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Preface

Bioinformatics involve the creation and advancement of algorithms using techniques
including computational intelligence, applied mathematics and statistics, informat-
ics, and biochemistry to solve biological problems usually on the molecular level.
Major research efforts in the field include sequence analysis, gene finding, genome
annotation, protein structure alignment analysis and prediction, prediction of gene
expression, protein-protein docking/interactions, and the modeling of evolution.

Computational intelligence is a well-established paradigm, where new theories
with a sound biological understanding have been evolving. Defining computational
intelligence is not an easy task. In a nutshell, which becomes quite apparent in light
of the current research pursuits, the area is heterogeneous with a combination of
such technologies as neural networks, fuzzy systems, rough set, evolutionary com-
putation, swarm intelligence, probabilistic reasoning, multi-agent systems etc. The
recent trend is to integrate different components to take advantage of complementary
features and to develop a synergistic system.

This book deals with the application of computational intelligence in bioinfor-
matics. Addressing the various issues of bioinforatics using different computational
intelligence approaches is the novelty of this edited volume. This volume comprises
of 13 chapters including some introductory chapters giving the fundamental defini-
tions and some important research challenges. Chapters were selected on the basis
of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
The thirteen chapters are organized as follows.

In the introductory Chapter, Tasoulis et al. present neural networks, evolution-
ary algorithms and clustering algorithms and their application to DNA microar-
ray experimental data analysis. Authors also discus different dimension reduction
techniques.

Chapter 2 by Kaderali and Radde provide an overview of the reconstruction
of gene regulatory networks from gene expression measurements. Authors present
several different approaches to gene regulatory network inference, discuss their
strengths and weaknesses, and provide guidelines on which models are appropriate
under what circumstances.
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Chapter 3 by Donkers and Tuyls introduce Bayesian belief networks and describe
their current use within bioinformatics. The goal of the chapter is to help the reader
to understand and apply belief networks in the domain of bioinformatics. Authors
present the current state-of-the-art by discussing several real-world applications in
bioinformatics, and also discuss some available software tools.

Das et al. in Chapter 4 explore the role of swarm intelligence algorithms in cer-
tain bioinformatics tasks like micro-array data clustering, multiple sequence align-
ment, protein structure prediction and molecular docking. This chapter begins with
an overview of the basic concepts of bioinformatics along with their biological basis
and then provides a detailed survey of the state of the art research centered around
the applications of swarm intelligence algorithms in bioinformatics.

Liang and Kelemen in the fifth Chapter propose a time lagged recurrent neural
network with trajectory learning for identifying and classifying the gene functional
patterns from the heterogeneous nonlinear time series microarray experiments. Op-
timal network architectures with different memory structures were selected based
on Akaike and Bayesian information criteria using two-way factorial design. The
optimal model performance was compared to other popular gene classification algo-
rithms, such as nearest neighbor, support vector machine, and self-organized map.

In Chapter 6, Busa-Fekete et al. suggest two algorithms for protein sequence
classification that are based on a weighted binary tree representation of protein simi-
larity data. TreeInsert assigns the class label to the query by determining a minimum
cost necessary to insert the query in the (precomputed) trees representing the vari-
ous classes. Then TreNN assigns the label to the query based on an analysis of the
query’s neighborhood within a binary tree containing members of the known classes.
The algorithms were tested in combination with various sequence similarity scoring
methods using a large number of classification tasks representing various degrees of
difficulty.

In Chapter 7, Smith compares the traditional dynamic programming RNA gene
finding methodolgy with an alternative evolutionary computation approach. Exper-
iment results indicate that dynamic programming returns an exact score at the cost
of very large computational resource usage, while the evolutionary computing ap-
proach allows for faster approximate search, but uses the RNA secondary structure
information in the covariance model from the start.

Schaefer et al. in Chapter 8, illustrate how fuzzy rule-based classification can
be applied successfully to analyze gene expression data. The generated classifier
consists of an ensemble of fuzzy if-then rules, which together provide a reliable and
accurate classification of the underlying data.

In Chapter 9, Huang and Chow overview the existing gene selection approaches
and summarize the main challenges of gene selection. Using a typical gene selection
model, authors further illustrate the implementation of these strategies and evaluate
their contributions.

Cao et al. in Chapter 10, propose a fuzzy logic based novel gene regulatory
network. The key motivation for this algorithm is that genes with regulatory rela-
tionships may be modeled via fuzzy logic, and the strength of regulations may be
represented as the length of accumulated distance during a period of time intervals.



Preface VII

One unique feature of this algorithm is that it makes very limited a priori assumptions
concerning the modeling.

In Chapter 11, Haavisto and Hyötyniemi apply linear multivariate regression
tools for microarray gene expression data. Two examples comprising of yeast cell
response to environmental changes and expression during the cell cycle, are used to
demonstrate the presented subspace identification method for data-based modeling
of genome dynamics.

Navas-Delgado et al. in Chapter 12 present an architecture for the development
of Semantic Web applications, and the way it is applied to build an application
for systems biology. The architecture is based on an ontology-based system with
connected biomodules that could be globally analyzed as far as possible.

In the last Chapter Han and Zhu illustrate the various methods of encoding infor-
mation in DNA strands and present the corresponding DNA algorithms, which will
benefit the further research on DNA computing.

We are very much grateful to the authors of this volume and to the reviewers for
their tremendous service by critically reviewing the chapters. The editors would like
to thank Dr. Thomas Ditzinger (Springer Engineering Inhouse Editor) and Professor
Janusz Kacprzyk (Editor-in-Chief, Springer Studies in Computational Intelligence
Series) and Ms. Heather King (Springer Verlag, Heidelberg) for the editorial as-
sistance and excellent cooperative collaboration to produce this important scientific
work. We hope that the reader will share our excitement to present this volume on
‘Computational Intelligence in Bioinformatics’ and will find it useful.

Arpad Kelemen, Ajith Abraham and Yuehui Chen (Editors)
September 2007
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Summary. In this chapter, we present Computational Intelligence algorithms, such as Neural
Network algorithms, Evolutionary Algorithms, and clustering algorithms and their application
to DNA microarray experimental data analysis. Additionally, dimension reduction techniques
are evaluated. Our aim is to study and compare various Computational Intelligence approaches
and demonstrate their applicability as well as their weaknesses and shortcomings to efficient
DNA microarray data analysis.

1.1 Introduction

The development of microarray technologies gives scientists the ability to examine,
discover and monitor the mRNA transcript levels of thousands of genes in a single
experiment. The development of technologies capable to simultaneously study the
expression of every gene in an organism has provided a wealth of biological insight.
Nevertheless, the tremendous amount of data that can be obtained from microarray
studies presents a challenge for data analysis.

This challenge is twofold. Primarily, discovering patterns hidden in the gene
expression microarray data across a number of samples that are correlated with a
specific condition is a tremendous opportunity and challenge for functional genomics
and proteomics [1–3]. Unfortunately, employing any kind of pattern recognition al-
gorithm to such data is hindered by the curse of dimensionality (limited number of
samples and very high feature dimensionality). This is the second challenge. Usu-
ally to address this, one has to preprocess the expression matrix using a dimension
reduction technique [4] and/or to find a subset of the genes that correctly character-
izes the samples. Note that this is not similar to “bi-clustering”, which refers to the
identification of genes that exhibit similar behavior across a subset of samples [5,6].
In this chapter we examine the application of various Computational Intelligence
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gence (SCI) 94, 1–31 (2008)
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methodologies to face problems arising from the twofold nature of the microarray
data. We also examine various manners to combine and interact algorithms towards
a completely automated system.

To this end the rest of this chapter is structured as follows. Sections 1.2 and 1.3
are devoted to a brief presentation of Neural Networks as classification tools, Evo-
lutionary Algorithms that can be used for dimension reduction, and their synergy. In
Section 1.4 various feature selection and dimension reduction techniques are pre-
sented, starting from the Principal Component Analysis, continuing with several
clustering algorithms, and finally we analyze hybrid approaches. In Section 1.5 using
well known and publicly available DNA microarray problems, we study and exam-
ine feasible solutions to many implementation issues and report comparative results
of the presented algorithms and techniques. The chapter ends with a brief discussion
and some concluding remarks.

1.2 Neural Networks

Feedforward Neural Networks (FNNs) are parallel computational models comprised
of densely interconnected, simple, adaptive processing units, characterized by an
inherent propensity for storing experiential knowledge and rendering it available for
use. FNNs have been successfully applied in numerous application areas, including
DNA microarray data analysis [7].

To train an FNN, supervised training is probably the most frequently employed
technique. The training process is an incremental adaptation of connection weights
that propagate information between neurons. A finite set of arbitrarily ordered exam-
ples is presented at the input of the network and associated to appropriate references
through an error correction process. This can be viewed as the minimization of
an error measure, which is usually defined as the sum-of-squared-differences error
function E over the entire training set:

w∗ = min
w∈Rn

E(w), (1.1)

where w∗ = (w∗
1,w

∗
2, . . . ,w

∗
n) ∈ R

n is a minimizer of E . The rapid computation of
such a minimizer is a rather difficult task since, in general, the number of network
weights is high and the corresponding nonconvex error function possesses multitudes
of local minima and has broad flat regions adjoined with narrow steep ones.

Let us consider the family of gradient–based supervised learning algorithms
having the iterative form:

wk+1 = wk + ηkdk, k = 0,1,2, . . . (1.2)

where wk is the current weight vector, dk is a search direction, and ηk is a global
learning rate, i.e. the same learning rate is used to update all the weights of the
network. Various choices of the direction dk give rise to distinct algorithms. A broad
class of methods uses the search direction dk =−∇E(wk), where the gradient ∇E(w)
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can be obtained by means of back–propagation of the error through the layers of the
network [8]. The most popular training algorithm of this class, named batch Back–
Propagation (BP), minimizes the error function using the steepest descent method [9]
with constant, heuristically chosen, learning rate η . In practice, a small value for the
learning rate is chosen (0 < η < 1) in order to secure the convergence of the BP
training algorithm and to avoid oscillations in a direction where the error function is
steep. It is well known that this approach tends to be inefficient. This happens, for
example, when the search space contains long ravines that are characterized by sharp
curvature across them and a gently slopping floor.

Next, we give an overview of two neural network training algorithms: the Rprop
algorithm and the adaptive online algorithm. Both algorithms have been used on
DNA microarray problems. Rprop is one of the fastest and most effective training
algorithms. On the other hand, adaptive online seems more suitable for this kind of
problems, due to its ability to train FNNs using extremely large training sets.

1.2.1 The Rprop Neural Network Training Algorithm

The Resilient backpropagation (Rprop) [10] algorithm is a local adaptive learning
scheme performing supervised training of FNNs. To update each weight of the net-
work, Rprop exploits information concerning the sign of the partial derivative of
the error function. The size of the weight change, ∆wi j , is determined by a weight

specific update value, ∆ (t)
i j , given by the following formula:

∆w(t)
i j =

⎧⎪⎪⎨⎪⎪⎩
−∆ (t)

i j , if ∂E(t)

∂wi j
> 0,

+∆ (t)
i j , if ∂E(t)

∂wi j
< 0,

0, otherwise,

where ∂E(t)/∂wi j denotes the summed gradient information over all patterns of the
training set (batch training). The second step of the Rprop algorithm is to determine
the new update values, using the following formula:

∆ (t)
i j =

⎧⎪⎪⎨⎪⎪⎩
η+∆ (t−1)

i j , if ∂E(t−1)

∂wi j

∂E(t)

∂wi j
> 0,

η−∆ (t−1)
i j , if ∂E(t−1)

∂wi j

∂E(t)

∂wi j
< 0,

∆ (t−1)
i j , otherwise,

where 0 < η− < 1 < η+, i.e. each time the partial derivative with respect to wi j

changes its sign, which is an indication that the last update was too big and the

algorithm has possibly overshot a local minimizer, the update value ∆ (t)
i j is decreased

by η−. If the derivative retains its sign, the update value is slightly increased to
further accelerate convergence in shallow regions of the weight space.

In our experiments, the five parameters of the Rprop method were initialized
using values commonly encountered in the literature. More specifically, the increase
factor was set to η+ = 1.2; the decrease factor was set to η− = 0.5; the initial
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update value is set to ∆0 = 0.07; the maximum step, which prevents the weights
from becoming too large, was ∆max = 50; and the minimum step, which is used to
avoid too small weight changes, was ∆min = 10−6.

1.2.2 The Adaptive Online Neural Network Training Algorithm

Despite the abundance of methods for learning from examples, there are only a few
that can be used effectively for on–line learning. For example, the classic batch
training algorithms cannot straightforwardly handle non–stationary data. Even when
some of them are used in on–line training there exists the problem of “catastrophic
interference”, in which training on new examples interferes excessively with previ-
ously learned examples, leading to saturation and slow convergence [11].

Methods suited to on–line learning are those that can efficiently handle non–
stationary and time–varying data, while at the same time, require relatively little
additional memory and computation to process one additional example. The Adap-
tive Online Backpropagation (AOBP) algorithm [12,13] belongs to this class and can
be used in on–line neural networks training. A high level description of the algorithm
is given in Algorithm 1.

In the algorithm model η is the learning rate, K is the meta–learning rate and
〈·, ·〉 stands for the usual inner product in R

n. As the termination condition the clas-
sification error, or an upper limit to the error function evaluations can be used. The
key features of this method are the low storage requirements and the inexpensive
computations. Moreover, in order to calculate the learning rate for the next iteration,
it uses information from the current, as well as, the previous iteration. This seems to
provide some kind of stabilization in the calculated values of the learning rate, and
previous experiments show that it helps the method to exhibit fast convergence and
high success rate.

THE TRAINING ALGORITHM

0: Initialize the weights w0, η0, and K.
1: Repeat
2: Set k = k +1
3: Randomly choose a pattern from the training set.
4: Using this pattern, calculate the error, E(wk)

and then the gradient, ∇E(wk).
5: Calculate the new weights using:

wk+1 = wk −ηk∇E(wk)
6: Calculate the new learning rate using:

ηk+1 = ηk +K
〈
∇E(wk−1),∇E(wk)

〉
7: Until the termination condition is met.
8: Return the final weights wk+1.

Algorithm 1: The Online Training Algorithm in Pseudocode
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1.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are stochastic search methods that mimic the
metaphor of natural biological evolution. They operate on a population of potential
solutions applying the principle of survival of the fittest to produce better and better
approximations to a solution. At each generation, a new set of approximations is
created by the process of selecting individuals according to their level of fitness in
the problem domain and breeding them together using operators borrowed from
natural genetics [14]. Many attempts have been made within the Artificial Intelli-
gence community to integrate EAs and ANNs. We examine the application of EAs
to microarray classification to determine the optimal, or near optimal, subset of
predictive genes on the complex and large spaces of possible gene sets. Next we
outline the Differential Evolution algorithm and its search operators.

The Differential Evolution Algorithm

Differential Evolution [15] is an optimization method, capable of handling non dif-
ferentiable, nonlinear and multimodal objective functions. To fulfill this requirement,
DE has been designed as a stochastic parallel direct search method, which utilizes
concepts borrowed from the broad class of evolutionary algorithms. The method
typically requires few, easily chosen, control parameters. Experimental results have
shown that DE has good convergence properties and outperforms other well known
evolutionary algorithms [15]. DE has been applied on numerous optimization tasks.
It has successfully solved many artificial benchmark problems [16], as well as, hard
real–world problems (see for example [17]). In [18] it was employed to train neural
networks and in [19, 20] we have proposed a method to efficiently train neural net-
works having arbitrary, as well as, constrained integer weights. The DE algorithm
has also been implemented on parallel and distributed computers [21, 22].

DE is a population–based stochastic algorithm that exploits a population of po-
tential solutions, individuals, to effectively probe the search space. The population
of the individuals is randomly initialized in the optimization domain with NP, n–
dimensional vectors, following a uniform probability distribution and is evolved over
time to explore the search space. NP is fixed throughout the training process. At
each iteration, called generation, new vectors are generated by the combination of
randomly chosen vectors from the current population. This operation in our con-
text is referred to as mutation. The resulting vectors are then mixed with another
predetermined vector – the target vector – and this operation is called recombina-
tion. This operation yields the so–called trial vector. The trial vector is accepted for
the next generation depending on the value of the fitness function. Otherwise, the
target vector is retained in the next generation. This last operator is referred to as
selection.

The search operators efficiently shuffle information among the individuals, en-
abling the search for an optimum to focus on the most promising regions of the
solution space. The first operator considered is mutation. For each individual xi

g,
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i = 1, . . . ,NP, where g denotes the current generation, a new individual vi
g+1 (mutant

vector) is generated according to one of the following equations:

vi
g+1 = xbest

g + µ(xr1
g − xr2

g ), (1.3)

vi
g+1 = xr1

g + µ(xr2
g − xr3

g ), (1.4)

vi
g+1 = xi

g + µ(xbest
g − xi

g)+ µ(xr1
g − xr2

g ), (1.5)

vi
g+1 = xbest

g + µ(xr1
g − xr2

g )+ µ(xr3
g − xr4

g ), (1.6)

vi
g+1 = xr1

g + µ(xr2
g − xr3

g )+ µ(xr4
g − xr5

g ), (1.7)

where xbest
g is the best member of the previous generation; µ > 0 is a real param-

eter, called mutation constant, which controls the amplification of the difference
between two individuals so as to avoid the stagnation of the search process;
and r1,r2,r3,r4,r5 ∈ {1,2, . . . , i− 1, i+ 1, . . . ,NP}, are random integers mutually
different.

Trying to rationalize the above equations, we observe that Equation (1.4) is sim-
ilar to the crossover operator used by some Genetic Algorithms and Equation (1.3)
derives from it, when the best member of the previous generation is employed.
Equations (1.5), (1.6) and (1.7) are modifications obtained by the combination of
Equations (1.3) and (1.4). It is clear that more such relations can be generated using
the above ones as building blocks.

The recombination operator is subsequently applied to further increase the diver-
sity of the mutant individuals. To this end, the resulting individuals are combined
with other predetermined individuals, called the target individuals. Specifically, for
each component l (l = 1,2, . . . ,n) of the mutant individual vi

g+1, we choose randomly
a real number r in the interval [0,1]. We then compare this number with the recombi-
nation constant, ρ . If r � ρ , we select, as the l–th component of the trial individual
ui

g+1, the l–th component of the mutant individual vi
g+1. Otherwise, the l–th compo-

nent of the target vector xi
g+1 becomes the l–th component of the trial vector. This

operation yields the trial individual. Finally, the trial individual is accepted for the
next generation only if it reduces the value of the objective function.

One problem when applying EAs, in general, is to find a set of control parameters
which optimally balances the exploration and exploitation capabilities of the algo-
rithm. There is always a trade off between the efficient exploration of the search space
and its effective exploitation. For example, if the recombination and mutation rates
are too high, much of the search space will be explored, but there is a high probability
of losing good solutions. In extreme cases the algorithm has difficulty to converge to
the global minimum due to the insufficient exploitation. Fortunately, the convergence
properties of DE typically do not depend heavily on its control parameters.

Although, DE performs stably across the space of possible parameter settings,
different operators may exhibit different convergence properties. More specifically,
DE operators that use the best individual as a starting point for the computation
of the mutant vector, constantly push the population closer to the location of the
best computed point. On the other hand, operators that utilize many randomly cho-
sen individuals for the computation of the mutant individual, greatly enhance the
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exploration capability of the algorithm. In [23] we present a detailed study and
experimental results on exploration vs. exploitation issues.

1.4 Feature Selection and Dimension Reduction Techniques

An important issue in any classification task is to define those features that signifi-
cantly contribute to the classification of interest, while at the same time discarding the
least significant and/or erroneous ones. This procedure is also referred to as dimen-
sion reduction. The problem of high dimensionality is often tackled by user specified
subspaces of interest. However, user–identification of the subspaces is error–prone,
especially when no prior domain knowledge is available. Another way to address
high dimensionality is to apply a dimensionality reduction method to the dataset.
Methods such as the Principal Component Analysis [24], optimally transform the
original data space into a lower dimensional space by forming dimensions that are
linear combinations of given attributes. The new space has the property that distances
between points remain approximately the same as before. Alternatively, one can ap-
ply a clustering algorithm to the data set in order to reduce the dimensionality of the
problem. To this end, the Principal Component Analysis, as well as several clustering
algorithms used for dimension reduction are presented below.

1.4.1 Principal Component Analysis

In general, the Principal Component Analysis (PCA) is a powerful multivariate
data analysis method [4]. Its main purpose is to reduce and summarize large and
high dimensional datasets by removing redundancies and identifying correlation
among a set of measurements or variables. It is a useful statistical technique that
has found many applications in different scientific fields such as face recognition,
image processing and compression, molecular dynamics, information retrieval, and
gene expression analysis. PCA is mainly used in gene expression analysis in order
to find an alternative representation of the data using a much smaller number of vari-
ables, as well as, to detect characteristic patterns in noisy data of high dimensionality.
More specifically, PCA is a way of identifying patterns in data and expressing the
data in such a way as to highlight their similarities and differences. Since patterns
in high dimensional data can be hard to find, PCA is a powerful tool of analysis,
especially when the visualization of the data is impossible.

Although PCA may succeed in reducing the dimensionality, the new dimensions
can be difficult to interpret. Moreover, to compute the new set of dimensions in-
formation from all the original dimensions is required. The selection of a subset
of attributes in the context of clustering is studied in [25, 26]. In the context of
classification, subset selection has also been studied [24].

1.4.2 Reducing the Dimensions Using Clustering

Clustering can be defined as the process of “grouping a collection of objects into
subsets or clusters, such that those within one cluster are more closely related to
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each other than objects assigned to different clusters” [27]. Clustering is applied
in various fields including data mining [28], statistical data analysis and social sci-
ences [29], compression and vector quantization [30], global optimization [31, 32],
image analysis, and others. Clustering techniques have been successfully applied to
gene expression data [33–36] and have proved useful for identifying biologically
relevant groupings of genes and samples [37].

Cluster analysis is one key step in understanding how the activity of genes varies
during biological processes and is affected by disease states and cellular environ-
ments. In particular clustering can be used either to identify sets of genes according
to their expression in a set of samples [34, 38], or to cluster samples into homoge-
neous groups that may correspond to particular macroscopic phenotypes [39]. The
latter is in general more difficult, but is very valuable in clinical practice.

Identifying sets of genes that have a similar expression in a set of samples
can lead to a successful dimension reduction technique. Aiming to this, clustering
methodology can be applied to identify meaningful clusters of features (genes), and
subsequently feature selection can be accomplished by selecting one or more repre-
sentatives from each cluster. Such a selection can be based on the distance among the
feature values and the identified cluster center. The feature with the minimum such
distance from the cluster center can be a valid selection.

Although numerous clustering algorithms exist [40], mostly hierarchical clus-
tering methods have been applied to microarray data. Hierarchical clustering algo-
rithms construct hierarchies of clusters in a top–down (agglomerative) or bottom–up
(divisive) fashion. This kind of algorithms have proved to give high quality results.
One of the most representative hierarchical approaches is the one developed by
Eisen et al. [34]. In that work, the authors employed an agglomerative algorithm
and adopted a method for the graphical representation of the clustered dataset. This
method has been widely used by many biologists and has become the most widely
used tool in gene expression data analysis [33, 41, 42]. Nonetheless, the high sen-
sitivity of agglomerative methods to small variations of the inputs and the high
computational requirements, their usage is hindered in real applications, where the
number of samples and their dimensionality is expected to be high (the cost is
quadratic to the number of samples).

Partitioning clustering algorithms, start from an initial clustering (that may be
randomly formed) and create flat partitionings by iteratively adjusting the clusters
based on the distance of the data points from a representative member of the clus-
ter. The most commonly used partitioning clustering algorithm is k–means. This
algorithm initializes k centers and iteratively assigns each data point to the cluster
whose centroid has the minimum Euclidean distance from the data point. Although,
k–means type algorithms can yield satisfactory clustering results at a low cost, as
their running time is proportional to kn, where n is the number of samples, they
heavily depend on the initialization. Additionally, there is no automatic technique
able to select the number of clusters k, but most of the times this is achieved by
examining the results of successive re-executions of the algorithm.

Graph theoretical clustering approaches construct a proximity graph, in which
each data point corresponds to a vertex, and the edges among vertices model their
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proximity. Xing and Karp [43], developed a sample–based clustering algorithm
named CLIFF (CLustering via Iterative Feature Filtering), which iteratively employs
sample partitions as a reference to filter genes. The selection of genes through this
approach relies on the outcome of an NCut algorithm, which is not robust to noise
and outliers.

Another graph theoretical algorithm, CLICK (CLuster Identification via Connec-
tivity Kernels) [35], tries to recognize highly connected components in the proximity
graph as clusters. The authors demonstrated the superior performance of CLICK to
the approaches of Eisen et al. [34], and the Self Organizing Map [44] based clustering
approach. However, as claimed in [1], CLICK has little guarantee of not generating
highly unbalanced partitions. Furthermore, in gene expression data, two clusters of
co–expressed genes, C1 and C2, may be highly intersected with each other. In such
situations, C1 and C2 are not likely to be split by CLICK, but would be reported as
one highly connected component.

Finally, Alter et al. [45], by examining the projection of the data to a small
number of principal components obtained through a Principal Component Analy-
sis, attempt to capture the majority of gene variations. However, the large num-
ber of irrelevant genes does not guarantee that the discriminatory information will
be highlighted to the projected data. For an overview of the related literature see
[1–3, 46].

Below, we briefly describe five well–known clustering algorithms, namely, a) the
unsupervised k–windows clustering algorithm [47,48]. (UkW) b) the Density–Based
Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm [49],
c) the Principal Direction Divisive Partitioning (PDDP) clustering algorithm [50],
d) the fuzzy c–means (FCM) clustering algorithm [51], and e) the Growing Neural
Gas (GNG) [52]. Note that the UkW, DBSCAN and GNG, apart from identifying
the clusters, are also able to approximate the number of clusters present in the data
set; thus no special knowledge about the data is required. However, PDDP and FCM
need explicit determination of the cluster number. The PDDP, algorithm has also the
ability to endogenously handle the large dimensionality since it is based on the PCA
technique.

Unsupervised k–Windows Clustering Algorithm

One of the most important class of clustering algorithms are the density based
methods [53–55], especially for data of low attribute dimensionality [56–58]. These
methods operate by identifying regions of high density in dataset objects, surrounded
by regions of low density. One recently proposed technique in this class is the “Unsu-
pervised k–Windows” (UkW) [48], that utilizes hyperrectangles to discover clusters.
The algorithm makes use of techniques from computational geometry and encapsu-
lates clusters using linear containers in the shape of d–dimensional hyperrectangles
that are iteratively adjusted with movements and enlargements until a certain termi-
nation criterion is satisfied [48, 59]. Furthermore, with proper tuning, the algorithm
is able to detect clusters of arbitrary shapes [59].
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E1
E2

(b)
M1

M4
M3

M2

M4

(a)

Fig. 1.1. (a) Sequential movements M2, M3, M4 of initial window M1. (b) Sequential
enlargements E1, E2 of window M4

W4

W2

W3(b)(a)
W1

W5

W6

(c)

Fig. 1.2. (a) W1 and W2 satisfy the similarity condition and W1 is deleted. (b) W3 and W4
satisfy the merge operation and are considered to belong to the same cluster. (c) W5 and W6
have a small overlap and capture two different clusters

UkW aims at capturing all objects that belong to one cluster within a d–
dimensional window. Windows are defined to be hyperrectangles (orthogonal
ranges) in d dimensions [48]. UkW employs two fundamental procedures: move-
ment and enlargement. The movement procedure aims at positioning each window
as close as possible to the center of a cluster. The enlargement process attempts to
enlarge the window so that it includes as many objects from the current cluster as
possible. The two steps are illustrated in Figure 1.1.

A fundamental issue in cluster analysis, independent of the particular clustering
technique applied, is the determination of the number of clusters present in a dataset.
For instance well–known and widely used iterative techniques, such as the k–means
algorithm [60] as well as the fuzzy c–means algorithm [51], require from the user to
specify the number of clusters present in the data prior to the execution of the algo-
rithm. UkW provides an estimate for the number of clusters that describe a dataset.
The key idea is to initialize a large number of windows. When the movement and
enlargement of all windows terminate, all overlapping windows are considered for
merging by considering their intersection. An example of this operation is exhibited
in Figure 1.2. For a detailed description of the algorithm see [59].

The DBSCAN Clustering Algorithm

The DBSCAN [49] clustering algorithm relies on a density–based notion of clus-
ters and is designed to discover clusters of arbitrary shape as well as to distinguish
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p and q are density connected

q is not density reachable from p 
p is density reachable from q 

p

q

qo

p

Fig. 1.3. An example of “Density–Reachable” and “Density Connected” points

noise. More specifically, the algorithm is based on the idea that in a neighborhood
of a given radius (Eps) for each point in a cluster at least a minimum number of
objects (MinPts) should be contained. Such points are called core points and each
point in their neighborhood is considered as “Directly Density–Reachable” from that.
Consequently the algorithm uses the notion of density reachable chains of objects;
i.e. a point q is “Density–Reachable” from a point p, if there is a chain of objects
p1, . . . , pk such that p1 = q, pk = p and pi+1 is “Directly Density–Reachable” from
pi for i = 1, . . . ,k. Finally, a point p is defined as “Density Connected” to a point q, if
there is a point o that both p,q are “Density–Reachable” from that. Fig 1.3, illustrates
an example of these definitions.

Using the above described definitions, the algorithms considers as a cluster the
subset of points from the dataset that are “Density–Reachable” from each other and
additionally each pair of points inside the cluster is “Density Connected”. Any point
of the dataset not in a cluster is considered as noise.

To discover the clusters the algorithm retrieves density–reachable points from
the data by iteratively collecting directly density–reachable objects. The algorithm
scans the eps, neighborhood of each point in the database. If that neighborhood
has more than MinPts points a new cluster C containing them is created. Then, the
neighborhood of all points q in C which have not yet been processed is checked. If the
points in neighborhood of q are more than MinPts, then those which are not already
contained in C are added to the cluster and their neighborhood will be checked in a
subsequent step. This procedure is iterated until no new point can be added to the
current cluster C. In Fig 1.4, an example of the result of the DBSCAN algorithm
is demonstrated, for three clusters of different sizes, with convex and non–convex
shape. Additionally, some of the neighborhoods are depicted, to better illustrate the
operation of the algorithm. For a detailed description of the algorithm see [54].
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Cluster 1

Cluster 3 

Cluster 2 

Outliers (Noise)

Outliers (Noise)

Fig. 1.4. An example of the result of the DBSCAN algorithm

The Fuzzy c–Means Clustering Algorithm

The Fuzzy c–Means (FCM) algorithm [51], considers each cluster as a fuzzy set. It
firstly initializes a number of c prototype vectors (centroids) p j over the dataset.
The centroids represent the center of the clusters. Next it computes a degree of
membership for every data vector xi at each cluster using the membership function:

µ j(xi) =

(
c

∑
l=1

(‖xi − p j‖
‖xi − pl‖

)1/r−1
)−1

,

which takes values in the interval [0,1], where r ∈ (1,∞) determines the fuzziness of
the partition. If r tends to 1+, then the resulting partition asymptotically approaches
a crisp partition. On the other hand, if r tends to infinity, the partition becomes a
maximally fuzzy partition. Finally, the c prototypes are updated using the following
equation:

P j =
∑n

i=1

[
mj(xi)

]r
xi

∑n
i=1 [m j(xi)]r

.

This procedure is iteratively repeated until the measure of the distortion:

d =
c

∑
j=1

n

∑
i=1

[
mj(xi)

]r ‖xi − pl‖2,

changes less than a user defined threshold.

1.4.3 The PDDP Clustering Algorithm

The PDDP algorithm [50], is a divisive clustering algorithm. The key component in
this algorithm is the computation of the principal directions of the data. Starting with
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an initial cluster of all the data points, the algorithm iteratively splits the clusters. The
use of a distance or similarity measure is limited to deciding which cluster should
be split next, but the similarity measure is not used to perform the actual splitting.
In detail, all the data points are projected onto the leading eigenvector of the covari-
ance matrix of the data. Based on the sign of that projection the algorithm splits an
initial cluster into two. This fact enables the algorithm to operate on extremely high
dimensional spaces. PDDP, as well as PDDP(l) [61], which is a recent generalization
of PDDP, does not provide a direct estimation for the number of clusters. Proposed
methods that provide such estimations through these algorithms are based on scat-
tering of the data around their centroids. Nonetheless, they tend to overestimate the
true number of clusters resulting in rigid clustering [50, 61].

1.4.4 Growing Neural Gas

GNG [52] is an incremental neural network. It can be described as a graph consisting
of k nodes, each of which has an associated weight vector, wj, defining the node’s
position in the data space and a set of edges between the node and its neighbors.
During the clustering procedure, new nodes are introduced into the network until a
maximal number of nodes is reached. GNG starts with two nodes, randomly posi-
tioned in the data space, connected by an edge. Adaptation of weights, i.e. the nodes
position, is performed iteratively. For each data object the closest node (winner), s1,
and the closest neighbor of a winner, node s2, are determined. These two nodes are
connected by an edge.

An age variable is associated with each edge. At each learning step the ages of all
edges emanating from the winner are increased by 1. When the edge connecting s1

and s2 is created its age is set to 0. By tracing the changes of the age variable inactive
nodes are detected. Any nodes having no emanating edges and edges exceeding a
maximal age are removed.

The neighborhood of the winner is limited to its topological neighbors. The win-
ner and its topological neighbors are moved in the data space toward the presented
object by a constant fraction of the distance, defined separately for the winner and its
topological neighbors. There is no neighborhood function or ranking concept. Thus,
all topological neighbors are updated in the same manner.

1.4.5 A Hybrid Approach

The PCA technique optimally transforms the data set, with limited loss of informa-
tion, to a space of significantly lower dimension. However, it is a global technique in
the sense that does not deal with special characteristics that might exist in different
parts of the data space.

To deal with this it is possible to hybridize a clustering algorithm and PCA.
Firstly, the entire data set is partitioned into clusters of features, and next, each
feature cluster can be independently transformed to a lower dimension space through
the PCA technique. This application of the PCA is local and has the potential of better
adapting to the special characteristics that might exist in the data set.
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The techniques reported in this section should not be confused with any kind of
bi-clustering approach [5,6]. In the latter case the aim is to find subsets of genes that
exhibit a similar behavior for a subset of samples. However the techniques reported
below aim to either organize the genes in groups and infer compact representation
for each group. Either they aim to recognize clusters of samples that have a physical
common character. Sometimes to achieve this the compact representations inferred
from the initial procedure are employed but this is quite different to the bi-clustering
point of view.

1.5 Experimental Analysis

In this Section we initially describe the microarray problems used in the remain-
ing of this chapter. Then, we perform an extensive evaluation of various clustering
algorithms for supervised as well as unsupervised classification of the data sets. Sub-
sequently, we implement and test FNN classifiers combined with clustering methods
and the PCA dimension reduction technique. Finally, we report results from a hybrid
approach that utilizes EAs for gene selections and FNNs for classification.

1.5.1 DNA Microarray Problems

The evaluation of all the Computational Intelligence algorithms presented in this
chapter is performed through the following well–known and publicly available data
sets:

(a) The ALL–AML data set [39]. This study examines mRNA expression profiles
from 72 leukemia patients to develop an expression–based classification method
for acute leukemia. In the data set each sample is measured over 7129 genes.
The first 38 samples were used for the clustering process (train set), while the
remaining 34 were used to evaluate the clustering result (test set). The initial
38 samples contained 27 acute myeloid leukemia (ALL) samples and 11 acute
lymphoblastic leukemia (AML) samples. The test set contained 20 ALL samples
and 14 AML samples. The data set is available at:
http://www.broad.mit.edu/cancer/pub/all_aml

(b) The COLON data set [33] consists of 40 tumor and 22 normal colon tissues. For
each sample there exist 2000 gene expression level measurements. The data set
is available at:
http://microarray.princeton.edu/oncology

(c) The PROSTATE data set [62] contains 52 prostate tumor samples and 50 non-
tumor prostate samples. For each sample there exist 6033 gene expression level
measurements. It is available at:
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

(d) The LYMPHOMA dataset [41] that contains 62 samples of the 3 lymphoid ma-
lignancies samples types. The samples are measured over 4026 gene expression
levels. This dataset is available at:
http://genome-www.stanford.edu/
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All the data sets contain a relatively large number of patients and have been well
characterized and studied. Notice that no additional preprocessing or alteration was
performed to the data, except for the application of the methods described in this
chapter.

1.5.2 Evaluation of the Clustering Algorithms

In the literature, both supervised and unsupervised classifiers have been used to build
classification models from microarray data. Supervised classifiers employ predefined
information about the class of the data to build the classification model. On the other
hand, no class information is necessary to the unsupervised methods.

To investigate the performance of the clustering algorithms on gene expression
microarray data we primarily employ the data set from the ALL–AML microarray
problem. We performed two independent sets of experiments. In the first set, the
clustering methodology was applied on two previously published gene subsets as
well as their union. The comparative results assess the comparative performance of
the clustering algorithms.

In the second set of experiments, we do not use class information for the gene
selection. To this end, to reduce the dimensionality of the problem we use the PCA
technique, as well as, dimension reduction through clustering. This second set of
experiments is closer to real life applications where no class information is a priori
known. Moreover, the hybridization of clustering and the PCA is evaluated. The
hybrid scheme seems also able to provide results equivalent to those obtained with
the supervised gene selection. Thus, this scheme is also applied on the remaining
three data sets for further evaluation.

Clustering Based on Supervised Gene Selection

Generally, in a typical biological system, it is often not known how many genes are
sufficient to characterize a macroscopic phenotype. In practice, a working mecha-
nistic hypothesis that is testable and largely captures the biological truth, seldom
involves more than a few dozens of genes. Therefore, identifying the relevant genes
is critical [43]. Initially, we intended to study the performance of the UkW clustering
algorithm, so we applied it over the complete ALL–AML train set. The algorithm
was applied to the measurements of the 7129 genes, as well as various randomly
selected gene subsets having from 10 to 2000 genes each. The algorithm produced
clusters that often contained both AML and ALL samples. Typically, at least 80%
of all the samples that were assigned to a cluster were characterized by the same
leukemia type.

To improve the quality of the clustering, it proved essential to identify sets of
genes that significantly contribute to the partition of interest. Clearly, there exist
many such sets and it is difficult to determine the best one. To this end, we tested the
UkW clustering algorithm on two previously discovered subsets of significant genes.
The first set has been published in the original paper of Golub et al. [39] (we call it
GeneSet1), while the second set was proposed by Thomas et al. [63] (GeneSet2).
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Each dataset contains 50 genes. Furthermore, we tested the clustering algorithms on
the union of the above gene sets (GeneSet3), consisting of 72 genes.

In [39] GeneSet1 was constructed by electing 50 highly correlated genes with
the ALL–AML class distinction. Next, the authors used a Self Organizing Map [64]
based clustering approach, to discover clusters on the training set. SOM automati-
cally grouped the 38 samples into two classes, one containing 24 out of the 25 ALL
samples, and the other containing 10 out of the 13 AML samples.

Regarding the second set of genes (GeneSet2), the 50 most highly correlated
genes with the ALL–AML class distinction (top 25 differentially expressed probe
sets in either sample group) have been selected. More specifically, the selection ap-
proach is based on well–defined assumptions, uses rigorous and well–characterized
statistical measures, and tries to account for the heterogeneity and genomic com-
plexity of the data. The modelling approach uses known sample group membership
to focus on expression profiles of individual genes in a sensitive and robust man-
ner, and can be used to test statistical hypotheses about gene expression. For more
information see [63].

Applying the UkW algorithm on those 3 gene train sets, each produced 6 clusters
containing ALL or AML samples. Table 1.1 exhibits the results. More specifically,
the algorithm using GeneSet1 discovered 4 ALL clusters and 2 AML clusters (3
misclassifications), while using GeneSet2 discovered 4 clusters containing only ALL
samples and 2 clusters containing only AML samples (0 misclassifications). The
algorithm discovered 4 ALL clusters and 2 AML clusters (1 misclassification) when
applied to GeneSet3. GeneSet2 yielded the best results in the training set (followed
by GeneSet3).

Table 1.1. The performance of the UkW algorithm for the different train sets

Clustering result for the train set GeneSet1
ALL accuracy: 87.5% — AML accuracy: 100%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 4 4 12 4 3 0
AML 0 0 0 0 4 7

Clustering result for the train set GeneSet2
ALL accuracy: 100.0% — AML accuracy: 100%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 10 3 10 4 0 0
AML 0 0 0 0 8 3

Clustering result for the train set GeneSet3
ALL accuracy: 95.83% — AML accuracy: 100%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 8 9 5 4 0 1
AML 0 0 0 0 7 4



1 Computational Intelligence and Microarrays 17

Table 1.2. The performance of the UkW algorithm for the different test sets

Clustering result for the test set GeneSet1
ALL accuracy: 60.00% — AML accuracy: 92.85%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 2 0 7 3 8 0
AML 1 0 0 0 8 5

Clustering result for the test set GeneSet2
ALL accuracy: 100% — AML accuracy: 78.57%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 8 0 9 3 0 0
AML 0 0 3 0 8 3

Clustering result for the test set GeneSet3
ALL accuracy: 90% — AML accuracy: 100%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 10 4 3 1 0 2
AML 0 0 0 0 5 9

Table 1.3. Comparative results for the test set GeneSet3

Misclassified samples Number of clusters Accuracy (%)
train set test set train set test set AML ALL

DBSCAN 1 3 4 4 78.5 100
FCM 1 2 4 4 85.7 100
GNG 1 3 3 3 78.5 100
PDDP 2 4 6 6 71.4 100
UkW 1 2 6 6 100.0 90.0

To further evaluate the clustering results each sample from each test set was as-
signed to one of the clusters discovered in the train set according to its distance
from the cluster center. Specifically, if an ALL (AML) sample from the test set was
assigned to an ALL (AML, respectively) cluster then that sample was considered
correctly classified. From the results exhibited in Table 1.2 it is evident that using
the clustering from GeneSet1 one AML and eight ALL samples from the test set
were misclassified, resulting in a 73.5% correct classification. The clusters discov-
ered using GeneSet2 resulted in three misclassified AML samples (91.2% correct
classification), while GeneSet3 clusters yielded the best performance with only two
misclassified ALL samples (94.1% correct classification).

In Table 1.3 we present comparative results from the test set GeneSet3 only,
as all the clustering algorithms exhibited improved classifications performance on
this dataset. The best performance was achieved by the UkW algorithm and the
FCM, followed by the DBSCAN and GNG algorithms. Notice that the FCM requires
from the user to supply the number of clusters (supervised clustering) and that the
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DBSCAN algorithm did not classify seven samples of the train set and five samples
of the test set (all of them belonging in the AML class), since it characterized them
as outliers.

Although the PDDP algorithm exhibited the worst classification performance, it
must be noted that it was the only algorithm capable of using all the 7129 genes to
cluster the samples. Using the complete set of genes, the PDDP algorithm misclassi-
fied two training set samples and eight test set samples.

Clustering Based on Unsupervised Gene Selection

Not using the class information to perform gene selection, we have to resort to un-
supervised methods. We employ the UkW algorithm, for this task since it proved
quite successful in the previous set of experiments. More specifically, the UkW algo-
rithm was applied over the entire data set to select clusters of genes. Feature selection
was accomplished by extracting from each cluster one representative feature (gene),
based on the Euclidean distance among the feature values and the identified cluster
center. The feature with the minimum distance from the cluster center was selected.
This approach produced a new subset containing 293 genes (GeneSet4).

The UkW algorithm was then applied on GeneSet4 to group the samples. The
results are illustrated in Table 1.4. From this table it is evident that high classifica-
tion accuracy is possible even when class information is not known. Specifically,
UkW exhibited accuracy of 93.6% and 76% for the ALL and the AML samples,
respectively.

A second set of experiments is performed using the PCA technique for dimension
reduction. A common problem when using PCA is that there is no clear answer
to the question of how many factors should be retained for the new data set. A
rule of thumb is to inspect the scree plot, i.e. plot all the eigenvalues in decreasing
order. The plot looks like the side of a hill and “scree” refers to the debris fallen
from the top and lying at its base. The scree test suggests to stop analysis at the
point the mountain (signal) ends and the debris (error) begins. However, for the
considered problem the scree plot was indicative, but not decisive. The scree plot,
exhibited in Figure 1.5 (left), suggests that the contributions are relatively low after
approximately ten components. In our experiments, we tried all the subsets using
factors from 2 to 70. The classification accuracy is shown in Figure 1.5 (right). The
best performance was attained when 25 factors were used (84.72%).

Although, the PCA technique tries to limit the loss of information, the classifica-
tion accuracy is significantly lower, compared to the results obtained by supervised

Table 1.4. The performance of the UkW algorithm for the GeneSet4 data set

Clustering result for the set GeneSet4
ALL accuracy: 93.61% — AML accuracy: 76%

Leukemia type ALL Clusters AML Cluster
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 1

ALL 12 5 8 16 3 3
AML 2 0 3 0 1 19
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Fig. 1.5. Plot of the 70 first eigenvalues in decreasing order (left) and the corresponding
classification accuracies (right)

Table 1.5. The performance of the UkW algorithm for the GeneSet5 data set

Clustering result for the set GeneSet5
ALL accuracy: 97.87% — AML accuracy: 88%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 7 14 14 11 1 0
AML 0 0 3 0 13 9

gene selection, Next, we study the hybridization of the clustering the PCA technique,
with the aim to obtain more informative representations of the data.

To this end, the entire data set is firstly partitioned into clusters of features using
the UkW algorithm. Next, each feature cluster is independently transformed to a
lower dimension space through the PCA technique. Regarding the number of factors
selected from each cluster many approaches could be followed. In our experiments
only two factors from each cluster were selected, resulting in GeneSet5. Experiments
conducted using scree plots exhibited identical results. Our experience is that the
number of selected factors from each cluster is not critical, since the entire data set
has already been partitioned to a specific cluster number determined by the algorithm
itself. Finally, the algorithm is again applied to group the samples into clusters and
the results are exhibited in Table 1.5. The UkW exhibited accuracy 97.87% and 88%
for the ALL and the AML samples, respectively.

Overall, the obtained experimental results regarding the various gene subsets
indicate that using GeneSet1 and GeneSet2, yields very satisfactory results. The
best results were obtained using the union of the genes in GeneSet1 and GeneSet2.
The drawback of this feature selection scheme is that it relies on human expertise
(GeneSet1) and requires class information (GeneSet2) to construct the final dataset
(GeneSet3). On the other hand, performing unsupervised gene selection using either
PCA or UkW may result in a lower classification accuracy.

The hybridization of the two approaches yielded results comparable to those
obtained through the first three gene sets. The main drawback of this approach is
that it requires information from all the genes.
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Fig. 1.7. Classification accuracy for all the factors, for the COLON (left), PROSTATE (middle)
and the LYMPHOMA (right) datasets

To further investigate the efficiency of the hybridization scheme we compare it
against the PCA dimension reduction technique on the COLON, the PROSTATE
and the LYMPHOMA microarray data sets. While the hybrid approach automati-
cally determines the number of reduced dimensions only the screen plot can provide
such an information for the PCA technique. Although the scree plots, reported in
Figure 1.6, provide an indication they are not conclusive. Generally, in all three cases
the contributions are relatively low after approximately twenty components.

In our experiments, we tried all available factors for each dataset and utilized the
UkW algorithm for the classification. The classification accuracy of the UkW clus-
tering algorithm for each of the three datasets and all the available factors is reported
in Figure 1.7. For the COLON dataset the best classification accuracy obtained was
80.64% employing 16 factors. For the PROSTATE dataset the best result was 82.35%
classification accuracy, using 71 factors. Finally, for the LYMPHOMA dataset the
best result was 98.38% classification accuracy using only 3 factors.

The results of the hybrid approach, for the three datasets, are presented in
Table 1.6. As it is evident, the classification accuracy of the resulting partitions
increases in all three cases. The high number of factors that the hybrid scheme
decides to use, does not impose a problem to the algorithm since they originate
in different clusters, and they are not correlated to each other. Furthermore, the
additional advantage of the automatic determination of the required factors, exhibits
a robust result that is not possible through the PCA technique. The classification
accuracies obtained are considered very high, in comparison to other previously
published approaches [65].
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Table 1.6. The performance of the hybrid approach for the COLON, PROSTATE and
LYMPHOMA datasets

Dataset Number of Factors Used Classification Accuracy (%)

COLON 229 82.25
PROSTATE 84 83.3
LYMPHOMA 103 99.01

1.5.3 Using Clustering and Feedforward Neural Networks Classifiers

Although the Feedforward Neural Networks (FNNs) trained using the PCA projec-
tion of the dataset can provide high classification accuracy, there is no straightfor-
ward interpretation of the new dimensions. Consequently, to compute features for a
new patient, information from all the genes is required. On the other hand, the cluster-
ing algorithms identify a subset of genes that significantly contribute to the partition
of interest. Thus, only the expression levels of the selected genes are needed for the
future operation of the system. Unfortunately, there exist many such subsets and it is
difficult for any clustering algorithm to determine the best one.

The first step towards the implementation of such a system is to apply a clus-
tering algorithm over the entire training sets. Dimension reduction is performed by
selecting a representative feature from each identified feature cluster, as usual. The
representative features will be used as input to the FNN classifier. To this end, the
(supervised) FCM and the (unsupervised) UkW clustering algorithms were applied
on the three data sets mentioned above. Since the number of clusters, c, present in
each data set is unknown, all possible values from 3 to 30 were tried for the FCM
algorithm. On the other hand, the UkW clustering algorithm was executed only once
and it provided 14 features for the COLON data set, 18 features for the PROSTATE
data set, and 22 features for the ALL–AML data set.

Consequently, an FNN having two hidden layers consisting of 5 neurons each,
was trained using the Rprop and the AOBP training algorithms to classify the features
of the data sets. In the experiments, we performed random splitting of the data into
learning and test sets. Specifically, the data was partitioned randomly into a learning
set consisting of two-thirds of the whole set and a test set consisting of the remaining
one-third. To reduce the variability, the splitting was repeated 50 times as in [65]. For
each splitting 50 independently initialized FNNs were trained, resulting in a total of
2500 experiments. The comparative results for the three problems considered here
are illustrated using boxplots in Figures 1.8, 1.9, and 1.10, respectively. Each boxplot
depicts the obtained values for the classification accuracy, in the 2500 experiments.
The box has lines at the lower quartile, median, and upper quartile values. The lines
extending from each end of the box (whiskers) indicate the range covered by the
remaining data. The outliers, i.e. the values that lie beyond the ends of the whiskers,
are represented with crosses. Notches represent a robust estimate of the uncertainty
about the median. From these figures it is evident that the UkW algorithm exhibited
the best performance. The mean classification success for each problem was 65.9%,
73.5%, and 69.2%, clearly above the mean classification success of FCM regardless



22 D.K. Tasoulis et al.

Fig. 1.8. COLON: Classification accuracy of FNNs incorporating the FCM and the UkW
clustering algorithms

Fig. 1.9. PROSTATE: Classification accuracy of FNNs incorporating the FCM and the UkW
clustering algorithms

Fig. 1.10. ALL–AML: Classification accuracy of FNNs incorporating the FCM and the UkW
clustering algorithms

the value of c. Moreover, FCM’s results were heavily dependent on the number of
features selected.

In spite of UkW algorithm’s good results, this first set of experiments revealed
the limitation of the direct application of any clustering algorithm, since even bet-
ter classification accuracy is possible (see for example [65]). As a next step, we
examine the classification accuracy on PCA derived features. Since for the for the
considered problems the scree plots were indicative, but not decisive (see Figure 1.6)
for the number of factors to use, we tried all of them from 3 to 30. As above, 50
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Fig. 1.11. COLON: Classification accuracy of FNNs incorporating the PCA technique and the
proposed UkWPCA scheme

Fig. 1.12. PROSTATE: Classification accuracy of FNNs incorporating the PCA technique and
the proposed UkWPCA scheme

Fig. 1.13. ALL–AML: Classification accuracy of FNNs incorporating the PCA technique and
the proposed UkWPCA scheme

random splittings of the data were performed and 50 independently initialized FNNs
were trained. The results from the 2500 experiments for each problem are illustrated
in Figures 1.11, 1.12, and 1.13, respectively. The results show that the classifica-
tion accuracy depends on the number of factors used and that the best results do
not exactly match the scree plot indication. Although, the FNNs trained using the
PCA projection of the data set, in general, provide high classification accuracy, there
is no straightforward way to select the right number of factors for each problem.
FNNs using features computed by the PCA technique exhibited mean classification
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accuracy 79.1%, 86.5%, and 88.5%, for the optimal selection of the number of
factors.

The above discussion suggests that the UkW algorithm is capable of automati-
cally identifying meaningful groups of features, while the PCA technique optimally
transforms the data set, with limited loss of information, to a space of significantly
lower dimension. Since both properties are desirable for an automatic classification
system, we next examine the classification accuracy using the hybrid approach to
reduce the dimension.

As in the previous sets of experiments, we performed 50 random splittings of the
data set and consequently 50 independently initialized FNNs were trained using the
Rprop algorithm. The classification accuracy of the proposed system (UkWPCA)
is illustrated in the last column of Figures 1.11, 1.12, and 1.13, respectively. To
summarize, the UkW algorithm automatically provided a good approximation of the
number of clusters present in the data sets, while the PCA technique transformed
the discovered clusters resulting in the most informative features. FNNs trained
using these features had the highest classification accuracy and the most robust
performance. Specifically, the mean classification accuracies for the three problems
considered here were 80.3%, 87.1%, and 87.4%, respectively.

1.5.4 Using Evolutionary Algorithms and Feedforward Neural Networks
Classifiers

Here, we propose the application of EAs to microarray classification to determine
the optimal, or near optimal, subset of predictive genes on the complex and large
space of possible gene sets. Although a vast number of gene subsets are evaluated by
the EA, selecting the most informative genes is a non trivial task. Common problems
include the existence of: a) relevant genes that are not included in the final subset,
because of the insufficient exploration of the gene pool, b) significantly different
subsets of genes being the most informative as the evolution progresses, and c) many
subsets that perform equally well, as they all predict the test data satisfactorily. From
a practical point of view, the lack of a unique solution does not seem to present a
problem.

The EA approach we propose utilizes the DE algorithm and maintains a pop-
ulation of trial gene subsets, imposes random changes on the genes that compose
those subsets, and incorporates selection (driven by a neural network classifier) to
determine which are the most informative ones. Only those genes are maintained
in successive generations; the rest are removed from the trial pool. At each iteration,
every subset is given as input to an FNN classifier and the effectiveness of the trained
FNN determines the fitness of the subset of genes. The size of the population and the
number of features in each subset are parameters that we explore experimentally. For
the experiments reported in this chapter we employed Equation (1.3) as the main DE
search operator.

For the approach discussed above, each population member represents a subset
of genes, so a special representation and a custom fitness function must be designed.
When seeking subsets containing n genes, each individual consists of n integers. The
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first integer is the index of the first gene to be included in the subset, the second
integer denotes the number of genes to skip until the second gene to be included is
reached, the third integer component denotes the number of genes to skip until the
third included gene, and so on. This representation was necessary in order to avoid
multiple inclusion of the same gene. Moreover, a version of DE that uses integer
vectors has been proposed and thoroughly studied in previous studies [19, 20, 22].

Let us now focus on the custom fitness function. Initially, the k–nearest neighbors
(KNN) classifier was used as a fitness function to evaluate the fitness of each gene
subset. KNN classification is based on a distance function such as the Euclidean dis-
tance or Pearson’s correlation that is computed for pairs of samples in n–dimensional
space. Each sample is classified according to the class memberships of its k–nearest
neighbors, as these are determined by the distance function. KNN has the advantage
of simplicity and it usually performs well on data sets that are not linearly separable.
However, our preliminary experimental results indicated that although the evolution-
ary algorithm produces gene subsets that help the KNN classifier to achieve high
classification accuracy on the training samples, KNN fails to correctly classify the
test data.

Thus we decided to use FNNs instead of the KNN classifier. The utilization of
FNNs as fitness function greatly improved the classification accuracy of this ap-
proach. An FNN was trained using each subset of genes and the fitness of the subset
is scored by analyzing how well the FNN separates the training data into separate
classes. One third of the data set is used as a training set for the FNN and one third
is used to measure the classification accuracy of the FNN classifier. The remaining
patterns of the data set are kept to estimate the classification capability of the final
gene subset.

Below, we report the experimental results. We have tested and compared the per-
formance of the this approach on many publicly available microarray data sets. Here
we report results from the COLON and the PROSTATE data sets. Since the appro-
priate size of the most predictive gene set is unknown, DE was employed for various
gene set sizes ranging from 10 to 100 with a step of 10. The FNN used at the fitness
function consisted of two hidden layers with eight and seven neurons, respectively.
The input layer contained as many neurons as the size of the gene set. One output
neuron was used at the output layer whose value for each sample determined the
network classification decision. Since both problems had two different classes for
the patterns, a value lower than 0.5 regarded the pattern to belong to the first class;
otherwise regarded it to belong to the second class.

For each different gene set size the data were partitioned randomly into a learn-
ing set consisting of two–thirds of the whole set and a test set consisting of the
remaining one third, as already mentioned. The one third of the training set was used
by the Rprop and the AOBP algorithms to train the FNNs. The performance of the
respective gene set was measured according to the generalization of the trained FNN
on the rest of the training set. Both the Rprop and the AOBP training algorithms
exhibited stable performance and are suitable for this kind of tasks. Note that, the
test set was only used to evaluate the classification accuracy that can be obtained
using the final gene set discovered by the DE algorithm. To reduce the variability,
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Fig. 1.14. Classification accuracy obtained by FNNs trained using the DE selected gene set
for the COLON (left) and PROSTATE (right) datasets

the splitting was repeated 10 times and 10 independent runs were performed each
time, resulting in a total of 100 experiments, for gene set size.

The classification accuracy of the proposed system is illustrated using boxplots in
Figure 1.14. Each boxplot depicts the obtained values for the classification accuracy,
in the 100 experiments. As demonstrated, using a gene set size of 50–80 for the
COLON dataset the algorithm managed to achieve the best results. The same is
achieved for the PROSTATE dataset for a gene set size ranging from 40 to 60. The
experimental results are comparable to those obtained by other approaches [65, 66].

1.6 Concluding Remarks

Although the classification of the data obtained from microarray studies is very im-
portant in medical diagnosis of many diseases, it still presents a challenge for data
analysis. This is due to the tremendous amount of available data (typically several
Gigabytes of data), the redundant, erroneous or incomplete data sets, and the high
dimensionality. Thus, the application of techniques for dimension reduction and/or
selection of subsets of informative genes are essential to counter this very difficult
problem. The selection of gene subsets that retain high predictive accuracy for cer-
tain cell–type classification, poses a central problem in microarray data analysis. The
application and combination of various Computational Intelligence methods holds a
great promise for automated feature selection and classification.

To summarize, in this chapter we have presented, implemented and tested
supervised clustering algorithms, unsupervised clustering algorithms, the Principal
Component Analysis dimension reduction technique, Feedforward Artificial Neu-
ral Networks, Evolutionary Algorithms, and hybrid approaches. Our goal was to
evaluate and compare various approaches in an attempt to investigate their weak-
nesses and their shortcomings with respect to DNA microarray data analysis and
classification.

Neural Networks have traditionally been used by the research community due
their easiness of implementation and their high quality results. Their application
to the microarray data, needs the existence of a preprocessing phase that would
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reduce the dimension of the learning space. Using either Evolutionary techniques
in a supervised manner or unsupervised cluster analysis significant results can be
obtained. However, the unsupervised characteristics of the latter approach provide
an intuitive advantage. On the other hand, using cluster analysis directly to infer
knowledge without resorting to an external trainer as in the Neural Network case,
also seems quite promising.

Among the different clustering algorithms studied, the density based approaches
provided the best results. The experimental results of the DBSCAN, the UkW and
the GNG algorithms are indicative of how effective is their feature of automatic dis-
covery of the cluster number. However, in the case of GNG the numerous parameters
seem to deteriorate its clustering accuracy. All the above comments are true in the
case that user-defined information about the most important subset of genes is used.

In the case, that no such information is available our first resort is the PDDP
clustering algorithm, that can be directly applied to the original high dimensional
space. However, it results in low performance clustering, which can be attributed to
its crude splitting technique. Nevertheless, by borrowing the idea of PDDP, that is to
apply PCA to different parts of the data space, we can design a hybrid method that
is completely automated and does not require any kind of external steering. To this
end, we examined how the hybrid techniques can further improve the classification
accuracy of traditional classifiers such as Neural Networks. These results are not re-
strictive to FNNs, but can be straightforwardly extended to other types of classifiers,
such as Support Vector Machines, Probabilistic Neural Networks, etc.

Briefly, we can claim that the reported experimental results indicate that there
exists no unique and clear solution to this hard real–life problem. One must try
different approaches in order to gain insight and better analyze the DNA microarray
data. However, Computational Intelligence techniques are clearly capable of:

(a) exhibiting high classification success rates,
(b) having completely automatic operation,
(c) discovering the subsets of features that contribute significantly,
(d) constructing non–linear relationships between the input and the output.

Thus, even when compared against the best known alternative methods, Computa-
tional Intelligence techniques seem to prevail. Extensive experiments on publicly
available microarray datasets indicate that the approaches proposed and studied here
are fast, robust, effective and reliable. However, further testing on bigger data sets
from new microarray studies is necessary before we can establish a general, flexible
all-purpose methodology.
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Summary. Gene regulatory networks describe how cells control the expression of genes,
which, together with some additional regulation further downstream, determines the produc-
tion of proteins essential for cellular function. The level of expression of each gene in the
genome is modified by controlling whether and how vigorously it is transcribed to RNA, and
subsequently translated to protein. RNA and protein expression will influence expression rates
of other genes, thus giving rise to a complicated network structure.

An analysis of regulatory processes within the cell will significantly further our under-
standing of cellular dynamics. It will shed light on normal and abnormal, diseased cellular
events, and may provide information on pathways in dire diseases such as cancer. These path-
ways can provide information on how the disease develops, and what processes are involved in
progression. Ultimately, we can hope that this will provide us with new therapeutic approaches
and targets for drug design.

It is thus no surprise that many efforts have been undertaken to reconstruct gene regulatory
networks from gene expression measurements. In this chapter, we will provide an introductory
overview over the field. In particular, we will present several different approaches to gene
regulatory network inference, discuss their strengths and weaknesses, and provide guidelines
on which models are appropriate under what circumstances. In addition, we sketch future
developments and open problems.

2.1 Introduction

Biology has undergone a seminal shift in the last decade, with a transition from fo-
cusing on simple, small components of cells, such as DNA, RNA and proteins, to
the analysis of relationships and interactions between various parts of a biological
system. The traditional approach to much of molecular biology breaks up a system
into its various parts, analyzes each part in turn, and hopes to reassemble the parts
back into a whole system. In contrast, the systems biology approach aims at under-
standing and modeling the entire system quantitatively, proposing that the system is
more than the sum of its parts and can only be understood as a whole.
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Gene regulatory networks control a cell at the genomic level, they orchestrate
which genes and how vigorously these genes are transcribed to RNA, which in turn
functions as a template for protein synthesis. Genes and proteins do not act inde-
pendently. Instead, they interact with each other and form complicated regulatory
networks. Proteins which function as transcription factors can positively or nega-
tively influence the expression of another gene, and thus the production of other
proteins. Some proteins act independently, others only become active in a complex.
Gene regulatory networks describe these regulatory processes, and thus the molec-
ular reaction of a cell to various stimuli. High throughput experimental techniques
to measure RNA and protein concentrations enable new approaches to the analysis
of such networks. The analysis of these data requires sophisticated techniques par-
ticularly tailored to the task. New statistical, qualitative and quantitative methods are
being developed for this purpose.

At the modeling side, several levels of detail have traditionally been used to
describe gene regulation. Starting with very simple models which allow for quali-
tative statements only, in recent years there is a tendency to describe the dynamic
response of a system in more detail. Also, besides the analysis of given network
models, the inference of parameters of a gene regulatory network from experimental
data has become one of the big challenges in computational biology. As the num-
ber of parameters usually far exceeds the number of measurements available for this
purpose, leading to under-determined problems, modelers have begun to use hetero-
geneous data sources for network inference and to include biological knowledge into
the parameter estimation.

In the following, we will give an overview over different models and describe
the challenges and current developments, with a focus on mathematical and compu-
tational techniques. In addition, we will present a novel method particularly suitable
for the typical setting where one has only a low number of data points to estimate
model parameters, but when still quantitative modeling is desired. We will show
how inference from data can be carried out using the models discussed, and we will
present algorithms for the computations involved.

Modeling of gene regulatory networks is a quickly evolving field, with new de-
velopments and algorithms being published almost daily. We can thus only provide
an introduction to the subject matter with a rough overview, and in no way cover
the field exhaustively. We will provide links to further literature where appropriate
throughout the chapter, providing the reader with references for additional and more
detailed information.

Before going into detail with the mathematical modeling of regulatory networks,
we will briefly review the biological background in the following section. For more
details see for example Alberts et al. [5], Cooper [28], Berg and Singer [13], or
Collado-Vides and Hofestädt [27].

2.1.1 Biological Background

To understand the role regulatory networks play, we will start with the main play-
ers in a cell, the proteins. They consist of long folded chains of amino acids and
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attend various tasks essential for survival of the cell. For example, they function as
transporters, induce chemical reactions as enzymes, take part in metabolic pathways,
recognize and transmit external signals, or act as ion channels in the cell mem-
brane [5]. Proteins are permanently produced, this process is called gene expression.
It consists of two stages, transcription and translation, and is highly regulated at
different levels.

The information which proteins a cell can generally produce is encoded in its
genome, the entirety of genes located on the DNA. During transcription, information
from a gene is transcribed into an intermediate product called messenger RNA, or
shortly mRNA. It serves as a template to produce a protein in the second step, the
translation. The velocity and rate of this process is highly regulated and can vary in
a wide range, making the organism flexible to adapt to external influences such as
nutrition supply and to changes in environmental conditions such as temperature or
salinity. It also enables the cell to respond to various stimuli and to maintain basic
metabolic processes necessary for survival [27].

Regulation happens at different levels in the cell. We start with probably the most
important mechanism, the regulation of transcription initiation. This is the main reg-
ulatory mechanism in prokaryotes. In eukaryotic cells, regulation is complicated by
other effects such as alternative splicing or transport processes, we will neglect this
here for simplicity. In transcription, an enzyme called RNA-polymerase (RNAP) is
needed to catalyze the production of mRNA from an existing DNA template. This
is initiated by binding of RNAP to the promoter, a regulatory region in front of
the gene’s coding region. Promoters contain specific binding sites for transcription
factors, that is, for proteins regulating gene expression. Binding of RNAP and thus
transcription initiation are facilitated by these transcription factors. Operators are
DNA regions with binding sites for repressors, transcription factors which inhibit
binding of the polymerase. A repressor-operator complex can influence the expres-
sion rates of multiple genes simultaneously. Some genes which encode for proteins
involved in the same regulatory process are organized in operons, they are located
side by side and are regulated by one single promoter. Their expression patterns are
thus highly correlated. Transcription factors can also affect the process of RNA pro-
duction by inducing conformational changes of the DNA, which can either activate
or inhibit the polymerase [5].

Transcription factors do not always act independently, they can influence each
other. When this influence is positive, one says that the transcription factors coop-
eratively enhance each other, their collective influence exceeds the sum of single
influences. For example, some transcription factors are inactive until they form an
active complex with other proteins. A transcription factor bound to DNA can facili-
tate the binding of another transcription factor by electrostatic attraction. Transcrip-
tion factors can also inhibit each other. This is the case, for example, when several
transcription factors compete for the same binding site, or when an occupied bind-
ing site prevents binding at another binding site, because the sequences of both sites
overlap or because two transcription factors repel each other.
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Regulation also happens after the gene is transcribed to mRNA. This is called
post-transcriptional regulation. An example is the binding of a protein to mRNA,
thus changing the secondary structure of the molecule, and hence stabilizing it or
marking it for degradation. Analogously, regulation of protein concentration after
translation is called post-translational modification. Mostly, a chemical group is
appended to the protein, which induces a conformational change and activates or
inactivates the protein. Many transcription factors taking part in signal transduction
pathways have to be chemically modified to become active. These chemical modifi-
cations happen at a much faster time scale than the time scale for gene expression,
which has consequences for quantitative models.

In addition to the production of RNA and protein, chemical degradation also
affects concentrations of these molecules. RNA is quite unstable, and proteins are
also degraded after some time. This is usually described as a first order decay process,
thus degradation is assumed to be proportional to the component’s concentration.
Degradation rates are sometimes measured, and may then be included in models of
gene regulation.

Figure 2.1 shows an example for regulation of gene expression at different levels.
The four genes X ,Y,Z1 and Z2 encode proteins which function as transcription fac-
tors. Protein X and the chemically modified protein Z2 compete for the same binding
site within an operator O. The repressor-operator complex inhibits transcription of
the genes X and Y . Proteins Y and Z1 form a complex that acts as a transcription
factor for the operon Z containing the genes Z1 and Z2.

*

-P

O PX PY PZGene X

mRNA X mRNA Y mRNA Z1

Protein Z1 Protein Z2

activated Protein Z2

mRNA Z2

Protein X Protein Y

Gene Y Gene Z1 Gene Z2 DNA

Transcription

Translation

Fig. 2.1. Sample regulatory network consisting of four genes X , Y , Z1 and Z2. Regulation of
gene expression happens at different levels: Protein X binds to an operator O and has thus a
negative influence on the transcription rates of genes X and Y . Protein X and the chemically
modified protein Z2 compete for the same binding site. The proteins Y and Z1 form an active
complex, this complex acts as a transcription factor promoting expression of the operon Z,
which in turn contains the genes Z1 and Z2
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2.1.2 Modeling Gene Regulatory Networks

How can gene regulatory processes be represented in a computer? Our aim is
twofold — inference of regulatory networks from data on the one hand, but also the
simulation of a network’s behavior on the other hand.

Recent advances in high-throughput biological techniques provide the basis for
large scale analysis, which gives new insight into activities of cellular components
under various biochemical and physiological conditions. DNA chips make the simul-
taneous measurement of concentrations of thousands of different RNA molecules
possible, fermentation experiments yield data series of hundreds of metabolites, and
large-scale measurements of protein concentrations are gradually becoming feasible.
Moreover, the amount of protein-protein interaction and transcription factor binding
site data is rapidly growing.

In computer models, gene regulatory networks are usually represented as directed
graphs, with nodes corresponding to genes, and edges indicating interactions be-
tween the genes. In this chapter, we will discuss four different classes of models. In
each section, we introduce a specific model or model class, and treat the inference
problem. Subsequently, advantages and limitations of the models as well as possible
extensions are discussed.

Boolean networks, described in Section 2.2, are probably the simplest models
conceivable for regulatory networks. They assume that each gene is in one of two
states, either active or inactive. Interactions between genes are modeled through
Boolean logic functions, and updates are carried out simultaneously for all genes
in discrete time steps. The updates are deterministic, and Boolean networks provide
only a qualitative description of a system.

Relevance networks are described in Section 2.3. These approaches are based on
pairwise distances (or similarities) between gene expression measurements, and try
to reconstruct the networks using a threshold on the distance between genes.

Bayesian networks, discussed in Section 2.4, are probabilistic models. They
model the conditional independence structure between genes in the network. Edges
in a network correspond to probabilistic dependence relations between nodes, de-
scribed by conditional probability distributions. Distributions used can be discrete or
continuous, and Bayesian networks can be used to compute likely successor states
for a given system in a known state.

Finally, differential equation models, described in Sections 2.5 to 2.7, provide a
quantitative description of gene regulatory networks. Models used here range from
simple linear differential equation models to complicated systems of nonlinear partial
differential equations and stochastic kinetic approaches. In Section 2.5, we describe
ordinary differential equation models. In Section 2.6, we present a novel method
combining Bayesian networks and differential equations, and show first results on
data from the yeast cell cycle network. Differential equation models going beyond
ordinary differential equations are described in Section 2.7.

Finally, the last Section 2.8 gives a summary and an outlook, and provides a
comparison between the model classes introduced.
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2.2 Boolean Networks

Boolean networks offer a binary, discrete-time description of a system. They can be
seen as a generalization of Boolean cellular automata [102], and have been intro-
duced as models of genetic regulatory networks by Kauffman [52] in 1969. Let us
start by stating a formal definition of a Boolean network:

Definition 1 (Boolean Network). A Boolean network is defined as a tuple G =
(X ,B), where X = (x1,x2, ...,xn) ∈ {0,1}n is a vector of Boolean variables, and B is
a set of Boolean functions B = { f1, f2, ..., fn}, fi : {0,1}n �→ {0,1}.

In gene expression networks, the xi correspond to the genes and the fi de-
scribe the interactions between them. In Boolean network models, one assumes
that each gene can be modeled as being in one of two states, on (expressed, 1)
or off (not expressed, 0). The functions B are used to update the nodes at discrete
time-steps, all nodes X are updated synchronously using the Boolean functions B,
that is, xi(t + 1) = fi(x1(t), ...,xn(t)). We call a snapshot of the values of the nodes
x(t) = (x1(t),x2(t), ...,xn(t)) at time t the expression pattern or state of the network
at the respective time point.

A Boolean network can be graphically represented in several ways, emphasizing
different aspects of the network. An example is shown in Figure 2.2 for a small
sample network consisting of three nodes A, B and C. The graph representation in
Figure 2.2A shows how the nodes influence each other. Pointed arrows indicate an
activation, see for example the positive regulation of node A by node B with the
corresponding Boolean logic rule A′ = B. In this example, the next value of node
A, denoted A′, will be equal to the current value of node B. Flat arrows indicate an
inhibition, see for example the rule B′ = ¬A. Here, the next value of node B will
be the negation of node A, that is, B′ = 1 if A = 0 and B′ = 0 if A = 1. The value
C′ is computed from the current values of A and B together using the logical “OR”
operation, hence C′ = 1 if A = 1 or B = 1, and C′ = 0 otherwise. The corresponding
logical Boolean rules are given in Figure 2.2B. Figure 2.2C shows the state transition
table of the network, it is a tabular representation of all possible “input” states of the
network and, for each input, the resulting “output” or subsequent state. Figure 2.2D
shows this table in a graph representation, visualizing the networks state space and
its dynamics by connecting each input state with its corresponding output state. In
this latter graph, it can be seen that the particular network in this example converges
to a cycle of size four from any initial state.

2.2.1 Inferring a Boolean Network from Data

We will now discuss the problem of inferring a Boolean network from time series
data. To formalize this, we define the Consistency Problem:

Definition 2 (Consistency Problem). Let (I,O) be a pair of observed expression
patterns of an unknown network G = (X ,B), such that O = B(I), that is, O is the
expression pattern of the network G after one time step when starting at state I.
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Fig. 2.2. Different representations of a sample Boolean network consisting of three nodes.
(A) Graph representation, (B) logical Boolean rules, (C) state transition table and (D) state
transition graph. In (A), pointed arrows indicate an activation, for example, gene A will be
activated if gene B is active. Flat arrows indicate an inhibition, for example, gene B will
be deactivated if gene A is active. Gene C is activated if either gene A or gene B is active,
as denoted by the “or” symbol “∨” in the figure. In Figure 2.2B, the same relationship is
expressed in boolean logical rules. Figure 2.2C shows a tabular representation of all possible
input states and the resulting next states of the network. Figure 2.2D visualizes the state space
in a graphical form, showing how the eight possible states of the network are interconnected.
For example, if the network is in state (A = 1,B = 0,C = 0), then the next state of the network
will be (A = 0,B = 0,C = 1)

Then, a network G′ = (X ′,B′) is consistent with (I,O), if O = B′(I). G′ is consistent
with a set of expression pairs D = {(I j,O j)} j=1,...,m, if it is consistent with each pair
(I j,O j) in D. The Consistency Problem is the problem to decide, whether a Boolean
network consistent with given data D exists, and output one if it exists [2].

The Identification Problem for Boolean networks in addition asks whether the
network is unique:

Definition 3 (Identification Problem). Given the number of genes n and a set of m
input-output pairs D, the Identification Problem is the problem to decide whether a
unique Boolean network consistent with D exists, and output it if it does [2].

The number of possible networks with a given number of nodes n is huge, hence
exhaustive search is usually prohibitive. For a network of n nodes, for each node,
there will be 22n

possible functions of n inputs. Even if we restrict the Boolean
functions to functions with at most k < n inputs, there will be 22k

possible functions,
and each node has n!/(n− k)! possible ordered combinations of k different inputs.
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The number of possible networks for given n and k will thus be(
22k n!

(n− k)!

)n

, (2.1)

which grows exponentially with the number n of nodes in the network. However, if
the indegree k of the network is fixed, the following can be shown:

Theorem 1 (Akutsu, 1999). The consistency problem and the identification problem
can be solved in polynomial time for Boolean networks with maximum indegrees
bounded by a constant k.

If k is close to n, the consistency and identification problems are NP-hard [3].
Also the number of data points required to estimate the Boolean functions from

data grows exponentially with the network size. Surprisingly, for networks of fixed
indegree k, O(logn) input/output patterns are sufficient on average for the network
identification, with constant around k2k in front of the logn [2]. This is why much
effort has been spent on devising learning algorithms for Boolean networks with
fixed maximum indegree. Several algorithms have been proposed for network infer-
ence, for example [2,3,54]. In the following, we will sketch the REVEAL algorithm
by Liang, Fuhrmann and Somogyi [58], which is based on information theoretic
principles.

The REVerse Engineering ALgorithm REVEAL

The strategy employed in the REVEAL algorithm is to infer regulatory interac-
tions between nodes from measures of mutual information in state transition tables.
The observed data D is considered a random variable, and information theoretic
properties are then used to derive the network topology.

Given a random variable X with k possible, discrete outcomes x1, ...,xk, the Shan-
non entropy H of X is defined in terms of the probabilities p(xi) of the possible
outcomes as

H(X) = −
k

∑
i=1

p(xi) log p(xi), (2.2)

where the sum is over the different outcomes xi with associated probabilities p(xi)
[80]. The entropy is a measure of the uncertainty associated with a random variable.
In a system with two binary random variables X and Y , the individual and combined
entropies are defined as

H(X) = − ∑
x∈{0,1}

p(x) log p(x) (2.3)

H(Y ) = − ∑
y∈{0,1}

p(y) log p(y) (2.4)

H(X ,Y ) = − ∑
(x,y)∈

{0,1}×{0,1}

p(x,y) log p(x,y), (2.5)
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where p(x), p(y) and p(x,y) are the individual and combined probability
distributions of the random variables X and Y , respectively. Note that, for sets
a = {X1,X2, . . . ,Xn} of random variables Xi, we will use the notation H(a) to denote
the joint entropy H(X1,X2, . . . ,Xn), derived by naturally extending equation (2.5)
for more than two variables. Similarly, for two sets a and b of random variables,
H(a,b) = H(a∪b).

The conditional entropy H(X |Y ) is a measure of the remaining uncertainty asso-
ciated with a random variable X , given that the value of a second random variable Y
is known. The conditional entropies H(X |Y ) and H(Y |X) are related to the individual
and combined entropies through

H(X ,Y ) = H(Y |X)+ H(X) = H(X |Y )+ H(Y ), (2.6)

or, in words, the combined entropy of X and Y is the sum of the individual entropy
of a single variable and the information contained in the second variable that is not
shared with the first. The mutual information is then defined as

M(X ,Y ) = H(X)−H(X |Y) = H(Y )−H(Y |X), (2.7)

it is a measure of the information about one variable, that is shared by the second
variable. Mutual information measures, how much knowing one of the variables X
and Y reduces our uncertainty about the other.

REVEAL extracts relationships between genes from mutual information in gene
expression measurements. The idea is, that when M(X ,Y ) = H(X), then Y com-
pletely determines X . Rewriting M(X ,Y ) according to equation (2.7), it follows that

Y completely determines X ⇐⇒ H(Y ) = H(X ,Y ), (2.8)

hence the computation of M(X ,Y ) is not even necessary.
Now let a set of m input-output patterns D = {(I1,O1), (I2,O2), ..., (Im,Om)} be

given. REVEAL then estimates the entropies from the data, and compares the single
and combined entropies H(b) and H(a,b) for each node a and each subset of the
genes b. If b exactly determines a, that is, if H(b) = H(a,b), then a corresponding
rule is added to the network. The pseudocode for REVEAL is given in Algorithm 1.

The worst-case running time of REVEAL is O(mnk+1): Time O(m) to estimate
the entropies from the input data, and this must be done for each node and all subsets
of the nodes of size up to k (lines 1–3).

2.2.2 Advantages and Disadvantages of the Boolean Network Model

As we have seen, the Boolean network model provides a straightforward model of
regulatory networks, and under the condition of bounded indegree, efficient algo-
rithms for network inference exist. Boolean networks are attractive due to their sim-
plicity, they are easily applied and quickly implemented. The underlying assumptions
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Algorithm 1 REVEAL
1: for each node a do
2: for i = 1 to k do
3: for each subset b of size i of the nodes X do
4: compute the entropy H(b) from the inputs
5: compute the joint entropy H(a,b) from the inputs b and outputs a
6: if H(b) = H(a,b) then
7: b exactly determines a, add a corresponding rule to the inferred network
8: proceed with the next node a
9: end if

10: end for
11: end for
12: end for

however seem very strict, in particular, modeling genes as being in one of only two
states, either on, or off, certainly is an oversimplification of true biological networks.
Similarly, true networks are time-continuous and asynchronous, whereas Boolean
networks assume time-discrete, synchronous updates.

Still, recent research results indicate that many biologically relevant phenom-
ena can be explained by this model, and that relevant questions can be answered
using the Boolean formalism [82]. Focusing on fundamental, generic principles
rather than quantitative biochemical detail, Boolean networks can capture many
biological phenomena, such as switch-like behavior, oscillations, multi-stationarity,
stability and hysteresis [48, 94, 96], and they can provide a qualitative description
of a system [92]. Recent modeling results combined with the first experimental
techniques to validate genetic models with data from living cells show that models
as simple as Boolean networks can indeed predict the overall dynamic trajectory
of a biological genetic circuit [16]. It seems that for understanding the general
dynamics of a regulatory network, it is the wiring that is most important, and
often detailed dynamic parameters are not needed [103]. For example, Albert
and Othmer [4] have predicted the trajectory of the segment polarity network in
Drosophila melanogaster solely on the basis of discrete binary models. Similarly, Li
et al. [57] have modeled the genetic network controlling the yeast cell cycle using a
binary model.

A serious limitation of the Boolean network approach is that, although a steady
state of a Boolean network will qualitatively correspond to a steady state of an
equivalent continuous model based on differential equations, not all steady states
of the continuous model will necessarily be steady states of the Boolean model
[40]. Conversely, periodic solutions in the Boolean model may not occur in the
continuous model. This problem limits the utility of Boolean modeling of gene
networks [85].

Clearly, Boolean networks are not suitable when detailed kinetic parameters are
desired, and the focus is on the quantitative behavior of a system. Their key advantage
and limitation at the same time is their simplicity, enabling them to capture the overall
behavior of a system, but limiting the analysis to qualitative aspects. On the other
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hand, this simplicity allows the model to be applied to relatively large regulatory
networks, when more detailed methods would be infeasible simply due to the lack
of sufficient experimental data. At the same time, the simple two-state structure of
each node in the Boolean network poses the problem that experimental data, which
are usually measured on a continuous scale, need to be binarized, requiring delicate
decisions about how this is best done.

Another shortcoming of Boolean networks is that they are deterministic in na-
ture. However, true biological networks are known to have stochastic components,
for example, proteins are produced from an activated promoter in short bursts that
seem to occur at random time intervals, and probabilistic outcomes in switching
mechanisms can be observed [65]. Furthermore, in realistic situations, we are usu-
ally dealing with noisy inputs and experimental measurement errors, which may lead
to inconsistent data.

Finally, the dynamics of gene networks strongly depends on whether and how
intra-cellular transport and diffusion of RNA and protein are modeled [60,61], which
seems to play a particularly important role in eukaryotic cells [85]. The incorporation
of such processes in Boolean network models is difficult, if not impossible [85].

2.2.3 Extensions of the Boolean Model

Several extensions of the Boolean network model have been proposed to overcome
some of its limitations. To overcome the problems stemming from noisy and in-
consistent data, from a learning-theoretic perspective, one relaxes the consistency
problem to find a network that makes as few errors as possible. The resulting prob-
lem is known as the best-fit problem [17, 82] and is underlying many algorithms in
machine learning.

To deal with the probabilistic nature of gene expression data, a popular extension
of Boolean networks are the so-called Probabilistic Boolean Networks (PBN) [81].
The basic idea of PBNs is to aggregate several Boolean functions together, so that
each can make a prediction of the target genes. One then randomly selects one of
the functions, with probability being proportional to some weights assigned to the
functions. PBNs can be interpreted as several Boolean networks operating in parallel,
and one gets selected at random for a given time step. Thereafter, all networks are
synchronized to the new state, so that each can make the next transition should it be
selected [81].

Silvescu and Honavar [83] describe a generalization of Boolean networks to
address dependences of genes that span over more than one time unit. Their model
allows each gene to be controlled by a Boolean function of expression levels of
at most k genes at T different time points, and they describe an algorithm for the
inference of such networks from gene expression data. Other generalizations allow
multi-valued networks, where each gene can be in one of several discrete states, and
not just on or off [86].
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2.3 Relevance Networks and Information Theoretic Approaches

While Boolean network models are based on the assumption that genes can only be
in one of two states, expressed or not expressed, relevance network approaches [20]
look at similarity or dissimilarity between pairs of genes on a continuous scale. Two
steps are involved in network reconstruction using a relevance network approach:

1. All pairs of genes are compared using some measure of similarity or dissimi-
larity. For example, all genes can be compared against each other using pair-
wise correlation coefficients, or information theoretic measures such as mutual
information can be used.

2. The complete set of pairwise comparisons is filtered to determine the relevant
connections, corresponding to either positive or negative associations between
genes.

The resulting network can then be represented in a graphical form. We will
only briefly present one representative algorithm based on the relevance network
approach, the ARACNe algorithm by Basso et al. [11, 63].

2.3.1 The ARACNe Algorithm

Similar to REVEAL, ARACNe (Algorithm for the Reconstruction of Accurate Cel-
lular NEtworks) [11, 63] is based on mutual information to identify regulations
between genes. In a first step, it also identifies statistically significant gene-gene
coregulation by mutual information. ARACNe can do this for discrete and con-
tinuous random variables, mutual information is estimated using Gaussian kernel
estimators [12]. The algorithm is hence not limited to Boolean networks such as
REVEAL. A statistical test is then used to determine relevant edges in the network,
Monte Carlo randomization of the data is used for the computation of p-values, and
edges are filtered based on a p-value threshold.

In a further step, ARACNe then prunes the network to eliminate indirect rela-
tionships, in which two genes are coregulated by one or more intermediary genes.
This is done using the data processing inequality (DPI), which essentially states that
if three random variables X , Y and Z depend from one another in a linear fashion
X → Y → Z, then the mutual information M(X ,Z) ≤ min[M(X ,Y ),M(Y,Z)]. This is
used to find and remove indirect edges X → Z from the network.

The authors of ARACNe claim that relationships in the final reconstructed net-
work have a high probability of representing direct regulatory interactions or inter-
actions mediated by post-transcriptional modifiers. They show results on microarray
gene expression data from human B cells, reconstructing a network with approxi-
mately 129,000 interactions from 336 expression profiles [11].

2.3.2 Advantages and Disadvantages of Relevance Network Approaches

Similar to Boolean networks, relevance networks are relatively simple models of
gene regulatory networks. They use straightforward and easy to compute measures
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of pairwise similarity or dissimilarity between genes to reconstruct the network, such
as correlation coefficients or information theoretic measures. In contrast to Boolean
networks however, they are continuous models, that is, genes can have expression
values on a quantitative scale.

One of the disadvantages of these approaches is, that they do not consider time,
and thus disregard dynamic aspects of gene expression. Hence, these models can
not infer causality, and it is not clear how to carry out simulations with an inferred
network. Although algorithms such as ARACNe operate on a continuous scale for
the gene expression levels, the method does not return any kinetic parameters, and
is not based on chemical reaction kinetics. Furthermore, the relevance network ap-
proach is based on pairwise similarity only, and it may thus miss interactions between
multiple genes. Finally, the choice of threshold for the inclusion of edges is some-
what arbitrary, and varying threshold parameters slightly may change the network
considerably.

On the other hand, depending on the similarity measure used, relevance network
approaches are less sensitive to noise than differential equations models. Although
the data processing inequality used in ARACNe is not sufficient to identify indirect
regulations, and hence the algorithm may sometimes remove direct relations as well,
the pruning step helps the algorithm to derive sparse networks.

The simplicity of the relevance network approach makes it applicable to large
networks. ARACNe, for example, is an algorithm with polynomial time complexity,
and the authors report its use on networks with several hundred genes [11, 64]. It
remains to be seen, how reliable the inferred interactions are for such large-scale
applications.

2.4 Bayesian Networks

While Boolean networks assume a fixed functional dependence between different
nodes, conditional models look at statistical correlation between genes. Conditional
models try to explain the correlation between two genes by other genes in the net-
work. These models are particularly simple in the Gaussian setting, since in this case
networks can be learned from data using classical statistical tests [33, 84]. The most
popular conditional model is the Bayesian network model, which is widely used to
model and infer gene regulatory networks [69].

Definition 4 (Bayesian Network). A Bayesian Network is a directed, acyclic graph
G = (X ,A), together with a set of local probability distributions P. The vertices X =
{X1, ...,Xn} correspond to variables, and the directed edges A represent probabilistic
dependence relations between the variables. If there is an arc from variable Xi to
Xj, then Xj depends probabilistically on Xi. In this case, Xi is called a parent of Xj.
A node with no parents is unconditional. P contains the local probability distributions
of each node Xi conditioned on its parents, p(Xi|parents(Xi)).

Figure 2.3 shows a simple Bayesian example network with three nodes A, B
and C, each assumed to be in one of two states, either on or off. The conditional
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ON 0.2 0.8
OFF 0.01 0.99 P(C|A,B)
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ON ON 0.0 1.0

OFF OFF 0.99 0.01

ON OFF 0.8 0.2
OFF ON 0.9 0.1

Fig. 2.3. Sample Bayesian Network with three nodes with two possible states each (ON and
OFF). Given next to each node are the conditional distributions for the node, conditioned on
its parents, as indicated by the arcs. For example, the probability that A is off given that B is
on, p(A = off|B = on) is 0.8

probabilities p(A|B), p(C|A,B) and the unconditional probability p(B) in this binary
case are easily tabulated, as shown in the figure.

Note that the probability distributions of the nodes in Bayesian networks can be
of any type, and need not necessarily be restricted to discrete or even binary values
as in our example.

Given a Bayesian network, it is easy to compute the joint probability distribution
of all variables in the network:

Definition 5 (Joint Distribution). The joint distribution of a set of variables
X1,X2, ...,Xn is the product of the local distributions,

p(X1,X2, ...,Xn) =
n

∏
i=1

p(Xi|parents(Xi)). (2.9)

In our example, the joint probability distribution is given by

p(A,B,C) = p(B)p(A|B)p(C|A,B), (2.10)

and, for example, the joint probability that all nodes are on is p(A = on,B = on,
C = on) = p(B = on)p(A = on|B = on)p(C = on|A = on,B = on) = 0.2×0.2×0.0=
0.0. It is important to note at this point that the joint probability distribution can only
be resolved this way if the network does not contain any directed cycles.

Bayesian networks provide a graphical representation of statistical dependences
between variables, but more importantly, they also visualize independence relations
among variables. Conditional independence of variables is represented in the graph
by the property of d-separation, for directional separation [70]:
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Definition 6 (d-separation). Let a Bayesian network G = (X ,A) with local
probability distributions P be given. Two nodes Xi and Xj, i �= j, are d-separated
in the graph G by a given set S ⊆ X \ {Xi,Xj} of the nodes X, if and only if the
variables Xi and Xj are independent given the values of the nodes in S.

Informally, d-separation means that no information can flow between nodes Xi and
Xj, when the nodes in S are observed. Xi and Xj are independent conditional on S
if knowledge about Xi yields no extra information about Xj, once the values of the
variables in S are known.

Two Bayesian network structures may actually represent the same constraints of
conditional independence – the two networks are equivalent. For example, the struc-
tures X1 → X2 → X3 and X1 ← X2 ← X3 both represent the assertion that X1 and X3

are conditionally independent given X2 [46]. When inferring networks from data, we
cannot distinguish between equivalent networks, that is, causal relationships cannot
be derived. This should be kept in mind when working with Bayesian networks – the
best we can hope for is to recover a structure that is in the same equivalence class as
the true network. Formally, Bayesian networks in the same equivalence class can be
characterized as having the same underlying undirected graph, but may disagree on
the direction of some edges. See for example [72] for details.

With these definitions and precautions at hand, we now come to the problem of
learning a Bayesian network from given data.

2.4.1 Learning a Bayesian Network from Data

Learning a Bayesian network from given data requires estimating the conditional
probability distributions and independence relations from the data. In order to do
this, we would have to test independence of a given gene pair from every subset of
the other genes. Examples for such constraint based learning approaches are given,
for example, in [70] for networks involving only a few genes. For bigger networks,
this approach quickly becomes infeasible, simply because of the number of tests that
would be required.

The difficult issue is the decomposition of the joint probability distribution into
conditional distributions among the relevant variables. This decomposition yields the
network topology, estimating the distinct conditional probability distributions given
the dependence structure is then relatively easy. In fact, given that the identification
problem for Boolean networks is NP-hard, it is probably no surprise that inferring
the dependence structure of a Bayesian network from given data is NP-hard as well.
For this reason, the inference problem is usually tackled using heuristic approaches.
Methods used include Bayesian and quasi-Bayesian approaches [19, 46, 55, 88, 91]
as well as non-Bayesian methods [71, 89]. In the following, we will focus on the
Bayesian approach. We will discuss the problems of structure learning and parameter
learning for Bayesian networks in turn, starting with the easier parameter learning
problem.
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Learning Probabilities for a given Network Topology

Assume we are given the graph G = (X ,A), and all we ask for is details of the con-
ditional distributions P. Let us furthermore assume that the conditional distributions
are parameterized by some parameter vector ω , and that the general form of the dis-
tribution is known. Hence, we are asking for the values of ω given example data
D assumed to have been generated by an underlying Bayesian network with topol-
ogy G. The Bayesian approach then is to ask for the posterior distribution of the
parameters, given the network topology and the data. Using Bayes’ theorem,

p(ω |D ,G) =
p(D |ω ,G)p(ω |G)

p(D |G)
. (2.11)

The evidence p(D |G) =
∫

p(D |ω ,G)p(ω |G)dω averages over all possible parame-
ters ω and normalizes equation (2.11). It can be neglected when scoring parameter
values relative to one another, since it is independent of ω . The likelihood p(D |ω ,G)
describes the probability that a network with given structure G and parameters ω has
generated the data D , and will depend on the functional form of the local distribu-
tions P used in the Bayesian network, for example normal distributions or discrete
distributions. Finally, p(ω |G) is a prior distribution on the network parameters ω ,
and is often chosen to be conjugate to the likelihood for computational reasons. If
prior knowledge is available here, this can easily be included in the Bayesian network
framework through p(ω |G).

Heckerman [45] gives the example of multinomial distributions p(D |ω ,G),
hence each node is assumed to be discrete, having ri possible values x1

i , ...,x
ri
i . Under

the assumption that there are no missing data in D and furthermore assuming that
the parameters of the multinomial distributions for the different nodes are indepen-
dent from one another, the computation of the posterior distribution is easy when a
Dirichlet prior is used. In this case, the posterior distribution can be shown to be a
Dirichlet distribution as well. One can then maximize the posterior to find the most
likely parameters ω of the network, or average over possible configurations of ω to
obtain predictions for the next state of the network.

Learning the Network Topology

Let us now consider the problem of learning the structure of a Bayesian network from
given data. To evaluate different structures, we consider the posterior probability of
a network topology G given the data D :

p(G|D) =
p(D |G)p(G)

p(D)
. (2.12)

The term p(D) is the evidence, and can be written as an average p(D) =∫
p(D |G)p(G)dG over all possible model structures. Again, when scoring network

structures relative to one another, we need not compute it and can neglect this term.
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The likelihood p(D |G) can be computed by marginalizing p(D |ω ,G) over all
possible parameters ω of the local distributions,

p(D |G) =
∫

p(D |ω ,G)p(ω |G)dω , (2.13)

hence the local parameters ω are treated as nuisance parameters and are integra-
ted out.

Finally, p(G) is a prior distribution over network structures. In principle, this
prior can be used to encode any biological knowledge that is available on the system
under consideration. The simplest conceivable structure prior is to assume that every
structure is equally likely. Alternatively, a structure prior can be defined by assigning
confidences 0 < w(x,y) ≤ 1 to the edges (x,y) of the fully connected graph, and
scoring structures using the prior

p(G) =
1
N ∏

(x,y)∈A

w(x,y), (2.14)

where N is a normalizing constant to make the right hand side a proper distribution,
and A is the set of directed edges (arcs) of the network. Many alternative structure
prior distributions have been proposed in the literature. For example, Heckerman
et al. [47] suggest using a prior network and penalizing the prior probability of any
structure according to some measure of deviation between the prior network and
the topology of interest. Madigan et al. [59] describe an approach to elicit prior
knowledge from experts and encode it into the prior. Bernard et al. [14] use tran-
scription factor binding site information to define a prior distribution, thus including
knowledge from other data sources into the network inference.

Different strategies can then be employed to search the model space for the net-
work topology with highest posterior probability given the data. Exhaustive search is
usually prohibitive, since the number of possible network topologies with n variables
is equal to the number of acyclic directed graphs with n nodes, which is growing
exponentially with n [76]. This is why researchers have used heuristic search al-
gorithms, such as greedy search, simulated annealing, gradient descent procedures,
genetic algorithms and Monte Carlo methods [25].

2.4.2 Advantages and Disadvantages of the Bayesian Network Model

Bayesian networks are attractive models for gene regulatory networks since they
are stochastic in nature. They can thus deal with noisy measurements and stochastic
aspects of gene expression in a natural way [29, 65], and they are easily extended to
deal with missing data [45]. Furthermore, they provide an intuitive and easy to grasp
visualization of the conditional dependence structure in given data, and are much
easier for humans to understand than full conditional distributions. At the same time,
depending on the probability distributions used (continuous or discrete), they can
model quantitative aspects of gene regulatory networks.

Still, the level of detail they provide on the system modeled is rather coarse [29].
Furthermore, learning Bayesian networks from data is NP-hard, hence heuristic
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search methods have to be used, which do not guarantee that the globally optimal
solution is found [29]. Probably their main disadvantage is that they disregard dy-
namical aspects completely, and that they require the network structure to be acyclic,
since otherwise the joint distribution cannot be decomposed as in equation (2.9).
However, feedback loops are known to play key roles in causing certain kinds of
dynamic behavior such as oscillations or multi-stationarity [44,48,85,94,96], which
cannot be captured by the Bayesian network model. In spite of these limitations,
Bayesian networks have been used for example to infer regulatory interactions in the
yeast cell cycle [36, 87].

2.4.3 Extensions of Bayesian Networks

Efforts have been made to overcome the mentioned limitations. Bayesian networks
can be extended to capture the dynamic aspects of regulatory networks by assuming
that the system evolves over time. Thus, gene expression is modeled as a time series,
and one considers different vectors X(1), ...,X(T ) at T consecutive time points. One
then assumes that a variable Xi(t) of a particular gene i at time t can have parents
only at time t −1. The cycles in the Bayesian network then unroll, and the resulting
network is acyclic and the joint probability in equation (2.9) becomes tractable again.
The resulting networks are called Dynamic Bayesian Networks [37, 67, 106].

Dynamic Bayesian Networks have been combined with hidden variables to cap-
ture non-transcriptional effects [73]. Similarly aiming at the inclusion of information
from additional data sources into the Bayesian network learning process, Bernard
and Hartemink [14] include transcription factor binding location data through the
prior distribution, while evidence from gene expression data is considered through
the likelihood.

Other extensions of Bayesian networks try to deal with the typical setting en-
countered with microarray data – where many genes are measured, but only few time
points are available. Regularization approaches are used to avoid overfitting in this
situation, different methods have been proposed for Bayesian networks. For exam-
ple, Steck and Jaakkola [90] discuss parameter choices for a Dirichlet prior for the
marginal likelihood (2.13), and show that sparse networks are learned for specific
choices of parameters. Bulashevska and Eils [18] achieve regularization by con-
straining the form of the local probability distributions, they restrict interactions to
Boolean logic semantics, and utilize Gibbs sampling to learn the model from the data.

2.5 Quantitative Models using Ordinary Differential Equations

We have seen that Bayesian networks highlight the stochastic nature of gene reg-
ulation, but are static models since they comprise no explicit time dependence in
their definition. In contrast, we will now turn to ordinary differential equations
(ODEs), which provide a deterministic, quantitative description of the time evolu-
tion of a system. ODEs are used in many scientific fields to describe a system’s
dynamic behavior. They provide a detailed time- and state continuous description of
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the system under consideration. In recent years, ODEs have also been established as
models for gene regulatory networks, ranging from simple linear models to complex
nonlinear systems.

We start with a formal definition of a continuous dynamical system:

Definition 7 (Continuous dynamical system). A continuous dynamical system is a
triple (U,Φt ,T ). The state space U is an open subset of Rn and the set T ∈R is the
set of time points. The function Φt is called evolution function and maps for every
time point t ∈ T a state x ∈ U onto a state x ∈ U, hence Φt : T ×U → U. Φt is
assumed to be a smooth function.

In our models, T = R, and then Φt is called a flow. It is assumed to be the solution
of an autonomous first order differential equation of the form

ẋ(t) = f (x(t)), where x(t) ∈ U, f ∈ C 1. (2.15)

We assume the vector field f (x(t)) to be continuously differentiable, that is, f (x(t))∈
C 1, since this guarantees uniqueness of a solution of equation (2.15), given an initial
state x(t0). In gene regulatory network models, the state vector x(t) contains con-
centrations of all n network components at time t. Hence, the state space U is often
restricted to the positive quadrant U = Rn

+.
Several suggestions have been made how to choose the function f (x(t)), we will

highlight the main models in the following.

Linear Models

Chen et al. [24] in 1999 were among the first to use ordinary differential equations to
model gene expression networks. They used a simple linear function f (x(t)) = Ax(t)
with an n× n-matrix A with constant entries. Here, every regulation in the network
is described by one single parameter ai j, one thus has to estimate n2 parameters to
infer the corresponding network structure. Linear ODEs have the advantage of being
analytically tractable, thus time-consuming numerical integration can be avoided.
On the other hand, systems of the form ẋ(t) = Ax(t)+ b do not show a rich variety
of dynamic behavior. They only have one isolated stationary state xs = −A−1b in
which the temporal change of x vanishes. Once reaching this state, the concentra-
tions of the network components remain constant. (This is the usual case when A is
invertible. If A−1 does not exist, the situation is more complicated, since the equa-
tion ẋ(t) = 0 then either has no solution or many non-isolated stationary states). If
xs is stable in the sense that small perturbations of the system at rest in xs disappear
and the system returns to xs after some time, it is globally stable, that is, the sys-
tem eventually approaches this state from any initial concentration vector x(t0). If xs

is not stable, then the solution x is not bounded, leading to infinitely increasing or
decreasing concentrations. For these reasons, linear models are not well suited for
regulatory networks, in which the concentrations are expected to be bounded and
should not become negative. Furthermore, oscillations or multi-stationarity, which
are both important properties of true biological networks, are nonlinear phenomena
and cannot be captured with linear models.
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Nevertheless, linear models are still used to reverse engineer gene regulatory net-
works from experimental data, in particular for large systems including a lot of genes
(see, for example, [10, 43, 56, 77, 99]). Gustafsson et al. [43] try to infer the regula-
tory network of the yeast cell cycle using microarray measurements of the whole
yeast genome, which contains about 6000 genes. They argue, that even if the nature
of interactions between genes is nonlinear, it can be approximated around a specific
working point with its linearization, which then provides a good starting point for
further considerations.

Additive Models based on Chemical Reaction Kinetics

For smaller networks, more detailed and complex models with more free parame-
ters are feasible. Thus instead of linear models, for networks containing only a few
components, ODEs of the form

ẋi(t) =
n

∑
j=1

fi j(x j(t))− γixi(t) i = 1, . . . ,n (2.16)

with nonlinear regulation functions fi j : R → R and a first order degradation term
γixi(t) are frequently used (see, e.g. [31]).

Like linear models, these are additive models, where the influences of differ-
ent regulators are added and are thus assumed to act independently. This is often
a necessary simplification to keep the number of variables tractable, but in fact
numerous effects within a cell are non-additive. For example, some proteins form
multimers and only become functional in these complexes, several different tran-
scription factors can compete for a single binding site, or they act in cooperation and
amplify each other. Efforts have been made to overcome these limitations of additive
models, and cooperative effects are described as logical AND and OR gates, respec-
tively [6, 79]. However, including interactions between different regulators makes
the model far more complicated since the regulation functions fi j(x j) then become
multi-dimensional.

The regulation functions fi j(x j) describe the effect of a regulator j on the tempo-
ral change of the concentration of component i. According to equation (2.16), a gene
regulatory network is characterized when all individual dependences between regu-
lated components and regulators, that is, between ẋi and x j, are known. Many efforts
have therefore been made to derive an appropriate parameterization of a regulation
function. These approaches are often based on chemical reaction kinetics, in which
the binding process of a transcription factor TF to a specific binding site BS of the
DNA is considered a reversible chemical reaction with reaction constant K:

TF + BS
K� T F-BS-complex︸ ︷︷ ︸

C

(2.17)

The temporal changes of concentrations over time are expressed with differential
equations:
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d
dt

[TF ] = −k1[T F ][BS]− k2[C] (2.18)

d
dt

[BS] =
d
dt

[TF ] (2.19)

d
dt

[C] = − d
dt

[T F ] (2.20)

Here, [·] denote concentrations, and k1 and k2 are rates for complex formation and
dissociation, respectively. Solving for the reaction constant K = k1/k2 in equilibrium
leads to the following relation between K and the steady state concentrations of all
components involved in the reaction, known as the law of mass action:

K =
[Cs]

[TFs][BSs]
(2.21)

Rewriting and substituting the difference between the total concentration of binding
sites and that of the free binding sites for the complex concentration [Cs], that is,
inserting [Cs] = [BSt ]− [BSs], leads to

1− [BSs]
[BSt ]

=
[BSb]
[BSt ]

=
[T Fs]

K−1 +[TFs]
. (2.22)

The fraction of occupied binding sites [BSb] thus increases hyperbolically with the
transcription factor concentration.

For one single binding site, the left hand side of equation (2.22) can be interpreted
as the probability of this site to be occupied by a transcription factor. Therefore,
when the number of free transcription factors far exceeds the number of bound ones,
and thus the number of free transcription factors can be approximated with the total
amount of transcription factors, [T Fs] ≈ [T Ft ], the probability PC of the binding site
to be occupied can be written in terms of [T Ft ] as

PC([T Ft ]) =
[T Ft ]

[T Ft ]+ K−1 . (2.23)

This probability is proportional to the effect on the transcription rate of xi and also
to the amount of protein, provided that mRNA lifetime and translation rates are
constant, leading to the following parameterization:

ẋi(x j) = ki j
x j

x j + K−1 . (2.24)

Here, we have changed the notation according to equation (2.15). Relation (2.24) is
known as the Michaelis Menten kinetics [6]. Taking also cooperative effects between
several transcription factors x j into account, we can write the regulation function
as a Hill function

fi j(x j) = ki j
x

mi j
j

x
mi j
j + θ mi j

i j

(2.25)
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Fig. 2.4. Sigmoidal regulation function according to equation (2.25)

with Hill coefficients mi j accounting for cooperativity between transcription factors,
and with threshold values θi j which are related to the reaction constant K in equa-
tion (2.24) (see [31]). Function (2.25) is monotonically increasing or decreasing, and
approaches the regulation strength ki j for large concentrations x j. The coefficient
ki j is positive when j activates i, zero when the concentration of j has no influence
on i, and negative in case of an inhibition. Figure 2.4 illustrates equation (2.25) for
the case of an activation with different values for the Hill coefficients m. A coeffi-
cient m = 1 corresponds to independent regulation (according to equation (2.24)).
An exponent m > 1 indicates cooperative interaction between transcription factors
x j, causing a sigmoidal shape. Compared to m = 1, the effect on the regulated com-
ponent is lower for small regulator concentrations, but increases quickly around the
threshold θ , so that it exceeds the curve for m = 1 for concentrations x j > θ . When
transcription factors influence each other negatively, for example they compete for
a single binding site, this is expressed by an exponent m < 1, and the correspond-
ing curve shows a steep slope for low regulator concentrations. It rapidly flattens for
higher concentrations due to mutual inhibition.

To our knowledge, equation (2.25) was first proposed by Jacob and Monod in the
year 1961 [49], and experiments carried out by Yagil and Yagil in 1971 supported
the theory [105]. The latter estimated values of Hill coefficients and dissociation
constants for different enzymes in Escherichia coli, one of the best studied bacterial
model organisms, which is found, for example, in the human gut.

Let us stop here for a moment and reconsider the modeling approach according to
equation (2.15). Although it looks rather general, it implies that there is a functional
relation between the state of the system at time t, that is, the concentration vector x(t)
in our case, and the temporal change of this state at time t. This is a strong assumption
which underlies all approaches used for network inference from expression data. For
models based on chemical reaction kinetics, it implies that regulating reactions are in
chemical equilibrium, otherwise there would be no unique relation between x(t) and
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ẋ(t). This assumption is feasible for gene regulatory networks, when one considers
the time scales in the system: Regulation via binding of a transcription factor to
DNA happens at a time scale of seconds, and is thus much faster than the whole
gene expression process, which lasts several minutes or even hours [6].

From a mathematical point of view, one of the main requirements on the reg-
ulation functions is that they should be bounded (concentrations should not rise
to infinity) and monotone. Different parameterizations are used in the literature to
guarantee these properties. Equation (2.25) is the direct result from chemical reac-
tion kinetics, but exponents such as the Hill-coefficient mi j are often hard to estimate
from a numerical point of view. Thus other parameterizations such as ki j(1+e−x j)−1

[22, 104] or ki j tanh(x j) [32] can be found. Several authors use step functions of
the form

fi j(x j) =
{

0 if x j ≤ θi j

ki j otherwise
(2.26)

to approximate equation (2.25) [30, 31, 34, 40, 66, 92]. This is the limit function
for large Hill coefficients m → ∞, and these models are known as piecewise linear
differential equations (PLDEs). Equation (2.26) provides a partition of the state space
into cuboids, separated by the threshold values θi j . Within each cuboid, the model
is linear and thus analytically tractable. On the other hand, problems concerning
the behavior of the system at the thresholds θi j can occur and may lead to additional
steady states or limit cycles [30,31]. Note also that a step function is not differentiable
at the thresholds and therefore does not satisfy the conditions in system (2.15).

In contrast to simple linear models, systems of the form (2.16) with bounded
regulation functions are stable in the sense that there exists a trapping region in state
space which eventually attracts all trajectories. This is an important feature in order
to provide a global description of the biological system. Furthermore, monotonicity
of the regulation function leads to a Jacobian matrix with constant signs (It should
be noted at this point that positive self-regulation might lead to exceptions from this
rule and must be treated carefully in this context – It can lead to changing signs of
the Jacobian matrix depending on the location in state space, and thus statements
about systems with constant J hold only for the parts of the state space in which
J has constant signs). For ODE systems with positive Jacobian matrix, important
statements about their dynamic behavior can be made. For example, Gouzé and
Thomas emphasized the role of feedback circuits in the corresponding interaction
graph [41, 93]. A positive circuit is required for multi-stationarity or hysteresis, and
a negative feedback loop with at least two components is needed for periodic be-
havior. Thus feedback mechanisms in regulatory networks are fundamental network
substructures which are related to certain dynamic behavior.

S-Systems

A further widely used class of ordinary differential equation models are S-systems
[100], in which regulatory influences are described by power law functions:
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dxi(t)
dt

= αi

n

∏
j=1

x j(t)gi j −βi

n

∏
j=1

x j(t)hi j (2.27)

The kinetic orders gi j and hi j ∈ R and the rate constants αi and βi ≥ 0 have to be
estimated in these models, these are 2n2 + 2n parameters. The first term describes
the effect of positive regulators, the second one refers to inhibitors, respectively. In
contrast to additive models, here, single influences are multiplied. S-systems have
been shown to capture many relevant types of biological dynamics [53]. A hyper-
bolic regulation such as described by equation (2.24) can be well approximated with
exponents 0.5 and −0.5, respectively [95]. Steady states of (2.27) can be determined
analytically, making these models attractive for network inference. Nevertheless,
most of the model parameters are exponents, which are typically hard to estimate nu-
merically. Cho et al. [26] and Kikuchi et al. [53] have used S-systems to reconstruct
regulatory networks from gene expression data with genetic algorithms. Thomas
et al. [95] developed an algorithm to estimate the rate constants from experimental
data. They evaluated their approach with a simulated three gene system.

2.5.1 Network Inference

We now turn to the network inference problem for ordinary differential equation
models, which is usually formulated as an optimization problem with an objective
function that is minimized with respect to the network parameters ω . A common
choice for this objective function is the sum of squared errors between measurements
and model predictions. The corresponding optimization problem has the form

min
ω

(
F1(ω) =

T

∑
t=1

n

∑
i=1

‖ xi,model(ω ,t)− xi,exp(t) ‖2

)
. (2.28)

Here, xi,model(ω ,t) denotes the model prediction for the concentration of network
component i at time t, which is compared with the corresponding experimental result
xi,exp(t). In order to minimize F1 with respect to the parameter vector ω , numerical
integration of the system is required to calculate xi,model(ω ,t). Usually, optimization
of equation (2.28) can not be carried out analytically, and one has to apply heuristic
methods such as gradient descent or genetic algorithms. This means that the nu-
merical integration has to be carried out several times, and computing time quickly
becomes the limiting factor [101]. This can be avoided by optimizing the sum of
squared errors of time derivatives rather than of the concentrations directly:

min
ω

(
F2(ω) =

T

∑
t=1

n

∑
i=1

‖ ẋi,model(ω ,t)− ẋi,exp(t) ‖2

)
(2.29)

In this formula, ẋi,model(ω ,t) is obtained from the model equations, and ẋi,exp(t) is the
corresponding slope estimate from the experimental data. Contrary to the minimiza-
tion problem (2.28), solving problem (2.29) does not require numerical integration
of the ordinary differential equations. Instead, one needs an appropriate method to
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estimate the slopes ẋi,exp(t) from the data. For this purpose, it can be useful to smooth
the data in a preprocessing step, in particular in case of high levels of noise in the
data.

Since quantitative models such as ordinary differential equation models depend
on many parameters, but the number of samples available for parameter estimation
is usually small in comparison, the main problem in this setting is overfitting. This
means that the model is overtuned to specific characteristics of the training data,
which do not reflect actual properties of the true underlying model, but are noise.
Such overfit models will show bad performance on validation data which has not
been used for training.

Different algorithms have been proposed to counter overfitting. Early stopping
divides the data into three classes. The training data are used for learning, and this
process is interrupted by testing performance of the learned model on the validation
set. The procedure is stopped when performance on the validation data does not
improve any further. As the result depends on both, training- and validation data, a
third dataset is required to validate the inferred model.

Another method, called weight decay in the context of neural networks, regu-
larizes the objective function by adding a term which penalizes models with many
degrees of freedom. Popular criteria used for this purpose are Akaike’s information
criterion (AIC) [1]

FAIC = −2lnL + 2k (2.30)

and the Bayesian information criterion (BIC)

FBIC = −2lnL + k ln(n), (2.31)

where in both equations k is the number of free model parameters, L the value of the
error function and n the sample size. These criteria were used as objective functions
in the inference of the yeast cell cycle network in Nachman et al. [68] and Chen
et al. [22], respectively.

More biologically motivated approaches restrict the search space by including
biological knowledge into the learning process. This can be done by introducing
constraints to the optimization problem, such as upper limits for the number of reg-
ulators for every gene, or ranges for model parameters. Alternatively, similar to the
criteria introduced above, one can modify the objective function by adding a term
penalizing networks with a large number of strong regulatory interactions (see, for
example, [98]). In Section 2.6, we will introduce an inference method which uses
this latter approach.

2.5.2 Advantages and Disadvantages of ODE Models

Continuous dynamical systems provide a very detailed quantitative description of a
network’s dynamic, as they are time- and state-continuous models. They can show
a rich variety of dynamic behaviors, such as multi-stationarity, switch-like behavior,
hysteresis or oscillations. For nonlinear systems based on chemical reaction kinet-
ics, parameters can directly be interpreted as kinetic rates of a chemical or physical
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reaction, for example, as degradation rates or velocities of binding reactions [44].
Some of these rates are experimentally accessible, which provides either a possibil-
ity to evaluate the model afterwards, or to restrict the range of the corresponding
parameter values prior to the inference process. For example, binding coefficients
between macromolecules can often be measured in vitro, and they differ only slightly
in vivo [85]. Other rate constants, such as rates of phosphorylation of a transcription
factor subsequent to a stimulus, are hard to verify experimentally [15, 29, 85].

When analyzing ODEs, one can exploit the well-established theory of differential
equations [42]. To examine, for example, the long-term behavior of an ODE system,
methods have been developed to calculate steady states or limit cycles and to de-
termine their basins of attraction. Bifurcation analysis aims at predicting parameter
values for which the qualitative behavior of the system changes, because the stability
of steady states or periodic solutions changes when varying parameters, or solutions
appear and disappear. Many tools have been developed to conduct such an analysis
numerically [35].

A drawback of differential equation models is the relatively large number of
parameters which have to be estimated in the network inference process. Time
courses with many time points are needed for this purpose, but such data is rarely
available. Many high-throughput techniques aim at measuring a lot of components
simultaneously, but good time resolution is hard to obtain. This is the main reason
why inference of ODEs from experimental data is currently restricted to small
networks with only few components.

Another problem lies in the quality of experimental data. Microarray data are
mostly used to infer gene regulatory networks. They contain a lot of noise, and may
not be appropriate to make quantitative statements. Thus, when modeling regulatory
networks with differential equations, it is often inevitable to include prior biological
knowledge or to make simplifying assumptions. Of course, this often makes the
approach specific for a certain biological system and not ad hoc applicable to other
organisms or subsystems.

2.6 Bayes Regularized Ordinary Differential Equations

We would now like to give an example from our own work, combining ordinary
differential equations with a (dynamic) Bayesian network approach. The underly-
ing model used is a system of differential equations, but we embed the differential
equations in a probabilistic framework with conditional probabilities as in Bayesian
networks, and use Bayes’ theorem for the inference. In our approach, the differential
equations are used to specify the mean of the conditional probability distributions
for the genes at a given time point, conditioned on the expression pattern at a pre-
vious time point. We then estimate the parameters of the differential equations, and
thus determine the conditional probability distributions and the network topology.
This topology is assumed to be fully connected initially, but we will show how to
drive the solution to sparse networks using a specifically designed prior distribution
on the ODE parameters.
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Two aspects make such a Bayesian approach attractive for the inference of gene
regulatory networks from gene expression data. The stochastic approach captures
the stochastic nature of biological processes within a cell and the noise due to the ex-
perimental procedure. Moreover, prior knowledge can be included into the posterior
distribution by choosing appropriate prior distributions reflecting our knowledge of
the system. Furthermore, the probabilistic nature of the approach makes it possible to
compute confidences for model parameters and also predictions of the network [50],
work on this is ongoing in our groups.

To become more concrete, we consider an additive ODE model with sigmoidal
regulation functions of the form

ẋi(t) = si − γixi(t)+
n

∑
j=1

ki j
x

mi j
j

x
mi j
j + θ mi j

i j

. (2.32)

The parameters si and γi are basic synthesis- and degradation rates, they determine
the dynamics of component i when all regulators of i are absent. Coupling of the
differential equations is due to the sum of regulation functions, compare equation
(2.25). The sum in (2.32) is over all genes in the network and reflects the influence
of the j-th gene on gene i. The network is thus assumed to be fully connected, unless
the corresponding parameters ki j become zero. More details on this model can be
found in [38, 74].

We discretize this equation with a simple Euler discretization, that is, we ap-
proximate the time derivatives on the left hand side by difference quotients, and we
furthermore add a noise term ri(t) to the output. We then get

xi(t + ∆ t) = xi(t)+ ∆ t

[
si − γixi(t)+

n

∑
j=1

ki j
x j(t)mi j

x j(t)mi j + θ mi j
i j

]
︸ ︷︷ ︸

hi(ω)

+ri(t). (2.33)

The noise term ri(t) is assumed to be normally distributed with mean 0 and vari-
ance σi(t)2. The assumption of normally distributed noise corresponds to assuming
that the noise stems from many small, independent sources, which is arguably a
reasonable approximation at least for the experimental noise. ∆ t is a discretization
parameter, the smaller the time step ∆ t, the better does equation (2.33) approxi-
mate the continuous system (2.32). Biological data sets usually comprise large time
steps, when using differential equations models one therefore interpolates over time
in order to get sufficiently small time resolution.

Assuming independence of all noise terms for every time point and all network
components from one another, the likelihood L decomposes into a product over all
time points t1, ...,tT and all n network components:

L = p(D | ω) =
T

∏
z=1

n

∏
i=1

1√
2πσi(tz)2

exp

[
− 1

2σi(tz)2 (hi(ω)− xi(tz))
2
]

(2.34)

Clearly, the independence and normality assumptions are a simplification. Noise on
x(t) will lead to correlated, non-normal noise on x(t + ∆ t). Furthermore, modeling
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errors will accumulate over time, and are certainly correlated. On the other hand,
the assumptions are probably reasonable for experimental noise, and clearly they are
a trade-off between model complexity/computational tractability and a detailed and
realistic model, and similar assumptions are frequently used in Bayesian learning
approaches.

If no prior knowledge is included into the learning process, an optimal parameter
vector ω can be computed by maximization of equation (2.34) with respect to ω .
This is known as maximum likelihood estimation (MLE):

ω̂MLE = argmax
ω

L (ω) (2.35)

In case all variances are equal, that is, σi(t) = σ for all i = 1, . . . ,n and for all
t = t1, . . . ,tT , ω̂MLE is equivalent to the result one gets when minimizing the sum
of squared errors between measurements and model predictions with respect to ω .
This is easily seen when taking the negative logarithm of (2.34), and dropping terms
independent of ω .

To include prior knowledge into the inference process, we use Bayes’ theorem
to compute the posterior probability distribution, that is, the conditional distribution
over the parameter vector ω , given the data:

p(ω | D) =
p(D | ω)p(ω)

p(D)
. (2.36)

Here, the right hand side includes a product of the likelihood L and the prior distri-
bution p(ω) over the model parameters. Maximizing equation (2.36) with respect to
ω once again leads to a point estimate for ω , this is known as maximum a-posteriori
(MAP) estimation:

ω̂MAP = argmax
ω

p(ω | D) (2.37)

When no prior information about the system under consideration is available, the
prior distribution p(ω) is often chosen to be an improper uniform distribution, and
ω̂MLE then equals ω̂MAP. In the following section, we will detail our choice of prior
distribution over model parameters.

2.6.1 Prior Distributions for Network Parameters

We now need to specify prior distributions for the model parameters si, γi, ki j, θi j

and mi j.
The parameters si and γi are basic synthesis and degradation rates for the network

components. Both parameters should neither become negative nor too large. We
therefore choose independent gamma distributions for these two parameters. The
gamma distribution is given by

g(x) =
arxr−1

Γ (r)
exp[−ax]. (2.38)
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Here, Γ (r) is the gamma function. The shape of the distribution depends on the
shape parameter r > 0. The parameter a > 0 determines the scale of the distribu-
tion. The smaller a, the more spread out is the distribution. The parameters a and
r must be carefully chosen depending on the numerical range of the experimental
measurements, and prior knowledge on synthesis and degradation rates can be in-
cluded through specific settings.

For the parameters ki j, a hierarchical prior distribution is used, which has specif-
ically been designed to favor sparse networks. Biologically motivated, most of the
ki j should be close to zero, and only few ki j should differ significantly from zero –
corresponding to only few significant edges in the network. This is achieved using
independent mean-zero normal distributions as prior distributions on ki j, with stan-
dard deviations distributed according to a gamma distribution. The idea here is that
most of the normal distributions should be concentrated strongly around zero in or-
der to keep the corresponding ki j small, and should only in few cases be allowed to
become wider, if the data indicates so. This expectation of narrow normal distribu-
tions is reflected by the gamma distribution on the standard deviations of the normal
distributions. Combining these two distributions and marginalizing over the standard
deviation s,

p(k) =
n

∏
i=1

∫ ∞

0
N (k|µ = 0,σ = s)g(s)ds, (2.39)

where

N (k|µ ,σ) =
1√

2πσ
exp

[
−1

2
(k− µ)2

σ2

]
(2.40)

is the normal density with mean µ and variance σ2.
When drawing samples from the distribution p(k), most of the values will be

small, since they stem from normal distributions with mean zero and a small vari-
ance. Figure 2.5 shows the distribution p(k) resulting from the integration (2.39) for
the two-dimensional case (n = 2). As can be seen, this prior favors solutions were
only one parameter ki is distinct from zero over solutions where both k1 and k2 differ

Fig. 2.5. The two dimensional hierarchical prior distribution with parameters r = 1 and a =
1.0001 for edge weights ki j
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significantly from zero. This is distinct from standard regularization schemes used
such as the L2 penalty, which would correspond to a Gaussian prior – and which
would give the same penalty to points at equal distance from the origin, independent
of the number of nonzero components. Note also that this prior is stronger than a
Laplace prior on k.

At this point, we remark that the choice of prior distribution on network parame-
ters clearly influences results of the computation, and it is not necessarily guaranteed,
that this reflects biological reality. This is a classical example of the bias-variance
tradeoff, where a stronger prior will lead to a stronger bias in learning, but less vari-
ance, and vice versa. In the setting of network learning described here, a strong prior
driving the network to sparse solutions is needed to avoid overfitting of the model,
this is discussed in more detail in [75], where we compare maximum likelihood and
maximum a-posteriori under various settings on simulated data.

We use fixed values for the exponents mi j and threshold parameters θi j for numer-
ical reasons, this corresponds to assuming a delta distribution on these parameters.
The reason for this decision is numerical instability of the optimization routine when
m and θ are optimized, and insufficient experimental data to learn these parameters
properly.

The negative logarithm of the posterior distribution (2.36) is then minimized
using conjugate gradient descent. Alternatively, one could sample from the posterior
distribution using a Markov chain Monte Carlo approach, work on this is presently
ongoing and will be published elsewhere. For technical details on both approaches
see [50, 51], where the same hierarchical prior distribution as the one used here on
the ki j is used in combination with a Cox regression model to predict survival times
of cancer patients from gene expression measurements.

2.6.2 Application to the Yeast Cell Cycle Network

In this section, we will show results of an application of the Bayesian approach
described above to a dataset on the yeast cell cycle. More details as well as an
additional evaluation of the method on simulated data can be found in [75].

The yeast cell cycle is one of the best studied eukaryotic regulatory systems.
A proper functioning of this regulatory mechanism is essential for the organism to
survive. Core elements of its machinery are highly conserved in evolution among
eukaryotes, making studies on a model organism such as budding yeast worthwhile,
as many results can be transfered to higher organisms. Many publications on the
yeast cell cycle exist, see, for example, [8].

We examined eleven genes from a publicly available dataset by Spellman et al.
[87], these genes are known to be central to the cell cycle [57]. The dataset contains
log ratios between synchronized cells and control experiments of the whole yeast
genome, approximately 6000 genes were measured several times during the cell
cycle, in total over 69 time points. The reference network we use for evaluation of
our results is a reduction of the network described in Li et al. [57].
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Results

Time series data of eleven genes was used, including cln1, cln2, cln3, clb5, clb6,
cdc20, cdc14, clb1, clb2, mcm1 and swi5. Measurements corresponding to nodes in
the reference network involving several genes were represented by the mean value
of the genes, missing values were estimated by linear interpolation over time. Con-
jugate gradient descent was used to fit the model to the data, with prior distribution
parameters a = 0.1 and r = 0.01 for the synthesis and degradation rates, and a = 5
and r = 1.7 for the prior on the ki j. Fixed values of θi j = 1 and mi j = 2 were used for
the threshold parameters and Hill coefficients of the ODE model. Since we expect
sparse solutions, the gradient descent was started near the origin, see [75] and [50]
for technical details.

To evaluate our results, we compared the inferred network structure with the
reference network. Figure 2.6 shows the reference network (left) and the network
inferred with the Bayesian approach (right). The 16 edges with highest weights are
marked in bold, continuous bold lines indicate true positives, dashed bold lines cor-
respond to false positives. Thin lines appear in the reference network, but are not
revealed in our approach. 12 of 16 regulations are true positives, the remaining four
interactions are not stated in the literature. Note that, in the latter case, it is not
clear whether there is no such regulation or whether it exists but has not been de-
scribed yet. The corresponding values for specificity, that is, the fraction of revealed
true regulations, and sensitivity, the fraction of true negatives, are 0.55 and 0.85,
respectively.

Receiver Operator Characteristics (ROC) curves can be used to assess the in-
ferred network structure more quantitatively. By using a cutoff value c on the weights
ki j and including only edges with |ki j|> c in the network, one can compute sensitivity
and 1− specificity. Sensitivity and 1− specificity can then be plotted against one an-
other for different cutoff values c, assuming that the reference network is the correct
underlying network. The resulting ROC curves provide a comprehensive overview
over all combinations of sensitivity and specificity that can be achieved with a given
model. ROC curves can further be summarized by computing the Area Under the
ROC Curve, the AUC. The AUC is a numerical value between 0.5 and 1, where
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Fig. 2.6. Regulatory network of the yeast cell cycle (left) (see [75] and [57]) and the network
inferred with the Bayesian approach (right). True positives are marked in bold, false positives
are marked with bold dashed lines, false negatives correspond to thin lines
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0.5 would be equivalent to guessing for each edge whether it is present or not, and
an AUC of 1 would correspond to a prediction with perfect sensitivity and speci-
ficity. We computed AUC values for our approach, the corresponding AUC value
is 0.68, indicating that the main regulatory interactions are revealed. The approach
outperforms maximum likelihood estimation, which yields an AUC value of 0.61,
showing that the sparsity constraint introduced through the prior distribution helps
the learning process.

Computational demands of the approach are comparable to demands of other
differential equations model approaches. For small networks with 5 to 10 nodes,
running times are typically in the range of a few minutes, depending on the number
of time points available. For large networks, the limiting factor is usually not com-
puting time, but insufficient amounts of data to reliably estimate parameters of the
differential equations.

2.7 Other Approaches

In this section, we will give an overview over models that go beyond ordinary dif-
ferential equations. We will focus on three further model classes, delay differential
equations (DDEs), partial differential equations (PDEs), and stochastic equations.
DDEs are used to account for time delays in regulatory mechanisms, which is of-
ten necessary when the system consists of reactions taking place at different time
scales. Spatial inhomogeneities within a cell are captured with PDEs, which contain
derivatives of time and space, and include, for example, diffusion processes. Unfor-
tunately, without further knowledge concerning diffusion coefficients and locations
of transcription and translation, it is not possible to learn parameters for such models
using only microarray data.

Stochastic equations try to model the stochastic nature of single reactions and
provide the most detailed level of description. Here as well, far more information is
needed than microarray expression data can provide. Thus, all three model classes
are not ad hoc suitable for the inference of large scale regulatory networks from
expression data, and have mostly been investigated only theoretically or used to
model very specific regulatory mechanisms so far. No “standard method” exists to
estimate parameters for these models, and we will therefore only point out some
basic concepts and difficulties with these models rather than give a recipe on how to
infer networks using them.

2.7.1 Delay Differential Equations

All modeling approaches discussed so far implicitly assume a local time dependence
and spatial homogeneity. To include transport processes into the model, time-delay
differential equations (DDEs) or partial differential equations (PDEs) are used (see,
e.g. [23, 29, 85]). This is particularly interesting for eukaryotic organisms, where
macromolecules such as mRNA have to be transported from one cell compartment
into another prior to translation, or proteins are produced somewhere in a cell and
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become active somewhere else. How important such factors may be can be seen from
recent reports indicating that the spatial distribution of proteins within a cell seems
to have an effect on the embryonic development in eukaryotes [29].

Active transport processes, which require energy and can be in opposition to the
concentration gradient, are modeled with DDEs of the form

ẋ(t) = f (x(t),xdelay(t)), (2.41)

with

xdelay(t) =
∫ 0

−∞
x(t − τ)G(x(t − τ))dτ. (2.42)

In these systems, the left hand side depends on the current state x(t) and the state
vector xdelay(t), which is a weighted integral over past states. The sum of the weights
is normalized, that is, ∫ 0

−∞
G(x(t − τ))dτ = 1. (2.43)

In the simple case where one can assume a fixed duration τ0 between binding of a
transcription factor to a binding site within a promoter of a gene and the effect it has
on the amount of protein, the distribution over weights can be modeled using a delta
distribution:

G(x(t − τ)) = δ (τ0) (2.44)

and hence ∫ 0

−∞
x(t − τ)G(x(t − τ))dτ = x(t − τ0). (2.45)

In equation (2.41), f : Rn ×C1 → Rn is a functional operator which maps n contin-
uously differentiable functions defined on R onto a vector in Rn. This makes DDEs
more difficult to analyze than ODEs, in which f : Rn → Rn is an ordinary function
which maps a vector x(t) onto another vector ẋ(t).

In order to solve equation (2.41), not only an initial state vector x(t0), but an
entire interval of initial data is required. Thus, the state space is infinite dimensional.
This also leads to infinitely many eigenvalues when linearizing the system in order
to analyze the behavior of steady states. The characteristic equation is not a simple
polynomial, but involves exponential functions. No standard method to solve such
equations exists, and stability analysis of steady states can be a hard task. In general,
not much is known about effects that are caused by time delays. Most work in this
field examines the stability of a steady state depending on time delays for a certain
system. Chen and Aihara [23], for example, consider an oscillating two-gene model
and claim that time delays increase the stability region of oscillations in their model,
making the oscillations robust against parameter changes. Santillán and Mackey [78]
built a model of the tryptophan operon in Escherichia coli, one of the prototypic gene
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control systems. They also included time delays into their nine differential equations,
and they estimated 28 parameters. Simulations were carried out numerically with a
fourth order Runge-Kutta method. A lot of specific knowledge about the operon
as well as steady state approximations were included into the parameter estimation
processes, hence the estimation method cannot ad hoc be generalized and used for
arbitrary organisms.

2.7.2 Partial Differential Equations

PDEs describe spatial inhomogeneities and diffusion processes and distinguish be-
tween different cell compartments, for example nucleus and cytoplasm [29]. The
corresponding differential equations consist of a sum of functions fi(x(t)), which
describe the regulatory network as in equation (2.16), and a term for the diffusion
process:

∂xi

∂ t
= fi(x(t))+ δi

∂ 2xi

∂ l2 , with 0 ≤ l ≤ λ , i = 1, . . . ,n. (2.46)

In contrast to ODEs, this equation contains derivatives with respect to both time
and space. The variable δi is the diffusion constant, and l is the position in the cell.
Boundary conditions such as

∂ 2

∂ l2 xi(0,t) = 0 and
∂ 2

∂ l2 xi(λ ,t) = 0 (2.47)

ensure that components stay within the cell.
The lack of appropriate analysis methods and missing experimental data pro-

viding information on transport processes make both DDEs and PDEs currently
inappropriate for the inference of regulatory networks from gene expression data.
Also little is known about “typical durations” of mRNA or protein transport, and data
about spatial distributions of cell components is only gradually becoming available
with recent developments in live-cell imaging techniques.

2.7.3 Stochastic Kinetic Approaches

Finally, a stochastic kinetics modeling approach provides the by far most detailed
level of description [29, 44, 85], but also has the highest computational cost [44].

Probabilistic models were developed to explain the observed variety in experi-
ments, in particular when the number of molecules is small [62]. In these models,
concentrations are discrete and change according to some probability distribution.
The probability of a system to be in state X at time t + ∆ t is given by

p(X ,t + ∆ t) = p(X ,t)

(
1−

m

∑
j=1

α j∆ t

)
+

m

∑
j=1

β j∆ t, (2.48)

see, for example [29]. Here, X is a discrete concentration vector and p(X ,t) is a
probability distribution. The term α j∆ t is the probability that a reaction j takes place
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in the time interval ∆ t, and the sum runs over all m possible reactions. The second
term is the probability that the system will be brought to state X from any other state
via a reaction j. Taking the limit ∆ t → 0 leads to the well known Master equation,
a first order differential equation that describes the evolution of the probability to
occupy a discrete set of states:

∂ p(X ,t)
∂ t

=
m

∑
j=1

(β j −α j p(X ,t)) (2.49)

Modeling gene regulatory networks with these equations requires much more
information than with ordinary differential equations since every single reaction is
considered. Moreover, the computational costs are very high since a large number
of simulations is needed to approximate p(X ,t) [44]. The Master equation can in
some cases be approximated with stochastic differential equations. These so called
Langevin equations assume that internal fluctuations cancel out on average, and the
system can be described by a deterministic ODE and a noise term. Numerical solu-
tions are obtained for these equations using Monte Carlo simulations. Alternatively,
a stochastic simulation approach provides information on individual behavior in-
stead of examining the whole distribution p(X ,t). Gillespie developed an efficient
algorithm to describe a spatially homogeneous chemical system with a stochastic
approach, the stochastic simulation algorithm [39], which is equivalent to the spa-
tially homogeneous Master equation. This algorithm was used by McAdams and
Arkin [65], who examined the influence of statistical variations during regulatory
cascades on cellular phenomena across cell populations, and by Arkin et al. [7], who
considered the influence of fluctuations in the rate of gene expression on the choice
between lytic and lysogenic growth in phage λ . The latter is the pioneering work on
the role of fluctuations in gene expression.

2.8 Conclusion

In this chapter, we have attempted to give an overview over a number of different
models used for gene regulatory network reconstruction. We started with simple bi-
nary models, which assume that each gene is in one of two possible states, expressed
or not expressed. We then extended the scope all the way to complex quantitative
models, which can capture kinetic properties of the chemical reactions underlying
gene regulation. All these models have their own specific strengths and weaknesses.
So, when faced with an actual biological system to be analyzed or simulated, what is
the appropriate model to use?

The answer is – it depends. It depends on the biological question we are interested
in, and it will also depend on the experimental data we have at our disposition or
can measure on the system considered. Furthermore, it will depend on the kind of
biological knowledge we already have on the system under consideration.
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There are three central questions that should be considered when choosing a
model. These are:

1. What do we hope to learn from the model?
2. How large is the system we need to model?
3. Do we have the right data, and is there additional knowledge we can use?

The first question asks for the ultimate objective driving our modeling attempts.
Occam’s razor is the principle to choose the simplest model that can explain the data
we have, and very similarly, we should choose the simplest model that can answer the
questions we ask. So, if our interest is in qualitative properties such as “Does com-
ponent j interact with component i in the network?” or “Do two components have
the same regulators?”, then qualitative models such as Boolean networks probably
provide the appropriate framework. If the questions are of a quantitative nature, such
as “What happens when changing the affinity of a transcription factor to a specific
binding site?” or “How does a change in concentration of component i affect the
dynamic behavior of the system?”, then obviously quantitative models are required.

At the same time, one should be highly alert to the complexity of the modeling
task. This brings us to the second question above. Large genetic systems are ex-
tremely difficult to model, and extrapolating a detailed differential equations model
for a single gene with its several kinetic parameters to larger systems will quickly
render the model prohibitively complicated [16]. The sheer quantity of parameters
in such models will make their application impossible to networks involving more
than just a few genes. So, there also is a tradeoff here. When the complexity of the
biological system modeled is low, thus single genes or only few genes are of interest,
computer modeling can go into much detail and quantitative differential equation
models or even stochastic molecular simulations are feasible, permitting simulations
of detailed single gene dynamics and time courses of gene activity. On the other
hand, when mid-size to large genetic networks are desired, models must focus on
less detail and concentrate on the overall qualitative behavior of the system. This
may still allow inference about the state dynamics of a system in terms of a flow
pattern grasping the qualitative aspects of state transitions, but quantitative models
for the entire system are usually impossible, simply because of the lack of sufficient
data to estimate all parameters in those models.

In our experience, differential equations models quickly reach their limit when
more than a handful of genes are modeled, and while additional constraints such
as the sparsity constraint introduced in Section 2.6 can extend the feasible network
size slightly, these approaches are not useful for large-scale network inference with
several hundred to thousands of components. However, they provide a very detailed,
quantitative model for small networks. Bayesian networks permit slightly larger net-
work models, but here too, one needs to be cautious about overfitting and insufficient
data when more than a few dozen genes are modeled. Boolean models and relevance
network approaches finally permit the largest number of genes to be included in net-
work models, and application involving thousands of genes have been reported, see,
for example, [21]. It remains to be seen how reliable such large-scale networks are.
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For a numerical evaluation and comparison of different approaches on simulated data
see, for example, [9].

This brings us to the third question, concerning the available data for the mod-
eling task. The large bulk of work on transcriptional network reconstruction has
concentrated on deterministic, coarse-grained models. Even when quantitative mod-
els are used, the conclusions drawn from them are usually of a qualitative nature.
This is mainly due to the incomplete knowledge on the chemical reactions underly-
ing gene regulation, and the lack of detailed kinetic parameters and concentration
measurements required for these models [29]. Often, the lack of suitable data is
the limiting factor in network inference. However, this can sometimes be allevi-
ated by the inclusion of additional biological knowledge in the learning process.
For example, if information on transcription factor binding sites is available, this
may be used to reduce the search space for model topologies. The inclusion of such
prior knowledge is an ongoing research problem. If quantitative data of good quality
is available, maybe supported by additional data sources such as measurements of
kinetic parameters and prior biological knowledge on interactions in the network,
detailed quantitative models are often feasible [7].

Even though large scale techniques such as DNA microarrays can provide
genome-wide expression measurements, microarrays provide effectively only more
or less qualitative data at present. In addition, they measure many genes under few
different conditions or time points, whereas for network inference, one would rather
have few (relevant) genes under many conditions and time points.

However, this data bottleneck can reasonably be expected to be relieved in the
near future. With the advent of novel experimental techniques to measure RNA
and protein concentrations, accompanied by large databases providing access to this
and other published and unpublished data, quantitative models will increasingly be
used in the future, bringing us closer to the ultimate goal, the simulation of whole
cells [97].
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Summary. Recent publications illustrate successful applications of belief networks1 (BNs)
and related probabilistic networks in the domain of bioinformatics. Examples are the model-
ing of gene regulation networks [6,14,26], the discovering of metabolic [40,83] and signalling
pathways [94], sequence analysis [9, 10], protein structure [16, 28, 76], and linkage analy-
sis [55]. Belief networks are applied broadly in health care and medicine for diagnosis and
as a data mining tool [57, 60, 61]. New developments in learning belief networks from het-
erogeneous data sources [40, 56, 67, 80, 82, 96] show that belief networks are becoming an
important tool for dealing with high-throughput data at a large scale, not only at the genetic
and biochemical level, but also at the level of systems biology.

In this chapter we introduce belief networks and describe their current use within bioin-
formatics. The goal of the chapter is to help the reader to understand and apply belief networks
in the domain of bioinformatics. To achieve this, we (1) make the reader acquainted with the
basic mathematical background of belief networks, (2) introduce algorithms to learn and to
query belief networks, (3) describe the current state-of-the-art by discussing several real-world
applications in bioinformatics, and (4) discuss (free and commercially) available software
tools.

The chapter is organized as follows. We start (in Section 3.1) with introducing the concept
of belief networks. Then (in Section 3.2) we present some basic algorithms to infer on belief
networks and to learn belief networks from data. Section 3.3 is dedicated to a (non-exhaustive)
range of extensions to and variants of the standard belief-network concept. We continue (in
Section 3.4) by discussing some techniques and guidelines to construct belief networks from
domain knowledge. Section 3.5 reviews some recent applications of belief networks in the
domain of bioinformatics. In Section 3.6 we discuss a range of tools that are available for
constructing, querying, and learning belief networks. Finally, (in Section 3.7) we provide a
brief guide to the literature on belief networks.

1Many names have been used in the literature for this concept: Bayesian Networks,
Bayesian Probability Networks, Probability Networks, Directed Graphical Models, and Belief
Networks. In this chapter we use the latter name only.
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3.1 An Introduction to Belief Networks

Belief networks represent probabilistic relations between a (finite) set of variables.
These variables can include observations, diagnoses, hidden causes, and so on. The
variables can have binary domains (e.g., “yes”, “no”), discrete domains (e.g., “A”,
“C”, “G”, “T”), or continuous domains (e.g., gene expression level). A belief network
on variables X1, . . . ,Xn is a compact representation of the joint probability distribu-
tion P(X1,X2, . . . ,Xn). Assume we observe evidence ek for variable Xk, i.e., Xk = ek,
then the belief network can be used to compute the beliefs in unobserved variables,
which is the conditional probability of the unobserved variables given the evidence:
Bel(Xi = xi) = P(Xi = xi|Xk = ek). When additional evidence (Xm = em) is added to
the network, the beliefs in variables can be updated: Bel(Xi = xi) = P(Xi = xi|Xk = ek,
Xm = em).

In the general case, the update of beliefs (also called inference) is a computation-
ally challenging task. Two marginal probabilities have to be determined, which in
the case of discrete domains (denoted by D(Xj)) equals to computing the following
sums of joint probabilities (we write P(xi) for P(Xi = xi)):

P(xi|ek) =
P(xi,ek)

P(ek)
=

∑ . . . ∑
x j∈D(Xj), j �=i, j �=k

P(x1, . . .xn,xi,ek)

∑ . . . ∑
x j∈D(Xj), j �=k

P(x1, . . .xn,ek)
. (3.1)

This requires summing up in the order of |D(X1)|× |D(X2)|× . . . |D(Xn)| probabili-
ties, which is exponential in the number of variables.

3.1.1 Belief Networks Defined

The crux of belief networks is that the computation of marginals can be speeded up
considerably by using conditional independencies that might exist between variables.
Variables X and Y are said to be independent given a set of variables Z (indicated by
X⊥⊥Y |Z) if P(X ,Y |Z) = P(X |Z)P(Y |Z), or equivalently, P(X |Y,Z) = P(X |Z).

A belief network on a set of variables X = {X1, . . . ,Xn} consists of two parts.
The first part is a directed graph G in which each variable Xi is represented by a node
(also indicated by Xi) and in which the arrows represent conditional independencies
as follows. If Pa(Xi) is the set of parent nodes of Xi then Xi is independent of all other
variables given Pa(Xi):

∀Xj ∈ X \Xi ∪Pa(Xi) : Xi⊥⊥Xj|Pa(Xi). (3.2)

These conditional independencies, the Markov blanket, can be used to reformu-
late the joint probability distribution. Given the chain rule of probability P(X1,
X2, . . . ,Xn) = ∏i P(Xi|X1, . . .Xi−1) and the definition of conditional independence,
the joint probability reduces to:

P(X1, . . .Xn) = ∏
i

P(Xi|Pa(Xi)), (3.3)
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provided that the graph G is acyclic. It means that instead of knowing the whole
probability distribution explicitly, it is sufficient to know conditional probabilities
of each node in the network, given its parents. In case a node X does not have any
parents, these conditional probabilities are the priors P(X = x) of variable X .

This brings us at the second part of a belief network: to every node X in a
belief network, a local probability distribution P(X |Pa(X)) is connected. In case
of discrete variables, this will be a distribution represented by a probability table.
In case of continuous variables, it might be a multidimensional gaussian. The local
probability distributions have two advantages. Not only is it easier to elicit or learn
local probabilities than global joint probabilities, we will also see in the next section
that inference algorithms can make use of local distributions to reduce computation
time.

3.1.2 Belief Network Example

Figure 3.1 gives an example of a small belief network with three binary variables A,
B, and C. The leftmost table gives the values of a joint probability distribution over
the three variables. This distribution contains the independency C⊥⊥A|B. We can
see, for instance, that P(C = T |A = T,B = T ) = 0.014

0.014+0.006 = 0.7 is equal to P(C =
T |B = T ) = 0.014+0.28

0.014+0.006+0.28+0.12 = 0.294
0.42 = 0.7, so P(C|B,A) is equal to P(C|B) and

therefore P(A,B,C) is equal to P(A)P(B|A)P(C|B). The simple graph represents the
conditional independency of C and A given B by the absence of a link between nodes
C and A. The three smaller tables in the figure represent the probability tables of node
A, B and C respectively.

The example at the left side of Fig. 3.1 shows that the graphical structure of
a belief network represents conditional independencies. However, there might exist
additional conditional independencies in the distribution that are not represented by
the graph structure. It means that it is possible to derive several belief networks from
the same joint probability distribution that are all correct representations but use
different conditional independencies. An argument to prefer one of these equivalent
networks over another is to require that the arrows also have a causal meaning. In
a causal belief network, the parents of a node are interpreted as the direct causes of
the variable. When in the example of Fig. 3.1, A represents “haplotype”, B “protein

A B C P(A,B,C)
T T T 0.014
T T F 0.006
T F T 0.036
T F F 0.144
F T T 0.280
F T F 0.120
F F T 0.080
F F F 0.320

A P(A)
T 0.2
F 0.8

A B P(B|A)
T T 0.1
T F 0.9
F T 0.5
F F 0.5

B C P(C|B)
T T 0.7
T F 0.3
F T 0.2
F F 0.8

A

B

C

Fig. 3.1. An example probability distribution and a Belief network representing it
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A P(A)
T 0.2
F 0.8

A C B P(B|C,A)
T T T 0.014
T T F 0.036
T F T 0.006
T F F 0.144
F T T 0.280
F T F 0.080
F F T 0.120
F F F 0.320

A C P(C|A)
T T 0.25
T F 0.75
F T 0.45
F F 0.55

B
A

C

Fig. 3.2. Another belief network representing the distribution of Fig. 3.1

type”, and C “phenotype”, then the network would model a causal chain between
gene and body.

The probability distribution in Fig. 3.1 could alternatively be modeled in a cor-
rect way by the network in Fig. 3.2. Here, the arrow between B and C is reversed
and an arrow between A and C is added. This has the effect that the network does
not explicitly represent the conditional independency between A and C anymore.
Moreover, the network has lost its causal meaning.

3.1.3 D-Separation

A belief network represents (many) more conditional independencies than the ones
that are obvious from the child-parent relations. One can use d-separation to find
all conditional independencies that can be deduced from the structure of a belief
network. Namely, when nodes X and Y are d-separated by a set of nodes Z, then
X and Y are conditionally independent given Z. D-separation is based on blocking
undirected paths between X and Y . An undirected path p between X and Y is blocked
by a set of nodes Z if:

1) p contains a chain i → z → j such that z ∈ Z;
2) p contains a fork i ← z → j such that z ∈ Z;
3) p contains a collision i → e ← j such that neither e nor any of its descendants are

in Z.

If all possible paths between X and Y are blocked by Z then Z d-separates X from
Y and, hence, X⊥⊥Y |Z. The third demand for blocking a path is the least intuitive.
It can be explained as follows. If two variables A and B influence the same third
variable C, then as long as we do not know anything about the combined effect,
the two variables A and B are independent. As soon as we know the effect on C, the
independency between A and B is lost. If we know that two defect genes can cause
the same disease, then knowing the state of one gene does not change our knowledge
on the other gene, when we do not know whether the disease occurred. As soon as
the disease is observed, however, evidence that the first gene is defect will lower our
belief of the second gene being defect as well.
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3.1.4 Local Probabilities

As stated, each node Xi in a belief network carries a conditional probability function
P(Xi|Pa(Xi)). When a node has many parents, the number of parameters in this func-
tion can be large. In the case of discrete variables, the size of the table is exponential
in the number of parents, and it might be difficult to assess all probabilities sepa-
rately. There are two ways to overcome this problem. The first way is to introduce
intermediate variables that might model the relation between the parent nodes on a
more precise and detailed level. The intermediate nodes are inserted between parents
and child (divorcing parents). Although this produces more nodes and more tables,
the size of the tables can be much smaller, leading to a considerably lower number
of probabilities to be assessed.

The second way is to restrict the parameter space of the probability function
P(Xi|Pa(Xi)). This has the advantage of an easier assessment and more efficient
inference and learning algorithms. However, the approach might lead to an over-
simplified belief network. An example of parameter reduction is the noisy OR [69].
In this model, a binary variable D has common causes C1, C2, . . .Cn, each repre-
sented by a binary variable. When any of the Ci’s is true, then D is true, unless some
inhibitor Qi prevents it with probability qi (so P(D = F |Ci = T ) = qi). The main as-
sumption is that all inhibitors Qi are independent: P(D = F |C1, . . . ,Cn) = ∏Ci=T qi.
It means that for n parents, only n parameters, qi have to be assessed instead of 2n

parameters. Variants of this model are the noisy AND, and the generalized noisy OR,
which is defined for multivalued variables.

Another example of parameter reduction is to exploit context-specific indepen-
dencies (CSI) [11] to reduce the number of parameters. It is based on the observation
that conditional independencies between X and Y given Z might occur only when
some other variable C has a given value c. For example, only for females, there is
a dependency between age and newborn health; for males these variables are inde-
pendent (see Fig. 3.3). These context-specific independencies can be derived from
a probability table and can be used to transform the table into a compact tree. The
nodes in this conditional probability tree represent the parent variables, the edges
represent the states of these variables, and the leaves represent the conditional proba-
bilities. When CSIs are present, the number of leaves in the tree will be smaller than
the number of entries in the original table. In Fig. 3.3 there are only 6 probabilities
in the tree, whereas the full table would contain 8 probabilities.

Fig. 3.3. Conditional probability tree example. The variable ‘Newborn health’ has values
‘good’ and ‘bad’
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3.1.5 Markov Random Fields

Belief networks are not the only way to represent a joint probability network as a
graph. A closely related graphical model is the Markov Random Field or Markov
Network [41]. Similar to belief networks, every variable Xi is represented by a node
in the graph. But in this case, the nodes in the graph are connected by undirected
edges. Let adj(Xi) be all the nodes that are adjacent (i.e., directly connected) to Xi,
then the edges in a Markov field are placed in such way that:

∀Xj ∈ X \Xi ∪adj(Xi) : Xi⊥⊥Xj|adj(Xi). (3.4)

so, adj(Xi) acts as the Markov blanket of Xi, just like the parents of a node in a belief
network. In contrast to belief networks, there are no conditional probability functions
connected to nodes. Instead, each clique k ∈ K (a fully connected subset of nodes)
in the graph is provided with a potential φk(·), which assigns a non-negative real
value to all combinations of values of nodes X ∈ k (indicated by X{k}). As a result
of the Hammersley-Clifford theorem (see [41]), these potentials partition the joint
probability as follows.

P(X1, . . .Xn) =
1
Z ∏

k∈K

φk(X{k}), (3.5)

where Z is a normalization constant.
Markov Random Fields represent different dependencies and independencies

than belief networks. For instance, they can represent circular dependencies between
variables. The undirected graph approach is also useful in the cases in which direc-
tion of influence has no meaning, for instance when variables represent pixels in an
image or atoms in a protein molecule. In the clique-tree algorithms we describe in
the next section, belief networks are transformed into equivalent Markov fields. A
complication is that, in general, inference in Markov Random Fields is harder than
in belief networks. These transformations, however, are performed in a careful way
such that inference is in fact improved.

3.2 Basic Algorithms for Belief Networks

In Section 3.1 we explained that querying BNs (i.e., computing marginal probabil-
ities) is in general exponential in the number of variables. The (sparse) structure of
belief networks, however, allows for efficient algorithms. In Section 3.2 we discuss
several exact inference algorithms, such as the polytree and junction-tree algorithms.
In large, dense, or loopy BNs, however, these exact algorithms might be inapplicable
or not sufficiently efficient. We therefore also treat approximate inference algorithms
such as Gibbs sampling.

As will be shown below, BNs do not need to be constructed by hand. It is possible
to learn them from available data. Since Belief Networks can incorporate causal rela-
tions, they can be used to discover causalities from data and to estimate the strength
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of causal relations. In this section we discuss two groups of learning algorithms.
The first group concentrates on learning the probabilities for a given Belief Network
structure. The second group learns the probabilities as well as the structure of the
network.

3.2.1 Querying Belief Networks

A belief network can be used to answer several types of questions. The most well-
known type of query is the belief update: what is the probability of nodes X given the
evidence entered in nodes E? Nodes X are called the query nodes and E the evidence
nodes. In the descriptions of the inference algorithms below we will emphasize this
type of query.

A second type of query is to obtain the most probable explanation (MPE):
given evidence E , what combination of values for all other variables X = X \E
has the highest probability? In other words find: argmaxX P(X |E). Since in this
query, only maximum probability is requested, the inference algorithms require less
computations.

When we are only interested in the maximum-probability value of a subset
of nodes, it is called a maximum aposteriori hypothesis or MAP query. So find:
argmaxY P(Y |E), where Y ⊂ X \E . This problem is in fact harder than MPE, since it
is not sufficient to calculate with maximum probabilities alone. Note that a MAP
query cannot be answered simply by performing an MPE query, since variables
outside Y are not fixed to their maximum probability values.

3.2.2 Exact Inference by Bucket Elimination

We will discuss four different algorithms for exact inference (belief update) in belief
networks. The first algorithm is called Bucket Elimination [27]. The basic idea of the
algorithm is to eliminate one by one all nodes from the belief network, that are not
involved in the query or evidence nodes. During elimination, probability tables are
changed by a process called marginalization.

Assume we have a joint probability distribution P(A,B), then P(A) can be com-
puted by marginalizing out B as follows: P(A = ai) = ∑ j P(ai,b j). This process can
be notated as: P(A) = ∑B P(A,B). Now, every time a node X is eliminated from the
belief network, all probability tables in which X appears are combined in a large
table. Then from this table, X is marginalized out. At the end, only a table contain-
ing the query and evidence nodes remains, from which the required answer can be
computed. For instance, when we want to compute the probability of P(A|e) in the
network of Fig. 3.4, we have to compute:

P(A,e) = ∑
B,C,D,E=e

P(A)P(B)P(C|A,B)P(D|B)P(E|C,D). (3.6)
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Fig. 3.4. Example belief network with five variables

When we order the variables, say alphabetically, we can rearrange the summations
as follows into five buckets:

P(A,e) = P(A)∑
B

P(B)∑
C

P(C|A,B)∑
D

P(D|B) ∑
E=e

P(E|C,D). (3.7)

First we marginalize E = e out of bucket P(E|C,D), which produces a new bucket,
φE(C,D), a table of probabilities:

P(A,e) = P(A)∑
B

P(B)∑
C

P(C|A,B)∑
D

P(D|B)φE(C,D). (3.8)

This table is multiplied with P(D|B) and the resulting table is marginalized for D,
resulting in bucket φD(B,C):

P(A,e) = P(A)∑
B

P(B)∑
C

P(C|A,B)φD(B,C). (3.9)

After repeating this process for C, producing φC(A,B), and C, producing φC(A),
we obtain P(A)φC(A), which after multiplication and normalization produces the
requested probabilities for A.

The advantage of this procedure is that in the example we never dealt with tables
having more than three variables at a time. The size of the tables, and therefore the
complexity of the algorithm, however, depends on the order of the nodes at the start.
Using graph-theoretical manipulations (see below), a perfect elimination ordering
can be computed that minimizes the bucket sizes that occur during the elimination
procedure. A disadvantage of bucket elimination is that all computations have to start
over at the moment the updated beliefs of another variable have to be inspected or
new evidence is entered into the network.

The well-know peeling algorithm for linkage analysis (see Subsection 3.5.4) is
in fact an instance of bucket elimination.

3.2.3 Exact Inference in Polytrees by Belief Propagation

The main idea behind Pearl’s belief propagation [69] is to reduce the number of
recomputations needed for new queries. When evidence is entered into the belief
network, the belief at all nodes is updated, so all nodes can be inspected without
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recomputations. In the algorithm, the nodes in a belief network act as if they are
autonomous agents, each one keeping track of the own beliefs. When evidence is
provided to a node’s agent, which changes it beliefs, it sends messages to child and
parent nodes containing information on how the belief is changed. The receiving
agents adapt their beliefs using the incoming messages and propagate information
further through the network. The size of the messages is bounded by the size of the
local probability tables.

The algorithm can be used on any belief network, but only when the network
does not contain undirected cycles, the algorithm can be proven to converge in time
linear to the diameter of the graph. A belief network without undirected cycles is a
polytree. This induces a special property: every node d-separates all its descendants
from all its ascendants.

Pearl’s algorithm uses two types of messages: π-messages contain evidence from
the ascendant nodes and are sent from parent to child; λ -messages contain evidence
from descendent nodes and are sent from child to parent. Let E+ be the evidence
in the ascendants of node X and E− the evidence in the descendants. The incoming
π-messages are used to compute π(X) = P(X |E+), and the incoming λ -messages
to compute λ (X) = P(E−|x). These can be combined to compute the updated belief
P(X |E):

P(X |E) = P(X |E+,E−) =
P(E+,E−|X)P(X)

P(E)
(3.10)

=
P(E+|X)P(E−|X)P(X)

P(E)
=

P(E+)
P(E)

P(E−|X)P(X |E+) = απ(X)λ (X),

where α is a normalization constant and is equal to (∑X π(X)λ (X))−1. Formula
(3.10) is based on Bayes’ theorem and on the polytree structure which renders E+
and E− independent, given X . The values for λ (X) are computed by multiplying all
incoming λ -messages, π(X) is computed by multiplying all incoming π-messages
with P(X |Pa(X)) and marginalizing X from the product. The value of π(X) can only
be computed when all incoming π-messages have arrived, and λ (X) when all λ -
messages have arrived. When evidence is provided to a node, both π(X) and λ (X)
messages are equal to the evidence. Nodes without parents have π(X) = P(X) and
nodes without children have λ (xi) = 1.

Messages are sent by a node X in two cases only: (1) π(X) is known and all
parents of X , except Y , have sent λ -messages to X . In this case a π-message is sent
to Y . (2) λ (X) is known and all children of X , except Z, have sent π-messages to
X . In this case a λ -message is sent to Z. The computation of π-messages πX→Y (X)
is straightforward: multiply π(X) with all received λ -messages and normalize. The
computation of λ -messages requires more work. First, all π-messages are multiplied.
Then this product is multiplied by P(X |Pa(X)). From the product all parents except
Z are marginalized out. It is multiplied by λ (X) and then X is marginalized out too,
resulting in a function λX→Z(Z).
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Since polytrees contain at least one leaf node (having only one adjacent node),
there is always a node at the beginning that can start passing a message. Now Pearl’s
algorithm basically consist of the following six steps:

1. initialize π(X) and λ (X) for all evidence and leaf nodes.
2. for all nodes: if possible and not done already, send π or λ message.
3. for all nodes: if all π-messages have arrived, compute π(X), if needed.
4. for all nodes: if all λ -messages have arrived, compute λ (X), if needed.
5. proceed with step 2 until π(X) and λ (X) are known for all nodes.
6. Compute P(X |E) = απ(X)λ (X) for all nodes.

It is clear that most effort is put in the computation of π(X) and in λ -messages.
These operation require summarizations of P(X |Pa(X)). The efficiency of Pearl’s
algorithm is determined by the maximum size of these conditional probability tables.

When Pearl’s message-passing algorithm is applied to general belief networks,
or even belief networks that have directed cycles, the algorithm is not guaranteed
to converge. However, it can be applied as an approximative inference algorithm. In
the next section we will see that message-passing can be used efficiently in general
belief networks too.

3.2.4 Exact Inference by Clique-Tree Belief Propagation

When we look closer at the process of bucket elimination, we can see that the buckets
produced during the process in fact form a tree structure. Now instead of recomputing
and destroying the buckets every time we have a new query, we could first construct
the whole tree of buckets and then use a Pearl-like message-passing algorithm to
propagate belief updates in this tree. The resulting algorithm is called clique-tree
belief propagation [54, 84], but also the names junction-tree or join-tree are used
frequently.

Since the computation of messages in the belief-propagation algorithm depend
on the size of the probability tables, it is important to keep the buckets as small as
possible. This is achieved in a series of graph-theoretical transformations, that are
also known in, for instance, database theory for optimizing query graphs (hence the
name “join-tree”).

The first step is to transform the belief net in an equivalent Markov Random
Field. This is done by moralizing the graph: all arrows are transformed into undi-
rected links, and every pair of parents that are not connected directly in the belief
network, are linked together. This produces the moral graph of the belief network.
The second step is to triangulize the moral graph, which means the addition of so
many links to the graph that no cycles of size four or larger exist that have no ad-
ditional links (chords) between their nodes. The cliques in this triangulated graph
are in fact the buckets that exchange the belief-propagation messages. Each clique C
receives a potential φC such that P(X1, . . . ,Xn) = ∏C φC.

A graph can be triangulized in many ways, resulting in different clique sizes.
Finding a good triangulation is equivalent to finding a good node elimination order
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in bucket elimination. Although this problem is NP-complete, there exist algorithms
that find an optimal elimination order in reasonable time. For instance, the program
HUGIN uses such an algorithm [4].

When the graph is triangulized, a clique tree is constructed. This is a tree in
which the nodes represent the cliques Ci of the graph. The cliques are connected
into a tree in such a way that if there is a path from clique Ci via Cj to Ck, then
Ci∩Ck ⊆Cj . Every clique C in the tree receives a potential φC. Moreover, every node
X in the belief network is assigned to a clique CX that contains both X and Pa(X).
The potentials φC are obtained by multiplying P(X |Pa(X)) for all nodes X assigned
to this clique. If a clique C happens to have no node assigned to it, its potential is
equal to 1.

The construction of the clique tree and computation of the potentials is called the
compilation of the belief network. A belief network has only to be compiled once.
Evidence is fed into the clique tree and belief updates are also done on the clique
tree. Only when the belief network is changed by altering the structure or changing
conditional probabilities, the network has to be recompiled.

Entering evidence and belief propagation in a clique tree is very similar to Pearl’s
algorithm. First, the tree is rooted, so that each node has a unique parent. Each
node in the tree then sends λ messages to its children, and sends one π message
to its (unique) parent. From the collected messages, the update belief potential ψC

is computed at each clique C. The beliefs for the nodes X are finally computed by
marginalizing ψC of the clique to which X was assigned.

There are several options for the order in which the messages are sent and the
precise intermediate information that is stored, but the basic principle as we de-
scribed above remains the same. The complexity of the algorithm is determined by
the maximum clique size of the triangulated graph. In the worst case, this is the whole
graph (in fact, belief propagation is NP hard [17]). Fortunately, many belief networks
possess such a structure that exact belief propagation can be performed efficiently.

3.2.5 Exact Inference by Arithmetic Circuits

The final exact inference method we discuss is based on the observation that the
computations that are needed to compute P(X |E) can also be represented by a sin-
gle polynomial [23, 24]. When we use abbreviation φX |Pa(X) for P(X |Pa(X)), and
λxi as evidence indicators for X , then the following formula represents the network
polynomial:

f = ∑
x

∏
i

λxφxi|Pa(xi). (3.11)

The summation has to be interpreted as the sum over all possible assignments to
variables X. In the case of Fig. 3.1, the polynomial is equal to:

f = λaλbλcφaφb|aφc|b + λaλbλc̄φaφb|aφc̄|b + · · ·+ λāλb̄λc̄φāφb̄|āφc̄|b̄, (3.12)

where we use ā for A = F . Queries on the belief network such as P(X |E) can
be translated into computations on this polynomial. The first observation is that
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P(E) = f (E), for evidence E . The evidence is first translated in setting the appropri-
ate λ -values to 1 or 0 and then these values are substituted in the polynomial f . The
second observation is that P(X |E) can be computed as a partial derivative of f :

P(X = x|E) =
1

f (E)
∂ f (E)

∂λx
. (3.13)

Direct computation of f and its partial derivatives is at least as complex as bucket
elimination or clique-tree propagation. The advantage of the approach is that poly-
nomials such as f can be compiled into an efficient arithmetic circuit on which the
computations can be performed much faster. An arithmetic circuit over a set of vari-
ables V is a rooted directed acyclic graph in which the leaves contain variables in V or
constants and in which the inner nodes contain either multiplication or addition oper-
ators. Evaluating an arithmetic circuit is straightforward. It consists of first fixing all
variables to a value and then propagating the values upwards from the leaves to the
root, via the multiplication and addition nodes. Computing a partial derivative is also
possible, but it requires two passes through the network. The upward pass is linear
in the number of edges in the graph, the downward pass involves more computations
and its complexity depends on the maximum number of child nodes.

For every polynomial, several equivalent circuits can be constructed. Since the
structure and size of the circuit determines the complexity of computations, it is
important to find a minimal arithmetic circuit. It appears that such a circuit can be
computed using propositional logic. It requires three steps. (1) The polynomial is
encoded into a propositional theory. (2) The theory is compiled into a boolean net-
work with special properties. (3) The boolean network is decoded into an arithmetic
circuit.

The advantage of arithmetic circuits is that they can make efficient use of regular-
ities in the structure of a belief network and inside the probability tables. Moreover,
the circuits allow types of queries that are computationally demanding in message-
passing algorithms, such as queries concerning sensitivity analysis. A limitation of
the approach is that it can only be applied to discrete variables.

3.2.6 Approximate Inference by Sampling

When a belief network is too large, or has a too large clique size to allow exact
inference, it is possible to apply methods that approximate updated beliefs.

The simplest way of approximate inference is called forward sampling. In this
approach, the nodes are first ordered topologically (parents come before children).
Then for each root node X , with probabilities P(X = xi), a random number p is drawn
uniformly from the interval [0,1]. If p > ∑1≤ j<i P(X = x j) and p≤ ∑1≤ j≤i P(X = x j),
X is set to value xi. For nodes with parents, sampling takes place according to the
conditional probability P(X |Pa(X)) and the already sampled values of the parents.
When all nodes in the network are sampled this way, a counter for each of the
selected values per node is increased by one. Then sampling starts all over at the
root nodes. The procedure is continued until enough samples are drawn to allow an
approximation at the requested level of confidence.
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There are two problems with forward sampling: when probabilities are close to
zero, many samples are needed for a reliable approximation. Moreover, what to do
with evidence? It is possible just to skip samples that do not agree with the evidence,
but that can be extremely inefficient.

The second problem can be tackled by applying Gibbs sampling [68]. In this ap-
proach, first one node is selected at random and then a new value for this node is
sampled, based on P(X |Pa(X)) and the values that the parent nodes have at the mo-
ment. This is repeated for all nodes in an arbitrary order. After the samples, the counts
for all values are updated and a new sample round starts. Nodes that bare evidence
are not selected for re-sampling. To start off Gibbs sampling, a start value has to be
provided to all nodes. When the start configuration is not representative for the belief
network, it can take a long time before a reliable approximation is reached, and un-
fortunately, it is difficult to predict how many samples are needed exactly. Moreover,
it is possible to get trapped in a local minimum.

Many techniques have been developed to increase the efficiency of sampling in
belief networks, such as importance sampling, or other methods inspired on Monte-
Carlo Markov Chain (MCMC) sampling (e.g., blocked Gibbs sampling [89]). In
general, efficient sampling is NP-hard, but for certain restrictions on probabilities
and certain network structures, optimal sampling is possible.

3.2.7 Parameter Learning

An important feature of belief networks is that they can be learned from observed
data. Learning a belief network can be separated in two cases: (1) given a belief net-
work structure, learn the conditional probabilities (this is called parameter learning)
and (2) given a set of variables and a set of observed values, learn the structure and
the parameters of the most probable belief network. The latter is called structure
learning although parameters are learned at the same time.

We can also make a second distinction. The data from which structure and/or
parameters have to be learned can be complete (meaning that for all instances the
value of all variables is observed) or can involve missing data. The second case can
include variables that are sometimes unobserved or hidden variables that are never
observed.

The case of parameter learning with complete data is straightforward. It has
been proven that the maximum-likelihood estimator θ̂ for the conditional probability
P(X = xi|Y1 = y1,Y2 = y2, . . . ,Yn = yn) is equal to:

θ̂ =
#(xi,y1,y2, . . . ,yn)

∑ j #(x j,y1,y2, . . . ,yn)
. (3.14)

So it is sufficient to count the number of occurrences in the data for each value of
X for all possible configurations of X ’s parents. In the case that data is missing,
this straightforward approach is not suitable anymore. A possible way to handle
(randomly) missing data is expectation-maximization (EM) [35]. In this procedure
an expectation step is alternated with a maximization step until a satisfactory result
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is achieved. In the E-steps, the total counts #(·) for variables with missing data are
estimated, based on the current θ̂ ’s and the observed data. In the M-steps, new values
for all θ̂ ’s are computed, based on the new counts.

For small data sets, a bayesian learning approach might be more appropriate than
maximum-likelihood estimation. It means learning the posterior probability distribu-
tion of the parameters, given the data. In practice, bayesian learning can be performed
by adding nodes representing the parameters themselves to the network, and using
standard belief-network inference to determine their distributions [18, 79, 87].

3.2.8 Structure Learning

In this subsection we will concisely summarize the different techniques that exist for
learning a belief network structure from data. A detailed summary of the differences
of those methods can be found in [22, 48]. The existing techniques are arranged
around two main approaches: (1) scoring-based methods [43] and, (2) constraint-
based methods [88]. Hybrid methods [1,25], also exist but we do not further discuss
them here.

In scoring-based methods the goal is to find the graph that best matches the data
by first introducing a scoring function that evaluates each network with respect to the
data, and then searching for the best network according to this score. A good example
of such is the application of the STAGE algorithm of Boyan [12]. A neighborhood
structure over graphs is defined and the searching is done via a heuristic search
method such as hillclimbing, through this space of graphs. Some commonly used
scores are the Bayesian scoring metric [19], and the minimum description length
(MDL) principle [52].

Instead of searching in a space of directed acyclic graphs, it is also possible to
look for graphs that have directed as well as undirected edges. The undirected edges
represent situations in which the direction of the arrow is irrelevant for the struc-
ture since the graph is equivalent in either case. So, these graphs form equivalence
classes of directed graphs. Using equivalence classes reduces the graph search space
considerably.

In constraint-based methods one tries to match the conditional independence re-
lations observed between variables in the data with those entailed by a graph, based
on statistical independence tests. These independencies follow from the missing
edges within a belief network structure. Most of these algorithms first try to come up
with the skeleton of the network, i.e., the underlying undirected graph, after which
the orientation of edges is determined. Usually, the algorithm starts with the empty
graph, and in the first step, sets of variables are exhaustively sought to separate any
two variables. If no such set is found, an undirected edge is added between these
variables. In the next steps a maximum amount of edges is oriented, so as to re-
spect the independencies found in the data. Finally, the result of a constraint-based
method an graph equivalence class. Examples include the PC algorithm [88] and the
IC algorithm [70]. For a comparison between the two techniques see [21].
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Important issues when learning a structure include whether the data is complete
or incomplete [36], whether there are hidden variables [32, 35], and whether the
learning is on DAGs or equivalence classes [15].

3.3 Variants and Extensions

This section starts with discussing some variants of Belief Networks that superpose
additional semantics on the basic BN’s. In Dynamical Belief Networks (DBNs) [97],
each variable is modeled at a series of time points. Hidden Markov Models (HMM)
[8] are special cases of dynamical belief networks that are applied at large scale
in bioinformatics. Their restricted structure allows for specialized, efficient learning
and query algorithms.

Next to adding semantics on top of Belief Nets, variants are created by abstrac-
tion. We show, for instance, Qualitative Belief Networks (QBNs) [93] that abstract
BNs by putting qualitative restrictions on conditional probabilities. These QBNs can
be defined manually when little data is at hand and can be transformed into traditional
BNs when more data comes available.

A recent extension of BNs that we treat in this section is the use of relational
models to define frameworks for belief networks. In Probabilistic Relational Models
(PRMs) [82], classes of objects and their relations are used to specify a framework
of general probabilistic dependencies. A concrete set of instances then produces
a concrete BN that can be queried using standard inference. Specialized learning
algorithms are used to learn the general probabilistic framework. PRMs are useful in
(large-scale) data integration.

A more general extension is the Relational Bayesian Network (RBN) [44], that
uses a logic language to describe the probabilistic framework. From this framework
and a concrete input structure, a BN can be constructed for inference. RBNs can
describe both DBNs and PRMs, but can also be applied to model heredity relations
in linkage analysis.

3.3.1 Dynamic Belief Networks

In this section we provide a temporal view of the static belief network. A standard
belief network represents a static situation through the joint probability of a set of
variables. One way to add a dynamic aspect to belief networks is to discretize time
into a number of time slices and have a copy of each variable X in the belief network
for each time slice (Xt=0,Xt=1,Xt=2, · · · ). Arrows between variables in different time
slices indicate the temporal dependencies that model the dynamic aspects. By in-
troducing time slices, many options come available and are applied: e.g., (1) time
slices can be equal or change, (2) arrows only run from one time slice to the next (cf.
Markov property) or run over larger times (3) arrows within a slice can exist or be
absent, and (4) the number of slices can be finite or infinite.

Of course, the resulting Dynamic Belief Networks (DBNs) are in principle just
belief networks, so all standard inference and learning algorithms apply. However,
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the special structure of DBNs allow specialized inference algorithms that make use of
the special, repetitive structure. For instance, it is not necessary to represent all time
slices during inference at the same time: only a small window of a few time slices is
needed for the computations. Moreover, such an approach allows handling infinite-
time DBNs. For a more detailed elaboration on DBNs we refer to [64, 79, 97]. In the
next subsection we go into a special case of DBNs that allows even more efficient
algorithms.

3.3.2 Hidden Markov Models

Hidden Markov Models (HMM) provide a means and a representation to understand
a stochastic time-series process. Good examples are sequence analysis (cf. subsec-
tion 3.5.1) and, outside bioinformatics, natural language processing and automatic
speech recognition [8]. The underlying idea of HMMs is that an observed sequence
of events is generated by a system that can find itself in a finite number of states. At
each point in time the system makes a transition to another state, and an observed
outcome is generated or emitted. The state transitions and outcomes are governed
by probabilities. it is Important to note is that the system states are not visible to an
external observer and are therefore called hidden.

We define a HMM formally as follows. A HMM is a five-tuple (S,O,A, B,Π), in
which S is a finite set of system states si. We denote the actual system state at timestep
t by qt with t = 1,2, . . . . Π contains the initial state probabilities: πi = P(q1 = si).

Matrix A contains the state transition probabilities ai j = P(qt = si|qt−1 = s j).
So ai j is the probability that the system is in state si at timestep t, given that the
system was in state s j at timestep t −1. This probability is the same at each timestep.
Set O contains the symbols v j that can be emitted by the system (the outcome). We
denote the observed outcome at timestep t by ot . Finally, B is defined as the outcome
probability for each of the states si: bi j = P(ot = v j|qt = si). In the case of continuous
outcomes, continuous probability density functions are used.

The Markov property of HMMs dictates that the current state is only dependent
on the previous one: P(qt |qt−1,qt−2, . . . ,q1) = P(qt |qt−1). This is the so-called mem-
ory effect. More precisely, it means that the previous state alone gives information of
the future behavior of the process, i.e., knowledge of the entire history of the process
does not add any new information. Moreover, for the observations we also have,

P(ot |qt ,ot−1,qt−1,ot−2,qt−2, . . . ,o1,q1) = P(ot |qt), (3.15)

which means that observation only depends on the hidden state of the system. As
opposed to Markov processes, system states in a HMM are not observable, only the
observations vi emitted by the states can be observed. A HMM is a natural extension
of a Markov process.

An example clarifies these ideas (taken from [3]). Suppose we have two urns
containing balls of a different color, say, red (r) and green (g). Somebody draws balls
from them and shows us their color. Let qt denote the color of the ball drawn at
timestep t. Figure 3.5 shows a Markov process which models this example. Assume
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Fig. 3.5. An example of a Markov process in which state sequences are observable. More
precisely, each state represents an urn containing either red balls (state 1), or green balls (state
2). It is now straightforward to calculate the probability of a sequence, given the model.

Fig. 3.6. An example of a HMM in which state sequences are not observable. More precisely,
we now model the situation in which both urns can contain as well red balls as green balls.
Each state has now emission probabilities for the occurrence of a green or red ball. In our
example these are (b11,b12) and (b21,b22).

that a sequence “r,g,r” was generated, its probability of occurring is easily computed
from π and A, because we know that the state sequence causing the outcomes was
{s1,s2,s1}. Assume now, that the two urns each contain balls of both colors. This sit-
uation corresponds to the hidden situation. More precisely, we cannot see which state
sequence generated an observation sequence as for instance “r,g,r”. This situation
corresponds to the HMM depicted in Fig. 3.6.

There are three main tasks that can be solved with HMMs. (1) Determine the
probability P(O|H) of an observed sequence O = (o1,o2, . . .) given a HMM H.
There exists an algorithm, named forward-backward, that can efficiently compute
this probability. (2) Given a HMM H and a sequence O, find the corresponding state
sequence Q = (q1,q2, . . . ,qt), with the highest probability of generating O. An algo-
rithm for this is the Viterbi algorithm. (3) Given a training set of observed sequences
T = {Ok}, determine the corresponding HMM H. An algorithm to learn a HMM
from data is the Baum-Welsh algorithm (an EM variant). For an extensive discussion
of these algorithms we refer to [3].

The main difference between HMMs and DBNs lies in the fact that a HMM only
uses one discrete random variable for a hidden state, while in a DBN a set of discrete
or continuous random variables can be used to represent states and observations.
In order to translate a HMM into an equivalent DBN, we re-define the transitions
A, the observations B and initial state distribution Π of HMMs. In a DBN, qt and
ot are each represented by a set of variables, which we denote by Qt and Ot . We
define Zt = Qt ∪Ot as the set of nodes in time slice t. We use variable zi

t ∈ Zt for
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State 1

t=1 t=2 t=3 t=4

State 2 State 3 State 4

O4: redO1: red O3: greenO2: green

Fig. 3.7. An example of a HMM represented or “unrolled” as a DBN for the sequence
(r,g,g,r, . . .)

the ith node at timestep t, hidden or observed. Now we can compute P(Zt |Zt−1) as
∏i P(zi

t |Pa(zi
t)). The initial state distribution P(Z1) can be represented by a regular

bayesian net. Figure 3.7 provides a DBN representation of the HMM of Fig. 3.6
unrolled for four timesteps.

Since DBNs allow states and observations to be represented by an arbitrary num-
ber of variables that can show conditional independencies, DBNs often need less
parameters than a HMM for the same situation.

3.3.3 Qualitative Belief Networks

It is not always possible or necessary to obtain the conditional probability distri-
bution for a belief network. Qualitative Belief Networks (QBNs) [93] allow a kind
of probabilistic belief update using qualitative probability constraints. A QBN con-
sists of a set of variables X of which the values can be ordered from low to high.
(The amount and type of values is not relevant.) The variables are connected in a
DAG, expressing conditional independencies similar to the standard belief network.
Instead of conditional probability distributions, qualitative influences are expressed.
There are four types of influences:

• (X ,Y,+): for high values of x, P(x|y1,z) > P(x|y2,z) if y1 > y2,
• (X ,Y,−): for high values of x, P(x|y1,z) < P(x|y2,z) if y1 > y2,
• (X ,Y,0): P(x|y1,z) = P(x|y2,z), for all x, y1, and y2,
• (X ,Y,?): covers all other cases.

The influences in a network are indicated by labeling the arcs in the DAG with either
‘+’ or ‘−’. From these labels, the qualitative influence between all pairs of variables
can be derived. First, influences are symmetric: if (X ,Y,δ ) then (Y,X ,δ ). Second,
chained influences are computed by an ⊗ operation, and third, combined influences
by an ⊕ operation. The ⊕ operation results in a ‘?’ if ‘+’ and ‘−’ are combined.
An efficient message-passing algorithm exists that can compute a qualitative belief
update for each node given some observed evidence. The output of the algorithm is a
labeling of the nodes with ‘0’, ‘+’, ‘−’, or ‘?’, meaning “unchanged”, “higher prob-
ability on higher values”, “lower probability on higher values”, and “ambiguous”. A
problem with QBNs is that for larger networks, most nodes will be labeled by ‘?’.

When a little more information on the conditional probabilities becomes avail-
able, a QBN can be extended into a semi-qualitative belief network. We mention two
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approaches. The first one [29] is to change the ‘+’ and ‘−’ signs into a (real) number
indicating the strength of the influence and use these numbers to construct condi-
tional probability tables. In fact, the QBN is translated into a standard belief network
on which exact inference is applied. The second approach [77] is to combine nodes
with full conditional probability distributions with nodes that only have qualitative
influences from their parents. An algorithm exists that can propagate probability
intervals for this type of networks.

3.3.4 Probabilistic Relational Models and Relational Belief Networks

The variables that are represented in a belief network need not to be attributes of
a single entity. In many cases, the variables are attributes of several entities that
have some type of probabilistic interaction. For instance, the spatial constitution of
a protein together with the occurrence of certain motives in the upstream region of a
gene together determine whether the specific protein will be connected at a promotor
site for the gene.

When many entities are involved in the same belief network, for instance in the
case of microarray analysis or linkage analysis, it can be useful to group similar
entities into entity types, to group similar relations between entities into relation
types, and to define conditional probabilities in terms of attributes of these entity and
relation types. The probabilistic relation, for example, between the haplotype of a
child and those of its parents is equal for all children in a pedigree. A Probabilis-
tic Relational Model consists of two parts. The conceptual part of a PRM contains
entity types (called classes) with their attributes and binary relation types (called
references), similar to an entity-relation model for relational databases. The second,
probabilistic, part of a PRM defines the probabilistic relations between attributes of
entities participating in a relation, possibly via a chain of relations. These probabili-
ties are expressed in a similar way as the local conditional probability distribution in
belief networks, for instance by a probability tree. The PRM can now be combined
with a set of concrete entities and relations, such as an actual pedigree and actual
genetic markers. It results in a network of concrete interactions between entities (the
relational skeleton). The concrete probabilistic relations between the attributes of
these entities are derived from the PRM and constitute a classical belief network. It
means that a PRM together with a concrete set of entities and relations produces a
belief network. This belief network can be queried using the inference algorithms
that we discussed in the previous section.

Just as the parameters of belief network can be learned, it is possible to learn the
probabilistic part of a PRM from data. It is not necessary to use the derived belief
network for this. The parameters in the generalized probability tables can be learned
directly. Since all entities in a given type are assumed to be related in a similar way,
the observations of all these entities can be counted together in order to estimate the
conditional probabilities.

A Relational Belief Network or RBN [44,45] is a somewhat more general model.
RBNs also have two parts. The first part only contains a set of relation types. There
are no separate entity types. Relations can be unary (i.e., attributes), binary, or have a
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higher degree. Since attributes are either present or absent, RBNs only allow binary
variables. The second part of an RBN defines conditional probabilities as functions
in terms of these relations. The language used for these functions is derived from a
probabilistic logic. An example is:

F(v) : noisy-or{0.3|w;edge(w,v)∧blue(w)} (3.16)

which indicates that the conditional probability table of node v is a noisy-or involving
all blue nodes w connected to v. Just like in PRMs, a concrete belief network is
generated from a RBN as soon as a concrete set of entities along with their relations is
provided (called the relational structure in RBNs). However, it is possible to translate
an RBN directly into arithmetic circuits for querying without explicitly generating a
belief network.

The field of probabilistic logic has produced a range of additional languages that
combine first-order logic with belief networks. We just want to mention the Multi
Entity Belief Networks (MEBNs) [53] that are closely related to RBNs and PRMs.
MEBNs also allow only binary variables, but they do allow the definition of contexts
under which certain conditional probabilities are valid.

3.4 Building Belief Networks by Hand

In some cases, data is not sufficiently available to learn a reliable belief network, at
least for some part of the network. In those cases belief networks have to be build
manuallyfrom domain knowledge. This knowledge can originate from literature,
databases, or domain experts. Once the network is constructed, learning techniques
can then be used to fine-tune probabilities or improve structural elements at those
parts of the network for which sufficient data is (or comes) available.

The manual construction of a (complex) belief network can be regarded as
a knowledge engineering task [62]. This means that the task should contain a
requirements-analysis phase, a model-building phase, and an implementation and
evaluation phase. The requirements phase is equal to those of other knowledge-
engineering tasks. It determines the general mission and goals, a specific objective
for the network (e.g., diagnosis or prediction), available knowledge sources (experts,
data, literature) and technical requirements (belief network tools, speed, embedding
into other tools).

The model-building phase is specific for belief networks. It consists of identify-
ing all variables and their states, fixing the belief-net structure, and the elicitation of
conditional probabilities. The variables that have to be identified can be divided in
three groups. The “focus” or “query” variables will be identified first; they follow
directly from the network objective. The so-called “observables” will provide the
evidential input for queries. These variables can be identified from the availability
of observable data. Finally, “intermediates”, that link observed evidence to the focus
variables, have to be identified gradually, based on available knowledge of cause and
effect. For each of the variables, an appropriate set of states must be defined. Special
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care has to be taken to achieve the correct number of states in qualitative variables
and continuous variables that are to be discretized.

The second task of model building is setting up the structure of the belief net-
work. Here a balance has to be found between parsimony (less arcs, leading to less
probabilities to elicit) and model detail (more arcs). The direction of each arrow
has to be decided upon, but a causal direction leads often to more conditional inde-
pendencies and an easier to understand belief network. During the setting up of a
structure, new intermediate variables might be introduced, or additional states can be
needed for a variable.

The final task is the elicitation of probabilities. In hand-built belief networks, it is
common to use approximate probability distributions such as the noisy-or gate when
a node has more than one parent. Although the parameters of these gates are easier
to elicit than full probability tables, they need severe assumptions on independence
of common causes. The actual elicitation of probabilities often involves estimations
by domain experts, which can be difficult [91]. Tools such as probability wheels,
probability scales with textual anchors, and gambles exist to help the expert in this
task. A different approach to probability estimation is to start with a qualitative belief
network, since qualitative influences are often easier to elicit.

As in any large-scale design problem, decomposition might facilitate the model-
building. For belief networks there are top-down and bottom-up approaches to
decomposition. A top-down approach is to divide the belief network in loosely
connected modules and build the modules independently. Of course the modules
need to fulfill certain demands in order for the whole to be a valid belief network.
Bottom-up approaches first define local dependencies between variables and then
combine them into a belief network. Both object-oriented belief networks and
probabilistic relational methods such as PRMs, RBNs, or MEBNs can be applied for
this. We also want to mention the possible use of ontologies and other knowledge
bases. For instance, PR-OWL [20] can be used to describe a probabilistic ontology,
based on the MEBN language.

When the model is built, an evaluation of the network is needed [62]. First,
a validation or verification can be done by means of a walk-through with domain
experts of the network structure and probabilities. Next, a sensitivity analysis of the
network’s probabilities can be performed, for instance by studying the explanation
of a belief network output (i.e., importance analysis). This can reveal inconsistencies
or unintended side-effects. The final evaluation is the analysis of the behavior of the
belief network in a representative set of well-understood cases.

The existing belief-network tools, such as NETICA and HUGIN support most
parts of the knowledge-engineering process of manually constructing belief
networks. Additional tools for knowledge management might be needed in cases
when the elicitation process is particularly difficult.
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3.5 Applications in Bioinformatics

As the proverb suggests: the proof of the pudding is in the eating. In this section
we review some recent application of BNs and variants in Bioinformatics. These
applications can be divided roughly into three domains: sequence analysis (discussed
in Subsection 3.5.1), biological networks (Subsections 3.5.2 and 3.5.3), and linkage
analysis (Subsection 3.5.4). We end the section with a general discussion on belief
networks in bioinformatics (3.5.5).

3.5.1 Sequence Analysis, Protein Prediction, and Motif Finding

In the area of sequence analysis and protein prediction, belief networks are mainly
used for classification tasks. The networks predict, given a sequence, the secondary
structure of a protein, the presence of binding site, the presence of an operon, and
so on.

The first known application of belief networks (or HMMs, in fact) in bioinfor-
matics is the work by Delcher et al. [28] on the secondary structure prediction.
Currently, HMMs are used at a regular base in bioinformatics and are described
even in introductory handbooks. The Computational Biology group at the University
of California in Santa Cruz, for instance, provides a range of online HMM tools
(called SAM2) that perform multiple sequence alignment, secondary protein struc-
ture prediction, module prediction, protein prediction, and homology finding. In [76]
elaborated versions of HMM-like belief networks are presented that can be used to
recognize remote homologues and protein folds. These belief networks not only use
a DNA or protein sequence for input, but also include secondary structure, residue
accessibility. Finally, HMMs are also being used for the construction of phylogenetic
models (cf. phylo-HMMs [85]).

As an example we explain the use of HMMs for multiple sequence alignment
(see, for instance, profile HMMs [31]). A HMM that is trained for a set of sequences
represents a kind of profile over these sequences. When sequences from the set are
processed by the HMM, it will not only indicate where insertions and deletions
are most likely but also will produce a score. The Hidden Markov Model for multiple
alignment has three states per residue in the alignment (see Fig. 3.8 left). One state for
a match (square), one for insertions (diamond) and one for a deletion (circle). The
match state indicates whether there is a residue in the profile and in the sequence.
In the belief network (Fig. 3.8 right), these states are represented as values of the
hidden state variables Si. The conditional probability tables for state transition and
emission probability in the HMM’s belief network result in position-dependent gap
and insertion penalties, and position-dependent character distributions. This provides
an advantage over other tools for multiple sequence alignment, such as profiling.
Moreover, a HMM is adaptive: new sequences can be added after training to improve
the model.

Below we give three other examples of the use of belief networks in sequence
analysis. The first example is the prediction of operons in prokaryotes (E. Coli in this

2http://www.soe.ucsc.edu/research/compbio/HMM-apps/HMM-applications.html
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Fig. 3.8. A HMM for multiple sequence alignment and its belief network representation

case). The task of the belief network in the approach described by Bockhorst et al.
[10], is to predict whether a group of genes forms an operon, i.e., whether they are
regulated as a unit. The belief network combines evidence derived from the sequence
(e.g., number of genes in the operon, within-operon spacing, and codon usage), with
evidence from gene expression data. The belief network structure is hand-crafted,
and contains 20 nodes. The parameters are trained using Laplace estimates. The
network outperforms alternative classifiers such as Naive Bayes and C5.0.

The second example is the use of belief networks for the prediction of factor bind-
ing sites, especially in cases in which a single DNA sequence is to be investigated. In
contrast to the purely sequence-based approaches, such as PSSMs (Position-specific
scoring matrices, also called PWM, position-weight matrix) that score for recurrent
motifs, the approach of Pudimat et al. [74] combines several sources of information,
resulting in a large set of candidate features. These include the physical structure
of the DNA near the binding site and multiple PSSMs for co-acting factors. The
approach has two alternating phases: (1) feature selection, using sequential float-
ing feature selection, which consists of extending the belief network in each step
with the most informative new feature and removing non-informative other ones;
and (2) structure learning, in which the belief network structure is restricted to trees
in which all variables have no more than one parent (called tree-augmented net-
works). The approach outperforms the traditional PSSMs on sequences from MEF-2
and TRANSFAC databases. Another approach to predicting factor binding sites is to
construct an extension of belief networks that allow a variable sequence context [9].
The variable-order belief network (VOBN) also outperforms PSSMs, but has not
been compared to the multi-feature approach of [74].

The third example is the use of a belief network for the enhancement of ChIP-
Chip data analysis in [75]. In this approach additional chromatin immunoprecipita-
tion data is combined with the standard ChIP-chip data and further sequential data in
order to enhance the method’s spatial resolution of finding factor binding sites. The
so-called Joint Binding Deconvolution (JBD) model is a belief network with real-
valued and discrete variables. Factors such as the binding events, binding strengths
and binding influences are represented in the network. Given the size and complexity
of the network, the authors propose a novel approximative inference algorithm that
can handle discrete and continuous variables. Experimental results show that the JBD
approach indeed makes better predictions than the existing methods Rosetta, MPeak,
and Ratio.
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3.5.2 Gene Regulation Networks

Belief networks in the area of gene regulation networks and other biological net-
works are used to model these biological networks. Constructing the model is an act
of reverse engineering. Once the model is constructed it can be used to simulate and
predict the behavior of these networks.

[26] provides a general overview of computational techniques for discovering,
modeling, and simulation gene regulation networks. The central question here is:
how does the expression of one gene influence the expression of other genes? Since
gene regulation involves interaction between DNA, several types of RNA, proteins
and protein complexes, and other molecules, it is a very complex process. Moreover,
biological data is very heterogenous with respect to availability, quantity and resolu-
tion. The computational techniques each apply a specific level of abstraction, which
allows analysis only at a certain scale and with a certain quality. Boolean networks,
for instance, are among the earliest techniques in the field. They use a high level of
abstraction, allowing the analysis of large regulatory networks. Detailed partial dif-
ferential equations, at the other hand, can model the physical interaction between the
biological molecules, including spatial and dynamical aspects, allowing the analysis
of only a handful of genes. Belief networks are used at several levels of abstraction
in the domain of gene regulation networks, but mainly at a coarse level, trying to dis-
cover existing regulatory relations between genes. An advantage of the application
of belief networks in this area is that by their probabilistic nature they can deal with
noise in the data that is caused by biological diversity, lack of detail (abstraction),
and measurement error.

The standard approach is to derive gene regulation networks from mRNA expres-
sion levels by using structure learning in belief networks (cf. [38]). In this approach
the variables in the network represent genes and their values are the level of expres-
sion (e.g., unexpressed, normal, and over-expressed), as measured by micro-array
analysis. The gene-regulation process is abstracted to probabilistic relations between
expression levels of genes. The approach does not model, for instance, the dynamic
aspects of gene regulation. The causal interpretation of the belief network is used
as a semantic model for the direction of regulatory influence in gene networks. It
is possible to include context variables in the network, such as experimental con-
ditions, cell-cycle, etc. In principle, standard structure-learning techniques can be
applied. The arrows that are learned this way might indicate possible direct relations
between genes, but more likely they do not refer to physical interaction. It is the set
of conditional independencies modeled by the structure that is more informative.

In many cases the number of involved genes is large (>1000) and the number of
data points is low (<50). So the standard structure-learning techniques can hardly be
applied with success. (This is of course also true for many other techniques in the
domain.) While it is impossible to learn a reliable complete structure for a network
when only little data points are available, it is possible to learn parts of the struc-
ture. This still can lead to the discovery of non-trivial regulatory relations between
genes. Friedman, for instance, proposes to restrict the number of parents per gene.
(cf. the sparse candidate algorithm [39]). Peña et al. [71] propose to reduce the scale
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by focussing on the Markov neighborhood of interesting genes. Their method asks
the user to provide a seed gene S and a positive number R. It returns a belief net-
work with genes that depend on S, but such that at most R other genes mediate in
the dependency. Friedman et al. [38] reduce scale by looking for genes that have a
large set of descendants in the graph and are therefore particular influential (or dom-
inant), without having to determine the precise structure of the graph. They define a
dominance score that appears to detect dominant gene in a robust way.

Another approach is to use modules to reduce the complexity of the structure
learning task. This is done by dividing the network in modules and learning the
structure per module [56]. A module can be understood as a set of functionally re-
lated and possibly co-regulated genes. These modules can be achieved automatically
by using bi-clustering of expression data, by involving additional biological data
such as ChIP data, promotor-sites, and data protein complexes. Modules can also be
predefined using biological knowledge. Segal [81, 83] proposes a method to learn
modules by modeling explicitly the common regulatory element per module. In this
area, the application of probabilistic relational models (PRMs) has proven to be use-
ful. The relation between genes, modules, expression levels and micro-arrays, for
instance, lends itself nicely for a relational model (see Fig. 3.9). Moreover, the PRM
approach allows introduction of additional data sources such as binding site motifs
or protein-complex data (see below).

In [7] the method is extended to the discovery of overlapping cellular processes.
The PRM in this approach (Coregulated Overlapped Process or COPR model) also
models the processes as modules with a common regulatory program. To model
overlapping, genes can be allocated to more than one module at the same time.
To allow parameter learning with the large amount of latent variables involved, the
authors propose a specialized EM algorithm. The method was successfully applied to
yeast data and involved 2,034 genes, 50 processes, and 466 regulators. The modules
found were validated using the Gene-Ontology annotations of the genes involved.

Recently, Chen et al. [14] propose an improved structure learning method for be-
lief networks, specialized for gene networks. In their information-theoretic approach,
first a loop-free undirected network is constructed based on mutual information (MI)
between variables. Next they apply a node-ordering procedure to be able to apply an
ordered version of the K2 algorithm. The authors applied their method to microarray

Fig. 3.9. A probabilistic relational model (left) and an instantiated belief network with three
genes and two arrays (right) for bi-clustering of gene expression data. GC and AC stand for
the attributes gene-cluster and array-cluster.
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data (yeast cell-cycle genes) and compared the links found to those present in Path-
WayAssist. They only studied links in a group of 20 genes and were able to identify
65% of the experimentally known links using 77 data samples.

The MAGIC system by Troyanskaya et al. [90] does not apply learning, but
uses a hand-built belief network that predicts a functional relation between pairs
of genes based on expression data and other heterogenous inputs. The network is
instantiated for every pair of genes by fixing the inputs to the evidence for the gene
pair. Clustering is performed afterwards based on the belief network’s prediction for
each pair.

Yu et al. [96] propose to apply structure learning in dynamic belief networks to
incorporate dynamic aspects of gene regulations. In their dynamic belief network,
every variable represents a gene and appears in every time slice. Variables are only
influenced by their parents and themselves in the previous time slice (i.e., first-order
Markov). During their search for an optimal structure (using a genetic algorithm),
arrows between parents and children are added or removed at all time slices simul-
taneously. The authors use an influence score to model the sign and magnitude of
the regulatory influence. Their algorithm is tested on artificial data generated by a
simulator (GeneSim). A similar approach is presented recently by Missai et al. [63].
Their improved method involves information-theoretic measures (MI), and allows
inclusion of prior knowledge.

Perrin et al. [72], also describe the use of dynamic belief networks to model the
dynamic behavior of a gene regulation network as well as its structure. The dynam-
ics of their model are based on the inertial model by d’Alché. In Perrins approach,
the dynamic network consists of a hidden space that represent the true (real-valued)
states of the genes at each moment, and an observational space that represent the
(real-valued) expression levels as measured. All gene-variables are interlinked be-
tween the time-slices of the DBN (which is in this case a Kalman filter). Structure
learning is in fact performed by parameter learning (the EM algorithm). The gene
network is deduced from the trained DBN by selecting only those connections be-
tween genes that show significant effect. The approach was applied to a small gene
network only (E.Coli S.O.S. network).

3.5.3 Other Cellular Networks

Although belief networks seem to be employed most in gene regulation networks,
they are also applied in cellular networks or pathways that involve proteins and other
molecules. The general approach is similar to those of gene regulation networks, i.e.,
structure learning for reverse engineering. However, translating the causal interpreta-
tion of belief networks into biological relations can be more problematic. We discuss
three examples below.

The first example involves the modeling of signalling protein networks on the
basis of proteomic data [94]. The variables in the belief network in this approach rep-
resent the phosphorylation levels of proteins. The causal interpretation of the belief
network represent the true biological causal relations that rule the signalling. E.g.,
phosphorylation of MEK1 causes phosphorylation of ERK1 and ERK2. The authors
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apply structure learning, restricting the network to biological possible configurations,
but also restricting the maximum number of parents per node. The approach is tested
on proteomics data of the MAPK/ERK signalling pathway. The structure of the ob-
tained belief network agreed to a large extent with existing pathway knowledge.
Moreover, a graphical presentation of the conditional probability tables in some of
the nodes provides interesting biological insights. Finally, the belief network was
used to model the effect of environmental changes in the cell such as the application
of drugs.

The second example involves the discovery of molecular pathways using the
combination of protein interaction data and gene expression data. In [81, 83], a par-
tially directed PRM is used. The main assumption is that interacting proteins are
more likely to be involved in the same pathway. Protein interaction, however is an
undirected process, so a (directed) belief network would not be a correct model for
these interactions. The authors therefore use a Markov Random Field to represent
this part. Genes are used to represent the interacting proteins. It is combined with a
directed model for the gene regulation aspects. The parameters from the combined
PRM model are learned using an adapted EM algorithm. The results show that us-
ing the protein-interaction on top of expression data leads to an improved pathway
prediction. Another approach to combining protein-interaction with expression data
is provided by [95]. Their model is called a physical model, and is an extension of
a Markov Random Field. It has potentials that incorporate decision variables which
allow modeling gene knock-out experiments. The model incorporates binding site
information (location data), protein-protein data and expression data from knock-
out experiments. Moreover, additional variables such as the direction of knock-out
effects are included in the model.

The third example is the generic modeling of biological networks as described
by [40]. In their approach mRNA variables (gene expression), protein states in cy-
toplasma and nucleus, metabolics, stress and stimulator factors, are all included in
one network. In the model, all biological variables have a finite set of states (e.g.,
expression level for genes and phosphorylation state for proteins). The variables are
connected in a regulatory dependency graph in which each variable has a set of par-
ents that regulate it. These regulations are modeled by conditional probability tables.
Due to noise, variables may be observed through real-valued sensor variables that
depend on the logical state of the biological variables. The network is represented
by a factor graph network that is equivalent to a belief network when the regulatory
dependency graph is acyclic. The network does not describe dynamic behavior. A
special approximation algorithm is proposed that can deal with feedback loops that
might occur in the network. Moreover, the authors describe learning algorithms to
learn the probabilities of regulation and uncertain observations. As an example the
authors study the acyclic HOG pathway and the lysine biosynthesis that has feedback
loops.
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3.5.4 Linkage Analysis and Genetics

The third main application area of belief networks in bioinformatics is the analysis of
linkage in pedigrees. Linkage analysis is generally accepted to be a computationally
hard task (cf. [73]). In this domain belief networks are used to model the probabilis-
tic mechanisms of meiosis (segregation), crossing over, and uncertain observations
(penetration) in order to determine the most likely location of a (disease-related) gene
on a chromosome relative to a given set of genetic markers. Exact inference on the
belief network can be used to compute the probabilities needed exactly [55]. Al-
though probabilistic modeling is not new in the area (e.g., the well-known peeling
algorithm is similar to variable-elimination in belief networks [42]), belief networks
appear to be a rather useful tool. Figure 3.10 shows a small pedigree (one child
and its parents) and the corresponding belief network for segregation and pheno-
type modeling of a single gene. The variables G represent the alleles of the gene on
each chromosome, P models the resulting phenotype and S models the segregation
process.

The most well-known tool for linkage analysis that uses belief nets is SUPER-
LINK [33]. This tool is also available in an online, parallelized version using the
Condor computation grid [86]. The computation of exact probabilities in large cases
requires specialized optimization algorithms that make use of the specific structure of
belief networks that represent pedigrees. These include the computation of optimal
node-elimination orders [34].

When pedigrees are too large for exact computations, even in the parallelized
form, efficient approximation algorithms are available. For instance, the specialized
blocking Gibbs sampling [47, 89], the improved MCMC method of [92], and the
cluster variation method [2, 58] exploit the special structure of linkage belief nets to
enhance computational speed and convergence behavior of approximations.

Belief networks for linkage analysis tend to grow very large. They have, however,
a rather regular structure, reflecting the pedigree relations, and the spatial relations
of markers. Both relational belief networks (RBN), probabilistic relational models
(PRM), and multi-entity belief networks (MEBN) can use this structure to achieve
a compact and generic representation of belief networks. In [46] an example appli-
cation to linkage analysis is provided. In principle, RPMs and RBNs are translated

Fig. 3.10. A small pedigree and the corresponding belief network



3 Belief Networks for Bioinformatics 103

into belief nets before probabilistic inference can take place. Recent developments,
however, show that RBNs can be compiled directly into fast arithmetic circuits for
efficient inference in linkage analysis [13].

3.5.5 Discussion

As this section reveals, belief networks are applied in broad areas of bioinformat-
ics. They are used for classification, network modeling, and probabilistic inference.
In linkage analysis, belief networks are constructed by hand, in sequence analy-
sis, the parameters are learned from data and in network modeling, the structure
is learned from data. It is interesting to observe that the domain of bioinformatics
has led and will continue to lead to the development of specialized representations
and algorithms.

The description of the different kinds of belief networks and variants in this chap-
ter, together with their possible applications (even) in bioinformatics, makes it clear
that this rather broad field is a very active and promising area of research. However,
it also stresses that the field is very much in flux, and that it is rather hard to unravel
who is contributing exactly what, how, and to which agenda. This leads to visible
effects even within the domain of bioinformatics: algorithms that were developed for
linkage analysis, did not yet find their way to the area of gene regulation networks,
for instance. Therefore, we believe it would be very beneficial for the field to re-
think the problems which are trying to be solved and cast them into explicit research
agendas or a taxonomy of issues in belief networks and related graphical models.

In the field of bioinformatics, there are still areas in which belief networks (and
related concepts) are not being applied to their full extent. As an example, belief
networks can be of large help in text-mining for bioinformatics. But also in areas
in which the application of belief networks is well studied, new and existing results
within belief networks still need to be considered. As an example hereof we mention
the possible use of (semi-)qualitative belief networks for the coarse modeling of
biological networks, or the application of arithmetic circuits in belief networks for
linkage analysis.

3.6 Software Tools

Since the successful application of any technique depends on the availability and
quality of tools, we review a series of belief network tools in this section. On the
internet a number of lists of belief-network tools are available. Not all of them
are well-maintained, unfortunately. We mention the pages by Murphy3 and Aha4,
the Google directory on belief network software5, the Wikipedia page on belief

3http://bnt.sourceforge.net/bnsoft.html
4http://home.earthlink.net/∼dwaha/research/machine-learning.html
5http://directory.google.com/Top/Computers/

Artificial_Intelligence/Belief_Networks/Software
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ACE http://reasoning.cs.ucla.edu/ace/
ANALYTICA http://www.lumina.com/
BAYESIA http://www.bayesia.com/
BNARRAY http://www.cls.zju.edu.cn/binfo/BNArray/
BNJ (Belief nets in Java) http://bnj.sourceforge.net/
BNT (Bayes nets for Matlab) http://bnt.sourceforge.net/
BUGS, WINBUGS, etc. http://www.mrc-bsu.cam.ac.uk/bugs/
DEAL http://www.math.aau.dk/novo/deal/
GENIE and SMILE http://genie.sis.pitt.edu/
GENOMICA http://genomica.weizmann.ac.il/
GR http://www.ci.tuwien.ac.at/gR/
HUGIN http://www.hugin.com/
JAVABAYES http://www.cs.cmu.edu/∼javabayes/Home/
LIBB http://compbio.cs.huji.ac.il/LibB/
MIM http://www.hypergraph.dk/
MAGIC http://function.cs.princeton.edu/magic/
NETICA http://www.norsys.com/
PRIMULA http://www.cs.auc.dk/∼jaeger/Primula/
QUIDDITY SUITE http://www.iet.com/quiddity.html
SAMIAM http://reasoning.cs.ucla.edu/samiam/
SUPERLINK http://cbl-fog.cs.technion.ac.il/superlink/

Fig. 3.11. Belief network tools mentioned in the text

networks, and Kersting’s page on tools for probabilistic logic6. A good overview
is also provided in the appendix of [50].

The belief network tools can be divided into (1) integrated tools and suites that
offer at least a graphical interface to build belief networks and inference algorithms
for belief updates, (2) querying and other partial tools, and (3) toolkits, APIs and
libraries that allow a programmer to incorporate belief networks into own develop-
ments. For convenience of the reader, Fig. 3.11 lists the urls of the tools mentioned
in this section.

3.6.1 Integrated Tools and Suites

The Murphy list contains 24 packages that offer a graphical user interface for
building and querying belief networks, but even more exist. The packages include
commercially available suites such as HUGIN, NETICA, and ANALYTICA, but also
freeware and open source programs such as GENIE, JAVABAYES and SAMIAM.
(Commercial tools often have a light-weight free version or offer academic licences.)
Although some tools (e.g., HUGIN) allow continuous nodes, most tools concentrate
on classical belief networks with discrete probability distributions only. Especially
the way in which the conditional probabilities are entered by hand differs much, and
is sometimes awkward.

6http://www.informatik.uni-freiburg.de/∼kersting/plmr/PLMR_repository.html
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The packages offer a range of different inference algorithms, but the clique-
tree algorithm is the most often used. The extensive (commercial) programs have
a selection of inference algorithms available that can be selected and parameterized
by the user. Some of the commercial and free programs allow parameter learning
and/or structure learning. Again, the extensive programs offer a choice of algorithms
and settings.

Some tools allow the use of belief network extensions. Decision theoretic exten-
sions (influence diagrams) are provided by quite a number of tools. Other extensions
are more restricted. HUGIN supports object-oriented belief networks (a predecessor
of PRMs), PRIMULA in cooperation with SAMIAM allow RBNs, and the commercial
QUIDDITY SUITE, for instance, allows construction of and inference in MEBNs.

It seems to be problematic to exchange belief networks between applications.
A special version of XML has been proposed by Microsoft to support exchange
(XBN7), but most often (older) HUGIN or NETICA formats are used, unfortunately
leading to incompatibilities.

3.6.2 Partial Tools

Some tools only offer a part of the functionality of the above packages. The popular
package BUGS offers Gibbs sampling for approximate inference in graphical models,
including belief networks. It allows a large range of continues distributions for local
probabilities. The program is available in several versions, including OPENBUGS

and WINBUGS. Other tools for inference in graphical models are COCO, MIM and
TETRAD.

The program ACE offers translation of belief networks into arithmetic circuits
and querying. LIBB1.2 by Friedman is dedicated to structure learning of belief
networks.

3.6.3 APIs, Libraries, and Toolkits

A number of the integrated tools discussed above, such as HUGIN and NETICA,
also provide an application programming interface (API) that allows incorporation of
belief networks in any application. These APIs offer the same inference algorithms
as the complete tools. The belief networks are represented inside the API, hiding
implementation details from the programmer.

For several programming languages, libraries exist that allow the definition and
manipulation of belief networks. For instance, SMILE for C++ (with wrappers for
Java, .NET and other platfoms) and for Java BNJ, JAVABAYES, and SAMIAM.

Since belief network inference involves so many mathematical computations, it
makes sense to use existing mathematical frameworks such as MATLAB and R. For
MATLAB the free BAYES NET TOOLKIT offers discrete and continuous variables,
exact and approximate inference, parameter learning and structure learning, and dy-
namic belief networks. A disadvantage is that no proper graphical user interface is

7http://research.microsoft.com/dtas/bnformat/
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available while the format in which belief networks have to be specified requires
manual topological sorting of networks nodes.

For the open-source statistical framework R, an initiative GR (graphical Models
in R) is going on. It resulted, for instance, in the package DEAL for learning belief
networks. (This package saves belief networks in HUGIN format.) Some specialized
bioinformatics R-packages exists that use belief networks such as the BNARRAY

package for constructing gene-regulatory networks, which uses the DEAL package.

3.6.4 Belief Network Tools for Bioinformatics

Despite the range of available belief-network tools described above, many of the
bioinformatics applications of belief networks are based on customized software. In
some cases the software can be downloaded from accompanying publication web-
sites and sometimes the belief network tools are incorporated in large (commercial)
applications such as SUPERLINK and GENOMICA. The main reason is that the bioin-
formatics applications often require specialized inference or learning algorithms that
are not (yet) available in the general tools for belief networks. An exception is
perhaps the online version of the MAGIC tool for gene clustering.

3.7 Guide to the Literature

The basics of belief networks are described in a number of handbooks, starting
with the inventor’s one [69]. A very gentle introduction to belief network inference
and learning is provided in [79]. More complete general introductions are provided
by [22, 48, 50, 66]. The book by Korb and Nicholson [50] is the most gentle one,
including many practical issues, examples, and tips for working with belief network
tools. Jensen and Cowel et al. [22, 48] provide a more in-depth introduction to the
algorithms for inference and learning. Learning in belief networks is treated in more
detail in [3, 49, 65, 88], and in the recent Ph.D. thesis of Riggelsen [78].

Online introductions to belief networks are available on wikipedia, the UAI web-
site8 (including a Wiki), online tutorials such as Niedermayer’s9, and in the online
manuals of several of the belief network tools.

A number of bioinformatics books explain (certain types of) belief networks.
For instance [5] treats HMMs and graphical models, including belief networks. [51]
emphasizes the use of HMMs in bioinformatics and [30] is restricted to sequential
applications of HMMs. A standard bioinformatics handbook such as [59] covers
HMM models for multiple sequence alignment.

A concise overview of literature on belief networks in bioinformatics is available
at the website of Kasif10. An overview of belief networks in gene regulation networks
is provided in [26, 37, 38]. A very good introduction in belief networks, structure

8http://www.auai.org
9http://www.niedermayer.ca/papers/bayesian/bayes.html

10http://sullivan.bu.edu/kasif/bayes-net.html
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learning and the application in linkage analysis is provided in [55]. An overview
of the use of PRMs in bioinformatics is given in [67], and in the Ph.D. thesis of
Segal [80].

3.8 Conclusion

In this chapter we introduced belief networks and described their current use within
bioinformatics. We discussed examples of belief networks applied on the modeling
of gene regulation networks, the discovering of metabolic and signalling pathways,
sequence analysis, protein structure, and linkage analysis. New developments in
learning belief networks from heterogeneous data sources show that belief networks
are becoming an important tool for dealing with high-throughput data at a large scale,
not only at the genetic and biochemical level, but also at the level of systems biology.
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Summary. Research in bioinformatics necessitates the use of advanced computing tools for
processing huge amounts of ambiguous and uncertain biological data. Swarm Intelligence
(SI) has recently emerged as a family of nature inspired algorithms, especially known for their
ability to produce low cost, fast and reasonably accurate solutions to complex search problems.
In this chapter, we explore the role of SI algorithms in certain bioinformatics tasks like micro-
array data clustering, multiple sequence alignment, protein structure prediction and molecular
docking. The chapter begins with an overview of the basic concepts of bioinformatics along
with their biological basis. It also gives an introduction to swarm intelligence with special
emphasis on two specific SI algorithms well-known as Particle Swarm Optimization (PSO)
and Ant Colony Systems (ACS). It then provides a detailed survey of the state of the art
research centered around the applications of SI algorithms in bioinformatics. The chapter
concludes with a discussion on how SI algorithms can be used for solving a few open ended
problems in bioinformatics.

4.1 Introduction

The past few decades have seen a massive growth in biological information gathered
by the related scientific communities. A deluge of such information coming in the
form of genomes, protein sequences, gene expression data and so on have led to the
absolute need for effective and efficient computational tools to store, analyze and
interpret the multifaceted data.

The term bioinformatics literally means the science of informatics as applied to
biological research. Informatics on the other hand is the management and analysis
of data using various advanced computing techniques. Hence, in other words, bioin-
formatics can be described as the application of computational methods to make
biological discoveries [1]. It presents a symbiosis of several different areas of sci-
ence including biology, computer science, mathematics and statistics. The ultimate

S. Das et al.: Swarm Intelligence Algorithms in Bioinformatics, Studies in Computational Intelligence (SCI) 94, 113–147
(2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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attempt of the field is to develop new insights into the science of life as well as
creating a global perspective, from which the unifying principles of biology can be
derived [2]. Three major objectives of bioinformatics can be put forward as:

• To develop algorithms and mathematical models for probing the relationships
among the members of a large biological dataset.

• To analyze and interpret the heterogeneous kind of data including nucleotide and
amino acid sequences, protein domains and protein structures.

• To implement tools that enable efficient storage, retrieval and management of
high-volume biological databases.

Biologically inspired computing has been given importance for its immense par-
allelism and simplicity in computation. In recent times, quite a large number of
biologically motivated algorithms have been invented, and are being used for han-
dling many complex problems of the real world. For instance, neural computing [3]
attempts to mimic the biological nervous systems of the living creatures to ensure
a significant amount of parallel and distributed processing in computation. Genetic
algorithms [4], [5] imitate the Darwinian evolutionary process through cross-over
and mutation of biological chromosomes. They have successfully been used in many
bioinformatics tasks that need intelligent search, optimization and machine learning
approaches. Mitra and Hayashi [6] provides a comprehensive survey of the research
in this direction.

Recently, a family of nature inspired algorithms known as Swarm Intelligence
(SI) [7], [8], [9] has attracted the attention of researchers working on bioinformatics
related problems all over the world. Algorithms belonging to this field are moti-
vated by the collective behavior of a group of social insects (like bees, termites and
wasps). These insects with very limited individual capability can jointly (coopera-
tively) perform many complex tasks necessary for their survival. For the past few
years there has been a slow but steady increase of research papers reporting the suc-
cess of SI based search, clustering and data mining methods applied to the field of
computational biology.

This Chapter provides a detailed review of the role of SI algorithms in dif-
ferent aspects of bioinformatics mainly involving optimization, pattern recognition
and data mining tasks. The rest of the chapter is organized as follows. Section 4.2
briefly describes the preliminary ideas of bioinformatics. In section 4.3, we have
introduced the paradigm of Swarm Intelligence and outlined the technical details
of two popular SI algorithms known as Particle Swarm Optimization (PSO) [10]
and Ant Colony Systems (ACS) [11], [12]. We also discuss the relevance of SI in
bioinformatics under this Section. Section 4.4 reviews a number of SI based meth-
ods available in the literature to address many difficult tasks in bioinformatics. A
few open ended research problems as well as how these can be solved with SI al-
gorithms have been discussed in Section 4.5. Finally the Chapter is concluded in
Section 4.6.
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4.2 Fundamental Concepts in Bioinformatics

In this section, we outline a few preliminary biological concepts which are essen-
tial for understanding several research problems that have been discussed in the
subsequent Sections.

4.2.1 DNA

The complete set of instructions for making an organism is called its genome. It
contains the master blueprint for all cellular structures and activities for the life-
time of the cell or organism. Found in every nucleus of a person’s many trillions of
cells, the human genome consists of tightly coiled threads of deoxyribonucleic acid
or DNA and associated protein molecules, organized into structures called chromo-
somes. DNA plays a fundamental role in the different bio-chemical processes of
living organisms in two respects:

• Firstly, it contains the information the cell requires to synthesize protein and to
replicate itself. To be short, it is the storage repository for the information that is
required for any cell to function [13].

• Secondly, it acts as a medium for transmitting the hereditary information (namely
the synthesis plans for proteins) from generation to generation.

In humans, as in other higher organisms, a DNA molecule consists of two strands
that wrap around each other to resemble a twisted ladder whose sides, made of sugar
and phosphate molecules are connected by rungs of nitrogen- containing chemicals
called bases. Each strand is a linear arrangement of repeating similar units called nu-
cleotides, which are each composed of one sugar, one phosphate, and a nitrogenous
base. Four different bases are present in DNA: adenine (A), thymine (T), cytosine
(C), and guanine (G). The particular order of the bases arranged along the sugar-
phosphate backbone is called the DNA sequence; the sequence specifies the exact ge-
netic instructions required to create a particular organism with its own unique traits.
In normal DNA, the bases form pairs: A to T and G to C. This is called comple-
mentarity. The pair of complementary strands then forms the double helix, which
was first suggested by Watson and Crick in 1953. Figure 4.1 illustrates the double
helix of the DNA sequence with a gene in the sequence delimited. Genes are specific
sequences of bases that encode instructions on how to make proteins. We highlight
them in the next subsection.

4.2.2 The Gene

Each DNA molecule contains many genes – the basic physical and functional units
of heredity. A gene is a specific sequence of nucleotide bases, whose sequences carry
the information required for constructing proteins, which provide the structural com-
ponents of cells and tissues as well as enzymes for essential biochemical reactions.
The human genome is estimated to comprise more than 30,000 genes. Human genes
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Fig. 4.1. The DNA double helix and a gene sequence

vary widely in length, often extending over thousands of bases, but only about 10%
of the genome is known to include the protein- coding sequences (exons) of genes.
Interspersed within many genes are intron sequences, which have no coding function.

The gene’s sequence is like language that instructs cell to manufacture a partic-
ular protein. At first a gene is transcribed to produce messenger ribonucleic acid
(m-RNA) which is next translated to produce proteins. It is the protein that deter-
mines the traits of an organism and is called central dogma of life. The m-RNA is
single-stranded and has a ribose sugar molecule. There exist promoter and termi-
nation sites in a gene, responsible for initiation and termination of the transcription
process. Translation consists of mapping from triplets (codons) of four bases to the
twenty amino acids that serve as the building blocks of protein. There are sequences
of nucleotides within the DNA that are spliced out progressively in the process of
transcription and translation. Wu and Lindsay [14] provides a comprehensive survey
of the research undertaken so far, in this direction.

Apart from the genes, DNA consists of three types of non coding regions:

1. Intergenic regions: Regions between genes that are ignored during the process
of transcription.

2. Intragenic regions (Introns): Regions within the genes that will be spliced out
after transcription, but before the RNA is used.

3. Pseudogenes: These are defunct relatives of known genes that have lost their
protein-coding ability or are otherwise no longer expressed in the cell [13]. Al-
though they may have some gene-like features (such as Promoters, CpG islands,
and splice sites), they are nonetheless considered nonfunctional, due to their lack
of protein-coding ability.

Figure 4.2 illustrates the different parts of a gene.

4.2.3 Proteins

An amino acid is an organic molecule that consists of an amine (NH) and a carboxylic
(CO) acid group (backbone) together with a side-chain that differentiates between
them. Proteins are large organic compounds made of amino acids arranged in a linear
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Fig. 4.2. Schematic outline of a gene

Fig. 4.3. Spiral configuration of the α helix structure. Hydrogen bonds between the CO group
of one amino acids and the NH group of another amino acid holds the α helices together
(adapted from [22])

chain and joined together between the carboxyl atom of one amino acid and the
amine nitrogen of the other [15]. This bond is called a peptide bond. The sequence
of amino acids in a protein is defined by a gene and encoded in the genetic code.
Although this genetic code specifies 20 “standard” amino acids, the residues in a
protein are often chemically altered in post-translational modification: either before
the protein can function in the cell, or as part of control mechanisms. Proteins can
also work together to achieve a particular function, and they often associate to form
stable complexes.

In order to carry out their function, each protein must take a particular shape,
known as its fold. When a protein is put into a solvent, within a very short time it
takes a particular 3D shape. This self assembling process is called folding. More
than half a century ago, Linus Pauling (Nobel prize, 1954) discovered that a major
part of most proteins’ folded structure consists of two regular, highly periodic ar-
rangements of amino acids, designated “a” and “b”. The key to both structures is the
hydrogen bond that stabilizes the structures. The “a” structure is now called α helix
(Figure 4.3). It is a spiral configuration of a polypeptide chain stabilized by hydrogen
bonds between the CO group of one amino acid at position n and the NH group of
the amino acid which is four residues away (n + 4). The “b” structure is now called
β sheet (Figure 4.4). It is an essentially a flat two dimensional structure of parallel
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Fig. 4.4. β pleated sheets structure is stabilized by hydrogen bonds between nitrogen atoms
(of the NH group of one amino acid) and oxygen atoms (of the CO group of another amino
acid) of two adjacent chains (adapted from [22])

or anti-parallel β strands; each β strand consists of two polypeptide chains that are
(almost) fully extended and hydrogen bonded to each other. All other local arrange-
ments that are neither α helix nor β sheet are described as random coil: they are
random in the sense that they are not periodic.

Proteins have multiple levels of structure [1]:

1. Primary structure: Linear structure determined solely by the number, se-
quence, and type of amino acid residues (R).

2. Secondary structure: Local structure determined by hydrogen bonding between
amino acids and non-polar interactions between hydrophobic regions. These
interactions produce, in general, three secondary structures: α helix (Figure 4.2),
β sheet (Figure 4.3), and random coil.

3. Tertiary structure: It results from various interactions (mainly hydrophobic
attractions, hydrogen bonding, and disulfide bonding) of the amino acids side
chains (R) that pack together the elements of the secondary structure. The result
is a 3D configuration of proteins.

4. Quaternary structure: It is characterized by the interaction of two or more
individual polypeptides (often via disulfide bonds) and the result is a larger
functional molecule.

4.2.4 DNA Microarray

A DNA microarray (also commonly known as DNA chip or gene array) is a collec-
tion of microscopic DNA spots attached to a solid surface, such as glass, plastic or
silicon chip forming an array for the purpose of expression profiling, monitoring ex-
pression levels for thousands of genes simultaneously. Figure 4.5 illustrates a simple
DNA chip [16].

Microarrays provide a powerful basis to monitor the expression of thousands
of genes, in order to identify mechanisms that govern the activation of genes in an
organism. Short DNA patterns (or binding sites near the genes) serve as switches
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Fig. 4.5. Example of an approximately 37,500 probe spotted oligo microarray with enlarged
inset to show detail (adapted from [16])

that control gene expression. Therefore, similar patterns of expression correspond
to similar binding site patterns. A major cause of coexpression of genes is their
sharing of the regulation mechanism (coregulation) at the sequence level. Clustering
of coexpressed genes, into biologically meaningful groups, helps in inferring the
biological role of an unknown gene that is coexpressed with a known gene(s). Cluster
validation is essential, from both the biological and statistical perspectives, in order
to biologically validate and objectively compare the results generated by different
clustering algorithms.

4.3 Swarm Intelligence - an Overview and Relevance
to Bioinformatics

The behavior of a single ant, bee, termite and wasp often is too simple, but their
collective and social behavior is of paramount significance. A look at National
Geographic TV Channel also reveals that advanced mammals including lions also
enjoy social lives, perhaps for their self-existence at old age and in particular when
they are wounded. The collective and social behavior of living creatures motivated
researchers to undertake the study of swarm intelligence. Historically, the phrase
Swarm Intelligence (SI) was coined by Beny & Wang in late 1980s [9] in the context
of cellular robotics. A group of researchers in different parts of the world started
working almost at the same time to study the versatile behavior of different living
creatures. SI systems are typically made up of a population of simple agents (an
entity capable of performing/executing certain operations) interacting locally with
one another and with their environment. Although there is normally no centralized
control structure dictating how individual agents should behave, local interactions
between such agents often lead to the emergence of global behavior. Many biological
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Fig. 4.6. Main traits of the collective behavior

creatures such as fish schools and bird flocks clearly display structural order, with the
behavior of the organisms so integrated that even though they may change shape and
direction, they appear to move as a single coherent entity [17]. The main properties
of the collective behavior can be given below and is illustrated in Figure 4.6:

• Homogeneity: every bird in flock has the same behavioral model. The flock
moves without a leader, even though temporary leaders seem to appear.

• Locality: its nearest flock-mates only influence the motion of each bird. Vision
is considered to be the most important senses for flock organization.

• Collision avoidance: avoid colliding with nearby flock mates.
• Velocity matching: attempt to match velocity with nearby flock mates.
• Flock centering: attempt to stay close to nearby flock mates.

Individuals attempt to maintain a minimum distance between themselves and oth-
ers at all times. This rule is given the highest priority and corresponds to a frequently
observed behavior of animals in nature [18]. If individuals are not performing, an
avoidance maneuver they tend to be attracted towards other individuals (to avoid be-
ing isolated) and to align themselves with neighbors [19], [20]. Couzin et al. [17]
identified four collective dynamical behaviors as illustrated in Figure 4.7:

• Swarm: an aggregate with cohesion, but a low level of polarization (parallel
alignment) among members.

• Torus: individuals perpetually rotate around an empty core (milling). The direc-
tion of rotation is random.

• Dynamic parallel group: the individuals are polarized and move as a coherent
group, but individuals can move throughout the group and density and group
form can fluctuate [19], [21].

• Highly parallel group: much more static in terms of exchange of spatial po-
sitions within the group than the dynamic parallel group and the variation in
density and form is minimal.
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Fig. 4.7. Different models of collective behavior (adapted from [23])

A swarm can be viewed as a group of agents cooperating to achieve some pur-
poseful behavior and achieve some goal (see Figure 4.7) [23] . This collective intel-
ligence seems to emerge from what are often large groups.

According to Milonas, five basic principles define the SI paradigm [24]. First is
the proximity principle: the swarm should be able to carry out simple space and time
computations. Second is the quality principle: the swarm should be able to respond
to quality factors in the environment. Third is the principle of diverse response: the
swarm should not commit its activities along excessively narrow channels. Fourth is
the principle of stability: the swarm should not change its mode of behavior every
time the environment changes. Fifth is the principle of adaptability: the swarm must
be able to change behavior mote when it is worth the computational price. Note that
principles four and five are the opposite sides of the same coin.

As it appears, ‘Self-organization’ is one of the fundamental features of any SI
system. However, it is not a simple term to define. In general, it refers to the various
mechanisms by which pattern, structure and order emerge spontaneously in complex
systems. Examples of such structures and patterns include the stripes of zebras, the
pattern of sand ripples in a dune, the coordinated movements of flocks of birds or
schools of fish, the intricate earthen nests of termites, the patterns on seashells, the
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whorls of our fingerprints, the colorful patterns of fish and even the spatial pattern of
stars in a spiral galaxy. Bonabeau et al. have tried to define self-organization using
the following words [7]:

Self-organization is a set of dynamical mechanisms whereby structures appear
at the global level of a system from interactions of its lower-level components.

Serra and Zanarini [25] describes the concept of self-organization generally as
“highly organized behavior even in the absence of a pre-ordained design”. They
go on to further describe examples such as the resonance phenomenon in lasers,
and in cellular automata where “unexpected and complex behaviours can be consid-
ered as self-organized.” Self-organization was originally introduced in the context
of physics and chemistry to describe how microscopic processes give rise to macro-
scopic structures in out-of-equilibrium systems. Recent research, however, suggests
that it provides a concise description of a wide rage of collective phenomena in
animals, especially in social insects. This description does not rely on individual
complexity to account for complex spatial-temporal features, which emerge at the
colony level, but rather assumes that interactions among simple individuals can pro-
duce highly structured collective behaviors. There are four main features that govern
the self-organization in insect colonies:

• Positive feedback (amplification)
• Negative feedback (for counter-balance and stabilization)
• Amplification of fluctuations (randomness, errors, random walks)
• Multiple interactions

At a high-level, a swarm can be viewed as a group of agents cooperating to
achieve some purposeful behavior and achieve some goal. This collective intelli-
gence seems to emerge from what are often large groups of relatively simple agents.
The agents use simple local rules to govern their actions and via the interactions
of the entire group, the swarm achieves its objectives. A type of self-organization
emerges from the collection of actions of the group.

An autonomous agent is a subsystem that interacts with its environment, which
probably consists of other agents, but acts relatively independently from all other
agents. The autonomous agent does not follow commands from a leader, or some
global plan [26]. For example, for a bird to participate in a flock, it only adjusts
its movements to coordinate with the movements of its flock mates, typically its
neighbors that are close to it in the flock. A bird in a flock simply tries to stay close
to its neighbors, but avoid collisions with them. Each bird does not take commands
from any leader bird since there is no lead bird. Any bird can in the front, center
and back of the swarm. Swarm behavior helps birds take advantage of several things
including protection from predators (especially for birds in the middle of the flock),
and searching for food (essentially each bird is exploiting the eyes of every other
bird).

Below we discuss in details two algorithms from SI domain, which have gained
huge popularity in a relatively short span of time all over the world. One of these
algorithms, known as Ant Colony Optimization (ACO) mimics the behavior of group
of real ants in multi-agent cooperative search problems. The latter one is referred to
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as Particle Swarm Optimization (PSO), which draws inspiration from the behavior
of particles, the boids method of Craig Reynolds and socio-cognition [27].

4.3.1 Ant Colony Systems

Insects like ants, bees, wasps and termites are quite social. They live in colonies
and follow their own routine of tasks independent of each other. However, when
acting as a community, these insects even with very limited individual capability can
jointly (cooperatively) perform many complex tasks necessary for their survival [7].
Problems like finding and storing foods, selecting and picking up materials for future
usage require a detailed planning, and are solved by insect colonies without any kind
of supervisor or controller.

It is a natural observation that a group of ‘almost blind’ ants can figure out the
shortest route between a cube of sugar and their nest without any visual information.
They are capable of adapting to the changes in the environment as well [28]. It is
interesting to note that ants while crawling deposit trails of a chemical substance
known as pheromone to help other members of their team to follow its trace. The
resulting collective behavior can be described as a loop of positive feedback, where
the probability of an ant’s choosing a path increases as the count of ants that already
passed by that path increases [12], [28].

The basic idea of a real ant system is illustrated in Figure 4.8. In the left picture,
the ants move in a straight line to the food. The middle picture illustrates the situation
soon after an obstacle is inserted between the nest and the food. To avoid the obstacle,
initially each ant chooses to turn left or right at random. Let us assume that ants
move at the same speed depositing pheromone in the trail uniformly. However, the
ants that, by chance, choose to turn left will reach the food sooner, whereas the ants
that go around the obstacle turning right will follow a longer path, and so will take
longer time to circumvent the obstacle. As a result, pheromone accumulates faster
in the shorter path around the obstacle. Since ants prefer to follow trails with larger
amounts of pheromone, eventually all the ants converge to the shorter path around
the obstacle, as shown in Figure 4.8.

An artificial Ant Colony System (ACS) is an agent-based system, which sim-
ulates the natural behavior of ants and develops mechanisms of cooperation and
learning. ACS was proposed by Dorigo et al. [29] as a new heuristic to solve combi-
natorial optimization problems. This new heuristic, called Ant Colony Optimization

Fig. 4.8. Illustrating the behavior of real ant movements
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(ACO) has been found to be both robust and versatile in handling a wide range of
combinatorial optimization problems.

4.3.2 The ACO Algorithm

The main idea of ACO is to model a problem as the search for a minimum cost path
in a graph. Artificial ants as if walk on this graph, looking for cheaper paths. Each
ant has a rather simple behavior capable of finding relatively costlier paths. Cheaper
paths are found as the emergent result of the global cooperation among ants in the
colony. The behavior of artificial ants is inspired from real ants: they lay pheromone
trails (obviously in a mathematical form) on the graph edges and choose their path
with respect to probabilities that depend on pheromone trails. These pheromone trails
progressively decrease by evaporation. In addition, artificial ants have some extra
features not seen in their counterpart in real ants. In particular, they live in a discrete
world (a graph) and their moves consist of transitions from nodes to nodes.

Pheromone placed on the edges acts like a distributed long term memory [29].
The memory, instead of being stored locally within individual ants, remains dis-
tributed on the edges of the graph. This indirectly provides a means of communi-
cation among the ants called stigmergy [30]. In most cases, pheromone trails are
updated only after having constructed a complete path and not during the walk, and
the amount of pheromone deposited is usually a function of the quality of the path.
Finally, the probability for an artificial ant to choose an edge, not only depends on
pheromones deposited on that edge in the past, but also on some problem dependent
local heuristic functions.

We illustrate the use of ACO in finding the optimal tour in the classical Traveling
Salesman Problem (TSP). Given a set of n cities and a set of distances between them,
the problem is to determine a minimum traversal of the cities and return to the home-
station at the end. It is indeed important to note that the traversal should in no way
include a city more than once. Let r(Cx,Cy) be a measure of cost for traversal from
city Cx to Cy. Naturally, the total cost of traversing n cities indexed by i1, i2, i3, .., in
in order is given by the following expression:

Cost(i1, i2, . . . , in) =
n−1

∑
j=1

r(Cij ,Cij+1)+ r(Cin ,Ci1) (4.1)

The ACO algorithm is employed to find an optimal order of traversal of the cities.
Let τ be a mathematical entity modeling the pheromone and τi j = 1/ri, j is a local
heuristic. Also let allowedk(t) be the set of cities that are yet to be visited by ant k
located in city i. Then according to the classical ant system [11] the probability that
ant k in city i visits city j is given by:

pk
i j(t) = [τi j(t)]α•[ηi j]β

∑
h ∈ allowedk(t)

[τih(t)]α•[ηih]β
, i f j ∈ allowedk(t)

= 0, otherwise

(4.2)
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In Equation 4.2, shorter edges with greater amount of pheromone are favored
by multiplying the pheromone on edge (i, j) by the corresponding heuristic
value η(i, j). Parameters α(>0) and β (>0) determine the relative importance
of pheromone versus cost. Now in ant system pheromone trails are updated as fol-
lows. Let Dk be the length of the tour performed by ant k,∆Dk(i, j) = 1/Dk if (i, j)ε
tour done by ant k and = 0 otherwise and finally let ρε[0,1] be a pheromone decay
parameter which takes care of the occasional evaporation of the pheromone from the
visited edges. Then once all ants have built their tours, pheromone is updated on all
the edges as follows:

τ(i, j) = (1−ρ) · τ(i, j)+
m

∑
k=1

∆τk(i, j) (4.3)

From Equation 4.3, we can guess that pheromone updating attempts to accumu-
late greater amount of pheromone to shorter tours (which corresponds to high value
of the second term in (4.3), so as to compensate for any loss of pheromone due to
the first term). This conceptually resembles a reinforcement-learning scheme, where
better solutions receive a higher reinforcement.

The ACS differs from the classical ant system in the sense that here the
pheromone trails are updated in two ways. Firstly, when ants construct a tour they
locally change the amount of pheromone on the visited edges by a local updating
rule. Now if we let γ to be a decay parameter and ∆τ(i, j) = τ0 such that τ0 is the
initial pheromone level, then the local rule may be stated as:

τ(i, j) = (1−ρ) · τ(i, j)+ γ ·∆τ(i, j) (4.4)

Secondly, after all the ants have built their individual tours, a global updating rule
is applied to modify the pheromone level on the edges that belong to the best ant tour
found so far. If Ê be the usual pheromone evaporation constant, Dgb be the length of
the globally best tour from the beginning of the trial and ∆τ ′ = 1/Dgb only when the
edge (i, j) belongs to global-best-tour and zero otherwise, then we may express the
global rule as:

τ(i, j) = (1− k) · τ(i, j)+ k ·∆τ ′(i, j) (4.5)

The main steps of ACS algorithm are presented as Algorithm 1. The first loop
(iteration) starts with m ants being placed in n cities chosen according to some
initialization rule (e.g. randomly). In the embedded loop (step) each ant builds a tour
(i.e., an acceptable solution to the TSP) by repeatedly applying a stochastic state
transition rule. While building its tour, the ant can modify the pheromone level on
the visited edges by applying the local updating rule given by (4.4). Once all the ants
have terminated their tour, the pheromone trails are modified again by the global
updating rule given in (4.5). Figure 4.9 illustrates the computer simulation of the
ACO technique working on a 10 city TSP problem.
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Algorithm 1 Ant colony system algorithm
Begin

Initialize pheromone trails;
Repeat
Begin /* at this stage each loop is called an iteration */

Each ant is positioned on a starting node;
Repeat
Begin /* at this level each loop is called a step */

Each ant applies a state transition rule like rule (2) to incrementally build a solution
and a local pheromone-updating rule like rule (4.4);

Until all ants have built a complete solution;
A global pheromone-updating rule like rule (4.5) is applied.

Until terminating condition is reached;
End

Fig. 4.9. Solving the TSP problem with ACO algorithm (adapted from [29])

4.3.3 The Particle Swarm Optimisation (PSO)

The concept of particle swarms, although initially introduced for simulating hu-
man social behaviors, has become very popular these days as an efficient search
and optimization technique. The Particle Swarm Optimization (PSO) [10], as it is
called now, does not require any gradient information of the function to be opti-
mized, uses only primitive mathematical operators and is conceptually very simple.
Since its advent in 1995, PSO has attracted the attention of a lot of researchers all
over the world resulting into a huge number of variants of the basic algorithm as
well as many parameter automation strategies. PSO [27] is in principle such a multi-
agent parallel search technique. Particles are conceptual entities which fly through
the multi-dimensional search space. At any particular instant, each particle has a
position and a velocity. The position vector of a particle with respect to the origin
of the search space represents a trial solution of the search problem. At the begin-
ning a population of particles is initialized with random positions marked by vectors
Xi and random velocities Vi. The population of such particles is called a ‘swarm’
S. A neighborhood relation N is defined in the swarm. N determines for any two
particles Zi and Zj whether they are neighbors or not. Thus for any particle Z, a
neighborhood can be assigned as N(Z), containing all the neighbors of that particle.
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Different neighborhood topologies and their effect on the swarm performance have
been discussed in [32]. In the basic PSO, each particle P has two state variables:

1. Its current position Xi(t).
2. Its current velocity Vi(t).

And also a small memory comprising,

1. Its previous best position Pi(t) i.e. personal best experience in terms of the
objective function value f (Pi(t)).

2. The best P(t) of all ZεN(Z): i.e. the best position found so far in the neighbor-
hood of the particle.

The PSO scheme has the following algorithmic parameters:

1. Vmax or maximum velocity which restricts Vi(t) within the interval [−Vmax,Vmax]
2. An inertial weight factor ω .
3. Two uniformly distributed random numbers ϕ1 and ϕ2 which respectively deter-

mine the influence of P(t) and g(t) on the velocity update formula.
4. Two constant multiplier terms C1 and C2 known as “self confidence” and “swarm

confidence” respectively.

Initially the settings for P(t) and g(t) are P(0) = g(0) = x(0) for all particles.
Once the particles are initialized, the iterative optimization process begins where
the positions and velocities of all the particles are altered by the following recursive
equations. The equations are presented for the d-th dimension of the position and
velocity of the i− th particle.

Vid(t + 1) = ωVid(t)+C1φ1.(Pd(t)−Xid(t))+C2φ2.(gd(t)−Xid(t))
Xid(t + 1) = Xid(t)+Vid(t + 1) (4.6)

The first term in the velocity updating formula represents the inertial velocity of
the particle. The second term involving P(t) represents the personal experience of
each particle and is referred to as “cognitive part”. The last term of the same relation
is interpreted as the “social term” which represents how an individual particle is
influenced by the other members of its society. Typically, this process is iterated for
a certain number of time steps, or until some acceptable solution has been found
by the algorithm or until an upper limit of CPU usage has been reached. Once the
iterations are terminated, most of the particles are expected to converge to a small
radius surrounding the global optima of the search space. The velocity updating
scheme is illustrated in Figure 4.10 with a humanoid particle. A pseudo code for
the PSO algorithm is depicted as Algorithm 2.

The PSO algorithm can be seen as a set of vectors whose trajectories oscillate
around a region defined by each individual previous best position and the best posi-
tion of some other individuals [27]. There are different neighborhood topologies used
to identify which particles from the swarm can influence the individuals. The most
common ones are known as the gbest and lbest. In the gbest swarm; the trajectory
of each individual (particle) is influenced by the best individual found in the entire
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Fig. 4.10. Illustrating the velocity updating scheme of basic PSO

Algorithm 2 Particle swarm optimization algorithm
PSO Algorithm input: Randomly initialized position and velocity of the particles: Xi(0) and
Vi(0)
Output: Position of the approximate global optima
Begin

While terminating condition is not reached do
Begin

for i = 1 to number of particles
Evaluate the fitness: = f (Xi(t));
Update P(t) and g(t);
Adapt velocity of the particle using equation 4.6;
Update the position of the particle;
increase;

end while;
end;

swarm. It is assumed that gbest swarms converge fast, as all the particles are attracted
simultaneously to the best part of the search space. However, if the global optimum
is not close to the best particle, it may be impossible for the swarm to explore other
areas and, consequently, the swarm can be trapped in local optima [33]. In the lbest
swarm, each individual is influenced by a smaller number of its neighbors (which are
seen as adjacent members of the swarm array). Typically, lbest neighborhoods com-
prise of two neighbors: one on the right side and one on the left side (a ring lattice).
This type of swarm will converge slower but can locate the global optimum with a
greater chance. lbest swarm is able to flow around local optima, sub-swarms being
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Fig. 4.11. Graphical Representation of (a) gbest Swarm (b) lbest Swarm (adapted from [33])

able to explore different optima [32]. A graphical representation of a gbest swarm
and an lbest swarm respectively is depicted in Figure 4.11.

Watts [34] introduced the small-world network model, which allows interpolat-
ing between regular low-dimensional lattices and random networks, by introducing
a certain amount of random long-range connections into an initially regular net-
work [35]. Starting from here, several models have been developed: icing model [36],
spreading of epidemics [37], evolution of random walks [38] are some of them.

4.3.4 Relevance of SI Algorithms in Bioinformatics

From the discussion of the previous subsections, we see that the SI algorithms
are mainly stochastic search and optimization techniques, guided by the principles
of collective behaviour and self organization of insect swarms. They are efficient,
adaptive and robust search methods producing near optimal solutions and have a
large amount of implicit parallelism. On the other hand, several tasks in bioinformat-
ics involve optimization of different criteria (like energy, alignment score, overlap
strength and so on); thereby making the application of SI tools more obvious and
appropriate. For example, most of the ordering problems in bioinformatics, such
as the sequence alignment, fragment assembly problem (FAP) and gene mapping
(GM), are quite similar to the TSP (one of the most difficult ordering problems till
date) with notable differences [39]. We have already discussed how TSP can be
solved efficiently with the ant systems in Section 4.3.2. Thus, ACO can be tried on
many of these problems and the results can be compared with the classical methods
used in these contexts up to now.

The problems of bioinformatics seldom need the exact optimum solution; rather
what they need are robust, fast and near optimal solutions, which SI algorithms like
PSO are known to produce efficiently. Moreover, the laboratory operations on DNA
inherently involve errors. These are more tolerable in executing the SI algorithms
than in executing deterministic algorithms. To some extent, these errors may be
regarded as contributing to population diversity, a desirable property for the con-
vergence of the SI algorithms. The problem of integrating SI in bioinformatics, in
this way, can develop a new research area.
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4.4 A Review of the Present State of the Art

In this section, we provide a substantial review of the state of the art research,
which focuses on the application of swarm intelligence to different bioinformatics
related problems. The number of published papers reporting the applications of PSO
or ACO in bioinformatics is currently smaller as compared to the huge amount of
work reported for other evolutionary computing methods like GA etc in the same
context. Nevertheless, we believe that in near future SI will serve as an indispens-
able computing methodology in the field of bioinformatics, keeping in mind the
reported success of the SI algorithms over classical evolutionary algorithms in many
cases [40], [41], [42]. We describe each research problem first and then illustrate how
SI algorithms can be used to solve them.

4.4.1 Clustering of Gene Expression Data

Gene expression refers to a process through which the coded information of a gene is
converted into structures operating in the cell. It provides the physical evidence that a
gene has been “turned on” or activated. Expressed genes include those that are tran-
scribed into m-RNA and then translated into protein and those that are transcribed
into RNA but not translated into protein (e.g., transfer and ribosomal RNAs) [43].

The expression levels of thousands of genes can be measured at the same time
using the modern microarray technology [44], [45]. DNA microarrays usually con-
sist of thin glass or nylon substrates containing specific DNA gene samples spotted
in an array by a robotic printing device. Researchers spread fluorescently labeled
m-RNA from an experimental condition onto the DNA gene samples in the array.
This m-RNA binds (hybridizes) strongly with some DNA gene samples and weakly
with others, depending on the inherent double helical characteristics. A laser scans
the array and sensors to detect the fluorescence levels (using red and green dyes),
indicating the strength with which the sample expresses each gene. The logarith-
mic ratio between the two intensities of each dye is used as the gene expression
data.

Proper selection, analysis and interpretation of the microarray data can lead us
to the answers of many important problems in experimental biology. In the field
of pattern recognition, clustering [46] refers to the process of partitioning a dataset
into a finite number of groups according to some similarity measure. Currently
it has become a widely used process in microarray engineering for understand-
ing the functional relationship between groups of genes. Clustering was used, for
example, to understand the functional differences in cultured primary epatocytes rel-
ative to the intact liver [47]. In another study, clustering techniques were used on
gene expression data for tumor and normal colon tissue probed by oligonucleotide
arrays [48].

To cluster the microarray dataset, the first thing we need a suitable similarity
measure among the gene profiles. Euclidean distance serves the purpose when the
objective is to partition genes displaying similar level of expression. Let genei(xi1,
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xi2, . . . ,xin) denote the expression pattern of the i − th gene. Then the Euclidean
distance between the i− th and the j− th gene is given by:

di, j =

√
n

∑
k=1

(xik − x jk)2 (4.7)

Another popular similarity measure used in this context is the Pearson Correla-
tion Coefficient [49] given by

r =
∑n

k=1((xik − x̂i)(x jk − x̂ j))/n

σxi ∗σx j

(4.8)

A number of standard clustering algorithms such as hierarchical clustering [50],
[51], principle component analysis (PCA) [52] [53], genetic algorithms [54], and ar-
tificial neural networks [55] [56] [57], have been used to cluster gene expression data.
However, in 2003, Xiao et al. [58] used a new approach based on the synergism of
the PSO and the Self Organizing Maps (SOM) for clustering them. Authors achieved
promising results by applying the hybrid SOM-PSO algorithm over the gene expres-
sion data of Yeast and Rat Hepatocytes. We will briefly discuss their approach in the
following paragraphs.

The idea of the SOM [59] stems from the orderly mapping of information in the
cerebral cortex. With SOM, high dimensional datasets are projected onto a one- or
two- dimensional space. Typically, a SOM has a two dimensional lattice of neurons
and each neuron represents a cluster. The learning process of SOM is unsupervised.
All neurons compete for each input pattern; the neuron that is chosen for the input
pattern wins it.

Xiao et al. [58] used PSO to evolve the weights for SOM. In the first stage of
the hybrid SOM/PSO algorithm, SOM is used to cluster the dataset. Authors used
a SOM with conscience at this step. Conscience directs each component that takes
part in competitive learning toward having the same probability to win. Conscience
is added to SOM by assigning each output neuron a bias. The output neuron must
overcome its own bias to win. The objective is to obtain a better approx. of pattern
distribution. The SOM normally runs for 100 iterations and generates a group of
weights. In the second stage, PSO is initialized with the weights produced by SOM in
the first stage. Then a gbest PSO is used to refine the clustering process. Each particle
consists of a complete set of weights for SOM. The dimension of each particle is the
number of input neurons of SOM times the number of output neurons of SOM. The
objective of PSO is to improve the clustering result by evolving the population of
particles.

4.4.2 The Molecular Docking Problem

Formally, the protein-ligand docking problem may be described as: We are given
a geometric and chemical description of a protein and an arbitrary small organic
molecule. We want to determine computationally whether the small molecule will
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Fig. 4.12. Stereo view of benzamidine docked in the active site of trypsin

bind to the protein, and if so, we would like to estimate the geometry of the bound
complex, as well as the affinity of the binding. Figure 4.12 illustrates how benzami-
dine, a trypsin inhibitor, docks into the active site of trypsin, a protease involved in
digestion (adapted from [60]).

Liu et al. [61] proposed a novel PSO based docking technique, which they called
SODOCK (Swarm Optimization for molecular DOCKing). After comparing with
a number of state of the art docking techniques like GOLD 1.2 [62], AutoDock
3.05 [63], DOCK 4.0 [64] etc., they found promising results for SODOCK in terms
of robustness, accuracy and the speed of convergence. In SODOCK, three kinds of
parameters are optimized using the PSO:

• Translation: three parameters in this category specify the translation of the cen-
ter of the ligand with respect to the center of a 3D grid box that encloses the
binding site of the protein.

• Orientation: There are four parameters nx,ny,nz and α where nx,ny,nz ε[0,1]
specify the normal vector of the ligand whereas αε[−π ,π ] represent the angle of
self rotation along the normal vector.

• Torsions: These are torsion angles toriε[−π ,π ] associated with the rotating
bonds, i = 1,2, . . . ,T .

Thus, the PSO algorithm is used to evolve a total of N = 7 + T parameters such
that the following docking energy function is minimized:

Etot = Evdw + EH−bond + Epot + Eintern (4.9)

The first three terms in the above expression, correspond to the intermolecular
energies: van der Waals force, hydrogen bonding, and electronic potential. The last
term represents the internal energy of the ligand, which also consists of the three
elements.
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The fitness landscape of the energy function shown in 4.9 is usually riddled with
multiple local minima. In order to tackle these local peaks efficiently, Liu et al.
integrated a local search strategy (a variant of the Solis and Wet local search [63]) in
SODOCK. A generation of SODOCK has four stages: update of velocity, move of
particle, local search, and update of local and global best positions. The local search
may be applied to the particle according to a predefined probability Pls. Finally, the
local and global best positions of particles are updated if their energies are improved.
The particles having the smallest energy correspond to a solution to the flexible
docking problem.

4.4.3 The Multiple Sequence Alignment Problems (MSA)

Sequence alignment refers to the process of arranging the primary sequences of
DNA, RNA, or protein to identify regions of similarity that may be a consequence
of functional, structural, or evolutionary relationships between the sequences. Given
two sequences X and Y , a pair-wise alignment indicates positions of each sequence
that are considered to be functionally or evolutionarily related. From a family S =
(S0,S1, . . . ,SN−1) of N sequences, we would like to find out the common patterns
of this family. Since aligning each pair of sequences from S separately often does
not reveal the common information, it is necessary to perform multiple sequence
alignment (MSA). A multiple sequence alignment (MSA) is a sequence alignment
of three or more biological sequences, generally protein, DNA, or RNA. In general,
the input set of query sequences are assumed to have an evolutionary relationship by
which they share a linkage and are descended from a common ancestor. An example
of multiple alignments of five sequences is illustrated in Figure 4.13.

To evaluate the quality of an alignment, a popular choice is to use the SP (sum of
pairs) score method [65]. The SP score basically sums the substitution scores of all
possible pair-wise combinations of sequence characters in one column of a multiple
sequence alignment. Assuming ci representing the i− th character of a given column
in the sequence matrix and match (ci,c j) denoting the comparing score between
characters ci and c j, the score of a column may be computed using the formula:

SP = (c1,c2, . . . ,cN) =
N−1

∑
i=1

N

∑
j=i+1

match(ci,c j) (4.10)

Progressive alignment is a widely used heuristic MSA method that does not guar-
antee any level of optimality [66]. ClustalW [67] is another widely popular program

Fig. 4.13. An example of multiple sequence alignments
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that improved the algorithm presented by Feng and Doolittle [66]. The main short-
coming of ClustalW is that once a sequence has been aligned, that alignment can
never be modified even if it conflicts with sequences added later.

Recently, Chen et al. [68] took a serious attempt to solve the classical MSA
problem by using a partitioning approach coupled with the ACO algorithm. Authors
algorithm consists of three stages. At first a genetic algorithm is employed to find
out the near optimal cut-off points in the original sequences from where they must
be partitioned vertically. In this way a partitioning method is continued recursively
to reduce the original problem to multiple smaller MSA problems until the lengths of
the subsequences are all less than an acceptable threshold. Next, an ant colony system
is used to align each small subsection derived from the previous step. The ant system
consists of N ants each of which represents a solution of alignment. Each ant searches
for an alignment by moving on the sequences to choose the matching characters. Let
the N sequences be S = S0,S1, . . . ,SN−1. In that case an artificial ant starts from
S0[0], the first character of S0, and selects one character from each of the sequences
of S1, . . . ,SN−1 matching with S0[0]. From the sequence Si, i = 1,2, . . . ,n1, the ant
selects a character Si[ j] by a probability determined by the matching score with S0[0],
deviation of its location from S0[0] and pheromones trail on the logical edge between
Si[ j] and S0[0]. In addition, an ant may choose to insert an empty space according
to a predetermined probability. Next, the ant starts from S0[1], selects the characters
of S1, . . . ,SN−1 matching with S0[1] to form the second path. Similarly, starting from
S0[2], . . . ,S0[|S0|−1], the ant can form other paths. Here |S0| indicates the number of
characters in the sequence |S0|. All these |S0| paths forming an alignment solution is
reproduced in Figure 4.14.

To evaluate an alignment represented by a set of paths, the positions of characters
not selected by the ants are calculated first by aligning them to the right and adding
gaps to the left. Next their SP (sum-of-pairs) score is using relation 4.9. Finally,
a solution to the MSA is obtained by concatenating the results from smaller sub-
alignments. Chen et al. showed that the Divide-Ant-MSA algorithm outperforms the
SAGA [69] a leading MSA program based on genetic algorithm (GA) in terms of
both speed and accuracy especially for longer sequences.

Fig. 4.14. An example alignment as presented by the paths traced out by the ants
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Rasmussen and Krink in [70] focussed on a new PSO based training method for
Hidden Markov models (HMMs) in order to solve the MSA problem. The authors
demonstrated how the combination of PSO and evolutionary algorithms can gen-
erate better protein sequence alignments than with more traditional HMM training
methods, such as Baum-Welch [71] and simulated annealing [72].

4.4.4 The Construction of Phylogenetic Trees

Every species on earth undergo slow change of their hereditary traits in course of
evolution. The phylogenetic or evolutionary trees are schematic binary trees show-
ing the evolutionary interrelationships among various species that are believed to
have a common ancestor [15]. The leaves of such a tree represent the present day
species while the interior nodes represent the hypothesized ancestors. Phylogenetic
trees may be rooted or un-rooted (Figure 4.15). An un-rooted tree simply represents
phylogenies but does not provide an evolutionary path. In case of a rooted tree, one
of the internal nodes is used as an out-group, and, in essence, becomes the common
ancestor of all the other external nodes. The out-group therefore enables the root of
a tree to be located and the correct evolutionary pathway to be identified.

In a phylogenetic tree, the phylogenies are reconstructed based on comparisons
among the present-day objects. The term object is used to denote the units for which
one wants to reconstruct the phylogeny. The input data essential for constructing
phylogeny are of two types [15].

• Discrete characters, such as beak shape, number of fingers, presence or absence
of a molecular restriction site. Each character can have a finite number of states.
The data relative to these characters are placed in an objects character matrix
called character state matrix.

• Comparative numerical data, called distances between objects. The resulting
matrix is called distance matrix.

Given data (character state matrix or distance matrix) for n taxa (object), the
phylogenetic tree reconstruction problem is to find the particular permutation of taxa

Fig. 4.15. Topologies of phylogenetic trees (a) un-rooted (b) rooted
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that optimize the criteria (distance). Felenstein has shown that considering n species,
it is possible to construct N number of trees where, N is given by the following
equations for unrooted trees and rooted trees [73]:

N =
(2n−3)!

2n−2(n−2)!
(4.11)

N =
(2n−5)!

2n−3(n−3)!
(4.12)

The problem poses severe computational challenge before us, example, if we
would like to find the best tree using the method of maximum similarity for (only)
15 species, we should try 213, 458, 046, 676, 875 trees.

The phylogenetic tree construction problem bears close resemblance to a stan-
dard TSP, (Traveling Salesman Problem) described earlier in Section 4.3.2. One can
simply associate one imaginary city to each taxa, and define as the distance between
two cities the data obtained from the data matrix for the corresponding pair of taxas.
This kind of formulation of the problem paves the path for the application of heuristic
algorithms like GA [74], [75] and ACO. Perretto et al. [76] proposed a slightly mod-
ified artificial ant colony based algorithm for the construction of phylogenetic trees.
Their approach starts with building a two-dimensional fully-connected graph using
the distance matrix among the species. In this graph, nodes represent the species and
edges represent the evolutionary distances between species. An example of such a
graph is provided in Figure 4.16. The ants start from a randomly selected node and
continue traveling across the structured graph. At each node a transition function
similar in form to equation 4.2, determines its direction.

The method described in [76], differs from the classical ant systems based TSP in
only one respect. In case of the former algorithm, moves are made between nodes, but
here, the ant system creates an intermediary node between the two previously se-
lected ones. This node will represent the ancestral species of the other two, and it will
not be in the list of nodes (species) to be set in the tree. Using such an intermediary
node, distances to the remaining nodes (species) are recomputed.

The ants initially start from a randomly selected node and continue traveling
across the structured graph. At each node a transition function similar in form to

Fig. 4.16. Distance matrix for four species and the corresponding two-dimensional graph
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equation 4.2 determines its direction. In original ACO based algorithm for TSP,
moves are made between nodes. But here, the ant system creates an intermediary
node between the two previously selected ones. This node will represent the ancestral
species of the other two, and it will not be in the list of nodes (species) to be set in the
tree. Using such an intermediary node, distances to the remaining nodes (species) are
recomputed. This procedure is repeated until all nodes belong to the list of already
visited nodes, and then a path is constructed. The score of this path is given by the
sum of the transition probabilities of the adjacent nodes of the path. Paths constructed
by the ants are then used for updating the pheromone trail. An increment of the
pheromone trail is made at all nodes belonging to at least one path, created in an
execution cycle. This key point helps to avoid trapping in a local maximum. In
this way, following an algorithm very close in spirit to the ant colony algorithm for
solving the TSP, the phylogenetic trees may be reconstructed efficiently.

Ando and Iba [77] proposed an ant algorithm for the construction of evolutionary
trees from a given DNA sequence. Authors algorithm searches for a tree structure that
minimizes the score for a given set of DNA sequences. It uses the mutual distance
matrix of the leaves as the input. While the ACO for TSP visits the respective cities
once to construct a round trip, ants in tree constructing algorithm visit leaves and
vertices of the tree to construct a suffix representation of the bifurcating tree. The
algorithm is shown to compete with conventional methods of the exhaustive search
or the sequential insertion method, taken by the most popular methods.

4.4.5 The RNA Secondary Structure Prediction

Ribonucleic acid (RNA) is a nucleic acid polymer (like DNA) consisting of nu-
cleotide monomers. Unlike deoxyribonucleic acid (DNA), which contains deoxyri-
bose and thymine, RNA nucleotides contain ribose rings and uracil. As pointed out
in Section 4.2.2, RNA serves as the template for translation of genes into proteins,
transferring amino acids to the ribosome to form proteins, and also translating the
transcript into proteins.

Like protein secondary structure (discussed in Section 4.2.3), RNA secondary
structure may be conveniently viewed as an intermediate step in the formation of
a three dimensional structure [13]. RNA secondary structure is composed primarily
of double-stranded RNA regions formed by folding the single-stranded molecule
on itself. To produce such double-stranded regions, a downstream sequence of the
bases in RNA must be complementary to another upstream sequence so that Watson-
Crick base pairing can occur between the complementary nucleotides G-C and A-U
(analogous to the G-C and A-T base pairs in DNA). Among the several recognizable
“domains” of secondary structure three well known ones are hairpin loops, bulges
and internal loops. Figure 4.17 shows the folding of a single stranded RNA molecule
into a hairpin structure.

Secondary structure of RNA molecules can be predicted computationally by cal-
culating the minimum free energy (MFE) structure for all different combinations of
hydrogen bonds and domains. Neethling and Engelbrecht [78] attempted to optimize
the structure of RNA molecules using a modified PSO algorithm. The SetPSO, which
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Fig. 4.17. Illustrating the formation of a hair-pin RNA secondary structure

the authors proposed for this purpose, can operate on mathematical sets in order to
solve set-based combinatorial optimization problems in discrete search spaces. In
SetPSO, the position of each particle denotes a set and this necessitates the redefini-
tion of the addition and subtraction operators suitably. The addition of the position
vectors of two particles here essentially means the union of the two sets, which they
represent (i.e. A + B now represents the set of all elements which belong to both
A and B). On the other hand the subtraction operation is basically the set-theoretic
difference between two sets A and B (i.e. A−B denotes a set of all elements which
belong to A but not to B).

In the course of folding back of RNA, the process of binding of the adjacent
complementary bases is known as stacking. A stack or stem representing a valid
RNA secondary structure should satisfy a few constraints like each base can pair
with only one canonical base, no pseudo knots should be allowed etc. The collection
of all feasible stems (i.e. those obeying the constraints) forms a universal set U.
Each particle of the SetPSO is then initialized as a randomly chosen subset of U.
Positions and velocities of these particles are updated using the modified addition
and subtraction operators with a view to minimizing the thermodynamic free energy
function defined for the RNA structure [79]. Although the SetPSO based algorithm
yielded near-optimal configuration for RNA molecules in a number of benchmarks,
further research is necessary to select a more robust energy function, which can
eliminate the formation of pseudo-knots in the predicted structure.

4.4.6 Protein Secondary Structure Prediction

Protein secondary structures have already been introduced in Section 4.2.3. Protein
structures are primarily determined by techniques such as NMRI (nuclear-magnetic
resonance imaging) and X-ray crystallography, which are expensive in terms of
equipment-cost, computation and time. In addition, they require isolation, purifica-
tion and crystallization of the target protein. Computational approaches to protein
structure prediction are therefore very attractive and cost effective. Since the pro-
cesses involved in the folding of proteins are very complex and only partially under-
stood simplified models like Dill’s Hydrophobic-Polar (HP) have become one of the
major tools for studying proteins [80]. The HP model is based on the observation that
hydrophobic interaction is the driving force for protein folding and the hydrophobic-
ity of amino acids is the main force for development of a native conformation of
small globular proteins [80], [81]. In the HP model, each amino acid can be either of
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Fig. 4.18. A sample protein conformation in the 2D HP model. The underlying protein se-
quence (Sequence 1 from Table 1) is HPHPPHHPHPPHPHHPPHPH; black squares represent
hydrophobic amino-acids, while white squares symbolize polar amino-acids

two types: H (hydrophobic, i.e., non-polar) or P (hydrophilic, i.e., polar). For sim-
plicity, we denote H by “l” (black) and P by “0” (white). The protein conformations
of this sequence are restricted to self-avoiding paths on a lattice. An example for a
protein conformation under a 2D HP lattice model is illustrated in Figure 4.18.

But, finding the optimal folds even in case of the simplest two-dimensional
HP model is computationally hard and knows no polynomial time solution [82].
Shmygelska and Hoos proposed a modified version of the ACO for solving this NP-
hard problem [83], [84]. The ants, in their method, first randomly select a starting
point within the given protein sequence. From this starting point, the given protein
sequence is folded in both directions, adding one amino-acid symbol at a time. In this
way, the tours of these ants construct candidate conformation for a given HP protein
sequence, apply local search to achieve further improvements, and finally update the
pheromone trails based on the quality of the solutions found. The ant system incor-
porates a local search element as a means of by-passing local minima and preventing
the algorithm from premature convergence.

Chu et al. [85] extended the 2-D solutions of the HP protein folding problems
to the 3-D case by using a parallel ant colony system. They proposed a Multi Ant
Colony Optimization (MACOS) algorithm for optimizing the 3-D HP lattice con-
figuration. The MACOS utilizes multiple colonies of artificial ants. It employs sep-
arate pheromone matrices for each colony and allows limited cooperation between
different colonies.

4.4.7 Fragment Assembly Problem (FAP)

The fragment assembly problem (FAP) deals with the sequencing of DNA. Currently
strands of DNA, longer than approximately 500 base pairs, cannot be sequenced
very accurately. As a consequence, in order to sequence larger strands of DNA,
they are first broken into smaller pieces. The FAP is then to reconstruct the original
molecule’s sequence from the smaller fragment sequences. FAP is basically a per-
mutation problem, similar in spirit to the TSP, but with some important differences
(circular tours, noise, and special relationships between entities) [15]. It is also NP-
complete in nature. Meksangsouy and Chaiyaratana [86] attempted to solve the DNA
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fragment reordering problem with the ant colony systems. The authors investigated
two types of assembly problems: single-contig and multiple-contig problems. The
simulation results indicate that in single-contig problems, the ant colony system
algorithm outperforms the nearest neighbor heuristic algorithm when multiple-contig
problems are considered.

4.5 A Few Open-ended Problems and Future Research Directions

In the last section, we discussed the research works already undertaken for making an
efficient use of SI tools in bioinformatics. The papers published in this context, may
be small in volume, but are of immense significance to the researchers of tomorrow.
We note that the SI algorithms are yet to be applied to a huge lot of NP-hard problems
from computational biology, for which no universally acceptable solution is known
till date. In the present Section, we address a few research problems of this kind and
provide hints on their possible solution through the application of SI algorithms.

4.5.1 Identifying Gene Regulatory Networks

A Gene Regulatory Network (GRN) may be defined as a collection of genes in a cell
that interact with one another, governing the rate of transcription [87]. Inferring the
network from gene expression data obtained through DNA microarray constitutes
one of the most challenging problems in the field of bioinformatics. Genes can be
viewed as nodes in a complex network, with input being proteins such as transcrip-
tion factors, and outputs being the level of gene expression. The node itself can also
be viewed as a function which can be obtained by combining basic functions upon
the inputs (in the Boolean network described below these are Boolean functions or
gates computed using the basic AND, OR and NOT gates in electronics). These func-
tions have been interpreted as performing a kind of information processing within the
cell which determines cellular behavior.

PSO can be utilized very effectively to solve the GRN identification problem.
Each particle may represent the real valued expression levels of all the genes. Each
gene has a specific expression level for another gene; thus a total of N genes cor-
respond to N2 expression levels. Fitness of the particles may be computed from
the absolute error with generated expression pattern (sum of all expressions) from
the target expression pattern. Investigations of the same problem with evolutionary
algorithms can be found in [88], [89], [90], [91].

4.5.2 Protein Tertiary Structure Prediction and Folding

Once a protein sequence has been determined, deducing its unique 3-D native struc-
ture is a daunting task. Experimental methods to determine detailed protein structure,
such as x-ray diffraction studies and nuclear magnetic resonance (NMR) analy-
sis, are highly labor intensive. Since it was discovered that proteins are capable
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of folding into their unique functional 3D structures without any additional genetic
mechanisms, over 25 years of effort has been expended into the prediction of 3D
structure from sequence. Despite the large amount of effort expended, the protein
folding or protein structure prediction problem, as it has come to be known, remains
largely unsolved [92].

Since PSO is known as a fast and accurate global optimization method, it may
be integrated in the ab initio approach to protein tertiary structure prediction [93],
[94], [95]. The ab initio approach is a mixture of science and engineering. The sci-
ence is in understanding how the three-dimensional structure of a protein is attained.
The engineering portion is in finding the 3-Dstructure from a given the sequence.
The ab initio folding process can be broken down into two components: devising
a scoring function that can distinguish between correct/good (native or native like)
structures from incorrect (non-native) ones, and a search method to explore the con-
formational space. The PSO may be used in the searching phase in order to enhance
the performance of the process as a whole.

4.5.3 Characterization of Metabolic Pathways between Different Genomes

In biochemistry, a metabolic pathway is a series of chemical reactions occurring
within a cell, catalyzed by enzymes, resulting in either the formation of a metabolic
product to be used or stored by the cell, or the initiation of another metabolic pathway
(then called a flux generating step). Many pathways are elaborate, and involve a step
by step modification of the initial substance to shape it into the product with the exact
chemical structure desired [96].

The goal of characterizing the metabolic pathways is to estimate the “best” set of
parameter values, which minimizes the error between the process data and the model
metabolic network response. This parameter estimation problem can be formulated
as a non-convex, nonlinear optimization problem and can therefore be solved us-
ing global optimization techniques. This feature makes the problem ideal for the
application of algorithms like PSO.

4.5.4 Characterization of Metabolic Pathways between Different Genomes

One of the most promising applications of bioinformatics appears in computer-aided
molecular design (CAMD). In pharmaceutical development, this effort is focused on
modeling the drugs and the biological receptors that the drugs bind to so that better
binding, and therefore, more potent or precise drugs can be developed [97], [98].
SI algorithms like PSO may find important applications for the design of a ligand
molecule, which can bind to the active site of a target protein.

Unlike the GA based methods [99], [100], PSO or ACO have not been applied to
the molecular design problem till date. The formulation of the drug design problem
with PSO requires the control of a fitness function. The fitness function must be
capable of determining which of two arbitrary molecules is better for a specific task.
The algorithm may begin by generating a population of particles each representing
one randomly oriented molecule. The individual molecules in a population are then
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evolved towards greater fitness by using the velocity updating schemes of the PSO
or its variants. However, finding a suitable representation of the particles (thereby
enabling them to contain information about the each random molecule) constitutes a
major research issue in this direction.

4.6 Conclusions

With an explosive growth of the annotated genomic sequences in available form,
bioinformatics has emerged as a challenging and fascinating field of science. It
presents the perfect harmony of statistics, biology and computational intelligence
methods for analyzing and processing biological information in the form of gene,
DNA, RNA and proteins. SI algorithms on the other hand, have recently gained wide
popularity among the researchers, for their amazing ability in finding near optimal
solutions to a number of NP hard, real world search problems. A survey of the bioin-
formatics literature reveals that the field has a plethora of problems that need fast
and robust search mechanisms. Problems belonging to this category include (but
are not limited to) the multiple sequence alignment (MSA), protein secondary and
tertiary structure prediction, protein ligand docking, promoter identification and the
reconstruction of evolutionary trees. Classical deterministic search algorithms and
the derivative based optimization techniques are of no use for them as the search
space may be enormously large and discontinuous at several points. SI presents a
collection of multi-agent parallel search techniques which can be very effective for
solving bioinformatics related tasks of this kind. We fervently hope that the SI com-
munity will make significant contribution to the emerging research area of modern
computational biology in near future.

This article surveyed several important applications of SI tools in bioinformatics.
We also illustrated a few open-ended research problems of computational biology,
where the SI algorithms like PSO and ACO may find very good use. Even though
the current approaches in biological computing with SI algorithms are very helpful
in identifying patterns and functions of proteins, genes etc., the final results are far
from being perfect.

There are a few general issues which should be addressed by the researchers in
future in order to exploit the SI algorithms to their full potential in bioinformatics:
firstly, the basic velocity updating scheme in PSO or the pheromone trail updating
mechanism in ACO are common to all applications; research should now focus on the
design of problem specific operators to get better results. Secondly, the parameters
of the ACO or PSO require extensive experimentation so that the appropriate range
of values can be identified for different bioinformatics tasks. Finally, algorithms like
PSO or ACO and their variants involve a large degree of randomness and different
runs of the same program may yield different results; so it is necessary to incorpo-
rate problem specific domain knowledge in the SI tools to reduce randomness and
computational time and current research should progress in this direction also.
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Summary. Heterogeneous types of gene expressions may provide a better insight into the bi-
ological role of gene interaction with the environment, disease development and drug effect at
the molecular level. In this chapter for both exploring and prediction purposes a Time Lagged
Recurrent Neural Network with trajectory learning is proposed for identifying and classifying
the gene functional patterns from the heterogeneous nonlinear time series microarray exper-
iments. The proposed procedures identify gene functional patterns from the dynamics of a
state-trajectory learned in the heterogeneous time series and the gradient information over
time. Also, the trajectory learning with Back-propagation through time algorithm can recog-
nize gene expression patterns vary over time. This may reveal much more information about
the regulatory network underlying gene expressions. The analyzed data were extracted from
spotted DNA microarrays in the budding yeast expression measurements, produced by Eisen
et al. The gene matrix contained 79 experiments over a variety of heterogeneous experiment
conditions. The number of recognized gene patterns in our study ranged from two to ten and
were divided into three cases. Optimal network architectures with different memory structures
were selected based on Akaike and Bayesian information criteria using two-way factorial
design. The optimal model performance was compared to other popular gene classification al-
gorithms, such as Nearest Neighbor, Support Vector Machine, and Self-Organized Map. The
reliability of the performance was verified with multiple iterated runs.

5.1 Introduction

Understanding the function of each gene in the human/animal genome is not a trivial
task. Learning the gene interactions with the changing environment, with the devel-
opment of a disease or under different treatment is an even greater challenge and
critical to improve human life. DNA microarrays allow the measurement of expres-
sion levels for thousands of genes, perhaps all genes of a cell or an organism, within
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a number of different experimental conditions [1]. As an important step, extracting
the knowledge from heterogeneous types of gene expressions may provide a bet-
ter insight into the biological role of gene interactions with disease development
and drug effect at the molecular level. Heterogeneous types of gene expressions
contain different experimental conditions. The experimental conditions may cor-
respond to different time points under different dosages of a drug, measures from
different individuals, different organs or different diseases. The dynamic patterns
of genes expressed under different conditions can be useful indicators about gene
state-trajectories and may reveal possible states and trajectories of disease and treat-
ment effects [2–8]. Also, the analysis of the gene state patterns can help identifying
important and reliable predictors of diseases, such as cancer, in order to develop
therapies and new drugs [9]. Biologists, computer scientists and statisticians have
had more than a decade of research on the use of microarrays to model gene ex-
pressions [2, 10–12]. However, most of the studies are interested in the genes that
co-express in homogeneous conditions, but there are few works on heterogeneous
types of gene expressions. Moreover, most of these studies focus on the mean profiles
of the gene expression time course, which can make the clustering or classification of
gene expressions largely simplified but ignores the important time updated (varied)
information.

One feature of gene expression data in time course microarray experiment is that
it includes a large number of attributes with high correlation and with high level
noise. Because of its massive parallelism, potential for fault and noise tolerance, an
Artificial Neural Network (ANN) based information processing is capable of taking
the task to deal with this feature. ANNs can adapt their structure in response to the
change of the gene expressions under different conditions in order to extract knowl-
edge, which contributes to a deep understanding of gene interactions and identifies
certain causal relationships among the genes with diseases and drugs [13–14].

The study of the heterogeneous gene expressions under different experimental
conditions in a multivariate nonlinear time series may involve the study of dynamic
changing of the statistical variations of non-stationary processes of gene expressions.
There are several types of artificial neural networks for temporal processing, which
can be used to model the natural characteristics of the gene changing under differ-
ent conditions and update the information in the training data over time. Recurrent
Neural Networks (RNNs) have the ability of dealing with time varying input and
output and they can define neurons as states of the network [15]. The output of the
hidden layer is fed back to the input layer via time delay. An internal state of the net-
work encodes a representation of some characteristics or a biological mechanism of
gene interactions, based on the transition function of the state from a recursive neu-
ral network, eventually to control the production of the internal information. State
space model can be viewed as a special case of RNN, which combines a stochastic
process with observation data model uniformly based on the recursive neural net-
work. Hidden Markov processes can also be used to model the gene activity systems
in which the gene states are unobservable, but can be represented by a state tran-
sition structure determined by the state parameters and the state transition matrix
while processing the patterns over time. Time Lagged Recurrent Neural Networks
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(TLRNNs) are extensions of conventional RNNs and outperform them in the terms
of network size. A TLRNN use short memory structure instead of static topology
networks to develop advanced classification systems and use a complex learning
algorithm: Back-Propagation Through Time (BPTT) to learn the temporal pattern
[16–17]. This dynamic learning process is well suited to the heterogeneous time
series gene expression domain. TLRNNs have been used in nonlinear time series
prediction, system identification and temporal pattern classification.

The goal of this chapter is to investigate the performance of heterogeneous types
of multivariate time series data using time lagged recurrent neural networks with dy-
namic trajectory learning. The question we are interested in is whether the dynamic
heterogeneous gene activity patterns can be well identified or classified through the
trajectory learning with a time lagged recurrent neural network. Gene expression
time series data not only exhibit very high noise level, but is also significantly non-
stationary. The study of gene expressions under different experimental conditions
in a multivariate nonlinear time series may involve the study of dynamic changing
of the statistical variations of non-stationary processes of gene expressions. Time
Lagged Recurrent Neural Networks are used to model the natural characteristics of
gene changing under different conditions and update the information in the training
data over time.

To deal with non-stationarity in the gene data, one approach is to build models
based on a short time period or window only, such as Time Lagged Recurrent Neural
Networks, which use the short memory structure to confine the input for temporal
processing. Another way is to try to remove the non-stationarity using data transfor-
mation. Both approaches were performed in the application discussed in this chapter.
With the presence of high level noise in the gene expression, training is difficult, and
the random correlations with recent data can make the model to be based on the ear-
lier data difficult, and it is likely to develop into an inferior model. So before building
the appropriate model, data preprocessing have to be done in order to achieve desired
classification and prediction performance.

In gene expression data under different experimental conditions with different
time points there is a high dependence among the inputs and a high correlation
among the samples, so the training is not statistically independent. One way to deal
with the dependence of inputs is to include additional inputs, called lagged variables
or a tapped delay in the network. Thus, one can train an ordinary network with these
targets and lagged variables. Using only inputs as lagged target values are called
“autoregressive models”, which are widely studied statistical models. Using lagged
variables means that the inputs include more than one time constant, which makes
the network “dynamic” instead of using one time point (present data) with static
structure. The dynamic part is called “memory structure”. Such a neural network
models the human brain’s work in the aspect of short term memory, which essen-
tially helps to remember the recent past events. To use lagged variables, we have to
consider which lags and which input variables to include in the network, how many
hidden units to use, etc. This corresponds to the design of the memory structure of
the network.
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The use of a recurrent neural network with time lag is important from the view-
point of the “curse of dimensionality” and ill-conditioned problems. Trying to take
into account a greater history with a Feed Forward Neural Network means increasing
the number of delayed inputs, which results in an increase in the input dimension.
This is called the “curse of dimensionality”. If we have a small number of data
points then increasing the dimensionality of the space rapidly leads to the point
where the data is very sparse, in which case it provides a very poor representation of
the mapping [13]. Comparing with classical time series model, TLRNNs implement
Nonlinear Moving Average (NMA) models. With global feedback from the output to
the hidden layer, they can be extended to Nonlinear AutoRegressive Moving Average
(NARMA) models.

The rest of the chapter is divided as follows: in Section 5.2 we describe how
the data was acquired and preprocessed. In Section 5.3 TLRNNs, statistical criteria
for searching for the optimal model and related learning algorithms are presented.
Experimental results are given in section 5.4. We survey related work in section 5.5
and finally we provide some concluding remarks in section 5.6.

5.2 Data Acquisition and Preprocessing

5.2.1 Data Extraction

The widely studied set of yeast expression measurements data, produced by Eisen
et al. [18-20] contained 2465 genes. Each data point represented the ratio of ex-
pression levels of a particular gene under two different conditions: CY5 and CY3
with red and green fluorescence intensity, respectively. The gene matrix contained
79 time points over a variety of heterogeneous experimental conditions, which are
important biological parameters. The data was generated from spotted arrays using
samples collected at various time points during diauxic shift, mitotic cell division
cycle, sporulation, temperature, reducing shocks, and so on. We extracted the data
from the Stanford genome research web site (http://www-genome.stanford.edu). In
our study we used two third of the data for training and the rest for testing.

5.2.2 Functional Class Extraction

If one claims to be able to predict some gene patterns or classes with certain accuracy,
one should be questioned about the definition of gene patterns used, whether the
patterns to be identified are biologically meaningful, and whether the biologists and
pathologists actually care about them.

Classification of biological function of gene expression is essentially a classifi-
cation of molecular roles for all genes and proteins. The features of gene expressions
and the complexity of the genetic information make this task daunting, but it can be
dealt with by ontology design, which attempts to classify and further process various
aspects of molecule functions under highly qualitative and rich features of domains.
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Table 5.1. Three gene functional classes and their sizes for Eisen’s data

Class Size

Ribosomal protein genes 121
Transcription protein genes 159
Secretion protein genes 96

Table 5.2. Ten gene functional classes and their sizes for Eisen’s data

Class Size

CELL CYCLE 168
CHROMATIN 48
CYTOSKELETON 72
DNA 103
mRNA 103
NUCLEAR 43
PROTEIN 477
SECRETION 116
TRANSCRIPTION 136
TRANSPORT 129

The training labels of Eisen’s data were extracted from the Saccharomyces cere-
visiae functional catalogue databases. There are over 145 classes of gene functional
classes in the databases. Some types of the gene function classes such as cell cycle
could be used to distinguish types of cancers. So once the construction of a reliable
and effective classifier to learn gene functional patterns has been completed, we can
predict unknown genes and identify different types of diseases.

We studied Eisen’s experimental data at three levels:

• Identify two classes of gene functional patterns: 121 genes that code for riboso-
mal proteins and 2346 genes that code for non-ribosomal proteins.

• Identify three classes of gene functional patterns: the three classes and their sizes
are listed in Table 5.1.

• Identify multiple classes of gene functional patterns: four to ten classes. Evaluate
network performance when the number of gene functional patterns is increased.
The selected classes and their corresponding sizes are given in Table 5.2.

5.2.3 Data Preprocessing

Figure 5.1 gives scatter plots of Eisen’s data with three classes of gene expression
patterns under different experimental conditions. The plots provide us some useful
information of the data, e.g. there is no linear association between alpha 0 and other
variables, there are some outliers and also there are possible potential clusterings,
e.g. triangles are grouped together.
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Fig. 5.1. Scatter plots of three classes of gene expression patterns (see Table 5.1) for Eisen’s
data (p87) under a variety of heterogeneous experimental conditions over 79 time points.
Each experimental condition(time point) corresponds to one color with one shape; x-axis:
experimental condition diauxic shift at alpha 0; y-axis: alpha 7 and so on.

Figure 5.2 provides time series plots for three classes of gene expression patterns
under 79 experimental conditions (time points). The plot shows that the data is non-
stationary, since the means and variances change with time.

5.2.4 Smoothing the Data

As it can be seen in the time series plot (Figure 5.2), the data oscillates with high
frequency and high amplitude and is non-stationary, which makes direct modeling
difficult. To remove these factors the raw time series data was transformed through
first order difference and log compression. First order differencing reduces the non-
stationarity of the time series. It can handle nondeterministic (stochastic) trends and
remove the long-term trend. Log transformation can reduce the number of outliers
and stabilize the variance. Figure 5.3 shows the time series plot after differencing
and log transformation. As it can be seen in the figure, the transformations made the
data more stationary than before transformations (Figure 5.2).

5.2.5 Input Selection

79 inputs may be too many for a Time Lagged Recurrent Neural Network, which
is difficult to train, particularly if the data is noisy, and may result in overfitting
problems, which do not provide good generalization. In order to select the neural
network inputs, a statistical analysis has been carried out to determine the correla-
tions between the inputs (time point) and the outputs (the class or pattern of genes).
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Fig. 5.2. Time series plot of three classes of functional gene expression patterns (see Table 5.1)
for Eisen’s data (p87) under a variety of heterogeneous experimental conditions over 79 time
points. x axis: time points; y-axis: the ratio of expression levels of a particular gene under two
different conditions: CY5 and CY3, respectively. Each gene time series was specified with
given color, such as the gene “ORF YBL090W” was plotted with one color and so on. The
means and variances of the time series are changing over time, which show that the series are
nonstationary.

The Pearson correlation coefficients of inputs and outputs were computed first then
the acceptance threshold was setup based on the p-values: if the p-value of the cor-
relation coefficient was less than 0.0001, then correlation was considered and we
accepted it as input, otherwise we dropped it. The selected inputs and computed
correlation coefficients are given in Table 5.3. This way the number of inputs was re-
duced from 79 time points to 47. Several input permutation runs were also employed
in order to find the combination, which produce the lowest error in the testing set.
After filtering out the low correlation inputs, the data were fed into the Time Lagged
Recurrent Neural Network.

When selecting input variables for a model, one must be careful not to include
false predictors. A false predictor is a variable or input that is strongly correlated with
an output class, but that is not available in a realistic prediction scenario. False pre-
dictors can easily sneak into a model because the process of extracting time lagged
information from a database is difficult. The selection of the number of inputs is a
delicate process. If the number of inputs is too small then noise makes it hard to find
the true patterns in the data. On the other hand, if the number of inputs is too large
then the non-stationarity of the data makes the data with statistics less relevant for
the task when constructing the classifier.

One important advantage of using Time Lagged Recurrent Neural Networks is
that they can use the memory function and the memory layer to confine the input,
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Fig. 5.3. Time series plot of three classes of functional gene expressions for Eisen’s data
(ribosomal, transcription, and secretion) under heterogeneous conditions after differencing
and log transformation. x axis: time points; y-axis: the ratio of expression levels of a particular
gene under two different conditions: CY5 and CY3, respectively. Each gene time series was
specified with given color such as the gene named ORF YBL090W was plotted with one
color and so on. The means and variances stay approximately constant, that indicates that the
transformation made the time series closer to stationary.

which can be considered as further input preprocessors to select the inputs, and can
reduce the redundant information and detect false predictors.

5.3 Design of Time Lagged Recurrent Neural Network

Time Lagged Recurrent Neural Networks are extensions of conventional Recurrent
Neural Networks with short-term memory structures and local recurrent connections.
We used the general network architecture with three layers and the feedback connec-
tion from the hidden layer back to the input layer. The input layer used the inputs
delayed by L time points before presented to the network. Training of the TLRNN
was done with Back-Propagation Through Time with trajectory learning and the
parameters were learned via examples.

5.3.1 Memory Structures

There are several memory structures at the input layer to choose from. We have
applied one time point delay and Gamma memory function to the data. In order to
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Table 5.3. Input selection: Pearson correlation coefficients of inputs and outputs (class) for
Eisen’s data, Prob > |r| under H0: Rho=0

Inputs Correlation coefficients Inputs Correlation coefficients

alpha0 −0.29655 cdc15210 −0.33316
alpha56 −0.26218 spo0 −0.22003
alpha63 −0.21622 spo2 0.63531
alpha70 −0.20749 spo5 0.61170
alpha84 −0.34190 spo7 0.58318
alpha91 −0.26009 spo9 0.41863
alpha98 −0.44897 spo511 −0.67660
alpha105 −0.2258 spoearly 0.67581
alpha112 −0.39606 spomid 0.67611
Elu0 0.39482 heat10 0.57206
Elu60 −0.43226 heat20 0.77191
Elu90 −0.57070 heat40 0.60434
Elu120 −0.63138 heat80 0.57094
Elu150 −0.59320 heat160 0.47246
Elu180 −0.52208 dtt15 −0.25992
Elu210 −0.48014 dtt60 0.51186
Elu240 −0.37021 dtt120 0.75011
Elu270 0.34820 cold20 0.32741
Elu300 −0.25142 cold40 0.38936
cdc1570 −0.26273 cold160 0.59074
cdc1590 −0.32061 diaua 0.33820
cdc15110 −0.40302 diauf 0.65262
cdc15130 −0.32735 diaug 0.67092
cdc15150 −0.23325

search for the best network structure, the Akaike Information Criteria and Bayesian
Information Criteria were applied. The Gamma memory function provided the lower
value of AIC/BIC and the higher classification accuracy.

5.3.2 Learning Algorithms

BPTT can adapt the depth of the memory using different types of learning rules, in-
stead of changing the number of inputs. Initial depth of the memory was setup to 10,
which was later adapted by the network according to the Gamma memory function.
The best learning rule for each layer for the studied data was back-propagation with
gradient descent and momentum, where the momentum was setup to 0.7. As an acti-
vation function, tangent sigmoid worked best for the given data on the hidden layer
and log sigmoid function on the output layer.
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5.3.3 Statistical Criteria for Model Selection

The goal of model selection is to find the best network architecture that can achieve
the balance between data fitting and model complexity in order to avoid overfitting
and to maximize generalization performance. In a Time Lagged Recurrent Neural
Network there are several dynamic parameters, such as the number of hidden neu-
rons, the depth in the samples, and the number of trajectories in the search space that
have to be optimized in order to achieve optimal model. The depth in the samples
parameter can be adapted through BPTT. Two-way factorial arrays were designed
to search for the best values of the trajectory and the number of hidden neurons. In
this application the number of trajectories is ranged from 2 to 20 and the number
of hidden nodes also ranged from 2 to 20. Statistical criteria, such as the Akaike
Information Criteria and the Bayesian Information Criteria were computed in order
to determine the optimal values for optimal network size and structure. We consider
the best neural network to be the one with the highest classification accuracy and the
lowest AIC/BIC. In case AIC and BIC don’t agree we prefer BIC. The best model
was chosen for the rest of the gene classification and future predictions.

5.4 Experimental Results

5.4.1 Two Classes: Ribosome and Non-Ribosome Protein Genes

After 1000 epochs of training the MSE dropped below 0.000059. The mean and
the standard deviation of the correct classification rate for the testing data was
99.427% ± 0.366% with 10 independent runs. This result is even better than the re-
ported result by the prediction algorithm “CLEAVER”, with a correct classification
accuracy of 99.229834% for the same data [12].

Nearest Neighbor with Mahalanobis Distance and Self-Organized Map methods
were also employed for comparison study, which gave the correct classification rates
of 97.39% and 98.53%, respectively. Hierarchical Bayesian Neural Network with
regularization was also employed to the same data, which provided 99.3932% correct
classification rate.

5.4.2 Three Classes: Ribosomal, Transcription and Secretion Gene Functional
Classes

Table 5.4 provides the computed statistical criteria for model selection. The average
values of AIC and BIC of five independent runs are shown. Table 5.5 reports gen-
eralization error rates for the same runs. As it can be seen in Table 5.4 the AIC and
BIC values increase rapidly and approximately linearly with the number of hidden
nodes, but their values only increase slowly with the number of trajectories. The best
AIC and BIC values are highlighted and they are concentrated at 2 and 4 hidden neu-
rons and at 5 and 12 trajectories. Regarding Table 5.5 most of the low error rates are
reported around the upper left corner, which corresponds to low number of hidden
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Table 5.4. Factorial array for model selection with Back-Propagation Through Time and
dynamic trajectory learning for Time Lagged Recurrent Neural Network for Eisen’s data.
Average values of 5 runs of AIC and BIC. T: number of trajectories; H: number of hidden
neurons

T/H 2 4 8 12 15 20

2 1861/2143 3300/4289 7661/8698 11398/12970 14273/16234 19021/21629
5 1846/2127 3828/4367 7638/8694 11404/12978 14316/16263 19092/21699
8 1953/2234 3788/4327 7636/8692 11444/13018 14293/16254 19091/21700
10 1904/2184 3861/4400 7631/8687 11410/12985 14154/16345 19046/21653
12 1773/2250 3722/4582 7688/8744 11460/13033 14195/17325 19128/21735
15 1945/2225 3815/4354 7679/8735 11505/13078 14288/16250 19111/21719
18 1907/2187 3807/4346 7624/8680 11420/12992 14282/16243 19059/21666
20 1936/2217 3834/4373 7665/8721 11445/13018 14378/16339 19139/21747

Table 5.5. Generalization error rate in percentages with Time Lagged Recurrent Neural
Network for Eisen’s data. T: number of trajectories; H: number of hidden neurons

T/H 2 4 8 12 15 20

2 4.42 3.96 5.72 4.70 5.30 5.01
5 3.74 4.97 6.46 5.61 5.09 7.97
8 5.73 4.36 5.29 7.99 6.16 7.72
10 4.53 7.43 5.61 4.63 5.90 8.66
12 5.43 6.53 9.15 9.31 7.36 11.60
15 5.96 4.50 9.71 10.41 5.51 9.41
18 4.39 3.48 5.75 6.23 5.03 5.90
20 6.03 5.26 8.39 6.36 10.58 12.66

nodes with low number of trajectories. This is a good indication, meaning that the
two tables mostly agree with each other. The optimal value from both tables, which
provide the lowest generalization error rate and lowest BIC can be found at 2 hidden
nodes with 5 trajectories and its value is 3.74. However, there is an even lower error
rate at 4 hidden nodes and 18 trajectories, but we don’t prefer it since it has high
AIC/BIC. Since the number of classes to be recognized for this study is only three, it
is not surprising that small number of hidden nodes and small number of trajectories
can provide good performance. Results show that if we increase the number of pat-
terns (classes) to be recognized, the number of trajectories and the number of hidden
nodes have to be increased in order to get optimal performance. Table 5.5 also shows
that the learning capability (generalization performance) of the model varies with
the number of trajectories and the number of hidden neurons and these two may be
largely determined by the complexity of the patterns to be recognized.

Table 5.6 provides results of some other popular learning approaches for gene
expression classification for comparison purposes: results of Nearest Neighbor with
Mahalanobis Distance (NNMD), Self Organized Map (SOM) and Support Vector
Machine (SVM) are shown. Table 5.6 shows the means and standard deviations
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Table 5.6. Correct classification rates with standard deviations of five runs for different
methods for Eisen’s data

Methods Correct classification rate (%) ± STD (%)

NNMD 73.28 ± 0.012
SVM 74.65 ± 0.002
SOM 80.44 ± 0.053
TLRNN 95.61 ± 0.018
JERNN 94.04 ± 0.015

Table 5.7. Correct classification rates of Time Lagged Recurrent Neural Network with Back-
Propagation Through Time and dynamic trajectory learning corresponding to the number of
classes for Eisen’s data

Number of patterns (classes) Correct classification rate (%)

3 96.52
4 87.14
5 85.06
6 76.15

10 62.14

of the correct classification rates for five independent runs. SVM in this case did
not provide the highest performance as opposed to most gene expression studies.
The reasons may come from the heterogeneous expression data and the existence of
multiple classes; TLRNN particularly performs well for this kind of time series data.
We have also applied another popular recurrent neural network, the Jordan/Elman
Recurrent Neural Network (JERNN) for our data set. As it can be seen in Table 5.6
the TLRNN worked best for the heterogeneous time series gene expression data.

5.4.3 Multiple Functional Classes

The data distribution for more broad gene functional classes is given in Table 5.2. The
correct classification rates with TLRNN are given in Table 5.7, which are based on
the optimal structure given by the AIC/BIC. As it can be seen in the table the correct
classification rate decreases with the number of classes, which is not surprising.
Again, as we have discussed above, both the number of hidden nodes and the number
of trajectories increased as the number of classes increased in order to achieve better
performance.

5.5 Related Works

A large number of approaches have been proposed, implemented and tested by
computer scientists and statisticians in order to discover or identify the gene
functional patterns with microarray experiments [26–27]. For example, a genetic
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network approach was discussed and developed by Thieffry and Thomas [28] and
D’haeseleer, et al. [10]. Time series was studied by Socci and Mitra [29] and so on.
Self-organized hierarchical neural network was done by Herrero, et al. [11]. Unsu-
pervised neural network and associated memory neural network was done by Azuaje
[30] and Bicciato, et al. [31], classification and diagnostic prediction of cancers using
gene expression profiling and artificial neural networks was investigated by Khan
et al. [32]. Comparison of discrimination methods for the classification of tumors
using gene expression data was done by Dudoit et al. [33]. We reported Bayesian
neural network and regularised neural network approaches earlier [34–35]. Previous
study showed that traditional statistical models can provide some insight into gene
expressions and has precise results, but the weaknesses of statistical models are
that they can not capture the dynamic changing of gene expressions from time to
time well and are sensitive to noise and assumptions. Neural networks are more
efficient and flexible for studying gene expressions. We, as an addition to our efforts
reported in this chapter currently explore other kinds of neural network models for
discovering correlation in gene patterns, and refine the Jordan/Elman neural network
approach to study the heterogeneous time series gene expression patterns.

5.6 Conclusion

In this chapter, TLRNNs with BPTT and dynamic trajectory learning were proposed
and explored in order to investigate multiple gene functional patterns with heteroge-
neous microarray experiments. Results show that the Time Lagged Recurrent Neural
Network worked better than Nearest Neighbor with Mahalanobis Distance, Support
Vector Machine and Self Organized Map. For the SVM this is a little surprise, since
most well known results using SVM provided the highest performance and it has
properties of dealing with high level noise and large number of attributes, which both
exist in the gene expression data. The possible reasons may be found in the heteroge-
neous time series gene expression data and the existence of multiple classes. Another
reason for the good performance of TLRNN is that it can iteratively construct the
network for temporal patterns, train the weights, and update the time information.
According to the results, the best generalization capability largely depends on the
complexity of the patterns, which can be learned by TLRNN with BPTT and trajec-
tory learning through monitoring the complexity of the trajectory with distinct types
of states. With the increase in the number of gene functional patterns the generaliza-
tion performance decreased. However, with changing the number of trajectories and
the number of hidden nodes, the performance of the model can be improved based
on the statistical criteria for model selection. In order to speed up the search for the
best network architecture for dynamic parameters, such as the number of hidden neu-
rons and the number of trajectories, two or three way factorial design with statistical
criteria can be employed.
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Summary. The problem of protein sequence classification is one of the crucial tasks in the
interpretation of genomic data. Many high-throughput systems were developed with the aim of
categorizing the proteins based only on their sequences. However, modelling how the proteins
have evolved can also help in the classification task of sequenced data. Hence the phylo-
genetic analysis has gained importance in the field of protein classification. This approach
does not just rely on the similarities in sequences, but it also considers the phylogenetic in-
formation stored in a tree (e.g. in a phylogenetic tree). Eisen used firstly phylogenetic trees
in protein classification, and his work has revived the discipline of phylogenomics. In this
chapter we provide an overview about this area, and in addition we propose two algorithms
that well suited to this scope. We present two algorithms that are based on a weighted binary
tree representation of protein similarity data. TreeInsert assigns the class label to the query by
determining a minimum cost necessary to insert the query in the (precomputed) trees repre-
senting the various classes. Then TreNN assigns the label to the query based on an analysis
of the query’s neighborhood within a binary tree containing members of the known classes.
The algorithms were tested in combination with various sequence similarity scoring methods
(BLAST, Smith-Waterman, Local Alignment Kernel as well as various compression-based
distance scores) using a large number of classification tasks representing various degrees of
difficulty. At the expense of a small computational overhead, both TreeNN and TreeInsert ex-
ceed the performance of simple similarity search (1NN) as determined by ROC analysis, at
the expense of a modest computational overhead. Combined with a fast tree-building method,
both algorithms are suitable for web-based server applications.
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6.1 Introduction

The categorization of biological objects is one of the fundamental and traditional
tasks of the life sciences. For instance, the categorization of organisms into a hierar-
chical “Tree of life” leads to a complex model that summarizes not just the taxonomic
relationships between the species, but also the putative time-course of evolution as
we understand it today. With the advent of molecular biology in the 1970’s, the cat-
egorization of genes and proteins itself became an important subject of research.
Sequences of individual proteins can for instance be compared using string distance
measures, and one can build trees that closely resemble the hypothetical “Tree of
life”. The categorization of protein structures, on the other hand, began from a differ-
ent perspective: protein structures reveal a few fundamental molecular arrangements
(like alpha-helices and beta-sheets) that can combine in a variety of ways and give
rise to characteristic molecular shapes. Finally, the recent advent of genomics re-
search - the wholesale analysis of the gene and protein repertoire of a species - led to
yet another perspective with an emphasis on biological function. According to this
approach, the known genes/proteins are categorized into a priori determined, em-
pirical categories that reflect our current knowledge on the cellular and biochemical
functions. As proteins carry many, perhaps most of the known biological functions,
they play a prominent role in the functional analysis of genomes.

The methods of protein classification fall into three broad categories: i) Methods
based on pairwise comparison, i.e. ones that work by comparing an unknown object
(protein sequence or structure) with members of an a priori classified database of
protein objects. The results are ranked according to the similarities and the strongest
similarities are evaluated in terms of biological or statistical significance, after which
a query is assigned to the class of the most similar object. ii) Methods based on con-
sensus (or aggregate) descriptions, i.e. ones that are used to analyze distant sequence
similarities that cannot readily be determined based on a simple similarity analy-
sis. Here we first prepare a consensus description for all the classes of a protein
sequence database, then we compare the unknown query with each of the consensus
descriptions. As with the previous methods, the strongest similarities are evaluated
and used to assign the protein to the given class. There are various methods for
preparing consensus descriptions, including regular expressions, frequency matri-
ces and Hidden Markov Models. The above methods are described in textbooks and
are periodically reviewed. iii) A more recent type of protein classification methods
attempts to use an external source of knowledge in order to increase the classifica-
tion sensitivity. The external source of knowledge is the phylogenetic classification
of an organism, i.e. the knowledge that is accumulated in the fields of taxonomy
and molecular phylogeny. This approach is called phylogenomics (for a recent re-
view see [1]) and is closely linked to the notions of orthologs (proteins that share
both ancestry and function) and paralogs (proteins that share a common ancestry but
carry different functions). The practical goal of phylogenomics is to reveal the true
orthologous relationships and use them in the process of classification. Like ii), phy-
logenomic methods are used for distant similarities that cannot be decided by simple
comparisons like those mentioned in i).
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The aim of the present chapter is to describe two protein classification algorithms
that make use of tree structures. The chief difficulties of protein classification arise
from the fact that the databases are large, noisy, heterogeneous and redundant; that
the classes themselves are very different in terms of most of their characteristics;
that the assignments are often uncertain. For these reasons there is a constant need
for better and faster algorithms that can cope with the growing datasets, and tree-
based approaches are promising in this respect [2]. Even though trees are often used
in molecular phylogenies and phylogenomics, the motivation of our work is quite
different since we are not trying to reveal or to use the taxonomic relationships
between species or proteins. We employ trees - especially weighted binary trees - as
a simple and computationally inexpensive formalism to capture the hidden structure
of the data and to use it for protein classification.

The rest of this chapter is structured as follows. Section 6.2 provides a brief
overview of related work, with a strong focus on the protein comparison and tree-
building methods used here. Afterwards Sections 6.3 and 6.4 respectively describe
the two algorithms called TreeNN and TreeInsert. TreeNN (Section 6.2) is based on
the concept of a distance that can be defined between leaves of a weighted binary tree.
TreeNN is a pairwise comparison type algorithm (see i) above), where the distance
function incorporates information encoded in a tree structure. Given a query protein
and an a priori classified database, the algorithm first constructs a common tree that
includes the members of the database and the query protein. In the subsequent step
the algorithm attempts to assign labels to an unknown protein using the known class
labels found in its neighborhood within the tree. A weighting scheme is applied, and
the class label with the highest weight is assigned to the query. TreeInsert (Section
6.4) is based on the concept of tree insertion cost, this being a numerical value char-
acterizing the insertion of a new leaf at a given point of a weighted binary tree. The
algorithm finds the point with minimum insertion cost in a tree. TreeInsert uses the
tree as a consensus representation so it is related to the algorithms described above
in ii). Given an unknown protein and protein classes represented by precalculated
weighted binary trees, the query is assigned to the tree into which it can be inserted
at the smallest cost. In the description of both algorithms we first give a conceptual
outline that summarizes the theory as well as its relation to the existing approaches
i–iii. This is followed by the formal description of the algorithm, the principle of
the implementation, and some possible heuristic improvements. Then we round off
the chapter with a brief discussion and some conclusions in Section 6.5. As for the
databases and the classification tasks used for benchmarking the algorithms, these
are described in the Appendix.

6.2 Related Work

The algorithms described in this work belong to the broad area of protein classifi-
cation, and have been summarized in several recent reviews and monographs [3].
In particular, we will employ the tools developed for protein sequence comparison
that are now routinely used by researchers in various biological fields. The Smith-
Waterman [4] and the Needleman-Wunsch algorithms [5] are exhaustive sequence
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comparison algorithms, while BLAST [6] is a fast heuristic algorithm. All of these
programs calculate a similarity score that is high for similar or identical sequences
and zero or below some threshold for very different sequences. Methods of molec-
ular phylogeny build trees from the similarity scores obtained from the pairwise
comparison of a set of protein sequences. The current methods of tree building are
summarized in the splendid textbook by J. Felsenstein [7]. One class of tree/building
methods the so-called distance based methods are particularly relevant to our work
since we use one of the simplest method, namely Neighbour-Joining (NJ) [8], to
generate trees from the data.

Protein classification supported by phylogenetic information is sometimes ter-
med phylogenomics [1, 9]. The term covers an eclectic set of tools that combine
phylogenetic trees and external data-sources in order to increase the sensitivity of
protein classification [1]. Jonathan Eisen’s review provides a conceptual framework
for combining functional and phylogenetic information and describes a number of
cases where functions cannot be predicted using sequence similarity alone. Most of
the work summarized by Eisen is devoted to the human evaluation of small datasets
by hand. The first automated annotation algorithm was introduced by Zmasek and
Eddy [10] who used explicit phylogenetic inference in conjunction with real-life
databases. Their method applies the gene tree and the species tree in a parallel fash-
ion, and it can infer speciation and duplication events by comparing the two distinct
trees. The worst case running time of this methods is O

(
n2
)
, and the authors used

the COG dataset [11] to show that their method is applicable for automated gene
annotation.

Not long ago Lazareva-Ulitsky et al. employed an explicit measure to describe
the compatibility of a phylogenetic tree and a functional classification [12]. Given a
phylogenetic tree overlaid with labels of functional classes, the authors analyzed the
subtrees that contain all members of a given class. A subtree is called perfect if its
leaves all belong to the one functional class and an ideal phylogenetic tree is made
up of just perfect subtrees. In the absence of such a perfect subdivision, one can
establish an optimal division i.e. one can find subtrees that contain the least “false”
labels. The authors defined a so-called tree measure that characterizes the fit between
the phylogenetic tree and the functional classification, and then used it to develop
a tree-building algorithm based on agglomerative clustering. For a comprehensive
review on protein classification see [1].

6.3 TreeNN: Protein Classification via Neighborhood Evaluation
within Weighted Binary Trees

6.3.1 Conceptual Outline

Given a database of a priori classified proteins that are compared to each other in
terms of a similarity/dissimilarity measure1, and a query protein that is compared
to the same database in terms of the same similarity/dissimilarity measure, one can

1 “Similarity measures” and “dissimilarity measures” are inversely related: a monotone
decreasing transformation of a similarity measure leads to a dissimilarity measure.
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Fig. 6.1. A weighted tree of proteins overlayed with class labels

build a weighted, binary tree that will contain proteins in each leaf. If we now assign
the known class labels to the proteins, all leaves except the unknown query will be
labelled, as schematically shown in Figure 6.1.

First let us denote the length of the unique path between two leaves Li and Lj

by p(Li,Lj). Here p(Li,Lj) is an integer representing the number of edges along
the path between Li and Lj. We can define the closest neighbourhood K (L) of a leaf
L as the set of leaves for which there is no Lj leaf such that p(L,Lj) < p(L,Li).
For instance the closest neighbours of q in Figure 6.1 are both members of class 2
and are three steps apart from q. These leaves are parts of the 3-neighbourhood of q
(i.e. the set of leaves for which the path between q and them at the most 3). If the
tree is a weighted binary tree we can define the leaf distance l (Li,Lj) between two
leaves Li and Lj as the sum of the branch-weights along the unique path between
Li and Lj. For instance the leaf distance of q from one of its closest neighbors q in
the tree is b1 + b2 + b3. Finally let us suppose that we know the value of a pairwise
similarity measure (such as a BLAST score) between any pair of leaves Li and Lj ,
whose value will be denoted by s(Li,Lj), and that we build a weighted binary tree
using the s(Li,Lj) values. Within this tree we can also calculate the value of the leaf
distance l (Li,Lj).

The TreeNN algorithm is a weighted nearest neighbour method that applies as
weights a similarity/dissimilarity measure between the proteins constituting the tree
and is calculated within the closest neighbourhood of the query within the tree. More
precisely, let us assume that we have leaves from m different classes and an indica-
tor function I : {L1, ...,Ln} → {1, ...,m} that assigns the class labels to the proteins
represented by the leaves of the tree. The aggregate similarity measure R( j,Lq) of
each of the m classes ( j ∈ {1, ...,m}) will be an aggregate of the similarity measures
or leaf distances obtained between the query on one hand and the members of the
class within the closest neighbourhood on the other, calculated via an aggregation
operator Θ (such as the sum, product or maximum):

R( j,Lq) = Θ
Li∈K(L)∧I(Li)= j

s(Li,Lq) (6.1)

or
R̃( j,Lq) = Θ

Li∈K(L)∧I(Li)= j
l (Li,Lq) (6.2)
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The first aggregated value (Eq. (6.1)) for classes is calculated using the original
similarity values. This implementation just utilized the topology of the phylogenetic
tree, while the second implementation (Eq. (6.2)) also takes into account the edge
lengths.

We calculate aggregate measures for each of the classes and the class with the
highest weight will be assigned to the query Lq. This analysis is similar to that for
the widely used kNN principle, the difference being that we restrict the analysis to
the tree neighbourhood of the query (and not simply to the k most similar proteins)
and we can use a leaf distance, as shown in Eq. (6.1). As for as the aggregation
operator, we could for instance use summation, but we can also use the average
operator or the maximum value operator.

In order to increase the influence of the tree structure on the ranking, we introduce
a further variant of TreeNN, in which the similarity measures s(Li,Lj) are divided by
the path lengths between Li and Lj. In this manner the weighted aggregate similarity
measure becomes

W ( j,Lq) = Θ
Li∈K(L)∧I(Li)= j

(
s(Li,Lq)
p(Li,Lq)

)
(6.3)

or

W̃ ( j,Lq) = Θ
Li∈K(L)∧I(Li)= j

(
l (Li,Lq)
p(Li,Lq)

)
(6.4)

This formula ensures that the leaves farther away within the tree from Lq will have a
smaller influence on the classification than the nearer neighbours.

6.3.2 Description of the Algorithm

Input:

- A distance matrix containing the all vs. all comparison of a dataset consisting of
a query protein and of an a priori classified set of data.

Output:

- A class label assigned to the query protein

First a weighted binary tree is built from the data. The leaves of this tree are
proteins and we select the set of closest tree-neighbours (minimum number of
edges from the query). Then we apply a classification rule that might be one of the
following:

TreeNN: Assigns to the query the class label with the highest
aggregate similarity calculated according to Eq. (6.1) or (6.2).

Weighted Assigns to the query the class label with the highest
TreeNN: aggregate similarity calculated according to Eq. (6.3) or (6.4).

The time complexity of the algorithm mainly depends on the tree-building part.
For example the Neighbour-Joining method has an O

(
n3
)

time complexity. We have



6 Tree-Based Algorithms for Protein Classification 171

to build up a tree with n+1 leaves as each protein will be classified, hence this
algorithm has an O

(
tn3

)
time complexity overall where t denotes the cardinality of

the test set. Finding the closest tree-neighbours for a leaf can be carried out in linear
time, hence it does not cause any extra computational burden.

Use in classification. The algorithm can be directly used both in two-class and multi-
class classification. The size of the database influences both the time requirement of
the similarity search and that of the tree-building. The latter is especially important
since the time-complexity of tree building is O

(
n3
)
. We can substantially speed up

the computation if we include into the tree just the first r similarity/dissimilarity
neighbours of the query (e.g. the first 50 BLAST neighbours). On the other hand
class imbalance can cause an additional problem since an irrelevant class that has
many members can easily outweigh smaller classes. An apparently efficient balance
heuristic is to build the tree from the members of the first t (t ≤ 10) classes nearest
to the query, where each class is represented by a maximum of r (r ≤ 4) members.

6.3.3 Implementation

A computer program was implemented in MATLAB that uses the NJ algorithm as
encoded in the Bioinformatics Toolbox package [13]. The detailed calculation has
four distinct steps:

1. An all vs. all distance matrix is calculated from the members of an a priori
classified database using a given similarity/dissimilarity score (BLAST, Smith-
Waterman etc) and the results are stored in CVS (Comma Separated Values).

2. The query protein is compared with the same database and the same similar-
ity/dissimilarity score, and the first r sequences are selected for tree-building,
choosing one of the heuristics mentioned above.

3. A small ([r +1]× [r +1]) distance matrix is built using the precomputed data of
the database on the one hand and the query vs. database comparison on the other,
and a NJ tree is built.

4. The query’s label is assigned using the TreeNN algorithm in the way described
in Section 6.3.2.

This implementation guarantees that the all vs all comparison of the database is
carried out only once.

6.3.4 Performance Evaluation

The performance of TreeNN was evaluated by ROC analysis and error rate calcula-
tions in the way described in the Appendix (Section 6.6.4). For comparison we also
include the results obtained by simple nearest neighbour analysis (1NN). In each
table below the best scores of each set are given in bold, and the columns with the
heading Full concern the performances of TreeNN without a heuristic (i.e. we con-
sidered all elements of the training set). Here we apply the TreeNN methods for a
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two class problem, thus the parameter t is always equal to 2. For aggregation op-
erators we tried the sum, the average and the maximum operators (but the results
are not shown here), and the latter (more precisely, maximum for similarity mea-
sures and minimum for distance measures) had a slightly but consistently superior
performance, so we used this operator to generate the data shown below. For the
calculation of the class weights we applied the scoring scheme that is based on the
similarity measures given in Eq. (6.1) for TreeNN and Eq. (6.3) for Weighted TreeNN.
Tables 6.1 and Table 6.2 show the TreeNN results for ROC analysis and error rate
calculations, respectively. In the next two tables (Table 6.3 and 6.4) we show the per-
formance of the Weighted TreeNN using the same settings as that used for TreeNN in
Tables 6.1 and 6.2. The results, along with the time requirements (wall clock times)
are summarized in Tables 6.5. The time requirements of Weighted TreeNN is quite

Table 6.1. ROC values of TreeNN with and without a heuristic on the COG and 3PGK datasets

1NN TreeNN
Full r = 3 r = 10

COG
BLAST 0.8251 0.8381 0.8200 0.7226
Smith-Waterman 0.8285 0.8369 0.8438 0.7820
LAK 0.8249 0.8316 0.8498 0.7813
LZW 0.8155 0.7807 0.7750 0.7498
PPMZ 0.7757 0.8162 0.8162 0.7709
3PGK
BLAST 0.8978 0.9580 0.9699 0.9574
Smith-Waterman 0.8974 0.9582 0.9716 0.9587
LAK 0.8951 0.9418 0.9688 0.9641
LZW 0.8195 0.8186 0.9040 0.8875
PPMZ 0.8551 0.9481 0.9556 0.7244

Table 6.2. ROC values of Weighted TreeNN with and without a heuristic on the COG and
3PGK datasets

1NN TreeNN
Full r = 3 r = 10

COG
BLAST 0.8251 0.8454 0.8206 0.8016
Smith-Waterman 0.8285 0.8474 0.8492 0.8098
LAK 0.8249 0.8417 0.8540 0.8133
LZW 0.8195 0.9356 0.9040 0.9228
PPMZ 0.8551 0.9797 0.9673 0.8367
3PGK
BLAST 0.8978 0.9760 0.9589 0.9579
Smith-Waterman 0.8974 0.9761 0.9547 0.9510
LAK 0.8951 0.9612 0.9719 0.9354
LZW 0.8195 0.7365 0.7412 0.8183
PPMZ 0.8551 0.8140 0.8018 0.7767
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Table 6.3. Error rates of TreeNN with and without a heuristic on the COG and 3PGK datasets

1NN TreeNN
Full r = 3 r = 10

COG
BLAST 14.7516 10.3746 11.6270 15.1469
Smith-Waterman 13.4940 10.5381 9.9996 13.0470
LAK 13.3817 10.8644 9.7976 12.3784
LZW 16.7301 13.2106 13.9285 14.4467
PPMZ 15.0174 11.6331 11.9598 13.2246
3PGK
BLAST 42.1046 35.4026 32.2360 35.8291
Smith-Waterman 42.1046 35.6582 32.2360 35.5694
LAK 42.0856 33.4081 32.1928 34.0542
LZW 36.5293 35.1731 33.8335 30.4403
PPMZ 34.6671 37.2146 32.1706 37.4445

Table 6.4. Error rates of the Weighted TreeNN with and without a heuristic on the COG and
3PGK datasets

1NN TreeNN
Full r = 3 r = 10

COG
BLAST 14.7516 10.3746 11.6270 15.1469
Smith-Waterman 13.4940 10.5381 9.9996 13.0470
LAK 13.3817 10.8644 9.7976 12.3784
LZW 16.7301 13.2106 13.9285 14.4467
PPMZ 15.0174 11.6331 11.9598 13.2246
3PGK
BLAST 42.1046 35.4026 32.2360 35.8291
Smith-Waterman 42.1046 35.6582 32.2360 35.5694
LAK 42.0856 33.4081 32.1928 34.0542
LZW 36.5293 35.1731 33.8335 30.4403
PPMZ 34.6671 37.2146 32.1706 37.4445

Table 6.5. Time requirements for the TreeNN method on the COG dataset in seconds

Elapsed time(in second)/Method 1NN TreeNN (r = 100)
Preprocessing BLAST - -

Other - 15.531
Evaluation BLAST 0.223 0.223
Evaluation Other - 0.109

similar to that of TreeNN because the two differ only in the calculation of class
aggregate values (cf. Eqs. (6.3) and (6.4)).

The above results reveal a few general trends. First, TreeNN and its weighted ver-
sion outperforms the 1NN classification in terms of the error rate. We should mention
here that this improvement in error rate is apparent even when we use a heuristic. As
for AUC, the results on the COG database are comparable with those of 1NN, both
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Table 6.6. The performance of the TreeNN using leaf distances and the original similarity
measures

Comparison of the TreeNN TreeNN
Using similarities Using leaf distances
ROC Error Rate ROC Error Rate

BLAST 0.9699 35.4026 0,9509 36,978
Smith-Waterman 0.9582 35.6582 0,9529 36,979

with and without a heuristic. Moreover they are noticeably better than 1NN on the
3PGK dataset. The fact that the precision improves while the time requirements are
comparable with that of the very fast 1NN algorithm is a good sign and confirmation
that our approach is a promising one (Table 6.5).

We calculated the time requirements for the methods we employed in a real life
scenario. We first assumed that we had an a prior classified dataset containing 10000
elements. Applying the 1NN we simply needed to find the most similar protein in this
dataset to the query protein, and the class label of this was assigned to the query pro-
tein. This approach did not need additional preprocessing step, so these process time
requirements were just equal to the calculation of the similarity measure between
the query and the a prior classified dataset. The TreeNN method however required
some additional running time. This was because after the TreeNN had chosen the r
most similar element from the known dataset (according to the heuristic in Section
6.3.2) it built up a phylogenetic tree for these elements. This step suggested some
additional preprocessing time requirements. In our experiments the parameter was
set to 100. As the experiments showed, applying TreeNN did not bring about any
significant growth in time requirements.

Table 6.6 lists a comparison of the performance of the TreeNN algorithm when
we used the original similarities/distances of proteins and when we used the leaf
distances just according to Eqn. (6.2). The results of these tests clearly show that
the performance of the classifiers was only marginally influenced by the measure
(sequence similarity measure vs. leaf distances) we chose in the implementation of
the algorithm.

6.4 TreeInsert: Protein Classification via Insertion into Weighted
Binary Trees

6.4.1 Conceptual Outline

Given a database of a priori classified proteins, we can build separate weighted binary
trees from the members of each of the classes. A new query protein is then assigned
to the class to which it is nearest in terms of insertion cost (IC). A query protein will
then be assigned to the class whose IC is the smallest. First we note that insertion of a
new leaf into a weighted binary tree is the “amount of fitting” into the original tree. In
this algorithm we consider an insertion optimal if the query protein is the best suited
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Fig. 6.2. The insertion of the new leaf next to Li

compared to every other possible insertion. Second, note that IC can be defined in
various ways using the terminology introduced in Section 6.3. The insertion of a new
leaf Lq next to leaf Li is depicted in Figure 6.2.

In this example we insert the new element Lq next to the i-th leaf so we need
to divide the edge between Li and its parent into two parts with a novel inner point
p′

i. According to Figure 6.2 we can express the relationship of the new leaf Lq to the
other leaves of the tree in the following way: l (Lj,Lq) = l (pi,Lj)+y+z if i �= j. The
l (Li,Lq) leaf distance between the ith leaf and Lq is just equal to x+z. This extension
step of the leaf distances means that all relations in the tree remain the same, and we
have only to determine the new edge lengths x,y and z. The place of p′

i on the divided
edge and the weights of the edge that are between Lq and its parent (denoted by x in
Figure 6.2) have to be determined so that the similarities and the tree-based distances
will be as close as possible. With this line of thinking we can formulate the insertion
task as the solution of the following system of equations:

min
0≤x,y

(
n

∑
j=1

(s(Lj,Lq)− l (Li,Lq))

)2

(6.5)

s.t. x + y = l (pi,Li)

This optimization task determines the value of the three unknown edge lengths
x,y and z, and the constraints ensures that the leaf-distance between Li and its parent
remains unchanged. With this in mind we can define the insertion cost for a fixed
leaf.

Definition 1. Let T be a phylogenetic tree, and let its leaves be L1,L2, ...,Ln. The leaf
insertion cost IC (Lq,Li) of a new leaf Lq next to Li is defined as the branch length of
x found by solving the optimisation task in Eq. (6.5).

Our goal here is to find the position of the new leaf in T with the lowest leaf insertion
cost. This is why we define the insertion cost of a new leaf for the whole tree using
the Definition 1 in the following way:

Definition 2. Let T be a phylogenetic tree, and its leaves be L1,L2, ...,Ln. The inser-
tion cost IC (Lq) of a new leaf Lq into T is the minimal leaf insertion cost for T:

IC (Lq) = min{IC (Lq,L1) , ..., IC (Lq,Ln)} (6.6)
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In preliminary experiments we tried several possible alternative definitions for the
insertion cost IC (data not shown), and finally we chose the branch length x (Figure
6.2) as the definition. This value provides a measure of dissimilarity: it is zero when
the insertion point is vicinal to a leaf that is identical with the query. The IC for a
given tree is the smallest value of x found within the tree.

6.4.2 Description of the Algorithm

Input:

- A weighted binary tree built using the similarity/dissimilarity values (such as a
BLAST score) taken between the elements of a protein class.

- A set of comparison values taken between a query protein on the one hand and
the members of the protein class on the other, using the same similarity/dissim-
ilarity value as we used to construct the tree. So for instance, when the tree was
built using BLAST scores, the set of comparison values were a set of BLAST
comparison values.

Output:

- The value of the insertion cost calculated according to Definition 2.

The algorithm will evaluate all insertions that are possible in the tree. An inser-
tion of a new leaf next to an old one requires the solution of an equation system that
consists of n equations, where n is the number of leaves. This has a time complexity
of O(n). The number of possible insertions for a tree having n leaves (i.e. we insert
next to all leaves) is n. Thus calculating the insertion for a new element has a time
complexity of O

(
n2
)
. One can reduce the time complexity using a simple empirical

consideration: we just assume that the optimum insertion will occur in the vicinity of
the r leaves that are most similar to the query in terms of the similarity/dissimilarity
measure used for the evaluation. If we use BLAST, we can limit the insertions to the
r nearest BLAST neighbours of the query. This will reduce the time complexity of
the search to O(rn).

Use in classification. If we have a two-class classification problem, we will have to
build a tree both for the positive class and the negative class, and we can classify
the query to the class whose IC is smaller. In practical applications we often have
to classify a query into one of several thousand protein classes, such as the classes
of protein domains or functions. In this case the class with the smallest IC can be
chosen. This is a simple nearest neighbour classification which can be further refined
by adding an IC threshold above which the similarities shall not be considered. In
order to decrease the time complexity, we can also exclude from the evaluation
those classes whose members did not occur among the r proteins most similar to
the query. Protein databases are known to consist of classes very different in size. As
the tree size does not influence the insertion cost, class imbalance will not represent
a problem to TreeInsert when calculations are performed.
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6.4.3 Implementation

We used the Neighbour-Joining algorithm for tree-building as given in the MATLAB
Bioinformatics Toolbox [13]. In conjunction with the sequence comparison methods
listed in Section 6.2, the programs were implemented in MATLAB. The execution
of the method consists of 2 distinct steps, namely:

1. The preprocessing of the database into weighted binary trees and storage of the
data in Newick file format [14]. For this step, the members of each class were
compared with each other in an all vs. all fashion, and the trees were built using
the NJ algorithm. For a large database like COG (51 groups 5332 sequences)
the entire procedure takes 5.95 Seconds on a Pentium IV Computer (3.0 GHz
processor).

2. First, the query is compared with the database using a selected similarity/dis-
similarity measure and the data are stored in CSV file format. Next, the query
is inserted into a set of class-representation trees, and the class with the optimal
(smallest) IC value is chosen.

6.4.4 Performance Evaluation

The performance of TreeInsert was evaluated via ROC analysis and via the error
rate as described in Section 6.6.4. For comparison we also include here the results
obtained by simple nearest neighbour analysis (1NN). The results, along with the
time requirements (wall clock times) are summarized in Table 6.9. Our classifica-
tion tasks were the same as those in Section 6.3.4, thus the parameter t (number of
considered class) was always equal to 2. The dependence of the performance on the
other tuneable parameter r (the number of elements per class) is shown in Tables 6.7
and 6.8.

Table 6.7. ROC analysis results (AUC values) for the TreeInsert algorithm on the COG and
3PGK datasets. Here several different implementations were used

1NN TreeNN
Full r = 3 r = 10

COG
BLAST 0.8251 0.8741 0.8441 0.8708
Smith-Waterman 0.8285 0.8732 0.8474 0.8640
LAK 0.8249 0.8154 0.8276 0.8734
LZW 0.8155 0.7639 0.8243 0.8316
PPMZ 0.7757 0.8171 0.8535 0.8682
3PGK
BLAST 0.8978 0.9473 0.8984 0.9090
Smith-Waterman 0.8974 0.9472 0.8977 0.9046
LAK 0.8951 0.9414 0.8851 0.9068
LZW 0.8195 0.8801 0.8009 0.8421
PPMZ 0.8551 0.8948 0.8646 0.9123
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Table 6.8. Error rate values for the TreeInsert algorithm on the COG and 3PGK datasets. As
before, several different implementations were used

1NN TreeNN
Full r = 3 r = 10

COG
BLAST 14.7516 10.6127 17.3419 17.3419
Smith-Waterman 13.4940 13.8218 17.9189 17.9189
LAK 13.3817 11.3340 15.9436 15.9436
LZW 16.7301 13.8962 20.0073 20.0073
PPMZ 15.0174 11.3386 8.3167 8.3167
3PGK
BLAST 42.1046 20.2009 25.4544 35.7754
Smith-Waterman 42.1046 20.3730 24.7976 36.0115
LAK 42.0856 20.2009 25.8242 39.5036
LZW 36.5293 15.7901 37.0648 26.4240
PPMZ 34.6671 14.4753 32.3829 28.9935

Table 6.9. Time requirements of the TreeInsert methods on the COG dataset. Here n means
the number of classes in question

Elapsed time (in second)/Method 1NN TreeInsert (r = 100)
Preprocessing BLAST - 2232.54

Other - 1100
Evaluation BLAST 0.223 0.223
Evaluation Other - 0.029∗n

In most of the test cases TreeInsert visibly outperforms 1NN in terms of ROC
AUC and error rate. What is more, the TreeInsert method achieves the best results
when we consider all the possible insertions, not just those of the adjacent leaves.
This probably means that the insertion cost is not necessarily correlated with the
similarity measure between the proteins.

When we examined the classification process using TreeInsert we found that
we needed to carry out a preprocessing step before we evaluated the method. This
preprocessing step consisted of the building of the phylogenetic trees for each class
in the training dataset. Following the testing scheme we applied in Section 6.3.4, we
assumed that the training dataset contained 1000 classes, and the classes contained
100 elements on average. Thus this step caused a significant growth in the running
time. But when we investigated this method from a time perspective we found that
this extra computation cost belonged to the offline time requirements. The evaluation
of this method hardly depended on the number of classes in question because we
had to insert an unknown protein into the phylogenetic trees of the known protein
family. Table 6.9 describes this dependency, where n here denotes the number of
classes.
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6.5 Discussion and Conclusions

The problem of protein sequence classification is one of the crucial tasks in the in-
terpretation of genomic data. Simple nearest neighbour (kNN) classification based
on fast sequence comparison algorithms such as BLAST is efficient in the majority
of the cases, i.e. up to 70− 80% of the sequences in a newly sequenced genome can
be classified in a reassuring way, based on their high sequence similarity. A whole
arsenal of sophisticated methods has been developed in order to evaluate the remain-
ing 20− 30% of sequences that are often known as “distant similarities”. The most
popular current methods are “consensus” descriptions (see ii) in the Introduction that
are based about the multiple alignment of the known sequence classes. A multiple
alignment can be transformed either into a Hidden Markov model or a sequence pro-
file; both are detailed, structured descriptions that contain sequence position-specific
information on the multiple alignments. A new sequence is then compared with a
library of such descriptions. These methods use some preprocessing that requires
CPU time as well as human intervention. Also the time of the analysis (evaluation
of queries) can be quite substantial, especially when these are compared to BLAST
runs. The golden mean of sequence comparison is to develop classification methods
that are as fast as BLAST but are able to handle the distant similarities as well.

The rationale behind applying tree-based algorithms is to provide a structured
description that is simple and computationally inexpensive, but still may allow one to
exceed the performance of simple kNN searches. TreeNN is a kNN type method that
first builds a (small) tree from the results of the similarity search and then performs
the classification in the context of this tree. TreeInsert is a consensus type method that
has a preprocessing time as well as an evaluation time. Both TreeNN and TreeInsert
exceed the performance of simple similarity searches and this is quite promising
for future practical applications. We should remark here however that the above
comparisons were made on very difficult datasets. On the other hand we used two-
class scenarios, whereas the tasks in genome annotation are multiclass problems.
Nevertheless, both TreeNN and TreeInsert can be applied in multiclass scenarios
without extensive modifications so we are confident that they will be useful in these
contexts. According to preliminary results obtained on the Protein Classification
Benchmark collection [15] it also appears that, in addition to sequence comparison
data, both algorithms can be efficiently used to analyse protein structure classification
problems, which suggests that they might be useful in other fields of classification
as well.

6.6 Appendix: Datasets and Methods

6.6.1 Datasets and Classification Tasks

In order to characterize of the tree-based classifier algorithms described in this work
we designed classification tasks. A classification task is a subdivision of a dataset
into +train, +test, -train and -test groups. Here we used two datasets.
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Dataset A was constructed from evolutionarily related sequences of an ubiqui-
tous glycolytic enzyme, 3-phosphoglycerate kinase (3PGK, 358 to 505 residues in
length). 131 3PGK sequences were selected which represent various species of the
Archaean, Bacterial and Eukaryotic superkingdoms [16]. 10 classification tasks were
then defined on this dataset in the following way. The positive examples were taken
from a given superkingdom. One of the phyla (with at least 5 sequences) was the test
set while the remaining phyla of the kingdom were used as the training set. The neg-
ative set contained members of the other two superkingdoms and were subdivided in
such a way that members of one phylum could be either test or train.

Dataset B is a subset of the COG database of functionally annotated orthologous
sequence clusters [11]. In the COG database, each COG cluster contains function-
ally related orthologous sequences belonging to unicellular organisms, including
Archaea, Bacteria and unicellular Eukaryota. Of the over 5665 COGs we selected
117 that contained at least 8 eukaryotic sequences and 16 additional prokaryotic se-
quences (a total of 17973 sequences). A separate classification task was defined for
each of the 117 selected COG groups. The positive group contained the Archaean
proteins randomly subdivided into +train and +test groups, while the rest of the COG
was randomly subdivided into -train and -test groups. In a typical classification task
the positive group consisted of 17 to 41 Archaean sequences while the negative group
contained 12 to 247 members, both groups being subdivided into equal test and train
groups.

6.6.2 Sequence Comparison Algorithms

Version 2.2.4 of the BLAST program [6] had a cutoff score of 25. The Smith-
Waterman algorithm [4] we used was implemented in MATLAB [13], while the
program implementing the local alignment kernel algorithm [23] was obtained from
the authors of the method. Moreover, the BLOSUM 62 matrix [24] was used in each
case.

Compression based distance measures (CBMs) were used in the way defined by
Vitányi et al. [17]. That is,

CBM (X ,Y ) =
C (XY )−min{C (X) ,C (Y )}

max{C (X) ,C (Y )} (6.7)

where X and Y are sequences to be compared and C (.) denotes the length of a com-
pressed string, compressed by a particular compressor C, like the LZW algorithm
or the PPMZ algorithm [18]. In this study the LZW algorithm was implemented
in MATLAB while the PPMZ2 algorithm was downloaded from Charles Bloom’s
homepage (http://www.cbloom.com/src/ppmz.html).

6.6.3 Distance-Based Tree Building Methods

Distance-based or the distance matrix methods of tree-building are fast and quite
suitable for protein function prediction. The general idea behind each is to calcu-
late a measure of the similarity between each pair of taxons, and then to find a tree
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that predicts the observed set of similarities as closely as possible. In our study we
used two popular algorithms, the Unweighted Pair-Group Method using Arithmetic
Averages (UPGMA) [19], and the Neighbour-Joining (NJ) algorithm [8]. Both algo-
rithms here are based on hierarchical clustering. UPGMA employs an agglomerative
algorithm which assumes that the evolutionary process can be represented by an ul-
trametric tree: or, in other words, that it satisfies the “molecular clock” assumption.
On the other hand, NJ is based on divisive clustering and produces additive trees. The
time complexity of both methods is O

(
n3
)
. In our experiments we used the UPGMA

and the NJ algorithms as implemented in the Phylip package [20].

6.6.4 Evaluation of Classification Performance (ROC, AUC and Error rate)

The classification was based on nearest neighbour analysis. For simple nearest neigh-
bour classification (1NN) a query sequence is assigned to the a priori known class
of the database entry that was found most similar to it in terms of a distance/similar-
ity measure (e.g. BLAST, Smith-Waterman etc.). For a tree-based classifier (Section
6.4), the query was assigned to the class that was nearest in terms of insertion costs
(TreeInsert) or with the highest weight (TreeNN).

The evaluation was carried out via standard receiver operator characteristic
(ROC) analysis, which characterizes the performance of learning algorithms under
varying conditions like misclassification costs or class distributions [21]. This
method is especially useful for protein classification as it includes both sensitivity
and specificity, based on a ranking of the objects to be classified [22]. In our case
the ranking variable was the nearest similarity or distance value obtained between a
sequence and the positive training set. Stated briefly, the analysis was then carried
out by plotting sensitivity vs 1-specificity at various threshold values, then the re-
sulting curve was integrated to give an “area under curve” or AUC value. Note here
that AUC = 1.0 for a perfect ranking, while for random ranking AUC = 0.5 [21].
If the evaluation procedure contains several ROC experiments (10 for Dataset A
and 117 for Dataset B), one can draw a cumulative distribution curve of the AUC
values. The integral of this cumulative curve, divided by the number of classifica-
tion experiments, lies in a [0,1] interval with the higher values representing better
performances.

Next, we calculated the classification error rate - which is the fraction of er-
rors (false positives and false negatives) within all the predictions. Thus ER =
(fp+fn)/(tp+fp+tn+fn).
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Summary. This chapter compares the traditional dynamic programming RNA gene finding
methodolgy with an alternative evolutionary computation approach. Both methods take a set of
estimated covariance model parameters for a non-coding RNA family as given. The difference
lies in how the score of a database position with respect to the covariance model is computed.
Dynamic programming returns an exact score at the cost of very large computational resource
usage. Presently, databases are prefiltered using non-structural algorithms such as BLAST in
order to make dynamic programming search feasible. The evolutionary computing approach
allows for faster approximate search, but uses the RNA secondary structure information in the
covariance model from the start.

7.1 Introduction

The initial focus of interpreting the output of sequencing projects such as the Human
Genome Project [1] has been on annotating those portions of the genome sequences
that code for proteins. More recently, it has been recognized that many significant
regulatory and catalytic functions can be attributed to RNA transcripts that are never
translated into protein products [2]. These functional RNA (fRNA) or non-coding
RNA (ncRNA) molecules have genes which require an entirely different approach to
gene search than protein-coding genes.

Protein-coding genes are usually detected by gene finding algorithms that gener-
ically search for putative gene locations and then later classify these genes into
families. As an example, putative protein-coding genes could be identified using
the GENESCAN program [3]. Classification of these putative protein-coding genes
could then be done using profile hidden Markov models (HMMs) [4] to yield fam-
ilies of proteins (or protein domains) such as that in Pfam [5]. It is not necessary
to scan entire genomes with an HMM since a small subset of the genome has al-
ready been identified by the gene finding algorithm as possible protein-coding gene
locations. Unlike protein-coding genes, RNA genes are not associated with promoter
regions and open reading frames. As a result, direct search for RNA genes using only

S.F. Smith: Covariance-Model-Based RNA Gene Finding: Using Dynamic Programming versus Evolutionary
Computing, Studies in Computational Intelligence (SCI) 94, 183–208 (2008)
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generic characteristics has not been successful [6]. Instead, a combined RNA gene
finding and gene family classification is undertaken using models of a gene family
for database search over entire genomes. This has the disadvantage that RNA genes
belonging to entirely novel families will not be found, but it is the only currently
available method that works. It also means that the amount of genetic information
that needs to be processed by the combined gene finder and classifier is much larger
than for protein classifiers.

Functional RNA is made of single-stranded RNA with intramolecular base pair-
ing. Whereas protein-coding RNA transcripts (mRNA) are primarily information
carriers, functional RNA often depends on its three dimensional shape for the per-
formance of its task. This results in conservation of three dimensional structure,
but not necessarily primary sequence. The three dimensional shape of an RNA
molecule is almost entirely determined by the intramolecular base pairing pattern
of the molecule’s nucleotides. There are many examples of RNA families with very
little primary sequence homology, but very well conserved secondary structure (see
pp. 264–265 in [7]). It is very difficult to find RNA genes without taking conservation
of secondary structure into account.

Most homology search algorithms such as BLAST [8], Fasta [9], Smith-
Waterman [10], and profile HMMs only model primary sequence and are therefore
not well suited for RNA gene search. These algorithms are in the class of regular
grammars in the Chomsky hierarchy of transformational grammars [11]. In order
to capture the long-range interactions embodied in RNA secondary structure, one
needs to move up one level in the Chomsky hierarchy to a context-free grammar.
The extension of the regular-grammar-based HMM to a context-free grammar is a
covariance model (CM) [12].

The structure of covariance models and model parameter estimation from a
secondary-structure-annotated multiple alignment of a RNA gene family is the sub-
ject of the next section. The use covariance models for gene search by a specific
non-coding RNA database (Rfam) will be examined in Section 2. It will be seen that
the traditional dynamic-programming method of scoring database locations with re-
spect to a covariance model is so computationally intensive that filters are normally
first used to reduce the amount of searched database by orders of magnitude. The
advantages and drawbacks of these filters are discussed in Section 3. An alternative
to filtering is introduced in Section 4, where an evolutionary-computation CM-based
search method is shown. Finally, conclusions are drawn and discussion of work that
remains to be done is undertaken.

7.2 Review of Covariance Models for RNA Gene Finding

Covariance models can be viewed as an extension of profile hidden Markov mod-
els such that covariation in nucleotides at model positions that are widely separated
in sequence, but physically connected as base pairs is captured statistically. Profile
hidden Markov models are a specific form of hidden Markov model in which state
transitions have a unidirectional flow from the start (5’ in RNA/DNA or N-terminal



7 CM-Based RNA Gene Finding 185

in proteins) to the end (3’ in RNA/DNA or C-terminal in proteins) of the model’s
consensus sequence. Similarly, a CM has unidirectional flow state transitions, but a
more complicated connection topology. Profile hidden Markov models have five dif-
ferent types of states (start, match, insert, delete, and end). A CM has seven distinct
state types (start, match pair, match/insert left, match/insert right, delete, bifurcate,
and end). Finally, both types of models associate a group of states with each se-
quence position in the consensus sequence of the model. For the profile HMM, one
match, one insert, and one delete state is associated with each consensus position
(with possible exception of the first and/or last position). For the CM, a group of
states (called a node) is associated with each consensus based-pair of positions and
consensus unpaired position.

Both profile HMM and CM parameters are estimated from a group of nucleotide
or protein sequences know as a family. In the case of the CM, it is also necessary
to have a consensus secondary structure. This secondary structure may either be ob-
served experimentally, or predicted from the sequence. In the case of non-coding
RNA genes, prediction could be done with the Mfold [13] or RNAPredict [14] pro-
grams for example. The sequences may be either in the form of a multiple alignment
or unaligned. For clarity of exposition, it is assumed here that the sequences are
available in aligned form. In this case, the structure of the HMM or CM is deter-
mined by selecting alignment columns as either conserved or as insertion columns.
Conserved columns are associated with some form of match state in the model. The
most abundant symbol (nucleotide or amino acid) in each conserved column is taken
as the consensus symbol for that position in the consensus sequence. The consensus
sequence has length equal to the number of conserved multiple alignment columns.

7.2.1 CM Model Structure Determination

A multiple alignment that could be used to form a CM for the U12 family of non-
coding RNA genes is shown in Figure 7.1. Included in the alignment are the seven
sequences used by the Rfam database (described later) to form its CM of the family.
These sequences are called seed sequences in Rfam and the resulting model has been
used to find seven additional U12 family members. The four rows following the
seven sequences contain consensus information. These four rows show consensus
secondary structure, consensus sequence, CM node type assigned to the consensus
column, and CM model branch letter code (used for reference to Figure 7.3 below)
respectively. In the consensus structure rows, the symbol “-” indicates an unpaired
conserved column, the symbols< and > represent the left (5’-side) and right (3’-side)
halves of two base-paired conserved columns, and “.” represents a non-conserved
column. Note that there is no indication of which < column base pairs with which >
column. This is because the structure is assumed to not have any pseudoknots. If the
actual structure does have pseudoknots, then some of the base-paired columns have
to be treated as if they were not base-paired. This results in some loss of power in
the model, but the CM is not capable of representing pseudoknots and the increase
in computational complexity of a model that can handle general pseudoknots is too
high. If pseudoknots are disallowed, then the base-pairing notation is unambiguous.
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Non-pseudoknotted structures have all base pairs such that all other base pairs are
either completely inside or completely outside of them.

Of the six types of CM nodes, three do not emit consensus symbols (S = start,
B = bifurcation, and E = end), two emit a single consensus symbol (L = left and
R = right), and one emits two consensus symbols (P = pair). Therefore, only L,
R, and P node types appear in the node type rows of Figure 7.1. L and R nodes
are associated with a single multiple alignment column. Each P node is associated
with two columns, one with secondary structure notation < and one with notation >.
The multiple alignment shown has 156 columns, 149 of which represent consensus
sequence positions. Four of the columns are assigned to R nodes, 63 to L nodes,
and 41 pairs of columns to P nodes for a total of 4 + 63 + 2*41 = 149 consensus
columns. Any time that a column could be assigned to either an L or an R node, the
L node is preferred by convention, so there are generally many more L than R nodes
in covariance models.

First, let us consider models that do not allow for insertions or deletions with
respect to the consensus sequence. Such a profile HMM in shown in Figure 7.2 and a
CM drawn at a level of detail that does not show insertion and deletion possibilities
is shown in Figure 7.3. The HMM has only match (M) states. The arrow at the top of
the figure shows that the model is written to process nucleotide sequences in the 5’
to 3’ direction. Each match state is associated with four emission probabilities, one
for each of the four possible nucleotides. The nucleotide with highest probability is
shown in parentheses inside the box for the M state and is equivalent to the consensus
symbol for the conserved column of the multiple alignment represented by the M
state. All transition probabilities is this model are equal to 1 since there is never any
transition choice.

The node structure of the CM for the U12 RNA family is shown in Figure 7.3.
The arrows pointing to the right and/or left of the R, L, and P nodes represent emis-
sion of a consensus symbol. This is a condensed version of the node structure where
the numbers next to the emission arrows indicate that there is a vertical chain of that
many nodes of identical type. The circled lower-case letters correspond to the branch
codes in Figure 7.1. The first two consensus columns in Figure 7.1 (on the 5’ end)
correspond to two L nodes near the top of Figure 7.3 and the last three consensus
columns in Figure 7.1 (on the 3’ end) correspond to three R nodes just below in
Figure 7.3. These two L nodes and three R nodes are all in branch “a”. CM node di-
agrams always take the form of a binary tree. The top node in the tree is always an S
node (called the root start node) and the bottoms of all terminal branches are always
E nodes. Branches split into two at B nodes and the two children of any B node are
always S nodes (called a left child start node and right child start node respectively).

Two of the branches in Figure 7.3 are surrounded by dashed boxes (branches
a and b). All of branch a and the top portion of branch b are shown in expanded
form in Figure 7.4. As shown by the arrows, the left side of a CM branch should
be read from top to bottom and the right side of a branch from bottom to top in
order to read consensus symbols in left-to-right multiple-alignment order (5’ to 3’
order). The a branch shows the first two consensus symbols are UG and the last
three consensus symbols are CCG. The nodes actually represent a set of emission
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1 .UGCCUUAAACUUAUGAGUAAGGAAAAUAACAACU......CGGGGUGAC
2 .UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAUU......CGGGGUGAC
3 .UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAUU......CGGGGUGAC
4 AUGUCUUAAACUUAUGAGUAAGGAAAAUAACGAUUGUUAUUCGGGGUGAU
5 .UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAUU......CGGGGUGAC
6 AUGCCUUAAACUUAUGAGUAAGGAAAAUAACGAUU......CGGGGUGAC
7 AUGUCUUAAACUUAUGAGUAAGGAAAAUAACGAUUGUUAUUCGGGGUGAU
.--<<<<<---------->>>>>--------<<<<......<<<<-----
.UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAUU......CGGGGUGAC
.LLPPPPPLLLLLLLLLLPPPPPLLLLLLLLPPPP......PPPPLLLLL
.aabbbbbbbbbbbbbbbbbbbbccccccccdddd......ddddddddd

1 GCCCGAGUCCUCACUACUGAUGUGAGAGGAAUUUUUGUGCGGGUACAGGU
2 GCCCGAGUCCUCACUGCUUAUGUGAGAAGAAUUUUUGAGCGGGUAUAGGU
3 GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCGGGUAAAGGU
4 GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCUGGUAAAGGU
5 GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCGGGUAAAGGU
6 GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCGGGUAAAGGU
7 GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCUGGUAAAGGU
->>>>>>>><<<<<------->>>>>-----------<<<<<<<---<<<
GCCCGAAUCCUCACUGCUAAUGUGAGACGAAUUUUUGAGCGGGUAAAGGU
LPPPPPPPPPPPPPLLLLLLLPPPPPLLLLLLLLLLLPPPPPPPLLLPPP
dddddddddeeeeeeeeeeeeeeeeefffffffffffggggggggggggg

1 CGUCCCC.GGGUGACCCGCUUACUUCGCGGGAUGCCCAGGUGCAAUGAUCUGCCCG
2 UGCAAUCUGAGCGACCCGCCUACUUUGCGGGAUGCCUGGGUGACGCGAUCUGCCCG
3 CGCCCUCAAGGUGACCCGCCUACUUUGCGGGAUGCC....................
4 CGCCCCUAAGGUGACCAGCCUACUUUGCGGGAUGCCUAGGAGUCGCGAUCUGCCUG
5 CGCCCUCAAGGUGACCCGCCUACUUUGCGGGAUGCC....................
6 CGCCCUCAAGGUGACCCGCCUACUUUGCGGGAUGCCUGGGAGUUGCGAUCUGCCCG
7 CGCCCCUAAGGUGACCAGCCUACUUUGCGGGAUGCCUAGGAGUCGCGAUCUGCCUG
<<<<----->>>>>>>->>>>>>>--<<<<<<<<<--------->>>>>>>>>---
CGCCCUCAAGGUGACCCGCCUACUUUGCGGGAUGCCUAGGAGUCGCGAUCUGCCCG
PPPPLLLLLPPPPPPPRPPPPPPPLLPPPPPPPPPLLLLLLLLLPPPPPPPPPRRR
gggggggggggggggggggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhaaa

Fig. 7.1. U12 multiple alignment of seven seed family members
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Fig. 7.2. A profile HMM with no insert or delete states
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Fig. 7.3. Condensed U12 CM node structure
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Fig. 7.4. Expanded portions of U12 CM node structure

probabilities. The L node directly below the root start node emits U with highest
probability, by the probabilities of A, C, and G may be nonzero. L and R nodes have
four such match probabilities (one for each possible nucleotide) and P nodes have
sixteen probabilities (one for each possible pair of nucleotides). At the node structure
level, the CM is similar to the HMM without insert or delete states in that transitions
from a child node to a parent node happen with probability 1. At the bifurcations, the
two submodels represented by the two subtrees are simply joined as one contiguous
sequence with the left child subsequence on the left and the right child subsequence
on the right.

Profile HMMs are normally augmented with insert and delete states as shown in
Figure 7.5. The delete states (D states) are silent states that do not emit any sym-
bols. These states simply allow one or more consensus positions in the model to be
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Fig. 7.5. A profile HMM with insert and delete states

skipped. The deletion penalty is imposed by the normally lower transition probabil-
ities associated with the arrows to, from, and between D states as compared to the
higher transition probabilities between M states. Affine delete gap penalties are avail-
able by having higher transition probabilities on D-to-D transitions than on M-to-D
or D-to-M transitions. This allows multiple sequential deletions to be penalized less
heavily than the same number of scattered deletions. This is consistent with observed
gaps in nature and with gap penalties used in algorithms such as Smith-Waterman.
The insert states (I states) have loop arrows inside the state diamond symbols to re-
mind us that insert states always have self-loop transitions (both in HMMs and in
CMs). This allows more than one possible insertion between consensus symbols.
Affine insertion gap penalties are possible with differing self-loop and I-to-M/M-to-I
transition probabilities. Unlike constant gap initiation and gap continuation penal-
ties commonly used in algorithms such as Smith-Waterman, the gap penalties in an
HMM or CM are position specific and can be different for insertions versus deletions.
This leads to more flexibility, but also a large number of free parameters.

While it is possible to also include I-to-D and D-to-I transitions, Figure 7.5 omits
these. Direct insertion to deletion transitions are rarely observed in real data and
inclusion of these transitions just adds to the number of free parameters. The lack
of these transitions is referred to as “plan seven” in the HMMER literature [15] (a
program which estimates and scores profile HMMs). Seven refers to the number
transitions leaving the D-I-M state triple associated with a consensus model position
(including the I-state self loop). The alternative “plan nine” HMM architecture is not
as commonly used. The standard CM is equivalent to a plan nine HMM in the sense
that direct deletion to insertion transitions (and vice versa) are allowed. Investigation
of the effect of removing these transitions in the CM case do not appear to have been
undertaken to date.
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Fig. 7.6. Internal state structures of CM nodes

The equivalent to adding I and D states to the HMM is to allow non-consensus
states within the nodes of the CM. Figure 7.6 shows the internal state structure of
the six types of CM nodes. Each type of node contains a consensus state plus zero to
five non-consensus states. The S, B, L, R, E, and P nodes have consensus states S, B,
ML, MR, E, and MP respectively. Emitting nodes (L, R, and P) have D (delete) states
that allow the consensus emitting state to be bypassed. The P node also contains
two states that allow only the right or left half of the consensus pair to be missing
in the database sequence. The ML state in the P node allows the right half of the
consensus pair to be absent and the MR state allows the left half to be absent. IL
and IR states allow additional database symbols to be inserted between consensus
positions. These insert states have self-loop transitions, as indicated by the circular
arrows inside the IL and IR state boxes such that any number of symbols may be
inserted. The choice of which insert states to place in which node types is done
such that there is no ambiguity as to which insert state in which node is responsible
for insertions between a given couple of sequentially adjacent consensus locations.
There are three sub-types of S nodes. The root S node has both IL and IR states. The
right child S node has only an IL state. The left child S node has no insert states.

There are two levels of states within each node. The consensus state, D state (if
present), and delete-related states (ML and MR in P nodes) are in the top level. The
bottom level contains any insert states (IL or IR) that may be present. This implies
that any insertions are added to the database sequence before any consensus matching
is done (since the model is evaluated from the leaves toward the root). All top level
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states in a given node have transitions to all states in the parent node. Bottom level
states (insert states) only have transitions to top level states in the same node and to
themselves. As a result, the arrows entering or leaving a node in Figure 7.6 represent
a bundle of transitions whose number depends on the type of parent or child node.
The IL- or IR- to-D transitions are clearly seen in Figure 7.6, but the D-to -IL or
-IR transitions are only implicitly shown. These transitions make the standard CM
architecture equivalent to a plan nine profile HMM.

7.2.2 Mapping a Database Sequence to a Covariance Model

In order to fit a database sequence to a covariance model one starts at the E states and
works up the CM tree toward the root S state. Each E state models a null sequence
and with no database symbols mapped to it. Transitioning from a child state to a
parent state maps zero, one, or two database symbols to the model. Non-emitting
parent states map no symbols, single-emitting states (IL, IR, ML, and MR) map a
single symbol to the model, and the pair-emitting state (MP) maps two symbols. The
transition adds a log-likelihood ratio transition score to the overall model score. If the
parent state is an emitting state, a log-likelihood ratio emission score is also added.

Figure 7.7 shows the effect of moving from a top-level state T in a child node
(of any type) to the top-level MR state in a parent R node. This has the effect of
matching a database symbol to a model consensus symbol and inserting zero or more
database symbols between the existing mapped database symbols and the consensus-
matched symbol. If at least one database symbol is to be inserted, the first transition
is from the child-node top-level state to the IR state of the parent R node. The length
of the mapped sequence increases by one and the overall score increases by the T-
to-IR transition score plus the IR state emission score for the inserted symbol (the
emitted symbol is G in Figure 7.7). If an additional database symbol is inserted, the
mapped sequence again increases in length by one and the overall score increases
by the IR-to-IR transition score plus the IR state emission score of the new symbol.
This continues until all inserted symbols are finished. Finally, the consensus-matched
symbol (U in the figure) increases the mapped sequence length by one and increases
the score by the IR-to-MR transition score plus the MR state emission score for the

. . .

. . . MRIRT

UCG

T,IR IR,IR IR,IR IR,MR
Transition Probabilities:

Database
Sequence:

Model:

T = Model for subtree rooted at
a top-level state of child node

= Database symbols
mapped to T subtree

IR

Fig. 7.7. Building to the right with an R node
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Fig. 7.9. Building both ways simultaneously with a P node

matched symbol. Not shown in the figure is the alternative that the model position is
deleted. In this case, a single transition is made from the T state to the D state. The
mapped sequence length remains unchanged and the score increases by the T-to-D
transition score only.

The effect of moving from a top-level state T in a child node to the top-level ML
state in a parent L node is shown in Figure 7.8 and is an exact mirror of the situation
in Figure 7.7 for an R parent node. It can be noted that structure generated by a model
with only a single branch of R nodes or L nodes is very similar to the profile HMM.
Each node contains one match, one insert, and one delete state. In fact, the single-
emission nodes of the CM are simply modeling the primary sequence homology of
the non-base-paired portions of consensus alignment. Also note, there is no need to
have IR states in L nodes or to have IL states in R nodes. Insertions to the outside of
the sequence represented by a top-level state are generated by the next node up the
tree (possibly by the root start node, which is why the root start node has both IR and
IL states).

All of the advantage of using a CM over an HMM is embodied in the MP states
of the P nodes. It is the sixteen distinct emission probabilities for each of the possible
nucleotide pairs that allows covariation to be detected. Typically, there will be one
pair with very high probability (indicating both sequence homology and secondary
structure homology) and other canonical or wobble base pairs with lesser, but still
high, probabilities. Figure 7.9 shows the effect of a transition from a child-node top-
level state T to the MP state of a parent P node. The IL state can be visited zero
or more times and the IR state can be visited zero or more times in between. The
number of IL visits does not need to equal the number of IR state visits. Even though
MP appears twice in Figure 7.9, this is a single visit of the MP state which emits
two match symbols. The score increases by the sum of the transition score and the
emission score for each of these transitions.



7 CM-Based RNA Gene Finding 193

. . . 

. . . B IL IL TR

C G

Transition Probabilities

TL

TR,ILIL,ILIL,ILIL,BTL,B

Fig. 7.10. Joining two submodels with a B node

Using the S, L, R, P, and E nodes it is possible to construct a single branch of a
CM tree that can describe any secondary structure as long as all base pairs are fully
nested. For instance, the structures «-«---»>-> and «<--»-> can be described,
but «-»-««--»» and «-»«<--» >-«-» can not. The later two structures require
one and two bifurcations respectively. Roughly speaking, the branches of the CM
model tree correspond to stem-loops in the RNA secondary structure. Figure 7.10
shows how a B state joins two submodels represented by its left and right child states
(the TL and TR states). These states are always start states and are part of a left-child
S node and a right-child S node respectively. It is necessary that either the left-child
S node contain an IR state or the right-child S node contain an IL state in order to
allow inserted database symbols to the right of the rightmost consensus position of
the left-child submodel. Since left emissions are always preferred to right emissions
by tradition whenever either would be possible, right-child S nodes are chosen to
contain an IL state and left-child S nodes do not contain any insert states.

Depending on the number of insert and delete state visits the length of the se-
quence mapped by a transit of the model can be longer or shorter than that of the
consensus sequence. In order to find the optimal mapping of a database sequence
to the model, one should consider all possible insertion and deletion patterns. If the
database sequence is an entire chromosome, the database sequence could be several
hundred million bases in length. It would be possible in theory to search insertion pat-
terns that include total inserted symbol counts of many millions of database symbols.
In practice, true RNA genes are unlikely to have so many insertions and even if they
did, they would be rejected by a scoring scheme that would add up large numbers of
gap extension penalties. In order to make database search possible with determinis-
tic algorithms such as dynamic programming, dynamic programming a cutoff on the
maximum database sequence length that can be represented at any state in the model
is made. Often this cutoff is less than one and one half times the consensus sequence
length of the RNA family. The length of the database sequence mapped to a CM state
is equal to the consensus sequence length represented by the model subtree rooted at
that state plus the net number of insertions less deletions made up to that state.

The traditional method of using a CM for database search is to use dynamic
programming. A score is calculated for the database subsequences ending at every
possible position in the database and for every possible subsequence length up to the
length cutoff discussed above. At each possible database position, the maximum over
all subsequence lengths explored for that position is taken as the database position
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score. Database position scores exceeding a selected threshold cause the database
position to be declared as the ending position of a putative gene for the RNA family
represented by the CM.

The dynamic programming algorithm starts at the E states. These states represent
null sequences and are assigned a score of zero for all possible database subsequence
end positions and the mapped subsequence length is taken to be zero. Score evalua-
tion then progresses from the E states up the tree towards the root S state. The scores
at the root S state are the scores used to determine the putative gene locations. At
each model state, the best possible score for a database subsequence ending at each
possible database position and for every possible database subsequence length be-
tween zero and the length cutoff are evaluated. These best scores are used by parent
states to calculate the best possible scores for the submodel rooted at the parent node.

A more formal description of the dynamic programming algorithm used to gen-
erate scores for a database sequence with respect to a covariance model of an RNA
family is given in Figure 7.11. The algorithm uses a triple-nested loop over database
end position, subsequence length, and CM state. All database end positions j in
the range 0 to the length of the database sequence L are examined. All database
subsequence lengths in the range 0 to the length cutoff D are examined (with sub-
sequence lengths that would extend past the start of the database sequence ignored).
Finally scores are generated for each state number v, where there are M+ 1 states
and the root start state is numbered 0. States are indexed such that the index of a
child state is always higher than that of a parent state. Evaluating state scores in re-
verse state index order ensures that the score for a submodel at a child state is always
available when needed by its parent state. The scores calculated at each position,
subsequence length, and state are given by s(j,d,v).

For E states, the score is zero for null subsequences and minus infinity for any
other subsequence. This ensures that any subsequence other than the null subse-
quence is discarded by the maximum operation when finding the best score further
up the tree. Delete and start states are computationally identical. Neither adds any
database symbols to the mapping. Only the transition score trans(c,v) from the child

for j = 0 to L
for d = 0 to min(D,j)
for v = M to 0
case type(v) is
E: if d == 0 then s(j,0,v) = 0; else s(j,d,v) = -Infinity
D or S: max(over children c)[s(j,d,c) + trans(c,v)]
L: if d == 0 then s(j,0,v) = -Infinity; else s(j,d,v) =
emit(l,v) + max(over children c)[s(j,d-1,c)+trans(c,v)]

R: if d == 0 then s(j,0,v) = -Infinity; else s(j,d,v) =
emit(r,v) + max(over children c)[s(j-1,d-1,c)+trans(c,v)]

P: if d < 2 then s(j,d,v) = -Infinity; else s(j,d,v) =
emit(l,r,v) + max(over children c)[s(j-1,d-2,c)+trans(c,v)]

B: max(over k in 0 to d)[s(j-k,d-k,lc)+s(j,k,rc)]

Fig. 7.11. Algorithm for dynamic-programming CM scoring
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state c to parent state v is needed here. The L, R, and P state types add database sym-
bols to the mapping and therefore change the database position and/or subsequence
length mapped when compared to the mapping passed from the child state. L-type
states include both IL and ML states, R-type states include both IR and MR states,
and P-type states only appear as MP states. L- and R-type states add one symbol to
the mapping, so the resulting mapping can not have length less than 1. Therefore the
score is set to minus infinity for length 0. P-type states add two symbols to the map-
ping and therefore a score of minus infinity (meaning impossible) is set for lengths of
0 or 1. For L-type states, the resulting database end position remains unchanged, but
mapping a symbol on the left increases the subsequence length by one, so the score
for length d depends on a child score for length d−1. For R-type states, adding a
symbol on the right moves the end position one place right, so the score for length
d and position j depends on child length d−1 and position j−1. For P-type states,
the score for length d and position j depends on child length d−2 and position j−1.
For L-, R-, and P-type states, the change in score is both an emission score (emit)
and a transition score (trans). The emission score depends on the database symbols
found on the right (r) and left (l) respectively. Finally, bifurcation finds the best two
submodels whose lengths add up to the subsequence length score to be evaluated and
which are contiguous along the database.

It should be clear that the amount of computation involved in the dynamic pro-
gramming algorithm is very large. In fact, this is the central drawback to application
of the algorithm. The remainder of this chapter explores current use of covariance
models for RNA gene finding and approaches to reducing the computational cost of
CM-based database search.

7.3 Application of CM-Based RNA Gene Finding:
The Rfam Database

Over five hundred families of non-coding RNA sequences have been identified and
modeled in the publically-available Rfam database [16]. Groups of sequences are
formed into families using reference to the literature, aligned, and annotated with
secondary structure using either experimentally-derived or computer-predicted struc-
tures. These carefully hand curated multiple alignments are referred to as “seed”
alignments in Rfam. The structure of the CM model tree is then generated from the
consensus secondary structure annotation of the alignment. Transition and emission
scores for the CM are estimated from observed frequencies of nucleotides and gaps
at the various multiple alignment columns. A prior distribution is then combined
with the observed frequencies in an attempt to correct for limited sample size. This
has the effect of eliminating log-likelihood ratio scores that are minus infinity due to
observed counts of zero. Such scores are undesirable because they rule out certain
patterns merely because they did not happen to be observed in the training data even
though there is no theoretical reason to believe that they are impossible.

A package of programs used by Rfam to estimate covariance models and for
database search is called Infernal [17]. This package is publicly available, including
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source code. The Rfam site includes both alignments of the original seed sequences
for families and combinations of seed sequences and new sequences found through
database search. The database also includes the parameter files of the estimated
covariance models. These parameter files are particularly useful when exploring
methods other than dynamic programming for CM-based database search since the
parameters can be transformed into other formats suitable for alternative searches.

The amount of computational power needed for direct search of the available
genomic data using dynamic programming and covariance models is excessive. In
order the trim the amount of data searched by orders of magnitude, a filtering op-
eration is first applied to the database. In the case of Rfam, the filtering method is
to use BLAST [8] to score the database with respect to the consensus sequence of
the model. It is hoped that the new RNA genes will have enough primary sequence
homology with the existing family members that their score will be raised enough
above the background noise to be retained in the portion of data passed to the full
CM search. The extent to which this hope is true in practice is not very well studied.
In the following section of this chapter, another proposed filtering method from the
literature will be discussed. In section 4, we will discuss an evolutionary computation
alternative to filtering the database (and to using preset length cutoffs).

In examining the possibility of using evolutionary computation, data extracted
from the Rfam database is used. In particular, fourteen sequences belonging to the
U12 ncRNA family (accession number RF00007) are used for testing. The parameter
file for this Rfam family is also used. Of the fourteen sequences, seven are from the
seed family used to estimate the model parameters and seven were found through
database search using the model. The U12 family [18] [19] [20] are small nuclear
RNA (snRNA) which form a complex with specific proteins to function as part of the
minor spliceosome. The function of U12 is to remove introns from pre-mRNA. The
U12 ncRNA acts in a way similar to that of the U2 ncRNA in the major spliceosome.

7.4 Filters to Reduce Database Search Cost

A major problem with using a filter to reduce the amount of genomic data to be
searched with a CM is that there may not be enough primary sequence homology
to keep the true gene in the retained data set. With the BLAST method of database
reduction, there is no known way to set the score threshold to guarantee retention.
However, Weinberg and Ruzzo [21] have recently come up with a way to guarantee
that a profile HMM filter will not discard any portion of the database that contains
a subsequence that the dynamic- programming CM search would score as a putative
RNA gene. The procedure involves extracting from the CM parameter files equiva-
lent profile HMM parameters that ignore the joint probability information inherent
in the P state emission probabilities. The maximum additional score that could come
from the secondary structure information in the CM with a perfect database match
can be calculated and subtracted from the score threshold to be used with the CM
search. The result is the minimum primary sequence score contribution that must
come from the database sequence in order for the overall CM score to exceed the
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CM threshold. Portions of the database which do not meet this minimum score con-
tribution are found when the HMM score does not exceed this minimum primary
sequence contribution.

Disadvantages of the HMM method are that the HMM is much slower than
BLAST (although significantly faster than full CM search) and that the reduction
in database size varies greatly from one RNA family model to another. No compre-
hensive study of the speedup of this method has been undertaken. The Weinberg and
Ruzzo paper looks at only 34 of the over 500 families. Extrapolating from this pa-
per, it is still predicted to take tens of CPU years with a modern desktop computer to
search all Rfam families on the 8-gigabase database of the study. Since both the num-
ber of known RNA families and the amount of genomic data are rapidly expanding,
this amount of computation is still too much.

Weinberg and Ruzzo [22] have also recently come up with an heuristic filter that
is an alternative to BLAST and appears to perform better than BLAST. This heuris-
tic filter is based on a profile HMM and as such does not use secondary structure
information at the filtering stage.

7.5 An Alternative to Filters Using Evolutionary Computation

In this section, the use of evolutionary computation (EC) as an alternative to filtering
followed by dynamic programming search is examined. Secondary structure infor-
mation will be used from the start on the entire database. Also, no sequence length
cutoff is employed. The results of the non-exhaustive EC-based search will also be
compared to those of a simple hill-climbing algorithm which is also non-exhaustive,
but does not have the ability to escape local minima. The ability to jump out of a
local minimum is shown to be crucial to the algorithm.

7.5.1 Dynamic Programming Efficiency

To motivate why the traditional dynamic-programming exhaustive search might not
be the most efficient way to find RNA genes using a CM, the observed usage of
search space regions is first examined. Dynamic programming finds the best score
at each model state for each database end position and each database subsequence
length ending at that position (up to a predefined cutoff length). The first observation
made is that only a small range of the subsequence lengths evaluated at a given
state are normally observed in real data. These subsequence lengths cluster about the
consensus sequence length for the submodel represented by the subtree rooted at the
state. In what follows, length deviation will be defined as the length of the database
subsequence generating a score at a given state minus the length of the consensus
sequence represented by the state. Length deviation is therefore equivalent to the
number of inserted symbols minus the number of deleted model positions in the
submodel mapping of a given state.

The actual usage of subsequence lengths at various states of the Rfam U12 CM
model for the fourteen known U12 family members (seven seed and seven discov-
ered members) is shown in Table 7.1. The “top” and “bottom” designations and the
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Table 7.1. Subsequence length use in observed U12 data

Consensus Obs Obs DP DP
State Branch Length Max Min Max Min

root S a 149 +6 −6 +11 −149
bottom R a 145 +6 −6 +16 −145
top P b 20 +4 −3 +140 −20
bottom L b 1 +1 0 +159 −1
top L c 47 +6 −4 +113 −47
bottom L c 40 +6 −4 +120 −40
top P d 22 +6 −1 +138 −22
bottom L d 1 0 0 +159 −1
top P e 17 0 −3 +143 −17
bottom L e 1 0 0 +159 −1
top L f 77 +1 −3 +83 −77
bottom L f 67 +1 −2 +93 −67
top P g 37 +1 −1 +123 −37
bottom L g 1 0 0 +159 −1
top L h 29 0 −2 +131 −29
bottom L h 1 0 0 +159 −1

branch letter refer to Figure 7.3. For example, “bottom R” and branch “a” is the con-
sensus MR state in the R node and the bottom of the “a” branch of the CM tree.
The consensus sequence length is 145 for the model subtree rooted at this MR state
since two more R nodes and two more L nodes are in the CM tree above it and the
overall consensus sequence length is 149. Using dynamic programming, all subse-
quence lengths in the range 0 to 160 are investigated at every state (since the cutoff
length for this model is chosen to be 160 in Rfam). The last four columns of the table
show length deviations from the consensus length at each model state. The dynamic
programming (DP) maximum and minimum length deviations are always 160 minus
the consensus length and the negative of the consensus length respectively. The ob-
served maximum and minimum length deviations are shown in the fourth and fifth
table columns respectively. These are seen to cluster near zero and to be generally
much smaller than the dynamic programming limits.

One possible way to make the dynamic programming algorithm more efficient
by about one to two orders of magnitude is to specify state-dependent minimum and
maximum length deviations (or equivalently, minimum and maximum subsequence
lengths). This requires extra complexity in the search code. The model input file
needs to be augmented with the state-dependent search limits. These limits would
need to be determined by a program that automatically extracts the observed length
deviations at each state from the seed sequence multiple alignment. A buffer region
about the observed deviations needs to be added to allow for deviations of true family
members that are outside the range observed in the seeds. The statistical analysis
needed for a good choice of buffer region size is nontrivial.
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7.5.2 CM-Based Search Without Dynamic Programming

Another way to improve efficiency is to expand the search about the zero length
deviation solution [23]. This could be done with either deterministic (such as hill-
climbing) or randomized (such as genetic algorithm) search methods. In either case,
the initial step is to determine the scores of an ungapped mapping of a database
subsequence to the covariance model at every database position. This is equivalent
to evaluating every consensus state for zero length deviation only and assigning
a score of minus infinity if the length deviation is not zero or the state is a non-
consensus state. Unlike filtering with BLAST, Fasta, or an HMM, the ungapped
scoring method employs base-pairing information from the start on all portions of
the database. It is also several orders of magnitude faster than the full dynamic
programming CM search due to a number of factors. First, only consensus states
are evaluated for about a factor of three reduction in evaluated states. Second, there
is no need to add state transition scores in this initial sweep of the database since
they only contribute an additive constant to the score at every database position, for a
computational reduction of about a factor of two. Third, only one subsequence length
is evaluated for a reduction by a factor of the cutoff length (often two to three orders
of magnitude). Forth, bifurcation states are very expensive relative to other states
since they need to check every possible allotment of subsequence length between
the two branches. This results in bifurcations having a computational complexity
that is higher than other states by a factor about equal to the cutoff length. Since the
function of the bifurcation is not needed without gaps, this saves another two to three
orders of magnitude. Overall, ungapped scoring of a database is somewhere in the
range of three to eight orders of magnitude faster than full dynamic programming
scoring. The proportionate speedup is greater for models with very long consensus
sequences (and long length cutoff), which are exactly the models that take longest
with the conventional scoring method.

The clustering of the true subsequence lengths about zero length deviation as
shown in Table 7.1 for U12 is a general phenomenon. What is less clear is whether the
scores of the best solutions improve monotonically as the length deviation is changed
from zero to its true value. If all possible insertions of two contiguous symbols
are attempted and all possible deletions of three contiguous symbols are attempted,
then a large number of scores are generated for length deviations of +2 and −3. If
all possible combinations of simultaneous double insertions and triple deletions are
tried, then a much larger number of scores for length deviations of −1 are created.
The alignment patterns with the double insertion and triple deletion may be much
different than that of a single deletion (which also has a length deviation of −1).
Thus it is not clear that an algorithm that searches by trying every possible single
insertion and every possible single deletion at each model position will necessarily
move closer to the true solution. In fact, it has been found for the U12 family that
such a simplistic hill-climbing approach does not work as well as a randomizing
algorithm that is capable of escaping from local minima.

In addition to the possibility of focusing the search on model mappings with
relatively few insertions and deletions, there is also the possibility of focusing the
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search around database locations that have high scores with suboptimal alignments.
The initial ungapped sweep of the database should give generally higher scores near
true RNA gene family members than on unrelated portions of the database. This is a
result of matching at least some part of the database sequence that does not happen to
have gaps relative to the consensus sequence. The search can start with an expansion
about the ungapped alignment for a relatively large number of high-scoring database
positions. As some database positions start to show score improvements and others
not, the search can move to focus only on those database positions showing either
very high initial scores or somewhat lower, but improving, scores. Finally, once the
number of database positions in narrowed sufficiently, it is possible to resort to full
dynamic programming search of the neighborhoods around the very highest scoring
positions.

It is helpful to have a fixed-length representation of the alignment of a database
subsequence to the consensus sequence of the CM. The representation used here is
taken from the literature on protein threading using evolutionary computation [24].
A vector of non-negative integers of length equal to the length of the consensus se-
quence is used. If a vector element is 0, then the corresponding consensus model
symbol is deleted. If the vector element is 1, then the model symbol is matched and
there are no inserted database symbols to the right of this consensus position. If the
vector element is a value n greater than 1, then n−1 database symbols are inserted.
Figure 7.12 shows the correct alignment vectors for the seven seed sequences of the
U12 family (see Figure 7.1 for comparison). Each alignment is a vector of 149 inte-
gers and the break of six spaces is only in the figure to show correspondence between
the values and the original multiple alignment (the actual representation contains no
such spaces). The goal of the search algorithm is to expand the search around the
initial solution vector (149 ones) toward the true alignment vectors as in Figure 7.12.
Notice that there is nothing more to do in the case of database sequences 2 and 6 since
the optimal alignment has no gaps with respect to the consensus sequence. There is
no way to represent insertions to the left of the first position, so the representation is
the same whether the sequence has a symbol in the first column or not. This is not a
problem, since the alignment is local. The putative gene start position can be off by
several bases due to initial insertions.

There are two components to a candidate search solution, the alignment vec-
tor and the location in the database sequence of the first alignment position. An
alignment vector change is assumed to take a form that results in either adding or re-
moving one or more contiguous insertions or deletions. Adding contiguous insertions
involves increasing a single vector element by one or more. Removing contiguous
insertions is done by decreasing a single vector element by one for more such that
the resulting element value is greater than 0. Adding contiguous deletions is ac-
complished by changing a range of consecutive vector elements to 0. Removing
contiguous deletions occurs when a range of consecutive zeros are all changed to 1.

When considering a change to a given candidate solution to potentially im-
prove the score of the solution, two classes of variations are possible which will be
called compensating and non-compensating. Non-compensating changes are those
for which the alignment of the model to the database remains unchanged to the left
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1 1111111111111111111111111111111111 111111111
2 1111111111111111111111111111111111 111111111
3 1111111111111111111111111111111111 111111111
4 1111111111111111111111111111111117 111111111
5 1111111111111111111111111111111111 111111111
6 1111111111111111111111111111111111 111111111
7 1111111111111111111111111111111117 111111111
.--<<<<<---------->>>>>--------<<<<......<<<<-----

1 11111111111111111111111111111111111111111111111111
2 11111111111111111111111111111111111111111111111111
3 11111111111111111111111111111111111111111111111111
4 11111111111111111111111111111111111111111111111111
5 11111111111111111111111111111111111111111111111111
6 11111111111111111111111111111111111111111111111111
7 11111111111111111111111111111111111111111111111111
->>>>>>>><<<<<------->>>>>-----------<<<<<<<---<<<

1 11111110111111111111111111111111111111111111111111111111
2 11111111111111111111111111111111111111111111111111111111
3 11111111111111111111111111111111111100000000000000000000
4 11111111111111111111111111111111111111111111111111111111
5 11111111111111111111111111111111111100000000000000000000
6 11111111111111111111111111111111111111111111111111111111
7 11111111111111111111111111111111111111111111111111111111
<<<<----->>>>>>>->>>>>>>--<<<<<<<<<--------->>>>>>>>>---

Fig. 7.12. U12 seed sequence alignment vectors

of the alignment vector alteration and compensating changes are those for which the
model/database alignment is unchanged to the right. Non-compensating changes are
the result of alignment vector changes with the database location of the first position
unchanged. Compensating changes occur when the database start position is changed
by an amount with equal magnitude but opposite sign to that of the total change in
alignment vector values. Figure 7.13 shows how a compensating change to a candi-
date solution might improve a score whereas a non-compensating change does not.
Initially the alignment vector is 11111111 and the database start position is at the first
A in the portion of the database sequence shown (GGAAUCACUG) as shown at the
top of the figure. The correct alignment vector is 11131111 and the correct database
start position is two places further to the left. The initial alignment causes the last
four database symbols shown to correctly align with the last four consensus symbols
of the model. If a close (but not exactly correct) change to the alignment vector is
tried such that the candidate vector is 11311111 without a compensating change to
the database start position, the alignment gets worse. This non-compensating change
is shown in the middle of the figure. If the same close change to the vector is tried,
but with database start position compensation, then the situation is as in the bot-
tom portion of the figure. Since the sum of the vector element values increased by 2
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G G A A U C A C U G

G G A A A C U G

Database

Model

Alignment Vector: 1 1 1 1 1 1 1 1
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Database Start Position
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G G A - - A A C

Database

Model

Alignment Vector: 1 1 3 1 1 1

Database Start Position
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1 1

G G A A U C A C U G
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Database
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31 1 1 1 1 1 1

Database Start Position

- -

Fig. 7.13. Compensating and non-compensating candidate solution changes

when going from 11111111 to 11311111, the compensating change is to decrease the
starting position by 2. Now all but one of the positions aligns and the score should
increase. Sometimes, the portion of the alignment that is contributing to a high score
for the initial solution is due to a good alignment to the left of the vector change and
uncompensated change may improve a score. Other times, the high-scoring align-
ment portion may be to the right of the vector change and compensated change may
improve the score. In general, both should be tried.
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The fitness function of an individual is the score of the database subsequence
associated with the individual with respect to the covariance model. The database
subsequence associated with an individual starts at a database location specified
by the individual and continues for a length equal to the sum of element values
of the alignment vector. The alignment vector specifies a unique path through the
covariance model states and the score is found as the sum of log-likelihood ratio
scores for each of the state transitions and symbol emissions for this unique tree
parse. The search space is the set of all possible starting locations within the database
as well as all possible combinations of non-negative alignment vector values such
that the sum of the vector values plus the starting location does not exceed the end
of the database. Single-point crossover is employed and as well as single mutations.
The single mutations take either the form of changing a single alignment vector
element to some other non-negative value (changing the number of insertions at a
point) or taking a range of values and changing them to 0 (creating a contiguous
deletion region). Single mutations can either be compensating or non-compensating
as described above with a fifty percent probability of each likely a good choice.
The probabilities of single mutations to small element values should be higher than
those of large values (an exponentially decreasing probability would be a reasonable
choice). Similarly, the probabilities of small deletion regions should be greater than
large regions.

7.5.3 Experimental Results

In order to try out the idea of using a GA to search for good CM alignments in
a database, an artificial dataset has been created which contains a mixture of U12
RNA genes and other ncRNA genes. This was done to keep the test database small
and at the same time provide tempting incorrect targets for the algorithm searching
for U12 genes. The other ncRNA genes contain stem-loop structures that are likely to
be more similar to U12 genes than randomly chosen segments of genome. In future
research, the GA search method should be applied to a real search, but this research
has not yet progressed to that point. This is partly due to the fact that the current
version of the software is written in MATLAB and needs to be rewritten in C and
optimized for large-scale use.

The test dataset contains 15880 bases, such that about ten percent of the sequence
is composed of true U12 genes and the remainder of randomly selected other ncRNA
genes taken from Rfam. Since the true U12 genes are in the Rfam database, they are
all able to pass the BLAST filter (true genes that might exist and can not get past the
filter can not be in Rfam by definition). The initial ungapped scoring of each database
position with the CM for U12 is shown in Figure 7.14. The true U12 genes start at
database locations 446, 1039, 2475, 3858, 6096, 7406, 8196, 8880, 9705, 10774,
11624, 12428, 13493, and 14615. Twelve of these locations have peaks in the initial
database sweep at or near the true position with scores that are the twelve highest
scores out of the 15732 scores (148 positions at the end of the database are not scored
with respect to the 149 position model). Two of the true U12 genes have peaks that
are harder to discern from the background. The peak at 8196 has a score of about 5
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Fig. 7.14. Ungapped scores at each database position

and is the 17th highest peak and the peak at 446 has a score of just under 0 and is
the 22nd highest peak. These scores are base-2 log values and therefore have units
of bits. Neither a score of 0 nor 5 would be considered statistically significant in any
reasonable database search. A search algorithm that can generate a better alignment
for these two marginal cases is of primary interest, although improvements in the
alignment of the other twelve is also indicative of a generally successful algorithm.
The U12 gene at 446 was a seed sequence used to estimate the CM, but the gene
at 8196 was not. Four of the true U12 genes do not have any gaps with respect to
the consensus sequence and therefore the score from the initial ungapped database
sweep is already optimal.

The 100 highest-scoring locations from the upgapped database scores are used as
starting points for two search algorithms. The first is a simple hill-climbing algorithm
and the other is a genetic algorithm. Each algorithm is permitted 700 candidate
solution evaluations per starting point. The GA is run for 20 generations with 35
individuals per generation and the hill-climbing algorithm is run for six rounds of 116
evaluations each. It turns out that additional rounds for the hill-climbing algorithm
would not be helpful since the algorithm has converged on a solution in all 14 true
U12 gene cases by the sixth round. The choice of 700 evaluations per location is
based on observed convergence of the GA.

With a step size of 1 for alignment vector changes in the hill-climbing algorithm,
there are 4*149 = 596 possible changes per round. These changes are to increase
or decrease a single vector element by 1 without start location compensation and
increase or decrease a single element with compensation. Since this would use up
almost all of the allocated evaluations in a single round, an alternative strategy is
employed. Every fifth alignment vector element is allowed to change rather than
every element. This can result in slightly suboptimal alignments if a true insertion
or deletion is not at the allowed change location, but the suboptimality is small (see
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Figure 7.13 for the effect of making a change in a position slightly different than
the correct position). Using every fifth position results in 4*29 = 116 evaluations per
round.

The GA uses both mutation and single-point crossover to create new individuals.
The fittest individual is retained in the new generation (elitism). Four new individuals
per generation are produced by single-point crossover without mutation of two in-
dividuals randomly selected from the twenty fittest with crossover points uniformly
distributed along the alignment vector. All remaining individuals are produced us-
ing mutation without crossover. Twenty five individuals per generation are generated
with a single mutation of an individual chosen randomly from the five fittest, where
the mutation takes the form of increasing or decreasing an alignment vector position
by 1. Half of these mutations are randomly selected to be compensating and the other
half non-compensating. Finally, five individuals are produced each generation with
a single mutation uniformly chosen in the range +7 to −1. Half of these mutations
are compensating and half not.

Table 7.2 shows the scores of the best solutions in the final round or generation
for the hill-climbing and GA algorithms. The hill-climbing algorithm is determinis-
tic, so only one run is made because the result is always the same. The GA result
is the mean over ten runs of the best solution in the final generation. The table also
shows the source of the U12 gene sequence in terms of EMBL accession code and
the nucleotide positions of the gene within the EMBL sequence. The seven seed
sequences are identified with a cross-reference number to the sequences shown in
Figure 7.2 of this chapter.

Overall, the performance of the two algorithms is rather similar. However, the
two genes of greatest interest 442 and 8196 show that the hill-climbing algorithm
did not improve the scores at all, whereas the GA made significant gains. The scores

Table 7.2. Experimental results on U12 dataset

Dataset Hillclimb GA Accession Nucleotide Fig 7.2
Position Score Score Code (EMBL) Positions Seed No.

446 −0.74 43.68 L43844.1 2–149 1
1039 146.37 145.66 AC087420.4 142608–142466
2475 124.95 123.88 AC112938.11 234142–234291
3858 146.37 143.34 AL591952.9 131760–131611
6096 110.92 133.57 AL669944.8 2483–2625
7406 159.12 158.12 AC133939.4 22042–22191
8196 5.24 40.85 AC132590.3 81080–80927
8880 147.13 147.13 AL772347.6 146375–146226
9705 164.47 164.47 L43843.1 2–150 2

10774 159.12 159.12 L43846.1 332–480 3
11624 160.80 160.30 J04119.1 2–150 7
12428 110.92 125.88 L43845.1 358–512 4
13493 164.47 164.47 Z93241.11 76642–7679 6
14615 164.47 164.47 AL513366.11 57717–57871 5
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of the optimal alignments for these two sequences are 78.48 and 81.79 respectively,
so the GA was only able to get about half of the score increase possible when mea-
sured in bits. Even so, the scores changed from statistically insignificant to very
statistically significant. Two other cases, sequences 6096 and 12428 also show more
improvement with the GA than with the hill-climbing algorithm. These results seem
to indicate that there is some advantage to an algorithm with randomization that can
jump out of local optima when doing CM-based RNA gene search.

7.6 Conclusions and Future Direction

We have seen that traditional dynamic programming scoring of database sequences
with respect to ncRNA gene family covariance models can be rather inefficient due
to consideration of may candidate alignment solutions that are far different that
those observed in real genomic data. Dynamic programming scoring also requires
the use of an arbitrary cutoff on the maximum allowed length of putative genes in
the database and a primary-sequence-only filtering of the database in order to reduce
required computational resources to a feasible level. Both the cutoff and filtering can
cause loss of sensitivity. Dynamic programming further applies equal computational
effort to all portions of the database retained by the initial filtering operation.

An alternative scoring method using genetic algorithms does not impose a length
cutoff and uses the secondary structure information in the covariance model pa-
rameters right from the start. This method also has the potential to allow regions
of the database which are not showing score improvement to be abandoned before
excessive computational resources are applied in those regions. An exploratory in-
vestigation of the alternative scoring method has been applied to a set of known U12
genes and the results are encouraging. This experiment also gives some evidence
that deterministic search algorithms which can not escape local optima may not be
successful.

Much remains to be done to turn this alternative scoring idea into a standard func-
tional RNA gene search methodology. Investigations on more ncRNA gene families
need to be undertaken to determine how to best choose which database locations
should be passed to the search algorithm based on the initial ungapped scan of the
database. The details of when to abandon a search at a given database location need
to be worked out. The experimental investigation above did not even attempt this as a
fixed number (700) of evaluations was undertaken at each position. Other stochastic
search methods such as simulated annealing need to be investigated to see if they
might outperform the genetic algorithm. A parameter sweep needs to be undertaken
for such things as the optimal number of individuals per generation and the ratio of
crossed-over to mutated individuals.

Improvement to the search may also take the form of better direction for the mu-
tation operator. There is information in the covariance model parameters as to the
relative likelihood of an insertion or deletion at a particular point in the consensus
sequence of the model. This information could be used to make mutations at these
locations statistically more likely during mutation. Also, it may be possible to guess
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good mutation points by examining the contribution to the overall score of a can-
didate solution as a function of location in the consensus sequence normalized to
the maximum score possible at the location. A drop off in this score-contribution
measure at a particular location may be indicative of an insertion or deletion at that
location.

In general the use of covariance models for RNA gene search is not nearly as
well developed as the use of profile hidden Markov models for protein domain clas-
sification. With the increasing recognition of the importance of untranslated RNA to
biological function, there should be significant interest in computational methods to
study the function and structure of these molecules.
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Summary. Microarray expression studies measure, through a hybridisation process, the
levels of genes expressed in biological samples. Knowledge gained from these studies is
deemed increasingly important due to its potential of contributing to the understanding of
fundamental questions in biology and clinical medicine. One important aspect of microarray
expression analysis is the classification of the recorded samples which poses many challenges
due to the vast number of recorded expression levels compared to the relatively small num-
bers of analysed samples. In this chapter we show how fuzzy rule-based classification can be
applied successfully to analyse gene expression data. The generated classifier consists of an
ensemble of fuzzy if-then rules which together provide a reliable and accurate classification
of the underlying data. Experimental results on several standard microarray datasets confirm
the efficacy of the approach.

8.1 Introduction

Microarray expression studies measure, through a hybridisation process, the levels
of genes expressed in biological samples. Knowledge gained from these studies is
deemed increasingly important due to its potential of contributing to the under-
standing of fundamental questions in biology and clinical medicine. Microarray
experiments can either monitor each gene several times under varying conditions
or analyse the genes in a single environment but in different types of tissue. In this
chapter we focus on the latter where one important aspect is the classification of the
recorded samples. This can be used to either categorise different types of cancerous
tissues as in [8] where different types of leukemia are identified, or to distinguish
cancerous tissue from normal tissue as done in [2] where tumor and normal colon
tissues are analysed.

One of the main challenges in classifying gene expression data is that the number
of genes is typically much higher than the number of analysed samples. Also is it not
clear which genes are important and which can be omitted without reducing the clas-
sification performance. Many pattern classification techniques have been employed
to analyse microarray data. For example, Golub et al. [8] used a weighted voting
scheme, Fort and Lambert-Lacroix [6] employed partial least squares and logistic
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regression techniques, whereas Furey et al. [7] applied support vector machines.
Dudoit et al. [5] investigated nearest neighbour classifiers, discriminant analysis,
classification trees and boosting, while Statnikov et al. [16] explored several sup-
port vector machine techniques, nearest neighbour classifiers, neural networks and
probabilistic neural networks. In several of these studies it has been found that no
one classification algorithm is performing best on all datasets (although for several
datasets SVMs seem to perform best) and that hence the exploration of several clas-
sifiers is useful. Similarly, no universally ideal gene selection method has yet been
found as several studies [14, 16] have shown.

In this chapter we apply fuzzy rule based classification concepts to the classifica-
tion of microarray expression data and show, based on a series of experiments, that
it affords good classification performance for this type of problem. Several authors
have used fuzzy logic to analyse gene expression data before. Woolf and Wang [19]
used fuzzy rules to explore the relationships between several genes of a profile while
Vinterbo et al. [18] used fuzzy rule bases to classify gene expression data. However,
Vinterbo’s method has the disadvantage that it allows only linear discrimination. Fur-
thermore, they describe each gene by only 2 fuzzy partitions (‘up’ and ‘down’) while
we also explore division into more intervals and show that by doing so increased
classification performance is possible.

8.2 Methods

While in the past fuzzy rule-based systems have been mainly applied to control
problems [17], more recently they have also been applied to pattern classification
problems. Various methods have been proposed for the automatic generation of fuzzy
if-then rules from numerical data for pattern classification [9–11] and have been
shown to work well on a variety of problem domains.

Pattern classification typically is a supervised process where, based on set of
training samples with known classifications, a classifier is derived that performs
automatic assignment to classes based on unseen data. Let us assume that our pattern
classification problem is an n-dimensional problem with C classes (in microarray
analysis C is often 2) and m given training patterns xp = (xp1,xp2, . . . ,xpn), p =
1,2, . . . ,m. Without loss of generality, we assume each attribute of the given training
patterns to be normalised into the unit interval [0,1]; that is, the pattern space is an
n-dimensional unit hypercube [0,1]n. In this study we use fuzzy if-then rules of the
following type as a base of our fuzzy rule-based classification systems:

Rule R j: If x1 is A j1 and . . . and xn is A jn

then Class Cj with CFj, j = 1,2, . . . ,N,
(8.1)

where R j is the label of the j-th fuzzy if-then rule, A j1, . . . ,A jn are antecedent fuzzy
sets on the unit interval [0,1], Cj is the consequent class (i.e. one of the C given
classes), and CFj is the grade of certainty of the fuzzy if-then rule R j. As antecedent
fuzzy sets we use triangular fuzzy sets as in Figure 8.1 where we show a partition of
the unit interval into a number of fuzzy sets.



8 Fuzzy Classification for Gene Expression 211

Fig. 8.1. Example triangular membership function (L = 3)

Our fuzzy rule-based classification system consists of N fuzzy if-then rules each
of which has a form as in Equation (8.1). There are two steps in the generation
of fuzzy if-then rules: specification of antecedent part and determination of conse-
quent class Cj and the grade of certainty CFj. The antecedent part of fuzzy if-then
rules is specified manually. Then the consequent part (i.e. consequent class and the
grade of certainty) is determined from the given training patterns [13]. In [12] it is
shown that the use of the grade of certainty in fuzzy if-then rules allows us to gener-
ate comprehensible fuzzy rule-based classification systems with high classification
performance.

8.2.1 Fuzzy Rule Generation

Let us assume that m training patterns xp = (xp1, . . . ,xpn), p = 1, . . . ,m, are given
for an n-dimensional C-class pattern classification problem. The consequent class Cj

and the grade of certainty CFj of the if-then rule are determined in the following two
steps:

1. Calculate βClass h( j) for Class h as

βClass h( j) = ∑
xp∈Class h

µ j(xp), (8.2)

where
µ j(xp) = µ j1(xp1) · . . . ·µ jn(xpn), (8.3)

and µ jn(·) is the membership function of the fuzzy set A jn. In this chapter we
use triangular fuzzy sets as in Figure 8.1.

2. Find Class ĥ that has the maximum value of βClass h( j):

βClass ĥ( j) = max
1≤k≤C

{βClass k( j)}. (8.4)

If two or more classes take the maximum value, the consequent class Cj of the
rule R j can not be determined uniquely. In this case, specify Cj as Cj = φ . If a single
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class ĥ takes the maximum value, let Cj be Class ĥ. The grade of certainty CFj is
determined as

CFj =
βClass ĥ( j)− β̄
∑h βClass h( j)

(8.5)

with

β̄ =
∑h �=ĥ βClass h( j)

C−1
. (8.6)

8.2.2 Fuzzy Reasoning

Using the rule generation procedure outlined above we can generate N fuzzy if-
then rules as in Equation (8.1). After both the consequent class Cj and the grade of
certainty CFj are determined for all N rules, a new pattern x = (x1, . . . ,xn) can be
classified by the following procedure:

1. Calculate αClass h(x) for Class h, j = 1, . . . ,C, as

αClass h(x) = max{µ j(x) ·CFj|Cj = h}, (8.7)

2. Find Class h′ that has the maximum value of αClass h(x):

αClass h′(x) = max
1≤k≤C

{αClass k(x)}. (8.8)

If two or more classes take the maximum value, then the classification of x is
rejected (i.e. x is left as an unclassifiable pattern), otherwise we assign x to Class h′.

8.2.3 Rule splitting

It is generally known that any type of rule-based system suffers from the curse of
dimensionality. That is, the number of generated rules increases exponentially with
the number of attributes involved. Our fuzzy rule-based classifier is no exception, in
particular considering that for successful classification of microarray data typically
at least a few dozens genes are selected. For example, based on the selection of
50 genes, the classifier would generate 250 = 1.1259 ∗ 1015 rules even if we only
partition each axis into two which is clearly prohibitive both in terms of storage
requirements and computational complexity. We therefore apply a rule splitting step
and limit the number of attributes in a fuzzy if-then rule to 2. As the number of

combinations of attribute pairs is

(
50
2

)
= 1225 for 50 genes and as for two fuzzy

sets for each attribute 22 = 4 rules are necessary in total we need only 4 ∗ 1225 =
4900 rules, a significantly lower number than 250. Of course, techniques can be
employed to further decrease this number; although we refrained from it in our
experiments a rule pruning step similar to the one outlined in [18] can be applied
to arrive at a smaller and more compact classifier rule base.
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8.3 Results and Discussion

Before we report on the experimental results we obtained from our classification
method we wish to point out a few important differences of our work compared to the
fuzzy classifier employed by Vinterbo et al. in [18]. The algorithm in [18] represents
a fairly simple fuzzy classification approach and provides only linear separation of
classes. That is, separate classes can be divided by a hyperplane in feature space.
In contrast, with our classifier it is also possible to perform non-linear separation.
While at the moment this might be of little effect (due to the limited size of data
samples) as has been shown in [3] with increasing sizes of datasets this could prove
useful in the near future. Furthermore, our classifier employs the concept of grade
of certainty which not only provides improved classification performance but can
also provide an additional feedback and/or a means for pattern rejection (due to
too low classification confidence). Finally, the classifier in [18] only employed 2
fuzzy partitions per gene to model up and down regulation. While this might seem
intuitive it does not necessarily afford best classification performance. In our work
we experimented with up to five partitions per attribute.

To demonstrate the usefulness and efficacy of our proposed approach we evalu-
ated our proposed method on several gene expression data sets that are commonly
used in the literature. In the following we characterise each dataset briefly:-

• Colon dataset [2]: This dataset is derived from colon biopsy samples. Expres-
sion levels for 40 tumor and 22 normal colon tissues were measured for 6500
genes using Affymetrix oligonucleotide arrays. The 2000 genes with the highest
minimal intensity across the tissues were selected. We pre-process the data fol-
lowing [5], i.e. perform a thresholding [floor of 100 and ceil of 16000] followed
by filtering [exclusion of genes with max/min < 5 and (max-min) < 500] and
log10 transformation.

• Leukemia dataset [8]: Bone marrow or peripheral blood samples were taken from
47 patients with acute lymphoblastic leukemia (ALL) and 25 patients with acute
myeloid leukemia (AML). The ALL cases can be further divided into 38 B-
cell ALL and 9 T-cell ALL samples and it is this 3-class division that we are
basing our experiments on rather than the simpler 2-class version which is more
commonly referred to in the literature. Each sample is characterised by 7129
genes whose expression levels where measured using Affymetrix oligonucleotide
arrays. The same preprocessing steps as for the Colon dataset are applied.

• Lymphoma dataset [1]: This dataset contains gene expression data of diffuse
large B-cell lymphoma (DLBCL) which is the most common subtype of non-
Hodgink’s lymphome. In total there are 47 samples of which 24 are of germinal
centre B-like and the remaining 23 of activated B-like subtype. Each sample is
described by 4026 genes, however there are many missing values. For simplicity
we removed genes with missing values from all samples.

• Ovarian dataset [15]: This data stems from experiments designed to identify
proteomic patterns in serum that distingiush ovarian cancer from non-cancer. The
proteomic patterns were obtained through mass spectroscopy and there are 91
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non-cancer and 162 ovarian cancer samples. While this is not a gene expression
dataset it shares many commonalities with such which is the reason why we have
included it in our study. The relative amplitude of the intensity at each of the
15154 molecular mass/charge (M/Z) identities was normalised against the most
and least intense values according to: NV = (V −Min)/(Max−Min) where NV
is the normalised and V is the original value while Min and Max are the minimum
and maximum intensities in the data stream [14].

Although all datasets except for the Leukemia set represent 2-class problems due
to the large number of genes involved any rule based classification system would
consist of a very large number of rules and hence represent a fairly complex process.
Also, not all genes are equally important for the classification task at hand. We there-
fore sort the significance of genes according to the BSS/WSS (the ratio of between
group to within group sum of squares) criterion used in [5] and consider only the top
50 respectively 100 genes as input for our classification problem.

In a first step we train our classifiers on all samples available and perform the
resulting classification performance. This of course provides only a partial indication
as the training data and test data are identical. We therefore perform standard leave-
one-out cross-validation where classifier training is performed on all available data
except for the sample to be classified and this process is performed for all samples 1.
Fuzzy rule based classifiers with partition sizes L between 2 and 5 partitions for each
gene were constructed following the process described in Section 8.2. To evaluate the
achieved results we also implemented nearest neighbour and CART classifiers. The
nearest neighbour classifier we employ searches through the complete training data
to identify the sample which is closest to a given test input and assigns the identified
sample’s class. CART [4] is a classical rule based classifier which builds a recursive
binary decision tree based on misclassification error of subtrees.

The results on the four datasets are given in Tables 8.1 to 8.4 where detailed
performance on training and unseen (leave-one-out) test data is shown. Given are the
number of correctly classified samples (CR), the number of incorrectly classified or
unclassified samples (FR), and the classification accuracy (Acc.), i.e. the percentage
of correctly classified samples.

Looking at the results for the Colon dataset which are given in Table 8.1, on
training data the fuzzy classifier with L = 5 and the nearest neighbour classifier both
achieve 100% classification accuracy based on 50 genes while for the case of 100
genes also the fuzzy classifier with L = 4 achieves perfect classification. More inter-
esting of course is the performance on test data, i.e. the results of the leave-one-out
cross validation we performed. Here for the case of 50 selected features the fuzzy
classifier with 3 partitions performs best with a classification accuracy of 85.48%
which corresponds to 9 incorrectly classified cases while nearest neighbour classifi-
cation and CART produce 13 and 14 errors respectively. However when selecting the
100 top genes the nearest neighbour classifier performs slightly better than the fuzzy
system. It is interesting to compare the performance of the fuzzy rule-based classifier

1 It should be noted that the top 50 respectively 100 genes were selected solely based on
the training set



8 Fuzzy Classification for Gene Expression 215

Table 8.1. Classification performance on Colon dataset given in terms of number of correctly
classified samples (CR), falsely classified or unclassified samples (FR), and classification
accuracy (Acc.). Results are given both for training data and for leave-one-out cross validation.
Experiments were performed with 50 and 100 selected genes respectively and with a varying
number L of partitions per gene. For comparison results obtained using a nearest neighbour
classifier and a rule-based CART classifier are also listed

training data test data
n classifier CR FR Acc. CR FR Acc.

50

fuzzy L = 2 55 7 88.71 50 12 80.65
fuzzy L = 3 56 6 90.32 53 9 85.48
fuzzy L = 4 59 3 95.16 52 10 83.87
fuzzy L = 5 62 0 100 48 14 77.42
nearest neighbour 62 0 100 49 13 79.03
CART 59 3 95.16 48 14 77.42

100

fuzzy L = 2 53 9 85.48 44 18 70.97
fuzzy L = 3 59 3 95.16 51 11 82.26
fuzzy L = 4 62 0 100 50 12 80.65
fuzzy L = 5 62 0 100 46 16 74.19
nearest neighbour 62 0 100 52 10 83.87
CART 60 2 96.77 45 17 72.58

Table 8.2. Classification performance on Leukemia dataset, laid out in the same fashion as
Table 8.1

training data test data
n classifier CR FR Acc. CR FR Acc.

50

fuzzy L = 2 68 4 94.44 66 6 91.67
fuzzy L = 3 71 1 98.61 68 4 94.44
fuzzy L = 4 72 0 100 67 5 93.06
fuzzy L = 5 71 1 98.61 66 6 91.67
nearest neighbour 72 0 100 70 2 97.22
CART 72 0 100 47 25 65.28

100

fuzzy L = 2 67 5 93.06 63 8 87.50
fuzzy L = 3 71 1 98.61 71 1 98.61
fuzzy L = 4 72 0 100 69 3 95.83
fuzzy L = 5 72 0 100 67 5 93.06
nearest neighbour 72 0 100 70 2 97.22
CART 72 0 100 45 27 62.50

when using different numbers of partitions for each attribute. It can be seen that on
this dataset the best performance is achieved when using 3 partitions (although on
training data alone more partitions afford better performance). In particular it can be
observed that the case with L = 2 as used in the work of Vinterbo et al. [18] produces
the worst results and hence confirms that increasing the number of fuzzy intervals as
we suggest leads to improved classification performance. However, it can also be
seen that applying too many partitions can decrease classification performance as is
apparent in the case of L = 5 on test data.
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Table 8.3. Classification performance on Lymphoma dataset, laid out in the same fashion as
Table 8.1

training data test data
n classifier CR FR Acc. CR FR Acc.

50

fuzzy L = 2 47 0 100 45 2 95.74
fuzzy L = 3 47 0 100 46 1 97.87
fuzzy L = 4 47 0 100 47 0 100
fuzzy L = 5 47 0 100 44 3 93.62
nearest neighbour 47 0 100 45 2 95.74
CART 45 2 95.74 36 11 76.60

100

fuzzy L = 2 47 0 100 44 3 93.62
fuzzy L = 3 47 0 100 44 3 93.62
fuzzy L = 4 47 0 100 44 3 93.62
fuzzy L = 5 47 0 100 39 8 82.98
nearest neighbour 47 0 100 47 0 100
CART 43 4 91.49 38 9 80.85

Table 8.4. Classification performance on Ovarian cancer dataset, laid out in the same fashion
as Table 8.1

training data test data
n classifier CR FR Acc. CR FR Acc.

50

fuzzy L = 2 224 29 88.54 224 29 88.54
fuzzy L = 3 249 4 98.42 249 4 98.42
fuzzy L = 4 251 2 99.21 249 4 98.42
fuzzy L = 5 248 5 98.02 247 6 97.63
nearest neighbour 253 0 99.60 252 1 99.60
CART 243 10 96.05 228 25 90.12

100

fuzzy L = 2 223 30 88.14 221 32 87.35
fuzzy L = 3 248 5 98.02 248 5 98.02
fuzzy L = 4 250 3 98.81 249 4 98.42
fuzzy L = 5 250 3 98.81 249 4 98.42
nearest neighbour 253 0 99.60 252 1 99.60
CART 251 2 99.21 239 14 94.47

Turning our attention to the results on the Leukemia dataset which are given in
Table 8.2 we see a similar picture. Again the worst performing fuzzy classifier is that
which uses only two partitions per gene while the best performing one as assessed by
leave-one-out cross validation is the case of L = 3. CART performs fairly poorly on
this dataset with classification accuracies on the test data reaching only about 65%
(despite perfect classification on training data) while nearest neighbour classifica-
tion performs well again confirming previous observations that despite its simplicity
nearest neighbour classifiers are well suited for gene expression classification [5].
The best classification results are achieved by the fuzzy classifier with L = 3 for the
case of 100 selected genes with a classification accuracy of 98.61% and the nearest
neighbour classifier with 97.22% for 50 selected genes.

Table 8.3 lists the results obtained from the Lymphoma dataset. Here all clas-
sifiers except CART achieve perfect classification on the training data. Perfect
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classification on test data is provided by the fuzzy classifier with L = 4 for 50
selected genes and by nearest neighbour classification based on 100 genes.

Finally, we examine the results obtained from the Ovarian dataset which are
given in Table 8.4. Here we can see that once again CART provides the poorest
classification while nearest neighbour classification achieves the best performance,
misclassifying only 1 sample for both 50 and 100 selected genes. In contrast for
the best fuzzy classifier 4 samples are misclassified or rejected which confirms pre-
vious observations that different classifiers are better suited for different datasets.
Again, the case with L = 2 achieves significantly worse results for the fuzzy classifier
compared to other partitions.

In summary we see that our fuzzy rule-based classifier provides good classifi-
cation performance on all four datasets clearly outperforming classical rule-based
classification and performing fairly similar to a nearest neighbour classifier. How-
ever, it should be noted that in our experiments the nearest neighbour classifier
always provided a prediction while for our fuzzy classifier we rejected samples
which could not uniquely classified (the false rate FR comprises both incorrectly
classified and rejected cases). By randomly classifying rejected patterns we could
have achieved improved classification accuracy, however this is not in our interest
as a random classification hardly provides any insight in the actual expression level
data. We also wish to again point out that restriction to ‘up’ and ‘down’ regulated
partitions for fuzzy classification as in [18] has a negative impact on the classifica-
tion performance. Our experiments suggest that selecting 3 or 4 fuzzy partitions for
each gene can provide much improved classification accuracy. On the other hand us-
ing too many partitions as in the cae of L = 5 can also have negative effects on the
classification performance.

8.4 Conclusions

In this chapter we proposed the application of fuzzy rule based classification for the
analysis of gene expression data. The generated classifier consists of an ensemble
of fuzzy if-then rules which together provide a reliable and accurate classification
of the underlying data. In addition the structure of our classifier has the potential
to contribute to the understanding of the underlying data as it is based on a combi-
nation of simple, human-understandable rules. Furthermore, for each classification
the grade of certainty is provided, which represents the level of confidence the sys-
tem has in the prediction of a specific sample, and which could hence be utilised in
further stages of analysis.
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Summary. In a microarray dataset, the expression profiles of a large amount of genes are
recorded. Identifying the influential genes from these genes is one of main research topics of
bioinformatics and has drawn many attentions. In this chapter, we briefly overview the existing
gene selection approaches and summarize the main challenges of gene selection. After that,
we detail the strategies to address these challenges. Also, using a typical gene selection model
as example, we show the implementation of these strategies and evaluate their contributions.

9.1 Introduction

Microarray techniques, such as cDNA chip and high-density oligonucleotide chip,
are powerful biotechnological means because they are able to record the expression
levels of thousands of genes simultaneously [1]. Systematic and computational anal-
ysis on microarray data enables us to understand phenological and pathologic issues
in a genomic level [1, 2]. Recently, microarray analysis has been widely exploited
to study gene expression tumor tissue, such as breast cancer and lung cancer, on a
genome-wide scale. Early research results have confirmed that different biological
subtypes of breast cancer are accompanied by differences in their transcriptional
programs [27]. With the microarray technology, the relative expression levels of
genes within a specific tissue sample can be measured simultaneously. Take breast
cancer, one the most studied diseases, as an example, its breast tissue is found to
be heterogeneous, with the cell types of epithelial, mesenchymal, endothelial, and
lymphopoietic derivation [28]. In spite of these differences, it is confirmed that
we can analytically estimate the influences of these cell types on the tumor’s total
pattern of gene expression. As a result, microarray technology enables researchers
to conduct a tissue analysis computationally. More importantly, this technology is
able to provide a very reliable and stable molecular model of tumors. Microarray
data, however, always contains a huge gene set of up to ten thousands and a small
sample set that may be as little as tens. Moreover, only a very small fraction of
genes are informative for a certain task [3, 4]. For example, Singh et al. [5] used
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the HG U95A array of Affymetrix as platform to record the expression profiles
of about 10000 genes for studying prostate cancer. The biological studies sum-
marized by SuperArray Bioscience Corporation (http://www.superarray.com/gene-
array-product/HTML/OHS-403.html) suggested that only hundreds of genes were
(putatively) biomarkers of prostate cancer. Different diseases are related to differ-
ent gene sets. In a microarray dataset, the expression profiles of ten thousands of
genes are recorded. Facing the staggering volume of gene sets, computational anal-
ysis of them has become essential in order to offer a comprehensive understanding
of the mechanisms underlying biological phenomena and complex human diseases.
To study human diseases on a genomic-wide scale, identifying the disease-causing
genes is the first step. Successful identification of disease-causing genes has many
merits. From clinical perspective, the use of microarray will enable physicians to
distinguish normal and tumor tissue and subclassify cancer. Thus, physician will be
able to make more accurate prediction of clinical outcome and response to systemic
cancer therapy.

Using a small gene set, computational data analysis is conducted in a relatively
low-dimensional data domain. This is very useful to deliver precise, reliable and
interpretable results. Also, with the gene selection results, biology researchers can
focus only on the marker genes, and confidently ignore the irrelevant genes. The cost
of biological experiment and decision can thus be greatly reduced. In determining the
disease-causing genes, there are two ways of handling the gene selection. First, genes
are considered as a feature from the machine learning perspective. Second, genes are
considered as functional groups. A group of genes that are functionally associated
control or regularize a cellular process or molecular activity. Researchers have also
been attempting to understand cancer at the level of gene functional group. Despite
the similarity in the nature of gene selection as individual or functional groups, the
computational mechanism between the two approaches are, however, very different.
In this book chapter, we will mainly focus on gene selection. In the next section,
gene selection models will be briefly reviewed. Your text goes here.

9.2 Brief Reviews on Gene Selection

To date, various machine learning models and statistical concepts have been directly
applied or adapted to gene selection. Referring to [6, 7], a general model of gene se-
lection frameworks is shown in Fig. 9.1. Based on a given and the currently-selected
genes, a search engine generates a pool of gene subsets. From the pool, the best
gene subset is detected according to an evaluation criterion. This generating-subsets-
detecting-best process repeats until certain stopping criterion is met.

Obviously, there are two important components in a gene selection model. They
are the search engine and the evaluation criterion. There are several search engines
including ranking, optimal search, heuristic search and stochastic search. Generally,
gene selection models are categorized as a filter model, a wrapper model and an em-
bedded model according to the type of evaluation criterion. Filter model work inde-
pendent of classification learning process, using computational or statistic concepts
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Fig. 9.1. A general gene selection model

to evaluate the classification capability of gene sets. On the other hand, wrapper
and embedded models interact closely with classification learning. Wrapper models
directly employ the recognition accuracy of a certain recognition procedure to eval-
uate the quality of feature subsets, while embedded models explore the parameters
of certain training classification models to determine the importance of genes.

The gene-ranking is the simplest and earliest attempt for gene selection. In this
scheme, the search engine includes only one action by which all genes are ranked in
a descending order of their biological importance and then the top-ranked genes are
finally marked as selected genes. Various statistical or computational concepts have
been used to evaluate the importance of gene. For example, in [3], the distinguishing
capabilities of genes are firstly evaluated in terms of the metric of linear separata-
bility. Since this gene-ranking scheme does not take the interactions of genes into
account, it is not comprehensive enough to tackle complicated situations and has
been replaced by more sophisticated gene selection models. Until now, two types
of gene selection model are employed in most studies. They are the filter mod-
els employing heuristic/stochastic search engines [8–11], and the embedded models
[12–14].

In embedded gene selection models, many popular machine learning schemes
have been explored, including Bayesian network, support vector machine, minimax
probability machine, fuzzy-logic-based classifier, and penalized COX, etc. In a typ-
ical filter gene selection model [8], the search engine is a sequential forward search
process (SFS), and a gene evaluation criterion is designed based on the “normalized”
mutual information. The SFS, a typical heuristic search engine, begins with an empty
gene subset and detect certain important genes at a time. Also, as for gene evalua-
tion, the study holds the assumption that a good subset should have high relevance
to classification task and have low redundancy among the involved genes. In another
example of filter gene selection model [11], information gain is first used to filter out
unimportant genes. Then among the remaining genes, the concept of Markov Blan-
ket is explored to eliminate the less important genes in a sequential backward search
process (SBS). The SBS, a typical heuristic search engine, selects all genes at the
beginning and eliminate less important genes at a time. Also, evolutionary algorithm
is also used to select the important genes and promising results was reported [10].
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In this chapter, we place more emphasis on the filter model. Especially, our fo-
cuses lie in two topics that are very important but have been overlooked in most
contexts of gene selection. The first one is about enhancing the effectiveness of gene
selection. This objective can be obtained through modify search engines. The sec-
ond topic is about the issue of effectively addressing the problem of overfitting. The
problem of overfitting can be alleviated from the perspectives of both search engine
and evaluation criterion.

To elaborate the technical details of these topics, we use a sequential forward
gene selection method as an example, in which Bayesian discrimiant based criterion
is used to evaluate the quality of genes. Below are the details of this conventional
method.

Assuming that we have a classification dataset D = {X, C} = {(x1, c1),(x2,
c2),......,(xN, cN)}. (xi,ci) represents a data sample, in which xi is the input vector,
and ci records the class label of xi. xi is a M-dimensional vector, that is, a sample
is described with the expression levels of M genes. These genes are represented as
F = {f1, f2, ..., fM}. Moreover, the samples in D are grouped into L classes denoted
as {w1, ...,wL}. For a data sample (say, xi), it has ci = wk, where 1 ≤ k ≤ L. A
gene subset evaluation criterion is represented by Φ(S), where S is a gene subset.
Furthermore, without loss of generality, it is supposed that a large value of Φ(S)
means a good S. Thus, the goal of a gene selection process is to maximize Φ(S)
through adjusting S. In order to fulfill this goal, the SFS process can be briefed as
followings.

Step 1 Set the selected gene subset S with empty.
Step 2 Repeat the followings until certain stopping conditions are met. Identify the

most useful gene (say, gu) from the unselected genes, and place it into S. gu

satisfies
Φ(S + gu) = maxΦ(S + g). (9.1)

φ (S) is the evaluation criterion of the above process. Many concepts can be used as
φ (S). For more information, please read ref. 15. In this example, Bayesian discrim-
inant based criterion (BD) [15] is used as φ (S). Thus, for a given dataset D, BD is
defined as

BD =
1
N

N

∑
i=1

log
ps(ci|xi)
ps(ci|xi)

, (9.2)

where ci means all the classes but class ci, and pS(·) represents a probability density
function estimated based on the gene set S. In order to estimate the posterior prob-
abilities p(c|x) in (9.2), the margin probability p(x) and the joint probability p(x,c)
should be firstly obtained. Parzen window [26] is an excellent method to build p(x)
and p(x,c). Given the aforementioned dataset D = {X, C}, Parzen window estimators
are modeled as

p(x,c) = ∑
xi∈class c

P(xi)κ(x− xi,hi), (9.3)

p(x) = ∑
c

p(x,c) = ∑
all xi

P(xi)κ(x− xi, ,hi), (9.4)
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where P(xi) is the likelihood of x = xi, k is the kernel function and hi is the width of
κ . With a proper selection of κ(·) and h, a Parzen window estimator can converge to
the real probability density. Gaussian function is a popular choice as κ , that is,

κ(x− xi,hi) = G(x− xi,hi) =
1

(2πh2
i )

M
2

exp[− 1

2h2
i

(x− xi)(x− xi)T ], (9.5)

where M is the dimension of x. The width hi is set with hi = 2d(xi,xj), where d(xi,xj)
is the Euclidean distance between xi and xj, and xj is the 3rd nearest neighbor of xi.
Following the general rule, it is P(xi) = 1/N. Also, according to the Bayes formula
p(c|x) can be modeled as

p(c|x) =
p(x|c)P(c)

p(x)
=

p(x,c)P(c)
p(x)

=
∑xi∈classc P(xi)κ(x− xi,hi)

∑all xi
P(xi)κ(x− xi,hi)

. (9.6)

With the above estimate of p(c|x), the gene evaluation criterion BD (9.2) can be
calculated.

This chapter focuses on enhancing the effectiveness of filter gene selection mod-
els. The discussions can be conducted from two perspectives. The first one is to
modify search engines, while the other is to address the problem of overfitting. In the
following sections, these issues will be discussed one by one.

9.3 Modifying Search Engines

In a filter model, the evaluation criterion and search engine play equally important
roles. As described above, evaluation criteria have been heavily investigated in many
studies. In contrast, the study on search engines has drawn little attentions. The
heuristic search engines, especially the SFS and the SBS, and the stochastic search
engines (e.g., Genetic algorithm) are pervasively employed for gene selection. Going
through most literatures, it is noticed that almost all studies focused on the improve-
ment of searching efficiency of stochastic algorithms. There are, however, very few
attempts to modify heuristic search algorithms. In the stepwise strategy [16], that is,
the floating (compound) search, selecting k features (genes) is followed by eliminat-
ing j “worst” selected ones, where j is less than k. Al-Ani et al. [17] use only the
“elite” selected features to identify the important items from the unselected features.
It is noted that these algorithms are designed totally in a discrete gene space and the
results require the testing of more gene combinations. But the testing of more gene
combinations usually leads to an increase of computational effort.

The example used in this chapter is the BD based SFS gene selection model.
This model includes a greedy process to maximize BD. After assuming f((x,c),s) =
pS(c|x)/(1−pS(c|x)), we have

BD = ∑
all(xi,ci)

log(f((xi,ci),S)). (9.7)
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According to optimization theory, the steepest direction of adjusting S to maximize
(9.7) is

∂BD(S)
∂ f ((x,c),S)

= ∑
all(xi,ci)

∂BD(S)
∂ f ((x,c),S)

∂ f ((x,c),S)
∂S

. (9.8)

The above equation indicates that during the course of optimizing the BD(S), the
updating of S depends on ∂BD(S)/∂ f((x,c),S) and ∂ f((x,c),S)/∂S. The former one
happens in a continuous domain, while the latter one is related to S and has to be
tackled in a discrete gene domain. In this sense, (9.8) cannot be solved directly.
In order to maximize the BD(S), many searching schemes have been designed. For
example, the conventional SFS tests all combinations of S and one of unselected
genes. It then identifies the one having the maximal BD. Clearly, the conventional
SFS is conducted only in a gene domain. In other word, only the second part of
(9.8) is considered by the conventional SFS. This means that the search direction of
the conventional SFS cannot comply with the direction defined by (9.8), which is
the steepest optimization direction. This shortcoming degrades the effectiveness of
optimization.

To conduct gene selection along the optimization direction, equation (9.8) should
be considered. To fix the second term of (9.8), which happens in a gene domain,
the conventional SFS can be used. As to the first term of (9.8), it can be directly
calculated in a way of

∂BD(S)
∂ f ((x,c),S)

=
1

∂ f ((x,c),S)
=

1−pS(c|x)
pS(c|x)

. (9.9)

Given S, ∂BD(S)/∂ f((x,c),S) is only related to x. With this observation, ∂BD(S)/
∂ f((x,c),S) can be regarded as a penalty weight to sample. Thus, the modified search
engine is equivalent to a conventional SFS conducted on the weighted samples. The
weights of samples are determined by (9.9).

Assuming that the weight assigned to the data sample (xi,ci) is wi. With this
weighted dataset, we adjust the criterion BD (9.2) as well as the probability estima-
tions (9.3) and (9.4) accordingly. In details, we have

BD =
1
N

N

∑
i=1

wi log
ps(ci|xi)
ps(ci|xi)

, (9.10)

where
p(x,c) = ∑

xk∈class c

wk

N
κ(x− xk,hk), (9.11)

p(x) = ∑
allc xk

wk

N
κ(x− xk,hk). (9.12)

Imagine that there is no a priori knowledge about a given dataset, it is natural that
different samples exhibit different contributions to learning processes. Actually, most
machine learning algorithms incorporate this idea. For example, when minimizing
the mean square error E = ∑(xi,yi)(f(xi,Λ)− yi))

2 through adjusting the parameter
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set Λ of f, a steepest decent algorithm [20] can be used to determine the direction of
the updating Λ with

∂E
∂Λ

= ∑
all(x,y)

−∂E
∂ f

∂ f(x,Λ)
∂Λ

= ∑
all(x,y)

−(f(x,Λ)− y)
∂ f(x,Λ)

∂Λ
(9.13)

It is noted that the contribution of (x,y) is penalized by |f(x,Λ)− y|. Another exam-
ple is AdaBoosting [21], which is a typical boosting learning algorithm. During the
course of learning, AdaBoosting repeats weighting the sample (x,y) with we−yf(x),
where w is the current weight to (x,y). Also, the effect of overfitting should not be
overlooked. To reduce the risk that the optimization may suffer from overfitting, one
can add more weight on the negative samples, incorrectly-recognized ones, that ex-
hibit more influence to the subsequent learning than on the positive ones. In such
a way, the convergence rate can be speeded up, and the problem of overfitting can
be alleviated [22]. AdaBoosting clearly can meet this expectation and exhibit good
performance. Equation (9.13), however, indicates that the steepest decent algorithm
fell short on tackling overfitting in a way that the correctly-recognized patterns still
carry large weights. This fact has motivated modifications on the gradient-based al-
gorithms [22]. Consider the above pattern-weighting strategy. As indicated by the
equation (9.9), negative patterns (i.e., the ones with small values of BD) are as-
signed with larger weights than the positive ones. Obviously, this will be helpful
in alleviating the problem of overfitting.

9.4 Point Injection for Gene Selection

Overfitting is a major issue affecting the performance of gene selection. In brief,
overfitting means that learning results (i.e., the selected gene subsets in this case)
may perform perfectly on the training data, but are unable to handle the testing data
satisfactorily. Due to the nature of small pattern sets in most microarray-based data,
the problem of overfitting exacerbates in performing gene selection. In order to al-
leviate this problem, the use of models with high capability of generalization, such
as support vector machine and penalized Cox regression model, have been suggested
[13, 18]. But purely relying on learning algorithms is not enough to tackle overfitting
in most cases. Developing a specific strategy to solve the problem of overfitting ap-
pears to be an effective alternative. Zhou et al. [19] employed a bootstrap framework
to obtain reliable mutual information estimates. However, its large computational re-
quirement, which is arguably the main shortcoming of the approach, substantially
restricts its application.

Given a dataset D = {X,C} drawn from a distribution℘ in the data domain X ×C.
The real goal of the BD based gene selection process is to maximize BD℘(S). Since
℘ is unknown in most cases, researchers substitute BD℘(S) with the empirical esti-
mate BD(X,C)(S) (simplified as BD(S), as the above equations do). This substitution
may have a bias because BD(S) cannot always reflect BD℘(S) correctly. The bias
will also lead to overfitting, thereby the gene subset, which is selected to optimize
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BD(S), cannot optimize the real objective BD℘(S). From the perspective of avoiding
overfitting, it is preferable that BD(S) varies smoothly around the whole data domain.
Samples near each other should correspond to similar performance. This is the ratio-
nale behind the point injection technique. This technique is called the noise injection
in many literatures. But the newly generated points are not expected to be real noise.
In this chapter, in order to avoid the confusion, the term point injection, instead of
noise injection, is used. There are two ways that the injected points participate in
gene selection. With reference to the noise injection approaches for classification
training [23], the injected points can be explored totally like the original samples.
Using the original samples as well as the injected points, the probability estimation
models required by the BD are built, and the quality of gene subsets is then evalu-
ated. Alternatively, similar to the smooth error evaluation schemes [24], the injected
points are employed only in the evaluation stage. On the other words, the probabil-
ity estimators are built only upon the given samples. Subsequently, gene subsets are
evaluated according to the BD values of the given samples and the injected points.
Below, the latter mechanism is discussed.

Around a pattern xi, a point injection technique adds v points which are generated
from a distribution b(x− xi). v and b(x− xi) determine the performance of a point
injection scheme [25] . v should be determined in a way to strike the balance between
performance stability and computational efficiency. Also, it has been argued that, for
the reasonable choices of v, such as v = 8, 10 or 20, the effect of point injection is
slightly different [23, 25]. In the below experiments, the setting of v=10 is used.
As for b(x− xi), its “width”, which determines the variance of the injected points, is
crucial. As point injection is used to test the properties of the region around xi, a large
width of b(x−xi) is not expected. On the other hand, a small width of b(x−xi) must
bring an insignificant contribution. To determine an appropriate width, simulation
based strategies can be used [23, 25]. Also, Sima et al. [24] developed an analytic
approach to determine the width of b(x− xi). Aiming to reduce the bias intrinsic to
the re-substitution error estimation as much as possible, this approach rely on the
joint distribution (X,C) to determine the width of b(x− xi). This idea appears to be
very effective and will be used in the further discussions.

Suppose that di is the distance of xi to the nearest different-class samples, that is,

di = min‖xi − xj‖,xj �∈ class ci. (9.14)

Also, assuming that di/2 is the boundary of different classes, which means that, a
point x′ should have the same class label as xi, if ‖xi − x′‖ ≤ di/2. With this as-
sumption, several points around xi can be generated from the Gaussian distribution
N(xi,σi). σi is set as di/6 to guarantee that x′ having ‖xi −x′‖ = di/2 occurs with the
close-zero probability.

Apart from N(xi,di/6), other distributions are investigated. For example, follow-
ing Sima et al. [24], σi is set as di/αi. Here di is defined in (9.14) and αi is determined
by αi = F−1

D (1/2), where F−1
D is the cumulative distribution function of the distance

of xi to the points generated from N(xi,σi). Also the rectangular uniform distribu-
tion b(x − xi) = R(xi − di/2,xi + di/2) is tested. Compared with N(xi,di/6), these
distributions produce either similar or inferior results.
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9.5 Implementation

To give a concrete idea of the above modified search engine and point injection strat-
egy, this section will show the implementation of these strategies. The conventional
SFS, described in section 9.2, is used as demonstration example.

With the above point injection and weighting-sample strategies, the conventional
SFS, described in section 9.2, will be modified as followings.

Step 1 Set the selected gene subset S empty. Assign a weight of 1 to each sample,
that is, wi = 1,1 ≤ i ≤ N. Set the injected point set {X′,C′} empty.

Step 2 Repeat the followings until one have selected certain genes.
a) From the unselected genes, identify the gene gm satisfying

BDX(S+ gm)+ BDX′(S+ gm) = max(BDX(S+ g)+ BDX′(g+ S)). (9.15)

BDX(S + g) is BD(S + g) (9.10) of the given data {X,C}. BDX′(S + g) will
be discussed in detail later.

b) (sample-weighting) Update the sample weights. Set wi based on equation
(9.9). Then normalize wi as wi = wi/∑k wk.

c) Point injection) Set {X′,C′} with empty. Around each pattern, say xi, pro-
duce 10 points based on the distribution N(xi,di/6). Then place these points
into {X′,C′}. These injected points inherit the class label and the weight
of xi.

Since given samples cannot cover the whole data domain, the probability es-
timators built upon them are not able to describe every part of data space suffi-
ciently. There are areas where points have small distribution probabilities, that is,
p(x,ci) and p(x) are all small. According to (9.9), given a point x, it is | ∂BD(S)

pS(x,c) |∝
| 1

pS(x,c) |. It shows that, when p(x,ci) for all ci are small, a very little shift of x

may cause an extremely large change of BD(S). It is better to avoid this uncontrol-
lable condition, although it can be argued that the uncertain points equally affect
the performance of different gene subsets. With this consideration, a simple strategy,
called as maximal-probability-weighting-injected-point strategy, is designed. With
this strategy, BDX′(g + S) is modified as

WBDX′(S+ g) =
1

|X′| ∑
allxi∈X′

w′
ilog

p(S+g)(c′i|x′i)
p(S+g)(c′i|x′i)

max(p(S+g)(x
′
i|c′i))︸ ︷︷ ︸

A

, (9.16)

where |X′| means the cardinality of |X′|. c′i and w′
i are the weight and class of x′i.

Compared with the original BDX′(g+ S)′ (9.10), WBDX′(g + S) has a new term, i.e.,
term A. For uncertain points, all the conditional probabilities must be small. Thus, the
term A of WBDX′(S+ g) limits the impact of uncertain point, which is as expected.

9.6 Experimental Results

To evaluate the described strategies, the modified SFS depicted in the above section is
compared with typical gene selection models. Below, SFS denotes the conventional
BD based SFS, while our modified SFS is denoted as MSFS. The modified SFS
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using WBDX′(S + g) (9.16) rather than BDX′(S + g) is represented by the WMSFS.
Besides these BD based SFSs, support vector machine based recursive feature (gene)
elimination model (SVM RFE) [13] is also implemented. SVM RFE is a typical
embedded gene selection method. Due the superior performance of SVM, SVM
RFE is considered as a good gene selection model and has been used as evaluation
baseline in gene selection study. To provide a detail comparative study on different
methodologies, all the compared methods are applied to one synthetic dataset and
three patient datasets.

9.6.1 Synthetic Data

The synthetic data is a 3-class and 8-gene dataset. The first four features are gener-
ated according to

• class 1 N((1,1, -1, -1), σ );
• class 2 N((-1, -1, 1, 1), σ );
• class 3 N((1, -1, 1, -1), σ ).

The other four genes are randomly determined from normal distribution with zero
means and unit variances. Thus, among 8 genes, the first 4 genes are equally relevant
to this classification task, and the others are irrelevant. All the examined approaches
are required to identify 4 genes. In this study, a selection result is considered correct
only when it includes all relevant genes.

Also, this dataset has a small-sample set, including totally 9 samples among
which 3 samples are from each of three classes. Different values of s are tested.
Clearly, the smaller the s is, the simpler the classification problem is and the less like-
lihood overfitting occurs as a result. Thus, theoretically, the advantage of MSFS and
WMSFS should become significant with the increase of s. For each s, 10,000 datasets
are generated. SFS, MSFS and WMSFS run on these datasets, and the correct results
are counted.

The obtained correctness rates are illustrated in Fig. 9.2. For a tested method
under an experimental condition, the correctness rate means the percentage of the
correct results obtained in all running trials. These results are consistent with the
above theoretical analysis. When σ is small, there is unnoticeable performance dif-
ference between the compared methods. Actually, in the case of a small σ , on the
same dataset, different methods basically produce the same results. When σ is large,
however, MSFS and WMSFS illustrate the improved performance. Also, WMSFS is
better than MSFS.

9.6.2 Patience Data

Different gene selection methods are compared on several cancer diagnosis datasets.
Since, in these real datasets, no a priori knowledge is available, experimental clas-
sification results will be used to assess the quality of gene selection results. Us-
ing a selected gene subset, certain classifiers are constructed on training data that
are also used for gene selection. Then, the built classifiers are evaluated on the
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Fig. 9.2. Comparison between SFS, MSFS and WMSFS on synthetic data

testing dataset. Good classification results must indicate a respectable gene sub-
set. Four typical classifiers are used. They are a multiply percepton model (MLP),
two support vector machine models (SVM), and a 3-nearest neighbor rule classifier
(3-NN). The MLP is available at http://www.ncrg.aston.ac.uk/netlab/, and six hid-
den neurons are used in all MLP models used. Also, in order to ease the problem
of overfitting, each MLP model is trained through 100 training cycles. The other
learning parameters are set with default values. The SVM models used are avail-
able at http://www.isis.ecs.soton.ac.uk /resources/svminfo. Two SVM models are the
SVM with “Linear” kernel (SVM-L) and the SVM with “RBF” kernel (SVM-R),
respectively.

The gene selection methods are compared on the following cancer diagnosis
datasets.

Colon tumor classification This data contains 62 samples collected from colon-
cancer patients. Among these samples, 40 samples are tumor, and 22 are labeled
“normal”. There are 2,000 genes selected based on the confidence in the measured
expression levels. The 62 samples are split into two disjoint groups - one group with
40 samples for training and the other one with 22 samples for test. The investigations
are repeated on 10 different sets of training and testing data to deliver reliable evalu-
ations. The statistical results of 10 trials are presented. Also, in each training dataset,
the original size ratio between two classes, that is, 40 tumor samples vs. 22 normal
samples, is roughly remained.

Prostate cancer classification The objective of this task is to distinguish prostate
cancer cases from non-cancer cases. The original raw data are published at
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http:// www.genome.wi.mit.edu/mpr/prostate. This dataset consists of 102 sam-
ples from the same experimental conditions. Among the 102 samples, there are 50
normal and 52 tumor samples. Each sample is described using 12600 genes. The
102 samples are divided into two disjoint groups - one group with 60 samples for
training and the other with 42 samples for testing. Similar to the last example, the
studies on this data are repeated on 10 different sets of training and testing data. The
statistical results are summarized and presented in this chapter.

Leukemia subtype classification This data, which are available at http://www.
broad.mit.edu/cgibin/cancer/datasets.cgi, are used for performing leukemia subtype
classification. The given samples are labeled with ALL, MLL or AML. Training
data contains 57 samples - 20 labeled with ALL, 17 with MLL and 20 with AML. In
the test data, there are 15 samples - 4 ALL samples, 3 MLL ones and 8 AML ones.
There are no SVM-related results in this example because the SVM classification
models employed and the gene selection method SVM RFE are designed to deal
with 2-class data only.

Analysis on the Stability of MSFS and WMSFS

There is an inherent randomness in the course of injecting points. It is thus necessary
to investigate the stability of the MSFS and WMSFS. For this purpose, the MSFS
and WMSFS run 10 times on the same training dataset. Then the obtained results are
compared. Given a group of gene subsets of the same size, the appearance probability
of each subset is calculated. The largest appearance probability, named LAP, can
measure the likelihood of all the tested subsets being identical. LAP = 1 indicates
that all given gene subsets totally match. LAP arrives at its minimum when the tested
gene subsets are totally different from each other. In Fig. 9.3, the results obtained on
three datasets are illustrated. It shows that, in most cases, LAP = 1. It means that the
MSFS/WMSFS can deliver the same results in different runs using the same training
dataset.

Comparisons of SFS, MSFS and WMSFS

To demonstrate the merits of the MSFS and WMSFS, these methods are compared
with the SFS in terms of classification accuracy. As the MSFS and WMSFS have a
stable performance, we run these schemes once on a given dataset. The comparative
results are presented in Fig 9.4 (for colon cancer classification), Fig 9.5 (for prostate
cancer classification) and Fig 9.6 (for leukimia subtype classification).

Due to the capability of SVM handling small sample sets, the results of SVM
RFE are better than those of SFS a little bit. Also, it can be clearly noted that
MSFS is much better than SFS and SVM RFE in most cases. This improvement can
be contributed to the implementation of the point-injection and sample-weighting
strategies. The performance can be further enhanced when the WMSFS is use. This
enhancement is caused greatly by using the maximal-probability-weighting-injected-
point strategy. For example, on the colon cancer dataset, the results achieved by
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Fig. 9.3. Statistical results of MSFS and WMSFS. These results can show the stability of
MSFS and WMSFS. The x-axes are the number of the selected genes. The y-axes are LAP

Fig. 9.4. Comparison on the colon cancer classification data. In these figures, the y-axes are
the classification accuracy, and the x-axes are the number of the selected genes
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Fig. 9.5. Comparison on the prostate cancer classification data

Fig. 9.6. Comparison on leukimia subtype classification data
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WMSFS are much better, up to 10%, than those of SFS. Even compared with SVM
RFE, a typical and effective embedded gene selection method, WMSFS can always
deliver the improved result.

Detailed Results on Prostate Cancer

Given a set of selected genes, we must realize that good computational classification
results are still unable to confirm whether or not the genes are biologically causative.
Therefore, gene selection results have to be evaluated from biological perspective as
well.

In Table 9.1, one gene result of the WMSFS are listed. The functions of these
genes range from cell adhesion (VCL, NELL2) to immune response (DF, C7), from
cellular transport (MRC2, RBP1) to regulation of transcription (LMO3), from pro-
tein kinase activity (ILK) to hormone activity (IGF1). It can be noted that almost
all of these selected genes have been associated with development and diagno-
sis of prostate cancer - some of them are well-known prostate-cancer-associated
genes, such as IGF1, GAGEC1, RBP1, DF, NELL2, ILK, etc., and others have been
suggested to overexpress in prostate cancer samples, for example, C7, LMO3.

9.7 Conclusions

Gene selection aims to find the biomarkers of different diseases, such as prostrate
cancer and lung cancer. From computational perspective, it has always been diffi-
cult to handle a huge dimensional data set like microarray data set. Reducing the
gene space to manageable dimensions has become an essential issue. Gene selection
models are categories into filter model and embedded model. This chapter focuses
on the filter models. It is illustrated that search engine can be nicely modified through
using a pattern-weighting idea. Also, since microarray data sets are usually in a small
sample size, the problem of overfitting should be paid attentions on. It is shown that
the point injection approach can be used address the problem of overfitting.

In the area of gene selection, there are several open issues. One of them is how
to deliver a reliable result. It is known that, given different datasets, almost all gene
selection methods rarely deliver identical outputs. To determine more robust result,
a committee-voting scheme can be adopted. In this scheme, several gene selection
approaches are used. Each approach is used to rank given genes. After summarizing
the all gene-ranking results, the genes with the best quality are finally identified.

To determine the number of selected genes is another challenging issue. From
the perspective of machine learning, this problem can be handled using the tech-
niques of model selection or the intrinsic characteristics of a well-defined evaluation
criterion. But it has to be realized that the biological nature of gene selection some-
times may prove to be too complex for a computational process to handle. Despite
the mathematical sophistication of a gene selection algorithm, we know that we are
impossible to claim that a gene-selection result obtained in machine-learning ways is
totally reliable. The final resolution still largely depends upon the biological senses.
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In summary, the advances in machine learning enable gene selection be reliably
and efficiently conducted computationally. Gene selection can become more robust
when more sophisticated computational technique is introduced. But owing to the
nature of the problem, computational gene selection should work together with the
biological means to confirm the disease-causing genes.
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Summary. In this chapter, a novel gene regulatory network inference algorithm based on the
fuzzy logic network theory is proposed and tested. The key motivation for this algorithm is
that genes with regulatory relationships may be modeled via fuzzy logic, and the strength of
regulations may be represented as the length of accumulated distance during a period of time
intervals. One unique feature of this algorithm is that it makes very limited a priori assump-
tions concerning the modeling. Hence the algorithm is categorized as a data-driven algorithm.
With the theoretical guidelines to quantify the upper limits of parameters, the algorithm is im-
plemented to infer gene regulatory networks for Saccharomyces cerevisiae and Saccharomyces
pombe. The computation results not only prove the validity of the data-driven algorithm, but
also offer a possible explanation concerning the difference of network stabilities between the
budding yeast and the fission yeast.

10.1 Introduction

One of the most challenging problems in bioinformatics is to determine how genes
inter-regulate in a systematic manner which results in various translated protein prod-
ucts and phenotypes. To find the causal pathways that control the complex biological
functions, previous work have modeled gene regulatory mechanisms as a network
topologically [1]. The importance of networking models is that normal regulatory
pathways are composed of regulations resulting from many genes, RNAs, and tran-
scription factors (TFs). The complicated inter-connections among these controlling
chemical complexes are the driving forces in maintaining normal organism functions.
A precise structural presentation of components should illustrate the key properties
of the system.

Based on the network representation of gene regulations, a number of infer-
ence models have been proposed. They include Bayesian networks [2], hybrid Petri

Y. Cao et al.: Saccharomyces pombe and Saccharomyces cerevisiae Gene Regulatory Network Inference Using the Fuzzy
Logic Network, Studies in Computational Intelligence (SCI) 94, 237–256 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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net [3], growth network [4], genetic circuits [5], inductive logic programming [6],
and hybrid networks [7]. These models have focused on different aspects of gene
regulatory behaviors, and each model has contributed good inference results in cer-
tain aspects. The ongoing research on these models is focused on the challenges of
data integration, non-linear data processing, noise tolerance, synchronization, and
model over fitting [8].

Research on genome-wide gene regulations has used dynamic microarray data
which quantify the genomic expression levels at each sample time. Given a series of
microarray data, researchers have attempted to find the spatial and temporal modes
of regulations regarding different conditions or different stages of cell cycles on
different species [8]. But because of the hybridization process and the synchroniza-
tion issues of time-series microarray, the data, very often contain missing, noisy,
or unsynchronized data subsets. Thus data normalization and pre-processing tech-
niques have become necessary to reduce the noise. Other techniques like SAGE [9],
TFs mappings [10], and antibiotic arrays [11] have been designed to discover the
regulatory mechanisms.

In this chapter, a novel network model, the fuzzy logic network (FLN), is pro-
posed and thoroughly examined. The feasibility of applying this model to inferring
gene regulatory networks is investigated. The FLN is a generalization of the Boolean
network, but it is capable of overcoming the unrealistic constraints of Boolean values
(ON/OFF symbolically). With distinctive properties in processing real life incom-
plete data and uncertainties, researchers have applied fuzzy logic to gene expression
analysis, and by the use of specific scoring matric, Saccharomyces cerevisiae gene
regulatory networks with biological verifications were inferred [12–14]. This chapter
expands these previous research work.

The rest of the chapter is organized as follows: In Section 10.2, the definition of
the FLN is introduced, and the critical connectivity of the FLN is deduced using the
anneal approximation. Then, the structure of the inference algorithm is discussed
in Section 10.3. Finally, in Section 10.4, the algorithm is used to infer the gene
regulatory networks for Saccharomyces cerevisiae and Saccharomyces pombe. The
inference results are compared and analyzed in this section. The chapter concludes
in Section 10.5.

10.2 Fuzzy Logic Network Theory

The proposed FLN theory is based on theoretical deductions at the second level of
fuzzy uncertainty. This means that the variables have been normalized into [0,1]
interval, and statistical methods are built on the basis of fuzzy variables as well as
their relationships.

The FLN is defined as follows:
Given a set of N variables (genes), Σ(t) = (σ1(t),σ2(t), . . . ,σN(t)), (σi(t) ∈

[0,1], (i = 1,2, . . . ,N), index t represents time), the variables are to be updated by
means of the dynamic equations:

σi(t + 1) = Λi(σi1(t),σi2(t), . . . ,σiK (t)), (1 ≤ i ≤ N) (10.1)
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Table 10.1. Four commonly used fuzzy logical functions including their AND (∧), OR (∨),
and NOT ( ).

Fuzzy Logical Functions a∧b a∨b a

Max-Min min(a,b) max(a,b) 1-a

GC a×b min(1, a+b) 1-a

MV max(0, a+b− 1) min(1, a+b) 1-a

Probabilistic a×b a+b−a×b 1-a

where Λi is a fuzzy logical function, and K represents the number of regulators
for σi.

For an FLN, the logical functions may be constructed using the combinations
of AND (∧), OR (∨), and NOT ( ). The total number of choices for fuzzy logical
functions is determined only by the number of inputs. If a node has K (1 ≤ K ≤ N)
inputs, then there are 2K different logical functions. In the definition of the FLN,
each node, Fi(t), has K inputs. But this fixed connectivity will be relaxed later.

To apply the FLN to modeling gene regulatory networks, each fuzzy variable will
represent a gene, and genetic regulatory relationships will be modeled as fuzzy logi-
cal functions. A fuzzy logical function is defined as a function Λ : U → [0,1] where
Λ(u) is the degree of the membership. Usually, it has to satisfy the requirement of
the t-norm/t-co-norm, which is a binary operation that satisfies the identity, commu-
tative, associative, and increasing properties [15]. Table 10.1 shows the commonly
used fuzzy logical functions with distinctive dynamics [16].

Although the logical functions are expressed via simple algebraic expressions,
they have their own distinctive properties. The Max-Min logical function which is
closely related to Boolean logic, is one of the classical fuzzy logical functions. This
logical function uses the maximum of two values to replace the Boolean OR, whereas
the minimum replaces the Boolean AND. GC logical function is a combination of
MV and Probabilistic logical functions. The MV logical function follows the trivalent
logic whereas Probabilistic does not. In this chapter, all four fuzzy logical functions
are tested on the S. cerevisiae dataset.

The critical connectivity of the FLN is crucial in the data-driven algorithm’s ap-
plication to gene regulatory network inference. It quantifies the algorithm’s search
strategy, and the computational complexity of the algorithm is determined by it. To
study the detailed dynamics and the connectivity of the FLN, the annealed approx-
imation [17, 18] has been used. Consider the following two FLN configurations at
time t: Σ(t) and Σ̃(t), where

Σ(t) = {σ1(t),σ2(t), . . . ,σN(t)}
Σ̃(t) = {σ̃1(t), σ̃2(t), . . . , σ̃N(t)}

(10.2)
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Assume that logical functions selected by the two configurations are not time
variant throughout the dynamic process. Then the distance between the two configu-
rations may be computed as the accumulated Hamming distance (AHD):

AHD(t) =
N

∑
i=1

Hamming(σi(t), σ̃i(t)) (10.3)

and

Hamming(σi(t), σ̃i(t)) =

{
1 if |σi(t)− σ̃i(t)| > δ
0 if |σi(t)− σ̃i(t)| ≤ δ

(10.4)

The Hamming distance uses δ ∈ [0,1] (Hamming threshold) as a parameter to
differentiate the closeness of two values. The distance between two Boolean values
may also be computed using (10.4) with δ ≡ 0. Thus, the AHD of the FLN is the
extension of the Boolean distance. One may easily see that the maximum distance
between Σ(t) and Σ̃(t) is N, while the minimum distance is 0. In comparison with
the distance, another quantity, at ∈ [0,1], may be defined as the similarity of the two
networks, i.e.,

at = 1− AHD(t)
N

(10.5)

Suppose at time t, Σ(t) and Σ̃(t) are at distance lt . Then the probability of the
two configurations having a distance lt+1 at time t +1 may be found. This change in
distances represents the dynamic paths of the two configurations. Denote this proba-
bility as Pt(lt+1, lt). Suppose Σ(t) and Σ̃ (t) have the same logical function selections
for their corresponding variables but different initial values for each variable, and the
variables in the two systems can select one out of S values (S is finite, S ≥ 2N). The
requirement of S ≥ 2N is to guarantee that different fuzzy logical functions may be
used by the FLN [19]. The probability of selecting each of the S values is assumed
to be the same, i.e. 1

S .

Suppose A is the set of variables which are identical in Σ(t) and Σ̃ (t) at time
t. Obviously, set A has N − lt variables. Define Q(N0) as the probability that N0

variables have all their K parents from set A. Then, Q(N0) is a discrete random

variable following the binomial distribution with parameter
(

N−lt
N

)K
. By definition,

N − lt
N

= 1− lt
N

= at (10.6)

so,

Q(N0) =
(

N
N0

)[(
N − lt

N

)K
]N0

[
1−

(
N − lt

N

)K
]N−N0

=
(

N
N0

)[
at

K]N0
[
1−at

K]N−N0

(10.7)

It is obvious that these N0 variables will be the same at time t +1 in both Σ(t +1)
and Σ̃(t + 1). For the remaining N −N0 variables, since at least one of their parents
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will be different, there is a probability of p = S(S−1)
S2 that a variable will be different

in two networks at the next step, while 1− p is the probability that it will be the same.
More generally, let P be the probability that a function produces different values

from different inputs. If a variable can take S values, and the probability of selecting
one of these values is the same, then P may be expressed using the Bayesian rule.

P = p(S−1)
1− p

S−1
+(S−1)

1− p
S−1

(1− 1− p
S−1

) (10.8)

Thus, through deductions using the annealed approximation, the following equa-
tion may be found:

P(lt+1, lt) =
N!

lt+1!(N − lt+1)!
(
P(1− aK

t )
)lt+1

[
1−P(1−aK

t )
]N−lt+1 (10.9)

As can be seen, (10.9) follows binomial distribution. Thus the possibility of
the coverage at the next step will peak at the current mean. The dynamic recursive
equation, then, may be expressed as

at+1 = 1−P(1−at
K) (10.10)

A general situation is considered in which P is uniformly distributed. Then P can
be computed as,

P = P(|σi(t)−σ j(t)| ≥ δ ) = (1− δ )2 (10.11)

If the two networks converge, then the following marginal stability should be
imposed:

∂at+1
∂at

< 1 (implies that the coverage does not decrease with time)
limt→∞ at = 1 (the condition for a full coverage in the steady state)

(10.12)

If a network does not have uniform connectivity for all nodes, we may assume
that the nodes may have different number of parents with a discrete distribution ρk,
where

ρk = Prob(a node has k parents) and
N

∑
k=1

ρk = 1 (10.13)

By applying (10.11), (10.12), and (10.13) to (10.10), the following relationship
may be found.

K =
1

(1− δ )2 (10.14)

It has been found that, in yeast protein-protein networks, as well as in the Internet
and social networks, the distribution of connectivity follows the Zipf’s law [20], i.e.,

P((number of inputs) = K) ∝
1

Kγ ,1 ≤ K ≤ N (10.15)

where γ is a real number, usually between 2 and 3.
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Hence, according to (10.15), the mean connectivity may be computed as

K = ε
N

∑
K=1

K
1

Kγ = ε
N

∑
K=1

1
Kγ−1 (10.16)

where ε is a constant to guarantee that the sum of distribution equals 1.
Then, define

H(γ)
N =

N

∑
i=1

1
Kγ (10.17)

as the partial sum of the generalized harmonic series. It may be proved that

ε =
1

Hγ
N

and K =
Hγ−1

N

Hγ
N

(10.18)

Since there is no general formula for (10.17), approximations for the sum may
be used if N is large enough, which is true for the application to gene regulatory

network inference. The approximation of H(γ)
N is

H(γ)
N ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if γ = 1
π2

6 if γ = 2

1.202 if γ = 3
π4

90 if γ = 4

1.036 if γ = 5
π6

945 if γ = 6

(10.19)

By substituting (10.19) into (10.18), the mean connectivity of the network may
be found as

K ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞ if γ = 2

1.3685 if γ = 3

1.1106 if γ = 4

1.0447 if γ = 5

1.0183 if γ = 6

(10.20)

By applying (10.8), (10.12), and (10.13) to (10.10), the relationship between S
and K is

S ≥ K

K − 1
(10.21)

Therefore, by substituting K in (10.20) to (10.21), the value of S may be found
to have a lower bound, i.e.

S >

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if γ = 2

3.7137 if γ = 3

10.0416 if γ = 4

23.3714 if γ = 5

55.6448 if γ = 6

(10.22)



10 Gene Regulatory Network Inference Using the FLN 243

In general, the connectivity of a real network should be greater than the critical
connectivity because real networks are usually much more complicated. In other
words, the critical connectivity only serves as a lower bound. In addition, more
relaxed criteria may find more possible regulations, and provide a much smaller
search space for further investigations. Thus an S with γ ≥ 3 should be chosen in
initial searches, which means S should be more than 2. This triggers the question of
whether a crisp Boolean network is powerful enough to infer the genetic network
structure.

If (10.20) is substituted into (10.14), the requirement that δ must satisfy may be
found as

δ >

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.1452 if γ = 3

0.0511 if γ = 4

0.0216 if γ = 5

0.0090 if γ = 6

(10.23)

When γ increases, the network has to adjust itself by adopting stricter criteria.
The result also agrees with the relationship between S and γ from (10.22). However,
when the FLN is used on a real dataset, δ must also be increased to account for the
noise inside.

10.3 Algorithm

Let G ∈ Rn×m be the time-series microarray data where n is the number of genes
in the data and m is the number of time slots in the microarray set. The algorithm
will first randomly select Gr = (Gr1 ,Gr2 , ...,Gri , ...GrK ), a group of regulators that
regulates Gt (Gri ,Gt ∈ R1×m,t �= r1,r2, ...rK). Then the algorithm will filter the reg-
ulators through a fuzzy logic mask, FLogic1, to generate a pseudo-gene-time-series,
Gs ∈ R1×m where

G j
s = Flogic(G j

r1
,G j

r2
, ...,G j

ri
, ...Gj

rK
), j ∈ m (10.24)

The distance between Gr and Gt is then computed as:

Distance(Gr,Gt) = AHD(Gs,Gt) =
m−1

∑
j=1

Hamming(G j+1
t ,G j

s) (10.25)

where the Hamming distance is computed according to (10.4). The value of δ should
base on (10.23), on the noise level, and on the data completeness. As shown in
(10.25), the AHD between Gt and Gs is computed with a time shift throughout the
time series, which is a reasonable assumption that regulations happen with one time
delay.

For each group of possible regulators and the regulated gene, the algorithm deter-
mines its AHD, and records it. In the end, the algorithm will infer regulatory groups

1 Flogic is one of the possible fuzzy logical functions that is applied on K variables
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Fig. 10.1. Algorithm flowchart

with AHD
m less than another threshold, Ti,(Ti ∈ [0,1]), which is the inference thresh-

old. This threshold is defined as the percentage of time periods that a regulation
persists with respect to the total time slots in the microarray. The flow chart of the
algorithm is depicted in Fig.10.1

The complexity of the algorithm is O(nK) where n is the number of genes, and K
is the critical connectivity of the FLN. As shown in (10.20), the mean connectivity
should be less than 1.3685. Thus the complexity of the algorithm is almost linear with
the number of genes. Based on the result shown in (10.20) and [21], we assume the
maximum number of regulators for each inference group is 2. In this scenario, there
may be more than 2 regulators for a regulated gene but we assume that regulators are
correlated in a pair-wise manner. This assumption, which assumes that two regulators
are more efficient to deliver regulatory mechanisms, ensures the critical connectivity.
One should note that the total number of regulators is not limited by this assumption
(any gene in the network may have N regulators maximally).

10.4 Applications to Yeast Datasets

To test the algorithm, the α-factor arrest subset of S. cerevisiae cell cycle dataset [22]
and the S. pombe cell cycle dataset [23] are selected. Although the budding yeast,
S. cerevisiae, and the fission yeast, S. pombe, are generally named as yeast, they
diverged about 1.1 billion years ago [24]. It has been shown that these two fungi have
different chromosome structures, cell cycle synergy, and different gene functions. In
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addition, it has been reported that the S and M phases of S. cerevisiae are very hard
to disrupt while the disrupt of S. pombe cell cycles can be relatively easier [25].
The inference results shown later in this chapter confirm the differences of gene
regulation strategies in the two yeast, and offer a possible explanation on why the S.
cerevisiae cell cycle is more stable.

10.4.1 Data Pre-processing

The S. cerevisiae dataset includes 6178 commonly accepted open reading frames,
and for the α-arrest subset there are 18 time slots. The S. pombe dataset includes
99.5 percent of the total open reading frames, but we choose to use the 407 genes
that have been inferred to be cell-cycle regulated [23]. For the S. pombe dataset, three
elutriation and two cdc25 block-release subsets are combined to produce a series
of 115 time slots for each gene. To reduce errors introduced by noise, and to reduce
computational complexity, both datasets are pre-processed with 3 criteria. Genes that
do not satisfy all three criteria are deleted. The criteria are stated as follows:

• Only genes having more than two thirds valid time slots, with respect to the entire
time span in the microarray, are considered above the noise level. The reason for
this requirement is that some genes do not have expression strong enough to
counter the background noise at some time slots. Totally 115 genes do not fit this
criterion in the S. pombe dataset. The number of genes deleted in the S. cerevisiae
dataset is 125.

• For S. cerevisiae, the maximum value of each gene’s expression must be at least
three times greater than its minimum value in the time series. For S. pombe, the
ratio is limited to 1. If not, the gene is excluded from the dataset. This requirement
guarantees that genes running inside the algorithm have a dynamic range of
expression. Thus it reduces the computational time by limiting the search space.
S. cerevisiae dataset has 5366 genes deleted, but no gene is deleted from S. pombe
dataset due to this criterion.

• Genes with spikes in the time series are not included. The signal-to-noise ratio of
the spike is defined as five. 4 genes in the S. pombe dataset and 8 genes in the S.
cerevisiae dataset have spikes, and are deleted.

After the pre-processing and filtering, 680 genes in the S. cerevisiae subset are
found to satisfy all three criteria, and, as far as the S. pombe dataset is concerned, 286
genes have survived the cut. The values of gene expression are then normalized into
[0,1] interval throughout the time series. For S. cerevisiae, the values of the dataset
are changed from log-odds into true values. Then, the maximum value of each gene
series is found, and used to divide the expression of that gene in the series. For S.
pombe, every gene series in each subset is normalized to have zero median. In the
next step, the maximum value of a gene’s expression inside each subset is found,
and used to divide the values of that gene’s expression in the same subset (the five
subsets are normalized separately). After these steps, the values of each gene in the
dataset have been normalized into [0,1] interval.
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10.4.2 Inference Results of the S. cerevisiae Dataset

We investigate the inference results when regulators apply controls to the regulated
gene in pairs. All four logical functions in Table 10.1 are tested with same parameter
settings (δ = 0.01,Ti = 21%), and they have inferred four different regulatory net-
works. The MV logical function do not introduce as many false positives as that from
using other commonly used fuzzy logical functions. Furthermore, MV logical func-
tion causes the algorithm to be less sensitive to small variations of parameters i.e.,
δ from (10.4) and the inference threshold of the algorithm, Ti. The inferred network
based on the MV logical function is shown in Fig. 10.2 and Table 10.2.

Out of 4.3×109 possible groups, the algorithm locates 51 regulatory groups (32
regulatory pairs) involving 21 genes with average connectivity of 1.5238. There are
17 verified regulations, 5 unknown regulations, and 10 dubious regulations. Table
10.2 shows the verified regulations with functions of the regulator and regulated
gene. One interesting finding is that 15 out of the 21 genes in the network have
been proved to be involved in yeast mating or the cell cycle, and most of them
are downstream mating regulatory genes. In addition, the backbone of the network
(nodes with high connectivities) is made up of 9 out of these 15 genes. The clustering
attribute in the result, although unexpected, may explain why 14 out of the 17 verified
regulations are based on close relationships.

The inferred network also shows network motifs. The network includes seven
feed-forward loops, three single-input modules, as well as the dense overlapping
and bi-fan modules [33, 34]. Through comparative studies on complex biological,
technological, and sociological networks, it has been shown that these modules share
different evolutionary properties and advantages [35, 36]. The feed-forward loop is
believed to play a functional role in information processing. This motif may serve
as a circuit-like function to activate output only if the input signal is persistent, and
allows a rapid deactivation if the input signal is off. Further, the bi-fan structure
of (PRM1, FUS2) and (FIG1, ASG7) are coupled with a number of feed-forward
motifs. The inferred network also includes two internal cycles (FIG1 ←→ PRM1,
FIG1 ←→ FIG2) and one feedback loop among FIG1, FIG2 and ASG7. All the
genes in the cycles or feedback loop are involved in the signaling for yeast mating,
and the close regulations among them are integral to yeast mating. Although network
motif studies on E. Coli have not found cyclic structures [34, 37], the feedback loop
is believed to be the most important regulatory mechanism for cells to adapt to new
environments. The inferred network shows that while preserving specific regulatory
strategies, different species share a striking similarity of regulation mechanisms.

10.4.3 Inference Results of the S. pombe Dataset

The algorithmic parameters for the S. pombe dataset are set as δ = 0.018 because the
network is selected to be a more general network according to (10.23), and Ti = 71%
because the combination of five different subsets lowers the percentage of time that
a regulation may persist. The quantifications of the two thresholds are also based
on previous investigations on the algorithm’s behaviors [12]. The algorithm uses the
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MSF1

YRF1-7
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AGA2

IFH1

PRM3
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AGA1
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ASI2

SLT2
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FUS1

Fig. 10.2. The α-factor gene regulatory network using the MV fuzzy logical function. In the
network, there are 21 genes and 32 regulatory arcs. Nodes with high connectivities are green.
The colors of arcs are coded as: functionally verified regulations (red), regulations involving
genes with unknown functions (black), and dubious regulations (blue). The width of the arcs
represents the regulatory strength between the regulator and regulated gene, and it is calculated
as (m−AHD)

MV logical function to find 105 regulations (125 regulatory pairs) among 108 genes.
The regulatory network is shown in Fig. 10.3.

In the network, there are 108 genes and 125 regulatory arcs. The colors of arcs
are coded as: functionally verified regulations (red), regulations involving genes with
unknown functions (black), and dubious regulations (blue). The width of the arcs
represents the regulatory strength between the regulator and regulated gene, and it is
calculated as (m−AHD). The network includes 59 functionally verified regulations,
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Table 10.2. Functionally verified regulations in the inferred S. cerevisiae gene regulatory
network. The regulations are grouped by regulators and the criteria of verifications are cat-
egorized as functional (verified by gene functions from Saccharomyces Genome Database,
4 regulations), close relationship (regulators and regulated genes are usually co-expressed,
co-regulated, 14 regulations). Some of the verifications are also based on the included
references

Regulator Regulated gene Verification
AGA2: adhesion subunit of a-
agglutinin of a-cells

AGA1: anchorage subunit of
a-agglutinin of a-cells

close relationship [26]

ASG7: regulates signaling
from Ste4p

FIG1: integral membrane protein
for efficient mating

close relationship [27]

FIG2: cell wall adhesin specifically
for mating

functional

PRM1: SUN family gene involved
in cell separation

close relationship [28]

FIG1: integral membrane
protein for efficient mating

ASG7: regulates signaling from
Ste4p

close relationship [27]

FIG2: cell wall adhesin specifically
for mating

close relationship [29]

PRM1: pheromone-regulated
protein for membrane fusion during
mating

close relationship [27]

FIG2: cell wall adhesin
specifically for mating

FIG1: integral membrane protein
for efficient mating

close relationship [29]

ASG7: regulates signaling from
Ste4p

functional

FUS1: membrane protein
required for cell fusion

AGA1: anchorage subunit of
a-agglutinin of a-cells

close relationship [30]

PRM1: pheromone-regulated
protein for membrane fusion during
mating

close relationship [31]

PRM1: pheromone-regulated
protein for membrane fusion
during mating

AGA1: anchorage subunit of
a-agglutinin of a-cells

close relationship [30]

FIG1: integral membrane protein
for efficient mating

close relationship [27]

PRM2: pheromone-regulated
protein regulated by Ste12p

FIG1: integral membrane protein
for efficient mating

close relationship [27]

FIG2: cell wall adhesin specifically
for mating

close relationship [27]

SLT2: suppressor of lyt2 ASG7: regulates signaling from
Ste4p

close relationship [32]

FUS2: cytoplasmic protein
for the alignment of parental
nuclei before nuclear fusion

FIG1: integral membrane protein
for efficient mating

close relationship
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Fig. 10.3. The S. pombe gene regulatory network using the MV fuzzy logical function
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47 regulations involving genes with unknown functions, and 19 dubious regulations.
The 59 functionally verified regulations are listed in Table 10.3 with the functions of
regulators and regulated genes.

Take the ace2 - mid2 and cdc15 - spm1 regulatory pairs as examples. Gene
ace2 is a transcription factor that regulates the transcription of genes required for
cell separation; mid2 is essential for the central positioning of the division septum
before the cell divides and in organizing the septin ring during late mitosis. Gene
cdc15 mediates cytoskeletal rearrangements required for cytokinesis on the onset
of mitosis, and spm1 involves in the regulation of cell wall structure. The average
connectivity of the inferred network is 1.157 which fits the requirement of the Zipf’s
law as shown in (10.20) with γ between 2 and 3.

The regulations among genes in S. pombe are different from S. cerevisiae largely
because the regulatory network of S. pombe does not include any feed-forward struc-
ture or cycle. As shown before, the feed-forward loop is a stable motif for the
network, and this might offer an explanation why S. pombe cell cycles are less stable.
We also found that the regulatory network of S. pombe is sparser than that of the S.
cerevisiae. As for the regulatory logic in the two networks, we found striking simi-
larities between the two yeast. For S. pombe, 75 percent of regulations are OR logic
while the majority of the remaining 25 percent are single-regulator situations. For S.
cerevisiae, 63 percent are OR logic and 17 percent are single-regulator scenarios.

10.5 Conclusions and Discussion

The biologically plausible results from the applications of our FLN algorithm to
the S. cerevisiae and S. pombe datasets suggest that the data-driven algorithm is
potentially a powerful tool to decipher the causal pathways involved in complex
biological systems. In this work, the focus has been on the theoretical deduction
of the FLN’s dynamic behavior and on the computational aspects of the inference
algorithm. The theory of the FLN not only provides a sound theoretical guarantee
for algorithmic parameter adjustments, but also is also a novel proposal for a new
network model with potentially broad applications in modeling complex networks.
From the computation results, the algorithm has provided detailed and insightful
causal relationships among various genes. Thus, we believe that, given less noisy
data, the FLN algorithm may be applied to a large range of biological systems having
different spatial or temporal scales.

Regarding future research on the theoretical aspects of the FLN, we think that
the dynamics and the steady-state properties of the FLN are important. Further effort
should also focus on the effect of other distance metrics as means of comparing
the performance of the modeling. It is also our belief that there is still room for
improvement in computational complexity via heuristic search. Although the theory
of the FLN is still in its infancy, particularly with respect to the details of network
evolution, we think that the FLN, in the future, can model the real world uncertainty
and mimic the behaviors of complex systems.
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Table 10.3. Functionally verified regulations in the inferred S. pombe gene regulatory net-
work. The regulations are grouped by regulators and the criteria of verifications are categorized
as functional (verified by gene functions from GeneDB database, 49 regulations), close
relationship (regulators and regulated genes are usually co-expressed or co-regulated, 9 regu-
lations), and homolog (1 homolog). Some of the verifications are also based on the included
references

Regulator Regulated gene Verification

ace2: regulator of cell
separation genes

mid2: positioning of the division
septum before the cell divides

functional

SPBC1709.12: Rho GTPase binding
signaled by cell cycle

functional

bet1: controls intracellular
protein transport and
cell wall formation

mid2: positioning of the division
septum before the cell divides

close
relationship

SPBC3E7.12c: chitin biosynthesis functional
SPCC74.07c: SUN family gene
involved in cell separation

functional

bgl2: regulates cell expansion
during growth and cell-cell fusion
during mating

SPBC1289.01c: involves in septum
formation

functional [38]

cdc13: controls the cell
cycle at the G2/M (mitosis)
transition

ams2: required for proper chromosome
segregation

functional

csx2: involves in cell-cycle regulated
ADP-ribosylation

functional [39]

cyp4: peptidyl-prolyl cistrans isomerase
involved in mitosis

functional [40]

hhf2: histone H4 functional
meu29: up-regulated in meiotic functional
SPBC1289.01c: cell wall chitin protein functional
SPCC18.02: involves hydrogen
anti-porter activity in cell cycle

functional

cdc15: mediates cytoskeletal
rearrangements required
for cytokinesis

mrc1: mediator of replication
checkpoint 1

functional

rpc17: RNA polymerase functional
SPBC1709.12: Rho GTPase binding
signaled by cell cycle

functional [41]

SPBC3E7.12c: chitin biosynthesis functional
spm1: involves in cell separation functional

cdc2: controls the eukaryotic cell
cycle

SPBC119.10: asparagine synthase
involved in glutamine-hydrolyzing

functional

cdr1: mitotic inducer
rpc17: RNA polymerase functional
SPCC74.07c: involve in
beta-glucosidase activity at cell
separation

functional

cid13: creates the 3’ poly(A) tail
of suc22 mRNA affecting DNA
replication

fin1: Promotes chromosome
condensation and nuclear envelope
dynamics during mitosis

functional [42]

(continued)
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Table 10.3 (Continued)
Regulator Regulated gene Verification
cig1: cyclin regulating G1/S
transition

rpc17: RNA polymerase functional

cig2: cyclin regulating G2/M
transition

meu29: up-regulated in meiotic functional

gmh2: affects Golgi membrane
and chitin synthase

SPBC3E7.12c: chitin biosynthesis functional [43]

mac1: required for cell separation ams2: required for proper chromosome
segregation

functional

mid2: positioning of the division
septum before the cell divides

spm1: involves in cell separation functional

nrd1: negative regulator of sexual
differentiation affecting chitin
biosynthesis

SPBC1289.01c: cell wall chitin protein functional [44]

pim1: involves in the control of
mitosis

spm1: involves in cell separation functional

pof6: involves in cell division mid2: positioning of the division
septum before the cell divides

functional

psc3: required for normal mitosis csx2: involves in cell-cycle regulated
ADP-ribosylation

functional

rer1: COPI-coated vesicle SPBC119.10: asparagine synthase close
relationship
[45]

rpc17: RNA polymerase cyp4: PPIases to accelerate the folding
of proteins

close
relationship
[46]

SPAC1071.09c: contains a DnaJ
domain which mediates
interactions with
histone-modifying heat shock
proteins

hhf3: histone 4 functional

SPAC19B12.02c: high similarity
to 1,3-beta-glucanosyl transferase

cdc22: provides the precursors
necessary for DNA synthesis

close
relationship
[47]

mid2: positioning of the division
septum before the cell divides

close
relationship

SPAC1F7.03: involves in calcium
transport that affects heat shock
genes

SPAC1071.09c: interacts with heat
shock proteins

functional [48]

SPAC23H4.19: putative cell wall
biogenesis protein

SPBC3E7.12c: chitin biosynthesis functional

SPAC24H6.01c: involved in
phospholipid biosynthesis
affecting cell division

mid2: positioning of the division
septum before the cell divides

functional [49]

SPAC1071.09c: interacts with heat
shock proteins

functional [50]

(continued)
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Table 10.3 (Continued)
Regulator Regulated gene Verification
SPAC2E1P5.03: mediates inter-
action with heat shock proteins
that interacts with histones

hhf2: histone 4 functional [51]
hhf3: histone 4 functional [51]

SPAC323.07c: member of the
MatE family of integral
membrane proteins

spm1: involves in cell separation close
relationship

SPAC688.11: required for hyphal
growth

cyp4: peptidyl-prolyl cis-trans
isomerase involved in mitosis

close
relationship
[52]

SPBC16G5.15c: required for the
correct timing, positioning and
contraction of the division septum

SPBC3E7.12c: involves chitin
biosynthesis

functional

SPBC4F6.05c: involves in sugar
biding that affects histones

hhf3: histone 4 functional [53]

SPBC4F6.12: regulates integrin
or growth factor-mediated
responses

cdc22: provides the precursors
necessary for DNA synthesis

functional

SPBPB2B2.09c: involves in
thiamine biosynthesis

SPCC18.02: involves hydrogen
anti-porter activity

close
relationship
[54]

SPCC548.06c: involves in
glucose transport that affects
chitin synthesis

SPCC417.05c: stimulates chitin
synthase III activity

functional [55]

SPCC74.07c: involves in
beta-glucosidase activity
at cell separation

csk1: cell cycle kinase functional
meu29: up-regulated in meiotic functional

SPCC794.11c: involves in
formation of clathrin coats at the
Golgi and endosomes

SPCC18B5.07c: nuclear pore protein
(nucleoporin)

homolog [56]

SPCP1E11.08: nuclear protein
involved in ribosome biogenesis

meu29: up-regulated in meiotic close
relationship

spn2: septin involved in cell
separation

chs5: involves in chitin synthesis and
also required for mating

functional

spp2: DNA primase, large
(non-catalytic) subunit

cdc22: provides the precursors
necessary for DNA synthesis

functional

trx1: putative thioredoxin that affects
DNA primase

functional

sst1: member of sodium or
calcium exchanger protein family
of membrane transporters

gmh2: affects Golgi membrane and
chitin synthase

functional [57]

top1: DNA topoisomerase I,
involved in chromatin
organization

SPCC757.12: alpha-amylase with
special chromatin structure

functional [58]

wis3: regulates cell cycle
progression

SPBC3E7.12c: involves in chitin
biosynthesis

functional
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Summary. Linear multivariate regression tools developed on the basis of the traditional sta-
tistical theory are naturally suitable for high-dimensional data analysis. In this article, these
methods are applied to microarray gene expression data. At first, a short introduction to dimen-
sion reduction techniques in both static and dynamic cases is given. After that, two examples,
yeast cell response to environmental changes and expression during the cell cycle, are used to
demonstrate the presented subspace identification method for data-based modeling of genome
dynamics. The results show that the method is able to capture the relevant, higher level dy-
namical properties of the whole genome and can thus provide useful tools for intelligent data
analysis. Especially the simplicity of the model structures leads to an easy interpretation of
the obtained results.

11.1 Introduction

The gene expression network of a biological cell can be interpreted as a dynami-
cal complex system, which consists of a large number of variables (gene activities)
and connections between them. Because of the large dimension of the system the
precise analysis of the structure and functioning of the network is a difficult prob-
lem. Microarray measuring technology developed during the last decades has, how-
ever, increased the possibilities to analyse genetic networks by enabling the use of
data-based approaches and utilization of the increasing computational capacity.

A vast range of different methods like artificial neural networks, support vector
machines and fuzzy systems have been applied to gene expression data modeling
(see e.g. [2, 13, 15]). However, in addition to these soft computing methods particu-
larly designed for high dimensional data mining, also the more traditional statistical
multiregression tools can provide means to analyse gene expression data sets. One
advantage of these methods is that the obtained models typically remain quite sim-
ple; usually linearity is assumed, which allows the precise analysis of the models as
opposed to the more complex neural networks.

This chapter proposes the usage of a linear state space model to describe the
overall gene expression dynamics of yeast Saccharomyces cerevisiae. The aim of
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the modeling differs from the traditional approaches where the idea often is to form
a connection network for a small subset of genes [16, 17]. Instead, the goal here
is to include all the genes of the organism in the analysis and to capture the main
dynamical behaviour of the genome. It is assumed here that the important activity
variations of the genome are highly redundant and can thus be compressed by using
a low dimensional latent variable vector. This assumption also makes biologically
sense instead of being just a mathematical trick to simplify the modeling. The ob-
tained dynamical models can be applied to the simulation and prediction of the gene
expression values.

The presented dimension reduction methods are demonstrated by two examples:
response of yeast cells to environmental changes and yeast gene activation during
cell cycle. In the first case, the changes in the activation levels of yeast genes are
modeled when a sudden environmental change is applied to the cultivation media.
Since the yeast cells are disturbed in these time series, they are in the following
referred to as yeast stress experiments. Some of these results are initially published
in [8]. The second example concentrates on the natural cyclic alternation of a group
of yeast genes during the cell cycle.

11.2 Approach

This section discusses the principles of the modeling approach further elaborated in
this study. First, some justification for the selection of a linear model structure is
given. Then, the degrees of freedom based data analysis method is presented.

11.2.1 Linearity

In the case of a biological cell, the linearity of the model structures can be argued
by the properties of the cell. A cell can be assumed to have a high number of in-
ternal state variables (i.e. gene activation levels and chemical concentrations) which
are highly connected to each other. It is known that the regulatory networks in a
cell are powerful buffers for external disturbances. This means, that the feedback
connections between the state variables are capable of keeping the vital processes go-
ing in different environments, thus enabling the cell to survive in changing external
conditions.

Under these assumptions, a nice analogy between an elastic mechanical object
and a biological cell can be found [7]. In the case of an external disturbance, whether
it is an external force applied to an elastic object or a change in the environmental
conditions of a cell, the elastic system can adapt to the new situation by changing
its internal state. Provided that the disturbance is small enough, after a transient the
system can find a new balance and stay unbroken (or alive). When the disturbance is
removed, the system recovers to the original internal state.

If the biological cell is seen as an elastic system, a certain level of smoothness
in its behaviour can be assumed. This, on the other hand, implies that the system is
locally linearizable, i.e. around a fixed nominal operating point, the minor changes
can be modeled using a linear model structure.
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11.2.2 Degrees of Freedom

When dealing with dynamical systems containing a large number of variables, the
traditional modeling approaches have been based on the constraints which determine
the relations of the system variables. For example, differential equations are a typical
choice when modeling the dynamics: Each individual equation covers one relation or
constraint between the investigated variables. To unambiguously describe the whole
system, as many differential equations are required as there are system variables.
However, even in the case of a “simple” biological cell like yeast, the gene regulation
network includes a huge number of genes (over 6000) which can be connected to
each other. Even though the gene regulation networks are typically assumed to be
sparse instead of being completely connected, this means that a large number of
constraints is required to define the system dynamics. When the system dimension is
high, this approach is not feasible anymore.

The opposite way to analyse a multivariate system is to collect data from the sys-
tem and use them to find out the main directions of variation or degrees of freedom
present in the system. If the system variables are highly connected and the dynamics
are restricted by many constraints, the actual number of meaningful degrees of free-
dom remains low. Accordingly, it may turn out that the dynamics can be described
with a much lower number of variables. That is because each individual constraint
reduces the number of possible variation directions by one, thus hopefully resulting
to a low dimensional space of degrees of freedom [12].

One does not need to know the exact outlook of the constraints. As long as these
underlying structures keep the system in balance and maintain its integrity, they can
even be ignored. From the system theoretical point of view this is a relief: one does
not need to tackle with the problems characteristic to closed-loop identification (see
e.g. Sect. 13.4 in [14]).

The main assumption in this study is that the gene expression network in such a
case actually has few possible degrees of freedom, that is, all the relevant variable
combinations can be described by only a small number of latent variables. This en-
ables the use of a low-dimensional state vector to comprise the core of the system
dynamics, whereas the actual gene expression values are produced as a linear com-
bination of these state variables or “functional modes”. It has already been shown
in a few publications that this assumption is quite well justified; the latent variables
can be calculated for example using principal component analysis (or singular value
decomposition) [9, 18, 22].

11.3 Multivariate Regression Tools

There exist various data analysis tools for static data compression and multivariate
regression [11], and the principles utilized in these methods can further be extended
to cover also dynamical systems.
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11.3.1 Principal Component Analysis

Principal component analysis (PCA) (see e.g. [1]) is the standard multivariate method
to analyse high dimensional static data with correlating variables. The idea of PCA
is to find the orthogonal directions of highest variance in the data space. These direc-
tions are called the principal component directions, and the most important of them
can be used as a lower dimensional latent basis to which the original data is mapped.
Because of the dimensionality reduction in the mapping, data compression takes
place. Assuming that variance in the data carries information, the PCA compression
is optimal in the sense of preserving this information.

Let us assume that for example microarray time series data are collected in matrix
Y ∈ R

l×N , where each column represents one time point and each row an individual
gene. It is possible to utilize PCA to the data in two ways; either to reduce the
number of genes or the number of time points [18]. If the purpose is to reduce
the number of genes, one should interpret them as variables, whereas different time
series represent the available samples. In that case, PCA mapping for a (column) data
vector y(k) ∈ R

l×1 is defined as

y(k) = Wx(k)+ e(k), (11.1)

where x(k) ∈ R
n×1 is the k:th n-dimensional score vector and W ∈ R

l×n contains
the principal component vectors as columns. If the amount n of latent variables in
x is smaller than the original data dimension l, due to the dimension reduction the
original data cannot be exactly reproduced, and the error term e(k) differs from zero.
To conveniently map all the data, (11.1) can be presented in the matrix form:

Y = WX+ E, (11.2)

where X = [x(1),x(2), . . . ,x(N)] ∈ R
n×N contains the score vectors for all samples,

and E = [e(1),e(2), . . . ,e(N)] ∈ R
l×N .

Calculation of PCA can be done by utilizing the sample correlation matrix esti-
mated from the data:

R̂yy =
1
N

YYT . (11.3)

The eigenvalue decomposition of R̂yy is

R̂yy = FLFT , (11.4)

where F = [φ1,φ 2, . . . ,φ l ] contains the eigenvectors as columns and L is a diago-
nal matrix with eigenvalues λ j on the diagonal. It is convenient to assume that the
eigenvectors are sorted according to the corresponding eigenvalues starting from the
largest one. Now the eigenvectors are directly all the principal component vectors of
the data, whereas the eigenvalues represent the variance captured by each principal
component. Thus, by combining the n eigenvectors corresponding to the n largest
eigenvalues, the principal component mapping can be defined:

W = [φ1,φ 2, . . . ,φ n]. (11.5)
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The idea of PCA is to collect all the relevant correlations of the data in the
latent variables, whereas the unimportant variations (hopefully mainly noise) are
left to the error term E. This way the original high-dimensional dependencies in
the data can be coded as efficiently as possible. Assuming that the gene expression
system that produced the data in Y is redundant, the principal components in W can
be interpreted as characteristic modes or “eigengenes”, which together can explain
most of the variations in the original data. The score values in X now contain the
activation levels of these eigengenes as a function of time, and the weights in W
describe how much each eigengene participates in explaining each of the original
genes. This scheme has been investigated for example in [10], where it is shown
that already a couple of main characteristic modes, i.e. principal components, can
reproduce the data quite accurately.

Since the case of gene expression modeling is clearly a dynamic problem and
time series data are available, the dynamics have to be taken into account in the
modeling. One attempt to this direction was taken in [9], where a time translation
matrix for the captured characteristic modes was calculated. However, the approach
was rather elementary and was applicable only to a fixed number of eigengenes.

11.3.2 Subspace Identification

A quite recent extension of dimension reduction techniques to cover dynamical
problems, subspace identification (SSI) [21], is demonstrated here. Subspace identi-
fication provides natural means to analyse multivariate dynamical systems either as
deterministic-stochastic systems with separate (multidimensional) input signal or as
purely stochastic systems, where the dynamics are driven by white noise signals.

The dynamics of the system are now assumed to be captured by the standard
linear state space structure{

x(k + 1) = Ax(k)+ Bu(k)+ w(k)
y(k) = Cx(k)+ Du(k)+ v(k),

(11.6)

where the input signal for the system at the discrete time instant k is denoted as
u(k) ∈ R

m and the output of the system is y(k) ∈ R
l . The core of the dynamical

behaviour is captured by the state variables in vector x(k) ∈ R
n, whereas w(k) and

v(k) are assumed to be white noise signals of the appropriate dimension. In the purely
stochastic case the input signal terms of the both equations are omitted. Based on a
given set of time series samples of output {y(1),y(2), . . . ,y(N)} (and possibly of
input {u(1),u(2), . . . ,u(N)} in the deterministic-stochastic case) collected from the
system in question, the aim of the modeling is to determine the constant parameter
matrices A and C (and B and D) so that the stochastic properties of system (11.6) as
well as possible correspond to the stochastic properties of the given data.

The starting point of SSI is to interpret the original dynamic time series data in a
static form. To obtain this, i consecutive time series data points are combined to one
high-dimensional “static” data point:
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y(0)
y(1)

...
y(i−1)

⎞⎟⎟⎟⎠. (11.7)

It is assumed that the length i of this data window is selected so that the static data
point captures the dynamical behaviour of the system between samples y(0) and
y(i−1). All possible static data points are further collected in the columns of a block
Hankel matrix. For example, the block Hankel matrix for the output data is defined
as:

Y =
(

Yp

Y f

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(0) y(1) . . . y( j−1)
y(1) y(2) . . . y( j)

...
...

. . .
...

y(i−1) y(i) . . . y(i+ j−2)
y(i) y(i+ 1) . . . y(i+ j−1)

y(i+ 1) y(i+ 2) . . . y(i+ j)
...

...
. . .

...
y(2i−1) y(2i) . . . y(2i+ j−2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11.8)

Each column of the upper part (Yp) of the matrix is one static data point, formed by
piling i consecutive output data points (column vectors) one on the other. These data
are referred as the “past” static data points whereas the static data points in the lower
part of the matrix (Y f ) form the set of “future” data points. The number of columns,
j, is the number of these new static data point pairs. Given that we have N original
data points y(k), that is, k = 0,1, . . . ,N − 1, the maximum number of columns is
j = N −2i+ 1.

For the input data, the block Hankel matrix U containing the submatrices Up and
U f can be defined accordingly.

Stochastic SSI Algorithm

The new data structures Yp,Y f ,Up and U f can now be utilized for the actual model
calculation. Let us first consider the purely stochastic estimation, where no determin-
istic input signal u(k) is allowed. The common approach to all SSI algorithms is that
at first, estimate for the sequence of states X̂i = [x̂T (i), x̂T (i+ 1), . . . , x̂T (i+ j−1)]T

is calculated. From that, the actual system matrices can be estimated.
As the name subspace identification suggests, the key part of the algorithm deals

with spaces spanned by the row vectors of the data matrices. In the stochastic case,
the main result given and proved in [21] (Sect. 13.3) states that the row vectors of
the orthogonal projection

Oi = Y f /Yp = YT
p

(
YpYT

p

)†
YpY f (11.9)

span the same space as the rows of X̂i. In (11.9) the row space of the future out-
puts Y f is actually projected to the row space of the past outputs Yp (the super-

script (·)† denotes the Moore-Penrose pseudoinverse, i.e. Z† =
(
ZZT

)−1 Z). By
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utilizing singular value decomposition (SVD) to the projection Oi, the estimate X̂i is
obtained.

When the line between past and future in (11.8) is shifted one step towards the
future, two additional matrices can be defined:

Y =
(

Y+
p

Y−
f

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(0) y(1) . . . y( j−1)
y(1) y(2) . . . y( j)

...
...

. . .
...

y(i− 1) y(i) . . . y(i+ j−2)
y(i) y(i+ 1) . . . y(i+ j−1)

y(i+ 1) y(i+ 2) . . . y(i+ j)
...

...
. . .

...
y(2i−1) y(2i) . . . y(2i+ j−2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11.10)

If the same projection as (11.9) of these new matrices, Y+
p and Y−

f is calculated, the

“next” state values X̂i+1 are obtained using again the singular value decomposition.
According to the original state space model (11.6) with no inputs, it now holds(

X̂i+1

Yi

)
=
(

A
C

)(
X̂i
)
+
(

ρw

ρv

)
, (11.11)

where Yi is the ith column of Y and the last term contains the residuals ρw and ρv.
Assuming that the residuals are uncorrelated with the state sequence, a least squares
solution can be used to obtain the matrices A and C:(

A
C

)
=
(

X̂i+1

Yi

)(
X̂†

i

)
. (11.12)

Combined Deterministic-Stochastic SSI Algorithm

In order to include the external, deterministic input signal u(k) in the state space
model, it is convenient to combine all the information of the “past” in one matrix:

Wp =
(

Up

Yp

)
. (11.13)

Additionally, the “past” and “current” information is combined by defining matrix

W+
p =

(
U+

p
Y+

p

)
, (11.14)

where U+
p is of the similar form as Y+

p in (11.10).
Now the projection Oi must include also the input variables. To obtain a similar

result as in the stochastic case, an oblique projection must be used:

Oi = Y f /U f Wp = (Y f /U⊥
f )(Wp/U⊥

f )†C, (11.15)
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where U⊥
f is the orthogonal complement of U f (i.e. the row space of U⊥

f is orthogonal

to the row space of U f and together the rows of U⊥
f and U f span the whole space).

This operation actually projects the future outputs Y f along the future inputs U f to
the row space of the past information Wp. It can be shown (see [21], Sect. 13.4) that
the row space of the projection Oi equals the row space of X̃i, which is an estimate
of the state sequence of the deterministic-stochastic state space model. By utilizing
SVD, it is further possible to extract X̃i from the projection. Identically with the
previous case, also the “next” state values X̃i are calculated from the projection

Oi+1 = Y−
f /U−

f
W+

p . (11.16)

When the state sequences are known, it is a simple task to solve the parameter
matrices A,B,C and D from the equation(

X̃i+1

Yi

)
=
(

A B
C D

)(
X̃i

Ui

)
+
(

ρw

ρv

)
. (11.17)

Matrices Ui and Yi consist of the i:th block rows of matrices U and Y, respectively,
thus containing once all the original data points. If the residuals ρw and ρv are
assumed to be uncorrelated with the state sequence and the input data, the least
squares solution is again a natural choice to solve the combined parameter matrix:(

A B
C D

)
=
(

X̃i+1

Yi

)(
X̃i

Ui

)†

. (11.18)

Extensions and Modifications

In the data-based analysis of gene expression networks, an additional difficulty is
introduced by the low amount of available time series data points with respect to the
system dimension. In order to be able to apply the SSI algorithms to this kind of data,
some changes to the implementation of the algorithms had to be made when com-
pared with the standard algorithms provided in [21]. Basically, the faster calculation
of the model by using the QR decomposition had to be replaced by the actual matrix
operations to obtain the defined matrix projections.

It is normally assumed that all the N data points are from a single, long and con-
tinuous time series. However, because of the nature of microarray measurements,
this time a group of relative short time series formed the complete data set. A sepa-
rate model was estimated for yeast stress behaviour and cell cycle, but inside these
groups, each time series described the same dynamical system. To be able to use all
the data points efficiently in the identification, two additional operations were per-
formed for the data: 1) padding of the short time series in the stress case, and 2)
combination of the static data points from different time series.

In padding each short time series ( jth series containing originally Nj data points)
was extrapolated using the assumptions of the system steady states: Assuming that
before the environmental change the gene expression values remain constant, we can
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say that for all negative time indices the values of the output are equal to the time
zero value, i.e. y(k) = y(0), when k < 0. Correspondingly, if the system has reached
the final state at the end of the time series (k = Nj − 1), gene expression remains
constant after that, i.e. y(k) = y(Nj −1), when k > Nj −1. This way it was possible
to include in the identification also the static data points which contain some original
data points outside of the range k = 0,1, ...,Nj − 1 and thus increase the number of
static data points.

11.4 Examples

The aim of the following examples is to demonstrate the usage of multilinear dimen-
sion reduction techniques and especially subspace identification for dynamical gene
expression data analysis. As opposed to typical methods to model gene expression
dynamics, SSI is able to include a very large number of genes in the modeling.

11.4.1 Data

The stress response of the wild type yeast Saccharomyces cerevisiae was modeled
using in total 20 time series selected from the two public data sets [3, 5]. In each
series, the environmental conditions of the yeast cultivation were changed at the
beginning of the experiment, and microarray measurements of the resulting gene
activities were performed. Before modeling, the data were normalized and linearly
resampled to a constant sampling interval. Additionally, the missing data points were
estimated using the k nearest neighbor method, as suggested in [20]. The genes with
more than 12% of data points missing were excluded from the further analysis, thus
leaving 4176 genes in the final data set. The included stress experiments are listed
in the upper part of Table 11.1. Since several experiments were conducted using the
same stress factors, only ten individual environmental conditions could be separated
from the data. These are listed in Table 11.2.

Cell cycle microarray data for the second study were obtained from the publica-
tion by Spellman et al. [19], which contains four cell cycle data sets measured using
the cDNA technology. In each data set, a different synchronization method is used to
arrest the yeast cells. These methods are α-factor based synchronization, size-based
synchronization (or elutriation), and two methods based on modified yeast strains
(cdc15 and cdc28). Originally, the cdc28 experiment was published by Cho et al. [4].
The data were also normalized and missing values were estimated as above.

Originally, the alpha, cdc28, and elutriation data sets each contained data with
constant sampling interval, whereas the cdc15 data set had five missing timepoints
but otherwise a constant sample time. These values were filled using linear interpola-
tion separately for each ORF. The sampling interval was, however, varying between
the time series, and also the cell cycle length in the experiments was different. For our
modeling purposes, data points with a constant and common sampling interval were
required. Additionally, in order to make the experiments comparable, the cell cycle
lengths should have been equal. To fulfill these conditions, we first estimated the cell
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Table 11.1. Time series experiments included in the study and the number of samples in each
series after data preprocessing

Type Publication Experiment Data points

Stress Gasch et al. Heat (hs-1) 6
Heat (hs-2) 5
Heat 37 → 25◦C 7
Heat 29 → 33◦C 3
Heat 29 → 33◦C (in sorbitol) 3
Heat 29 → 33◦C (sorbitol 1M → 0M) 3
H2O2 treatment 10
Menadione exposure 10
DTT exposure (dtt-1) 10
Diamide treatment 7
Hyper-osmotic shock (Sorbitol) 9
Hypo-osmotic shock (Sorbitol) 5
Amino acid starvation 10
Nitrogen depletion 10

Causton et al. Heat shock 9
Acid 7
Alkali 7
H2O2 treatment 9
Salt 9
Sorbitol 9

Cell cycle Spellman et al. α-factor 18
Elutriation 8
cdc15 22

Cho et al. cdc28 17

Table 11.2. Stress factors (environmental variables) in the yeast stress example

Number Quantity

1. Temperature
2. pH
3. H2O2 concentration
4. Menadione bisulfate concentration
5. Diamide concentration
6. Sorbitol concentration
7. Amino acids concentration
8. Ammonium sulfate concentration
9. Dithiothrietol (DTT) concentration

10. Sodium chlorine concentration

cycle length in each series using discrete Fourier transformation for all the cell-cycle
related genes detected by Spellman et al. [19]. The power spectra of these genes in
a time series were averaged and the frequency corresponding to the maximum of the
averaged spectrum was interpreted as the approximative cell cycle frequency in that
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experiment. This lead to the following cell cycle lengths for the experiments: 63 min
(α-factor), 116 min (cdc15), 88 min (cdc28) and 465 min (elutriation). Using these
values and the known original sampling intervals it was possible to scale the time
values of the experiments so that the cell cycle lengths become equal. After that,
the data were linearly interpolated to have equal sample time in each experiment.
The new sampling interval was chosen to match with the original sample time of the
α-factor series.

Table 11.1 summarizes the experiments used in both examples and the number
of data points after the preprocessing. The stress data contained altogether 148 time
points, whereas the total length of the cell cycle data was 65 time points.

11.4.2 Results

In the following, the modeling of both examples, yeast stress experiments and cell
cycle, are explained and the obtained results are presented.

Stress Response

The idea of modeling the stress experiments was to estimate a model for the dynam-
ics of the yeast genome after a sudden environmental change. Since there existed
a well-defined input signal for the system, a deterministic-stochastic state space
model (11.6) was suitable for this modeling case. The stress factors (see Table 11.2)
in the experiments were treated as components of the input signal vector u(k) for the
model. Additionally, it is known that the yeast genome contains general stress genes,
i.e. genes whose activation is increased during almost any environmental change.
Since the model structure is linear, also the squares of the input factors were in-
cluded in the input vector so that it could be possible to model these genes properly.
As a result, the input dimension of the model was twenty. The gene expression val-
ues of the individual genes were collected as the elements of the output vector y(k).
After the data preprocessing stage, the dimension of the output vector (number of
genes in the model) was 4176.

Stochastic-deterministic SSI with padding was applied to the data as explained in
Sect. 11.3. It was assumed that five consecutive samples were enough to capture the
dynamics of the genome, so each static data point contained five original samples
(i.e. i = 5). This assumption was partly due to the restriction introduced by the
length of the shortest time series in the data set. By investigating the singular values
of the oblique projection, it was detected that a suitable system dimension n was
four. This is in line with the results in [10, 18]. As a result of the identification, the
parameter matrices of the dynamical state space model for yeast gene expression in
stress situations were obtained.

Once the model parameters were known, the model could be used to simulate the
gene expression behaviour of a yeast cultivation when a change in one (or several)
of the input variables takes place. Because of the lack of proper and independent
validation data, the model was evaluated by simulating the same stress experiments
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Fig. 11.1. The scatter plots of the measured and estimated stress experiment values (original
figure published in [8])

and comparing the simulated and measured gene expressions. The correlation coef-
ficients between these values in the altogether twenty experiment time series were
ranging from 0.45 to 0.90 with the mean of 0.75, thus indicating that the model was
able to reproduce the experiments quite well. Figure 11.1 shows the scatter plots of
the measured and simulated gene expression values for each series. Especially the
experiments with high activation values are modeled with more accuracy.

The model performance can also be analyzed by visualizing the measured and
simulated gene expression values individually for each experiment. As an example,
Fig. 11.2 shows the measured and simulated responses of a group of yeast stress
genes when dithiothrietol (dtt) was added to the cultivation medium. The genes are
selected to be stress-related according to the GO-slim annotation. The number of
genes is restricted only because of visualization reasons; the model was able to
simulate the expression of all the genes included in the model. Clearly the simulated
response is well reproducing the measured values, even though the number of latent
variables is limited to four. Especially the general and slower expression changes are
accurately modeled, whereas the more rapid alternations are filtered. This is due to
the strong dimension reduction in the modeling phase.

Because of the low number of state variables in the model, they can be analysed
individually for each experiment. In Fig. 11.3, the state sequences for two experi-
ments, addition of dtt and alkali, are shown. It seems that while dtt is affecting the
gene activation gradually and permanently, the pH shock rapidly activates (or deac-
tivates) the related genes. As the cells adapt to the new pH level, the activation levels
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Fig. 11.2. The measured and simulated activation values of a group of stress-related genes
when dtt is added to the cultivation medium. High activation values are represented by the
light shade, whereas black refers to low activation

start to recover towards the original state. However, the expression of the genes rep-
resented by the first state variable stay on the new level, probably because the new
pH value requires partially different gene activation also in the course of time.

It is also interesting to analyse the state sequences of the two hydrogen peroxide
addition experiments included in both data sets. While in the Gasch data the final
H2O2 concentration is 0.3mM, Causton et al. use the value 0.4mM. Otherwise the
two experiments are identical. Figure 11.4 shows that also the state sequences esti-
mated by SSI resemble each other. Naturally, the response changes for the stronger
stimulation result to state signals with stronger deviations from the original state. It
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Fig. 11.3. The state sequences for (a) dtt and (b) alkali addition experiments

is also evident that the final states are reached faster when the required changes are
smaller.

Cell Cycle

The second example deals with yeast gene expression during the cell cycle. In a cell
cycle experiment the yeast cultivation is grown in steady conditions but the cells
are synchronized to start the cell cycle simultaneously.Thus the collected microar-
ray data contains the cyclic activation and deactivation of the genes participating
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Fig. 11.4. The state sequences for the two hydrogen peroxide treatments: (a) Final H2O2
concentration 0.3mM (Gasch et al.); (b) Final H2O2 concentration 0.4mM (Causton et al.)

in the different phases of the cell cycle. As explained in Sect. 11.4.1, different
synchronization methods were used in the included experiments, but the resulting
cell cycle response should be comparable at least after the performed time scaling.
Since the data were collected from four different experiments describing the same
phenomenon, there were also data available for proper validation of the estimated
model.
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Because the cell cycle activity in the yeast genome is not (directly) caused by
external stimulation, no deterministic input signal was available for the modeling.
Consequently, the purely stochastic state space model (i.e. (11.6) with u(k) ≡ 0) was
a better suited model structure for this case. As a result, the modeling is completely
concentrated on the connections and dependencies between the genes participating
in the cell cycle.

The stochastic state space model parameters were estimated using the α-factor,
cdc28 and elutriation data sets as estimation data. The two main singular values of
the projection Oi were observed to dominate, so the model dimension n = 2 was
selected accordingly. Since the model could not be simulated due to the lack of the
deterministic input, validation was performed by predicting the response of the genes
a certain number of samples ahead in time. The prediction was obtained by using
Kalman filter (see e.g. [6]), which is the common prediction approach for state space
models in dynamical system analysis.

Figure 11.5 shows the measured and predicted responses in the cdc15 cell cycle
time series, which was left as independent validation data. Clearly already two la-
tent variables can quite nicely reproduce the main behaviour of the genome. When
analysing the state sequences related to one of the estimation experiments (Fig. 11.6),
it can be noted that the cyclic activation scheme of the cell cycle genes is captured
by the model. Since the oscillations of the two characteristic modes are in different
phase, the basic oscillation of genes in all phases of the cell cycle can be described
as a linear combination of the two state variables. The slight attenuation of the state
sequences can be explained by the decrease of synchronization of the yeast cells in
the cultivation; the length of cell cycle is not constant in the cells.

Because of the simplicity of the model, also the model parameters can be used
in the analysis. Since the model now describes the gene activations as a linear com-
bination of the two states, the coefficients of the state variables correlate with the
activation phase of each gene. To demostrate this, the genes in Fig. 11.5 were sorted
according to the coefficients in the first column of matrix C. As expected, the order
seems to correlate with the order in which the genes activate during the cell cycle,
thus enabling e.g. the clustering of similar genes or linking of individual genes to
different phases of the cycle.

11.5 Conclusions

Traditional gene expression studies often concentrate on the dependencies of a small
group of case-specific genes, and ignore the wider analysis. This is of course relevant
if one is interested only in these genes. However, to be able to properly describe
the dynamics of a complete genome some day, the bottom-up strategy where these
models should be combined to cover the whole system is facing serious difficulties;
the complexity of the model would easily grow too high and the main behaviour of
the genome would be buried under the small details.

As an alternative, the top-down approach for modeling gene expression dynam-
ics that was presented in this article is strongly focused on revealing the general



11 Multivariate Regression Applied to Gene Expression Dynamics 273

Measurements (samples)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

YCL051WYBR270CYBR017CYCR084CYAL041WYAL036CYCR092CYBL102WYCL016CYAR050WYCL036WYAL016WYAL042WYBR076WYBR140CYAR003WYBR069CYBR269CYDL107WYAL067CYBL019WYAL007CYBR294WYDL110CYCR093WYCR053WYCLX10CYBR281CYBR088CYBR030WYCRX09CYBL003CYAL049CYDL093WYBR285WYBR067CYBR179CYCR031CYCL021WYBR020WYBR201WYCR096CYBR089C−AYAR019CYBR162W−AYBR084C−AYBR218CYDL025CYBR206WYCL038CYBR251WYDL116WYBL101CYAR052CYDL096CYDL148CYCR035CYDL156WYBR083WYBL041WYDL095WYCL057WYDL128WYCL027WYBR180WYBR157CYBR200WYBL109WYCR087WYCL028WYCR052WYBR132CYCLX07WYBL015WYBR155WYAL035WYCR073CYAL045CYCR082WYCR097WAYDL157CYCL005WYBL068WYBR186WYDL146WYCLX02CYCLX03CYCR089WYBL009WYAL008WYDL058WYAL038WYBL075CYBR104WYCLX06CYBR220CYBR264CYAL024CYAL025CYBR265WYCR072CYBR008CYBR227CYBL092WYBR230CYBR109CYCR010CYBR299WYAR002WYCLX04WYBR148WYBR156CYAL023CYAL037WYBR284WYBR072WYBR007CYDL150WYBL101W−AYBL091CYBL093CYDL131WYCR080WYDL057WYBR277CYBR301WYCR044CYBL108WYBR241CYBR110WYBR262CYCL041CYCL006CYAL033WYBR221CYBR111CYAR020CYBL002WYBR256CYAR043CYBR019CYDL031WYCR054CYAR074CYAR008WYBL064CYBR248CYDL019CYBR056WYDL113CYBL112CYBR275CYCR075CYDL081CYCR021CYBR160WYBL107CYDL051WYCL066WYAR018CYBR043CYAR010CYBR226CYCL050CYBR261CYCR024C−AYBR271WYCR012WYBR031WYCR079WYCR009CYBR242WYBL005W−AYCL049CYDL098CYAR071WYAR014CYBL070CYBR233WYCR064CYBL001CYBR068CYDL102WYBR222CYBR133CYCL054WYBL006CYCR028CYCL009CYBR150CYDL043CYCL045CYDL070WYCR003WYDL097CYBR255WYDL036CYAR073WYDL101CYBR297WYDL100CYCR042CYBL060WYDL023CYCLX01WYDL144CYCL076WYBR243CYCL047CYDL039CYAL018CYBL051CYBL067CYAR070CYCR070WYBR127CYCR094WYBR006WYAL020CYBR199WYBL082CYCL046WYBR258CYDL088CYDL052CYBL088CYCR074CYDL122WYBL037WYCR071CYAL005CYCR039CYBR144CYBR026CYBL040CYAL056WYCR066WYCR027CYBR224WYAL061WYBL054WYBR095CYDL099WYBR192WYBR046CYCL033CYBR134WYDL074CYCLX05CYBR190WYCL074WYBR135WYBL058WYBL017CYBR176WYCR081WYBR124WYBR234CYAL063CYCR057CYBR016WYBR129CYDL062WYCR101CYBR087WYCLX09WYCL044CYBR094WYBR089WYDL016CYBR193CYCL017CYBR223CYCRX12WYCRX20CYBL085WYCL058CYBR219CYBL076CYBR149WYBR279WYBR099CYBL008WYBL104CYBR215WYBL106CYBR084WYBL030CYBL005W−BYBR263WYBR198CYCL032WYBL095WYBR191WYCR085WYBR028CYBR159WYCR004CYBR018CYAL040CYBL066CYBL010CYBR231CYBR194WYBR166CYDL064WYBL079WYBL014CYBL105CYDL032WYBR168WYDL120WYAR068WYAR064WYAR033WYCR011CYBR237WYDL106CYBL022CYBL101W−BYBR164CYCR068WYAL051WYDL033CYBR296CYCL060CYDL053CYCR061WYDL026WYBR197CYBL065WYCR060WYCR058CYDL047WYDL028CYBR054WYDL041WYCR083WYAR069CYDL069CYCR095CYCL012WYAL003WYBR065CYBR273CYCL030CYBL100CYCL013WYCLX08CYDL034WYAL048CYBL086CYBR268WYDL055CYDL021WYBL038WYBR010WYBL053WYAR062WYBL025WYBR070CYBL113CYBR116CYDL117WYAL026CYBR298CYAL060WYCL063WYBR071WYBR266CYDL121CYBR169CYCR045CYCL059CYBR032WYBL055CYAL014CYCL043CYBL029WYBL031WYBR244WYBL004WYBR151WYCL003WYBR055CYBR203WYAR042WYBR282WYBR078WYCL067CYDL048CYBR005WYAL029CYBR246WYBL052CYBL090WYBR184WYAL002WYCR059CYBL016WYCL065WYBL047CYDL124WYBL063WYCR046CYBR009CYAL032CYBR189WYBR080CYBL097WYBR002CYAL010CYBR225WYCR076CYBR062CYCL007CYCR091WYCL061CYBR126CYCR014CYDL006WYDL046WYDL063CYDL142CYAL054CYBL028CYDL027CYAL053WYDL071CYDL045CYDL073WYBR122CYDL112WYCR029CYCR103CYDL080CYBL094CYBR048WYBR287WYBL061CYCL035CYCL023CYAR029WYDL111CYBL005WYBR254CYBR295WYCR038CYBR171WYBR300CYCL048WYBL033CYAL062WYAL013WYBR181CYAL011WYBL111CYBR077CYBL034CYDL067CYDL078CYDL104CYAL001CYBL087CYCL055WYBR293WYBR112CYCL026CYCR107WYCR106WYBR128CYBL011WYDL133WYDL089WYAR015WYCL042WYBL059WYAR037WYCR040WYCL002CYBR185CYCR077CYAL012WYBR058CYDL082WYCL024WYDL145CYCR001WYBR044CYCL020WYCR055CYBR073WYBR138CYBR154CYBR163WYAL027WYBL078CYCL014WYCR056WYDL014WYAR028WYCL034WYAL028WYBR123CYAR040CYBR092CYBR236CYBR118WYDL118WYDL109CYBR041WYAL034CYCR050CYDL002CYAL019WYCR016WYDL054CYCR049CYBL084CYDL015CYDL029WYBR074WYCR043CYCR025CYDL083CYBL035CYBL103CYDL001WYDL119CYBR209WYBR103WYCR013CYCR041WYDL017WYCR020CYCL052CYAL044CYAL022CYDL072CYBL099WYBR204CYAL015CYBL007CYBR240CYBR239CYBR108WYDL108WYCL011CYDL059CYBR082CYCL064CYBR130CYBR290WYBR177CYAR009CYAR030CYBR098WYBR249CYDL132WYDL135CYBR207WYDL044CYCL025CYBR250WYBR196CYCL040WYDL085WYAR031WYBR252WYBR178WYAL059WYBR146WYDL086WYCL056CYAL009WYDL003WYBR136WYBL039CYDL040CYCR033WYDL024CYCR069WYDL115CYDL020CYBR096WYAR007CYCR036WYCR090CYDL091CYDL042CYBR105CYBR205WYCR048WYDL077CYAL004WYCR017CYBR228WYBR280CYCL019WYAL021CYBR097WYBL012CYDL105WYBR283CYBR165WYCR062WYBR187WYBL096CYDL030WYCL039WYBR229CYDL065CYDL050CYBR142WYBR253WYBL049WYBR202WYAL046CYBL062WYBR183WYCL022CYAL058WYCL053CYCR047CYCR006CYBR060CYBR152WYCL075WYCR030CYBR085WYCR022CYDL114WYBR210WYBR289WYBR247CYBR158WYBR291CYBR042CYDL090CYDL060WYBR267WYAR044WYBL023CYBR217WYDL130WYDL079CYCL018WYDL066WYCR023CYCR032WYAR061WYDL037CYBR170CYCR007CYCR063WYDL126CYCR029C−AYDL103CYCR018CYBR011CYBR288CYDL068WYDL084WYCR008WYBR004CYBR245CYDL061CYCR065WYBL013WYDL035CYCL068CYBL027WYCR005CYBR161WYCR034WYBR057CYCR067CYBR257WYBR125CYBR086CYBR162CYBR286WYCL069WYCR088WYDL094CYAL017WYCL031CYBL077WYDL087CYBR033WYBR211CYBR081CYDL049CYDL076CYBR012W−BYBL018CYBR302CYBL089WYBR172CYAR053WYAR023CYAL039CYBL098WYBR079CYBR232CYAR060CYBR259WYCR051WYCL062WYBR038WYBR066CYCR105WYBR100WYCR098CYAL043CYAL047CYBR064WYAR035WYBR167CYBR260CYBR117CYDL140CYBR174CYCR026CYCR020C−AYBR238CYAR027WYDL022WYBR175WYBR173CYDL038CYCL001WYDL056WYCR015CYCL029CYBL026WYBR182CYDL092WYCR037CYCLX11WYBR195CYAL065CYAL064WYDL134CYDL138WYCLX12WYAL066WYDL018CYAL031CYBR014CYCL037CYCR002CYBR075WYCR024CYCR019WYDL127WYBR106W

Estimates (samples)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fig. 11.5. The measured and two-step ahead predicted activation values of cell cycle genes in
the cdc15 experiment

underlying properties of a large number of genes. It was shown that the SSI method
could handle all of the over 4000 properly measured genes of the yeast genome and
capture the common latent structure based on the stress experiment data. Also the
cell cycle case suggested that the main behaviour of the genome is highly redundant,
since already two latent variables could reproduce the basic activation pattern of the
genes.

The presented two examples demonstrate that sticking to the statistical multi-
regression tools and the usage of simple linear model structures is an advantage
because of the good interpretability of the estimated models. The analysis of the
state sequences clearly provides more information of the individual experiments
and nicely summarizes the possible gene expression profiles of different genes.
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Fig. 11.6. State signals for the cdc28 cell cycle experiment

Additionally, the model parameters can be utilized in the analysis as shown by the
ordering of the cell cycle genes according to their phase in the cycle.
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Summary. In this chapter we present an architecture for the development of Semantic Web
applications, and the way it is applied to build an application for Systems Biology. Our work-
ing plan is designed to built an ontology-based system with connected biomodules that could
be globally analysed, as far as possible. Supported by the advantages of the Semantic Web,
we can keep the objective to work on the way to obtain an automated form to integrate both
information and tools in our system.

Key words: Semantic Web, Systems Biology, Semantic Mediation, Amine

12.1 Introduction: Problem Statement and Development of a
Systems Biology Pilot Project

A living organism is an open system that keeps a continuous interchange of chemical
compounds, energy and information with its environment. This interchange involves
a high number of elements (molecules) related among them in a dynamic hierarchical
and modular way. Modules can be identified from the analysis of the interaction pat-
terns. At molecular level, interacting networks include protein-protein interactions,
metabolic pathways, and the different biosignalling pathways controlling intercellu-
lar cross-talk and regulation of gene expression [1]. These different local networks
are also related among them. From the previous analysis, it is easily deduced that
the integration of both structural and functional data concerning all of the involved
elements, their spatial locations and their interrelationship patterns is an essential
(but still a dawning) task for an efficient advance in biological knowledge. From the
beginning of this century, new systemic approaches to the study of living organisms
were proposed [2]. They are essential to let come into view the general rules that, as
it also occurs in Physics, must govern the biological behaviour. It is our understand-
ing that Systems Biology should include both the relationships among the elements
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of a biological system in a given steady- state and the responses of the system against
any endogenous or exogenous perturbation, with the final aim to know not only the
system itself but also its dynamics.

The available information required to get more holistic views of Molecular Bi-
ology problems increases daily, due to a large amount of data provided by Genome
Projects and high-throughput technologies. Obviously, this is a great advantage for
(and makes a great deal of) this scientific field. However, the required informa-
tion is dispersed among different information repositories, which offer redundant,
and sometimes ambiguous and/or controversial data. These facts can induce that
processes of information retrieval lose both efficiency and fidelity. Another worth-
mentioning disadvantage of the present trends and tools is the continuous over-
lapping of new information strata that frequently lead to cover up the previous
information.

To sum up, it is clear that the development and support of intelligent integration
methods for data searching, screening and analysis are absolutely required. These
new tools should accomplish the following properties: i) to be in favour of reaching
a consensus among the scientific community; ii) to be able to discriminate among
redundant and/or wrong information; iii) to gain the possibility to access to infor-
mation partially hidden for the web (a remarkable example of it, is for instance the
access to data contained in printed papers); iv) to be able to grow towards augmented
capabilities to be interconnected to other tools developed by the scientific commu-
nity. Working in this sense, the discovery of new emergent properties of the systems
will be allowed.

Under the name of “Amine System Project” (ASP), we have started working to
construct a pilot system for the integration of biological information related to Bio-
chemistry, Molecular Biology and Physiopathology of a group of compounds known
as biogenic amines (http://asp.uma.es). Two general objectives can be distinguished
in this project: i) development of new and more efficient tools for the integration
of information stored in databases, with the aim to detect new emergent properties
of this system; and ii) generation of in silico predictive models at different levels of
complexity. It is being carried out by a multi-disciplinary group joining biochemists,
molecular biologists and informaticians. In the following paragraphs, we present the
biological context defined as our “system” and the reasons for this choice. Never-
theless, once the outcoming tools become validated, many of them could be easily
adapted to study many other biological systems and to be compatible with many
other bioinformatics tools and repositories.

Biogenic amines are low-molecular-weight compounds derived from amino
acids. Members of the group have been working for the last 18 years on the different
aspects of the amine metabolism and the molecular bases of the physiological
effects caused by these compounds in different eukaryotic models, mainly mam-
malian cells [3–10]. Thus, the experience on the biological topic, as well as tools
and facilities available for experimental validation of the in silico-derived hypothe-
ses were important to define our system. We have been mainly devoted to those
amines synthetised from cationic amino acids in mammalian organisms. These
are: histamine (derived form histidine), and the polyamines putrescine, spermidine
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Fig. 12.1. Scheme of the most relevant biological processes modulated by histamine and
polyamines at cellular level and their physiopathological consequences on the whole organism

and spermine (derived from arginine/ornithine and methionine). The biological
processes modulated by histamine and polyamines in different human cell types and
their physiopathological consequences on a human organism were recently reviewed
by our group [11] and summarized in Figure 12.1.

Polyamines are essential polycations for every living cells known so far and play
their major roles as modulators of the central mechanisms of cell life, growth and
death [12]. Histamine is considered as an intercellular mediator of pleiotropic (and
sometimes antagonic) effects elicited through different signalling pathways in dif-
ferent target cells: anaphylactic reactions and other inflammatory responses, gastric
secretion, neurotransmission, bone-loss, fertility, angiogenesis and tumour growth.
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This short summary of the molecular pathways and physiopathological processes
related to histamine is enough to show how many biomolecular interactions are in-
volved in its biological missions and how dispersed the amine-related information
can be among many different repositories of specialised bibliography and databanks
of many different biomedical areas. In some human cell types (for instance, mast
cells or macrophages), both polyamines and histamine are essential elements for
their specific physiological roles and it is proven that their metabolic pathways keep
a molecular cross-talk at different levels [11]. In any case, pathological conditions
associated to both polyamine and histamine affect an important percentage of the
humanity at any stage of our lives. These circumstances guarantee the fruitfulness
of any effort towards a more integrated analysis of the huge quantity of dispersed
biochemical and phenomenological information that is required to generate new
strategies for a better control of the polyamine/histamine-related diseases.

During the second part of the 20th century, an impressive quantity of high qual-
ity work was released from reductionistic approaches. It has provided information
about almost every element involved in polyamine metabolism in different cell types.
However, most of the attempts to use this information to drive intervention strate-
gies has failed, since evolution has selected robust and sophisticated mechanisms
to compensate alterations in the most essential pathways. Consequently, the scien-
tific community will not fully profit from all these efforts until a more systemic
view of the regulatory mechanisms associated to amine biochemistry is reached. The
application of Systems Biology technologies could allow us to obtain a more ex-
tended, dynamics and fruitful level of knowledge on the causes and consequences of
alterations in the amine-related pathways, that is, in the highly relevant physiopatho-
logical processes related to amine metabolism. Some examples of this assessment
are the following examples of the application of our system, which are considered
among our present aims: a) to obtain predictions on the structural and functional
alterations of a given molecule produced by its interactions with others (protein,
nucleic acid, metabolite or drug); b) to locate dynamic bifurcation points and puta-
tive hysteretical behaviour of the involved metabolic pathways being altered under
pathological conditions or treatments; c) to determine the molecular structural and
functional relationships among the amine-related biomolecules and the other cellular
components. This emergent knowledge could suggest new strategies for their control
and intervention, as explained in [13].

12.2 The Semantic Web: Practical Usage in Systems Biology

As mentioned before, retrieval of the impressive quantity of information disperse
in different growing databases is essential for efficient use of the research invest-
ments and for advance of knowledge, not only in the amine field, but also in any
biological/biomedical problem. The rapid increase in both volume and diversity
of “omic” data further stress the necessity for development and adoption of data
standards. A recent trend in data standard development has been to use eXtensible
Markup Language (XML, http://www.w3.org/XML/) as the preferred mechanism to
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define data representations. However, XML cannot provide the necessary elements
to achieve the level of interoperability required by the highly dynamic and integrated
bioinformatics applications.

To solve this problem, an explicit description of the semantics in biological
databases is required. This can be achieved by ontologies describing the biologi-
cal systems. Ontologies provide a formal representation of the real world, shared by
a sufficient amount of users, by defining concepts and relationships between them.
In order to provide semantics to web resources, instances of such concepts and rela-
tionships are used to annotate them. These annotations over the resources, which are
based on ontologies, are the foundation of the Semantic Web [14]. Given the size of
the web, we have to deal with large amounts of knowledge. All this information must
be represented and managed efficiently to guarantee the feasibility of the Semantic
Web.

Knowledge representation and reasoning about this knowledge is a well-known
problem for artificial intelligence researchers. Explicit semantics is defined by means
of formal languages. Description Logics [15] is a family of logical formalisms for
representing and reasoning about complex classes of individuals (called concepts)
and their relationships (expressed by binary relations called roles). Description Log-
ics are intended for formal knowledge representation and are based on a structured,
decidable fragment of FOL (first Order Logic). The combination of formal knowl-
edge representation altogether with the definition of formal but efficient reasoning
mechanism is crucial for reasoning in Description Logics. Description Logics for-
malism allows the description of concepts, relationships and individuals (i.e. the
knowledge base), and all of them together with complex concept formation and con-
cept retrieval and realization provide a query/reasoning language for the knowledge
base. Research in Description Logics deals with new ways to query a knowledge
base efficiently.

The ongoing standards of current web-based ontology definition languages (such
as OWL, http://www.w3.org/TR/owl-features/) are based on Description Logics.
These languages provide mechanisms to define classes and properties and their
instances. Web Ontology Language (OWL) is a markup language for publishing and
sharing data using ontologies on the Internet. OWL is a vocabulary extension of the
Resource Description Framework (RDF, http://www.w3.org/RDF/) and is derived
from the DAML + OIL Web Ontology Language (http://www.w3.org/Submission/
2001/12/). Together with RDF and other components, these tools make up the
Semantic Web project. OWL was developed mainly because it has more facilities
for expressing meaning and semantics than XML, RDF, and RDF-S, and thus OWL
goes beyond these languages in its ability to represent machine interpretable contents
on the web and perform reasoning over this knowledge.

OWL is seen as a major technology for the future implementation of a Seman-
tic Web. OWL was designed specifically to provide a common way to process the
content of web information. The language is intended to be read by computer ap-
plications instead of humans. Since OWL is written in XML, OWL information
can be easily exchanged between different types of computers using different op-
erating systems, and application languages. OWL’s main purpose will be to provide
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standards that provide a framework for asset management, enterprise integration and
the share and reuse of data on the Web (taking advantage of the reasoning capabilities
that it provides being based on Description Logics).

Semantic Web technologies provide a natural and flexible solution for integrat-
ing and combining two levels of abstraction, the data level and the knowledge level,
which are related by means of metadata. The information is annotated with semantic
contents/metadata that commit with a domain ontology. The semantic interoperabil-
ity among applications depends on their matching capability between information
and knowledge schemas. Generally, this task is carried out at the implementation
level, building a syntactic model shared among applications. Ontologies make pos-
sible to attain this objective by adding a semantic layer on the syntactic model with
knowledge of what the information represents. In this way, some research areas are
making a big effort to represent the knowledge they have by means of big ontologies
that tend to become standards for representing information. However, these ontolo-
gies describe usually generic terms that explain the basis of the domain, and cannot
be directly applied to annotate the data of common databases.

Thus, Bioinformatics researchers are developing several domain ontologies, rep-
resenting big subjects in biology: protein ontology [16], sequence ontology [17] and
gene ontology [18]. The main reasons to use an ontology are: to share common
understanding of the structure of information among people or software agents, to
enable reuse of domain knowledge, to make domain assumptions explicit, to sep-
arate domain knowledge from the operational knowledge and to analyze domain
knowledge. If the available ontologies does not fulfill these requirements, then it is
necessary to start the development of a new one.

12.3 Architecture and Future Prospects

As stated in the introduction of the “Amine System Project” we have started the
building of a pilot system for the integration of biological information related to
Biochemistry, Molecular Biology and Physiopathology (focusing our main interest
on a group of compounds known as biogenic amines). This section introduces the
architecture used to build this pilot system, and the way it will help researchers in
the project context.

12.3.1 The Pilot: AMine Metabolism Ontology and the Semantic
Directory Core

This section presents the Pilot developed for integrating dispersed resources, such as
online databases, web services and data transformation tools.

This Pilot is based on a generic infrastructure (Semantic Directory Core,
SD-Core), which is mainly used for registering and managing ontologies and their
relationships with distributed resources (online databases, web services and data
transformation tools).
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Fig. 12.2. Conceptual architecture of the Amine System Project. The kernel of the system
is composed of a Semantic Directory and several Data Services. The Mediator and its Web
interface provide an integrated access to the information

Previous works [19, 20] have allowed us to identify the minimum elements that
can be useful for building Semantic Web applications, and they are the core of the
proposed infrastructure (Figure 12.2). The internal elements of the SD-Core (Figure
12.3) are composed of a set of inter-related ontologies, which describe its semantics,
and tools for taking advantage of this semantics. These ontologies include an on-
tology to manage metadata about ontologies registered in the SD-Core (Ontology
Metadata Vocabulary, OMV), and an ontology to manage the metadata of regis-
tered resources and their relationships with registered ontologies (SD-Core Metadata
Ontology, SDMO).

Tools to manage metadata represented as ontologies include from a simple OWL
parser to a complex ontology reasoner. We make use of Jena (http://jena.sourceforge.
net/) to access this knowledge in a first version that does not require the installation
of any additional elements as a reasoner. However, the reasoning capabilities of
Jena are limited, and it is not possible to infer new knowledge from the information
registered in the system. For this reason, we have developed a version including the
use of a reasoner, Racer [21], to improve the query results by taking advantage of
the reasoning mechanisms it uses (concepts classification, concepts subsumption,
complex concepts, etc.). However, Racer requires a license for being used, so the
addition of this reasoner to the system has been carried out through the DIG API
(http://dl.kr.org/dig/) (that provides Racer). In this way, the SD-Core can be changed
for using another DIG compliant reasoner by installing and replacing Racer for other
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Fig. 12.3. Internal Elements of the SD-Core. The metadata used by SD-Core is represented as
ontologies and managed by an ontology parser. The metadata about resources and ontologies
is modified and accessed through three components. (Abbreviations are defined in the text)

Reasoner. Thus, the users interested in our proposal and who are not able to acquire
a Racer license can make use of it.

When using any reasoner, for enhanced -DL based - reasoning mechanisms, it
usually implies that the Web Server will have an overhead because of the reasoner
activities. Thus, the way in which it has been included is by means of its installation
in a remote machine thereby avoiding to overhead the server.

12.3.2 Ontology-Based Mediation

SD-Core provides necessary elements to deal with ontologies (and reasoning with
them if a reasoner is included), but cannot fulfill all the requirements of the ASP
project itself. The integration of information is a key requirement in Systems Biology
and also in our project. For this reason we have adopted a mediator-based approach.

The main goal of mediation systems is to allow users to perform queries over het-
erogeneous databases, as if they were only one, using an integration schema. Media-
tors offer interfaces in order to query the system in terms of the integration schema.
Thus, software developers can build applications that make use of distributed and
heterogeneous databases as if they were a centralized database.

Internally, mediators transform user queries into a set of sub-queries that other
software components (the wrappers), which encapsulate data sources’ capabilities,
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will solve. Recently, the research has been devoted to the problem of Semantic Me-
diation, because it introduces the possibility of taking advantage of explicit semantics
and reasoning mechanisms to provide better solutions.

Semantic mediation adds a few additional considerations to the logical infor-
mation integration problems. In this scenario, sources not only export their logical
schema, but also their conceptual model to the mediator, thus exposing their con-
cepts, roles, classification hierarchies, and other high-level semantic constructs to
the mediator. Semantic Mediation allows information sources to export their schema
at an appropriate level of abstraction to the mediator. Mediators are applications that
offer a transparent access to the data in distributed resources, being considered for
the users as a single database. In this way, a Semantic Mediation system is a system
that offers transparent access to the knowledge in distributed resources, being con-
sidered as a single knowledge-base. In this context Semantic Mediation systems are
those in which the integrated resources are knowledge-bases (or resources enveloped
to enable their access as a knowledge-base).

In our pilot, we focus on a intermediate kind of systems, Ontology-Based Medi-
ation, in which data resources are kept unmodified and are registered to make their
semantics explicit. The mediator takes advantage of this knowledge about the re-
sources in order to better integrate the information (taking advantage of the semantics
and reasoning mechanisms), but the resources do not change their interface allowing
existing applications to keep using them.

The mediator can be developed from scratch, building all the required com-
ponents to obtain the semantics and then use it to solve the integration problem.
Nevertheless, the pilot uses the SD-Core for building the Ontology-Based Mediation
System, thus avoiding the development of specific tools to deal with semantics.

In the pilot the sources’ query capabilities are published as Web Services (called
in our proposal Data Services). The goal of Data Services is to allow applications to
access data repositories and data providing service functionalities by means of Web
Services. The presented infrastructure (SD-Core) is used to register these services,
defining their semantics with respect to previously registered ontologies.

The architecture of the proposed Ontology-Bases Mediator is composed of four
main components, that can be provided as distributed components. The main advan-
tage of this proposal is that the extension or modification of any part of the mediator
will involve the modification of a single component, keeping the other components
unchanged. The components are described as follows (see Figure 12.4):

• Controller: this component has as main task the interaction with the user in-
terface, providing solutions as ontology instances for user queries (described in
terms of one of the ontologies registered in the semantic directory). The queries
are received as conjunctive queries in terms of one of the ontologies registered in
the SD-Core.

• Query Planner: the task of this component is to find a query plan (QP), using
the SD-Core, for a query described in terms of one of the ontologies registered
in the Semantic Directory (O). The use of the SD-Core in combination with a
reasoner will provide the mediator with the possibility of improving the results.
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Fig. 12.4. Web Interface to make use of the mediator. The start point of this interface allows
the user to search the protein for which he/she wants to know the 3D structure. Below the
query for this first step is shown

Thus, when a query includes a concept, but it is not present in the resources, any
of its sub-concepts could be used to solve de query.

• Query Solver: this component analyzes the query plan (QP), and performs the
corresponding call to the data services implied in solving the sub-queries (SQ1,
..., SQn) of the query plan (R1, ..., Rn).

• Integrator: The results sent by data services (R1, ..., Rn) are composed by this
component, obtaining a set of instances representing the result to the user query.

As far as any of the existing ontologies do not cope exactly with the require-
ments of our project we have started the development of a new ontology, the AMine
Metabolism Ontology (AMMO). AMMO represents the minimum number of con-
nections that can allow us to collect and to connect information from the different
local biomodules considered in an eukaryotic cell. In practical terms, it is an ambi-
tious information flow network, that would require many biocomputational efforts
to be functional on the different Databases and Services associated to each of these
concepts, as well as many validation efforts on experimental amine-related biological
data (as expressed among our aims in the Introduction). At present, we are generat-
ing more specific ontologies, that can be considered as “local ontologies” (to keep
a nomenclature in parallel to the situation in vivo). Of course, these local ontologies
will be progressively integrated in AMMO.

Our present on-going efforts are focused on local ontologies recruiting informa-
tion from Databases and Services on protein structures and interactions with other
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proteins or ligands. As it can be deduced from these lines, once the tools have
been validated on the amine system, these resources could be applied to any other
molecular biology topic. New information concerning predictive models, the AMMO
evolution and validated tools and services generated from it will be available in the
web page (http://asp.uma.es).

The mediator provides methods in order to send queries and retrieve the infor-
mation. However, end-users will not have to implement an application to make use
of the mediator and discover the advantages of our proposal. For this reason we
have provided a first implementation of a front-end to test the mediator from a Web
browser. This Web interface provides several use cases of biological interest in the
ASP project. The queries (described in terms of the AMMO ontology) deal by the
mediator in each use case are shown for expert users with knowledge in ontologies
and conjunctive queries. Other users can run the application in order to get the result
without getting intermediate results (see Figure 12.5).

12.3.3 Conclusion

As stated in the first section, any biological system presents several local
biomolecular interaction networks that can be studied in silico by using differ-
ent technologies, so that emergent information and a more dynamic picture of
it can be obtained. Macromolecular interactions involved in gene regulation and
signal transduction, intercellular communication and metabolic complexes can
be studied by applying Graph Theory [22–25] on the results obtained from data
mining from interaction databases, such as DIP (http://dip.doe-mbi.ucla.edu/), PPI
(http://fantom21.gsc.riken.go.jp/PPI/), Transfac (http://www.gene-regulation.com/
pub/databases.html) and others. The information provided by this technology is
essential to detect elements having the major regulatory weight on the system (mod-
ule hubs or connectors among different modules). The development of better tools
able to join, screen and score the pre-existing information in databases is required
in order to increase fidelity and efficiency of the emergent information from these
approaches.

On the other hand, the behaviour of the different metabolic pathways, respon-
sible for the interchange of compounds and energy with the environment, and their
responses to different alterations (external stimuli, genetic changes and/or drug treat-
ments) can be modelled in silico by following the rules of Enzymology for mathe-
mathical formalization of enzyme kinetic and turn-over and Flux Control Theory
[26, 27]. These technologies make possible a dynamic view of the evolution of the
systems from an initial steady-state to the next, and provide information on the re-
actions with a major incidence on the flux of the pathway, which can change under
different circumstances.

Even a single element (an enzyme, nucleic acid or others) can be considered
as an interactive system, having a three-dimensional (3D) structure responsible
for the information concerning its biological function. The 3D structure of a sin-
gle macromolecule can be obtained by biophysical methods applied on purified
versions of the molecule. However, these experimental approaches (for instance,



288 I. Navas-Delgado et al.

Fig. 12.5. Web Interface to make use of the mediator. The start point of this interface allows
the user to search the protein for which he/she wants to know the 3D structure. Below the
query for this first step is shown
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X-ray crystallography, NMR, and other spectroscopical techniques) frequently
provide us just a static view of the molecule, losing information about confor-
mational changes that are behind any biological function. Protein Data Bank
(http://www.rcsb.org/pdb/home/home.do) stores information on the macromolecular
3D structures characterized so far. Molecular dynamics calculations applied to
macromolecules can overcome this restriction, and it is considered nowadays a very
promising technology for the characterization of biomolecular interactions and drug
design. Even more, when the 3D structure of a given macromolecule cannot be
obtained experimentally, biocomputational tools can allow us to predict its structure,
under certain restrictions, with high-accuracy (for instance, ModWeb Database
and Services, http://alto.compbio.ucsf.edu/modweb-cgi/main.cgi). Then, Molecular
dynamics calculations can also be applied on these predicted structures to obtain
information about dynamics during and after interactions/reactions with different
ligands [28].

In our group, we have developed models at the 3 different levels mentioned
above. For instance, a human transcription factor network model has been obtained,
which clearly shows connectors between inflammation and cancer (two of the pro-
cesses related to amine-metabolism) [29]. We have also developed predictive models
on metabolic pathways related to polyamine metabolism in mammalian (including
human) tissues, that can explain some of the phenomenological results obtained
with transgenic animals and with different drug-treated models in vivo and in vitro
[30, 31]. Finally, by applying protein modelling techniques, the first 3D model for
the enzyme responsible of histamine synthesis in animals and humans was obtained,
which has opened the possibility to design new and more specific anti-histaminic
compounds [32].

All of these technologies involve capture and organization of information coming
from different databases and services. Following our own interpretation of Systems
Biology (see first section), we notice that all local biomodules of a system are con-
nected and should be globally analysed, as far as possible. Reaching this goal is a
long-term project that overpasses the activity of a single working group. Neverthe-
less, supported by the advantages of the Semantic Web (Section 12.2), we can keep
the objective to work on the way to obtain an automated form to integrate both in-
formation and tools in our system. For this purpose, we have designed the presented
architecture.
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Summary. Bioinformatics studies the acquisition, process, store, distribution, analysis, etc of
biological information so as to understand the meanings of biological data by means of mathe-
matics, computer science and biological techniques. Some researches on Bioinformatics, such
as the properties of DNA and the Watson-Crick’s law, provide a probability of computing
with DNA molecules. DNA computing is a new computational paradigm that executes par-
allel computation with DNA molecules based on the Watson-Crick’s law. The procedure of
DNA computing can be divided into three stages: encoding information, computation (molec-
ular operations) and extraction of solution. The stage of encoding information is the first and
most important step, which directly affects the formation of optimal solution. The methods of
encoding information can be divided into two classes: the methods of encoding information in
graphs without weights and the methods of encoding information in graphs with weights. The
previous researches, which belong to the first class, such as Adleman’s encoding method [1]
for the directed Hamiltonian path problem, Lipton’s encoding method [2] for the SAT prob-
lem, and Ouyang’s encoding method [3] for the maximal clique problem, do not require the
consideration of weight representation in DNA strands. However, there are many practical
applications related to weights. Therefore, weight representation in DNA strand is an impor-
tant issue toward expanding the capability of DNA computing to solve optimization problems.
Narayanan et al [6] presented a method of encoding weights by the lengths of DNA strands.
Shin et al [6] proposed a method of encoding weights by the number of hydrogen bonds in
fixed-length DNA strand. Yamamoto et al [7] proposed a method of encoding weights by the
concentrations of DNA strands. Lee et al [9] proposed a method of encoding weights by the
melting temperatures of fixed-length DNA strands. Han et al [10, 11] proposed a method of
encoding weights by means of the general line graph. They also gave a method of encod-
ing weights [12] by means of the relative length graph and several improved DNA encoding
methods [13–16] for the maximal weight clique problem, the traveling salesman problem, the
minimum spanning tree problem and the 0/1 knapsack problem. In this chapter, I collect and
classify the present methods of encoding information in DNA strands, which will benefit the
further research on DNA computing.
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13.1 Introduction

Bioinformatics studies the acquisition, process, store, distribution, analysis, etc of
biological information so as to understand the meanings of biological data by means
of mathematics, computer science and biological techniques. Some researches on
Bioinformatics, such as the properties of DNA, the Watson-Crick’s law, provide a
probability of computing with DNA molecules, so DNA computing is an applied
branch of Bioinformatics. The results of researches on Bioinformatics will improve
the capabilities of DNA computing.

DNA computing is a computational paradigm that uses synthetic or natural DNA
molecules as information storage media, in which the techniques of molecular biol-
ogy, such as polymerase chain reaction, gel electrophoresis, and enzymatic reaction,
are used as computational operators for copying, sorting, and splitting/concatenat-
ing information, respectively. Based on the massive parallelism of DNA computing,
many researchers tried to solve a large number of difficult problems. In 1994, Adle-
man [1] solved a 7-vertex instance of the directed Hamiltonian path problem by
means of the techniques of molecular biology. This creative research opened up a
new way to computation with DNA molecules. A major goal of subsequent research
in the field of DNA computing is to understand how to solve NP-complete problems.
To address this goal, Lipton [2] abstracted a parallel molecular model on the basis
of Adleman’s experiment and applied it to solve the SAT problem; Ouyang et al [3]
solved the maximal clique problem by means of DNA molecules; Head et al [4]
solved the maximal independent set problem using operations on DNA plasmids;
Sakamoto et al [5] presented a molecular algorithm of Boolean calculation by means
of DNA hairpin formation. These previous researches on DNA computing do not
require the consideration of weight representation in DNA strands.

However, there are many practical applications related to weights, such as the
shortest path problem, the traveling salesman problem, the maximal weight clique
problem, the Chinese postman problem, and the minimum spanning tree problem.
Therefore, weight representation in DNA strand is an important issue toward ex-
panding the capability of DNA computing to solve optimization problems. There
exist previous works to represent weights in DNA molecules. Narayanan et al [6]
presented a method of encoding weights by the lengths of DNA strands. Shin et al [6]
proposed a method of encoding weights by the number of hydrogen bonds in fixed-
length DNA strand. Yamamoto et al [7] proposed a method of encoding weights by
the concentrations of DNA strands. Lee et al [9] proposed a method of encoding
weights by the melting temperatures of fixed-length DNA strands. Han et al [10, 11]
proposed a method of encoding weights by means of the general line graph. They
also gave a method of encoding weights [12] by means of the relative length graph
and several improved DNA encoding methods [13–16] for the maximal weight clique
problem, the traveling salesman problem, the minimum spanning tree problem and
the 0/1 knapsack problem.

In this chapter, we collect and classify the present DNA encoding methods in the
field of DNA computing, which will benefit the further research on DNA computing.
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13.2 Preliminaries to DNA Computing

In order to easily understand DNA encoding methods and the corresponding DNA
algorithms, we first present some basic knowledge related to DNA computing.

13.2.1 Orientation of DNA Molecule

When DNA molecules combine with each other to form a DNA strand, 5′-phosphate
group of one nucleotide always combine with 3′-hydroxyl group of another nu-
cleotide by phosphodiester bonds, shown as P in Fig. 13.1. This is called as 5′-3′
orientation or 3′-5′ orientation [17, 18]. The nucleotide with 5′ free-end being lo-
cated at the most left end and 3′ free-end being located at the most right end is
marked as 5′-X1X2 . . .Xn-3′, and the nucleotide with 3′ free-end being located at
the most left end and 5′ free-end being located at the most right end is marked as
3′-X1X2 . . .Xn-5′, where Xi denotes one letter in the alphabet {A, G, C, T}. Take
Fig. 13.1 as an example. The DNA strand shown in Fig. 13.1(a) is marked as 5′-
AGC-3′, and the DNA strand shown in Fig. 13.1(b) is marked as 3′-CGA-5′. Note
that 5′-AGC-3′ and 3′-CGA-5′ are the same DNA molecules. In this chapter, we
use the following representation: The DNA molecule 5′-X1X2 . . .Xn-3′ is written as
X1X2 . . .Xn, and 3′-X1X2 . . .Xn-5′ is written as −X1X2 . . .Xn [10, 11, 13, 14]. Note that
−X1X2 . . .Xn = XnXn−1 . . .X1.

Definition 13.2.1.1 For any DNA strand s, let h represent a mapping function from
each base to its complement, or h(A) = T , h(G) = C, h(C) = G, h(T ) = A. The ob-
tained DNA strand h(s) is called the complement of s, and its reversal −h(s) is called
the reverse complement of s. The mapping function h is called the complementary
mapping from s to s′ [10, 11, 14].

Take the DNA strand s = AGC as an example. The complement of s is h(s) =
TCG, and the reverse complement is −h(s) = −TCG = GCT . Obviously, the DNA
strand AGC can combine with −TCG to form a double-stranded DNA (dsDNA)
through hydrogen bonds, as shown in Fig. 13.2. It can be concluded that any DNA
strand s can combine with its reverse complement −h(s) to form a dsDNA through

Fig. 13.1. Orientation of DNA molecule. (a) 5′-3′ orientation and (b) 3′-5′ orientation
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Fig. 13.2. A double-stranded DNA

hydrogen bonds. Note that DNA double strand consists of two DNA sequences
α1α2 . . .αk and −β1β2 . . .βk that satisfy the Watson-Crick’s law, that is, for each
i = 1, 2, . . . , k, k∈Z, αi and βi must be complements, and the two complementary
sequences anneal in an antiparallel fashion.

13.2.2 Basic Operations in DNA Computing

A tube [17] is defined as a multiset of words on the alphabet {A, C, G, T}. A multiset
means a set in which the repeated words are regarded as different elements. For
example, the multiset {AGC, AGC, GCTA} has three elements, and the set {AGC,
AGC, GCTA} has two elements since the repeated words in a set are regarded as one
element. Actually, a tube is a multiset of DNA strands. The basic operations [17] in
DNA computing are as follows.

(1) Merge: For two tubes N1 and N2, it forms the unite N1 ∪N2 (multiset).
(2) Ampli f y: For a given tube N, it copies N into two shares (only for multiset).
(3) Separate: For a given tube N and a word w, w ∈ {A,C,G,T}∗, it generates

two tubes: +(N,w) and −(N,w), where +(N,w) consists of all the strands including
w, and −(N,w) consists of all the strands excluding w.

(4) (N, ≤n): For a given tube N and an integer n, it generates a tube of all strands
in N whose lengths are less than or equal to n.

(5) B(N,w) and E(N,w): For a given tube N and a word w, B(N,w) generates a
tube of all strands in N that begin with w, and E(N,w) generates a tube of all strands
in N that end with w.

(6) Detect: For a given tube N, it returns true if there exists at least one DNA
strand in N, otherwise it returns false. This can be done through gel electrophoresis.

All the above operations can be implemented by means of the present biological
techniques.
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13.3 DNA Encoding Methods for the Problems Related
to Graphs without Weights

Based on the massive parallelism of DNA computing, the previous researchers fo-
cused on NP-complete problems. These previous researches do not require the con-
sideration of weight representation in DNA strands. Some of them are given in the
following.

13.3.1 DNA Encoding Method for the Hamiltonian Path Problem

In 1994, Adleman [1] solved an instance of the directed Hamiltonian path problem
by means of the molecular biology techniques. A 7-vertex graph was encoded in
DNA strands and the operations were performed with standard DNA protocols and
enzymes. This experiment demonstrates the feasibility of carrying out computations
at the molecular level.

The Hamiltonian Path Problem

For a directed graph G = (V,E), a path is called a Hamiltonian path if and only if it
contains each vertex in G exactly once. A directed graph G with designated vertices
vin and vout is said to have a Hamiltonian path if and only if there exists a path
e1e2 . . .en that begins with vin, ends with vout and enters every other vertex exactly
once.

Fig. 13.3 shows a graph which for vin = 0 and vout = 6 has a Hamiltonian path,
given by the edges 0→1, 1→2, 2→3, 3→4, 4→5, 5→6. If the edge 2→3 were
removed from the graph, the resulting graph with the same designated vertices would
not have a Hamiltonian path. Similarly, if the designated vertices were changed to
vin = 3 and vout = 5, there would be no Hamiltonian path.

For a directed graph G = (V,E), the Hamiltonian path problem (HPP) is to deter-
mine whether there exists a Hamiltonian path in it, that is, to find a directed path that
starts with a given vertex, ends with another one, and visits every other vertex exactly
once. HPP has been proved to be NP-complete. There are well known algorithms for
deciding whether a directed graph with designated vertices has a Hamiltonian path,
but all known deterministic algorithms for HPP have exponential worst-case com-
plexity. In 1994, Adleman [1] designed a non-deterministic DNA algorithm for HPP
which runs in a polynomial time.

Fig. 13.3. The directed graph solved by Adleman
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DNA Encoding Method

Given a directed graph G = (V,E) with designated vertices vin = v0 and vout = v6, as
shown in Fig. 13.3, Adleman [1] proposed the following DNA encoding method for
solving the Hamiltonian path problem.

(1) Each vertex vi in G was associated with a random 20-mer DNA strand denoted
by si.

(2) For each edge ei j = (vi,v j) in G, a DNA strand si j was created which was 3′
10-mer of si (unless i = 0 in which case it was all of si) followed by 5′ 10-mer of s j

(unless j = 6 in which case it was all of s j).
The choice of random 20-mer DNA strand for encoding vertices in G is based

on the following rationale [1]. First, choosing randomly several DNA strands from
420 20-mer DNA strands would unlikely share long common subsequences, which
might result in unintended binding during the ligation step. Second, some deleteri-
ous features such as hairpin loops would unlikely arise in the several 20-mer DNA
strands selected from 420 20-mer DNA strands. Finally, choosing 20-mers assured
that binding between splint strands and edge strands would involve ten base pairs
and would consequently be stable at room temperature.

DNA Algorithm

Given a directed graph G = (V,E) with designated vertices vin = v0 and vout = vt .
Based on the DNA encoding method, Adleman [1] designed the following DNA
algorithm to solve the Hamiltonian path problem.

(1) Merge: All the DNA strands h(si) and si j are mixed together in a single
ligation reaction. Based on the Watson-Crick’s law, generate random paths through
the graph G.

(2) Ampli f y: The product of step 1 was amplified by polymerase chain reaction
(PCR) using primers s0 and h(st). Thus, only those DNA molecules encoding paths
that begin with v0 and end with vt were amplified. Keep only those paths that begin
with vin and end with vout through the operations of B(N,h(s0)) and E(N,h(st )).

(3) (N, ≤20n): Keep only those paths that enter exactly n vertices.
(4) +(N, h(si)): Keep only those paths that enter all the vertices at least once

through the operation +(N, h(si)), 1 ≤ i ≤ n, where n is the number of vertices in G
(5) Detect: If any paths remain, return true, otherwise return f alse. See the basic

operations in section 13.2.2.
For more details, please see the reference [1].

13.3.2 DNA Encoding Method for the SAT Problem

Based on Adleman’s experiment, Lipton [2] showed how to solve another famous
NP-complete problem, the SAT problem. The advantage of the results is the huge par-
allelism inherent in DNA computing, which has the potential to yield vast speedups
over conventional silicon-based computers.
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The SAT Problem

Consider the Boolean formula F = (x∨ y)∧ (¬x∨¬y), where the variables x and y
are allowed to range only over the two values 0 and 1, ∨ is the logical OR operation,
∧ is the logical AND operation, and ¬x denotes the negation of x. Usually, one thinks
of 0 as f alse and 1 as true. The SAT problem is to find the Boolean values for x and
y that make the formula F true.

In general, a Boolean formula is of the form C1 ∧C2 ∧·· ·∧Cm, where Ci(1 ≤ i ≤
m) is a clause; a clause is of the form x1 ∨x2 ∨·· ·∨xk, where xi is a Boolean variable
or its negation. The SAT problem is to find the values for the variables that make the
formula have the value 1, that is, to find the values for the variables that make each
clause have the value 1. The SAT problem has been proved to be NP-complete.

DNA Encoding Method

Given a Boolean formula F containing n variables x1, x2, . . . , xn, Lipton [2] designed
the following DNA encoding method for the SAT problem.

(1) Construct a graph G with vertices a1, x1, x′1, a2, x2, x′2, . . . , an+1, and with
edges from ai to both xi and x′i and from both xi and x′i to ai+1, as shown in Fig. 13.4.

For the constructed graph G, each stage of a path has exactly two choices: If it
takes the vertex with an unprimed label, or xi, it encodes a 1; if it takes the vertex
with a primed label, or x′i, it encodes a 0. For example, the path a1x′1a2x2a3 encodes
the binary number 01. Obviously, each path starting with a1 and ending with an+1 in
G encodes an n-bit binary number.

(2) Each vertex vi (1 ≤ i ≤ 3n + 1) in G is assigned a random DNA strand si of
length 20.

The DNA strand si corresponding to vertex vi has two parts. The first half is
denoted by s′i and the second half is denoted by s′′i . That is, s′is′′i is the code corre-
sponding to vertex vi, vi∈{a1,x1,x′1,a2,x2,x′2, . . . ,an+1}.

(3) For each edge ei j = (vi,v j), −h(s′′i s′j) is used to encode it, where −h(x)
denotes the reverse complement of x.

Fig. 13.4. The graph corresponding to a Boolean formula that contains 2 variables x1, x2
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DNA Algorithm

For the DNA algorithm proposed by Lipton [2], let S(t, i,a) denote all the sequences
in tube t for which the ith bit is equal to a, a∈{0,1}. This is done by performing one
extraction operation that checks for the sequence corresponding to xi {if a = 1} or
x′i {if a = 0}. Consider the Boolean formula F = (x∨ y)∧ (¬x∨¬y). The following
steps can solve it.

(1) Construct a graph G with vertices a1, x1, x′1, a2, x2, x′2, a3, and with edges
from ai to both xi and x′i and from both xi and x′i to ai+1, 1 ≤ i ≤ 2. Each vertex in G
is assigned a random DNA strand of length 20. For each edge ei j = (vi,v j), −h(s′′i s′j)
is used to encode it.

(2) Let t0 be the tube including the sequences corresponding to a1x1a2x2a3,
a1x′1a2x2a3, a1x1a2x′2a3, a1x′1a2x′2a3.

(3) Let tt1 be the tube corresponding to S(t0,1,1). Let the reminder be tt ′1, and tt2
be S(tt ′1,2,1). Pour tt1 and tt2 together to form t1.

(4) Let tt3 be the tube corresponding to S(t1,1,0). Let the reminder be tt ′3 and tt4
be S(tt ′3,2,0). Again pour tt3 and tt4 together to form t2.

(5) Detect DNA in the last tube t2. If there is any DNA in t2, the formula is
satisfiable.

Now consider the SAT problem on n variables and m clauses. Suppose that, as
is usual, each clause consists of a fixed number of variables or their negations. Let
C1, C2, . . . , Cm be the m clauses. A series of tubes t0, t1, . . . , tm are constructed
so as to let tk be the set of n-bit numbers in which each element x satisfies that
C1(x) = C2(x) = · · · = Ck(x) = 1, where Ci(x) is the value of Ci on x.

(1) Construct a graph G with vertices a1, x1, x′1, a2, x2, x′2, . . . , an+1, and with
edges from ai to both xi and x′i and from both xi and x′i to ai+1, 1 ≤ i ≤ n. Each vertex
in G is assigned a random DNA strand of length 20. For each edge ei j = (vi,v j), the
DNA strand −h(s′′i s′j) is used to encode it.

(2) Let t0 be the tube including all n-bit sequences.
(3) Construct tk+1, k = 0, 1, . . . , m − 1, step by step. Let Ck+1 be the clause

x1 ∨ x2 ∨ . . .xl , where xi is a literal or its negation. For each literal xi, if xi is equal
to x j, then form S(tk, j,1); if it is equal to ¬x j, then form S(tk, j,0). The reminder of
each extraction is used for the next step. Pour all the reminders together to form tk+1.

(4) Detect DNA in the tube tm. If there is any DNA in tm, the formula is satisfiable.
For more details, please see the reference [2].

13.3.3 DNA Encoding Method for the Maximal Clique Problem

In 1997, Ouyang [3] solved the maximal clique problem using the techniques of
molecular biology. A pool of DNA molecules corresponding to the ensemble of six-
vertex cliques was built, followed by a series of selection processes. The algorithm
is highly parallel and has satisfactory fidelity.
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The maximal Clique Problem

Mathematically, a clique is defined as a subset of vertices in a graph, in which each
vertex is connected to all other vertices in the subset. The clique including the most
vertices is called the maximal clique. The maximal clique problem asks: Given an
undirected graph with n vertices and m edges, how many vertices are in the maximal
clique? The corresponding decision problem has been proved to be NP-complete.
Take the graph shown in Fig. 13.5(a) as an example. The vertices (5, 4, 3, 2) form
the maximal clique, that is, the size of the maximal clique is four.

DNA Encoding Method

For an undirected graph G = (V,E) with n vertices, Ouyang [3] designed the follow-
ing DNA encoding method to solve the maximal clique problem.

(1) Each clique in G is represented as an n-bit binary number. A bit set to 1
represents the vertex being in the clique, and a bit set to 0 represents the vertex being
out of the clique. Thus, the set of all the cliques in G is transformed into the ensemble
of n-bit binary numbers, which is called the complete data pool [3].

(2) Each bit in a binary number corresponds to two DNA sections: one for the
bit’s value (Vi) and another for its position (Pi). The length of Vi is set to 10 base pairs
if the value of Vi is equal to 0, and 0 base pair if the value of Vi is equal to 1. Thus,
the ensemble of DNA strands representing the complete data pool is constructed.

(3) The restriction sequence is embedded within Vi if the value of Vi is equal to 1.
Thus, for a DNA strand representing an n-bit binary number, there are n value

sections (V0 to Vn−1) sandwiched sequentially between n+1 position sections (P0 to
Pn). The last position section Pn is needed for PCR amplification.

DNA Algorithm

In order to easily understand the DNA algorithm for the maximal clique problem,
the definition of complementary graph [3] is given as follows.

Definition 13.3.3.1 For an undirected graph G = (V,E), the graph G′ = (V,E ′) only
containing all the connections absent in G is called the complementary graph of G.

Take the graph shown in Fig. 13.5(a) as an example, Fig. 13.5(b) is its comple-
mentary graph. According to definition 13.3.3.1, any two vertices connected in the

Fig. 13.5. A graph and its complementary graph. (a) An undirected graph G and (b) The
complementary graph G′ of G



302 A. Han and D. Zhu

complementary graph are disconnected in the original graph and therefore cannot
be members of the same clique; this means that the corresponding bits cannot both
be set to 1. Based on this, Ouyang [3] devised the following DNA algorithm for the
maximal clique problem.

(1) Generate the random sequence of each Pi and Vi, and then construct the com-
plete data pool by means of the technique of parallel overlap assembly (POA) [3].

The construction starts with 2n DNA strands: P0V 0
0 P1, P0V 1

0 P1, −h(P1V 0
1 P2),

−h(P1V 1
1 P2), P2V 0

2 P3, P2V 1
2 P3, −h(P3V 0

3 P4), −h(P3V 1
3 P4), etc. Each DNA strand con-

sists of two position motifs and one value motif, PiViPi+1 for even i and −h(PiViPi+1)
for odd i, where the value of Vi can be 0 or 1. The 2n DNA strands were mixed to-
gether for thermal cycling [3]. During each thermal cycle, the position string in one
DNA strand is annealed to the reverse complement of the next DNA strand. After a
few thermal cycles, a data pool with all combinations of V0V1V2 . . .Vn−1 was built.
The POA procedure was followed by PCR, and the molecules with P0 and Pn at their
ends were exponentially amplified.

(2) Eliminate all the numbers containing connections in the complementary
graph from the complete data pool. The remainder corresponds to all the cliques in
the original graph.

Guided by the complementary graph, the data pool was digested with restric-
tion enzymes. These enzymes break DNA at specific restriction sites, which were
embedded within the sequences for Vi = 1. Consider 0-2 connection in the comple-
mentary graph, that is, there were xx. . . x0x0, xx. . . x0x1, xx. . . x1x0, and xx. . . x1x1
in the data pool. The data pool was divided into two tubes, t0 and t1. In t0, the DNA
strands containing V0 = 1 were cut with A f l II. Thus, t0 contained only xx. . . x0x0
and xx. . . x1x0. In t1, the DNA strands containing V2 = 1 were cut with Spe I. Thus,
t1 contained only xx. . . x0x0 and xx. . . x0x1. And then, t0 and t1 were put into tube t,
which contained xx. . . x0x0, xx. . . x1x0 and xx. . . x0x1. That is, tube t did not contain
xxx1x1.

(3) Sort the remaining data pool to find the data containing the largest number of
1’s. The clique with the largest number of 1’s tells us the size of the maximal clique.

For more details, please see the reference [3].

13.4 DNA Encoding Methods for the Problems
Related to Graphs with Weights

The previous works deal with the problems related to graphs without weights. The
significance of these researches is that they demonstrate how DNA can be used
for representing information and solving the problems in the complexity class NP.
However, there are many practical applications related to weights. Representation
of weight information is one of the most important but also challenging problems
in DNA computing. Some of the methods representing weights in DNA strands are
given in the following.
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13.4.1 Encoding Weights by the Lengths of DNA Strands

In 1998, Narayanan et al [6] proposed a DNA encoding method of representing
weights for the shortest path problem. For a connected, weighted graph G = (V,E),
the shortest path problem is to find a path with minimum cost (weight) that begin
with a specified vertex and end with another one.

DNA Encoding Method

For a connected, weighted graph G = (V,E) with n vertices and m edges. Narayanan
et al [6] designed the following DNA encoding method for the shortest path problem.

(1) For each vertex vi (i = 1, 2, . . . , n), assign a unique DNA sequence si with
fixed length to encode it.

(2) Sort all the edges in G by distance (weight), and put their distances into a
vector D. For each distance d in D, a DNA sequence sd is randomly selected whose
length l is associated with the location of distance d and a constant factor k. Consider
k = 3 and D = {2, 5, 9, 10}, 2 is represented by a strand of length 3, 5 is represented
by a strand of length 6, and so on.

(3) For each edge ei j = (vi,v j), the DNA strand sid j is created in the following
way: if i = 1, create the strand sid j as ALL si + ALL sd + HL s j; if i > 1, create the
strand sid j as HR si +ALL sd +HL s j, where ALL represents the whole DNA strand,
HL the left half, HR the right half, and + the join operation.

DNA Algorithm

For a connected, weighted graph G = (V,E), the following steps adapted from
Adleman’s DNA algorithm [1] can extract the shortest path between the initial
vertex v1 and the destination vertex vt .

(1) Merge: Put all the DNA strands h(si) and sid j into a tube, and perform a DNA
ligase reaction in which random paths through G are formed.

(2) Ampli f y: The strands beginning with v1 are amplified through a polymerase
chain reaction using primers s1 and h(st).

(3) B(N,s1): Keep only the strands beginning with v1.
(4) E(N,st ): Keep only the strands ending with vt .
(5) All the obtained strands are sorted through gel electrophoresis. The shortest

strand corresponds to the desired solution.
For more details, please see the reference [6].

13.4.2 Encoding Weights by the Number of Hydrogen Bonds

Shin et al [7] presented an encoding method that uses fixed-length codes for repre-
senting integer and real values. In this method, the relative values of G/C contents
against A/T contents are taken into account to represent weights in the graph, which
is based on the fact that hybridization between G/C pairs occurs more frequent than
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those between A/T pairs because there are 3 hydrogen bonds between G and C,
whereas 2 hydrogen bonds between A and T . Generally, the ligation between DNA
sequences is influenced by DNA length and the G/C contents [7]: The longer the se-
quences, the more often they get hybridized; the more G/C pairs the sequences have,
the more probability they get hybridized.

Shin’s method was applied to the traveling salesman problem. For a connected,
weighted graph, the traveling salesman problem is to find a minimum cost (weight)
path that begins with a specified vertex and ends there after passing through all other
vertices exactly once.

DNA Encoding Method

For a connected, weighted graph G = (V,E), the DNA encoding method proposed
by Shin [7] is as follows.

(1) For each vertex v j, which is the common vertex of edges ei j and e jk, the DNA
sequence s j consists of 4 components: 10 bp weight sequence h(W ′′

i j), 10 bp position
sequence P′

j, 10 bp position sequence P′′
j , and 10 bp weight sequence h(W ′

jk), where
x′ denotes the first half of x, and x′′ denotes the last half of x.

(2) For each edge ei j = (vi,v j), the DNA sequence si j also consists of 4 compo-
nents: 10 bp link sequence h(P′′

i ), 10 bp weight sequence W ′
i j, 10 bp weight sequence

W ′′
i j , and 10 bp link sequence h(P′

j). The orientation of edge code is opposite to that
of vertex code.

For more details, please see the reference [7].

DNA Algorithm

The DNA algorithm proposed by Shin [7] consists of two parts: a genetic algorithm
for optimizing the DNA codes, and a molecular algorithm for simulating the DNA
computing process.

Algorithm for genetic code optimization

The codes are optimized using the following genetic algorithm.
(1) For each vertex vi, generate randomly the vertex position sequences Pi, 1 ≤

i ≤ n.
(2) For each edge ei j = (vi,v j), generate the edge link sequences, that is, the

reverse complements of the last half of the vertex position sequence Pi and the first
half of the vertex position sequence Pj.

(3) For each weight wi j on edge ei j, generate randomly the edge weight se-
quences Wi j.

(4) Generate the vertex weight sequences according to the edge weight
sequences.

(5) While (generation g ≤ gmax) do {Evaluate the fitness of each code; Apply
genetic operators to produce a new population}.

(6) Let the best code be the fittest one.
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In the genetic algorithm, the amount of G/C contents in edge sequences is opti-
mized in step 5 so as to let the edges with smaller weights have more G/C contents
and thus have higher probability being contained in the final solution. The fitness
function is to promote the paths with lower costs (path lengths) so that the minimum
cost path could be found. Let Nei j denote the number of hydrogen bonds in edge ei j,
Sh denote the total number of hydrogen bonds in all edges, Wei j denote the weight
on edge ei j, and Sw denote the sum of the weight values. The fitness function is de-
fined as follows: if |Nei j/Sh −Wei j/Sw| ≤ θ , then Fi = |Nei j/Sh −Wei/Sw|; otherwise,
Fi = 0, where the threshold value θ is determined by experiments.

Molecular algorithm

The molecular algorithm adopted the same as the iterative version of molecular pro-
gramming [19]. The iterative molecular algorithm (IMA) iteratively evolves fitter
sequences rather than simply filtering out infeasible solutions. This procedure is
summarized as follows.

(1) Encoding: Determine the code sequence using the algorithm of genetic code
optimization.

(2) While (cycle c ≤ cmax) do {Synthesis: Produce candidate solutions by molec-
ular operators; Separation: Filter out infeasible solutions by laboratory steps}.

(3) Keep only those paths that begin with Vin and end with Vin.
(4) Keep only those paths that enter exactly n+1 vertices, where n is the number

of vertices in the graph.
(5) Keep only those paths that enter all the vertices at least once.
(6) Select the path that contains the largest amount of G/C pairs, which corre-

sponds to the minimum cost path.
For more details, please see the reference [7].

13.4.3 Encoding Weights by the Concentrations of DNA Strands

Yamamoto et al [8] presented a method of encoding weights by the concentrations
of DNA strands, and used it to the shortest path problem.

DNA Encoding Method

For a connected, weighted graph G = (V,E), the DNA encoding method proposed
by Yamamoto [8] is as follows.

(1) Each vertex vi in G is associated with a 20-mer DNA sequence denoted by si.
(2) For each edge ei j = (vi,v j) in G, a DNA strand si j that is 3′ 10-mer of si fol-

lowed by 5′ 10-mer of s j is created. The relative concentration Di j of si j is calculated
by the following formula: Di j = (min/wi j)α , where min represents the minimum
weight in G, wi j represents the weight on edge ei j, and α is a parameter value.
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DNA Algorithm

Based on the DNA encoding method, the DNA algorithm [8] for the shortest path
problems is as follows.

(1) For each vertex vi in G, set the concentration of h(si) to a certain value. Note
that the concentrations of all the DNA strands h(si) are set to the same value.

(2) For each edge ei j in G, calculate the relative concentration Di j of si j according
to the formula Di j = (min/wi j)α .

(3) Put all the DNA strands h(si) with the same concentration and all the DNA
strands si j with different concentrations Di j to construct random paths through G.

(4) Amplify the DNA paths that begin with the start vertex and end with the
destination vertex.

(5) Determinate the DNA strand of encoding the shortest path.
For more details, please see the reference [8].

13.4.4 Encoding Weights by the Melting Temperatures of DNA Strands

Lee et al [9] introduced a DNA encoding method to represent weights based on
the thermodynamic properties of DNA molecules, and applied it to the traveling
salesman problem. This method uses DNA strands of fixed-length to encode different
weights by varying the melting temperatures, in which the DNA strands for higher-
cost values have higher melting temperatures than those for lower-cost values.

DNA Encoding Method

For an instance of the traveling salesman problem, Lee et al [9] gave the following
method of encoding weights.

(1) Each city sequence is designed to have a similar melting temperature. That
is, city sequences contribute equally to the thermal stability of paths.

(2) Cost sequences are designed to have various melting temperatures according
to the costs. A smaller cost is represented by a DNA sequence with a lower melting
temperature.

(3) Road sequences that connect two cities are generated using the sequences of
departure cities, costs, and arrival cities. The first part of the road sequence is the
complement of the last half of the departure city, the middle part represents the cost
information, and the last part is the complement of the first half of the arrival city.

There are several empirical methods to calculate the melting temperatures. One
of them is the GC content method that uses the content of G and C in DNA strand as
a main factor determining melting temperature.

For more details, please see the reference [9].

DNA Algorithm

The DNA algorithm modifies the PCR protocol to employ temperature gradient in
the denaturation step. The denaturation temperature is low at the beginning of PCR
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and then it increases gradually. With help of the denaturation temperature gradient
PCR (DTG-PCR), the more economical paths of lower Tm can be amplified more
intensively. The DNA algorithm presented by Lee et al [9] for the traveling salesman
problem is as follows.

(1) Generate the answer pool through the operations of hybridization and liga-
tion.

(2) Select the paths satisfying the conditions of the traveling salesman problem
through the operations of PCR with primers and affinity-separation.

(3) Amplify the more economical paths through the operation of DTG-PCR.
(4) Separate the most economical path among the candidate paths.
(5) Read the final path through sequencing.
For more details, please see the reference [9].

13.4.5 Encoding Weights by Means of the General Line Graph

Han et al [10,11] proposed a DNA encoding method to represent weights and applied
it to the Chinese postman problem, an instance of optimization problems on weighted
graphs. For a weighted, undirected graph G = (V,E), Han et al first convert it into its
general line graph G′ = (V ′,E ′), and then design the DNA encoding method based
on G′.

The Chinese Postman Problem

The Chinese postman problem is to find a minimum cost tour that a postman sets out
from the post office, walks along each street to deliver letters, and returns to the post
office. If the layout of streets is an Euler graph, the Euler tour is just what we want;
otherwise, he needs to walk along some streets more than once. The Chinese postman
problem can be abstracted as follows: For a connected, weighted, undirected graph
G = (V,E), vi ∈V , 1 ≤ i ≤ n, e j ∈ E , 1 ≤ j ≤ m, where the weight on edge e j is wj ,
wj ≥ 0, wj ∈ Z, it is to find a minimum cost (weight) tour that begins with a specified
vertex and ends there after passing through all the given edges. That is, the Chinese
postman problem is to find a shortest tour that goes through all the edges in G.

Construction of General Line Graph

Definition 13.4.5.1 For an undirected graph G = (V,E), vi ∈ V , 1 ≤ i ≤ n, e j ∈ E ,
1 ≤ j ≤ m, a mapping function f is constructed to satisfy: (1) For each edge e j ∈ E ,
there exists only one vertex v′j to satisfy f (e j) = v′j; (2) If any two edges ei and e j

are adjacent, draw an undirected edge between v′i and v′j; (3) If vi is with odd degree,
maximum one self-loop is added to each of the vertices which are mapped from
the edges linked to vi. The function f is called the mapping function from edges to
vertices, and the obtained graph is called the general line graph of G.

Take the weighted, undirected graph G shown in Fig. 13.6(a) as an example. The
procedure of mapping from edges to vertices is as follows. (1) The edges e1, e2, . . . ,
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Fig. 13.6. A weighted graph G and its general line graph G′. (a) A weighted graph G and (b)
The general line graph G′ of G

e8 are respectively mapped to the vertices v′1, v′2, . . . , v′8. (2) Adding the undirected
edges. The vertex v′1 is linked to v′2, v′8, v′7 since the edge e1 is adjacent to e2, e8,
e7. The vertex v′2 is linked to v′3, v′8, v′1 since the edge e2 is adjacent to e3, e8, e1.
Similar operation is done for other vertices v′3, v′4, . . . , v′8. (3) Adding the self-loops.
A self-loop is respectively added to v′1, v′2 and v′8 since v2 is with odd degree and v2

is linked to the edges e1, e2 and e8. A self-loop is respectively added to v′5 and v′6
since v6 is with odd degree and v6 is linked to the edges e5, e6 and e8. The obtained
general line graph G′ is shown in Fig. 13.6(b).

By means of the mapping function from edges to vertices, Han et al [10, 11]
convert the problem of searching for the shortest tour that pass through each edge
at least once into that of searching for the shortest tour that pass through each ver-
tex at least once. Note that the shortest tour may be not only one. For example,
the shortest tours in Fig. 13.6(a) are v1e1v2e2v3e3v4e4v5e5v6e8v2e′8v6e6v7e7v1 and
v1e1v2e′8v6e8v2e2v3e3v4e4v5e5v6e6v7e7v1, where e′8 denotes the reversal of e8. In or-
der to easily observe, we use edge sequence to denote the shortest tour in G, such as
e1e2e3e4e5e8e′8e6e7, and use vertex sequence to denote the shortest tour in G′, such
as v′1v′2v′3v′4v′5v′8v′8v′6v′7.

DNA Encoding Method

Given a connected, weighted, undirected graph G = (V,E), vi ∈V , 1 ≤ i ≤ n, e j ∈ E ,
1 ≤ j ≤ m, where the weight on edge e j is wj, wj ≥ 0, wj ∈ Z. If wi is a real
number, all the weights are multiplied by a certain integer (i.e. 10) and then they
are rounded into integers. The main idea of the DNA encoding method proposed by
Han et al [10,11] is as follows: The given graph G is firstly converted into its general
line graph G′ = (V ′,E ′), v′i ∈ V ′, 1 ≤ i ≤ m, where v′i is mapped from ei. For each
vertex v′i, use DNA strand si of length wi to encode it. For each edge e′i j = (v′i,v′j),
use the DNA strand si j, which is the reverse complement of the last half of si and
the first half of s j, to encode it. Note that the DNA strands to encode vertices are
of different lengths. The detailed encoding method [10, 11] for the Chinese postman
problem is as follows:
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(1) All the edges e j (1 ≤ j ≤ m) are mapped to vertices v′j. If ei and e j are
adjacent, an undirected edge is drawn between v′i and v′j. If vi is with odd degree,
maximum one self-loop is added to each of the vertices which are mapped from the
edges linked to vi.

(2) For each vertex v′i, use DNA strand si of length wi to encode it.
(3) For each edge e′i j = (v′i,v′j), use the reverse complement of the last half of

si and the first half of s j to encode it. Specifically, si and s j are firstly divided into
two substrands with equal length, or si = s′is′i′, s j = s′js′j ′. And then use the DNA
strand si j = −h(s′i′s′j) to encode edge e′i j = (v′i,v′j), where si j is with the length
of |si|/2+|s j|/2. Here, suppose that weights in the weighted graph are all even. If
there exists one or more weights are odd in a practical problem, all the weights are
multiplied by 2. Thus, a half of the optimal solution is the desired results.

Note that, for any undirected edge e′i j = (v′i,v′j), if walk from v′i to v′j, the code
si j is the reverse complement of s′i′ and s′j, or −h(s′i′s′j); if walk from v′j to v′i, the
code s ji is the reverse complement of (−s j)′′ and (−si)′, or s ji = −h((−s j)′′(−si)′) =
h(s′i′s′j) = −si j. That is, only need one code si j = −h(s′i′s′j) to encode edge e′i j =
(v′i,v′j).

Take the weighted graph G shown in Fig. 13.6(a) as an example. We specifically
analyze the proposed DNA encoding method. First of all, the general line graph G′
is converted from the given graph G, as shown in Fig. 13.6(b). For the vertices v′1,
v′2, . . . , v′8 in the general line graph G′, the following DNA strands s1,s2, . . . ,s8 with
the lengths of 18, 40, 36, 20, 28, 60, 84, 14 are respectively selected to encode them.

s1 = CAGTT GACATGCAGGATC
s2 = CAACCCAAAACCTGGTAGAGATATCGCGGGTTCAACGTGC
s3 = TAGTACTGATCGTAGCAACCTGGTACCAAGCTT GAC
s4 = CGCATGCAGGATTCGAGCTA
. . .
s8 = T GGTT T GGACTGGT
For each edge e′i j = (v′i,v′j), the DNA strand si j = −h(s′i′s′j) is used to encode it.

For example, the code of e′12 = (v′1,v
′
2) is as follows.

s12 = −h(s′1
′s′2) = h(TGCAGGATCCAACCCAAAACCTGGTAGAG)

=ACGTCCTAGGTT GGGTT T T GGACCATCTC
Obviously, s12 is with the length of 18/2+40/2= 29. The joint among the DNA

strands of encoding edge e′12 = (v′1,v
′
2) and vertices v′1, v′2 is shown in Fig. 13.7.

On the basis of Fig. 13.7, the next is to extend rightward to s3 or s8, and to extend
leftward to s7 or s8. The extension of the DNA strand s1s2 rightward is shown in Fig.
13.8, and its extension leftward can similarly be drawn up.

Fig. 13.7. Joint of DNA strands s1, s2 and s12
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Fig. 13.8. Extension rightward of DNA strand s1s2. (a) Joint of DNA strands s1, s2, s3, s12,
s23 and (b) Joint of DNA strands s1, s2, s8, s12, s28

Fig. 13.9. Alternant DNA strand and double strand

Fig. 13.10. Double-stranded DNA corresponding to the optimal solution

On the basis of Fig. 13.8(a), the next is to extend rightward to s4, and to extend
leftward to s7 or s8, and so on. Thus, with the help of the property of reverse com-
plementation between vertex codes and edge codes, the DNA strands may extend
continually to form various random paths including the optimal solution.

In the DNA encoding method [10,11], the paths generated in a single ligation re-
action are double-stranded DNA instead of alternant DNA strand and double strand.
An alternant DNA strand and double strand is shown in Fig. 13.9, and a double-
stranded DNA is shown in Fig. 13.10. It is well known that the stable structure
of DNA molecules is DNA double strand. In an alternant DNA strand and double
strand, the part of DNA strand can combine with other molecules through hydrogen
bonds based on the Watson-Crick’s law. Since DNA double strand are more stable
than alternant DNA strand and double strand, the proposed DNA encoding method
can more easily generate the optimal solution. In addition, the proposed DNA encod-
ing method uses DNA strands of different lengths to encode different vertex. It also
has characteristics of easy encoding and low error rate. But when the values of the
weights are very large, the lengths of the DNA strands are very long which result in
higher space complexity. For more details, please see the reference [10, 11].
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DNA Algorithm

For the general line graph G′ converted from the given graph G, suppose that v′1 is
the original vertex just as well because, for any shortest tour C going through all the
edges in G′, the length of the route beginning with v′1 and ending there along C is
equal to that of the route beginning with v′i (i �= 1) and ending there along C.

In order to easily generate the optimal solution, the DNA algorithm proposed
by Han et al [10, 11] searches for the shortest path instead of the shortest tour. The
reason is that the length of a shortest tour that begins with v′1 and end there after
passing through all the edges in G′ is equal to that of a shortest path that begins with
v′1 and end there after passing through all the edges in G′. Moreover, the polymerase
chain reaction (PCR) in the biological techniques is generally carried out on a linear
template; there is no circular template so far. The detailed DNA algorithm [10, 11]
for the Chinese postman problem is as follows.

(1) Merge: The DNA strands si and si j (1 ≤ i, j ≤ m) are mixed together in a
single ligation reaction. Based on the Watson-Crick’s law, generate various DNA
molecules corresponding to the random paths.

(2) Ampli f y: The product of step 1 is amplified by polymerase chain reaction
(PCR) using primers −h(s′′1) and −h(s′1). Thus, only those DNA molecules encoding
paths that begin with v′1 and end with v′1 were amplified.

(3) B(N,s1): Separate all the paths with the departure vertex v′1, or separate all
the DNA molecules with 5′ end being s1.

(4) E(N,s1): Separate all the paths with the arrival vertex v′1, or separate all the
DNA molecules with 3′ end being s1.

(5) +(N,si): For each vertex v′i (2 ≤ i ≤ m), separate all the paths including v′i.
(6) Separate the shortest path through gel electrophoresis.
(7) Determinate the nucleotides sequence of the shortest path, which corresponds

to the optimal solution.
For more details, please see the reference [10, 11].

13.4.6 RLM: Relative Length Method of Encoding Weights

Han [12] presented a method of encoding weights in DNA strands for the problems
related to graph with weights, which is referred to the relative length method (RLM),
and applied it to the traveling salesman problem. The RLM method can directly
deal with weights of either real numbers or integers, even very small and very big
positive weights, and the lengths of DNA strands used in the RLM method are not
proportional to the values of weights.

Definitions Involved in the RLM Method

Definition 13.4.6.1 For a weighted graph G = (V,E), vi ∈ V , 1 ≤ i ≤ n, e j ∈ E ,
1 ≤ j ≤ m, all the weights are sorted in a nondecreasing order, and the equal weights
are at the same position. Thus, all the weights are divided into p groups (p ≤ m)
according to their ranking. The p groups are numbered from 1 to p, respectively. The
group number is called the order number of the weight.
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Definition 13.4.6.2 For a weighted graph G = (V,E), vi ∈ V , ei j ∈ E , 1 ≤ i, j ≤ n,
where the weight on edge ei j is wi j, all the weights wi j are remarked as wi j,k, where
k is the order number of wi j. For each remarked weight wi j,k, we add k−1 nodes on
edge ei j. The obtained graph G′ is called the relative length graph of G.

Obviously, if the weight wi j is remarked as wi j,k, the edge ei j will be divided into
k segments. The bigger the order number, the more the segments of the edge. That is,
the segment number of an edge represents the relative length of the edge. Note that
the segment number of an edge is not directly proportional to the weight on the edge.
For example, the segment numbers of edges with weights 2, 1000 and 1002 are 1, 2
and 3, respectively.

RLM Method of Encoding Weights

With the help of the relative length graph, Han [12] devised a method of encoding
weights in DNA strands for the traveling salesman problem. For a weighted graph
G = (V,E) with n vertices and m edges, vi ∈V , ei j ∈ E , 1 ≤ i, j ≤ n, where the weight
on edge ei j is wi j, the RLM method [12] is as follows.

(1) All the weights are divided into p groups (p ≤ m) according their order
numbers, and each weight wi j is remarked as wi j,k if it belongs to the kth group
(1 ≤ k ≤ p).

(2) For each remarked weight wi j,k, we add k− 1 nodes on edge ei j. The added
nodes are marked as vei j,1, vei j,2, . . . , vei j,k−1, respectively. The obtained graph G′ is
the relative length graph of G.

(3) For each vertex and each added node, we use DNA strand si of length 2c
(c ∈ Z, c ≥ 5) to encode it. The DNA strand si is divided into two sub-strands with
equal length, or si = s′is′i′. See the DNA encoding method in section 13.4.5.

(4) For each edge ei j (including the edges that are connecting the nodes newly
added in step 2), we use DNA strand si j = −h(s′′i s′j) to encode it, where −h(s)
denotes the reverse complement of s. Thus, when the vertex-node codes and the edge
codes are mixed together, they can combine with each other to form dsDNAs since
any DNA strand s can combine with its reverse complement −h(s) to form dsDNA.

Take the graph G shown in Fig. 13.11(a) as an example. All the weights are sorted
in a nondecreasing order, or 1.2, 2, 2.5, 3. Thus, they are divided into 4 groups, and
the order numbers of weights 1.2, 2, 2.5, 3 are 1, 2, 3, 4, respectively. Therefore, the
weights w12, w13, w14, w15, w23, w34, w35, w45 are remarked as w12,1, w13,3, w14,4,
w15,2, w23,4, w34,2, w35,1, w45,3, respectively. For each remarked weight wi j,k, we add
k−1 nodes on edge ei j. For example, we add two nodes on e13 since w13 is remarked
as w13,3, we add three nodes on e14 since w14 is remarked as w14,4, and so on. The
obtained graph G′ is the relative length graph of G, as shown in Fig. 13.11(b).

For each vertex vi in Fig. 13.11(b), we use DNA strand si of length 10 (c =
5) to encode it. Here, the added nodes are also viewed as vertices. Consider the
vertex v1 and the node ve13,1. The DNA strands s1 = T TAGCGCATG, se13,1 =
GTTACGTGAG are selected to encode them, respectively.

For each edge ei j, we use DNA strands si j = −h(s′′i s′j) to encode it. The edge
linking the vertex v1 and the node ve13,1 are encoded by the following DNA strand.
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Fig. 13.11. A weighted graph its relative length graph. (a) A weighted graph G and (b) The
relative length graph G′ of G

se1,e13,1 = −h(s′′1s′e13,1) = −h(GCATGGTTAC) = GTAACCATGC
Thus, the DNA strands s1, se13,1 and se1,e13,1 can combine with each other. Based

on the property of reverse complementation between the vertex-node codes and
the edge codes, the dsDNAs may extend continually to form various random paths
including the optimal solution. For more details, please see the reference [12].

DNA Algorithm

Given a weighted graph G = (V,E) with n vertices and m edges, vi ∈ V , ei j ∈ E ,
1 ≤ i, j ≤ n, where the weight on edge ei j is wi j , wi j ≥ 0. Suppose that v1 is the
start vertex just as well. The DNA algorithm [12] for the traveling salesman problem
using the RLM encoding method is as follows.

(1) Construct the relative length graph G′ of the given graph G = (V,E). For each
vertex or node in G′, use DNA strand si of length 2c to encode it. For each edge ei j

in G′, use the DNA strand si j = −h(s′′i s′j) to encode it.
(2) Merge: All the DNA strands si and si j are mixed together in a single lig-

ation reaction. Based on the Watson-Crick’s law, randomly form various dsDNAs
corresponding to the random paths.

(3) B(N,s1): Separate all the paths beginning with the start vertex v1, or separate
all the DNA molecules with 5′ end being s1.

(4) E(N,s1): Separate all the paths ending with the destination vertex v1, or
separate all the DNA molecules with 3′ end being s1.

(5) +(N,si): For each vertex vi (2 ≤ i ≤ n), separate all the paths including vi.
(6) Separate the shortest path by means of gel electrophoresis.
(7) Determinate the nucleotide sequence of the shortest path. Suppose that the

nucleotide sequence corresponds to v1, vei, vei+1, . . . , v2, ve j, ve j+1, . . . , v1. Delete
the nodes vex from the vertex sequence, the obtained vertex sequence v1, v2, . . . , v1

corresponds to the optimal solution.
The RLM method [12] is an improvement on the previous work [6]. The main

improvements are as follows. (1) The lengths of DNA strands used in the RLM
method are not proportional to the values of weights, which makes the RLM method
can easily encode weights of positive real numbers or integers, even very small or
very large number. That is, the weights that can be encoded by the RLM method may
be in a very broad range since weights are encoded in DNA strands only according
to their order numbers. For example, if the weights are 30, 1.8, 400, their order
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numbers are 2, 1, 3, respectively. Thus, the edges are respectively divided into 2,
1, 3 segments, and the DNA strands to encode them are with the lengths of 20, 10,
30, respectively. (2) The RLM method can distinguish the paths with almost same
weights, such as 1000 and 1001, because with the help of the relative length graph,
the difference between the lengths of DNA strands used to encode paths is always
above or equal to 2c (c ≥ 5). For more details, please see the reference [12].

13.4.7 Method of Encoding Nonlinear Solutions

Han et al [16] presented a DNA encoding method for the minimum spanning tree
problem, an instance of optimization problems on weighted graphs. The minimum
spanning tree problem cannot be directly solved based on the molecular biology
techniques because the degrees of some vertices in a minimum spanning tree may be
above to 2, which cannot be directly represented by linear DNA strands.

The Minimum Spanning Tree Problem

For a connected, weighted, undirected graph G = (V,E), a spanning tree is a tree that
contains all vertices of G, the weight of the spanning tree is the sum of the weights on
edges in it, and the minimum spanning tree (MST) is a spanning tree with minimum
weight. The MST problem is to find a MST for a connected, weighted, undirected
graph.

The MST problem is very important because there are many situations in which
MST must be found. Whenever one wants to find the cheapest way to connect a set of
terminals, such as cities, electrical terminals, computers, or factories, by using roads,
wires, or telephone lines, the solution is a MST for the graph with an edge for each
possible connection weighted by the cost of that connection. The MST problem has
been studied since the fifties, there are many exact algorithms for it. Han et al [16]
presented a DNA solution to the MST problem.

DNA Encoding Method

In order to clearly describe the DNA encoding method [16] for the MST problem,
we first give the definition of recognition code.

Definition 13.4.7.1 For a connected, weighted graph G = (V,E) with n vertices, a
DNA strand used to distinguish a vertex from others is called the recognition code of
the vertex.

The length l of recognition code should satisfy: 4l−1 < n ≤ 4l, or l = �log4n�,
where 4 stands for the number of letters in the alphabet {A, T , G, C}.

For a connected, weighted graph G = (V,E), vi ∈ V , ei j ∈ E , where each weight
wi j on edge ei j is an integer, the DNA encoding method proposed by Han et al [16]
for the MST problem is as follows.

(1) Let l = max{�log4n�, 6}. For each vertex vi, use DNA strand ri of length l to
encode it. Here, l denotes the length of recognition code, and 6 is an empirical value
which indicates the minimum length of recognition code.
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Fig. 13.12. The DNA strand si j of encoding edge ei j . (a) In the case of wi j being larger than l,
(b) In the case of wi j being less than l and (c) In the case of wi j being equal to l

If n > 46, the recognition codes of length �log4n� are needed to distinguish each
vertex from others; otherwise, each vertex can be distinguished from others using
the recognition codes of length 6. Here, select l = 6 instead of l < 6 because too
short recognition codes would result in high error rate. For example, if the number
of vertices in G is 4 and l = 1, each vertex can be distinguished from others but in
the DNA algorithm, when the recognition codes combine with one part of the DNA
strands corresponding to edges, they may combine with another part of the DNA
strands because they are too short and easy to be successfully matched to several
parts of the DNA strands based on the Watson-Crick’s law.

(2) For each edge ei j, the DNA strand si j of length 2p = 2×max{wi j, l} are used
to encode it. Here, the first l letters of si j are the same as ri, and the last l letters of
si j are the same as r j. In addition, the first wi j letters of si j is marked as swi j1, and the
last wi j letters of si j is marked as swi j2. Note that, when wi j is larger than l, the DNA
strand si j is with a length of 2p = 2×wi j, as shown in Fig. 13.12(a). Here, ri or r j

should not be the substring of the center part of si j. When wi j is less than l, the DNA
strand si j is with a length of 2p = 2× l, as shown in Fig. 13.12(b). And when wi j is
equal to l, the DNA strand si j used to encode edge ei j is shown in Fig. 13.12(c).

(3) For any two adjacent edges ei j, e jk, add one DNA strand sai jk as an additional
code, which is the reverse complement of swi j2 and sw jk1, or sai jk = −h(swi j2sw jk1).
Obviously, the additional code sai jk is with a length of wi j + wjk. Thus, the DNA
strands si j and s jk can combine with the additional code sai jk to form a fragment of
dsDNA. Note that, for the edges ei j, e ji, add one DNA strand sai ji = −h(swi j2sw ji1)
as an additional code, which is with a length of 2wi j.

For more details, please see the reference [16].

DNA Algorithm

The MST problem cannot be directly solved based on molecular biology techniques
because some degrees of vertices in a MST may be above to 2, which cannot be
directly represented by linear DNA strands. Take the graph G shown in Fig. 13.13(a)
as an example, a MST of G is given in Fig. 13.13(b). The degrees of vertices v2 and
v5 in the MST are 3, which cannot be directly represented by linear DNA strands. In
order to generate DNA strands of encoding a MST, each edge in the MST is copied
to form an Euler graph G′, as shown in Fig. 13.13(c). The Euler cycle in G′ can
be found out by means of the molecular biology techniques, and the MST can be
obtained from the Euler cycle.
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Fig. 13.13. A weighted graph and its minimum spanning tree and Euler graph. (a) A weighted
graph G, (b) A minimum spanning tree T of G and (c) The Euler graph G′ of T

For a connected, weighted graph G = (V,E), vi ∈V , 1≤ i≤ n, ei j ∈E , where each
weight wi j on edge ei j is an integer, the DNA algorithm proposed by Han et al [16]
for the MST problem is as follows.

(1) Let l = max{�log4n�, 6}. For each vertex vi, use DNA strand ri of length l to
encode it. For each edge ei j, let p = max{wi j, l}, use DNA strands si j of length 2p to
encode it, in which the first l letters are the same as ri, the last l letters are the same
as r j, and the center part does not include the substrings ri or r j . In addition, the first
wi j letters of si j is marked as swi j1, and the last wi j letters of si j is marked as swi j2.

(2) For any two adjacent edges ei j, e jk, add one DNA strand sai jk as an additional
code, which is the reverse complement of swi j2 and sw jk1, or sai jk = −h(swi j2sw jk1).
Note that, for any edge ei j, add one DNA strand sai ji =−h(swi j2sw ji1) as an additional
code.

(3) Merge: All the DNA strands si j and sai jk (1 ≤ i, j ≤ n) are mixed together.
Based on the Watson-Crick’s law, generate randomly various part dsDNAs.

(4) Denature: All the part dsDNAs are converted into the DNA strands by means
of heating.

(6) −(N,si): All the DNA strands with any additional code are discarded. Let m
denote the number of edges in G, and si denote one additional code. All the DNA
strands without any additional code can be obtained through the following DNA
program: For i:=1 to m do {−(N,si)}. Note that in the DNA encoding method, all
the upper DNA strands do not include any additional code.

(7) +(N,ri): Separate the DNA strands in which the number of recognition codes
being at 5′ end is equal to n, and the number of recognition codes being at 3′ end is
also equal to n. Let cri denote the reverse complement of the recognition code ri,
or cri = −h(ri), 1 ≤ i ≤ n. All the DNA strands generated in step 6 are mixed with
cri so as to make the DNA strands combine with cri to form part dsDNAs. Thus, all
the DNA strands including ri can be obtained by the operation +(N,ri). The number
of the recognition codes in the DNA algorithm is n, so all the DNA strands with n
recognition codes can be obtained through the following DNA program: For i:=1 to
n do {+(N,ri)}.

(8) Separate the DNA strands with the minimum weight through gel elec-
trophoresis.

(9) Determinate the nucleotide sequence of the DNA strand with minimum
weight, which corresponds to the Euler cycle. The minimum spanning tree can be
obtained from the Euler cycle.
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For more details, please see the reference [16].

13.4.8 DNA Encoding Method for the Maximal Weight Clique Problem

Based on Ouyang’s DNA algorithm [3] for the the maximal clique problem, Han et al
[13] proposed an DNA encoding method for the maximal weight clique problem. For
an undirected, weighted graph G = (V,E), vi ∈V , ei j ∈ E , where the weight on vertex
vi is wi, wi ≥ 0, the maximal weight clique problem (MWCP) is to find a subset of
mutually adjacent vertices, i.e. a clique, which has the largest total weight. Suppose
that each weight wi on vertex vi is an integer. If one of the weights is a real number,
all the weights are multiplied by a certain integer (i.e. 10) and then they are rounded
into integers.

DNA Encoding Method

For an undirected, weighted graph G = (V,E) without parallel edges, that is, there
is maximum one edge between any two vertices in G, the DNA encoding method
proposed by Han et al [13] for the maximal weight clique problem is as follows.

(1) For each vertex vi ∈ V , use two DNA strands si1 and si2 to encode it. The
DNA strand si1 consists of three parts: s′i1, swi and s′′i1, where swi is with a length of
wi, and s′i1 or s′′i1 is with a length of 10, that is, the DNA strand si1 = s′iswi s′′i is with a
length of 20 + wi. The strand si2 is the reverse complement of swi, or si2 = −h(swi).
Obviously, si2 can combine with the center part of si1 to form a fragment of dsDNA.
After encoding each vertex, the restriction sequences are embedded at both sides of
swi and si2. The codes of vertex vi are shown in Fig. 13.14(a).

(2) For each edge ei j ∈ E , use the DNA strand sei j = −h(s′′i1s′j1) to encode it,
which is the reverse complement of the last part of si1 and the first part of s j1.
Obviously, the DNA strand sei j is with a length of 20. Thus, the DNA strands cor-
responding to vertices vi and v j can combine with the DNA strand corresponding to
edge ei j to form a stable dsDNA, as shown in Fig. 13.14(b).

For more details, please see the reference [13].

DNA Algorithm

For an undirected, weighted graph G = (V,E), vi ∈ V , ei j ∈ E , where the weight on
vertex vi is wi, wi ≥ 0, let nc denote the number of edges in the complementary graph
G′ of G. The DNA algorithm proposed by Han et al [13] for MWCP is as follows.

Fig. 13.14. Joint of the vertex codes and the edge code. (a) DNA strands si1 and si2 of encoding
vertex vi and (b) Joint of DNA strands si1, si2, s j1, s j2 and sei j of encoding vertices vi, v j and
edge ei j
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(1) For each vertex vi ∈ V , use two DNA strands si1 and si2 to encode it. The
DNA strand si1 = s′i1swis′′i1 is with a length of 20+wi, and the strand si2 = −h(swi) is
with a length of wi. For each edge ei j ∈ E , use the DNA strand sei j = −h(s′′i1s′j1) to
encode it.

(2) Merge: All the DNA strands si1, si2 and sei j are mixed together in a single
ligation reaction. Based on the Watson-Crick’s law, generate randomly the various
dsDNAs.

(3) Ampli f y: The dsDNAs starting with v1 and ending with vn are amplified
through polymerase chain reaction (PCR). Let sumw = Σi=1→nwi. Only those ds-
DNAs whose length is equal to or less than sumw are saved. The set of the saved
dsDNAs is called the complete data pool.

(4) Digest: All the dsDNAs in the complete data pool are digested with restriction
enzymes. The enzymes break DNA at specific restriction sites, which were embed-
ded within the sequences for vi (1≤i≤n). See step 2 in the DNA algorithm for MCP
in section 13.3.3.

(5) (N, ≤sumw): Separate all the dsDNA whose length is less than or equal to
sumw. By nc sequential restriction operations with different enzymes, all the DNA
fragments connected by the edges in the complementary graph G′ are digested. Each
time of digesting the DNA fragments, let sumw = sumw−min{wi,wj}.

(7) Separate the longest dsDNAs in the remaining data pool through gel elec-
trophoresis.

(8) Determinate nucleotides sequence of the longest dsDNAs, which corresponds
to the optimal solution.

The DNA algorithm for MWCP [13] is an improvement on Ouyang’s algorithm
for MCP [3]. The main improvements are as follows. (1) On the basis of Ouyang’s
DNA computing model, Han et al [13] add weight representation in DNA strands.
(2) In Ouyang’s algorithm for MCP, the space complexity is O(nn), where n denotes
the number of vertices in the given graph. In Han’s algorithm for MWCP, the space
complexity is O(dn

max), where dmax denotes the maximum of vertex degrees in the
given graph. (3) In Ouyang’s algorithm, all the combinations of vertices are in the
complete data pool, whereas in Han’s algorithm, those vertices disconnected by edge
in G are not in the complete data pool. For more details, please see the reference [13].

13.4.9 DNA Encoding Method for the 0/1 Knapsack Problem

Han et al [15] presented a DNA encoding method for the 0/1 knapsack problem.
Given a set of n items and a knapsack of capacity c, where each item i has a profit
pi and a weight wi, the 0/1 knapsack problem is to select a subset of the items which
satisfies: the sum of weight does not exceed the knapsack capacity c and the sum of
profit is maximal.

DNA Encoding Method

For an instance of the 0/1 knapsack problem, let I = {1, 2, . . . , n}, P = {p1, p2, . . . ,
pn}, W={w1, w2, . . . , wn}, and the knapsack capacity c = c0. Suppose that each
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profit pi and each weight wi are integers. If one of the profits is not an integer, all
the profits are multiplied by a certain integer (i.e.10) and then they are rounded into
integers. If one of the weights is not an integer, all the weights and the knapsack
capacity are multiplied by a certain integer and then they are rounded into integers.
Also suppose that wi ≥ pi for all i. If there is any wi < pi, all of the weights and the
capacity are multiplied by a certain integer. The DNA encoding method proposed by
Han [15] for 0/1 knapsack problem is as follows.

(1) For each item i (1 ≤ i ≤ n), use two DNA strands si1 and si2 of different length
to encode it. The DNA strand si1 = s′i1spis′′i1 is with a length of wi, where the center
part spi is with a length of pi, the first part s′i1 is with a length of  (wi − pi)/2!, and
the last part s′′i1 is with a length of wi − pi − (wi − pi)/2!. The DNA strand si2 is the
reverse complement of spi, or si2 = −h(spi). Thus, si2 can combine with the center
part of si1 to form a fragment of dsDNA.

(2) For any two items i and j (1 ≤ i, j ≤ n), add one DNA strand sai j as an
additional code, which is the reverse complement of the last part of si1 and the first
part of s j1, or sai j = −h(s′′i1s′j1). Thus, the DNA strands of encoding items i and j can
combine with the additional code sai j to form dsDNA.

For more details, please see the reference [15].

DNA Algorithm

Based on the DNA encoding method, the DNA algorithm proposed by Han [15] for
the 0/1 knapsack problem is as follows.

(1) For each item i (1 ≤ i ≤ n), use the DNA strands si1 = s′i1spis′′i1 and si2 =
−h(spi) to encode it. For any two items i and j (1 ≤ i, j ≤ n), add one DNA strand
sai j = −h(s′′i1s′j1) as an additional code.

(2) Merge: All the DNA strands si1, si2 and sai j (1 ≤ i, j ≤ n) are mixed together.
Based on the Watson-Crick’s law, generate randomly various dsDNAs.

(3) (N, ≤c): All the dsDNAs whose length is above to the knapsack capacity c
are discarded.

(4) Denature: The remaining dsDNAs are converted into the DNA strands by
means of heating.

(5) +(N,h(sai j)): All the DNA strands without any additional code are discarded.
Let w denote the reverse complement of an additional code, or w =−h(sai j), w ∈ {A,
C, G, T}∗, 1 ≤ i, j ≤ n. All the DNA strands generated in step 4 are mixed with w so
as to make the DNA strands combine with w to form part dsDNAs. Thus, the DNA
strands without any additional code can be separated away. That is, by means of the
operation +(N,w), all the DNA strands without any additional code can be separated
away. Note that in the encoding method, all the upper DNA strands do not include
any additional code.

(6) Delete the additional codes from the remaining DNA strands. All the DNA
strands with additional code are put in a tube. Let s = uyv denote one of the DNA
strands with additional codes, where u, y, v represent a fragment of one DNA strand,
respectively. Put the DNA strands −h(u) and −h(v) into the tube. After annealing,
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Fig. 13.15. Deletion of the Additional Codes

the strand u combine with −h(u), the strand v combine with −h(v), and fold y, as
shown in Fig. 13.15. And then the restriction enzymes are put into the tube to delete y.

(7) Separate the DNA strands with the maximum profit by means of gel elec-
trophoresis.

(8) Determinate the nucleotides sequence of the DNA strand with the maximum
profit, which corresponds to the optimal solution.

The DNA algorithm [15] for the 0/1 knapsack problem has the following charac-
teristics: (1) The length of DNA strand si1 which is used to encode item i are equal
to the weight wi, and its center part spi is with a length of the profit pi. Thus, the
length of the dsDNAs generated in the DNA algorithm is equal to the sum of the
weights. By means of the operation (N,≤c), all the dsDNAs whose length is above
to the knapsack capacity c can be discarded. (2) It uses one additional code to link
the DNA strands of encoding two items, and the DNA strands si2 and s j2 are still
linked to the additional code after the dsDNAs are denatured. Since the additional
codes can be deleted from the strand si2 (1 ≤ i ≤ n) by means of the deletion op-
eration and the length of the remaining fragment of si2 is equal to the sum of the
profits, so the fragment with the maximum profit can be separated by means of gel
electrophoresis which corresponds to the optimal solution. For more details, please
see the reference [15].

13.5 Conlusion

Bioinformatics studies the biological information by means of mathematics, com-
puter science and biological techniques. The results of these researches provide a
probability of computing with DNA molecules. As an applied branch of the thriving
multidisciplinary research area of Bioinformatics, DNA computing has characteris-
tics of higher parallelism and lower costs. Based on the massive parallelism of DNA
computing, many researchers tried to solve a large number of difficult problems.
These researches demonstrate how DNA can be used for representing information
and solving the computational problems and enrich the theories related to DNA com-
puting, in which the methods of representing weights in DNA strands are one of the
most important but also challenging issues in DNA computing. Some methods of
encoding weights in DNA strands are given in this chapter, which will benefit the
further researches on DNA computing, and the rapid development of Bioinformatics
will certainly improve the capabilities of DNA computing.
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order number of weight, 311
ordinary differential equations, 50
oscillations, 42, 50, 51, 57
overfitting, 57, 62, 225

parent node, 45
partial differential equations, 66
Parzen window, 222
PCR protocol, 306
PDDP Clustering Algorithm, 12
PDE, 66
periodic behavior, 55
periodic solutions, 42
phylogenomics, 166–168
piecewise linear differential equations, 55
point injection, 226
polymerase chain reaction, 294
Population, 5
post-transcriptional regulation, 36
post-translational modification, 36
posterior, 48, 60
Principal Component Analysis, 7, 13, 19
principal component analysis, 260
prior, 48, 60
probabilistic Boolean networks, 43
Probabilistic relational model, 93
promoter, 35
protein, 34
protein classification, 166–168, 181

Qualitative belief network, 92

rate constant, 56
receiver operator characteristics, 63
recognition code of vertex, 314
Recombination Operator, 5
regular grammar, 184
regularization, 50
regulation function, 52, 59
regulation strength, 54
Relational belief network, 93
relative length graph, 312
relative length method (RLM), 311
relevance networks, 37, 44
repressor, 35
restriction enzyme, 318
restriction sequence, 317, 318
REVEAL, 40
reverse complement, 295
Rfam, 184
RNA, 183
RNA-polymerase, 35
RNAP, 35
RNAPredict, 185
ROC, 63
Rprop Training Algorithm, 3

S-systems, 55
Saccharomyces cerevisiae, 238, 239, 244,

245, 250
Saccharomyces pombe, 238, 244–246, 250
Scree Plot, 18
Search Operators, 5
Selection Operator, 5
semantic mediation, 276, 285
semantic web, 276, 280, 281
sensitivity, 63
separate, 296
SFS, 221, 222
Shannon entropy, 40
simulated annealing, 49
sparsity of networks, 61
specificity, 63
stability, 42
state, 38
state space, 38, 51
state transition table, 38
state-space model, 261
stationary state, 51
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steady state, 42, 56
steepest direction, 224
stepwise, 223
stochastic kinetic models, 66
subspace identification, 261
switch-like behavior, 42, 57
synthesis rate, 59
systems biology, 276, 280, 284, 289

the 0/1 knapsack problem, 318
the Chinese postman problem,CPP, 307
the Hamiltonian path problem, HPP, 297
the maximal clique problem, MCP, 300
the maximal weight clique problem, MWCP,

317
the minimum spanning tree problem, MST,

314
the SAT problem, 298

the shortest path problem, 303
the traveling salesman problem, TSP, 304
transcription, 35
transcription factor, 35
translation, 35
tube, 296

U12 family, 185
UkW Clustering Algorithm, 9
uncertainty, 40
uniform distribution, 226

weight decay, 57
weight representation in DNA strand, 294
wrapper, 220

yeast cell cycle, 50, 52, 57, 62
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