using the combinations
of AND (∧), OR (∨), and NOT ( ). The total number of choices for fuzzy logical
functions is determined only by the number of inputs. If a node has K (1 ≤ K ≤ N)
inputs, then there are 2K different logical functions. In the definition of the FLN,
each node, Fi(t), has K inputs. But this fixed connectivity will be relaxed later.

To apply the FLN to modeling gene regulatory networks, each fuzzy variable will
represent a gene, and genetic regulatory relationships will be modeled as fuzzy logi-
cal functions. A fuzzy logical function is defined as a function Λ : U → [0,1] where
Λ(u) is the degree of the membership. Usually, it has to satisfy the requirement of
the t-norm/t-co-norm, which is a binary operation that satisfies the identity, commu-
tative, associative, and increasing properties [15]. Table 10.1 shows the commonly
used fuzzy logical functions with distinctive dynamics [16].

Although the logical functions are expressed via simple algebraic expressions,
they have their own distinctive properties. The Max-Min logical function which is
closely related to Boolean logic, is one of the classical fuzzy logical functions. This
logical function uses the maximum of two values to replace the Boolean OR, whereas
the minimum replaces the Boolean AND. GC logical function is a combination of
MV and Probabilistic logical functions. The MV logical function follows the trivalent
logic whereas Probabilistic does not. In this chapter, all four fuzzy logical functions
are tested on the S. cerevisiae dataset.

The critical connectivity of the FLN is crucial in the data-driven algorithm’s ap-
plication to gene regulatory network inference. It quantifies the algorithm’s search
strategy, and the computational complexity of the algorithm is determined by it. To
study the detailed dynamics and the connectivity of the FLN, the annealed approx-
imation [17, 18] has been used. Consider the following two FLN configurations at
time t: Σ(t) and Σ̃(t), where

Σ(t) = {σ1(t),σ2(t), . . . ,σN(t)}
Σ̃(t) = {σ̃1(t), σ̃2(t), . . . , σ̃N(t)}

(10.2)
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Assume that logical functions selected by the two configurations are not time
variant throughout the dynamic process. Then the distance between the two configu-
rations may be computed as the accumulated Hamming distance (AHD):

AHD(t) =
N

∑
i=1

Hamming(σi(t), σ̃i(t)) (10.3)

and

Hamming(σi(t), σ̃i(t)) =

{
1 if |σi(t)− σ̃i(t)| > δ
0 if |σi(t)− σ̃i(t)| ≤ δ

(10.4)

The Hamming distance uses δ ∈ [0,1] (Hamming threshold) as a parameter to
differentiate the closeness of two values. The distance between two Boolean values
may also be computed using (10.4) with δ ≡ 0. Thus, the AHD of the FLN is the
extension of the Boolean distance. One may easily see that the maximum distance
between Σ(t) and Σ̃(t) is N, while the minimum distance is 0. In comparison with
the distance, another quantity, at ∈ [0,1], may be defined as the similarity of the two
networks, i.e.,

at = 1− AHD(t)
N

(10.5)

Suppose at time t, Σ(t) and Σ̃(t) are at distance lt . Then the probability of the
two configurations having a distance lt+1 at time t +1 may be found. This change in
distances represents the dynamic paths of the two configurations. Denote this proba-
bility as Pt(lt+1, lt). Suppose Σ(t) and Σ̃ (t) have the same logical function selections
for their corresponding variables but different initial values for each variable, and the
variables in the two systems can select one out of S values (S is finite, S ≥ 2N). The
requirement of S ≥ 2N is to guarantee that different fuzzy logical functions may be
used by the FLN [19]. The probability of selecting each of the S values is assumed
to be the same, i.e. 1

S .

Suppose A is the set of variables which are identical in Σ(t) and Σ̃ (t) at time
t. Obviously, set A has N − lt variables. Define Q(N0) as the probability that N0

variables have all their K parents from set A. Then, Q(N0) is a discrete random

variable following the binomial distribution with parameter
(

N−lt
N

)K
. By definition,

N − lt
N

= 1− lt
N

= at (10.6)

so,

Q(N0) =
(

N
N0

)[(
N − lt

N

)K
]N0

[
1−

(
N − lt

N

)K
]N−N0

=
(

N
N0

)[
at

K]N0
[
1−at

K]N−N0

(10.7)

It is obvious that these N0 variables will be the same at time t +1 in both Σ(t +1)
and Σ̃(t + 1). For the remaining N −N0 variables, since at least one of their parents
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will be different, there is a probability of p = S(S−1)
S2 that a variable will be different

in two networks at the next step, while 1− p is the probability that it will be the same.
More generally, let P be the probability that a function produces different values

from different inputs. If a variable can take S values, and the probability of selecting
one of these values is the same, then P may be expressed using the Bayesian rule.

P = p(S−1)
1− p

S−1
+(S−1)

1− p
S−1

(1− 1− p
S−1

) (10.8)

Thus, through deductions using the annealed approximation, the following equa-
tion may be found:

P(lt+1, lt) =
N!

lt+1!(N − lt+1)!
(
P(1− aK

t )
)lt+1

[
1−P(1−aK

t )
]N−lt+1 (10.9)

As can be seen, (10.9) follows binomial distribution. Thus the possibility of
the coverage at the next step will peak at the current mean. The dynamic recursive
equation, then, may be expressed as

at+1 = 1−P(1−at
K) (10.10)

A general situation is considered in which P is uniformly distributed. Then P can
be computed as,

P = P(|σi(t)−σ j(t)| ≥ δ ) = (1− δ )2 (10.11)

If the two networks converge, then the following marginal stability should be
imposed:

∂at+1
∂at

< 1 (implies that the coverage does not decrease with time)
limt→∞ at = 1 (the condition for a full coverage in the steady state)

(10.12)

If a network does not have uniform connectivity for all nodes, we may assume
that the nodes may have different number of parents with a discrete distribution ρk,
where

ρk = Prob(a node has k parents) and
N

∑
k=1

ρk = 1 (10.13)

By applying (10.11), (10.12), and (10.13) to (10.10), the following relationship
may be found.

K =
1

(1− δ )2 (10.14)

It has been found that, in yeast protein-protein networks, as well as in the Internet
and social networks, the distribution of connectivity follows the Zipf’s law [20], i.e.,

P((number of inputs) = K) ∝
1

Kγ ,1 ≤ K ≤ N (10.15)

where γ is a real number, usually between 2 and 3.
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Hence, according to (10.15), the mean connectivity may be computed as

K = ε
N

∑
K=1

K
1

Kγ = ε
N

∑
K=1

1
Kγ−1 (10.16)

where ε is a constant to guarantee that the sum of distribution equals 1.
Then, define

H(γ)
N =

N

∑
i=1

1
Kγ (10.17)

as the partial sum of the generalized harmonic series. It may be proved that

ε =
1

Hγ
N

and K =
Hγ−1

N

Hγ
N

(10.18)

Since there is no general formula for (10.17), approximations for the sum may
be used if N is large enough, which is true for the application to gene regulatory

network inference. The approximation of H(γ)
N is

H(γ)
N ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if γ = 1
π2

6 if γ = 2

1.202 if γ = 3
π4

90 if γ = 4

1.036 if γ = 5
π6

945 if γ = 6

(10.19)

By substituting (10.19) into (10.18), the mean connectivity of the network may
be found as

K ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞ if γ = 2

1.3685 if γ = 3

1.1106 if γ = 4

1.0447 if γ = 5

1.0183 if γ = 6

(10.20)

By applying (10.8), (10.12), and (10.13) to (10.10), the relationship between S
and K is

S ≥ K

K − 1
(10.21)

Therefore, by substituting K in (10.20) to (10.21), the value of S may be found
to have a lower bound, i.e.

S >

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if γ = 2

3.7137 if γ = 3

10.0416 if γ = 4

23.3714 if γ = 5

55.6448 if γ = 6

(10.22)
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In general, the connectivity of a real network should be greater than the critical
connectivity because real networks are usually much more complicated. In other
words, the critical connectivity only serves as a lower bound. In addition, more
relaxed criteria may find more possible regulations, and provide a much smaller
search space for further investigations. Thus an S with γ ≥ 3 should be chosen in
initial searches, which means S should be more than 2. This triggers the question of
whether a crisp Boolean network is powerful enough to infer the genetic network
structure.

If (10.20) is substituted into (10.14), the requirement that δ must satisfy may be
found as

δ >

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.1452 if γ = 3

0.0511 if γ = 4

0.0216 if γ = 5

0.0090 if γ = 6

(10.23)

When γ increases, the network has to adjust itself by adopting stricter criteria.
The result also agrees with the relationship between S and γ from (10.22). However,
when the FLN is used on a real dataset, δ must also be increased to account for the
noise inside.

10.3 Algorithm

Let G ∈ Rn×m be the time-series microarray data where n is the number of genes
in the data and m is the number of time slots in the microarray set. The algorithm
will first randomly select Gr = (Gr1 ,Gr2 , ...,Gri , ...GrK ), a group of regulators that
regulates Gt (Gri ,Gt ∈ R1×m,t �= r1,r2, ...rK). Then the algorithm will filter the reg-
ulators through a fuzzy logic mask, FLogic1, to generate a pseudo-gene-time-series,
Gs ∈ R1×m where

G j
s = Flogic(G j

r1
,G j

r2
, ...,G j

ri
, ...Gj

rK
), j ∈ m (10.24)

The distance between Gr and Gt is then computed as:

Distance(Gr,Gt) = AHD(Gs,Gt) =
m−1

∑
j=1

Hamming(G j+1
t ,G j

s) (10.25)

where the Hamming distance is computed according to (10.4). The value of δ should
base on (10.23), on the noise level, and on the data completeness. As shown in
(10.25), the AHD between Gt and Gs is computed with a time shift throughout the
time series, which is a reasonable assumption that regulations happen with one time
delay.

For each group of possible regulators and the regulated gene, the algorithm deter-
mines its AHD, and records it. In the end, the algorithm will infer regulatory groups

1 Flogic is one of the possible fuzzy logical functions that is applied on K variables
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Fig. 10.1. Algorithm flowchart

with AHD
m less than another threshold, Ti,(Ti ∈ [0,1]), which is the inference thresh-

old. This threshold is defined as the percentage of time periods that a regulation
persists with respect to the total time slots in the microarray. The flow chart of the
algorithm is depicted in Fig.10.1

The complexity of the algorithm is O(nK) where n is the number of genes, and K
is the critical connectivity of the FLN. As shown in (10.20), the mean connectivity
should be less than 1.3685. Thus the complexity of the algorithm is almost linear with
the number of genes. Based on the result shown in (10.20) and [21], we assume the
maximum number of regulators for each inference group is 2. In this scenario, there
may be more than 2 regulators for a regulated gene but we assume that regulators are
correlated in a pair-wise manner. This assumption, which assumes that two regulators
are more efficient to deliver regulatory mechanisms, ensures the critical connectivity.
One should note that the total number of regulators is not limited by this assumption
(any gene in the network may have N regulators maximally).

10.4 Applications to Yeast Datasets

To test the algorithm, the α-factor arrest subset of S. cerevisiae cell cycle dataset [22]
and the S. pombe cell cycle dataset [23] are selected. Although the budding yeast,
S. cerevisiae, and the fission yeast, S. pombe, are generally named as yeast, they
diverged about 1.1 billion years ago [24]. It has been shown that these two fungi have
different chromosome structures, cell cycle synergy, and different gene functions. In
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addition, it has been reported that the S and M phases of S. cerevisiae are very hard
to disrupt while the disrupt of S. pombe cell cycles can be relatively easier [25].
The inference results shown later in this chapter confirm the differences of gene
regulation strategies in the two yeast, and offer a possible explanation on why the S.
cerevisiae cell cycle is more stable.

10.4.1 Data Pre-processing

The S. cerevisiae dataset includes 6178 commonly accepted open reading frames,
and for the α-arrest subset there are 18 time slots. The S. pombe dataset includes
99.5 percent of the total open reading frames, but we choose to use the 407 genes
that have been inferred to be cell-cycle regulated [23]. For the S. pombe dataset, three
elutriation and two cdc25 block-release subsets are combined to produce a series
of 115 time slots for each gene. To reduce errors introduced by noise, and to reduce
computational complexity, both datasets are pre-processed with 3 criteria. Genes that
do not satisfy all three criteria are deleted. The criteria are stated as follows:

• Only genes having more than two thirds valid time slots, with respect to the entire
time span in the microarray, are considered above the noise level. The reason for
this requirement is that some genes do not have expression strong enough to
counter the background noise at some time slots. Totally 115 genes do not fit this
criterion in the S. pombe dataset. The number of genes deleted in the S. cerevisiae
dataset is 125.

• For S. cerevisiae, the maximum value of each gene’s expression must be at least
three times greater than its minimum value in the time series. For S. pombe, the
ratio is limited to 1. If not, the gene is excluded from the dataset. This requirement
guarantees that genes running inside the algorithm have a dynamic range of
expression. Thus it reduces the computational time by limiting the search space.
S. cerevisiae dataset has 5366 genes deleted, but no gene is deleted from S. pombe
dataset due to this criterion.

• Genes with spikes in the time series are not included. The signal-to-noise ratio of
the spike is defined as five. 4 genes in the S. pombe dataset and 8 genes in the S.
cerevisiae dataset have spikes, and are deleted.

After the pre-processing and filtering, 680 genes in the S. cerevisiae subset are
found to satisfy all three criteria, and, as far as the S. pombe dataset is concerned, 286
genes have survived the cut. The values of gene expression are then normalized into
[0,1] interval throughout the time series. For S. cerevisiae, the values of the dataset
are changed from log-odds into true values. Then, the maximum value of each gene
series is found, and used to divide the expression of that gene in the series. For S.
pombe, every gene series in each subset is normalized to have zero median. In the
next step, the maximum value of a gene’s expression inside each subset is found,
and used to divide the values of that gene’s expression in the same subset (the five
subsets are normalized separately). After these steps, the values of each gene in the
dataset have been normalized into [0,1] interval.
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10.4.2 Inference Results of the S. cerevisiae Dataset

We investigate the inference results when regulators apply controls to the regulated
gene in pairs. All four logical functions in Table 10.1 are tested with same parameter
settings (δ = 0.01,Ti = 21%), and they have inferred four different regulatory net-
works. The MV logical function do not introduce as many false positives as that from
using other commonly used fuzzy logical functions. Furthermore, MV logical func-
tion causes the algorithm to be less sensitive to small variations of parameters i.e.,
δ from (10.4) and the inference threshold of the algorithm, Ti. The inferred network
based on the MV logical function is shown in Fig. 10.2 and Table 10.2.

Out of 4.3×109 possible groups, the algorithm locates 51 regulatory groups (32
regulatory pairs) involving 21 genes with average connectivity of 1.5238. There are
17 verified regulations, 5 unknown regulations, and 10 dubious regulations. Table
10.2 shows the verified regulations with functions of the regulator and regulated
gene. One interesting finding is that 15 out of the 21 genes in the network have
been proved to be involved in yeast mating or the cell cycle, and most of them
are downstream mating regulatory genes. In addition, the backbone of the network
(nodes with high connectivities) is made up of 9 out of these 15 genes. The clustering
attribute in the result, although unexpected, may explain why 14 out of the 17 verified
regulations are based on close relationships.

The inferred network also shows network motifs. The network includes seven
feed-forward loops, three single-input modules, as well as the dense overlapping
and bi-fan modules [33, 34]. Through comparative studies on complex biological,
technological, and sociological networks, it has been shown that these modules share
different evolutionary properties and advantages [35, 36]. The feed-forward loop is
believed to play a functional role in information processing. This motif may serve
as a circuit-like function to activate output only if the input signal is persistent, and
allows a rapid deactivation if the input signal is off. Further, the bi-fan structure
of (PRM1, FUS2) and (FIG1, ASG7) are coupled with a number of feed-forward
motifs. The inferred network also includes two internal cycles (FIG1 ←→ PRM1,
FIG1 ←→ FIG2) and one feedback loop among FIG1, FIG2 and ASG7. All the
genes in the cycles or feedback loop are involved in the signaling for yeast mating,
and the close regulations among them are integral to yeast mating. Although network
motif studies on E. Coli have not found cyclic structures [34, 37], the feedback loop
is believed to be the most important regulatory mechanism for cells to adapt to new
environments. The inferred network shows that while preserving specific regulatory
strategies, different species share a striking similarity of regulation mechanisms.

10.4.3 Inference Results of the S. pombe Dataset

The algorithmic parameters for the S. pombe dataset are set as δ = 0.018 because the
network is selected to be a more general network according to (10.23), and Ti = 71%
because the combination of five different subsets lowers the percentage of time that
a regulation may persist. The quantifications of the two thresholds are also based
on previous investigations on the algorithm’s behaviors [12]. The algorithm uses the
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YDR124W

YHL049C

PRM2

YHR218W

STF2

MSF1

YRF1-7

YMR196W

YJL225C PRM1

AGA2

IFH1

PRM3

FUS2

FIG2

AGA1

FIG1

ASI2

SLT2

ASG7

FUS1

Fig. 10.2. The α-factor gene regulatory network using the MV fuzzy logical function. In the
network, there are 21 genes and 32 regulatory arcs. Nodes with high connectivities are green.
The colors of arcs are coded as: functionally verified regulations (red), regulations involving
genes with unknown functions (black), and dubious regulations (blue). The width of the arcs
represents the regulatory strength between the regulator and regulated gene, and it is calculated
as (m−AHD)

MV logical function to find 105 regulations (125 regulatory pairs) among 108 genes.
The regulatory network is shown in Fig. 10.3.

In the network, there are 108 genes and 125 regulatory arcs. The colors of arcs
are coded as: functionally verified regulations (red), regulations involving genes with
unknown functions (black), and dubious regulations (blue). The width of the arcs
represents the regulatory strength between the regulator and regulated gene, and it is
calculated as (m−AHD). The network includes 59 functionally verified regulations,
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Table 10.2. Functionally verified regulations in the inferred S. cerevisiae gene regulatory
network. The regulations are grouped by regulators and the criteria of verifications are cat-
egorized as functional (verified by gene functions from Saccharomyces Genome Database,
4 regulations), close relationship (regulators and regulated genes are usually co-expressed,
co-regulated, 14 regulations). Some of the verifications are also based on the included
references

Regulator Regulated gene Verification
AGA2: adhesion subunit of a-
agglutinin of a-cells

AGA1: anchorage subunit of
a-agglutinin of a-cells

close relationship [26]

ASG7: regulates signaling
from Ste4p

FIG1: integral membrane protein
for efficient mating

close relationship [27]

FIG2: cell wall adhesin specifically
for mating

functional

PRM1: SUN family gene involved
in cell separation

close relationship [28]

FIG1: integral membrane
protein for efficient mating

ASG7: regulates signaling from
Ste4p

close relationship [27]

FIG2: cell wall adhesin specifically
for mating

close relationship [29]

PRM1: pheromone-regulated
protein for membrane fusion during
mating

close relationship [27]

FIG2: cell wall adhesin
specifically for mating

FIG1: integral membrane protein
for efficient mating

close relationship [29]

ASG7: regulates signaling from
Ste4p

functional

FUS1: membrane protein
required for cell fusion

AGA1: anchorage subunit of
a-agglutinin of a-cells

close relationship [30]

PRM1: pheromone-regulated
protein for membrane fusion during
mating

close relationship [31]

PRM1: pheromone-regulated
protein for membrane fusion
during mating

AGA1: anchorage subunit of
a-agglutinin of a-cells

close relationship [30]

FIG1: integral membrane protein
for efficient mating

close relationship [27]

PRM2: pheromone-regulated
protein regulated by Ste12p

FIG1: integral membrane protein
for efficient mating

close relationship [27]

FIG2: cell wall adhesin specifically
for mating

close relationship [27]

SLT2: suppressor of lyt2 ASG7: regulates signaling from
Ste4p

close relationship [32]

FUS2: cytoplasmic protein
for the alignment of parental
nuclei before nuclear fusion

FIG1: integral membrane protein
for efficient mating

close relationship
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csx1

SPCC548.06c

SPAC139.02c
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SPAC27D7.11c
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SPAC9E9.04
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bet1

SPAC23H4.19

SPAC17H9.18c

SPBC19G7.07c

SPCC4F11.03c
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Fig. 10.3. The S. pombe gene regulatory network using the MV fuzzy logical function
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47 regulations involving genes with unknown functions, and 19 dubious regulations.
The 59 functionally verified regulations are listed in Table 10.3 with the functions of
regulators and regulated genes.

Take the ace2 - mid2 and cdc15 - spm1 regulatory pairs as examples. Gene
ace2 is a transcription factor that regulates the transcription of genes required for
cell separation; mid2 is essential for the central positioning of the division septum
before the cell divides and in organizing the septin ring during late mitosis. Gene
cdc15 mediates cytoskeletal rearrangements required for cytokinesis on the onset
of mitosis, and spm1 involves in the regulation of cell wall structure. The average
connectivity of the inferred network is 1.157 which fits the requirement of the Zipf’s
law as shown in (10.20) with γ between 2 and 3.

The regulations among genes in S. pombe are different from S. cerevisiae largely
because the regulatory network of S. pombe does not include any feed-forward struc-
ture or cycle. As shown before, the feed-forward loop is a stable motif for the
network, and this might offer an explanation why S. pombe cell cycles are less stable.
We also found that the regulatory network of S. pombe is sparser than that of the S.
cerevisiae. As for the regulatory logic in the two networks, we found striking simi-
larities between the two yeast. For S. pombe, 75 percent of regulations are OR logic
while the majority of the remaining 25 percent are single-regulator situations. For S.
cerevisiae, 63 percent are OR logic and 17 percent are single-regulator scenarios.

10.5 Conclusions and Discussion

The biologically plausible results from the applications of our FLN algorithm to
the S. cerevisiae and S. pombe datasets suggest that the data-driven algorithm is
potentially a powerful tool to decipher the causal pathways involved in complex
biological systems. In this work, the focus has been on the theoretical deduction
of the FLN’s dynamic behavior and on the computational aspects of the inference
algorithm. The theory of the FLN not only provides a sound theoretical guarantee
for algorithmic parameter adjustments, but also is also a novel proposal for a new
network model with potentially broad applications in modeling complex networks.
From the computation results, the algorithm has provided detailed and insightful
causal relationships among various genes. Thus, we believe that, given less noisy
data, the FLN algorithm may be applied to a large range of biological systems having
different spatial or temporal scales.

Regarding future research on the theoretical aspects of the FLN, we think that
the dynamics and the steady-state properties of the FLN are important. Further effort
should also focus on the effect of other distance metrics as means of comparing
the performance of the modeling. It is also our belief that there is still room for
improvement in computational complexity via heuristic search. Although the theory
of the FLN is still in its infancy, particularly with respect to the details of network
evolution, we think that the FLN, in the future, can model the real world uncertainty
and mimic the behaviors of complex systems.
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Table 10.3. Functionally verified regulations in the inferred S. pombe gene regulatory net-
work. The regulations are grouped by regulators and the criteria of verifications are categorized
as functional (verified by gene functions from GeneDB database, 49 regulations), close
relationship (regulators and regulated genes are usually co-expressed or co-regulated, 9 regu-
lations), and homolog (1 homolog). Some of the verifications are also based on the included
references

Regulator Regulated gene Verification

ace2: regulator of cell
separation genes

mid2: positioning of the division
septum before the cell divides

functional

SPBC1709.12: Rho GTPase binding
signaled by cell cycle

functional

bet1: controls intracellular
protein transport and
cell wall formation

mid2: positioning of the division
septum before the cell divides

close
relationship

SPBC3E7.12c: chitin biosynthesis functional
SPCC74.07c: SUN family gene
involved in cell separation

functional

bgl2: regulates cell expansion
during growth and cell-cell fusion
during mating

SPBC1289.01c: involves in septum
formation

functional [38]

cdc13: controls the cell
cycle at the G2/M (mitosis)
transition

ams2: required for proper chromosome
segregation

functional

csx2: involves in cell-cycle regulated
ADP-ribosylation

functional [39]

cyp4: peptidyl-prolyl cistrans isomerase
involved in mitosis

functional [40]

hhf2: histone H4 functional
meu29: up-regulated in meiotic functional
SPBC1289.01c: cell wall chitin protein functional
SPCC18.02: involves hydrogen
anti-porter activity in cell cycle

functional

cdc15: mediates cytoskeletal
rearrangements required
for cytokinesis

mrc1: mediator of replication
checkpoint 1

functional

rpc17: RNA polymerase functional
SPBC1709.12: Rho GTPase binding
signaled by cell cycle

functional [41]

SPBC3E7.12c: chitin biosynthesis functional
spm1: involves in cell separation functional

cdc2: controls the eukaryotic cell
cycle

SPBC119.10: asparagine synthase
involved in glutamine-hydrolyzing

functional

cdr1: mitotic inducer
rpc17: RNA polymerase functional
SPCC74.07c: involve in
beta-glucosidase activity at cell
separation

functional

cid13: creates the 3’ poly(A) tail
of suc22 mRNA affecting DNA
replication

fin1: Promotes chromosome
condensation and nuclear envelope
dynamics during mitosis

functional [42]

(continued)
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Table 10.3 (Continued)
Regulator Regulated gene Verification
cig1: cyclin regulating G1/S
transition

rpc17: RNA polymerase functional

cig2: cyclin regulating G2/M
transition

meu29: up-regulated in meiotic functional

gmh2: affects Golgi membrane
and chitin synthase

SPBC3E7.12c: chitin biosynthesis functional [43]

mac1: required for cell separation ams2: required for proper chromosome
segregation

functional

mid2: positioning of the division
septum before the cell divides

spm1: involves in cell separation functional

nrd1: negative regulator of sexual
differentiation affecting chitin
biosynthesis

SPBC1289.01c: cell wall chitin protein functional [44]

pim1: involves in the control of
mitosis

spm1: involves in cell separation functional

pof6: involves in cell division mid2: positioning of the division
septum before the cell divides

functional

psc3: required for normal mitosis csx2: involves in cell-cycle regulated
ADP-ribosylation

functional

rer1: COPI-coated vesicle SPBC119.10: asparagine synthase close
relationship
[45]

rpc17: RNA polymerase cyp4: PPIases to accelerate the folding
of proteins

close
relationship
[46]

SPAC1071.09c: contains a DnaJ
domain which mediates
interactions with
histone-modifying heat shock
proteins

hhf3: histone 4 functional

SPAC19B12.02c: high similarity
to 1,3-beta-glucanosyl transferase

cdc22: provides the precursors
necessary for DNA synthesis

close
relationship
[47]

mid2: positioning of the division
septum before the cell divides

close
relationship

SPAC1F7.03: involves in calcium
transport that affects heat shock
genes

SPAC1071.09c: interacts with heat
shock proteins

functional [48]

SPAC23H4.19: putative cell wall
biogenesis protein

SPBC3E7.12c: chitin biosynthesis functional

SPAC24H6.01c: involved in
phospholipid biosynthesis
affecting cell division

mid2: positioning of the division
septum before the cell divides

functional [49]

SPAC1071.09c: interacts with heat
shock proteins

functional [50]

(continued)
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Table 10.3 (Continued)
Regulator Regulated gene Verification
SPAC2E1P5.03: mediates inter-
action with heat shock proteins
that interacts with histones

hhf2: histone 4 functional [51]
hhf3: histone 4 functional [51]

SPAC323.07c: member of the
MatE family of integral
membrane proteins

spm1: involves in cell separation close
relationship

SPAC688.11: required for hyphal
growth

cyp4: peptidyl-prolyl cis-trans
isomerase involved in mitosis

close
relationship
[52]

SPBC16G5.15c: required for the
correct timing, positioning and
contraction of the division septum

SPBC3E7.12c: involves chitin
biosynthesis

functional

SPBC4F6.05c: involves in sugar
biding that affects histones

hhf3: histone 4 functional [53]

SPBC4F6.12: regulates integrin
or growth factor-mediated
responses

cdc22: provides the precursors
necessary for DNA synthesis

functional

SPBPB2B2.09c: involves in
thiamine biosynthesis

SPCC18.02: involves hydrogen
anti-porter activity

close
relationship
[54]

SPCC548.06c: involves in
glucose transport that affects
chitin synthesis

SPCC417.05c: stimulates chitin
synthase III activity

functional [55]

SPCC74.07c: involves in
beta-glucosidase activity
at cell separation

csk1: cell cycle kinase functional
meu29: up-regulated in meiotic functional

SPCC794.11c: involves in
formation of clathrin coats at the
Golgi and endosomes

SPCC18B5.07c: nuclear pore protein
(nucleoporin)

homolog [56]

SPCP1E11.08: nuclear protein
involved in ribosome biogenesis

meu29: up-regulated in meiotic close
relationship

spn2: septin involved in cell
separation

chs5: involves in chitin synthesis and
also required for mating

functional

spp2: DNA primase, large
(non-catalytic) subunit

cdc22: provides the precursors
necessary for DNA synthesis

functional

trx1: putative thioredoxin that affects
DNA primase

functional

sst1: member of sodium or
calcium exchanger protein family
of membrane transporters

gmh2: affects Golgi membrane and
chitin synthase

functional [57]

top1: DNA topoisomerase I,
involved in chromatin
organization

SPCC757.12: alpha-amylase with
special chromatin structure

functional [58]

wis3: regulates cell cycle
progression

SPBC3E7.12c: involves in chitin
biosynthesis

functional
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