

Lecture Notes in Computer Science 4817

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Kil-Hyun Nam Gwangsoo Rhee (Eds.)

Information Security
and Cryptology –
ICISC 2007

10th International Conference
Seoul, Korea, November 29-30, 2007
Proceedings

13

Volume Editors

Kil-Hyun Nam
National Defense University
122-875 Susaek-dong, Eunpyung-gu, Seoul 122-875, Korea
E-mail: khnam@kndu.ac.kr

Gwangsoo Rhee
Sookmyung Women’s University
52 Hyochangwon-gil, Yongsan-Ku, Seoul 140-742, Korea
E-mail: rhee@sookmyung.ac.kr

Library of Congress Control Number: 2007939824

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, F.2.1, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743

ISBN-10 3-540-76787-8 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-76787-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12192021 06/3180 5 4 3 2 1 0

Preface

ICISC 2007, the Tenth International Conference on Information Security and
Cryptology, was held in Seoul, Korea, during November 29–30, 2007. It was
organized by the Korea Institute of Information Security and Cryptology
(KIISC) in cooperation with the Ministry of Information and Communication
(MIC), Korea. The aim of this conference was to provide a forum for the pre-
sentation of new results in research, development, and applications in the field
of information security and cryptology. It also intended to be a place where
research information can be exchanged.

The conference received 123 submissions from 24 countries, covering all areas
of information security and cryptology. The review and selection processes were
carried out in two stages by the Program Committee (PC) of 57 prominent
researchers via online meetings through the iChair Web server. First, each paper
was blind reviewed by at least three PC members, and papers co-authored by
the PC members were reviewed by at least five PC members. Second, individual
review reports were revealed to PC members, and detailed interactive discussion
on each paper followed. Through this process the PC finally selected 28 papers
from 14 countries. The authors of selected papers had a few weeks to prepare final
versions of their papers, aided by comments from the reviewers. The proceedings
contained the revised versions of the accepted papers. However, most of these
final revisions were not subject to any further editorial review.

The conference program included two invited talks from eminent researchers
in information security and cryptology. The invited speakers were Daniel J.
Bernstein from University of Illinois at Chicago and Mitsuru Matsui from
Mitsubishi Electric Corporation.

We would like to thank everyone who contributed to the success of this con-
ference. First, thanks to all the authors who submitted papers to this conference.
Second, thanks to all 57 members of the PC listed overleaf. It was a truly nice ex-
perience to work with such talented and hard-working researchers. Third, thanks
to all the external reviewers for assisting the PC in their particular areas of ex-
pertise. Fourth, we would like to thank all the participants of the conference who
made this event an intellectually stimulating one through their active contribu-
tion. We would also like to thank the iChair developers in EPFL for allowing
us to use their software. Finally, we are delighted to acknowledge the partial fi-
nancial support provided by CIST, KISIA, NICS Tech, NITGEN, STG Security,
and TSonNet.

November 2007 Kil-Huyn Nam
Gwangsoo Rhee

ICISC 2007

The 10th International Conference on
Information Security and Cryptology

November 29–30, 2007
Olympic Parktel, Seoul, Korea

Organized by
Korea Institute of Information Security and Cryptology (KIISC)

(http://www.kiisc.or.kr)

In cooperation with
Ministry of Information and Communication (MIC), Korea

(http://www.mic.go.kr)

Organization

General Chair

Min Surp Rhee Dankook University, Korea

Program Co-chairs

Kil-Hyun Nam National Defense University, Korea
Gwangsoo Rhee Sookmyung Women’s University, Korea

Program Committee

Michel Abdalla ENS and CNRS, France
Joonsang Baek Institute for Infocomm Research, Singapore
Alex Biryukov University of Luxembourg, Luxembourg
Bill Caelli Queensland University of Technology, Australia
Kyo-il Chung ETRI, Korea
Jean-Sebastien Coron University of Luxembourg, Luxembourg
Frederic Cuppens ENST Bretagne, France
Ed Dawson Queensland University of Technology, Australia
Bart De Decker Katholieke Universiteit Leuven, Belgium
Orr Dunkelman Katholieke Universiteit Leuven, Belgium
Eduardo B. Fernandez Florida Atlantic University, USA
Pierre-Alain Fouque Ecole Normale Superieure, France
Mario Marques Freire University of Beira Interior, Portugal
Marc Girault Orange Labs, France

VIII Organization

Philippe Golle Palo Alto Research Center, USA
Dieter Gollmann Hamburg University of Technology, Germany
Goichiro Hanaoka AIST, Japan
Hiroaki Kikuchi Tokai University, Japan
Kwangjo Kim ICU, Korea
Christopher Kruegel Technical University Vienna, Austria
Chi Sung Laih National Cheng Kung University, Taiwan
Kwok-Yan Lam Tsinghua University, China
Kristin E. Lauter Microsoft Research, USA
Dong Hoon Lee Korea University, Korea
Pil Joong Lee POSTECH, Korea
Arjen K. Lenstra EPFL, Switzerland
Yingjiu Li Singapore Management University, Singapore
Javier Lopez University of Malaga, Spain
Masahiro Mambo University of Tsukuba, Japan
Mark Manulis Ruhr University of Bochum, Germany
Keith Martin Royal Holloway, University of London, UK
Mitsuru Matsui Mitsubishi Electric Corporation, Japan
Atsuko Miyaji JAIST, Japan
SangJae Moon Kyungpook National University, Korea
Yi Mu University of Wollongong, Australia
Jesper Buus Nielsen University of Aarhus, Denmark
DaeHun Nyang Inha University, Korea
Rolf Oppliger eSECURITY Technologies, Switzerland
D’Arco Paolo University of Salerno, Italy
Kunsoo Park Seoul National University, Korea
Sangwoo Park National Security Research Institute, Korea
Raphael Chung-Wei Phan EPFL, Switzerland
Rei Safavi-Naini University of Calgary, Canada
Kouichi Sakurai Kyushu University, Japan
Palash Sarkar Indian Statistical Institute, India
Dongkyoo Shin Sejong University, Korea
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Future University, Hakodate, Japan
Jozef Vyskoc VaF s.r.o., Slovakia
Guilin Wang Institute for Infocomm Research, Singapore
Dongho Won Sungkyunkwan University, Korea
Sung-Ming Yen National Central University, Taiwan, ROC
Yongjin Yeom National Security Research Institute, Korea
Fangguo Zhang Sun Yat-sen University, China
Alf Zugenmaier DoCoMo Euro-Labs, Germany

Organizing Chair

Dong-gue Park Soonchunhyang University, Korea

Organization IX

Organizing Committee

Hoon Ko Information and Communications
University(ICU), Korea

DaeHun Nyang Inha University, Korea
Jintae Oh Electronics and Telecommunications Research

Institute(ETRI), Korea
Kangbin Yim Soonchunhyang University, Korea
Joongcheol Moon National Security Research Institute(NSRI),

Korea
Changho Seo Kongju National University, Korea
Jaesung Kim Korea Information Security Agency(KISA),

Korea
Sangjin Kim Korea University of Technology and Education,

Korea
Sehyun Park Chung-Ang University, Korea

External Reviewers

Imad Aad
Sultan Zayid Al-Hinai
Man Ho Au
Jean-Philippe Aumasson
Vicente Benjumea
Jean-Luc Beuchat
Annalisa De Bonis
Reinier Broker
Sebastien Canard
Ku-Young Chang
Ee-Chien Chang
Jiun-Ming Chen
Chien-Ning Chen
Wang Chih-Hung
S.Y. Chiou
Kuo-Zhe Chiou
Dickson K.W. Chiu
Yong-je Choi
Celine Coma
Nora Cuppens
Rennie deGraff
Holger Dreger
Dang Nguyen Duc
Chun-I Fan
Gerardo Fernandez
Umberto Ferraro

Ernest Foo
Georg Fuchsbauer
Soichi Furuya
D.J. Guan
JaeCheol Ha
Keisuke Hakuta
Kyusuk Han
Dong-Guk Han
Chao-Chih Hsu
Xinyi Huang
Sebastiaan Indesteege
Toshiyuki Isshiki
Tetsu Iwata
Tetsuya Izu
Ik Rae Jeong
Dimitar Jetchev
Shaoquan Jiang
Marcelo Kaihara
Nathan Keller
Dmitry Khovratovich
Jin Ho Kim
Shinsaku Kiyomoto
Hiroki Koga
Yuichi Komano
Divyan M. Konidala
Noboru Kunihiro

Wen-Chung Kuo
Eun Jeong Kwon
Yunho Lee
HoonJae Lee
Tieyan Li
Wanqing Li
Vo Duc Liem
Wei-Chih Lien
Hsi-Chung Lin
Breno de Medeiros
Anton Mityagin
Peter Montgomery
Daesung Moon
Yusuke Naito
Toshiya Nakajima
Cedric Ng
Mototsugu Nishioka
Masao Nonaka
Katsuyuki Okeya
Dag Arne Osvik
Ranjan Pal
Tae Jun Park
Maura Paterson
Kun Peng
Geong Sen Poh
Deike Priemuth-Schmid

X Organization

Roberto De Prisco
Havard Raddum
Matthieu Rivain
Rodrigo Roman
Chun Ruan
Akashi Satoh
Sven Schaege
Scarlet

Schwiderski-Grosche
Jae Woo Seo
Siamak F. Shahandashti
Ning Shang
Jong Hoon Shin

Masaaki Shirase
Leonie Simpson
Claudio Soriente
Chunhua Su
Hongwei Sun
Kenichi Takahashi
Terry Lam Vinh The
Julien Thomas
Jacques Traore
Jheng-Hong Tu
Yoshifumi Ueshige
Masashi Une
Ivan Visconti

Camille Vuillaume
Shuhong Wang
Baodian Wei
Christopher Wolf
Bo-Ching Wu
Yeon-Hyeong Yang
Bo-Yin Yang
Shenglin Yang
Fan Zhang
Chang-An Zhao
Xingwen Zhao
Sebastien Zimmer

Sponsoring Institutions

CIST, Korea http://cist.korea.co.kr/
KISIA, Korea http://www.kisia.or.kr/
NICS Tech, Korea http://www.nicstech.com/
NITGEN, Korea http://www.nitgen.com/
STG Security, Korea http://www.stgsecurity.com/
TSonNet, Korea http://www.tsonnet.co.kr/

Table of Contents

Cryptanalysis – I

Cryptanalysis of a Hash Function Proposed at ICISC 2006 1
Willi Geiselmann and Rainer Steinwandt

Cryptanalysis of Reduced Versions of the HIGHT Block Cipher from
CHES 2006 . 11

Jiqiang Lu

A Cryptanalysis of the Double-Round Quadratic Cryptosystem 27
Antoine Scemama

Access Control

A Lightweight Privacy Preserving Authentication and Access Control
Scheme for Ubiquitous Computing Environment . 37

Jangseong Kim, Zeen Kim, and Kwangjo Kim

Establishing RBAC-Based Secure Interoperability in Decentralized
Multi-domain Environments . 49

Jinwei Hu, Ruixuan Li, and Zhengding Lu

Handling Dynamic Information Release . 64
Li Jiang, Lingdi Ping, and Xuezeng Pan

Cryptanalysis – II

Improving the Time Complexity of Matsui’s Linear Cryptanalysis 77
Baudoin Collard, F.-X. Standaert, and Jean-Jacques Quisquater

On Large Distributions for Linear Cryptanalysis . 89
Alexander Maximov

Passive Attacks on a Class of Authentication Protocols for RFID 102
Basel Alomair, Loukas Lazos, and Radha Poovendran

Side Channel Attacks on Irregularly Decimated Generators 116
Chuan-Wen Loe and Khoongming Khoo

System Security

Asynchronous Pseudo Physical Memory Snapshot and Forensics on
Paravirtualized VMM Using Split Kernel Module . 131

Ruo Ando, Youki Kadobayashi, and Youichi Shinoda

Filesystem Activity Following a SSH Compromise: An Empirical Study
of File Sequences . 144

Jesus Molina, Xavier Chorin, and Michel Cukier

XII Table of Contents

A Secure Virtual Execution Environment for Untrusted Code 156
Yan Wen and Huaimin Wang

Biometrics

Liveness Detection of Fingerprint Based on Band-Selective Fourier
Spectrum . 168

Changlong Jin, Hakil Kim, and Stephen Elliott

Cryptographic Protocols

Improving Upon the TET Mode of Operation . 180
Palash Sarkar

Hash Functions – I

New Local Collisions for the SHA-2 Hash Family . 193
Somitra Kumar Sanadhya and Palash Sarkar

Multi-collision Attack on the Compression Functions of MD4 and
3-Pass HAVAL . 206

Hongbo Yu and Xiaoyun Wang

Block and Stream Ciphers

Differential Cryptanalysis of T-Function Based Stream Cipher TSC-4 . . . 227
Haina Zhang and Xiaoyun Wang

New Results on Impossible Differential Cryptanalysis of Reduced
AES . 239

Wentao Zhang, Wenling Wu, and Dengguo Feng

Copyright Protection

A Note About the Traceability Properties of Linear Codes 251
Marcel Fernandez, Josep Cotrina, Miguel Soriano, and
Neus Domingo

Smart Cards

Power Analysis Attacks on MDPL and DRSL Implementations 259
Amir Moradi, Mahmoud Salmasizadeh, and
Mohammad T. Manzuri Shalmani

Safe-Error Attack on SPA-FA Resistant Exponentiations Using a HW
Modular Multiplier . 273

Chong Hee Kim, Jong Hoon Shin, Jean-Jacques Quisquater, and
Pil Joong Lee

Table of Contents XIII

Elliptic Curve Cryptosystems

Generalized MMM-Algorithm Secure Against SPA, DPA, and RPA 282
Atsuko Miyaji

Pairing-Friendly Elliptic Curves with Small Security Loss by Cheon’s
Algorithm . 297

Aya Comuta, Mitsuru Kawazoe, and Tetsuya Takahashi

Hash Functions – II

Analysis of Multivariate Hash Functions . 309
Jean-Philippe Aumasson and Willi Meier

Colliding Message Pair for 53-Step HAS-160 . 324
Florian Mendel and Vincent Rijmen

Weaknesses in the HAS-V Compression Function . 335
Florian Mendel and Vincent Rijmen

Authentication and Authorization

Security-Preserving Asymmetric Protocol Encapsulation 346
Raphael C.-W. Phan and Serge Vaudenay

Author Index . 367

Cryptanalysis of a Hash Function Proposed at

ICISC 2006

Willi Geiselmann1 and Rainer Steinwandt2

1 Institut für Algorithmen und Kognitive Systeme, Fakultät für Informatik,
Universität Karlsruhe (TH), Am Fasanengarten 5, 76128 Karlsruhe, Germany

geiselma@ira.uka.de
2 Department of Mathematical Sciences, Florida Atlantic University,

777 Glades Road, Boca Raton, FL 33431, USA
rsteinwa@fau.edu

Abstract. A simple method for constructing collisions for Shpilrain’s
polynomial-based hash function from ICISC 2006 is presented. The at-
tack relies on elementary linear algebra and can be considered as practi-
cal: For the parameters suggested, we give a specific collision, computed
by means of a computer algebra system.

Keywords: cryptanalysis, hash function.

1 Introduction

In [Shp06] Shpilrain proposes a hash function H which builds on the Merkle-
Damg̊ard construction [Dam90, Mer90] and relies on computations in the
quotient of a polynomial ring. In [Cha06] Chang reports that the underlying
compression function is easy to invert and that a meet-in-the-middle attack en-
ables a preimage attack on H . According to Chang’s complexity estimate, for the
specific parameters proposed in [Shp06] the computational effort for mounting
such a preimage attack appears to be in the magnitude of 280 operations.

The collision attack we describe below can be considered as practical—for the
specific parameters proposed in [Shp06] we give a collision of two equal length
bitstrings with about 10.2 KByte each. Shpilrain’s proposed hash function H
does not involve padding, but the collision given below remains valid if the usual
Merkle-Damg̊ard strengthening is applied to H .

2 The Proposal from ICISC 2006

Let p(x) ∈ F2[x] be a univariate polynomial of degree n over the finite field
with two elements. Moreover, let α be the residue class of x in the quotient
R := F2[x]/(p(x)), thus p(α) = 0. We remark that [Shp06] writes “R = F2n =
F2[x]/(p(x))” which suggests p(x) to be irreducible, but the specific polynomial
p(x) proposed is reducible.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 1–10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 W. Geiselmann and R. Steinwandt

2.1 General Construction

To define the hash function H , two elements h0, h1 ∈ R are fixed, and the hash
value of an individual bit is defined as

H(0) := h0,
H(1) := h1

. (1)

Next, a triple (u0, u1, u2) ∈ R3 is used to fix a binary operation ◦ on R:

◦ : R2 −→ R
(r1, r2) �−→ r1 ◦ r2 := u0 + r1 · r2 + r2

1 · u1 + r2
2 · u2

(2)

To hash a bitstring M , the following procedure is used:

1. Going from left to right, the bitstring M is split into 32-bit blocks M = B1 ‖
B2 ‖ · · · ‖ B�, where the last block B� has less than 32 bit, if the length of
M is not a multiple of 32. There is no padding.

2. The hash value of each single 32-bit block Bi = Bi,0 ‖ · · · ‖ Bi,31 is computed
by applying the above operation ◦ one bit at a time, going from left to right:

H(Bi) := (. . . ((H(Bi,0) ◦H(Bi,1)) ◦H(Bi,2)) . . .) ◦H(Bi,31)

(where the hash value H(Bi,j) of a single bit Bi,j is given by (1)).
3. The hash value H(M) of M is computed by applying the operation ◦ one

block at a time, going from left to right:

H(M) := (. . . ((H(B0) ◦H(B1)) ◦H(B2)) . . .) ◦H(B�)

The value H(M) is the output of the hash function for input M .

2.2 Suggested Parameters

As specific parameter choice, [Shp06] suggests the following:

p(x) := x163 + x7 + x6 + x5 + x4 + x + 1
h0 := α7 + 1
h1 := α8 + 1

(u0, u1, u2) := (1, α2, α)

To demonstrate the practicality of the attack proposed below, in Section 3.3
we construct a specific collision for this parameter choice.

3 Finding Collisions

As already indicated above, the notation “R = F2n = F2[x]/(p(x))” in [Shp06]
suggests the considered polynomial p(x) to be irreducible. However, with a

Cryptanalysis of a Hash Function Proposed at ICISC 2006 3

computer algebra system like Magma [BCP97] one easily checks that the pro-
posed polynomial splits into four irreducible factors from F2[x]. Namely, for
p(x) = x163 +x7 +x6 +x5 +x4 +x+1 we have p(x) = q1(x) · q2(x) · q3(x) · q4(x),
where

q1(x) := x9 + x7 + x5 + x + 1,

q2(x) := x18 + x14 + x12 + x11 + x6 + x4 + 1,

q3(x) := x38 + x36 + x33 + x31 + x30 + x28 + x24 + x22 + x21 + x20 + x19

+x17 + x16 + x12 + x10 + x8 + x7 + x4 + x3 + x2 + 1,

q4(x) := x98 + x94 + x93 + x91 + x90 + x88 + x87 + x84 + x82 + x73 + x69

+x68 + x67 + x65 + x64 + x61 + x58 + x55 + x54 + x53 + x46

+x45 + x44 + x43 + x42 + x41 + x39 + x37 + x31 + x29 + x28

+x26 + x25 + x24 + x20 + x18 + x17 + x14 + x13 + x9 + x8 + x7

+x6 + x5 + x3 + x2 + 1 .

Thus, before discussing the core part of our attack, it is worth discussing briefly
how to exploit such a factorization for a collision search.

3.1 Using the Chinese Remainder Theorem

According to the Chinese Remainder Theorem, any factorization of the polyno-
mial p(x) into coprime factors q1(x) . . . , qs(x) yields a decomposition of the ring
R = F2[x]/(p(x)) into a direct product of rings Ri := F2[x]/(qi(x)):

R � R1 × · · · ×Rs

As the hash function H composes the hash values of the individual 32-bit
blocks with simple ring operations, it looks tempting to exploit this isomorphism
of rings to perform the collision search “one Ri at a time”. Suppose we have found
two bitstrings M1, M2 whose lengths are multiples of 32 and which satisfy

H(M1) ≡ H(M2) (mod qs(x)) ,

i. e., we have a collision in the Rs-component. Owing to the Merkle-Damg̊ard
structure of H , we then have

H(M1 ‖ T) ≡ H(M2 ‖ T) (mod qs(x))

for arbitrary bitstrings T appended to M1 and M2. Thus, if we heuristically
(though actually incorrectly) take the values H(M1 ‖ T) and H(M2 ‖ T) as being
uniformly and independently distributed modulo qs−1(x), we would expect that
within O(2deg(qs−1(x))) random attempts for T , we encounter a pair of messages
M1 ‖ Ts−1, M2 ‖ Ts−1 whose hash values coincide in the Rs−1 ×Rs-component
of R. If the degree of qs−1 is small, this approach can be efficient enough. In our
experiments we used the linear algebra technique described in the next section
to reduce the computational effort for finding a matching Ts−1.

4 W. Geiselmann and R. Steinwandt

Now assume we have found a matching “tail” Ts−1 and that the length of
Ts−1 is a multiple of 32. Then we can apply the same reasoning as before to
extend the collision

H(M1 ‖ Ts−1) ≡ H(M2 ‖ Ts−1) (mod qs−1(x) · qs(x))

from Rs−1×Rs to Rs−2×Rs−1×Rs: Analogously as before, now we test bitstrings
Ts−2 until

H(M1 ‖ Ts−1 ‖ Ts−2) ≡ H(M2 ‖ Ts−1 ‖ Ts−2) (mod qs−2 · qs−1 · qs)

holds. In this way, we can process the components Rs, Rs−1, . . . , R1 one by one,
starting from a collision in a single component.

Example 1. For the specific parameters from Section 2.2 we have s = 4, and the
degrees of q1(x), q2(x) and q3(x) are rather small—namely 9, 18 and 38. Thus,
once we know a pair of messages colliding in the larger R4-component (of size
298), deriving a full collision that is valid in R should be straightforward. Indeed,
in our actual computations this worked as expected.

3.2 Using Linear Algebra

In view of the above discussion, the parameter choice in [Shp06] does not seem
to offer an adequate security level, and constructing a collision in the component
R4 (of size 298) seems to be the most time-consuming task for mounting such an
attack. In this section we show that such a collision can be found easily, without
implementing a full birthday attack in R4.

Remark 1. We describe the attack for an irreducible polynomial p(x) of degree
n, i. e., for R � F2n . For the specific parameter set from Section 2.2, this linear
algebra based part is exploited for R4 and R3 only, but the attack technique
as such does not rely on the described shortcut via the Chinese Remainder
Theorem. In particular, simply imposing p(x) to be irreducible of degree 163
does not appear to be an adequate countermeasure to rule out the attack.

Let R′ ⊆ R be the image of H when being restricted to messages whose length is
a multiple of 32 (i. e., we have no incomplete last blocks). To each 32-bit block B,
we can assign the following map φB , which captures the update of H ’s internal
state when appending B to a message whose length is a multiple of 32.

φB : R′ −→ R′

h �−→ h ◦H(B)

The map φB , is affine in the sense that it splits into the sum of the F2-linear
map h �→ h ·H(B)+h2 ·u1 and the constant shift H(B)2 ·u2 +u0. If we consider
a sequence of blocks B1, . . . , Bt, then the composition

φB1‖B2‖···‖Bt
(h) := φBt(φBt−1(. . . φB1 (h)) . . .)

Cryptanalysis of a Hash Function Proposed at ICISC 2006 5

computes the hash value obtained by appending B1 ‖ B2 ‖ · · · ‖ Bt to a preimage
of h ∈ R′. As each of the φBi is affine in the sense just described, the same holds
for φB1‖B2‖···‖Bt

—with the constant shift depending on B1, . . . , Bt. The linear
part of φB1‖B2‖···‖Bt

is just the functional composition of the linear parts of the
φBis.

Once we know a sequence of 32-bit blocks B1, . . . , Bt and two different values
h1, h2 ∈ R′ with

φB1‖B2‖···‖Bt
(h1) = φB1‖B2‖···‖Bt

(h2) ,

or equivalently

φB1‖B2‖···‖Bt
(h1) + φB1‖B2‖···‖Bt

(h2) = 0 , (3)

we have a collision for H—provided we know preimages of h1 and h2. As the
left-hand side of Equation (3) is F2-linear in h1 + h2—the constant shifts cancel
out in the summation—we can rewrite (3) in the form

(h1 + h2) · MB1‖B2‖···‖Bt
= 0 .

HereMB1‖B2‖···‖Bt
is an n×n matrix over F2, and (h1 + h2) ∈ F

n
2 is comprised

of the coefficients of h1 + h2 when being expressed in the appropriate F2-vector
space basis. Now, if we can find B1, . . . Bt such thatMB1‖B2‖···‖Bt

is of low rank
(i. e., has a large kernel) we can simply try to choose messages M1
= M2 at
random until the sum of their hash values (H(M1) + H(M2)) yields a vector
(H(M1) + H(M2)) in the kernel ofMB1‖B2‖···‖Bt

.

Remark 2. It is worth noting that there is no particular requirement on the mes-
sages M1, M2. This seems a useful feature when aiming at meaningful collisions:
Suppose we have a message/file format of interest, where it is possible to ap-
pend “garbage” at the end of a valid message (up to some fixed end-of-message
delimiter).

Then we could fix two meaningful messages M ′
1, M

′
2 which we want to collide

and choose our candidates as M1 := M ′
1 ‖ N1, M2 := M ′

2 ‖ N2 with random
bitstrings N1, N2. The final colliding messages then had the form

M1 = M ′
1 ‖ N1 ‖ B1 ‖ · · · ‖ Bt ‖ E

M2 = M ′
2 ‖ N2 ‖ B1 ‖ · · · ‖ Bt ‖ E

where E can be a message-independent (possibly empty) end-of-message
delimiter.

Expediting the computation of a kernel element. In our experiments
with the parameters from Section 2.2, finding a small, say ≈16, number t of
blocks B1, . . . , Bt such that MB1‖B2‖···‖Bt

has a rank defect of ≈ t required no
particular effort. Already a trivial enumeration of some 32-bit blocks B1 quickly
yields a candidate where choosing all t blocks equal to B1 results in a matrix

6 W. Geiselmann and R. Steinwandt

MB1‖B1‖···‖B1 with rank defect t. For larger rank defects, however, the heuristics
we used required a significantly larger number of blocks (see below). Aiming at
collisions of moderate length, it seems worthwhile to improve the simple guessing
strategy for finding kernel elements:

Suppose our n × n matrix MB1‖B2‖···‖Bt
over F2 has rank defect d. Taking

the candidate vectors (H(M1) + H(M2)) for independently and uniformly at
random chosen elements from F

n
2 , we could expect that after O(2n−d) attempts

a kernel vector is found. If we do not mandate M1 and M2 to have a particular
form, we can easily improve on this as follows:

1. Using a computer algebra system, we can easily find a vector space basis of
the (d-dimensional) kernel ker(MB1‖B2‖···‖Bt

) ofMB1‖B2‖···‖Bt
.

2. Using a birthday attack we search for messages M1, M2 such that the
projections of (H(M1)), (H(M2)) on ker(MB1‖B2‖···‖Bt

) coincide. In other
words we want (H(M1)) and (H(M2)) to be in the same residue class of
F

n
2/ ker(MB1‖B2‖···‖Bt

). Then

(H(M1)) + (H(M2)) = (H(M1) + H(M2)) ∈ ker(MB1‖B2‖···‖Bt
)

as desired.

Taking the (H(Mi)) for independently and uniformly at random chosen elements
from F

n
2 , we expect to find the desired messages M1 and M2 after O(2(n−d)/2)

attempts.

Example 2. For Shpilrain’s specific parameter proposal (see Section 2.2), in the
largest component obtained from the Chinese Remainder Theorem, we have
n = 98. Here we used a matrix with a rank defect of d = 42, constructed from
t = 2882 blocks Bi.

Finding a low rank matrix. By construction, we have

MB1‖B2‖···‖Bt
=MB1 ·MB2 · · · · ·MBt−1 · MBt ,

with MBi being the n × n matrix over F2 representing the linear part of φBi .
Thus, the task of finding a matrixMB1‖B2‖···‖Bt

of low rank reduces to finding
32-bit blocks Bi such that we can form products of the respective matricesMBi

with the product having low rank. Also, from a practical perspective it seems
desirable that the number t of blocks is not too large, so that the resulting
collision fits into, say, a few KByte.

In our experiments with the parameter set from Section 2.2, simple heuris-
tics turned out to yield adequate blocks B1, . . . , Bt, and we did not attempt a
thorough theoretical analysis or optimization of the task:

– For small values of t, say t ≈ 16, already by just enumerating some 32-bit
blocks Bi we quickly obtain candidates such that t identical blocks Bi yield
a matrixMBi‖Bi‖···‖Bi

with rank defect t.

Cryptanalysis of a Hash Function Proposed at ICISC 2006 7

– Knowing a product MB1 · · · · · MBt′ of low rank, one can try to exhaust
32-bit blocks Bt′+1 until multiplyingMB1 · · · · ·MBt′ with MBt′+1

reduces
the rank further. Experimentally, this worked nicely for up to around t′ ≈ 20
blocks.

– If we have found a small number of matrix products P1, . . . ,Pv with a certain
rank defect, we can try to form short products of these Pis and hope that
the multiplication reduces the rank.
This procedure can be applied repeatedly and in our experiments worked
quite nicely. The main drawback is that each Pi can already be derived from
a number of 32-bit blocks Bj : if we form a product

P ′ := P1 · · · · · Pn1

of n1 matrices Pi where each Pi is a product of n2 matrices MBj , then P ′
corresponds to n1 · n2 32-bit blocks Bj .

The next section shows that the above attack can be considered as practical:
We use it to derive a collision for the parameter choice proposed in [Shp06] (see
Section 2.2).

3.3 A Collision for the Proposed Parameters

As already mentioned, the specific polynomial p(x) suggested by Shpilrain in
[Shp06] splits into a product p(x) = q1(x) · q2(x) · q3(x) · q4(x) as specified
in Section 3. Therefore we made use of the Chinese Remainder Theorem as
discussed in Section 3.1.

A collision in F298 To construct a collision in F2[x]/(q4(x)) � F298 we applied
the techniques from the previous section: Using a sequence

T ′4 := B1 ‖ · · · ‖ B2882

of 2882 suitably chosen 32-bit blocks, we derived a matrixMB1‖···‖B2882 of rank
56, i. e., with rank defect d = 98−56 = 42. To specify T ′4, we define the following
bitstrings (to be read from left to right, line by line):

A1 := ‘003FF003 06B80000 06B20000 06B20000 06BA0000 06B0C000

06BA6800 06B4F400 06B6F400 06B52A00 06BB9600 06B9DC80

06BD1180 06B6AB20 06BEF3B0 06B2B470 06BDCAF0 06B11ACC

06B90F3C 06B3B432 06B49CCA 06BB6E03’ (22 · 32 bit)
A2 := ‘003FF003 06A80000 06AA0000 06A50000 06A84000 06A24000

06A22000 06A16800 06AE8400 06AE1C00 06ADAE00 06A9D500

06A3B780 06AC29C0 06AD93C0 06A7E260 06A874C2 06A85DCA

06A7A3B9 06ABAF95 06A84DFD’ (21 · 32 bit)

8 W. Geiselmann and R. Steinwandt

A3 := ‘003FF003 06CC0000 06C20000 06CA8000 06CF8000 06C84000

06C64000 06C17000 06CF4800 06C98400 06CB2900 06CE8080

06C79080 06C95080 06C2A948 06CBCE28 06C00214 06CC572C

06C70021’ (19 · 32 bit)
A4 := ‘003FF003 06F80000 06F80000 06F80000 06F88000 06F98000

06FBA000 06F13000 06F04800 06FE9C00 06F32E00 06FEEE00

06FA9180 06F4CDC0 06F88EB0 06F0BEF0 06FE26A8 06FB3B78’

(18 · 32 bit)
A5 := ‘003FF003 00000000 00010000 00038000 0009C000 000CE000

00065000 0007D000 00033000 000D1400 00033C00 000D0900

00008080 000CD020 000A9FA0 0009EEF0 000BDE0C 000A944C

00031A4A 0007A5FE 001F97E7 004081C9 006AC9DC 008039BD

01C1E775 031A68F0 0E217B84’ (27 · 32 bit)

At this each hexadecimal digit represents a sequence of 4 bits (‘0’ − ‘0000’,
‘1’ − ‘0001’,. . . , ‘E’ − ‘1110’, ‘F’ − ‘1111’). Using A1, . . . , A5 as building
blocks, we define eight more bitstrings:

A6 := A5 ‖ A5 ‖ A4 ‖ A5 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A5 (226 blocks)
A7 := A5 ‖ A5 ‖ A4 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A5 (199 blocks)
A8 := A5 ‖ A5 ‖ A4 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A5 ‖ A5 (226 blocks)
A9 := A5 ‖ A5 ‖ A4 ‖ A5 ‖ A2 ‖ A1 ‖ A5 ‖ A5 (196 blocks)

A10 := A5 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A5 ‖ A3 ‖ A3 ‖ A5 ‖ A5 (246 blocks)
A11 := A5 ‖ A3 ‖ A3 ‖ A5 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A3 ‖ A5 ‖ A5

(265 blocks)
A12 := A5 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A3 ‖ A2 ‖ A5 ‖ A5 ‖ A5 ‖ A5

(275 blocks)
A13 := A5 ‖ A4 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A3 ‖ A5 ‖ A5 (218 blocks)

In terms of A6, . . . , A13, the bitstring T ′4 can be described as follows:

T ′4 := A11 ‖ A12 ‖ A7 ‖ A11 ‖ A13 ‖ A10 ‖ A9 ‖ A6 ‖ A11 ‖ A12 ‖ A8 ‖ A6

Next, with a birthday attack as described we found two 32-bit blocks

M1 := ‘2B99EF46’ and M2 := ‘02B6CF84’

with (H(M1) + H(M2)) being in the kernel of MB1‖···‖B2882 . Consequently
we obtain

H(M1 ‖ T ′4) ≡ H(M2 ‖ T ′4) (mod q4(x)) . (4)

Cryptanalysis of a Hash Function Proposed at ICISC 2006 9

Pruning T ′
4. Inspecting M1 ‖ T ′4 and M2 ‖ T ′4 more closely, it turns out that

(4) remains valid, if we remove the last 300 blocks from T ′4. We write T4 for
the bitstring of length 2582 · 32 = 2882 · 32− 300 · 32 resulting from pruning T ′4
accordingly. In particular, we have

H(M1 ‖ T4) ≡ H(M2 ‖ T4) (mod q4(x)) . (5)

Applying the Chinese Remainder Theorem. Next, we want to identify
bitstrings T3, T2, T1 such that

H(M1 ‖ T4 ‖ · · · ‖ Ti) ≡ H(M2 ‖ T4 ‖ · · · ‖ Ti) (mod q1(x) · · · · · qi(x))

holds for 1 ≤ i ≤ 4.
The polynomial q3(x) is of degree 38. To extend the “F298-collision” in (5)

accordingly, the linear algebra approach from before can be reused: First, we
identify a short bitstring

T ′3 := ‘003FF003 06300000 06320000 063E8000 06394000 0638C000

0639A000 063C6000 0633D000 063A3400 063DBA00 0633BC80

06395B80 0637AC40 0635AF10 0636CB38 063CF824 063EEE8C’

(18 blocks)

which, when “hashing modulo q3(x)”, corresponds to a matrixMT ′
3

of low rank.
Then we enumerate short bitstrings, until a candidate

T ′′3 := ‘00171999’

is found such that H(M1 ‖ T4 ‖ T ′′3) + H(M2 ‖ T4 ‖ T ′′3) (mod q3(x)) yields a
vector in the kernel ofMT ′

3
. Defining T3 as T3 := T ′′3 ‖ T ′3, we have

H(M1 ‖ T4 ‖ T3) ≡ H(M2 ‖ T4 ‖ T3) (mod q4(x) · q3(x)) (6)

as desired.Extending the collision in (6) to the complete quotient ring F2[x]/(q1(x)·
q2(x) · q3(x) · q4(x)) turns out to be straightforward: Appending one more 32-bit
block

T2 := ‘0008D718’

already yields the desired collision

H(M1 ‖ T4 ‖ T3 ‖ T2) = H(M2 ‖ T4 ‖ T3 ‖ T2) .

Thus, we have found two different bitstrings of size 2603 · 32 bit (i. e., ≈10.2
KByte), both of which hash to the same value.

For computing this collision we used the computer algebra system Magma
[BCP97] on a number of different hardware platforms. We estimate our compu-
tational effort to be in the magnitude of one CPU day on a standard PC with
about 8 GByte RAM.

10 W. Geiselmann and R. Steinwandt

4 Conclusion

As explained in the above discussion and demonstrated through a specific colli-
sion, the hash function proposed in [Shp06] does not offer strong collision resis-
tance. Consequently, for applications that rely on collision resistance, the use of
this hash function does not seem to be advisable.

Acknowledgments

We would like to thank Markus Grassl, Kenneth Matheis and Viktória Ildikó
Villányi for interesting discussions.

References

[BCP97] Bosma, W., Cannon, J.J., Playoust, C.: The Magma Algebra System I: The
User Language. Journal of Symbolic Computation 24, 235–265 (1997)

[Cha06] Chang, D.: Preimage Attack on Hashing with Polynomials proposed at
ICISC 2006. Cryptology ePrint Archive: Report 2006/411(2006), available
at http://eprint.iacr.org/2006/411

[Dam90] Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

[Mer90] Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

[Shp06] Shpilrain, V.: Hashing with Polynomials. In: Rhee, M.S., Lee, B. (eds.) ICISC
2006. LNCS, vol. 4296, pp. 22–28. Springer, Heidelberg (2006)

http://eprint.iacr.org/2006/411

Cryptanalysis of Reduced Versions of the

HIGHT Block Cipher from CHES 2006�

Jiqiang Lu

Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

lvjiqiang@hotmail.com

Abstract. HIGHT is a 32-round block cipher with a 64-bit block size
and a 128-bit user key, which was proposed at CHES ’06 for low-resource
applications like RFID. In this paper, we present an impossible differ-
ential attack on 25-round HIGHT, a related-key rectangle attack on 26-
round HIGHT, and finally a related-key impossible differential attack on
28-round HIGHT. Our result suggests that the safety margin of HIGHT
decreases from the originally expected thirteen rounds to about four
rounds now.

Keywords: Block cipher, HIGHT, Impossible differential cryptanal-
ysis, Rectangle attack, Related-key attack.

1 Introduction

Recently, cryptography for embedded and ubiquitous computing systems re-
ceives an extensive research attention. At CHES ’06, Hong et al. [9] presented
a 32-round block cipher with a 64-bit block size and a 128-bit user key, known
as HIGHT. Due to the simple byte-oriented operations involved, HIGHT is es-
pecially efficient in hardware implementations, much faster than those [7,8] of
AES [19], and it is most suitable for various real-life resource-constrained appli-
cation environments, such as RFID (Radio Frequency Identification) systems.
The HIGHT proposers also analysed its security against various existing crypt-
analytic attacks; they described a differential attack [6], a linear attack [18] and
a boomerang attack [20] on 13-round HIGHT, a truncated differential attack [14]
and a saturation attack [17] on 16-round HIGHT, an impossible differential at-
tack [2,15] on 18-round HIGHT, and finally a related-key [1,12] boomerang at-
tack [5] on 19-round HIGHT.

In this paper, we further analyse the security of HIGHT. We exploit 16-round
impossible differentials such that we can devise an impossible differential attack
on 25-round HIGHT; we also exploit 18-round related-key rectangle distinguish-
ers with probability 2−92.4, which can enable us to mount a related-key rectangle
� This work as well as the author was supported by a British Chevening / Royal Hol-

loway Scholarship and the European Commission under contract IST-2002-507932
(ECRYPT).

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 11–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

12 J. Lu

attack on 26-round HIGHT. Finally, we exploit 19-round related-key impossi-
ble differentials that can be used to mount a related-key impossible differential
attack on 28-round HIGHT.

The rest of this paper is organised as follows. In the next section, we briefly
describe some notation and the HIGHT block cipher. In Sections 3 and 4, we
present our cryptanalytic results. Section 5 concludes this paper.

2 Preliminaries

2.1 Notation

We will use the following notation throughout this paper.

– ⊕ : bitwise logical exclusive OR (XOR)
– � : addition modulo 28

– ≪ i : left rotation by i bits
– ej : a byte with zeros in all positions but bit j, (0 ≤ j ≤ 7)
– ei1,···,ij : ei1 ⊕ · · · ⊕ eij , (0 ≤ i1, · · · , ij ≤ 7)
– ej,∼ : a byte that has zeros in bits 0 to j−1, a one in bit j and indeterminate

values in bits (j + 1) to 7
– ej,∼ : a byte that has zeros in bits 0 to j and indeterminate values in bits

(j + 1) to 7
– ? : an arbitrary byte, where two bytes represented by the ? symbol may be

different

The notion of difference used throughout this paper is with respect to the ⊕
operation. It is assumed that in a byte the rightmost bit is the least significant
bit and referred as the 0-th bit, and the leftmost bit is the most significant bit
and referred as the 7-th bit.

2.2 The HIGHT Block Cipher

HIGHT [9] takes as an input a 64-bit plaintext P , represented as eight bytes
(P7, · · · , P1, P0), and it has a total of 32 rounds. Let (Xi−1,7, Xi−1,6,Xi−1,5, Xi−1,4,
Xi−1,3, Xi−1,2, Xi−1,1, Xi−1,0) denote the eight-byte input to Round i, and (Xi,7,
Xi,6, Xi,5, Xi,4, Xi,3, Xi,2, Xi,1, Xi,0) denote the eight-byte output of Round i,
(1 ≤ i ≤ 32). The encryption procedure can be described as follows.

1. Perform the Initial Transformation: the eight-byte output (X0,7, X0,6, X0,5,
X0,4, X0,3, X0,2, X0,1, X0,0)=(P7, P6⊕WK3, P5, P4�WK2, P3, P2⊕WK1, P1,
P0 � WK0).

2. For i = 1 to 32:
Xi,0 = Xi−1,7 ⊕ (F0(Xi−1,6) � SK4i−1),
Xi,1 = Xi−1,0,
Xi,2 = Xi−1,1 � (F1(Xi−1,0)⊕ SK4i−2),
Xi,3 = Xi−1,2,
Xi,4 = Xi−1,3 ⊕ (F0(Xi−1,2) � SK4i−3),

Cryptanalysis of Reduced Versions of the HIGHT Block Cipher 13

⊕ F0

SK4i−1

F1

SK4i−2

⊕ F0

SK4i−3

F1

SK4i−4

⊕ ⊕

Xi−1,0Xi−1,1Xi−1,2Xi−1,3Xi−1,4Xi−1,5Xi−1,6Xi−1,7

Xi,0Xi,1Xi,2Xi,3Xi,4Xi,5Xi,6Xi,7

Fig. 1. The i-th encryption round of HIGHT

Xi,5 = Xi−1,4,
Xi,6 = Xi−1,5 � (F1(Xi−1,4)⊕ SK4i−4),
Xi,7 = Xi−1,6.

3. Perform the Final Transformation: the ciphertext C =(C7, C6, C5, C4, C3, C2,
C1, C0)=(X32,0, X32,7⊕WK7, X32,6, X32,5�WK6, X32,4, X32,3⊕WK5, X32,2,
X32,1 � WK4).

In the above description, SKi (0 ≤ i ≤ 127) are the round subkeys, WKj (0 ≤
j ≤ 7) are the whitening subkeys used in the initial and final transformation, the
functions F0(·) and F1(·) are defined as F0(x) = (x ≪ 1)⊕ (x ≪ 2)⊕ (x ≪ 7),
and F1(x) = (x ≪ 3)⊕(x ≪ 4)⊕(x ≪ 6). Note that the first round is referred
as Round 1. Fig. 1 depicts one encryption round of HIGHT.

The key schedule of HIGHT only accepts a 128-bit user key MK, represented
as sixteen bytes (MK15, · · · , MK1, MK0). The whitening subkeys WKj are gen-
erated as follows: WKj = MKj+12 for j = 0, 1, 2, 3, and WKj = MKj−4 for j =
4, 5, 6, 7. The round subkeys are generated as follows: SK16·i+j = MKj−i mod 8 �
δ16·i+j , or SK16·i+j+8 = MK(j−i mod 8)+8 � δ16·i+j+8 (0 ≤ i, j ≤ 7), where δ16·i+j

and δ16·i+j+8 are public constants.

3 Impossible Differential Attack on 25-Round HIGHT

3.1 16-Round Impossible Differentials

We exploit certain 16-round impossible differentials: (ei,∼, 0, 0, 0, 0, 0, 0, 0) �

(e0,3,5,6,7, 0, 0, 0, 0, 0, 0, e7), where 1 ≤ i ≤ 7. Note that the 16-round differentials
(e7, e0,3,5,6,7, 0, 0, 0, 0, 0, 0)→ (0, ei,∼, 0, 0, 0, 0, 0, 0) are also impossible. These 16-
round impossible differentials are mainly because the following general property.

Property 1. The � operation definitely preserves the least significant differ-
ences in the original positions, and may preserve the other differences in the
original positions or propagate them to the more significant positions, but never
to the less significant positions, while the ⊕ operation always preserves all the
differences in their original positions.

The 16-round impossible differentials are built in a miss-in-the-middle man-
ner [3]: a 8-round differential (ei,∼, 0, 0, 0, 0, 0, 0, 0)→ (ei,∼, ?, ?, ?, ?, ?, ?, ?) with

14 J. Lu

probability 1 is concatenated with another 8-round differential (e0,∼, 0, ?, ?, ?, ?, ?,
?) ← (e0,3,5,6,7, 0, 0, 0, 0, 0, 0, e7) with probability 1, but the leftmost bytes of
the intermediate differences of these two differentials contradict one another.
The input difference (ei,∼, 0, 0, 0, 0, 0, 0, 0) of the first 8-round differential prop-
agates to a difference (0, 0, 0, 0, 0, 0, 0, ei,∼) after one round of HIGHT, which
then propagates to a difference (0, 0, 0, 0, 0, ?, ei,∼, 0) after another round. As
a result, the difference (0, 0, 0, 0, 0, ?, ei,∼, 0) finally propagates to a difference
(ei,∼, ?, ?, ?, ?, ?, ?, ?) after the following six rounds. On the other hand, when we
roll back the difference (e0,3,5,6,7, 0, 0, 0, 0, 0, 0, e7) through one round of HIGHT
in the reverse direction, then we will definitely get the difference (0, e0,3,5,6,7, 0, 0,
0, 0, 0, 0), as the difference e0,3,5,6,7 becomes (e0,3,5,6,7 ≪ 1)⊕ (e0,3,5,6,7 ≪ 2)⊕
(e0,3,5,6,7 ≪ 7) = e0,1,4,6,7 ⊕ e0,1,2,5,7 ⊕ e2,4,5,6,7 = e7 after the F0 function. The
difference (0, e0,3,5,6,7, 0, 0, 0, 0, 0, 0) propagates to a difference (e0,∼, 0, ?, ?, ?, ?, ?,
?) when we roll it back through seven more rounds. Now a contradiction occurs
if i �= 0, as the leftmost byte difference of one of the two intermediate differences
is ei,∼ while the leftmost byte difference of the other is e0,∼.

3.2 Attacking Rounds 6–30

HIGHT has a Feistel structure with four branches, which can be efficiently im-
plemented. However, we observe this round structure is much weaker than a
regular Feistel structure, in terms of security.

Property 2. A byte value (or difference) of the input to Round i will affect at
most two bytes of the output of Round i, at most four bytes of the output of
Round (i+1), and at most six bytes of the output of Round (i+2), (1 ≤ i ≤ 29).

Property 2 suggests that to get a byte value (or difference) of the input to a round
we need not guess all the twelve 8-bit subkeys in its following three rounds; and
we can determine whether a candidate pair is a right pair byte by byte, and even
bit by bit, due to the round struture and the operations involved. This plays an
important role in our attacks.

We can use the 16-round impossible differentials to break 25-round HIGHT.
Here, we attack Rounds 6 to 30 of HIGHT with the final transformation only.
The attack procedure is as follows.

1. Choose 213 structures of 247 plaintexts, where the two bytes (0,1) and the
least significant bits of the third bytes of the 247 plaintexts in a structure
are fixed to certain values, and the other 47 bit positions take all the pos-
sible values. Obviously, a structure proposes 247×2/2 = 293 plaintext pairs
(P i, P j) with difference (?, ?, ?, ?, ?, e0,∼, 0, 0), (i, j = 1, 2, · · · , 247), thus the
213 structures propose a total of 2106 plaintext pairs.

2. In a chosen-plaintext attack scenario, obtain all the ciphertexts Ci of the
plaintexts P i. Choose only the ciphertext pairs (Ci, Cj) with difference
(?, ?, ?, ?, ?, e0,∼, 0, 0).

3. Guess the two key bytes (MK0, MK3), compute the subkeys (WK7, SK119)
in the final transformation and Round 30, and do the following.

Cryptanalysis of Reduced Versions of the HIGHT Block Cipher 15

(a) Partially decrypt every remaining ciphertext pair (Ci, Cj) with (WK7,
SK119) to get the two bytes (7,6) of their intermediate values just be-
fore Round 30, and check if they have a difference (0, ?). Keep only the
qualified pairs.

(b) Guess the two key bytes (MK2, MK7), compute the subkeys (WK6, SK118)
in the final transformation and Round 30, and compute the subkey SK114

in Round 29 with MK3 guessed above. Partially decrypt every remaining
(Ci, Cj) with (WK6, SK114, SK118) to get the two bytes (5,4) of their in-
termediate values just before Round 29.1 Check if they have a difference
(0, ?). Keep only the qualified pairs.

(c) Guess the 8 key bits MK1, compute the subkey WK5 in the final trans-
formation, and do as follows.
i. Guess the least significant bit MK6,0 of the key byte MK6, and com-

pute the least significant bit SK117,0 of the subkey SK117 in Round
30. Partially decrypt every remaining (Ci, Cj) with (WK5, SK117,0)
to get their intermediate values (X i

29,3,0, X
i
29,2) and (Xj

29,3,0, X
j
29,2)

just before Round 30. Keep the pairs such that X i
29,3,0⊕Xj

29,3,0 = 1.
ii. Guess the other seven bits MK6,1−7 of MK6, and compute the subkey

SK117 (together with MK6,0 guessed above). Partially decrypt every
remaining (Ci, Cj) with (WK5, SK117) to get the two bytes (2,3) of
their intermediate values just before Round 30.

(d) Compute the subkey SK113 in Round 29 with MK2 guessed above. For
every remaining (Ci, Cj), partially decrypt the two bytes (4,3) of their
intermediate values just before Round 30 with SK113 to get the two
bytes (3,2) of their intermediate values just before Round 29. Check if
they have a difference (e2,∼, e0,∼). Keep only the qualified pairs.

(e) For l = 0 to 7, do as follows.
– Guess the l-th bit MK15,l of the key byte MK15, and compute the

(l + 1) bits SK109,0−l of the subkey SK109 in Round 28.
– For every remaining (Ci, Cj), partially decrypt the two bytes (4,3)

of their intermediate values just before Round 29 with SK109,0−l to
get their intermediate values (X i

27,3,0−l, X
i
27,2) and (Xj

27,3,0−l, X
j
27,2)

just before Round 28. Keep the pairs such that X i
27,3,0−l = Xj

27,3,0−l.
(f) Guess the 8 key bits MK5, compute the subkey SK116 in Round 30,

and compute the subkeys (WK4, SK112) in the final transformation and
Round 29 with (MK0, MK1) guessed above. Partially every remaining
(Ci, Cj) with (WK4, SK112, SK116) to get the two bytes (1,0) of their in-
termediate values just before Round 29. Check if they have the difference
(e0,3,5,6,7, 0). Keep only the qualified pairs.

(g) Guess the least significant bit MK14,0 of the key byte MK14; for l = 1 to
7, do as follows.

1 The other required intermediate values have been obtained in the previous steps.
Same for some following steps as well as the attacks in the next section, without
explicit statement.

16 J. Lu

– Guess the l-th bit MK14,l of the key byte MK14, and compute the
(l + 1) bits SK108,0−l of the subkey SK108 in Round 28.

– For every remaining (Ci, Cj), partially decrypt the two bytes (1,2)
of their intermediate values just before Round 29 with SK108,0−l to
get their intermediate values (X i

27,1,0−l, X
j
27,1,0−l) just before Round

28. If l �= 7, keep the pairs such that X i
27,1,0−l = Xj

27,1,0−l; if l = 7,
keep the pairs X i

27,1,0−l ⊕Xj
27,1,0−l = e7.

(h) Guess the least significant 3 bits MK10,0−2 of the key byte MK10; for
l = 3 to 7, do as follows.
– Guess the l-th bit MK10,l of the key byte MK10, and compute the

(l + 1) bits SK104,0−l of the subkey SK104 in Round 27.
– For every remaining (Ci, Cj), partially decrypt the two bytes (1,2)

of their intermediate values just before Round 28 with SK104,0−l to
get their intermediate values (X i

26,1,0−l, X
j
26,1,0−l) just before Round

27. Keep the pairs such that X i
26,1,0−l = Xj

26,1,0−l.
4. Compute the subkey SK23 with MK6 guessed in Step 3, and do the following.

(a) Partially encrypt every plaintext pair (P i, P j) corresponding to a re-
maining ciphertext pair (Ci, Cj), with SK23 to get the two bytes (7,0)
of their intermediate values just after Round 6. Check if they have a
difference (?, 0). Keep only the qualified pairs.

(b) Compute the subkeys (SK22, SK27) with (MK5, MK10) guessed in Step 3.
Partially encrypt every remaining (P i, P j) with (SK22, SK27) to get the
two bytes (7,0) of their intermediate values just after Round 7. Check if
they have a difference (?, 0). Keep only the qualified pairs.

(c) Guess the two key bytes (MK4, MK9), compute the subkeys (SK21, SK26)
in Rounds 6 and 7, and compute the subkey SK31 with MK14 guessed in
Step 3.Partially encrypt every remaining (P i, P j)with (SK21, SK26, SK31)
to get the two bytes (7,0) of their intermediate values just after Round 8.
Check if they have a difference (?, 0). Keep only the qualified pairs.

(d) Guess the two key bytes (MK8, MK13), compute the subkeys (SK25, SK30)
in Rounds 7 and 8, and compute the subkeys (SK20, SK35) with (MK1,
MK3) guessed in Step 3. Partially encrypt every remaining (P i, P j) with
(SK20, SK25, SK30, SK35) to get the two bytes (7,0) of their intermediate
values just after Round 9. Check if they have a difference (?, 0). Keep only
the qualified pairs.

(e) Guess the key byte MK12, compute the subkey SK29, and compute the
subkeys (SK24, SK34, SK39) with (MK0, MK5, MK15) guessed in Step 3.
Partially encrypt every remaining (P i, P j) with (SK24, SK29, SK34, SK39)
to get the two bytes (7,0) of their intermediate values just after Round 10.
Check if they have a difference (e0,∼, 0). If none of the plaintext pairs sat-
isfies this test, record the guessed 120 key bits (MK0, · · · , MK10, MK12,
· · · , MK15), and execute Step 5; otherwise, discard this guess and try an-
other.

5. For a recorded (MK0, · · · , MK10, MK12, · · · , MK15), exhaustively search for
the remaining 8 key bits with three known pairs of plaintexts and ciphertexts.

Cryptanalysis of Reduced Versions of the HIGHT Block Cipher 17

If a 128-bit key is suggested, output it as the user key of the 25-round
HIGHT; otherwise, go to Step 3.

There are 17-bit, 8-bit, 8-bit, 1-bit, 3-bit and 7-bit filtering conditions over
the ciphertext pairs in Steps 2 and 3-(a)∼(d) and (f), respectively, and a 1-
bit filtering condition in every iteration of Steps 3-(e), (g) and (h). Thus, it is
expected about 2106 · 2−64 = 242 ciphertext pairs remain after Step 3. There is a
8-bit filtering condition in each of Steps 4-(a)∼(e), so it follows that about 2120 ·
(1−2−8)2

10 ≈ 2120 ·e−22 ≈ 2114.24 guesses of the 120 key bits are recorded in Step
4-(e). The probability that a wrong key is suggested in Step 5 is approximately
2−64×3 = 2−192, thus, the expected number of wrong keys in Step 5 is about
2−192 · 2114.24+8 = 2−73.76. It is very likely that we can find the correct key.

The attack requires 260 chosen plaintexts. Step 3 has about 2 · 289 · 216 · 1
4 ·

1
25 + 2 · 281 · 232 · 1

4 · 2
25 + 2 · 273 · 241 · 1

4 · 1
25 + 2 · 272 · 248 · 1

4 · 1
25 + 2 · 272 · 248 ·

1
4 · 1

25 +
∑7

l=0(2 · 269−l · 248+l+1 · 1
4 · 1

25) + 2 · 261 · 264 · 1
4 · 1

25 +
∑6

l=0(2 · 254−l ·
264+2+l · 1

4 · 1
25) +

∑4
l=0(2 · 247−l · 272+4+l · 1

4 · 1
25) ≈ 2120.73 computations. Step

4 has about 2 · 242 · 280 · 1
4 · 1

25 + 2 · 234 · 280 · 1
4 · 2

25 + 2 · 226 · 296 · 1
4 · 3

25 + 2 ·
218 · 2112 · 1

4 · 4
25 + 2 · 2120[1 + (1 − 2−8) + · · · + (1 − 2−8)2

10
] · 1

4 · 4
25 ≈ 2126.68

computations. Step 5 has about 2122.24 computations. Therefore, the attack has
a total time complexity of about 2126.75 25-round HIGHT computations.

4 Related-Key Cryptanalysis of Reduced HIGHT

A related-key attack [1,12] assumes that the attacker knows the differences be-
tween one or more pairs of unknown keys. In this section, we present a related-key
rectangle attack on 26-round HIGHT, and a related-key impossible differential
attack on 28-round HIGHT.

4.1 Related-Key Rectangle Attack on 26-Round HIGHT

A related-key rectangle attack [5,10,13] is a combination of a related-key attack
and a rectangle attack [4]; it is based on a related-key rectangle distinguisher,
which treats a block cipher E : {0, 1}n × {0, 1}k → {0, 1}n as a cascade of two
sub-ciphers E = E1 ◦ E0.

18-Round Related-Key Rectangle Distinguishers of HIGHT. Let E0

denote Rounds 3 to 12, and E1 denote Rounds 13 to 20. The first related-key
differential for this 18-round distinguisher is the following 10-round related-key
differential α → β with probability 2−12 for E0: (e1,3,5, e0,1,6, e7, 0, 0, 0, 0, 0)→
(0, e1,5,6, e0,6,7, e7, 0, 0, 0, 0)2, where the user key difference KA ⊕ KB = KC ⊕
KD = (ΔMK15, · · · , ΔMK1, ΔMK0) is (0, · · · , 0, e7, 0, 0). The second related-key

2 (e1,3,5, e0,1,6, e7, 0, 0, 0, 0, 0)
(0,0,0,0)−→ (e0,1,6, e7, 0, 0, 0, 0, 0, 0)

(0,0,0,0)−→ (e7, 0, 0, 0, 0, 0, 0, 0)
(e7,0,0,0)−→ (0, 0, 0, 0, 0, 0, 0, 0)

(0,0,0,0)−→ · · · (0,0,0,0)−→ (0, 0, 0, 0, 0, 0, 0, 0)
(0,0,0,e7)−→ (0, 0, 0, 0, 0,

e7, 0, 0)
(0,0,0,0)−→ (0, 0, 0, e0,6,7, e7, 0, 0, 0)

(0,0,0,0)−→ (0, e1,5,6, e0,6,7, e7, 0, 0, 0, 0).

18 J. Lu

differential is the following 8-round related-key differential γ → δ with proba-
bility 2−9 for E1: (0, 0, 0, 0, e2,5,6, e0,6,7, e7, 0)→ (e7, 0, 0, 0, 0, 0, 0, e0,1,6)3, where
the user key difference KA ⊕KC = KB ⊕KD = (0, e7, 0, · · · , 0).

We can compute a square sum of at least 6·(2−12)2+20·(2−13)2+20·(2−14)2+
72 · (2−15)2 ≈ 2−19.98 for the probabilities of all the possible 10-round related-
key differentials α → β′ for E0, as there are at least 6 (10-round related-key
differential characteristics) with probability 2−12, at least 20 with probability
2−13, at least 20 with probability 2−14, and at least 72 with probability 2−15.
We can also compute a square sum of at least 5 · (2−9)2 + 18 · (2−10)2 + 40 ·
(2−11)2 ≈ 2−14.42 for the probabilities of all the possible 8-round related-key
differentials γ′ → δ for E1, as there are at least 5 (8-round related-key differential
characteristics) with probability 2−9, at least 18 with probability 2−10, and at
least 40 with probability 2−11.

Therefore, we can learn that this 18-round related-key rectangle distinguisher
has a probability of at least 2−19.98 · 2−14.42 · 2−64 = 2−98.4 for the correct
key, while it has a probability of 2−128 for a wrong key. We can further im-
prove it by counting many possible 8-round related-key differentials γ′ → δ′

for every γ′ → δ for E1. We count those that only have the output difference
(e7, 0, 0, 0, 0, 0, 0, ΔX21,0) different from the 8-round differential γ′ → δ; an anal-
ysis of this one-round differentials reveals that there are 4 possible ΔX21,0 (i.e.,
e0,1,6, e0,6, e0,6,7, e0,1,6,7) with probability 2−3, 4 possible ΔX21,0 with probability
2−4, 4 possible ΔX21,0 with probability 2−5, 4 possible ΔX21,0 with probability
2−6, and 8 possible ΔX21,0 with probability 2−7. Actually, these are all the 24
possible output differences of the last one-round differentials; we denote them
by the set S. As a result, the distinguisher now has a probability of at least
2−19.98 · (4 ·2−7.21 +4 ·2−8.21 +4 ·2−9.21 +4 ·2−10.21 +8 ·2−11.21)2 ·2−64 = 2−92.4

for the correct key, while it has a probability of (24·2−64)2 ≈ 2−118.83 for a wrong
key. Similar related-key rectangle distinguishers exist for some other series of 18
rounds.

Attacking Rounds 1–26. To get the difference (e1,3,5, e0,1,6, e7, 0, 0, 0, 0, 0)
just before Round 3, the input difference to Round 1 must have the form
(?, e0,∼, ?, e0,∼, e7, 0, 0, 0), with 31 bits definitely being zero differences. On the
other hand, the output difference (e7, 0, 0, 0, 0, 0, 0, x) of this distinguisher will
propagate to a difference (0, 0, 0, 0, 0, ?, x, e7) just after Round 21, where x ∈ S,
which will then propagate to a difference (0, 0, 0, ?, ?, e0,∼, e7, 0) just after Round
22, to a difference (0, ?, ?, ?, e0,∼, e7, 0, e7) just after Round 23 (due to the sub-
key difference in Round 23), and a difference (?, ?, ?, e0,∼, e7, e2,∼, e7) just after
Round 24. This property allows us to use the early abort technique [16] to break
Rounds 21 and 24; the main idea of the early abort technique is to partially
determine whether or not a candidate quartet in a rectangle attack is valid
earlier than usual; if not, we can discard it immediately, which results in less

3 (0, 0, 0, 0, e2,5,6, e0,6,7, e7, 0)
(0,0,0,0)−→ (0, 0, 0, 0, e0,6,7, e7, 0, 0)

(0,0,0,0)−→ (0, 0, 0, 0, e7, 0, 0, 0)
(0,0,e7,0)−→ (0, 0, 0, 0, 0, 0, 0, 0)

(0,0,0,0)−→ · · · (0,0,0,0)−→ (0, 0, 0, 0, 0, 0, 0, 0)
(0,e7,0,0)−→ (0, e7, 0, 0, 0,

0, 0, 0)
(0,0,0,0)−→ (e7, 0, 0, 0, 0, 0, 0, e0,1,6).

Cryptanalysis of Reduced Versions of the HIGHT Block Cipher 19

computations in the subsequent steps and may allow us to break more rounds
by guessing the subkeys involved, depending on how many candidates are re-
maining.

The above analysis enables us to give a related-key rectangle attack on the
first 26 rounds of HIGHT with the final transformation only, after noting that
the same 64 user key bits are used in Rounds 1, 2, 25 and 26 as well as the
final transformation. With a success probability of 80%, the attack requires
249.7 chosen plaintexts, and has a time complexity of 2121.37 26-round HIGHT
computations. See the Appendix A for the detailed attack procedure.

4.2 Related-Key Impossible Differential Attack on 28-Round
HIGHT

19-Round Related-Key Impossible Differentials. We exploit certain 19-
round related-key impossible differentials: (e7, 0, 0, 0, 0, 0, 0, 0) � (0, 0, 0, 0, 0, 0, 0,
e0,∼), where the user key difference (ΔMK15, · · · , ΔMK1, ΔMK0) is (0, e7, 0, · · · ,
0), which start from Round 8 and end at Round 26. They are also built in a
miss-in-the-middle manner: a 12-round related-key differential with probabil-
ity 1 is concatenated with a 7-round related-key differential with probability 1,
where the second right byte of the output difference of the 12-round related-key
differential is e0,∼, and the second right byte of the difference of the 7-round
related-key differential is e0,∼, which contradict with each other.

Attacking Rounds 3–30. Similar to that given in Section 3.2, the 19-round
related-key impossible differentials can be used to break the 28 rounds from
Rounds 3 to 30 of HIGHT with only the final transformation; the main difference
between them lies in that here we compute the related-key difference between a
pair of data. The attack procedure is as follows.

1. Choose 219 structures of 240 plaintexts, where the two bytes (0,1) and the
least significant seven bits of the third bytes and the least significant bits
of the fourth bytes of the 240 plaintexts in a structure are fixed to certain
values, and the other 40 bit positions take all the possible values. A structure
proposes 279 plaintext pairs (P i, P̃ j) with difference (?, ?, ?, ?, e0,∼, e7, 0, 0),
thus the 219 structures propose a total of 298 plaintext pairs with difference
(?, ?, ?, ?, e0,∼, e7, 0, 0).

2. In a chosen-plaintext attack scenario, obtain all the ciphertexts of the plain-
texts P i encrypted with KA; we denote them by Ci, respectively; obtain all
the ciphertexts of the plaintexts P̃ j encrypted with KB; we denote them
by C̃j , respectively, where KA ⊕ KB = (0, e7, 0, · · · , 0). Choose only the
ciphertext pairs (Ci, C̃j) with difference (?, ?, ?, ?, e0,∼, 0, 0, 0).

3. Guess the two key bytes (MK0, MK3), compute the subkeys (WK7, SK119)
in the final transformation and Round 30, and do the following.
(a) Partially decrypt every remaining ciphertext pair (Ci, C̃j) with (WK7,

SK119) to get the two bytes (7,6) of their intermediate values just before
Round 30. Check if they have a difference (0, ?). Keep only the qualified
pairs.

20 J. Lu

(b) Guess the two key bytes (MK2, MK7), compute the subkeys (WK6, SK118)
in the final transformation and Round 30, and compute the subkey SK114

in Round 29 with MK3 guessed above. Partially decrypt (Ci, C̃j) with
(WK4, SK114, SK118) to get the two bytes (5,4) of their intermediate val-
ues just before Round 29. Check if they have a difference (0, ?). Keep only
the qualified pairs.

(c) Guess the three key bytes (MK1, MK6, MK15), compute the subkeys
(WK5, SK95, SK117) in the final transformation and Rounds 27 and 30,
and compute the subkey SK113 in Round 29 with MK2 guessed above.
Partially decrypt (Ci, C̃j) with (WK5, SK95, SK113, SK117) to get the
two bytes (3,2) of their intermediate values just before Round 28. Check
if they have a difference (0, ?). Keep only the qualified pairs.

(d) Guess the two key bytes (MK5,MK14), compute the subkeys (SK108,SK116)
in Rounds 28 and 30, and compute the subkeys (WK4, SK112) in the final
transformation and Round 29 with (MK0, MK1) guessed above. For l = 0
to 7, do as follows.
– Guess the l-th bit MK10,l of the key byte MK10, and compute the

(l + 1) bits SK104,0−l of the subkey SK104 in Round 27.
– For every remaining (Ci, C̃j), Partially decryptCi with (WK4, SK116,

SK112, SK108, SK104,0−l) to get its intermediate value X i
26,1,0−l just

before Round 27, and partially decrypt C̃j with (WK4, SK116, SK112,

SK108 ⊕ e7, SK104,0−l) to get its intermediate value X̃j
26,1,0−l just be-

fore Round 27. Keep only the pairs such that X i
26,1,0−l = X̃j

26,1,0−l.

4. For all the plaintext pairs (P i, P̃ j) corresponding to remaining ciphertext
pairs (Ci, C̃j), do the following.
(a) For l = 0 to 7, do as follows.

– Guess the l-th bit MK11,l of the key byte MK11, and compute the
(l + 1) bits SK11,0−l of the subkey SK11 in Round 3.

– Partially decrypt every remaining (P i, P̃ j) with SK11,0−l to get their
intermediate values (X i

3,7, X
i
3,0,0−l) and (X̃j

3,7, X̃
j
3,0,0−l) just after

Round 3. Keep the pairs such that X i
3,0,0−l = X̃j

3,0,0−l.
(b) Compute the subkeys (SK10, SK15) in Rounds 3 and 4 with (MK10, MK15)

guessed in Step 3. Partially decrypt (P i, P̃ j) with (SK10, SK15) to get the
two bytes (7,0) of their intermediate values just after Round 4. Check if
they have a difference (?, 0). Keep only the qualified pairs.

(c) Guess the key byte MK9, compute the subkey SK9 in Round 3, and
compute the subkeys (SK14, SK19) in Rounds 4 and 5 with (MK2, MK14)
guessed in Step 3. Partially decrypt P i with (SK9, SK14, SK19) to get the
two bytes (7,0) of its intermediate value just after Round 5, and partially
decrypt P̃ j with (SK9, SK14 ⊕ e7, SK19) to get the two bytes (7,0) of its
intermediate value just after Round 5. Check if they have a difference
(?, 0). Keep only the qualified pairs.

(d) Guess the two key bytes (MK8, MK13), compute the subkeys (SK8, SK13)
in Rounds 3 and 4, and compute the subkeys (SK18, SK29) in Rounds

Cryptanalysis of Reduced Versions of the HIGHT Block Cipher 21

5 and 6 with (MK1, MK6) guessed in Step 3. Partially decrypt (P i, P̃ j)
with (SK8, SK13, SK18, SK29) to get the two bytes (7,0) of their interme-
diate values just after Round 6. Check if they have a difference (e0,∼, 0).
Keep only the qualified pairs.

(e) Guess the key byte MK12, compute the subkey SK12 in Round 4, and
compute the subkeys (SK17, SK22, SK27) in Rounds 5, 6 and 7 with
(MK0, MK5, MK10) guessed in Step 3. For every remaining (P i, P̃ j),
partially decrypt the two bytes (1,0) of their intermediate values just
after Round 3 with (SK12, SK17, SK22, SK27) to get the two bytes (7,0)
of their intermediate values just after Round 7. Check if they have a
difference (e7, 0). If none of the plaintext pairs satisfies this test, then
record the guessed 120 key bits (MK0, · · · , MK3, MK5, · · · , MK15), and
execute Step 5; otherwise, discard this guess and try another.

5. For a recorded (MK0, · · · , MK3, MK5, · · · , MK15), exhaustively search for the
remaining 8 key bits with three known pairs of plaintexts and ciphertexts. If
a 128-bit key is suggested, output it as the user key of the 28-round HIGHT;
otherwise, go to Step 3.

There is a 25-bit filtering condition on the ciphertext pairs in Step 2, and a 8-
bit filtering condition in each of Steps 3-(a)∼(d) and Steps 4-(a)∼(e). Hence, for
every key guess, it is expected about 298 · 2−25−8×8 = 29 plaintext pairs remain
after Step 4-(d), and about 2120 · (1− 2−8)2

9 ≈ 2120 · e−2 ≈ 2117.12 guesses of the
120 key bits are recorded in Step 4-(e). Thus, the expected number of suggested
wrong keys in Step 5 is about 2−192 · 2117.12+8 = 2−66.88. Thus, the correct key
can be determined.

Step 3 has about 2 · 273 · 216 · 1
4 · 1

28 + 2 · 265 · 232 · 1
4 · 2

28 + 2 · 257 · 256 · 1
4 · 3

28 +
∑7

l=0(2 · 249−l · 272+l+1 · 1
2 · 1

4 · 4
28) ≈ 2120.19 computations, where 1

2 means the
average fraction of the guessed keys that are tested in a step. Step 4 has about∑7

l=0(2 ·241−l ·280+l+1 · 12 · 14 · 1
28)+2 ·233 ·288 · 12 · 14 · 2

28 +2 ·225 ·296 · 12 · 14 · 3
28 +2 ·

217 · 2112 · 12 · 14 · 4
28 +2 · 2120 · [1+ (1− 2−8)+ · · ·+(1− 2−8)2

9
] · 12 · 14 · 4

28 ≈ 2124.79

computations. Step 5 has about 2125.12 computations. Therefore, the attack has
a total time complexity of about 2125.99 28-round HIGHT computations.

5 Conclusions

The HIGHT block cipher was proposed for low-resource devices at CHES ’06.
In this paper, we present an impossible differential attack on 25-round HIGHT,
a related-key rectangle attack on 26-round HIGHT and a related-key impossible
differential attack on 28-round HIGHT. Like most cryptanalytic attacks on block
ciphers, the presented attacks are theoretical, but they suggest that the reduced
versions of HIGHT are less secure than they should be. These are better than
any previously known cryptanalytic results on HIGHT in terms of the numbers
of attacked rounds.

22 J. Lu

Acknowledgments

The author is very grateful to his supervisor Prof. Chris Mitchell for his editorial
comments.

References

1. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994)

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

3. Biham, E., Biryukov, A., Shamir, A.: Miss in the middle attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

4. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

5. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle at-
tacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

7. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID
systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

8. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEE Proceedings on Information Security 152(1), 13–20 (2005)

9. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: a new block cipher suitable for
low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 46–59. Springer, Heidelberg (2006)

10. Hong, S., Kim, J., Lee, S., Preneel, B.: Related-key rectangle attacks on reduced
versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

11. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
75–93. Springer, Heidelberg (2001)

12. Kelsey, J., Schneier, B., Wagner, D.: Key-schedule cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

13. Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The related-key rectangle attack
— application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)

14. Knudsen, L.R.: Trucated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

Cryptanalysis of Reduced Versions of the HIGHT Block Cipher 23

15. Knudsen, L.R.: DEAL— a 128-bit block cipher, Technical report, Department of
Informatics, University of Bergen, Norway (1998)

16. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Related-key rectangle attack on 42-
round SHACAL-2. In: Katsikas, S.K., Lopez, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 85–100. Springer, Heidelberg (2006)

17. Lucks, S.: The saturation attack — a bait for Twofish. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

18. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

19. National Institute of Standards and Technology (NIST). Advanced Encryption
Standard (AES), FIPS-197 (2001)

20. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

A Procedure of the Related-Key Rectangle Attack on
26-Round HIGHT

1. Choose 214.7 structures Si of 233 plaintexts Pi,l each, i = 1, 2, · · · , 214.7,
l = 1, 2, · · · , 233, where in each structure the 31 bit positions (0–31) of Pi,l

are fixed, and the remaining 33 bit positions take all the possible values.
In a chosen plaintext attack scenario, obtain the ciphertexts Ci,l, C∗i,l, C′i,l
and C′∗i,l of Pi,l encrypted with KA, KB, KC and KD, respectively, where
KA ⊕ KB = KC ⊕ KD = (0, · · · , 0, e7, 0, 0) and KA ⊕ KC = KB ⊕ KD =
(0, e7, 0, · · · , 0).

2. Guess the 8 key bytes (MK0, · · · , MK7), compute the subkeys (SK0, · · · , SK7)
in Rounds 1 and 2, and do as follows.
(a) Partially encrypt each plaintext Pi,l through Rounds 1 and 2 with (SK0,
· · · , SK7) to get its intermediate value xi,l just after Round 2. Then, par-
tially decrypt xi,l ⊕ (e1,3,5, e0,1,6, e7, 0, 0, 0, 0, 0) through Rounds 1 and
2 with (SK0, SK1, SK2 ⊕ e7, SK3, · · · , SK7) to get its plaintext, denoted
by P̃i,l. Find P̃i,l in Si. We denote by C̃i,l, C̃

∗
i,l, C̃′i,l and C̃′∗i,l the cor-

responding ciphertexts for P̃i,l encrypted under KA, KB, KC and KD,
respectively. This process generates 214.7 · 233 = 247.7 plaintext pairs for
every key guess, which can produce the difference (e1,3,5, e0,1,6, e7, 0, 0, 0,
0, 0) just before Round 3.

(b) Compute the subkeys (SK96, · · · , SK99), (SK100, · · · , SK103) and (WK0,
· · · , WK3) with (MK0, · · · , MK7). Then, partially decrypt all the Ci,l and
C

′
i,l with these subkeys to get their respective intermediate values Ti,l and

T
′
i,l just before Round 25, and partially decrypt all the C̃∗i,l and C̃∗

′
i,l with

the related subkeys (SK96 ⊕ e7, SK97, SK98, SK99), (SK100, · · · , SK103)
and (WK0, WK1, WK2 ⊕ e7, WK3) to get their respective intermediate
values T̃ ∗i,l and T̃ ∗

′
i,l just before Round 25. Store (Ti,l, T

′
i,l, T̃

∗
i,l, T̃

∗′
i,l) in a

hash table. Finally, check if both Ti1,l1⊕T
′
i2,l2

and T̃ ∗i1,l1
⊕ T̃ ′∗i2,l2

have the
form (?, ?, ?, e0,∼, e7, e2,∼, e7, ?), for 1 ≤ i1 ≤ i2 ≤ 214.7 and 1 ≤ l1, l2 ≤
233. If 6 or more quartets (Ti1,l1 , T̃

∗
i1,l1

, T
′
i2,l2

, T̃ ∗
′

i2,l2
) pass this test, record

them, and go to Step 3; otherwise, repeat Step 2 with another guess.

24 J. Lu

3. For l = 0 to 7:
(a) Guess the l-th bit MK10,l of the key byte MK10, and compute the (l+1)

bits SK95,0−l of the subkey SK95 in Round 24.
(b) Partially decrypt the two bytes (0,7) of every remaining (Ti1,l1 , T̃

∗
i1,l1

,T
′
i2,l2

,

T̃ ∗
′

i2,l2
) with SK95,0−l to get the least significant (l + 1) bits of the bytes

(7) of their intermediate values just before Round 24, and check if the in-
termeidate (l + 1) bits of Ti1,l1 and T

′
i2,l2

have a zero difference, and the
intermeidate (l +1) bits of T̃ ∗i1,l1

and T̃ ∗
′

i2,l2
also have a zero difference. If 6

or more quartets pass this test, record them; otherwise, repeat Step 3-(a)
with another guess.

4. Guess the key byte MK9, and compute the subkey SK94 in Round 24; for
l = 0 to 7, do as follows.
(a) Guess the l-th bit MK13,l of MK13, and compute the (l+1) bits SK90,0−l

of the subkey SK90 in Round 23.
(b) Partially decrypt the two bytes (5,6) of every remaining (Ti1,l1 , T̃

∗
i1,l1

,T
′
i2,l2

,

T̃ ∗
′

i2,l2
) with (SK94, SK90,0−l) to get the least significant (l + 1) bits of the

bytes (5) of their intermediate values just before Round 23, and check if
the intermeidate (l + 1) bits of Ti1,l1 and T

′
i2,l2

have a zero difference, and
the intermeidate (l+1) bits of T̃ ∗i1,l1

and T̃ ∗
′

i2,l2
have a zero difference as well.

If 6 or more quartets pass this test, record them; otherwise, repeat Step
4-(a) with another guess (if all the guesses of MK13,l are tested, repeat
Step 4 with another guess of MK9).

5. Guess the least significant 3 bits MK15,0−2 of the key byte MK15; for l = 3
to 7, do as follows.
(a) Guess the l-th bit MK15,l of MK15, and compute the (l+1) bits SK92,0−l

of the subkey SK92 in Round 24.
(b) Partially decrypt the two bytes (1,2) of every remaining (Ti1,l1 , T̃

∗
i1,l1

,T
′
i2,l2

,

T̃ ∗
′

i2,l2
) with SK92,0−l to get the least significant (l + 1) bits of the bytes

(1) of their intermediate values just before Round 24, and check if the in-
termeidate (l + 1) bits of Ti1,l1 and T

′
i2,l2

have a zero difference, and the
intermeidate (l + 1) bits of T̃ ∗i1,l1

and T̃ ∗
′

i2,l2
have a zero difference as well.

If 6 or more quartets pass this test, record them; otherwise, repeat Step
5-(a) with another guess.

6. Guess the key bytes (MK8, MK12), compute the subkeys (SK93, SK89), and
compute the subkey SK85 with MK0 guessed in Step 2. Partially decrypt the
twobytes (3,4) of every remaining (Ti1,l1 , T̃

∗
i1,l1

, T
′
i2,l2

, T̃ ∗
′

i2,l2
) with (SK93, SK89,

SK85) to get the two bytes (3,2) of their intermediate values just before Round
22, and check if the intermeidate values of Ti1,l1 and T

′
i2,l2

have a difference
(0, ?), and the intermeidate values of T̃ ∗i1,l1

and T̃ ∗
′

i2,l2
have a difference (0, ?) as

well. If 6 or more quartets pass this test, execute Step 7 with them; otherwise,
repeat this step with another guess. Now, for every remaining (Ti1,l1 , T̃

∗
i1,l1

,

T
′
i2,l2

, T̃ ∗
′

i2,l2
), we obtain their intermediate values just before Round 24; we de-

note them by (Qi1,l1 , Q̃
∗
i1,l1

, Q
′
i2,l2

, Q̃∗
′

i2,l2
), respectively.

Cryptanalysis of Reduced Versions of the HIGHT Block Cipher 25

7. Guess the key byte MK11, compute the subkey SK88 in Round 23, and
compute the subkey SK84 with MK7 guessed in Step 2. Partially decrypt
the two bytes (1,2) of (Qi1,l1 , Q̃

∗
i1,l1

, Q
′
i2,l2

, Q̃∗
′

i2,l2
) with (SK88, SK84) to get

the two bytes (1,0) of their intermediate values just before Round 22, and
check if the intermediate values of Qi1,l1 , Q

′
i2,l2

have a difference belonging
to the set {(x, e7)|x ∈ S}, and the intermediate values of Q̃∗i1,l1

and Q̃∗
′

i2,l2
also have a difference belonging to the set {(x, e7)|x ∈ S}. If 6 or more
quartets (Qi1,l1 , Q̃

∗
i1,l1

, Q
′
i2,l2

, Q̃∗
′

i2,l2
) pass this test, execute Step 8 with them;

otherwise, repeat this step with another guess of MK11.
8. Compute the subkey SK80 with MK3 guessed in Step 2. For every remaining

(Qi1,l1 , Q̃
∗
i1,l1

, Q
′
i2,l2

, Q̃∗
′

i2,l2
), since we already obtain the two bytes (1,2) of

their intermediate values just before Round 22, we can partially decrypt
them with SK80 to check if the bytes (1) of the intermediate values just
before Round 21 of (Qi1,l1 , Q

′
i2,l2

) have a zero difference, and the bytes (1)
of the intermediate values just before Round 21 of (Q̃∗i1,l1

, Q̃∗
′

i2,l2
) have a zero

difference as well. If 6 or more (Qi1,l1 , Q̃
∗
i1,l1

, Q
′
i2,l2

, Q̃∗
′

i2,l2
) pass this test,

record the guessed 120 key bits (MK0, · · · , MK13, MK15), and go to Step 9;
otherwise, repeat Step 7 with another guess of MK11.

9. For a recorded (MK0, · · · , MK13, MK15), exhaustively search for the remain-
ing 8 key bits with a known plaintext/ciphertext pair. If a 128-bit key is
suggested, output it as the user key of the 26-round HIGHT; otherwise, go
to Step 2 (If all the guesses are tested during any of Steps 3–8, repeat its
previous steps with other guesses).

The related-key rectangle distinguisher involves four different keys, thus about
247.7×2 = 295.4 candidate quartets are constructed for every guess in Step 2. To
produce the output difference δ′, the two pairs in a right quartet must have dif-
ferences (?, ?, ?, e0,∼, e7, e2,∼, e7, ?) just before Round 25, so a candidate quartet
that does not meet this filtering condition is an incorrect quartet. Therefore, it
is expected that almost all the 264 guesses of (MK0, · · · , MK7) will pass Step
2-(b), and for every guess about 295.4 ·2−20×2 = 255.4 candidate quartets remain
after 2-(b).

For every iteration in Step 3-(b), the probability that a quartet meets the
filtering condition is (2−1)2 = 2−2, so it follows that all the 272 guesses of
(MK0, · · · , MK7, MK10) will past Step 3, and for a wrong guess it is expected
about 255.4 · 2−2×8 = 239.4 quartets remain after Step 3. For every iteration in
Step 4-(b), the probability that a quartet meets the filtering condition is also 2−2,
so it is expected that all the 288 guesses of (MK0, · · · , MK7, MK9, MK10, MK13)
will past this step, and for a wrong guess about 239.4 · 2−2×8 = 223.4 quar-
tets remain after Step 4. For every iteration in Step 5-(b), the probability
that a quartet meets the filtering condition is 2−2, so for a wrong guess about
223.4 · 2−2×5 = 213.4 quartets remain after Step 5. In Step 6, the probability
that a quartet meets the filtering condition is also 2−8×2 = 2−16, so for a wrong
guess about 213.4 · 2−16 = 2−2.6 quartets remain after Step 6, and the proba-
bility that 6 or more quartets pass the test for a wrong guess is approximately

26 J. Lu

∑213.4

i=6 [
(
213.4

i

) · (2−16)i · (1 − 2−16)2
13.4−i] ≈ 2−25.09, thus it is expected that

about 2112 · 2−25.09 = 286.91 guesses of (MK0, · · · , MK10, MK12, MK13, MK15)
pass Step 6. In Step 7, the probability that a quartet meets the filtering condi-
tion is (24

27)2 = 2−4.83, and the probability that 6 or more quartets pass the test
for a wrong guess is approximately (2−4.83)6 ≈ 2−28.98, so it is expected about
286.91+8 · 2−28.98 = 265.93 guesses of (MK0, · · · , MK13, MK15) pass Step 7. In
Step 8, the probability that 6 or more quartets pass the test for a wrong guess is
approximately (2−8×2)6 = 2−96, thus it is expected about 265.93 · 2−96 = 2−30.07

guesses of (MK0, · · · , MK13, MK15) pass Step 8. Therefore, it is expexcted that
we can find the correct user key with 28 trials in Step 9.

The attack requires 249.7 related-key chosen plaintexts. Step 2-(a) has about
2 · 247.7 · 264 · 1

2 · 2
26 ≈ 2108 26-round HIGHT computations, where 1

2 means
the average fraction of the guessed keys that are tested in the step. The time
complexity of Step 2-(b) is dominated by the partial decryptions, which is about
4·247.7·264· 12 · 2

26 ≈ 2109 computations. Step 3 has about
∑7

l=0(4·255.4−2·l·265+l· 12 ·
1
4 · 1

26) ≈ 2115.69 computations. Step 4 has about
∑7

l=0(4·239.4−2·l·281+l· 12 · 14 · 2
26) ≈

2116.69 computations. Step 5 has about
∑4

l=0(4·223.4−2·l ·292+l · 12 · 14 · 1
26) ≈ 2110.65

computations. Step 6 has about 4 · 213.4 · 2112 · 1
2 · 1

4 · 3
26 ≈ 2121.28 computations.

Step 7 has about 4 · 6 · 294.91 · 1
2 · 1

4 · 2
26 ≈ 292.79 computations. Step 8 has about

4 · 6 · 265.93 · 1
2 · 1

4 · 1
26 ≈ 262.81 computations. Therefore, the attack has a total

time complexity of about 2121.37 26-round HIGHT computations.
In Step 8, it is expected that about 295.4 ·2−92.4 = 8 quartets pass the filtering

condition for the correct key, and the probability that 6 or more quartets pass
the test for the correct key guess is approximately

∑295.4

i=6 [
(
295.4

i

) · (2−92.4)i · (1−
2−92.4)2

95.4−i] ≈ 0.8, so this related-key rectangle attack can break the 26-round
HIGHT with a success probability of 80%.

A Cryptanalysis of the Double-Round Quadratic

Cryptosystem

Antoine Scemama

Johann Wolfgang Goethe University
Frankfurt am Main, Germany

scemama@math.uni-frankfurt.de

Abstract. In the 80’s Matsumoto and Imai [8] proposed public key
cryptosystems based on the difficulty of solving systems of polynomi-
als in several variables. Although these first schemes were broken, many
others followed, leading to a very active field known as Multivariate cryp-
tography. In this paper, we show how to break one of these schemes, the
Double-Round Quadratic cryptosystem from [12]. We stress that this
cryptosystem has, in practice, already been cryptanalysed in [5]. How-
ever their attack uses several “non-standard” heuristics, they provide
experimental evidence, but no proof is given, as opposed to this present
article. Our attack uses a very general technique introduced in [9] to
break the cryptosystem.

Keywords: Multivariable Cryptography, Double-Round Quadratic
Cryptosystem, 2R Cryptosystem.

1 Introduction

The introduction of multivariate cryptography corresponded to the need for
primitives based on new problems. Indeed, today’s widely used (cryptographic)
schemes are based on the factorisation or on the discrete logarithm problem, and
we can not be sure (although it seems very unlikely) that no efficient algorithm
to solve these problems exists. Thus, it is natural to look for alternatives.

Considering also that both factorisation and discrete logarithm problems are
easily solved on quantum computers, even if operational ones won’t exist for
decades, one must be prepared.

Multivariate cryptography could be a credible alternative in the sense that the
underlying problem (solving a system of polynomial equations over some finite
field) is NP-hard, seems to stay hard “on average” and is believed to remain
hard even with a quantum computer.

An additional advantage is that it allows the building of efficient schemes that
are particularly well suited to low-cost devices such as smartcard.Unfortunately,
nowadays, most of the multivariate encryption schemes have been broken. How-
ever, several modifications have enabled the creation of a large variety of very effi-
cient signature algorithms. Even if these schemes are quite recent, in 2003 a scheme
from Patarin et al. [3] was considered strong enough to be selected by the NESSIE
project [1] for standardization. This last scheme was recently broken in [6].

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 27–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

28 A. Scemama

After his cryptanalysis of the Imai-Matsumoto cryptosystem [8], Patarin et
al. proposed in a series of articles ([12] [7]), a collection of new multivariate
schemes which the author called 2R (for “2 Round”), one of which is also called
the “Double-Round Quadratic cipher” in [10], and which is at the center of the
present paper.

A cryptanalysis of a large class of the 2R cipher (particularly of the Double-
Round Quadratic cipher) was published in 1999 in [5], followed a year later by
another cryptanalysis [2] which, however does not apply to the Double-Round
Quadratic cipher.

In this article we present another Cryptanalysis of the Double-Round
Quadratic Cryptosystem that differs significantly from [5]. Based on the work
from [9], we show that the scheme can be described differently (in another math-
ematical structure) and that in this other formalism, relinearization techniques
enable the computing, in polynomial time, of the private keys from the public
one. Our proof is also heuristic in the sense that we assume the linearized equa-
tions to be independent. This assumption is very general and has been used and
verified many times in similar cases. The author feels that the formalism used
here is preferable when describing Multivariate ciphers, because it allows us to
present it in a unified (and cleaner) way.

Organisation of the paper
In the first section, we describe the Double-Round Quadratic cryptosystem. In
the second, we introduce the results from [9] which establish an equivalence
between a system of polynomials in n variables over a finite field Fq and an uni-
variate polynomial in the degree n extension of Fq. Then, we recall results based
on so called re-linearization technique (mainly from [9]) in section 3. Finally we
present the cryptanalysis in section 4, 5, 6 and 7.

2 Description of the Double-Round Quadratic
Cryptosystem

2.1 Notation

K = Fqn denotes the field with qn elements. Moreover, q must satisfy q = 3
mod 4.

Let (β1, · · · , βn) be a basis of K seen as a Fq-vector space.
For an element x of K, we will use both vector and field representations to

refer to x.
We note x = x1β1 + · · · + xnβn ∈ K (with (x1, · · · , xn) ∈ (Fq)n) to refer

to the field element. We also refer to x according to the vector notation : x̄ =
(x1, · · · , xn).

2.2 Idea of the Cryptosystem

The public key consist of a system of n degree 4 polynomials (in n variables)
P1(x1, · · · , xn), · · · , Pn(x1, · · · , xn) defined over Fq.

A Cryptanalysis of the Double-Round Quadratic Cryptosystem 29

Given a message m̄ = (m1, · · · , mn) ∈ (Fq)n, the corresponding ciphertext is
the vector corresponding to the image of the polynomial system at the point m̄.
Hence the ciphertext is c̄ = (P1(m1, · · · , mn), · · · , Pn(m1, · · · , mn)).

To produce the public key (i.e. the system of public polynomials) one chooses
3 nonsingular matrices in Mn(Fq) which are kept secret. Given a vector x̄ =
(x1, · · · , xn) ∈ (Fq)n one alternatively applies a private linear transformations
(with the help of the private matrices) and a public non-linear (invertible) trans-
formation. The result of this mix of (private) linear, and (public) non-linear
transformations, gives rise to a system of n polynomials which form the public
key.

Finally, to decrypt the vector c̄, one has to apply the inverse linear transfor-
mations (with the private matrices) and the inverse non-linear transformation,
in the reverse order.

The general idea here (and it is the case for all multivariate cryptosystems) is
that if a malicious adversary wants to recover the plaintext from the ciphertext
(c1, · · · , cn) he has to inverse a system of polynomials of the following form:

⎧
⎪⎨

⎪⎩

P1(x1, · · · , xn) = c1

...
Pn(x1, · · · , xn) = cn

The hope is that, even if he knows the machinery used to produce the system
(except the private keys), he can not effectively inverse it other than by directly
solving the public system of equations, which is in general a NP-hard problem
(even when the polynomials are quadratic over the finite field F2).

2.3 How It Works

Scheme of the different parameters used in the Double-Round Quadratic Cryp-
tosystem.

Public Private
q, n

P1(x1, · · · , xn)
...
Pn(x1, · · · , xn)

A, B, C ∈Mn(Fq) nonsingular

Production of the public key
Let x̄ = (x1, · · · , xn). First, one chooses the parameters n and q along with the
(nonsingular) matrices A, B and C. To produce the public system of equations,
one computes the following:

ū = Ax̄⇒ v = u2 ⇒ w̄ = Bv̄ ⇒ z = w2 ⇒ c̄ = Cz̄ =

⎛

⎜
⎝

P1(x1, · · · , xn)
...
Pn(x1, · · · , xn)

⎞

⎟
⎠ .

Note that we alternate between transformations on vectors and transforma-
tions on field elements

30 A. Scemama

Encryption
Given the message m̄ = (m1, · · · , mn), the ciphertext is c̄ = (P1(m1, · · · , mn),
· · · , Pn(m1, · · · , mn)) in (Fq)n.

Decryption
To decrypt, one must be able to inverse all the transformations which led to the
public key. The linear transformations are easy to inverse, given the matrix A, B
and C. The squaring transformation is also easily “almost” invertible as follows:

(x2)
qn+1

4 = x
qn−1

2 x = ±x (remember that q = 3mod4)

Hence, given the ciphertext c̄, the decryption algorithm work as follows:

C−1c̄= z̄ ⇒ z
q+1
4 = ±w⇒B−1(±w̄) = ±v̄ ⇒ (±v)

q+1
4 = ±u⇒ A−1(±ū) = ±x̄

We can not exactly inverse the squaring transformation, but it is not really
a problem. Hence, if m̄ is the original message and x̄ = (x1, · · · , xn) is the
decrypted one, we know that either m̄ = (x1, · · · , xn) or m̄ = (q−x1, · · · , q−xn).
We can take, for instance, the convention that each message m̄ to be encrypted
must have the first non zero component mi in the interval [1, q−1

2], so that we
know which of x̄ and −x̄ correspond to m.

Remarks. The cryptosystem needs two rounds, i.e. two applications of the (non-
linear) squaring transformation. Indeed, the one round version can be attacked,
see [12] or the book [10].

3 The Kipnis-Shamir Formalism

In the description of the cryptosystem, we alternate between transformations on
elements of (Fq)n and transformations in Fqn . This different framework makes
it difficult to analyse and to attack the cryptosystem. In [9], the authors showed
that one could have a unified framework, with only transformations in Fqn . In
section 5, we will show that in this framework, the Double-Round Quadratic
cryptosystem is easily breakable.

The next two theorems are taken directly from [9]. We add the proof for
completeness.

Theorem 1 (Kipnis, Shamir 99). Let M be a linear mapping from n-tuples
to n-tuples of values in Fq. Then there are coefficients a1, · · · , an in Fqn such that
for any two n-tuples over Fq, (x1, · · · , xn) (which represents x =

∑n
i=1 xiβi in

Fqn) and (y1, · · · , yn) (which represents y =
∑n

i=1 yiβi in Fqn), (y1, · · · , yn) =
M(x1, · · · , xn) if and only if y =

∑n
i=1 aixqi

.

Proof
It is well known that the application F with F(x) = xqi

is a linear application in
Fqn (seen as a Fq-vector space). Hence, every polynomial P (x) =

∑n−1
i=0 aixqi ∈

Fqn [X] is also a linear application.

A Cryptanalysis of the Double-Round Quadratic Cryptosystem 31

It follows that there exists a matrix M in Mn(Fq) such that for any two
n-tuples over Fq, (x1, · · · , xn) (which represents x =

∑n
i=1 xiβi in Fqn) and

(y1, · · · , yn) (whith y =
∑n

i=1 yiβi in Fqn), (y1, · · · , yn) = M(x1, · · · , xn) if
y =

∑n
i=1 aixqi

.
Moreover there are qn2

different matrices in Mn(Fq) and also qn2
different

Polynomials of the form P (x) =
∑n−1

i=0 aixqi

in Fqn [X]. Finally, it is clear that
two different polynomials can not lead to the same matrix, since otherwise it
would mean that a non-zero polynomial is represented by a zero matrix.

Remark. Given a linear mapping M , it is clear that we can find the coefficients
ai of the corresponding polynomial by identification. This can be done in time
roughly O(n5).

Now, we can state an even stronger result. Indeed, starting from the previous
theorem, once can easily show that any system of n equations in n variables over
Fq, can be represented by an equivalent polynomial in Fqn [X] of a special shape.
The next theorem (and its proof) is important for us, as it provides a method
of building such an equivalent polynomial (in Fqn [X]).

Theorem 2 (Kipnis, Shamir 99). Let P1(x1, · · · , xn), · · · , Pn(x1, · · · , xn) be
any set of n multivariate polynomials in n variables over Fq. Then, there are
coefficients a1, · · · , aqn in Fqn such that for any two n tuples (x1, · · · , xn) and
(y1, · · · , yn) in (Fq)n, yj = Pj(x1, · · · , xn) for all 1 ≤ j ≤ n if and only if
y =

∑qn

i=1 aixi (where x =
∑n

i=1 xiβi and y =
∑n

i=1 yiβi are the elements of
Fqn which correspond to the two vectors over Fq).

We also reproduce the proof, as it leads to a lemma, which we will use in the
cryptanalysis.

Proof
The mapping φ1,i : (x1, · · · , xn) → (xi, 0, · · · , 0) is Fq-linear. Thus, from the
first theorem, there exists a corresponding polynomial over Fqn , ie there exists
P1,i ∈ Fqn [X] such that P1,i(x) = φ1,i(x̄).

To represent the mapping (x1, · · · , xn) → (
∏k

i=1 xci

i , 0, · · · , 0) we can simply
multiply the polynomials P1,i corresponding to each linear transformation.

The polynomial corresponding to the following mapping, (x1, · · · , xn) →
(0, · · · , 0,

∏k
i=1 xci

i , 0, · · · , 0) (where the non-zero component of the image is the
component of βj) is simply the product of all the polynomials P ci

1,i (i = 1, · · · , n)
multiplied with β−1

1 βj .

This proof leads to the following lemma:

Lemma 1. Let C be any collection of n homogeneous multivariate polynomials
of degree d in n variables over Fq. Then, the only powers of x which can occur
with non-zero coefficients in its univariate polynomial representation G(x) over
Fqn are sums of exactly d (not necessarily distinct) powers of q : qi1 + qi2 + · · ·+
qin . If d is a constant, then G(x) is sparse, and its coefficients can be found in
polynomial time.

32 A. Scemama

Remark. Hence, given a system of n polynomials (in n variables) of maximum to-
tal degree d over Fq, we can find the coefficients of the corresponding polynomial
over Fqn easily. Indeed, one can compute all the polynomials P1,i (i = 1, · · · , n)
and then compute their product (as mentioned in the later proof). Another strat-
egy to find the polynomial is by using simple interpolation based on sufficiently
many Input/Output pairs.

4 Relinearization Technique

In this section, we are interested in solving an overdefined system of quadratic
equations in some finite field.

Let us say that this system has m variables, and many more equations, i.e.
εm2 for ε > 0 . In [9] the authors demonstrate an easy algorithm to solve this
system, if ε is not too small.

We briefly recall this technique, which will be used in the cryptanalysis.
First, if ε � 1

2 the system is easily solvable because one can set new variables
yij = xixj . The equations becomes linear in the ≈ n2

2 variables yij , and when
ε � 1

2 we have more linear equations than variables, we can solve the system
using standard linear algebra.

Remark. We assume that all (or most) of the linearized equations are linearly
independent. Moreover, we assume that if the number of equations is (much)
larger than n2

2 we will not have (or will only have very few) parasitic solutions
for the yi,j which do not correspond to the solution for x that we are looking
for. In [3] the authors have led extensive experiments in the same context, and
this heuristic always turned out to be right.

Essentially, if ε < 1
2 we can still set the new variables yij , but we will have

fewer (linear) equations than variables. The set of solutions to this new sys-
tem is a vector space of dimension (1

2 − ε)m2, and we can easily find a basis
(b1, · · · , b(1

2−ε)m2) of such a space. The particular solution (y11, · · · , ynn) we are
looking for can be expressed as a linear combination of the basis element, i.e.
(y11, · · · , ynn) =

∑(1
2−ε)m2

i=1 zibi. So we have in fact εm2 equations and (1
2 − ε)m2

variables (the zi).
Now we notice that the linearization step also produces new equations, indeed:

(xaxb)(xcxd) = (xaxc)(xbxd) = (xaxd)(xcxb)⇒ yabycd = yacybd = yadybc

For each sorted list (a, b, c, d) we get 2 equations (for simplicity we neglect the
case where a, b, c, d are not distinct), hence we get in total ≈ m4

12 new quadratic
equations in yij , which lead to the same amount of quadratic equations in
the zi.

Now we can linearize these quadratic equations again in the (1
2−ε)m2 variables

zk, we get m4

12 linear equations in ((1
2−ε)m2)2

2 variables.

This system is uniquely solvable if m4

12 ≥
((1

2−ε)m2)2

2 which correspond to
ε � 0.1.

A Cryptanalysis of the Double-Round Quadratic Cryptosystem 33

Hence we see that for ε � 0.1 we can solve the system. For a detailed and
precise analysis of the method, see [11]. Of course, the method presented above
can be generalised in many ways (see [9]) and in [4] it is shown that the heuristical
argument works very well in practice. It is also conjectured that one can solve
the system for every ε > 0 in time n

O(1√
ε
). So, even for ε much smaller than 0.1

this type of method could work.

5 Cryptanalysis

5.1 Recovering the C Matrix

With the help of the theorems from section 3, we are able to present the Double-
Round Quadratic cryptosystem in a unified framework.

The private values (the matrix A, B and C) are now the polynomials PA, PB , PC

in Fqn [X] which, according to the first theorem of section 3 are of the following
form: PA =

∑n−1
i=0 aixqi

, PB =
∑n−1

i=0 bixqi

, PC =
∑n−1

i=0 cixqi

.
The public system of equations is also represented by a polynomial (Ppublic(x))

in Fqn [X] and satisfies:

PC(PB(PA(x)2)2) = Ppublic(x) (1)

Moreover, we see from the shape of PA, PB , Pc that Ppublic has the form.

Ppublic =
∑

0≤i1≤i2≤i3≤i4≤n−1

pi1,i2,i3,i4x
qi1+qi2+qi3+qi4

The shape of the public polynomial in Fqn [X] can also be viewed as a direct
consequence of the lemma from section 3. Moreover, the coefficients pi1,i2,i3,i4

can be found by the constructive method presented in the proof of the theorem
(from section 3).

As PC is the polynomial corresponding to the linear transformation with
matrix C, it follows that (PC)−1 corresponds to the linear transformation with
matrix C−1. From the first theorem we know that (PC)−1 is of the form:

(PC)−1 =
n−1∑

t=0

c
′
tx

qt

We can write the equation (1) in the following way:

PB(PA(x)2)2 = (PC)−1(Ppublic(x)) =
n−1∑

t=0

∑

0≤i1≤i2≤i3≤i4≤n−1

c
′

tp
qt

i1,i2,i3,i4
xqi1+t+qi2+t+qi3+t+qi4+t

(2)

Moreover PA(x) =
∑n−1

i=0 aixqi ⇒ (PA(x))2 =
∑n−1

0≤i≤j≤n a
′
i,jx

qi+qj

so PB(PA(x)2) =
∑n−1

k=0 bk[
∑n−1

0≤i≤j≤n a
′
i,jx

qi+qj

]q
k

34 A. Scemama

It follows that there exist bi,j in Fqn so that PB(PA(x)2) satisfies:

PB(PA(x)2) =
∑

0≤i1≤i2≤n−1

bi1,i2x
qi1+qi2 (3)

Which means that the following equation must hold:

(
∑

0≤i1≤i2≤n−1

bi1i2x
qi1+qi2)2 =

n−1∑

t=0

∑

0≤i1,i2,i3,i4≤n−1

c
′

tp
qt

i1,i2,i3,i4
xqi1+t+qi2+t+qi3+t+qi4+t

(4)

Hence, we have an equality between two polynomials, which leads to as many
equations as the number of different terms in the polynomials. All the terms of
the form xqi1+qi2+qi3+qi4 with 0 ≤ i1, i2, i3, i4 ≤ n− 1 are present.

And clearly if (i1, i2, i3, i4) (with i1 ≤ i2 ≤ i3 ≤ i4), and (i
′
1, i

′
2, i

′
3, i

′
4) (with

i
′
1 ≤ i

′
2 ≤ i

′
3 ≤ i

′
4) are different, then qi1 + qi2 + qi3 + qi4 �= qi

′
1 + qi

′
2 + qi

′
3 + qi

′
4 .

So the number of different terms is
(
n+3

4

)
= 1

24n4 + o(n4), and the number of
unknowns (the bij and c

′
k) is n(n+1)

2 + n.
We obtain another system of quadratic equations, but instead of having n

equations in n unknown (over Fq) we now have ≈ 1
24n4 equations, in ≈ n2

2
variables (over Fqn). Using the relinearization technique, we can easily solve this
system, as in our case ε ≈ 4

24 = 1
6 > 0.1. We recover the matrix C

′
via the

coefficients c
′
i, and we can compute C = (C

′
)−1.

Remark. It makes sense to look at the asymptotical values for n, because it is the
security parameter of the cryptosystems. Which means that n is the parameter
to be increased if one wants to keep the overall security for the system with
regards to the growth in terms of computational power to perform attacks.
Hence the system is theoretically broken, if it is broken for n→∞.

In practice, the proposed values were q = 251 and n = 9, an exact computation
leads to ε = 0.17 which means that the system is also practically solvable for
any values of n (as ε increases with n).

5.2 Recovering the B and A Matrices

The coefficients bi,j which were found in the previous paragraph lead us to the
polynomials Q(x) with:
Q(x) = PB(PA(x)2) =

∑
0≤i1≤i2≤n−1 bi1i2x

qi1+qi2 .

Now we can use exactly the same method as above to find the matrices B
and A.

We know that PB(x) =
∑n−1

i=0 bixqi

, Hence P−1
B (x) =

∑n−1
i=0 b

′
ix

qi

.
PA(x)2 = P−1

B (Q(x)).
Hence, we get (remember PA(x) =

∑n−1
i=0 aixqi

):

(
n−1∑

i=0

aixqi

)2 =
n−1∑

i=0

bi(Q(x))qi

A Cryptanalysis of the Double-Round Quadratic Cryptosystem 35

We have a quadratic system of 2n variables and
(
n+2

2

)
= n2

2 +o(n2) equations
over Fqn . In this case again ε = 1

8 > 0.1, we can recover the variables (so also
the matrices A and B) with the relinearization technique mentioned above.

As for the recovering of the matrix C the attack works as well in practice, as
for n = 9 we find ε = 0.17.

6 The Affine Case

It is common in Multivariate Cryptography that the private transformations are
chosen to be affine (and not linear), because it does not cost more (at least
asymptotically), and may enhance the security of the scheme. Here, instead of
using only the matrix A, B and C, we would also have vectors A

′
, B

′
and C

′
to

make these three transformations affine.
It is easy to see that even when the transformations are affine, the same crypt-

analysis would work. Indeed, in the Shamir-Kipnis formalism the only change
would be to add a constant term to PA, PB and PC .

So we would have PA(x) =
∑n−1

i=0 aixqi

+ ac, PB(x) =
∑n−1

i=0 bixqi

+ bc and
PC(x) =

∑n−1
i=0 cixqi

+ cc.
If we use the same technique as above, the number of unknowns and the

number of equations changes. Obviously, we have 3 more unknowns (in Fqn) in
the affine case. On the other hand we have many more equations to be completed.
i.e. in the linear case each equation corresponded to one monom of the form
xqi1+qi2+qi3+qi4 , whereas in the affine case we also have to take into account all
the monoms of the form xqi1+qi2+qi3 ,xqi1+qi2 , xqi1 and the constant term.

Overall, there are many new equations and only 3 new variables, so the same
technique (as in the linear case) will also work.

7 Complexity Analysis

The relinearization technique has polynomial time complexity. Moreover, we use
it for quadratic systems of O(n2) variables, where n is our security parame-
ter. Hence, our attack is clearly polynomial time, so the system is theoretically
broken.

Now let us take a deeper look at the actual complexity. It is known that
one can solve a linear system of dimension m over a finite field using Copper-
smith/Winograd method in O(m2.4). The relinearization seeks to solve a system
of dimension roughly m4 hence an overall complexity of O(m10).

In the cryptanalysis we use the relinearization with m = n2, hence having a
complexity of roughly O(n20). The proposed value was n = 9, hence the attack
is practically feasible.

Acknowledgements. We would like to thank the referees for their many helpful
comments.

36 A. Scemama

References

1. Nessie project (2003), https://www.cosic.esat.kuleuven.be/nessie/
2. Biham, E.: Cryptanalysis of Patarin 2-Round Public Key System with S Boxes

(2R). In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, Springer, Heidel-
berg (2000)

3. Courtois, N., Goubin, L., Patarin, J.: SFLASH, a fast asymmetric signature scheme
(2003), available at http://eprint.iacr.org/2003/211/

4. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, Springer, Heidelberg (2000)

5. Din-Feng, Y., K-Yan, L., Zong-Duo, D.: Cryptanalysis of 2R Schemes. In: Wiener,
M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, Springer, Heidelberg (1999)

6. Dubois, V., Fouque, P., Shamir, A., Stern, J.: Practical Cryptanalysis of SFLASH.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, Springer, Heidelberg (2007)

7. Goubin, L., Patarin, J.: Asymmetric Cryptography with S-Boxes. In: Han, Y.,
Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, Springer, Heidelberg (1997)

8. Imai, H., Matsumoto, T.: Algebraic Methods for Constructing Asymmetric Cryp-
tosystems. In: Calmet, J. (ed.) Algebraic Algorithms and Error-Correcting Codes.
LNCS, vol. 229, Springer, Heidelberg (1986)

9. Kipnis, A., Shamir, A.: Cyptanalysis of the HFE Public Key Cryptosystem. In:
Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, Springer, Heidelberg (1999)

10. Koeblitz, N.: Algebraic Aspects of Cryptography. Springer, Heidelberg (1998)
11. Moh, T.: The Method of Relinearization of Kipnis and Shamir and its Applications

to TTM (1999), available at http://citeseer.ist.psu.edu/371723.html

12. Patarin, J., Goubin, L.: Trapdoor One-Way Permutations and Multivariate Poly-
nomials. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, Springer,
Heidelberg (1997)

https://www.cosic.esat.kuleuven.be/nessie/
http://eprint.iacr.org/2003/211/
http://citeseer.ist.psu.edu/371723.html

A Lightweight Privacy Preserving

Authentication and Access Control Scheme for
Ubiquitous Computing Environment

Jangseong Kim, Zeen Kim, and Kwangjo Kim

School of Engineering, Information and Communications University
{withkals,zeenkim,kkj}@icu.ac.kr

Abstract. In Ubiquitous Computing Environment (UCE), service
provider wants to provide its service to only legitimate users. Some users
who belong to same service provider do not want to reveal their identi-
ties while using some privacy-related services such as location informa-
tion, printing, browsing web pages, etc. In addition, we should consider
lightweight cryptographic protocols because UCE can be constructed by
lots of resource and energy constrained devices. In this paper we pro-
pose a lightweight privacy-preserving authentication and access control
scheme for UCE. Compared to the previous schemes [13,14], our proposed
scheme which was designed to reduce the number of public key opera-
tions and to improve non-linkability feature is found to be more secure
and requires less memory on the user’s device. Moreover the proposed
scheme provides mutual authentication, accountability and differentiated
access control.

1 Introduction

Ubiquitous Computing Environment (UCE) with their interconnected devices
and abundant services promise great integration of digital infrastructure into
all aspects of our lives [1,2]. User authentication, authorization and access con-
trol are also basic requirements for various services in UCE such as Auction,
e-Learning, GPS, accessing wireless LAN, e-Government, etc. However we can-
not adapt the traditional mechanisms since they do not consider unique charac-
teristics of UCE [3].

Especially user privacy is one of the big challenges due to the limited com-
munication range of ubiquitous computing devices [6,11]. Also there are many
“invisible” computing devices in UCE that can collect and analyze the identi-
ties, locations and personal information of users without their prior agreement
or recognition. Typical approach for dealing with user privacy protection is to
provide anonymity based on blind signature scheme. Double spending problem
of an authorized credential [13,14] can happen if there is no mechanism for veri-
fication that the user is actual holder of the authorized credential. In this case a
malicious user can reuse a previous credential of a legitimate user on requesting
a special service. Therefore we should consider accountability for an authorized
credential.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 37–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

38 J. Kim, Z. Kim, and K. Kim

Energy management is also another big challenge in UCE because proactivity
and self-tuning for providing adaptation capability increases the energy demand
on software of a mobile computer in personal computing space. Consequently we
should consider lightweight cryptographic protocol for reducing energy demand
while providing proper security level.

There are many approaches to solve user privacy and security challenges in
UCE [4,5,7,8,9,10,11,12,13,14,15,16]. However, most of these results fall in the
scope of establishing general security framework and identifying general secu-
rity requirements, without providing concrete security protocols. Some work
[4,5,7,9,10,15] focused on designing specific security infrastructures to protect
user context privacy like location information from service providers. Creese et
al. [8] and Wu et al. [11] revised authentication and privacy requirements and
Zugenmaier et al. [12] showed that the use of a combination of devices using
incompatible anonymizing mechanisms can compromise the anonymity, which
is achieved when each device is used seperately. Recent researches [13,14,16] fo-
cused on designing concrete security protocols. Characteristics and limitations
of these protocols are discussed in Section 2.

In this paper we propose a novel scheme for lightweight privacy-preserving
authentication and access control in ubiquitous computing environment. The
scheme reduces computation overhead and storage overhead on the user side,
provides accountability, improves non-linkability, enhances security level by shar-
ing a selected number set between the user and the authentication server, and
does not rely on underlying system infrastructure. Also differentiated service
access control is feasible by arranging users in different service groups.

The rest of this paper is organized as follows: In Section 2 we review re-
lated work, describe the system architecture of a campus UCE and mention
requirements of the system. We present our proposed scheme in Section 3. Then
we discuss the security features and the performance analysis of the proposed
scheme in Section 4. Finally we conclude the paper in Section 5.

2 Background and Related Work

2.1 Related Work

Jendricke et al. [15] introduced an identity management system in UCE. A user
can issue multiple identities and use them depending on the applications. Based
on these virtual identities the scheme can protect user privacy while provid-
ing access control and user authentication. However there is no concrete proto-
col. He et al. [16] presented a simple anonymous ID scheme for UCE but the
scheme cannot prevent the double spending problem since it is a direct applica-
tion of Chaum’s blind signature technique [17]. More recently Ren et al. [13,14]
proposed new scheme which can satisfy the requirements in UCE and prevent
double spending problem by combining two cryptographic primitives, blind sig-
nature and hash chain. It reduces the number of signature verifications on an
authentication server side. Additionally the scheme provides non-linkability and
differentiated service access control, prevents double spending problem of an

A Lightweight Privacy Preserving Authentication 39

authorized credential, and does not rely on underlying system infrastructure such
as the “lighthouse” or “mist routers” [5]. However a mobile user should store
all hash chains of his/her anchor to increase performance aspect and perform
public key operation whenever the user sends a service access request message
even if the computation can be done off-line.

Gruteser and Grunwald [18] offered a method for hiding user’s MAC address
with anonymous IDs so that the user cannot be tracked in a wireless LAN
environment.

2.2 System Architecture for a Campus UCE

Lots of researchers use a campus UCE to illustrate their example scenarios for
UCE i.e. second scenario in [3] and its system architecture usually consists of
three major components, i.e., U, SP and AS. For supporting lots of mobile users,
database server (DS) is considered as a component for the target environment.
Figure 1 illustrates the typical system architecture.

Authentication
Server (AS)

Database
Server (DS)

Authentication
Server (AS)

Database
Server (DS)

Mobile User (U)

Faculties Visitors

Students

Mobile
User

Faculties Visitors

Students

Mobile
User

Service Provider (SP)

Mobile
User

University

Company

Service
Provider

Mobile
User

University

Company

Service
Provider

Service Request

Accept / Reject

Registration

Authorization

Authentication
Request

Authentication
Response

Query
Request

Query
Response

Fig. 1. System architecture

Usually the student is modeled like U in the system architecture. Wireless
LAN, campus map, a student’s time table, a class web page and printer can
belong to SP. We assume that DS has all related or partial information for
user authentication and has proper security methods to protect the informa-
tion from the adversaries. However the methods are out of our scope of this
paper.

40 J. Kim, Z. Kim, and K. Kim

2.3 System Requirements

To support second scenario in [3], basically the system should provide user
authentication and access control. Since the scenario assumes its target envi-
ronment as the UCE, we also consider the characteristics, i.e., energy efficiency
and user privacy, of the UCE. Typical approach for protecting user privacy is
to provide anonymous identity based on blind signature technique [17]. If there
is no verification step to check that a U is an actual holder of the authorized
credential then a malicious user can reuse the authorized credential [13,14].

Based on these considerations Ren et al. states the system requirements for
the UCE [13,14]. The system should 1) provide explicit mutual authentication
between U and SP; 2) allow the mobile users to anonymously interact with
a SP; 3) enable differentiated service access control among different users; 4)
provide flexibility, scalability to both U and SP; 5) generate fresh session key
to secure the interaction if necessary; 6) have high efficiency with respect to
communication, computation costs and management overheads; 7) provide easy
accountability.

3 Our Proposed Scheme

We assume that a U can control the source addresses of the outgoing Medium
Access Control (MAC) frames since it is a prerequisite for anonymous commu-
nications. Gruteser et al. [18] touched one of the detailed methods for this kind
of modification and detailed of which is out of scope of this paper. Also all users’
public keys, all SID and public key corresponding to each SID are stored in a DS.
By sending a query message to the DS, an AS can get proper information and
the mobile user knows the mapping between SID and its corresponding public
key. Additionally the U determines n based on his/her service access frequency.
The SP defines the scope and the meaning of service type, associates each user
with a particular service type, assigns a unique public key to each service type
and provides this information to the AS for further enforcement of authorization
rules. Table 1 illustrates the notation used in this paper.

Our proposed scheme consists of two main phases. The first phase is to gener-
ate and authorize a user’s credential information. Second phase is to establish a
fresh session key based on the user’s authenticated credential information. Our
proposed scheme can hide the relationship between the authorized credential
and the mobile user’s real identity through blind signature technique based on
the first phase. Moreover our scheme can provide non-repudiation because an
anchor value contains a user’s signature which consists of access frequency n,
his/her identity and a fresh nonce. To provide accountability of the authorized
credential we adopt selected number set. The selected number set is expressed as
l-bit array. U only once generates it randomly during the first access request. For
example if the i-th element of the array is 1, it means that i is already selected.

A Lightweight Privacy Preserving Authentication 41

Table 1. Notation

U A mobile user
AS Authentication server
SID A service type identifier is identified by a unique public key

and it describes a selected subset of the available service pool
that can be accessed by a mobile user

SP Service provider or service access point
KAB Shared secret key between entities A and B
m,Xm A message m and its corresponding ciphertext
(m0, m1) Concatenation of two messages m0 and m1

{m}KA A message m is encrypted by KA

{m}PriKA A message m is signed by private key of entity A
H(m) Hash message m
n A user’s access frequency
S A selected number set and its length should be larger than 2n
IDA An identifier of entity A
Ci, i = 0, 1, · · · A series of authorized credentials
ji, i = 1, 2, · · · A series of a user’s number selections
Ri

A, i = 1, 2, · · · A series of nonce generated by entity A and it is usually
a 64-bit pseudo random number.

CertA A certificate which binds entity A with A’s public key PubK
Credential A ticket for authentication
Anchor An initial credential C0

3.1 Credential Generation

The U generates two fresh nonces and signs his/her identity together with one
fresh nonce R′U using own private key PriKU . Then the U computes an anchor
value C0 with the signature. Note that the procedure can be done off-line. We
summarize it as:

1. Generate two fresh nonces: R′U and R′′U
2. Sign user’s own ID with a fresh nonce R′Uandn:

{IDU , n, R′U}PriKU

3. Compute the anchor value C0 of credential chain as:

C0 = h(IDU , n, R′U , {IDU , n, R′U}PriKU)

4. Blind C0 as CU = {R′′U}PubKSID × C0

3.2 Credential Authorization

The U sends own identity, blinded credential CU and SID with own certificate.
Next the AS checks validation of the received certification and verifies whether
the U has access permission on the service. Note that the proposed scheme

42 J. Kim, Z. Kim, and K. Kim

can provide the differentiated service access control through this verification
procedure. If the result is valid and the requestor has access permission, the AS
signs on CU and sends CS , IDAS and the received identity to the U. Then the
U verifies IDU and IDAS . Only if the information is valid, the U can get valid
credential information by unblinding the received CS . Otherwise the U discards
it and retries. We illustrate this procedure in Figure 2.

U AS

, , , U UID C CertU SID

Authorization request

5. Verifies CertU with PubKS

6. Signs on CU:

{ }
{ }

SID

SID

iK
n

U

iKUS

CR

CC

Pr

Pr

'' ×=

=

{ } , ,
U

U AS S PubK
ID ID C

Authorization confirmation

7. Decrypts and verifies IDU, IDAS

8. Compare CS / R"U and obtains a
valid signature pair { }() , Pr SIDiK

nn CC

Fig. 2. Authorization of credential information

3.3 Verification of Credential and Session Key Establishment

Only if the U has the legitimacy of the target service, the U sends correct C0,
Ci−1 and Si to the AS. Also the AS store C0, Ci−1 and Si to the DS only if
it verifies that the credential is authorized. The AS authenticates U based on
these facts. Moreover both entities U and AS can easily generate a fresh session
key KU,AS since they shared the anchor value and S. Also the U discloses her
previous credential information Ci−1.

When the U sends an i-th access request to the SP, the U generates a fresh
nonce Ri

U and selects one random number j between 0 to l − 1. Next the U
verifies j is not in the list S. If j is in S then the U should select unused random
number. Then she generates one time credential as Ci = h(C0, ji, Ri

U). Also
both entities U and AS share a secret key KU,AS by computing as:

KU,AS =
{

h(C0, PubKAS, R1
U , j1

U , SID) if i = 1
h(C0, Ci−1, SID) otherwise

The SP forwards the request message to the AS with a fresh nonce. After de-
crypting the request message, the AS checks duplication and validation of the
secret information, Ci−1 and S. There are two cases in the verification procedure:

A Lightweight Privacy Preserving Authentication 43

1. When type is 0: It means that the received message is the user’s “first access
request”. After decrypting it, the AS checks whether the requestor has an
authorized credential. So the AS signs C0 with the private key of the SID
and compares the result {C0}PriKSID with the received signature. Only if
the result is same, then the AS computes C1 = h(C0, j1, R1

U) and stores
SID, S1, C0 and C1 in the DS. Otherwise the AS discards it.

2. When type is 1: To get proper C0 and Si−1, the AS sends a query message
to the DS by setting Ci−1 and SID as searching condition. If the AS can
finds C0 and Si−1, then the received message can be decrypted by KU,AS .
After decrypting the request message, the AS verifies that the j-th index
of the stored Si−1 is 0 and the stored Si−1 is the same as Si except the
j-th index. Only the verification result is correct, then the AS believes the
U has legitimacy of the requested service and stores Ci and Si in the DS.
Otherwise the AS discards it. If there are several verification failure on series
of the authorized credentials, the AS can request the mobile user to change
his/her credential or notify that there is an impersonation attack on the U.
Note that Ci and Si are stored as the authorized credential and the selected
number list respectively.

MessageRequest ,,, TypeSIDRSP

U SP AS
1. Generate RU and j
2. Compute

{ }{ }
{ }

{ }
,

0 0

PriK PubK

1

K

 , , , , i 1
Request Message

, , , otherwise

0,1

SID
AS

U AS

i i i
U

i i i i
U

R j S C C if

C R j S

Type

−

⎧ =
⎪

=⎪

⎨

⎪

⎪ ∈
⎩

1) Access request

1) Access request 4. Decrypt RU and j
5. Verify S
6. Compute KU,SP and Ci

() USP
i

ASUSPU
i RRChC ,,,KK, ,, =

2) Access acknowledgement

3. Generate RSP

{ }
SPUKSP

i
USP RCRR

,
,,,

2) Access acknowledgement

8. Compute KU,AS and KU,SP

9. Decrypt and Verify RU, Ci, RSP

MessageRequest ,,TypeSID

()SP
i

ASUSPU RCh ,,KK ,, =

7. Compute

{ }
SPUKSP

i
U RCR

,
,,

10 MessageRequest -njwhere ≤<

Fig. 3. Verification of credential information and Key generation when the U sends
the i-th access request

After verifying validation and duplication of the request message, the AS
computes KU,SP which is used to secure communication between SP and U.
Next the AS sends Ci, KU,SP and Ri

U to the SP. The SP encrypts received
information with a fresh nonce RSP by using KU,SP . Through this activity our
proposed scheme provides explicit key authentication between SP and U. This

44 J. Kim, Z. Kim, and K. Kim

processes are shown in Figure 3. Since to provide a secure tunnel is not our
interesting point we simply assume that there is a secure tunnel (e.g., IPsec ESP
mode [19]) between SP and AS.

After computing KU,AS and KU,SP , the U decrypts the received access ac-
knowledgement and verifies Ci,Ri

U and RSP . If the verification result is correct,
the U can access the target service of the SP. Otherwise the U resend the access
request to the SP.

3.4 Extension for Out-of-Order Requests

Sometimes the U might want to request multiple services simultaneously. If
the multiple concurrent sessions are handled by a single server, it is possible to
happen that the access request messages arrive out of order at the AS due to
unexpected network problems. To deal with this problem we adapt a sliding-
window-based extension to the credential verification and key generation pro-
cedure on the AS side. We assume that the DS has the stored credential list,
the selected number list, the nonce list and the encrypted message to deal with
our-of-order requests. There are two cases to deal with out-of-order requests:

1. When the AS cannot find Ci−1 in the authorized credential and the stored
credential list
(a) Store Ci−1 and {Ri

U , ji, C0}KU,AS to the stored credential list and the
encrypted message respectively.

2. When the AS find Ci−1 in the authorized credential and the stored credential
(a) Send a query message to the DS by setting Ci−1 and SID as searching

condition for getting proper Si−1 and C0.
(b) Compute KU,AS and decrypt the received message.
(c) Flip the j-th index of the stored Si−1 only if the index is set as 0.

Otherwise, discard it.
(d) Update Ci in the authorized credential and generate Ci+1. Next search

the generated credential in the stored credential list. If the Ci+1 are
found in the stored credential list then repeat 2.(a)- 2.(d) steps until the
searching has failed or the stored credential list has empty.

4 Analysis of Our Proposed Scheme

In this section we analyze the performance and security related features of our
proposed scheme.

4.1 Performance

– Storage overhead: U is only required to save C0, Ri, ji, n and S. Since
all credential information except the anchor value can be generated directly
from the anchor value, it means that our proposed scheme does not require
to store all credential information. Although U in [13,14] should store C0, to

A Lightweight Privacy Preserving Authentication 45

avoid repeated hash operation all credential information should be stored. In
this point our proposed scheme requires less storage capability. Additionally
our proposed scheme is more flexible in the view of access frequency since
the information which should be stored is fixed even if the user’s access
frequency is increased.

– Computation overhead: Except first access request encrypted with a pub-
lic key of an AS, all messages between U and AS are encrypted using a shared
symmetric key. Therefore our proposed scheme is computationally efficient
since symmetric key operation is lightweight than public key operation, We
compare computation overhead of the proposed scheme with the scheme in
[13,14] in Table 2. Note that in Table 2 if we do not append the term “off-
line”, then the communication entity such as U, AS and SP, needs online
computation.

Table 2. Computation overheads comparison

of Pub. Key Sig.Veri. Nonce Gen. Hash Oper. # of Sym. Key

User 1(off-line) 0 1 2 3
[13,14] SP 0 0 1 2 3

AS 1 1/n 0 0 0

User 1/n(off-line) 0 1 1 1(off-line)+1
Ours SP 0 0 1 0 1

AS 1/n 1/n 0 2 1

– Communication overhead: The proposed scheme only requires two rounds
to achieve the authenticated key establishment. Note that two rounds in au-
thenticated key establishment protocol are minimum rounds to satisfy its goal.
Let’s compare the message size in the proposed scheme with the scheme in
[13,14]. When we assume that the nonce in the both scheme is 64 bits and the
hash function in the both scheme is SHA-1, we can calculate the increased size
of the message during n sessions:

Increased size = (n − 1) × (2 × n + log n − 159) + (2 × n + log n + 1).

If the U’s access frequency is 80, then the increased size of the message is
392.247. It means that 4.903 bits is increased per each session. However the
message size is not critical factor in the campus UCE, the proposed scheme
is efficient from the point of communication overhead.

4.2 Security

– Mutual authentication: In the proposed scheme, the U authenticates him-
self/herself to the AS using own authorized credential, so that the AS knows
that the U is legal and authorized. The AS also authenticates itself to the
U through its public key and by showing its knowledge of the corresponding
private key.

46 J. Kim, Z. Kim, and K. Kim

– User context privacy: Our proposed scheme protects the U’s context
privacy against insiders and outsiders. Note that all communication channels
are well protected. The AS can only know the U’s SID. Also the SP can not
imagine who sends the service access request.

– Non-linkability: Non-linkability means that, for insiders(i.e., SP) and out-
siders, 1) neither of them could ascribe any session to a particular U, and
2) neither of them could link two different sessions to the same U [20]. In
the proposed scheme non-linkability is achieved with respect to both of in-
siders and outsiders. Firstly the authorized credential combined with the
fresh nonce is never transmitted in plaintext form. Hence the outsiders can’t
associate a session with a particular user and ascribe two sessions to the
same user. Secondly the U’s all authorized credentials are derived from an
anchor value and it is only known to AS and U. Even if the SP can get all
authorized credentials except the anchor value, the SP can’t link two differ-
ent sessions to the same user. Moreover the authorized credential combined
with the fresh nonce is never transmitted in plaintext form. Therefore the
insiders can’t associate a session with a particular user. Note that the AS is
regarded as trusted third party.

– Accountability and nontransferability equivalency: In the proposed
scheme the credentials are authorized only when the U is explicitly authen-
ticated. By adapting selected set the proposed scheme can provide one-time
usage of the authorized credentials. Hence the proposed scheme can pre-
vent double spending problems. Also the proposed scheme can provide good
accounting capability feature by incorporating accounting function. Further-
more the proposed scheme provides equivalent nontransferability from the
service point of view. Because the credentials are delegated among users, no
harm is done to the SP in the sense that the authorized user is responsi-
ble for all the service received by own authorized credentials. This property
greatly reduces the service abuse problem worried by the SPs.

– Data confidentiality and integrity: Both entities U and SP generate
a fresh session key to protect their communications during verification and
session key establishment process . Hence data confidentiality and integrity
can be easily achieved using symmetric cryptography.

– Differentiated service access control: Our proposed scheme can pro-
vide differentiated service access control by classifying users into different
service types. Different users are authorized accordingly based on the ser-
vice types to which they belong. Hence “User authorization” is accomplished
in a differentiated way. Moreover, it is possible to combine usage of the dif-
ferent credentials for high-level differentiated service access control. But it
is beyond the scope of this paper.

– Enhanced security level: The U’s every access request message contains S
used to prove the actual holder of the message since it is randomly generated
by the U and only known to U and AS. To impersonate the target user, the
adversary should present S even if the adversary knows the user’s anchor
value. Therefore the proposed scheme enhances security level.

A Lightweight Privacy Preserving Authentication 47

– No additional key management: U and AS can generate a shared
symmetric key based on the anchor value. Also it is used only one-time. So
there is no additional key management overhead by replacing the reduced
public key operations with the symmetric key operations.

In table 3 we compare our proposed scheme with other similar approaches
whose goal is to provide anonymous interaction between U and SP. Note that
the SP in our proposed scheme can’t link two different sessions to the same
user even if the SP can get all authorized credentials except the anchor value.
However the SP in the scheme which was proposed by Ren et al. [13,14] can link
two different sessions to the same user if the SP can get all authorized credentials
except the anchor value.

Table 3. Security-related features comparison

Our scheme Ren et al.[13, 14] He et al.[16]

Concrete protocol Yes Yes Yes
Mutual authentication Yes Yes Yes
User context privacy Yes Yes Yes
Non-linkability Yes to outsiders, Yes to outsiders No

yes to SP partially yes to SP
Non-transferability Almost yes Almost yes No
Data confidentiality Yes Yes Easy to obtain
Message integrity Easy to obtain Yes Yes
Differentiated service access control Yes Yes No

5 Conclusion

In this paper we have proposed a lightweight privacy-preserving access control for
UCE which can be used as a component in middleware. Our proposed scheme is
efficient in solving the conflict between user privacy and user authentication. Be-
cause user authentication requires the user identity information while user privacy
needs to hide the user identity information. Additionally the proposed scheme
improves non-linkability on SP’s side, enhances security level and consumes less
storage burden on the user’s device. Moreover the proposed scheme also provides
mutual authentication, accountability and differentiated access control.

In the near future we would like to extend our scheme to deal with privacy
and security in the service discovery protocol which is an essential element to
access network services. Also we try to show the correctness of the proposed
scheme by formal verification method.

References

1. Easy Living, Microsoft Research, http://research.microsoft.com/easyliving
2. Weiser, M.: The Computer for the 21st Century. Scientific of American, 265

(September 1991)

http://research.microsoft.com/easyliving

48 J. Kim, Z. Kim, and K. Kim

3. Satyanarayanan, M.: Pervasive computing: Vision and Challenges. IEEE Personal
Communications 8(4), 10–17 (2001)

4. Al-Muhtadi, J., Ranganathan, A., Campbell, R., Mickunas, M.: A Flexible,
Privacy-Preserving Authentication Framework for Ubiquitous Computing Environ-
ments. In: Proc. 22nd International Conference on Distributed Computing Systems
(ICDCS), pp. 771–776 (2002)

5. Al-Muhtadi, J., Campbell, R., Kapadia, A., Mickunas, D., Yi, S.: Routing Through
the Mist: Privacy Preserving Communication in Ubiquitous Computing. In: Proc.
ICDCS, Vienna, Austria, pp. 65–74 (2002)

6. Al-Muhtadi, J., Ranganathan, A., Campbell, R., Mickunas, M.: Cerberus: A
Context-Aware Security Scheme for Smart Spaces. In: Proc. the First IEEE In-
ternational Conference on Pervasive Computing and Communications (PerCom),
pp. 489–496. IEEE Computer Society Press, Los Alamitos (2003)

7. Burnside, M., et al.: Proxy-Based Security Protocols in Networked Mobile Devices.
In: Proc. ACM SAC, Madrid, Spain, pp. 265–272. ACM Press, New York (2002)

8. Creese, S., Goldsmith, M., Roscoe, B., Zakiuddin, I.: Authentication for Pervasive
Computing. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.) Security in
Pervasive Computing. LNCS, vol. 2802, pp. 116–129. Springer, Heidelberg (2004)

9. Langheinrich, M.: A Privacy Awareness System for Ubiquitous Computing Envi-
ronments. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498,
pp. 237–245. Springer, Heidelberg (2002)

10. Nahanishi, K., Nakazawa, J., Tokuda, H.: LEXP: Preserving User Privacy and
Certifying Location Information. In: Proc. 2nd Workshop Security Ubicomp (2003)

11. Wu, M., Friday, A.: Integrating Privacy Enhancing Services in Ubiquitous Comput-
ing Environments. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS,
vol. 2498, Springer, Heidelberg (2002)

12. Zugenmaier, A., Hohl, A.: Anonymity for Users of Ubiquitous Computing. In: Proc.
Security Workshop in Ubicomp, Seattle, Washington (October 2003)

13. Ren, K., Lou, W.: Privacy Enhanced Access Control in Ubiquitous computing
Environments. In: 2nd International Conference of Broadband Networks 2005, 3-7
October 2005, vol. 1, pp. 356–365 (2005)

14. Ren, K., Lou, W., Kim, K., Deng, R.: A Novel Privacy Preserving Authentica-
tion and Access Control Scheme for Pervasive Computing Environments. IEEE
Transactions on Vehicular Technology 55(4), 1373–1384 (2006)

15. Jendricke, U., Kreutzer, M., Zugenmaier, A.: Pervasive Privacy with Identity Man-
agement. In: Proc. 1st Workshop Security, Ubicomp (2002)

16. He, Q., Wu, D., Khosla, P.: Quest for Personal Control over Mobile Location Pri-
vacy. IEEE Commun. Mag. 42(5), 130–136 (2004)

17. Chaum, D.: Untraceable Electronic Mail, Return Address, and Digital
Pseudonyms. Communications of the ACM 24(2), 84–88 (1981)

18. Gruteser, M., Grunwald, D.: Enhancing Location Privacy in Wireless LAN
Through Disposable Interface Identifiers: A Quantitative Analysis. Mobile Net-
works and Applications 10(3), 315–325 (2003)

19. Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol, IETF RFC
2401 (1998)

20. Xu, S., Yung, M.: K-anonymous Secret Handshakes with Reusable Credentials. In:
Proc. ACM Conf. CCS, pp. 158–167. ACM Press, New York (2004)

Establishing RBAC-Based Secure Interoperability in
Decentralized Multi-domain Environments

Jinwei Hu, Ruixuan Li, and Zhengding Lu

College of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, China

{jwhu,rxli,zdlu}@hust.edu.cn

Abstract. Establishing interoperability is the first and foremost problem of
secure interoperation in multi-domain environments. In this paper, we propose
a framework to facilitate the establishment of secure interoperability in decen-
tralized multi-domain environments, which employ Role-Based Access Control
(RBAC) policies. In particular, we propose a method for setting up interoperating
relationships between domains by combining role mappings and assignments of
permissions to foreign roles. A key challenge in the establishment of secure inter-
operability is to guarantee security of individual domains in presence of interop-
eration. We present rules which regulate the interoperability. These rules ensure
that constraints of RBAC policies are respected when cross-domain accesses are
allowed.

1 Introduction

Due to the extensive use of the Role-Based Access Control (RBAC) [13,6] model and
its variants, interoperation based on RBAC is of theoretical and practical importance. A
typical method is to create cross-domain role mappings between domains and resolve
security breaches arising from the interoperation. Entities in one domain are permitted
to access resources of other domains through these mappings.

Generally speaking, existing methods of specifying role mappings can be categorized
into two types: (1) role mappings manually selected by domains’ security administra-
tors [9,16,15], and (2) role mappings automatically generated by a trusted third-party
[14,12]. Simple as it is, the first method provides no convenient tool for interoperabil-
ity management and some conflicts may be too complicated for administrators to detect
and resolve manually. These conflicts can result in security breaches such as unexpected
authorizations and contradictions to constraints of RBAC policies.

The second approach depends on a trusted third-party to integrate domains’ access
control policies. It enables automatic generation of role mappings and resolution of con-
flicts in a centralized way. Though convenient, some of its assumptions are at odds with
the requirements of secure interoperation in decentralized multi-domain environments.
For example, it requires that domains should expose all their access control policies
to the third-party. In practice, this assumption seems unreasonable in some scenarios.
Because those policies often contain sensitive information, domains may be unable to
or unwilling to expose them.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 49–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

50 J. Hu, R. Li, and Z. Lu

Establishing interoperability in decentralized multi-domain environments raises some
nontrivial questions. Firstly, domains cooperate in an ad-hoc manner. Interoperability
between two domains should be independent of other domains, and not influence in-
teroperation among others. Second, a domain may have interoperability with an unpre-
dictable number of domains. Hence, the establishing method should be flexible and not
incur heavy burden on the management of domains’ access control policies. Third, since
Separation of Duty (SoD) policies are regarded as a fundamental principle in computer
security [10,2,3], by no means can they be violated despite the advantages of interoper-
ation. Some mechanism should be in place to regulate cross-domain accesses. However,
no central party can vouch for it in decentralized environments. Additionally, as a domain
has no global knowledge of the environment, conflicts with SoD policies may occur as a
result of the interoperation across multiply domains. Hence, it is challenging to preserve
the security of individual domains in such a decentralized environment. SoD policies in
RBAC, however, are not enforced directly but by Statically Mutually Exclusive Roles
(SMER) constraints. We focus on ensuring SMER constraints intact, thereby keeping
SoD policies valid.

In this study, we develop such a framework to address these issues. We assume that
every domain employs the RBAC models to specify their security policies. The frame-
work distinguishes between domains based on their functions in interoperation. A server
domain, written s-domain, acts as a provider by sharing its resources, whereas a client
domain, written c-domain, applies for establishing interoperability with s-domain.
Each domain can be s-domain in some scenarios, and c-domain in others. The in-
teroperability is setup in a pair-wise manner between c-domain and s-domain. We
present an approach for specifying interoperability, which combines role mappings and
assignments of permissions to roles of c-domain. We also study how s-domain
may enforce SMER constraints in decentralized multi-domain environments. Firstly,
a set of cross-domain link rules is derived from the interoperability and SMER con-
straints of s-domain; secondly, one check whether access requests from c-domain
conform to the rules. We prove that accesses complying with the rules are also consis-
tent with SMER constraints. Therefore, SMER constraints of s-domain are honored
in the presence of interoperation and, consequently, so are SoD policies.

The rest of the paper is organized as follows. A brief review of RBAC models is given
in Section 2. We present an overview of the proposed framework in Section 3, followed
by the method of establishing interoperability in Section 4 and the cross-domain link
rules in Section 5. We discuss related work in Section 6 and conclude in Section 7.

2 Preliminaries

We assume that all domains in a decentralized multi-domain environment form a set
D, and that each domain in D employs the RBAC model [13,6] to specify security
policies. An RBAC state is a 7-tuple 〈U ,P ,R, UA, PA, RH, C〉, where U is a set of
users, P is a set of permissions, R is a set of roles, UA ⊆ U × R assigns roles to
users, PA ⊆ R × P assigns permissions to roles, RH ⊆ R × R enables permission
inheritance between roles, and C is a set of SMER constraints stating what assignments
are not allowed in the state. Let RH∗ the reflexive and transitive closure of RH . The

Establishing RBAC-Based Secure Interoperability 51

relation RH∗ is often called role hierarchies. We denote (ri, rj) ∈ RH∗ by ri � rj and
say that ri is senior to rj in the sense that ri inherits all permissions of rj . We borrow
the expressions of constraints in [10]. A statically mutually exclusive role (SMER) t-m
constraint smer〈{r1, r2, · · · , rm}, t〉, where 1 < t ≤ m, forbids a user from being
assigned to t or more roles.

The RBAC components of a domain are identified by the domain identity. For ex-
ample, R in domain α is written as Rα. Components of s-domain are identified by
the superscript s such as Ps, RHs and the role hierarchies �s, and components of
c-domain by c such as PAc.

3 Framework Overview

The goal of our framework is to support specifying interoperability in a decentralized
multi-domain environment. Prior to the establishment of interoperability, s-domain
designates the resources available to other domains by means of a sharing policy. A
sharing policy in s-domain, SP : D → P(Ps), where P(Ps) is the power set of Ps,
is a function mapping each domain in D to a set of permissions. In our framework, we
regard accesses to resources as permissions. However, interoperability is not enabled
simply by the sharing policy, because that would result in the loss of all attractive traits
of RBAC in the first place; and interoperability in this way is prone to security breaches
as well. We illustrate the framework through the interoperability establishing process
between a dummy pair of s-domain and c-domain.

As shown in Fig. 1, c-domain initiates a setup process by issuing an interoper-
ation request. An interoperation request is a set of request-specifications. A request-
specification is of the form [rc, RPS], where rc ∈ Rc and RPS ⊆ Ps. rc is referred to
as an applying role. The request-specification [rc, RPS] states that the applying role
rc wishes to obtain the permissions in RPS. An interoperation request is of form
{[rc

1, RPS1], · · · , [rc
k, RPSk]}.

After receiving a request, s-domainmay map each such rc to local roles or directly
assign it local permissions. We refer to both role mappings and direct permission as-
signments as cross-domain links. A role mapping is of the form rc � rs, where rc ∈ Rc

and rs ∈ Rs. The role mapping rc � rs enables users assigned to rc in c-domain to
assume rs in s-domain. A direct permission assignment is of the form rc �ps, where

s-domain c-domain
Step 1

Step 2

Step 3

Interoperations

Interoperations

Step 1: c-domain issues an interoperation request;

Step 2: s-domain generates cross-domain links and
related rules, and sends simple-rules to c-domain;

Step 3: c-domain records and acknowledges the rules.

Thereafter interoperations occur between c-domain
and s-domain.

Fig. 1. The overall process of interoperability establishment

52 J. Hu, R. Li, and Z. Lu

rc ∈ Rc and ps ∈ Ps. The assignment rc � ps grants users, being member of rc in
c-domain, the permission ps.

By associating a set RM [rc
i] of role mappings and a set DPA[rc

i] of direct permis-
sion assignments with any request-specification [rc

i , RPSi], 1 ≤ i ≤ k, s-domain
finishes the generation of cross-domain links for c-domain. Let CDL[c-domain]
be the set

⋃k
i=1 (RM [rc

i] ∪DPA[rc
i]). However, allowing users in c-domain to use

all links in CDL[c-domain] may result in security breaches in s-domain (as dis-
cussed in section 5.1). Some restrictions must be imposed on their usage. s-domain
deduces from the links and its own RBAC policies a set of cross-domain link rules.
Then, cross-domain accesses are made conforming to these rules. s-domain also
informs c-domain of the interoperability by one kind of rules (i.e., simple-rules).
Finally, c-domain will record and acknowledge the simple-rules, indicating that,
interoperability has been established and thus users of c-domain have accesses to
s-domain.

We illustrate the generation of the set CDL[c-domain] and cross-domain link rules
in Section 4 and 5 respectively. Before going into the details, we state the assumptions
that the framework relies on. First, in a decentralized multi-domain environment, a do-
main is only aware of its own RBAC policies, and the interoperability concerning itself
(i.e., links from and to the domain). Second, both c-domain and s-domain have
some knowledge of the permissions being shared by some means (e.g., by trust nego-
tiation or by contract). Finally, messages delivered to setup interoperability are signed
by domains’ private keys. And domains’ public keys are available to each other.

4 Interoperability Establishment

4.1 The Method of Setting Interoperability

Given a request-specification [rc, RPS], this section shows how to obtain the sets
RM [rc] and DPA[rc]. A top-down search on s-domain’s role hierarchies is per-
formed to generate role mappings. Let MAPS be SP (c-domain)∩RPS. The map-
ping rc � rs is added to the role mapping set RM [rc] if the following conditions hold:

B1 PermSet(rs) ⊆MAPS, and
B2 ¬∃r1 ∈ Rs [r1 �s rs ∧ PermSet(r1) ⊆MAPS],

where PermSet(r) denotes the permission set of the role r.
Let PermSet(RM [rc]) be

⋃
rc�rs∈RM [rc] PermSet(rs). Obviously, there is a pos-

sibility that the maximum interoperability (i.e., PermSet(RM [rc]) = MAPS) is not
achieved. To this aim, each permission in MAPS\PermSet(RM [rc]) is directly as-
signed to the applying role rc. Formally,

DPA[rc] = {rc � p|p ∈MAPS \ PermSet(RM [rc])}.
We use an example shown in Fig. 2 to illustrate the ideas mentioned above. Consider

that s-domain shares the permissions {p1, p3, p6, p7, p8} with c-domain, which
in turn submits the request {[rc

1, {p1, p3, p8}], [rc
2, {p4, p6, p7}]}. Upon receiving the

request, s-domain embarks on the creation of cross-domain links. As for the applying

Establishing RBAC-Based Secure Interoperability 53

r1

r2 r3

r4

r5

r6

r7

r8

p1p2 p3 p4 p5 p6 p7 p8

s-domain Cs = {smer〈{r3, r8}, 2〉,
smer〈{r2, r4, r6}, 3〉}

SP (c-domain) = {p1, p3, p4, p6, p7, p8}
InteroperationRequest =

{[rc
1, {p1, p3, p8}],

[rc
2, {p4, p6, p7}]}

Fig. 2. Roles are show in circles and permissions in boxes. Solid lines represent role hierarchies,
and dashed lines represent role-permission assignments.

role rc
1, r3 and r8 can be mapped to rc

1. Although rc
1 asks for p1, r1 cannot be mapped,

because, if so, that would enable rc
1 to obtain the permission p2 which c-domain is

prohibited from. Instead, we directly assign p1 to rc
1 to achieve maximum interoper-

ability. Similarly, for rc
2 we create the links rc

2 � r6 and rc
2 � p4. To further show the

necessity of direct permission assignments for the maximum interoperability, consider
a request specification [rc

3, {p1, p4}]. Then RM [rc
3] = ∅, that is, no interoperability is

enabled by role mappings. Thus, the assignments rc
3 � p1 and rc

3 � p4 are necessary for
the expected interoperation.

4.2 Comparison with Existing Works

The most of manual approaches to establishing interoperability in literature [9,16,15]
do not discuss how to fulfill a request, but simply create mappings related to existing
roles. They can be viewed as our method without direct permission assignments. As
discussed earlier, this may result in less or none interoperability for some requests.
On the other hand, a representative work in [14], called MDRBAC05 in this paper,
made an important step towards automatic generation of role mappings. We make some
comparisons between our method and MDRBAC05.

The essential difference between the proposed method and MDRBAC05, is that we
allow direct permission assignments as a complement of role mappings. This leads to
several further distinctions. When pursuing maximal interoperability, often there does
not exist suitable roles for mappings. In this case, MDRBAC05 may resort to alter-
ing role hierarchies (e.g., splitting roles) to satisfy the request. Instead, we leave these
permissions to direct permission assignments; thus role hierarchies in s-domain re-
main the same in presence of interoperation. Keeping s-domain’s role hierarchies
unchanged has an impact on the applicability of role mapping based interoperability.

Firstly, role hierarchies reflect, to some extent, applications’ organizational struc-
tures, which is one important characteristic of RBAC. With role hierarchies not con-
forming to organizational structures, RBAC would be less attractive.

Secondly, in MDRBAC05, roles may be split many times and many new roles would
appear. When a domain interoperates with a large number of domains, this may make
role hierarchies too complicated to be understood. This directly leads to less manage-
able RBAC policies in s-domain and larger administrative overhead. Worse of all,
a new role created simply for mapping may be split again in other subsequent inter-
operability establishments. This would result in the loss of independence among in-
teroperabilities involving different c-domains. The complexity in role hierarchies
and dependencies among interoperability are obstacles for large-scale multi-domain

54 J. Hu, R. Li, and Z. Lu

interoperation. By contrast, our method depends solely on roles that exist not because
of interoperability establishment. No dependencies between interoperabilities concern-
ing different c-domains exist. The only plus is some role-permission assignments.

Last but not least, when interoperation between s-domain and c-domain ceases,
it is expected that s-domain’s RBAC policies recover the state prior to the establish-
ment of interoperability. In the case of changing role hierarchies for interoperability,
the recovery (e.g., merging split roles, deleting roles and role hierarchies; and readjust-
ing SMER constraints) would incur large administration overhead. Furthermore, new
roles created for previous interoperability may not be removed, because it is likely they
are mapped or even split in other interoperability establishments. Moreover, as the gen-
eration of SMER constraints needs to consider role hierarchies and other SMER con-
straints, SMER constraints have to be readjusted again for the recovery. By comparison,
the recovery in our method only consists of deleting role mappings, direct permission
assignments and constraints generated for them, and cross-domain link rules.

However, setting interoperability merely by direct permission assignments is cum-
bersome and makes it difficult for security administrators to manage cross-domain
accesses. Therefore, we propose to combine role mappings with direct permission as-
signments, and make these assignments as a complementary part of role mappings.

5 Cross-Domain Link Rules

To keep SoD policies intact, restrictions should be imposed on the usage of cross-
domain links. In this section, we propose to use cross-domain link rules to regulate
these links. Given the set CDL[c-domain] of cross-domain links, we first show how
s-domainmay deduce link rules, and then illustrate how to enforce them dynamically.

5.1 Constraint Violation Caused by Cross-Domain Links

Improper specification of interoperability can easily lead to conflicts with constraints.
For instance, if uc

2 is permitted to use both rc
1 � r3 and rc

1 � r8 in Fig. 2, then the
constraint smer〈{r3, r8}, 2〉 is violated.

In case SoD policies are undermined by direct permission assignments, we define
a constraint analogous to SMER constraints. An SMEP (Statically Mutually Exclusive
Permission) constraint is expressed as smep〈{p1, · · · , pm}, t〉, where 1 < t ≤ m. The
constraint means that at most t-1 permissions in {p1, · · · , pm} can be assigned to a role.
The SMEP constraints can be deduced from SoD policies in the same way as SMER
constraints, if we simply regard a permission as a role assigned only this permission.
Hereafter, we denote the set of SMER constraints and SMEP constraints as CON .

As far as interoperation is concerned, the difference between SMEP and SMER is
that, SMEP constraints have impacts on direct permission assignments, whereas SMER
constraints only influence role mappings. While rules regarding direct permission as-
signments are deduced from SMEP constraints and these assignments, rules for role
mappings are based on SMER constraints and these mappings. The generation and en-
forcement mechanisms, however, are of no difference. Unless stated otherwise, we do
not explicitly distinguish between them in the following discussion about link rules.

Establishing RBAC-Based Secure Interoperability 55

A B

C

D

E

F G

u
β
1

u
γ
1 u

γ
2

Cα = {smer〈{A, B}, 2〉,
smer〈{B, C}, 2〉}

UAβ = {(uβ
1 , D), (uβ

1 , E)}

UAγ = {(uγ
1 , F), (uγ

2 , F), (uγ
2 , G)}

Domain α Domain β Domain γ

Fig. 3. Two kinds of disagreements with constraints. A line with an arrow across domains repre-
sents a role mapping. For example, the mapping G � A is denoted as a line from γ to α.

We simply discuss SMER constraints, while all results applies to SMEP constraints.
As shown in [2,10], each t-m SMER constraint is equivalent to a set of t-t SMER
constraints. Therefore, we only consider rules with respect to t-t SMER constraints.

We refer to a sequence of role mappings {rc1 � rs1 , rc2 � rs2 , · · · , rcn � rsn}
as a path if rsi � rci+1 for all 1 ≤ i < n. By a path, a user may cross several
domains in a session. We assume that, for each session, the user has an access history
[15] recording a sequence of roles the user is assigned to in each domain before the
current access request. An access history is expressed as a sequence of pairs of a role
and a domain to which the role belongs. The first pair represents the user’s origin. For
example, {(α, r1), (β, r2), (γ, r3)} means a user, belonging to domain α as a member
of r1, had entered into domain β with the role r2, followed by the access to γ with r3.

Requests to enter s-domain may be classified into two types by users’ access his-
tories. We say a request is a simple-access if the access history contains only the origin,
and a domain-access if the access history includes more than one item. For example,
as shown in Fig. 3, uγ

2 ’s entrance into α by G � A is a simple-access; in contrast, if
uγ

2 accesses α by the path {F � D, D � B}, then this is a domain-access because the
access history is {(γ, F), (β, D)}.

Both kinds of accesses could induce violations of constraints. Correspondingly, there
are two kinds of disagreements with constraints. The first kind, called simple-violations,
consists only of simple-accesses; the second one, named domain-violations, results from
a combination of simple-accesses and domain-accesses or simply domain-accesses. For
example, permitting uβ

1 to utilize both D � B and E � C is against smer〈{B, C}, 2〉;
this is a simple-violation. If uγ

2 assumes A in α by G � A and also acquires B by the
path {F � D, D � B}, smer〈{A, B}, 2〉 is violated; this is a domain-violation.

5.2 Cross-Domain Link Rules

Definition 1. (Simple-rules) A simple-rule is expressed as: sr〈τ, L, t〉, where τ ∈ D,
L ⊆ CDL[τ], and 1 ≤ t ≤ |L|+ 1. This rule forbids the domain τ from making use of
t or more cross-domain links in L.

Accesses constituting a simple-violation all originates from the same c-domain.
Therefore, it is relatively easy to detect and prevent simple-violations. We simply
restrict c-domain’s usage of cross-domain links to a certain number. Simple-rules
capture this requirement. For example, uβ

1 is entitled to only one of D � B and E � C,
but not both. The simple-rule sr〈β, {D � B, E � C}, 2〉 serves this purpose.

56 J. Hu, R. Li, and Z. Lu

On the other hand, domain-violations are more complicated. Because s-domain
lacks knowledge of c-domain’s RBAC policies and the interoperability among others,
it is more difficult for s-domain to decide whether or not users’ accesses violate its
constraints.

For instance, consider a user u with the access history {(γ, F), (β, D)} in Fig. 3.
Suppose u has obtained the role A by G � A. When u requests to access α by D � B,
α cannot determine whether this access would result in any conflict with constraints. If
u happens to be uγ

1 , then no conflict occurs, and u’s access should be permitted. Un-
fortunately, if incidentally u is uγ

2 , it is likely that u assumes A and B, which definitely
runs counter to smer〈{A, B}, 2〉. In this case, s-domain should decline the request
for security reasons. Domain-rules are used to describe this situation.

Definition 2. A domain-rule is expressed as: dr〈τ, Q, t〉, where τ ∈ D, Q ∈ P(Rs)∪
P(Ps) and 1 ≤ t ≤ |Q|. This rule means that the domain τ as a whole can obtain at
most t− 1 roles or permissions in Q of s-domain.

For example, a domain-rule dr〈γ, {B}, 1〉may be constructed for the domain-violation
mentioned above. Since only t-t SMER constraints are considered, the practical form
of a domain-rule is dr〈τ, Q, |Q|〉. So are simple-rules of the form sr〈τ, L, |L|〉. Hence,
we simply write dr〈τ, Q〉 for 〈τ, Q, |Q|〉 and sr〈τ, L〉 for 〈τ, L, |L|〉. An exception is
sr〈τ, {l}, 2〉, which is introduced in Section 5.3.

5.3 Generation of Cross-Domain Link Rules

After the generation of cross-domain links, s-domain associates a set of rules with
c-domain. We give the basic idea of the rule generation algorithm. Please see Ap-
pendix A for the pseudo-code. Denote CDL[c-domain] as CDL.

The basic idea is to replace roles or permissions in constraints with links. Given
b ∈ Rs ∪ Ps, we write b q if b �s q in the case q is a role, and if b = q when
q is a permission. Initially, for a constraint 〈{q1, · · · , qt, }, t〉 in s-domain, where
{q1, · · · , qt} ∈ P(Rs) ∪ P(Ps), replace q1 with l = rc � b if b q1 holds. Con-
tinue this process for the set CDL of links. This creates at most |CDL| many items.
Repeat this procedure for each qi (2 ≤ i ≤ t) by testing b qi with each item after
the replacement of qi−1. Perform this process with all constraints in CON . Finally, we
would obtain at most |CON | · |CDL|T items in a set, say UFRules (short for Un-
FormattedRules), where T is the maximal t among all t-t constraints. Then rules are
deduced from UFRules. For each item I in UFRules, if I = 〈{l1, · · · , lk}, t〉, then
add to SimpleRules a simple-rule sr〈c-domain, L〉, where L = {l1, · · · , lk}; if
I = 〈{l1, · · · , li, q1, · · · , qj}, t〉, where i + j = t and 1 ≤ j ≤ t − 1, then we add
to DomainRules a rule: dr〈c-domain, Q〉, where Q = {q1, · · · , qj}. If a link l is
not involved in any simple-rule, we create a special simple-rule: sr〈c-domain, {l =
rc � q}, 2〉. This rule indicates q is available to c-domain with no limitation if used
in simple-accesses, but not in domain-accesses.

Establishing RBAC-Based Secure Interoperability 57

Continuing the example in Fig. 2. The cross-domain links are {l1 = rc
1 � r3, l2 =

rc
1 � r8, l3 = rc

1 � p1, l4 = rc
2 � r6, l5 = rc

2 � p4}, and the set CON in s-domain is
{smer〈{r3, r8}, 2〉,smer〈{r2, r4, r6}, 3〉}. The constraints evolve as follows:

〈{r3, r8}, 2〉 replace r3−−−−−−→ 〈{l1, r8}, 2〉 replace r8−−−−−−→ 〈{l1, l2}, 2〉

〈{r2, r4, r6}, 3〉 replace r2 or r4−−−−−−−−→ 〈{r2, r4, r6}, 3〉 replace r6−−−−−−→ 〈{r2, r4, l4}, 3〉
Finally, UFRules = {〈{l1, l2}, 2〉, 〈{r2, r4, l4}, 3〉}. Rules sr〈c-domain, {l1, l2}〉
and dr〈c-domain, {r2, r4}〉 are deduced. As l3, l4, and l5 do not appear in simple-
rules, sr〈c-domain, {li}, 2〉, where i ∈ {3, 4, 5}, are also constructed.

5.4 Enforcement of Cross-Domain Link Rules

s-domain enforces cross-domain link rules to guard against conflicts with constraints
that result from accesses through these links. We assume that, when making requests
to s-domain, users are required to manifest access histories [15]. s-domain checks
rules with users’ access histories to decide whether the request should be allowed. If the
request is a simple-access, only simple-rules are checked. Otherwise, both simple-rules
and domain-rules take effect; only positive decisions from both types of rules could lead
to an approval.

Enforcement of Simple-Rules. To enforce simple-rules, s-domain associates with
each domain two lists, approve-list, denoted as Lapp, and check-list, denoted as Lchk.

Lapp = {l ∈ CDL[c-domain] | ∃sr〈c-domain, {l}, 2〉 ∈ SimpleRules}
Lchk = {sr ∈ SimpleRules | sr is of the form sr〈c-domain, L〉}.

Consider a user in c-domain applies for roles or permissions in s-domain with
a the link l. Obviously, if l ∈ Lapp, the request is permitted. Otherwise, s-domain
checks whether there are some rules concerning l. We define Ωsr(l) = {e ∈ Lchk|e =
sr〈c-domain, L〉 ∧ l ∈ L}. Ωsr(l) contains all the rules regarding l. If Ωsr(l) = ∅,
then a negative decision is announced, because this implies that l is a nonexistent
link. Otherwise we check whether l is forbidden by simple-rules. Note that a rule
sr〈c-domain, {l}〉, i.e., sr〈c-domain, {l}, 1〉, denies all requests for l by users in
c-domain. Therefore, if there exists e ∈ Ωsr(l) such that e = sr〈c-domain, {l}〉,
the request is refused. Otherwise s-domain permits the required access.

Enforcement of Domain-Rules. Each domain is associated with one list, where
domain-rules regarding the domain are stored.

Consider a user with an access history Σ = {(σ1, r1), · · · , (σj , rj)}, j ≥ 2, issues
a request with a link l = (rc � b). Definitely we have rc = rj . Denote the associated
list for domain σi as Li (1 ≤ i ≤ j). The link l is first checked by simple-rules. If a
negative decision is given, it is unnecessary for domain-rules to examine the request.

Due to the access history, domain-rules may make roles or permissions inaccessible
for the sake of s-domain’s security. We check whether the requested one is such a role
or permission. Define Ωdr(l, Σ) = {e ∈ ⋃j−1

i=1 Li|e = dr 〈σ, Q〉 ∧ ∃q ∈ Q [b q]},

58 J. Hu, R. Li, and Z. Lu

where σ ∈ {σ1, · · · , σj−1}. Ωdr(l, Σ) includes all the rules that might prohibit this user
from using b. If there exists an e ∈ Ωdr(l, Σ) such that e = dr 〈σi, Q〉∧∀q ∈ Q [b q],
where 1 ≤ i ≤ j − 1, then the request is denied. Otherwise a positive answer is given.
This means that the request is denied if and only if the user has ever entered a domain
that is forbidden from b.

5.5 Evolution of Cross-Domain Link Rules

Rules created in Section 5.3 provide a basis for the enforcement of constraints in pres-
ence of interoperation. However, these rules do not rule out all the accesses which may
cause contradictions to constraints.

For example, consider the user uc
1 in Fig. 2. Though the rule sr〈c-domain, {rc

1 �

r3, rc
1 �r8}〉 is enforced, it is still possible for uc

1 to violate smer〈{r3, r8}, 2〉. uc
1 may

start a session in which r3 is activated. After some operations, he or she could close the
session and start another session being member of r8. The rule sr〈c-domain, {rc

1 �

r3, rc
1 � r8}〉 dose not forbid this behavior.

Evolution Strategy of Simple-Rules. Define a function L(l∗, L∗) as follows:

L(l∗, L∗) =

⎧
⎪⎨

⎪⎩

{rc∗ � p∗ | (l∗ = rc∗ � b∗) ∧ (b∗ ∈ Rs)
p∗ ∈ PermSet(b∗)} ∧ (∀l∗1 ∈ L[(l∗1 = rc∗

1 � b∗1) ∧ (b∗1 ∈ Ps)])
{l∗} otherwise

Both simple-accesses and domain-accesses may influence simple-rules. After a simple-
access utilizes a link li ∈ L, for each sr〈c-domain, L〉 in Ωsr(l), the rule is changed
as sr〈c-domain, L\L(li, L)〉. Each time a link is used, rules are adjusted accord-
ingly. Recursively, the rule would finally become sr〈c-domain, {lk}〉, which means
lk is accessible under no circumstances. Hence, only t − 1 links in L are admitted,
which complies with the rule. This also implies that users can never acquire all the
roles or permissions related to L as a whole. On the other hand, a domain-access utiliz-
ing q incurs the following adjustment: for each sr〈c-domain, L〉 in Lchk such that
∃l ∈ L[l = rc � b ∧ b q], replace it with sr〈c-domain, L\L(l, L)〉; add each link
in L(l, L) to Lapp.

Evolution Strategy of Domain-Rules. Define a function Q(b∗, Q∗) as follows:

Q(b∗, Q∗) =

{
PermSet(b∗) b∗ ∈ Rs ∧Q∗ ⊆ Ps

{q∗ ∈ Q∗ | b∗ q∗} otherwise

Suppose that a link l = rc � b is used in a domain-access by a user with an
access history Σ = {(σ1, r1), · · · , (σj , rj)}, j ≥ 2. The domain-rule dr〈σ, Q〉 in
Ωdr(l, Σ), where σ ∈ {σ1, · · · , σj−1}, turns into dr〈σ, Q\Q(b, Q)〉. For a domain
σ′ ∈ {σ1, · · · , σj−1}, users in σ′ are somehow able to enter into s-domain. If there
is no domain-rule concerning σ′ and q, it is not unlikely that σ′ violates some constraint
〈Qc = {q, q1, · · · , qm}, m+1〉, where Qc ∈ P(Rs)∪P(P s). Hence, for each domain

Establishing RBAC-Based Secure Interoperability 59

σ′ such that ¬∃e ∈ Ωdr(l, Σ) [e = dr〈σ′, Q′〉], where Q′ ⊆ Qc, we need to con-
struct more rules: add the domain-rule dr〈σ′, Qc\Q(b, Qc)〉 so that at most m entities
in {q, q1, · · · , qm} are available to σ′.

When a link l = rc � b is used by a simple-access from σ, domain-rules may be
adjusted or added to prevent domain-violations. For each rule dr〈σ, Q = {q1, · · · , qn}〉
in the associated list Lσ , change it to dr〈σ, Q\Q(b, Q)〉. For each constraint 〈Qc =
{q, q1, · · · , qm}, m + 1〉 such that ¬∃e ∈ Lσ [e = dr〈σ, Q〉], where Q ⊆ Qc and
b q, add the domain-rule dr〈σ, Qc\Q(b, Qc)〉.

Let A be a set of cross-domain access events in s-domain, and RULES the set
of cross-domain link rules enforced in s-domain. By an access event, we mean that
a cross-domain access request is permitted by the rules and that one and only one link
l is employed by the access. We write A � CON , if the access events violate any
constraint c in s-domain, and A � RULES if the events break any rule. Then, the
following theorem ensures that constraints are always observed.

Theorem 1. If A � CON , then A � RULES.

Proof. See Appendix B for the proof.

The theorem indicates that the rules are able to preserve the effects of constraints in
presence of interoperation. The rules would deny all the accesses that do not comply
with constraints. Note that rules might deny accesses that actually conform to con-
straints. Formally, A � RULES �⇒ A � CON . This is because no domain has
knowledge of other domains’ RBAC policies and the interoperability among others.
Unfortunately, it is unreasonable to assume that these information are available in a
decentralized environment. Hence, cross-domain link rules are useful when interoper-
ability is needed in a decentralized multi-domain environment.

6 Related Work

Recent advances in the field have produced some approaches to the secure interoper-
ation of multi-domain environments. Mechanisms based on multilevel security (MLS)
model were proposed by Gong and Qian [7] , Dawson et al. [4] and Bonatti et al. [1].
Unfortunately, these models are not suitable for decentralized multi-domain environ-
ments because of the inherent characteristic of being static of the MLS model.

More recently, B.Shafiq et al. [14] proposed a centralized RBAC-based framework
for building up secure interoperability. This framework is capable of composing a se-
cure interoperation policy from RBAC policies of multiple domains. However, as dis-
cussed in Section 1 and Section 4.2, it relies on a trusted third-party and does not handle
the problems faced in decentralized multi-domain environments.

M.Shehab et al. [15,16] presented an important decentralized framework for secure
interoperation without a third party. The framework enables domains to make localized
access control decisions based on users’ access histories. Besides, that framework could
cope with several attacks. However, few emphasis has been put on interoperability es-
tablishment. The framework assumes that there already exist role mappings manually
selected by security administrators of collaborating domains. That is, there are no mech-
anisms for domains’ security administrators to set up interoperability. This is not in line

60 J. Hu, R. Li, and Z. Lu

with requirements of decentralized multi-domain environments. Second, by comparing
the roles in users’ access histories and roles involved in an SMER constraint, constraints
were expected to be respected in the framework. However, it appears that only DMER
constraints are protected in this way because users can activate multiple sessions to cir-
cumvent the verification as noted in [10]. That is to say, violations of SMER constraints
by either simple-accesses or domain-accesses are not forbidden.

Du and Joshi [5] studied the problem of mapping a request for a set of permissions
to a minimal set of roles in presence of hybrid hierarchies. But they did not consider the
enforcement of constraints in presence of role mappings.

Other works that highlight the importance of inter-domain role mappings include
[8,11]. Jin and Ahn [8] presented a role-based access management framework for secure
digital information sharing in collaborative environments. The framework depends on
mappings between collaborator roles and normative collaboration roles. Pan et al. [11]
proposed semantic access control for interoperation based on RBAC and employed a
role mapping table.

7 Conclusion

A framework for establishing secure interoperability in decentralized multi-domain
environments has been presented in this paper. We presented a method of setting up
interoperability which comprises role mappings and direct permission assignments.
Further, we defined cross-domain link rules to capture the requirement of enforcing
SMER constraints in presence of interoperation, thus observing SoD policies. Interoper-
ation through the proposed method preserves the security and autonomy principles [7].
Cross-domain link rules, together with their enforcements and evolvements, guarantee
the security of individual domains. Access control within a domain is not influenced by
interoperation, and thus the autonomy principle is respected.

Acknowledgement. This work was partially supported by National Natural Science
Foundation of China under Grant 60403027, Natural Science Foundation of Hubei
Province under Grant 2005ABA258, Open Foundation of State Key Laboratory of Soft-
ware Engineering under Grant SKLSE05-07. We thank the anonymous reviewers for
their helpful comments.

References

1. Bonatti, P., Sapino, M., Subrahmanian, V.: Merging heterogeneous security orderings. In:
Proceedings of the 4th European Symposium on Research in Computer Security, Rome,
Italy, pp. 183–197 (September 1996)

2. Chen, H., Li, N.: Constraint generation for separation of duty. In: ACM Symposium on Ac-
cess Control Models and Technologies, Lake Tahoe, California, USA, pp. 130–138. ACM
Press, New York (2006)

3. Clark, D.D., Wilson, D.R.: A comparison of commercial and military computer security
policies. In: IEEE Symposium on Security and Privacy, pp. 184–195. IEEE Computer Society
Press, Los Alamitos (1987)

Establishing RBAC-Based Secure Interoperability 61

4. Dawson, S., Qian, S., Samarati, P.: Providing security and interoperation of heterogeneous
systems. Distributed and Parallel Databases 8(1), 119–145 (2000)

5. Du, S., Joshi, J.B.D.: Supporting authorization query and inter-domain role mapping in pres-
ence of hybrid role hierarchy. In: ACM Symposium on Access Control Models and Tech-
nologies, pp. 228–236. ACM Press, New York (2006)

6. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S.I., Kuhn, D.R., Chandramouli, R.: Proposed NIST
standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4(3), 224–274 (2001)

7. Gong, L., Qian, X.: Computational issues in secure interoperation. Software Engineering,
IEEE Transactions on 22(1), 43–52 (1996)

8. Jin, J., Ahn, G.-J.: Role-based access management for ad-hoc collaborative sharing. In: ACM
Symposium on Access Control Models and Technologies, pp. 200–209. ACM Press, New
York (2006)

9. Kapadia, A., Al-Muhtadi, J., Campbell, R.H., Mickunas, M.D.: IRBAC 2000: Secure interop-
erability using dynamic role translation. In: Proceedings of the 1st International Conference
on Internet Computing, pp. 231–238 (2000)

10. Li, N., Bizri, Z., Tripunitara, M.V.: On mutually-exclusive roles and separation of duty. In:
ACM Conference on Computer and Communications Security, pp. 42–51. ACM Press, New
York (2004)

11. Pan, C.-C., Mitra, P., Liu, P.: Semantic access control for information interoperation. In:
ACM Symposium on Access Control Models and Technologies, pp. 237–246. ACM Press,
New York (2006)

12. Piromruen, S., Joshi, J.B.D.: An RBAC framework for time constrained secure interoperation
in multi-domain environments. In: the 10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, pp. 36–45. IEEE Computer Society Press, Los Alamitos
(2005)

13. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models.
IEEE Computer 29(2), 38–47 (1996)

14. Shafiq, B., Joshi, J., Bertino, E., Ghafoor, A.: Secure interoperation in a multidomain envi-
ronment employing rbac policies. IEEE Trans. Knowl. Data Eng. 17(11), 1557–1577 (2005)

15. Shehab, M., Bertino, E., Ghafoor, A.: Secure collaboration in mediator-free environments.
In: ACM Conference on Computer and Communications Security, pp. 58–67. ACM Press,
New York (2005)

16. Shehab, M., Bertino, E., Ghafoor, A.: SERAT: SEcure Role mApping Technique for decen-
tralized secure interoperability. In: ACM Symposium on Access Control Models and Tech-
nologies, pp. 159–167. ACM Press, New York (2005)

62 J. Hu, R. Li, and Z. Lu

APPENDIX

A Pseudo-code for the Generation of Cross-Domain Link Rules

CREATERULES(CON, CDL)

1 UFRules← ∅; WC ← ∅; tmpWC ← ∅
2 for each (SMER or SMEP) constraint c = 〈{q1, q2, · · · , qt}, t〉 ∈ CON
3 do WC ← {c}
4 for i← 1, t
5 do for each item w = 〈{· · · , li−1, qi, · · · , qt}, t〉 ∈WC
6 do for each link l = (rc � b) ∈ CDL
7 do if b � qi

8 then tmpWC ← tmpWC ∪
{〈{· · · , l, qi+1, · · · , qt}, t〉}

9 WC ← tmpWC; tmpWC ← ∅
10 UFRules← UFRules ∪WC
11 SimpleRuls← ∅; DomainRules← ∅
12 for each item I ∈ UFRules
13 do if I = 〈{l1, l2, · · · , lk}, t〉
14 then SimpleRules = {sr〈c-domain, {l1, l2, · · · , lk}〉} ∪ SimpleRules
15 elseif I = 〈{l1, l2, · · · , li, q1, · · · , qj}, t〉 ∧

〈c-domain, {q1, · · · , qj}, j〉
∈ DomainRules
16 then DomainRules = {dr〈c-domain, {q1, · · · , qj}〉} ∪DomainRules
17 for each link l ∈ CDL
18 do flag ← false
19 for each simple-rule 〈c-domain, L〉 ∈ SimpleRules
20 do if (l ∈ L)
21 then flag ← true; BREAK
22 if flag = false
23 then SimpleRules = {sr〈c-domain, {l}, 2〉} ∪ SimpleRules

The algorithm CREATERULES takes as arguments the set CON of constraints enforced
in s-domain, and CDL[c-domain]. CREATERULES has a worst-case complexity
of O(|CON | · |CDL|T), where T is the maximal t among all t-t SMER or SMEP
constraints.

B Proof for Theorem 1

Proof. Suppose that the violated constraint is c = 〈{q1, q2, · · · , qt}, t〉 and each access
event occupies a different qi. It takes at most t events to violate c. There exists a link
l = rc � b such that

∣
∣{qi|b qi}

∣
∣ ≥ 2, where 1 ≤ i ≤ t, if and only if it takes

less than t events to violate c. However, the proof is similar when either t or less than
t events constitute the violation. We assume that the violation is caused by a subset A
of A: {a1, a2, · · · , at}, the access event ai occurs before ai+1, where 1 ≤ i ≤ t − 1,
and, without loss of generality, that ai corresponds to the usage of qi. That is, each link
enables users to employ only one q. Assume that there are k (0 ≤ k ≤ t) domain-
accesses in A. We proceed with discussions on k.

Establishing RBAC-Based Secure Interoperability 63

(k = 0): This means that all ai ∈ A are simple-accesses. Suppose all the employed
links by the user are {l1, l2, · · · , lt}. Since c is infracted, li = rc � b holds, where
b qi. Thus, a rule sr〈c-domain, {l1, l2, · · · , ln}, n〉 (n ≤ t) exists in RULES
from algorithm CREATERULES. By the evolution strategy of simple-rules and the order
of events, the rule becomes sr〈c-domain, {li+1, · · · , ln}, n − i〉 after the event ai.
Finally, we have the rule sr〈c-domain, {ln}, 1〉 enforced after an−1. Obviously, the
access event an runs counter to the rule. Consequently,A � RULES.

(1 ≤ k < t): There are k domain-accesses and t − k simple-accesses in A. When
a1 is a domain-access, a domain-rule, dr〈σ, {q2, · · · , qt}〉, would be created after a1,
according to the first part of domain-rules’ evolution strategy. In the case that a1 is a
simple-access, the same domain-rule is generated from the second part of domain-rules’
evolution strategy; and a simple-rule concerning l1 would change as needed. Each time
ai occurs, the domain rule and the simple rule evolve as specified in the evolution strate-
gies. If at is a domain-accesses, the domain rule should have become dr〈σ, {qt}〉 due
to the occurrences of {a2, · · · , at−1}. Hence, at would not be allowed by the domain-
rule. Likewise, if at is a simple-access, the simple rule would be sr〈c-domain, {lt}〉
after at−1, where lt = rc � qt. Therefore at should also have been denied.

(k = t): All events are domain-accesses. If there is already a domain-rule concerning
σ and c, the rule would evolve with each occurrence of ai, 1 ≤ i ≤ t − 1. From
evolution strategies, at could not have been permitted to occur by the final version of
the rule. On the other hand, suppose that there is no rule regarding σ prior to the access
a1. However, as a1 exploits q1, a new domain-rule dr〈σ, {q2, · · · , qt}〉 is constructed
from the constraint c = 〈{q1, q2, · · · , qt}, t〉, according to the evolution strategy of
domain-rules. Similar to the case of (1 ≤ k < t), the rule finally becomes dr〈σ, {qt}〉,
which would refuse the access at. Hence, we also have A � RULES in this case. In
conclusion, if A � CON , we have A � RULES. ��

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 64–76, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Handling Dynamic Information Release

Li Jiang, Lingdi Ping, and Xuezeng Pan

College of Computer Science and Technology, Zhejiang University, China
ljiang@zju.edu.cn, ldping@cs.zju.edu.cn, xzpan@cs.zju.edu.cn

Abstract. Information flow and in particular noninterference ensure that sensi-
tive information does not affect public information. But noninterference is too
restrictive: real computing systems sometimes need to dynamically release cer-
tain amount of sensitive information. In this paper, we propose a new security
property that requires the decision to perform information release have high in-
tegrity, and permits low integrity data which comes from untrusted sources to
dynamically affect information release by upgrading (or endorsing) its integrity.
To control such integrity upgrading, we introduce an endorsement mechanism
that takes the form of a local integrity endorsing policy declaration. So the pro-
grammer can express more precise ways of endorsing, by specifying the integ-
rity levels from which information may be endorsed. In addition, we show a
new type system to enforce the security property.

Keywords: Computer security, information flow, languages, security-type
systems.

1 Introduction

Language-based information-flow control is a promising approach for enforcing secu-
rity properties such as data confidentiality and integrity. In this area (cf. [4] for a sur-
vey), the security policy is often formalized as noninterference properties, requiring
that it be impossible to deduce any information about the program’s secret inputs
from its public outputs. But this requirement is too restrictive because real systems
often intend to release (or declassify) certain amount of confidential information. To
allow declassification that can be externally justified, many researchers have proposed
various ideals [5-8, 11, 13-17]. See Sabelfeld and Sands [12] for a detailed survey.

However, little work has been published on the case in which some confidential in-
formation release conditionally depends on other factors. It means information can be
released dynamically. A standard example is the one of a service selling electronic
information, like articles in a journal for instance. The contents of an article have to be
kept secret from the client until he has paid for enough money. Moreover, information-
flow control must provide integrity guarantees, where important data in the system is
not allowed to be affected by untrusted sources of information. The money cannot
directly affect information (i.e, the contents of journal) declassification, because it paid
by the client that may be an attacker is untrusted. We must upgrade (or endorse) the
integrity of such untrusted data in a controlled way to give it a limited ability to affect
information release. Our goal here is to provide the programmer with such a support.

 Handling Dynamic Information Release 65

This paper introduces intransitive endorsement, a security property that unifies
declassification and endorsement policies. Like robust declassification [7, 8], our
property requires that the decision to perform declassification have high integrity and
thus controls who initiates the act of declassification. On the other hand, to support
integrity endorsing, this paper provides a richer policy language which enables a more
precise characterization of integrity upgrading. Each data has its local endorsing pol-
icy which is declared by a programmer. The integrity of data is upgraded according to
the declared policy. So the programmer can express more precise ways of endorsing,
by specifying the integrity levels from which information may be endorsed.

We also borrow some philosophy from intransitive noninterference [9, 10, 11],
which says that flows from the high level to a declassifier level and flows from the
declassifier level to the low level are admissible while a direct flow from high to low
is not allowed. So it limits where declassification can occur in a program. In our
model, endorsing the integrity of data from the low level to the high level is managed
by a specific intransitive endorsing policy. This is achieved by annotating variables
with policies of the form p p′ , which means that the policy p must be enforced on
that variable, and the policy p′ must be enforced on the endorsed variable after en-
dorsement. Thus, such endorsing policies can control tightly where information may
be endorsed relative to the integrity levels of the system.

A similar policy for introducing intransitive declassifying relations exists in [11],
but with an important difference: there it is a global security policy, whereas in our
case the policy is local. Intuitively, the global policy can not distinguish the security
policies for two items of data which are at the same security level but may be used in
different ways. Contrasted to the lack of precision in the global policy, the local pol-
icy is expressive enough to differentiate between data that can be endorsed and data
that cannot.

The paper is organized as follows. In Section 2, we present a core language
endorseλ and recall two security properties noninterference and robust declassification.

Section 3 defines local endorsing policy and the intransitive endorsement property.
Section 4 gives a security type system that provably enforces intransitive endorsement
and discusses the relation to declassification principles [12]. Section 5 presents a
journal-selling example to illustrate how our security property can be applied to real
applications. Finally, Section 6 discusses related work and Section 7 concludes.

2 Security Policy

2.1 Security Labels

In our information-flow control policy, each piece of data is annotated by a label that
describes the security level of the data. Such labels form a security latticeL , which
states confidentiality and integrity policies applied to the labeled data. Confidentiality
policies prevent private data from being leaked to the public, while integrity policies
restrict the use of untrusted data. The use of high-confidentiality data is more restricted
than that of low-confidentiality data. By contrast, the use of low-integrity data which
comes from untrusted sources is more restricted than that of high-integrity data. So
confidentiality and integrity can be viewed as duals [2]. For any label ∈l L , it is a

66 L. Jiang, L. Ping, and X. Pan

pair (C(), I())l l . The notions C()l and I()l refer respectively to the confidentiality and
integrity parts of l . The bottom element of the lattice denoted ⊥ is a most public one
which has the lowest confidentiality and the highest integrity parts ofL , whereas the
top element indicates a secret reference which is most restrictive in usage and has
the highest confidentiality and the lowest integrity parts ofL .

The lattice forms a pre-order written as . Consider a simple security lattice L
with two levels high and low for confidentiality and integrity. For two labels 1l with
level (low, high) and 2l with level (high, low), we write 1 2l l , because 1l specifies
less confidentiality than 2l and more integrity than 2l . Moreover, we write

1 2C() C()Cl l and 1 2I() I()Il l respectively for the confidentiality and integrity
parts of security levels. According to this relation, if a variable x is labeled 1l , the
value of x can be transferred to a variable y labeled 2l . The lattice join operation is ,
which combines the restrictions on how data may be used. For example, the expres-
sion x+y has label 1l 2l , which is at least as restrictive as 1l and 2l : 1l 2l = (low,
high) (high, low) = (high, low).

2.2 Language Syntax and Semantics

In this section, we present a core language endorseλ , a call-by-value -calculusλ ex-
tended with security types, the constructs of declassifying and endorsing. We will use
it to define some security properties later. The language syntax is given in Figure 1.

Secure types

:: Base types
Nat | Unit | Bool | ref

:: Values
| | | | | : |

Expressions::
| | | ! | : | ; | if then else | declassify(, C()) | endorse(, I())

v
x n unit true false x e m

e
v e e ref e e e e e e e e e e e

β
β

λ

=

=
′→

=

=
=

l

l l

τ

τ

τ ::

τ τ | τ

τ.

Fig. 1. Syntax of endorseλ

Meta variable x ranges over variables Var, and m ranges over memory locations.
Expressions e and types β are largely standard, except for the constructs of

(, C())declassify e l and (, I())endorse e l , which are not standard language expressions
and have no computational effect. Whenever a value is declassified or endorsed from
one security level to another, the value is not modified in any way. The security type
βl is the base type β annotated with security label l . We use the notation

()label β =l l to obtain the security label of a type. The base types include natural
numbers, unit, booleans, functions and references. A function :x eλ τ. with type

′→τ τ has one argument x with type τ and return results of type ′τ . A typed memory
location mτ can only store values of type τ .

The small-step operational semantics of endorseλ are presented in Figure 2. A configu-
ration ,e M 〉〈 is a pair, consisting of an expression e and a local memory M. The mem-
ory M is a mapping from a finite set dom(M) of typed memory locations to values.

 Handling Dynamic Information Release 67

1 21 2

1 21 2 1 2 1 2

11

11 2

, , , , , ,

, , , , ref , ref ,

ref , , [] : , , []

, ,()

! , , : , :

e M e M e M e M e M e M

e e M e e M v e M v e M e M e M

v M m M m v m v M unit M m v

e M e MM m v

m M v M e e M e

′ ′ ′ ′ ′ ′〈 〉 → 〈 〉 〈 〉 → 〈 〉 〈 〉 → 〈 〉
′ ′ ′ ′ ′ ′〈 〉 → 〈 〉 〈 〉 → 〈 〉 〈 〉 → 〈 〉

〈 〉 → 〈 〉 〈 = 〉 → 〈 〉

′ ′〈 〉 → 〈 〉=
′〈 〉 → 〈 〉 〈 = 〉 → 〈 =

a a

τ τ

τ τ τ τ τ

τ

τ

2 2

2 1 2 21

1 2 1 1 2 2

, ,

, : , : ,

, , , ,

if then else , , if then else , ,

(:) , [/] , ; , ,

declassify(,C()), , e

e M e M

e M v e M v e M

e M true M e M false M

e e e M e M e e e M e M

x e v M v x e M unit e M e M

e M e M

λ

′ ′〈 〉 → 〈 〉
′ ′ ′〉 〈 = 〉 → 〈 = 〉

′ ′〈 〉 → 〈 〉 〈 〉 → 〈 〉
′ ′〈 〉 → 〈 〉 〈 〉 → 〈 〉

〈 〉 → 〈 〉 〈 〉 → 〈 〉

〈 〉 → 〈 〉 〈l

τ.

ndorse(, I()), ,e M e M〉 → 〈 〉l

Fig. 2. Operational semantics of endorseλ

The notation ()M mτ denotes the value of location mτ in M. The operation of updating

the value of a location in the memory is denoted by []M m vaτ . We use the notation

[v/x]e to indicate capture-avoiding substitution of value v for variable x in expression e.
The small-step semantics are given by transitions between configurations. The

general form of a transition is either , ,e M M ′〈 〉 → 〈〈〉 〉 , which means termination with
the final memory M ′ denoted by ,e M M⇓ ′〈 〉 , or , ,e M e M′ ′〈 〉 → 〈 〉 . Given a configu-
ration 1 1,e M〈 〉 , a trace of 1 1,e M〈 〉 is a sequence of configurations 1 1, ... ,n ne M e M〈 〉 〈 〉 ,
such that 1 1, ,i i i ie M e M− −〈 〉 → 〈 〉 for all 2..i n∈ . We also define the memory trace
of 1 1,e M〈 〉 to be the sequence 1 1 1(,) ...=m nT e M M M 〈 〉 .

2.3 Security Specification

This section recalls two security policies noninterference and robust declassification.
First, it is necessary to define what the attacker can observe. The attacker at security
level l can observe the value at security level ′l if and only if ′l l . We write
M1 =l M2 if memories M1 and M2 agree on locations whose labels are l , which is
formalized as 1 2.() () ()m M m M mβ β β′ ′ ′′∀ ⇒ =l l ll l . We call M1 and M2 are -equall .

To define our security properties we need to consider how to characterize the
power of possible attackers. We use trace equivalence relation ≈l to model attacker
knowledge. The equivalence relation corresponds to an ability to distinguish different
traces. Given two memory traces 1 1(,)mT e M〈 〉 and 2 2(,)mT e M〈 〉 for configurations

1 1,e M〈 〉 and 2 2,e M〈 〉 , 1 2 21(,) (,)m mT e M T e M〈 〉 〈 〉≈l if 1 2M M=l and the subsequences
of memories resulting from 1e and 2e are also -equall . For this semantic model, we
formalize noninterference in the following definition.

Definition 2.1 (Noninterference). Expression e is noninterference if
1 2 1 2 1 2, , . (,) (,)m mM M M M T e M T e M∀ ⇒ 〈 〉 〈 〉= ≈l ll

68 L. Jiang, L. Ping, and X. Pan

Intuitively, noninterference says that if two input memories are indistinguishable for
an attacker at a certain level, then the behavior of the program on these memories is
also indistinguishable at that level. Yet many practical programs do release informa-
tion. For example, the encryption function of a cryptographic library takes confiden-
tial data and makes it public. Consequently, realistic systems need a means of
declassification. Unfortunately the noninterference property does not hold in the pres-
ence of declassification. So the cryptosystem violating noninterference would be
rejected by the type systems of most current security-typed languages.

We use the construct (, C())declassify e l to downgrade the confidentiality of the re-
sult of the expression e to C()l . Unregulated use of declassifying can easily result in
unexpected release of confidential information. To control declassification, Zdance-
wic and Myers have proposed a security condition called robust declassification [7,
8], which requires that the decision to declassify must be at high integrity level. For
example, in a two-level setting, a program exhibits robust declassification if decisions
about downgrading high-confidentiality data cannot be affected by low-integrity data
which may be controlled by an attacker. In other words, low-integrity data cannot
influence what data is declassified.

Definition 2.2 (Robust Declassification). Suppose that an attacker is at security

level al . Then for any variable x with type xτ in expression e, if I() I(())xa I labell τ ,

[] []
[] []

1 2 1 1 1 21 2

2 1 2 2

, , , . (/ ,) (/ ,)

(/ ,) (,) ./
m ma

m ma

M M v v T v x e M T v x e M

T v x e M T v x e M

∀ 〈 〉 〈 〉

⇒ 〈 〉 〈 〉
≈

≈
l

l

Intuitively, attacker-controlled computation is not allowed to increase observations
about secrets by causing misuse of the declassification mechanism. So the above
definition requires that any change of low-integrity variables in the expression cannot
increase what the attacker can observe. According to this, the attacker cannot control
information release. However, robust declassification does not support dynamical
information release, such as a journal-selling service mentioned in Section 1.

3 Intransitive Endorsement

3.1 Local Endorsing Policy

To fix the aforementioned weakness of robust declassification, we extend each data to
be annotated with not only a security label l but also an intransitive endorsing policy
p. We also use the construct (, I())endorse e l and add an endorsing relation between
integrity levels of a given lattice structure for exceptions to the standard flow rela-
tion . Then we define policy ::p I p= , where I refers to the integrity part of a
security level ∈l L. Such a policy specifies a sequence of integrity levels through
which a data item may be endorsed. The syntax for policies is given in Figure 3.

In the grammar, endorsing policies range over elements of an endorsing policy lat-
tice pLwith a top element p and a bottom element p⊥ . The lattice order and join are
written p≤ and p respectively. The ordering p≤ is defined as the least relation over
endorsing policies such that pp p′≤ if policy p′ is at least as restrictive as policy p.

 Handling Dynamic Information Release 69

For two policies 1:p I p= and 1:p I p′ ′ ′= , we write pp p′≤ if the integrity
level I ′ is lower than I written as II I ′ and the policy 1p′ is at least as restrictive as
policy 1p . Whenever data labeled with p can be endorsed to 1p , data labeled
with p′ can also be endorsed to 1p′ . Roughly speaking, p has more power to affect
endorsement than p′ .

Lattice element
:: I() The integrity part of lattice-level
:: Policies

Integrity-level policy
Endorsing policy

I
p

I
I p

∈
=
=

′

l
l

L

Fig. 3. Syntax for endorsing policies

The join operation p is useful to compute the least upper bound on the endorsing
policy of an expression that combines sub-expressions with different endorsing poli-
cies. We present the operation rules and axioms of p≤ and p in Figure 4, usingφ to
denote the null endorsing policy which has no power to affect endorsement.

() () ()

ppp

p p p

p pp

p
p

p

I I

pI I I III I I

I I I I p p p p p p

I I p pI p I p

I I I p p p
p

I p I p I p

φ

φ φ

′ ′ ′ ′ ′ ′′
′ ′ ′ ′′

′ ′′ ′ ′′
=

′ ′ ′′ ′′

≤≤≤
≤ ≤ ≤

≤ ≤≤
= =

=

LL

Fig. 4. Ordering p≤ and join operation p for endorsing policies

Because endorsement to the same integrity level is harmless, we have that the in-
tegrity-level policy I is equivalent to the policy I I IL . Based on this truth, we
can compare and join two policies which are not the same for the length of the se-
quence of integrity levels. For example, give two policies 1 2 3::p I I I= and

1 2::p I I′ ′ ′= where 1 1II I ′ , 2 2II I′ and 3 2II I ′ . Since 2 2 2I I I′ ′′≡ , we have
1 2 2p I I I′ ′ ′ ′≡ . Due to this, the endorsing policy 1 1()p pp p I I′ ′=

2 2 2 22 3 1())(p pI I I I I I I′ ′ ′ ′= . Based on the definitions of p≤ and p , the top
element of the endorsing lattice p isφ and the bottom element p⊥ is ()I ⊥ equivalent
to the infinitely long policy () () ()I I I⊥ ⊥ ⊥ K , where ⊥ is the bottom element
of the security latticeLand ()I ⊥ is the integrity part of ⊥ .

3.2 Intransitive Endorsement Security Policy

By using the construct (, I())endorse e l , untrusted code is provided with the limited
ability to affect declassification. Our goal here is to control tightly where endorsing
can occur rather than permit arbitrary endorsing. The partial order relation between
levels I() I()y xIl l means that data x is less trustworthy than data y and its integrity

70 L. Jiang, L. Ping, and X. Pan

may be endorsed to I()yl using the expression (, I())yendorse x l . Although
(, I())yendorse x l violates the information flow ordering I() I()y xIl l , it remains

secure as long as the expression complies with the endorsing policy I() I()x yl l
which is enforced on x locally.

From a pragmatic point of view, each data has its local intransitive endorsing pol-
icy and endorsement is governed by these local policies. The policy describes where
information may flow relatively to the integrity level of the system. Furthermore, the
endorsement constructs in the code can be thought of as the sole place where low-
integrity data is given the ability to affect declassification. Such constructs describes
where physically in the code low-integrity data may be endorsed.

In order to cope with endorsing, we need to modify the robust declassification pol-
icy. The modified policy can be used to enforce two interesting security properties:
robust declassification (if the construct endorse is not used) and intransitive endorse-
ment (even if it is). First, an expression satisfies robust declassification if endorsing
does not occur in the expression. Second, endorsing obeys the endorsing policies of
the form ::p I p= .

Note that there exist some special cases where declassifying information is not af-
fected by endorsing low-integrity data although endorsing expressions exist. For ex-
ample, given a variable x annotated with endorsing policy 1 2I()x I Il , we use

1 2((,) ,)endorse endorse x I I indicating an endorsing sequence 1 2I()x I Il to
upgrade the integrity of a variable x to the integrity level 1I first and then to the integ-
rity level 2I . But 3(,)endorse x I indicating an endorsing sequence 3I()x Il is not
allowed because 3I()x Il does not belong to the endorsing policy of x. Furthermore,
endorsing the integrity of x to 2I may only affect the decision to declassify whose
integrity is at or below 2I . To be more precise, we have the following definition:

Definition 3.1 (Intransitive Endorsement). Suppose that an attacker is at security

level al . Then for an expression e with free variable x which has type xτ such that

I() I(())xa I labell τ and is annotated with an endorsing policy 10I() I()l l L

I()kl , if there exists an endorsing sequence 1I(()) I() I()jxlabel ′ ′l L lτ for

x in e, then

1 2 1 2

1 1 1 2

2 1 2 2

{1, , }, , , , .

(I(())) (I(()) I()) I() I())

([/] ,) ([/] ,)

([/] ,) ([/] ,) ,

a

a

ax x

m m

m m

ii I

i j M M v v

valid label valid label

T v x e M T v x e M

T v x e M T v x e M

∀

⇒

∈
′ ′∨ ∧ ∧

(〈 〉 ≈ 〈 〉

〈 〉 ≈ 〈 〉

(
)

(¬)[
]l

l

K

L l l lτ τ

and if no endorsing exists in C, then

[] []
[] []

1 21 2 1 11 2

1 22 2

, , , . (/ ,) (/ ,)

(/ ,) (,) ./
m ma

m ma

M M v v T v x e M T v x e M

T v x e M T v x e M

∀ 〈 〉 〈 〉

⇒ 〈 〉 〈 〉
≈

≈
l

l

For an endorsing sequence 1I(()) I() I()jxlabel ′ ′l L lτ , we use
(I(()) I())x ivalid label ′L lτ to check whether each item in the sequence is permitted by

the endorsing policy. It will return true only if I(())xlabel τ ,…, I()i′l are all permitted.
For example, (I(()))xvalid label τ and 1(I(())I())xvalid label ′lτ will return true only if

 Handling Dynamic Information Release 71

0I(()) I()xlabel = lτ and 11I() I()′ =l l , while 21(I(())I()I())xvalid label ′ ′l lτ will return
false if 2 2I() I()≠′l l . In the above definition, we consider two special cases where a
command must satisfy robust declassification although endorsing expressions exist:

1. If an endorsing policy 10I() I() I()kl l L l is enforce on the variable x
with type xτ such that 0I(()) I()xlabel ≠ lτ , (I(()))xvalid label¬ τ returns true,
which means that x cannot be endorsed to any integrity level.

2. If the endorsing sequence 1I(()) I() I()x ilabel ′ ′l L lτ is permitted by the
endorsing policy, x with type xτ at security level (C(()),I(()))x xlabel labelτ τ can
be endorsed to I()i′l . After this endorsement, x is at level (C(()),I())x ilabel ′lτ .
But its integrity is still lower than attackers if I() I()a I i′l l . It intuitively means
that x remains untrusted and cannot affect the decision of declassification.

4 Type-Based Security Analysis

In this section, we first present a security-type system to illustrate how to enforce
intransitive endorsement. The type system specifies the type rules of endorseλ . Then we
establish a type soundness theorem stating that all well-typed expressions satisfy
intransitive endorsement. Typing rules for endorseλ are presented in Figure 5.

The security environment Γ describes the security type of each variable. A collec-
tion of variables declared in Γ is the domain of Γ and the security types are the range
ofΓ . To introduce the concept of endorsing policies into the type system, we extend
the security type such that it consists of a base type β annotated with a security level
and an endorsing policy. For example, (,)Γ()= x xpx β l means that variable x in Γ has the
type (,)x xpβ l . The security latticeL , security environment and endorsing policy lat-
tice pLtogether constitute a security policy, specifying that information flow from a
variable x to a variable y is allowed only if x yl l and x yp p≤ .

Typing for expressions has the form (,)[pc] : pe βΓ l meaning that an expression e
has security type (,)pβ l and is well-typed under Γ and a program counter pc. We use

[pc] eΓ as the abbreviation for it. This assertion is known as a typing judgment.
The judgment [pc]Γ ◊means that Γ is a well-formed environment under the context
pc. Program counters range over security levels and help track information flow due
to control flow. So they do not contain endorsing policies because local endorsing
policies are only used in endorsing expressions to indicate where the integrity of data
can be upgraded.

Our type system uses the constructs of declassify and endorse to change the secu-
rity level of information without affecting the execution of the command. The security
policy definition is with respect to the attacker with a confidentiality level C()al and
an integrity level I()al . IH is the set of the integrity levels that are higher than I()al .
In declassify construct, pcI(), I() IH∈l means that the data which may be declassified
and the security context pc must be in higher integrity level than the given attacker.
This typing rule is proposed by Myers [8].

In endorsing construct, an expression e at integrity level I()l to I()′l is allowed due
to its local endorsing policy I() I() p′l l . After endorsement, the endorsing pol-
icy I() p′l is enforced on e and the confidentiality of e is not affected. The desig-
nated typing rule allows us to tightly restrict where endorsing can occur.

72 L. Jiang, L. Ping, and X. Pan

1 2

1 2

(,) (,) (,)

(,) (,)

(,)(,) (,)

[pc] : [pc] : [pc] :

, : [pc]
[pc] : [pc] :()

, : [pc] :

[pc] :() [pc] : pc

[pc] : :

p p p

p p

pp p

n unit true

x
false m

x x

e e p p

e e

β β′ ′

Γ Γ Γ

′ ′′Γ Γ ◊
Γ Γ

′ ′′Γ Γ

′′Γ Γ ≤

Γ = Uni

Nat Unit Bool

Bool ref

ref

l l l

l l

ll l l l

τ τ,
τ

τ, τ

1 2

1 2

21 12

21

(,)

(,)(,)

(,) (,)

(,)(,)

, : [pc] : [pc] : . :() [pc] :

[pc] : . :() [pc] :

[pc] : [pc] : [pc] : [pc] [pc]

[pc] ; : [pc] if th

p

pp

p p p

pp

x e x e e

x e e e

e e e e e

e e e

β

β

λ
λ

′ ′

′ ′

′ ′

′Γ Γ → Γ
′Γ → Γ

Γ Γ Γ Γ Γ

Γ Γ

t

Unit Bool

l

ll

l l l

ll l l

τ, τ τ τ τ

τ τ τ

τ

τ 21

(,)(,) (,)

(,)

(,)

(,) (,)(,)

((C(), I()),)

I() I((,

en else

[pc] :() [pc] : I(), I(pc)

[pc] : [pc] (, C()):

[pc] : pc [pc] :

[pc] ref :()

!
Ipp p

p p

p

p pp

p

e e

e e H

e declassify e

e e

eβ

β β

β β

β β

β

′ ′

′ ′

′ ′

′

′

Γ Γ ∈

′Γ Γ

Γ Γ

Γ

ref

ref

ll l

l l

l

l
ll

l l

ll

l

l

l))

((C(), I()), I())[pc] (, I()):

p

pendorse e β ′ ′′Γ
l

l l ll

Fig. 5. Typing rules

Three security properties defined in section 2 and 3 —noninterference, robust de-
classification, intransitive endorsement—can be enforced by our type system. If a
well-typed expression does not have occurrence of declassification and endorsement,
it satisfies noninterference. Robust declassification is also satisfied if no endorsement
occurs. We formalize these as the two following theorems:

Theorem 4.1. If [pc] eΓ and no declassification and endorsement occur in e, then e

satisfies noninterference.

Theorem 4.2. If [pc] eΓ and no endorsement occurs in e, then e satisfies robust

declassification.

Moreover, we concern about the case in which endorsement is used. The type rule of
intransitive-endorse allows the programmer to tightly restrict where endorsement can
occur. The type soundness result guarantees that all well-typed expressions satisfy
intransitive endorsement.

Theorem 4.3. If [pc] eΓ , then e satisfies intransitive endorsement.

The proof of these three theorems is sketched in the appendix.
In paper [12], Sabelfeld and Sands propose four principles for declassification

policies. We now discuss the relation between our property and declassification
principles.

The first principle is semantic consistency, which states that the security of a pro-
gram is invariant under semantics-preserving transformations of declassification-free
subprograms. Our novel security policy satisfies this principle. Because the policy is

 Handling Dynamic Information Release 73

built on top of a notion of the attacker’s view which is defined by low-level
indistinguishability of traces up to high-stuttering, a modification of a declassifica-
tion-free fragment of a program in a semantics preserving way does not make a
difference from the security definition’s point of view.

The second principle is conservativity, which states that security for programs with
no declassification is equivalent to noninterference. This principle holds according to
Theorem 4.1. A well-typed expression satisfies noninterference not only if no declas-
sification operations occur in a program, but also if no endorsement operations occur.

The third principle is monotonicity of release, which states that adding further de-
classifications to a secure program cannot render it insecure. This principle fails be-
cause the definition of intransitive endorsement assumes that the attacker can observe
the fact that an endorsement operation is being performed, regardless of its content.
Consider the program : 0; if 0 then : else : 0h h l h l′ ′= > = = which is secure. On the
other hand, adding a declassification annotation and an endorsement one, as in:

decalssify(: 0, L) ; if 0 then endorse(: , H) else : 0;h h l h l′ ′= > = =
renders the program insecure, because an attacker observing the presence or absence
of an endorsement action can learn whether h is greater than 0 or not.

The fourth principle is non-occlusion, which states that the presence of a declassi-
fication operation cannot mask other covert information leaks. This principle is sup-
ported by intransitive endorsement. Although the attacker may affect declassification,
it must obey endorsing policy enforced on data locally. Furthermore, endorsing policy
annotations in code may not mask other unrelated information leaks.

5 An Example

This section we give an example of a program to illustrate some important features in
the language. Consider a purchase service selling electronic journals. The contents of
journals have to be kept secret from the client until he has paid enough money for it.
We show the procedure which dynamically declassifies information depending on the
money paid by the client as follows, assuming the addition of greater-than-or-equal-to
test >= for integers, and the use of : e in elet x ′=τ as a syntactic sugar for (: .)x e eλ ′τ .

λ paid: ((L,L L H)),Nat . λ journal.contents: φ((H,)H),Nat .

λ journal.price: φ((L,)H),Nat .
 Let x: φ((L,)H),Nat =endorse(paid,H) in

 If x>=journal.price then
 declassify(journal.contents,L) else unit

For simplicity of presentation, we only consider two security levels—H and L. The
price of journal is at level (L,H) , a pair consisting of the low confidentiality part and
the high integrity part, respectively, with a null endorsing policy. The procedure tests
whether the client has paid enough money to buy the journal. If so, the contents of
journal are declassified to have label (L,H) . The decision to perform the declassifica-
tion is based in part on the variable paid. If the integrity level of paid is not endorsed
to H, the declassify expression is rejected by the type system because the security
context is at low integrity level.

74 L. Jiang, L. Ping, and X. Pan

Thus, it is necessary to use the endorsing expression to give paid the ability to af-
fect declassification. The value of paid comes from a client who may be an attacker.
So paid is initially labeled with low integrity level. Endorsing paid to H is permitted
only if the local endorsing policy of paid declared by the programmer permits. The
above program can be proved to be well-typed and satisfy the intransitive endorse-
ment property. From this point of view, the endorsement mechanism is not misused to
lead to undesired declassification.

6 Related Work

Information release (or declassification) is the key challenge for language-based in-
formation flow security and much recent and ongoing work concerns policies for
declassification. The recent work [12] by Sabelfeld and Sands contains an exhaustive
survey on the literature regarding the subject of declassification. They have classified
mechanisms for declassification along several dimensions: “Who” is authorized to
perform declassification, “Where” declassification is allowed to take place, “What”
information is released, and “When” declassification should be allowed to happen.

As mentioned in Section 1, popular approaches to policies along the who and
where dimensions are respectively based on robust declassification [7, 8] and intran-
sitive noninterference [9, 10, 11].

A natural starting point along the what dimension is the delimited release proposed
by Sabelfeld and Myers [13]. This policy restricts the use of declassification so that
cannot be exploited by laundering attacks. The idea is that declassification is accept-
able provided that the program does not modify data if that could influence the value
of declassified expressions.

Most recently, Mantel and Reinhard [16] suggested three definitions (WHAT1,
WHAT2, and WHERE) for controlling the dimensions what and where. But there defi-
nitions consider the dimensions in separation. In comparison to such definitions,
Askarov and Sabelfeld [17] proposed localized delimited release which combines the
what and where dimensions. Their approach captures the location of release by in-
structing the semantics with the set of released expressions and extending the defini-
tion of delimited release with this information.

Chong and Myers introduced noninterference “until” [14] that expresses the se-
quence of levels through which a value can be declassified, provided some conditions
are satisfied. This approach controls when information can be released.

7 Conclusion

In this paper, we have presented intransitive endorsement, a security characterization
that combines the who and where dimensions of information release. This combination
is reassured by the semantic consistency, conservativity, and non-occlusion
principles of declassification [12]. For controlling the who dimension, our security
property restricts that declassification can only occur in the high integrity context. For
controlling where, our property guarantees that endorsing the integrity of data is con-
trolled by the local endorsing policy of each data. As a result, we are able to upgrade the
integrity of untrusted code in a controlled way to grant the code an ability to affect in-
formation release.

 Handling Dynamic Information Release 75

References

1. Heintze, N., Riecke, J.G.: The SLam Calculus: Programming with Secrecy and Integrity.
In: Proc. ACM Symp. on Principles of Programming Languages, pp. 365–377. ACM
Press, New York (1998)

2. Biba, K.J.: Integrity Considerations for Secure Computer Systems. Technical Report
ESD-TR-76-372, USAF Electronic Systems Division, Bedford, MA (1977)

3. Zdancewic, S., Myers, A.C.: Secure Information Flow via Linear Continuations. Higher
Order and Symbolic Computation, 15(2/3) (2002)

4. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE Journal on
Selected Areas in Communications 21(1), 5–19 (2003)

5. Giacobazzi, R., Mastroeni, I.: Abstract Noninterference: Parameterizing Noninterference
by Abstract Interpretation. In: Proc. ACM Symp. on Principles of Programming Lan-
guages, pp. 186–197. ACM Press, New York (2004)

6. Giacobazzi, R., Mastroeni, I.: Adjoining Declassification and Attack Models by Abstract
Interpretation. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 295–310. Springer,
Heidelberg (2005)

7. Zdancewic, S.: A Type System for Robust Declassification. In: Proc. the 19th Conference
on the Mathematical Foundations of Programming Semantics. Electronic Notes in Theo-
retical Computer Science (2003)

8. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing Robust Declassification. In: Proc.
IEEE Computer Security Foundations Workshop, pp. 172–186. IEEE Computer Society
Press, Los Alamitos (2004)

9. Rushby, J.M.: Noninterference, Transitivity, and Channel-control Security Policies. Tech-
nical Report CSL-92-02, SRI International (1992)

10. Roscoe, A.W., Goldsmith, M.H.: What is intransitive noninterference? In: Proc. IEEE
Computer Security Foundations Workshop, pp. 228–238. IEEE Computer Society Press,
Los Alamitos (1999)

11. Mantel, H., Sands, D.: Controlled Downgrading Based on Intransitive Noninterference. In:
Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 129–145. Springer, Heidelberg
(2004)

12. Sabelfeld, A., Sands, D.: Dimensions and Principles of Declassification. In: Proc. IEEE
Computer Security Foundations Workshop, pp. 255–269. IEEE Computer Society Press,
Los Alamitos (2005)

13. Sabelfeld, A., Myers, A.C.: A Model for Delimited Information Release. In: Futatsugi, K.,
Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 174–191. Springer,
Heidelberg (2004)

14. Chong, S., Myers, A.C.: Security Policies for Downgrading. In: Proc. 11th ACM Confer-
ence on Computer and Communications Security, pp. 198–209. ACM Press, New York
(2004)

15. Askarov, A., Sabelfeld, A.: Gradual Release: Unifying Declassification, Encryption and
Key Release Policies. In: Proc. IEEE Symp. on Security and Privacy, IEEE Computer
Society Press, Los Alamitos (2007)

16. Mantel, H., Reinhard, A.: Controlling the What and Where of Declassification in Lan-
guage-based Security. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 141–156.
Springer, Heidelberg (2007)

17. Askarov, A., Sabelfeld, A.: Localized Delimited Release: Combining the What and Where
Dimensions of Information Release. In: Proc. the 2007 workshop on Programming lan-
guages and analysis for security (2007)

76 L. Jiang, L. Ping, and X. Pan

Appendix

Proof of Theorem 4.1. We sketch a proof by induction on the typing derivation for
an expression e. With the exception of the expression 1 2:e e= , the theorem is proved
with a straightforward induction on the evaluation of other expressions, because our
type system is similar to those previously proposed [1, 3], except for the addition of
rules for declassifying and endorsing expressions. The induction on 1 2:e e= is not
standard, because it contains p p′≤ in its preconditions. So we only consider this case.

Suppose that for an expression 1 2:e e= and two memories 1M and 2M we have
1 2aM M=l for some security level al . By the typing rule of 1 2:e e= , 1e denotes a

typed memory location mτ with the type (,)(,)(ref) ppβ ′ ′ll and 2e has the type (,)pβ l .
By induction on the derivation of 1 2:e e= , 1 111 2: , : ,e e M m v M〉〈 = → 〈 = 〉 →τ

1 1, []unit M m v〈 〉aτ and 2 22 221 2: , : , , []e e M m v M unit M m v〉 〉′ ′〈 = → 〈 = → 〈 〉a
ττ . To

prove the theorem, we need to show 1 21 2[] []aM m v M m v′=la aτ τ . In case al l , an
attacker who is below or at al can not observe values of memory locations whose
security levels are above al . Although the values of 1e and 2e under 1M and 2M may be
different, the attacker cannot detect this difference. In case al l , which implies

a′l l l , we obtain that 21m m=τ τ and v v′= due to 1 2aM M=l . Note that the endors-
ing policies of 1e and 2e have no effect on the computation, because no declassification
and endorsement occur in the expression 1 2:e e= . Hence, we can prove that

1 21 2[] []aM m v M m v′=la aτ τ .

Proof of Theorem 4.2. Paper [8] has translated the robust declassification property
into the language-based setting. Their approach is based on a simple sequential lan-
guage while we introduce robust declassification based on a call-by-value -calculusλ .
But it is not a fundamental limitation of our presentation. Paper [8] has proved a well-
typed command in the sequential language satisfies robust declassification, and it is
also easy to prove the theorem based on endorseλ .

Proof of Theorem 4.3. Suppose there is an attacker at security level al . In general, an
attacker may modify data whose integrity is at or below I()al . Here we only consider
the case in which endorsing occurs in the expression e. If no endorsement occurs, e
satisfies robust declassification by Theorem 4.2. When endorsement is used, suppose e
contains exactly n declassify expressions 1 1(, C()) ,..., (, C())n ndeclassify e declassify el l ,
and m endorse expressions endorse 1 1(, I())e′ ′l ,..., endorse (, I())m me′ ′l . It is either the
case that the endorse expression (, I())i iendorse e′ ′l (i m∀ ∈) has no impact on the deci-
sion to declassify if I() I()ia ′l l or if the endorsement is not permitted by endorsing
policies when endorsement occurs, or the case that the integrity of ie′ is upgraded
to I()i′l by (, I())i iendorse e ′′ l and I() I()i a′l l . In the former case, the integrity
of ie′ will not be changed if the endorsement is not permitted, or the data of ie′ still can-
not affect the decision to declassify whose integrity is at or above I()al if I() I()ia ′l l .
It seems as the case in which no endorsing occurs. Hence, we conclude that e satisfies
intransitive endorsement. In the latter case, although the decision to declassify can be
affected by the data of ie′ , it is permitted by the specified endorsing function en-
dorse (, I())i ie′ ′l with the local endorsing policy of ie′ . So information release
through (, C())j jdeclassify e l (j n∀ ∈) is secure.

Improving the Time Complexity of

Matsui’s Linear Cryptanalysis

B. Collard, F.-X. Standaert�, and Jean-Jacques Quisquater

UCL Crypto Group, Université Catholique de Louvain

Abstract. This paper reports on an improvement of Matsui’s linear
cryptanalysis that reduces the complexity of an attack with algorithm
2, by taking advantage of the Fast Fourier Transform. Using this im-
provement, the time complexity decreases from O(2k ∗ 2k) to O(k ∗ 2k),
where k is the number of bits in the keyguess. This improvement is very
generic and can be applied against a broad variety of ciphers including
SPN and Feistel schemes. In certain (practically meaningful) contexts, it
also involves a reduction of the attacks data complexity (which is usu-
ally the limiting factor in the linear cryptanalysis of block ciphers). For
illustration, the method is applied against the AES candidate Serpent
and the speed-up is given for exemplary attacks.

Keywords: block ciphers, linear cryptanalysis, Fast Fourier Transform.

1 Introduction

The linear cryptanalysis [1] is one of the most powerful attacks against modern
block ciphers in which an adversary exploits a linear approximation of the type:

P [χP]⊕ C[χC] = K[χK] (1)

In this expression, P , C and K respectively denote the plaintext, ciphertext and
the secret key while A[χ] stands for Aa1 ⊕ Aa2 ⊕ ... ⊕ Aan ,with Aa1 , ..., Aan

representing particular bits of A in positions a1, ..., an (χ is usually denoted as
a mask). In practice, linear approximations of block ciphers can be obtained by
the concatenation of one-round approximations and such concatenations (also
called characteristics) are mainly interesting if they maximize the deviation (or
bias) ε = p− 1

2 (where p is the probability of a given linear approximation).

In its original paper, Matsui described two methods for exploiting the linear
approximations of a block cipher, respectively denoted as algorithm 1 and algo-
rithm 2. In the first one, given an r-round linear approximation with sufficient
bias, the algorithm simply counts the number of times the left side of Equation 1
is equal to zero for N pairs (plaintext, ciphertext). If T > N/2, then it assumes
either K[χK] = 0 if ε > 0 or K[χK] = 1 if ε < 0 so that the experimental value
(T − N/2)/N matches the theoretical bias. If T > N/2, an opposite reasoning
holds. For the attack to be successful, it is shown in [1] that the number of
available (plaintext, ciphertext)-pairs must be proportional to 1

ε2 .
� Postdoctoral researcher of the Belgian Fund for Scientific Research (FNRS).

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 77–88, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

78 B. Collard, F.-X. Standaert, and J.-J. Quisquater

In the second method algorithm 2, an r-1-round characteristic is used and
a partial decryption of the last round is performed by guessing the key bits
involved in the approximation. As a consequence, all the guessed key bits can be
recovered rather than the parity K[χK] which yields much more efficient attacks
in practice. Moreover, as it uses a r-1-round characteristic instead of a r-round
one for algorithm 1, it has a smaller data complexity. However, this improved
efficiency has its counterpart in a higher computational complexity, due to the
use of possibly large key guesses (i.e. involving a large number of key bits).

In this paper, we consequently introduce a general method for improving the
time complexity of a linear cryptanalysis attack using algorithm 2. Although the
limiting factor for linear cryptanalysis attacks is usually the data complexity,
such an improvement is relevant and can be motivated both by practical and
theoretical reasons, as the following scenarios underline.

– In the evaluation of linear cryptanalysis attacks against modern block ci-
phers, the attacker usually does a tradeoff between the bias of the approxi-
mation and the size of the keyguess. For example, when targeting 10 rounds
of Serpent in [6], the authors found a 9-round approximation with bias 2−52

but with 92 bits of keyguess (23 active Sboxes). As this leads to an attack
with time complexity O(2184), they had to choose an approximation with
a smaller bias (namely 2−58) but only 44 bits of keyguess. Using our im-
provement, we can take advantage of the 2−52 bias with a time complexity
of about 298.5, thus reducing the data complexity from 2118 to 2106.

– Since most recent ciphers (e.g. the AES candidates) have strong diffusion
properties, the number of active S-boxes in linear cryptanalysis attacks
against their reduced-round versions is usually too high for the time com-
plexity of these attacks to be tractable. The improvement proposed in this
paper can consequently be used to perform actual cryptanalytic experiments
against these reduced-round ciphers. Therefore, we expect that it will lead
to a better understanding of certain open issues, e.g. about the exploitation
of multiple approximations in linear cryptanalysis.

Independently of these theoretical expectations, we believe that the proposed
improvement of the time complexity, from O(2k ∗ 2k) to O(k ∗ 2k) (where k
is the number of bits in the keyguess) is meaningful in itself. We note finally
that the idea of taking advantage of the Fast Fourier Transform to speed-up the
computations in cryptanalysis is not new. For example [3] and [4] describe FFT-
based techniques to improve correlation attacks against stream ciphers. However,
we are not aware of any publication mentioning explicitly the applicability of the
FFT to the linear cryptanalysis of block ciphers.

The rest of the paper is structured as follows. Section 2 describes a generic
framework for the analysis of Matsui’s linear cryptanalysis using algorithm 2.
Section 3 details our improved key guess strategy and Section 4 applies our
technique to improve some previous cryptanalytic results against the AES can-
didate Serpent. Finally, our conclusions are in Section 5.

Improving the Time Complexity of Matsui’s Linear Cryptanalysis 79

2 General Framework for Algorithm 2

Suppose a linear approximation on r rounds with bias ε, requiring N ≈ O(1/ε2)
known plaintext-ciphertext pairs for a successful attack. Moreover, this approx-
imation has q active S-boxes in the last round and k bits to guess. In the orig-
inal algorithm 2 proposed by Matsui, a partial decryption of the last round is
performed for every ciphertext by guessing the key bits involved in the approx-
imation. The parity of the approximation for the plaintext and the partially
decrypted ciphertext is then evaluated and a counter corresponding to the guess
is incremented if the relation holds, decremented otherwise. The key candidate
with the highest counter in absolute value is finally assumed to be the correct
key. As a partial decryption is proceeded for every ciphertext and every keyguess,
the time complexity of this algorithm is in O(N · 2k) partial decryptions.

However, as we only consider a limited number of bits (those in the active
S-boxes) during the partial decryption of the ciphertexts, the same work is done
many times. Indeed, the number of texts required to mount an attack is typically
largely superior to the size of the keyguess (i.e. N � 2k). On the basis of this
observation, Matsui proposed in [2] an improvement which considerably reduces
the time complexity of an attack. Although it was first applied to the DES, this
improvement is valid in the general case. The modified algorithm can be divided
in 2 phases (according to the framework proposed in [7] sec. 2.1):

Distillation phase (for each generated ciphertext):

– Initialize an array of 2k counters.
– For each generated ciphertext, extract the k-bit value corresponding to the

active S-boxes and evaluate the parity of the plaintext subset defined by the
approximation. Increment or decrement the counter corresponding to the
extracted k-bit value according to the parity.

Analysis phase (once all the ciphertext have been generated):

– For each k-bit ciphertext and k-bit subkey, partially decrypt the k-bit cipher-
text under the k-bit subkey and evaluate the parity of the output subset (as
defined by the linear approximation). Keep this value in a table of size 2k ·2k.

– For each k-bit subkey, evaluate its experimental bias by checking, for each
k-bit ciphertext, the parity of the approximation and the value of the corre-
sponding counter. Then output the subkey which has maximal bias.

During the distillation phase, we construct a table that indexes for each k-
bit ciphertext, the difference between the frequency of its apparition leading to
a null input parity and the frequency leading to a non-null input parity. This
information is sufficient to evaluate the bias of the approximation for each key
during the analysis phase. This process can be done “on the fly”, while the
plaintexts are being encrypted. As only simple operations like bit extractions
and incrementations are performed during this phase, its complexity is generally
assumed to be negligible compared to the one of the encryption process.

80 B. Collard, F.-X. Standaert, and J.-J. Quisquater

During the analysis phase, the actual bias for each subkey candidate is eval-
uated. In order to avoid multiple evaluations of the same operation, a table is
constructed which indexes, for each k-bit ciphertext and each subkey candidate,
the parity of the output subset obtained after the partial decryption of the ci-
phertext XORed with the subkey. For a given subkey candidate, its bias can then
be evaluated by summing, for each k-bit ciphertext, the corresponding counter,
taking the parity of the approximation for the given ciphertext and subkey into
account (this parity is given by the sign of the counter and the correct index
in the precomputed table). In this way, the table is accessed 2k times for each
possible subkey, leading to a total time complexity of O(2k · 2k), compared to
the O(N ·2k) operations for a naive implementation of algorithm 2. Importantly,
this complexity depends only on the number of subkey candidates and not on
the number of texts used. Note finally that the table can be computed row by
row in order to save memory space.

3 Improving the Framework

In this section, we present a simple but powerful modification of the above
algorithm that allows us to significantly decrease the time complexity of an
attack. As the modification concerns only the analysis phase, the distillation
phase remains unchanged and so does the data complexity.

3.1 Rewriting the Algorithm

The table defined during the analysis phase can be seen as a large matrix C of
size 2k · 2k defined by the following function:

C(i, j) = parity(S−1(i⊕ j)) (0 ≤ i, j ≤ 2k − 1) (2)

where S−1(l) represents the inverse of the last layer of S-boxes for the k-bit digit l
and parity() is a function mapping any k-bit subset to ±1 according to its parity
(+1 if the parity of the subset is zero, −1 otherwise). With such a definition, the
bias εi corresponding to a particular keyguess i is given by the equation:

εi =
2k−1∑

j=0

parity(S−1(i⊕ j)) · x(j) =
2k−1∑

j=0

C(i, j) · x(j) = C(i, :) · x (3)

where x is the vector of counters such as defined in the distillation phase. This
equation evaluates the bias of the linear approximation for a particular k-bit
subkey candidate i. Consequently, the vector ε of the experimental bias for every
subkey candidates can be computed by the matrix-vector product:

ε = C · x (4)

At this point, the complexity for the evaluation of the experimental biases is still
in O(2k · 2k) as it implies a matrix-vector product with size 2k.

Improving the Time Complexity of Matsui’s Linear Cryptanalysis 81

3.2 Analysis of the New Algorithm

We underline the fact that the matrix C has a very particular structure. Taking
this structure into account will allow us to significantly reduce the number of
operations required to evaluate the vector ε of the bias.

First, as C = f(i ⊕ j) for a known function f , every rows or column of C
defines the complete matrix (in particular, C is symmetric). For example,

C(i, j) = f(i⊕ j) = f((i⊕ j)⊕ 0) = C(i⊕ j, 0) (5)

Let us introduce the following definitions (cfr. [10]):

Definition 1 (circulant). A matrix is circulant iff each row (column) vector
is rotated one element to the right relative to the preceding row (column) vector.

Definition 2 (block circulant). A matrix is m-block circulant iff it is circulant
blockwise and the number of blocks in each row (or column) is m.

Definition 3 (level circulant).

– (1) A matrix is level-1 circulant with type(n) iff it is circulant of size n.
– (2) A matrix is level-2 circulant with type(m,n) iff it is m-block-circulant and

each block is a circulant of size n itself.
– (3) A matrix is level-3 circulant with type(m,n,o) iff it is a m-block circulant

whose blocks are level 2 circulant with type (n,o).
– (q) A matrix is level-q circulant with type(m,n,o,...) iff it is a m-block cir-

culant whose blocks are level q − 1 circulant with type (n,o,...).

Proposition 1. Let C(i, j) = f(i⊕ j), then C is
level-k circulant with type (2, 2, ..., 2)

︸ ︷︷ ︸
k times

.

Demonstration 1. Let us define the matrix M of size (2k ∗ 2k) as : M(i, j) =
i⊕ j(0 ≤ i, j ≤ 2k−1). Let us divide M in 4 blocks with size (2k−1 ∗ 2k−1) each:

M =
(

M11 M12

M21 M22

)

Then for (0 ≤ a, b ≤ 2k−1 − 1):

– M11(a, b) = M(a, b) = a⊕ b,
– M12(a, b) = M(a, b + 2k−1) = a⊕ b⊕ 2k−1,
– M21(a, b) = M(a + 2k−1, b) = a⊕ 2k−1 ⊕ b,
– M22(a, b) = M(a + 2k−1, b + 2k−1) = a⊕ 2k−1 ⊕ b⊕ 2k−1,

This is true because a + 2k−1 is equivalent to a ⊕ 2k−1 since 0 ≤ a ≤ 2k−1 − 1.
Consequently, M11 = M22 and M12 = M21, thus M is 2-block circulant.
Moreover, M12 = M11 ⊕ 2k−1, so it has the same circulant structure as M11.
We can repeat the same reasoning for M = M11 with k = k − 1, and so the
proposition is proved by induction. Finally, it is obvious that f(M) keeps the
circulant properties if f() is applied elementwise.

82 B. Collard, F.-X. Standaert, and J.-J. Quisquater

3.3 Fast Algorithm

We now describe how the properties given above can be used to speed up the
linear cryptanalysis. We exploit the following result (cfr. [10] for a proof):

Theorem 1. A circulant C of level k and type (m,n,o,...,r) is diagonalizable by
the unitary matrix F = Fm ⊗ Fn ⊗ Fo ⊗ ...⊗ Fr:

C = F ∗diag(λ)F , (6)

where λ is the vector of eigenvalues of C, The symbol ⊗ is the Kronecker product
and Fn is the Fourier matrix of size n ∗ n defined by:

Fn(i, j) =
1√
n

wi·j (0 ≤ i, j ≤ n− 1), (7)

with:
w = e

2π
√−1
n (8)

The matrix F is the k-dimensional Discrete Fourier Transform matrix. Therefore,
the multidimensional Fast Fourier Transform allows us to quickly compute the
matrix-vector product with F or F ∗. Using the FFT, the complexity of this
product decrease from O(n2) to O(n log2(n)) [9].

Proposition 2. The eigenvalues vector λ of a circulant matrix C of level k and
type (m,n,o,...,r) can be computed with the following matrix-vector product:

λ = FC(:, 1)
√

mno...r, (9)

where C(:, 1) means (using Matlab notation) we take the first column of C.

Demonstration 2. From theorem 1, it follows that:

C = F ∗diag(λ)F (10)

Multiplying both sides by F , this gives (as FF ∗ = I):

FC = diag(λ)F (11)

If we consider the first column only, this reduces to:

(FC)(:, 1) = (diag(λ)F)(:, 1) = λ ◦ F (:, 1) (12)

From equation 7 and the definition of F , it follows that:

F (:, 1) =
1√

mno...r
(1, 1, 1...1)T (13)

Consequently,

λ = (FC)(:, 1)
√

mno...r = FC(:, 1)
√

mno...r (14)

Improving the Time Complexity of Matsui’s Linear Cryptanalysis 83

Hence, the matrix-vector product ε = Cx is equivalent to ε = F ∗diag(λ)Fx.
The eigenvalues of C can be computed using the formula: λ = FC(:, 1)

√
2k.

Therefore, the matrix-vector product can be computed using the three following
matrix-vector products: y = Fx, z = FC(:, 1)

√
2k and ε = F ∗(z ◦ y) (where ◦

is the Hadamard product). As each of these three products involves the matrix
F , the complete computation can be made by applying only three k-dimension
FFTs of size 2k, leading to a complexity of 3 ·2k · log2(2k) = 3 ·k ·2k. The Matlab
implementation code for this improved strategy is given below (see Algorithm
1). As a typical numerical example, for a 220 ∗ 220 matrix C, the matrix-vector
product is computed in less than 5 seconds on a Pentium D 3.20GHz.

Algorithme 1. Matlab code
1 function b=product(C,x)

2
3 % compute the product Cx by the mean of the fft

4 % C is a level k circulant matrix of type (2,2,2,...,2).

5 % C is completely specified by its first column

6 % x is an unspecified vector

7
8 k= log2(size(C,1));

9
10 % compute F*x:

11 x= reshape(x,2*ones(k));

12 prod1= fftn(x);

13 prod1= reshape(prod1,2^k,1);

14
15 % compute the eigenvalues of C

16 c= reshape(C(:,1), 2*ones(k));

17 eig= fftn(c);

18 eig= reshape(eig,2^k,1);

19
20 % compute eig*F*x

21 prod2= eig.*prod1;

22
23 % compute b=F’*eig*F*x

24 b= reshape(prod2,2*ones(k));

25 b= ifftn(b);

26 b= reshape(b,2^k,1);

27
28 return b;

3.4 Implication for Multiple Linear Approximations

In context of multiple linear approximations (cfr. [11], [7]), more speed-up may
be achievable. Every input mask defines its own vector of counter x, while every
output mask defines a different matrix C. Consequently, the use of multiple

84 B. Collard, F.-X. Standaert, and J.-J. Quisquater

approximations with the same active S-boxes but different input masks (as it is
usually the case) requires to compute the eigenvalues only once, as the matrix
C remains the same. Thus, the time complexity of linear cryptanalysis with n
approximations is reduced to the computation of 2n+1 FFTs instead of 3n FFTs.
This involves an additional reduction of up to 33% for the time complexity.

3.5 Extension to Key Additions Modulo 2k

In certain ciphers, the mixing with the key material is done using a modular
addition instead of a XOR with the subkey (practical examples include [12],
[13]). A similar approach as in the previous sections can be applied to reduce
the time complexity of such systems.

Definition 4 (left-circulant). A matrix is left-circulant iff each row (column)
vector is left-rotated by one element relative to the preceding row (column) vector.

Proposition 3. Let Cleft(i, j) = f(i + j mod 2k) (0 ≤ i,
j ≤ 2k − 1), then Cleft is left-circulant.

Demonstration 3. For every λ, Cleft(a+λ, b−λ) = f(a+λ+b−λ mod 2k) =
f(a + b mod 2k). Thus, all the element in the same increasing diagonal of the
matrix are equal. Moreover, the value in a diagonal is repeated every 2k diagonal
due to the mod 2k, and so the matrix is left-circulant.

We can easily convert a left-circulant matrix Cleft to a circulant matrix C with
the same first row thanks to a particular matrix of permutation Γ :

Cleft = ΓC, (15)

where:

Γ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0 0
0 0 0 . . . 0 1
0 0 0 . . . 1 0
...

...
...

...
...

0 1 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

This requires the application of 2k row permutations and it is useful for the
following result that we require in our investigations (see [10] pp.72-73):

Theorem 2. A circulant C is diagonalizable by the Fourier matrix F of size 2k:

C = F ∗diag(λ)F , (16)

where λ is the vector of eigenvalues of C.

Again, we can easily compute the matrix-vector product between C and x using
3 (one-dimensional) FFTs. The algorithm is roughly the same as described above,

Improving the Time Complexity of Matsui’s Linear Cryptanalysis 85

except that the multi-dimensional FFTs are replaced by one-dimensional FFTs
and that we must perform a last permutation Γ in the end (in order to switch
from a right- to a left-circulant matrix). Finally, for a matrix Cleft−toeplitz :

Cleft−toeplitz(i, j) = f(i + j mod 2m); (0 ≤ i, j ≤ 2k − 1), m
= k, (17)

with the left-Toeplitz structure, it can be shown that the matrix-vector product
can be computed by embedding the 2k ∗ 2k matrix in a 2k+1 ∗ 2k+1 matrix with
left-circulant structure, leading to a complexity of O(2 ∗ (k + 1) ∗ 2k).

4 Practical Improvements

The improved algorithms described above can be straightforwardly applied to
improve previous cryptanalytic results. For illustration purposes, we applied
them to the AES candidate Serpent [5]. Using the FFT to compute the linear
approximation biases for the subkey candidates allows speeding-up the attack of
Biham et al. as summarized in Table 1. In Table 2, we additionally report on the
improved linear and multiple linear cryptanalysis of Serpent, described in [8].

Table 1. Previous and improved attacks on Reduced-rounds Serpent

Rounds Type of attack complexity
data time memory

10 Lin.Cryptanalysis[6] 2118KP 288 → 251 244

Lin.Cryptanalysis[6] 2116KP 296 → 255.2 248

Lin.Cryptanalysis[6] 2106KP 2184 → 2100.1 292

11 Lin.Cryptanalysis[6] 2118KP 2214 → 2148.7 288 → 2140

KP - Known Plaintexts
Complexity is measured in number of arithmetic operation.
Memory is mesured in Bytes.

We note that, as previously mentioned, certain improvements are particularly
relevant with respect to the experimental testing of the attacks. For example,
targeting 7 rounds of Serpent with a multiple linear cryptanalysis attack appears
as a reasonable target thanks to time complexity reduction. Using dedicated
hardware like Copacobana [14], it could even be possible to attack up to 8-round
Serpent. The reduced time complexity also allows considering the exploitation
of better biased linear approximations with larger key guesses and therefore to
reduce the data complexity of the best reported attacks. For example, Table 1
includes the scenario described in the introduction of this paper: moving from a
time complexity of 2184 to a time complexity of 2100 allows to reduce the attack
data complexity from 2118 to 2106. This example clearly emphasizes the practical
impact of our result on the overall complexity of linear cryptanalysis attacks.

Additionally to the results presented in [8], Table 2 includes an attack against
11-round Serpent. We use a 9-round linear approximation starting and ending

86 B. Collard, F.-X. Standaert, and J.-J. Quisquater

Table 2. Additional improved attacks on Reduced-rounds Serpent (see [8])

Rounds Type of attack complexity
data time memory

7 Lin.cryptanalysis 252KP 240 → 225.9 220

Mult.Lin.Cryptanalysis(8 appr.) 247KP 243 → 228.4 223

8 Lin.cryptanalysis 262KP 256 → 234.4 228

Mult.Lin.Cryptanalysis(8 appr.) 257KP 259 → 236.9 231

Mult.Lin.Cryptanalysis(104 appr.) 255KP 262.7 → 240.5 234.7

9 Lin.cryptanalysis 280KP 288 → 251 244

Mult.Lin.Cryptanalysis(128 appr.) 271KP 295 → 257.5 251

Mult.Lin.Cryptanalysis(3712 appr.) 268KP 299.9 → 262.3 255.9

10 Lin.cryptanalysis (ε = 2−55) 2112KP 288 → 251 244

Mult.Lin.Cryptanalysis(2048 appr.) 299KP 299 → 261.5 255

Lin.cryptanalysis (ε = 2−59) 2120KP 264 → 238.6 232

Mult.Lin.Cryptanalysis(2048 appr.) 2107KP 275 → 249 243

11 Lin.cryptanalysis (ε = 2−58) 2118KP 2178 → 2116.3 2108

with S-box 9. This approximation was generated similarly to the ones presented
in [8]. It has a bias of 2−58 and a total of 27 active S-boxes (15 in the first
round and 12 in the last round). The attack follows the same principle as the
ones presented so far, except that we must also perform a partial encryption in
the beginning of the cipher. We first define an array x of 2108 counters in the
following way: for each plaintext-ciphertext pair, we extract the 108-bit value
corresponding to the active S-boxes and we increment the corresponding counter.
Then we define a matrix C of size 2108 ∗ 2108 as:

C(i, j) = parity(S(i1:60 ⊕ j1:60)||S−1(i61:108 ⊕ j61:108)) (18)

That is to say, C(i, j) is the parity of the linear approximation after partial
en/decryption of the 108-bit text i with 108-bit subkey j. As seen previously,
the experimental bias for any keyguess is given by the matrix-vector product
C ·x. Thanks to the level circulant structure of C, the time complexity is equal
to 3 · 108 · 2108 = 2116. Without this trick, the time complexity would have been
288 + 260 · (2118 + 288) = 2178 (see [6] for the details). As a comparison, the
best-reported attack on 11-round Serpent uses a combination of linear and dif-
ferential cryptanalysis techniques [15]. It has a data complexity of 2125.3 choosen
plaintexts, 2139.2 encryptions and 260 bytes of memory.

5 Conclusion and Further Works

In this paper, we presented an improvement of Matsui’s linear cryptanalysis that
reduces the time complexity of an attack using algorithm 2 from O(2k ∗ 2k) to
O(k ∗ 2k) partial decryptions, where k is the number of bits in the keyguess.
Moreover, in the case of multiple linear cryptanalysis, additional speed-ups can
be reached. This improvement is very generic and can be applied against a

Improving the Time Complexity of Matsui’s Linear Cryptanalysis 87

broad variety of ciphers including SPN and Feistel schemes. For illustration
purposes, we applied the method to the block cipher Serpent and exhibited the
reduced complexities of some (state-of-the-art) exemplary attacks. As a scope
for further research, the exploitation of the improved time complexity of attacks
using multiple linear approximations should allow performing actual experiments
and therefore evaluate the validity of certain assumptions detailed in [7].

Acknowledgements

The authors thank Pr. Paul Van Dooren from UCL\INMA for his helpful advices.
We also thank anonymous reviewers from SAC and ICISC for their comments.

References

1. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

2. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994)

3. Chose, P., Joux, A., Mitton, M.: Fast Correlation Attacks: An Algorithmic Point of
View. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221.
Springer, Heidelberg (2002)

4. Lu, Y., Meier, W., Vaudenay, S.: The Conditional Correlation Attack: A Practi-
cal Attack on Bluetooth Encryption. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 97–117. Springer, Heidelberg (2005)

5. Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced En-
cryption Standard. In: The proceedings of the First Advanced Encryption Standard
(AES) Conference, Ventura, CA (1998)

6. Biham, E., Dunkelman, O., Keller, N.: Linear Cryptanalysis of Reduced Round
Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer,
Heidelberg (2002)

7. Biryukov, A., De Cannière, C., Quisquater, M.: On Multiple Linear Approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004)

8. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and Multiple Linear
Cryptanalysis of Reduced Round Serpent. In: The proceedings of InsCrypt (to
appear, 2007)

9. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19, 297–301 (1965)

10. Davis, P.J.: Circulant Matrices, pp. 176–191. Wiley-Interscience, Chichester (1979)
11. Kaliski, B.S., Robshaw, M.J.B.: Linear Cryptanalysis using Multiple Approxima-

tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer,
Heidelberg (1994)

12. Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer,
Heidelberg (1991)

88 B. Collard, F.-X. Standaert, and J.-J. Quisquater

13. Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

14. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ciphers with
COPACOBANA - A Cost-Optimized Parallel Code Breaker. In: Goubin, L., Mat-
sui, M. (eds.) CHES 2006. LNCS, vol. 4249, Springer, Heidelberg (2006)

15. Biham, E., Dunkelman, O., Keller, N.: Differential-linear Cryptanalysis of Serpent.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg
(2003)

On Large Distributions for Linear Cryptanalysis

Alexander Maximov

LACS, University of Luxembourg
L-2311 Avenue Pasteur, 102a, Luxembourg

movax@mail.ru

Abstract. Calculating the distribution of certain functions during the
linear cryptanalysis of stream ciphers is a frequently encountered prob-
lem. Let a function N (or a noise variable) be expressed via k mu-
tually independent and uniformly distributed n-bit random variables
X1, X2, . . . , Xk. The possibility to construct its distribution depends on
the form of the expression N , and sometimes it becomes a bottleneck of
the cryptanalysis.

In this paper we propose several new techniques to construct such
distributions and widen the class of functions for which its distribution
can efficiently be calculated.

Keywords: Linear cryptanalysis, complexity reduction, approximations,
large distributions, pseudo-linear functions.

1 Introduction

Linear cryptanalysis is an important type of analysis of cryptographic primi-
tives. It is, for example, the best known attack on DES [1,2]. Many recently
proposed stream ciphers, such as Scream [3], SNOW 2.0 [4], A5/1 [5], E0 [6],
RC4 [7], SOBER t16/t32 [8,9], and others, are shown to be weak agains linear
cryptanalysis [10,11,12,13,14,15,16]. In this kind of analysis, nonlinear blocks
are substituted by a linear transformation. Due to such an approximation a new
variable, called noise variable, is added to the result of the linear transforma-
tion. When the cipher becomes linear, a certain equation connecting words of the
plaintext, the ciphertext and the secret key 1 can be derived. These equations
are usually time invariant, one side of which is a known value – a sample value
Zt at time t, and on the other side of the equation is a linear combination N
of noise variables. This allows to collect samples Zt, the distribution of which
converges to the distribution of N . A sufficient number of samples can allow to
recover the complete or a part of the secret key.

The efficiency of such attacks usually depends on the possibility to construct
the distribution of the noise. This particular problem often becomes a bottleneck
in various linear cryptanalyses, since the construction of the distribution for a
complex function can be computationally infeasible for nowadays resources. To
1 In stream ciphers it is assumed that the keystream is available, which is usually a

word based addition of the plaintext and the ciphertext.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 89–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

90 A. Maximov

be more specific, assume that the operation X�αY is replaced by X⊕Y , where �
is the addition modulo 2n and α is some element of the field F2n . The effectiveness
of the approximation is given by the probability Pr{(X � αY)⊕ (X ⊕ Y) = γ}.
However, its distribution is hard to compute. When n = 32, a straightforward
solution requires 264 of operations, whereas the algorithm proposed in this paper
needs only 237 of time.

Similar problems were studied in several previous papers, see, e.g. [17,18,19,20].
A recent paper [21], however, introduces the most general class called pseudo
linear functions (PLFs), for which their distributions can be calculated. These
functions are useful not only for calculating the bias, but also for calculating cor-
relations, differences, collisions, and other important pieces during cryptanalysis.
However, PLFs do not cover all cases that one can meet in cryptanalysis, and this
motivates us to search new supplementary solutions and techniques to widen this
class of functions and to make a more complicated cryptanalysis possible.

Let X1, X2, . . . , Xk be k n-bit mutually independent and uniformly distributed
random variables, and N be a function on them. In this paper we propose a set
of algorithms that widen the class of PLFs and allow to deal with much more
complicated noise functions in order to improve various results in cryptanaly-
sis. We also discuss several aspects in relation to binary and multidimentional
cryptanalysis. We show that an n bits analysis is always more powerful than a
binary analysis. However, when n is large its reduction can in principal be done
in two ways. In the first solution one can consider a truncated version of the noise
variable L ·N , where L is some masking matrix. Another solution is combining
binary approximations and consider them jointly. Assiciated with each of these
solutions we give complexities and computation techniques to deal with these
cases.

This paper is organized as follows. The paper starts with preliminaries and
basic definitions in Section 1.1. The relations between a binary and a multidi-
mensional approximations are discussed in Section 2. The new algorithms are
given in Section 3. Finally, we conclude in Section 4.

1.1 Notation and Preliminaries

Let an n bit random variable be denoted by a capital letter X , and its prob-
ability space by X . Binary representation of an n bit integer number X is
xn−1, . . . , x1, x0. An integer X [a : b] is xb, . . . , xa+1, xa. By PX and Pf(X) the
distribution tables of X and a function f(X) are denoted, respectively. The
probability Pr{X = x} will also be referred as PX(x), for simplicity. The bias of
PX is defined as

ε = bias(PX) =
∑

x∈X

∣
∣
∣
∣PX(x) − 1

|X |
∣
∣
∣
∣ , (1)

whose range is 0 ≤ ε ≤ 2. For a binary random variable X we have PX(0) =
1
2 (1− ε) and PX(1) = 1

2 (1 + ε) (or vice versa). The uniform distribution is when
ε = 0.

On Large Distributions for Linear Cryptanalysis 91

Bitwise XOR and arithmetical addition modulo 2n are denoted by ⊕ and
�, respectively. Binary operators applied to two vectors A and B will usually
mean component-wise procedure, whereas < A, B > is a scalar product of two
vectors, or two numbers in their binary representation. The n bit Fast Hadamard
Transform of a vector X = (x0, x1, . . . , x2n−1) at a point w is

FHTn(X)w =
2n−1∑

i=0

xi · (−1)<i,w>, ∀w ∈ Z2n , (2)

and its inverse is FHTn(X)−1
w = 2−n · FHTn(X)w. We will also refer to the

class of pseudo-linear functions (PLF) introduced in [21]. These are functions
of a particular form for which there exist efficient algorithms to calculate their
distributions. In brief, in PLFs the operations �, �, all Boolean operations,
constants and brackets are allowed.

2 Binary vs. Multidimensional Approximations

A binary approximation is a common approximation in the linear cryptanalysis.
Usually one has to find such a relation between bits of the keystream that their
sum would have maximum bias. The bias can be even larger if one consider two
or more binary approximations jointly.

Nowadays, most of designs are word (n-bit) oriented, and the search of a
linear relation ends up with a relation in words over some field. Let us have such
a linear expression which allows to sample from the keystream. These samples
will follow the distribution that is also called a noise distribution PN , where N
is now a random noise variable. Usually, the expression for the noise N is an n-
bit function on k n-bit mutually independent and uniformly distributed random
variables. When one searches for a binary relation, in many cases it means that
the samples are taken from the binary noise variable L1 ·N , where L1 is a mask,
a non-zero vector of n bits that determines a certain binary approximation.

2.1 Relation Between Approximations

Instead of observing one bit of information from the keystream one could consider
a multiple-bits approximation L1 ·N , where L1 is a collection of l1 orthogonal
binary approximations. The matrix L1 is of size l1 × n, and it must be of full
rank, i.e., there is no row that is linearly expressed via the other ones. Let us
have another multiple-bits approximation matrix L2 that is orthogonal to L1.

Lemma 1. Let L1 and L2 be l1 and l2 -bits approximations, orthogonal to each
other, and their corresponding noise distributions are PL1·N and PL2·N , respec-
tively. The bias of the joint approximation (L1 L2) is at least max{ε1, ε2}, where
ε1 = bias(PL1·N) and ε2 = bias(PL2·N).

92 A. Maximov

Proof. Let N ′1 = L1 ·N , N ′2 = L2 · N , and N ′ = (N ′1 N ′2) be the notation for
the three noise random variables, then we have

ε = bias(PN ′) =
∑

x1∈Z
l1
2

∑

x2∈Z
l2
2

∣
∣
∣
∣Pr{N ′ = (x1, x2)} − 1

2l1+l2

∣
∣
∣
∣

≥
∑

x1∈Z
l1
2

∣
∣
∣
∣
∣
∣
∣

∑

x2∈Z
l2
2

(

Pr{N ′1 = x1} · Pr{N ′2 = x2|N ′1 = x1} − 1
2l1+l2

)
∣
∣
∣
∣
∣
∣
∣

=
∑

x1∈Z
l1
2

∣
∣
∣
∣Pr{N ′1 = x1} − 1

2l1

∣
∣
∣
∣ = ε1.

(3)

Similar for ε ≥ ε2, from where the proof follows. ��
The direct consequence of the Lemma is that n-bit analysis of a cipher is never
worse than a reduced case, i.e.,

bias(PL·N) ≤ bias(PN), (4)

for any l-bit (1 ≤ l ≤ n) approximation L.
Assume one makes an approximation of a cipher and a word n bit oriented

expression of the noise is derived. For various cryptanalysis purposes one could
be interested in the bias of the noise, or even its complete distribution. Unfor-
tunately, in many cases these targets are not possible to reach, due to a high
computation complexity. The alternative is to study a truncated version L · N
of the noise variable, where L is some l < n bits approximation.

Lemma 2. The best binary approximation L with the maximum bias of a vari-
able N is the index of the vector FHT(PN), where its absolute value is maximum.

��
The proof of the Lemma follows directly from the definition of FHT. An l bits
approximation L can be constructed as the collection of l separate mutually
orthogonal best binary approximations.

There are algorithms for probing the FHT of a function in certain points. In a
general case, the question which point gives the maximum absolute value is still
an open question. However, for specific cases (for example, when the function is
a PLF), this open question is solvable by using the technique of bitwise analysis.

This was one way of a multidimensional analysis, and another way is when
the structure of the joint distribution has a specific form, and one such form is
studied in the following sub section.

2.2 Multidimensional Noise as a Collection of Binary Noises

Let us have a linear combination L, the way of sampling from the keystream.
These samples are biased and, for example, come from a filter generator, or

On Large Distributions for Linear Cryptanalysis 93

from an NLFSR, or from another structure. In this section we study a multidi-
mensional analysis when two or more consequtive binary samples are considered
jointly.

Let (x1, x2, . . . , x2l−1) be 2l − 1 mutually independent binary variables with
the corresponding biases (ε1, ε2, . . . , ε2l−1), and l noise variables were constructed
as follows.

ni =
⊕

∀k:k[i:i]=1

xk, ∀i = 0, 1, . . . , l − 1. (5)

We are interested to construct the distribution of the following l-bit noise variable
N = (n0, . . . , nl−1).

l

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n0 = x1⊕ x3⊕ x5⊕ x7⊕ . . .
n1 = x2⊕ x3⊕ x6⊕ x7⊕ . . .
n2 = x4⊕ x5⊕ x6⊕ x7⊕ . . .
n3 = x8⊕ . . .
...

(6)

The distribution of such a variable can be constructed via a set of convolutions
in time O(l22l). However, for large l the computation could be time consuming.
We propose a more efficient way that has the complexity O(l2l), and the following
theorem can be stated.

Theorem 1. Let n1, . . . , nl be l binary approximations related via 2l−1 mutually
independent random variables x1, . . . , x2l−1 as given in (5), whose individual
biases are ε1, ε2, The joint distribution PN of the l-bit noise variable N =
(n1, . . . , nl) is

PN = FHT−1

[√

exp
(∑

E − FHT(E)
)
]

, (7)

where the vector E is

E = (0, log ε1, log ε2, . . . , log ε2l−1). (8)

The operations exp,
√· over the vector are performed component-wise, and

∑
E

is the sum of the components of the vector E.

Proof. In fact, FHT(PN)t =
∏2l−1

i=1 ε<i,t>
i , where < i, t > is a bitwise scalar

product of two integers. Therefore,

logFHT(PN)t =
2l−1∑

i=1

log εi· < i, t >=
2l−1∑

i=1

log εi · 12
(
1− (−1)

∑ l−1
q=0 i[q:q]·t[q:q]

)

=
1
2

⎛

⎝
2l−1∑

i=1

log εi −
2l−1∑

i=1

log εi · (−1)
∑ l−1

q=0 i[q:q]·t[q:q]

⎞

⎠ =
1
2

(∑
E − FHT(E)

)
,

(9)

from where the proof follows. ��

94 A. Maximov

The application of the Theorem above can be demonstrated by the following
example.

Example 1. Let the samples from the keystream be collected such that the noise
variable nt at any time t is

nt = zt + zt+1 + zt+5 + zt+6 + zt+7. (10)

Let also the bias of a single term be bias(zt) = 0.5, i.e., this is the bias of a single
AND(x, y) term. The total bias of each nt is 2−5. Let us consider (nt, nt+1, nt+2)
jointly. Then we have

Shares x0 x1 x2 x3 x4 x5 x6 x7

Expression . zt + zt+5 . zt+1 + zt+6 zt+3 + zt+9 . zt+2 + zt+8 zt

log2 E = 0 −2 0 −2 −2 0 −2 −1
(11)

Application of Theorem 1 allows to construct PN , the bias of which appears to
be 2−3.9956, which is larger than in the case of a binary approximation. ��

3 New Techniques to Compute Large Distributions

Let some (perhaps, a noise) function F be a function on k n-bit mutually inde-
pendent and uniformly distributed variables X1, X2, . . . , Xk. In this section we
present several new techniques for calculating large distributions for a wide class
of functions.

3.1 Splitting into Sub Distributions Through Events

Assume the function F is not a PLF, and it is not obvious how to compute its
distribution. For example, consider the function F = (X1 � π(X2)) ⊕X1 ⊕X2,
where X1 and X2 are two n-bit inputs, and π is a bits permutation matrix of size
n× n. If n is large (say, n = 32), the distribution of PF cannot be computed in
a classical way (it would require 264 operations), and one needs to apply specific
technique. Below we propose a general technique for solving this and many other
similar bottlenecks in linear cryptanalysis.

Method of Events. In the method of events the input space is to be separated
into smaller mutually independent subspaces. The function F can, therefore, be
evaluated in a separate way, one-by-one applied to the separate parts of the input
space. Although the arguments themselves can be split into the subspaces, the
evaluation of the function F will likely to have internal intermediate connections
between these subspaces, and these sorts of relations can be expressed in terms
of events. For example, when we perform arithmetical summation A�B, typical
events are carry bit values that connect neighbouring bits.

Let us split n bits of the input variables X1, . . . , Xk into b blocks of the
corresponding sizes n1, n2, . . . , nb, as shown in Figure 1. The application of the

On Large Distributions for Linear Cryptanalysis 95

...

E1

E2

Eb

Eb

Eb−1

X1 X2 Xk

F1 : {0, 1}n1 × |Eb| → {0, 1}n × |E1|

F2 : {0, 1}n2 × |E1| → {0, 1}n × |E2|

Fb : {0, 1}nb × |Eb−1| → {0, 1}n × |Eb|

...
...

...

⎫
⎬

⎭
n1

}

n2

⎫
⎪⎪⎬

⎪⎪⎭
nb

B1

B2

Bb

Events

Fig. 1. Illustration to the method of events

function F to some ith block will, in general, produce an intermediate n-bit
result, and some event from the ith set Ei can happen, which is the influence of
this ith block to the next one(s). From another hand, the evaluation of the ith

block itself also depends on the event which might happen during the evaluation
of the previous block(s) (usually it is the (i − 1)th block)2. In a deterministic
system the size of each event space |Ei| is finite. Therefore, every ith block can
be described as a function Fi, which has an input event, an output event, and k
input ni-bit variables, as follows.

Fi : {0, 1}ni × |Ei−1| → {0, 1}n × |Ei|. (12)

Splitting the evaluation of the function F into b sub functions, as well as the
choice of events, additionally depends on the choice of a linking linear function
operation. It can be either over ⊕, or �. The calculation of the complete distri-
bution PF is combined in accordance. For example, when the linking operator
is ⊕ the total distribution of the function F is calculated via PFis as

PF =
∑

⎧
⎪⎨

⎪⎩

e1 ∈ E1

. . .

eb ∈ Eb

b⊕

i=1

PFi|(ei−1,ei),
(13)

where PFi|(ei−1,ei) is an n-bit distribution of the function Fi conditioned on the
input event ei−1 and the output event ei. The operator ⊕ over the distribution
2 Here and later, for simplicity, the indices of the blocks 1, 2, . . . , b will be considered

in a ring, i.e., the j = (i − 1)th block for i = 1 is actually j = b.

96 A. Maximov

tables means a convolution of b selected subdistributions, and it can be done via
FHT for the time O(bn2n) (see [21]). The

∑
is a usual arithmetical point-to-

point sum of the resulting distribution tables. At the end of the calculations, the
distribution of the function F is received.

An important note is that the distributions PFi should be not normalized, i.e.,
the sum of the probabilities must be such that

∑

x∈X
PFi|(ei−1,ei)(x) =

of combinations in Bi s.t. ei happens
2kn

, (14)

which means that the sum of the probabilities of this not normalized distribution
PFi is 2(ni−n)k, instead of 1.

Complexity. The technique described above requires time

O(bn2n ·
b∏

i=1

|Ei|+ C ·
b∑

i=1

|Ei−1|), (15)

where C is the average time required to construct one sub distribution PFi .
The first sum of the complexity includes b fast Hadamard transforms and their
combining procedure, and the second sum is the construction time of all sub
distributions.

The trivial way to construct one sub distribution PFi|(ei−1,ei) is to try all
possible combinations of the input variables in the block Bi, and check that the
condition ei is satisfied. This would take time O(2kni). For the same time a class
of sub distributions {ei ∈ Ei : PFi|(ei−1,ei)} can be constructed. However, in
some cases it can be done faster, if there are certain properties of the function
F that can be used. This may evidently reduce the coefficient C. Unfortunately,
another coefficient

∏b
i=1 |Ei| can be large, making the overall time complexity

high. This problem can be overcomed by the method of gluing of the events,
which will be introduced in the next sub section.

Applicability. So far we have not yet discussed any possible way of a proper
separation of the computations. We have to admit that this is a challenge, and
no rules can be given. However, later we will give an example of this technique
showing how in principal it can be done.

3.2 Time Complexity Reduction: Method of Gluing of the Events

Method of Gluing. In general, we have a set of input blocks B1, . . . , Bb,
and a set of events E1, . . . , Ee. In brief, the method of events is a “divide-and-
conquer” technique where one first computes sub distributions separately, and
then combine them in a special way, via the events. The relation between Bs and
Es can in general be represented as a connection graph. The blocks Bs represent
vertices in the graph. Two vertices Bi and Bj are connected by a directed edge
Ek, if Ek is the outcome event for Bi, and an income event for Bj . As an example,

On Large Distributions for Linear Cryptanalysis 97

in the previous subsection the blocks B1, . . . , Bb were connected via the events
E1, . . . , Eb, and the corresponding connection graph is shown in Figure 2a.

The combining process given in (13) requires to test the complete cartesian
product of the events |E1× . . .×Eb|, and it can be time consuming. The trick of
the reduction of this complexity is in “gluing” the neighbouring blocks together
one by one. For example, “gluing” of B1 and B2 into B1−2 can be done as follows.

1. for all eb ∈ Eb and e2 ∈ E2

2. PF1−2|(eb,e2) =
∑

e1∈E1
PF1|(eb,e1) ⊕ PF2|(e1,e2)

Complexity. The time complexity of one gluing is O(C · |Eb||E1||E2| ·n2n). Ap-
plying this principle to the equation (13) one-by-one, as shown in Figure 2, the re-
duction of the time complexity can be significant. The coefficient O(

∏b
i=1 |Ei|) is

now decreased till O(|Eb|
∑b−1

i=1 |Ei||Ei+1|), and the overall complexity is
reduced to

O

(

bn2n|Eb|
b−1∑

i=1

|Ei||Ei+1|+ C ·
b∑

i=1

|Ei−1|
)

. (16)

(a) (b) (c)

B1

B2 B3

B3

BbBbBb

B1−2 B1−3
E1 E2

E2

E3

E3

E3

EbEbEb

Eb−1Eb−1Eb−1
. . .

. . .
. . .

Fig. 2. Gluing method for a simple connection graph of the events

Complicated Cases. Presented techniques are not limited to a simple chain
of blocks connected by events as shown in Figure 2. The connection graph can
in general have a complicated case, such as in Figure 3. In the graph there are
two cliques of sizes 2 and 3. Any merging of blocks in the same clique of size q
would require to consider at least q events as a cartesian product. For example,
merging B4 and B5 into B4−5 would require to consider all input and output
events connected to the vertices B4 and B5, which are E3, E4, E5. In another
order of gluing, for example, starting with B3 and B5, an additional event E1

is required to be considered, and the time complexity would increase. To find
an optimal order to merge the blocks one can use standard algorithms from
computer science.

Let us consider one example from linear cryptanalysis, in order to demonstrate
the details of the new technique.

98 A. Maximov

B1

B2

B3

B3

B4

B5

B1−2

B4−5

E1

E1

E1E2

E3

E3

E4

E4

E5
E5

E5

Fig. 3. A more complicated case

Example 2 (Method of Events). Let n = 32, k = 3, and the function (noise
variable) N is the following, taken from the real cryptanalysis practice.

N = (A � B � C)⊕A⊕MαB ⊕ S(C), (17)

where Mα is a matrix representing multiplication by α in a field F232 , and S(X)
is an S-box: F

4
28 → F

4
28 , defined as

S(X) = SR(X [31..24]) || SR(X [23..16]) || SR(X [15..8]) || SR(X [7..0]),

where SR(·) is the Rijndael bytewise S-box. We are interested in the distribution
PN of the noise variable.

The solution can be done in the following way. One convenient division of
the 32 bits into separate blocks is the bytewise division. Let us for simplicity
represent the 32-bit word A in a bytewise form as A = (a0, a1, a2, a3), and
similar for B and C. The function N can be rewritten as

N =

⎛

⎜
⎜
⎝

a0

a1

a2

a3

�

b0

b1

b2

b3

�

c0

c1

c2

c3

⎞

⎟
⎟
⎠

︸ ︷︷ ︸

a0 � b0 � c0

a1 � b1 � c1

a2 � b2 � c2

a3 � b3 � c3

← E1

← E2

← E3

⊕
a0

a1

a2

a3

⊕Mα ·

⎛

⎜
⎜
⎝

b0

0
0
0

⊕
0
b1

0
0

⊕
0
0
b2

0

⊕
0
0
0
b3

⎞

⎟
⎟
⎠⊕

SR(c0)
SR(c1)
SR(c2)
SR(c3)

(18)

Three events E1, E2, E3 are the carry values due to the arithmetical addition
of the arguments. Since the carry value can be one of {0, 1, 2}, the size of each
event space is 3. The nonlinear function of N can now be separated into the sum
(XOR) of four independent sub functions N = N0 ⊕ N1 ⊕ N2 ⊕ N3, which are
connected together via the events.

On Large Distributions for Linear Cryptanalysis 99

The construction of one sub distribution PNi , i = 0, 1, 2, 3, takes 224 of time,
and the total time to construct all sub distributions is 10 · 224. One convolution
requires 237 of time. If the gluing technique is used, then the number of convolu-
tions needed to be done is 7 (to create B0−1 and B2−3 requires 3 convolutions for
each operation, plus one for the final convolution). Thus, the total time complex-
ity to construct this distribution of the noise variable is 10 · 224 + 7 · 237 ≈ 239.8.

��
The example above demonstrates how the new technique can be applied in linear
cryptanalysis to receive the distribution of the noise in a feasible time. Note that
in the classical way of the calculations would require time 296.

3.3 Supplementary Techniques: Substitution and Prediction

In this section two additional minor techniques are given in brief. The expression
of the function F can be simplified via the substitution and prediction techniques.
In some cases it could also convert an unsolvable problem to a solvable one.

The first idea is that a random variable Xi can be substituted by another
random variable Yi = μi(Xi), where μi is any one-to-one mapping function
μi : X → X . Since Xi is uniformly distributed, the new variable Yi is uniformly
distributed as well. Therefore, such a substitution does not harm the final dis-
tribution of the function PF , rather the form of the function can be changed
significantly.

The second idea is that a similar substitution can be applied to the whole
expression F . Instead of searching for PF one could search for Pμ(F) for some
mapping μ. The biases of PF and Pμ(F) are the same, since μ is just a permuta-
tion of the distribution table PF .

As an example, consider the following expression of the noise variable

N = β(X � αY)⊕X ⊕ Y ∈ F232 , (19)

where α, β are elements of some finite field F232 . The distribution of N is not
possible to calculate in this form. However, if we make a substitution Y = α−1Z
and multiply everything by β−1, the situation is much better:

β−1N = (X � Z)⊕ β−1X ⊕ (βα)−1Z. (20)

For this type of expression its distribution can be calculated by the method of
events.

The third idea is that an operation over two random variables of sizes n1 and
n2 (let n1 ≤ n2) bits requires time around O(f(n2)), where f is some complexity
function. The technique of prediction is possible when n2 − n1 bits of the result
can be predicted in advance. For example, if X = (x 0) and Y = (y1 y2)
are (2n)-bit variables, their convolution can efficiently be done in time O(n2n),
instead of O(2n22n). This reduction of the complexity is possible since the half
of the bits of the result can be predicted.

100 A. Maximov

4 Conclusions

In this paper we have shown an advantage of a multidimensional analysis against
binary analysis, and several new techniques to calculate distribution of various
complicated functions were presented. We have applied these algorithms to at-
tack on SNOW 2.0. [4]. These new techniques allowed us to compute the complete
distribution of the noise variable (see Example 1) in a week on the usual PC with
the processor Intel Core2 6700 at 2.66GHz with 4Gb of memory and 400Gb of
HDD. The resulting bias appeared to be around 2−85, which is the best known
result so far. We skip the details since it does not differ very significantly from
the previously best known bias. In fact, these techniques can be very useful in
other further cryptanalysis as well.

References

1. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in
C, 2nd edn. John Wiley&Sons, New York (1996)

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

3. Halevi, S., Coppersmith, D., Jutla, C.S.: Scream: A software-efficient stream ci-
pher. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 195–209.
Springer, Heidelberg (2002)

4. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Heidelberg
(2003)

5. Briceno, M., Goldberg, I., Wagner, D.: A pedagogical implementation of A5/1
(1999) (accessed August 18, 2003), available at http://jya.com/a51-pi.htm

6. SIG Bluetooth. Bluetooth specification (2003) (accessed August 18, 2003), available
at http://www.bluetooth.com

7. Smart, N.: Cryptography: An Introduction. McGraw-Hill, New York (2003)
8. Hawkes, P., Rose, G.G.: Primitive specification and supporting documentation for

SOBER-t16 submission to NESSIE. In: Proceedings of First Open NESSIE Work-
shop (2000) (accessed October 5, 2003) available at http://www.cryptonessie.org

9. Hawkes, P., Rose, G.G.: Primitive specification and supporting documentation for
SOBER-t32 submission to NESSIE. In: Proceedings of First Open NESSIE Work-
shop (2000) (accessed October 5, 2003) available at http://www.cryptonessie.org

10. Watanabe, D., Biryukov, A., De Canniere, C.: A distinguishing attack of SNOW
2.0 with linear masking method. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003.
LNCS, vol. 3006, pp. 222–233. Springer, Heidelberg (2004)

11. Johansson, T., Maximov, A.: A linear distinguishing attack on Scream. In: Infor-
mation Symposium in Information Theory—ISIT 2003, p. 164. IEEE Computer
Society Press, Los Alamitos (2003)

12. Biham, E., Dunkelman, O.: Cryptanalysis of the A5/1 GSM stream cipher. In: Roy,
B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 43–51. Springer,
Heidelberg (2000)

13. Maximov, A., Johansson, T., Babbage, S.: An improved correlation attack on A5/1.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 1–18.
Springer, Heidelberg (2004)

On Large Distributions for Linear Cryptanalysis 101

14. Fluhrer, S.R., McGrew, D.A.: Statistical analysis of the alleged RC4 keystream
generator. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 19–30. Springer,
Heidelberg (2001)

15. Lu, Y., Vaudenay, S.: Cryptanalysis of bluetooth keystream generator two-level
e0. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, Springer, Heidelberg
(2004)

16. Ekdahl, P., Johansson, T.: Distinguishing attacks on SOBER-t16 and SOBER-
t32. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 210–224.
Springer, Heidelberg (2002)

17. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of
addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)

18. Lipmaa, H., Wallén, J., Dumas, P.: On the additive differential probability of
exclusive-or. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 317–331.
Springer, Heidelberg (2004)

19. Maximov, A.: On linear approximation of modulo sum. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 483–484. Springer, Heidelberg (2004)

20. Lipmaa, H.: On differential properties of pseudo-Hadamard transform and related
mappings. In: Menezes, A.J., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551,
pp. 48–61. Springer, Heidelberg (2002)

21. Maximov, A., Johansson, T.: Fast computation of large distributions and its cryp-
tographic applications. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
313–332. Springer, Heidelberg (2005)

Passive Attacks on a Class of Authentication

Protocols for RFID

Basel Alomair, Loukas Lazos, and Radha Poovendran

Network Security Lab.
Electrical Engineering Department

University of Washington
{alomair,llazos,rp3}@u.washington.edu

Abstract. Mutual authentication mechanisms can be used in RFID sys-
tems to preserve the confidentiality of the RFID tags. Hiding the unique
IDs of the tags is critical to prevent unauthorized tag tracking. In this
paper, we analyze two mutual authentication protocols called M2AP and
EMAP, recently proposed by Peris-Lopez et. al. We show that a passive
adversary eavesdropping on the open wireless medium, can extract the
unique ID of the RFID tag by collecting an expected O(log2 L) challenge-
response exchange messages between the tag and the reader, where L is
the length of the tag’s unique ID. To date, previously known attacks on
M2AP and EMAP require the active probing of each tag. Furthermore,
attacks on M2AP require O(L) active queries to be sent to the tag by a
rogue reader, as opposed to O(log2 L).

Keywords: RFID, authentication, privacy, passive attack.

1 Introduction

Radio Frequency Identification (RFID) systems enable the unique identification
of an item with an embedded RFID tag. Making use of radio frequency based
technology, RFID tags can be scanned in a non-line-of-sight manner and can be
batch processed [19]. Hence, RFID systems facilitate a variety of applications
such as, supply chain management, inventory tracking, building access control,
and smart home appliances.

RFID systems consist of three main components: RFID tags, RFID readers, and
a database. To obtain the ID from an RFID tag, the reader requests for the tag’s
ID. The tag responds with a quantity that can be uniquely associated with its ID.
The reader looks up the tag’s ID in the database to obtain related information
such as a detailed description of the product carrying the RFID tag. Unlike bar
codes, RFID tags are associated with a unique identifier that can be linked to the
individual product, not only to the product type. Since every tag carries a unique
ID, tracking individual tags is feasible via a relatively low-cost RFID reader, thus
compromising the privacy of the tag and eventually of the owner of the product
[16]. As an example, scanning parked cars with an RFID reader can reveal which
one has more valuables inside. Furthermore, an individual can be tracked simply
by tracking the ID of any RFID tag he/she carries.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 102–115, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Passive Attacks on a Class of Authentication Protocols for RFID 103

To prevent tracking of the tag by its unique ID, the tag must respond only
to queries originated by authorized parties (readers). Furthermore, readers must
have a mechanism to verify that any response to their queries comes only from
the valid tags. These properties can be guaranteed if the reader and the tag can
mutually authenticate one another.

While the problem of mutual authentication has well known solutions for com-
putationally capable devices [18], it becomes particularly challenging in RFID
systems due to the stringent hardware constraints of RFID tags. At present, a
typical low-cost RFID tag has few thousands gates, in which only few hundreds
of them can be dedicated to security [12]. Public Key Encryption (PKI) is beyond
the computational power of the RFID tags due to the required exponentiations
[12]. Even the symmetric encryption algorithms, like AES, typically require, on
the order of, 20,000-30,000 gates [12]1, while cryptographic hash functions, such
as SHA-1, are also too costly to be used in low-cost RFID tags [12]. In [1,2],
Peris-Lopez et. al. have recently proposed two extremely lightweight protocols,
called M2AP and EMAP, where tags were assumed to have minimal computa-
tional power able to perform only bitwise XOR (⊕), AND (∧), OR (∨), and
modulo addition operations. The basic idea behind M2AP and EMAP is to use
a temporary index-pseudonym (IDP) to hide the tag ID when communicating
with a reader. The tag responds to the reader queries with an IDP , that can be
linked to the tag’s unique ID only by authorized readers.
Our contributions. In this paper, we analyze two lightweight mutual authen-
tication protocols [1,2], called M2AP and EMAP. We show how an adversary
eavesdropping on the wireless channel can breach the confidentiality of the com-
munication by extracting the tag’s unique ID. Our attack model does not require
the ability to modify the contents of transmitted messages, nor does it require
the ability to actively probe tags; simple bitwise operations are sufficient to ex-
tract the unique ID of the tag. We provide probabilistic analysis of our attacks
on both protocols and show that the problem of extracting the tag’s ID can be
mapped to a set cover problem. Our mapping shows that the number of pro-
tocol runs needed to extract the tag’s unique ID is logarithmic in the length
of the ID. Our attacks are passive and require eavesdropping of only O(log2 L)
protocol runs, as opposed to the active attacks presented in [3,4].

The rest of the paper is organized as follows. In Section 2, we state our assump-
tions. In Section 3, we describe the M2AP and EMAP mutual authentication
protocols. In Section 4, we describe attacks against the M2AP and EMAP, and
provide probabilistic analysis of our passive attacks against them. In Section 5,
we present related work. We present our conclusions Section 6.

2 Adversarial Model

We assume a passive adversary able to eavesdrop on messages exchanged between
legitimate RFID tag-reader pairs. We also assume that the adversary can store
1 In [20], however, Feldhofer et al. described an AES implementations for RFID which

requires about 3600 gates.

104 B. Alomair, L. Lazos, and R. Poovendran

the messages it observes. Although a passive adversary is close to the weakest
adversary one can have, our adversary, however, is a rather weak adversary as
it only requires the ability to perform simple bit-wise operations and modulo
additions. We do not consider an active adversary able to probe tags as in [3,4].

3 Description of the M2AP and EMAP Protocols

3.1 The M2AP Mutual Authentication Protocol

In the M2AP protocol [1], each tag stores three quantities: the tag’s secret unique
ID, an IDP , and a secret key K=K1 ‖ K2 ‖ K3 ‖ K4, where ‖ denotes the
concatenation operation. For each tag, the IDP and secret key K are stored
in the database. The tag’s unique ID is static while the IDP and the key
K are updated after every successful mutual authentication run. As a mutual
authentication run, or protocol run, we define the execution of the following steps
that lead to the mutual authentication of the reader-tag pair and the update of
the IDP and K.

STEP 1: Tag interrogation–Initially, the reader sends a ‘hello’ message to the
tag which responds with its current IDP . Using the IDP , the reader retrieves
the key K from the database.

STEP 2: Reader authentication–After receiving the IDP , and retrieving K, the
reader generates two fresh random numbers (nonces), n1 and n2, and forwards
the following three messages, A, B, and C in the clear, to the tag:

A = IDP ⊕K1 ⊕ n1, B = (IDP ∧K2) ∨ n1, C = IDP + K3 + n2. (1)

Upon receiving A, B, and C, the tag extracts the nonce n1 from A as n1 = A⊕
IDP ⊕K1, and authenticates the reader by checking that B = (IDP ∧K2)∨n1.
If authentication of B fails, the tag does not respond to the reader.

STEP 3: Tag authentication–After the reader has been authenticated, the tag
extracts the nonce n2 from message C as n2 = C − IDP − K3, and generates
two messages, D and E, as follows:

D = (IDP ∨K4) ∧ n2, E = (IDP + ID)⊕ n1. (2)

The reader authenticates the tag, by checking that D = (IDP ∨K4) ∧ n2.

STEP 4: ID extraction–The reader extracts the tag’s unique ID from the mes-
sage E as ID = (E ⊕ n1)− IDP .

STEP 5: IDP and key updating–The reader and the tag update the IDP and
K as follows:

IDP (n+1) = (IDP (n) + (n2 ⊕ n1))⊕ ID,

K
(n+1)
1 = K

(n)
1 ⊕ n2 ⊕ (K(n)

3 + ID), K
(n+1)
2 = K

(n)
2 ⊕ n2 ⊕ (K(n)

4 + ID),

Passive Attacks on a Class of Authentication Protocols for RFID 105

Database Reader Tag

ID

IDP

K=K1||K2

||K3|| K4

Hello

IDP

IDP

K=K1||K2|| K3||K4
(n1,n2)

A|| B||C

D|| E

(IDP,K)

Fig. 1. The M2AP and EMAP protocols. The reader interrogates the tag which re-
sponds with its current IDP . Using the tag’s IDP , the reader looks up the database
for the corresponding key K. The reader combines two random numbers (n1,n2), with
the IDP and K to generate A ‖ B ‖ C and authenticate itself to the tag. The tag
responds with D ‖ E, where the tag’s unique ID is embedded in E.

K
(n+1)
3 = (K(n)

3 ⊕ n1) + (K(n)
1 ⊕ ID), K

(n+1)
4 = (K(n)

4 ⊕ n1) + (K(n)
2 ⊕ ID).

The updated IDP and K are mutually stored for the next protocol run.

3.2 The EMAP Mutual Authentication Protocol

EMAP follows the same five steps described in M2AP, with the only difference
being the way that messages B, C, D, and E are generated and how the IDP
and K are updated. In EMAP, the messages A, B, C, D, and E are generated
as follows:

A = IDP ⊕K1 ⊕ n1, B = (IDP ∨K2)⊕ n1, C = IDP ⊕K3 ⊕ n2, (3)

D = (IDP ∧K4)⊕ n2, E = (IDP ∧ n1 ∨ n2)⊕ ID

4⊕

i=1

Ki. (4)

The updating of the IDP and K works as follows:

IDP (n+1) = IDP (n) ⊕ n2 ⊕K1, (5)

K
(n+1)
1 = K

(n)
1 ⊕ n2 ⊕ (ID(1 : 48) ‖ Fp(K

(n)
4) ‖ Fp(K

(n)
3)), (6)

K
(n+1)
2 = K

(n)
2 ⊕ n2 ⊕ (Fp(K

(n)
1) ‖ Fp(K

(n)
4) ‖ ID(49 : 96)), (7)

K
(n+1)
3 = K

(n)
3 ⊕ n1 ⊕ (ID(1 : 48) ‖ Fp(K

(n)
4) ‖ Fp(K

(n)
2)), (8)

K
(n+1)
4 = K

(n)
4 ⊕ n1 ⊕ (Fp(K

(n)
3) ‖ Fp(K

(n)
1) ‖ ID(49 : 96)), (9)

where Fp(x) is the 24-bit sequence representing the parity of every 4 bit
block of x.

106 B. Alomair, L. Lazos, and R. Poovendran

4 Passive Attacks Against M2AP and EMAP

4.1 Passive Attack Against M2AP

In this section, we show how an adversary can extract the tag’s unique ID by
observing, on average, a logarithmic (in the length of ID) number of mutual
authentication runs between the tag and the reader. To obtain the ID, the
adversary needs to observe only the IDP , B, and E message exchange in each
protocol run. For clarity, we first illustrate the attack via an example. Then,
we show that the problem of extracting the tag’s ID can be mapped to a set
covering problem. Based on our mapping, we provide a probabilistic analysis of
our attack.

Example: For clarity, we only show the values of the messages observed by
the adversary that are relevant to the attack. Assume that the unique ID of
an RFID tag is six bit long and is ‘001100’. Initially, the reader broadcasts
a “hello” message to announce its presence. The tag challenges the reader by
sending its current IDP (1) = 101100. The reader looks up the database to find
the corresponding secret key K(1), generates two random numbers (n(1)

1 ,n(1)
2),

and challenges the tag with A(1) ‖ B(1) ‖ C(1), where B(1) = 011000. After the
reader is authenticated, the tag responds with D(1) ‖ E(1), where E(1) = 101000.
Notice that, from message B in equation (1), if (IDP)i = 0, then (n1)i = (B)i,
where the i subscript denotes the ith bit of IDP , n1, and B, respectively. Thus,
the adversary can compute n

(1)
1 = ∗1∗∗00, where ‘∗’ represents an unknown bit.

Therefore, E(1) ⊕ n
(1)
1 = ∗1 ∗ ∗00, and substituting into (2) we get:

ID = (E(1) ⊕ n
(1)
1)− IDP (1) = ∗1 ∗ ∗00 + 010100, (10)

From the first protocol run, the adversary identifies the two least significant bits
of the tag’s ID as ‘00’ using (10).

In the next protocol run, the adversary gathers the quantities IDP (2) =
010001, B(2) = 111001, and E(2) = 100100. Using B in equation (1), the ad-
versary computes n

(2)
1 = 1 ∗ 100∗; hence, E(2) ⊕ n

(2)
1 = 0 ∗ 110∗, and a second

equation for the tag’s ID can be constructed:

ID = (E(2) ⊕ n
(2)
1)− IDP (2) = 0 ∗ 110 ∗+101111. (11)

Substituting the two least significant bits ‘00’ in (11), the adversary can compute
ID = ∗ ∗ 1100. By substituting ‘∗ ∗ 1100’ back in (10), the adversary identifies
the fifth bit of the ID as ‘0’, and substituting the five known bits of the ID
back in (11), the adversary identifies the tag’s unique ID as ‘001100’. Figure 2
presents the protocol exchanges for the two instances of mutual authentication
between the tag and the reader in our example.

Let x(n) = E(n) ⊕ n
(n)
1 denote the first term of the right hand side in (10)

and let (m)i denote the ith bit of message m. Note from our example that
(x(n))i is known if (IDP (n))i = 0. The set of equations, similar to (10) and
(11), constructed by the adversary by observing protocol runs, can be solved

Passive Attacks on a Class of Authentication Protocols for RFID 107

hello

IDP=101100

 A || B=011000 || C

 D || E=101000

IDP=010001

 A || B=111001 || C

 D || E=100100

hello

Reader Tag

IDP

K=K1|| K2
|| K3|| K4

IDP=101100

B=011000

E=101000

IDP=010001

B=111001

E=100100

Adversary

K=K1|| K2
|| K3|| K4

IDP

IDPIDP

K=K1|| K2
|| K3|| K4

K=K1|| K2
|| K3|| K4

ID=001100

Fig. 2. Two mutual-authentication message exchanges between a reader and a tag. To
the left is the information collected by an adversary that lead to disclosing the tag’s
unique ID

for the ID if (x(n))i is known for at least one n. This condition is equivalent to
(IDP (n))i = 0 for at least one n. That is, each position of the observed IDP ’s
has a zero in at least one IDP . In turn, this observation can be mapped to a
variant of the set cover problem expressed in the following lemma.

Lemma 1. Let S = {1, 2, ..., L}, denote the indices of the L bits of the ID, and
let S

(n)
0 = {i | the ith bit of the nth IDP is 0}. The ID of the tag can be

extracted if ∪nS
(n)
0 = S, that is, the union of S

(n)
0 ’s covers the entire set S.

Proof. Let ∪nS
(n)
0 = S. Based on (2), we have

(ID) = ((E(n))⊕ (n(n)
1))− (IDP (n)) = x(n) − (IDP (n)). (12)

For each bit of the ID we can write

(ID)i = (x(n))i − (IDP (n))i + C
(n)
i (mod 2), (13)

where
C

(n)
i = f((x(n))i−1, (IDP (n))i−1, C

(n)
i−1) (14)

denotes the carry from the modulo 2 addition in (12). To compute the carry Ci,
we must know (ID)i−1 from the LSB up to the (i−1)th bit. For the LSB, C1 = 0
and hence, (ID)1 can be extracted from any S(n) with 1 ∈ S(n). Once (ID)1 has
been extracted, using (13), (x(n))1 can be extracted for all n. Therefore, using
(14), C2 can be extracted for all n. Now, equation (13), can be used to solve for
(ID)2 from any S(n) with 2 ∈ S(n). Since for all i ∈ [1 : L], there exists an S(n)

with i ∈ S(n), one can recursively solve for the tag’s ID from the least significant
to the most significant bits.

Given that the bit values of the IDP are drawn from a probability distribution,
we can compute the average number of protocol runs required to recover the
unique ID using the following lemma.

108 B. Alomair, L. Lazos, and R. Poovendran

Table 1. Mapping the ID recovery problem to a set cover problem

ID recovery problem ↔ Set covering problem

S = {1, 2, ..., L} ↔ Entire set S

IDP (n) containing k zeros ↔ Subset of S with cardinality k
Observing protocol runs with IDP ’s having Finding a set of subsets of S

at least one zero in every position ↔ that covers S

Lemma 2. Let p be the probability of any bit of the IDP being 1, and let L be
the length of the IDP . Then, the probability of fully disclosing the tag’s unique
ID by observing m mutual authentication runs, is given by:

Pr(disclosing the ID after m messages) = (1− pm)L. (15)

Moreover, given any ε ∈ (0, 1), the number of mutual authentication runs an
eavesdropper has to observe in order to extract the ID with probability at least
1− ε is given by:

m = 	 ln(1− exp
ln(1−ε)

L)
ln p

. (16)

Proof. The proof of lemma 2 is provided in the appendix.

From lemma 2, we observe that the probability of extracting the ID of the tag
is a monotonically increasing function of the number of observed protocol runs
m, converging to 1. Lemma 2 also specifies how many protocol runs one must
eavesdrop, before the entire ID can be extracted, with a desired probability. In
Figure 3(a), we show the probability of extracting the ID of the tag as a function
of the number of protocol runs observed, for different values of L and for p = 1

2 .
We now compute the average number of protocol runs an adversary needs to
eavesdrops to extract the tag’s ID.

Lemma 3. Let p be the probability of any bit of the IDP being 1, and let L
be the length of the IDP . Let m denote the number of protocol runs needed to
extract the tag’s unique ID. Then, the expected value of m is:

E[m] =
L∑

k=1

(
L

k

)
(−1)k+1

1− pk
. (17)

Proof. The proof of lemma 3 is provided in the appendix.

For L = 96 and p = 1
2 as specified in [1], the expected number of protocol runs

needed to extract the tag’s unique ID is 7.9252. Figure 3 (b) shows the ana-
lytically derived relation between the expected number of protocol runs needed
to extract the tag’s ID and the length of the ID. We observe that E[m] grows
linearly with the logarithm of the ID length L.

Passive Attacks on a Class of Authentication Protocols for RFID 109

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of protocol runs observed

P
ro

ba
bi

li
ty

 o
f

su
cc

es
s

Probability of successfully extracting the ID

L=96
L=64
L=128
L=256

0 1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

log(L)

E
xp

ec
te

d
nu

m
be

r
of

 p
ro

to
co

l
ru

ns

Expected number of protocol runs to extract the ID

(a) (b)

Fig. 3. (a) The probability of extracting the ID of the tag as a function of the number
of protocol runs observed, for varying ID lengths, (b) The expected number of messages
needed to extract the ID as a function of the length of the ID in a logarithmic scale

4.2 Passive Attack Against EMAP

In EMAP [2], a particular emphasis is put on the properties of message E in
equation (4), due to the fact that the tag’s unique ID is extracted via E [2].
However, the ID is also used in equations (6) - (9) for the key updating. There-
fore, an adversary can extract the tag’s ID using equations (6) - (9), without
breaking message E. Let S0 denote the set of indexes where the bits of the IDP
are 0 and S1 denote the set of indexes where the bits of the IDP are 1, that is,

S0 = {i | the ith bit of IDP is 0}, (18)
S1 = {i | the ith bit of IDP is 1}. (19)

The attack against EMAP consists of the following steps:

Step 1: From message B in equation (3), we have (IDP)i ∨ (K2)i = 1, ∀i ∈ S1,
regardless of the values of (K2)i. Therefore, (n1)i = (B)i, ∀i ∈ S1, where b
denotes the complement of the bit b.

Step 2: Message A in equation (3) has two unknowns, namely, the secret key
K1 and the nonce n1. The partial information about n1 obtained from Step 1
can be substituted in (3) to extract bits of K1,

(K1)i = (A)i ⊕ (n1)i ⊕ (IDP)i, ∀ i ∈ S1. (20)

Step 3: From the message D in equation (4), we have (IDP)i∧ (K4)i = 0, ∀i ∈
S0 regardless of the values (K4)i. Therefore, (n2)i = (D)i, ∀i ∈ S0.

Step 4: Equation (5) has two unknowns, the secret key K1 and the nonce n2.
The partial information about n2 obtained in Step 3 can be substituted in (5)
to extract bits of K1 as follows:

110 B. Alomair, L. Lazos, and R. Poovendran

(K1)i = (IDP (n+1))i ⊕ (IDP (n))i ⊕ (n2)i, ∀ i ∈ S0. (21)

Up to this point, the adversary knows (K1)i, ∀i ∈ S1 from (20), and (K1)i, ∀i ∈
S0 from (21). Hence, the secret key K1 has been fully extracted.

Step 5: By substituting K1 into (3) and (5), the adversary obtains n1 and n2

as shown below:

n1 = A⊕ IDP (n) ⊕K
(n)
1 , n2 = IDP (n+1) ⊕ IDP (n) ⊕K

(n)
1 . (22)

Step 6: By eavesdropping the next protocol run, the adversary can extract the
updated value K

(n+1)
1 as described in Steps 1-4. Substituting the values of K

(n)
1

and K
(n+1)
1 in (6), the first half of the tag’s unique ID is revealed:

(ID)i = (K(n+1)
1)i ⊕ (K(n)

1)i ⊕ n2, ∀i ∈ [1 :
L

2
]. (23)

Step 7: From messages B and D in equations (3) and (4) respectively, (K2)i =
(B)i ⊕ (n1)i, ∀i ∈ S0 and (K4)i = (D)i ⊕ (n2)i, ∀i ∈ S1. Therefore, in every
protocol run, the bits of K2 corresponding to the zero bits of IDP are known,
and the bits of K4 corresponding to the one bits of IDP are known. Thus, for
i = L

2 + 1 : L, if (IDP (n))i = (IDP (n+1))i = 0 then (K(n)
2)i and (K(n+1)

2)i are
known and, hence, using equation (7),

(ID)i = (K(n)
2)i ⊕ (K(n+1)

2)i ⊕ (n2)i. (24)

Likewise, if (IDP (n))i = (IDP (n+1))i = 1 then (K(n)
4)i and (K(n+1)

4)i are
known, and using equation (9),

(ID)i = (K(n)
4)i ⊕ (K(n+1)

4)i ⊕ (n1)i. (25)

Using (24) and (25), the second half bits of the ID are extracted if two consec-
utive IDP ’s have the same bit value in that position. Hence, the adversary can
solve for each bit in the second half of the ID depending on the value of the
IDP ’s in its position. Lemma 4 analyzes the performance of our passive attack
against EMAP.

Lemma 4. Let p be the probability of any bit of the IDP being 1, and let L be
the length of the IDP . Then, the probability of fully disclosing the tag’s unique
ID by observing m consecutive mutual authentication runs, is given by:

Pr(extracting the ID after m messages) =
{

0, m < 2
(1 − (2p− 2p2)m)

L
2 , m ≥ 2

(26)

Moreover, given any ε ∈ (0, 1), the number of consecutive mutual authentica-
tion runs an eavesdropper has to observe to extract the entire static ID with
probability at least 1− ε is given by:

m = 	1 +
ln(1− exp

2 ln(1−ε)
L)

ln(2p− 2p2)

. (27)

Passive Attacks on a Class of Authentication Protocols for RFID 111

Furthermore, the average number of consecutive mutual authentication runs needed
to extract the tag’s unique ID is given by:

E[m] = 1 +

L
2∑

k=1

(L
2

k

)
(−1)k+1

1− (2p− 2p2)k
. (28)

Proof. In our attack, no information about the ID can be extracted by just
eavesdropping the first protocol run. However, by eavesdropping two consecutive
protocol runs, the adversary is guaranteed to recover the first half of the ID
(Steps 1-6). For the second half of the ID, bits are recovered probabilistically
by solving the update equation of K2 or K4 (Step 7). When two consecutive
IDP ’s have the same value in one bit position, the adversary can solve for the
bit of the ID at that position. That is, for the ith bit of ID, the adversary will
successfully solve for its value if (IDP (n))i = (IDP (n+1))i, i.e. both are 0 or
1 which occur with probabilities (1− p)2 and p2, respectively. This means that
the probability of successfully solving for each bit of the second half of the ID
is given by (1− p)2 + p2. Also note that, to extract all bits of the second half of
the ID, a match between two consecutive IDP s has to occur, ∀i ∈ [L

2 + 1 : L].
Hence, the problem of extracting all second half ID bits, can be mapped to
the same set covering problem expressed in Lemma 1, with a different success
probability, and ID length equal to L

2 . Following the same analysis as in Lemma
2 and 3, we can compute the quantities in (26), (27), and (28) by substituting
the success probability for M2AP ‘(1− p)’, with (1− p)2 + p2. Note that at least
two protocol runs are needed to extract useful information and, hence, 1 is added
to the expressions in (27), and (28).

In Figure 4(a),(b), we show the histogram of the probability of extracting the tag
ID after eavesdropping exactly m protocol runs for M2AP and EMAP, respec-
tively, for L = 96 and p = 0.5. Note that the average number of protocol runs
required to extract the tag ID is 7.9273 and 7.9223 for M2AP and EMAP respec-
tively, while the theoretical result obtained by Lemma 2 shows thatE[m] = 7.9252.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

Number of observed runs ‘m’

Pr
ob

ab
ili

ty
 o

f
ex

tr
ac

tin
g

th
e

ID

Probability of extracting the ID as a function of m

Theoretical

Simulation

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

Number of observed runs ‘m’

Pr
ob

ab
ili

ty
 o

f
ex

tr
ac

tin
g

th
e

ID

Probability of extracting the ID as a function of m

Theoretical

Simulation

(a) (b)

Fig. 4. Probability of extracting the tag ID after eavesdropping exactly m protocol
runs when L = 96 and p = 0.5 for (a) the M2AP protocol, (b) the EMAP protocol

112 B. Alomair, L. Lazos, and R. Poovendran

5 Related Work

The problem of mutual authentication in RFID systems has been studied under
different constraints [1,2,6,9,10,12,14]. Juels and Pappu have suggested the use
of a public key cryptosystem to solve the problem of consumer privacy in RFID
banknotes [9]. Avoine, however, described possible limitations on the security
of the protocol in [11]. Feldhofer et.al. proposed the use of AES symmetric key
cipher to achieve mutual authentication between tags and readers for tags able
to perform AES Encryption/Decryption [10]. Weis et.al. described privacy and
security risks for RFID systems and proposed solutions based on one way hash
functions [12]. Juels proposed the use of a pool of pseudonyms for each tag to
protect the privacy of the tag’s ID [8].

Vajda and Buttyan proposed lightweight cryptographic primitives for tag
authentication based on simple bitwise operations [14]. In [6], Juels and Weis
proposed HB+, a lightweight authentication protocol based on the human-to-
computer authentication protocol designed by Hopper and Blum [5]. The secu-
rity proof of the HB+ against active attacks was based on the Learning Parity
with Noise (LPN) problem. Gilbert et.al., however, showed a linear time active
attack on the HB+ protocol [7].

In [1,2], Peris-Lopez et.al. proposed M2AP and EMAP, mutual authentication
protocols that we analyze in this paper. In [3], Li and Wang describe active attacks
againstM2AP that require O(L) interactions between the adversary and the tag to
extract its ID. Our attack requires passive observation of an average of O(log2 L)
protocol runs to extract the tag’s ID. Li and Deng described active attacks against
EMAP in [4]. Their attack relies on active probing of the tag via rogue reader.

6 Conclusion

In this paper, we addressed the problem of mutual authentication in RFID sys-
tems. We analyzed M2AP and EMAP, two lightweight mutual authentication
protocols and showed how a passive adversary can extract the tag’s unique ID
by observing, on average, a logarithmic (in the length of the ID) number of
protocol runs. We provided a probabilistic analysis of our attacks by mapping
the problem of extracting the tag’s ID to a set covering problem.

References

1. Peris-Lopez, P., Hernandez-Castro, J., Estevez-Tapiador, J.M., Ribagorda, A.:
M2AP: A Minimalist Mutual-Authentication Protocol for Low-cost RFID Tags.
In: Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.) UIC 2006. LNCS, vol. 4159,
Springer, Heidelberg (2006)

2. Peris-Lopez, P., Hernandez-Castro, J., Estevez-Tapiador, J.M., Ribagorda, A.:
EMAP: An Efficient Mutual Authentication Protocol for Low-cost RFID Tags.
In: OTM Federated Conferences and Workshop: IS Workshop. LNCS, Springer,
Heidelberg (2006)

Passive Attacks on a Class of Authentication Protocols for RFID 113

3. Li, T., Wang, G.: Security Analysis of Two Ultra-Lightweight RFID Authentication
Protocols. In: IFIP SEC (2007)

4. Li, T., Deng, R.H.: Vulnerability Analysis of EMAP - An Efficient RFID Mu-
tual Authentication Protocol. In: AReS 2007: Second International Conference on
Availability, Reliability and Security (2007)

5. Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, Springer, Heidelberg (2001)

6. Juels, A., Weis, S.: Authenticating Pervasive Devices with Human Protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005)

7. Gilbert, H., Robshaw, M., Sibert, H.: An Active Attack Against HB+ – A provably
Secure Lightweight Authentication Protocol Protocol (2005)

8. Juels, A.: Minimalist Cryptography for Low-Cost RFID Tags. In: Blundo, C.,
Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, Springer, Heidelberg (2005)

9. Juels, A., Pappu, R.: Squealing Euros: Privacy Protection in RFID-Enabled Ban-
knotes. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, Springer, Heidelberg
(2003)

10. Feldhofer, M., Aigner, M., Dominikus, S.: An Application of RFID Tags using
Secure Symmetric Authentication. In: SecPerU 2005. International Workshop on
Security, Privacy and Trust in Pervasive and Ubiquitous Computing (2005)

11. Avoine, G.: Privacy Issues in RFID Banknote Protection Schemes. In: International
Conference on Smart Card Research and Advanced Applications – CARDIS (2004)

12. Weis, S., Sarma, S., Rivest, R., Engels, D.: Security and Privacy Aspects of Low-
Cost Radio Frequency Identification Systems. In: SPC 2003. International Confer-
ence on Security in Pervasive Computing (2003)

13. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient Hash-Chain Based RFID Privacy
Protection Scheme. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004.
LNCS, vol. 3205, Springer, Heidelberg (2004)

14. Vajda, I., Buttyán, L.: Lightweight Authentication Protocols for Low-Cost RFID
Tags. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS,
vol. 2864, Springer, Heidelberg (2003)

15. Defend, B., Fu, K., Juels, A.: Cryptanalysis of Two Lightweight RFID Authenti-
cation Schemes. In: International Workshop on Pervasive Computing and Commu-
nication Security – PerSec (2007)

16. Juels, A.: RFID Security and Privacy: A research Survey (2005)
17. Avoine, G.: Bibliography on Security and Privacy in RFID Systems

http://lasecwww.epfl.ch/gavoine/rfid/
18. Buchmann, J.A.: Introduction to cryptography. Springer, Heidelberg (2004)
19. Garfinkel, S.L., Juels, A., Pappu, R.: RFID Privacy: An overview of Problems and

Proposed Solutions. IEEE Security & Privacy (2005)
20. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID

Systems using the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, Springer, Heidelberg (2004)

Appendix

Let (M (i))j denote the jth bit of the ith message. Define S(m) =
⋂m

k=1 M (k) to
be the result of bitwise AND for the messages M (1) through M (m), and define
the random variable Xi as follows:

Xi =
{

1,
∑L

j=1(S
(i))j = 0,

0, otherwise.
(29)

http://lasecwww.epfl.ch/gavoine/rfid/

114 B. Alomair, L. Lazos, and R. Poovendran

Then, if the probability of any bit of M (i) being 1 is equal to p, we get

Pr((S(m))k = 1) = Pr(
m⋂

l=1

{M (l)
k = 1}) =

m∏

l=1

Pr{M (l)
k = 1} = pm, (30)

Pr(S(m)
k = 0) = 1− Pr(S(m)

k = 1) = 1− pm. (31)

Proof of Lemma 2

From equation (31) and by independence of bits, we get:

Pr(Xm = 1) = (1 − pm)L. (32)

Therefore, for any ε > 0, we have:

Pr(Xm = 1) > 1− ε

⇒ (1 − pm)L > 1− ε

⇒ 1− pm > exp
ln (1−ε)

L

⇒ pm < 1− exp
ln (1−ε)

L

⇒ m >
ln (1− exp

ln (1−ε)
L)

ln p
. (33)

Proof of Lemma 3

Define the random variable Y to be the number of messages such that Xm = 1
for the first time, then Y can be written as Y = mini{Xi = 1}. Then, {Y =
i} ⇔ {Xi = 1 and Xi−1 = 0} and, hence,

Pr(Y = i) = Pr(Xi = 1, Xi−1 = 0) = Pr(Xi = 1 | Xi−1) Pr(Xi−1)

=
L−1∑

j=0

Pr(Xi = 1 |
L∑

k=1

S
(i−1)
k = j) Pr(

L∑

k=1

S
(i−1)
k = j), (34)

where in equation (34) we sum over all possible number of zeros in S(i−1). But,

Pr(Xi = 1 |
L∑

k=1

S
(i−1)
k = j) = (1− p)L−j (35)

because for all bits where S
(i−1)
k = 1, M

(i)
k = 0 to satisfy Xi = 1. Equation (34)

can be shown as follows: From (30), the probability of a single bit in S(i−1) to be
equal to 1 is pi−1. Therefore, by independence, the probability of having L − j
ones in S(i−1) is given by:

Pr(
L∑

k=1

S
(i−1)
k = L− j) = (pi−1)L−j. (36)

Passive Attacks on a Class of Authentication Protocols for RFID 115

Similarly, from (31), the probability of any single bit of S(i−1) to be equal to 0
is 1− pi−1 and, hence,

Pr(S(i−1) has j zeros) = (1 − pi−1)j . (37)

Finally, there are
(
L
j

)
different ways of choosing the positions of the j zeros.

Thus, by combining (36) and (37), the probability of having exactly j zeros in
S(i−1) can be written as:

Pr(
L∑

k=1

Si−1
k = j) =

(
L

j

)

(1− pi)j(pi)L−j. (38)

From (35), (38), and 1− pi−1 = (1− p)
∑i−2

k=0 pk, it follows that,

Pr(Y = i) =
L−1∑

j=0

(1− p)L−j (L
j) (1− pi−1)j (pi−1)L−j

= (1− p)L
L−1∑

j=0

(L
j) (

i−2∑

k=0

pk)j (pi−1)L−j

= (1− p)L [(
i−1∑

k=0

pk)L − (
i−2∑

k=0

pk)L] = (1 − pi)L − (1 − pi−1)L.

Hence, the expected number of messages required is:

E[Y] =
∞∑

i=1

i Pr(Y = i) =
∞∑

i=1

i [(1− pi)L − (1− pi−1)L]

=
∞∑

i=1

i [
L∑

k=0

(
L

k

)

(−1)k(pk)i −
L∑

k=0

(
L

k

)

(−1)k(pk)i−1]

=
∞∑

i=1

i
L∑

k=0

(pk − 1)
(

L

k

)

(−1)k(pk)i−1 =
L∑

k=1

(pk − 1)
(

L

k

)

(−1)k
∞∑

i=1

i (pk)i−1

=
L∑

k=1

(pk − 1)
(

L

k

)

(−1)k(
1

1− pk
)2 =

L∑

k=1

(
L

k

)

(−1)k+1(
1

1− pk
)

and the lemma follows.

Side Channel Attacks on Irregularly Decimated

Generators

Chuan-Wen Loe and Khoongming Khoo

DSO National Laboratories, 20 Science Park Drive, Singapore 118230
lchuanwe@dso.org.sg, kkhoongm@dso.org.sg

Abstract. We investigate three side channel attacks on ABSG, a
variant of irregularly decimated generators (IDG). The three attacks are
timing analysis, phase-shift fault analysis and bit-flipping fault analy-
sis. We also modify the attacks to non side-channel cryptanalyses, but
on the assumption that the key/IV mixing is not well designed. This
paper hopes to provide more understanding on actual hardware imple-
mentations of IDG as cipher components. Finally, we combine our fault
analysis on ABSG with linearization attack to cryptanalze DECIM, an
ESTREAM candidate cipher. We manage to reduce the attack complex-
ity from 280 to 242.5.

Keywords: Fault Attack, Timing Analysis, Irregularly Decimated
Generators, ABSG, DECIM.

1 Introduction

Cryptanalysis traditionally has been the study of ciphers from a mathematical
point of view. These attacks exploit the algorithmic nature of the cipher and
compromise the security. Modern ciphers are designed to prevent these known
attacks, making cryptanalysis difficult. However in recent years there is a new
class of cryptanalysis that studies the implementation weakness of ciphers. These
attacks study the physical information (time, power, etc) leaked by the product
ciphers and compromise it. Even strong ciphers like AES and RSA are also
vunerable to side channel attacks [14] [15].

In this paper, we investigate the side channel security of irregularly decimated
generators (IDG). IDG is a bit generator that is irregularly clocked by a regu-
larly clocked generator. Due to the irregular clocking, IDG generates a highly
non-linear bitstream. Examples of IDGs are Shrinking Generator (SG) [4], Self-
Shrinking Generator (SSG) [13] and Bit Search Generators (BSG) [8]. In this
paper we focus on ABSG [9], a variant of BSG. We choose to study ABSG as it
faciltates our analysis of DECIM later in the paper.

ABSG outputs bitstream at an irregular rate which average to 3 clock cycles
per bit. Hence to prevent timing attack, ABSG outputs to a buffer first. The
time taken to fill up the buffer varies depending on the key. Our first attack
investigated timing attack on the buffer mechanism and show that different
buffer size affects the security of the cipher.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 116–130, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Side Channel Attacks on Irregularly Decimated Generators 117

The authors of [11] developed a phase-shift fault attack on clock controlled
LFSR based stream ciphers. In our second attack, we adapt this attack and
show that it can be extended on to ABSG. To perform the phase-shift attack,
one must be able to inject faults into cipher and cause it to malfunction for a
short period of time. When the cipher malfunctions, the cipher components will
be desynchonized and the released output bitstream corresponds to shifts of the
ABSG input bitstream. By analyzing the fault-induced output sequences, we are
able to recover the ABSG input bitstream with reduced complexity.

In [11], the authors also developed a bit-flipping fault attack on clock con-
trolled LFSR based stream ciphers. In our third attack, we extend this attack
to ABSG. In a bit-flipping fault attack, faults are injected into the cipher to
cause some ABSG input bits to be toggled. By analyzing the fault-induced out-
put sequences, we can also recover the ABSG input bitstream with reduced
complexity.

Side channel analysis are not always practical, especially if the attacker does
not have access to the device. We include a section that extends the side chan-
nel attacks to non side-channel attacks. However it is only possible under the
assumption that the cipher has some weak components.

Finally, we study the ESTREAM candidate cipher DECIM. It was designed by
Berbain et. al. [3] and was accepted into Phase 3 of the ESTREAM project under
profile 2 (hardware) [1]. Because the security of DECIM relies on the strength
of ABSG, we can apply our earlier results to cryptanalyze it. We show that by
combining the fault analyses of Section 4 and 5 with the linearization attack of
[6], we can compromise the cipher. The attack can reduce the complexity from 280

(based on exhaustive search of the 80-bit secret key) to 242.5. This complexity can
be improved to 233.7 if we assume Coppersmith-Winograd’s method for solving
linear equations [5].

2 Outline of ABSG

[9] [10] showed the insecurity of BSG (earlier variant of ABSG) after it was
introduced a year before. To improve the security of BSG, the authors of [9]
tweaked BSG into 2 different variants, ABSG and MBSG. The security of ABSG
and MBSG is similar and both require 2L/2 time and data complexity to recover
the full key, where L is the linear complexity of the input stream, which can be
the length of the secret key.

ABSG is a bit generator that searches for a pattern in the input bitstream
and outputs a shorter bitstream. In some sense ABSG is like a compression func-
tion that convert substrings to a single bit based on a lookup table. A. Gouget
et al. also showed that the rate of output is approximately 1 bit per 3 clocks
cycles. The following table shows that substrings of the form 00, 101, 1001, . . .
are compressed to 0, while substrings of the form 11, 010, 0110, . . . are com-
pressed to 1.

118 C.-W. Loe and K. Khoo

Input Pattern Output Bit
{00, 10i1} 0
{11, 01i0} 1

Example 1. Let s = 0101001110100100011101 be the input bit sequence. The
output of ABSG is 10111010.

010︸︷︷︸
1

1001︸︷︷︸
0

11︸︷︷︸
1

010︸︷︷︸
1

010︸︷︷︸
1

00︸︷︷︸
0

11︸︷︷︸
1

101︸︷︷︸
0

3 Timing Analysis on ABSG

When ABSG takes in a bitstream, it waits for a delimiter bit before it outputs a
bit. The time taken to search for the delimter for each output bit varies depending
on the input bitstream. Hence, the ability to measure the lag time between each
output bit will result in trival full key recovery. To prevent this attack, ABSG
must output to a buffer. Only when the buffer of size B is filled, then the cipher
will release the bits at a constant rate. While the bits are released from the
buffer, output bits of ABSG is still injected into the buffer at a slower rate.

The size of the buffer is chosen such that the probability that the buffer will
be empty before encryption is low. At the same time, designers want the buffer
to be as small as possible to save resources and startup timing. [4].

It is clear that the latency to fill up the buffer is the only component that
will vary with respect to the key. Hence it is natural to apply timing analysis on
the buffer. The overview of the attack is to measure the total number of input
bits T required to fill up the buffer of size B. The next step is to brute force all
possible ways to arrange T input bits that will result in the B observed output
bits. We assume the attacker has means to measure the latency accurately and
hence be able to determine T .

We let each bit from the buffer (output) to be an urn and the input bits
are balls. We know that each output bit must come from at least 2 input bits;
therefore it implies that there must be at least 2 balls in each urn. Hence we
need to arrange the additional (T − 2B) balls into B urns.

If T = L, the time complexity to recover L ABSG input bits is the number of
ways to arrange (T − 2B) balls into B urns:

(
(T − 2B) + B − 1

T − 2B

)

=
(

T −B − 1
T − 2B

)

(1)

If T < L, we need to guess the remaining L − T bits. A trivial way is to brute
force the remaining L− T bits, increasing the complexity by 2L−T . However we
can improve the brute force complexity by making some intelligent guesses.

We guess that the (B + 1)th output bit is constructed from L− T input bits.
Hence if the (B+1)th bit is 1, we can be sure that the remaining L−T input bits
are 0111...10. If the guess is wrong, we make another guess that the (B + 1)th

Side Channel Attacks on Irregularly Decimated Generators 119

and (B + 2)th output bits are constructed from L − T input bits. So if the two
bits are 10, the L − T input bits can be 111000...01, 0101000...01 or any of the
possible configuration. If the guess is still wrong, we procced to the 3 bits and
so on until (B + b′)th bits.

Since we know that each output bit after the Bth bit comes from at least 2
input bits, we can be sure that the maximum value for b′ is (L− T) /2. We need
is to recover the remaining L − T bits with all the possible value of b. Hence
total complexity is the number of ways to arrange (L−T −2b) balls into b urns,
where 1 ≤ b ≤ b′ = (L− T) /2:

(
T −B − 1
T − 2B

) ∑

1≤b≤(L−T)/2

(
L− T − b− 1
L− T − 2b

)

(2)

If T >L, The reasoning is similar to above. We ignore the arrangements of the
bits after the Lth bit. So we first assume that first (b = 1) output bit from the
buffer is contructed from L input bits (E.g. input is 0111...10 with 2 zeros and
L-2 ones). We test if the guess is correct. If the guess is wrong we guess that the
first two (b = 2) output bits from the buffer are contructed from L input bits
(E.g. input is 1001011...10). We test all possible configurations for the input. If
the guess is wrong, we procced to first three bits and so on.

Since we know that each output bit comes from at least 2 input bits, we can
be sure that the maximum value for b is L/2. Moreover since T > L, all we need
is to recover the first L bits. The complexity is the number of ways to arrange
(L − 2b) balls into b urns, where 1 ≤ b ≤ L/2. In addition if equation (1) has
lower complexity despite T > L, we can just attack the cipher with the first
attack. This is so since it is alright if we recover more than L bits. Hence overall
complexity:

min

⎛

⎝
(

T −B − 1
T − 2B

)

,
∑

1≤b≤L/2

(
L− b− 1
L− 2b

)
⎞

⎠ (3)

T is not constant; it varies with respect to the initial state (key). However the
compression rate of ABSG is approximately 3:1, this implies that T ≈ 3B. The
table below shows the complexity given that L = 128 and T = 3B.

The complexity decreases as buffer size approaches 40. In comparison, the
attacker requires both time and data complexity of 264 in the attack on ABSG
in [9]. Thus our timing attack can be viewed as a trade-off of a 223 increase in
computational complexity in exchange for a savings of 264 in memory.

This timing cryptanalysis complexity varies with respect to compression rate
and buffer size. The attack can be improved if we are allowed to do timing anal-
ysis on multiple sessions. The attacker has to find the session with the smallest
T < 3B. From our experiments, T = 2.5B occurs approximately 0.31% of the
time. Given that, the best time complexity is 264.93 with buffer of size 50. To
the best of our knowledge there is no literature that studies the security of the
size of the buffer.

120 C.-W. Loe and K. Khoo

Table 1. Result for timing attack with L = 128, T = 3B

B = Buffer Size n where Complexity = 2n

30 80.24

32 80.03

34 79.82

36 79.61

38 79.41

40 79.21

42 79.47

43 81.46

44 83.44

45 85.42

>46 87

4 Phase Shift Fault Analysis on ABSG

Fault analysis on public key cryptosystem was introduced by Boneh and Lipton
at Bellcore in 1996. It was later adapted to symmetric ciphers like DES by Biham
and Shamir [2]. The idea is to create faults in the cryptographic device such that
it will malfunction for a brief moment. After the short moment, the components
in the device will be desynchonized from the correct operation. Together with the
correct output, the faulty output yield important information about the initial
state. In [7], the authors discovered that by stopping one of the LFSR of A5/1,
attackers can easily compromise the device. Also in [11], the authors generalize
the (Phase Shift) Attack and gave an example on the Shrinking Generator.

In this paper, we adapt the Phase Shift Attack in [11] and applied it on
ABSG. In this attack, we clocked an additional cycle to the input stream and
halt the ABSG. In this way, the faulted sequence will start 1 bit after the original
sequence. The output will differ and yield more information. We have a simple
algorithm about how to execute the attack.

Algorithm 1. 1. Get the non-faulted ABSG output bitstream S0

2. Choose an integer k > 0 where k is small (E.g. k = 2)
3. Set b=0
4. Set N = 1
5. Get a N -bits shifted sequence

(a) Set t = 0
(b) Stop (fault) the ABSG component from accepting input stream
(c) Continue to clock the input stream generator
(d) t = t + 1
(e) If t < N repeat step 5b
(f) Resume the ABSG component
(g) The faulted output stream will be SN

Side Channel Attacks on Irregularly Decimated Generators 121

6. Exhaust all possible (b+k)-bits solutions of the input stream. If there are con-
tradictions in any of the S0, S1, ..., SN , discard the choice. Do not exhaust
solutions that already have contradictions with the first b-bits.

7. Set b=b+k
8. If there are too many possible solutions, then let N = N + 1 and repeat step

5
9. Once there is a unique solution, output solution and exit

4.1 An Example

We begin the attack by looking at an example. We chose k = 2. For simplicity,
we assumed we have multiple faults to begin with. This is a little different from
Algorithm 1. Assume the input sequence as follows:

01010010011101110101...

Next, we look at the output sequence S0 and its shifts Si.

Correct sequence S0: 1001011... (i)
1-bit shifted sequence S1: 000110... (ii) (01010010011101110101...)
2-bit shifted sequence S2: 11110... (iii) (01010010011101110101...)
3-bit shifted sequence S3: 001011... (vi) (01010010011101110101...)

When the input sequence is shifted by 3 bits, we get back the original output
sequence shifted by 1 bit. Hence we can be sure that the input sequence begins
with 010, since the first output bit is one and is from 3 bits of input. There are
4 possible solutions to continue the contruction of the input sequence.

Guess Remarks
01000... Contradict output sequence (iii)
01001... Contradict output sequence (iii)
01010... No contradiction
01011... Contradict output sequence (i)

Hence we left with only“01010” as a solution. From there, we can further
expand the input sequence leaving with one solution “0101001...”. ”0101000...”
contradicts (iii) and both ”0101010...” and ”0101011...” contradicts (ii).

4.2 Simulation Results

In a practical attack as stated in the algorithm, we can begin with 1 fault analysis
sequence and start constructing the input sequence. Once we have an ambiguous
decision, we store all the possible solutions. Once the number of possibilities
exceeds the attacker’s resources, attacker needs to produce more fault analyses
sequence.

We want to point out that the complexity of this attack varies depending on
the key. From our simulations, We can recover 256 bits of input stream from
0.008s to hours of waiting before we kill the process. The system configuration

122 C.-W. Loe and K. Khoo

is Intel Xeon CPU 3.06GHz, cache 512 KB with 2Gb RAM. Table 4 in the
appendix (Section 9) summarises our simulations.

Table 4 tabulates the time required to recover input length of 128, 256 and
18529 bits. Hence, if the input generator has linear complexity of 128, the time
required will be equal to the time taken to recover 128 consecutive input bits.
Besides the time, the table also shows the success rate to find the unique solution.
We regard samples that take longer than 10 minutes to find a unique solution
as failures. Samples with more than one solution are considered as failures too,
even when one of the solutions are correct.

5 Bit Flipping Fault Analysis on ABSG

In [11], Hoch and Shamir considered an input fault attack on a filter function
generator where one or more bits of the LFSR are complemented. In this section,
we generalize the input fault attack to the ABSG where one or more bits of
the input sequence to the ABSG are complemented. This is achieved by a side
channel attack where the adversary induces a chosen fault on the input bit stream
of the ABSG.

Algorithm 2 is presented to recover the ABSG input sequence based on in-
duced faults in the input sequence.

Algorithm 2. 1. Choose an integer n and k < n where k is small. Let m =
n/2.

2. Based on the first m bits of the output sequence, search among all n-bit
input sequences of the ABSG which gives this output. Call these possible
input sequences in1, in2, . . . , inr.

3. For d from 1 to k do

(a) Apply faults Δ of hamming weight wt(Δ) = d to the input sequence
and observer the output. Apply the same fault Δ to the possible input
sequences in1, in2, . . . , inr.

(b) Compare Output = ABSG(Input⊕Δ) and Outputi = ABSG(ini⊕Δ),
if they match, then keep ini else discard ini.

4. For the remaining possible sequences, find the last position where the ABSG
algorithm does a complete compression.

5. Append another n bits and find all possible input sequences which gives the
correct next m bits of output.

6. Repeat step 3.
7. Repeat steps 4 to 6 until the input sequence is recovered.

5.1 An Example

We demonstrate algorithm 2 with an example. Suppose the input sequence of
an ABSG is

101011001101110010110

Side Channel Attacks on Irregularly Decimated Generators 123

which produces the output 011101. We shall demonstrate how an attacker who
can induce fault on the input sequence and observe the output can recover the
ABSG input. We assume the attacker uses the parameters n = 6, m = 3 and
k = 2.

First, the attacker can keep a table of all 6-bit input sequence to an ABSG
and record down their 3-bit output. This is tabulated in Table 2.

Table 2. 3-bit output based on 6-bit input sequence to ABSG compression

Input Sequence Output Sequence Input Sequence Output Sequence

000000 000 100000 0 ∗ ∗
000001 001 100001 0 ∗ ∗
000010 000 100010 0 ∗ ∗
000011 001 100011 0 ∗ ∗

...
...

...
...

011110 1 ∗ ∗ 111110 110

011111 1 ∗ ∗ 111111 111

Remark 1. In the table, * in the output means the bit can take the value 0 or
1. For example, the first five bits 10001 of the entry 100011 is compressed to 0,
however we cannot deduce any information on the next two output bits from
the sixth input bit 1.

Remark 2. For the input sequence 000001, it is an incomplete sequence and
should have had the output 00. But because we will be treating it as part of a
longer input sequence, therefore we write down its predicted 3-bit output which
is 001.

The attacker observes the output 011101 and conclude from Table 2 that the
first six bits of the input sequence is one of fourteen possibilities:

000100, 000101, 000110, 000111, 001101, 001111, 100000, 100001
100010, 100011, 100101, 100111, 101010, 101011

If we apply a fault to the first input bit, then the input sequence is 0010110...
and the output sequence is 0000100. Based on this, we can eliminate some of
our choices. Precisely, those whose first three output bits are different from 000
(as shown in Table 3).

Now we are left with seven choices

000100, 000110, 001101, 100000, 100010, 101010, 101011.

In a similar way, by performing fault attack on position 2, 3, 4, 5, 6 of the input
stream, we can narrow our possible candidates to 3 choices: 100000, 101010,
101011. By performing another fault attack which tweaks the first two bits,

124 C.-W. Loe and K. Khoo

Table 3. Elimination of Wrong Sequences by observing ABSG output where first Input
bit is Faulted

Guess First Bit Faulted Output Accept? Guess First Bit Faulted Output Accept?

000100 100100 00∗ Yes 100001 000001 001 No

000101 100101 01∗ No 100010 000010 000 Yes

000110 100110 00∗ Yes 100011 000011 001 No

000111 100111 01∗ No 100101 000101 01∗ No

001101 101101 00∗ Yes 100111 000111 01∗ No

001111 101111 01∗ No 101010 001010 00∗ Yes

100000 000000 000 Yes 101011 001011 00∗ Yes

the input sequence is 011011001101110010110 with output 1101111. Only the
candidate 101011 among the above three choices give the correct first three bits
of the output stream, thus we have found the correct first six bits of the input
stream by performing seven faults on the input sequence.

To continue the attack, we will have to take into account the end part 011 of
the first six input bits 101011. This is because 011 is not a complete sequence
for compression in ABSG. Thus the next six bits we look at will be 011 ∗ ∗∗
(corresponding to position 4, 5, 6, 7, 8, 9 of the input sequence) with 3-bit output
111 from position 2, 3, 4 of the output 011101. By a similar method as described
above, we deduce that these six bits should be 011001 by comparing the ABSG
sequences which are faulted in the 1st, 2nd,..., 6th input bits. Therefore the first
nine ABSG input bits are 101011001. We can continue the attack to obtain the
whole ABSG input sequence by deducing each subsequent segments of 6 bits
through the faulted ABSG sequences.

5.2 Simulation Result

Table 5 in the appendix (Section 9) shows a simulation of the bit-flipping fault
attack. We tabulate the time required to recover input length of 128, 256 and
18529 bits. Similar to Table 4, it shows the success rate to find the unique
solution. As before, we assume samples that takes longer than 10 minutes and
samples with more than one solution as failures. As we can see from the results,
the complexity is similar to the phase shift attack.

6 Non Side-Channel Attacks

Side channel attacks requires the attacker to have access to the cryptographic
device. In the case where the attacker does not have this advantage, he can
fake a “fault” on the device and gather additional information about the key.
This is only possible if the design of the cryptographic device is flawed. The two
subsections below will explain possible extension to the fault attacks based on
the assumption that some components are weak.

Side Channel Attacks on Irregularly Decimated Generators 125

6.1 Weak Key/IV Mixing Functions

This section briefly describes a possible non side-channel attack extended from
the phase shift attack on stream ciphers based on IDG. It is possible based on
the assumption that the mixing component for the secret key and initialization
vector (IV) is weak.

In this weak key/IV mixing setup, we assume that the function F (·) which
parses bitstream into the ABSG (or any IDG) is a pseudorandom number gen-
erator (PRNG). The seed for the PRNG F (·) is formed by seed = Mix(K, IV)
where K is the secret key and IV is the initial vector. This can be written as:

seed = M(K, IV)
F (seed) = (a0, a1, a2, . . .)

= ABSG input bit stream.

We assume that we can find a set of IV’s such that the ABSG input bit streams
they produce are phase-shifts of each other. Because of this property, these bit
streams are similar to “faulted” inputs in a phase-shift fault attack. We let K be
the secret key and IV0, IV1, IV2, ..., IVn be the set of IVs. Then we can perform
a phase-shift fault attack with n faults if the following equation holds.

Ln(F (M(K, IVn))) = ... = L2(F (M(K, IV2)))
= L(F (M(K, IV1))) = F (M(K, IV0)).

where L is the left-shift by one operator.
An example of when our scenario can apply is where F (·) is a Linear Feedback

Shift Register (LFSR). And the mixing function M(K, IV) allows the adversary
to find a set of initial vectors IV0, IV1, . . . such that M(K, IVi) corresponds to
the internal state of the LFSR (initialized by M(K, IV0)) at iteration i.

6.2 Weak Keys for Input Fault Attack

As before, we assume that the seed for the function F (·) which parses bitstream
into the ABSG (or any IDG) is formed by seed = M(K, IV) where K is the se-
cret key and IV is an initial vector. We simulate a chosen input fault attack with
InputFault = Δ by a chosen IV attack. We want to find IV1, IV2 such that:

F (M(K, IV1))⊕ F (M(K, IV2)) = Δ.

As an example, we consider the case where the function F (·) is a linear feedback
shift register LFSR(·) of length L bits based on a primitive feedback polynomial
(for maximal period). To perform fault input attack, we only need to consider L
bits of the LFSR output, i.e. LFSR(seed) = L-bit output of the linear feedback
shift register LFSR when it is initialized by seed.

In that case, LFSR(·) is a linear bijection.
Let the mixing function be an XOR of the secret key K and initial vector IV :

M(K, IV) = K ⊕ IV . We want:

LFSR(K ⊕ IV1)⊕ LFSR(K ⊕ IV2) = Δ.

126 C.-W. Loe and K. Khoo

Because LFSR(·) is linear, this reduces to:

LFSR(K)⊕ LFSR(IV1)⊕ LFSR(K)⊕ LFSR(IV2) = Δ.

=⇒ LFSR(IV1)⊕ LFSR(IV2) = Δ.

Given IV1, we can find IV2 by linear algebra because LFSR(·) is a linear
bijection.

7 Cryptanalysis on DECIM

DECIM is one of the candidates that has been selected for Phase 3 of the ES-
TREAM project [1]. The strength of the cipher relies on a ABSG component for
its security. It is a stream cipher with an 80-bit key and a 64-bit IV. The key
and IV are mixed and loaded into a 192-bit LFSR. A quadratic Boolean function
taps 14 bits from the LFSR and output bitstreams into the ABSG component.
After generating enough input bits, the output of the ABSG will fill up a buffer
and release the bits at a constant rate. For more details, please refer to the full
paper [3].

In our cryptanalysis of DECIM, we first assume the ABSG input bitstream can
be found. As described above, the ABSG input is generated from a (quadratic)
filter function generator. Thus we can form quadratic equations which involves:

(
192
2

)

+
(

192
1

)

+ 1 = 18529 (4)

monomials in terms of the 192 unknown LFSR bits. By collecting 18529 ABSG in-
put bits (filter function output), we can form this number of quadratic equations.
Then by a linearization process where we replace each linear/quadratic monomial
by a new variable, we can solve the linear system to recover the secret initial state
of the LFSR, i.e. break the DECIM cipher. The complexity to solve the linear sys-
tem by Gaussian elimination is 185293 ≈ 242.53. This complexity can be improved
to 185292.376 ≈ 233.69 if we apply the Coppersmith-Winograd method [5].

Thus we are left with the task of uncovering 18529 bits of the ABSG in-
put. From the simulations documented in Tables 4 and 5, we showed that we
can retrieve 18529 ABSG input bits within minutes, based on approximately
18529/3 ≈ 6086 DECIM keystream bits. Hence the overhead of the side channel
attack is small.

The difficulty lies in the actual implementation of the attack. A possible way
is to control the clocking of the ABSG. Once that is done, we can easily do
a phase shift attack by halting the ABSG for a brief moment while the LFSR
resume operation as normal. Bits generated from the LFSR will be discarded by
the ABSG since it stops operation for that short moment, creating a “shift” in
the input sequence. To implement the Bit Fliping Attack, one must be able to
control the bits before it is parsed into the ABSG.

We have studied the key/IV mixing component of DECIM and have not found
any weakness in them. The timing analysis of Section 3 is also not possible since
the linear complexity L = 18529 is too huge, making the attack worse than brute
force.

Side Channel Attacks on Irregularly Decimated Generators 127

8 Conclusion

This paper shows some side channel weakness in using irregularly decimated
generators as components in ciphers like DECIM. While the actual attack might
face some practical issues [7], it can be used as a trapdoor in the cipher. This
paper hopes to provide more design awareness for side channel attacks.

In summary, we learned that the size of the buffer affects the security of the sys-
tem from timing attacks. Also ciphers must be resistant against the fault attacks
as we shown before. Most importantly, key/IV setup must be complex enough to
prevent weak IV pairs. From the simulations, we know that there are keys (input
stream) that are very hard to recover from the fault attacks. The study of these
strong keys will be just as interesting. Other future works are to formalize the com-
plexity for the fault analyses and to improve the attack via correlation attack.

References

1. ESTREAM Phase 3 Candidates, can be found at
http://www.ecrypt.eu.org/stream/phase3list.html

2. Biham, E., Shamir, A.: Research announcement: A New Cryptanalytic Attack on
DES, found at http://www.fit.vutbr.cz/cvrcek/cards/newdes.ps

3. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Debraize, B., Gilbert, H.,
Goubin, L., Gouget, A., Granboulan, L., Lauradoux, C., Mimnier, M., Pornin,
T., Sibert, H.: DECIM, a new stream cipher for hardware applications, at
http://www.ecrypt.eu.org/stream/ciphers/decim/decim.pdf

4. Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg
(1994)

5. Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic Progressions.
Journal of Symbolic Computations 9, 251–280 (1990)

6. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

7. Gomulkiewicz, M., Kutylowski, M., Vierhaus, H.T., Wlaź, P.: Synchronization
Fault Cryptanalysis for Breaking A5/1. In: Nikoletseas, S.E. (ed.) WEA 2005.
LNCS, vol. 3503, pp. 415–427. Springer, Heidelberg (2005)

8. Gouget, A., Sibert, H.: The bit-search generator. In: The State of the Art of Stream
Ciphers: Workshop Record, Brugge, Belgium, pp. 60–68 (October 2004)

9. Gouget, A., Sibert, H., Berbain, C., Courtois, N., Debraize, B., Mitchell, C.: Anal-
ysis of Bit-Search Generator and Sequence Compression Techniques. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 196–214. Springer, Hei-
delberg (2005)

10. Hell, M., Johansson, T.: Some Attacks on Bit-Search Generator. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 215–227. Springer, Heidelberg
(2005)

11. Hoch, J.J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004)

12. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side Channel Cryptanalysis of Prod-
uct Ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.)
ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998)

http://www.ecrypt.eu.org/stream/phase3list.html
http://www.fit.vutbr.cz/cvrcek/cards/newdes.ps
http://www.ecrypt.eu.org/stream/ciphers/decim/decim.pdf

128 C.-W. Loe and K. Khoo

13. Meier, W., Staffelbach, O.: The Self-Shrinking Generator. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995)

14. Bernstein, D.: Cache-Timing Attacks on AES (2005),
http://cr.yp.to./antiforgery/cachetiming-20050414.pdf

15. Kocher, P.C.: Timing attacks on implementation of Diffie-Hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

http://cr.yp.to./antiforgery/cachetiming-20050414.pdf

Side Channel Attacks on Irregularly Decimated Generators 129

9
A

p
p
e
n
d
ix

T
a
b
le

4
.
S
im

u
la

ti
o
n

o
f
th

e
P

h
a
se

-S
h
if
t

F
a
u
lt

A
tt

a
ck

o
n

1
0
0
0
0

A
B

S
G

S
a
m

p
le

s
w

it
h

In
p
u
t

L
en

g
th

1
2
8
,
2
5
6

a
n
d

1
8
5
2
9

B
it
s

F
a
u
lt
s

1
2
8

(1
0
0
0
0

sa
m

p
le

s)
2
5
6

(1
0
0
0
0

sa
m

p
le

s)
1
8
5
2
9

(1
0
0

sa
m

p
le

s)
T

im
e

S
u
cc

es
s

T
im

e
S
u
cc

es
s

T
im

e
S
u
cc

es
s

<
1
s

<
1
m

in
<

1
s

<
1
m

in
<

1
0
m

in
>

1
0
m

in
<

1
m

in
<

5
m

in
<

1
0
m

in
>

1
0
m

in

2
9
9
7
8

2
2

4
9
.8

7
%

9
5
9
6

3
2
0

6
0

2
4

4
9
.6

7
%

6
1

3
0

3
6

5
4
.0

0
%

3
9
9
8
5

1
5

7
4
.7

6
%

9
8
4
2

1
1
6

2
4

1
8

7
5
.4

1
%

7
9

4
0

1
7

7
6
.0

0
%

4
9
9
9
3

7
8
7
.7

3
%

9
9
0
3

7
9

1
3

5
8
8
.1

1
%

8
7

2
0

1
1

8
7
.0

0
%

5
9
9
9
2

8
9
3
.5

0
%

9
9
6
3

2
6

7
4

9
4
.0

4
%

9
6

0
0

4
9
6
.0

0
%

6
1
0
0
0
0

0
9
7
.0

4
%

9
9
7
2

2
6

1
1

9
6
.7

9
%

9
9

0
0

1
9
9
.0

0
%

7
9
9
9
9

1
9
8
.4

5
%

9
9
9
2

7
0

1
9
8
.7

0
%

9
7

1
0

2
9
7
.0

0
%

8
1
0
0
0
0

0
9
9
.1

6
%

9
9
9
1

3
4

2
9
9
.1

6
%

1
0
0

0
0

0
1
0
0
.0

0
%

9
1
0
0
0
0

0
9
9
.6

4
%

9
9
9
7

1
1

1
9
9
.5

3
%

1
0
0

0
0

0
1
0
0
.0

0
%

1
0

1
0
0
0
0

0
9
9
.7

9
%

1
0
0
0
0

0
0

0
9
9
.8

2
%

1
0
0

0
0

0
1
0
0
.0

0
%

130 C.-W. Loe and K. Khoo

T
a
b
le

5
.
S
im

u
la

ti
o
n

o
f
th

e
B

it
-F

li
p
p
in

g
F
a
u
lt

A
tt

a
ck

o
n

1
0
0
0
0

A
B

S
G

S
a
m

p
le

s
w

it
h

In
p
u
t

L
en

g
th

1
2
8
,
2
5
6

a
n
d

1
8
5
2
9

B
it
s

N
u
m

b
er

1
2
8

(1
0
0
0
0

sa
m

p
le

s)
2
5
6

(1
0
0
0
0

sa
m

p
le

s)
1
8
5
2
9

(1
0
0

sa
m

p
le

s)
o
f

T
im

e
S
u
cc

es
s

T
im

e
S
u
cc

es
s

T
im

e
S
u
cc

es
s

F
a
u
lt
s

<
1
s

<
1
m

in
<

1
s

<
1
m

in
<

1
0
m

in
>

1
0
m

in
<

1
m

in
<

5
m

in
<

1
0
m

in
>

1
0
m

in

2
9
9
7
0

3
0

4
4
.9

7
%

9
6
4
8

2
7
7

5
0

2
5

4
6
.9

8
%

8
4
9

3
4
0

4
2
.0

0
%

3
9
9
9
3

7
7
5
.0

4
%

9
8
0
8

1
4
6

3
4

1
2

7
5
.6

0
%

7
6

1
0

2
3

7
1
.0

0
%

4
9
9
9
4

6
8
7
.4

9
%

9
9
2
1

6
3

1
3

3
8
8
.0

7
%

9
5

1
0

4
9
0
.0

0
%

5
9
9
9
7

3
9
3
.0

3
%

9
9
6
4

3
3

2
1

9
3
.3

9
%

8
2

1
2

0
6

9
3
.0

0
%

6
9
9
9
8

2
9
6
.8

6
%

9
9
8
3

1
2

3
2

9
6
.8

2
%

1
0
0

0
0

0
1
0
0
.0

0
%

7
1
0
0
0
0

0
9
8
.6

0
%

9
9
8
0

1
5

4
1

9
8
.4

3
%

1
0
0

0
0

0
1
0
0
.0

0
%

8
1
0
0
0
0

0
9
9
.2

0
%

9
9
9
3

7
0

0
9
9
.0

7
%

1
0
0

0
0

0
1
0
0
.0

0
%

9
1
0
0
0
0

0
9
9
.5

9
%

9
9
9
5

4
0

1
9
9
.5

8
%

1
0
0

0
0

0
1
0
0
.0

0
%

1
0

1
0
0
0
0

0
9
9
.7

6
%

1
0
0
0
0

0
0

0
9
9
.8

5
%

9
9

0
0

1
9
9
.0

0
%

Asynchronous Pseudo Physical Memory

Snapshot and Forensics on Paravirtualized
VMM Using Split Kernel Module

Ruo Ando, Youki Kadobayashi, and Youichi Shinoda

National Institute of Information and Communication Technology,
4-2-1 Nukui-Kitamachi, Koganei,

Tokyo 184-8795 Japan
ruo@nict.go.jp

http://www2.nict.go.jp/y/y212/index en.html

Abstract. VMM (virtual machine monitor) provides the useful inspec-
tion and interposition of the guest OS. With proper modification of the
guest OS and VMM, we can obtain incident-driven memory snapshot
for malicious code forensics. In this paper we propose an asynchronous
memory snapshot and forensics using split kernel module. Our split ker-
nel module works for the virtualized interruption handling, which notifies
the security incident on the guest OS. On frontend, we insert virtualized
interruption into source code of MAC (mandatory access control) module
and other security modules. Then, backend kernel module receives inter-
ruption as the asynchronous incident notification. In experiment, we take
RAM snapshot of LKM-rootkit installation using system call extension.
Frequently appeared strings are extracted in order to find the evidence
memory blocks which was assigned for LKM-rootkit. Also, it is showed
that asynchronous snapshot enables us to find the evidence of malicious
software in memory snapshot by simple string analysis in linear time.

Keywords: Asynchronous snapshot, paravirtualized VMM, memory
forensics, virtualized interruption, split kernel module.

1 Introduction

1.1 Virtual Machine Monitor

VMM (virtual machine monitor) is a thin layer of software between the physical
hardware and the guest operating system. The rapid increase of CPU perfor-
mance enables VMM to run several operating systems as virtual machine, shar-
ing (multiplexing) CPU, memory and I/O devices in reasonable processing time.
In [1], it is pointed that recent VMM is a successful implementation of micro-
kernels. Under the guest OS, VMM runs directly on the hardware of a machine
which means that VMM can provides the useful inspection and interposition of
the guest OS.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 131–143, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

132 R. Ando, Y. Kadobayashi, and Y. Shinoda

1.2 HIDS, NIDS and VMM Based IDS

IDS (Intrusion detection system) is classified into HIDS (Host-based IDS) and
NIDS (Network-based IDS). Previously, there are tradeoffs between NIDS and
HIDS about visibility and attack residence. HIDS provides good visibility. How-
ever, HIDS has weaker isolation than NIDS. That is, once the operating system
running HIDS has been compromised, attacker can stop HIDS. On the other
hand, NIDS offer higher attack residence instead of the cost of visibility. In [6],
it is pointed that VMM-based IDS can provide good visibility while maintaining
secure isolation for the IDS. VMM-based IDS takes advantages in three points,
isolation, inspection and interposition. Besides, the utilities of VMM makes it
possible to take timely snapshot of the pseudo physical (virtualized) memory of
the guest OS.

1.3 Memory Snapshot and Forensics Using VMM

VMM has access to all of VM’s state. VMM enables us to access all events of
CPU, memory and I/O devices of the guest (virtualized) OS. In previous oper-
ating system, it is not easy to take snapshot of the system itself. This is partly
possible by using debuggers, but it is still not easy to capture all of system’s state.
It is important for us IDS designers that with proper modification of VMM and
guest OS, automatic snapshot driven by security incidents is possible. In this pa-
per we propose an asynchronous pseudo physical memory snapshot and forensics
on paravirtualized VMM using split kernel module. Once split kernel module is
implemented and registered correctly, the modification is simple. Timely mem-
ory snapshot is useful for detecting and inspecting malicious software on the
guest OS.

Asynchronous memory snapshot enables us to extract evidence memory blocks
by simple string analysis. By frequently appeared string analysis, we can know
malware (malicious software) of which name is unknown and intruder’s behavior
from our memory snapshot. Previous malware detector is basically signature-
based, which means it cannot detect the malware of which name is not matched
(unknown). Attackers can easily avoid black-list based detection by changing or
obfuscating the signature of their malware.

Our forensics is n-gram frequency analysis based. We can discover and sort the
parts of memory snapshot according to frequently appeared strings. By doing
this, we can detect which blocks was used by attacker (assigned for malware
operation). Then, we can extract the further information of malware from evident
blocks. Let us discuss the example:

72 65 5f 72 6f 6f 74 5f 66 69 6c 6c 64 69 72 20 re_root_filldir
6e 61 6d 65 20 2d 3e 20 74 65 73 74 c0 bc 5e 47 name -> test..^G
20 0a 4d 61 79 20 33 31 20 30 35 3a 31 39 3a 31 .May 31 05:19:1
32 20 6c 6f 63 61 6c 68 6f 73 74 20 6b 65 72 6e 2 localhost kern
65 6c 3a 20 61 64 6f 72 65 5f 72 6f 6f 74 5f 66 el: adore_root_f
69 6c 6c 64 69 72 20 6e 61 6d 65 20 2d 3e 20 6f illdir name -> o
75 74 6f c7 bc 5e 47 20 0a 4d 61 79 20 33 31 20 uto..^G .May 31

Asynchronous Pseudo Physical Memory Snapshot 133

Table 1. Frequently-appeared strings in memory snapshot. Snapshot is taken on XEN
kernel 2.6.18 with LKM-Rootkit “adore” installed.

name grep hit name grep hit

kernel 4699 usr 1651

driver 4937 xen 7544

module 3476 adore 1780

This is the part of memory dump (snapshot), which is used by malware in-
stallation. This hexadecimal dump means that function (system call) “filldir” is
changed to adore root filldir on May 31. Adore is the name of malware which is
appeared frequently in memory dump. To extract such a information, memory
snapshot needs to be obtained timely during the execution of some system calls
on the guest OS. In previous signature-based system, if the word of “adore”
is not in database, we cannot detect it. In proposed system, once the memory
snapshot is taken timely, this part of memory dump is extracted automatically
by simple n-gram analysis.

2 Proposed Method

Proposed method is divided into two operations, architecture modification and
memory inspection. First, we append split kernel module to paravirtualized
VMM. Second, we insert probe code into the points where exploitation could
be occurred. For example, i-node permission of secure OS, gcc security exten-
sion and security library could be inserting points. Also, some important system
calls (such as create module) need to be modified. Third, we extract frequently
appeared n-gram from RAM snapshot. In this process, we divided RAM snap-
shot into M blocks. Finally, we sort strings according to frequency and choose
top N. We can find the evidence block which is used by malware as follows.

for i to N
for j to M

grep string[i] EVENT_DRIVEN_SNAPSHOT_BLOCKS[j]
next

next

Then the evidence blocks introduced in section 1 are extracted automatically.
Motif in Figure 1 means a string that appears in memory snapshot frequently.
Table 1 shows example of motif on kernel memory. In Linux, kernel code is mem-
ory resident. So the string such as kernel, driver and module appears frequently.
In this case of Table 1, snapshot was taken just when LKM-rootkit “adore” was
installed. In this snapshot, string adore appears 1780 times. Even if attacker
installs software of which name is unknown (new to signatures), the name of
the malware appears as frequently as other frequent strings. Our approach is
frequent string discovery based.

134 R. Ando, Y. Kadobayashi, and Y. Shinoda

modification of VMM

implementation of split device driver

snapshot of RAM of infected system

motif extraction of RAM snapshot

extract RAM blocks of which motif appears frequenctly

ARCHITECTURE MODIFICATION 1

ARCHITECTURE MODIFICATION 2

MEMORY FORENSICS 1

MEMORY FORENSICS 2

SNAPSHOT

Fig. 1. Flow chart of proposed method. Proposed method is divided into three steps:
architecture modification, snapshot and memory forensics.

3 Related Work

VMM is also called hypervisor. Hypervisor is not new technology, originated
from IBM mainframe in 1960s. However, VMM now offers huge potential to
generic servers about consolidation and secure isolation [2]. Classical aspects of
secure kernel for VMM is discussed in [3][4]. Recently, XEN [5][6] and KVM
(kernel virtual machine) [7] are going to mainline of Linux kernel.

To obtain system control, security module needs to be at lower-level of system.
With the deployment of VMM under operating system, some security applica-
tions of VMM have been proposed. The design and deployment of IDS on VMM
is discussed in [8]. They propose VMI (virtual machine introspection) applied for
IDS policy management. Some of the LKM-rootkit is tested to validate their sys-
tem. In [9][10], moving functionality of MAC to outside guest VM is discussed.
However, in these papers, memory forensics to extract further information of
malware is not discussed explicitly.

Concerning another advantage of VMM, VMM provides new concepts for
verification and debugging. These are called as deterministic replay [11] or time-
travel debugging [12] which is also useful for security. Security application of
logging and replay using VMM are discussed in [13]. However, their paper is
not specified for the detection of kernel mode malware such as LKM-rootkit.

Asynchronous Pseudo Physical Memory Snapshot 135

Computer forensics is much concerned with rootkit detection and inspection.
VMM based rootkit is discussed on [14]. In [15], they do not mention in detail
how to detect the event of installation of VMR. The thrust of this paper is the
specific modification of VMM architecture in order to enhance memory snapshot
for malware forensics. Besides detection, proposed system enables us to extract
further information of the exploitation of kernel based malware. Once the split
kernel module is implemented and registered correctly, modification of guest is
simple. Also, evidence memory block can be extracted by a simple string analysis.

4 Paravirtualized VMM of XEN

In this paper we implement the proposed system on virtual machine monitor
XEN. Virtualization technology is divided into two categories: full-virtualization
and para-virtualization. Para-virtualization needs kernel-modification in order
to run guest OS on ring 0 at the same time. Full-virtualization need a new
CPU mechanism such as Virtualization Technology of Intel(R) and AMD-V
of AMD(R), which makes it possible to run VMM on specified mode. Para-
virtualization is more lightweight particularly about I/O performance. Another
advantage of para-virtualization is that we can insert original hypervisor call
into source code of guest kernel. This enables us to construct new (specified for
security) notification channel between hosted OS and VMM.

Figure 2 illustrates architecture of XEN. Domain U (guest OS) has the vir-
tualized frontend driver, like proxy for I/O access for real device driver under
Domain 0 (host OS). I/O request of the process of guest OS goes through the
split device drivers (backend and frontend driver).

4.1 Event-Channel of XEN

Paravirtualized VMM has the asynchronous notification mechanism between
guest OS and privileged OS. In XEN, hardware access request of domain U
goes through frontend and backend driver using event-channel. Event channel
is the virtualized interruption mechanism for activating interruption from guest
domain (U) to host domain(0). In proposed system, we newly construct event
channel for the notification of security event on guest OS.

4.2 Split Kernel Module

Figure 2 shows generic framework of split kernel module of virtual machine
monitor. Guest OS (domain U) has frontend kernel module. Host OS (domain
0) has backend kernel module. These modules communicate with each other by
virtualized interruption and shared memory. In XEN, virtualized interruption
is called event channel. The mechanism of shared memory is called grant table.
When the interruption port is activated by event-channel, string (information)
in grant table is transferred between domains.

136 R. Ando, Y. Kadobayashi, and Y. Shinoda

FRONTEND
DRIVER

RAM
DRIVER

BACKEND
DRIVER

DEVICE
DRIVER

NOTIFICATION CHANNEL

DOMAIN 0 (HOST OS)
XEN KERNEL

DOMAIN U (GUEST OS)
SPARSE KERNEL

VIRTUAL MACHINE MONITOR
(HYPERVISOR)

PROC PROCPROC

KERNEL

PROC PROC (XM)

I/O REQUEST

READ / WRITE

Fig. 2. Paravirtualized VMM. Guest kernel is modified to “sparse kernel” and split
kernel module is added. IRQ goes through frontend and backend kernel module.

FRONTEND KERNEL MODULE

BACKEND KERNEL MODULE

GUEST OS

I / O REQUEST

DRIVERS / DEVICES

I / O REQUEST

EVENT CHANNEL SHARED MEMORY

Fig. 3. Split kernel module consists of frontend and backend one. These two modules
communicate by event-channel and shared memory. Event channel is the virtualized
interruption. Shared memory mechanism is called grant table.

Asynchronous Pseudo Physical Memory Snapshot 137

5 Asynchronous Notification Using Split Kernel Module

In proposal method, memory snapshot need to be taken timely for frequency
analysis of string. Polling or sequential mechanism is not proper to cope with
the security incidents. Particularly, on-line or asynchronous mechanism is neces-
sary for inspecting malware installation and its behavior. In proposed system we
construct the asynchronous notification channel using split kernel module (device
driver). When security incidents (such as buffer overflow, malware installation
and malicious resource access) has been occurred on the guest OS, these are
notified to our frontend device driver as virtualized interruption. Then, the noti-
fication is transferred to backend device driver through our notification channel.
Kernel module is suitable for coping with asynchronous security incidents.

In modified VMM, the detected event is translated as a hardware interrupt
(IRQ). Let us show the list of the guest OS.

256: 1782 Dynamic-irq timer0
257: 0 Dynamic-irq resched0
258: 0 Dynamic-irq callfunc0
259: 227 Dynamic-irq xenbus
260: 187 Dynamic-irq xencons
261: 891 Dynamic-irq blkif
262: 0 Dynamic-irq blkif
263: 0 Dynamic-irq eth0
264: 0 Dynamic-irq sec-notify

This is the list of dynamic (virtualized) IRQs of the guest OS. We have obtained
this list by “cat /proc/interrupt”. 261 is interrupt handler of block device. 262
is swap. 263 is network interface. 264 sec-notify is our frontend driver of split
kernel module. We append 264 dynamic-irq sec-notify and by using this IRQ,
the incident notification is transferred to VMM.

Once our driver is registered correctly, modification of guest OS is very simple.
All we need to do is inserting this code into some points of guest OS.

int port=9;

evtchn_op_t op;
op.cmd = EVTCHNOP_send,
op.u.send.port = port;

(void)HYPERVISOR_event_channel_op(&op);

This code is activating event-channel and sending the interruption signal to our
frontend drivers in port 9. In this case, port number 9 is assigned to Dynamic-
IRQ 264. By inserting this code, probes of guest OS can inform the incident of
VMM and the host OS. The incident notification signal goes through frontend
driver, VMM, backend driver and finally reach VM manager process of host OS.
The deployment of proposed system with split kernel module is completed in
these steps.

138 R. Ando, Y. Kadobayashi, and Y. Shinoda

(1) Implementing front/backend driver (split kernel module)
(2) Registering driver to Xenstore
(3) System call extension: inserting hypervisor call

into system call (create_module)
(4) MAC extension: inserting hypervisor call

into i-node permission checker
(5) Buffer overflow handling: inserting hypervisor call

into GCC-extension or fault handler

Xenstore in (2) is the utility of XEN, device database of the guest OS. By
step (3)(4) and (5), hypervisor call (the code of event channel) is inserted into
probes. By doing this, secure OS and other protection module can communicate
with our split device driver. We discuss the step (3) and (4) in the next section.
These steps are completed only by inserting five lines of code above into each
security module.

6 Enhancing Memory Snapshot for Malware Forensics

Compared with other operating systems, Linux has not paid much attention for
debugging facilities inside kernel. Until Linux 2.6.16 (or later) is modified to be
able to be run on VMM, kernel memory dump needs additional utility inside the
guest OS. Fortunately in XEN, command “xm save” provides snapshot of mem-
ory. Memory snapshot is indispensable for malware forensics. In this section we
discuss the way to take a timely snapshot of malicious behavior and analyze it.

FRONTEND
DRIVER

RAM
DRIVER

BACKEND
DRIVER

DEVICE
DRIVER

NOTIFICATION CHANNEL

DOMAIN 0
(HOST OS)

DOMAIN U
(GUEST OS)

VMM

PROC PROCPROC SNAPSHOT PROC

[1]

[3]

[4]

[2]MAC MODULE
KERNEL

Fig. 4. Incident-driven memory snapshot

Asynchronous Pseudo Physical Memory Snapshot 139

Figure 4 shows proposed snapshot system. Our method consists of four steps. In
step [1] and [2], buffer overflow, LKM installation and illegal file access are
detected the modification of exception handler, secure OS module and gcc-
extension. In step [3], the notification of incidents goes from frontend driver
to backend driver (interruption is activated). In step [4], domain management
tools (XM) takes snapshot of RAM.

6.1 LKM-Rootkit

LKM (Loadable kernel module) is a kind of module which is plugged (embedded)
dynamically into kernel. Unfortunately, this mechanism is also used for stealth
rootkit implementation. LKM-rootkit changes core system of kernel such as sys-
tem call table and proc file system. Therefore, once LKM-rootkit is installed, it
is not easy to detect it by the application running on user space. VMM takes
advantages in coping with this malware because VMM is deployed “below LKM-
rootkit” and can hook illegal changes on the guest OS.

6.2 System Call Extension

We insert the code of event-channel into the source code of create module. Cre-
ate module is the system call, which is invoked when new module is installed into
kernel. By the modification of create module, we can obtain memory snapshot
just when LKM rootkit is installed. Also, we modified the system calls chown
or lchown. After the installation of LKM rootkit, these system calls are used to
hide file and process.

6.3 Behavior Detect Using MAC

Another extension of proposed system is inserting the of code of event-channel
into LSM (Linux Security Module) code. In this paper we apply MAC extension
for LIDS (Linux Intrusion Detection System) [15]. LIDS is security patch and
admin tools for Linux kernel to achieve MAC framework. We insert hypervisor
call EVTCHN send into i-node permission routine of LIDS as follows:

static int
lids_inode_permission(struct inode *inode, int mask,
struct nameidata *nd)

When READ/WRITE request is hooked, we can get detailed information
from inode.i ino, inode.i sb.s dev and d.d iname. By using MAC module, we
can obtain memory snapshot when illegal file access (such as /proc and /tmp)
is occurred on the guest OS.

7 Experimental Result

In experiment, we count frequency of 5-gram (5-characters strings) found in
128MB snapshot of RAM. We divide 128MB RAM into 1MB*128 blocks.

140 R. Ando, Y. Kadobayashi, and Y. Shinoda

The number of strings found

0

200

400

600

800

1000

1200

1400

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

RAM block 1th - 64th

all strings string "adore"

Fig. 5. The number of five characters strings (5-gram) found. The string adore is found
in 14 blocks. Perhaps the blocks of which the frequency is relatively small including
adore are important (34 and 38).

The number of strings found

0

200

400

600

800

1000

1200

1400

1600

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

RAM block 65th - 128th

all strings string "adore"

Fig. 6. The number of five characters strings (5-gram) found. The string adore is found
in 13 blocks. The blocks of which the frequency is relatively small including adore are
important (66 and 121).

Asynchronous Pseudo Physical Memory Snapshot 141

Table 2. Numerical result of extracting the string adore from memory snapshot. The
number of blockswhere adorewas found is 27.Proposedmethod is linear-algorithmbased.
Computing time is constant regardless of the number of strings found and grep hits.

the number of strings found 47618 strings

grep hits (1-64) with strings found 51908 blocks

grep hits (65-128) with strings found 36691 blocks

the number of blocks with “adore” found 27 blocks

grep time (1-64) 22.198s

grep time (65-128) 23.433s

grep time with grep -C N adore (1-64) 20.681s

grep time with grep -C N adore (65-128) 20.229s

grep hits (1-128) with strings insmod 67 hits

Figure 5 and 6 shows the number of times 5-gram found on 1-64th and 65-128th
blocks. Also, the frequency of the string “adore” is plotted. The number of blocks
where the string adore is found is 27. The total number of 5-gram appeared
is 47618 with average 372.01 per one block. The total number of the string
adore appeared is 7842 with average 245.06 per one block. We can conclude the
frequency of the string adore is relatively high compared with other five strings.

Table 2 shows the number of strings found and grep time of 1-64th and 65-
128th block. Totally, we can search (grep) all the strings found within 45 seconds.
Also, we can search with the pipe option “grep -C N adore”. With N 10, we can
search all blocks for about 40 seconds. The string analysis is completed in linear
time about the size of memory.

8 Conclusion

VMM provides the useful inspection and interposition of the guest OS for han-
dling security incidents. With the proper modification of guest OS and VMM,
we can obtain incident-driven RAM snapshot of guest OS for malware forensics.
In this paper we propose the application of split kernel module for asynchronous
memory snapshot and forensics. On frontend, we insert virtualized interruption
code of event-channel (evtchn send) for activating virtualized IRQ of frontend
driver. Then, backend kernel module receives the interruption as the incident no-
tification through event-channel port. Once split kernel module is implemented
and registered correctly, modification of guest OS is simple. Only several lines
of code need to be inserted into the source code of MAC, system call and other
security modules. In experiment, we take RAM snapshot of LKM-rootkit in-
stallation using system call extension. Asynchronous (incident-driven) snapshot
makes it possible to detect malware installation and malicious behavior by sim-
ple n-gram string analysis. Numerical result shows that we can find the evidence
blocks of RAM within 40-45 seconds by grep command. Extraction is completed
in linear time about the size of memory. Fur further work, full virtualization is
promising topic for the extension of proposed system.

142 R. Ando, Y. Kadobayashi, and Y. Shinoda

References

1. Hand, S., Warfield, A., Fraser, K., Kotsovinos, E., Magenheimer, D.: Are Virtual
Machine Monitors Microkernels Done Right? In: Proceedings of the Tenth Work-
shop on Hot Topics in Operating Systems (HotOS-X) (June 2005)

2. Goth, G.: Virtualization: Old Technology Offers Huge New Potential. IEEE Dis-
tributed Systems Online 8(2) (2007)

3. Karger, P.A., Zurko, M.E., Bonin, D.W., Mason, A.H., Kahn, C.E.: A Retrospective
on the VAX VMM Security Kernel. IEEE Trans. Software Eng. 17(11), 1147–1165
(1991)

4. Karger, P.A., Zurko, M.E., Bonin, D.W., Mason, A.H., Kahn, C.E.: A Retrospective
on the VAX VMM Security Kernel. IEEE Trans. Software Eng. 17(11), 1147–1165
(1991)

5. XEN virtual machine monitor,
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003. Pro-
ceedings of the 19th Symposium on Operating System Principles, Bolton Landing,
NY (October 2003)

7. KVM: Kernel-based virtualization driver, available at: http://kvm.qumranet.com/

8. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture
for Intrusion Detection. In: NDSS 2003. Proceedings of Network and Distributed
System Security, pp. 191–206 (February 2003)

9. Quynh, N.A., Ando, R., Takefuji, Y.: Centralized Security Policy Support for Vir-
tual Machine. In: LISA 2007. Proceedings of USENIX, 20th Large Installation
System Administration Conference (December 2006)

10. Sailer, R., Jaeger, T., Valdez, E., Caceres, R., Perez, R., Berger, S., Griffin, J.L., van
Doorn, L.: Building a MAC-Based Security Architecture for the Xen Opensource
Hypervisor. In: Srikanthan, T., Xue, J., Chang, C.-H. (eds.) ACSAC 2005. LNCS,
vol. 3740, Springer, Heidelberg (2005)

11. Xu, M., Malyugin, V., Sheldon, J., Venkitachalam, G., Weissman, B.: ReTrace:
Collecting Execution Trace with Virtual Machine Deterministic Replay. In: MoBS
2007. Proceedings of Third Annual Workshop on Modeling, Benchmarking and
Simulation (June 2007)

12. Bhansali, S., Chen, W.-K., De Jong, S., Edwards, A., Drinic, M.: Framework for
Instruction-level Tracing and Analysis of Programs. In: VEE 2006. Proceedings of
Second International Conference on Virtual Execution Environments (June 2006)

13. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M., Chen, P.M.: ReVirt: Enabling
intrusion analysis through virtual-machine logging and replay. In: OSDI 2002. Pro-
ceedings of the 2002 Symposium on Operating Systems Design and Implementation
(December 2002)

14. King, S.T., Chen, P.M., Wang, Y.-M., Verbowski, C., Wang, H.J., Lorch, J.R.:
SubVirt: Implementing malware with virtual machines. In: Proceedings of IEEE
Symp. on Security and Privacy (the Oakland Conference) (May 2006)

15. LIDS: Linux Intrusion Detection System, available at http://www.lids.org/

16. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F.C.M., Anderson, A.V.,
Bennett, S.M., Kagi, A., Leung, F.H., Smith, L.: Intel Virtualization Technology.
IEEE Computer 38(5), 48–56 (2005)

http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
http://kvm.qumranet.com/
http://www.lids.org/

Asynchronous Pseudo Physical Memory Snapshot 143

Appendix: Modification for Full-Virtualization

Full virtualization is available in recent processors, for example, Intel(R) Virtual-
ization Technology (Intel-VT) [16]. In previous x86 processors, ring 0 is assigned
to VMM and guest OS at the same time. Therefore, guest OS need to be mod-
ified. Figure 7 shows the full-virtualization system where ring 0 is assigned to
VMM in VMX root mode and ring 0 is assigned to guest OS in non-root mode.
When the control switches from VMX non-root mode to VMX root mode, the
context of CPU is stored to VMM. On this mechanism, we can inform the inci-
dent on guest OS of VMM by changing special registers. Instead of implementing
the split device driver, we can insert code of changing registers (such as DR, TR
and MSR) into probes. For example, in KVM, the function handle dr of VMM
could be one of the inserting point. In the case XEN, software interruption for
the host OS needs to be generated in VMM.

APPLICATION

GUEST OS VMM

VMX non-root mode VMX root mode

RING 0

RING1-3

REGISTER

HOST OS

CPU

Fig. 7. Full virtualization. Ring 0 is available for both OS and VMM. With the proper
modification of the register handling function of VMM, notification can be transferred
to the host OS by changing special registers such as DR, TR and MSR.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 144–155, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Filesystem Activity Following a SSH Compromise:
An Empirical Study of File Sequences

Jesus Molina1, Xavier Chorin2, and Michel Cukier2

1 Department of Electrical and Computer Engineering
University of Maryland, College Park

chus@umd.edu
2 Center for Risk and Reliability

Department of Mechanical Engineering
University of Maryland, College Park
{xchorin,mcukier}@umd.edu

Abstract. A common method used to detect intrusions is monitoring filesystem
data. Once a computer is compromised, an attacker may alter files, add new files
or delete existing ones. Attackers may target any part of the filesystem, including
metadata along with files (e.g., permissions, ownerships and inodes). In this
paper, we will describe an empirical study that focused on computer attack
activity after a SSH compromise. Statistical data will be provided on the number
of files targeted and the associated activity (e.g., read, write, delete, ownership and
rights). We extend this analysis to include the sequence of files and activities
targeted. We focused on the most frequent sequences of consecutive files and
activities, then explored in greater detail the longer sequences using state
machines. Finally, we developed a simple state machine representing three major
observed attack activities (i.e., reconnaissance, malware download and password
change) with the number of transitions and time for each transition. The analysis
of individual and sequences of files and activities will help to better understand
attack activity patterns resulting in more efficient intrusion detection.

Keywords: SSH compromises, filesystem data, host intrusion detection
systems, intrusion detection systems evaluation.

1 Introduction

Intrusion detection systems (IDSs) are critical tools used to detect unauthorized access
to a system. IDSs can also detect if a system’s user has gained access to a
functionality that s/he is not privileged to. Filesystem data is a popular source of data
used by IDSs, which is the focus of this paper. IDSs also collect information from
other sources like system calls [1], memory [2] and network packets [3].

Tools based on filesystem data include integrity verifiers [4, 5], malware detectors
[6], and software sensors [7]. These tools are implemented in software [8], kernel
modules [9], part of the hypervisor of a virtualized system [10] and hardware [11].

Filesystems contain large amounts of information. Acquiring and analyzing all of
the data is often infeasible as it translates into severe performance penalties and

 Filesystem Activity Following a SSH Compromise 145

unacceptably long processing times. Hence, finding the attackers’ filesystem activity
patterns is required in order to optimize the information collected.

To date, most of these tools focus on possible information on an attack that is
included in a file, disregarding the sequence of filesystem activity after a compromise.
We expected to find important information that can be used to detect compromises in
filesystem activity patterns. We also address the issue of understanding the efficiency
of the data collected. Or, in other words, how long it will take an attacker to perform
detectable activity on a supervised file.

This paper describes an empirical study of filesystem activity after a security
compromise. Quantitative data was collected on the use of files targeted by attackers
while reading, writing, deleting and modifying the file metadata. State machines were
created based on file usage, to identify patterns between filesystem access and activity
associated with attacks (e.g., password changes and malware installations).

The paper is structured as follows. Section 2 contains a description of the
experimental setup. In Section 3, the collection and analysis of filesystem activity is
discussed. In Sections 4 and 5, we present statistics on the individual files and
sequences, respectively. Section 6 provides a discussion on filesystem sequences and
file efficiency for files strongly related to attack activity. Section 7 provides a
summary of related work, and Section 8 contains conclusions.

2 Experimental Setup

To collect data on attacker activity, we used a set of four high interaction Linux
honeypot computers. Refer to [12] for details regarding the testbed architecture. The
experimental setup is described in more detail in [13].

The four honeypots ran on an identical Linux disk image: a slimmed-down
installation of Fedora Core 3, updated with the latest patches as of October 10, 2006.
Since the primary interaction with the system was via SSH, the installation was
conducted in a text-mode environment (the X Windows System and associated
graphical programs were not installed).

To monitor attacker activity, we used a modified OpenSSH sever to collect
password attempts, syslog-ng to remotely log important system events including
logins and password changes, strace [14] to record system calls made by incoming
SSH connections and the Honeynet Project’s Sebek tool [15]. We added a single line
of code that used syslog to record attempted passwords to modify the OpenSSH
source tree. The program was concealed as a system script in order to prevent attacks
directed against strace.

Each honeypot had one privileged root account and five non-privileged user
accounts. We selected five usernames: admin, mysql, oracle, sarah and louise based
on the results from a study on the most commonly attempted usernames and
passwords. For each username, we rotated through four passwords (i.e., ‘username’,
‘username’123, password, and 123456). After a password modification, the honeypot
was redeployed and the next password was used. Two honeypots were set up with
strong root passwords. The other two honeypots had root accounts that rotated the
four passwords: root, root123, password and 123456.

146 J. Molina, X. Chorin, and M. Cukier

To enable a rapid turnaround, we used a pre-built disk image and automated scripts
to manage the honeypot’s deployment. We monitored the syslog messages from each
honeypot on a 24 hour cycle to check for logins and password changes. The honeypot
was redeployed after a password modification to prevent locking out other attackers.
To maximize the attackers’ activity on the filesystem following a password change,
we waited at least one hour before putting the disk image back onto the honeypot,
running the deployment script and continuing to monitor the live syslog data.

3 Data Analysis

Data was collected during the 24 day period from November 14 to December 8, 2006.
During this time attackers from 229 unique IP addresses attempted to log into the
honeypots 269,262 times (an average of 2,805 attempts per computer per day).
According to the syslog data, of 269,262 attempted attack, 824 logged in successfully
and 157 changed an account password. Results from an extensive analysis of the
syslog data was reported in [13].

The data analyzed in this paper consisted of system call data that were collected
with the strace tool [14]. Strace intercepts and records all system calls made by a
running process. We launched strace against the sshd daemon, switching on the built-
in functionality for strace to record the activity of all the children spawned. To
discriminate between compromises, we developed a script to isolate each different
compromise among the strace data. We defined a compromise as a successful login
followed by a bash session and all its children. Before processing attack sessions
further, all administrative activity required to transfer logs to a central database and to
reimage the honeypots were removed.

Using the strace data, we found 743 attacks compared to 824 attacks found by the
syslog data [13]. One reason these results differ is because of the difference in the
definition of a compromise used in syslog data (i.e., a successful login) versus strace
data (i.e., a bash session). Syslog data included SCP and SFTP connections and
aborted logins that were not included in the strace data. Moreover, some attackers
were able to compromise the strace logging capability. We verified the data collected
by strace against data collected by Sebek [15]. In particular, we identified strace data
collection disruptions by attackers to ensure that such events were rare. We found
four sessions in which strace failed to properly monitor violations. A careful
examination revealed that this occurred after the attacker issued a kill command to the
ssh daemon, thus terminating the daemon and strace recording. We do not believe that
this activity was performed because of the presence of strace, but rather because the
attackers’ goal was to launch a rogue ssh server in place of the existing one. Finally,
the strace logging capability was enabled at the beginning of the hour following a
reimaging. For instance if a honeypot was reimaged at 2:10, strace logging started at
3:00, meaning that successful connections in between were not logged.

For the remaining 743 attacks, we removed empty sessions. An empty session was
defined as a bash session with no activity other than a login and logout. To identify
these sessions, we determined the number of files read by sessions with no activity
and the commands that were run during these sessions. Then we matched sessions
ending with the same command or with fewer file reads. We verified that all sessions

 Filesystem Activity Following a SSH Compromise 147

with a greater number of files read contained some type of activity. To prevent errors
caused by the data collection process, we verified that the sessions ended with a
specific read activity that appeared in the login and logout. Using this procedure, a
total of 421 empty sessions were found. The large number of empty sessions indicates
that automatic tools are used to attempt dictionary attacks. After the tools achieve a
successful login, they report the correct login and password to the attacker; no
commands are executed.

The remaining analysis focused on the 320 non-empty sessions. The non-empty
session were processed to find the files written, read, deleted or whose ownership or
rights had changed. The scripts singled out all filesystem related system calls for each
process contained in a session. We stored this information by process ID to simplify
post-processing. Finally, the filesystem calls were processed to collect statistics for
each session and individual statistics for each file.

4 Statistics on Filesystem Activity: Files

In this section, we present statistics related to the number of files that were read,
written, deleted, or whose ownership or rights changed for the 320 non-empty
sessions in the strace data. Only unique file activities were analyzed (in other words,
duplicate file activities in the same session were discarded). For example, if a file was
read several times within a session, the read activity for the file was counted once.
However, if the same file was read and written to in the same session, the file was
counted twice: once as read and once as written.

Table 1 contains the per session minimum, maximum, average and standard
deviation of the number of files read, written, deleted or whose rights or ownership
changed. All attacks included many (minimum of 20) different files reads as
expected. However, surprisingly, some attacks completely lacked write or delete
activity, but included rights or owner changes. As expected, the average number of
files read was quite high (144.7) while the average number of files written was low
(32.1). More surprising was the low average number of files deleted (6.6). Also
interesting was the low average number of files whose rights changed (2.2) and the
large number of files whose owner changed (17.5). The average number of files
whose owner changed was significantly higher than the number of files deleted and
the number whose rights changed and was equal to half the number of files written.
More statistics on the number of files targeted can be found in [16].

We compiled the activity for each file that appeared at least once per session,
disregarding the type of action that produced the activity. We removed file activity
that was part of the normal login/logout process. We presented files with similar
purposes together to identify attack patterns.

Table 1. Statistics on the Number of Files Targeted

 Read Write Delete Rights Owner
Minimum 20 0 0 0 0
Maximum 484 656 418 42 852
Average 144.7 32.1 6.6 2.2 17.5
St. Dev. 78.3 90.2 41.4 5.7 96.6

148 J. Molina, X. Chorin, and M. Cukier

Reading files was the most common activity performed in the filesystem.
However, the number of unique files read was small compared to other activities. This
is partly because an important part of reading files is invoking libraries during
execution and files providing system information. Most attackers performed common
actions that led to a restricted set of libraries. For example, 165 sessions contained
/usr/lib/libcrack.so.2 and 143 sessions contained /usr/libresolv.so.2, which are
indications of password and network related activity, respectively. Malicious activity
was evident in the number of times certain files were read that were related to
hardware and software information. The read action /proc/cpuinfo appeared in 110
sessions and /proc/(PID)'/status in 97 sessions.

The most frequently written file was /etc/npasswd, which appeared in 161 sessions,
showing that most attackers attempted password modifications. Also noteworthy was
the corruption of related password files: /etc/shadow was corrupted in 14 sessions
while creating accounts with blank passwords. Another common malicious activity
was to install external programs: in a total of 57 sessions new files were created
containing malware. Surprisingly, while the tools carried diverse names, after
decompressing the malware, many shared common file names. For example,
unix2.users appeared in 17 sessions and psybnc.pid appeared in another 17 sessions.
The attackers’ use of the later file showed an interesting property: all processes
written to psybnc.pid appeared to be cloaked as harmless services (httpd, ssh, ntpd,
init). However, the files used were not cloaked as system files, thus showing the
filesystem data audit is a good vector to use to detect concealed malware posing as
system services.

IDSs often monitor written activity on system files, especially binary files to detect
rootkits and Trojan horses [17]. However, our results showed few attackers corrupted
these files. Only two sessions replaced binary files. Attackers modified key system
files (e.g., /etc/hosts.allow and /etc/services) in nine sessions.

Rights or ownership changes appeared most often as part of the malware
installation. They also appeared on binary files as part of rootkit installations (two
sessions) and as part of track deletions (two sessions).

Finally, the files that were deleted were those created by the attacker or in user
logs, e.g., (bash_login), showing the cleanup performed by attackers. We found that
most attackers neglected to perform cleanup, which was an unexpected finding.
History files containing activity information were deleted 19 times via direct delete
commands or targeted cleanup utilities. Leftover installation residues from malware
were deleted in a total of 12 sessions.

5 Statistics on Filesystem Activity: File Sequences

In this section, we focus on sequences of files and activities. We analyzed sequences
of consecutive files for the five activities considered (i.e., read, write, delete,
ownership and rights). Then, we focused on longer sequences of targeted files and
associated activity represented in state machines.

We define a state as a combination of a targeted file and the associated activity. For
example, reading file /etc/nsswitch.conf, deleting file /etc/group.lock, or changing the
rights of file /usr/lib/libsh/shsb are all defined as states. We define five states for the

 Filesystem Activity Following a SSH Compromise 149

activities associated with all the files created due to the installation and execution of
malware (“read EXTERNAL”, “write EXTERNAL”, “delete EXTERNAL”,
“ownership EXTERNAL” and “rights EXTERNAL”). We define the END state as
the state associated with the end of the session. Depending on the activity, we
obtained different numbers of states. We counted 730 states for reading, 19 for
writing, 129 for deleting, and only 3 and 1 for rights and ownership changes,
respectively. We also observed different numbers of sequences of consecutive files.
We observed 1954 sequences for reading, 20 for writing, 104 for deleting and only 3
and 1 for rights and ownership changes, respectively. The most frequently observed
sequences (i.e., the top five if more than five sequences were observed) of
consecutive states were (we provide in parenthesis the number of times this specific
sequence was found):

• File reading:
/proc/X/cmdline -> /proc/X/stat (14643)
/proc/X/stat" -> /proc/X/cmdline (9696)
/proc/X/status -> /proc/X/cmdline (5408)
/proc/X/stat -> /proc/X/status (4944)
/etc/selinux/config -> /proc/mounts (2687)

• File writing:
EXTERNAL -> EXTERNAL (6543)
bash_history -> END (238)
EXTERNAL -> bash_history (9)
EXTERNAL -> END (8)
/etc/shadow- -> /etc/shadow+ (7)

• File deletion:
EXTERNAL -> EXTERNAL (1592)
/etc/group.lock -> /etc/gshadow.lock (6)
/home/oracle/.Xauthority-n -> /home/oracle/.Xauthority-c (5)
/home/oracle/.Xauthority-c -> /home/oracle/.Xauthority-l (5)
/etc/passwd.lock -> /etc/shadow.lock (5)

• Ownership changes:
EXTERNAL -> EXTERNAL (3)

• Right changes:
EXTERNAL -> EXTERNAL (384)

With respect to file reading, the sequences corresponded to normal program behavior.
We observed that for file writing, the most frequent sequences were associated with
sequences from and to the EXTERNAL state, representing sequences of files written
when malware was installed and executed. The other sequences were linked to session
exits (i.e., the END state was the state associated with the end of the session). These
results show that there is a high frequency of files that are written to as the last action
in a session. The .bash_history files were not written to intentionally by attackers, but
by bash, when the user exited the session. In many sessions (238), writing the
.bash_history file was the last action that happened. For the remaining sessions (82),
the last action depended on the way the attacker exited the session and if s/he disabled

150 J. Molina, X. Chorin, and M. Cukier

bash_history logging. Hence a session that arrives to END without writing to bash
might be an indication of malicious activity. With respect to file deletion, the most
frequent sequences were from and to the EXTERNAL state representing sequences of
files deleted when some attackers deleted the malware that they had previously
installed. The other sequences are the result either of a password change or the
addition of a user. As for right and ownership changes, the most frequent sequences
are sequences from and to the EXTERNAL state representing sequences where files’
rights and ownerships were changed when malware was installed and executed. In
many cases we observed a file being written to followed by ownership changes before
another file was written to and its ownership changed, etc. Such behavior is typically
the result of a rootkit.

We now refine the analysis on the sequences of files targeted following an SSH
compromise by considering longer sequences represented using state machines. For
right and ownership changes, analyzing sequences of targeted files does not provide
additional insight compared to the analysis of the individual files and associated
activity described in Section 4. For the reading, writing and deletion attack activities,
we created a state machine, where each state represents a file with the corresponding
activity.

Over 1527 files contained some activity in the 320 non-empty sessions that led to
a very large state machine. Therefore, we simplified the state machine by
considering only transitions that occurred at least 150 times among the 320
sessions. In the simplified state machine (which is too large to be printed in this
paper), we have 100 states instead of 1527 and 133 transitions instead of 3307. The
state machine only has a few states with activity other than reading: write
/etc/nshadow, write EXTERNAL, rights EXTERNAL, write bash_history and
delete EXTERNAL. We observed several transitions occurred exactly 320 times,
which is equal to the number of non-empty sessions. These files were involved in
the login process following the SSH compromise. Certain files were clustered
depending on the attacker activity. For example, we found a branch associated with
downloading a file (the branch with the “read /usr/bin/wget” state). An excerpt of
this branch is shown in Fig. 1a. We also observed a sequence that represented
changing a password (the branch with the “read /usr/bin/passwd” state). Another
branch (with state “read /usr/bin/w”) can be linked to reconnaissance activity where
the attacker was checking who was logged on (Fig. 1b contains an excerpt of that
branch). Other reconnaissance activities can be spotted by following the branches
that include /proc/stat, /proc/cputime, etc.

Fig. 2 indicates that the last step of a session often consists of writing a file
(.bash_history). The last step can be initiated after a password change (write
/etc/nshadow) or the installation and execution of malware (write EXTERNAL).

To make the state machine associated with the files deleted more readable, we only
included transitions that were observed at least two times among the 320 non-empty
sessions. The first sequence of states shown in Fig. 3 indicated a password change.
The second sequence that consists of the delete EXTERNAL state, represents the
deletion of malware installers that often contain multiple files. The third sequence is
associated to the addition of a user.

 Filesystem Activity Following a SSH Compromise 151

 Fig. 1a. File Download Activity Fig. 1b. Reconnaissance Activity

Fig. 2. State Machine for Files Written

Fig. 3. State Machine for Files Deleted

152 J. Molina, X. Chorin, and M. Cukier

6 Attack Sequences Related to Attacker Activity

In this section, we focus on the transition patterns related to a reduced set of states,
where each state is associated to a typical attacker activity. The three states are: “read
/proc/stat”, associated with attacker reconnaissance, “write MALWARE”, associated
to downloading malware, and “write /etc/nshadow”, associated with a password
change. Fig. 4 and Fig. 5, respectively, represent the state machine with the number of
transitions between states and the average time, in seconds, between states.

Fig. 4. Attacker Activity State Machine Fig. 5. Attacker Activity State Machine Average

Time (in seconds)

In Fig. 4, we see that most attackers engaged in reconnaissance activities first (212

transitions to “read /proc/stat” from BEGIN). Modifying the password file is usually
performed after learning about the system: the largest number of transitions comes
from “read /proc/stat” (110). The most common action performed by an attacker
before exiting is reconnaissance. This may be because attackers want to verify the
final state of the machine or because the machine found could not satisfactorily
perform malicious activities. Attackers rarely do not conduct any activity on the
selected files; with just 41 transitions with only BEGIN to END. The “write
MALWARE” state is most likely to be reached by the attacker after writing the
password file or performing reconnaissance activities. This is natural, as the attacker
wants to make sure the malware has been successfully installed and can be controlled
at later time. Installing malware is usually the last file activity performed by the
attacker, and only five and 11 transitions occurred from “write MALWARE” to
“write etc/shadow” and to “read /proc/stat/”, respectively.

A commonly asked question with intrusion detection systems is how promptly an
attack can be detected when monitoring a specific file. In Fig. 5, we observed that
most attackers modified the password file after checking the system first, which takes

 Filesystem Activity Following a SSH Compromise 153

on average one minute. Malware is often installed later in the session, consuming an
average of 76 seconds if the malware installation occurs after the BEGIN state,
increasing the time to an average of 139 seconds for malware written immediately
after modifying the password. Installing malware took the longest time, and if it is the
last action of the attacker, finalizing this activity will occur on average after 300
seconds have elapsed. This shows that filesystem IDSs based on malware matching
will detect the attack later in the session, and most likely configuration files, including
the password file will have been modified by the attacker already. An interesting
result is how fast an attacker can modify the password file after the beginning of the
session, taking only 20 seconds.

7 Related Work

Previous work on attacker behavior tended to focus on descriptions of high-level
activity from an attacker-centric perspective. This was true for many publications
appearing in the “Know Your Enemy” series [18] that focused on honeypot-related
projects.

Alata and colleagues [19] performed an analysis of post-compromise attacker
behavior. They observed that the most common first step in an attack was a password
change. Most attackers also downloaded files (i.e. malicious programs), then tried to
install and run executables. Similarly, Raynal and colleagues [20] performed an in-
depth forensic analysis of post-compromise attacker behavior. They developed three
general categories of attacker behavior: discovery, installation and usage.

Our objective was to detail the impact of the activity described in attacker centric
studies from a defender-centric perspective, in this case the filesystem. Few such
studies exist, all using other data sets. Killourhy and colleagues [21] explored data
driven behavior to create a defense-centric taxonomy based on system call usage.
They created an attacker-defender testbed with 25 attacks launched against a target
machine vulnerable to all exploits. The behaviors of the 25 exploits were subdivided
based on the trace of system calls. Barse and Jonsson [22] conducted a similar study
to describe system log activity. They launched a set of attacks and described the
manifestations of the attacks on different types of system log data. In a follow up [23],
they described how to use the attack manifestations to automatically separate attacks
from normal behavior on system logs.

A similar study to ours focused on non-malicious activity was presented in [24].
Sequences of filesystem accesses on a Linux system were classified as normal or
anomalous, to create an anomaly-based IDS. The method was based on creating
patterns in filesystem access based on a group of 5 normal users. The results
displayed a false positive rate of 2%. This study could be complemented with known
malicious patterns in order to decrease the false positive rate.

8 Conclusions

This paper describes an empirical study of filesystem activity after a security
compromise. Quantitative data was collected on the use of files targeted by attackers

154 J. Molina, X. Chorin, and M. Cukier

while reading, writing, deleting and modifying the file metadata. State machines were
created based on file usage, to identify patterns between filesystem access and activity
associated with attacks (e.g., password changes and malware installations).

The analysis of the files and associated activity pointed out three main attacker
activities: 1) reconnaissance, 2) password changes, and 3) malware download and
execution. When focusing on sequences of files and activities we observed, as
expected, that most involved file reading. Besides file reading, all other most frequent
activities involved the malware files. In the developed state machines, we also
matched some branches with the main three attacker activities. We then built a
simplified state machine based on these attacker activities to study the frequency of
transitions between states and the average transition times. In most cases,
reconnaissance is the first attacker activity, followed by changing the password.
Malware download and execution was observed less frequently. The longest observed
transition (between 200 and 300 seconds on average) is after having downloaded and
executed malware (the installation of the malware seems to take itself on average 200
seconds). The information regarding the individual and sequences of files and
activities and the frequency of transitions and the transition times, could be useful to
improve the efficiency of IDSs.

Acknowledgments. The authors thank Daniel Ramsbrock and Robin Berthier for
implementing the experiment that led to the data collected for this paper. This
research has been supported in part by NSF CAREER award 0237493.

References

1. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting Intrusions using System Calls:
Alternative Data Models. In: 1999 IEEE Symposium on Security and Privacy, pp. 133–
145. IEEE Computer Society Press, Los Alamitos (1999)

2. Petroni, N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - a Coprocessor-based Kernel
Runtime Integrity Monitor. In: 13th Conference on USENIX Security Symposium (2004)

3. Roesch, M.: Snort: Lightweight Intrusion Detection for Networks. In: 13th USENIX
Conference on Systems Administration, pp. 229–238 (1999)

4. Kim, G.H., Spafford, E.H.: The Design and Implementation of Tripwire: A File System
Integrity Checker. In: 2nd ACM Conference on Computer and Communications Security,
pp. 18–29. ACM Press, New York (1994)

5. AIDE: Advanced Intrusion Detection Environment. http://www.cs.tut.fi/ rammer/aide.html
6. Miretskiy, Y., Das, A., Wright, C.P., Zadok, E.: Avfs: An On-Access Anti-Virus File

System. In: 13th USENIX Security Symposium, pp. 73–88 (2004)
7. LIDS: Linux Intrusion detection system. http://www.lids.org
8. Wotring, B., Potter, B., Ranum, M.: Host Integrity Monitoring Using Osiris and Samhain.

Syngress Publishing Inc. (2005)
9. Patil, S., Kashyap, A., Sivathanu, G., Zadok, E.: Fs: An In-Kernel Integrity Checker and

Intrusion Detection File System. In: 18th USENIX Conference on System Administration,
pp. 67–78 (2004)

10. Litty, L.: Hypervisor-based Intrusion Detection. Master’s thesis, University of Toronto
(2005)

 Filesystem Activity Following a SSH Compromise 155

11. Molina, J., Arbaugh, W.A.: Using Independent Auditors as Intrusion Detection Systems.
In: 4th International Conference on Information and Communications Security, pp. 291–
302 (2002)

12. Panjwani, S., Tan, S., Jarrin, K.M., Cukier, M.: An Experimental Evaluation to Determine
if Port Scans are Precursors to an Attack. In: DSN 2005. International Conference on
Dependable Systems and Networks, pp. 602–611 (2005)

13. Ramsbrock, D., Berthier, R., Cukier, M.: Profiling Attacker Behavior Following ssh
Compromises. In: DSN 2007. International Conference on Dependable Systems and
Networks, pp. 119–124 (2007)

14. Strace, http://sourceforge.net/projects/strace
15. Sebek, http://www.honeynet.org/tools/sebek
16. Molina, J., Gordon, J., Chorin, X., Cukier, M.: An Empirical Study of Filesystem Activity

Following a SSH Compromise. In: ICICS 2007. 6th International Conference on
Information, Communications and Signal Processing (to appear, 2007)

17. Brumley, D.: Invisible Intruders: Rootkits in Practice. In: login: Magazine, Intrusion
Detection Special Issue (1999)

18. Honeynet, http://www.honeynet.org/papers/index.html
19. Alata, E., Nicomette, V., Kaaniche, M., Dacier, M., Herrb, M.: Lessons Learned from the

Deployment of a High-interaction Honeypot. In: EDCC 2006. 6th European Dependable
Computing Conference, pp. 39–46 (2006)

20. Raynal, F., Berthier, Y., Biondi, P., Kaminsky, D.: Honeypot Forensics, Part II: Analyzing
the Compromised Host. IEEE Security & Privacy 2(5), 77–80 (2004)

21. Killourhy, K., Maxion, R., Tan, K.: A Defense-centric Taxonomy Based on Attack
Manifestations. In: DSN 2004. International Conference on Dependable Systems and
Networks, pp. 102–111 (2004)

22. Barse, E.L., Jonsson, E.: Extracting Attack Manifestations to Determine Log Data
Requirements for Intrusion Detection. In: Yew, P.-C., Xue, J. (eds.) ACSAC 2004. LNCS,
vol. 3189, pp. 158–167. Springer, Heidelberg (2004)

23. Larson, U., Lundin-Barse, E., Jonsson, E.: METAL: A Tool for Extracting Attack
Manifestations. In: 2nd International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pp. 85–102 (2005)

24. Stolfo, S.J., Hershkop, S., Bui, L.H., Ferster, R., Wang, K.: Anomaly Detection in
Computer Security and an Application to File System Accesses. In: Foundations of
Intelligent Systems, pp. 14–28 (2005)

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 156–167, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Secure Virtual Execution Environment
for Untrusted Code

Yan Wen and Huaimin Wang

School of Computer, National University of Defense Technology,
Changsha, China, 410073

wenyan@nudt.edu.cn, whm_w@163.com

Abstract. This paper proposes a Secure Virtual Execution Environment called
Pollux for untrusted code. Pollux achieves both the OS isolation and the
functionality benefits provided by the isolated untrusted applications. It
accomplishes the OS isolation by introducing a hosted virtual machine as the
untrusted code container. The key feature of Pollux is its capability of
reproducing the host execution environment, thus the behavior of isolated
applications recurs as if they were running natively within the host OS. This
characteristic is accomplished by the novel local-booted technology, which
means the virtual machine boots not from a newly installed OS image but just
from the preinstalled host OS. Thus, Pollux provides security against potential
malicious code without negating the functionality benefits of benign programs.
This paper focuses on the architecture of Pollux and outlines the
implementation framework.

Keywords: Intrusion confinement, isolated execution, virtual execution
environment, security, virtual machine.

1 Introduction

With the widespread deployment of firewalls and other similar network-based
protection mechanisms, such as network intrusion detection systems and so forth, it
has become more difficult for attackers to break into target computers through direct
remote attack. However, even the best perimeter network-based solutions can be
easily defeated by an attacker that can induce users to download and execute
malicious programs. Under PC platform, users often execute downloaded
freeware/shareware or mobile code. The risk of damage to the user’s computer system
due to untrusted code is high, yet a significant fraction of users seem to be willing to
take this risk in order to benefit from the functionality offered by such code.

Some host-based mechanisms have been introduced to enhance the host security,
i.e., access control, virus detection, and so on. But access control can be fooled by
authorized but malicious users, masqueraders, and misfeasors. Although virus
detection and similar technologies can be deployed to detect widely prevalent
malicious codes, they are limited not only in theory but in practice, because in theory
it is undecidable whether an arbitrary program contains a computer virus [1, 2], and in

 A Secure Virtual Execution Environment for Untrusted Code 157

practice it is also very difficult to analyze the polymorphic or metamorphic virus code
accurately.

Sandboxing is a more promising approach for defending against potential
malicious code. In sandbox, the resource accesses required by untrusted code are
restricted to ensure security. The main drawback of sandboxing based approaches is
the difficulty of policy selection. Too often, sandboxing tools incorporate highly
restrictive policies that preclude execution of most useful applications. The net result
is that users end up choosing functionality over security.

As a supplementation, isolated execution is proposed to bound the damage caused
by undetected or detected intrusions during their latencies without negating the
functionality benefits of untrusted code. But under PC platform, current isolation
approaches cannot achieve both the OS isolation and execution environment
reproduction. The former is a prerequisite to make the system be immune to kernel-
mode malicious code, and the latter is the key to reproduce the behavior of the
untrusted code.

To address this problem, we propose a Secure Virtual Execution Environment
(Pollux) for untrusted code. The untrusted code container of Pollux is a hosted system
virtual machine (Pollux VM), so the OS isolation is guaranteed. With our local-
booted technology, Pollux VM can boot from the underlying host OS instead of a
newly installed OS image, viz. loads another instance of the host OS. In addition, no
privileged operations will be restricted in this local-booted OS. Hence, the accurate
behavior reproduction of untrusted code is assured while the host OS, acting as the
trusted applications’ container, is shielded from the effects of these untrusted code.
Thereby, Pollux achieves both OS isolation and the behavior reproduction of
untrusted applications, i.e., minimizing security risks without negating the
functionality benefits provided by isolated programs.

The rest of the paper is organized as follows. In Section 2, we discuss the
architecture of our approach and its advantages. Section 3 covers the implementation
details of Pollux. And Section 4 provides an evaluation of the functionality as well as
the Pollux performance. In Section 5, we review previous works on isolated execution
technology. Last, we summary the main features of Pollux and outline the future work
in Section 6.

2 The Architecture of Pollux

To accomplish both OS isolation and the functionality benefits of the untrusted code,
the isolation mechanism provided by Pollux must meet three requirements as follows:

Requirement 1 OS Isolation: The isolation mechanism should provide a virtual
computer system which is isolated from the trusted applications. From the point of
view of the trusted environment, this is a necessary condition for being resistant to the
attacks from privileged malicious code.

Requirement 2 OS and Application Transparency: No modification should be made
to the conventional OS and applications for deploying this isolation mechanism. This
requirement is composed of four sub-demands.

158 Y. Wen and H. Wang

Requirement 2A. The source code of conventional OS and applications should not be
patched for the isolation mechanism, because it is generally believed that there is no
way to get the source code of the prevalent commercial applications and OSes of PC,
such as Microsoft Windows etc.

Requirement 2B. Within the isolated untrusted environment, all the resource accesses
and the privileged operations should not be restricted to ensure the functionality of
isolated applications.

Requirement 2C. In trusted environment, the performance costs should be minimized.

Requirement 2D. The pre-existing host OS should not be reinstalled for the isolation
mechanism. Unlike mainframes that are configured and managed by experienced
system administrators, desktop and workstation PC’s are often pre-installed with a
standard OS and managed by the end-user. In this environment, it is extremely
important to allow the user to adopt isolation technology without losing the ability to
continue using his existing OS and applications.

Requirement 3 Configurable Execution Environment Reproduction: Since the
behavior of an application is usually determined by the execution environment,
especially the OS and the contents of file systems. So Pollux must reproduce the
execution environment from the trusted environment. For this requirement, two
aspects must been taken in account: security and performance.

Requirement 3A. This reproduction should not be implemented via duplicating the
complete resource of trusted environment, for this causes so much deployment
overhead that no PC user can afford it.

Requirement 3B. The resource to be reproduced to untrusted environment, especially
the file system contents must be configurable for users. For enhancing the
confidentiality, user should not reproduce the security-sensitive files.

To meet Requirement 1, the isolation mechanism must introduce the virtual
machine monitor as the software layer to close off the trusted environment and
untrusted ones. According to the definition of Goldberg [3], a virtual machine
monitor (VMM) is software for a computer system that creates efficient, isolated

(a) Native Architecture based on Type I VMM (b) Hosted Architecture based on Type II VMM

Fig. 1. Alternatives of Pollux Architecture

 A Secure Virtual Execution Environment for Untrusted Code 159

programming environments that are “duplicates”, which provide users with the
appearance of direct access to the real machine environment. These duplicates are
referred to as virtual machines, wherein a statistically dominant subset of the virtual
processor’s instructions execute on the host processor in native mode. There are two
different types of VMMs that can create a virtual machine environment: Type I and
Type II. Type I VMM runs on a bare machine. It is an OS with virtualization
mechanisms. It performs the scheduling and allocation of the system’s resources. A
Type II VMM runs as an application. The OS that controls the real hardware of the
machine is called the “host OS”, which does not need or use any part of the
virtualization environment. Every OS that is run in the Type II virtual machine is
called a “guest OS.” In a Type II VMM, the host OS provides resource allocation and
a standard execution environment to each guest OS. Therefore, there are two types of
architectures based on relevant VMM, as illustrated in Fig. 1.

Except for Requirement 2C and Requirement 2D, both of these architectures
meet the aforementioned requirements all square. Requirement 2C focuses on the
performance of the trusted environment. Within native architecture, shown in Fig. 1
(a), all OSes run above the virtual machine, thus every OS, including the one acting as
the trusted environment, cannot but suffer the performance penalty introduced by
VMM. But within hosted architecture, the trusted environment, i.e., the host OS,
suffers no performance degradation introduced by virtualization. So in this regard,
hosted architecture based on Type II VMM has the advantage of native architecture.
Now considering Requirement 2D within native architecture, it would be
unacceptable for a PC user to completely replace an existing OS with a VMM. In
contrast, Type II VMM allows co-existing with a pre-existing host OS.

Besides, under PC Platform, pushing functionality from traditional OS down one
layer in the software stack into the VMM, illustrated in Fig. 1 (a), has a prominent
disadvantage for development: The diversity of PC’s devices would remarkably
increase the development complexity of Type I VMM. There is a large diversity of

Fig. 2. The Architecture of Pollux

160 Y. Wen and H. Wang

devices that may be found in PCs, which is a result of the PC’s “open” architecture. In
the implementation of Type I VMM, it would have to manage these devices. This will
require a great programming effort to provide device drivers in the VMM for all
supported PC devices. But Type II VMM can be simpler to implement by using well-
known OS abstractions.

Of course, Type II VMM has its own disadvantages compared to Type I VMM.
The most significant trade-off of it is potential I/O performance degradation within
guest OS. But such I/O performance gap between them can be closed with the
improvement of hardware virtualization technology [4, 5] and the virtualized I/O
device optimization technologies [6].

In summary, considering that PC platform is the prime concern for Pollux, as well
as the significant predominance of Type II VMM under PC platform, we select hosted
architecture over native architecture. As illustrated in Fig. 2, the core components of
Pollux are the Pollux Virtual Machine Monitor (Pollux VMM) and the Local-Booted
Pollux Virtual Machine (Pollux VM). The Pollux VMM runs above the host OS in the
form of a Type II VMM and creates the local-booted virtual machines as the untrusted
code container. The Local-Booted OS, wherein untrusted programs run, just boots in
the Pollux VM. In another word, the Local-Booted OS just is a virtualized instance of
the underling host OS. In these local-booted OSes, the behavior of untrusted programs
is reproduced accurately while isolating their effects from the host OS, viz. the
execution environment of the trusted applications.

To address the challenge of implementing a high-performance Type II VMM,
especially for the non-virtualizable Intel x86 processors, we introduce an Instruction
Scan and Dynamic Translation (ISDT) technology.

Another significant challenge to implement local-booting is how to reuse the
system volume, wherein Host OS is preinstalled. While Pollux VM is running, the
Host OS is also modifying the same system volume. However, the Local-Booted OS
cannot be aware of these modifications and vice versa. So they will crash because of
the content inconsistency between memory and disk.

Pollux resolves these conflicts by dint of the Virtual Simple Disk based on Volume
Snapshot. Volume Snapshot shields the modification effects of Host OS from Local-
Booted OS and vice versa. Virtual Simple Disk acts as the virtual storage device to
export the Volume Snapshot to Pollux VM. Before exporting Volume Snapshots, the
user can remove the files or folders he does not want to make visible inside Pollux.
This is the way for Pollux to meet Requirement 3B.

Section 3 will outline how Pollux addresses these challenges.

3 Pollux Implementation

The hosted architecture of Pollux is shown in Fig. 2 and it is obvious OS-independent.
But considering the prevalence of Windows and Intel processors under PC platform,
Pollux has been firstly implemented in Windows with Intel x86 processors. Thus, the
term of OS in Fig. 2 will be referred to Windows in the remainder of this paper.

 A Secure Virtual Execution Environment for Untrusted Code 161

3.1 Pollux VMM

The details of Pollux VMM implementation is beyond the scope of this paper. Instead,
the framework of Pollux VMM is explained in this subsection. In a classically
virtualizable architecture, all instructions that read or write privileged state can be
made to trap when executed in an unprivileged context. But it’s well-known that Intel
x86 processor is not virtualizable [7]. To address this issue, we have come up with a
set of unique techniques that we call ISDT (Instruction Scan and Dynamic
Translation) technology, which is composed of two components: Code Scanner (CS)
and Code Patcher (CP). Before executing any ring 0 code, CS scans it recursively to
discover problematic instructions. CP then performs in-situ patching, i.e. replace the
instruction with a jump to hypervisor memory where an integrated code generator has
placed a more suitable implementation. We implement CP and CS based on the
disassembler and translation engine of QEMU [8], a fast machine emulator using an
original portable dynamic translator.

3.2 Virtual Simple Disk Based on Volume Snapshot

Just as its name implies, a Volume Snapshot is an identical copy of its original volume
just at the time it was created via shielding the modification effects of Host Windows
from Pollux VM and vice versa. In virtue of this characteristic, Pollux resolves the
conflicts due to the writing accesses of Host Windows and Pollux VM. Furthermore, it
can be mounted in Host Windows as a general volume to configure its contents to
meet Requirement 3B.

To isolating the file system modification between Host Windows and Local-Booted
Windows, Volume Snapshot adopts the Copy-on-Write (COW) mechanism, i.e., taking
a copy of the sectors that will be modified on the original volume. In our approach,
the place holding the copied data is called Snapshots Area, or SArea for short.

Fig. 3. Volume Snapshot Driver Architecture

162 Y. Wen and H. Wang

Fig. 3 illustrates the architecture of the storage driver stack after installing the
Volume Snapshot Driver. This driver creates two types of device objects, one is a
Volume Filter Device Object located above the original volume to filter all the I/O
Request Packages (IRP) sent to it and execute the COW operations, and the other is a
Volume Snapshot Device Object which exports all general volume interfaces to
provide a way to access Volume Snapshots. When a writing IRP comes down to the
original volume, the filter device object will examine its parameters to check whether
it will modify any of the sectors which have not been duplicated to SArea. If it will,
the device object will hold back this IRP until the copy operation has been completed.
And the contents written to snapshots will be also redirected to SArea via relevant
volume device objects. Thus, the bidirectional isolation of file system modification is
fulfilled. Consequently, the consistency of file systems in Host Windows and Local-
Booted Windows is guaranteed.

The virtual storage device should be a physical disk but not a volume, so we
introduce Virtual Simple Disk (VSD) to combine and expose the Volume Snapshots to
Pollux VM. As shown in Fig. 3, a VSD is composed of a set of Volume Snapshots, a
virtual primary partition table in MBR, and partition tables in extended partition.
Within a VSD, a data structure called VirVolume is created to maintain the state
parameters of its corresponding Volume Snapshot.

4 Evaluation

4.1 Evaluation of Functionality

Firstly, we evaluate the key function of Pollux, i.e., booting from the underling Host
Windows. Fig. 4 is a screenshot of a running Pollux VM shown in the window with
a caption of Secure Virtual Execution Environment. The resolution of Local-Booted
Windows within Pollux VM is 1024x768 while the resolution of Host Windows is
1280x800, so the icon arrangement within its desktop differs from that of Host
Windows. As shown in Fig. 5, the programs of Explorer and MediaPlayer are
running in this Local-Booted Windows. Compared the file system volumes shown in
the Explorer programs running within Local-Booted Windows and outside, we can
find that only the volumes C: and D: are exported to it. This just brings forth the
Pollux’s capability of Configurable Execution Environment Reproduction: the
resource to be reproduced to Pollux can be configurable for users.

Next, we test the basic functions of a system virtual machine, including instruction
set and hardware virtualization. Instruction set virtualization is verified by the
QEMU’s test-i386 tool, which we have ported to Windows. This tool tests all the x86
user-mode instructions, including SSE, MMX and VM86 instructions. The results
show that the execution of all the instructions is equivalent with that in Host
Windows.

Moreover, we ran PassMark on Local-Booted Windows. All the virtual hardware
devices works perfectly well, including IDE disk, CD-ROM, network card, display
adapter and so forth.

 A Secure Virtual Execution Environment for Untrusted Code 163

Fig. 4. Screenshot of a Running Pollux VM

4.2 Performance Evaluation

We have evaluated the performance for the two key components of Pollux: Pollux
VMM and Virtual Simple Disk based on Volume Snapshots. The hardware host is a
Samsung X30 notebook PC, containing a 1.60GHz Intel(R) Pentium(R) M processor
and 1G bytes memory. The host OS is Windows XP SP2. We allocate 512M bytes
memory for Pollux VM when testing its performance. And when performing
evaluation in Host Windows, we only plug in 512M bytes memory. The tool we used
to evaluate the performance of Virtual Simple Disk is the latest released version of
IoMeter [9], which is a well-known open source I/O performance test tool.

We find that compute-intensive benchmarks run essentially at native speed on
Pollux VMM. However, for the workloads including progressively more privileged
operations (context switches, memory mapping, I/O, interrupts, system calls), Pollux
VMM suffer more overheads.

Table 1. CPU Performance Results for Volume Snapshot Driver

CPU
Photo
Worxx

CPU
Queen

CPU
Zlib

FPU
Julia

FPU
Mandel

FPU
SinJulia

Mem
Copy

Mem
Latency

Mem
Reading

Mem
Writing

Host
Windows

6751 1345
9989
KB/s

1244 588 2135
1980
MB/s

104.3 ns
2538
MB/s

2081
MB/s

Local-
Booted

Windows
6723 1326

9786
KB/s

1192 574 2105
1956
MB/s

104.9 ns
2490
MB/s

2039
MB/s

% of
native

99.59 98.59 97.97 95.82 97.62 98.59 98.79 99.43 98.11 97.98

164 Y. Wen and H. Wang

Pollux VMM. For a desktop-oriented workload, we ran Everest Ultimate 2006 both
natively and in a Local-Booted Windows. Everest Ultimate is a synthetic suite of
microbenchmarks intended to isolate various aspects of workstation performance.
Since user-level computation is almost not taxing for VMMs, we expect Local-Booted
Windows runs to score close to native. Table 1 confirms this expectation, showing a
slowdown over native of 0.41-4.18%, with a 1.75% average slowdown for Pollux
VMM.

Virtual Simple Disk based on Volume Snapshots. For the volume snapshot driver
changes the I/O flow of original volumes, the reading/writing performance of these
volumes will be depressed. To analyze the performance overhead clearly, we define a
function named as IoTime (Op, Target), Op refers to the type of I/O operation,
including Reading and Writing, and Target indicates the volumes from where the
program reads or writes. So IoTime defines the I/O time spent on reading or writing
the Target. And there are three types of targets: Original Volume (OV), Snapshot Area
(SA) and Volume Snapshot (VS). We define a constant value named TestTime, which
is the time that snapshot driver spent on calculating the block number of the I/O
request and testing whether this block is dirty. And we define P (Block No) as the
probability that the block to write is dirty.

Thus, we can calculate the I/O time of the original volume with snapshots by the
following formulas.

IoTime (Read, OV) = TestTime + IoTime (Read, OV) (1)

IoTime (Write, OV) = TestTime + P (Block No)x(IoTime (Read, OV)+
IoTime (Write, SA)) + IoTime (Write, OV)

(2)

And the following formulas presents the I/O time of the volume snapshot.

IoTime(Op,SA), if the block is dirty
IoTime(Op,VS) = {

IoTime(Op,OV), if the block is not dirty
 (3)

For the TestTime only comprises two arithmetic instructions and two memory
access instructions, the former includes a right shift operation and a bit test operation.
These two arithmetic instructions can all be completed in one instruction circle.
Therefore TestTime can be ignored by compared with disk I/O operation time.

After examining the above formulas, we can get the conclusion that the overheads
of reading original volume and reading/writing volume snapshot can be ignored.
Indeed our test shows that the disk I/O of these three types incurs overheads typically
less than 5%.

But for writing the original volume with snapshots, the second formula shows that
the maximum overhead will be one writing operation added by one writing operation.
However the COW algorithm incurs overhead to the same block only once, for one
block has been performed COW; the subsequent writing requests can modify this
block directly.

We also test the CPU performance of volume snapshot driver, and collect the
results in Table 2. In this benchmark, the writing operations occupy 23% while the
left is reading operations. And the I/O address in disk is uniform random number.

 A Secure Virtual Execution Environment for Untrusted Code 165

Table 2. Performance Comparison between host OS and Pollux VM

 Original Volume
Original Volume

with Snapshot
Volume Snapshot

% CPU Utilization 2.785 4.184 4.891

%User Time 0.0333 0.0659 0.0012

%Privileged Time 2.755 4.146 4.910

% DPC Time 0.004 0.038 0.036

% Interrupt Time 2.173 2.605 3.660

Interrupt per Second 223.421 233.827 235.783

Results shows that CPU incurs overheads typically less than 3% compared with the
native original volume without snapshots.

5 Related Work

Isolation Technology within Mono-OS. Isolated execution has previously been
studied by researchers in the context of Java applets [10, 11]. Compared with general
applications, such applets do not make much access to system resources. So the
approach used by applets often relied on executing these untrusted applets on a
“remote playground”, i.e., an isolated computer. However, most of the desktop
applications will usually require access to more resources such as the file system on
the user’s computer. To run such applications on a remote playground, the complete
execution environment on the user’s computer, especially the entire file system
contents, should be duplicated to the remote playground.

Alcatraz [12] and its improved version [13], Security Execution Environment
(SEE), also have the capability of reproducing the behavior of applications, as if they
were running natively on the underlying host OS. But this approach does not achieve
OS isolation, so such protection mechanism can be bypassed by kernel-mode
malicious code. And in SEE, a number of privileged operations, such as mounting file
systems, and loading/unloading modules are not permitted.

Isolation Based on Virtual Machine. Covirt [14] proposes that most of applications
may be run inside virtual machine instead of host machines. User-mode VMs have
been proposed for the Linux OS [15]. All the above approaches suffer from the
difficulty of environment reproduction.

Denali [16] is another virtual machine based approach that runs untrusted
distributed server applications. Denali focuses on supporting lightweight VMs,
relying on modifications to the virtual instruction set exposed to the guest OS and
thus requiring modifications to the guest OS. In contrast, we are focusing on heavier
weight VMs and make no OS modifications.

VMWare ESX Server provides an isolation approach for server platform with a
similar objective to ours. XEN [17] and L4-based virtual machine [18] also
implement isolated virtual execution environments. But all of these three
environments are just located above computer hardware in form of Type I VMM. So

166 Y. Wen and H. Wang

as discussed in section 2, they are not fit for PC platform because of their drawbacks
caused by the native architecture of Type I VMM.

There are also some isolation mechanisms using Type II VMM, such as VMWare
Workstation [6] and Parallels Workstation [19]. But they all cannot fulfill the
computing environment reproduction. The COW/COW2 technology of QEMU [8], an
open source emulator, can only isolate the modifications of guest OS from the file
system in host OS. But it cannot shield the guest OS from the modifications made by
host OS. Thus, the conflicts between the disks and file system content in guest OS
trend to occur and the guest system will crash, so QEMU also failed to achieve the
environment reproduction. Besides, its poor performance also prevents it from serving
as an effective virtual execution environment. KVM [20], a Kernel-based Virtual
Machine based on QEMU, significantly improves the performance. But it also cannot
provide the capability of environment reproduction. In addition, it must modify the
host OS and rely on the hardware virtualization technology, viz. Intel VT [21] and
AMD-V [22].

6 Conclusions and Future Work

In this paper, we proposed an approach named Pollux for realizing a secure virtual
execution environment and implemented its prototype. Pollux is versatile enough just
like other virtual machines and isolation solutions. The most important benefit of
Pollux is that it provides the capability of execution environment reproduction while
accomplishing OS isolation. As mentioned in section 5, other isolation solutions
based on virtual machine technology cannot provide such consistency between
isolated environments and host OS.

To employ Pollux, it’s no need to modify the existing OS or applications. And our
functional evaluation illustrates the effectiveness of the approach. The evaluation
shows that Pollux VMM comes very close to native performance, reaching 98.25% on
average. And Virtual Simple Disk I/O incurs overheads typically less than 10%, and
CPU incurs overheads less than 3%.

Thus, in virtue of OS isolation and execution environment reproduction, Pollux
provides security against potential malicious code without negating the functionality
benefits provided by benign programs.

We are currently improving the memory management mechanism of Pollux by
sharing the memory between Pollux VM and host OS in order to reduce the memory
overhead. Multiprocessor virtualization capability is also to be added to Pollux VM to
support Multiprocessor-Specialized host OS version. In addition, we are integrating
some intrusion detection mechanisms into Pollux. Finally, we will investigate the
technology of committing changes within local-booted OS to host OS.

References

1. Cohen, F.: Computational Aspects of Computer Viruses. Computers & Security 8, 325–
344 (1989)

2. Chess, D.M., White, S.R.: An Undetectable Computer Virus (2000)

 A Secure Virtual Execution Environment for Untrusted Code 167

3. Goldberg, R.P.: Architectural Principles for Virtual Computer Systems, Ph.D. Thesis.
Harvard University, Cambridge, MA (1972)

4. Neiger, G., Santoni, A., Leung, F., Rodgers, D., Uhlig, R.: Intel® Virtualization
Technology: Hardware Support for Efficient Processor Virtualization. Intel Technology
Journal 10, 167–177 (2006)

5. Adams, K., Agesen, O.: A Comparison of Software and Hardware Techniques for x86
Virtualization. In: ASPLOS 2006. Proceedings of The 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 2–13
(2006)

6. Sugerman, J., Venkitachalam, G., Lim, B.-H.: Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor. In: Proceedings of the 2001 USENIX
Annual Technical Conference, Boston, Massachusetts, USA (2001)

7. ScottRobin, J.: Analyzing the Intel Pentium’s Capability to Support a Secure Virtual
Machine Monitor, Master’s Thesis. Naval Postgraduate School, Monterey, CA, p. 133
(1999)

8. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: USENIX Association
Technical Conference (2005)

9. The IoMeter Project, http://iometer.sourceforge.net
10. Chiueh, T.-c., Sankaran, H., Neogi, A.: Spout: A Transparent Distributed Execution

Engine for Java Applets. In: Proceedings of the 20th International Conference on
Distributed Computing Systems, p. 394 (2000)

11. Malkhi, D., Reiter, M.K.: Secure Execution of Java Applets using A Remote Playground.
IEEE Transactions on Software Engineering 26, 1197–1209 (2000)

12. Liang, Z., Venkatakrishnan, V.N., Sekar, R.: Isolated Program Execution: An Application
Transparent Approach for Executing Untrusted Programs. In: Omondi, A.R., Sedukhin, S.
(eds.) ACSAC 2003. LNCS, vol. 2823, Springer, Heidelberg (2003)

13. Sun, W., Liang, Z., Sekar, R., Venkatakrishnany, V.N.: One-way Isolation: An Effective
Approach for Realizing Safe Execution Environments. In: NDSS 2005. ISOC Network
and Distributed System Security (2005)

14. Chen, P.M., Noble, B.D.: When Virtual is Better Than Real. In: 8th Workshop on Hot
Topics in Operating Systems (2001)

15. Dike, J.: A User-mode Port of the Linux Kernel. In: Proceedings of the 4th Annual Linux
Showcase & Conference, Atlanta, Georgia, USA (2000)

16. Whitaker, A., Shaw, M., Gribble, S.D.: Denali: A Scalable Isolation Kernel. In: Proceedings
of the Tenth ACM SIGOPS European Workshop, Saint-Emilion, France (2002)

17. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauery, R., Pratt, I.,
Warfield, A.: Xen and the Art of Virtualization. In: SOSP 2003. Proceedings of the 19th ACM
Symposium on Operating Systems Principles, pp. 164–177. ACM Press, New York (2003)

18. Biemueller, S., Dannowski, U.: L4-Based Real Virtual Machines - An API Proposal. In:
Proceedings of the MIKES 2007: First International Workshop on MicroKernels for
Embedded Systems, Sydney, Australia, pp. 36–42 (2007)

19. SWsoft: http://www.parallels.com/en/products/workstation
20. Qumranet: KVM: Kernel-based Virtualization Driver (2006)
21. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F.C.M., Anderson, A.V.,

Bennett, S.M., Kägi, A., Leung, F.H., Smith, L.: Intel Virtualization Technology. IEEE
Computer 38 (2005)

22. AMD: AMD64 Vrtualization Codenamed "pacifica" Technology: Secure Virtual Machine
Architecture Reference Manual (May 2005)

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 168–179, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Liveness Detection of Fingerprint Based on
Band-Selective Fourier Spectrum

Changlong Jin1, Hakil Kim1, and Stephen Elliott2

1 Biometrics Engineering Research Center,
School of Information and Communication Engineering, INHA University, Korea

{cljin,hikim}@vision.inha.ac.kr,
2 Biometric Standards Performance and Assurance Laboratory, Purdue University

elliott@purdue.edu

Abstract. This paper proposes a novel method for fingerprint liveness detection
based on band-selective Fourier spectrum. The 2D spectrum of a fingerprint
image reflects the distribution and strength in spatial frequencies of ridge lines.
The ridge-valley texture of the fingerprint produces a ring pattern around the
center in the Fourier spectral image and a harmonic ring pattern in the
subsequent ring. Both live and fake fingerprints produce these rings, but with
different amplitudes in different spatial frequency bands. Typically, live
fingerprints show stronger Fourier spectrum in the ring patterns than the fake.
The proposed method classifies the live and the fake fingerprints by analyzing
the band-selective Fourier spectral energies in the two ring patterns. The
experimental results demonstrate this approach to be a promising technique for
making fingerprint recognition systems more robust against fake-finger-based
spoofing vulnerabilities.

Keywords: Fingerprint, Liveness detection, Band-selective, Fourier Spectrum,
Ridge-valley texture.

1 Introduction

Traditional secure tools, for example, keys and passwords, have disclosed their
weaknesses such as theft and oblivion. On the contrary, biometric systems utilize the
information of the human body and as such, have a higher perception of security and
convenience. However, recent studies [1, 2] show that biometric systems are subject to
various threats. Within automated fingerprint recognition systems, it is possible to
spoof a variety of fingerprint sensors using fake fingers made of silicone or gelatin
(i.e., gummy finger attack). The challenge to detect whether the biometric sample
presented is from a live finger or not is becoming an active research issue.

The focus of this paper is to propose a novel methodology for detecting fingerprint
liveness. Silicone, gelatin, and rubber are some of the materials that can be used to
make fake fingers. Many approaches for differentiating between live and fake fingers
are proposed on the basis of physiological characteristics such as blood pressure,
temperature, odor, hardness and perspiration.

 Liveness Detection of Fingerprint Based on Band-Selective Fourier Spectrum 169

Two major approaches to liveness detection can be implemented. The first is the
hardware-based approach including 1) blood pressure detection [3], 2) temperature
detection [4], 3) skin electric resistance or electric capacity detection [4], and 4) odor
detection [5]. These methods take advantage of these explicit physiological features,
but are expensive and bulky. The other is the software-based approach, which is more
complicated but does not require additional accessories as in the hardware-based
approaches. Existing fingerprint sensors can easily use this software-based approach
by just modifying the software. There are three types of methods:

1) Perspiration-based method [6, 7, 8, 9, 10]
Only a live finger can perspire and the perspiration can be detected by image analysis.
This method is the most valuable and has been studied by many researchers. This
method is susceptible to a number of factors including sensitivity to the pressure of
the finger, the environment, user, and time interval.

2) Skin deformation-based method [11, 12]
This method is based on the difference of hardness (or elasticity). The difference of
hardness will produce different deformations when pressing and rotating a finger on a
sensor. Liveness can be detected by comparing these distortions. The key point of this
method is the difference of the material hardness. Thus, the method performs poorly
when the hardness of fake material is similar to live skin, and users need some
training process.

3) Image quality-based method [13]
In fact, it is difficult to make a fake fingerprint image having the same or better image
quality than that of live. In general, the quality of the fake fingerprint image is not
good as live fingerprint image. Moon et. al.[13] detected the liveness of a fingerprint by
calculating the standard deviation of the fingerprint image using the wavelet
transform. The advantage of this method is that it is fast and convenient to use.
Although Moon’s work is only conceptual, it contributes an important hint that we
can detect the liveness by checking the image quality.

This paper proposes a classification of live and fake fingerprints based on band-
selective Fourier Spectral energy for fingerprint liveness detection. Fingerprint is
interleaving texture of ridge-valley. When transforming the fingerprint into spectral
domain, it will produce mainly two ring patterns (refer to Fig. 1). The radius of the
first ring pattern reflects the fingerprint image ridge distance from d = N/r[14], where
d, N, r refer to in turn the ridge distance in spatial domain, the fingerprint image width
in spatial domain, and the radius of the first ring pattern. In other words, the strength
of the amplitude (so-called spectral energy) reflects the strength of the ridge-valley
texture.

When we make fake fingers of Gelatin and Silicone[2], it is hard to copy the live
fingerprint exactly. With different material and different shape of fake fingers, there
will be difference between live fingerprint and fake fingerprint images even if the
fake fingerprints look very similar with the live ones. Therefore, liveness detection
can be done by analyzing the difference of the spectral energies.

This paper consists of four sections: the proposed method is described in detail in
Section 2, experimental results are reported in section 3, and section 4 draws some
conclusions and future works.

170 C. Jin, H. Kim, and S. Elliott

2 Proposed Method

In this paper, we propose a novel method to detect the fake finger based on band-
selective Fourier spectral energy. Fingerprint is a texture with the interleaving of ridge
and valley. When the fingerprint is transformed into the spectral domain, there will be
an annulus region, so called “inner ring” in this paper. The inter-ridge distances in
500 DPI fingerprint range from 7 to 10 pixels[14, 16], and then the corresponding radius
of the inner ring in the spectral image varies from 28 to 46 [14] (Sensor A: 280x320).
There is difference on the clearness of ridge-valley texture between the live and the
fake fingerprint, which makes the difference on the strength of the inner ring.
Therefore, the accumulated energy in the inner ring can be a feature in liveness
detection. In this paper, the energy of the interval changing from 25 pixels to 59
pixels was calculated.

The harmonic of the inner ring is produced from 60 to 100 pixels, which is called
“outer ring.” The energy of this outer ring also depends on the ridge-valley texture
and different for the live and fake fingerprint. The accumulated value is then used as
the second feature in this method.

There are differences on overall spectral energy between live and fake spectral
images. These differences are made by the size of the foreground of fingerprint
image, the distribution of histogram, and the performance of the sensors. Therefore,
the overall energy between 1 to 100 pixels is used as the third feature in this method.
Figure 1 depicts the computation of spectral energies in the inner and the outer rings.

Fig. 1. The spectral image of fingerprint, the two ring patterns, and the computation of the
Band-Selective energies

Figures 2 describes the procedure for computing the energy in these three intervals.
At first, the fingerprint image is converted into the spatial frequency domain using
Fast Fourier Transform. In order to avoid a big value contrast, logarithm operations
are applied to the transformed image, and then the result image is normalized.
Subsequently, the upper half-circle of the spectral image is converted into a
rectangular coordinate using the homogeneous rubber sheet model presented by
Daugman [15] and then projected to the frequency axis. Finally, these energies are
accumulated on the three intervals: 25~59, 60~100, 1~100 using equations 1, 2 and 3.

 Liveness Detection of Fingerprint Based on Band-Selective Fourier Spectrum 171

Fig. 2. Diagram of the proposed algorithm

259

25∑ =
=

i iinner XE (1)

2100

60∑ =
=

i iouter XE (2)

2100

1∑ =
=

i ioverall XE (3)

where i is the index of the frequency and
2

iX refers to the energy at the spatial

frequency i.
The feature vectors of the live fingerprint and the fake fingerprint based on these

three energies have a cluster property in 3D feature space. Figure 3 shows the
distribution of the overall data and figure 4 shows the distribution of all lives and all
fake fingerprints of one finger. Because the fake fingerprints are copied from the
molds (refer to the subsection 3.1) and the molds are copied from the live fingers,
some detailed information of live finger was lost. In addition, the characteristics of
fake material are different with those of live fingers. Therefore, it is hard to copy the
live finger exactly by fake materials, consequently, there can be slight differences
between the ridge-valley texture of fake and live.

When fingerprints transform into spectral domain, the energies of the ring patterns
are different. Figure 3 shows that the center of fake energy cluster is lower than the
center of live, namely the qualities of ridge-valley texture of fake fingerprint are
lower than that of live fingerprint. Although two category clusters of overall samples
overlapped for the most part, the energy vectors for an individual fingerprint are more
separable between live and fake (as shown in figure 4). In this study, the energy
vectors for live fingerprints are assumed to be normally distributed, and an elliptic
classification boundary is designed to classify the live samples against gelatin and
silicone fingerprints.

172 C. Jin, H. Kim, and S. Elliott

Fig. 3. Distributions of the overall data in 3 dimensions

In order to facilitate the classification boundary, the coordinates are rotated and
moved to the center of the live samples. At first, the mean vector and covariance
matrix are computed using equations 4 and 5, and then the eigenvalues and
eigenvectors of the covariance matrix are computed. The coordinates are then moved
by subtracting the mean from the live samples, and rotated by the eigenvectors. This
process is depicted in figure 4.

∑
=

∧
=

N

j
jS

N 1

1μ (4)

∑
=

∧∧∧
−−

−
=Σ

N

j

T
jj SS

N 1

))((
1

1 μμ (5)

 Liveness Detection of Fingerprint Based on Band-Selective Fourier Spectrum 173

Fig. 4. Distributions of all live and all fake fingerprint of one finger

where S represents a sample vector consisting of the three band-selective energies,
and N is the number of training samples.

In the new coordinates, the parameters a, b, c of the standard elliptic classification
boundary are evaluated using equations 6, 7 and 8. Since the training samples are in a
subset of the live samples, there are some errors. Therefore, a constant k is multiplied
to the three parameters to adjust the elliptic classification boundary as shown in
equation 9.

2/1

1

2)(
1

1
⎟
⎠
⎞

⎜
⎝
⎛ −

−
= ∑ =

N

i xx SS
N

a
i

 (6)

2/1

1

2)(
1

1
⎟
⎠
⎞

⎜
⎝
⎛ −

−
= ∑ =

N

i yy SS
N

b
i

 (7)

2/1

1

2)(
1

1
⎟
⎠
⎞

⎜
⎝
⎛ −

−
= ∑ =

N

i zz SS
N

c
i

 (8)

174 C. Jin, H. Kim, and S. Elliott

12

2

2

2

2

2

=
⋅

+
⋅

+
⋅ ck

z

bk

y

ak

x
 (9)

where ∑ =
= N

i xx
i

S
N

S
1

1
, ∑ =

= N

i yy
i

S
N

S
1

1
, ∑ =

= N

i zz
i

S
N

S
1

1
, and Sx, Sy, Sz are the

inner energy, outer energy and the overall energy of the sample S, respectively, a, b, c are
the radii of the elliptic classification boundary, k is a constant of the radius, x, y, z
correspond to inner energy, outer energy and overall energy respectively. (Refer to fig 4)

3 Experimental Results

3.1 Database

In order to evaluate the performance of the proposed approach, a database of
fingerprints was collected from 30 subjects using three different commercial optical
fingerprint scanners (Sensor A, Sensor B, Sensor C), without activating the sensor
liveness detection function. Five impressions at different pressures (300g; 600g; 900g;
1200g; 1500g) for each finger were collected.

To generate fake fingerprint images[2], finger molds which are made by dental
impression materials were created from thirty subjects and Gelatin and Silicone were
used to form the fake fingertip. Then, fake fingerprint images are captured for each
fake fingertip in the same manner as live fingertips. Total 6,750 images were
collected {6,750 images = 90 fingers (30 lives, 30 Gelatin, 30 Silicone) × 5
impressions × 5 pressures × 3 sensors}.

3.2 Results

The experiments in this work are divided into two phases: One is the identification,
and the other is the verification. In identification, the Support Vector Machine (SVM)
was utilized as a classifier, where 2 of 5 samples were used as the training data and
the rest as the testing data. The classification results are shown in table 1.

Table 1. Classification errors for Live/Fake Identification

Error rate (%)
Sensor

Live
(450)

Fake(Gelatin, Silicone)
(900)

Overall
(1350)

Sensor A 22 11 15

Sensor B 14 6 9

Sensor C 34 18 23
Average error rate (%) 23 12 16

 Liveness Detection of Fingerprint Based on Band-Selective Fourier Spectrum 175

Experimental results show that the error rates of live are large than that of fake, but it
depends on the classification boundary among the clusters in Fig. 3. The error rates of
Sensor C are big than those of the other two sensors. This implies that Sensor C
reproduces more detailed ridge-valley texture of fingerprint than the other two
sensors, which becomes the weakness in liveness detection.

In verification phase, 5 live samples selected randomly out of 25 samples were
used as the training data to evaluate the elliptic classifier, and the rest of live
samples, 25 Gummy samples and 25 Silicone samples were used for testing, and all
the test samples should be converted to the new coordinates described in equations
6 through 9. Because the training samples were selected randomly, so there should
be an error for the elliptic classification boundary. In order to remove the
randomness, the experiments were repeated 30 times by selecting different training
samples and find the average error rate for every constant k. Figure 5, 6 and 7 show
these results.

Fig. 5. Error rate of Sensor A

Fig. 6. Error rate of Sensor B

176 C. Jin, H. Kim, and S. Elliott

Fig. 7. Error rate of Sensor C

Three different commercial optical fingerprint scanners were utilized in this paper.
Although these are all optical sensors, they come from different companies, and have
different configuration of optical systems such as direction of the sensor prism, the
number of lens, and the position and wavelength of the light source. Therefore, the
optical characteristics of each sensor are different. This made the difference of
fingerprint images scanned by each sensor. The cluster distance of Sensor A between
fake and live are large than that of Sensor B and C, and the cluster center of Sensor C
is the most shortest. Namely, the elliptic classifiers’ radius of Sensor A can be larger
than that of Sensor B and C, and the radii of Sensor C is the most smallest.

The constant k will influence the size of the classification boundary. As the
increase of the constant k, the classifier boundary will be enlarged, so the error rate of
live will decrease and the error rate of fake will increase. Experimental results show
that the optimized constant k is different for each sensor. The best k lies in between 4
and 4.7 for Sensor A, between 3.2 and 4 for Sensor B, and between 2.4 and 3 for
Sensor C.

Table 2. Performance compares for proposed method with other previous methods

Method Error rate (%) Precondition
Perspiration-based

methods[2,3]
Approximately 10 Need to capture image

pairs
Skin deformation-based

method[11]
Approximately 16 Hardness hypothesis.

Need a fingerprint
scanner capable of

capturing and delivering
frames at proper rate.

Proposed method Approximately 16
(Identification phases),
21 (Verification phases)

Only need one image

 Liveness Detection of Fingerprint Based on Band-Selective Fourier Spectrum 177

Table 2 compares the performance of the proposed method with other previous
methods. Perspiration-based method needs to capture image pairs in two or more
second. The performance of this approach is susceptible to a number of factors. The
skin deformation-based method assumes that the hardness of fake fingers is higher
than the live fingers, but the hardness depends on the adopted material and its shape
(or thickness), and this approach also need a fingerprint scanner which can acquire the
fingerprint at high rate. Although the error rates of the proposed method are higher
than other previous methods, it only needs one image to calculate the spectral energy,
and no other preconditions are needed.

Fig. 8. Influences of the pressures (Silicone images scanned by Sensor A)

As mentioned in section 3.1, in order to study the influence of pressure, this
database was collected in five pressure levels, and figure 8 shows the influences. The
top row shows the energy distributions of 25 samples of one finger. The bottom row
shows five images for each pressure levels. The figure reveals that the pressure has
insignificant influence on the proposed energy measures.

4 Conclusions and Future Work

This paper introduces a fake finger detection approach based on band-selective
Fourier spectrum. It is hard to make fake finger same as live finger exactly, and the
difference of the ridge-valley texture produces different energy between ring pattern
of fake and live. After transforming the fingerprint image into spatial frequency
domain, the inner energy, the outer energy and the overall energy from the spectral
image are in turn calculated and considered as a 3D feature vector. Subsequently, a
3D elliptic classification boundary is established for each live finger. The liveness
detection is done by estimating the Euclidean distance from the elliptic classification

178 C. Jin, H. Kim, and S. Elliott

center to the presented samples. If the distance of presented sample is large than the
boundary, then it is a fake finger, otherwise it is a live finger. Though the error rates
are a little higher than the other algorithms, this method only needs to capture one
fingerprint image in a short time and users need do nothing more than presenting the
fingertip to the sensor. And this method can be applied to practical applications.

Future work will be mainly dedicated to the analysis of fingerprint image texture,
with tests on more data and more sensors.

Acknowledgment. This work was supported by the Korea Science and Engineering
Foundation (KOSEF) through Biometrics Engineering Research Center (BERC).

References

1. Uludag, U., Jain, A.K.: Attacks on Biometric Systems: A Case Study in Fingerprints. In:
Proc. SPIE-EI 2004, January 18-22, 2004, San Jose, CA, pp. 622–633 (2004)

2. Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: Impact of Artificial Gummy
Fingers on Fingerprint Systems. In: Proceedings of SPIE, Optical Security and Counterfeit
Deterrence Techniques IV, vol. 4677 (2002)

3. Drahanský, M., Nötzel, R., Funk, W.: Liveness Detection based on Fine Movements of the
Fingertip Surface. In: 2006 IEEE Information Assurance Workshop, June 21-23, 2006, pp.
42–47 (2006)

4. van der Putte, T., Keuning, J.: Biometrical fingerprint recognition: don’t get your fingers
burned. In: Proceedings of IFIP TC8/WG8.8 Fourth Working Conference on Smart Card
Research and Advanced Applications, pp. 289–303. Kluwer Academic Publishers,
Dordrecht (2000)

5. Baldisserra, D., Franco, A., Maio, D., Maltoni, D.: Fake Fingerprint Detection by Odor
Analysis. In: ICBA 2006. Proceedings International Conference on Biometric
Authentication, Hong Kong (January 2006)

6. Derakhshani, R., Schuckers, S.A.C., Hornak, L.A., O’Gorman, L.: Determination of
vitality from a non-invasive biomedical measurement for use in fingerprint scanners.
Pattern Recognition 36, 383–396

7. Parthasaradhi, S.T.V., Derakhshani, R., Hornak, L.A., Schuckers, S.A.C.: Time-Series
Detection of Perspiration as a Liveness Test in fingerprint Devices. IEEE Trans. on
Systems, Man, and Cybernetics - Part C 35(3) (August 2005)

8. Tan, B., Schuckers, S.: Liveness Detection using an Intensity Based Approach in
Fingerprint Scanners. In: Proceedings of Biometrics Symposium, Arlington, VA
(September 2005)

9. Tan, B., Schuckers, S.: Liveness Detection for Fingerprint Scanners Based on the Statistics
of Wavelet Signal Processing. In: Computer Vision and Pattern Recognition Workshop,
17-22 June 2006, p. 26 (2006)

10. Abhyankar, A., Schuckers, S.: Empirical Mode Decomposition Liveness Check in
Fingerprint Time Series Captures. In: Computer Vision and Pattern Recognition
Workshop, 17-22 June 2006, p. 28 (2006)

11. Antonelli, A., Cappelli, R., Maio, D., Maltoni, D.: Fake Finger Detection by Skin
Distortion Analysis. IEEE Transactions on Information Forensics and Security 1(3), 360–
373 (2006)

12. Chen, Y., Jain, A., Dass, S.: Fingerprint Deformation for Spoof Detection. In: Proceedings
of Biometrics Symposium, Arlington, VA, pp. 27–28 (September 2005)

 Liveness Detection of Fingerprint Based on Band-Selective Fourier Spectrum 179

13. Moon, Y.S., Chen, J.S., Chan, K.C., So, K., Woo, K.C.: Wavelet based fingerprint liveness
detection. Electronics Letters 41(20), 1112–1113 (2005)

14. Zhan, X., Yin, Y., Sun, Z., Chen, Y.: A method based on continuous spectrum analysis
and artificial immune network optimization algorithm for fingerprint image ridge distance
estimation. In: Computer and Information Technology, 2005. The Fifth International
Conference on, 21-23 September 2005, pp. 728–733 (2005)

15. Daugman, J.: How Iris Recognition Works. In: Proceedings of 2002 International
Conference on Image Processing, vol. 1 (2002)

16. Kovács-Vajna, Z.M., Rovatti, R., Frazzoni, M.: Fingerprint ridge distance computation
methodologies. Pattern Recognition 33(1), 69–80 (2000)

Improving Upon the TET Mode of Operation

Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108
palash@isical.ac.in

Abstract. Naor and Reingold had proposed the construction of a strong
pseudo-random permutation (SPRP) by using a layer of ECB encryption
between two layers of invertible block-wise universal hash functions. At
Crypto 2007, Halevi presented constructions of invertible block-wise uni-
versal hash functions and a new mode of operation (called TET) based
on them. In this paper, we present a new mode of operation called HEH
using the Naor-Reingold approach. This is built using a new construc-
tion of invertible block-wise universal hash function. The new construc-
tion improves over Halevi’s construction by removing restrictions on the
hashing key. This in turn, leads to HEH improving over TET by allowing
more efficient encryption and decryption of variable length messages as
well as supporting better key agility. For the important application of
disk encryption, we present a variant called HEHfp which has better key
agility than TET.

Keywords: modes of operations, tweakable encryption, strong pseudo-
random permutation, disk encryption.

1 Introduction

A block cipher is a fundamental primitive in cryptography. The formal model of
a block cipher is that of a pseudo-random permutation (PRP) or a strong PRP
(SPRP) [8]. By itself, a block cipher can encrypt fixed length strings. A mode
of operation extends the domain of a block cipher to longer and variable length
strings.

A variable input length SPRP can be considered to be a mode of operation of
a block cipher. The notion of tweakable block cipher was introduced by Liskov-
Rivest-Wagner [7]. This notion was extended to variable input length tweakable
SPRP by Halevi-Rogaway [5]. Earlier, a method for constructing SPRPs was
given by Naor-Reingold. An important application of tweakable SPRP is that of
disk encryption as has been pointed out in [5]. Currently, the literature contains
several constructions of tweakable SPRPs. These constructions can be classified
into three main groups.

The first type of construction consists of using a layer of electronic codebook
(ECB) encryption between two invertible block-wise universal hashing layers.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 180–192, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improving Upon the TET Mode of Operation 181

This method was introduced by Naor-Reingold [11,10]. Recently, there has been
an interest in this type of constructions and the proposals PEP [2] and TET [4]
are of this type. The second type consists of using a counter mode of encryp-
tion between two layers of universal hash function computation. This idea was
introduced in XCB [9] and later constructions are HCTR [13] and HCH [1]. The
third type of construction is to use a mixing layer between two layers of encryp-
tion. This technique was introduced by Halevi-Rogaway [5] and the constructions
CMC [5], EME [6] and EME∗ [3] are of this type.

TET is a very recent construction which follows the Naor-Reingold hash-
ECB-hash approach. For fixed length messages, TET has good performance. It,
however, has two drawbacks. First, it is not suited for variable length messages
and second, the key agility of TET is not good, in the sense that a lot of compu-
tation needs to be done for every key change. The drawback of TET for variable
length messages has been mentioned in [4, Page 423] itself: “Hence, TET is not
very appealing as a variable-input-length mode”. Key agility was not considered
in [4] at all.

Our Contributions: The purpose of the current work is to propose a new con-
struction of tweakable SPRP following the Naor-Reingold approach. We call this
HEH (for Hash-ECB-Hash). The new construction removes the above mentioned
drawbacks of TET, while retaining its performance. HEH is well suited for the
special application of disk encryption.

As mentioned earlier, the Naor-Reingold approach is to use a layer of ECB
encryption between two layers of invertible block-wise universal hash functions.
TET uses this approach. The main novelty in TET is to design an invertible
block-wise universal hash function. It is shown that both the hash function and
its inverse are block-wise universal. The universal hash function defined in [4]
has a drawback which in turn leads to the earlier mentioned drawbacks of TET.
When m blocks are to be hashed, the hashing key τ has to satisfy the condition
that σ = 1 + τ + · · · + τm �= 0 and τ/σ has to be computed for computing the
inverse of the hash function.

In this paper, we design a new invertible block-wise universal hash function.
But, in our case, the inverse is not block-wise invertible. Importantly, this does
not matter in the design of SPRP. It is sufficient to place the ECB layer between
the hash function and its inverse. In fact, this has already been done by Naor-
Reingold [10].

An important advantage of the new hash function over the one in [4] is that
there are no restrictions on the hashing key. It is this feature which ultimately
allows HEH to improve over TET.

2 Invertible Block-Wise Universal Hash Function

Let IF be a finite field. Additions and multiplications are done over this field.
The notion of block-wise universal hash function is defined for a keyed family

of functions. Fix a positive integer m. Let F : K × IFm → IFm be a keyed

182 P. Sarkar

family of functions where K is the key space. The family F is said to be ε-
block-wise universal if for every x,x′ ∈ IFm, 1 ≤ i, i′ ≤ m with (x, i) �= (x′, i′);
PrK [Yi = Y ′i′] ≤ ε, where (Y1, . . . , Ym) = FK(x) and (Y ′1 , . . . , Y ′1) = FK(x′). We
are interested in invertible block-wise universal hash functions, i.e., FK() should
be invertible for each K ∈ K.

2.1 Block-Wise Polynomial Evaluation [4]

In this section, we describe the constructions given in [4]. For τ ∈ IF and a
positive integer m, let Aτ be the following matrix.

Aτ =

⎡

⎢
⎢
⎢
⎣

τ τ2 τm

τ τ2 τm

. . .
τ τ2 τm

⎤

⎥
⎥
⎥
⎦

Define Mτ = Aτ +I and let σ = 1+τ+τ2+ · · ·+τm. The matrix Mτ is invertible
if and only if σ �= 0 and then M−1

τ = I − (Aτ/σ). Let x = (X1, . . . , Xm). The
map x �→MτxT is the following:

(X1, . . . , Xm) �→ (X1 + R, . . . , Xm + R) (1)

where R =
∑m

i=1 Xiτ
i.

Let β ∈ IF and α be a fixed primitive element of IF. Further, define b =
(β, αβ, . . . , αm−1β). Two functions (and their inverses) from IFm to IFm are
defined in the following manner.

BPEτ,β(x) = MτxT + b and BPE−1
τ,β(x) = M−1

τ (x − b)T

B̃PEτ,β(x) = Mτ (x− b)T and B̃PE
−1

τ,β(x) = M−1
τ xT + b

(2)

The matrix-vector product Mτx and M−1
τ x can be computed as efficiently as

polynomial evaluation. Using a suitable representation for IF ensure that it is very
efficient to multiply by the primitive element α. Thus, the cost of evaluating BPE
is essentially the cost of polynomial evaluation. Using Horner’s rule, computing
BPE requires m multiplications over IF. If τ is fixed, then a pre-computed table
can be used to speed up the polynomial computation [12].

For a fixed value of m and random and independent choices of τ (subject to
the fact that σ �= 0) and β from IF, it has been shown in [4], that the functions
defined by (2) are block-wise universal.

Note: It has been remarked that the same proof also holds when m is allowed to
vary. We note that this is incorrect. To see this consider the two distinct messages
x1 = (0, 0) and x2 = (0, 0, 0). Then BPEτ,β(x1) = (β, αβ) and BPEτ,β(x2) =
(β, αβ, α2β). The first two components of BPEτ,β(x1) and BPEτ,β(x2) are equal
which violates the block-wise universality condition.

Improving Upon the TET Mode of Operation 183

Drawbacks: The key τ has to be chosen such that σ =
∑m

i=0 τ i is non-zero. This
means that τ cannot be an arbitrary element of IF. The probability that σ = 0
for a randomly chosen τ is small, so this may not be a major problem in practice.
On the other hand, it has been suggested in [4], that one can choose τ to be a
random primitive element of GF (2n). This approach has practical difficulties.
Often, the entity providing the new value of the key will not have access to the
internal implementation of the algorithm. Without such access, in particular,
without knowing the primitive polynomial realizing the field GF (2n), it is not
possible to determine whether a particular element is a primitive element of
the concrete realization of the field. Further, determination of primitive element
requires substantial computation and the knowledge of the prime factors of 2n−1.
Thus, the idea of using τ to be a random primitive element of GF (2n) is quite
impractical in practice.

More importantly, if the hash function needs to be evaluated for different
values of m, then computing the inverse of BPE and B̃PE will require the com-
putation of σ and τ/σ. This requires (m − 1) multiplications and one inverse
over IF.

2.2 A New Construction

Fix a positive integer m and a primitive element α of IF. Let τ and β be in-
dependent and random elements of IF. Define e = (αβ, α2β, . . . , αm−1β, β). As
mentioned earlier, for a proper choice of the primitive element α, multiplication
by α is very fast and the cost is negligible compared to a general multiplication
over IF. We define the map Ψτ,β : IFm → IFm in the following manner.

Ψτ,β(X1, . . . , Xm) = (X1 + Y, . . . , Xm−1 + Y, Y) + e (3)

where Y =
∑m

i=1 Xiτ
m−i.

Invertibility is easily seen as follows. Let (Y1, . . . , Ym) = Ψτ,β(X1, . . . , Xm).
Set (U1, . . . , Um) = (Y1, . . . , Ym)− e. Then Xi = Ui−Um for 1 ≤ i ≤ m− 1 and
Xm = Um − τ(

∑m−1
i=1 Xiτ

m−1−i). Using Horner’s rule, computing either Ψτ,β or
its inverse Ψ−1

τ,β requires (m− 1) multiplications.

Examples: For m = 4, we provide the outputs of BPEτ,β and Ψτ,β to illustrate
the difference between the two functions.

BPEτ,β(X1, X2, X3, X4) = (X1 + X1τ + X2τ
2 + X3τ

3 + X4τ
4 + β,

X2 + X1τ + X2τ
2 + X3τ

3 + X4τ
4 + αβ,

X3 + X1τ + X2τ
2 + X3τ

3 + X4τ
4 + α2β,

X4 + X1τ + X2τ
2 + X3τ

3 + X4τ
4 + α3β)

Ψτ,β(X1, X2, X3, X4) = (X1τ
3 + X2τ

2 + X3τ + X4 + X1 + αβ,

X1τ
3 + X2τ

2 + X3τ + X4 + X2 + α2β,

X1τ
3 + X2τ

2 + X3τ + X4 + X3 + α3β,

X1τ
3 + X2τ

2 + X3τ + X4 + β)

184 P. Sarkar

The order of evaluation in BPE and Ψ are in reverse order. This difference is,
however, not significant. One can define BPE to evaluate in the reverse order
(i.e., X1τ

4 + X2τ
3 + X3τ

2 + X4τ) as has indeed been done in [4] while defining
TET. The significant differences between the two maps are in the degrees of the
polynomials (in τ) and the treatment of the last component.

The following result establishes the block-wise universality of Ψ and its proof
is based on the standard argument over roots of polynomials.

Theorem 1. Fix a positive integer m and let τ and β be independent and
random elements of IF. Let (Y1, . . . , Ym) = Ψτ,β(X1, . . . , Xm), (Y ′1 , . . . , Y ′m) =
Ψτ,β(X ′1, . . . , X ′m), 1 ≤ i, i′ ≤ m and ((X1, . . . , Xm), i) �= ((X ′1, . . . , X ′m), i′).

1. If i �= i′, then Prτ,β[Yi = Y ′i′] = 1

|IF| .

2. If i = i′, then Prτ,β[Yi = Y ′i] ≤ m−1

|IF| .

Consequently, the function Ψτ,β is
(

m−1

|IF|

)
-block-wise universal.

Proof: The two cases are proved separately.

Case i �= i′: Without loss of generality, we assume that 1 ≤ i < i′ ≤ m. First
suppose i′ < m. From (3), Yi−Y ′i′ = (αi−αi′)β+R, where R is a quantity which
depends on τ and not on β. Since α is a primitive element of IF, we have αi �= αi′

(for m ≤ IF∗−1). The event Yi = Y ′i′ translates into the event β = (αi′−αi)−1R.
Since β is a random element of IF and is independent of the right hand side, the
probability that this happens is 1/|IF|. If i′ = m, then Yi − Y ′i′ = (αi − 1)β + R
and a similar argument holds.

Case i = i′: In this case, we necessarily have (X1, . . . , Xm) �= (X ′1, . . . , X
′
m).

First suppose i < m. Then Yi − Y ′i = (Xi + Y) − (X ′i + Y ′) where Y =∑m
i=1 Xiτ

m−i and Y ′ =
∑m

i=1 X ′iτ
m−i. We have

Xi + Y = X1τ
m−1 + X2τ

m−2 + · · ·+ Xm−1τ + (Xm + Xi).

Consider the map (X1, . . . , Xm) �→ (V1, . . . , Vm) = (X1, . . . , Xm−1, Xm + Xi).
This map is a bijection and so

(X1, . . . , Xm) �= (X ′1, . . . , X
′
m) implies (V1, . . . , Vm) �= (V ′1 , . . . , V ′m).

As a consequence (V1 − V ′1 , . . . , Vm − V ′m) �= (0, . . . , 0). Now,

Yi − Y ′i = (Xi + Y)− (X ′i + Y ′)
= (V1 − V ′1)τm−1 + · · ·+ (Vm−1 − V ′m−1)τ + (Vm − V ′m).

The last expression is a non-zero polynomial in τ and is zero if and only if τ is
a root of this polynomial. Since τ is a random element of IF and a polynomial
of degree (m − 1) has at most (m − 1) distinct roots, we have Pr[Yi = Y ′i] ≤
(m− 1)/|IF|.

If i = m, then a similar argument holds. ��

Improving Upon the TET Mode of Operation 185

Variable m: Theorem 1 holds for a fixed value of m. If m is allowed to vary, then
the result does not hold. This can be seen as in the case of BPE by considering
the two distinct messages (0, 0, 0) and (0, 0).

Ψ−1
τ,β is not block-wise universal. This is seen by considering

1. Ψ−1
τ,β(αβ, α2β, α3β, β) = (0, 0, 0, 0) and

2. Ψ−1
τ,β(Aτ3+A+αβ, Aτ3+α2β, Aτ3+α3β, Aτ3+β) = (A, 0, 0, 0) for a non-zero

A.

The last three components are equal, violating the block-wise universal property.
Thus, we have an example of a function which is invertible and block-wise uni-
versal but its inverse is not block-wise universal. We have the following extension
of Theorem 1.

Theorem 2. Fix an integer m > 1 and choose τ, β independently and uniformly
at random from IF. Let xi = (Xi,1, . . . , Xi,m), for 1 ≤ i ≤ q be a set of distinct
tuples from IFm. For 1 ≤ i ≤ q, let yi = Ψτ,β(xi), where yi = (Yi,1, . . . , Yi,m).
The probability (over τ, β) that for any choice of (i1, j1) �= (i2, j2), Yi1,j1 is equal
to Yi2,j2 is at most 2(qm)2

|IF| .

Proof: Suppose (i1, j1) �= (i2, j2). There are two cases. First suppose that
j1 = j2 = j. There are m×(q2

)
such pairs. For any such pair, the probability that

Yi1,j = Yi2,j is at most (m−1)/2n (from Theorem 1(2)). Thus, the total probabil-
ity of collisions among such pairs is at most m×(q2

)×(m−1)/|IF| ≤ (m2q2)/|IF|.
On the other hand, if j1 �= j2, then the probability of Yi1,j1 = Yi2,j2 is at most
1/|IF| (from Theorem 1(1)). There are

(
qm
2

) −m × (q2
) ≤ (qm)2 such pairs and

the probability of a collision among such pairs is at most (qm)2/|IF|. Thus, the
total probability of a collision among the Y s is at most 2(qm)2/|IF|. ��

XOR Block-Wise Universal. The family F is said to be “XOR block-wise
universal” if for every fixed δ and every x,x′ ∈ IFm, 1 ≤ i, i′ ≤ m with (x, i) �=
(x′, i′); PrK [Yi − Y ′i′ = δ] ≤ ε, where (Y1, . . . , Ym) = FK(x) and (Y ′1 , . . . , Y ′1) =
FK(x′). The constructions in [4] are proved to be XOR block-wise universal,
which the new construction is not. On the other hand, it is easy to modify the
new construction to yield a XOR block-wise universal hash function.

As before, fix a positive integer m and a primitive element α of IF. Let τ and
β be independent and random elements of IF. We define the map ΨXOR

τ,β : IFm →
IFm in the following manner.

ΨXOR
τ,β (X1, . . . , Xm) = (X1 + Y, . . . , Xm−1 + Y, Y) + e (4)

where Y =
∑m

i=1 Xiτ
m+1−i.

The only difference is in the definition of Y , which is now a polynomial of
degree m as compared to a polynomial of degree (m− 1) in the case of Ψ . The
proof that ΨXOR is XOR block-wise universal is similar to the proof of Theorem 1.
Also, it is not difficult to see that ΨXOR is invertible if τ �= 0. Computing the

186 P. Sarkar

inverse of ΨXOR requires the inverse of τ . As a XOR block-wise universal hash
function, ΨXOR improves upon the constructions in [4] in the following way.
ΨXOR requires that τ �= 0 and the inverse of τ , while the constructions in [4]
require to compute σ = 1 + τ + · · · + τm and the inverse of σ (if σ �= 0). This
difference can be significant in practice. In this paper, we do not work with
ΨXOR; instead we work only with Ψ , which does not require the inverse of τ for
computing ψ−1.

3 The HEH Construction

For the description of the tweakable SPRP, we will consider the finite field IF
to be GF (2n) and use the operator ⊕ to denote addition over this field. The
field GF (2n) is realized using a primitive polynomial ρ(x) of degree n and the
primitive element α is simply taken to be x. Multiplication by x modulo ρ(x)
can be done very efficiently. As is standard, the elements of GF (2n) can be
interchangeably considered to be either as polynomials over GF (2) of degree at
most n−1 or as n-bit strings. For 0 ≤ i ≤ 2n−1, by binn(i) we denote the n-bit
binary representation of i.

The basic structure of the HEH construction is shown in Figure 1. Pseudo-
codes are given in Figure 2. In this construction, there are one block cipher key
K and three hashing keys τ, β1 and β2. By suitably defining the hashing keys,
it is possible to obtain several variants of the basic construction. This is shown
in Figure 3.

In HEH, the number of blocks m can vary; n-bit tweaks (associated data) are
supported and only a single block cipher key is used. The hashing key τ depends
on the tweak T . Hence, it is not possible to speed up multiplication by τ using a
pre-computed table. If such pre-computation is desired, then it is easy to modify
HEH, to obtain a variant supporting pre-computation. Instead of setting τ = γ,
simply choose τ to be a random element of GF (2n). We call this variant HEHp.

An important special application of tweakable SPRP is that of disk encryp-
tion. In this application, the number of blocks m is fixed and the tweak is the
sector address. Consequently, it is sufficient to take the tweak to be an n-bit
string. Since m is fixed, it is possible to eliminate one block cipher call while
deriving the hashing keys. Also, the hashing key τ is chosen to be a random
element of GF (2n) so that pre-computation can be utilized. We call this variant
HEHfp. In this variant, the hashing key is τ and the block cipher key is K.

3.1 Other Issues

We briefly consider several other issues in the design of a possible tweakable
SPRP.

Arbitrary length messages. HEH and its variants defined so far can only
handle messages which are multiples of block length n. Actually, the inner layer
of ECB mode is not particularly suited for handling partial blocks. This is better
tackled using a counter mode of encryption, as for example in HCH [1]. On the

Improving Upon the TET Mode of Operation 187

Algorithm EK,τ,β1,β2(P1, . . . , Pm)
1. (PP1, . . . , PPm) = Ψτ,β1(P1, . . . , Pm);
2. (CC1, . . . , CCm) = ECBK(PP1, . . . , PPm);
3. (C1, . . . , Cm) = Ψ−1

τ,β2
(CC1, . . . , CCm).

Algorithm DK,τ,β1,β2(C1, . . . , Cm)
1. (CC1, . . . , CCm) = Ψτ,β2(C1, . . . , Cm);
2. (PP1, . . . , PPm) = ECB−1

K (CC1, . . . , CCm);
3. (P1, . . . , Pm) = Ψ−1

τ,β1
(PP1, . . . , PPm).

Fig. 1. Encryption and decryption using HEH. The block cipher key is K; and the
hash key is (τ, β1, β2). See Figure 3 for details of how the hashing keys are derived
in HEH and its variants. ECBK(X1, . . . , Xm) returns (EK(X1), . . . , EK(Xm)) and
ECB−1

K (Y1, . . . , Ym) returns (E−1
K (Y1), . . . , E

−1
K (Ym)).

Algorithm EK,τ,β1,β2(P1, . . . , Pm)
1. U = P1;
2. for i = 2 to m do U = Uτ ⊕ Pi;
3. Q = β1;
4. for i = 1 to m− 1 do
5. Q = xQ; PPi = Pi ⊕ U ⊕Q;
6. CCi = EK(PPi);
7. end do;
8. PPm = U ⊕ β1; CCm = EK(PPm);
9. V = CCm ⊕ β2; Q = αβ2;
10. C1 = CC1 ⊕Q⊕ V ; W = C1;
11. for i = 2 to m− 1 do
12. Q = αQ; Ci = CCi ⊕Q⊕ V ;
13. W = Wτ ⊕Ci;
14. end do;
15. Cm = V ⊕Wτ ;
end.

Algorithm DK,τ,β1,β2(C1, . . . , Cm)
1. U = C1;
2. for i = 2 to m do U = Uτ ⊕ Ci;
3. Q = β2;
4. for i = 1 to m− 1 do
5. Q = xQ; CCi = Ci ⊕ U ⊕Q;
6. PPi = E−1

K (CCi);
7. end do;
8. CCm = U ⊕ β1; PPm = EK(CCm);
9. V = PPm ⊕ β1; Q = αβ1;
10. P1 = PP1 ⊕Q⊕ V ; W = P1;
11. for i = 2 to m− 1 do
12. Q = αQ; Pi = PPi ⊕Q⊕ V ;
13. W = Wτ ⊕ Pi;
14. end do;
15. Pm = V ⊕Wτ ;
end.

Fig. 2. Detailed pseudo-code of encryption and decryption using HEH

HEH HEHp HEHfp

1. γ = EK(T);
2. β1 = EK(γ ⊕ binn(m));
3. β2 = xβ1;
4. τ = γ.

1. γ = EK(T);
2. β1 = EK(γ ⊕ binn(m));
3. β2 = xβ1;
4. choose τ randomly

from GF (2n).

1. β1 = EK(T);
2. β2 = xβ1;
3. choose τ randomly

from GF (2n).

Fig. 3. HEH and its variants obtained by suitably defining the hashing keys τ , β1 and
β2. T is an n-bit tweak and m is the number of blocks. K is a randomly chosen block
cipher key and in HEHp and HEHfp, τ is a randomly chosen n-bit string.

188 P. Sarkar

other hand, it is possible to define variants of HEH which can handle messages
of any length greater than or equal to n. Further details will be provided in the
expanded version of the paper.

Arbitrary length tweaks. For applications which require arbitrary length
tweaks, one can use a pseudo-random function (PRF) with a separate and in-
dependent key to produce an n-bit tweak which can then be used in HEH. The
hashing key τ is chosen independently of the PRF key, which allows for the
hashing and the processing of tweak to proceed in parallel. This approach has
been used in TET and if desired, a similar approach can also be used with HEH.

4 Discussion and Comparison

HEH uses the hash-ECB-hash approach introduced by Naor-Reingold. An earlier
construction using the same approach is TET. (We do not consider PEP, since it
is slower than TET.) The difference between the two is mainly in the definition of
the universal hash functions. BPE (used in TET) is invertible XOR block-wise
universal while Ψ (used in HEH) is only invertible block-wise universal. (The
variant ΨXOR is XOR block-wise universal.) The efficiencies of computing both
BPE and Ψ as well as their inverses are similar. One difference between the two
functions is that the inverse of BPE is XOR block-wise universal while the inverse
of Ψ is not block-wise universal (neither is the inverse of ΨXOR XOR block-wise
universal). Importantly however, it is possible to construct a tweakable SPRP
without requiring the inverse to be block-wise universal.

From the viewpoint of performance the significant difference between BPE and
Ψ is the following. In BPE, the hash key τ has the restriction that σ =

∑m
i=0 τ i

must not be zero, while there is no restriction on the hash key τ of Ψ . Below
we discuss the implications of this difference and how as a result HEH improves
upon TET.

Variable Length Messages. For TET, since m varies, for each message, σ
and σ−1, has to be computed. Computing σ requires (m−1) multiplications
over GF (2n). This together with the requirement of computing an inverse
makes TET unsuitable for variable length messages. Such computation is
not required at all for HEH.

Key Agility. If m is fixed, then for TET, σ and σ−1 can be pre-computed.
The hash key τ is obtained in TET by applying a PRF having key K1 to a
fixed input. Now, suppose the key K1 is changed. Then τ also changes and
hence σ and σ−1 also need to be re-computed. Thus, for TET, key change is
computationally expensive. For HEH, key change does not require any field
operation.

Computing a Field Inverse. TET requires computation of a field inverse,
either in the online phase, or during a key change. For hardware only im-
plementation, this means that an inversion circuit has to be implemented.
HEH does not require any field inversion.

Improving Upon the TET Mode of Operation 189

4.1 Comparison to Other Construction

There are three efficient constructions using the hash-counter-hash approach
– XCB, HCTR and HCH. Among these constructions, HCH and XCB have
quadratic security bounds and HCTR has a cubic bound. HEH has efficiency
similar to these constructions; a quadratic security bound; and also has similar
key agility. Thus, HEH shows that it is possible to use the hash-ECB-hash ap-
proach to obtain a construction which is as good as hash-counter-hash approach.

The comparison to the encrypt-mix-encrypt approach is based on the relative
efficiency of a block cipher call and a GF (2n) multiplication. If one block cipher
call takes more time than two multiplications, then the hash-encrypt-hash ap-
proach is faster, otherwise the encrypt-mix-encrypt approach is faster. A related
issue is whether a pre-computed table can be used to speed up multiplication
by the hashing key τ . For the single key HEH, this is not possible. On the other
hand, for the simple variant HEHp, this is possible and it is also possible for
HEHfp.

A detailed comparison among the different tweakable SPRPs is given in [1]. In
Table 1, we provide a comparison among some of the more important features of
four previous constructions with HEH. The four constructions are CMC, EME∗

(of the encrypt-mix-encrypt type), HCH (of the hash-Ctr-hash type) and TET
(of the hash-ECB-hash type). These four constructions are representative of the
currently best known constructions of each type.

For variable number of blocks (Table 1), TET requires some extra block cipher
invocations and multiplications; basically the term multiplied by ı. The value of
ı itself depends on the number of blocks and the PRF key. Also, TET requires
a GF (2n) inversion. These computations are required to obtain a hash key τ ,
σ = 1 + τ + · · · + τm �= 0 and to invert σ (if σ �= 0). Thus, the restriction on
the hashing key directly reflects on the performance of TET. We note that the

Table 1. Comparison of tweakable SPRPs where the number of blocks m can vary
and n-bit tweaks are used. For TET, ı is a value (at least 1) which depends on m (and
K). [BC]: block cipher invocation; [M]: GF (2n) multiplication; [I]: GF (2n) inversion;
[BCK]: block cipher key; [AK]: auxilliary n-bit key material.

Mode type comp. cost keys passes enc.
layers

CMC [5] enc-mix-enc (2m + 1)[BC] 1[BCK] 2 2

EME∗ [3] enc-mix-enc (2m + m
n

+ 1)[BC] 1[BCK]+2[AK] 2 2

HCH [1] hash-Ctr-hash (m + 3)[BC] 1[BCK] 2 1
+2(m− 1)[M]

TET [4] hash-ECB-hash ı((m− 1)[M]+2[BC]) 2[BCK] 3 1
+(m + 2)[BC]
+2m[M]+1[I]

HEH hash-ECB-hash (m + 2)[BC] 1[BCK] 3 1
+2(m− 1)[M]

190 P. Sarkar

Table 2. Comparison of different tweakable SPRPs where the number of blocks m
is fixed and n-bit tweaks are used. [BC]: number of block cipher invocations; [M]:
GF (2n) multiplication; [BCK]: block cipher key; [AK]: auxiliary n-bit string (including
polynomial hash keys).

Mode CMC [5] EME∗ [3] HCHfp [1] TET [4] HEHfp

[BC] 2m + 1 2m + 1 + m/n m + 2 m + 1 m + 1

[M] – – 2(m− 1) 2m 2(m− 1)

[BCK] 1 1 1 2 1

[AK] – 2 1 3 1

Table 3. Efficiency of key change. For TET, the value of ı depends only on K (since
the number of blocks m is fixed) and is at least 1. [I]: GF (2n) inversion.

Mode CMC EME∗ HCHfp TET HEHfp

comp. cost – – – ı((m− 1)[M]+2[BC])+1[BC]+1[I] –

key sch. 1 1 1 2 1

mult. tab. – – 1 1 1

value of ı is at least 1, which makes the performance of TET clearly inferior to
that of HCH or HEH.

When m is fixed (Table 2), as in the case for disk encryption, the value of τ
and σ−1 can be pre-computed in TET. This makes the actual encryption and
decryption in TET quite efficient. However, the problem of generating τ and σ−1

is still present whenever the key needs to be changed. That is, even though m is
fixed, whenever the PRF key changes, the value of τ and σ−1 has to be computed
afresh. This adversely affects the key agility of TET. HEHfp is the variant of
HEH which is suited for fixed values of m and can utilize pre-computation. The
efficiency of HEHfp for encryption and decryption is similar (actually slightly
better) to that of TET and HCHfp. The improvement over TET is to offer
better key agility. Currently, if one wishes to use the Naor-Reingold approach,
then HEHfp is the construction of choice to implement disk encryption schemes.

5 Security Statement for HEH

The discussion and notation used in this section is based on earlier work [5]. Due
to lack of space, we will be brief. Detailed proof will be given in the expanded
version of the paper.

The query complexity σn of an adversary is defined to be the total number of
n-bit blocks it provides in all its encryption and decryption queries. This includes
the plaintext and ciphertext blocks as well as the n-bit tweak. By Adv(σn) (with
suitable sub and super-scripts) we denote the maximum advantage of any adver-
sary with query complexity σn. The notation Adv(σn, t) denotes the maximum
advantage of any adversary with query complexity σn and running time t.

Improving Upon the TET Mode of Operation 191

The notation HEH[E] denotes a tweakable enciphering scheme, where the
block cipher E is used in the manner specified by HEH. HEH[Perm(n)] de-
notes a tweakable enciphering scheme obtained by plugging in a random per-
mutation from Perm(n) into the structure of HEH. For an adversary attacking
HEH[Perm(n)], we do not put any bound on the running time of the adversary,
though we still put a bound on the query complexity σn. We consider an ad-
versary’s advantage in distinguishing a tweakable enciphering scheme E from an
oracle which simply returns random bit strings. This advantage is defined in the
following manner.

Adv±rnd
HEH[Perm(n)]

(A)

=
∣
∣
∣Pr
[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]
− Pr

[
A$(.,.),$(.,.) ⇒ 1

]∣∣
∣

where $(., M) returns random bits of length |M |.
Theorem 3. Fix n and σn to be positive integers. Suppose that an adversary
uses a total of σn blocks in all its queries, where each block is an n-bit string.
Then

Adv±rnd
HEH[Perm(n)]

(σn) ≤ 4σ2
n

2n
(5)

The same bound holds when HEH is replaced by HEHp or HEHfp.

6 Conclusion

In this paper, we have proposed a new tweakable SPRP called HEH following
the hash-ECB-hash approach introduced by Naor-Reingold [11]. This is done
by designing a new invertible block-wise universal hash function. The new hash
function improves over the invertible block-wise universal hash function defined
in [4] by removing restrictions on the hashing key. This in turn results in HEH
being able to remove the drawbacks of the tweakable SPRP called TET which
was also proposed in [4] An important special application of tweakable SPRP is
disk encryption. For this application, we suggest a variant called HEHfp. Cur-
rently, HEHfp is the best candidate for implementing a disk encryption scheme
using the Naor-Reingold approach.

References

1. Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using the
hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006), full version available
at, http://eprint.iacr.org/2007/028

2. Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable
strong pseudo-random permutation. In: Robshaw, M. (ed.) FSE 2006. LNCS,
vol. 4047, pp. 293–309. Springer, Heidelberg (2006)

http://eprint.iacr.org/2007/028

192 P. Sarkar

3. Halevi, S.: EME*: Extending EME to handle arbitrary-length messages with asso-
ciated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

4. Halevi, S.: Invertible universal hashing and the tet encryption mode. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer, Heidelberg (2007)

5. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

6. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

7. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

8. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

9. McGrew, D.A., Fluhrer, S.R.: The extended codebook (XCB) mode of operation.
Cryptology ePrint Archive, Report 2004/278 (2004), http://eprint.iacr.org/

10. Naor, M., Reingold, O.: A pseudo-random encryption mode. Manuscript, available
from www.wisdom.weizmann.ac.il/∼naor

11. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. J. Cryptology 12(1), 29–66 (1999)

12. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996)

13. Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005)

http://eprint.iacr.org/
www.wisdom.weizmann.ac.il/~naor

New Local Collisions for the SHA-2 Hash Family

Somitra Kumar Sanadhya and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,

India 700108
{somitra r,palash}@isical.ac.in

Abstract. The starting point for collision attacks on practical hash
functions is a local collision. In this paper, we make a systematic study
of local collisions for the SHA-2 family. The possible linear approxima-
tions of the constituent Boolean functions are considered and certain
impossible conditions for such approximations are identified. Based on
appropriate approximations, we describe a general method for finding
local collisions. Applying this method, we obtain several local collisions
and compute the probabilities of the various differential paths. Previ-
ously, only one local collision due to Gilbert-Handschuh was known. We
point out two impossible conditions in the GH local collision and pro-
vide an example of an impossible differential path for linearized SHA-2
using this local collision. Sixteen new local collisions are obtained none
of which have any impossible conditions. The probabilities of these local
collisions are a little less than the GH local collision. On the other hand,
the absence of impossible conditions may make them more suitable for
(reduced round) collision search attacks on the SHA-2 family.

1 Introduction

Study of collision search attacks on practical hash functions is a topic of intense
interest in recent times. Some spectacular successes have been reported for con-
crete and widely used proposals such as MD5 [13] and SHA-1 [12,1]. Other less
popular hash functions such as RIPEMD and HAVAL have also been successfully
attacked.

Currently, the two commonly used hash functions are MD5 and SHA-1. In
view of the attacks on these functions, there seems to be a tendency to move
to the more complicated SHA-2 family. As a result, these hash functions will
receive much more attention from the research community.

Usually, the first step in a collision search attack is to find a local collision.
This is a collision for a fixed number of steps of the round function. Details
about the message expansion are ignored. Further, all nonlinear components of
the hash design are approximated by some suitable linear functions. Once a local
collision is obtained, one attempts to find a collision for the full hash function
by taking into account the message expansion and the nonlinear behaviour of
the hash design. For example, Wang et al.’s attack on the SHA-1 hash function

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 193–205, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

194 S.K. Sanadhya and P. Sarkar

[12] uses the local collision obtained by Chabaud and Joux [2]. For details about
this approach one may refer to [2].

Known Results for the SHA-2 Family: Gilbert and Handschuh (GH) [4]
were the first to study local collisions in the SHA-2 family. They reported a 9-
round local collision and estimated the probability of the differential path to be
2−66. The message expansion of the SHA-256 was studied by Mendel et al [7],
who reported reduced round (near) collisions. The work [7] remarked that the
probability of the GH local collision is 2−39. This value of the probability was
also obtained in [5] when modular differences are considered. An earlier work [6]
studied a very simplified variant of SHA-256. The encryption mode of SHA-256
is analyzed in [15] and is not relevant to collision search attacks.

Our Contributions: All previous works have considered only the GH local col-
lision. In this paper, we revisit the problem of obtaining a local collision for the
SHA-2 family of functions. Local collisions are found by forming linear approx-
imations of the Boolean functions fIF and fMAJ involved in round function of
SHA-2. We make a systematic analysis of the linear approximations of the two
Boolean functions. The differential analysis shows that certain kinds of linear
approximations give rise to impossible conditions. Given any linear approxima-
tions for fIF and fMAJ , we describe a step-by-step method for finding a 9-step
local collision for the corresponding linearized round function. This method has
been applied on all feasible linear approximations. Two of the cases have been
described in details. We also show how to extend the presented local collisions
into 17 and 18 step collisions for SHA-2.

The GH local collision was obtained by approximating both fIF and fMAJ

by 0. We show that both the approximations have one impossible condition each
and this can lead to an impossible differential path. Note that the differential
path is impossible for the linearized version of the hash function. It is not im-
possible for the actual design. An example is provided of an 12-step impossible
differential path for the GH local collision. This path is impossible due to the im-
possible condition on the approximation of fIF by 0. Mendel et al [7] circumvent
the impossible conditions of the Boolean functions by using carry propagation
in addition. However, this puts extra conditions on message bits reducing the
freedom and thereby reducing the probability of the attack. We hope that the
new local collisions will help carry out longer round attacks on SHA-2 family.

There are four linear approximations each of fMAJ and fIF which do not have
any impossible conditions. These give rise to a total of 16 different linear approxi-
mations without any impossible conditions. We develop all these approximations
to obtain 16 new local collisions without any impossible conditions. Also, we de-
scribe four other local collisions which have one impossible condition for fMAJ

and none for fIF .
Probabilities of all the local collisions are computed. For the GH local collision

we obtain a probability of 2−42. The previous estimate by GH was 2−66. The
probabilities of the other local collisions are found to be between 2−45 to 2−54.
In [5], the probability of the GH local collision was computed to be 2−39 using

New Local Collisions for the SHA-2 Hash Family 195

modular differences and in [7] it was remarked (without providing details) that
this can be higher than 2−39 even with XOR differences. We note that whatever
be the method for computing probability estimates, the relative probabilities of
the different local collisions will probably remain the same. Further, even though
the probabilities of the new local collisions are lower than the GH local collision,
the absence of impossible conditions may offset this disadvantage when they are
used to find actual (reduced round) collisions for the SHA-2 family.

2 SHA-2 Family of Hash Functions

The round function of the SHA-2 family operates on eight 32-bit registers de-
noted by (a, b, c, d, e, f, g, h) and updates them in each step. In this article, we
analyze only the round function. For the complete description of the SHA-2 fam-
ily see [10]. The 8 registers are updated according to the following equations (all
additions are modulo 232):

ai = Σ0(ai−1) + fMAJ (ai−1, bi−1, ci−1) + Σ1(ei−1)
+fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1

ci = bi−1

di = ci−1

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1)
+hi−1 + Ki + Wi

fi = ei−1

gi = fi−1

hi = gi−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

The fIF and the fMAJ are three variable Boolean functions defined as:

fIF (x, y, z) = (x ∧ y)⊕ (¬x ∧ z)
fMAJ(x, y, z) = (x ∧ y)⊕ (y ∧ z)⊕ (z ∧ x)

The functions Σ0 and Σ1 are defined differently for SHA-256 and SHA-512. For
SHA-256, these functions are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x)

And for SHA-512, they are defined as:

Σ0(x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x)
Σ1(x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x)

Our analysis treats Σ0 and Σ1 as operators, hence the discussion that follows
holds for both SHA-256 and SHA-512 (In the following, we will interchangeably
use Σi(X) and ΣiX). Since SHA-384 is just a truncated version of SHA-512, we
refer to all the three hash functions as SHA-2 family.

196 S.K. Sanadhya and P. Sarkar

3 Differential Properties of Boolean Functions

Let f(x) be a Boolean function on n variables. By Δx we denote the XOR
difference in the input of f , i.e., Δx = x⊕ x′ for two n-bit strings x and x′. The
value of Δx can be any 2n bit string. Given Δx, define Δf = f(x⊕Δx)⊕ f(x).
The value of Δf is either 0 or 1 but is not uniquely determined by the value of
Δx. Assuming that x is uniformly distributed over {0, 1}n, the value of Δf is 0
or 1 with certain probabilities.

There are two Boolean functions used in SHA-2, namely the fIF and the
fMAJ , which are 3-input bit-wise ‘If’ and the ‘Majority’ functions respectively.
The three inputs to the functions can have XOR differences of 0 or 1. Depending
on their positions, the Boolean functions propagate the differences or absorb
them. The differential properties are shown in Table 1. The first 3 columns in this
table are the input differences to the Boolean functions, whose output differences
are listed in next 2 columns. An entry of 0 (resp. 1) in a Boolean function column
means that Δf is 0 (resp. 1) with probability 1. An entry (0, 1) denotes that Δf
is 0 with probability half. We will use this table to compute the probabilities of
the differential paths that we show later. Note that the differential properties of
Boolean function fIF and fMAJ are also considered in [8] but our presentation
is different.

Impossible Conditions: Suppose we approximate f(x) by a linear function
l(x). Note that Δx fixes the value of Δl with probability one. Now suppose that
for some Δx, the value of Δf is also determined with probability one and that
Δf �= Δl for this value of Δx. Then the particular value of Δx for which this
occurs is said to be an impossible condition for the approximation of f by l.
The complete list of impossible conditions which arise when fIF and fMAJ are
approximated by different linear functions is given in Table 2.

The probability that fIF (a, b, c) = 0 is 1/2 and the probability that fIF (a, b,
c) = c (or b) is 3/4. This suggests that approximating fIF by c (or b) should
be better than approximating fIF by 0. From Table 1, the probability that

Table 1. Differential properties of fIF and fMAJ . A single 1 (0) in the last 2 columns
means that this value holds with probability 1. The entry (0,1) implies that both the
values are possible with probability 1

2
each.

Δa Δb Δc ΔfIF (a, b, c) ΔfMAJ (a, b, c)

0 0 0 0 0

0 0 1 (0,1) (0,1)

0 1 0 (0,1) (0,1)

0 1 1 1 (0,1)

1 0 0 (0,1) (0,1)

1 0 1 (0,1) (0,1)

1 1 0 (0,1) (0,1)

1 1 1 (0,1) 1

New Local Collisions for the SHA-2 Hash Family 197

Table 2. Impossible conditions for the different linear approximations of fIF (a, b, c)
and fMAJ (a, b, c). The entries in the table provide the values of (Δa, Δb, Δc) which are
the impossible conditions for the corresponding approximation.

0 a b c a⊕ b a⊕ c b⊕ c a⊕ b⊕ c

fIF (0, 1, 1) (0, 1, 1) none none none none (0, 1, 1) (0, 1, 1)

fMAJ (1, 1, 1) none none none (1, 1, 1) (1, 1, 1) (1, 1, 1) none

ΔfIF = Δc is 5/8, where as the probability for ΔfIF = 0 is still 1/2. Thus, on
an average, the approximation of fIF by c should be better than that by 0 even
for a differential analysis.

Remark: It has been mentioned in [7, Page 130, Lines 4–5] that several approx-
imations for fIF and fMAJ are possible and all of these hold with probability
0.5. Table 1 and the discussion above shows that this is not the case. Specifically,
the approximation c (or b) is better than the approximation 0 for fIF (a, b, c).

4 Linear Approximation of SHA-2 Round Function

Local collisions are usually found for the linearized version of the hash function
concerned [2,11]. Once it is found for the simple case, the probability for this
local collision to hold for the actual hash function is computed. We proceed along
similar lines and approximate all additions in SHA-2 by bit-wise XOR. There
are many possibilities for the linear approximations of fIF and fMAJ functions.
A general form of expressing these approximations is the following

fMAJ (a, b, c) = x1a⊕ x2b⊕ x3c
fIF (e, f, g) = y1e⊕ y2f ⊕ y3g

}

(2)

where (x1, x2, x3) and (y1, y2, y3) are 3-bit strings. Thus, the linear approxi-
mations are completely specified by these two strings. Let Δregi = (Δai, Δbi,
Δci, Δdi, Δei, Δfi, Δgi, Δhi). Then the linearized version of the SHA-2 round
function can be expressed by an equation of the form

(Δregi)
t = A(Δregi−1, ΔWi)t (3)

where ()t denotes transpose and A is a suitable matrix which is constructed
depending upon the particular linear approximation being used. The form of A
in terms of (x1, x2, x3) and (y1, y2, y3) is given by (4).

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 x2 x3 0 p2 y2 y3 1 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 p2 y2 y3 1 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

198 S.K. Sanadhya and P. Sarkar

where p1 = (x1 ⊕Σ0) and p2 = (y1 ⊕Σ1). (4)

The simplest is to approximate both fMAJ and fIF by the constant function 0
(i.e., (x1, x2, x3) = 0 and (y1, y2, y3) = 0) as has been done by GH [4]. These
approximations, however, give rise to two impossible conditions as has been
discussed in Section 3. There are four linear approximations of fIF which do
not have any impossible conditions. In Table 3 we consider the situation where
fMAJ is approximated by zero and fIF is approximated by zero and the four
other linear functions which do not have impossible conditions. From Table 2, we
find that there are 16 possible combinations of linear approximations of fMAJ

and fIF which do not have any impossible conditions. These are listed in Table 4.

5 Technique for Finding Local Collisions

We describe the method for finding a local collision spanning k steps. For the
local collision to exist, the difference of registers at the start and at the end must
be zero. Besides, the first and the last message differences must not be zero, to
make it exactly a k-step collision.

The basic idea is to iterate the linear system in the forward direction; equate
the register values to 0 after k steps and then solve the resulting equations. The
forward iteration is done in the following manner.

1. Δreg0 = (0, 0, 0, 0, 0, 0, 0, 0).
2. For i = 1 to k do
3. (Δregi)

t = A(Δregi−1, ΔWi)t;
4. end do.

The procedure provides Δregk in terms of ΔW1, . . . , ΔWk. We now have to
set Δregk = 0 and solve for ΔW1, . . . , ΔWk. Since the expressions for Δregk are
quite complicated, there does not seem to be any general method for solving
these equations. On the other hand, the equations do have a pattern, which we
have exploited to obtain solutions. We explain our method for k = 9 for Case B
of Table 3. Similar methods have been applied to the other two cases. All our
computations have been carried out using the symbolic computation package
Mathematica [14].

Table 3. Linear approximations for fMAJ (a, b, c), fIF (e, f, g) and the corresponding
(x1, x2, x3, y1, y2, y3). Case A has been considered by Gilbert-Handschuh. It has one
impossible condition each for both fMAJ and fIF . Cases B to E have one impossible
condition for fMAJ and none for fIF .

Case fMAJ (a, b, c) fIf (e, f, g) (x1, x2, x3) (y1, y2, y3)

A 0 0 (0,0,0) (0,0,0)

B 0 gi−1 (0,0,0) (0,0,1)

C 0 fi−1 (0,0,0) (0,1,0)

D 0 ei−1 ⊕ gi−1 (0,0,0) (1,0,1)

E 0 ei−1 ⊕ fi−1 (0,0,0) (1,1,0)

New Local Collisions for the SHA-2 Hash Family 199

5.1 Case B of Table 3

The actual values of Δreg9 in this case is given in Section A in [9]. Below we
show how to solve for ΔW1, . . . , ΔW9 under the condition Δreg9 = 0.

Step 1: The expression for Δh9 is of the form

Δh9 = ΔW6 ⊕Σ1(ΔW5)⊕Σ2
1(ΔW4)⊕ΔW3 ⊕Σ3

1(ΔW3)⊕Σ4
1(ΔW2)⊕Σ0(ΔW1)

⊕Σ2
1(ΔW1)⊕Σ5

1(ΔW1).

Setting Δh9 = 0 provides

ΔW6 = Σ1(ΔW5)⊕Σ2
1(ΔW4)⊕ΔW3 ⊕Σ3

1(ΔW3)⊕Σ4
1(ΔW2)⊕Σ0(ΔW1)

⊕Σ2
1(ΔW1)⊕Σ5

1(ΔW1). (5)

Step 2: Eliminating ΔW6 from (Δa9, . . . , Δg9) using (5), we obtain

Δg9 = ΔW7 ⊕ΔW4 ⊕Σ1(ΔW3)⊕Σ0(ΔW2)⊕Σ2
1(ΔW2)⊕ΔW1 ⊕Σ2

0(ΔW1)

⊕Σ0(Σ1(ΔW1))⊕Σ3
1(ΔW1).

Setting Δg9 = 0 provides

ΔW7 = W4 ⊕Σ1(ΔW3)⊕Σ0(ΔW2)⊕Σ2
1(ΔW2)⊕ΔW1 ⊕Σ2

0(ΔW1)
⊕Σ0(Σ1(ΔW1))⊕Σ3

1(ΔW1). (6)

Table 4. Linear approximations for fMAJ (a, b, c) and fIF (e, f, g) and corresponding
(x1, x2, x3, y1, y2, y3). These approximations do not have any impossible conditions for
either fMAJ or fIF .

Case fMAJ (a, b, c) fIF (e, f, g) (x1, x2, x3) (y1, y2, y3)

1 a f (1,0,0) (0,1,0)

2 a g (1,0,0) (0,0,1)

3 a e⊕ f (1,0,0) (1,1,0)

4 a e⊕ g (1,0,0) (1,0,1)

5 b f (0,1,0) (0,1,0)

6 b g (0,1,0) (0,0,1)

7 b e⊕ f (0,1,0) (1,1,0)

8 b e⊕ g (0,1,0) (1,0,1)

9 c f (0,0,1) (0,1,0)

10 c g (0,0,1) (0,0,1)

11 c e⊕ f (0,0,1) (1,1,0)

12 c e⊕ g (0,0,1) (1,0,1)

13 a⊕ b⊕ c f (1,1,1) (0,1,0)

14 a⊕ b⊕ c g (1,1,1) (0,0,1)

15 a⊕ b⊕ c e⊕ f (1,1,1) (1,1,0)

16 a⊕ b⊕ c e⊕ g (1,1,1) (1,0,1)

200 S.K. Sanadhya and P. Sarkar

Step 3: Eliminating ΔW7 from (Δa9, . . . , Δf9) using (6), we obtain

Δf9 = ΔW8 ⊕ΔW5 ⊕Σ1(ΔW4)⊕Σ0(ΔW3)⊕Σ2
1(ΔW3)⊕ΔW2 ⊕Σ2

0(ΔW2)

⊕Σ0(Σ1(ΔW2))⊕Σ3
1(ΔW2)⊕Σ3

0(ΔW1)⊕Σ2
0(Σ1(ΔW1))

⊕Σ0(Σ
2
1(ΔW1))⊕Σ4

1(ΔW1).

Setting Δf9 = 0 provides

ΔW8 = ΔW5 ⊕Σ1(ΔW4)⊕Σ0(ΔW3)⊕Σ2
1(ΔW3)⊕W2 ⊕Σ2

0(ΔW2)
⊕Σ0(Σ1(ΔW2))⊕Σ3

1(ΔW2)⊕Σ3
0(ΔW1)⊕Σ2

0(Σ1(ΔW1))
⊕Σ0(Σ2

1(ΔW1))⊕Σ4
1(ΔW1). (7)

Step 4: Eliminating ΔW8 in (Δa9, . . . , Δe9) using (7) we obtain

Δe9 = ΔW9 ⊕Σ0(ΔW4)⊕Σ2
0(ΔW3)⊕Σ0(Σ1(ΔW3))⊕Σ3

0(ΔW2)⊕Σ2
0(Σ1(ΔW2))

⊕Σ0(Σ
2
1(ΔW2))⊕ΔW9 ⊕Σ0(ΔW1)⊕Σ4

0(ΔW1)⊕Σ3
0(Σ1(ΔW1))

⊕Σ2
0(Σ2

1(ΔW1))⊕Σ0(Σ
3
1(ΔW1)).

Setting Δe9 = 0 provides

ΔW9 = Σ0(ΔW4)⊕Σ2
0(ΔW3)⊕Σ0(Σ1(ΔW3)) ⊕Σ3

0(ΔW2)⊕Σ2
0(Σ1(ΔW2))

⊕Σ0(Σ2
1(ΔW2))⊕ΔW1 ⊕Σ0(ΔW1)⊕Σ4

0(ΔW1)⊕Σ3
0(Σ1(ΔW1))

⊕Σ2
0(Σ2

1(ΔW1))⊕Σ0(Σ3
1(ΔW1)). (8)

Step 5: Eliminating ΔW9 in (Δa9, . . . , Δd9) using (7) we obtain

Δd9 = Σ0(ΔW5)⊕Σ2
0(ΔW4)⊕Σ0(Σ1(ΔW4))⊕Σ3

0(ΔW3)⊕Σ2
0(Σ1(ΔW3))⊕

Σ0(Σ
2
1(ΔW3))⊕ΔW2 ⊕Σ0(ΔW2)⊕Σ4

0(ΔW2)⊕Σ3
0(Σ1(ΔW2))⊕

Σ2
0(Σ2

1(ΔW2))⊕Σ0(Σ
3
1(ΔW2))⊕Σ2

0(ΔW1)⊕Σ5
0(ΔW1)⊕Σ1(ΔW1)⊕

Σ4
0(Σ1(ΔW1))⊕Σ3

0(Σ2
1(ΔW1))⊕Σ2

0(Σ3
1(ΔW1))⊕Σ0(Σ

4
1(ΔW1)).

Now the situation is different from the previous 4 steps. In the expression for
Δd9 we do not have any ΔWi whose “coefficient” is 1. Only ΔW5 occurs once
with a “coefficient” of Σ0. We solve for ΔW5 in the following manner. Set

ΔW2 = Σ0(x)⊕Σ1(ΔW1) (9)

where x is a variable to be determined later. With this substitution, we have
Δd9 = Σ0(ΔW5 ⊕ X), for some expression X which we provide shortly. Now
setting Δd9 = 0, provides one solution to be ΔW5 = X , where the value of X is
given by the right side of the following expression.

ΔW5 = (1⊕Σ0 ⊕Σ4
0Σ3

0Σ1 ⊕Σ2
0Σ2

1 ⊕Σ0Σ
3
1)(x) ⊕Σ0(ΔW4)⊕Σ1(ΔW4)⊕

Σ2
0(ΔW3)⊕Σ0(Σ1(ΔW3))⊕Σ2

1(ΔW3)⊕Σ0(ΔW1)⊕Σ4
0(ΔW1)

⊕Σ1(ΔW1). (10)

New Local Collisions for the SHA-2 Hash Family 201

Step 6: Eliminating ΔW5 in (Δa9, Δb9, Δc9) using (10) we obtain

Δc9 = Σ2
0(x)⊕Σ0(Σ1(x))⊕ΔW3 ⊕Σ2

0(ΔW1).

Setting Δc9 = 0 provides

ΔW3 = Σ2
0(x)⊕Σ0(Σ1(x))⊕Σ2

0(ΔW1). (11)

Step 7: Eliminating ΔW3 in (Δa9, Δb9) using (11) we obtain

Δb9 = Σ2
0(Σ1(x))⊕ΔW4 ⊕ΔW1 ⊕Σ2

0(Σ1(ΔW1)).

Setting Δb9 = 0, provides

ΔW4 = Σ2
0(Σ1(x)) ⊕ΔW1 ⊕Σ2

0(Σ1(ΔW1)). (12)

Step 8: Eliminating ΔW4 from Δa9 using (12), we obtain

Δa9 = x⊕ΔW1.

Setting Δa9 = 0 provides

ΔW1 = x. (13)

Equations (5), (6), (7), (8), (9), (10), (11), (12), and (13) form a solution to
the problem of finding a local collision for the linearized round function. In this
form, the equations are not easy to handle. But, if we start the process of back
substitution, i.e., use ΔW1 = x in (12) and then use the values of ΔW1 and
ΔW4 in (11) and so on, then the solution is substantially simplified and we
finally obtain

(ΔW1, . . . , ΔW9) =
(x, Σ0(x)⊕ Σ1(x), Σ0(Σ1(x)), x, Σ0(x) ⊕ x, Σ0(x) ⊕Σ1(x), 0, x, x).

The technique described above does not work always. There are cases when we
cannot solve the equations in the manner described earlier. A slightly modified
method is used for such cases. Refer to [9] for complete description.

6 Differential Path

The values of the XOR differences of the registers at each step constitute a
differential path. For a local collision, the initial and final XOR differences should
be zero.

Probability of Differential Path: A differential path holds with probability
one for the linearized version of the round function. However, when we move to
the actual round function, then it holds with lesser probability which in some
cases may even be zero. If the differential path holds with probability zero for
the actual round function, then we call it to be an impossible differential path.

202 S.K. Sanadhya and P. Sarkar

Such impossible differential paths arise due to the impossible conditions in the
approximations of the constituent functions by linear functions. Later we will
show examples of such differential paths including one obtained from the Gilbert-
Handschuh local collision.

We next discuss how to compute the probability for a differential path. This
computation is based on the following two points.

1. If a and b differ in one bit position, then a+ c and b+ c also differ in one bit
position with probability one if the differing bit is the most significant bit,
else with probability half. (This was also mentioned in [4].) We also assume
that if a and b differ in k different bit positions none of which is the most
significant bit, then a+c and b+c differ in these k positions with probability
1/2k.

2. Table 1 is used to determine the differential probabilities for the approxima-
tions of fIF and fMAJ .

Since the XOR and additive differences coincide for the most significant bit, to
achieve higher probability, it is advantageous to ensure that many bits in the
differential path are MSBs. The initial message difference in the beginning of
the local collision is chosen to be 231 based on this observation. For complete
details of probability calculations see [9].

7 Reduced Round Collisions for the SHA-2 Family

In this section, we show that it is possible to combine the presented local colli-
sions for getting upto 18 step reduced round collisions for the SHA-2 family. We
specify the first step in SHA-2 by Step 0.

First of all, note that all the local collisions discussed in the present work span
9 steps and the message expansion of SHA-2 does not play any role in first 16
steps. Therefore if a local collision spans from Step i to Step (i + 9), and if we
take W0 = W1 . . . = Wi−1 = Wi+10 = Wi+11 = . . . W16 = 0, we get a collision
for first 16 steps of SHA-2. All the 16 local collisions described in this work can
be used to generate 16 step collisions for the SHA-2 family in this manner.

The 16 step collisions described above are not very ineresting since we have
completely by-passed the issue of message expansion in obtaining them. Now we
tackle the first step of message expansion. Message expansion rule for W16 is
given by :

W16 = σ1(W14) + W9 + σ0(W1) + W0 (14)

A local collision which starts at Step 2 will end at Step 10. The differential
path for such a local collision will have ΔW0 = ΔW1 = ΔW14 = 0 (If we choose
the differentials of all the message words outside the span of the local collision
to be zero). The local collisions described by Cases 1, 3, 5, 7, 10, 12, 14 and 16
of Table 5 are such that ΔW9 will be zero for them (Refer the differential paths
for the local collisions in [9]). Thus message expansion yields that ΔW16 = 0.
Hence we have many 17 step collisions for SHA-2 using a single local collision.

New Local Collisions for the SHA-2 Hash Family 203

In the same manner it can be shown that starting a single local collision
described by Cases 2, 4, 5, 7, 13, 14, 15 or 16 of Table 5 at Step 3, we can get a
17-step collision for SHA-2. Similarly, starting a single local collision described
by Cases 5, 7, 14 or 16 of Table 5 will yield ΔW16 = ΔW17 = 0. Thus we can
get 4 different 18 step collisions for SHA-2.

Previously only one 18 step collsion for SHA-256 has been reported in the lit-
erature [7]. In the present work we have shown that it is possible to obtain many
17 and 18 step collisions for both SHA-256 and SHA-512. We have explained the
procedure for generating such collisions without actually exhibiting them. We
hope to exhibit these collisions in a forthcoming paper.

To go beyond 18 steps will require combining several local collisions and it is
currently being investigated. For example in [7] a 19 Step 1 bit near collision for
SHA-256 is reported which is obtained by using 23 GH local collisions.

8 Results

The detailed differential paths for the cases of Table 3 and Table 4 are available
in [9].

Further analysis of the presented local collisions reveals that all approxima-
tions of fMAJ by the same linear function have the same differential path. The
weight of the differential path increases with the increase in the number of vari-
ables in the linear approximation of fMAJ . A summary of various features of the
different local collisions are given in Table 5.

Remark: The probability of the differential path of Case A was estimated by
GH to be 2−66. Our calculations show this to be 2−42. In [5] this probability
was computed to be 2−39 when using modular differences (as opposed to XOR

Table 5. Summary of the different properties of the local collisions. Wt(DP) provides
the weight of the differential path; Wt(MD) provides the weight of the message differ-
ence; Pr. provides the probability of the differential path; and NIC provides the number
of impossible conditions. The cases are from Table 3 and 4. Case A is the GH local
collision, rest are new local collisions.

Case A B C D E

Wt(DP) 24 24 24 24 24

Wt(MD) 24 29 29 34 34

Pr. 1
242

1
245

1
245

1
248

1
248

NIC 2 1 1 1 1

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wt(DP) 28 28 28 28 28 28 28 28 28 28 28 28 36 36 36 36

Wt(MD) 35 33 35 35 29 35 35 37 35 31 37 35 37 37 43 41

Pr. 1
248

1
248

1
251

1
251

1
249

1
249

1
252

1
252

1
248

1
248

1
251

1
251

1
254

1
254

1
257

1
257

NIC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

204 S.K. Sanadhya and P. Sarkar

differences considered here). Mendel et al [7] remarked (without providing de-
tails) that the probability can be higher than 2−39 even when considering XOR
differences. We think that the relative probabilities of the different local colli-
sions will remain the same irrespective of which method is applied to compute
the probabilities.

The GH local collision (Case A) has the highest probability. It is, however,
not necessarily the best possible local collision. This is due to the fact that it
has two impossible conditions and may result in an impossible differential path.
We illustrate this point using the impossible condition for fIF . In [9] we show a
12-step impossible differential path for the GH local collision. This is obtained
by interleaving two GH local collisions with the second one starting at the fourth
step of the first one. In terms of the Chabaud-Joux [2] type disturbance vector,
the 12-step differential path is given by the vector 1001. At Step 6 of this local
collision, we have Δe6 = 0, Δf6 = x ⊕ Σ0(x) and Δg6 = x. This shows that
whatever be the value of x, there will be one bit position where the differential
input to fIF is (0, 1, 1). From Table 1 we have ΔfIF to be 1 with probability
1, where as the approximation of fIF by l = 0 will have Δl = 0. This shows
that although the differential path is valid for the linearized version with fIF

approximated by l = 0, it fails for the actual round function.
As mentioned earlier, the issue of impossible differential paths was also ob-

served in [7]. They developed techniques for circumventing such impossible paths
in their collision search attacks on reduced round SHA-2. On the other hand, if
we use a local collision such as Case 1, then there are no impossible conditions.
Consequently, no circumvention techniques will be required in collision search
attacks. The probability of this local collision is a little lower than the GH local
collision, but this may be offset by absence of impossible conditions. Further
work on this topic can settle this point.

References

1. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and reduced SHA-1. In: Cramer [3], pp. 36–57

2. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

3. Cramer, R.J.F. (ed.): EUROCRYPT 2005. LNCS, vol. 3494, pp. 22–26. Springer,
Heidelberg (2005)

4. Gilbert, H., Handschuh, H.: Security analysis of SHA-256 and sisters. In: Matsui,
M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 175–193. Springer,
Heidelberg (2004)

5. Hawkes, P., Paddon, M., Rose, G.G.: On corrective patterns for the SHA-2 family.
Cryptology ePrint Archive, Report 2004/207 (August 2004),
http://eprint.iacr.org/2004/207

6. Matusiewicz, K., Pieprzyk, J., Pramstaller, N., Rechberger, C., Rijmen, V.: Anal-
ysis of simplified variants of SHA-256. In: Wolf, C., Lucks, S., Yau, P.-W. (eds.)
WEWoRC, GI. LNI, vol. 74, pp. 123–134 (2005)

7. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of step-reduced
SHA-256. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126–143. Springer,
Heidelberg (2006)

http://eprint.iacr.org/2004/207

New Local Collisions for the SHA-2 Hash Family 205

8. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A.J. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

9. Sanadhya, S.K., Sarkar, P.: New local collisions for the SHA-2 hash family. Cryp-
tology ePrint Archive, Report 2007/352 (September 2007),
http://eprint.iacr.org/2007/352

10. Secure Hash Standard. Federal Information Processing Standard Publication 180-
2. U.S. Department of Commerce, National Institute of Standards and Technol-
ogy(NIST) (2002), available at: http://csrc.nist.gov/encryption/tkhash.html

11. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
MD4 and RIPEMD. In: Cramer [3], pp. 1–18

12. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

13. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer [3],
pp. 19–35

14. Wolfram, S.: The Mathematica Book. Wolfram Media, 5th edn. (2003),
http://www.wolfram.com

15. Yoshida, H., Biryukov, A.: Analysis of a SHA-256 variant. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 245–260. Springer, Heidelberg (2006)

http://eprint.iacr.org/2007/352
http://csrc.nist.gov/encryption/tkhash.html
http://www.wolfram.com

Multi-collision Attack on the Compression

Functions of MD4 and 3-Pass HAVAL

Hongbo Yu1 and Xiaoyun Wang2,�

1 Tsinghua University, Beijing 100084, China
yhb@mail.sdu.edu.cn

2 Tsinghua University and Shandong University, China
xiaoyunwang@tsinghua.edu.cn, xywang@sdu.edu.cn

Abstract. In this paper, we present a new type of multi-collision at-
tack on the compression functions of both MD4 and 3-Pass HAVAL.
Different from Joux’s multi-collision attack, our method focuses on the
multi-collision of the compression function. For MD4, we utilize two dif-
ferent feasible collision differential paths to find a 4-collision with about
221 MD4 computations. For 3-Pass HAVAL, we can find a 4-collision
with complexity about 230 and a 8-near-collision with complexity 29.

Keywords: Hash function, multi-collision, multi-near-collision, differen-
tial path, sufficient condition.

1 Introduction

Recently, cryptanalysis on hash functions has become a hot topic within the
cryptographic community. Most existing hash functions have succumbed to the
modular differential attack announced two years ago [10,12,13,11,14,15].

For an ideal secure hash function with n-bit output, the complexity to find a
pairwise collision is about O(2n/2) computations, and to find a k(multi)-collision
needs about O(2n(k−1)/k) computations. Here a k-collision consists of k different
messages which are compressed to the same hash value. At Crypto’04[5], using
the flaw of the iterated structure of the hash functions, Joux proposed a method
to construct 2t-collisions based on the pairwise collisions. Joux showed that for
any iterated hash function it is relatively easy to find a 2t-collision and it only
costs t times as much as that of finding an ordinary pairwise collision. Based on
the result, Joux proved that the concatenation of several hash functions does not
increase their security. In 2005[4], Nandi and Stinson extended Joux’s technique
to handle iterated hash functions in which each message block is used at most
twice. In FSE 2006[6], Hoch and Shamir considered the general case and proved
that even if allowing each iterated hash function to scan the input multiple times
in an arbitrary expanded order, their concatenation is not stronger than a single
function.
� Supported by 973 Project(No.2007CB807902) and the National Natural Science

Foundation of China(NSFC Grant No.90604036).

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 206–226, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multi-collision Attack on the Compression Functions 207

hh h

1 2 3

3

h hh0 t1 2

B B B

B BB
1 2

** *

B

B *

...h3 t

t

t

−1

Fig. 1. Joux’s 2t-collisions construction. The 2t messages are of the form (b1, b2, ..., bt)
where bi is one of the two blocks Bi and B∗

i .

hh
hh

hh
hh

 1B

B

B

B

1

2

 2

h0 i

 k

i
k

 1B

B

B

B

 2

h0 i

 k

1h

Fig. 2. Our k-collisions construction. The left denotes the multi-collision, and the right
is the multi-near-collision. Each of Bi is a one-block message.

Motivated by Shamir’s talk [6] and Joux’s method, we provide a new attack
to build the multi-collisions and multi-near-collisions for hash functions directly
instead of combining multi-collisions from the pairwise collisions. The multi-
near-collisions is a generalization for the pairwise near collisions presented by
Biham and Chen[1]. The difference between two types of multi-collisions are
shown in Fig. 1 and Fig. 2 respectively.

The paper is organized as follows. In section 2, we give a brief description
of MD4 and 3-Pass HAVAL compression functions. In section 3, we recall the
modular differential attack on hash functions, which is used as a fundamental
tool to find multi-collisions. In section 4, we propose our new multi-collision and
multi-near-collision attack. The details for finding 4-collisions on MD4 and 8-
near-collisions on 3-Pass HAVAL are introduced in section 5 and 6 respectively.
Finally we conclude the paper in section 7.

2 Description of MD4 and 3-Pass HAVAL

In this paper, we study multi-collisions and multi-near-collision for MD4 and 3-
Pass HAVAL compression functions, so we only give a brief description of their
compression functions.

2.1 MD4 Compression Function

The MD4 compression function takes a 128-bit chaining value and a 512-bit
message block as the input values, processes 48 step operations and outputs a 128
-bit chaining values as hash value. For one 512-bit block M = (m0, m1, ..., m15),
the compression process is as follows:

208 H. Yu and X. Wang

1. Let (aa, bb, cc, dd) be the input 128-bit chaining variable.

a←− aa, b←− bb, c←− cc, d←− dd

2. Perform the following 48 steps (comprising three rounds):
For i=0, 1, 2

For j=0, 1, 2, 3

a : = (a + φi(b, c, d) + wi,4j + ki)� si,4j

d : = (d + φi(a, b, c) + wi,4j+1 + ki)� si,4j+1

c : = (c + φi(d, a, b) + wi,4j+2 + ki)� si,4j+2

b : = (b + φi(c, d, a) + wi,4j+3 + ki)� si,4j+3

si,4j+t (t = 0, 1, 2, 3) are step-dependent constants. wi,4j+t is a message
word and ki is a fixed constant for every round. Symbol � s represents
the circular shift s bit positions to the left. And symbol + denotes addition
modulo 232. The details of the message order and shift positions can be
discovered in [7]. The round functions φ0, φ1 and φ2 are defined as:

φ0(x, y, z)= (x ∧ y) ∨ (¬x ∧ z)
φ1(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
φ2(x, y, z) = x⊕ y ⊕ z

3. Add a, b, c and d respectively to the input chaining value.

aa: = a + aa
bb: = b + bb
cc: = c + cc
dd: = d + dd

4. H(M) := aa‖bb‖cc‖dd. Here, ‖ denotes the word concatenation.

In our paper, the search for differential paths is heavily dependant upon the
properties of the round functions φ1 and φ2. These have been summarized in
[12,17,9] and are listed again for convenience in Table 3 of our Appendix.

2.2 3-Pass HAVAL Compression Function

The 3-Pass HAVAL compression function takes a 256-bit chaining value and a
1024-bit message block M = (m0, m1, ..., m31) as input values and outputs a
256-bit chaining value. The compression process is described as follows:

1. Let (aa, bb, cc, dd, ee, ff, gg, hh) be the 256-bit input chaining values. Initial-
ize chaining variables (a, b, c, d, e, f , g, h) as (aa, bb, cc, dd, ee, ff, gg, hh).

2. Perform the following 96 steps:
For i=0,1,2

For j = 0 to 31
p := fi+1(g, f, e, d, c, b, a)

Multi-collision Attack on the Compression Functions 209

r := (p� 7) + (h� 11) + mord(i,j) + ki,j

(a, b, c, d, e, f, g)=(r, a, b, c, d, e, f, g)
The operation in each step employs a constant kj,i(See ref.[16]). Symbol
� s represents the circular shift s bit positions to the right. The order of
the messages words in each pass can be found in [16]. The round functions
f1, f2 and f3 are defined as follows:

f1(g, f, e, d, c, b, a) = cd⊕ ag ⊕ bf ⊕ ce⊕ e
f2(g, f, e, d, c, b, a) = adf ⊕ bcf ⊕ ef ⊕ ef ⊕ ac⊕ df ⊕ bd⊕ bc⊕ fg ⊕ g
f3(g, f, e, d, c, b, a) = def ⊕ cf ⊕ be⊕ dg ⊕ ad⊕ a

3. Add a, b, c, d, e, f , g, h respectively to the input value.
aa := a + aa, bb := b + bb,, hh := h + hh

4. H(M) := hh‖gg‖ff‖ee‖dd‖cc‖bb‖aa.

Some main properties of the round function f1 that are used to find differential
paths are listed in Table 5 of Appendix.

3 Modular Differential Attack on Hash Functions

In this section, we use the MD4 as an example to outline the modular differential
attack developed by Wang et al [12,13].

3.1 Selecting a Message Difference

The first step of the modular differential attack is to select an appropriate mes-
sage difference which determines the success probability of the attack. The choice
of the message differences determined by the purpose of the attack. For exam-
ple, if we want to find a differential path for collisions, we can select the message
differences as in paper [12]. These message differences not only result in a 5-step
local collision in the third round, but also can decide a potential internal collision
located in the first round and the previous steps of the second round. Correctly
selecting the message differences is a key step in producing a possible collision
path with high probability. If we want to apply the second-preimage attack or
to recover the keys of the MACs based on MD4, we can select the message dif-
ferences which lead to a differential path [17] with minimal sufficient conditions
in total.

3.2 Searching the Differential Path

It is really difficult to find differential paths for some hash functions. We can uti-
lize the properties of the round functions to produce some wanted bit differences
and cancel the unwanted non-zero bit differences or message bit differences. An-
other important technique is to introduce the bit carries which can produce the
above wanted bit differences. The differential paths can be found by the manual
method [12,13,14,15] or by the computer-aided way[9,2].

210 H. Yu and X. Wang

3.3 Determining the Chaining Variable Conditions

In the process of searching for differential paths, the chaining variable conditions
can be determined. A feasible differential path implies that all the chaining
variable conditions deduced from the path don’t contradict each other. It means
that if a message M satisfies all the chaining variable conditions, M and M+ΔM
(ΔM is a fixed message difference) must collide. So these conditions are called
the sufficient conditions.

3.4 Message Modification

Once the collision differential path and the corresponding sufficient conditions
are determined, the remaining task is how to find a message M so that M sat-
isfies all the chaining variable conditions. Usually for a random message M , M
and M + ΔM cannot cause collisions because of the large amount of sufficient
conditions. If a condition is inconsistent with that of the sufficient conditions,
we call it a wrong condition. According to the chaining variable conditions dis-
tribution, we can adopt different message modification techniques to force the
modified message M to satisfy more sufficient conditions. For the conditions in
the first round, we can implement the basic message modification technique to
correct the wrong conditions. And for the conditions in the second round, the ad-
vanced message modification can be applied to correct part of wrong conditions.
Usually, more conditions in the second round can be corrected by employing
more complex and precise advanced message modifications. The detail of the
techniques can be seen in [12,13,17].

4 New Multi-collision and Multi-near-Collision Attack

In this section, we describe our multi-collision and multi-near-collision attack on
hash functions. Given two different collision differential paths for a hash function,
if two sets of their sufficient conditions do not contradict each other, we will show
how to utilize two collision paths to produce 4-collisions.

Provided that the first collision differential path P1 corresponds to the message
difference ΔM1, (M, M +ΔM1) is a collision under the sufficient conditions C1.
The second collision differential path P2 corresponding to the message difference
ΔM2, (M, M + ΔM2) is a collision under the sufficient conditions C2.

If there are no contradictory conditions between C1 and C2, we set up C=C1∪
C2. It is clear that, if M satisfies all conditions in C, (M, M +ΔM1) is a collision
that obeys the differential path P1, (M, M + ΔM2) is also a collision simultane-
ously which obeys the second collision path P2. So, (M, M + ΔM1, M + ΔM2)
comprise the inputs to a 3-collision.

Furthermore, assume that the message M + ΔM1 satisfies all the conditions
C2, and then (M + ΔM1, M + ΔM1 + ΔM2) is a collision corresponding to
the path P2. On the other hand, when the message M + ΔM2 satisfies all the
conditions C1, (M +ΔM2, M +ΔM2 +ΔM1) is a collision corresponding to the

Multi-collision Attack on the Compression Functions 211

path P1. This is an interesting phenomenon. For each case, (M, M + ΔM1, M +
ΔM2, M +ΔM1+ΔM2) consists of a 4-collision. For any two collision differential
paths, even if the two sets of sufficient conditions have no contrary conditions,
the message M +ΔM1+ΔM2 may not collide with other three messages because
of a few subtle conditions on the intersecting bits between the two paths.

We generalize the above multi-collisions to k-collisions generated by t multi-
collision differential paths where k ≤ 2t. Firstly, select t message differences
ΔMi, i = 0, 1, ..t− 1. For each ΔMi, search a feasible collision differential path
and deduce its corresponding condition set Ci. If there are some contradictory
conditions among Ci, i = 0, 1, ..t − 1, adjust some differential paths so that no
contrary condition occurs. Finally find a message M which satisfies all conditions
C = ∪Ci. Then the messages (M, M + ΔM0, M + ΔM1, ...M + ΔMt−1)) allow
a t-collision. Perfectly, if the t differential paths are completely independent
(i.e. there is no intersecting bits among Ci, i = 0, 1, ..t− 1), all the messages in
{M + ΔM | ΔM is a linear expression of ΔMi, i = 0, 1, ..t− 1} collide with M ,
and produce a 2t-collision.

Similarly, we can find the multi-near-collisions by the above method.

5 Finding 4-Collisions on MD4

In this section, we construct a 4-collision for the MD4 compression function
which is illustrated in Fig.3.

h0 h1

M

M

+

M M M+ +

M + M

M 1

 2

 1 2

Fig. 3. The 4-collisions construction on MD4 compression function. Each of Mi is a
one-block message.

We select the first message difference

ΔM1 = (0, 0, 0, 0, 225, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and decide a collision differential path and its sufficient conditions (See Table 6).
In fact, this collision differential path is a special instance of the 64 differential
paths in [17]. The path has the least conditions among all the known MD4
collision paths.

The collision differential path in paper [12] is selected as the second differential
path which is the most efficient path in finding the pairwise collisions so far. The
message difference is:

ΔM2 = (0, 231,−228 + 231, 0, 0, 0, 0, 0, 0, 0, 0, 0, 216, 0, 0, 0).

212 H. Yu and X. Wang

We make a simplification for the original differential path in [12] and get
the new path shown in Table 7. Combining the two sets of conditions in the
column 3 of Table 6 and Table 7, we get the final conditions, which are shown in
Table 8.

The remaining work involves finding a one-block message M that satisfies all
the conditions in Table 8 such that (M , M +ΔM1, M +ΔM2 ,M +ΔM1+ΔM2)
causes a 4-collision.

It is easy to correct all the conditions in the first 16 steps by the basic message
modifications. There are 63 conditions in steps 17-48, and using the advanced
message modification, all of the 44 conditions in steps 17-23 are forced to hold.
The precise details for advanced message modifications are omitted, and the
main techniques are shown in [12,13,17].

After the advanced message modifications, there are 19 conditions left. So the
probability that the modified message M satisfies all the conditions in Table
8 is improved to 2−19. Considering the cost of the message modification, the
complexity to find a 4-collision of compression function is about 221. By computer
searching, it is very easy to find 4-collisions, an example of which is given in
Table 1.

Table 1. A 4-collision for MD4 compression function. The IV and messages are hex-
adecimal format.

IV 67452301 efcdab89 98badcfe 10325476

M 74c5f8d6 33fc9eaa 0fd0a9e2 e83340d1 246c716a c0d1931b ef06af4c e7a20583
898483db 0d9a1026 fd62bb0f bb29de31 886af4fa 5c772a7d 6ce0f4fb 6a9c8ce8

M + ΔM1 74c5f8d6 33fc9eaa 0fd0a9e2 e83340d1 266c716a c0d1931b ef06af4c e7a20583
898483db 0d9a1026 fd62bb0f bb29de31 886af4fa 5c772a7d 6ce0f4fb 6a9c8ce8

M + ΔM2 74c5f8d6 b3fc9eaa 7fd0a9e2 e83340d1 246c716a c0d1931b ef06af4c e7a20583
898483db 0d9a1026 fd62bb0f bb29de31 8869f4fa 5c772a7d 6ce0f4fb 6a9c8ce8

M + ΔM1 74c5f8d6 b3fc9eaa 7fd0a9e2 e83340d1 266c716a c0d1931b ef06af4c e7a20583
+ΔM2 898483db 0d9a1026 fd62bb0f bb29de31 8869f4fa 5c772a7d 6ce0f4fb 6a9c8ce8

Common value cbe16ea1 2d600674 3b42a32d a1458b54

For any initial value, we can build 4t-collisions for MD4 as Joux 2t-collisions
construction. Let h be a hash function, and H is its compression function. A
denotes the attack algorithm for MD4 4-collisions introduced above. The 4t-
collisions construction is as follows (See Fig.4):

– Let h0 be the initial value of h.
– For i from 0 to t− 1 do:
• Call A and find four different 512-bit messages Bi,0, Bi,1, Bi,2 and Bi,3

such that H(hi−1, Bi,0)=H(hi−1, Bi,1)=H(hi−1, Bi,2)=H(hi−1, Bi,3).
• Let hi = H(hi−1, Bi).

– Output the 4t messages of the form (b0, b1, ..., bt−1) where bi is one of the
four messages Bi,j(j = 0, 1, 2, 3), i=0,1,..t-1.

Multi-collision Attack on the Compression Functions 213

...1B

B

B

B

h0 hh

0,0

 0,1

 0,2

 0,3

B

B

B

B 1,3

 1,2

 1,1

1,0

h

B

t−1 B

B

hht

t

t

t

−1

−1

B

−1

t−1

h2 B

B

B

B

h

2,0

 2,1

 2,2

 2,3

3

,0

,1

,2

,3

Fig. 4. Our 4t-collisions construction. Each of Bi,j is a one-block message.

6 Finding 4-Collisions on 3-Pass HAVAL

In order to construct 4-collisions for 3-Pass HAVAL compression function, two
different differential paths are necessary. This includes the collision differential
path of paper[11]. Its message difference written as ΔM1 = (m1,i)0≤i≤31, where

m1,i =

⎧
⎪⎪⎨

⎪⎪⎩

210, i = 0
231, i = 11
23, i = 18
0, others

(1)

We have to find another differential path does not collide with the first one.
Its message differences is written as ΔM2 = (m2,i)0≤i≤31, where

m2,i =
{

227, i = 20
0, others (2)

The two differential paths and their corresponding message differences are
shown in Tables 9 and 10. Table 11 shows the sufficient conditions that guarantee
these two differential paths. The conditions in the first 32 steps of Table 11 can be
easily satisfied by the basic message modification. There remain 67 conditions to

Table 2. A 4-collision example for 3-Pass HAVAL compression function

IV 67452301 efcdab89 98badcfe 10325476

IV ec4e6c89 082efa98 299f31d0 a4093822 03707344 13198a2e 85a308d3 243f6a88

M 73f4a38b d485fb7b 879c1aec cbbbc4a3 9b444b3e 94637936 cf763e2b 7c5eef85
8eea78dd bc1f5e15 7f993595 1ab5658f d541d6d4 059d4cc1 970c929f 0cc0a73a
ba7d7af4 8f74ab90 f0b2178f 4c0f1deb 171de335 9c8af784 a2f045ba 078d7633
6e379233 86ce9498 de72bf85 7465522d 97a6ca66 c29c57c7 b5877b8f ac5407d1

M + ΔM1 73f4a78b d485fb7b 879c1aec cbbbc4a3 9b444b3e 94637936 cf763e2b 7c5eef85
8eea78dd bc1f5e15 7f993595 9ab5658f d541d6d4 059d4cc1 970c929f 0cc0a73a
ba7d7af4 8f74ab90 f0b21797 4c0f1deb 171de335 9c8af784 a2f045ba 078d7633
6e379233 86ce9498 de72bf85 7465522d 97a6ca66 c29c57c7 b5877b8f ac5407d1

M + ΔM2 73f4a38b d485fb7b 879c1aec cbbbc4a3 9b444b3e 94637936 cf763e2b 7c5eef85
8eea78dd bc1f5e15 7f993595 1ab5658f d541d6d4 059d4cc1 970c929f 0cc0a73a
ba7d7af4 8f74ab90 f0b2178f 4c0f1deb 1f1de335 9c8af784 a2f045ba 078d7633
6e379233 86ce9498 de72bf85 7465522d 97a6ca66 c29c57c7 b5877b8f ac5407d1

M + ΔM1 73f4a78b d485fb7b 879c1aec cbbbc4a3 9b444b3e 94637936 cf763e2b 7c5eef85
+ΔM2 8eea78dd bc1f5e15 7f993595 9ab5658f d541d6d4 059d4cc1 970c929f 0cc0a73a

ba7d7af4 8f74ab90 f0b21797 4c0f1deb 1f1de335 9c8af784 a2f045ba 078d7633
6e379233 86ce9498 de72bf85 7465522d 97a6ca66 c29c57c7 b5877b8f ac5407d1

Common value 918b7e59 d3aa59c2 e3a3fd50 cc412921 6bac8ab6 5d418374 09f1f977 290cf7e4

214 H. Yu and X. Wang

Table 3. The 8(multi)-near-collisions attack example

IV0 243f6a88 85a308d3 13198a2e 03707344 a4093822 299f31d0 082efa98 ec4e6c89

M0 e6c99bc9 c99bc914 9bc914d8 c914d80b 14d80bf6 d80bf605 0bf605ef f605ef83

05ef831b ef831b24 831b2486 1b24868f 24868fd3 868fd399 8fd39945 d399459d

99459d9c 459d9cb7 9d9cb7ba 9cb7ba3f b7ba3f31 ba3f31dd 3f31dd06 31dd067f

dd067f7e 067f7ebb 7f7ebb63 7ebb63e8 bb63e8b9 63e8b986 e8b986dc b986dc14

IV1 0444e787 978e0d0a c408c64f 74a629f6 ee1eb57d fdb20640 6126dd36 4563c119

M f09e3e1e 862e1e8a 3e1e8a1c 0e8a1c49 88ca9872 14490ac3 30523a85 12cbd516

c3e51637 cd35b784 163503b0 a78401f9 e5539c0d b37acef6 7a0e9574 cdf616d7

f5d83836 16d7f41a 99f81c43 f61c4105 1c0105da 4105da86 05d88403 9a860533

c6453355 c53355d0 3355d113 55d0d398 90d397dd d3981d16 97dd1617 1d16175b

M + ΔM1 f09e3e1e 862e1e8a 3e1e8a1c 0e8a1c49 88ca9872 144912c3 30523a85 12cbd516

c3e51637 cd35b784 163503b0 a78401f9 e5539c0d b37acef6 7a0e9574 cdf616d7

f5d83836 16d7f41a 99f81c43 f61c4105 1c0105da 4105da86 05d88403 9a860533

c6453355 c53355d0 3355d113 55d0d398 90d397dd d3981d16 97dd1617 1d16175b

M + ΔM2 f09e3e1e 862e1e8a 3e1e8a1c 0e8a1c49 88ca9872 14510ac3 30523a85 12cbd516

c3e51637 cd35b784 163503b0 a78401f9 e5539c0d b37acef6 7a0e9574 cdf616d7

f5d83836 16d7f41a 99f81c43 f61c4105 1c0105da 4105da86 05d88403 9a860533

c6453355 c53355d0 3355d113 55d0d398 90d397dd d3981d16 97dd1617 1d16175b

M + ΔM3 f09e3e1e 862e1e8a 3e1e8a1c 0e8a1c49 88ca9872 1c490ac3 30523a85 12cbd516

c3e51637 cd35b784 163503b0 a78401f9 e5539c0d b37acef6 7a0e9574 cdf616d7

f5d83836 16d7f41a 99f81c43 f61c4105 1c0105da 4105da86 05d88403 9a860533

c6453355 c53355d0 3355d113 55d0d398 90d397dd d3981d16 97dd1617 1d16175b

M + ΔM1 f09e3e1e 862e1e8a 3e1e8a1c 0e8a1c49 88ca9872 145112c3 30523a85 12cbd516

+ΔM2 c3e51637 cd35b784 163503b0 a78401f9 e5539c0d b37acef6 7a0e9574 cdf616d7

f5d83836 16d7f41a 99f81c43 f61c4105 1c0105da 4105da86 05d88403 9a860533

c6453355 c53355d0 3355d113 55d0d398 90d397dd d3981d16 97dd1617 1d16175b

M + ΔM1 f09e3e1e 862e1e8a 3e1e8a1c 0e8a1c49 88ca9872 1c4912c3 30523a85 12cbd516

+ΔM3 c3e51637 cd35b784 163503b0 a78401f9 e5539c0d b37acef6 7a0e9574 cdf616d7

f5d83836 16d7f41a 99f81c43 f61c4105 1c0105da 4105da86 05d88403 9a860533

c6453355 c53355d0 3355d113 55d0d398 90d397dd d3981d16 97dd1617 1d16175b

M + ΔM2 f09e3e1e 862e1e8a 3e1e8a1c 0e8a1c49 88ca9872 1c510ac3 30523a85 12cbd516

+ΔM3 c3e51637 cd35b784 163503b0 a78401f9 e5539c0d b37acef6 7a0e9574 cdf616d7

f5d83836 16d7f41a 99f81c43 f61c4105 1c0105da 4105da86 05d88403 9a860533

c6453355 c53355d0 3355d113 55d0d398 90d397dd d3981d16 97dd1617 1d16175b

M + ΔM1 f09e3e1e 862e1e8a 3e1e8a1c 0e8a1c49 88ca9872 1c5112c3 30523a85 12cbd516

+ΔM2 c3e51637 cd35b784 163503b0 a78401f9 e5539c0d b37acef6 7a0e9574 cdf616d7

+ΔM3 f5d83836 16d7f41a 99f81c43 f61c4105 1c0105da 4105da86 05d88403 9a860533

c6453355 c53355d0 3355d113 55d0d398 90d397dd d3981d16 97dd1617 1d16175b

Near-collision a : 10110000011011011010110110001011 e : 11110011110100101000011010101101

value b : 1110?1111000?1011010?01000101001 f : 10010000111000001010000101101010

c : 00010011011011000100100011101101 g : 01100111101001000110110111110111

d : 11001101110000111101101000001111 h : 00001011010101101100111010011010

satisfy from steps 33-96. Utilizing the advanced message modification technique,
39 out of them can be corrected and leaving 28 conditions unmodified. Consider-
ing the message modification , the complexity to find a message M so that satisfies
all of the conditions is about 230. That is to say, it only costs 230 3-Pass HAVAL
computations to find a 4-collisions (M, M +ΔM1, M +ΔM2, M +ΔM1 +ΔM2).
In fact, the complexity can be further reduced by more precise modification. One
4-collisions example is illustrated in Table 2.

Multi-collision Attack on the Compression Functions 215

7 Finding 8-Near-Collisions on 3-Pass HAVAL

In order to construct 8-near-collisions for 3-Pass HAVAL compression function,
we need to find three feasible near-collision differential paths. One of them is
shown in Table 12 where the message difference is selected as

ΔM1 = (Δmi)0≤i≤31, Δmi = 211 when i = 5, else Δmi = 0.

If a message M satisfies all 73 conditions in column 4 of Table 12, the value
of H(M) is almost the same as H(M + ΔM) except one bit.

In fact, a similar differential path can be constructed for any one of the 48
message differences Δm5 = ±2j(0 ≤ j ≤ 31, j �= 3, 4, 5, 10, 14, 15, 16, 31). We
select two other differential paths corresponding to Δm5=219 and 227 respec-
tively, and denote their message differences as ΔM2 and ΔM3. So we get three
near-collision differential paths.

In order to implement the message modification, we sum up the three sets
of sufficient conditions that are shown in Table 13. There are a total of 73× 3
conditions, in which 210 conditions focus on the first round(steps 1-32). So using
only the basic message modification, the probability to find a message which
satisfies all the 219 conditions is improved to 2−9.

That there are 6 conditions on IV (a0), which are not consistent with the
original initial value IV0 of HAVAL. In order to avoid this situation, an extra
message block M0 is needed so that the hash value H(M0) satisfies these 6
conditions. Under the new initial value IV1(H(M0)), we find 8 different messages
M , M + ΔM0, M + ΔM1, M + ΔM2, M + ΔM0 + ΔM1, M + ΔM0 + ΔM2,
M + ΔM1 + ΔM2 M + ΔM0 + ΔM1 + ΔM2. Their hash values are almost
coincide in all but 3 bits. Our results are shown in Table 3. The hash values are
expressed in binary format(the most left bit is MSB) to reveal the positions of
the three differing bits. The 8-near-collision exactly traverses all of the 8 cases
corresponding to these three positions.

8 Conclusion

We have presented a dedicated multi-collision attack on the compression func-
tions of MD4 and 3-Pass HAVAL, and multi-near-collision attack on 3-Pass
HAVAL. We believe that the multi-collisions technique poses further danger
for practical applications of these hash functions.

Acknowledgments

We wish to thank Adi Shamir for his report presented in Tsinghua University
which motivated us to start this research. Very special thanks to Matt Henricksen
for giving hints to improve the exposition.

216 H. Yu and X. Wang

References

1. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

2. Canniére, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results and
Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp.
1–20. Springer, Heidelberg (2006)

3. Rompay, B., Biryukov, A., Preneel, B., Vandewalle, J.: Cryptanalysis of 3-Pass
HAVAL. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 228–245.
Springer, Heidelberg (2003)

4. Nandi, M., Stinson, D.R.: Multicollision Attacks on a Class of Hash Functions,
IACR preprint archive (2005)

5. Joux, A.: Multicollisions in Iterated Hash Functions. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)

6. Hoch, J.J., Shamir, A.: Breaking the ICE - Finding Multicollisions in Iterated
Concatenated and Expanded (ICE) Hash Functions. In: Robshaw, M. (ed.) FSE
2006. LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006)

7. Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A.J., Vanstone,
S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg
(1991)

8. Rivest, R.L.: The MD5 message-digest algorithm, Request for Comments(RFC
1320), Internet Activities Board, Internet Privacy Task Force (1992)

9. Schlaffer, M., Oswald, E.: Searching for Differential Paths in MD4. In: Robshaw,
M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 242–261. Springer, Heidelberg (2006)

10. Wang, X.Y., Feng, F.D., Lai, X.J., Yu, H.B.: Collisions for Some Hash Functions
MD4, MD5, HAVAL-128, RIPEMD,
http:eprint.iacr.org/2004/264/199.pdf

11. Wang, X.Y., Feng, F.D., Yu, X.: An attack on HAVAL function HAVAL-128. Sci-
ence in China Ser. F Information Sciences 48(5), 1–12 (2005)

12. Wang, X.Y., Lai, X.J., et al.: Cryptanalysis for Hash Functions MD4 and RIPEMD.
In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer,
Heidelberg (2005)

13. Wang, X.Y., Yu, H.B.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

14. Wang, X.Y., Yu, H.B., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

15. Wang, X.Y., Yin, Y.L., Yu, H.B.: Finding collisions on the Full SHA-1. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

16. Zheng, Y., Pieprzyk, J., Seberry, J.: HAVAL–A One-way Hashing Algorithm with
Variable Length of Output. In: Advances in Cryptology, Auscrypt 1992 Proceed-
ings, pp. 83–104 (1992)

17. Yu, H.B., Wang, G.L., Zhang, G.Y., Wang, X.Y.: The Second-Preimage Attack
on MD4. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS,
vol. 3810, pp. 1–12. Springer, Heidelberg (2005)

http:eprint.iacr.org/2004/264/199.pdf

Multi-collision Attack on the Compression Functions 217

Appendix

Table 4. The property for the round function φ1 and φ2 of MD4. Δx = 1 denotes x
changes from 0 to 1, Δx = −1 denotes x changes from 1 to 0.

Δx Δy Δz Δφ1 = 0 Δφ1 = 1 Δφ1 = −1 Δφ2 = 0 Δφ2 = 1 Δφ2 = −1

0 0 0 1 – – 1 – –
0 0 1 x = 1 x = 0 – x = y x �= y –
0 0 -1 x = 1 – x = 0 x = y – x �= y

0 1 0 x = 0 x = 1 – x = z x �= z –
0 1 1 – 1 – – 1 –
0 1 -1 – x = 1 x = 0 1 – –

0 -1 0 x = 0 – x = 1 x = z – x �= z
0 -1 1 – x = 0 x = 1 1 – –
0 -1 -1 – – 1 – – 1

1 0 0 y = z y = 1, z = 0 y = 0, z = 1 y = z y �= z –
1 0 1 y = 0 y = 1 – – 1 –
1 0 -1 y = 1 – y = 0 1 – –

1 1 0 z = 1 z = 0 – – 1 –
1 1 1 – 1 – – 1 –
1 1 -1 1 – – – 1 –

1 -1 0 z = 0 – z = 1 1 – –
1 -1 1 1 – – – 1 –
1 -1 -1 – – 1 – – 1

-1 0 0 y = z y = 0, z = 1 y = 1, z = 0 y = z – y �= z
-1 0 1 y = 1 y = 0 – 1 – –
-1 0 -1 y = 0 – y = 1 – – 1

-1 1 0 z = 0 z = 1 – 1 – –
-1 1 1 – 1 – – 1 –
-1 1 -1 1 – – – – 1

-1 -1 0 z = 1 – z = 0 – – 1
-1 -1 1 1 – – – – 1
-1 -1 -1 – – 1 – – 1

218 H. Yu and X. Wang

Table 5. Some properties for the first round function f1 of the 3-Pass Haval

Δa Δb Δc Δd Δe Δf Δg Δf1 = 0 Δf1 = 1 Δf1 = −1

0 0 0 0 0 0 0 1 – –

1 0 0 0 0 0 0 g = 0 g = 1, cd + bf + ce + e = 0 g = 1, cd + bf + ce + e = 1
-1 0 0 0 0 0 0 g = 0 g = 1, cd + bf + ce + e = 1 g = 1, cd + bf + ce + e = 0

0 1 0 0 0 0 0 f = 0 f = 1, cd + ag + ce + e = 0 f = 1, cd + ag + ce + e = 1
0 -1 0 0 0 0 0 f = 0 f = 1,cd + ag + ce + e = 1 f = 1, cd + ag + ce + e = 0

0 0 1 0 0 0 0 e = d e �= d, ag + bf + e = 0 e �= d, ag + bf + e = 1
0 0 -1 0 0 0 0 e = d e �= d, ag + bf + e = 1 e �= d, ag + bf + e = 0

0 0 0 1 0 0 0 c = 0 c = 1, ag + bf + ce + e = 0 c = 1, ag + bf + ce + e = 1
0 0 0 -1 0 0 0 c = 0 c = 1, ag + bf + ce + e = 1 c = 1, ag + bf + ce + e = 0

0 0 0 0 1 0 0 c = 1 c = 0, cd + ag + bf = 0 c = 0, cd + ag + bf = 1
0 0 0 0 -1 0 0 c = 1 c = 0, cd + ag + bf = 1 c = 0, cd + ag + bf = 0

0 0 0 0 0 1 0 b = 0 b = 1, cd + ag + ce + e = 0 b = 1, cd + ag + ce + e = 1
0 0 0 0 0 -1 0 b = 0 b = 1, cd + ag + ce + e = 1 b = 1, cd + ag + ce + e = 0

0 0 0 0 0 0 1 a = 0 a = 1, cd + bf + ce + e = 0 a = 1, cd + bf + ce + e = 1
0 0 0 0 0 0 -1 a = 0 a = 1, cd + bf + ce + e = 1 a = 1, cd + bf + ce + e = 0

Multi-collision Attack on the Compression Functions 219

Table 6. The collision differential path 1 of MD4

Step Output mi si Δmi Output Sufficient conditions
for M for M ′

1 a1 m0 3

2 d1 m1 7

3 c1 m2 11

4 b1 m3 19

5 a2 m4 3 225 a2[29] a2,29 = 0

6 d2 m5 7 d2 b1,29 = c1,29

7 c2 m6 11 c2 d2,29 = 0

8 b2 m7 19 b2 c2,29 = 1

9 a3 m8 3 a3[32] a3,32 = 0

10 d3 m9 7 d3 b2,32 = c2,32

11 c3 m10 11 c3[−11] c3,11 = 1, d3,32 = 1

12 b3 m11 19 b3 c3,32 = 1, d3,11 = a3,11

13 a4 m12 3 a4[3] a4,3 = 0, b3,11 = 0

14 d4 m13 7 d4 b3,3 = c3,3, a4,11 = 1

15 c4 m14 11 c4[−22] c4,22 = 1, d4,3 = 0

16 b4 m15 19 b4 d4,22 = a4,22, c4,3 = 1

17 a5 m0 3 a5[6] a5,6 = 0, b4,22 = d4,22

18 d5 m4 5 225 d5[11, 31] d5,11 = 0, d5,31 = 0, a5,22 = b4,22, b4,6 = c4,6 + 1

19 c5 m8 9 c5[−31] c5,31 = 1, a5,11 = b4,11, d5,6 = b4,6, a5,31 = b4,31

20 b5 m12 13 b5 c5,6 = d5,6, c5,11 = a5,11

21 a6 m1 3 a6[9] a6,9 = 0, b5,11 = c5,11

22 d6 m5 5 d6[16] d6,16 = 0, b5,9 = c5,9, a6,31 = b5,31 + 1

23 c6 m9 9 c6[8,−9] c6,8 = 0, c6,9 = 1, d6,9 = b5,9, a6,16 = b5,16

24 b6 m13 13 b6 d6,8 = a6,8, c6,16 = a6,16

25 a7 m2 3 a7 b6,9 = d6,9 + 1, b6,8 = d6,8, b6,16 = c6,16

26 d7 m6 5 d7[21] a7,8 = b6,8, a7,9 = b6,9, d7,21 = 0

27 c7 m10 9 c7[−17] c7,17 = 1, a7,21 = b6,21

28 b7 m14 13 b7 d7,17 = a7,17, c7,21 = a7,21

29 a8 m3 3 a8 b7,17 = d7,17, b7,21 = c7,21

30 d8 m7 5 d8[26] d8,26 = 0, a8,17 = b7,17

31 c8 m11 9 c8[−26] c8,26 = 1, a8,26 = b7,26

32 b8 m15 13 b8

33 a9 m0 3 a9

34 d9 m8 9 d9 a9,26 = b8,26

35 c9 m4 11 225 c9

36 b9 m12 15 b9

220 H. Yu and X. Wang

Table 7. The collision differential path 2 of MD4

Step Output mi si Δmi Output Sufficient conditions
for M for M ′

1 a1 m0 3

2 d1 m1 7 231 d1[7] d1,7 = 0

3 c1 m2 11 −228 + 231 c1[−8, 11] c1,8 = 1, c1,11 = 0, a1,7 = b0,7

4 b1 m3 19 b1[26] b1,26 = 0, c1,7 = 1, d1,8 = a1,8, d1,11 = a1,11

5 a2 m4 3 a2 c1,26 = d1,26, b1,8 = 0, b1,11 = 0, b1,7 = 1

6 d2 m5 7 d2[14] d2,14 = 0, a2,26 = 0, a2,8 = 1, a2,11 = 1

7 c2 m6 11 c2[−19, 22] c2,19 = 1, c2,22 = 0, a2,14 = b1,14, d2,26 = 1

8 b2 m7 19 b2[13] b2,13 = 0, c2,14 = 0, d2,19 = a2,19,
d2,22 = a2,22

9 a3 m8 3 a3[17] a3,17 = 0, c2,13 = d2,13, b2,14 = 0, b2,19 = 0,
b2,22 = 0

10 d3 m9 7 d3[20,−21, d3,20 = 0, d3,21 = 1, d3,22 = 1, d3,23 = 0,
−22, 23] b2,17 = c2,17, a3,13 = 1, a3,19 = 1, a3,22 = 1

11 c3 m10 11 c3[−30] c3,30 = 1, a3,20 = b2,20, a3,21 = b2,21,
a3,23 = b2,23, d3,17 = 0, d3,13 = 1

12 b3 m11 19 b3[32] b3,32 = 0, d3,30 = a3,30, c3,20 = 0, c3,21 = 0,
c3,22 = 0, c3,23 = 0, c3,17 = 1

13 a4 m12 3 −216 a4[23, 26] a4,23 = 0, a4,26 = 0, b3,20 = 0, b3,21 = 1,
b3,22 = 1, b3,23 = 0, c3,32 = d3,32, b3,30 = 0

14 d4 m13 7 d4[−27, d4,27 = 1, d4,29 = 1, d4,30 = 0, b3,26 = c3,26,
−29, 30] a4,32 = 0, a4,30 = 1

15 c4 m14 11 a4,27 = b3,27, a4,29 = b3,29, d4,23 = 0,
d4,26 = 0, d4,32 = 1

16 b4 m15 19 b4[17, 19] b4,17 = 0, b4,19 = 0, c4,27 = 0, c4,29 = 0,
c4,30 = 1, c4,23 = 1, c4,26 = 1

17 a5 m0 3 a5[−26, 27, a5,26 = 1, a5,27 = 0, a5,29 = 1, a5,32 = 1,
−29,−32] b4,27 = 1, b4,29 = 1, b4,30 = 1,

c4,19 = d4,19, c4,17 = d4,17

18 d5 m4 5 d5 b4,26 = c4,26, b4,32 = c4,32, a5,19 = c4,19,
a5,17 = c4,17

19 c5 m8 9 c5 d5,19 = a5,19, d5,26 = b4,26, d5,27 = b4,27,
d5,29 = b4,29, d5,32 = b4,32, d5,17 = a5,17

20 b5 m12 13 −216 b5[32] b5,32 = 0, c5,26 = d5,26, c5,27 = d5,27,
c5,29 = d5,29, c5,32 = d5,32

21 a6 m1 3 a6[29,−32] a6,29 = 0, a6,32 = 1

22 d6 m5 5 b5,29 = c5,29

23 c6 m9 9 d6,29 = b5,29

24 b6 m13 13 b6 c6,29 = d6,29, c6,32 = d6,32 + 1

25 a7 m2 3 −228 + 231 a7

36 b9 m12 15 −216 b9[−32] b9,32 = 1

37 a10 m2 3 −228 + 231 a10[−32] a10,32 = 1

38 d10 m10 9

39 c10 m6 11

40 b10 m14 15

41 a11 m1 3 231

Multi-collision Attack on the Compression Functions 221

Table 8. A set of sufficient conditions for the 4-collision of MD4

Step Output variable Variable conditions

1 a1 a1,7 = b0,7

2 d1 d1,7 = 0, d1,8 = a1,8, d1,11 = a1,11

3 c1 c1,7 = 1, c1,8 = 1, c1,11 = 0, c1,26 = d1,26

4 b1 b1,7 = 1, b1,8 = 0, b1,11 = 0, b1,26 = 0, b1,29 = c1,29

5 a2 a2,8 = 1, a2,11 = 1, a2,14 = b1,14, a2,26 = 0, a2,29 = 0

6 d2 d2,14 = 0, d2,19 = a2,19, d2,22 = a2,22d2,26 = 1, d2,29 = 0

7 c2 c2,13 = d2,13, c2,14 = 0, c2,19 = 1, c2,22 = 0, c2,29 = 1, c2,32 = 0

8 b2 b2,13 = 0, b2,14 = 0, b2,17 = c2,17, b2,19 = 0, b2,22 = 0, b2,32 = 0

9 a3 a3,13 = 1, a3,17 = 0, a3,19 = 1, a3,20 = b2,20, a3,21 = b2,21,a3,22 = 1,
a3,23 = b2,23, a3,32 = 0

10 d3 d3,11 = a3,11, d3,13 = 1, d3,17 = 0, d3,20 = 0, d3,21 = 1, d3,22 = 1,
d3,23 = 0, d3,30 = a3,30, d3,32 = 1

11 c3 c3,11 = 1, c3,17 = 1, c3,20 = 0, c3,21 = 0, c3,22 = 0,c3,23 = 0,
c3,30 = 1, c3,32 = 1

12 b3 b3,3 = c3,3, b3,11 = 0, b3,20 = 0, b3,21 = 1, b3,22 = 1, b3,23 = 0,
b3,26 = c3,26, b3,30 = 0, b3,32 = 0

13 a4 a4,3 = 0, a4,11 = 1, a4,23 = 0, a4,26 = 0, a4,27 = b3,27, a4,29 = b3,29,
a4,30 = 1, a4,32 = 0

14 d4 d4,3 = 0, d4,22 = a4,22, d4,23 = 0, d4,26 = 0, d4,27 = 1, d4,29 = 1,
d4,30 = 0, d4,32 = 1

15 c4 c4,3 = 1, c4,17 = d4,17, c4,19 = d4,19, c4,22 = 1, c4,23 = 1, c4,26 = 1,
c4,27 = 0, c4,29 = 0, c4,30 = 1

16 b4 b4,6 = c4,6 + 1, b4,17 = 0, b4,19 = 0, b4,22 = d4,22, b4,26 = 1, b4,27 = 1,
b4,29 = 1, b4,30 = 1, b4,32 = c4,32

17 a5 a5,6 = 0, a5,11 = b4,11, a5,17 = c4,17, a5,19 = c4,19 , a5,22 = b4,22,
a5,26 = 1, a5,27 = 0,a5,29 = 1, a5,31 = b4,31, a5,32 = 1

18 d5 d5,6 = b4,6, d5,11 = 0, d5,17 = a5,17, d5,19 = a5,19, d5,26 = b4,26,
d5,27 = b4,27, d5,29 = b4,29, d5,31 = 0, d5,32 = b4,32

19 c5 c5,6 = d5,6, c5,11 = a5,11, c5,26 = d5,26, c5,27 = d5,27, c5,29 = d5,29,
c5,31 = 1, c5,32 = d5,32

20 b5 b5,9 = c5,9, b5,11 = c5,11, b5,29 = c5,29, b5,32 = 0

21 a6 a6,9 = 0, a6,16 = b5,16, a6,29 = 0, a6,31 = b5,31 + 1, a6,32 = 1

22 d6 d6,8 = a6,8, d6,9 = b5,9, d6,16 = 0, d6,29 = b5,29

23 c6 c6,8 = 0, c6,9 = 1, c6,16 = a6,16, c6,29 = d6,29, c6,32 = d6,32 + 1

24 b6 b6,8 = d6,8, b6,9 = d6,9 + 1, b6,16 = c6,16

25 a7 a7,8 = b6,8, a7,9 = b6,9, a7,21 = b6,21

26 d7 d7,17 = a7,17, d7,21 = 0

27 c7 c7,17 = 1, c7,21 = a7,21

28 b7 b7,17 = d7,17, b7,21 = c7,21

29 a8 a8,17 = b7,17, a8,26 = b7,26

30 d8 d8,26 = 0

31 c8 c8,26 = 1

32 b8

33 a9 a9,26 = b8,26

34 d9

35 c9

36 b9 b9,32 = 1

37 a10 a10,32 = 1

222 H. Yu and X. Wang

Table 9. Collision differential path 1 of 3-Pass HAVAL for the 4-collision attack

Step m′
i−1 Δmi Output for M ′

1
1 m0 210 a1[11], a0, b0, c0, d0, e0, f0, g0
2 m1 a2, a1[11], a0, b0, c0, d0, e0, f0
3 m2 a3, a2, a1[11], a0, b0, c0, d0, e0
4 m3 a4, a3, a2, a1[11], a0, b0, c0, d0
5 m4 a5, a4, a3, a2, a1[11], a0, b0, c0
6 m5 a6, a5, a4, a3, a2, a1[11], a0, b0
7 m6 a7[-4,-5,-6,-7,8], a6, a5, a4, a3, a2, a1[11], a0
8 m7 a8[-29,-30,-31,32], a7[-4,-5,-6,-7,8], a6, a5, a4, a3, a2, a1[11]
9 m8 a9[-22,-23], a8[-29,-30,-31,32], a7[-4,-5,-6,-7,8], a6, a5, a4, a3, a2
10 m9 a10, a9[-22,-23], a8[-29,-30,-31,32], a7[-4,-5,-6,-7,8], a6, a5, a4, a3
11 m10 a11[-15], a10, a9[-22,-23], a8[-29,-30,-31,32], a7[-4,-5,-6,-7,8], a6, a5, a4
12 m11 231 a12, a11[-15], a10, a9[-22,-23], a8[-29,-30,-31,32], a7[-4,-5,-6,-7,8], a6, a5
13 m12 a13[1], a12, a11[-15], a10, a9[-22,-23], a8[-29,-30,-31,32], a7[-4,-5,-6,-7,8], a6
14 m13 a14, a13[1], a12, a11[-15], a10, a9[-22,-23], a8[-29,-30,-31,32], a7[-4,-5,-6,-7,8]
15 m14 a15, a14, a13[1], a12, a11[-15], a10, a9[-22,-23], a8[-29,-30,-31,32]
16 m15 a16[18], a15, a14, a13[1], a12, a11[-15], a10, a9[-22,-23]
17 m16 a17[12], a16[18], a15, a14, a13[1], a12, a11[-15], a10
18 m17 a18, a17[12], a16[18], a15, a14, a13[1], a12, a11[-15]
19 m18 23 a19, a18, a17[12], a16[18], a15, a14, a13[1], a12
20 m19 a20, a19, a18, a17[12], a16[18], a15, a14, a13[1]
21 m20 a21[22], a20, a19, a18, a17[12], a16[18], a15, a14
22 m21 a22, a21[22], a20, a19, a18, a17[12], a16[18], a15
23 m22 a23, a22, a21[22], a20, a19, a18, a17[12], a16[18]
24 m23 a24[7], a23, a22, a21[22], a20, a19, a18, a17[12]
25 m24 a25[1,2,3,-4], a24[7], a23, a22, a21[22], a20, a19, a18
26 m25 a26, a25[1,2,3,-4], a24[7], a23, a22, a21[22], a20, a19
27 m26 a27, a26, a25[1,2,3,-4], a24[7], a23, a22, a21[22], a20
28 m27 a28, a27, a26, a25[1,2,3,-4], a24[7], a23, a22, a21[22]
29 m28 a29[11], a28, a27, a26, a25[1,2,3,-4], a24[7], a23, a22
30 m29 a30, a29[11], a28, a27, a26, a25[1,2,3,-4], a24[7], a23
31 m30 a31, a30, a29[11], a28, a27, a26, a25[1,2,3,-4], a24[7]
32 m31 a32, a31, a30, a29[11], a28, a27, a26, a25[1,2,3,-4]
33 m5 a33[22], a32, a31, a30, a29[11], a28, a27, a26
34 m14 a34, a33[22], a32, a31, a30, a29[11], a28, a27
35 m26 a35, a34, a33[22], a32, a31, a30, a29[11], a28
36 m18 a36, a35, a34, a33[22], a32, a31, a30, a29[11]
37 m11 a37, a36, a35, a34, a33[22], a32, a31, a30
38 m28 a38, a37, a36, a35, a34, a33[22], a32, a31
39 m7 a39, a38, a37, a36, a35, a34, a33[22], a32
40 m16 a40, a39, a38, a37, a36, a35, a34, a33[22]
86 m0 210 a86[11], a85, a84, a83, a82, a81, a80, a79

87 m18 23 a87, a86[11], a85, a84, a83, a82, a81, a80
88 m27 a88, a87, a86[11], a85, a84, a83, a82, a81
89 m13 a89, a88, a87, a86[11], a85, a84, a83, a82
90 m6 a90, a89, a88, a87, a86[11], a85, a84, a83
91 m21 a91, a90, a89, a88, a87, a86[11], a85, a84
92 m10 a92, a91, a90, a89, a88, a87, a86[11], a85
93 m23 a93, a92, a91, a90, a89, a88, a87, a86[11]
94 m11 231 a94, a93, a92, a91, a90, a89, a88, a87

Multi-collision Attack on the Compression Functions 223

Table 10. Collision differential path 2 of 3-Pass HAVAL for the 4-collision attack

Step m′
i−1 Δmi Output for M ′

1
21 m20 227 a21[28], a20, a19, a18, a17, a16, a15, a14
22 m21 a22, a21[28], a20, a19, a18, a17[29], a16, a15
23 m22 a23, a22, a21[28], a20, a19, a18, a17[29], a16
24 m23 a24, a23, a22, a21[28], a20[28], a19, a18, a17
25 m24 a25, a24, a23, a22, a21[28], a20, a19, a18
26 m25 a26, a25, a24, a23, a22, a21[28], a20, a19
27 m26 a27, a26, a25, a24, a23, a22, a21[28], a20
28 m27 a28, a27, a26, a25, a24, a23, a22, a21[28]
29 m28 a29[−17,−18, 19], a28, a27, a26, a25, a24, a23, a22
30 m29 a30, a29[−17,−18, 19], a28, a27, a26, a25, a24, a23
31 m30 a31[−12,−13,−14, 15], a30, a29[−17,−18, 19], a28, a27, a26, a25, a24
32 m31 a32, a31[−12,−13,−14, 15], a30, a29[−17,−18, 19], a28, a27, a26, a25
33 m5 a33, a32, a31[−12,−13,−14, 15], a30, a29[−17,−18, 19], a28, a27, a26
34 m14 a34, a33, a32, a31[−12,−13,−14, 15], a30, a29[−17,−18, 19], a28, a27
35 m26 a35[7], a34, a33, a32, a31[−12,−13,−14, 15], a30, a29[−17,−18, 19], a28
36 m18 a36[−8], a35[7], a34, a33, a32, a31[−12,−13,−14, 15], a30, a29[−17,−18, 19]
37 m11 a37, a36[−8], a35[7], a34, a33, a32, a31[−12,−13,−14, 15], a30
38 m28 a38, a37, a36[−8], a35[7], a34, a33, a32, a31[−12,−13,−14, 15]
39 m7 a39, a38, a37, a36[−8], a35[7], a34, a33, a32
40 m16 a40, a39, a38, a37, a36[−8], a35[7], a34, a33
41 m0 a41, a40, a39, a38, a37, a36[−8], a35[7], a34
42 m23 a42, a41, a40, a39, a38, a37, a36[−8], a35[7]
43 m20 227 a43, a42, a41, a40, a39, a38, a37, a36[−8]
44 m22 a44[−29], a43, a42, a41, a40, a39, a38, a37
45 m1 a45, a44[−29], a43, a42, a41, a40, a39, a38
46 m10 a46, a45, a44[−29], a43, a42, a41, a40, a39
47 m4 a47, a46, a45, a44[−29], a43, a42, a41, a40
48 m8 a48, a47, a46, a45, a44[−29], a43, a42, a41
49 m30 a49, a48, a47, a46, a45, a44[−29], a43, a42
50 m3 a50, a49, a48, a47, a46, a45, a44[−29], a43
51 m21 a51, a50, a49, a48, a47, a46, a45, a44[−29]
52 m9 a52[−18], a51, a50, a49, a48, a47, a46, a45
53 m17 a53, a52[−18], a51, a50, a49, a48, a47, a46
54 m24 a54, a53, a52[−18], a51, a50, a49, a48, a47
55 m29 a55, a54, a53, a52[−18], a51, a50, a49, a48
56 m6 a56, a55, a54, a53, a52[−18], a51, a50, a49
57 m19 a57, a56, a55, a54, a53, a52[−18], a51, a50
58 m12 a58, a57, a56, a55, a54, a53, a52[−18], a51
59 m15 a59, a58, a57, a56, a55, a54, a53, a52[−18]
60 m13 a60[−7], a59, a58, a57, a56, a55, a54, a53
61 m2 a61, a60[−7], a59, a58, a57, a56, a55, a54
62 m25 a62, m61, a60[−7], a59, a58, a57, a56, a55
63 m31 a63, a62, a61, a60[−7], a59, a58, a57, a56
64 m27 a64, a63, a62, a61, a60[−7], a59, a58, a57
65 m19 a65, a64, a63, a62, a61, a60[−7], a59, a58
66 m9 a66, a65, a64, a63, a62, a61, a60[−7], a59
67 m4 a67, a66, a65, a64, a63, a62, a61, a60[−7]
68 m20 227 a68, a67, a66, a65, a64, a63, a62, a61

224 H. Yu and X. Wang

Table 11. Sufficient conditions for the differential paths given in Table 9 and 10

ai Conditions of the chaining variable in each step

a1 − a4 a1,4 = 1, a1,5 = 0, a1,6 = 0, a1,7 = 0, a1,8 = 0, a1,11 = 0, a2,11 = 0, a2,29 = 1,
a2,30 = 1, a2,31 = 0, a2,32 = 0, a3,4 = 0, a3,5 = 0, a3,6 = 0, a3,7 = 1, a3,8 = 0,
a3,11 = 1, a3,22 = 0, a3,23 = 0, a4,4 = a2,4 +1, a4,7 = 1, a4,11 = 0, a4,29 = 0, a4,30 = 0,
a4,31 = 0, a4,32 = 0

a5 − a8 a5,4 = 1, a5,7 = 0, a5,8 = 0, a5,11 = 1, a5,15 = 0, a5,22 = 1, a5,23 = 0, a5,29 = a3,29,
a5,30 = a3,30 a6,4 = a5,4, a6,5 = a5,5, a6,6 = a5,6, a6,7 = 0, a6,8 = 0, a6,22 = 0,
a6,29 = 1, a6,30 = 1, a7,1 = 0, a7,4 = 1, a7,5 = 1, a7,6 = 1, a7,7 = 1, a7,8 = 0,
a7,11 = 0, a7,15 = 0, a7,22 = 0, a7,29 = 1, a7,30 = a6,30, a7,31 = a6,31, a7,32 = a6,32,
a8,4 = 0, a8,5 = 0, a8,6 = 0, a8,7 = 0, a8,8 = 0, a8,22 = 0, a8,23 = a7,23, a8,29 = 1,
a8,30 = 1, a8,31 = 1, a8,32 = 0

a9 − a12 a9,1 = 0, a9,4 = 1, a9,5 = 1, a9,6 = 1, a9,7 = 0, a9,8 = 1, a9,22 = 1, a9,23 = 1,
a9,29 = 0, a9,30 = 0, a9,31 = 0, a9,32 = 0, a10,7 = a7,7, a10,8 = 0, a10,15 = a9,15,
a10,18 = 1, a10,22 = 0, a10,23 = 0, a10,29 = 1, a10,30 = 1, a10,31 = 1, a10,32 = 1,
a11,4 = 0, a11,5 = 0, a11,6 = 0, a11,7 = 0, a11,8 = 1, a11,12 = 0, a11,15 = 1, a11,22 = 1,
a11,23 = 1, a12,1 = a11,1, a12,15 = 0, a12,18 = 0, a12,29 = 0, a12,30 = 0, a12,31 = 0,
a12,32 = 0

a13 − a16 a13,1 = 0, a13,4 = 0, a13,5 = 0, a13,6 = 0, a13,7 = 0, a13,8 = 0, a13,12 = 0, a13,15 = 1,
a13,22 = 0, a13,23 = 0, a14,1 = 0, a14,18 = 0, a14,29 = 0, a14,30 = 0, a14,31 = 0,
a14,32 = 1, a15,1 = 1, a15,15 = 0, a15,18 = 0, a15,22 = 0, a15,23 = 0, a15,28 = 0
a16,12 = a15,12, a16,18 = 0

a17 − a20 a17,1 = 0, a17,12 = 1, a17,15 = 0, a17,18 = 0, a17,22 = 0, a17,28 = 0, a18,7 = 0,
a18,12 = 0, a18,18 = 1, a19,1 = 0, a19,2 = 0, a19,3 = 0, a19,4 = 0, a19,12 = 1, a20,7 = 0,
a20,18 = 0, a20,22 = a19,22, a20,28 = a19,28

a21 − a24 a21,1 = 0, a21,2 = 0, a21,3 = 0, a21,4 = 0, a21,12 = 0, a21,22 = 0, a21,28 = 0,
a22,18 = 0, a22,22 = 0, a22,28 = 0, a23,7 = a22,7, a23,11 = 0, a23,12 = 0, a23,22 = 1,
a23,28 = 1, a23,17 = 0, a23,18 = 0, a23,19 = 0 a24,1 = a23,1, a24,2 = a23,2, a24,3 = a23,3,
a24,4 = a23,4, a24,7 = 0

a25 − a28 a25,1 = 0, a25,2 = 0, a25,3 = 0, a25,4 = 1, a25,7 = 0, a25,11 = 0, a25,12 = 0, a25,13 = 0,
a25,14 = 0, a25,15 = 0, a25,17 = 0, a25,18 = 0, a25,19 = 1, a25,22 = 0, a25,28 = 0,
a26,4 = 0, a26,7 = 1, a26,19 = a24,19, a26,1 = 0, a26,2 = 0, a26,3 = 0, a27,1 = 1,
a27,2 = 1, a27,3 = 1, a27,4 = 1, a27,11 = 0, a27,15 = 1, a27,17 = 0, a27,18 = 0,
a27,19 = 0, a27,22 = 0, a27,28 = 0, a28,7 = 0, a28,11 = 0, a28,12 = 1, a28,13 = 1,
a28,14 = 0, a28,15 = 1, a28,17 = 0, a28,18 = 0, a28,19 = 0, a28,22 = 0

a29 − a32 a29,1 = 0, a29,2 = 0, a29,3 = 0, a29,4 = 0, a29,11 = 0, a29,12 = 0, a29,13 = 0, a29,14 = 0,
a29,15 = 0, a29,17 = 1, a29,18 = 1, a29,19 = 0, a29,22 = 0, a30,7 = 0, a30,11 = 0,
a30,12 = 0, a30,13 = 0, a30,14 = 0, a30,15 = 1, a30,22 = 1, a30,17 = 1, a30,18 = 1,
a30,19 = 1, a31,1 = 0, a31,2 = 0, a31,3 = 1, a31,4 = 0, a31,11 = 0, a31,12 = 1, a31,13 = 1,
a31,14 = 1, a31,15 = 0, a31,17 = 0, a31,18 = 0, a31,19 = 0, a31,22 = 0, a32,7 = 1,
a32,8 = 0, a32,11 = 0, a32,12 = 1, a32,13 = 1, a32,14 = 1, a32,15 = 1, a32,17 = 1,
a32,18 = 1, a32,19 = 1, a32,22 = 0

a33 − a36 a33,7 = 0, a33,8 = 0, a33,11 = 1, a33,12 = 0, a33,13 = 0, a33,14 = 1, a33,15 = 0,
a33,17 = 1, a33,18 = 1, a33,19 = 1, a33,22 = 1, a34,22 = 1, a34,12 = 1, a34,13 = 0,
a34,14 = 1, a34,15 = 0, a34,7 = 0, a34,8 = 0 a35,11 = a34,11 + 1, a35,22 = 0, a35,12 = 1,
a35,15 = 0, a35,7 = 1, a35,8 = 0, a36,7 = 1, a36,8 = 1, a36,22 = 1, a36,14 = a35,14

a37 − a40 a37,7 = 0, a37,22 = 1, a37,8 = 1, a38,7 = 1, a38,8 = 0, a39,7 = 1, a39,8 = 1, a39,29 = 0,
a40,8 = 1

a41 − a48 a44,29 = 1, a43,29 = 0, a42,29 = 0, a41,29 = 1, a45,29 = 1, a46,29 = 0, a47,29 = 1,
a48,29 = 1

a49 − a56 a52,18 = 1, a51,18 = 0, a50,18 = 0, a49,18 = 1, a47,18 = 0, a53,18 = 1, a54,18 = 0,
a55,18 = 1, a56,18 = 1

a82 − a89 a82,11 = 1, a83,11 = 0, a84,11 = 0, a85,11 = 1, a86,11 = 0, a87,11 = 0, a89,11 = 0

Multi-collision Attack on the Compression Functions 225

Table 12. The near-collision differential path for the 3-Pass HAVAL

Step m′
i−1 Outputs for M ′

0 Sufficient conditions

6 m′
5 a6[−12, 13], a5, a4, a3, a2, a1, a0, b0 a6,12 = 1, a6,13 = 0

7 m6 a7, a6[−12, 13], a5, a4, a3, a2, a1, a0 a0,12 = 0, a0,13 = 0

8 m7 a8, a7, a6[−12, 13], a5, a4, a3, a2, a1 a2,12 = 0, a2,13 = 0

9 m8 a9, a8, a7, a6[−12, 13], a5, a4, a3, a2 a5,12 = a4,12, a5,13 = a4,13

10 m9 a10, a9, a8, a7, a6[−12, 13], a5, a4, a3 a7,12 = 0, a7,13 = 0

11 m10 a11[−6,−7,−8, 9], a10, a9, a8, a7, a6[−12, 13], a8,12 = 1, a8,13 = 0, a5,13 = 0,
a5, a4 a11,6 = 1, a11,7 = 1, a11,8 = 1,

a11,9 = 0

12 m11 a12, a11[−6,−7,−8, 9], a10, a9, a8, a7, a10,12 = 0, a10,13 = 0, a6,6 = 0,
a6[−12, 13], a5 a6,7 = 0, a6,8 = 0, a6,9 = 0

13 m12 a13, a12, a11[−6,−7,−8, 9], a10, a9, a8, a7, a12,12 = 0, a12,13 = 0, a7,6 = 0,
a6[−12, 13] a7,7 = 0, a7,8 = 0, a7,9 = 0

14 m13 a14, a13, a12, a11[−6,−7,−8, 9], a10, a9, a8, a7 a10,6 = a9,6, a10,7 = a9,7,
a10,8 = a9,8 + 1, a10,9 = a9,9,
a9,8 = 0

15 m14 a15, a14, a13, a12, a11[−6,−7,−8, 9], a10, a9, a8 a12,6 = 0, a12,7 = 0,a12,8 = 0,
a12,9 = 0

16 m15 a16, a15, a14, a13, a12, a11[−6,−7,−8, 9], a10, a9 a13,6 = 1, a13,7 = 1,a13,8 = 1,
a13,9 = 1

17 m16 a17[−2], a16, a15, a14, a13, a12, a11[−6,−7,−8, 9], a15,6 = 0, a15,7 = 0, a15,8 = 0,
a10 a15,9 = 1, a10,9 = 0, a14,9 = 1,

a17,2 = 1

18 m17 a18, a17[−2], a16, a15, a14, a13, a12, a17,6 = 0, a17,7 = 0, a17,8 = 0,
a11[−6,−7,−8, 9] a17,9 = 0, a11,2 = 0

19 m18 a19, a18, a17[−2], a16, a15, a14, a13, a12 a13,2 = 1, a14,2 = 0, a15,2 = 0

20 m19 a20, a19, a18, a17[−2], a16, a15, a14, a13 a16,2 = a15,2

21 m20 a21, a20, a19, a18, a17[−2], a16, a15, a14 a18,2 = 0

22 m21 a22, a21, a20, a19, a18, a17[−2], a16[, a15 a19,2 = 1

23 m22 a23, a22, a21, a20, a19, a18, a17[−2], a16 a21,2 = 0

24 m23 a24, a23, a22, a21, a20, a19, a18, a17[−2] a23,2 = 0

25 m24 a25[−23], a24, a23, a22, a21, a20, a19, a18 a25,23 = 1

26 m25 a26, a25[−23], a24, a23, a22, a21, a20, a19 a19,23 = 0

27 m26 a27, a26, a25[−23], a24, a23, a22, a21, a20 a21,23 = 0

28 m27 a28, a27, a26, a25[−23], a24, a23, a22, a21 a24,23 = a23,23

29 m28 a29, a28, a27, a26, a25[−23], a24, a23, a22 a26,23 = 0

30 m29 a30, a29, a28, a27, a26, a25[−23], a24, a23 a27,23 = 1

31 m30 a31, a30, a29, a28, a27, a26, a25[−23], a24 a29,23 = 0

32 m31 a32, a31, a30, a29, a28, a27, a26, a25[−23] a31,23 = 0

33 m′
5 a33, a32, a31, a30, a29, a28, a27, a26

...

95 m′
5 a95[12], a94, a93, a92, a91, a90, a89, a88 a95,12 = 0

96 m2 a96, a95[12], a94, a93, a92, a91, a90, a89 a92,12 = 1

226 H. Yu and X. Wang

Table 13. A set of sufficient conditions for the 8-near-collision of 3-Pass HAVAL

Step Output Varialbe conditions
variable

0 IV a0,12 = 0, a0,13 = 0, a0,20 = 0, a0,21 = 0, a0,28 = 0, a0,29 = 0

1 a1

2 a2 a2,12 = 0, a2,13 = 0, a2,20 = 0, a2,21 = 0, a2,28 = 0, a2,29 = 0

3 a3

4 a4 a4,13 = 0, a4,21 = 0, a4,29 = 0

5 a5 a5,6 = 0, a5,7 = 0, a5,8 = 0, a5,9 = 0, a5,12 = a4,12, a5,13 = a4,13,
a5,14 = 0, a5,15 = 0, a5,16 = 0, a5,17 = 0, a5,20 = a4,20, a5,21 = a4,21,
a5,22 = 0, a5,23 = 0, a5,24 = 0, a5,25 = 0, a5,28 = a4,28, a5,29 = a4,29

6 a6 a6,12 = 1, a6,13 = 0, a6,20 = 1, a6,21 = 0, a6,28 = 1, a6,29 = 0

7 a7 a7,6 = 0, a7,7 = 0, a7,8 = 0, a7,9 = 0, a7,12 = 0, a7,13 = 0, a7,14 = 0,
a7,15 = 0, a7,16 = 0, a7,17 = 0, a7,20 = 0, a7,21 = 0, a7,22 = 0, a7,23 = 0,
a7,24 = 0, a7,25 = 0, a7,28 = 0, a7,29 = 0

8 a8 a8,12 = 1, a8,13 = 0, a8,20 = 1, a8,21 = 0, a8,28 = 1, a8,29 = 0

9 a9 a9,8 = 0, a9,9 = 0, a9,16 = 0, a9,17 = 0, a9,24 = 0, a9,25 = 0

10 a10 a10,6 = a9,6, a10,7 = a9,7, a10,8 = a9,8 + 1, a10,9 = a9,9, a10,12 = 0,
a10,13 = 0, a10,14 = a9,14, a10,15 = a9,15, a10,16 = a9,16 + 1, a10,17 = a9,17,
a10,20 = 0, a10,21 = 0, a10,22 = a9,22, a10,23 = a9,23, a10,24 = a9,24 + 1,
a10,25 = a9,25, a10,28 = 0, a10,29 = 0

11 a11 a11,2 = 0, a11,6 = 1, a11,7 = 1, a11,8 = 1, a11,9 = 0, a11,10 = 0, a11,14 = 1,
a11,15 = 1, a11,16 = 1, a11,17 = 0, a11,18 = 0, a11,22 = 1, a11,23 = 1,
a11,24 = 1, a11,25 = 0

12 a12 a12,6 = 0, a12,7 = 0, a12,8 = 0, a12,9 = 0, a12,12 = 0, a12,13 = 0, a12,14 = 0,
a12,15 = 0, a12,16 = 0, a12,17 = 0, a12,20 = 0, a12,21 = 0, a12,22 = 0, a12,23 = 0,
a12,24 = 0, a12,25 = 0, a12,28 = 0, a12,29 = 0

13 a13 a13,2 = 1, a13,6 = 1, a13,7 = 1, a13,8 = 1, a13,9 = 1, a13,10 = 1, a13,14 = 1,
a13,15 = 1, a13,16 = 1, a13,17 = 1, a13,18 = 1, a13,22 = 1, a13,23 = 1, a13,24 = 1,
a13,25 = 1

14 a14 a14,2 = 0, a14,9 = 1, a14,10 = 0, a14,17 = 1, a14,18 = 0, a14,25 = 1

15 a15 a15,2 = 0, a15,6 = 0, a15,7 = 0, a15,8 = 0, a15,9 = 1, a15,10 = 0, a15,14 = 0,
a15,15 = 0, a15,16 = 0, a15,17 = 1, a15,18 = 0, a15,22 = 0, a15,23 = 0, a15,24 = 0,
a15,25 = 1

16 a16 a16,2 = a15,2, a16,10 = a15,10, a16,18 = a15,18

17 a17 a17,2 = 1, a17,6 = 0, a17,7 = 0, a17,8 = 0, a17,9 = 0, a17,10 = 1, a17,14 = 0,
a17,15 = 0, a17,16 = 0, a17,17 = 0, a17,18 = 1, a17,22 = 0, a17,23 = 0, a17,24 = 0,
a17,25 = 0

18 a18 a18,2 = 0, a18,10 = 0, a18,18 = 0

19 a19 a19,2 = 1, a19,7 = 0, a19,10 = 1, a19,18 = 1, a19,23 = 0, a19,31 = 0

20 a20

21 a21 a21,2 = 0, a21,7 = 0, a21,10 = 0, a21,18 = 0, a21,23 = 0, a21,31 = 0

22 a22

23 a23 a23,2 = 0, a23,10 = 0, a23,18 = 0

24 a24 a24,7 = a23,7, a24,23 = a23,23, a24,31 = a23,31

25 a25 a25,7 = 1, a25,23 = 1, a25,31 = 1

26 a26 a26,7 = 0, a26,23 = 0, a26,31 = 0

27 a27 a27,7 = 1, a27,23 = 1, a27,31 = 1

28 a28

29 a29 a29,7 = 0, a29,23 = 0, a29,31 = 0

30 a30

31 a31 a31,7 = 0, a31,23 = 0, a31,31 = 0

92 a92 a92,12 = 1, a92,20 = 1, a92,28 = 1

95 a95 a95,12 = 0, a95,20 = 0, a95,28 = 0

(b0 + a95)12 = 0, (b0 + a95)20 = 0, (b0 + a95)28 = 0

Differential Cryptanalysis of T-Function Based

Stream Cipher TSC-4

Haina Zhang1 and Xiaoyun Wang2,�

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, P.R. China

hnzhang@math.sdu.edu.cn
2 Tsinghua University, Beijing 100087, P.R. China

xiaoyunwang@tsinghua.edu.cn

Abstract. TSC-4 is a T-function based stream cipher with 80-bit key,
and proposed as a candidate for ECRYPT eStream project. In this paper,
we introduce a differential method to analyze TSC-4. Our attack is based
on the vulnerable differential characteristics in the state initialization of
TSC-4, and for the chosen IV pairs, the differential probability is up to
2−15.40 in the case of weak keys. We show that there are about 272 weak
keys among the total 280 keys. To recover 8 bits of a weak key needs
about 240.53 chosen IV pairs. After that, we can search the other 72 key
bits by an exhaustive attack.

Keywords: Differential cryptanalysis, T-function, stream cipher, chosen
IV attack, TSC-4.

1 Introduction

For a long time, a classical approach for designing stream ciphers is to utilize the
Linear Feedback Shift Registers (LFSR) combined with nonlinear Boolean func-
tions. Recently, a new primitive has been introduced to replace the LFSR, which
is the T-function (Triangular-function) proposed by Klimov and Shamir [4,5,6].
T-function is a nonlinear function which has some nice properties, such as the
operations both available on processors and software implementations, and one
single cycle by the appropriate choice, etc. There are some interesting researches
on this area in recent years.

At FSE 2005, Hong et al. proposed a new class of single T-functions with
S-box application [1], and described two stream ciphers TSC-1 and TSC-2. At
Asiacrypt 2004, Mitra and Sarkar described a time-memory trade-off attack [8]
to break some stream ciphers proposed by Klimov and Shamir. Recently, Kunzli,
Junod and Meier proposed the distinguishing attacks [7] applicable to several T-
function based stream ciphers (TSC). Based on the above researches, Hong et al.
proposed a new TSC version called TSC-3 [2], as a candidate to eStream project.

� Supported by the National Natural Science Foundation of China (NSFC Grant
No.90604036) and 973 Project (No.2007CB807902).

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 227–238, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

228 H. Zhang and X. Wang

In 2005 and 2006, Muller and Peyrin [10,11] introduced a linear cryptanalysis
attack on the TSC family TSC-1, TSC-2, TSC-3 together with Klimov and
Shamir’s ciphers. This linear correlation attack can recover the full secret keys of
these stream ciphers. Soon, Dukjae Moon et al. twisted TSC-3 and proposed the
latest version TSC-4 [9] to prevent the distinguishing attack, the time-memory
trade-off attack and the linear correlation attack described in above literatures.

At Indocrypt 2006, Fischer, Meier and Berbain et al. [3] presented a non-
randomness behavior of the full eight-round state initialization for TSC-4. The
non-randomness can be detected in the initial state with about 1000 inputs, how-
ever, no bias in the keystream of TSC-4 resulting from this non-randomness has
been detected yet. So, no substantial attack has been found from the keystream
until now.

In this paper, we present an efficient chosen IV differential attack on TSC-4
with weak keys based on two special differential characteristics in the state ini-
tialization. The outline of our attack is as follows. Firstly, construct two special
differential characteristics in the state initialization of TSC-4. Secondly, inves-
tigate what keys and IVs can result in the high occurrence probability of two
differential characteristics, and find out the serious non-randomness behavior of
the initial state under these weak keys and chosen IVs. Finally, utilizing 240.53

chosen IV pairs, we can identify a weak key and recover 8 bits of the key, and
recover the full 80-bit weak key by searching exhaustively the other 72 key bits.

This paper is organized as follows. In Section 2, a brief description of TSC-4
is given. Section 3 introduces two special differential characteristics according to
the structure of TSC-4. Section 4 presents the chosen IV differential attack on
TSC-4. Finally, we conclude the paper in Section 5.

2 A Brief Description of TSC-4

TSC-4 is a synchronous stream cipher optimized for constrained hardware, in-
cluding the cipher body and the state initialization. The structure of TSC-4 is
illustrated in Fig. 1. Its internal state consists of two states X and Y of 4 × 32
bits each, denoted X = (x3, x2, x1, x0)T and Y = (y3, y2, y1, y0)T , where xk and
yk (k = 0, · · · , 3) are 32-bit words. Let [x]i denote the i-th least significant bit
of a 32-bit word x, then the i-th bit-slice of state X and the i-th bit-slice of Y
are defined as

[X]i =
3∑

k=0

[xk]i2k, [Y]i =
3∑

k=0

[yk]i2k, i = 0, · · · 31. (1)

2.1 Cipher Body

We first describe two functions of X and Y . In the case of state X , a 32-bit
parameter α1(X) is computed as a function of X . It is defined by α1(X) =
(p + c) ⊕ p ⊕ 2s with p = x0 ∧ x1 ∧ x2 ∧ x3 and s = x0 + x1 + x2 + x3 and
constant cX =0x51291089. Here ∧, ⊕ and + denote bitwise AND, bitwise XOR

Differential Cryptanalysis of T-Function Based Stream Cipher TSC-4 229

(X)α 1

N
on

−L
in

ea
r

Fi
lte

r
T

−f
un

ct
io

n

8bits adders

MUX MUX

SS S 6 S 6

32bits

32bits 4 432bits

24bits

24bits

24bits

24bits

24bits

24bits

24bits

24bits

6 8bits 68bits

8bits

8bits

8bits

8bits

8bits

8bits

8bits

8bits

432bits 4
32bits 32bits

T

2α (Y)

T1 2

X Y

8bits

Output Keystream
z

Fig. 1. The structure of TSC-4

and addition operation modulo 232 respectively. The 32-bit parameter α2(Y) is
defined similarly to α1(X) except for the constant cY =0x12910895.

In the cipher body, bit-slices [X]i and [Y]i are always mapped by two single-
cycle S-boxes. The S-boxes are defined as

S[16] = {9, 2, 11, 15, 3, 0, 14, 4, 10, 13, 12, 5, 6, 8, 7, 1},
S6[16] = {6, 13, 8, 0, 5, 12, 1, 11, 4, 14, 3, 10, 15, 7, 2, 9}.

Now T-functions T1 and T2 on input states X and Y are defined as

[T1(X)]i =
{

S([X]i) if [α1(X)]i = 1,
S6([X]i) if [α1(X)]i = 0.

[T2(Y)]i =
{

S([Y]i) if [α2(Y)]i = 1,
S6([Y]i) if [α2(Y)]i = 0.

Where the bit-slices [T1(X)]i and [T2(Y)]i(i = 0, 1, · · · , 31) are regarded as 4-bit
integers similar to equations (1). Then [X]i will be replaced by [T1(X)]i, and
[Y]i will be replaced by [T2(Y)]i respectively, in this way, the states X and Y
are updated by T-function T1 and T2.

The non-linear filter in Fig. 1. produces the actual output keystream from
the current internal states X and Y . We divide 32-bit word xk into four bytes

230 H. Zhang and X. Wang

xk,0, xk,1, xk,2, xk,3, where xk,0 is the least significant byte, and xk,3 is the most
significant byte. This is similar to yk,l (0 ≤ k, l ≤ 3). Then we compute six 8-bit
temporary variables a0, · · · , a5 as follows:

a0 = x3,3 + y1,1,

a1 = x0,3 + y2,1,

a2 = x2,2 + y3,2, (2)
a3 = x1,2 + y0,2,

a4 = x3,1 + y2,3,

a5 = x0,1 + y1,3,

where, + denotes the addition operation modulo 28. Now the 8-bit keystream z
is defined as

z = a0 ⊕ (a1)≫5 ⊕ (a2)≫2 ⊕ (a3)≫5 ⊕ (a4)≫6 ⊕ (a5)≫2, (3)

where ≫ denotes the right rotation.

2.2 State Initialization

We now describe how the states X and Y are initialized from a given key and
IV.

Key/IV Loading: Let K = (k79, k78, · · · , k1, k0) and IV =(iv79, iv78, · · · , iv1,
iv0) be an 80-bit key and 80-bit IV respectively. Two 128-bit internal states X
and Y are initialized as follows:

X =

⎛

⎜
⎜
⎝

x3

x2

x1

x0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

iv63 iv62 · · · iv33 iv32

iv31 iv30 · · · iv1 iv0

k63 k62 · · · k33 k32

k31 k30 · · · k1 k0

⎞

⎟
⎟
⎠ ,

Y =

⎛

⎜
⎜
⎝

y3

y2

y1

y0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

k47 k46 · · · · · · k17 k16

k15 · · · k0 k79 · · · k64

iv47 iv46 · · · · · · iv17 iv16

iv15 · · · iv0 iv79 · · · iv64

⎞

⎟
⎟
⎠ .

Warm-up: Once the internal states are initialized, the K and IV are mixed by
the following process,

– Step 1, run cipher body once to produce a single 8-bit output,
– Step 2, rotate x1 and y0 to the left by 8 bits,
– Step 3, XOR the output z to the least significant 8 bits of x1 and y0.

The state initialization is completely finished by repeating the above three
steps 8 times.

Differential Cryptanalysis of T-Function Based Stream Cipher TSC-4 231

3 Two Special Differential Characteristics in the State
Initialization

In this section, we will construct two special differential characteristics which
will occur with obvious probability advantage for a large amount of keys.

Suppose that IV and IV ′ are two different IVs, and we denote them as an
IV pair (IV , IV ′). Let X = (x3, x2, x1, x0)T and Y = (y3, y2, y1, y0)T are two
128-bit initial states corresponding to IV . X ′ = (x′3, x

′
2, x
′
1, x
′
0)

T and Y ′ =
(y′3, y

′
2, y
′
1, y
′
0)

T are states related to IV ′. Denote the differential X ⊕ X ′ as
ΔX = (Δx3, Δx2, Δx1, Δx0)T , and Y ⊕ Y ′ as ΔY = (Δy3, Δy2, Δy1, Δy0)T ,
where Δxk = xk ⊕ x′k, Δyk = yk ⊕ y′k, k = 0, · · · , 3.

All the 16 bytes of ΔY can be represented as a matrix ΔY = (Δyk,l)4×4 with
Δyk,l = yk,l ⊕ y′k,l, where 0 ≤ k, l ≤ 3.

ΔY =

⎛

⎜
⎜
⎝

Δy3

Δy2

Δy1

Δy0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

Δy3,3 Δy3,2 Δy3,1 Δy3,0

Δy2,3 Δy2,2 Δy2,1 Δy2,0

Δy1,3 Δy1,2 Δy1,1 Δy1,0

Δy0,3 Δy0,2 Δy0,1 Δy0,0

⎞

⎟
⎟
⎠ .

In the Key/IV loading process, it is obvious that the IV bits iv48, · · · , iv63

(to initial state X) and iv64, · · · , iv79 (to initial state Y) occur only one time
respectively, and the other IV bits occur twice. This means that one nonzero bit
difference in {iv64, iv49, · · · , iv79} results in only one nonzero difference bit in
ΔY .

We denote the IV differential IV ⊕ IV ′ as ΔIV = (Δiv79, · · ·Δiv0) with
Δivj = ivj ⊕ iv′j , where 0 ≤ j ≤ 79. Then we announce for the same key
K, the chosen IV pair holds that IV and IV ′ are only different at one bit
Δivj0 = 1 and the other 79 bits of them are all the same, where 64 ≤ j0 ≤ 79.
After the key/IV loading process, we can get the initial state of X and Y are
ΔX0 = (0, 0, 0, 0)T and ΔY 0 = (0, 0, 0, Δy0

0)T respectively, where Δy0
0 only

has one nonzero bit difference (i.e., the hamming weight of Δy0
0 is 1). In this

paper, we select j0 = 66 i.e., Δy0
0 =0x4. The choice for the position j0 depends

on the occurrence probability of the expected differential characteristic in the
state initialization process, the details are described in Subsection 4.1. The state
initialization in Section 2.2 includes 8 warm-up processes, and we denote each
warm-up process as one round.

Now we construct two differential characteristics ΩX and ΩY , and discuss the
interaction between them.

Differential characteristic ΩX : ΩX is an 8-round differential in the state
initialization such that the difference of initial state X after Key/IV loading
process is ΔX0 = (0, 0, 0, 0)T , and the output difference of internal state X
after Step 3 at the i-th round is ΔX i = (0, 0, 0, 0)T , i = 1, · · · , 8, i.e.,

ΩX : X0 Step 3−−−−−→
Round 1

X1 Step 3−−−−−→
Round 2

X2 −−→ . . .
Step 3−−−−−→

Round 8
X8.

232 H. Zhang and X. Wang

Differential characteristic ΩY : ΩY behaves that, the difference of initial state
Y after Key/IV loading process is ΔY 0 = (0, 0, 0, 4)T , and the output difference
of internal state Y after Step 1 before Step 2 at the i-th round is ΔY i which
holds that 6 differential bytes ΔY i

3,2, ΔY i
2,3, ΔY i

2,1, ΔY i
1,3, ΔY i

1,1 and ΔY i
0,2 are

all 0. Here i = 1, · · · , 8.

ΩY : Y 0 Step 1−−−−−→
Round 1

ΔY 1 Step 1−−−−−→
Round 2

ΔY 2 −−→ · · · Step 1−−−−−→
Round 8

ΔY 8.

The differential characteristic ΩY is illustrated in Fig. 2. The blank means that
the difference byte is 0.

���
���
���

���
���
���

���
���
���

���
���
������
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
�����

��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
������

���
���

���
���
������
���
���

���
���
��� ���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
������
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
������
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
������

���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
������
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Step1

Step1

......

YΔ

ΔY

ΔY

Step1 Step2

Step3

Step2

Step3

Step2

Step3

Δ

Round

...

1

2

8

Round

Round

After Key/IV Loading

Y

1

2

8

0

Fig. 2. The differential characteristic ΩY in the state initialization

It is obvious that, if IV and IV ′ with the same key K are different at only
one bit Δiv66 = 1, the initial state differential ΔX0 is (0, 0, 0, 0)T and ΔY 0 is
(0, 0, 0, 4)T . And then, by the equations (2) and (3), it is easy to confirm that,
ΔX0 and the choice of ΔY 1 guarantee the keystream output differential Δz1

r at
the first round is 0. So, from Step 3 of the warm-up process in Subsection 2.2, the
difference ΔX1 is always (0, 0, 0, 0)T after the first round. Similarly, ΔX1 and
the choice of ΔY 2 guarantee ΔX2 is always (0, 0, 0, 0)T after the second round,
and so on. This means that, under the condition IV and IV ′ are different at
only one bit Δiv66 = 1, if the differential characteristic ΩY holds, then the

Differential Cryptanalysis of T-Function Based Stream Cipher TSC-4 233

differential characteristic ΩX holds with probability 1. And we can only focus
on the occurrence probability of ΩY in the next sections.

4 Chosen IV Differential Attack on TSC-4

In this section, we introduce a chosen IV differential attack on TSC-4.

4.1 Weak Keys Resulting in the High Occurrence Probability of
Differential Characteristic ΩY

We now investigate what keys and IVs can result in the high occurrence proba-
bility of differential characteristic ΩY in Section 3.

Experiment 1. For each j0 (j0 = 64, · · · , 79), we randomly select 238 (K, IV,
IV ′) triplets where IV and IV ′ are only different at one bit Δivj0 = 1. For each
(K, IV, IV ′) triplet, we perform two state initialization processes with (K, IV)
and (K, IV ′) to search for ΩY . We find that there are more ΩY holding for
j0 = 66 or 68. Especially, for j0 = 66, the number of obtained ΩY is up to 4983.
Since each ΩY corresponds to one (K, IV) pair, we can further investigate the
statistical property of 4983 (K, IV) pairs obtained above. Firstly, we perform
one Key/IV loading process with each obtained (K, IV) pair, then 4983 initial
state Y 0 can be obtained. Secondly, we employ a χ2 test for 16 states of each
[Y 0]i(i = 0, 1, · · · , 31). Finally, list the χ2 distributions of [Y 0]i which are serious
unbalance, and the result is illustrated in Table 1.

Table 1. χ2 distributions and χ2 values of [Y 0]i (i = 0, 1, · · · , 4)

k [Y 0]0 [Y 0]1 [Y 0]2 [Y 0]3 [Y 0]4

0 169 335 0 636 58
1 156 50 0 73 0
2 229 57 4 63 98
3 379 103 5 624 0
4 183 71 0 97 4594
5 376 101 0 563 15
6 400 116 0 602 1
7 356 839 0 50 7
8 176 63 0 93 30
9 359 115 0 707 1
10 406 92 0 665 4
11 323 841 0 47 4
12 322 105 12 596 1
13 318 865 9 68 76
14 333 791 2413 64 1
15 498 439 2540 35 93

χ2 486.2 5201.4 34429.2 4047.9 62874.7

234 H. Zhang and X. Wang

From Table 1, we find that the 5 least significant columns of [Y 0]i reveal the se-
rious unbalance for χ2 value which is more than 100, where χ2 =

∑15
k=0

(nk−npk)2

npk
,

nk is the frequency of the 4-bit integer [Y 0]i being k, n =
∑15

k=0 nk and pk = 1
16 .

Since K and IV are embedded into Y 0, we hope to deduce some linear correla-
tions between K and IV by the unbalance of [Y 0]i.

For the initial state Y 0 = (y0
3 , y

0
2 , y

0
1 , y

0
0)

T initialed by IV and K after the
Key/IV loading process, we know that [y0

0]i = iv64+i, [y0
1]i = iv16+i, [y0

2]i = k64+i

and [y0
3]i = k16+i, where i = 0, 1, · · · , 4. So, [Y 0]i can be represented as

[Y 0]i = iv64+i + iv16+i · 2 + k64+i · 22 + k16+i · 23, i = 0, 1, · · · , 4. (4)

Especially, we can find some strong linear correlations between K and IV .
For example, [Y 0]4 concentrates on the point 0x4 with probability 4594

4983 = 0.9129
by the sixth column of Table 1. So from [Y 0]4 =0x4 and equation (4), we get
the following conditional probability

Pr(k20 = 0, k68 = 1, iv20 = 0, iv68 = 0|ΩY) = 0.9129. (5)

We try to explore some other more complex linear correlations between K and
IV by observing the χ2 distribution of [Y 0]i. We firstly investigate the possible
linear equations from [Y 0]0. In order to find the linear correlations easily with
high probability, we list the distribution of [Y 0]0 as a matrix in Fig. 3.

169 379

183 376 400

359 406

322 318

00

01

10

11

00 01 10 11
ab

cd

156 229

356

176 323

333 498

Fig. 3. 4 × 4 matrix of [Y]0, ab represents k16k64, and cd is iv16iv64

From Fig. 3, we know that two linear equations iv64⊕iv16 = 1 and k64⊕k16 = 1
hold concurrently in the four bold items which correspond to 5 = (0101)2, 6 =
(0110)2, 9 = (1001)2 and 10 = (1010)2 respectively.

From Pr([Y]0 = 5, 6, 9, 10|ΩY) = 1541
4983 = 0.3093, we get

Pr(iv64 ⊕ iv16 = 1, k64 ⊕ k16 = 1|ΩY) = 0.3093. (6)

Clearly, the probability of (6) is much more than the average value 0.25.

Differential Cryptanalysis of T-Function Based Stream Cipher TSC-4 235

By studying the 3rd, 4-th and 5-th columns of Table 1, we can conclude that

Pr(k17 = 1, k65 = 1, iv65 ⊕ iv17 = 1|ΩY) = 0.3323, (7)
Pr(k18 = 1, k66 = 1, iv18 = 1|ΩY) = 0.9939, (8)
Pr(k19 ⊕ k67 = 1, iv19 ⊕ iv67 = 1|ΩY) = 0.5091. (9)

Summing up all the linear equations (5)-(9), we define the following sets,

A0 = {K|k64 ⊕ k16 = 1},
A1 = {K|k17 = 1, k65 = 1},
A2 = {K|k18 = 1, k66 = 1},
A3 = {K|k19 ⊕ k67 = 1},
A4 = {K|k20 = 0, k68 = 1}.

B0 = {IV |iv64 ⊕ iv16 = 1},
B1 = {IV |iv65 ⊕ iv17 = 1},
B2 = {IV |iv18 = 1},
B3 = {IV |iv19 ⊕ iv67 = 1},
B4 = {IV |iv20 = 0, iv68 = 0}.

Let

A =
4⋂

j=0

Aj , B =
4⋂

j=0

Bj .

We can get the following probability by searching 4983 (K, IV) pairs in Ex-
periment 1.

Pr(K ∈ A , IV ∈ B|ΩY) =
386
4983

= 2−3.69. (10)

And it is obvious that

Pr(ΩY) =
4983
238

= 2−25.71. (11)

Because Pr(K ∈ A , IV ∈ B) = 2−14, by the conditional probability formula
with (10) and (11), we get

Pr(ΩY |K ∈ A , IV ∈ B) =
Pr(K ∈ A , IV ∈ B|ΩY)Pr(ΩY)

Pr(K ∈ A , IV ∈ B)
= 2−15.40. (12)

We define the key K which falls into set A as a weak key. For 80 bits key
size, the number of weak keys is 280−8 = 272. From equation (12), we know that,
for a chosen IV pair (IV, IV ′) with {IV, IV ′} ⊂ B, if K is a weak key, ΩY

occurs with high probability 2−15.40. We can verify the above probability by the
statistical Experiment 2.

236 H. Zhang and X. Wang

Experiment 2. We randomly select 210 weak keys. For each weak key, randomly
select 220 (IV, IV ′) pairs where IV and IV ′ are only different at one bit Δiv66 =
1, and both belong to set B. Then we get the total occurrence frequency of the
differential characteristic ΩY is 26086.

Experiment 2 means that Pr(ΩY |K ∈ A , IV ∈ B) is about 26086
210×220 = 2−15.33

which confirms our result in (12) again.

4.2 Identifying and Recovering the Weak Keys

From the above subsection, we know that, for a chosen IV pair, if K is a weak key,
ΩY happens with high probability 2−15.40. But this is not enough to identify and
recover a weak key, we need more information. Denote the first actual keystream
output byte which is used to encrypt a plaintext byte as z1

s , and z1
s is generated

by IV and K. Similarly, z′1s corresponds to IV ′ and K. Let Δz1
s be z1

s ⊕ z′1s , and
[Δz1

s]k be the k-th least significant bit of the differential byte Δz1
s , k = 0, 1, · · ·7.

Then the bias of [Δz1
s]k will provide a solution to identify a weak key.

Experiment 3. In Experiment 2, we have obtained 26086 differential character-
istics ΩY . And we know each ΩY corresponds to one (K, IV, IV ′) triplet, then
we utilize each (K, IV, IV ′) triplet to run cipher body once and produce two
first 8-bit keystream outputs z1

s and z′1s . Then 26086 Δz1
s bytes can be obtained.

Denote the number of [Δz1
s]k being ‘0’ as nk,0, and the number of [Δz1

s]k being
‘1’ as nk,1. The 0-1 bias of [Δz1

s]k can be represented as εk = | nk,0
nk,0+nk,1

− 1
2 |.

From Experiment 3, for a weak key with chosen IV pairs, if the differential
characteristic ΩY occurs, the bias of [Δz1

s]k is listed in Table 2.

Table 2. The bias of [Δz1
s]k with weak keys (k = 0, 1, .., 7)

k 0 1 2 3 4 5 6 7

|log2εk| 4.38 3.54 5.09 5.90 4.91 4.81 6.15 5.02

For a weak key with chosen IV pairs, we adopt [Δz1
s]1 which holds with the

highest bias, and get the following conclusion by Experiment 3.

Pr([Δz1
s]1 = 0|ΩY , K ∈ A , IV ∈ B) =

1
2

+ 2−3.54. (13)

In an actual attack, we can not get ΩY directly except for the actual keystream
output. Then we need to know the bias of [Δz1

s]1 without the condition ΩY . By
further experiments, we can find that if ΩY does not happen, for any K and IV ,
the probability Pr([Δz1

s]1 = 0|ΩY) is very close to 1
2 . Then for a weak key and

the chosen IV pairs, from (12) and (13), we can get

Pr([Δz1
s]1 = 0|K ∈ A , IV ∈ B) =

1
2

+ 2−15.40 × 2−3.54 =
1
2

+ 2−18.94. (14)

Differential Cryptanalysis of T-Function Based Stream Cipher TSC-4 237

In order to improve the correctness for identifying a weak key, we need to
explore the 0-1 bias of [Δz1

s]k for a strong key. A strong key means that the key
K ∈ A .

Utilizing 4983 keys and IV pairs obtained by Experiment 1, we get the prob-
ability

Pr(K ∈ A , IV ∈ B|ΩY) =
151
4983

= 2−5.04. (15)

Since Pr(K ∈ A , IV ∈ B) = (1 − 2−8) × 2−6 = 2−6.01, from (15), it is easy
to deduce the probability

Pr(ΩY |K ∈ A , IV ∈ B) =
Pr(K ∈ A , IV ∈ B|ΩY)Pr(ΩY)

Pr(K ∈ A , IV ∈ B)
= 2−24.74. (16)

Experiment 4. We randomly select 210 strong keys. For each strong key, ran-
domly select 224 chosen IV pairs, and we can get that the total frequency that
ΩY occurs is 645. Therefore Pr(ΩY |K ∈ A , IV ∈ B) is about 645

210×224 = 2−24.67.
It is clear that, Experiment 4 verifies the result in (16).

In Experiment 4, we can also get 645 Δz1
s corresponding to 645 ΩY . By count-

ing the number of ‘0’ among 645 [Δz1
s]1, we calculate the following probability

under a strong key and the chosen IV pairs,

Pr([Δz1
s]1 = 0|ΩY , K ∈ A , IV ∈ B) =

1
2

+ 2−3.68. (17)

By combination of equations (16) and (17), for a strong key and the chosen
IV pairs, similarly to (14), we get the probability

Pr([Δz1
s]1 = 0|K ∈ A , IV ∈ B) =

1
2

+ 2−24.74 × 2−3.68 =
1
2

+ 2−28.42. (18)

We use (14) and (18) to identify the weak keys. Approximate the binomial
distribution with the normal distribution. Denote the total number of samples
as N , the mean as μ, and the standard variance as σ.

From (14), p = 1
2 + 2−18.94, μ = Np and σ =

√
Np(1− p).

From (18), p′ = 1
2 + 2−28.42, μ′ = Np′ and σ′ =

√
Np′(1− p′).

For the normal distribution, the cumulative function gives value 1− 2−9.53 at
3σ′, and value 0.023 at −2σ.

If the following relation holds

μ− μ′ � 3σ′ + 2σ, (19)

a strong key will be wrongly identified as a weak key (false positive) with prob-
ability 2−9.53, and each weak key is not identified as a weak key (false negative)
with probability 0.023. This means that the weak keys can be successfully iden-
tified. By solving (19), the amount of IV pairs required is N = 240.53.

Identifying a weak key means that we can recover 8 key bits. The other 72
key bits can be recovered by searching exhaustively.

238 H. Zhang and X. Wang

5 Conclusion

In this paper, we developed a differential attack on TSC-4. Utilizing the structure
of T-function in TSC-4, we constructed a special differential characteristic with
high probability which incurs about 272 weak keys. 240.53 chosen IV pairs can be
used to identify a weak key and recover 8 bits of the weak key. We can recover
the other 72 key bits by exhaustive search.

References

1. Hong, J., Lee, D.H., Yeom, Y., Han, D.: New Class of Single Cycle T-functions. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 68–82. Springer,
Heidelberg (2005)

2. Hong, J., Lee, D.H., Yeom, Y., Han, D., Chee, S.: T-function Based Stream Cipher
TSC-3, available at http://www.ecrypt.eu.org/stream/ciphers/tsc3/tsc3.pdf

3. Fischer, S., Meier, W., Berbain, C., et al.: Non-randomness is eSTREAM Can-
didates Salsa20 and TSC-4. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 2–16. Springer, Heidelberg (2006)

4. Klimov, A., Shamir, A.: A New Class of Invertible Mappings. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 470–483. Springer,
Heidelberg (2003)

5. Klimov, A., Shamir, A.: Cryptographic Application of T-functions. In: Matsui,
M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 248–261. Springer,
Heidelberg (2004)

6. Klimov, A., Shamir, A.: New Cryptographic Primitives Based on Multiword T-
functions. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 1–15.
Springer, Heidelberg (2004)

7. Kunzli, S., Junod, P., Meier, W.: Distinguishing Attacks on T-functions. In: Inter-
national Conference on Cryptology in Malaysia (2005)

8. Mitra, J., Sarkar, P.: Time-memory Trade-Off Attacks on Multiplications and T-
functions. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 468–482.
Springer, Heidelberg (2004)

9. Moon, D., Kwon, D., Han, D., et al.: T-function Based Stream Cipher TSC-4,
available at http://www.ecrypt.eu.org/stream/p2ciphers/tsc4/tsc4 p2.pdf

10. Muller, F., Peyrin, T.: Linear Cryptanalysis of the TSC Family of Stream Ciphers.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 373–394. Springer, Hei-
delberg (2005)

11. Muller, F., Peyrin, T.: Linear Cryptanalysis of TSC Stream Ciphers - Applications
to the ECRYPT Proposal TSC-3, available at
http://www.ecrypt.eu.org/stream/papersdir/042.ps

http://www.ecrypt.eu.org/stream/ciphers/tsc3/tsc3.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/tsc4/tsc4_p2.pdf
http://www.ecrypt.eu.org/stream/papersdir/042.ps

New Results on Impossible Differential

Cryptanalysis of Reduced AES

Wentao Zhang1, Wenling Wu2, and Dengguo Feng2

1 State Key Laboratory of Information Security,
Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China

zhangwt06@yahoo.com
2 State Key Laboratory of Information Security,

Institute of Software, Chinese Academy of Sciences, Beijing 100080, P.R. China
{wwl,feng}@is.iscas.ac.cn

Abstract. In this paper, we present some new results on impossible
differential cryptanalysis of reduced AES, which update the best known
impossible differential attacks on reduced AES. First, we present some
new attacks on 6-round AES (for all the three key length). Second, we
extend to 7-round AES, also for all the three key variants. Especially
for 128-bit keys, the best known results can attack up to 7 rounds using
square attack and collision attack respectively, but their complexity are
both marginal either on data or on time (ie. require nearly the entire
codebook, or close to key exhaustive search). In this sense, our attack is
the first non-marginal one on 7-round AES with 128-bit keys. Thirdly,
we extend to 8 rounds for 256-bit keys, which is also non-marginal com-
pared with the best non-related-key attacks so far. Finally, we give an
improvement of the 7-round attack for 192-bit keys in R.C.W.Phan’s
paper, which makes the time complexity reduced greatly.

Keywords: AES, cryptanalysis, impossible differentials.

1 Introduction

AES [1] supports 128-bit block size with three different key lengths (128, 192,
and 256 bits), which is denoted as AES-128, AES-192 and AES-256 respectively,
and we write AES for all the three variants. Ever since the selection of AES,
its security has drawn much attention from worldwide cryptology researchers.
Because of the importance of AES, it’s very necessary to constantly reevaluate
its security under various cryptanalytic techniques. In this paper, we study the
security of AES against impossible differential attack.

Impossible differential attacks [2] use differentials that hold with probability 0
(or non-existing differentials) to eliminate wrong key material and leave the right
key candidate. There have been several impossible differential attacks on AES
[3,4,5]. In [3], E.Biham and N.Keller present an impossible differential attack
on 5-round AES-128 using some 4-round impossible differentials. Later in [4],
J.H.Cheon et al. improved the attack to 6-round AES-128. Note that the attacks

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 239–250, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

240 W. Zhang, W. Wu, and D. Feng

in the above two papers didn’t exploit the key schedule, so the same attacks can
also apply to AES-192 and AES-256. In [5], R.C.W.Phan gave attacks on 7-round
AES-192 and AES-256 exploiting weaknesses in the key schedule. From which
we can see that the best impossible differential attack on AES-128 reached up
to 6 rounds [4], and on AES-192 and AES-256 both up to 7 rounds [5].

In this paper, we present some new results on impossible differential crypt-
analysis of AES. First, we present some new attacks on 6-round AES, whose
complexity is reduced significantly compared with that in [4]. Next, we extend
to 7 rounds, which is also suitable to all the three key variants of AES, espe-
cially for 128 bits. Then, we extend to 8-round AES-256. Finally, we present
an improvement of R.C.W.Phan’s attack [5] on 7-round AES-192. Our results
presented here update the best-known impossible differential cryptanalysis on
AES to date.

Up to now, there exist only two marginal attacks [6,7] on 7-round AES-128
(ie., require nearly the entire codebook, or time complexity close to key exhaus-
tive search), respectively using square attack (or called partial sum attack) and
collision attack, which are the best known attacks on AES-128. In this sense, our
result add a new and non-marginal attack on 7-round AES-128, using impossible
differential attack.

For comparison, the best attacks on AES-192 and AES-256 not under the
related-key model are both square attacks up to 8 rounds [6], which are both

Table 1. Comparison of Some Previous Attacks with Our New Attacks

Cipher Source Number of Data Time Attack
Rounds Complexity Complexity Type

AES-128 Ref.[3] 5 229.5 CP 231 Imp.Diff

AES-128 Ref.[4] 6 286 CP 2125 Imp.Diff

AES-192 Ref.[5] 7 292CP 2186 Imp.Diff

AES-256 Ref.[5] 7 292.5CP 2250.5 Imp.Diff

6 2114.5CP 250

AES This paper 6 275.5CP 2104 Imp.Diff
7 2115.5CP 2119

AES-192 This paper 7 292CP 2162 Imp.Diff

AES-256 This paper 8 2116.5CP 2247.5 Imp.Diff

AES-128 Ref.[6] 7 2128 − 2119CP 2120 Square

AES-128 Ref.[7] 7 232CP ≈ 2128 Collision

AES-192 Ref.[6] 8 2128 − 2119CP 2188 Square

AES-256 Ref.[6] 8 2128 − 2119CP 2204 Square

CP – Chosen plaintext.
Time complexity is measured in encryption units.

New Results on Impossible Differential Cryptanalysis of Reduced AES 241

marginal on data complexity. So we also add a new and non-marginal attack on
8-round AES-256. However, we can’t extend to 8 or more rounds on AES-192 at
present.

Besides, better cryptanalysis results have been achieved under related-key
model for AES-192 and AES-256, but this fact doesn’t hold for AES-128 due
to the different key schedule. We don’t consider the related-key environment in
this paper.

We summarize our results along with some previously known ones against
AES in Table 1.

Here is the outline. In Section 2, we give a brief description of AES. In
Section 3, we present the 4-round impossible differentials. Using these impos-
sible differentials, section 4 presents some new attacks on 6-round AES; section
5 extends to 7-round AES; section 6 extends to 8-round AES-256. Section 7
presents an improvement of R.C.W.Phan’s attack on 7-round AES-192. Finally,
section 8 summarizes this paper.

2 Description of AES

The AES algorithm encrypts or decrypts data blocks of 128 bits by using keys of
128, 192 or 256 bits. A 128-bit plaintext and the intermediate state are commonly
treated as byte matrices of size 4× 4, which is shown in Fig.1.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 1. 4 ×4 Byte Indexing of 128-bit Data Block

Each round is composed of four operations:

• SubBytes(SB): applying the S-box on each byte.
• ShiftRows(SR): cyclically shifting each row (the i ’th row is shifted by i bytes

to the left, i = 0, 1, 2, 3).
• MixColumns(MC): multiplication of each column by a constant 4×4 matrix

M over the field GF (28), where M is
⎛

⎜
⎜
⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟
⎟
⎠

• AddRoundKey(ARK): XORing the state and a 128-bit subkey.

The MixColumns operation is omitted in the last round, and an additional
AddRoundKey operation is performed before the first round. We also assume

242 W. Zhang, W. Wu, and D. Feng

that the MixColumns operation is omitted in the last round of the reduced-round
variants.

The number of rounds r is dependent on the key size, 10 rounds for 128-bit
keys, 12 for 192-bit keys and 14 for 256-bit keys.

The key schedule of AES takes the secret key and expands it to r + 1 128-bit
subkeys.

2.1 Notations

In the rest of this paper, we will use the following notations: P denotes the
plaintext, and C the ciphertext. xI

i denotes the input of the i’th round especially,
xI

1 denotes the state after the initial whitening subkey addition), while xS
i , xR

i ,
xM

i and xO
i respectively denote the intermediate values after the application of

SubBytes, ShiftRows, MixColumns and AddRoundKey operations of the i’th
round. Obviously, xO

i−1 = xI
i holds.

Let Ki denote the subkey in the i’th round, and the initial whitening subkey
is K0. In some cases, the order of the MixColumns and the AddRoundKey
operation in the same round can be interchanged, which is done by replacing
the subkey Ki with an equivalent subkey K∗i , where K∗i = MC−1(Ki), and we
use xW

i to denote the intermediate value after the application of AddRoundKey
operation with K∗i in the i’th round.

Let (xi)j denote the j’th byte of xi, j = 1, 2, . . .16. (xi)Col(l) the l’th column
of xi, l = 1, 2, 3, 4. Thus, Column(1) includes bytes 1,5,9 and 13, Column(2)
includes bytes 2,6,10 and 14, etc.

3 Four-Round Impossible Differentials of AES

In [3], some 4-round impossible differentials are constructed, and used to at-
tack 5-round AES-128. Later in [4], the same 4-round impossible differentials
are used to attack 6-round AES-128. In [5], also using the same impossible dif-
ferentials, attacks on 7-round AES-192 and AES-256 are presented. It’s worth
noting that the same 4-round impossible differentials are used in all the above
attacks. Moreover, later in all the related-key impossible differential attacks on
AES-192 and AES-256 [8,9,10], the related-key impossible differentials used have
the same idea with that in [3]. The reason behind is that no longer differentials
with probability 1 can be derived due to the good diffusion property of AES, and
we suppose that no longer than 4-round impossible differentials exist for AES.

In the following attacks, we also use the same impossible differentials. Firstly,
a 2-round differential with probability 1 in the forward direction, then a 2-round
differential with probability 1 in the reverse direction, where the intermediate
differences contradict each other. More exactly, the 4-round impossible differen-
tials are: given a pair of round inputs which are equal in all bytes except one, then
the outputs after 4 rounds can’t be equal in any of the following combinations of
byte positions: (1,8,11,14),(2,5,12,15), (3,6,9,16) nor (4,7,10,13). Figure 2 shows
an illustration of the first case, where a is any non-zero byte, N a non-zero value
(possibly distinct), and ? any value.

New Results on Impossible Differential Cryptanalysis of Reduced AES 243

Round 1 :

⎛

⎜
⎝

a 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎠

SB−−→

⎛

⎜
⎝

a 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎠

SR−−→

⎛

⎜
⎝

a 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎠

MC−−−→

⎛

⎜
⎝

N 0 0 0
N 0 0 0
N 0 0 0
N 0 0 0

⎞

⎟
⎠

AR−−→

⎛

⎜
⎝

N 0 0 0
N 0 0 0
N 0 0 0
N 0 0 0

⎞

⎟
⎠ −→

Round 2 :
SB−−→

⎛

⎜
⎝

N 0 0 0
N 0 0 0
N 0 0 0
N 0 0 0

⎞

⎟
⎠

SR−−→

⎛

⎜
⎝

N 0 0 0
0 0 0 N
0 0 N 0
0 N 0 0

⎞

⎟
⎠

MC−−−→

⎛

⎜
⎝

N N N N
N N N N
N N N N
N N N N

⎞

⎟
⎠

AR−−→

⎛

⎜
⎝

N N N N
N N N N
N N N N
N N N N

⎞

⎟
⎠ −→

�
	
	

· ·Contradiction!· ·	
	

Round 3 :
SB−1←−−−−

⎛

⎜
⎝

0 ? ? ?
? 0 ? ?
? ? 0 ?
? ? ? 0

⎞

⎟
⎠

SR−1←−−−−

⎛

⎜
⎝

0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?

⎞

⎟
⎠

MC−1←−−−−−

⎛

⎜
⎝

0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?

⎞

⎟
⎠

AR←−−

⎛

⎜
⎝

0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?

⎞

⎟
⎠ ←−

Round 4 :
SB−1
←−−−−

⎛

⎜
⎝

0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?

⎞

⎟
⎠

SR−1
←−−−−

⎛

⎜
⎝

0 ? ? ?
? ? ? 0
? ? 0 ?
? 0 ? ?

⎞

⎟
⎠

AR←−−

⎛

⎜
⎝

0 ? ? ?
? ? ? 0
? ? 0 ?
? 0 ? ?

⎞

⎟
⎠

Fig. 2. A 4-round impossible differential of AES

4 Attacking 6-Round AES

In this section, we present some new attacks on 6-round AES using the above
impossible differentials. It needs to be pointed that there exists some other-type
attacks on 6-round AES, including the designers’s square attack [11], partial sum
attack [6] and boomerang attack [12], in which the best attacks on 6 rounds are
due to [11] and [12].

The main idea of our attacks is as follows: applying the 4-round impossible
differentials between the second and the fifth round, assuming some key bytes
in the first and the last round for partially decryption, then get rid of all wrong
keys using the impossible differentials.

In the attacks, we need to check up whether the difference in at least one of
the 4-byte sets (1,8,11,14), (2,5,12,15), (3,6,9,16) or (4,7,10,13) of xW

5 is zero.
Because of the next MC operation in the 5’th round, it seems that all the 128
bits of K6 need to be guessed, however the time complexity exceed the exhaus-
tive key search for AES-128! As in many cipher attacks, the time complexity
can be decreased at a cost of more data, eg. in the attacks in [4,5], only those
data pairs whose ciphertext pairs have zero difference in certain bytes are cho-
sen, which immediately results in an increase of data amount, but the number
of guessing key bytes is decreased greatly. In our following attacks, we make
more restrictions on the filtering of data, which is the key point that make
our attacks on 6-round AES improved substantially and on 7-round AES-128
succeed.

244 W. Zhang, W. Wu, and D. Feng

Assuming a data pair has zero difference in one or several columns of xO
5 , then

this property is preserved when rolling back through the MC−1 operation. On
the other hand, in the rest non-zero-difference columns of xO

5 , we restrict that the
difference are non-zero only in two bytes, while zero in the other two bytes (notice
that if the difference is non-zero only in one byte while zero in the other three
bytes, then the pair will not satisfy the impossible differential in Fig.2 because of
the diffusion property of MC). Notice that the above two restrictions are selective
in the attacks, thus there will be several combinations to launch a successful attack
on 6-round AES. Here, we only present the attack whose time complexity reach
the least, which is the basis of our attack on 7-round AES. Furthermore, we briefly
introduce a second attack whose data complexity reach the least.

4.1 The First Attack

One can refer to Fig.3 for the following attack, but notice it’s only restricted in
the former 6 rounds, we can easily conclude that the number of non-zero bytes
in xO

5 reach the least possible, ie. only 2 non-zero bytes.

The Attack Procedure
Precomputation: For all the 232 possible pairs of values of the first column of
xM

1 with one of the four differences: (a, 0, 0, 0), (0, a, 0, 0),(0, 0, a, 0) or (0, 0, 0, a)
(here a can be any non-zero byte), compute the 4 byte values in byte positions
(1,6,11,16) of xI

1. Store these 232 × 4 × (28 − 1) ≈ 242 pairs of 4-byte values in
a hash table Hp indexed by the XOR differences in these four bytes, then one
indexed value corresponds to 210 pairs on average.

The algorithm is as follows:

1. Choose a set of 232 plaintexts which have certain fixed values in all but the
four bytes (1,6,11,16). We call this a structure, and one structure can form
232 × (232 − 1)/2 ≈ 263 plaintext pairs. Generate m structures, thus 232m
plaintexts, and 263m plaintext pairs.

2. Choose only the pairs whose ciphertext pairs have zero difference in all but
the two bytes (10,13). The expected number of such pairs is 263×m×2−112 =
2−49m.

3. Guess the value of the subkey bytes (K6)10 and (K6)13, and perform the
followings:
(a) Initialize a list A of the 232 possible values of the bytes (1,6,11,16) of

K0.
(b) Decrypt the two bytes (10,13) in all the ciphertext pairs through the 6’th

round to get the two bytes (12,16) of xO
5 . Besides, we conclude that all

the other bytes in xO
5 have zero difference. Thus, we can calculate the

difference in the last column of xW
5 through MC−1 operation. If the four

bytes are all non-zero, then discard the data pair. The probability that
a pair is remained is about 4 × 2−8 = 2−6, so the expected remaining
pairs is 2−49m× 2−6 = 2−55m. The remained pairs satisfy the following

New Results on Impossible Differential Cryptanalysis of Reduced AES 245

condition: the difference in at least one of the four 4-byte sets is zero,
where the four sets are (1,8,11,14),(2,5,12,15), (3,6,9,16) and (4,7,10,13)
of xW

5 .
(c) For every remaining pair, consider their plaintexts (P1, P2) and compute

P1 ⊕ P2 in the four bytes (1,6,11,16), denote the resulting value by P ′.
Access the bin P ′ in Hp. For each pair (x, y) in that bin, remove from the
list A the values P1 ⊕ x, where P1 is restricted to four bytes (plaintext
bytes (1,6,11,16)).

(d) If A is not empty, output the values in A along with the guess of (K6)10
and (K6)13, there are six key bytes in all.

Analysis of the attack complexity:
From m structures, 263m pairs can be derived. After the filtering in step 2, there
remains about 2−49m pairs. Then after the filtering in step 3.(b), about m′ =
2−55m pairs will remain for a given subkey guess of (K6)10 and (K6)13. Each pair
deletes 210 subkey candidates on average, and there are 232 subkey candidates in
all, so the expected number of remaining subkeys in A is about 232(1−210/232)m′

after step 3.(c). If m′ = 227.5, then only about 232 × e−25.5
≈ 2−33 wrong values

of the four bytes of K0 remain, thus in step 3.(d) the wrong value of the six key
bytes remains with a very small probability 2−33×216 = 2−17. So we can expect
that only the right subkey will remain. Hence, we get the value of 6 × 8 = 48
subkey bits. In order to derive m′ = 227.5, we need m = 282.5 structures, so the
data complexity of this attack is 2114.5 chosen plaintexts.

Step 3.(b) requires about 233.5×2×216×1/4 = 248.5 one round encryptions.
Step 3.(c) requires about 227.5×210×216 = 253.5 memory accesses to Hp and A,
which is equivalent to about 250 6-round AES encryptions. So the time complex-
ity of the whole attack is about 250 6-round encryptions. The precomputation
requires about 232/6 ≈ 229.5 6-round AES encryptions and the main required
memory is dominated by Hp, which is about 245 bytes.

To sum up, the total complexity of the above attack is as follows: The data
complexity is 2114.5 chosen plaintexts, the time complexity is 246 encryptions,
and the required memory is 245 bytes.

4.2 The Second Attack

In this subsection, we briefly present another attack on 6-round AES whose data
complexity reach the least. The number of non-zero bytes in xO

5 reach the most
possible in this attack, ie. 8 non-zero bytes.

Here is the brief procedure. Assuming n structures are needed. Only choosing
the pairs whose ciphertext pairs have zero difference in the eight byte posi-
tions (1,2,5,8,11,12,14,15). The expected number of such pairs is about 263 ×
n × 2−64 = 2−1n. Guess the eight byte values of subkey K6 in byte positions
(3,4,6,7,9,10,13,16), then decrypt these eight bytes in all the ciphertext pairs
through the 6’th round to get the last two columns of xO

5 , we conclude that
the first two columns in xO

5 have zero difference. Thus we can calculate the dif-
ference in the last two columns of xW

5 , and check up if the two bytes are both

246 W. Zhang, W. Wu, and D. Feng

zero in these four possible byte-position combinations: (11,14),(12,15),(3,16) or
(4,7). If not, delete the pairs. The probability for a pair to pass this filtering
is about 4 × 2−16 = 2−14, so there remains about 2−15n pairs for each guess
of the eight bytes of K6. Thus, we can use the remaining pairs to delete the
wrong key candidates in A for each guess of the eight bytes of K6. The data
complexity of this attack is about 275.5 chosen plaintexts, the time complexity
is about 242.5×2×264/2/6 = 2104 encryptions, and the required memory is also
245 bytes.

Finally, we need to point out that the attacks in this subsection can be appli-
cable to all three key variants of AES. If just considering AES-192 or AES-256,
there exist attacks whose data complexity are less than this second attack, eg.,
the attacker guess all the 16 bytes of k6 and decrypt partially to filter out the
data which satisfy the 4-round impossible differentials, the data complexity of
this attack is about 230 plaintexts (which can form about 259 plaintext pairs),
and the time complexity is about 230 × 2128/6 ≈ 2155.5 6-round encryptions.

Round 1 :

⎛

⎜
⎝

N 0 0 0
0 N 0 0
0 0 N 0
0 0 0 N

⎞

⎟
⎠

SB−−→

⎛

⎜
⎝

N 0 0 0
0 N 0 0
0 0 N 0
0 0 0 N

⎞

⎟
⎠

SR−−→

⎛

⎜
⎝

N 0 0 0
N 0 0 0
N 0 0 0
N 0 0 0

⎞

⎟
⎠

MC−−−−→
Prob.

⎛

⎜
⎝

N 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎠

AR−−→

⎛

⎜
⎝

N 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎠ −→

−→ · the 4-round impossible differential · ←−

Round 5 : . ←−

⎛

⎜
⎝

0 0 0 ?
0 0 0 0
0 0 0 ?
0 0 0 ?

⎞

⎟
⎠

MC−1
←−−−−−

Prob.

⎛

⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 N
0 0 0 N

⎞

⎟
⎠ ←−

Round 6 :
SB−1
←−−−−

⎛

⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 N
0 0 0 N

⎞

⎟
⎠

SR−1
←−−−−

⎛

⎜
⎝

0 0 0 0
0 0 0 0
0 N 0 0
N 0 0 0

⎞

⎟
⎠

AR←−−

⎛

⎜
⎝

0 0 0 0
0 0 0 0
0 N 0 0
N 0 0 0

⎞

⎟
⎠

MC−1
←−−−−−

Prob.

⎛

⎜
⎝

N N 0 0
N N 0 0
N N 0 0
N N 0 0

⎞

⎟
⎠ ←−

Round 7 :
SB−1←−−−−

⎛

⎜
⎝

N N 0 0
N N 0 0
N N 0 0
N N 0 0

⎞

⎟
⎠

SR−1←−−−−

⎛

⎜
⎝

N N 0 0
N 0 0 N
0 0 N N
0 N N 0

⎞

⎟
⎠

AR←−−

⎛

⎜
⎝

N N 0 0
N 0 0 N
0 0 N N
0 N N 0

⎞

⎟
⎠

Fig. 3. Impossible Differential Cryptanalysis of 7-round AES

5 Attacking 7-Round AES

Based on the first attack in Section 4, we will present an attack on 7-round AES
in this section, which is also effective to all the three key variants of AES. The
main idea is: guessing part of the last round subkey K7, peel off the last round
and apply the 6-round attack. In order to reduce the amount of key material

New Results on Impossible Differential Cryptanalysis of Reduced AES 247

guess, we change the order of the MixColumns and the AddRoundKey operations
in the 5’th and 6’th rounds, this is done by replacing the subkey K5 and K6 with
equivalent subkeys K∗5 and K∗6 respectively.

The attack is illustrated in Figure 3, which corresponds to the first case of the
4-round impossible differentials (ie. the difference in byte positions (1,8,11,14) of
xW

5 is zero), in which Prob. means that the event occurs with some probability
not equal to 1.

The Attack Procedure
Precomputation: The hash table HP is just like before.
The algorithm is as follows:

1. Choose m structures, thus 263m plaintext pairs are derived.
2. Choose only the pairs whose ciphertext pairs have zero difference in the 8

byte positions (3,4,6,7,9,10,13,16). 1 The expected number of such pairs is
263 ×m× 2−64 = 2−1m.

3. Guess the value of 4 bytes in positions (1,8,11,14) of K7, and perform the
followings:

(a) Initialize a list A of the 232 possible values of the bytes (1,6,11,16) of
K0.

(b) Decrypt the four bytes (1,8,11,14) in all the ciphertext pairs to get the
first column of xW

6 , check up if the difference in three bytes (1,5,9) are all
zero. If no, then discard the pair. The probability that a pair is remained
is about 2−24, so the expected remaining pairs is 2−25m.

(c) Guess the value of another 4 bytes in positions (2,5,12,15) of K7, and
perform the followings:
i. For each pair remained in step 3.(b), decrypt the four bytes (2,5,12,15)

in ciphertext pair to get the second column of xW
6 , check up if the dif-

ference in three bytes (2,6,14) are all zero. If no, then discard the pair.
The expected remaining pairs is 2−49m.

ii. Guess the value of 2 bytes in positions (10,13) of K∗6 , and perform
the followings:
A. For each remaining pair, continue the decryption to get the two

bytes in positions (12,16) of xO
5 . Besides, we conclude that the

difference of the other two bytes (4,8) in the last column of xO
5

are both zero. Thus, applying MC−1 operation, we can get the
difference of the last column of xW

5 , check up if the difference
in one of the four bytes is zero. If no, then discard the pair, the
probability that a pair is remained is about 2−6, so the expected
remaining pairs is 2−55m.

B. For each remaining pair, consider their plaintexts (P1, P2) and
compute P1⊕P2 in the four bytes (1,6,11,16), denote the resulting
value by P ′. Access the bin P ′ in Hp. For each pair (x, y) in

1 In fact, it’s required that the difference in the other 8 bytes must be non-zero, which
occurs with a probability of about 0.969 (very close to 1). So we omit this in step 2.

248 W. Zhang, W. Wu, and D. Feng

that bin, remove from the list A the values P1 ⊕ x, where P1 is
restricted to four bytes (plaintext bytes (1,6,11,16)).

C. If A is not empty, output the values in A along with the 8 bytes
guess in positions (1,2,5,8,11,12,14,15) of K7 and 2 bytes guess
in positions (10,13) of K∗6 , 14 key bytes in all.

Analysis of the attack complexity
After step 2, there remains about 2−1m pairs. Then after step 3.(b), about
2−25m pairs will remain for a given 4-byte guess of K7. Next, after step 3.(c).i,
about 2−49m pairs will remain for a given 8-byte guess of K7. At last, af-
ter step 3.(c).ii.A, about m′ = 2−55m pairs will remain for a given 8-byte
guess of K7 and 2-byte guess of K∗6 . Therefor, the expected number of re-
maining subkeys in A is about 232(1 − 210/232)m′

for a given subkey guess.
If m′ = 228.5, then only about 232 × e−26.5

≈ 2−98.5 wrong values of the four
bytes of K0 remain, and in the last step 3.(c).ii.C, the wrong value of the 14-
byte key guess will remain with a very small probability 2−98.5 × 280 = 2−18.5,
so we can expect that only the right subkey will remain. Hence, we get the
value of 8 × 14 = 112 subkey bits. In order to derive m′ = 228.5, we need
m = 283.5 structures. So the data complexity of the attack is 2115.5 chosen
plaintexts.

Step 3.(b) requires about 282.5 × 2 × 232/4 = 2113.5 one round encryptions.
Step 3.(c).i requires about 258.5×2×264/4 = 2121.5 one round encryptions. Step
3.(c).ii.A requires about 234.5 × 2× 280/4 = 2113.5 two round encryptions. Step
3.(c).ii.B requires about 228.5 × 210 × 280 = 2118.5 memory access to A. Thus,
the time complexity of the whole attack is about 2119 7-round AES encryptions,
and the required memory is also about 245 bytes.

To sum up, the total complexity of the above attack is as follows: The data
complexity is 2115.5 chosen plaintexts, the time complexity is 2119 encryptions,
and the required memory is 245 bytes.

6 Attacking 8-Round AES-256

For AES-256, guess all the 128 bits of K8 and exchange the order of the Mix-
Columns and the AddRoundKey operations in the 7’th round. Thus, we can peel
off the 8’th round, and apply the 7-round attack in section 5. Because we can
calculate one byte of K∗6 from K8, the number of guessed key bytes is totally
12+14-1=25. The data complexity is 2116.5 chosen plaintexts, the time com-
plexity is 2247.5 8-round AES-256 encryptions, and the required memory is 245

bytes.
For AES-192, if guessing all the 128 bits of K8, the time complexity will

exceed 2192, although several key bytes can be saved because of the 192-bit
key schedule. Thus we can’t attack 8-round AES-192 using the similar
technique.

New Results on Impossible Differential Cryptanalysis of Reduced AES 249

7 An Improvement of R.C.W.Phan’s Attack on 7-Round
AES-192

In [5], R.C.W.Phan presented an impossible differential attack on 7-round AES-
192 by exploiting weaknesses in the AES key schedule. After careful analysis, we
find that 13 key bytes guessing is enough for the attack instead of 16 key bytes
in the original attack. Thus, the whole time complexity of R.C.W.Phan’s attack
can be reduced by a factor of 224, while the data complexity doesn’t change.

Not like the attack in section 5, the order of the MixColumns and the Ad-
dRoundKey operations is not changed in the 6’th round, just like in the original
attack.

For a pair, if the differences of the last two columns of xO
6 are zero, then

along the encryption direction, we conclude that the difference of eight bytes
in positions (3,4,6,7,9,10,13,16) of ciphertext pairs must be zero. On the other
hand, along the decryption direction, we conclude that the difference of eight
bytes in positions (3,4,5,8,9,10,14,15) of xO

5 are all zero. Notice that for a pair,
the difference of xO

5 is enough for us to check up whether the difference of xW
5 in

the four impossible byte positions are all zero because of the linearity of MC−1

operation. Thus, we only need to calculate the difference of the other eight bytes
in positions (1,2,6,7,11,12,13,16) of xO

5 .
Herein, in order to know the difference of the other eight bytes of xO

5 from the
ciphertexts, we need to guess the value of the eight key bytes (1,2,5,8,11,12,14,15)
of K7 and the first two columns of K6, ie, the eight key bytes (1,2,5,6,9,10,13,14)
of K6. According to the key schedule of AES-192, we can derive (k6)10=(k7)11 ⊕
(k7)12, also we can calculate (k6)9 from (k7)11 and (k7)14, (k6)13 from (k7)2 and
(k7)5. Thus, we only need to guess 8+8−3 = 13 key bytes instead of 16 key bytes.

To sum up, the total time complexity of the attack will decreased to 2162, and
the data complexity and space complexity don’t change.

8 Summary

In this paper, we improved the best known impossible differential attacks on
AES. For AES-128, we can reach up to 7 rounds while the previous attacks can
only reach up to 6 rounds. For AES-256, we can reach up to 8 rounds while
the previous attacks can only reach up to 7 rounds. Furthermore, we present
an improvement of the attack on 7-round AES-192 in [5], which makes the time
complexity reduced greatly. The comparison of our attack results and related
attack results can be found in Table 1. Our results are the best-known impossible
differential cryptanalysis on AES to date.

Moreover, the best attack on AES-128 reaches up to 7 rounds, and the best
non-related-key attack on AES-256 up to 8 rounds[6,7]. Our impossible differ-
ential attacks in this paper add a new and non-marginal attack on 7-round
AES-128 and 8-round AES-256 respectively. In contrast, the best non-related-
key attack on AES-192 can reach up to 8 rounds [6], however we can’t reach 8
rounds on AES-192 using impossible differential attack at present, and we leave
it for further work.

250 W. Zhang, W. Wu, and D. Feng

Acknowledgment

We would like to thank anonymous referees for their helpful comments and sug-
gestions. The research presented in this paper is supported by the National Natu-
ral Science Foundation of China (No.90604036); the National Basic Research 973
Program of China (No.2004CB318004); the National High Technology Research
and Development 863 Program of China (No.2007AA01Z470).

References

1. National Institute of Standards and Technology. Advanced Encryption Standard
(AES), FIPS Publication 197 (November 26, 2001), available at
http://csrc.nist.gov/encryption/aes

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23.
Springer, Heidelberg (1999)

3. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael, in Official
public comment for Round 2 of the AES development effort (2000), available at
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html

4. Cheon, J.H., Kim, M., Kim, K., Lee, J.-Y., Kang, S.: Improved Impossible Dif-
ferential Cryptanalysis of Rijndael and Crypton. In: Kim, K.-c. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 39–49. Springer, Heidelberg (2002)

5. Phan, R.C.-W.: Impossible Differential Cryptanalysis of 7-round Advanced En-
cryption Standard (AES). Information Processing Letters 91(1), 33–38 (2004)

6. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

7. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: The Third
Advanced Encryption Standard Candidate Conference, pp. 230–241 (April 2000),
see http://www.nist.gov/aes

8. Jakimoski, G., Desmedt, Y.: Related-Key Differential Cryptanalysis of 192-bit Key
AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
Springer, Heidelberg (2004)

9. Biham, E., Dunkelman, O., Keller, N.: Related-Key Impossible Differential Attacks
on 8-Round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860,
pp. 21–33. Springer, Heidelberg (2006)

10. Zhang, W., Wu, W., Zhang, L., Feng, D.: Improved Related-Key Impossible Dif-
ferential Attacks on Reduced-Round AES-192. In: SAC 2006. LNCS, vol. 4356, pp.
15–27. Springer-Verlag, Heidelberg (2007)

11. Daemen, J., Rijnmen, V.: AES Proposal: Rijndael, available at
http://csrc.nist.gov/envryption/aes/rijndael

12. Biryukov, A.: The Boomerang Attack on 5 and 6-Round Reduced AES. In: Dob-
bertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 11–15.
Springer, Heidelberg (2005)

http://csrc.nist.gov/encryption/aes
http://csrc.nist.gov/envryption/aes/rijndael

A Note About the Traceability Properties of

Linear Codes

Marcel Fernandez1, Josep Cotrina1, Miguel Soriano1,2, and Neus Domingo3,�

1 Technical University of Catalonia, Department of Telematic Engineering
C/Jordi Girona 1-3, C3 08034, Barcelona, Spain

2 CTTC. Centre Tecnolgic de Telecomunicacions de Catalunya
Av. Canal Olmpic S/N 08860 Castelldefels. Barcelona, Spain

3 I.E.S. J.V Foix
Rubi. Barcelona, Spain

Abstract. We characterize the traceability properties of linear codes.
It is well known that any code of length n and minimum distance d is a
c-TA code if c2 < n/(n−d). In this paper, we show that a less restrictive
condition can be derived. In other words, there exists a value ZC , with
n − d ≤ ZC ≤ c(n− d), such that any linear code is c-TA if c < n/ZC .
We also prove that in many cases this condition is also necessary. These
results are applied to cyclic and Reed-Solomon codes.

1 Introduction

The concept of traitor tracing was introduced in [1] as a method to discourage
piracy. Traitor tracing schemes are useful in scenarios where the distributed
content may only be accessible to authorized users, like decrypting broadcast
messages, software installation and distribution of multimedia content.

This paper discusses the characteristics of the traceability properties of codes
used in traitor tracing and fingerprinting schemes. Before we get into technical
matters, we give an intuitive overview. By doing this at the beginning of the
paper, we try to separate the concepts from where our work emanates from the
intrinsic mathematical development and also hopefully provide the reader an
extra motivation for going deep into our results.

The scenario we will deal with is the following one. A distributor D, that sells
digital content, wishes to discourage illegal redistribution of its products. To this
end, he embeds a unique set of symbols to each copy of the content before it is
delivered. This makes each copy unique and therefore if a dishonest user illegally
redistributes his copy, he can be unambiguously identified by simply extracting
the set of symbols.

A weakness to this scheme can be spotted by noting that a coalition of two
or more dishonest users can get together and by comparing their copies they
� This work has been supported in part by the Spanish Research Council (CICYT)

Project TSI2005-07293-C02-01 (SECONNET), by CICYT Project TEC2006-04504
and by CONSOLIDER CSD2007-00004 “ARES”, funded by the Spanish Ministry
of Science and Education.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 251–258, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

252 M. Fernandez et al.

perform a collusion attack. This attack consists in detecting the positions in
which their copies differ and with this knowledge, they create a new copy that in
every detected position contains a symbol of one of the members of the coalition.
This new copy is a pirate copy that tries to disguise the identity of the guilty
users and is the one they redistribute.

More precisely, the distributor assigns a codeword from a q-ary fingerprinting
code to each user. To embed the codeword into each users object, the object
is first divided into blocks. The distributor then picks a set of these blocks at
random. This set of blocks is kept secret and will be the same for all users. Then
using a watermarking algorithm a mark of the fingerprint codeword is embedded
in each block. Note that a given user will have one of the q versions of the block.
The colluding traitors compare their copies, detect the blocks where their copies
differ and with this information at hand, they construct a pirate copy where
each block belongs to the corresponding block of one of the traitors. Since each
mark is embedded using a different random sequence and these sequences are
unknown to the traitors, they cannot create a version of the block that they do
not have.

With the above scenario in mind, it is clear that the distributor D, has to
embed sets of symbols that are secure against collusion attacks. One way to
obtain such sets is by using traceability codes (c-TA). In this case, traitor tracing
reduces to search for the codewords that agree in most symbol positions with
the pirate.

1.1 Previous Work

The c-TA property of error correcting codes has been studied by several authors.
In [9], sufficient conditions for a linear error correcting code to be a c-TA code

are given. Efficient algorithms for the identification of traitors in schemes using
c-TA codes are discussed in [8] [3].

In [10], families of c-TA codes with small alphabet are obtained, thus an-
swering a question in [9]. New families of traceability codes, that also answer
a question posted in [9], are discussed in [5]. For bounds and constructions of
traceability schemes see [7].

More related to our work are the results in [4], where necessary conditions for
c-TA maximum distance separable codes (MDS) codes are given, thus closing
the problem of establishing traceability conditions for this family of codes.

1.2 Our Contribution

In this paper we discuss the c-TA properties of several families of error correcting
codes. The key issue of this paper is to provide necessary conditions for the c-TA
property of error-correcting codes, since prior to [4], only sufficient conditions
were known.

First of all, we generalize the results in [4] for MDS codes to other types of
codes, by giving necessary conditions for a large number of families of linear
codes to be c-TA codes. We also show how the sufficient conditions stated in

A Note About the Traceability Properties of Linear Codes 253

[1][2][9, Theorem 4.4] can, in general, be relaxed. We also specialize our results
by developing these results for cyclic and Reed-Solomon codes. Note that in this
case, we are able to state the results in [4] as a corollary.

1.3 Organization of the Paper

The paper is organized as follows. In Section 2, we provide the necessary back-
ground in coding theory and traceability. The main result of Section 3, comes in
the form of a theorem and gives a necessary condition for linear codes to be c-TA
codes. Also, a tighter bound for the sufficient conditions of the c-TA property is
established, and the results are extended to cyclic and Reed-Solomon codes. We
draw our conclusions in Section 4.

2 Definitions and Previous Results

We define a code as a set of n-tuples of elements from a set of scalars. The set of
scalars is called the code alphabet. An n-tuple in the code is called a word and
the elements of the code are called code words. If the code alphabet is a finite
field IFq, then a code C is a linear code if it forms a vectorial subspace. The
dimension of the code is defined as the dimension of the vectorial subspace.

Let a,b ∈ IFn
q be two words, then the Hamming distance d(a,b) between a

and b is the number of positions where a and b differ. Let C be a code, the
minimum distance of C, d(C), is defined as the smallest distance between two
different codewords.

Let c be a word, then the number of nonzero coordinates in c is called the
weight of c and is commonly denoted w(c).

A linear code with length n, dimension k and minimum distance d is denoted
as a [n, k, d]-code, or simply as an (n, d) code.

For a linear [n, k, d]-code C, we have that the inequality d ≤ n− k + 1 always
holds. This inequality is called the Singleton bound [6]. Codes with equality in
the Singleton bound are called maximum distance separable codes or just MDS
codes. A well known class of linear MDS codes are Reed-Solomon codes, that
can be defined as follows:

Let IFq be the finite field of q elements and IFq[x] the ring of polynomials
defined over IFq. Consider the set of polynomials of degree less than k, IFq[x]k ⊂
IFq[x]. Let α1, . . . , αn, be n distinct elements of IFq, and β1, . . . , βn ∈ IFq − {0}.
We define a generalized Reed-Solomon (RS) code as the vector subspace of IFn

q

determined by the vectors of the form

v = (β1f(α1), . . . , βnf(αn))

where f ∈ IFq[x]k.
This is a weak definition of RS codes, and includes more codes than the clas-

sical one, nevertheless we will use it because the results derived in Corollary 2
below are applicable to all of them.

A linear code for which every cyclic shift of a code word is also a code word
is called a cyclic code.

254 M. Fernandez et al.

2.1 Background and Previous Results on c-TA Traceability Codes

Given a code C(n, d) defined over the finite field of q elements, IFq, where n
denotes the code length and d the minimum distance of the code, the set of
descendants of any subset T = {t1, . . . , tc} ⊆ C, where ti = (ti1, . . . , t

i
n), denoted

desc(T), is defined as

desc(T) =
{
y = (y1, . . . , yn) ∈ IFn

q |yi ∈ {tji |tj ∈ T }, 1 ≤ i ≤ n
}

.

Definition 1. A code C is a c-traceability code (denoted c-TA), for c > 0, if
for all subsets (coalitions) T ⊆ C of at most c code words, if y ∈ desc(T), then
there exists a t ∈ T such that d(y, t) < d(y,w) for all w ∈ C − T .

Definition 2. A code C(n, d), defined over IFq, is a c-identifiable parent prop-
erty code (denoted c-IPP), c > 0, if for all y ∈ IFn

q and all the coalitions T ⊆ C
of at most c code words, we have y �∈ ⋃

T desc(T) or
⋂

y∈desc(T)

T �= ∅.

In [9, Lemma 1.3] it is shown that that a c-TA code is a c-IPP code. In [1][2][9,
Theorem 4.4] it is proved that any C(n, d) code with d > n − n/c2 is a c-TA
code. Moreover, if C(n, d) is a code defined over IFq, in [9, Lemma 1.6] authors
show that if |C| > c ≥ q then C is not a c-IPP code.

Given a code C(n, d), authors in [8, Section IV], construct unordered sets
from the ordered sets that constitute the code as follows: to a codeword x =
(x1, . . . , xn) ∈ C they associate the set x′ = {(1, x1), . . . , (n, xn)}. Then they
define TA set systems (as opposed to TA codes) in the natural way, with the
noteworthy difference that a pirate unordered set (unordered false fingerprint)
consists of n elements such that each element is a member of some coalition
member’s set. In [8, Theorem 7] authors prove that if C(n, d) is a Reed-Solomon
code with minimum distance d ≤ n−n/c2 then the set system corresponding to
C is not a c-TA system. Note that this result does not imply that d > n− n/c2

is a necessary condition for RS codes to have the c-TA property.
The work in [4, Theorem 2.2] deals with MDS codes. By developing the con-

cept of group distance, necessary conditions for the c-TA property of MDS codes
are given.

3 Sufficient and Necessary Conditions for c-TA Linear
Codes

In this section we deal with the c-TA properties of linear codes. First of all, in
Proposition 1, we provide a tighter bound for the sufficient conditions of the
c-TA property. Armed with this result, we are able to also provide necessary
conditions for a linear code to be a c-TA code. Moreover, these conditions are
also stated for cyclic and Reed-Solomon codes.

A Note About the Traceability Properties of Linear Codes 255

Consider a code C(n, d) (not necessarily a linear code), where n is the length
of the code words and d the minimum distance of the code. Then, it is not
difficult to prove that a sufficient condition for C to be a c-TA code is that

c2 < n/(n− d) (1)

is satisfied.
To see that the condition is sufficient, we consider a coalition of at most c

code words that produce a false fingerprint (descendant) y. We can assert that
one of the c code words in the coalition agrees with y in at least n/c > (n− d)c
coordinates, but then, if the code is to be a c-TA code, any code word v (v
not a coalition member) can agree with y in at most (n − d)c coordinates,
otherwise v would agree in more than n − d coordinates with a coalition code
word, and this is not possible by the definition of minimum distance. See also
[9, Theorem 4.4].

To verify that a linear code C is not a c-TA code, we only need to find a coali-
tion T = {t1, · · · , tc} that can produce a false fingerprint y with maxi I(y, ti) ≤
maxv I(y,v) where v ∈ C − T , and I(,), as defined before, represents the
number of coordinates in which both vectors agree. In this case, if we consider
T −v := {t1−v, · · · , tc−v} it is not difficult to see that coalition T −v can pro-
duce the false fingerprint y−v, and moreover it satisfies maxi I(y−v, ti−v) ≤
maxvI(y − v,0). Therefore, to see that a code fails to be a c-TA code, it is
enough to analyze coalitions that can produce false fingerprints that are close to
the 0 code word, and obviously that do not contain code word 0.

3.1 The c-TA Property in Linear Codes

Let C[n, k, d]q be a linear code of block length n, dimension k, minimum distance
d, defined over IFq. As we have seen before, if c2 < n/(n− d), then the code is
a c-TA code. This condition is based on the fact that c code words can generate
a false fingerprint (descendant) y with

Z(y) := I(y,0) = c(n− d).

We now show that for general linear codes this condition is not, in general,
necessary and might be relaxed.

We define ZC as the maximum number of 0’s that can be placed on a descen-
dant (false fingerprint) by a c-coalition of C − {0}. Note that n − d ≤ ZC ≤
c(n− d).

Proposition 1. If c < n/ZC then the code C[n, k, d]q is a c-TA code.

Proof: If we suppose that the code is not a c-TA code, then there must exist
a c-coalition T = {t1, . . . , tc} ⊆ C − {0} that can generate a false fingerprint y
such that I(0,y) ≥ maxi I(ti,y). Obviously maxi I(ti,y) ≥ n/c, but we know
that I(0,y) = Z(y) ≤ ZC < n/c and the proposition is proved.

We are now in a position to state the main result of this section.

256 M. Fernandez et al.

Theorem 1. If q > n− ZC + 1 then the code C[n, k, d]q is a c-TA code if and
only if c < n/ZC .

Proof: We already know, from Proposition 1, the sufficiency. Here we shall
prove the necessary part. In order to do this, we will assume that c ≥ n/ZC .
This assumption will allow us to construct a coalition that violates the c-TA
property.

We begin with a coalition T = {t1, . . . , tc} ⊆ C−{0}, that can generate a false
fingerprint y, with Z(y) = ZC . This coalition exists due to the way ZC is defined.
Moreover, we assume without loss of generality that Z(t1) ≥ · · · ≥ Z(tc). Let
I = {1, . . . , n} be the set of indexes that represent the coordinates of a code
word. First, we remove from I all the values i corresponding to the coordinates
yi = 0 of y, that is I := I − {i|yi = 0}.

We define the natural projection πI : IFn
q → ⊕i∈IIFq. Then, for all the code

words tj , 1 < j ≤ c, we choose a field element xj , such that I(πI(xjtj), πI(t1)) =
0. These field elements xj , exist because the coordinates in I of the vectors tj

are not 0, and because we have q > n− ZC + 1 = |I|+ 1. We define t∗j := xjtj .
The remaining coordinates of the false fingerprint y (the non 0 coordinates)

are produced applying the following process, beginning with t1, that we describe
in a generic way:

For t∗j we pick the set of indexes S ⊆ I corresponding to the coordinates s
such that π{s}(tj+1) = π{s}(tr) for some r such that j +1 < r ≤ c. Then we add
to the false fingerprint y the coordinates of t∗j corresponding to S, and redefine
I := I − S.

Next, we arbitrarily select a set L ⊆ I, defined as |L| = max{0, ZC − |S| −
Z(t∗j)}, and we also place these coordinates from t∗j to the false fingerprint y,
and again redefine I := I − L. We end the process when I = ∅. In what follows
we show that this must happen.

First, the process “fills” all the false fingerprint, or in other words, in the worst
case, after applying the process to tc, we have I = ∅ . Note that in the process
we select ZC coordinates from each coalition code word, thus in the worst case,
we need cZC ≥ n, and this is in fact our hypothesis.

Secondly, note that in step j, the coordinates i ∈ I of t∗j always satisfy
π{i}(t∗j) �= π{i}(ts) for s �= j. This is obviously true (by construction) for j = 1,
and since in step j − 1 we erase from I all the indexes corresponding to coordi-
nates satisfying π{s}(t∗j) = π{s}(tr) for any j < r ≤ c, then it is also true for j.
Therefore, the at most ZC coordinates chosen from t∗j to produce the false fin-
gerprint do not agree with the corresponding coordinates of any other coalition
code word.

Therefore, if c ≥ n/ZC we can find a coalition T , with 0 �∈ T , that can produce
a false fingerprint y such that I(y, t∗j) ≤ ZC , 1 ≤ j ≤ c, and I(y,0) = ZC , thus
proving the theorem.

3.2 The c-TA Conditions for Cyclic Codes

A linear code for which every cyclic shift of a code word is also a code word is
called a cyclic code. Cyclic codes represent an important family of linear codes,

A Note About the Traceability Properties of Linear Codes 257

that include Hamming, BCH and RS codes among others. For cyclic codes,
applying shifts to a code word of minimum weight, we can ensure that ZC =
c(n− d), thus we have following corollary to Theorem 1.

Corollary 1. If q > n− c(n− d) + 1 then a cyclic code C[n, k, d]q has the c-TA
property if and only if c2 < n/(n− d).

We also have the following corollary that has appeared previously in [4].

Corollary 2. A Reed-Solomon code C[n, k, d]q has the c-TA property if and only
if c2 < n/(n− d).

Note the above corollary holds, because from the definition of Reed-Solomon
codes we have that q ≥ n.

4 Conclusions

The key issue of the work in this paper is to provide necessary conditions for the
c-TA property of error-correcting linear codes and Chinese Remainder Theorem
codes, since prior to [4], only sufficient conditions were known.

The c-TA properties of linear codes are discussed. Sufficient conditions for a
linear code to a be a c-TA code were already known [9]. For the class of maximum
distance separable (MDS) codes necessary conditions were established in [4].

In this paper we give necessary conditions for a linear code to have the c-TA
property. In a sense we extend the discussion in [4] to all linear codes with a large
enough alphabet. We also show that the previously known sufficient conditions
can, in many cases, be relaxed. This allows us to express the results in [4] as a
corollary.

References

1. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 480–491. Springer, Heidelberg (1994)

2. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Trans. Inform.
Theory 46, 893–910 (2000)

3. Fernandez, M., Soriano, M.: Identification of traitors in algebraic-geometric trace-
ability codes. IEEE Transactions on Signal Processing 52(10), 3073–3077 (2004)

4. Jin, H., Blaum, M.: Combinatorial properties for traceability codes using error
correcting codes. IEEE Transactions on Information Theory 53(2), 804–808 (2007)

5. Lindkvist, T., Löfvenberg, J., Svanström, M.: A class of traceability codes. IEEE
Transactions on Information Theory 48(7), 2094–2096 (2002)

6. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North
Holland, Amsterdam (1977)

7. Safavi-Naini, R., Wang, Y.: New results on frame-proof codes and traceability
schemes. IEEE Transactions on Information Theory 47(7), 3029–3033 (2001)

258 M. Fernandez et al.

8. Silverberg, A., Staddon, J., Walker, J.L.: Applications of list decoding to tracing
traitors. IEEE Transactions on Information Theory 49(5), 1312–1318 (2003)

9. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and
traceability codes. IEEE Trans. Inform. Theory 47(3), 1042–1049 (2001)

10. van Trung, T., Martirosyan, S.: On a class of traceability codes. Des. Codes Cryp-
tography 31(2), 125–132 (2004)

Power Analysis Attacks on MDPL and DRSL

Implementations�

Amir Moradi1, Mahmoud Salmasizadeh2,
and Mohammad T. Manzuri Shalmani1,3

1 Department of Computer Engineering, Sharif University of Technology,
Azadi St., Tehran, Iran

2 Electronic Research Center, Sharif University of Technology,
Azadi St., Tehran, Iran

3 School of Computer Science, IPM, Tehran, Iran
a moradi@ce.sharif.edu, {salmasi,manzuri}@sharif.edu

Abstract. Several logic styles such as Masked Dual-Rail Pre-charge
Logic (MDPL) and Dual-Rail Random Switching Logic (DRSL) have
been recently proposed to make implementations resistant against power
analysis attacks. In this paper, it is shown that the circuits which con-
tain sequential elements, flip-flops, and implemented in MDPL or DRSL
styles are vulnerable to DPA attacks. Based on our results, the informa-
tion leakage of CMOS D-flip-flops that are used to construct MDPL and
DRSL D-flip-flops is the cause of this vulnerability. To reduce the leak-
age, a modification on the structure of the MDPL and DRSL flip-flops
are proposed; two CMOS D-flip-flops are used in the suggested structure.
The proposed technique shows a significant reduction in the information
leakage of MDPL and DRSL flip-flops.

Keywords: Side-Channel Attacks, DPA, DRSL, MDPL, flip-flop.

1 Introduction

Since side-channel attacks were introduced as a new aspect of cryptanalysis in
[7], the resistance of cryptographic implementations against the new attacks has
been involved as a new factor in security evaluation processes. Nowadays the
security of the used cryptographic algorithm is not sufficient to undertake the
security of a device. Among other types of side-channel attacks, Power Analysis
Attacks have been taken into consideration because of their efficiency to find the
secret key and their applicability on various types of implementation. Several
approaches have been presented to improve the functionality of power analysis
attacks. Differential Power Analysis (DPA) attacks [8], second and higher order
DPA attacks [10,12], frequency-based DPA attacks [5], correlation power anal-
ysis attacks [3], zero-offset DPA attack [22], toggle-count DPA attack [9], and

� This project is partially supported by Iran National Science Foundation and Iran
Telecommunication Research Center.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 259–272, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

260 A. Moradi, M. Salmasizadeh, and M.T.M. Shalmani

zero-input DPA attacks [6] are examples of the progress made by researchers in
this field. In contrast, others have tried to discover new methods to counteract
power analysis attacks. All of them aim at changing the correlation between the
instantaneous power consumption of the implementation and the secret inter-
mediate values of the algorithm. Some of them added a noise generation module
to make the power traces indistinct [2]; others applied masking methods at al-
gorithm and gate levels [1,11,21]. Also, new logic styles have been presented to
make the implementations resistant against power analysis attacks; their goal
was to make constant the power consumption of the implementation for every
condition of intermediate or other secret values. Pre-charge logics such as Sense
Amplifier Based Logic (SABL) [19], Wave Dynamic Differential Logic (WDDL)
[20], Dual-Spacer Dual-Rail Pre-charge Logic [16], Masked Dual-Rail Pre-charge
Logic (MDPL) [14], which has mixed the masking technique at the gate level
and pre-charge logic, and Dual-Rail Random Switching Logic (DRSL) [4] have
been proposed to construct resistant implementations.

In this article, we focus on the MDPL and DRSL. The security of combina-
tional circuits which are implemented using these logic styles has been examined
previously [14,4]. Although in [17] it has been shown that the leakage occurs in
the MDPL gates when input signals have different delay times, it needs a more
accurate(high resolution and noise free) power consumption sampling to discover
the difference of power traces. The security evaluations having been done so far
were at the base of a logic gate or a combinational circuit. In this paper the se-
curity of MDPL and DRSL implementations which contain sequential elements,
flip-flops, are examined. It is shown that the CMOS flip-flops have a significant
information leakage while their inputs are changed; CMOS D-flip-flops were used
to build the MDPL D-flip-flop [14] and DRSL D-flip-flop [4]. Accordingly, the
logic styles which use CMOS flip-flops are exposed to risk of vulnerability to
power analysis attacks even against Simple Power Analysis (SPA) attacks. Two
alternative attacks are presented; the first one attacks on a simple MDPL hard-
ware which stores the XOR result of 8-bit plaintext and 8-bit secret key, and
the other one attacks on a more complicated circuit, 8-bit XOR followed by an
AES S-box, which is constructed according to the DRSL style. The effect of
random mask generator which prepares the one-bit masks for MDPL and DRSL
circuits on the power consumption traces has been relinquished. These attacks
have been done using the simulation results of HSPICE and TSMC 0.18µm li-
brary logic cells. The results show that the DRSL and MDPL implementations
containing D-flip-flops are vulnerable to power analysis attacks; finally, a mod-
ification on the structure of MDPL and DRSL flip-flops is proposed to reduce
their information leakage.

The rest of the paper is organized as follows: MDPL and DRSL styles are re-
viewed briefly in Section 2. Section 3 illustrates how a CMOS D-flip-flop makes
the information leakage occur. Then, two attacks on the MDPL and DRSL im-
plementations based on the given results of Section 3 are presented in Section
4. The proposed modification in the structure of MDPL and DRSL flip-flops is
expressed in Section 5. Finally, Section 6 concludes the paper.

Power Analysis Attacks on MDPL and DRSL Implementations 261

2 MDPL and DRSL Styles

In this section, two logic styles having been considered to be attacked are sur-
veyed stressed on the structure of D-flip-flops: (i) MDPL, which has been in-
vented with a mixture of pre-charge concept and gate level masking approach,
and (ii) DRSL, which is the dual-rail version of Random Switching Logic (RSL)
[18] style. Also, it contains a control box for each gate to generate pre-charge
signal separately and automatically.

2.1 MDPL

Figure 1 shows a CMOS majority gate, the basic part of MDPL gates. Two
majority gates are applied to build an MDPL AND gate shown in Figure 2. It
is noticeable that MDPL gates does not need pre-charge signals. However, input
signals of a combinational circuit which was implemented in MDPL style must
be pre-charged by two NOR gates as same as the other pre-charge logic styles.
Thus, MDPL gates are pre-charged to ’0’ while the clock signal is HI. The usage
of majority gates prevents the glitches in MDPL gates. Clearly, the complement
of the MDPL gates can be made by swapping the complementary output wires.
Moreover, the structure of the MDPL XOR gate is shown in Figure 3; it is
constructed using three MDPL NAND gates to prevent glitches for XOR is not
a monotonic function [14]. As mentioned, the MDPL gates are the masked gates,
but only one-bit mask is used for all gates in the circuit; therefore, all MDPL
gates apply one random bit which can be changed in each clock cycle.

The security evaluation of combinational hardwares which are implemented
with the MDPL gates is not our aim in this article; however, we focus on the
structure of the MDPL D-flip-flop shown in Figure 4. It is assembled by an
MDPL XOR gate and a CMOS D-flip-flop. The XOR gate is used to switch
the input values; i.e. dm and dm, according to the current and the next mask
bits, i.e. m and mn. The fixed 0 and 1 values at the b inputs do not affect
the functionality of the pre-charge majority gates which they are connected to.
This fact that the complement output of the XOR gate, qm, is connected to

Fig. 1. Schematic of a CMOS majority
gate [14]

Fig. 2. Schematic of an MDPL AND
gate [14]

262 A. Moradi, M. Salmasizadeh, and M.T.M. Shalmani

Fig. 3. Schematic of an MDPL XOR
gate [14]

Fig. 4. Schematic of an MDPL D-flip-
flop [14]

nowhere causes the risk of information leakage to be highlighted; we have used
this concept to attack on MDPL D-flop-flops.

2.2 DRSL

Although the name of DRSL has been extracted from RSL [18] that was du-
plicated to construct the complementary outputs, it is allied with the MDPL.
They have two differences: (i) DRSL gates contain pre-charge signal, but MDPL
gates do not and (ii) DRSL gates have a control box which generates the req-
uisite transitions on pre-charge signal for each gate autonomously. As a result,
the DRSL implementations do not need a central control unit to schedule the
transition time of the pre-charge signals. Figure 5 shows an DRSL AND gate;
the control box sink the internal pre-charge signal when all of input signals were
evaluated and are stable. Besides, other logic gates and D-flip-flop in DRSL are
constructed according to the corresponding MDPL one. Figure 6, for instance,
shows the structure of the DRSL D-flip-flop. The risk of information leakage dis-
cussed at MDPL subsection is true for DRSL flip-flop, and we use this weakness
at the attacks.

RSL
NAND

RSL
NAND

q

q

qm

qm

a
b
c
pr

a
b
c
pr

am
bm
m

am
bm
m

Fig. 5. Schematic of an DRSL AND
gate [4]

DRSL

Fig. 6. Schematic of an DRSL D-flip-
flop [4]

Power Analysis Attacks on MDPL and DRSL Implementations 263

pagewidth

MNA421
SD

CP

RD

D

C

C

Q

C

C
C

C

C

C

Q

C

C

Fig. 7. CMOS D-flip-flop structure[13]

3 Information Leakage of the CMOS D-flip-flop

As described in the previous section, the CMOS D-flip-flops have been used in the
MDPL and DRSL D-flip-flops. It is noticeable that we have to use edge triggered
flip-flops to build pre-charge compatible flip-flops; otherwise, level sensitive flip-
flops; i.e. latches, always store zero value in this case. This is due to the fact
that their inputs are the outputs of pre-charged gates which are in the pre-charge
phase while clock signal remains stable at high. Thus, the usage of edge triggered
flip-flops is mandatory.

Clearly, CMOS flip-flops are made using CMOS logic gates. Figure 7 shows
the block diagram of a typical D-type positive edge flip-flop [13]. It is not pos-
sible to implement this flip-flop with pre-charge logic styles, and we have to use
typical CMOS logic styles. Although other more efficient methods have been
presented to implement edge triggered CMOS flip-flops, we suppose the typical
structure.

It is well known that the usage of the typical CMOS logic gates causes the
implementation to leak information through power consumption or electromag-
netic channels. Figure 8 shows IDD trace of the presented CMOS D-flip-flop for
different changes of input signals. Obviously, the peak of supply current differs
for different input changes. Also, Table 1 shows the power consumption of a
CMOS D-flip-flop for all possible changes in input signals that were obtained by
our simulation. The results show that power consumption values correlate to the
change which occurs on the input signals or to the value stored in the flip-flop.
For instance, when the clock signal drops, means a negative edge in clock pulse,
the power consumption is significantly correlated with the difference between D
value and the stored value in F.F.; in other words, if the value of the input signal,
i.e. D, is different to the internal value of F.F., i.e. Q, the power consumption
is much more than the condition in which the values of D and Q are equal. This
table is the main source of the attacks that are designed to discover the secret
key of hardwares implemented in MDPL and DRSL styles.

264 A. Moradi, M. Salmasizadeh, and M.T.M. Shalmani

Q
CLK

D

IDD

Time

Fig. 8. IDD trace of a CMOS D-F.F. for different changes on input signals

Table 1. The power consumption of a CMOS D-F.F. for every change in input signals

D CLK Q Power (fW)

0→1 0 0 84.2
1→0 0 0 44.7
0→1 1 0 5.3
1→0 1 0 0.8
1→0 0 1 44.7
0→1 0 1 84.2
1→0 1 1 0.8
0→1 1 1 5.4

D CLK Q Power (fW)

0 0→1 1 149.7
0 1→0 0 7.2
0 0→1 0 62.8
1 0→1 0 157.5
1 1→0 1 8.8
1 0→1 1 65.0
1 1→0 0 87.1
0 1→0 1 45.3

4 Attacks

In this section, two attacks are illustrated; they were simulated to discover the
secret key of an MDPL and an DRSL implementation using the presented leakage
model in the previous section. We show how the CMOS D-flip-flops bring about
the MDPL and DRSL hardwares to be vulnerable to power analysis attacks.

4.1 Attack on a Simple MDPL Circuit

For simplicity we start with a simple circuit which stores the XOR result of
the plaintext and key in MDPL style. It is supposed that the plaintext and the
key are 8-bit data. Figure 9 shows its schematic; the gray part is not accessible,
and the plaintext, clock signal, and the current of the gray module are available
for using in attack. Furthermore, we assumed that the mask bit is generated
by a random number generator such as an LFSR. Neither the mask bit, nor
the generator’s structure is known for the attacker. Moreover, clock signal plays
the pre-charge signal role for the input signals(pi ⊕m, ki ⊕m, and mi) and the
output of flip-flops.

It is clearly known that when the clock signal drops from high to low, the
input signal of internal CMOS F.F., i.e. qm in Figure 4, stays at zero because
the internal MDPL XOR gates is at pre-charge phase. According to Table 1,
the power consumption value in this case depends on the value which has been

Power Analysis Attacks on MDPL and DRSL Implementations 265

mp0

mk0

m

MDPL
D-F.F

nmm

clock

mp7

MDPL
D-F.F

XOR
MDPL

MDPL
D-F.F

XOR
MDPL

MDPL
D-F.F

XOR
MDPL

XOR
MDPL

mp1
mk1

mk7

Fig. 9. Schematic of the attacked MDPL hardware

stored in F.F.; Figure 10 shows four different conditions in which it is possible
to discover the secret information. As mentioned, in state (1), at the falling
clock edge when the internal XOR’s output is still ’0’ and the flip-flops begin
to propagate, the stored value in the flip-flop is recognizable, but what is the
stored value? pi(t− 1)⊕ ki ⊕m(t) was stored before in the ith flip-flop.

Also, in state (2) when all pre-charge signals stay at low level and the output of
internal XOR modules in flip-flops, i.e. qm, are evaluated. According to the figure
and the related table, there is as obvious difference in power consumption if this
output signal is assessed to zero in comparison with the other case. Thus, it is
possible to extract the value which will be stored in the flip-flop at the next possible
edge of the clock pulse. This value is pi(t)⊕ ki ⊕m(t + 1) for the ith flip-flop, the
addition result of current plaintext and key masked by the next mask bit.

In state (3), when a positive edge appears on the clock signal, according to
the related table, when the input signal of flip-flop differs from the stored value,
power consumption is more than the condition in which they are the same.
In other words, if the flip-flop stores the same value which has been stored
previously, the power consumption is less than when the stored value is toggled.
Therefore, we can obtain the difference between the stored value, pi(t − 1) ⊕
ki ⊕m(t), and the value which will be stored, pi(t)⊕ ki ⊕m(t + 1). In fact, we
can discover pi(t − 1) ⊕ pi(t) ⊕m(t) ⊕m(t + 1) for the ith flip-flop. Although
this value does not contain the information about the secret key, it is useful to
discover the relation between respective mask bits which are very helpful to find
the secret key.

Finally, in state (4), when clock signal stays at high and the internal XOR
gate is put on pre-charge phase, the output of the XOR gate is forced to be
zero; obviously, if it was zero previously in the evaluation phase, the power
consumption will be at the minimum value. Thus, in this case we can extract
the value that has been stored in the flip-flop, i.e. pi(t) ⊕ ki ⊕m(t + 1) for the
ith flip-flop, the same value which is obtainable in state (2).

266 A. Moradi, M. Salmasizadeh, and M.T.M. Shalmani

clock

state (1)
D CLK Q Power
0 1 0 0 7.2
0 1 0 1 45.3

)t(mk)1t(p

state (2)
D CLK Q Power
0 1 0 0 84.2
0 1 0 1 84.2
0 0 0 X 0

)1t(mk)t(p

state (3)
D CLK Q Power

0 0 1 0 62.8
1 0 1 0 157.5
0 0 1 1 149.7
1 0 1 1 65.0

)1t(m)t(m)1t(p)t(p

state (4)
D CLK Q Power
1 0 1 0 0.8
1 0 1 1 0.8
0 0 1 X 0

)1t(mk)t(p

Fig. 10. Four states in which it is possible to use the leakage of flip-flops in the test
MDPL circuit

0

0.4

0.8

1.2

1.6

2

0 2 4 6 8 10 12 14 16 18 20
time (ns)

state (1)

state (2)
state (3)

state (4)

Fig. 11. Sum of absolute differences of power traces in the MDPL circuit to obtain the
areas of interest

Now it is time to define the areas of interest in the power traces for each state.
We used the approach of Rechberger and Oswald [15]. They have proposed to
compute absolute differences of each pair of power traces and sum them up; then,
the highest peaks show the most interesting features of the data set. Although
they have applied this method in template attacks, it can be used in other attacks
which intend to find the points or areas of interest. Figure 11 shows the result
of applying this method on the MDPL test circuit with 1000 random plaintexts.

The scenario of the attack consists of two parts. First, we try to extract the
value of mask bits; then, the discovered information in the first part is used to
find the secret key. As stated above, in state (3) pi(t)⊕pi(t−1)⊕m(t)⊕m(t+1)
of each flip-flop affects the power consumption dramatically. pi(t) ⊕ pi(t− 1) is
known, and m(t)⊕m(t + 1) is recoverable in this state. We used the 8-bit gray
code as plaintext because every two respective gray code differ in just one bit.
Thus, the effect of m(t)⊕m(t+1) on power consumption is highlighted. Indeed,
we attempt to perform a Simple Power Analysis to discover the difference of
respective mask bits, i.e. m(t)⊕m(t + 1). It was done using 256 plaintexts, i.e.
8-bit gray codes. ms(0) to ms(255) were obtained according to equation below.

Ms = ms(0), ms(1), ... , ms(254), ms(255) ; ms(t) = m(t)⊕m(t + 1) (1)

Power Analysis Attacks on MDPL and DRSL Implementations 267

-0.4

-0.2

0

0.2

0.4

0 50 100 150 200 250 300 350 400 450 500
key and mask hypotheses

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

key = (76)h
m(0) = 0

key = (89)h
m(0) = 1

key = (89)h
m(0) = 0

key = (76)h
m(0) = 1

Fig. 12. Correlation coefficient of key and mask hypotheses in the MDPL circuit

Consequently, the guess of m(0)(the first mask bit) is sufficient to extract the
value of mask bits, m(i) ; 0 ≤ i ≤ 255; finally, there are two 256-bit hypotheses
for mask bits. On the other hand, state (2) was selected to apply the mask hy-
potheses and extract the secret key. We used the power analysis attack based on
correlation coefficient which has been introduced in [3]. There are 256 hypotheses
for the 8-bit secret key. 512 hypotheses, therefore, exists in the combination of
the secret key and mask hypotheses. As mentioned before, pi(t)⊕ki⊕m(t+1) in
each flip-flop affects significantly on the power traces in state (2). The Hamming
weight of this term, the number of one bits of p(t)⊕k⊕m(t+1), was applied to
distinguish the correct key among 512 hypotheses using correlation coefficient.
Figure 12 shows the correlation coefficients of all hypotheses. It can be clearly
seen that there are two hypotheses for the secret key that one of them is the
correct one. In fact, it is shown that leakage of CMOS flip-flops creates the vul-
nerable implementation even if MDPL style is used to build the combinational
part.

4.2 Attack on a AES S-Box Implemented in DRSL Style

A more complicated circuit, key addition followed by substitution box of the AES
cryptosystem, was selected to be implemented by DRSL components. Figure 13
shows the block diagram of the considered circuit.

According to the states we discussed for the MDPL circuit, Figure 14 shows
the corresponding states of the DRSL circuit. The areas of interest were specified
using the same method applied for the MDPL circuit. The scenario of the attack
is similar to the procedure illustrated previously. First, we must extract the
difference of the mask bits. As mentioned above, the gray codes were used to
make the effect of m(t) ⊕ m(t + 1) out standing, but the value which affects
the power consumption is state (3) of the DRSL circuit is Sbox(p(t− 1)⊕ k)⊕
Sbox(p(t)⊕ k)⊕m(t)⊕m(t + 1). The Hamming weight of Sbox(p(t− 1)⊕ k)⊕
Sbox(p(t) ⊕ k) depends not only on p(t − 1) and p(t), but also on the secret

268 A. Moradi, M. Salmasizadeh, and M.T.M. Shalmani

mp0

mk0

m

DRSL
D-F.F

DRSL
XOR

nmm

clock

mp1

mp7

DRSL
D-F.F

DRSL
XOR

DRSL
D-F.F

DRSL
XOR

DRSL
D-F.F

DRSL
XOR

AES
S-box

implemented
using
DRSL

logic cells

mk1

mk7

Fig. 13. Schematic of the test circuit
implemented in DRSL style

clock

state (1))t(m)k)1t(p(Sbox

state (2))1t(m)k)t(p(Sbox

state (3)
)1t(m)k)1t(p(Sbox

)t(m)k)t(p(Sbox

state (4))1t(m)k)t(p(Sbox

state (1)
state (2)

state (3)

state (4)

Fig. 14. Four interested status for us-
ing the leakage of CMOS flip-flops in
the DRSL test circuit

key. Thus, we have to generate p sequences on the base of the key hypothesis as
follows:

p(t) = Inv Sbox (GrayCode (t))⊕ k ; 0 ≤ t ≤ 255 (2)

As a result, there are 256 p sequences for each key hypothesis. According
to the illustrated attack for MDPL circuit, a stream of Ms, i.e. the difference
between respective mask bits, is obtained for each p sequence, but which one is
correct? The correlation power analysis attacks which are performed to find the
secret key specify which hypothesis is correct. In other words, if the correlation
coefficient of the key which was selected to generate plaintext sequence is much
more than the others, the selected k that equals to the distinguished hypotheses
is the correct key. Figure 15 shows the correlation coefficient of hypotheses for
two selected keys. In part a, 76hex has been selected to generate the sequence
of plaintexts; as it shows, the correlation coefficient of 76hex is much more than
the other hypotheses. In contrast, part b shows the correlation coefficient of
the hypotheses obtained by the sequence of plaintexts which was generated by
selecting 20hex as the secret key. It can be clearly seen that the correlation
coefficient of 20hex is not the highest value among the other hypotheses.

5 A Proposal to Decrease the Leakage of MDPL and
DRSL Flip-Flops

As shown in the previous section, the leakage of CMOS flip-flops bring about
the MDPL and DRSL flip-flops to be vulnerable to power analysis attacks. We
propose to use two CMOS flip-flops in each MDPL and DRSL flip-flips. Figure
16 shows the schematic of the modified flip-flops.

Power Analysis Attacks on MDPL and DRSL Implementations 269

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 50 100 150 200 250 300 350 400 450 500
key and mask hypotheses

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

key = (76)h
m(0) = 0

(a) Correct key (76hex)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 50 100 150 200 250 300 350 400 450 500
key and mask hypotheses

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

key = (20)h
m(0) = 0

(b) Incorrect key (20hex)

Fig. 15. The correlation coefficient of the hypotheses for two alternative selections

(a) MDLP

DRSL

(b) DRSL

Fig. 16. The new structures for the MDPL and DRSL D-flip-flops

clock

state (1)
D CLK Q0,1 Power
0 1 0 0,1 52.5
0 1 0 1,0 52.5

state (2)
D0,1 CLK Q0,1 Power
0 1
0 0

0 0,1 84.2

0 1
0 0

0 1,0 84.2

state (3)
D0,1 CLK Q0,1 Power
0,1 0 1 0,1 127.0
0,1 0 1 1,0 307.2

state (4)
D0,1 CLK Q0,1 Power
1 0
0 0

1 0,1 0.8

1 0
0 0

1 1,0 0.8

Fig. 17. Four states of information leakage in the new flip-flops

270 A. Moradi, M. Salmasizadeh, and M.T.M. Shalmani

The usage of two flip-flops causes the power consumption which correlated
to the modified data to be approximately autonomous from the internal value
and the data changed. Figure 17 shows the states for these flip-flops in which
the previous structures had information leakage. Obviously, there is no leakage
in states (1), (2), and (4), but information leakage still exists at the state (3).
Also, the difference between the routing capacitance of F.F inputs, i.e. qm and
qm, may cause the information leakage in other states. However, according to
Figure 17 the information leakage exists only at state (3). Thus, the attacker can
find the difference between the consecutive mask bits, and she can not discover
any information about the secret key through other states. On the other hand,
a better design for CMOS flip-flops helps to avoid the leakage illustrated.

6 Conclusions

First, the leakage model of a CMOS D-flip-flop has been presented. We showed
how the power consumption of a CMOS F.F. correlates to the value of input
signals changed and to the value stored in the flip-flop. MDPL and DRSL flip-
flips are constructed using CMOS D type flip-flops. Thus, they are at the risk
of vulnerability to power analysis attacks. Then, two attacks whose aim was
to discover the secret key of an MDPL circuit and an DRSL circuit were illus-
trated. The results that were obtained using simulation show that the usage of
CMOS flip-flops leads the MDPL and DRSL implementations to be vulnerable.
The attacks were performed in two phases: (i) finding hypotheses for difference
between consecutive mask bits using a simple power analysis attack and (ii) find-
ing the secret key using the result obtained in the first phase and a correlation
power analysis attack. Finally, a new structure for the MDPL and DRSL flip-
flops was proposed. In the suggested method, two CMOS flip-flops are applied
to build each MDPL or DRSL flip-flops. The results show that the information
leakage of the proposed flip-flops is decreased significantly. In contrast, there is
still information leakage at an specific condition, and the attacker would be able
to discover the difference between consecutive mask bits. However, the proposed
technique is resistant at the other situations. As a result, designing a new CMOS
flip-flop to reduce its information leakage can be considered as a future work.

References

1. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, Springer, Heidelberg (2001)

2. Benini, L., Omerbegovic, E., Macii, A., Poncino, M., Macii, E., Pro, F.: Energy-
aware Design Techniques for Differential Power Analysis Protection. In: Design
Automation Conference – DAC 2003, Proceedings, pp. 36–41. ACM Press, New
York (2003)

3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, Springer, Hei-
delberg (2004)

Power Analysis Attacks on MDPL and DRSL Implementations 271

4. Chen, Z., Zhou, Y.: Dual-Rail Random Switching Logic: A Countermeasure to Re-
duce Side Channel Leakage. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 242–254. Springer, Heidelberg (2006)

5. Gebotys, C.H., Ho, S., Tiu, C.C.: EM Analysis of Rijndael and ECC on a Wireless
Java-Based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
250–264. Springer, Heidelberg (2005)

6. Golić, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

7. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

8. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

10. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

11. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

12. Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improved Higher-
Order Side-Channel Attacks with FPGA experiments. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005)

13. Philips Semiconductors data sheet (July 2003)

14. Popp, T., Mangard, S.: Masked Dual-Rail Pre-Charge Logic: DPA-Resistance with-
out Routing Constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, Springer, Heidelberg (2005)

15. Rechberger, C., Oswald, E.: Practical Template Attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 443–457. Springer, Heidelberg (2005)

16. Sokolov, D., Murphy, J., Bystrov, A., Yakovlev, A.: Improving the Security of Dual-
Rail Circuits. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 282–297. Springer, Heidelberg (2004)

17. Suzuki, D., Saeki, M.: Security Evaluation of DPA Countermeasures Using Dual-
Rail Pre-charge Logic Style. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 255–269. Springer, Heidelberg (2006)

18. Suzuki, D., Saeki, M., Ichikawa, T.: Random Switching Logic: A Countermeasure
against DPA based on Transition Probability. Cryptology ePrint Archive Report
2004/346 (2004), http://eprint.iacr.org/

19. Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards. In: European Solid-State Circuits Conference, Proceed-
ings, pp. 403–406 (2002)

20. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation. In: Design, Automation and Test in
Europe Conference and Exposition – DATE 2004, Proceedings, pp. 246–251. IEEE
Computer Society, Los Alamitos (2004)

http://eprint.iacr.org/

272 A. Moradi, M. Salmasizadeh, and M.T.M. Shalmani

21. Trichina, E., Korkishko, T.: Small Size, Low Power, Side Channel-Immune AES
Coprocessor: Design and Synthesis Results. In: Dobbertin, H., Rijmen, V., Sowa,
A. (eds.) AES 2004. LNCS, vol. 3373, pp. 113–127. Springer, Heidelberg (2005)

22. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

Safe-Error Attack on SPA-FA Resistant

Exponentiations Using a HW Modular
Multiplier

Chong Hee Kim1,�, Jong Hoon Shin2,
Jean-Jacques Quisquater1, and Pil Joong Lee2

1 UCL Crypto Group, Université Catholique de Louvain, Belgium
chong-hee.kim@uclouvain.be, quisquater@dice.ucl.ac.be

2 Dept. of Electronic and Electrical Eng., POSTECH, Pohang, Korea
jhshin77@gmail.com, pjl@postech.ac.kr

Abstract. The RSA is one of the most widely used algorithms nowa-
days in smart cards. The main part of RSA is the modular exponentiation
composed of modular multiplications. Therefore most smart cards have a
hardware modular multiplier to speed up the computation. However, se-
cure implementation of a cryptographic algorithm in an embedded device
such as a smart card has now become a big challenge since the advent
of side channel analysis and fault attacks. In 2005 Giraud proposed an
exponentiation algorithm, which is secure against Simple Power Analysis
(SPA) and Fault Attacks (FA). Recently Boscher et al. proposed another
SPA-FA resistant exponentiation algorithm. To the authors’ best knowl-
edge, only these two provide security against SPA and FA simultaneously
in an exponentiation algorithm. Both algorithms are also secure against
C safe-error attack and M safe-error attack when they are implemented in
a software. However, when they are implemented with a hardware modu-
lar multiplier, and this is usual in a smart card, they could be vulnerable
to another type of safe error attack. In this paper, we show how this
attack is possible on both SPA-FA resistant exponentiation algorithms.

1 Introduction

High speed, small area, and low power consumption have always been important
factors in implementing a cryptographic algorithm in a low-resource embedded
device such as a smart card. However, after the advent of side channel analysis
[15] and fault attacks (FA) [9] we need to balance between the security against
these attacks and the above factors. RSA-CRT (RSA based on Chinese Remain-
der Theorem) is one of the most widely used algorithms in the world. However, it
can be broken by simply inducing a random transient fault during its exponen-
tiation computation[9]. Therefore a lot of countermeasures have been proposed
[4,19,24] but many of them have been broken [13,21].

In 2005, Giraud proposed a countermeasure against FA and Simple Power
Analysis (SPA) for RSA-CRT [12]. SPA is one of the side channel analyses and
� Supported by Walloon Region, Belgium / E.USER project.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 273–281, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

274 C.H. Kim et al.

uses the difference in power consumption between different operations [17]. Gi-
raud used the Montgomery ladder [14] as a basis of his algorithm to defeat both
SPA and FA. After that, Boscher et al. proposed another SPA-FA resistant algo-
rithm using a right-to-left binary algorithm in 2007 [10]. Their algorithm shows
the same security level as Giraud’s but requires one more register.

Both Giraud’s and Boscher et al.’ schemes use SPA-FA resistant exponentia-
tion algorithms that use specific relations among temporary variables to defeat
FA. Furthermore they are secure against C safe-error attack [24] and M safe-
error attack [22] when they are implemented in a software. However most smart
cards have a dedicated hardware to compute a modular multiplier [1,2,3]. There-
fore you should check whether these schemes remain secure or not when they are
implemented with a hardware multiplier. In this paper, we focus on this issue.

In the next section, we review safe-error attacks. Section 3 shows our fault at-
tack model. We show the vulnerability of the schemes of Giraud and Boscher et
al. against our safe error attack in Section 4. Finally we conclude in Section 5.

2 Safe-Error Attacks

There are two types of safe-error attacks. The first is the computational safe-
error attack (called C safe-error attack) [24]. The second is M safe-error attack
[22]. Here we describe both in accordance with the explanation in [14].

C safe-error attack. The C safe-error attack is developed by inducing any
temporary random computational fault(s) inside the ALU. It can be mounted
against the classical SPA protected exponentiation algorithm of Alg.1. Since
the algorithm runs in constant time, an attacker can easily locate the exact
moment of the second multiplication, S[b]← S[b]·S[1] mod N , for each iteration.
Moreover, when the current exponent bit is 0, the multiplication is a dummy
operation and so has no influence on the final result. Therefore, if an attacker
induces any kind of computational fault into the ALU during the operation of
S[b] ← S[b] · S[1] mod N at ith iteration, then according to whether the final
result is incorrect or not, she may deduce if di = 1 or di = 0. Therefore, a dummy
operation should be avoided to prevent C safe-error attack.

M safe-error attack. The M safe-error attack needs to induce a temporary
memory fault inside a register or memory location. Compared to the C safe-
error attack, this implies stronger cryptanalytic assumptions, namely a higher
controllability of fault location and timing. The M safe-error can be illustrated
on the modular multiplication, B ← A · B mod N , by calling the program
routine listed in Alg.2 as B ← MUL(A, B, N). In this routine, it is assumed
that multiplier B is represented in a 2T -ary form as B =

∑m−1
j=0 Bj(2T)j , and

both multiplicand A and multiplier B are sent to the routine MUL by passing
their location address (i.e., the call by address technique). This call by address
assumption is reasonable since it is popular for both high-level programming
language (e.g., C) and all instruction-level language implementations.

Safe-Error Attack on SPA-FA Resistant Exponentiations 275

Algorithm 1. SPA Resistant left-to-right binary algorithm

INPUT: M �= 0, d = (dn−1, ..., d0)2, N
OUTPUT: Md mod N

1. S[0]← 1
2. S[2]←M
3. for i from n− 1 to 0 do
4. b← ¬di

6. S[0]← S[0]2 mod N
7. S[b]← S[b] · S[2] mod N
8. return S[0]

The idea behind the M safe-error can be understood as follows. The value of
multiplier B will be correct after the assignment operation B ← A · B mod N ,
even if some blocks Bj (or Yj with the notations of Alg.2) of the multiplier are
modified after they have been employed in the modular multiplication algorithm.
As suggested in [22], this M safe-error can be avoided if B is assigned as the mul-
tiplicand, i.e., by calling the routine as B ←MUL(B, A, N). In this case, since B
is always called during each for loop operation, any fault induced in B will make
the output incorrect regardless of the value of corresponding secret bit.

Algorithm 2. M safe-error on interleaved modular multiplication.

INPUT: X, Y, N
OUTPUT: R←MUL(X, Y, N)

1. R← 0
2. for i from m− 1 to 0 do
3. R← (R · 2T + X · Yi) mod N
4. return R

3 Fault Attack Model

Our fault attack model is the same as that of M safe-error attack except that a
hardware modular multiplier is used. Since most smart cards have a hardware
multiplier to increase the performance during cryptographic operations, it is a
reasonable approach. In M safe-error attack, it is assumed that both multiplicand
A and multiplier B are sent to the routine MUL by passing their location
address. However when a hardware multiplier is used, this assumption is no
longer valid. A load of a value of A (or X with the notations of Alg.2) each time
during for loop is too cumbersome and does not give any advantage of using
a hardware multiplier. Because it means that each time it computes X · Yi it

276 C.H. Kim et al.

Algorithm 3. SPA/FA Resistant Right-to-Left Modular Exponentiation

INPUT: M �= 0, d = (dn−1, ..., d0)2, N

OUTPUT: Md mod N or “Error”

1. S[0]← 1
2. S[1]← 1
3. A←M
4. for i from 0 to n− 1 do

5. S[di]← S[di] ·A mod N
6. A← A2 mod N
7. if (M · S[0] · S[1] = A mod N) and (A �= 0) then
8. return (S[0])
9. else
10. return (“Error”)

should load a value of X from memory via a bus. Therefore, a hardware modular
multiplier loads either both A and B from the beginning of multiplication or
loads A and sequentially Bj during the operation [11,16].

Therefore, our fault attack model assumes that 1) an attacker induces a tem-
porary memory fault inside a register or memory location (the same as in M
safe-error attack) and 2) a hardware modular multiplier is used.

4 Safe-Error Attack on SPA-FA Resistant
Exponentiations

Recently two SPA-FA resistant exponentiation algorithms have been proposed.
The scheme of Boscher et al. is based on right-to-left binary algorithm [10] and the
scheme of Giraud uses the Montgomery ladder [12]. Both use the fact that there is
a certain relation between the temporary variables in every iteration. They have
inherent vulnerabilities against the modification of exponent and skip of some it-
erations. Therefore they must be used with a countermeasure to check these two
vulnerabilities [12]. Hereafter we do not mention it for simplicity purposes.

4.1 Safe-Error Attack on the Scheme of Boscher et al.

Boscher et al. proposed a scheme secure against SPA and FA based on right-to-
left binary algorithm [10]. We describe it in Alg.3 where a multiplication and a
squaring are done in each iteration. Furthermore in every iteration, the relation
M · S[0] · S[1] = A mod N holds.

Our attack can be illustrated as follows. Let us call the content of the loop of
Alg. 3:

4. for i from 0 to n− 1 do,
5. S[di]← S[di] ·A mod N ,
6. A← A2 mod N .

Safe-Error Attack on SPA-FA Resistant Exponentiations 277

That is, if di = 0, then it computes:

5. S[1]← S[1] ·A mod N ,
6. A← A2 mod N .

If di = 1, then it computes:

5. S[0]← S[0] ·A mod N ,
6. A← A2 mod N .

If we assume that a dedicated hardware is used for a modular multiplication
(and this is usual in modern smart cards), then the values of two parameters S[i]
and A are employed into a dedicated hardware and its output is returned and
stored again in the register S[i]. If an error is induced into one of the registers
S[i] after its value is loaded (and before storing its result), the error is detected
or not depending on the value of di.

For example, let us suppose di = 1 and the attacker induces a temporary
memory fault inside S[0] after its value is loaded. Then the output of the dedi-
cated hardware is stored again in S[0]. Therefore the induction of an error into
S[0] does not influence the final result. Again let us suppose di = 0 and the at-
tacker induces a temporary memory fault inside S[0] after the load of the value
of S[1] into the dedicated hardware. Then, the error in S[0] is propagated until
the end of algorithm and finally the algorithm detects the error and outputs
“Error”.

The same situation occurs when the attacker induces a temporary memory
fault inside S[1] instead of S[0].

Description of our proposed attack. To describe our attack, we re-write
Alg.3 in a more detailed form as in Alg. 4. Therefore the following description
is based on Alg. 4.

Procedure of our proposed attack

– From i = 0 to n− 1 do the following:
• induce a safe error into a register S[0] (or S[1]) between Line 5.1 and

Line 5.3,
• if the device outputs “Error”, then di = 0 (respectively, di = 1).

4.2 Practicability of the Attack

Three assumptions are necessary to make our proposed attack possible:

1. Control of the timing of the attack,
2. Possibility of changing the value of a register,
3. Check of the occurrence of the error.

278 C.H. Kim et al.

Algorithm 4. (Detail) SPA/FA Resistant Right-to-Left Modular Exponentiation

INPUT: M �= 0, d = (dn−1, ..., d0)2, N

OUTPUT: Md mod N or “Error”

1. S[0]← 1
2. S[1]← 1
3. A←M
4. for i from 0 to n− 1 do

5.1 employment of S[di] and A into a dedicated HW

5.2 compute S[di] · A mod N (within the dedicated HW)

5.3 update the value of S[di] with the output of a dedicated HW
6. A← A2 mod N
7. if (M · S[0] · S[1] = A mod N) and (A �= 0) then
8. return (S[0])
9. else
10. return (“Error”)

Control of the timing of the attack. Alg. 3 has an iterative computation
of a multiplication and a squaring. Therefore we can easily find the timing of a
multiplication from a power profile or timing analysis of a device. Aumüller et al.
used a power profile to control the timing of their attack [4]. Furthermore, since
a dedicated hardware usually spends more power than ALU, we can easily find
the interval of modular exponentiation. Besides that, the timing between Line
5.1 and 5.3 is the most time consuming part of the whole operation. Therefore
it is not so difficult to control the timing of the attack. Furthermore, we do not
need any specific faulty values. We just need to invoke a random fault to change
the value of the target register into an arbitrary value.

Possibility of changing the value of a register. Possibility of changing the
value of a register highly depends on the structure of a device and the attack
method. Also it depends on the hardware countermeasures of ICs against fault
attacks. There are several experimental results with unprotected hardware. In
[4], they succeeded in making faults by producing a spike in the smartcard IC’s
power supply Vcc. Similar experiment is done by Bar-El el al. [6]. Skorobogatov
and Anderson also showed that a value of SRAM memory could be changed
[20].

Furthermore there are a lot of published works with the assumption of chang-
ing the value of a register. Boneh et al. used a model that assumes a value
stored in a register might be corrupted to break certain implementations of
RSA and Rabin signatures [9]. Seifert’s model assumes that the attack is able to
enforce random register faults, resulting in a uniformly chosen register content
to break authentication of RSA [18]. We can see also similar fault attack model
in [5,7]. Joye and Yen used the same model as ours to describe M safe-error
attack [14].

Safe-Error Attack on SPA-FA Resistant Exponentiations 279

Check of the occurrence of the error. Alg. 3 returns “Error” when there
is an error. Therefore we can easily figure out whether an error is produced or
not. Someone may argue that the attacker can easily be defeated if the hardware
re-calculates its output when it detects a fault. However, using the analysis of
a timing, we can easily detect it. Indeed, the hardware takes twice as long to
re-calculates a value after it detects an ‘un-safe’ fault. Someone else may argue
that the output of a random number instead of outputting “Error” when it
detects an error can prevent our attack. However the attacker can distinguish it
from the correct output after she has received a correct output without giving a
fault.

Therefore, we can say our random transient fault model based on the change
of the value of a register is applicable.

4.3 Safe-Error Attack on the Scheme of Giraud

There is another exponentiation secure against SPA and FA proposed by Giraud
[12]. Here, the equation S[0] ·M = S[1] mod N holds in each iteration as you
can see in Alg. 5.

Algorithm 5. SPA/FA Resistant Modular Exponentiation by Giraud

INPUT: M �= 0, d = (dn−1, ..., d0)2odd, N

OUTPUT: Md mod N or “Error”

1. S[0]←M
2. S[1]←M2 mod N
3. for i from n− 2 to 1 do

4. S[di]← S[di] · S[di] mod N
5. S[di]← S[di]

2 mod N
6. S[1]← S[1] · S[0] mod N
7. S[0]← S[0]2 mod N
8. S[0]← S[0] ·M mod N
9. if (S[0] = S[1]) then
10. return (S[0])
11. else
12. return (“Error”)

Let us call the content of loop of Alg. 5. If di = 0, then it computes:

4. S[1]← S[1] · S[0] mod N ,
5. S[0]← S[0]2 mod N .

If di = 1, then it computes:

4. S[0]← S[0] · S[1] mod N ,
5. S[1]← S[1]2 mod N .

280 C.H. Kim et al.

For example, let us suppose di = 0 and the attacker induces a temporary
memory fault inside S[0] after its load in Step 4. Then after S[1] ← S[1] · S[0],
the value of S[1] is not affected by a fault. But the operation S[0]← S[0]2 mod
N is affected and finally the final output becomes wrong. Again let us suppose
di = 1 and the attacker induces a temporary memory fault inside S[0] after
the load of it into the dedicated hardware in Step 4. Then, the error in S[0] is
cleared when the output of S[0] ← S[0] · S[1] is stored. Therefore, the attacker
can distinguish the value of di according to the output.

The same situation occurs when the attacker induces a temporary memory
fault inside S[1] instead of S[0].

5 Conclusions and Future Works

In this paper, theoretically we showed that the two known SPA-FA exponentia-
tion algorithms are vulnerable to safe-error attack when they are implemented
with a hardware multiplier. Since nowadays almost all smart cards use a hard-
ware multiplier, this approach is reasonable. Our fault attack model requires a
random transient memory fault that is commonly accepted as possible in the
literature. Until now, there is no experimental result about safe-error attack
including C safe-error attack and M safe-error attack. Therefore it could be
interesting for future works to show safe-error attacks with experiments.

Acknowledgements. This research was supported by BK21 and the MIC of
Korea, under the ITRC support program supervised by the IITA.

References

1. Advanced Crypto Engine, Infineon. available at, http://www.infin

2. Fame XE, NXD. available at, http://www.nxp.com

3. TORNATO, Samsung. available at http://www.samsung.com/

4. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks
on RSA with CRT: Concrete results and practical countermeasures. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275.
Springer, Heidelberg (2003)

5. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A., Ngair, T.: Breaking public
key cryptosystems on tamper resistant devices in the presence of transient faults.
In: Christianson, B., Lomas, M. (eds.) Security Protocols. LNCS, vol. 1361, pp.
115–124. Springer, Heidelberg (1998)

6. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. In: Fault Diagnosis and Tolerance in Cryptogra-
phy in association with DSN 2004 – The International Conference on Dependable
Systems and Networks, pp. 330–342 (2004)

7. Blömer, J., Otto, M.: Wagner’s attack on a secure crt-rsa algorithm reconsidered.
In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS,
vol. 4236, pp. 13–23. Springer, Heidelberg (2006)

http://www.infin
http://www.nxp.com
http://www.samsung.com/

Safe-Error Attack on SPA-FA Resistant Exponentiations 281

8. Boneh, D., DeMillo, R., Lipton, R.: On the importance of checking cryptographic
protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp.
37–51. Springer, Heidelberg (1997)

9. Boneh, D., DeMillo, R., Lipton, R.: On the importance of eliminating errors in
cryptographic computations. Journal of Cryptology 14(2), 101–119 (2001) An ear-
lier version appears in [8]

10. Boscher, A., Naciri, R., Prouff, E.: CRT RSA algorithm protected against fault
attacks. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.)
WISTP 2007. LNCS, vol. 4462, pp. 237–252. Springer, Heidelberg (2007)

11. Örs, S.B., Batina, L., Preneel, B., Vandewalle, J.: Hardware implementation of a
Montgomery modular multiplier in a systolic array. In: Proceedings of the 17th
International Symposium on Parallel and Distributed Processing, pp. 1–8. IEEE
Computer Society, Los Alamitos (2003)

12. Giraud, C.: Fault resistant RSA implementation. In: D.Walter, C., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 142–151. Springer, Heidelberg (2003)

13. Joye, M., Pailler, P., Yen, S.-M.: Secure evaluation of modular functions. In: Inter-
national Workshop on Cryptology and Network Security 2001, pp. 227–229 (2001)

14. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidel-
berg (2003)

15. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

16. Manochehri, K., Pourmozafari, S.: Modified radix-2 montgomery modular multi-
plication to make it faster and simpler. In: International Conference on Coding
and Computing – ITCC 2005, vol. 1, pp. 598–602 (2005)

17. Messerges, T., Dabbish, E., Sloan, R.: Examining smart-card security under the
threat of power analysis attack. IEEE Transactions on Computers 51(5), 541–552
(2002)

18. Seifert, J.-P.: On authenticated computing and RSA-based authentication. In:
Proc. of ACM conference on computer and communications security 2005, pp.
122–127. ACM Press, New York (2005)

19. Shamir, A.: Method and apparatus for protecting public key schemes from tim-
ing and fault attacks. United States Patent �5,991,415 (November 23, 1999) Also
presented at the rump session of EUROCRYPT 1997

20. Skorobogatov, S., Anderson, R.-J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)

21. Wagner, D.: Cryptanalysis of a provably secure CRT-RSA algorithm. In: 11th ACM
Conference on Computers and Communications Security, pp. 92–97. ACM Press,
New York (2004)

22. Yen, S.-M., Joye, M.: Checking before output may not be enough against fault
based cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000)

23. Yen, S.-M., Kim, S., Lim, S., Moon, S.: RSA speedup with residue number system
immune against hardware fault cryptanalysis. In: Kim, K.-c. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 397–413. Springer, Heidelberg (2002)

24. Yen, S.-M., Kim, S., Lim, S., Moon, S.: RSA speedup with chinese remainder the-
orem immune against hardware fault cryptanalysis. IEEE Transactions on Com-
puters 52(4), 461–472 (2003) An earlier version appears in [23]

Generalized MMM-Algorithm Secure Against

SPA, DPA, and RPA

Atsuko Miyaji�

Japan Advanced Institute of Science and Technology
miyaji@jaist.ac.jp

Abstract. In the execution on a smart card, elliptic curve cryptosys-
tems have to be secure against side channel attacks such as the simple
power analysis (SPA), the differential power analysis (DPA), and the
refined power analysis (RPA), and so on. MMM-algorithm proposed by
Mamiya, Miyaji, and Morimoto is a scalar multiplication algorithm se-
cure against SPA, DPA, and RPA, which can decrease the computational
complexity by increasing the size of a pre-computed table. However, it
provides only 4 different cases of pre-computed tables. From the practical
point of view, a wider range of time-memory tradeoffs is usually desired.
This paper generalizes MMM-algorithm to improve the flexibility of ta-
bles as well as the computational complexity. Our improved algorithm is
secure, efficient and flexible for the storage size.

Keywords: elliptic curve, DPA, RPA, SPA.

1 Introduction

Elliptic Curve Cryptosystems: The elliptic curve cryptosystem (ECC) cho-
sen appropriately can offer efficient public key cryptosystems [1]. Thus, elliptic
curve cryptosystems have been desired in various application such as a smart
card, whose memory storage and CPU power are very limited. The efficiency of
elliptic curve cryptosystems depends on the implementation of scalar multipli-
cation kP for a secret key k and an elliptic-curve point P .

Side Channel Attacks on ECC: Side channel attacks monitor power con-
sumption and even exploit the leakage information related to power consump-
tion to reveal bits of a secret key k although k is hidden inside a smart card [1].
There are two types of power analysis, the simple power analysis (SPA) and the
differential power analysis (DPA). SPA makes use of such an instruction per-
formed during a scalar multiplication that depends on the data being processed.
DPA uses correlation between power consumption and specific key-dependent
bits. The refined power analysis (RPA) over ECC is one of DPA, which exploits
a special point with a zero value such as (0, y) or (x, 0) and reveals a secret key
[9]. RPA is also called a Goubin-type attack. Not all elliptic curves are vulnerable
� This study is partly supported by Grant-in-Aid for Scientific Research (B), 17300002.

and Yazaki Memorial Foundation for Science and Technology.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 282–296, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Generalized MMM-Algorithm Secure Against SPA, DPA, and RPA 283

against RPA, but some curves in [18] are vulnerable against these attacks. There
exist countermeasures against SPA, DPA, and RPA in [3,16,14]. This paper re-
visits the algorithm proposed by Mamiya, Miyaji, and Morimoto [14], which is
called MMM-algorithm1, here.

Overview of MMM-algorithm: MMM-algorithm uses a random initial point
(RIP) R, computes kP + R by dividing a scalar k into h× 1 blocks with a table
of pre-computed points based on the blocks, subtracts R from a result, and,
finally, gets kP , where kP +R is computed from left to right without any branch
instruction dependent on the data being processed. A random initial point at
each execution of kP makes it impossible for an attacker to control a point P as
he needs since any point or register used in addition formulae is different at each
execution. Thus, MMM-algorithm is not only secure against SPA, DPA, and
RPA but also efficient scalar multiplication with a precomputed table. However,
it provides only 4 available tables of 9, 15, 27, or 51 field elements2. Note that
MMM-algorithm with a table of 51 field elements is the most efficient in a 160-bit
elliptic curve even if more memory space is allowed to use. From the practical
point of view, the memory space allowed to use or the time complexity required
for cryptographic functions depends on each individual application. Thus, in
some application, MMM-algorithm might not be the best.

Our Contribution: In this paper, we generalize MMM-algorithm by dividing
a scalar k into h × v blocks and optimize the computation method of kP + R
to improve flexibility of tables as well as computational complexity, while being
secure against SPA, DPA, and RPA. It is called Generalized MMM-algorithm in
this paper, GMMM-algorithm in short. We also analyze the computational com-
plexity of GMMM-algorithm theoretically. Furthermore, we explore each best
coordinate between affine, (modified) Jacobian, mixed coordinate, etc [6] for
each division h× v of GMMM-algorithm according as the ratio of I/M , where
I/M represents the ratio of complexity of modular inversion against modular
multiplication. As a result, even in the same division as MMM-algorithm, our
optimization on coordinates can reduce the computational and memory com-
plexity since such optimization was not investigated in MMM-algorithm [14].
In facts, GMMM-algorithm with a table of 7 or 38 field elements can reduce
the computational complexity of MMM-algorithm with a table of 9 or 51 field
elements by 19% or 13.2% over for the range of I/M between 4 and 11, respec-
tively; and GMMM-algorithm with a table of only 19 field elements can work
faster than MMM-algorithm with a table of 51 field elements under the above
range of I/M . Thus, GMMM-algorithm is significantly efficient and flexible even
when the storage available is very small or rather large.

This paper is organized as follows. Section 2 summarizes the known facts on
elliptic curves and also reviews MMM-algorithm. Section 3 presents our GMMM-
algorithm and analyzes the computational complexity theoretically. Section 4
compares our results with the previous results.

1 In their paper, MMM-algorithm is called BRIP or EBRIP.
2 More precisely, it uses 3, 5, 9, 17 elliptic-curve points in Jacobian coordinates.

284 A. Miyaji

2 Preliminaries

This section summarizes some facts of elliptic curves such as coordinate systems
and side channel attacks against elliptic curves, which refers to [6,1].

2.1 Elliptic Curve

Let Fp be a finite field, where p > 3 is a prime. The Weierstrass form of an
elliptic curve over Fp in affine coordinates is described as

E/Fp : y2 = x3 + ax + b (a, b ∈ Fp, 4a3 + 27b2 �= 0).

The set of all points P = (x, y) ∈ Fp × Fp satisfying E with the point at
infinity O, denoted by E(Fp), forms an abelian group. Let P1 = (x1, y1) and
P2 = (x2, y2) be two points on E(Fp) and P3 = P1 + P2 = (x3, y3) be the sum.
Then the addition formula Add (resp. doubling Dbl) in affine coordinate can be
described by three modules of Addp(P1, P2), AddI(α), and AddNI(P1, P2, λ) (resp.
Dblp(P1), DblI(α) and DblNI(P1, λ)) as in [15]. Each module means preparation
for 1 inversion, computation of 1 inversion and computation without inversion,
respectively. Then the addition formulae are given as follows.

Add(P1, P2) (P1 �= ±P2)
Addp(P1, P2): α = x2 − x1

AddI(α): λ = 1
α

AddNI(P1, P2, λ): γ = (y2 − y1)λ
x3 = γ2 − x1 − x2

y3 = γ(x1 − x3)− y1

Dbl(P1)
Dblp(P1): α = 2y1

DblI(α): λ = 1
α

DblNI(P1, λ): γ = (3x2
1 + a)λ

x3 = γ2 − 2x1

y3 = γ(x1 − x3)− y1

Let us denote the computational complexity of an addition (resp. a doubling)
by t(A+A) (resp. t(2A)) in affine coordinate and multiplication (resp. inversion,
resp. squaring) in Fp by M (resp. I, resp. S), where A means affine coordinates.
For simplicity, it is usual to neglect addition, subtraction, and multiplication
by small constant in Fp to discuss the computation amount. Then we see that
t(A+A) = I + 2M + S and t(2A) = I + 2M + 2S. For the sake of convenience,
let us denote the computational complexity of Addp and AddNI (resp. Dblp and
DblNI) by t(A + A)nI (resp. t(2A)nI), which represents the total computational
complexity of an addition (resp. doubling) without inversion.

Both addition and doubling formulae in affine coordinate need one inversion
over Fp, which is more expensive than multiplication over Fp. Affine coordinate
is transformed into Jacobian coordinate, where the inversion is free. We set
x = X/Z2 and y = Y/Z3, giving the equation

EJ : Y 2 = X3 + aXZ4 + bZ6.

Then, two points (X, Y, Z) and (r2X, r3Y, rZ) for some r ∈ F
∗
p are recognized as

the same point. The point at infinity is transformed to (1, 1, 0). The doubling and
addition formulae in Jacobian coordinate are represented in [6]. The computation
time of addition (resp. doubling) in Jacobian coordinate are t(J+J) = 12M+4S

Generalized MMM-Algorithm Secure Against SPA, DPA, and RPA 285

(resp. t(2J) = 4M + 6S), where J means Jacobian coordinate. Regarding the
iterated doubling, that is the computation of 2wP , the iterated doubling formula
in Jacobian coordinate [10] can work efficiently with t(2wJ) = 4wM +(4w+2)S.

In addition to affine and Jacobian coordinates, there exists their combination
coordinate, called mixed coordinate [6]. In the case of mixed coordinate, let us
denote by t(C1 + C2 = C3) the time for addition of points in coordinates C1 and
C2 giving a result in coordinates C3, and by t(2C1 = C2) the time for doubling a
point in coordinates C1 giving a result in coordinates C2. Their performance is
summarized in Table 2.1.

Table 2.1. Computational complexity of addition and doubling of elliptic curve

computational complexity computational complexity

t(A+A = J) 4M + 2S t(2A = J) 2M + 4S
t(A+ J = J) 8M + 3S t(2J) 4M + 6S

t(A+A) 2M + S + I t(2A) 2M + 2S + I
t(J + J) 12M + 4S t(2wJ) 4wM + (4w + 2)S

t(J + J = A) 15M + 5S + I t(J → A)† 3M + S + I
† : The computational complexity of transformation from Jacobian to affine

coordinate. The computational complexity without inversion is denoted
by t(J → A)nI .

Let us discuss the difference between these coordinates. Regarding additions,
we could roughly estimate that t(A + A = J) < t(A + J = J) ≤ t(A +A) ≤
t(J + J). This means an addition in mixed coordinate is considerably fast but
that of Jacobian coordinate is rather slow. Therefore, an addition of Jacobian
coordinate had better be avoided. Regarding doublings, we could roughly esti-
mate that t(2A = J) < t(2J) ≤ t(2A). This means a doubling in Jacobian
coordinate is considerably fast but that of affine coordinate is rather slow, which
had better be avoided.

The major problem in affine coordinate is that it requires 1 inversion when
it is executed. However, an addition of affine coordinate should be revisited if
we consider the above fact of t(A + A) ≤ t(J + J). Furthermore, if several
additions or doublings are executed in parallel, then we can make use of the
following Montgomery’s trick [17] to reduce the total number of inversions.

Algorithm 1 (Minv[n]) Montgomery’s trick
Input: α0, · · · , αn−1, p
Output: α−1

0 mod p, · · · , α−1
n−1 mod p

1. λ0 = α0

2. For i = 1 to n− 1: λi = λi−1αi mod p.
3. I = λ−1

n−1 mod p
4. For i = n− 1 to 0: λi = Iλi−1 mod p. I = Iαi mod p
5. Output {λ0, · · · , λn−1}
The Montgomery’s trick Minv[n] works with 3(n−1) multiplications and 1 inver-
sion to compute n inversions, whose computation time is denoted by t(Minv[n]) =

286 A. Miyaji

3(n− 1)M + I. Therefore, if several additions or doublings in affine coordinates
are executed in parallel, then the total number of inversions can be reduced
to 1 by executing Addp(P1, P2) and Dblp(P1) in parallel, applying the Mont-
gomery’s trick to execute AddI(α) and DblI(α) simultaneously, and finally exe-
cuting AddNI(P1, P2, λ) and DblNI(P1, λ) in parallel.

2.2 Power Analysis

There are two types of power analysis, SPA and DPA, which are described in
[1]. RPA is one of DPA, which uses characteristic of some elliptic curve to have
a special point [9].

Simple Power Analysis: SPA makes use of such an instruction performed dur-
ing a scalar multiplication that depends on the data being processed. In order
to be resistant to SPA, any branch instruction of scalar multiplication should
be eliminated. There are mainly two types of countermeasures: the fixed pro-
cedure method and the indistinguishable method. The fixed procedure method
deletes any branch instruction conditioned by a secret scalar k such as the add-
and-double-always algorithm. The indistinguishable method conceals all branch
instructions of scalar multiplication algorithm by using indistinguishable addi-
tion and doubling operations, in which dummy operations are inserted.

Differential Power Analysis: DPA uses correlation between power consump-
tion and specific key-dependent bits. In order to be resistant to DPA, power
consumption should be changed at each new execution. There are mainly 3
types of countermeasures, the randomized-projective-coordinate method (RPC),
the randomized curve method (RC), and the exponent splitting (ES) [3]. RPC
uses Jacobian or Projective coordinate to randomize a point P = (x, y) into
(r2x, r3y, r) or (rx, ry, r) for a random number r ∈ F

∗
p, respectively. RC maps

an elliptic curve into an isomorphic elliptic curve by using an isomorphism map of
(x, y) to (c2x, c3y) for c ∈ F

∗
p. ES splits a scalar and computes kP = rP +(k−r)P

for a random integer r.

Refined Power Analysis: RPA reveals a secret key k by using a special elliptic-
curve point with a zero value, which is defined as (x, 0) or (0, y). These special
points of (x, 0) and (0, y) can not be randomized by RPC or RC since they
still have a zero value such as (r2x, 0, r) (resp. (rx, 0, r)) and (0, r3y, r) (resp.
(0, ry, r)) in Jacobian (resp. Projective) coordinate after conversion. ES can resist
RPA because an attacker cannot handle an elliptic curve point in such a way
that a special point with zero value can appear during an execution.

2.3 A Review of Mamiya-Miyaji-Morimoto-Algorithm

We briefly review MMM-algorithm [14]. Assume that the size of the underlying
filed and the scalar k are n bits. MMM-algorithm first chooses a random initial
point (RIP) R, computes kP+R from left to right without any branch instruction
dependent on the data being processed, subtracts R from a result, and gets kP .
By using a random initial point at each execution of exponentiation, any point or

Generalized MMM-Algorithm Secure Against SPA, DPA, and RPA 287

any register used in addition formulae changes at each execution, which prevents
an attacker from controlling a point P itself as he needs. Thus, it is resistant to
SPA, DPA, and RPA3.

Let us briefly review MMM-algorithm (See Figure 1). First divide n bits into h
blocks and choose a random point R ∈ E(Fp). Then, MMM-algorithm computes

kP + R by representing kP + R to
(1 11 · · · 11︸ ︷︷ ︸

b

)R + (kn−1 · · ·
︸ ︷︷ ︸

b

· · · · · ·k1k0︸ ︷︷ ︸
b

)P
and

executing the (h + 1)-simultaneous scalar multiplication, where b = �n
h �. The

simultaneous scalar multiplication first constructs a table of (2h − 1) points
T [0, s] for an h-bit integer s =

∑h−1
�=0 s�2� (s� ∈ {0, 1}),

T [0, s] =
h−1∑

�=0

s�2b�P −R,

and then repeats 1 addition to a table point T [0, s] and 1 doubling from left to
right in a b-bit block. The following is the detailed algorithm. In this paper, we
also denote the algorithm by h-MMM-algorithm where we want to describe the
number of divisions h.

Algorithm 2 (h-MMM-algorithm)
Input: k =

∑n−1
i=0 k[i]2i, P

Output: kP

0. kj =
∑h−1

�=0 k[b� + j]2� (j ∈ {0, · · · , b− 1}).
1. T [0] =randompoint().
Table construction
2. Compute B[i] = 2biP for 0 ≤ i ≤ (h− 1).
3. Compute T [0, s] =

∑h−1
�=0 s�B[�]− T [0] for an h-bit integer

s =
∑h−1

�=0 s�2� (s� ∈ {0, 1}). Therefore, T [0, 0] = −T [0].
Main computation
4. For j = b− 1 to 0: T [0] = 2T [0] + T [0, kj].
5. Output T [0] + T [0, 0].

3 Generalized MMM-Algorithm

In this section, we give the generalized MMM-algorithm to improve the flexibility
of tables as well as computational complexity, while it can resist SPA, DPA, and
RPA. Our idea is inspired by an exponentiation algorithm with a fixed point
[13,12]4. Let k be n bits, h and v be positive integers, �n

h � = a, and �a
v � = b. Let

3 An SPA in the chosen-message-attack scenario [19] that uses a point P with order 2
is applied to MMM-algorithm. However, we can easily avoid this attack by checking
2P �= O before computing kP .

4 The fixed-point exponentiation algorithm divides an exponent k into h × v blocks
and makes a pre-computed table based on the blocks. The application to elliptic
curves is discussed in [5]. MMM-algorithm could be considered as a combination of
the exponentiation algorithm with h× 1 blocks and a random initial point.

288 A. Miyaji

・

・

・

・・・

・

・

・

・・・

Fig. 1. MMM-algorithm

us also use notation such as t(2A = J), t(2wJ), t(J → A)nI , t(Minv[n]), and
so on, defined in Section 2.

3.1 Algorithm Intuition

MMM-algorithm computes kP +R by dividing k into h×1 blocks and executing
the (h + 1)-simultaneous-scalar multiplication of b-bit numbers, where �n

h � = a
and �a

1 � = b. Our target is to generalize MMM-algorithm by dividing k into
h×v blocks and executing the (h+1)-simultaneous-scalar multiplication of b-bit
numbers. Therefore, MMM-algorithm is a special case of our generalization with
(h, v) = (h, 1).

Then, the issues to resolve are: how to embed a random point R into h × v
blocks efficiently; and how to find the optimal (h, v) for the generalized MMM-
algorithm together with the best coordinates. Regarding the former issue, one
way is to use v random points Ri, compute kP + R1 + · · ·Rv, and subtract
R1 + · · · + Rv from a result. Another way, which reduces the computational
complexity, is to use a random point R in the same way as MMM-algorithm,
compute kP + vR, and subtract vR. Regarding the latter issue, the best com-
bination of coordinates in table construction, table points themselves, and main
computation should be investigated for each (h, v) from the point of view of both
computational and memory complexity.

3.2 GMMM-Algorithm

Here we show the generalized MMM-algorithm, which is called GMMM-
algorithm in this paper. The brief idea of GMMM-algorithm is described in
Figure 2.

Algorithm 3 ((h, v)-GMMM-algorithm)
Input: k =

∑n−1
i=0 k[i]2i, P

Output: kP

0. ki,j =
∑h−1

�=0 k[a� + j + bi]2� ((i, j) ∈ {0, · · · , v − 1} × {0, · · · , b− 1}).
1. For i = 0 to v − 1: R[i] =randompoint().

Generalized MMM-Algorithm Secure Against SPA, DPA, and RPA 289

Table Construction
2. Compute B[i, �] = 2a�+biP for 0 ≤ i ≤ (v − 1) and 0 ≤ � ≤ (h− 1).

Then B[0, 0] = P.

3. Compute T [i, s] =
∑h−1

�=0 s�B[i, �]−R[i] for 0 ≤ i ≤ (v − 1) and an h-bit

integer s =
∑h−1

�=0 s�2�. Then T [i, 0] = −R[i] for 0 ≤ i ≤ (v − 1).
Main computation
4. Initialization: T [0] = R[0] + · · ·+ R[v − 1]. T [1] = −T [0].
5. For j = b− 1 to 0 by −1
main-loop: T [0] = 2T [0] +

∑v−1
i=0 T [i, ki,j].

6. Finalization: T [0] = T [0] + T [1].
7. Output T [0].

Remark
1. To reduce the computational and memory complexity, 1 random point R
would be used instead of v points {R[i]}. In this case, the initialization step in
Algorithm 3 is changed to T [0] = vR; and only T [0, 0] = −R in the step 3 in
Algorithm 3 is kept during the execution.
2. In the current GMMM-algorithm, one fixed power-consumption pattern is
observed for any k with a bit length of n ≤ bvh for the sake of a brief description.
However, GMMM-algorithm can be described in such a way that 1 addition is
saved for the first bv − a rounds if the (v − 1)-th block are not full.
3. GMMM-algorithm can also work with two divisions of (h1, v1) × (h2, v2) to
give the further wide range of time-memory tradeoffs, which will be shown in
the final version of this paper.

Theorem 1 (Correctness). GMMM-algorithm can compute kP correctly for
a given elliptic-curve point P and a scalar k =

∑n−1
i=0 k[i]2i.

Proof: For elliptic-curve points P , R[0], · · · , R[v−1] and a scalar k, set B[i, �] =
2a�+biP for 0 ≤ i ≤ (v−1) and 0 ≤ � ≤ (h−1), T [i, s] =

∑h−1
�=0 s�B[i, �]−R[i] for

・・・ ・・・

・・・

・

・

・

・・・ ・・・・・・ ・・・

・・・

・

・

・

・・・ ・・・

Fig. 2. Generalized MMM-algorithm

290 A. Miyaji

0 ≤ i ≤ (v− 1) and an h-bit integer s =
∑h−1

�=0 s�2�, ki,j =
∑h−1

�=0 k[a� + j + bi]2�

((i, j) ∈ {0, · · · , v − 1} × {0, · · · , b− 1}), and T [0] = R[0]+ · · ·+R[v−1]. Then,
by describing 1 as a (b + 1)-bit integer such as 1 = 1 11 · · · 11︸ ︷︷ ︸

b

, we get

kP + R[0] + · · ·+ R[v − 1] = T [0] +
b−1∑

j=0

v−1∑

i=0

(
h−1∑

�=0

k[a� + bi + j]2a�+bi+jP − 2jR[i]

)

= T [0] +
b−1∑

j=0

2j
v−1∑

i=0

(
h−1∑

�=0

k[a� + bi + j]2a�+biP −R[i]

)

= T [0] +
b−1∑

j=0

2j
v−1∑

i=0

T [i, ki,j].

Therefore, the main-loop in GMMM-algorithm computes kP +R[0]+· · ·+R[v−
1] and, thus, GMMM-algorithm can compute kP correctly. �	
Theorem 2 (Security). GMMM-algorithm is secure against SPA, DPA, and
RPA.

Proof: GMMM-algorithm lets the power-consumption pattern be fixed regard-
less of the bit pattern of a secret key k, and thus it is resistant to SPA. GMMM-
algorithm makes use of a random initial point at each execution and let all
variables {T [i, s]} be dependent on the random point. Thus, an attacker cannot
control a point in such a way that it outputs a special point with a zero-value
coordinate or zero-value register. Therefore, if {R[i]} is chosen randomly by some
ways, GMMM-algorithm can be resistant to DPA and RPA. �	
In order to enhance the security against address-bit DPA5 (ADPA) and an SPA
in the chosen-message-attack scenario, the same discussion as MMM-algorithm
holds in GMM-algorithm.

3.3 The Optimal Division with the Best Coordinate

Both MMM- and GMMM-algorithms aim at a random-point scalar multipli-
cation and, thus, each execution starts with the table construction. Therefore,
both are evaluated by the total complexity of the table construction and main
computation. MMM-algorithm has employed Jacobian coordinate in the whole
procedures. Therefore, any pre-computed point is given in Jacobian coordinate as
well as any computation being done in Jacobian coordinate. However, it should
be revisited. Because the computational complexity of addition in Jacobian co-
ordinate is considerably large even if iterated doublings in Jacobian coordinate
compute the table construction efficiently (see Table 2.1).

Let us investigate the optimal (h, v) with the best coordinates in GMMM-
algorithm by separating two phases of table construction and main computation.
5 ADPA is one of DPA, which uses the leaked information from the address bus and

can be applied on such algorithms that fix the address bus during execution.

Generalized MMM-Algorithm Secure Against SPA, DPA, and RPA 291

The table-construction phase computes, first, hv base points B[i, �] by iterated
doublings and, then, (2h − 1 − hv) points of T [i, s] =

∑h−1
�=0 s�B[i, �] − R[i] by

only additions. As for the iterated doublings, Jacobian coordinate is the best
coordinate as we have described the above. However, the base points themselves
should be converted into affine coordinate to reduce the computational com-
plexity of the next computation of T [i, s]. For the conversion from Jacobian to
affine coordinate, we can apply Montgomery trick (Algorithm 1). Then, all base
points B[i, �] can be transformed into affine coordinate with the computational
complexity of 3(2hv − 3)M + (hv − 1)S + I. The computation of T [i, s] can be
executed simultaneously for each hamming weight of s =

∑h−1
�=0 s�2�. Therefore,

affine coordinate with the Montgomery trick would be the best. By the above two
procedures, we get a pre-computed table with affine coordinate. On the other
hand, the main computation repeats additions to each pre-computed point T [i, s]
with affine coordinate and 1 doubling. Therefore, there exist two methods. One
is mixed coordinate, in which main computation is done in Jacobian coordinate
while pre-computed points are given in affine coordinate. The other is affine
coordinate with the Montgomery trick, in which main computation is done in
affine coordinate by applying the Montgomery trick in each iteration. Then, only
1 inversion is required in each iteration.

Let us summarize the above discussion as follows:

– Table construction:
• Repeated-doubling phase: Jacobian coordinate,
• Simultaneous-additionphase: affine coordinate with the Montgomery

trick,
– Main computation:
• case 1: mixed coordinates of Jacobian and affine coordinates,
• case 2: affine coordinate with the Montgomery trick.

The best combination of coordinates depends on (h, v) and the ratio of I/M ,
which will be shown in Section 3.4.

3.4 Performance

Let us discuss the memory and computational complexity of (h, v)-GMMM-
algorithm in both cases 1 and 2, where the case 1 constructs a table by repeated
doublings in Jacobian coordinate and simultaneous additions in affine coordinate
with the Montgomery trick and executes the main computation in mixed coordi-
nates of Jacobian and affine coordinates; and the case 2 constructs a table in the
same way as the case 1 and executes the main computation in affine coordinate
with the Montgomery trick. To make the discussion simple, we assume that 1
random point is used for 1 execution in the same way as MMM-algorithm.

As for the memory complexity, a table with (2h − 1)v points are required,
which are represented in affine coordinate in both cases. In addition, 3 points of
T [0, 0], T [0], and T [1] are used. All these points are given in affine coordinate in
the case 1, while, in the case 2, only T [0, 0] is given in affine coordinate and the
others are given in Jacobian coordinate.

292 A. Miyaji

Let us investigate the computational complexity by separating two phases of
the table construction and the main computation. First, let us discuss the table
construction phase, in which both cases 1 and 2 employ the same procedure. The
table construction consists of the repeated-doubling part and the simultaneous-
addition part. The repeated-doubling part computes {B[i, �]} by executing the
iterated doublings in Jacobian coordinate and transforming their results in Jaco-
bian coordinate to affine coordinate. Thus, the total computational complexity
of the repeated-doubling part is

t(2A=J)+t(2b(v−1)+a(h−1)−1J)+(hv−1)t(J →A)nI+t(Minv[hv−1]) if vh �= 1.

In the case of vh = 1, we can skip the repeated-doubling part. The simultaneous-
addition phase computes T [i, s] =

∑h−1
�=0 s�B[i, �]−R[i] simultaneously for each

hamming weight of s =
∑h−1

�=0 s�2�. Therefore, it starts with the hamming weight
1 of s, that is, computes {B[i, �]−R[i]}�,i simultaneously by executing additions
in affine coordinate together with Montgomery’s trick. Thus, the total compu-
tational complexity of the simultaneous-addition part is

h∑

i=1

(

v

(
h

i

)

t(A + A)nI + t(Minv[v
(

h

i

)

])
)

,

where
(
h
i

)
means the combination to choose i elements from h elements. Then,

we’ve got a precomputed table in affine coordinate.
Let us discuss the main-computation phase, in which each case employs each

different procedure. The main-computation phase consists of initialization, main
loop, and finalization (step 4, 5, and 6 in Algorithm 3, respectively). Let us focus
on the case 1, that is the mixed coordinates of Jacobian and affine coordinates.
The computational complexity of the main loop is

a · t(J +A = J) + b · t(2J).

The computational complexity of initialization (resp. finalization) is that to com-
pute T [0] = vR for R in affine coordinate giving a result in Jacobian coordinate
(resp. T [0] + T [1] of points in Jacobian coordinate giving a result in affine coor-
dinate).

Let us focus on the case 2 of affine coordinate with the Montgomery trick.
As for the computation of the main-loop, a tournament structure with v + 2
leaves is applied, where v points of T [i, ki,j] and doubling points of T [0] are in
the leaf of the tournament structure (see Figure 3). We pairwise add points at
leaves with a common parent, give its sum to the parent node, and carry out
these procedures at each level to the root. By applying the Montgomery’s trick
to each level, only 1 inversion is required in each level. The simplest case is the
binary tree case, which is described in [15]. Then, the computational complexity
of the main loop is

a · t(A+A)nI + b · t(2A)nI + b · t(TournaMinv[v + 2]),

Generalized MMM-Algorithm Secure Against SPA, DPA, and RPA 293

・

・

・

・・・

leaves

・

・

・

・・・

leaves

Fig. 3. Main computation of GMMM-algorithm in the case 2

where t(TournaMinv[v + 2]) denotes the computational complexity to get all in-
versions of (v +2)-point summation according to the tournament structure with
(v + 2) leaves. The computational complexity of initialization (resp. finalization
) is that to compute T [0] = vR of R in affine coordinate giving a result in affine
coordinate (resp. T [0]+T [1] of points in affine coordinate giving a result in affine
coordinate).

The above discussion is summarized in the following theorem.

Theorem 3. The total computational complexity of (h, v)-GMMM-algorithm
with 1 random point, Comp, is given as follows:
1. In the case 1: mixed coordinates in the main computation,
Comp = t(2A = J) + t(2b(v−1)+a(h−1)−1J) + (hv − 1)t(J → A)nI + t(Minv[hv − 1])

+
∑h

i=1

(
v
(

h
i

)
t(A + A)nI + t(Minv[v

(
h
i

)
])

)
+ t(vA = J)

+ a · t(J +A = J) + b · t(2J) + t(J + J = A) (if vh �= 1).
Comp = t(A+A) + a · t(J +A = J) + b · t(2J) + t(J +A = A) (if vh = 1).

2. In the case 2: affine coordinate with the Montgomery’s trick in the main com-
putation
Comp = t(2A = J) + t(2b(v−1)+a(h−1)−1J) + (hv − 1)t(J → A)nI + t(Minv[hv − 1])

+
∑h

i=1

(
v
(

h
i

)
t(A + A)nI + t(Minv[v

(
h
i

)
])

)
+ t(vA)

+ a · t(A+A)nI + b · t(2A)nI + b · t(TournaMinv[v + 2]) + t(A+A) (if vh �=1),

where �n
h � = a, �a

v � = b, and t(vA) (resp. t(vA = J)) denote the time to
compute v-multiple points in affine coordinate giving a result in affine (resp.
Jacobian) coordinate.

4 Comparison

In this section, we compare our algorithm with the previous countermeasures to
SPA, DPA, and RPA, those are ES [3], randomized window algorithm [16], LRIP
[11], and MMM-algorithm [14]. Here, M , S, or I represents the computation
amount of modular multiplication, square, or inversion, respectively. In order to
make comparison easier, the computation complexity is also estimated in terms

294 A. Miyaji

of M and I by assuming that S = 0.8M as usual and that S = 0.8M and
I = 4M or I = 11M (typically the ratio6 I/M is between 4 and 11). Memory
complexity is evaluated by the number of finite-field elements, where 1 point in
Jacobian (resp. affine) coordinate consists of 3 (resp. 2) field elements.

Table 4.1 shows the computational and memory complexity of GMMM-
algorithm with cases 1 and 2 in the case of a 160-bit scalar. These are ar-
ranged in ascending order of memory. Therefore, if we focus on either case of
GMMM-algorithm, these are also arranged in descending order of computational
complexity. However, the case 1 has advantage over the case 2 if the ratio of in-
version over multiplication is rather large and, thus, better case depends on the
ratio of I/M . We also compute a break-even point for the borderline between
both cases. The break-even point shows I/M when the computational complex-
ity of GMMM-algorithm with the case 1 is equal to that with the case 2 under
S = 0.8M . Thus, if I/M is smaller than the indicated value, GMMM-algorithm
with the case 2 is more efficient than that with the case 1. For example, (3, 1)-
GMMM with the case 1 is more efficient than (3, 2)-GMMM with the case 2 if
and only if I/M > 8.4. Each division of (1, 1), (2, 1), (3, 1) or (4, 1)-GMMM-
algorithm corresponds to that of 1, 2, 3, or 4-MMM-algorithm, respectively. The
difference is: MMM-algorithm uses Jacobian coordinate in the whole execution
but GMMM-algorithm with the case 1 employs mixed coordinate. Note that
GMMM-algorithm with the case 2 can not be applied to these cases.

Table 4.2 shows the computational and memory complexity of previous algo-
rithms in the case of a 160-bit scalar, where Jacobian coordinate is used for the
whole computation and a result is transformed into affine coordinate according
to their original proposals.

By generalizing MMM-algorithm to GMMM-algorithm, we see that more flex-
ibility, that is a wider range of time-memory tradeoffs, can be realized. Further-
more, the optimization of coordinates can reduce both the computational com-
plexity and memory even if both MMM and GMMM-algorithms use the same
division. In fact, GMMM-algorithm performs better than any previous method
under the above realistic assumptions concerning the ratio I/M . For example,
(1,1)-GMMM-algorithm with the case 1 can reduce the computational complex-
ity of 1-MMM-algorithm by 19% over for the range of I/M and also reduce the
memory size. (4,1)-GMMM-algorithm with the case 1 can reduce the compu-
tational complexity of 4-MMM-algorithm by 13.2% over for the range of I/M
and also reduce the memory by 25.4 %. Note that 4-MMM-algorithm is the
most efficient case in MMM-algorithm7. However, even (2, 2)-GMMM-algorithm
with the case 2 or (3, 1)-GMMM-algorithm with the case 1 can work faster than
4-MMM-algorithm under the range of I/M < 7.9 or 49.3 and also reduce the
memory by 64.8% or 62.8%, respectively.

6 Generally, the ratio of I/M depends on the algorithm used and the size and type of
the finite field. The ratio in [7,2] (resp. [6]) is between 4 and 10 (resp. 4 and 11) . So
here we adopt the wider range. A discussion on the ratio can be found in [4].

7 5-MMM-algorithm is not as efficient as 4-MMM-algorithm although it requires more
memory than 4-MMM-algorithm.

Generalized MMM-Algorithm Secure Against SPA, DPA, and RPA 295

Table 4.1. Performance of GMMM-algorithm (160 bits)

division (h, v) Computational complexity Memory‡ I/M�

case 1 or 2 S = 0.8M I = 4M I = 11M

(1, 1)†-case 1 1933M + 1445S + 2I 3089M + 2I 3097M 3111M 7

(1, 2)-case 2 1052M + 648S + 164I 1570.4M + 164I 2226.4M 3374.4M 10
(1, 2)-case 1 1945M + 1294S + 3I 2980.2M + 3I 2992.2M 3013.2M 12 8.8

(2, 1)†-case 1 1305M + 1051S + 4I 2145.8M + 4I 2161.8M 2189.8M 14

(2, 2)-case 2 881M + 654S + 85I 1404.2M + 85I 1744.2M 2339.2M 18
(2, 2)-case 1 1334M + 980S + 4I 2118M + 4I 2134M 2162M 20 8.8

(3, 1)†-case 1 1128M + 934S + 5I 1875.2M + 5I 1895.2M 1930.2M 22
(3, 2)-case 2 873M + 672S + 60I 1410.6M + 60I 1650.6M 2070.6M 34 8.4

(4, 1)†-case 1 1051M + 865S + 6I 1743M + 6I 1767M 1809M 38
(4, 2)-case 2 919M + 682S + 47I 1464.6M + 47I 1652.6M 1981.6M 66 6.8

† : They correspond to h-MMM-algorithm. ‡ : # field elements. � : break-even point.

Table 4.2. Comparison of known countermeasures (160 bits)

Computational complexity Memory
S = 0.8M I = 11M

ES [3] 2563M + 1601S + I 3843.8M + I 3854.8M 14�

strengthened window [16] 1643M + 1298S + I 2681.4M + I 2692.4M 15

LRIP [11] 2563M + 1283S + I 3589.4M + I 3600.4M 12

1-MMM [14] 2563M + 1601S + I 3843.8M + I 3854.8M 9
2-MMM 1651M + 1139S + I 2562.2M + I 2573.2M 15
3-MMM 1395M + 1007S + I 2200.4M + I 2211.4M 27
4-MMM 1315M + 947S + I 2072.4M + I 2073.4M 51
�: Strictly, it needs 4 elliptic curve points and 2 field elements.

5 Conclusion

In this paper, we have generalized MMM-algorithm, which is the secure scalar
multiplication with using a random initial point. Our improved algorithm is sig-
nificantly efficient and flexible and can work efficiently even when the storage
available is very small or quite large. We have also given the formulae of the
computational complexity for any division of the proposed algorithm theoreti-
cally, which helps developers to choose the best division suitable for the storage
available.

References

1. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman &
Hall/CRC (2006)

2. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptology. In: LMS,
vol. 265. Cambridge University Press, Cambridge (1999)

296 A. Miyaji

3. Ciet, M., Joye, M.: (Virtually) Free randomization technique for elliptic curve
cryptography. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS,
vol. 2836, pp. 348–359. Springer, Heidelberg (2003)

4. Ciet, M., Joye, M., Lauter, K., Montgomey, P.L.: Trading inversions for multipli-
cations in elliptic curve cryptography. Designs, Codes and Cryptography 39(2),
189–206 (2006)

5. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation. In: Han, Y.,
Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 282–290. Springer, Heidelberg
(1997)

6. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

7. Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny decom-
positions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 191–206. Springer, Heidelberg (2006)

8. Eisenträger, K., Lauter, K., Montgomey, P.L.: Fast elliptic curve arithmetic and im-
proved Weil pairing evaluation. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612,
pp. 343–354. Springer, Heidelberg (2003)

9. Goubin, L.: A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–210. Springer, Heidelberg
(2002)

10. Itoh, K., Takenaka, M., Torii, N., Temma, S., Kurihara, Y.: Fast implementation
of public-key cryptography on DSP TMS320C6201. In: Koç, Ç.K., Paar, C. (eds.)
CHES 1999. LNCS, vol. 1717, pp. 61–72. Springer, Heidelberg (1999)

11. Itoh, K., Izu, T., Takenaka, M.: Efficient countermeasures against power analysis
for elliptic curve cryptosystems. In: Proceedings of CARDIS 2004, pp. 99–114.
Kluwer, Dordrecht (2004)

12. Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Hei-
delberg (1994)

13. Pippenger, N.: On the evaluation of powers and related problems (preliminary
version). In: 17th annual symposium on foundations of computer science, pp. 258–
263. IEEE Computer Society, Los Alamitos (1976)

14. Mamiya, H., Miyaji, A., Morimoto, H.: Secure elliptic curve exponentiation against
RPA, ZRA, DPA, and SPA. IEICE Trans. Fundamentals E89-A(8), 2207–2215
(2006)

15. Mishra, P.K., Sarkar, P.: Application of Montgomery’s trick to scalar multiplication
for EC and HEC using fixed base point. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC
2004. LNCS, vol. 2947, pp. 41–57. Springer, Heidelberg (2004)

16. Möller, B.: Parallelizable elliptic curve point multiplication method with resistance
against side-channel attacks. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS,
vol. 2433, pp. 402–413. Springer, Heidelberg (2002)

17. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods for factoriza-
tion. Mathematics of Computation 48, 243–264 (1987)

18. Standard for efficient cryptography group, specification of standards for efficient
cryptography, available from: http://www.secg.org

19. Yen, S.M., Lien, W.C., Moon, S., Ha, J.: Power analysis by exploiting chosen
message and internal collisions - Vulnerability of checking mechanism for RSA-
Decryption. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715,
pp. 183–195. Springer, Heidelberg (2005)

http://www.secg.org

Pairing-Friendly Elliptic Curves with Small

Security Loss by Cheon’s Algorithm

Aya Comuta1, Mitsuru Kawazoe2, and Tetsuya Takahashi2

1 Graduate School of Science
Osaka Prefecture University

2 Faculty of Liberal Arts and Sciences
Osaka Prefecture University

1-1 Gakuen-cho Naka-ku Sakai Osaka 599-8531 Japan
{kawazoe,takahasi}@las.osakafu-u.ac.jp

Abstract. Pairing based cryptography is a new public key crypto-
graphic scheme. An elliptic curve suitable for pairing based cryptog-
raphy is called a “pairing-friendly” elliptic curve. After Mitsunari, Sakai
and Kasahara’s traitor tracing scheme and Boneh and Boyen’s short sig-
nature scheme, many protocols based on pairing-related problems such
as the q-weak Diffie-Hellman problem have been proposed. In Eurocrypt
2006, Cheon proposed a new efficient algorithm to solve pairing-related
problems and recently the complexity of Cheon’s algorithm has been im-
proved by Kozaki, Kutsuma and Matsuo. Due to these two works, an
influence of Cheon’s algorithm should be considered when we construct
a suitable curve for the use of a protocol based on a pairing-related
problem. Among known methods for constructing pairing-friendly ellip-
tic curves, ones using cyclotomic polynomials are affected by Cheon’s
algorithm. In this paper, we study how to reduce a security loss of a
cyclotomic family by Cheon’s algorithm.

Keywords: Pairing based cryptosystem, Elliptic curves.

1 Introduction

Pairing based cryptography is a new public key cryptographic scheme, which
was proposed around 2000 by three important works due to Joux [15], Sakai,
Ohgishi and Kasahara [22] and Boneh and Franklin [5]. In these last two papers,
the authors constructed an identity-based encryption scheme by using the Weil
pairing of elliptic curves. An elliptic curve suitable for pairing-based cryptog-
raphy is called a “pairing-friendly” elliptic curve. It is very important to find
an efficient method to construct pairing-friendly elliptic curves. There are many
works on this topic: Miyaji, Nakabayashi and Takano [19], Cocks and Pinch [9],
Brezing and Weng [8], Barreto and Naerig [1], Scott and Barreto [21], Freeman,
Scott and Teske [12] and so on.

In 2002, Mitsunari, Sakai and Kasahara proposed a new traitor tracing scheme
based on the q-weak Diffie-Hellman problem [18]. The q-weak Diffie-Hellman

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 297–308, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

298 A. Comuta, M. Kawazoe, and T. Takahashi

problem is described as follows: Let g be an element of prime order � in an
abelian group and α ∈ (Z/�Z)∗. Then the q-weak Diffie-Hellman problem asks
[1/α]g for given g, [α]g, [α2]g,. . . , [αq]g. In 2004, Boneh and Boyen proposed
a short signature scheme based on the q-strong Diffie-Hellman problem. After
these two works, many protocols have been proposed based on q-weak Diffie-
Hellman-like problems: [2], [3], [4], [20] and so on.

Before 2006, there had been no known efficient algorithm to solve the discrete
logarithm problem related to the above protocols which works faster than the
rho method and the square root method. However, in Eurocrypt 2006, Cheon
proposed a new efficient algorithm which computes the discrete logarithm of
the q-strong Diffie-Hellman problem [7]. Let � be a group order, and g, [α]g,
[αd]g given elements where d is a positive divisor of � − 1. Cheon’s algorithm
can compute α from these data in O(log �(

√
�/d +

√
d)) group operations. In

the same paper, Cheon gave an algorithm which computes α for given g, [αi]g,
i = 1, 2, . . . , 2d in O(log �(

√
�/d+d)) group operations when d is a divisor of �+1.

Recently, Kozaki, Kutsuma and Matsuo showed that the complexity of Cheon’s
algorithm can be reduced to O(

√
�/d +

√
d) for d | (�− 1) and O(

√
�/d + d) for

d | (� + 1), respectively [16]. It is obvious that the complexity is reduced when
d(<
√

�) becomes larger. When d = O(�1/2), the cost of an (�−1)-version becomes
O(�1/4). And when d = O(�1/3), the cost of an (� + 1)-version becomes O(�1/3).
Those are much smaller than the rho method and the square root method. Hence,
one should be careful about a divisor of �± 1 of the order � of an elliptic curve
used for protocols based on the q-weak Diffie-Hellman problem, the q-strong
Diffie-Hellman problem or other related problems. There are many methods to
construct pairing-friendly elliptic curves over a finite field Fp. However, in all
methods for constructing pairing-friendly elliptic curves except for the Cocks-
Pinch method, the order of an elliptic curve is given by an irreducible polynomial
�(x). If �(x)±1 is reducible, there is a big security loss due to Cheon’s algorithm.
In fact, for an example of the embedding degree k = 10 in [11], k = 12 in [1],
all examples in [8], and curves obtained by using cyclotomic fields in [12], the
polynomial �(x)+1 or �(x)−1 has a polynomial factor of degree 1 or 2. Roughly
speaking, if �± 1 has a factor d, the cost for solving the q-strong Diffie-Hellman
problem is reduced by a factor

√
d. So when we take � as the k-th cyclotomic

polynomial Φk(x) as in [8] and so on, there is at least (lg �)/(2ϕ(k))-bit security
loss by Cheon’s algorithm where lg x := log2 x and ϕ is the Euler phi function.
Though the advantage of a cyclotomic family is that one can take the ratio
ρ = lg p/ lg � less than two, these are affected by Cheon’s algorithm for the use
of protocols based on pairing-related problems.

In this paper, we study how to reduce a security loss of a cyclotomic family by
Cheon’s algorithm keeping its advantage for the value of ρ. To reduce the security
loss by Cheon’s algorithm, we propose to take a prime � as a large proper divisor
of Φk(x). However, for example, in the Freeman-Scott-Teske method which needs
an extension of a cyclotomic field Q(ζk) and uses Φck(x) as � for c ≥ 2, it is
difficult to find a suitable order � only by taking a proper divisor of Φck(x). It is
mainly because the degree of Φck(x) is relatively large. In this paper, we propose

Pairing-Friendly Elliptic Curves with Small Security Loss 299

an improved method for the embedding degree 2n where n is an odd prime. Since
the proposed method does not need a field extension, the probability of finding
a pairing-friendly curve by the method is higher than the Freeman-Scott-Teske
method. Heuristically, our method gives pairing-friendly elliptic curves whose
security loss by Cheon’s algorithm is within 5 bits for k ≤ 38. We note that ρ of
constructed curves is still less than two, moreover almost same as the Freeman-
Scott-Teske method.

We give the outline of this article. In Section 2, we recall the Weil paring and
the condition to construct a secure and efficient pairing based cryptosystem.
In Section 3, we recall the q-weak/strong Diffie-Hellman problem and Cheon’s
algorithm. In Section 4, for known methods of constructing pairing-friendly el-
liptic curves, we study the effect of Cheon’s algorithm on them. In Section 5,
we study how to reduce the security loss of cyclotomic methods and give an im-
proved method to construct pairing-friendly elliptic curves with small security
loss. We also give examples obtained by using the proposed method. Finally, we
summarize our result in Section 6.

2 Pairing Based Cryptosystem

Here, we recall a pairing based cryptosystem using an elliptic curve over a finite
prime field. Let p be a prime, K := Fp a finite field with p elements and E an
elliptic curve defined over K. The finite abelian group of K-rational points of
E and its order are denoted by E(K) and #E(K), respectively. Assume that
E(K) has a subgroup G of a large prime order. The most simple case is that
E(K) = G, that is, the order of E(K) is prime. Let � be the order of G. We
denote by E[�] the group of �-torsion points of E(K) where K is an algebraic
closure of K. In the following, we denote log2 x by lg x.

For a positive integer � coprime to the characteristic of K, the Weil pairing is
a map

e� : E[�]× E[�]→ μ� ⊂ K̂∗

where K̂ is the field extension of K generated by coordinates of all points in E[�],
K̂∗ is the multiplicative group of K̂ and μ� is the group of �-th roots of unity
in K̂∗. For the details of the Weil pairing, see [23] for example. The key idea of
pairing based cryptography is based on the fact that the subgroup G = 〈P 〉 is
embedded into the multiplicative group μ� ⊂ K̂∗ via the Weil pairing or some
other pairing map.

The extension degree of the field extension K̂/K is called the embedding
degree of E with respect to �. It is known that E has the embedding degree
k with respect to � if and only if k is the smallest integer such that � divides
pk− 1. In pairing based cryptography, the following conditions must be satisfied
to make a system secure:

– the order � of a prime order subgroup of E(K) should be large enough so
that solving a discrete logarithm problem on the group is computationally
infeasible and

300 A. Comuta, M. Kawazoe, and T. Takahashi

– pk should be large enough so that solving a discrete logarithm problem on
the multiplicative group F

∗
pk is computationally infeasible.

Moreover for an efficient implementation of a pairing based cryptosystem, the
followings are important:

– the embedding degree k should be appropriately small and
– the ratio lg p/ lg � should be appropriately small.

Elliptic curves satisfying the above four conditions are called “pairing-friendly”
elliptic curves. In practice, it is currently recommended that � should be larger
than 2160 and pk should be larger than 21024.

3 Protocols Based on Pairing-Related Problem and
Cheon’s Algorithm

3.1 Pairing-Related Problems

A new traitor tracing scheme proposed by Mitsunari, Sakai and Kasahara [18]
in 2002 is based on the q-weak Diffie-Hellman problem. The definition of the
q-weak Diffie-Hellman problem is as follows.

Definition 1 (The q-weak Diffie-Hellman problem). Let G be an abelian
group whose order is a large prime number �. The q-weak Diffie-Hellman problem
asks [1/α]g for a (q + 1)-tuple (g, [α]g, [α2]g, . . . , [αq]g) where g ∈ G and α ∈
(Z/�Z)×.

In 2004, Boneh and Boyen proposed a short signature scheme based on the
q-strong Diffie-Hellman problem. (For the definition of q-strong Diffie-Hellman
problem, see [3].) After Mitsunari, Sakai and Kasahara’s work [18] and Boneh and
Boyen’s work [3], many protocols without random oracles have been proposed
based on q-weak/strong Diffie-Hellman-like problems, e.g. [2], [4], [20]. In the
following, we call such kind of problems the “pairing-related problems”.

3.2 Cheon’s Algorithm and Its Improvement

In Eurocrypt 2006, Cheon [7] proposed an algorithm to solve the q-weak/strong
Diffie-Hellman problem. Very recently, Kozaki, Kutsuma and Matsuo [16] im-
proved the complexity of Cheon’s algorithm for the q-weak Diffie-Hellman prob-
lem. For an abelian group G of prime order �, if � − 1 has a positive divisor
d less than or equal to q, then their improved algorithm can solve the q-weak
Diffie-Hellman problem within O

(√
�/d +

√
d
)

group operations using space for

O
(
max

(√
�/d,
√

d
))

group elements. There also exists an � + 1 variant of this
algorithm. The details of the results in [16] are as follows:

Pairing-Friendly Elliptic Curves with Small Security Loss 301

Theorem 1 ([16]). Let g be an element of prime order � in an abelian group.
Suppose that d is a positive divisor of � − 1. If g, [α]g and [αd]g are given,
α can be computed within O

(√
�/d +

√
d
)

group operations using space for

O
(
max

(√
�/d,
√

d
))

group elements.

Theorem 2 ([16]). Let g be an element of prime order � in an abelian group.
Suppose that d is a positive divisor of �+1 and [αi]g for i = 1, 2, . . . , 2d are given.
Then α can be computed within O

(√
�/d + d

)
group operations using space for

O
(
max

(√
�/d,
√

d
))

group elements.

Remark 1. In the original result of Cheon [7], the complexity in the above
two theorems were given by O

(
log �

(√
�/d +

√
d
))

and O
(
log �

(√
�/d + d

))

group operations, respectively.

3.3 The Effect of Cheon’s Algorithm for Constructing
Pairing-Friendly Elliptic Curves

In this section, we consider the effect of Cheon’s algorithm on known methods
for constructing pairing-friendly elliptic curves.

With respect to Cocks-Pinch method, the group size � can be randomly chosen.
So it is not difficult to avoid the security loss by Cheon’s algorithm. See Section
6 of [16] for the details.

Except for Cocks-Pinch method, since the group order � is given by a polyno-
mial �(x), we should be careful about the effect of Cheon’s algorithm. Roughly
speaking, if �± 1 has a factor d, the cost for solving the q-strong Diffie-Hellman
problem is reduced by a factor

√
d. So, if a polynomial �(x) ± 1 is reducible

and its non-trivial polynomial factor h(x) has a small degree, there is at least a
(lg h(x0))/2 bits security loss by Cheon’s algorithm when we take l = l(x0) for
an integer x0. In the following, we see the security loss by Cheon’s algorithm for
each method using polynomials.

The MNT method and its variant. In the MNT method based on Miyaji,
Nakabayashi and Takano’s result [19], the following polynomials are used: �(x) =
12x2±6x+1 for k = 3, �(x) = x2+2x+2 or x2+1 for k = 4 and �(x) = 4x2±2x+1
for k = 6. Except for �(x) = �2 + 2� + 2 in the case k = 4, �(x) − 1 is divisible
by x. For the generalized MNT method such as Galbraith, McKee and Valença’s
method [13], there are some cases that �(x)±1 are reducible. Since the degree of
�(x) equals two, this fact does not lead directly that Cheon’s algorithm affects
the security of each curve.

A Cyclotomic Family. There are some methods using a cyclotomic polynomial
as �(x), e.g. Brezing and Weng’s method [8] and Freedman, Scott and Teske’s
method [12]. We call these methods a “cyclotomic family”. The advantage of a

302 A. Comuta, M. Kawazoe, and T. Takahashi

cyclotomic family is that one can take curves with relatively small ρ = lg p/ lg �
(< 2).

All of them use a cyclotomic polynomial to set a prime � as � = Φk(x) or
� = Φck(x) for some c > 1 where k is the embedding degree. Then, � − 1 is
factored by x at least. Moreover, if ck = 2m, then � − 1 is factored by x2m−1

,
otherwise � − 1 is factored by x(x + 1) or x(x − 1). The size of x is about
(lg �)/ϕ(ck) bits, c ≥ 1, where ϕ is the Euler phi function. Hence, if x < q (resp.
x(x + 1) < q), the complexity to solve the q-weak Diffie-Hellman problem is
reduced to O(

√
�1−1/ϕ(ck) +

√
�1/ϕ(ck)) (resp. O(

√
�1−2/ϕ(ck) +

√
�2/ϕ(ck))) group

operations.

Other methods. For k = 10, Freeman gave the following family [11]: p(x) =
25x4 + 25x3 + 25x2 + 10x + 3, �(x) = 25x4 + 25x3 + 15x2 + 5x + 1 and Dy2 =
15x2+10x+3. For this family, �(x)±1 factor as �(x)−1 = 5x(5x3+5x2+3x+1)
and �(x) + 1 = (5x2 + 1)(5x2 + 5x+ 2). The following two examples are given in
[11].

� = 503189899097385532598571084778608176410973351
� = 61099963271083128746073769567450502219087145916434839626301

The former is a 149 bit prime and the latter is a 196 bit prime. For each example,
�− 1 factors as

�− 1 = 2 · 52 · 853 · (a 33 bit prime) · (a 39 bit prime) · (a 63 bit prime)

�− 1 = 22 · 52 · 7 · (a 29 bit prime) · (a 44 bit prime) · (a 114 bit prime)

respectively. Cheon’s algorithm affects each case.
For k = 12, Barreto and Naerig gave the following family [1]: �(x) = 36x4 +

36x3+18x2+6x+1, p(x) = 36x4+36x3+24x2+6x+1 and Dy2 = 3(6x2+4x+1).
For this family, �(x)±1 factor as �(x)−1 = x(6x3 +6x2 +3x+1) and �(x)+1 =
(3x2 + 3x + 1)(6x2 + 1). The following example is given in [1].

� = 1461501624496790265145447380994971188499300027613 (160 bit)

For this example, we have

�− 1 =22 · 3 · (a 24 bit prime) · (a 38 bit prime) · (a 39 bit prime)
· (a 57 bit prime)

� + 1 =2 · 7 · 13 · 19 · 1279 · 1861 · 21227 · (a 19 bit prime) · (a 21 bit prime)
· (a 24 bit prime) · (a 50 bit prime).

Hence Cheon’s algorithm affects the security of this example.

4 How to Reduce a Security Loss of a Cyclotomic Family

In this section, we consider the way to reduce the security loss by Cheon’s al-
gorithm for a cyclotomic family with embedding degree 2n where n is an odd

Pairing-Friendly Elliptic Curves with Small Security Loss 303

prime. As we see in the previous section, a cyclotomic family uses the ck-th
cyclotomic polynomial Φck(x) as � = �(x) for finding a pairing-friendly elliptic
curve of an embedding degree k. Therefore �(x)− 1 is factored by x. To reduce
the security loss by Cheon’s algorithm, we propose to take a prime � as a large
proper divisor of Φk(x) for an integer x.

In a cyclotomic family, the best asymptotic ρ value for each embedding degree
k = 2n for an odd prime n is given by the Freeman-Scott-Teske method. However,
since the Freeman-Scott-Teske method uses Φck(x) for c ≥ 2, it is difficult to find
a suitable order � only by taking a proper divisor of Φck(x). We give the search
result using the Freeman-Scott-Teske method in Table 1. In this search, for each
k we used D and Φck(x) as shown in [12] which gives the best asymptotic ρ value
and searched � satisfying the following condition:

– Φck(x) = � · (a positive integer less than 10000)
– �± 1 = (a positive integer < 210) · (a product of primes ≥ 250).

Table 1. The size of the smallest �(≤ 2400) satisfying the condition

k 14 22 26 34 38

The size of � 180 bits 338 bits Not found Not found Not found

As Table 1 shows, it is difficult to find a suitable � of appropriate size except
for k = 14. It is mainly because the degree of Φck(x) is relatively large for c ≥ 2.
So it is important to use Φk(x) to search a pairing-friendly elliptic curve of the
embedding degree k which is not affected by Cheon’s algorithm. In the following
section, we propose an improved method for the embedding degree 2n where n
is an odd prime and we show the efficiency of the proposed method by giving
the experimental data.

4.1 The Condition of a Large Prime Factor of Φ2n(x)

First, we study the condition for the large prime factor � of Φ2n(x). Note that
when n is an odd prime, Φ2n(x) = Φn(−x).

Lemma 1. Let n and � be primes and x an integer. If Φn(x) ≡ 0 (mod �), then
� = n or � ≡ 1 (mod n).

Proof. Assume that Φn(x) ≡ 0 (mod �) and � �= n. Then Φn(x) ≡ 0 (mod �)
yields that x gives a primitive n-th root of unity in (Z/�Z)×. Hence n divides
#(Z/�Z)× = �− 1; that is, � ≡ 1 (mod n). �
Theorem 3. Let k be a positive integer of the form k = 2n, where n is an odd
prime. Let x be an integer, � a large prime greater than n and s a small integer
such that Φk(x) = s�. Then the following holds:

1. If s is divisible by n, then x ≡ −1 (mod n) and s is not divisible by n2.
2. If s = n, then �− 1 is divisible by x + 1.
3. If s is not divisible by n, then x �≡ −1 (mod n).

304 A. Comuta, M. Kawazoe, and T. Takahashi

Remark 2. In Theorem 3, note that by the assumption � > n and Lemma 1,
�− 1 is divisible by n. Moreover, it is easy to see that �2 − 1 is divisible by 24.
Hence (� + 1)(�− 1) is divisible by 24n. We also note that if s is a small prime
which divides Φk(x) for an integer x, then s = n or s ≡ 1 mod n.

Proof. First, note that �−1 = Φk(x)/s−1 = (Φn(−x)− s) /s. Second, note that
if x �≡ −1, then Φk(x) = Φn(−x) = ((−x)p − 1) /(−x−1) ≡ (−x−1)/(−x−1) =
1 (mod n) and hence, if n divides s, we have x ≡ −1 (mod n).

(1) From the above, if n divides s, then x ≡ −1 (mod n). Hence, we only have
to show that n2 does not divide s. To show this, we prove that Φk(x)(= s�) ≡ n
(mod n2) when x ≡ −1 (mod n). Write x = mn− 1 for some integer m. Since
Φk(x) = Φn(−x) = (−x)n−1 + (−x)n−2 + · · · + (−x) + 1, Φk(x) = Φn(−x) =
Φn(−mn+1) ≡

(∑n−1
i=1 iC1

)
(−mn)+n = (−m)(n+1)n2/2+n ≡ n (mod n2).

This calculation shows that n2 does not divide Φn(x) = s� and hence we have
that s is not divisible by n2.

(2) If s = n, then since Φk(−1)− s = Φn(1) − n = 0, Φk(x) − s has a factor
x + 1. More precisely, we have Φk(x) − n = Φn(−x) − n = −(x + 1)((−x)n−2 +
2(−x)n−3+ · · ·+(n−2)x+(n−1)). Since x+1 ≡ 0 (mod n) in this case and n is
an odd prime, (−x)n−2 +2(−x)n−3 + · · ·+(n−2)(−x)+(n−1) ≡ n(n−1)/2 ≡ 0
(mod n). Hence, we have �− 1 = (Φn(−x)− n)/n has a factor x + 1.

(3) Suppose that x ≡ −1 (mod n). Then Φk(x) ≡ Φn(1) ≡ 0 (mod n). This
contradicts the assumption that n does not divide s. �
In particular, the case (2) in Theorem 3 is not suitable for the protocols based
on pairing-related problems if we consider an effect of Cheon’s algorithm.

4.2 Our Construction

From the result of the previous section, we propose a method to construct
pairing-friendly elliptic curves with small security loss by Cheon’s algorithm.

We consider only the case that the embedding degree k is in the form k = 2n
where n is an odd prime. Our construction is an improved version of the Freeman-
Scott-Teske method. Since the Freeman-Scott-Teske method needs a field ex-
tension, we should use Φck(x) where c is an extension degree. So when we
take � as a proper divisor of a cyclotomic polynomial in the Freeman-Scott-
Teske method, � and p become much larger. Here, we improve the Freeman-
Scott-Teske method such that we can obtain the small ρ value with not so
much large � and p even when we take � as a proper divisor of a cyclotomic
polynomial.

First note that for k = 2n with an odd prime n, if g is a primitive k-th root
of unity in a field K, then

√−g = g(n+1)/2 belongs to K. Our idea is to use this√−g = g(n+1)/2 as
√−D. The advantage to use such

√−D is that we do not
need to extend a cyclotomic field Q(ζk) to obtain a small value of ρ = lg p/ lg �.
In the following, we describe our method. It is divided into two cases: (1) the
case of a general n, (2) the case of n ≡ 1 (mod 4).

Pairing-Friendly Elliptic Curves with Small Security Loss 305

The general case. Let g be a positive integer such that Φk(g) = s� for a very
small integer s and a large prime �. Then, g is a primitive k-th root of unity
modulo � and

√−g ≡ g(n+1)/2 (mod �). Take D, a, b (0 < D, a, b < �) as follows:

D := g, a := g + 1, b :≡ (g − 1)g(n+1)/2/g (mod �).

Then, p = (a2 + Db2)/4 = O(gn+2) and � = O(gϕ(n)) = O(gn−1), where ϕ
denotes the Euler phi function. Since s is very small, we have ρ ∼ (n+2)/(n−1)
as p, �→∞.

The case of n ≡ 1 (mod 4). When n ≡ 1 (mod 4), we can improve the
asymptotic value of ρ.

Let g, Φk(g) = s� be as in the general case. Then, g is a primitive k-th root
of unity modulo � and

√−g ≡ g(n+1)/2 (mod �). Note that g(n+1)/2 is also a
primitive k-th root of unity modulo �. Take D, a, b (0 < D, a, b < �) as follows:

D := g, a := g(n+1)/2 + 1, b :≡ (g(n+1)/2 − 1)g(n+1)/2/g (mod �).

Then, since b ≡ gn − g(n−1)/2 ≡ −1 − g(n−1)/2 (mod �), we have p = (a2 +
Db2)/4 = O(gn+1) and � = O(gϕ(n)) = O(gn−1). Since s is very small, we have
ρ ∼ (n + 1)/(n− 1) as p, �→∞.

The algorithm of our construction is given as follows.

Algorithm 1. (Curve construction with small security loss by Cheon’s algo-
rithm)

Input: n: an odd prime; α, β, q: positive integers
Output: p, � : primes,

E/Fp : an elliptic curve over Fp such that #E(Fp) = � and its
embedding degree equals k = 2n.

Step 1: Find g ∈ Z>0 such that Φk(g) = s� where � is a large prime, s is
a small prime (�= n) or n·(a small prime) and

�− 1 = 2n(a positive integer ≤ 2α)
∏

(prime ≥ q)

� + 1 = 2(a positive integer ≤ 2β)
∏

(prime ≥ q)

Step 2: Set a := g + 1 if n ≡ 3 (mod 4) and a := g(n+1)/2 + 1 if n ≡ 1
(mod 4). Take b as a positive integer (< �) such that b ≡ (a −
2)g(n+1)/2/g (mod �). Set D := g and check whether p := (a2 +
Db2)/4 is prime or not. If not, return to Step 1.

Step 3: Use the CM method and output the result.

Remark 3. The positive integer q in the input is a parameter of the q-weak/strong
Diffie-Hellman problem. The size of q depends on a protocol and the ability of at-
tackers. The positive integers α and β in the input are parameters which deter-
mine the bound of the security loss by Cheon’s algorithm. We take α = β = 6 for
examples in the next section.

306 A. Comuta, M. Kawazoe, and T. Takahashi

Remark 4. Using the CM method, we can construct an ordinary elliptic curve
with the complex multiplication by an order of the imaginary quadratic field
K = Q(

√−D), D > 0. Refer to [14] for the details of the calculation. In general,
for a large D, it is hard to construct the elliptic curve by the CM method.
Therefore we must be careful with the size of D.

In our method, we set D = g. If g is not square free, then we set the square
free part of g as D. So the size of g is important when we construct the elliptic
curve using the CM method. But as stated in [12], we can construct an elliptic
curve by using the CM method for D < 1010. Hence our method is effective to
construct pairing-friendly elliptic curves.

4.3 Examples

Here we show examples of pairing-friendly elliptic curves with small security loss
by Cheon’s algorithm. The following examples are obtained by using Algorithm 1
with q = 250 and α = β = 6 for 14 ≤ k ≤ 38. The security loss of these examples
is within 5 bits, if the parameter q in the weak/strong Diffie-Hellman problem
is less than 50 bits. If the parameter q is about 260, we can find examples for
q = 260 by taking α = β = 11.

k 14
(x, s) (1083603511, 29)

� 55824446131714375710467270162691899840740433320567739 (176 bit)

p 51496017014989011498494367998093518344894496635664050001399\
1240135020678496405311

ρ 1.53017
�− 1 2 · 7 · (a 69 bit prime) · (a 103 bit prime)
� + 1 22 · 3 · 5 · (a 65 bit prime) · (a 106 bit prime)

k 22
(x, s) (2169245, 67)

� 34435869083893646715039335514954459125462349808949323158099\
743 (205 bit)

p 58877786517045158480579461956011716339017570871437492980201\
25450311726006289864629

ρ 1.32879
�− 1 2 · 11 · (a 74 bit prime) ·(a 127 bit prime)
� + 1 25 · 3 · (a 73 bit prime) · (a 125 bit prime)

k 26
(x, s) (83647, 131)

� 895628588110024088164630713805121667532341241783716653231
(190 bit)

p 20523450351754980408769703428272332811368092974952355784416\
0697479999

ρ 1.19947
�− 1 2 · 5 · 13 · (a 55 bit prime) · (a 128 bit prime)
� + 1 24 · 3 · (an 84 bit prime) · (a 100 bit prime)

Pairing-Friendly Elliptic Curves with Small Security Loss 307

k 34
(x, s) (1730735, 17 · 137)

� 27830402151707213772790243425060710128851524965270716441651\
11328554663063808567192444024844854329 (321 bit)

p 48538978648626809809653096381338491065159598631595616079566\
88321815318124568522625897243485762842754461264104559

ρ 1.15803
�− 1 23 · 17 · (a 92 bit prime) · (a 222 bit prime)
� + 1 2 · 3 · 5 · (a 102 bit prime) · (a 214 bit prime)

k 38
(x, s) (422017, 2281)

� 79033772326705018830502245444409438041774479438057073363711\
630220987237178915490932609778746724313 (326 bit)

p 33874025807138240665499623427646024497140999922941667223498\
12927081355741867650294171908202450963933866119466570911873

ρ 1.20054
�− 1 23 · 3 · 19·(a 66 bit prime)·(a 71 bit prime)· (an 83 bit prime)·(a 99 bit

prime)
� + 1 2 · 7 · (a 74 bit prime) · (a 118 bit prime) · (a 131 bit prime)

5 Conclusion

In this article, we studied the effect of Cheon’s algorithm on known methods of
constructing pairing-friendly elliptic curves. We showed that Cheon’s algorithm
affects a cyclotomic family. We considered the way to reduce the security loss of
a cyclotomic family by Cheon’s algorithm and proposed a method to construct
pairing-friendly elliptic curves with small security loss by Cheon’s algorithm.
Heuristically, the proposed method gives pairing-friendly elliptic curves whose
security loss by Cheon’s algorithm is within 5 bits for k ≤ 38. Moreover, the value
of ρ of constructed curves is almost same as the Freeman-Scott-Teske method.

References

1. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

2. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

308 A. Comuta, M. Kawazoe, and T. Takahashi

5. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
Journal of Computing 32(3), 586–615 (2003)

6. Blake, I.-F., Seroussi, G., Smart, N.-P.: Advances in Elliptic Curve Cryptography.
Cambridge University Press, Cambridge (2005)

7. Cheon, J.H.: Security Analysis of the Strong Diffie-Hellman Problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006)

8. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography.
Design, Codes and Cryptography 37, 133–141 (2005)

9. Cocks, C., Pinch, R.G.E.: Identity-based cryptosystems based on the Weil pairing
(Unpublished manuscript)

10. Freeman, D.: Methods for constructing pairing-friendly elliptic curves. In: 10th
Workshop on Elliptic Curves in Cryptography (ECC 2006), Toronto, Canada
(September 2006)

11. Freeman, D.: Constructing Pairing-Friendly Elliptic Curves with Embedding De-
gree 10, Cryptology ePrint Archive, Report, 2006/026 (2006),
http://eprint.iacr.org/

12. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves,
Cryptology ePrint Archive, Report 2006/372 (2006),
http://eprint.iacr.org/

13. Galbraith, S., McKee, J., Valença, P.: Ordinary abelian varieties having small em-
bedding degree. In: Proc. Workshop on Mathematical Problems and Techniques in
Cryptology, pp. 29–45. CRM, Barcelona (2005)

14. IEEE Standard Specifications For Public-Key Cryptography - IEEE Std 1363-2000.
IEEE Computer Society, New York, USA (2000)

15. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
Algorithmic Number Theory. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg
(2000) Full version: Journal of Cryptology 17 263–276 (2004)

16. Kozaki, S., Kutsuma, T., Matsuo, K.: Remarks on Cheon’s algorithms for pairing-
related problems. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.)
Pairing 2007. LNCS, vol. 4575, pp. 302–316. Springer, Heidelberg (2007)

17. Kutsuma, T., Matsuo, K.: Remarks on Cheon’s algorithms for pairing-related prob-
lems. In: 2007 Symposium on Cryptography and Information Security (SCIS2007),
Nagasaki, Japan (2007)

18. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fun-
damentals E85-A(2), 481–484 (2002)

19. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals E84-A(5), 1234–
1243 (2001)

20. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (2006)

21. Scott, M., Barreto, P.S.L.M.: Generating more MNT elliptic curves. Designs, Codes
and Cryptography 38, 209–217 (2006)

22. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystem based on pairing. In: 2000
Symposium on Cryptography and Information Security (SCIS 2000), Okinawa,
Japan (2000)

23. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM 106. Springer, Heidelberg
(1986)

http://eprint.iacr.org/
http://eprint.iacr.org/

Analysis of Multivariate Hash Functions

Jean-Philippe Aumasson� and Willi Meier��

FHNW, 5210 Windisch, Switzerland

Abstract. We analyse the security of new hash functions whose com-
pression function is explicitly defined as a sequence of multivariate equa-
tions. First we prove non-universality of certain proposals with sparse
equations, and deduce trivial collisions holding with high probability.
Then we introduce a method inspired from coding theory for solving
underdefined systems with a low density of non-linear monomials, and
apply it to find collisions in certain functions. We also study the security
of message authentication codes HMAC and NMAC built on multivari-
ate hash functions, and demonstrate that families of low-degree functions
over GF(2) are neither pseudo-random nor unpredictable.

1 Introduction

A fundamental idea of multivariate cryptography was stated by Shannon in
1949 [35]: “if we could show that solving a certain system requires at least as
much work as solving a system of simultaneous equations in a large number of
unknowns, of a complex type, then we would have a lower bound of sorts for
the work characteristic”. Multivariate primitives are indeed directly described
in terms of multivariate polynomial functions, in order to reduce certain secu-
rity problems to the presumably hard problem of solving the system, and/or to
problems like Polynomial Isomorphism, Minrank, etc. At the opposite, primitives
without explicit multivariate equations might be attacked by first finding a full
or partial description as a system of equations, then exploiting the latter system
(ideally, solving it) – this is the principle of algebraic attacks. A number of mul-
tivariate primitives appeared since the early years of modern cryptology, mainly
asymmetric schemes (Matsumoto-Imai [28], Ong-Schnorr-Shamir [33], HFE [34],
etc.), and more recently, the stream cipher QUAD [7]. As the advent of RSA
led to a multitude of works on integer factorisation, researchers designed new
algorithms for solving multivariate systems of equations, to tackle multivariate
primitives [18,24,14]. Note that, although every cipher possesses a characterisa-
tion as a system of Boolean equations, this latter is generally at least as hard to
compute as breaking the cipher with a brute force attack.

This paper analyses multivariate hash functions, that is, iterated hash schemes
built upon a function Km+n �→ Kn explicitly defined as a sequence of multi-
variate equations. More precisely, we focus our study on the later compression
� Supported by the Swiss National Science Foundation under project number 113329.

�� Supported by Hasler Foundation http://www.haslerfoundation.ch/ under project
number 2005.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 309–323, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

310 J.-P. Aumasson and W. Meier

function, and relate its parameters to the security of the overall primitive. It is
well-known that hash functions are essential in numerous real-life cryptographic
schemes and protocols, be it digital signatures (in DSA and ECDSA), authen-
tication codes (through HMAC), or for building pseudo-random function and
derive keys. After several breakthroughs in the analysis of the previous stan-
dards MD5, SHA-0, and SHA-1, the community is particularly attentive to new
designs (cf. NIST’s competition for a new standard [32]). Surprisingly, multi-
variate hash functions only appeared in 2007, in works by Billet, Peyrin and
Robshaw [8], introducing the constructions MQ-HASH and RMQ-HASH, and
simultaneously by Ding and Yang [20]. By reducing the problem of finding a
preimage of a given digest to the problem of solving a multivariate system, a
security guarantee is given for multivariate hash functions. Other “provably se-
cure” hash functions exist, whose resistance to preimage and/or collision relies on
problems as different as syndrome decoding [2,25], (approximate) shortest vector
in a lattice [6, 29], and non-trivial square root of very smooth numbers [12]. We
notice that the term “multivariate hash functions” has already been employed in
a non-cryptographic context [36] to denote functions hashing several objects at
the same times, and that multivariate hash functions over GF(2) have recently
been employed in the context of interactive hashing [27].

Our Work. Section 2 gives security definitions and presents our model of mul-
tivariate hash functions, along with the description of the constructions MQ-
HASH, RMQ-HASH, and SCC. Section 3 then proves the non-universality of
functions based on sparse equations, like SCC, and illustrates this with sev-
eral trivial collisions holding with high probability. Section 4 introduces a new
method for solving underdefined semi-sparse multivariate systems, that we ap-
ply to certain kinds of multivariate hash functions. Section 5 studies the security
of message authentication codes NMAC and HMAC built on multivariate hash
functions, showing a critical attack on NMAC-SCC. Section 6 demonstrates that
all multivariate hash functions over GF(2) with small degree are efficiently pre-
dictable and distinguishable from random functions. As an aside, we identify
weak instances of QUAD in Section 7, and eventually draw some conclusions in
Section 8.

2 Preliminaries

Let n ∈ N�, m ∈ Z. A multivariate system (of equations) over a finite field K

with n equations and (m + n) unknowns is denoted as {hi(x) = 0}0≤i<n−1, or
simply h(x) = 0, with x = (x0, . . . , xm+n−1) ∈ Km+n. The system is called
underdefined (respectively overdefined) when m > 0 (resp. m < 0). The degree
deg(h) of the system is maxi deg(hi). We identify Boolean functions with their
representative polynomial over GF(2), and the weight of a polynomial is defined
as the number of non-null coefficients in its algebraic normal form. The number
of square-free monomials in n variables (that is, considering x2 ≡ x as over
GF(2)) of degree in [0, d] is

Analysis of Multivariate Hash Functions 311

N (n, d) =
d∑

i=0

(
n

i

)

. (1)

The density of a polynomial of degree d in n variables is the ratio between
its weight and N (n, d), so that a random system of density δ ∈ [0, 1] has its
equations with expected weight �δN (n, d)� (for convenience, we omit from now
the flooring symbols �.�), such that each monomial has probability δ to appear
in an arbitrary component. We call a random system sparse when it has density
δ � 50%, and semi-sparse when only monomials of certains degrees have a
density� 50% (for example, imagine a cubic system where δ only applies to the
cubic monomials). Eventually, when we mention “random” objects, it implicitly
means with respect to a uniform distribution in the appropriate sample space,
unless precised differently.

2.1 Security Definitions

We give the security definitions for families of hash functions1, that is, subsets
of the set of all functions Km+n �→ Kn for fixed K, m, and n. These families can
also be seen as distributions over this superset.

Preimage
Input a random hash function h ∈ F , a random digest y ∈ {0, 1}n.
Output x ∈ {0, 1}m+n such that h(x) = y.

Second Preimage
Input a random hash function h ∈ F , a random input x ∈ {0, 1}m+n.
Output x′ ∈ {0, 1}m+n such that h(x) = h(x′) and x 	= x′.

Collision
Input a random hash function h ∈ F .
Output x, x′ ∈ {0, 1}m+n such that h(x) = h(x′) and x 	= x′.

In addition, the term near-collision designates a collision over only certain bits
of the digest. For an ideal hash function h, the problems above have complexity
of about 2n, 2n and 2n/2 evaluations of h respectively.

Another crucial notion for the security of hash functions is their pseudo-
randomness, necessary for building secure key-derivation schemes, and, obvi-
ously, to instantiate pseudo-random functions. Since we actually consider
distributions of functions rather than single instances, the following definitions
from [31] are relevant.

Definition 1. A distribution of functions F is pseudo-random if

1. this distribution is efficient (i.e., it is easy to sample functions according to
the distribution and to compute their value), and

1 We further call “hash functions” mappings Km+n �→ Kn, independently of their role
of compression function in iterated hash functions.

312 J.-P. Aumasson and W. Meier

2. it is hard to tell apart a function sampled according to this distribution from
a uniformly distributed function given an adaptive access to the function as
a black box.

Definition 2. A distribution of functions F is unpredictable if

1. this distribution is efficient, and
2. for any efficient adversary that is given an adaptive black-box access to a

function (sampled according to the distribution) it is hard to compute the
value of the function at any point that was not queried explicitly.

(See [31] for more formal definitions 3.1 and 3.2.) Finally, we recall the definition
of ε-universality.

Definition 3. A family of functions F is ε-universal if for any distinct inputs
x and x′ and a random h ∈ F , the probability (over the choice of h) that h(x) =
h(x′) is at most ε.

We rather consider the computational version, denoted ε-cAU (computational
almost universality, see [4]), such that for a family not ε-cAU, one can efficiently
compute such a pair (x, x′).

2.2 Multivariate Hash Functions

A multivariate hash function h : Km+n �→ Kn is explicitly defined as a sequence
of n polynomial functions hi : Km+n �→ K for some finite field K, its components.
A family of multivariate hash functions is characterised by a construction scheme,
along with a choice of parameters for this scheme, thereby defining a distribution
over the set of all functions Km+n �→ Kn, where K, m, and n are fixed either by
the construction itself of by the parameters. An instance is then randomly picked
with respect to that distribution, casting into the framework of probabilistic hash
functions [9].

Given an arbitrary family of multivariate hash functions F , solving Preimage
reduces (in the Turing sense) to solving the system h(x) = y for random h ∈ F
and y ∈ Kn. When F corresponds to the set of all quadratic systems over K

with (m + n) unknowns and n equations, Preimage reduces to the problem
MQ, known to be NP-hard for any finite field K if m is small [26]:

Multivariate Quadratic (MQ)
Input a finite field K, a system f = {fi}0≤i<n of n random quadratic equations in

n + m variables over K, n ∈ N�, m ∈ Z.
Output x ∈ Km+n such that f(x) = 0.

The problem of solving a multivariate system is also assumed hard for higher
degrees (state-of-the art methods are briefly surveyed in Section 2.3). Further-
more, no efficient quantum algorithm is known yet to solve multivariate systems,
hence multivariate hash functions have chances to survive in a world with effi-
cient quantum computers.

Analysis of Multivariate Hash Functions 313

On the other hand, Collision reduces to solving the equation h(x)−h(x′) = 0
with the constraint x 	= x′, which will not be an instance of MQ. Another
technique to find collisions is to assume that there exists a colliding pair (x, x′)
with difference Δ = x − x′ = (xi − x′i)0≤i<m+n, then computing that pair by
solving the system

h(x) − h(x−Δ) = 0 , (2)

for a fixed and known difference Δ 	= 0. This system has degree at most deg(h)−
1, and is expected to have at least one solution for a sufficiently large m. We
shall further refer to this technique as the generic attack.

ComposedQuadratics Construction. The construction MQ-HASH by Billet,
Peyrin and Robshaw [8], and an unnamed construction by Ding and Yang [20],
propose to define a quartic (degree 4) system h using two composed quadratic
systems f and g, such that h = g ◦ f . Following the ideas of [1], the first box
f : Km+n �→ Kr, for r > (m+n), expands the input, while a second box g : Kr �→
Kn compresses the intermediate value. Security aspects are much more developed
in [8] than in [20], and we will only consider that former reference for composed
quadratics. Hereafter we present a succinct overview of the security arguments for
MQ-HASH.

First, the main result of [8] is the reduction of Preimage to the problem of
inverting f or g, which proves Preimage-resistance, assuming the hardness of
MQ for the parameters chosen. Although no reduction is given for Collision,
several arguments are presented: indeed, a necessary property for h to resist
Collision is the Collision-resistance of the expanding box f ; this is expected
to hold since f will actually be collision-free with high probability for well chosen
parameters, as stated by Proposition 1 of [8]. In the worst case, when there exists
a pair (x, x′) such that f(x) = f(x′), this can be recovered by solving a linear
system only if the difference (x − x′) is known. However, since the expected
number of colliding pairs is very low, only very few differentials would lead to
a collision. Choosing 2(m + n) − r < s ensures that a random instance will
possess a collision with probability < 2−s, let alone the hardness of finding the
corresponding difference. Another strategy to find a colliding pair consists in

1. finding a collision (y, y′) for g, and
2. computing preimages of y and y′ by f ,

but this again is not efficient since f is assumed hard to invert.
The iteration mode for MQ-HASH is a basic Merkle-Damg̊ard mode, with

standard padding and no output filter. In order the function to meet the 80-
bit security level (meaning here a minimum of 280 trials in average to find a
collision), the authors of MQ-HASH propose to use the family over K = GF(2)
with message blocks of m = 32 bits, a chaining value of n = 160 bits, and an
intermediate value of r = 464 bits. We will refer to this family along the paper.

An alternative constrution to MQ-HASH called RMQ-HASH [8] proposes to
define

h(x) = h(x1||x2) = f(x1, g(x2)),

314 J.-P. Aumasson and W. Meier

with the message block represented by x1, and the previous chaining value by
x2. The functions f and g are quadratic, and defined as f : Km+r �→ Kn,
and g : Kn �→ Kr. This construction is just presented as a possible variant of
MQ-HASH, and no security analysis is provided. In the remainder of the paper,
we will rather concentrate our study on MQ-HASH, which remains the main
proposal of [8], and whose analysis partially overlaps RMQ-HASH’s. However we
can already observe that when m > n, one may simply set a random value for
x2, such that Preimage reduces to solving a quadratic system of n equations in
m unknown, but Collision with a given difference can be computed by solving
a linear system with as many equations and unknowns.

Sparse Cubic Construction. This construction introduced by Ding and Yang
[20] merely consists in a cubic system h : K2n �→ Kn (thus m = n) of density
δ. In other words, every component hi has exactly δN (2n, 3) monomials. We
further use the shortcut “SCC” to refer this construction.

Clearly, Preimage reduces to solving a sparse cubic system, assumed hard for
well chosen parameters by the designers. The generic attack against Collision
directly reduces here to solving a sparse quadratic system. Although assumed
hard, the problem of solving sparse systems is not as hard as the general case (cf.
Section 2.3). On the other hand, sparse systems provide a considerable speed-up,
as well as reduced storage requirements. Several families are suggested, charac-
terised by their parameters hereafter (recall m = n).

1. For 160-bit digests:
• K = GF(2), n = 160, δ = 0.1%
• K = GF(24), n = 40, δ = 0.1%
• K = GF(28), n = 20, δ = 0.2%

2. For 256-bit digests:
• K = GF(2), n = 256, δ = 0.1%
• K = GF(24), n = 64, δ = 0.1%
• K = GF(28), n = 32, δ = 0.1%
• K = GF(216), n = 16, δ = 0.2%

2.3 Solving Multivariate Systems

To solve a system of multivariate equations, cryptanalysts mainly employ meth-
ods derived from Buchberger’s algorithm to compute a Gröbner basis of a poly-
nomial ideal. The most efficient ones are Faugère’s F4 and F5 [22, 23], and the
algorithms of the XL family [16, 13, 17, 19]. Those algorithms perform better
on overdefined systems, and F4 and F5 are know to take advantage of sparse
systems. Some work concentrates on the particularities of underdefined [15],
overdefined [16], or sparse systems [38, 37]. More recently, sparse systems de-
rived from cryptographic primitives were solved by converting the system into a
Sat instance, then solving this instance using an efficient Sat-solver (e.g. Min-
iSat [21]), and finally converting the solution to a solution of the system [3,30].
Unfortunately, the complexity of multivariate solvers is often hard to estimate.

Analysis of Multivariate Hash Functions 315

Empirical results are here probably more significant for cryptanalysts. For in-
stance, the algorithm XL-Wiedemann was demonstrated [40] to solve MQ over
GF(28) with n = 40 equations and n + m = 20 unknowns in less than 245 cycles
of a 64-bit AMD Opteron processor (a few hours of computation).

3 Non-universality of Sparse Function Families

In this section we give a simple result on the universality of sparse multivari-
ate hash functions independently of the degree of the components, and deduce
collisions holding with high probability.

3.1 General Case

Consider a family F of multivariate hash functions Km+n �→ Kn of density
δ. Then for a random h ∈ F , any given monomial appears in an arbitrary
component hi with probability δ. In particular, a given degree 1 monomial xi

appears in no single component (let’s call such a xi an isolated variable) with
probability (1− δ)n. When this event occurs, it is easy to see that

h(0, . . . , 0, xi = 0, 0, . . . , 0) = h(0, . . . , 0, xi = 1, 0, . . . , 0) . (3)

Consequently, for any such pair of inputs, a collision occurs in a random h ∈ F
with probability (1 − δ)n. In other words, F is not (1 − δ)n-cAU. Moreover,
by trying all possible such pairs of input, one gets at least one collision with
probability

ρ = 1− (1− (1 − δ)n)n+m . (4)

For all the parameters of SCC proposed in [20], ρ ≈ 1, hence with high proba-
bility at least one such collision exists.

When no isolated variable exists in the original system, one might be found in
a derived system, obtained by suitably fixing values of a subset of the variables,
such that there exists an isolated variable in the new system. To find a derived
system with xj isolated, one can rewrite all components as

hi(x) = xj · di(x) + ei(x) , (5)

for polynomial functions di and ei, such that ei(x) does not contain the variable
xj in any monomial. Consequently, deg(di) ≤ (deg(h)−1) and deg(ei) ≤ deg(h).
Consider now the system {di(x) = 0}0≤i<n, with (m+n−1) unknowns: a solution
gives a valuation such that the output is independent of xj . This is an alternative
manner to find collisions by solving a system of reduced degree, equivalent to
the generic collision attack.

Finally, observe that when the monomial xi appears in exactly k equations,
then h(0, . . . , 0, xi = 0, 0, . . . , 0) and h(0, . . . , 0, xi = 1, 0, . . . , 0) collide over ex-
actly (n− k) bits, thus bringing near-collisions when k is small.

316 J.-P. Aumasson and W. Meier

3.2 Case of Even Components over GF(2)

Now consider a family of multivariate hash functions GF(2)m+n �→ GF(2)n of
density δ, such that δ imposes an even number of monomials in each component
hi. Since the constant monomial 1 appears with probability δ in a given hi, the
collision

h(0, . . . , 0) = h(1, . . . , 1) (6)

will hold for a random h with probability (1 − δ)n. It is a different method to
see that such families are not (1− δ)n-cAU. For a random instance of SCC with
160-bit digest, the collision in Eq. (6) holds with probability 0.73, and for 256-bit
digests, with probability 0.60.

When the system does not have only “even” equations, one might look for
a suitable derived system where all components have an even number of non-
constant monomials. One can observe that finding such a system is equivalent
to finding a preimage of h(0, . . . , 0).

Analogously to the previous observations, a near-collision over (n− k) bit oc-
curs when exactly k equations have an even number of non-constant monomials.

4 Solving Underdefined Semi-sparse Systems

In a multivariate hash function, replacing a sparse system of equations by a
semi-sparse one, where the density δ � 50% only applies to monomials of degree
> 1, avoids the weaknesses of Section 3. However collisions might be found in
semi-sparse systems, as shown in the present section: we introduce a method for
solving underdefined quadratic systems with density of quadratic terms δ ≪
50%, then apply it to find collisions in semi-sparse cubic systems, based on the
generic attack.

4.1 Description of the Method

Consider a random quadratic system h(x) = 0 in (m + n) variables with n
equations, m > 0, such that each equation contains each degree 1 monomial
with probability 1/2, but with a density of quadratic terms δ, and null constant
terms (homogeneous system). The linear system h′(x) = 0 obtained by removing
the quadratic monomials then describes the parity-check matrix of a random
linear code C of length (m + n), dimension m (assuming linear independency
of the equations), and unknown minimal distance dmin. Each solution of the
system h′(x) = 0 then corresponds to a codeword of C. The key observation
is that a low-weight solution of this system will be a solution of h(x) = 0 if in
each component the sum of all quadratic monomials happens to vanish. For a
random word of weight w this latter event has probability (cf. piling-up lemma
in Appendix)

(
1
2

+ 2δ(m+n
2)−1

∣
∣
∣
∣
1
2
− w

m + n

∣
∣
∣
∣

δ(m+n
2))n

, (7)

where δ
(
m+n

2

)
is the expected number of quadratic monomials in an equation.

Analysis of Multivariate Hash Functions 317

The best algorithm known so far for finding a low-weight codeword in a ran-
dom linear code [10] requires a “work factor” estimated to

exp2

{

0.12× (m + n− 1)H
(

m

m + n− 1
+ 2−5

)

+ 10
}

, (8)

where H is the binary entropy function,

H(ε) = −ε log(ε)− (1− ε) log(1 − ε) . (9)

Before applying this algorithm, we need to compute the generating matrix of the
linear code C from the parity-check matrix derived from the system h′(x) = 0,
which adds a cost in O((m + n)3).

The expected efficiency of this technique cannot be precisely established, since
the distance dmin of the code is a priori unknown, as well as its expected value.
Useful results are the Gilbert-Varshamov bound

dmin−2∑

i=0

(
m + n− 1

i

)

< 2n , (10)

and an upper bound on the number of codewords of weight ≤ ε(m + n), equal
to 2(m+n)H(ε).

Note that this method can also be applied to systems of degree larger than
two, in which case it succeeds as soon as all the sums of monomials of degree at
least two happen to vanish in each equation of the system.

4.2 Application to Multivariate Hash Functions

Consider a variant of SCC over GF(2) with n = 160, where the density δ � 50%
only applies to the cubic monomials. Using the generic collision attack with a
differential of weight 1, a colliding pair of inputs can be computed by solving a
quadratic system with in average δ

(
2n−1

2

)
quadratic monomials, inherited from

the cubic monomials of the original system (since there are exactly
(
2n−1

2

)
cu-

bic monomials containing a given xj). We then consider the system built by
removing those quadratic terms, in order to apply the method of the previous
subsection. The expected work factor to find a minimal weight word in the as-
sociated linear code is about 248 (cf. Eq. (8)), and there are at most ≈ 214

codewords of weight ≤ 40. Assume that a word with weight ≤ 40 is found. Then
a collision is found for δ = 0.2% with probability ≥ 0.0017, for δ = 0.1% with
probability ≥ 0.0402, and for δ = 0.05% with probability ≥ 0.1988. The ratios
”success probability over complexity” are then clearly higher than for a birthday
attack. Nonetheless, one should be careful by mixing asymptotic estimates and
assertions on concrete instances; for instance, the effective computation time of
the word-finding algorithm of “work factor” of 248 is probably much higher than
the cost of computing 248 digests.

318 J.-P. Aumasson and W. Meier

Finally, note that we considered a homogeneous system, whereas the one we
need in SCC is not necessarily; we may easily convert this system to a homo-
geneous one, by introducing a dummy variable X as soon as the constant 1
appears. Then the words obtained will have X = 1 with probability w/(m + n),
hence the attack has to be repeated about (m + n)/w times (that is, with as
many different codewords), to succeed – assuming a uniform distribution of the
non-null offsets in those words. An alternative solution is to directly modify the
algorithm of [10] to suit non-homogeneous systems.

5 Key Recovery for NMAC and HMAC

In this section we consider a concrete application of hash functions: we show that
the message authentication codes NMAC and HMAC [5] built on multivariate
hash functions can be attacked by solving large overdefined systems. This alter-
native to exhaustive search directly follows from the explicit structure of such
hash functions.

Let F be a multivariate hash function Km+n �→ Kn of degree d. For an
arbitrary known h ∈ F , we consider h�

k : K� �→ Kn the corresponding iterated
hash function with initial value k ∈ Kn, no padding rule, and no output filter. For
x ∈ K�, the NMAC construction with secret key (k1, k2), ki ∈ Kn, is described
as follows:

NMACk1,k2(x) = h�
k1

(h�
k2

(x)) . (11)

Let an attacker have access to NMACk1,k2 as a black box. With N queries of
NMACk1,k2(x) for N distinct x’s long of one message block (thus for x ∈ Km),
she gets nN equations in 2n unknowns, of degree db+1, where b is the number
of message blocks of h�

k2
(x). That is, b = �n/m�. If m ≥ n, then b = 1, thus the

key (k1, k2) can be recovered by solving a system of nN degree d2 equations in
2n unknowns. If k2 is known, the same observations apply to recover k1 except
that the system has now only n unknowns and degree db.

The HMAC construction with key k is defined by

HMACk(x) = h�
iv(k ⊕OPAD||h�

iv(k ⊕ IPAD||x)) , (12)

with constant OPAD and IPAD long of one message block, k at most as long as
the constants, and a fixed initial value iv ∈ Kn. The input of the outer h�

iv is then
an element of Km+n, and the input of the inner function is an element of Km+|x|,
where |x| is the number of field elements of x. Hence both the inner and the outer
h�

iv run the compression function at least twice. In this best-case scenario (when
n ≤ m), with N queries with a m-element x, one gets nN equations of degree
d3 in |k| unknowns.

Are those attacks faster than exhaustive search of the key(s) ? This depends
on the construction, and on the parameters chosen. For instance, for the MQ-
HASH proposal we have K = GF(2), n/m = 160/32 = 5, so the attack on NMAC
requires to solve a system of degree 320 with 232 equations in 320 unknowns,
certainly hard. For NMAC-SCC with K = GF(2) and m = n = 160, with

Analysis of Multivariate Hash Functions 319

N ≤ 2160 queries one gets 320N equations of degree 9 in 320 unknowns (k1

and k2). Thus with about 248 queries, one obtains enough equations to solve
the system by linearisation (about 256 variables): this gives a complexity about
(256)3 = 2168 (higher than exhaustive search’s cost 2160). If K = GF(28) and
m = n = 20, with N ≤ 2160 queries one gets 40N equations of degree 9 in
40 unknowns. Thus with about 223 queries, one obtains enough equations to
solve the system by linearisation (about 228 variables): complexity is then about
(228)3 ≈ 274 (smaller than exhaustive search’s cost 2160). However, in both cases,
memory requirements for a practical implementation seem unrealistic.

Note that the complexity evaluations above are independent of the density of
the system. For sparse systems, the cost of linearisation can be reduced (since
certain monomials might not appear in the system), as well as other methods as
F5 or Sat-solvers can take advantage of low-density systems.

6 Pseudo-randomness and Unpredictability

We show here that all families of low-degree multivariate hash functions over
GF(2) are neither pseudo-random nor unpredictable. This is a consequence of
Fact 1, holding for an arbitrary family F of degree d multivariate hash functions.

Fact 1. If one is given a random h ∈ F as a black box, computing the algebraic
normal form of h can be achieved in N (m + n, d) queries to the box.

This obviously holds for any function family, not only multivariate ones. However
for low-degree multivariate hash functions N (m + n, d) is much lower than for
a random function, whose degree, though unknown, is maximal (= m + n) with
almost certainty. In this case N (m + n, d) = 2m+n.

We now briefly justify Fact 1. Let us call B the challenge box with components
{Bi}0≤i<n (a priori unknown), then Bi(0, . . . , 0) is equal to the constant term
of the algebraic normal form of Bi. By querying B with all inputs of weight 1,
one then recovers all the linear terms of the algebraic normal forms of the Bi’s,
using the knowledge of the constant terms. Once all the linear terms are known,
all weight 2 queries give the quadratic monomials, which are used to deduce the
list of cubic monomials, and so on, until degree d. As a consequence, for a family
F of degree d < m + n, we have the following facts.

Fact 2. Given a black box either a random h ∈ F or a random function
GF(2)m+n �→ GF(2)n, one can identify the box with probability ≥ (1 − 2−n),
N (m + n, d) queries to the box, and a negligible amount of computation.

Fact 3. Given a random h ∈ F as a black box, one can find h(x), for any x of
weight > d without querying the box with x, with N (m+n, d) queries to the box,
and a negligible amount of computation.

In Fact 2, the box is identified by computing its algebraic normal form up to
degree d, then evaluating the system obtained, and querying the box with a same
input of degree > d. Since a random function will have an output distinct from

320 J.-P. Aumasson and W. Meier

the degree d system’s with probability ≥ (1 − 2−n), one identifies the box with
high probability. The result of Fact 3 is also quite simple: in order to find h(x),
one simply has to compute the algebraic normal form of the function using black
box queries, then evaluates the digest of any input without an explicit query.

Consequently, all the families of MQ-HASH and SCC over GF(2) with reason-
able parameters fail to be pseudo-random and unpredictable, since N (m + n, d)
shall be much lower than 2n. For the parameters proposed, one distinguishes a
random instance of MQ-HASH and SCC from a random function within respec-
tively 225.74 and 222.38 black box queries. Note that in the iterated version, the
padding rule makes those techniques not applicable.

Another noteworthy property of multivariate hash functions (over an arbitrary
K) is that, given a random x = (x1, . . . , xm+n−1) and a random h ∈ F , one can
easily find a distinct h′ in F such that h′(x) = h(x), by adding and/or removing
monomials in one or several equations. Although we see no impact on security
a priori, this property must be kept in mind when designing protocols involving
multivariate hash functions.

7 Weak Instances of the Stream Ciphers QUAD

QUAD [7] is a construction of multivariate stream ciphers, based on two random
quadratic systems P : Kn �→ Kr (output function) and Q : Kn �→ Kn (update
function). Given an initial state x0 ∈ Kn derived from a key and a nonce, the
i-th internal state is xi = Qi(x), and the i-th r-bit output is yi = P (xi), so that
{yi}0≤i is the keystream of the cipher.

From the observations of Section 3, we can see that if Q contains an isolated
variable, then two distinct initial states producing identical keystreams can be
found, and if P◦Qi contains an isolated variable, we can find distinct states whose
keystreams collide on the i-th output block. Analogously, a trivial collision with
all-zero and all-one inputs holds if K = GF(2) when all components of Q or
P ◦Qi have an even number of non-constant monomials. When K = GF(2), the
techniques of Section 6 apply as well to distinguish a random instance of QUAD
from a random oracle when given as a black box fed with an initial state. Note
that this is not a distinguisher in the usual sense for stream ciphers, in which
the instance is known, but not the initial state.

Finally, those observations are not threatening for the security of QUAD, since
weak instances appear with very low probability, and the distinguisher assumes
as known the secret information of the cipher.

8 Conclusion

We have studied several security aspects of multivariate hash functions, both
in the general case and for the specific constructions MQ-HASH and SCC. Our
main results are summarised below.

• Multivariate hash functions over GF(2) of degree� (m+n) are neither
pseudo-random nor unpredictable.

Analysis of Multivariate Hash Functions 321

• NMAC message authentication codes built on certain cubic multivariate
hash functions allow key recovery faster than by exhaustive search.
• Families ofmultivariate hash functions of givendensity are notρ-universal,

for ρ given by Eq. (4).
• Constructions based on sparse systems are vulnerable to trivial collisions

and near-collisions.
• Collisions in certain semi-sparse hash functions can be solved by using

an efficient algorithm to find a low-weight word in a random linear code.

The first result applies to both MQ-HASH and SCC, while the second to the
fourth results only apply to SCC, and the last one to a semi-sparse variant of
SCC.

Further work seems necessary to establish whether multivariate hash func-
tions can be competitive with conservative designs in terms of performances, as
well as to design more elaborate constructions improving on security and/or on
efficiency.

References

1. Aiello, W., Haber, S., Venkatesan, R.: New constructions for secure hash func-
tions. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 150–167. Springer,
Heidelberg (1998)

2. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based cryptographic
hash functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715,
pp. 64–83. Springer, Heidelberg (2005)

3. Bard, G.V., Courtois, N.T., Jefferson, C.: Efficient methods for conversion and
solution of sparse systems of low-degree multivariate polynomials over GF(2) via
SAT-solvers. Cryptology ePrint Archive, Report 2007/024 (2007)

4. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

5. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

6. Bentahar, K., Page, D., Saarinen, M.-J.O., Silverman, J.H., Smart, N.: LASH. In:
Second NIST Cryptographic Hash Function Workshop (2006)

7. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A practical stream cipher with prov-
able security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
109–128. Springer, Heidelberg (2006)

8. Billet, O., Robshaw, M.J.B., Peyrin, T.: On building hash functions from multivari-
ate quadratic equations. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP.
LNCS, vol. 4586, pp. 82–95. Springer, Heidelberg (2007)

9. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions (preliminary version). In: STOC, pp. 131–140 (1998)

10. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory 1(44), 367–378
(1998)

322 J.-P. Aumasson and W. Meier

11. Contini, S., Lenstra, A.K., Steinfield, R.: VSH, an efficient and provable collision-
resistant hash function. In Vaudenay [39] pp. 165–182

12. Contini, S., Lenstra, A.K., Steinfield, R.: VSH, an efficient and provable collision-
resistant hash function. Cryptology ePrint Archive, Report, 2006/193. Extended
version of [11]

13. Courtois, N.: Higher order correlation attacks, XL algorithm and cryptanalysis
of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
182–199. Springer, Heidelberg (2003)

14. Courtois, N.: Algebraic attacks over GF(2k), application to HFE challenge 2 and
Sflash-v2. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
201–217. Springer, Heidelberg (2004)

15. Courtois, N., Goubin, L., Meier, W., Tacier, J.-D.: Solving underdefined systems
of multivariate quadratic equations. In: Naccache, D., Paillier, P. (eds.) PKC 2002.
LNCS, vol. 2274, pp. 211–227. Springer, Heidelberg (2002)

16. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

17. Courtois, N., Patarin, J.: About the XL algorithm over GF(2). In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)

18. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287.
Springer, Heidelberg (2002)

19. Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg
(2004)

20. Ding, J., Yang, B.-Y.: Multivariates polynomials for hashing. Cryptology ePrint
Archive, Report 2007/137 (2007)

21. Eén, N., Sörensson, N.: MINISAT.
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

22. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(61), 88 (1999)

23. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reductions to zero (F5). In: ISSAC, pp. 75–83. ACM Press, New York (2002)

24. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

25. Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic
hash functions. In: ECRYPT Workshop on hash functions (2007)

26. Garey, M., Johnson, D.: Computers and Intractability, a guide to the theory of
NP-completeness, p. 251. Freeman, San Francisco (1979)

27. Haitner, I., Reingold, O.: A new interactive hashing theorem. In: IEEE Conference
on Computational Complexity (2007)

28. Imai, H., Matsumoto, T.: A class of asymmetric crypto-systems based on polyno-
mials over finite rings. In: IEEE International Symposium on Information Theory,
pp. 131–132 (1983)

29. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Provably secure FFT
hashing. In: 2nd NIST Cryptographic Hash Function Workshop (2006)

30. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. Cryp-
tology ePrint Archive, Report 2007/129

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

Analysis of Multivariate Hash Functions 323

31. Naor, M., Reingold, O.: From unpredictability to indistinguishability: A simple
construction of pseudo-random functions from MACs (extended abstract). In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 267–282. Springer, Hei-
delberg (1998)

32. NIST. Plan for new cryptographic hash functions
http://www.nist.gov/hash-function/

33. Ong, H., Schnorr, C.-P., Shamir, A.: Efficient signature schemes based on poly-
nomial equations. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 37–46. Springer, Heidelberg (1985)

34. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP).
In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer,
Heidelberg (1996)

35. Shannon, C.E.: Communication theory of secrecy systems. Bell systems technical
journal 28, 646–714 (1949)

36. Tamassia, R., Triandopoulos, N.: Computational bounds on hierarchical data pro-
cessing with applications to information security. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
153–165. Springer, Heidelberg (2005)

37. Tang, X., Feng, Y.: A new efficient algorithm for solving systems of multivariate
polynomials equations. Cryptology ePrint Archive, Report 2005/312 (2005)

38. Raddum, H.v., Semaev, I.: New technique for solving sparse equation systems.
Cryptology ePrint Archive, Report 2006/475 (2006)

39. Vaudenay, S. (ed.): EUROCRYPT 2006. LNCS, vol. 4004. Springer, Heidelberg
(2006)

40. Yang, B.-Y., Chen, O.C.-H., Bernstein, D.J., Chen, J.: Analysis of QUAD. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, Springer, Heidelberg (2007)

Appendix

Lemma 4 (Piling-up). If {Xi}0≤i<n is a sequence of independent binary ran-
dom variables with bias respectively εi = |12 − P (Xi = 0)|, 0 ≤ i < n, then

P (X0 ⊕ · · · ⊕Xn−1 = 0) =
1
2

+ 2n−1
∏

0≤i<n

εi .

http://www.nist.gov/hash-function/

Colliding Message Pair for 53-Step HAS-160

Florian Mendel� and Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

{Florian.Mendel,Vincent.Rijmen}@iaik.tugraz.at

Abstract. HAS-160 is an iterated cryptographic hash function that is
widely used in Korea. In this article, we present a collision attack on the
hash function HAS-160 reduced to 53-steps. The attack has a complexity
of about 235 hash computations. It is based on the work of Cho et al.
presented at ICISC 2006. We improve the attack complexity of Cho et al.
by a factor of about 220 using a slightly different strategy for message
modification in the first 20 steps of the hash function and present the
first actual colliding message pair for 53-step HAS-160. Furthermore, we
show how the attack can be extended to 59-step HAS-160 by using a
characteristic spanning over two message blocks.

1 Introduction

HAS-160 is an iterated cryptographic hash function that is widely used in Korea
and standardized by Korean government (TTAS.KO-12.0011/R1) [1]. It is an
iterated cryptographic hash function that produces a 160-bit hash value. The
design of HAS-160 is based on design principles of the MD4 family. Recently,
weaknesses have been shown for several members of the MD4 family such as
MD5 [5] and SHA-1 [6]. These breakthrough results by Wang et al. in the crypt-
analysis of hash functions, are the motivation for intensive research in the design
and analysis of hash functions. In [4], Yun et al. applied the techniques invented
by Wang et al. in the cryptanalysis of MD5 and SHA-1 to the HAS-160 hash
function. In their article they show that a collision can be found for HAS-160
reduced to 45 (out of 80) steps with a complexity of about 212 45-step HAS-160
computations. This attack was later extended by Cho et al. to HAS-160 re-
duced to 53 steps. Their attack has a complexity of about 255 53-step HAS-160
computations. This is not feasible on an ordinary PC in practice.

In this article, we show how to improve their attack by using a slightly differ-
ent message modification technique to fulfill the conditions on the state variables
in the first 20 steps of the hash function. With our method, we find a colliding
message pair for 53-step HAS-160 with a complexity of about 235 hash compu-
tations. This improves the attack complexity of the original attack of Cho et al.
by a factor of 220, which makes the attack feasible in practice. Furthermore, we
show how the attack can be extended to 59 steps of HAS-160. The attack has a
complexity of about 255 hash computations.
� This author is supported by the Austrian Science Fund (FWF), project P18138.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 324–334, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Colliding Message Pair for 53-Step HAS-160 325

The remainder of this article is structured as follows. A description of the
hash function is given in Section 2. The collision attack of Cho et al. is de-
scribed in Section 3. In Section 4, we describe the new improved collision at-
tack. A sample colliding message pair is given in Section 5. Section 6 shows
how the attack can be extended to 59 steps of HAS-160 by using a character-
istic spanning over two message blocks. Finally, conclusions are presented in
Section 7.

2 Description of the HAS-160

HAS-160 is an iterative hash function that processes 512-bit input message blocks
and produces a 160-bit hash value. The design of HAS-160 is similar to the
design principles of MD5 and SHA-1. In the following, we briefly describe the
hash function. It basically consists of two parts: message expansion and state
update transformation. A detailed description of the HAS-160 hash function is
given in [1]. Throughout the remainder of this article, we will follow the notation
given in Table 1.

Table 1. Notation

Notation Meaning

A ∨ B logical OR of two bit-strings A and B
A ∧ B logical AND of two bit-strings A and B
A⊕B logical XOR of two bit-strings A and B
A ≪ n bit-rotation of A by n positions to the left

Mj message block j (512-bits)
mi message word i (32-bits)
wi expanded message word i (32-bits)

Message Expansion. The message expansion of HAS-160 is a permutation of
20 expanded message words wi in each round. The 20 expanded message words
wi used in each round are constructed from the 16 input message words mi as
follows.

Round 1 Round 2 Round 3 Round 4

w0 m0 m0 m0 m0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
w15 m15 m15 m15 m15
w16 w0 ⊕ w1 ⊕ w2 ⊕ w3 w3 ⊕ w6 ⊕ w9 ⊕ w12 w12 ⊕ w5 ⊕ w14 ⊕ w7 w7 ⊕ w2 ⊕ w13 ⊕ w8
w17 w4 ⊕ w5 ⊕ w6 ⊕ w7 w15 ⊕ w2 ⊕ w5 ⊕ w8 w0 ⊕ w9 ⊕ w2 ⊕ w11 w3 ⊕ w14 ⊕ w9 ⊕ w4
w18 w8 ⊕ w9 ⊕ w10 ⊕ w11 w11 ⊕ w14 ⊕ w1 ⊕ w4 w4 ⊕ w13 ⊕ w6 ⊕ w15 w15 ⊕ w10 ⊕ w5 ⊕ w0
w19 w12 ⊕ w13 ⊕ w14 ⊕ w15 w7 ⊕ w10 ⊕ w13 ⊕ w0 w8 ⊕ w1 ⊕ w10 ⊕ w3 w11 ⊕ w6 ⊕ w1 ⊕ w12

326 F. Mendel and V. Rijmen

For the ordering of the expanded message words wi the following permutation
is used:

step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Round 1 18 0 1 2 3 19 4 5 6 7 16 8 9 10 11 17 12 13 14 15

Round 2 18 3 6 9 12 19 15 2 5 8 16 11 14 1 4 17 7 10 13 0

Round 3 18 12 5 14 7 19 0 9 2 11 16 4 13 6 15 17 8 1 10 3

Round 4 18 7 2 13 8 19 3 14 9 4 16 15 10 5 0 17 11 6 1 12

State Update Transformation. The state update transformation of HAS-160
starts from a (fixed) initial value IV of five 32-bit registers and updates them in
4 rounds of 20 steps each. Figure 1 shows one step of the state update transfor-
mation of the hash function.

Wi

Kj

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

Ai Bi Ci Di Ei

f

 S1i<<<

 S2j<<<

Fig. 1. The step function of HAS-160

Note that the function f is different in each round: f0 is used in the first
round, f1 is used in round 2 and round 4, and f2 is used in round 3.

f0(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)
f1(x, y, z) = x⊕ y ⊕ z

f2(x, y, z) = (x ∨ ¬z)⊕ y

A step constant Kj is added in every step; the constant is different for each
round. For the actual values of the constants we refer to [1]. While rotation
value s2 ∈ {10, 17, 25, 30} is different in each round of the hash function, the
rotation value s1 is different in each step of a round. The rotation value s1 for
each step of a round is given below.

After the last step of the state update transformation, the initial value and
the output values of the last step are combined, resulting in the final value of
one iteration known as Davies-Meyer hash construction (feed forward). In detail,

Colliding Message Pair for 53-Step HAS-160 327

step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s1 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

the feed forward is a word-wise modular addition of the IV and the output of
the state update transformation. The result is the final hash value or the initial
value for the next message block.

3 The Attack on 53-Step HAS-160

In this section, we will briefly describe the attack of Cho et al. on 53-step
HAS-160. A detailed description of the attack is given in [3]. For a good un-
derstanding of our results it is recommended to study it carefully.

The attack is based on recent results in cryptanalysis of hash functions [5,6].
It can be basically described as follows.

1. Find a characteristic for the hash function that holds with high probability
after the first round of the hash function.

2. Find a characteristic (not necessarily with high probability) for the first
round of the hash function.

3. Use message modification techniques [5] to fulfill conditions for the charac-
teristic in the first round. This increases the probability of the characteristic.

4. Use random trials to find values for the message bits such that the message
follows the characteristic.

3.1 Characteristic for 53-Step HAS-160

Finding a good characteristic was the most difficult part of the attack. In Table 2,
the characteristic which is used by Cho et al. in the collision attack on 53-step
HAS-160 is given. Note that we use the same differential path for our improved
collision-attack in Section 4.

Signed-bit differences [5] are used to describe the differential path for 53-step
HAS-160. To improve readability, only the differences in the expanded message
words and state variable A for each step are given. Note that the differences of
the state variables B, C, D, E are defined by the differences in state variable A.

3.2 Set of Sufficient Conditions

In order to guarantee that the message follows the characteristic given in Table 2,
a set of conditions on the state variables has to be fulfilled. In Table 3, the set
of sufficient conditions for the first 25 steps of the hash function is given.

3.3 Finding a Colliding Message Pair

In order to find a colliding message pair, we have to find a message that fulfills
all the conditions given in Table 3. In total there are 434 conditions on the
state variables. Therefore, the probability that a random message follows the
characteristic can be estimated by 2−434.

328 F. Mendel and V. Rijmen

Table 2. Characteristic for 53-step HAS-160 (cf. [3])

step ΔA Δw

1 −32 32

2 11,−12 .

3 18, . . . , 21,−22 .

4 1, . . . , 16,−17 .

5 7, 8,−9, 18,−19, 32 32

6 3,−4, 17,−20,−21, 22 32

7 −14, . . . ,−17, 18, 22, 29 .

8 4,−10, 11 .

9 13,−15, 16, 18,−19, 30, 31,−32 32

10 −10,−11, 12,−17,−24, 25 .

11 −1, 2,−13, . . . ,−15, 16, 28,−32 32

12 −8, 9,−17,−21, 22, 26 32

13 8, 10, 11,−12, 26, 27,−28 .

14 −10, 17, 18,−19, 28, . . . , 30,−31 .

15 11, . . . , 14,−15,−16, 20,−23, 26,−27 .

16 3, 5, 6,−7,−11,−12, 13,−20, 21,−22,−31, 32 32

17 −11, 18,−20,−26, 27 .

18 1, 5, 18, 20, 22, 27 .

19 4, 13, 30 .

20 −4, 11 32

21 11 .

22 −30 32

23 . 32

24 15 .

25 −15 .

26 . .

27 . 32

28 . .

29 . .

30 . 32

31 . .
...

...
...

53 . .

However, the probability can be improved by using message modification tech-
niques. The main idea of message modification is to use the degrees of freedom
one has in the choice of the message words to fulfill conditions on the state
variables. This improves the probability of the characteristic. It is clear that the
number of conditions that can not be fulfilled by message modification techniques
determine the final attack complexity.

In [3], Cho et al. describe an algorithm for finding a colliding message pair for
53-step HAS-160. The algorithm has a complexity of about 255 53-step HAS-160
computations. It can be summarized as follows:

Colliding Message Pair for 53-Step HAS-160 329

Table 3. A set of sufficient conditions on Ai for the differential path given in Table 2,
where ‘a’ denotes a condition Ai,j = Ai−1,j , ‘b’ denotes a condition Ai,j �= Ai−1,j ,
‘c’ denotes a condition Ai,j �= Ai−1,j+7, ‘d’ denotes a condition Ai,j = Ai−1,j−10,
‘e’ denotes a condition Ai,j = Ai−1,j−17, and ‘f ’ denotes a condition Ai,j �= Ai−1,j−17.

state variable
condition on bits

#conditions
32-25 24-17 16-9 8-1

A1 1------- -------- ----110- 1-----aa 7

A2 0100---1 -------- ----100a 01---1-- 12

A3 1100aaa0 aa10000- ------10 10aaa0aa 25

A4 11000-11 --10---1 00000000 00000000 26

A5 01110111 00110100 00100111 00-11--- 28

A6 0--00111 110111-0 0000001- 00a010-0 27

A7 1010101- --0-1001 1111--10 -------1 19

A8 100-0000 1-1a0--- -111-011 a0aa0a11 25

A9 100-0101 10-0010- 0110---- -11-0-00 22

A10 --000-10 10a01-01 1-1-0110 000010-- 24

A11 1a100010 -1001-10 01110001 01---001 27

A12 1-1--100 10011111 1---0000 1-0--110 23

A13 00--1001 11-00000 1---1001 0a110-11 25

A14 010001-0 --101100 0--a101- --111a00 24

A15 ---11101 -1000-10 11000001 01100a00 27

A16 01010111 00101--0 1--01110 010010-1 27

A17 111--011 01011-00 00-10110 0--10--1 24

A18 01--00-- -00-0-00 11-1--11 ---00b-0 18

A19 --0----- ---d-c-- -0-0-1-- ----0--- 7

A20 ----0-b- ---b---- -----0-- ---f1--- 6

A21 --f-0--- -------- -f-a-0-- -------- 5

A22 --1----- ---e---- -------- -------- 2

A23 ----f--- -------- -e------ -------- 2

A24 --b----- -------- -0------ -------- 2

A25 -------- -------- -1------ -------- 1

1. Use basic message modification techniques to fulfill all conditions on state
variables A1, . . . , A10. This determines the message words m0, m1, m2, m3,
m4, m5 ,m6, m7 and the values for m8⊕m9⊕m10⊕m11 and m12⊕m13⊕m14⊕
m15. This adds only small additional cost to the attack complexity. Only 10
steps of HAS-160 have to be computed to determine all these message words.

2. At step 11, the dependent expanded message word w16 = m0⊕m1⊕m2⊕m3

is already fixed by the first step of the attack. Since there are 27 conditions
on A11 in step 11, we may fulfill them with a probability of 2−27. Hence, we
have to repeat step 1 of the attack about 227 times to find message words
satisfying all conditions in steps 1-11.
Finishing this step of the attack has a complexity of about 227 · 11 step
computations of HAS-160.

330 F. Mendel and V. Rijmen

3. Use again basic message modification techniques to fulfill all conditions on
A12, A13, A14. This determines the message words m8, m9, m10. Since these
message words can be chosen freely, this adds only small additional cost (3
step computations of HAS-160) to the attack complexity.

4. At step 15 and 16, the dependent words m11 and m4 ⊕m5 ⊕m6 ⊕m7 are
already fixed by the previous steps of the attack. Since there are 27+27 = 54
conditions on A15 and A16, we may fulfill these conditions with a probability
of 2−54. Since there are about 224 possible choices for m8, m9, m10 in the third
step of the attack (see Table 3), step 3 of the attack can only be repeated
224 times. Hence, the whole attack has to be repeated about 230 times to
find message words following the characteristic in steps 1-16.
Finishing this step of the attack has a complexity of about 230·(227·11+224·5)
step computations of HAS-160. This is approximately about 255 53-step
HAS-160 computations.

5. To fulfill the conditions on A17, A18, A19 basic message modification tech-
niques are used again. This determines the message words m12, m13, m14.
Since these values can be chosen freely, this adds only small additional cost
(3 step computations of HAS-160) to the attack complexity.

6. After step 19, all the message words have been determined. Since there are
still 18 conditions on A20, . . . , A25 (see Table 3), we can satisfy them with a
probability of 2−18. Therefore, step 5 of the attack has to be repeated about
218 times to fulfill all the conditions in steps 20-25. This adds negligible cost
to the final attack complexity.

With this method a collision can be found in 53-step HAS-160 with a complexity
of about 255 53-step HAS-160 computations. For a detailed description of the
attack we refer to [3].

4 Improved Collision Attack

In this section, we show how the attack complexity can be reduced to 235. In the
attack, we use the differential path of Cho et al. given in Section 3. To improve the
attack complexity, we use a slightly modified strategy for message modification in
the first 16 steps of the hash function. The main idea of our new method is to
reduce the complexity of the collision search algorithm in steps 1-16. Therefore,
we use the fact that an additional (first) message block can be used to generate
an arbitrary IV (for the second block). This additional degree of freedom we use
to reduce the complexity of the attack. The attack can be summarized as follows.

1. Choose arbitrary values for A2, A3, A4, A5, A6 satisfying all conditions.
2. Apply message modification techniques to steps 7-15. This determines the

message words m4, m5, m6, m7, m8, m9, m10, m11 and the value for m0⊕m1⊕
m2⊕m3. At step 16, the dependent words m4, m5, m6, m7 are already used.
Since there are 27 conditions at that step (see Table 3), we may satisfy all
the conditions from step 7 up to step 16 with a probability of 2−27. Hence,
we have to compute about 227 · 10 steps of HAS-160 to find message words
that follow the characteristic from step 7 to 16.

Colliding Message Pair for 53-Step HAS-160 331

3. Repeat step 2 of the attack about 27 times to get about 27 different values
for m8⊕m9⊕m10⊕m11 and save them in a list L. We will need these values
in the next step of the attack.

Finishing this step of the attack has a complexity of about 27 ·227 ·10 step
computations of HAS-160. This is equivalent to about 231.6 53-step HAS-160
computations.

4. Use an arbitrary (first) message block to get a suitable IV (for the second
block). Note that we have to calculate on average 2 IV s, since 1 condition
on the IV has to be fulfilled to guarantee that the characteristic holds in the
following steps.

Calculate A1 (for all values in L) and check if the 7 conditions on A1 are
satisfied. Since there are 7 conditions on A1, we always expect to meet the
conditions after trying all 27 values in the list L.

Once,wehavedeterminedA1, thisalsodeterminesm0, m1, m2, m3 andm12⊕
m13⊕m14⊕m15. Sincem0⊕m1⊕m2⊕m3 has alreadybeenfixed in the second
step of the attack, this step of the attack succeeds with probability 2−32.

Hence, we have to repeat this step of the attack about 232 times to find
message words following the characteristic in steps 1-16. Finishing this step
of the attack has a complexity of about 232 ·(27+5+53·2) step computations
of HAS-160. This is approximately 234.2 53-step HAS-160 computations.

5. Do steps 17 to 25 as described in the original attack (see Section 3). The
complexity of these steps can be neglected for the final attack complexity.

Hence, we can find a colliding message pair for 53-step HAS-160 with a complex-
ity of about 231.6 + 234.2 ≈ 235 53-step HAS-160 computations. Note that the
complexity of the attack can be slightly improved by increasing the size of the
list L. A colliding message pair for 53-step HAS-160 is given in the next section.

5 A Colliding Message for 53-step HAS-160

With our improved collision attack, we can construct a collision with a complex-
ity of about 235 53-step HAS-160 computations. The colliding message pair is
given in Table 4. Note that h0 is the initial value, h1 is the intermediate hash
value after the first block, and h2 is the final hash value after the second block.

Table 4. A colliding message pair for HAS-160

h0 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0

M0
34338ECF ED111A03 EB2EE891 763594E3 96080160 4558A929 EC731044 B7BADD0B
BC637C76 B21FA220 47493D4D B2AEAB79 A68354CF 5833D227 46DE18D7 F9FF5F3B

h1 40D4B34F F1185C20 ADE02611 9B666A7E 34769338

M1
4E8F4717 D8E79F84 89D8FE81 04B34CA7 01EA3C40 A364A502 059F6AB9 22774031
9F3E80CE D647A926 1F61242A A1E224AB 901A5AEE 1BCEEEB1 EDEAA891 31BDFF9A

M ′
1

4E8F4717 D8E79F84 89D8FE81 84B34CA7 01EA3C40 A364A502 859F6AB9 22774031
1F3E80CE D647A926 1F61242A A1E224AB 901A5AEE 1BCEEEB1 EDEAA891 B1BDFF9A

ΔM1
00000000 00000000 00000000 80000000 00000000 00000000 80000000 00000000
80000000 00000000 00000000 00000000 00000000 00000000 00000000 80000000

h2 96D30020 DA815BDF DF265AB5 819CDE2E 5B887F3E

h′
2 96D30020 DA815BDF DF265AB5 819CDE2E 5B887F3E

332 F. Mendel and V. Rijmen

6 Extending the Attack to 59 Steps of HAS-160

In this section, we show how the attack of Cho et al. on 53-step HAS-160 can be
extended to 59 steps. In [5], Wang et al. show a collision attack for MD5 spanning
over two message blocks. In the attack, they use a second message block to turn a
near-collision after the first message block into a collision after feed forward of the
second message block. Hence, two related near-collisions can be used to produce
a two-block collision for the hash function. Therefore, a different characteristic is
required in the first round of the second block. This is depicted in Fig. 2.

 state update

msg expansion

 state update

msg expansion

M1 M2

h0 = 0

20 2059 59

20 2059 = 59 =

h2 = 0

h1 =

Fig. 2. A two-block collision in the hash function

For the attack on 59-step HAS-160, we use the characteristic given in Table 5.
Note that the characteristic from step 20 to step 53 is equal to the characteristic

Table 5. Near-collision producing characteristic for 59-step HAS-160

step ΔA Δw

20 −4, 11 32

21 11 .

22 −30 32

23 . 32

24 15 .

25 −15 .

26 . .

27 . 32

28 . .

29 . .

30 . 32

31 . .
...

...
...

53 . .

54 32 32

55 6, 32 32

56 12, 18 .

57 21,−25, 27 32

58 3,−7, 9, 31 .

59 −4, 8, 11, 13 .

Colliding Message Pair for 53-Step HAS-160 333

used by Cho et al. in the attack on 53-step HAS-160. Hence, we can use the same
characteristic as Cho et al. in the first 20 steps for the first message block. Since
the characteristic has a probability of 2−32 to hold in steps 54 to 59, we have an
attack complexity for the first message block of about 250 (respectively 255) hash
computations following the attack strategy described in Section 4 (respectively
Section 3).

However, for the second message block a slightly different characteristic is
needed for the first 20 steps of the hash function. In the analysis, we assume
that such a characteristic can be found (once the first message block has been
fixed) like it was done for 64-step SHA-1 [2]. Furthermore, it seems to be rea-
sonable to assume that this characteristic has roughly the same probability as
the characteristic used in the first message block. Thus, the complexity of the
second block is about 255 hash computations. This results in a complexity of
about 250 + 255 ≈ 255 hash computations to construct a two-block collision for
HAS-160 reduced to 59 steps.

7 Conclusion

In this article, we presented an improved collision attack on 53-step HAS-160
and an actual colliding message pair. Our new improved attack has a complexity
of about 235 53-step HAS-160 computations. In the attack, we used a slightly
modified strategy to do message modification in HAS-160. With this method,
we can improve the previous attack by a factor of 220, which makes the attack
feasible in practice. Furthermore, we show how the attack can be extended to
59 steps of HAS-160 by using a characteristic spanning over two message blocks.
The attack has a complexity of about 255 hash computations. However, whether
or not the attack of Cho et al. can be extended to the full HAS-160 hash function
remains a topic of further research.

Acknowledgment

The authors would like to thank Aaram Yun for fruitful discussions on this
article.

References

1. Telecommunications Technology Association. Hash Function Standard Part 2: Hash
Function Algorithm Standard (HAS-160), TTAS.KO-12.0011/R1 (December 2000)

2. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

3. Cho, H.-S., Park, S., Sung, S.H., Yun, A.: Collision Search Attack for 53-Step HAS-
160. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 286–295.
Springer, Heidelberg (2006)

334 F. Mendel and V. Rijmen

4. Yun, A., Sung, S.H., Park, S., Chang, D., Hong, S., Cho, H.-S.: Finding Collision
on 45-step HAS-160. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935,
pp. 146–155. Springer, Heidelberg (2006)

5. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.J.F.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

6. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

Weaknesses in the HAS-V Compression Function

Florian Mendel� and Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

{Florian.Mendel,Vincent.Rijmen}@iaik.tugraz.at

Abstract. HAS-V is a cryptographic hash function which processes
1024-bit message blocks and produces a hash value of variable length.
The design of the hash function is based on design principles of the MD4
family. Recently, weaknesses have been shown in members of this family.
Therefore, the analysis of the HAS-V hash function is of great interest.
To the best of our knowledge this is the first article that investigates the
security of the HAS-V hash function. In this article, we point out several
structural weaknesses in HAS-V which lead to pseudo-collision attacks
on HAS-V with tailored output. Furthermore, we show that (second)
preimages can be found for HAS-V with a complexity of about 2162 hash
computations.

1 Introduction

Recently, weaknesses in many commonly used hash functions, such as MD5 and
SHA-1 have been found [1,2,9,10]. These breakthrough results in the cryptanal-
ysis of hash functions are the motivation for intensive research in the design
and analysis of hash functions. In this article, we will study the HAS-V hash
function in detail. It is an iterated hash function that processes 1024-bit mes-
sage blocks and produces a hash value of variable length: 128, 160, 192, 224,
256, 288, and 320 bits. The HAS-V hash function was proposed by Park et al.
at SAC 2000 [7]. The design of the hash function is very similar to the design
principles of HAS-160, HAVAL, and RIPEMD. Since in all of these hash func-
tions (recently) weaknesses have been shown [3,5,8,11], a detailed analysis of the
HAS-V hash function is needed to get a good view on the security margins of
the hash function. We are not aware of any other security analysis of the HAS-V
hash function.

In this article, we show that the HAS-V hash function has several weaknesses
that can be exploited to construct pseudo-collisions for the HAS-V hash function
for all output sizes. Furthermore, we show that by using an alternative description
of the hash function, which gives more insights in the design of HAS-V, we can
construct (second) preimages with a complexity of about 2162 hash computations.
Note that for an ideal hash function with an n-bit output size, one would expect a
complexity of about 2n. Hence, the security margins for HAS-V with output size
192, 224, 256, 288, and 320 bits are not as high as one would expect.
� This author is supported by the Austrian Science Fund (FWF), project P18138.

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 335–345, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

336 F. Mendel and V. Rijmen

The remainder of this article is structured as follows. A description of the hash
function is given in Section 2. In Section 3, we give an alternative description of
HAS-V, which gives more insights in the design of the hash function. We will use
this description in Section 4 to show how pseudo-collisions can be constructed.
In Section 5, we present a (second) preimage attack with a complexity of about
2162 hash computations. Finally, we present conclusions in Section 6.

2 Description of the HAS-V Hash Function

HAS-V is an iterative hash function that processes 1024-bit input message blocks
and produces a hash value of variable length: 128, 160, · · · , 288, and 320 bits.
The design of HAS-V is similar to the design principle of HAVAL, RIPEMD and
HAS-160. It consists of two parallel streams. In each stream the state variables
are updated (in 5 rounds) according to the expanded message words. After each
round the state variables of the left and the right stream are interchanged, see
Fig. 1. After the last round, the initial values and the output values of each
stream are combined, resulting in the final value of one iteration.

After the last message block has been processed an output tailoring method
is applied to construct a hash value of length 128, 160, 192, 224, 256, 288 or 320
bits. For a detailed description of this method we refer to [7].

In the following, we briefly describe the hash function. It basically consists of
two parts: the message expansion and the state update transformation.

2.1 Message Expansion

The message expansion of HAS-V is a permutation of 20 expanded message
words wi in each round of a stream. First, the message block Mi of 1024 bits
is split into 2 parts Mi and Mi, where Mi are the lower 512 bits and Mi are

hi

(Mi) (Mi)

gi

hi+1 gi+1

interchange

Round 1 Round 1

Round 2

Round 5

Round 4

Round 3

Round 2

Round 5

Round 4

Round 3

interchange

interchange

interchange

interchange

Fig. 1. The HAS-V compression function

Weaknesses in the HAS-V Compression Function 337

the upper 512 bits of the message block Mi. Mi is then used to generate the
expanded message words for the left stream and Mi is used to generate the
expanded message words for the right stream. The 20 expanded message words
wi used in each round are constructed from the 16 input message words mi as
follows. The 16 message words mi are copied to wi. The remaining 4 expanded
message words w16, w17, w18 and w19 are generated as shown below.

w16 w17 w18 w19

Round 1 w0 ⊕ w1 ⊕ w2 ⊕ w3 w4 ⊕ w5 ⊕ w6 ⊕ w7 w8 ⊕ w9 ⊕ w10 ⊕ w11 w12 ⊕ w13 ⊕ w14 ⊕ w15
Round 2 w3 ⊕ w6 ⊕ w9 ⊕ w12 w15 ⊕ w2 ⊕ w5 ⊕ w8 w11 ⊕ w14 ⊕ w1 ⊕ w4 w7 ⊕ w10 ⊕ w13 ⊕ w0
Round 3 w12 ⊕ w5 ⊕ w14 ⊕ w7 w0 ⊕ w9 ⊕ w2 ⊕ w11 w4 ⊕ w13 ⊕ w6 ⊕ w15 w8 ⊕ w1 ⊕ w10 ⊕ w3
Round 4 w7 ⊕ w2 ⊕ w13 ⊕ w8 w3 ⊕ w14 ⊕ w9 ⊕ w4 w15 ⊕ w10 ⊕ w5 ⊕ w0 w11 ⊕ w6 ⊕ w1 ⊕ w12
Round 5 w15 ⊕ w9 ⊕ w5 ⊕ w3 w12 ⊕ w8 ⊕ w6 ⊕ w2 w13 ⊕ w11 ⊕ w7 ⊕ w1 w14 ⊕ w10 ⊕ w4 ⊕ w0

For the ordering of the expanded message words wi in each round the following
permutation is used:

step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Round 1 18 0 1 2 3 19 4 5 6 7 16 8 9 10 11 17 12 13 14 15

Round 2 18 3 6 9 12 19 15 2 5 8 16 11 14 1 4 17 7 10 13 0

Round 3 18 12 5 14 7 19 0 9 2 11 16 4 13 6 15 17 8 1 10 3

Round 4 18 7 2 13 8 19 3 14 9 4 16 15 10 5 0 17 11 6 1 12

Round 5 18 15 9 5 3 19 12 8 6 2 16 13 11 7 1 17 14 10 4 0

2.2 State Update Transformation

The state update transformation of HAS-V starts from a (fixed) initial value IV
of ten 32-bit registers (5 for each stream) and updates them in 5 rounds of 20
steps each. Figure 2 shows one step of the state update transformation of the
HAS-V hash function.

Ai+1 = Ai ≪ s + f(Bi, Ci, Di, Ei) + Wi + Ki

Bi+1 = Ai

Ci+1 = Bi ≫ 2
Di+1 = Ci

Ei+1 = Di

The function f is different in each round. fj is used for the j-th round in the
left stream, f4−j is used for the j-th round in the right stream (j = 0, . . . , 4).

f0(B, C, D, E) = (B ∧ C)⊕ (¬B ∧D)⊕ (C ∧ E)⊕ (D ∧ E)
f1(B, C, D, E) = (B ∧D)⊕ C ⊕ E

f2(B, C, D, E) = (B ∧ C)⊕ (¬B ∧ E)⊕D

f3(B, C, D, E) = B ⊕ (C ∧D)⊕ E

f4(B, C, D, E) = (¬B ∧C)⊕ (B ∧D)⊕ (C ∧ E)⊕ (D ∧ E)

338 F. Mendel and V. Rijmen

Ai Bi Ci Di Ei

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

f

Ki

Wi

<<< S

<<< 2

Fig. 2. The step function of HAS-V

A step constant Ki is added in every step; the constant is different for each
round. For the actual values of the constants we refer to [7]. The rotation value
s is different in each step of a round.

step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s 5 11 7 13 15 6 13 9 5 11 7 12 8 15 13 8 15 6 7 14

After the last step of the state update transformation, the initial value and the
output values of the last step are combined, resulting in the final value of one
iteration. In detail, the feed forward is a word-wise modular addition of the IV
and the output of the state update transformation. The result is the final hash
value or the initial value for the next message block.

3 Alternative Description of HAS-V

We present here a slightly different description of the HAS-V hash function,
which gives more insights in the design of the hash function. By interchanging
round 2 and round 4 between the two streams instead of interchanging the state
variables after each round, we get an alternative description of the HAS-V hash
function, where the two streams are independent, see Fig. 3. Note that a new
(different) message expansion is used for the left and the right stream, denoted
by Σ1 and Σ2.

Let h(Mi, hi) and g(Mi, gi) denote the state update function in the left and
right stream. Then the compression function of HAS-V can be described as
follows:

hi+1 = hi + g(Mi, gi)
gi+1 = gi + h(Mi, hi)

Weaknesses in the HAS-V Compression Function 339

hi

1(Mi) 2(Mi)

gi

hi+1 gi+1

Round 1 Round 1

Round 2

Round 5

Round 4

Round 3

Round 2

Round 5

Round 4

Round 3

Fig. 3. Alternative description of the HAS-V compression function

For the remainder of this article, we will use this description of the HAS-V
hash function. First, we show that a pseudo-collision can be constructed for
HAS-V with a complexity lower than 2n/2 (which one would expect for an ideal
hash function with an n-bit hash value). Second, we show that (second) preim-
ages can be found for HAS-V with a complexity of about 2162 hash computations.

4 Pseudo-near-Collisions and Pseudo-collisions for the
HAS-V Hash Function

In this section, we will show how pseudo-near-collisions and pseudo-collisions
can be constructed for the HAS-V compression function by exploiting structural
weaknesses in the step function of the hash function. The attack is based on the
following two observations.

Observation 1. The properties of the Boolean function f (used in the first
round of both streams) can be used to absorb differences at its input.

Observation 2. In the step function of HAS-V state variable E is only used as
input to the non-linear Boolean function f (see Fig. 2).

Hence, a difference δ in state variable E can easily be canceled by exploiting the
properties of the Boolean function f to absorb differences at its input. It is easy
to see, that a difference δ in state variable E in the first round of the left stream
will always cancel out if C = D.

f0(B, C, D, E) = C ⇔ C = D

In a similar way also a difference δ′ in E in the first round of the right stream
will cancel out if C = D.

f4(B, C, D, E) = C ⇔ C = D

340 F. Mendel and V. Rijmen

We can use this to construct a pseudo-near-collision in the HAS-V hash function.
By choosing the initial value of the left and right stream in the following way

h0 = A1
0||B1

0 ||C1
0 ||D1

0||E1
0 with C1

0 = D1
0

and
g0 = A2

0||B2
0 ||C2

0 ||D2
0 ||E2

0 with C2
0 = D2

0

we will always get a collision after the first step of the state update transfor-
mation in both streams for an arbitrary difference δ in E1

0 in the left stream
and δ′ in E2

0 in the right stream. Of course, the feed forward after the last
step of the state update transformation will destroy the collision, resulting in a
pseudo-near-collision for the HAS-V hash function:

(0, 0, 0, 0, δ, 0, 0, 0, 0, δ′)→ (0, 0, 0, 0, δ, 0, 0, 0, 0, δ′)

Note that this holds with probability 1 and is independent of the message M .
The pseudo-near-collision for HAS-V can be turned into a pseudo-collision for
HAS-V with tailored output. This is described in more detail in the next section.

4.1 Pseudo-collisions in HAS-V with Tailored Output

The designers of HAS-V defined several variants of HAS-V with tailored output.
For instance, to get a hash value of 160 bits the output of the left an right stream
are combined in the following way:

h + g = A1 + A2||B1 + B2||C1 + C2||D1 + D2||E1 + E2

For this variant, we can construct a pseudo-collision by using the pseudo-near-
collision described in the previous section. By choosing a difference δ in E1

0 in
the left stream and a difference −δ in E2

0 in the right stream, we get a pseudo-
collision after adding the values of both streams (output tailoring).

E1 + E2 = (E1 + δ) + (E2 − δ)

This holds with probability 1 in the HAS-V hash function and is independent
of the message M . Note that pseudo-collisions can be constructed for the other
variants of HAS-V (with tailored output) in a similar way.

4.2 Pseudo-collisions in HAS-V

We can turn the pseudo-near-collision for HAS-V into a pseudo-collision by using
a generic birthday attack. The main idea is to use the degree of freedom we have
in the choice of the differences in E1

0 and E2
0 in the left and right stream to

decrease the work needed for a birthday attack. The attack can be summarized
as follows:

1. Choose random values for the initial value of the left and right stream of the
hash function with C1

0 = D1
0 and C2

0 = D2
0 .

Weaknesses in the HAS-V Compression Function 341

2. Do a generic birthday attack to find a message pair (M, M∗) such that
ΔA1 = · · · = ΔD1 = 0 and ΔA2 = · · · = ΔD2 = 0. This has a complexity
of about 2128 evaluations of the compression function of HAS-V.

3. To cancel the difference in E1 and E2 we use the fact that we can inject an
arbitrary difference δ in E1

0 and δ′ in E2
0 to cancel the differences in E1 and

E2. This leads to a pseudo-collision in HAS-V hash function.

Hence, we can construct a pseudo-collision in the HAS-V hash function with a
complexity of about 2128 instead of 2160 hash computations.

5 (Second) Preimages for the HAS-V Hash Function

In this section, we will describe two methods to construct a (second) preimage
for the HAS-V hash function. Both attacks are based on structural weaknesses
in the HAS-V hash function. For the analysis, we will use the description of
HAS-V given in Section 3. With the first method a (second) preimage can be
constructed with a complexity of about 2241 hash computations instead of 2320,
as one would expect for a hash function with a 320-bit hash value. The first
attack is based on the following observation.

Observation 3. The compression function of HAS-V is invertible with respect
to the chaining variables.

Algorithm 1. A way to invert the compression function
Input: The final hash value hi+1||gi+1 and an arbitrary intermediate hash value hi.
Output: The intermediate hash value gi such that HAS-V(Mi, hi||gi) = hi+1||gi+1.

– Guess Mi and calculate:
gi = gi+1 − h(Mi, hi)

– Check if the following equation holds:

hi+1 = hi + g(Mi, gi).

Hence, a correct choice for Mi can be found in 2160 hash computations.

Based on Algorithm 1, the HAS-V hash function is invertible with respect
to the chaining variables. We can find the intermediate hash value gi and the
message block Mi in about 2160 applications of the compression function of the
HAS-V hash function. We can use this to construct a (second) preimage in the
HAS-V hash function with a complexity of about 2241 hash computations using
the following observation.

Observation 4. An unbalanced meet-in-the-middle attack can be used to find a
(second) preimage for the HAS-V hash function.

342 F. Mendel and V. Rijmen

Algorithm 2. A (second) preimage in the HAS-V hash function
Input: The final hash value hi+2||gi+2 and the intermediate hash value hi||gi

Output: The message M = Mi||Mi+1 such that HAS-V(M, hi||gi) = hi+2||gi+2.

– Calculate and store 280 candidates for hi+1||gi+1 in the list L resulting from a
backward computation of the compression function using Algorithm 1. (280 ·2160

applications of the compression function)
– Calculate hi+1||gi+1 resulting from a forward computation of the compression

function an check for a match in L.
– After calculating at most 2240 candidates for hi+1||gi+1 one expect find a match-

ing entry (collision) in L and hence a (second) preimage for HAS-V. Note that
a collision is likely to exist due to the birthday paradox.

Based on Algorithm 2, we can find a (second) preimage for the HAS-V hash
function with complexity of about 2 · 2240 applications of the compression func-
tion. Note that a similar attack was applied in the past on MDC-2 [4]. However,
we can further improve the attack by using the following observation.

Observation 5. Due to the structure of the HAS-V hash function it is easy
to construct a fixed-point in the left stream of the HAS-V hash function for an
arbitrary input value hi.

Algorithm 3. Constructing a fixed-point in the left stream of HAS-V
Input: The intermediate hash value hi.
Output: The pair (gi, gi+1) and Mi such that HAS-V(Mi, hi||gi) = hi||gi+1.

– Choose an arbitrary value for Mi and calculate:

gi = g−1(Mi, 0)

gi+1 = gi + h(Mi, hi)

Based on Algorithm 3, we can construct a fixed-point in the left stream of HAS-V
for an arbitrary value of hi. We can use this to construct a (second) preimage for
the HAS-V hash function with a complexity of about 2162 hash computations.
The main idea of the attack is to use Algorithm 3 to construct many fixed-points
for the left stream of the hash function (with the same value of hi) and save them
in a list L and then combine these entries in such a way that we get a (second)
preimage for the HAS-V hash function.

Assume we are given the final hash value hi||gi and let h0||g0 denote the initial
value of HAS-V. Then the attack can be summarized as follows:

1. Use Algorithm 1 with input hi||gi and hi−1 = h0 to get gi−1 and Mi−1

such that HAS-V(Mi−1, hi−1||gi−1) = hi||gi. This step of the attack has a
complexity of about 2160 hash computations and ensures that hi−1 = h0.
Note that this is needed for the attack to work.

Weaknesses in the HAS-V Compression Function 343

2. Calculate and store 2 · 2160 candidates for (gj−1, gj) in the list L using Algo-
rithm 3 with input h0. Note that each entry in the list L has a fixed-point
in the left stream: HAS-V(Mj−1, h0||gj−1) = h0||gj . We will use this in the
next step of the attack to construct a (second) preimage in the HAS-V hash
function. Constructing the list L has a complexity of about 2161 hash com-
putations. Furthermore, we expect to have always two entries in L where the
first component gj−1 is equal and we also expect to have always two entries
in L where the second component gj is equal.

3. To construct a (second) preimage in the HAS-V hash function, we use the
entries in the list L. Starting from g0, we construct a tree using the entries
in the list L. For each node in the tree we expect to get two new nodes on
the next level (see Fig. 4), since we have two entries in list L where the first
component is the same. Hence, the number of nodes at level k is 2k.

To construct a preimage for HAS-V we need to meet gi−1 fixed in the first
step of the attack. Therefore, we construct a second tree starting from gi−1

also using the entries in the list L. Since we have always two entries in the list
L, where the second component is equal, we get for each node on level k two
new nodes on the next level. Hence, the number of nodes at level k is also 2k.
It is easy to see, that for k = 80 we get 280 nodes in each of the two trees.
Therefore, we expect to find a common node in both trees and hence, a
(second) preimage for the HAS-V hash function. Note that a common node
in both trees is likely to exist due to the birthday paradox.

h0||g0

k=2

k=1
h0||g1,1 h0||g1,2

h0||gi-2,1 h0||gi-2,2

h0||gi-1

k=1

k=2

hi||gi

k=80
k=80

21

22

22

21

280
280

Fig. 4. Constructing a (second) preimage for the HAS-V hash function

344 F. Mendel and V. Rijmen

With this method we can find a (second) preimage for HAS-V with a complex-
ity of about 2162 hash computations and a message consisting of 161 (80+80+1)
message blocks. Note that the same attack can be used to produce (second)
preimages for HAS-V with tailored output. Hence, the security margins for the
HAS-V hash function with output size of 192, 224, 256, 288, and 320 bits are
not as high as one would expect for a hash function with that output size.

6 Conclusion

In this article, we showed several weaknesses in the HAS-V hash function. Based
on these weaknesses, we presented a pseudo-collision for the HAS-V hash func-
tion with tailored output. As an example we show a pseudo-collision for HAS-V
with a (tailored) output size of 160 bits. It has probability 1 to hold in the
HAS-V hash function and is independent of the message M . Note that similar
attacks (also with probability 1 and independent of the message) can be applied
for the other variants of HAS-V with tailored output. Furthermore, we showed
that also for the 320-bit variant of HAS-V a pseudo-collision can be found with
a complexity of about 2128 hash computations.

Moreover, we presented a (second) preimage attack on the HAS-V hash func-
tion. In the attack we exploit the fact, that due to the design of the HAS-V
hash function it is easy to construct a fixed-point in the left stream of the hash
function for an arbitrary input value. The attack has a complexity of about 2162

hash computations. Hence, the security margins of HAS-V (with output size of
192, 224, 256, 288 and 320 bits) are not as high as one would expect for a hash
function with an n-bit output size.

Acknowledgement

The authors wish to thank Norbert Pramstaller, and the anonymous referees for
useful comments and discussions.

References

1. Black, J., Cochran, M., Highland, T.: A Study of the MD5 Attacks: Insights and
Improvements. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 262–277.
Springer, Heidelberg (2006)

2. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

3. Cho, H.-S., Park, S., Sung, S.H., Yun, A.: Collision Search Attack for 53-Step
HAS-160. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 286–
295. Springer, Heidelberg (2006)

4. Lai, X., Massey, J.L.: Hash Function Based on Block Ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

Weaknesses in the HAS-V Compression Function 345

5. Mendel. F.: Colliding Message Pair for 53-Step HAS-160. Cryptology ePrint
Archive, Report 2006/334 (2006), http://eprint.iacr.org/

6. Merkle, R.C., Hellman, M.E.: On the Security of Multiple Encryption. Commun.
ACM 24(7), 465–467 (1981)

7. Park, N.K., Hwang, J.H., Lee, P.J.: HAS-V: A New Hash Function with Variable
Output Length. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012,
pp. 202–216. Springer, Heidelberg (2001)

8. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

9. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

10. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

11. Yu, H., Wang, X., Yun, A., Park, S.: Cryptanalysis of the Full HAVAL with 4 and
5 Passes. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 89–110. Springer,
Heidelberg (2006)

Security-Preserving Asymmetric Protocol

Encapsulation

Raphael C.-W. Phan and Serge Vaudenay

Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland

{raphael.phan,serge.vaudenay}@epfl.ch

Abstract. Query-response based protocols between a client and a server
such as SSL, TLS, SSH are asymmetric in the sense that the querying
client and the responding server play different roles, and for which there
is a need for two-way linkability between queries and responses within the
protocol. We are motivated by the observation that though results exist
in other related contexts, no provably secure scheme has been applied
to the setting of client-server protocols, which differ from conventional
communications on the above points. We show how to secure the com-
munication of queries and responses in these client-server protocols in
a provably secure setting. In doing so, we propose a new primitive: a
query-response encapsulation scheme; we give an instantiation, and we
demonstrate how this primitive can be used for our purpose. In our proof
of secure encapsulation, we show how to preserve the notion of “local-
security”.

1 Introduction

In this paper, we show how to secure the communication of generic client-server
type protocols. These are protocols which involve query and response messages
for arbitrary number of rounds, and are asymmetric in the sense that parties on
either side of the protocol have differing roles.

Asymmetric protocols. Client-server type protocols exist in many settings
[8,9,17,18,19,22,25], e.g. in networks where clients are connected to application
servers, database servers, file servers, or mail servers etc. A typical example of
such a protocol is a client browser running on a personal computer interacting
with a web server sitting on a remote machine. In this setting, it is desired that
at the worst case, having the client access the server is at least as secure as just
having the client run in isolation. This in fact shows that access to the server
does not compromise the security of the client. We denote this notion as security
preservation.

Security preservation. By local security, we mean the security of the client
when it is in isolation. In the generic sense, this can be formally modelled as a

K.-H. Nam and G. Rhee (Eds.): ICISC 2007, LNCS 4817, pp. 346–366, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Security-Preserving Asymmetric Protocol Encapsulation 347

game following some rules, played between an adversary and a judge challenger
who determines if the adversary succeeded in winning the game.

We want to show that when the client is additionally allowed access to a server,
then this can be done such that the local security of the client is preserved, i.e.
additional server access does not have adverse affects on the client’s security.

In the ideal case, interaction with the server is not observable by the ad-
versary. In practice, we show how this can be done via a form of asymmetric
protocol encapsulation that preserves local security. This result applies to any
asymmetric protocol of arbitrary rounds.

Examples. One example of an asymmetric client-server protocol is database sys-
tems where the client system S represents the application querying the database
server O. So far, existing security models for databases [12,14] are different from
our context because they only consider security on the database server O side.
Our focus is on the local security on the client system S side and how this is
affected by the S ↔ O interaction. For instance, let us assume a company A
making queries to a low-cost airline company’s online database. A competitor B
to A who suspects that A is interested in some type of event can forge a flyer
for a fake event at some given location and date, check on the air ticket cost,
send the fake event advertisement to A. When B sees that some request to the
airline company was made by A, it can look at the prices again and see if the
price increased because A has just taken the low cost seat. If the link between
A and the airline company is perfectly secure, B does not even see when the
request is made. But when the link is implemented in practice e.g. using SSL
through an insecure channel such as the Internet, B gets this private informa-
tion. Here, we can see that the encapsulated system is insecure even though the
implementations of the client and the server are secure.

Another example is an EMV protocol [11] where the credit-card payment ter-
minal S makes queries to a bank O to verify a message authentication code
(MAC) issued by a credit card. Here, the response of the bank is a YES/NO
reply. Clearly, this system can reach pretty good security if the client-server
communication is made through a perfectly secure link. When instantiated in
practice with an insecure channel, things could still easily go wrong even though
some encapsulation of the channel is applied that achieves some strong crypto-
graphic notion of confidentiality and authentication. For instance, an adversary
could try to replay a positive response from the bank without breaking the un-
derlying cryptographic primitives. Indeed, if the primitives do not provide strong
linkability between the query and its response, a fake credit card can easily be
used for payment. This example shows that some extra cryptographic property
must be assumed on the encapsulation scheme used to secure the client-server
interaction.

In this paper, our goal is to make explicit this property, to show how to achieve
it, and to show that local security can be preserved while moving from a secure
(ideal) channel to an insecure but encapsulated one.

348 R.C.-W. Phan and S. Vaudenay

Related work. The seminal introduction of public-key encryption by Diffie
and Hellman [10] initiated serious work in the public domain into solving the
problem of securely encapsulating insecure channels. In fact, the Diffie-Hellman
key exchange of [10] was the first to allow the establishment of secure channels
without pre-sharing any common secrets between parties, thus solving the key
distribution problem inherent in conventional symmetric encryption. With a key
exchange protocol, parties can securely establish common shared keys that are
then used to encrypt subsequent communications. In a sense, major research has
focused on initializing the secure channel hence the study of key exchange pro-
tocols, in contrast to the subsequent step after initialization: the encapsulation
of the communication channel.

In fact, the study of how to encapsulate an insecure channel is an interesting
problem in itself because it is often that a channel needs not only be encapsu-
lated in terms of secrecy, authentication and integrity, but also resistant against
other forms of malicious manipulation e.g. reordering or replaying of messages,
exploitation of one legitimate party to answer challenges from the other party
etc. Indeed, carefully analyzing attacks applied to key exchange protocols re-
veals some of these problems too, because essentially, it can be seen by looking
at the internals of a key exchange protocol that it is a sequence of message
transmissions over an insecure channel.

Work initiated by Canetti and Krawczyk [5,6,18,20,21] showed how secure
encapsulated channels can be obtained as a by-product of secure key establish-
ment, for the particular setting where each transmitted message is independent
of other messages in the encapsulated channel.

Their line of work differs on several points from the context of client-server
communication considered in this paper. Client-server communication is asym-
metric i.e. each party on either side has a different role, so it matters which
side the party is on. More importantly, this leads to adversely different security
requirements e.g. there is a need for two-way linkability between the transmitted
query and the received response, a requirement not needed for conventional se-
cure independent-message channels in [5,6,18,20,21]. Furthermore, we need only
semi-authenticated communication, i.e. we consider both ends separately and
where it is only required to authenticate the server side (see [17]). Or alterna-
tively see [19,22] for a kind of asymmetric authentication where variable levels
of authentication apply depending on which side the party is on.

In essence, the motivation behind our considering semi-authentication is that
our local security consideration essentially reduces the security of the client-
server interaction to the security on the client side. This also models the client-
server systems in practice where a single server provides equal access of its
resources to any client.

A different line of work related to client-server systems is the study of provably
secure schemes within the server e.g. provable security of the database server in
the case of database systems [12,14].

Security-Preserving Asymmetric Protocol Encapsulation 349

Our contributions. Our main result is a generic notion for provably secure en-
capsulation of asymmetric client-server protocols. To the best of our knowledge,
our paper is the first work to treat this problem in a provably secure setting. Our
results generalize to asymmetric protocols with arbitrary number of rounds. To
this end, we give a generic construction for a new primitive, so called the query-
response encapsulation mechanism (Q/REM), that provides confidentiality and
semi-authentication of query and response messages. We also give an example
instantiation and prove its security.

This Q/REM primitive allows to design client-server protocol communications
in a modular fashion. On the one hand, specific details of a client-server protocol
are abstracted away during the security proof of encapsulation. On the other,
once it is established that a secure encapsulated channel is in place between
client and server, the intrinsic details of the protocol can be designed in this
ideal encapsulated setting without any further need to treat requirements for
confidentiality, integrity and authentication.

In some sense, this modular abstraction bears resemblance to the approach
in [5], where key establishment protocols are constructed assuming the exis-
tence of encapsulated (only in the sense of authentication) channels, while at
a different design level it is studied how protocols designed in the encapsu-
lated model relate to the practical model by the use of authenticating
encapsulators.

In our proof of secure asymmetric protocol encapsulation, we show that the
local security on the client side is preserved provided that the communication
protocol is locally secure when the adversary knows when the communication
happens and its length, and that the server is protected against replay attacks
or is a stateless oracle.

2 A Generic Construction for Query-Response
Encapsulation

We give here a generic construction for a query/response encapsulation mecha-
nism (Q/REM) primitive and define its corresponding security notions of
indistinguishability and authentication. This result in itself is of independent
interest; for instance we know of no related primitive that achieves the notion of
authentication. The QEM is a regular message transmission primitive yielding a
symmetric key which can be re-used to encapsulate a response. The REM re-uses
this key. It is then shown how this Q/REM primitive can be used to build an
asymmetric encapsulation protocol.

2.1 Query/Response Encapsulation Mechanism (Q/REM)

To be precise, the Q/REM primitive is given in Definition 1.

350 R.C.-W. Phan and S. Vaudenay

Definition 1 (Q/REM).

A query/response encapsulation mechanism (Q/REM) is a 5-tuple of algorithms.

〈pk, sk〉 ← QEM.Key(1λ): a probabilistic polynomial time (PPT) algorithm taking as input
a security parameter λ, and returns a pair 〈pk, sk〉 of matching
public and private keys.

〈K,A〉 ← QEM.Enc(pk, q): a PPT algorithm taking as input a public key pk and query q;
outputs an ephemeral key/encapsulation pair 〈K,A〉.

〈K, q〉 ← QEM.Dec(sk,A): a deterministic polynomial time (DPT) algorithm taking as
input a private key sk and an encapsulation A; outputs an
ephemeral key K and a decapsulated query q, or a special sym-
bol ⊥ implying A was invalid.

B ← REM.Enc(K, i, r): a PPT algorithm taking as input an ephemeral key K, counter
i and a response r, and outputs an encapsulation B.

r ← REM.Dec(K, i,B): a DPT algorithm taking as input an ephemeral key K, counter
i and an encapsulation B, and outputs a decapsulated response
r or a special symbol ⊥ implying B was invalid.

For completeness, it is required that for any 〈pk, sk〉 output by QEM.Key(·) and
for any 〈K, A〉 output by QEM.Enc(pk, q), then QEM.Dec(sk, A) = 〈K, q〉; and
furthermore, for any output B by REM.Enc(K, i, r), then REM.Dec

(K, i, B) = r.

Security notions. The security of Q/REMis captured by two notions: indistin-
guishability in a IND-CCA vein (Definition 2), and authentication (Definition 3).

Definition 2 (Indistinguishability of Q/REM). Let IND-CCA-QREM de-
note the security notion of indistinguishability for Q/REM against CCA adver-
saries [23]. This notion is described by considering the following attack scenario,
modeled as a game between an adversary and a challenger with access to Q/REM
algorithms as oracles:

1. QEM.Key(1λ) is run to generate the public pk and private key sk for the
protocol, and pk is given to the adversary.

2. The adversary may perform some OQEM.Dec(A) queries, where OQEM.

Dec(·) is a QEM decapsulation oracle, that is, it returns the output by
QEM.Dec(sk, A).

3. The adversary selects a query q∗ and submits it to the challenger. The chal-
lenger chooses b ∈ {0, 1}, lets q0 = q∗, and q1 set to a random query of
same length. He runs QEM.Enc(pk, qb) to obtain 〈K, A∗〉. The output A∗

is returned to the adversary.

Security-Preserving Asymmetric Protocol Encapsulation 351

4. The adversary does as in Step 2 except that the query OQEM.Dec(A∗) is
not allowed. It can further make OIREM.Enc(i, r) queries, where OIREM.

Enc(·) is an oracle which either outputs B ← REM.Enc(K, i, r) if b = 0,
or outputs B ← REM.Enc(K, i, r∗) for some random r∗ of same length
otherwise. (Note that b is the same as in the previous step.)

5. The adversary outputs a guess b̃ ∈ {0, 1}.
Let πQ/REM be a Q/REM protocol and let A be the adversary. The advantage of
πQ/REM for adversary A, is defined as:

AdvIND−CCAA,πQ/REM
(λ) = |Pr[b̃ = b]− 1/2|.

πQ/REM is (ε(λ), c(λ))-secure in the sense of IND-CCA-QREM if AdvIND−CCAA,πQ/REM
(λ) is

less than ε(λ) for any adversary A of complexity bounded by c(λ). It is simply
IND-CCA-QREM-secure if for any polynomially bounded c(λ) there exists a neg-
ligible ε(λ) such that it is (ε(λ), c(λ))-secure in the sense of IND-CCA-QREM.

Definition 3 (Authentication of Q/REM). Let AUTH-CCA-QREM denote
the security notion of authentication for Q/REM against CCA adversaries. This
notion is as follows:

1. QEM.Key(1λ) is run to generate the public pk and private key sk for the
protocol, and pk is given to the adversary.

2. The adversary may perform some OQEM.Dec(·) queries.
3. The challenger gets one query q chosen by the adversary, runs QEM.Enc

(pk, q) to obtain 〈K, A∗〉, and returns A∗ to the adversary.
4. The adversary does as in Step 2 except that the call OQEM.Dec(A∗) is not

allowed. She can further do many OREM.Enc(·) queries. Namely, querying
OREM.Enc(i, r) makes the challenger run REM.Enc(K, i, r) to obtain B∗

which is returned to the adversary.
5. The adversary outputs 〈i, B〉. She succeeds if REM.Dec(K, i, B) is valid but

B is not equal to any output from a OREM.Enc(·) query from the previous
step.

Let πQ/REM be a Q/REM protocol and let A be the adversary. The advantage of
πQ/REM for adversary A, is defined as:

AdvAUTH−CCAA,πQ/REM
(λ) = Pr[A succeeds].

πQ/REM is (ε(λ), c(λ))-secure in the sense of AUTH-CCA-QREM if AdvAUTH−CCAA,πQ/REM
(λ)

is less than ε(λ) for any adversary A of complexity bounded by c(λ). It is simply
AUTH-CCA-QREM-secure if for any polynomially bounded c(λ) there exists a
negligible ε(λ) such that it is (ε(λ), c(λ))-secure in the sense of AUTH-CCA-
QREM.

Definition 4. A (εsem, εauth, c)-secure Q/REM is a Q/REM which is (εsem, c)-
secure in the sense of IND-CCA-QREM and (εauth, c)-secure in the sense of
AUTH-CCA-QREM. A secure Q/REM is an IND-CCA-QREM-secure and
AUTH-CCA-QREM-secure Q/REM.

352 R.C.-W. Phan and S. Vaudenay

2.2 Asymmetric Protocol Encapsulation with Q/REM

We can secure any 2-party asymmetric protocol between a Client and a Server for
arbitrary number of rounds, by using a Q/REM. For this protocol, given input
q the Client system should obtain the output r = O(q) from the Server oracle
O. We construct an asymmetric (query-response) encapsulation protocol πQR.
A trusted communication channel (e.g. using a trusted third party) is required
at the initialization stage to authenticate the public key pk of the Server to the
Client.

Initialization: Server runs QEM.Key(1λ), obtains 〈pk,sk〉, and stores 〈pk, sk〉.
Client obtains pk in a trusted way.

Query Generation: Upon input query q, Client runs QEM.Enc(pk, q), ob-
taining 〈K, A〉, where K is an ephemeral (secret) key and A is the encapsu-
lated query. Client sends A to the Server.

Response Generation: Server runs QEM.Dec(sk, A) and obtains 〈K, q〉,
where K is the ephemeral key, or obtains ⊥ if A is invalid and therefore
aborts. Server inputs the query q to its internal oracle O and obtains the
response r = O(q). Server runs REM.Enc(K, 1, r) and obtains B the en-
cryption of response r under secret key K. Server sends B to the Client.

Response Verification: Client runs REM.Dec(K, 1, B) and obtains decap-
sulated response r or ⊥ if B is invalid and therefore aborts. Otherwise
output r.

Values of i > 1 in REM will be used in protocols with several rounds.

2.3 Instantiating Q/REMs

The generic Q/REM primitive in Definition 1 can in fact be instantiated in
several ways using public-key encryption or signcryption with one-pass authen-
ticated encryption, or symmetric encryption with message authentication etc.

For completeness, we give a concrete instantiation example based on a secure
KEM [7] and secure Authenticated Encryption (AE) [2,24], and prove its se-
curity. Here, we use AE instead of conventional DEM [7] because we need the
authentication property and the ability to include a header to re-use a key. Ba-
sically, our QEM instantiation is a KEM together with an AE with header 0;
subsequent REMs use AE with header set to the counter i.

To the best of our knowledge, this is the first time that a KEM+AE com-
position is applied for the authenticity context whereas previous work used
KEM+DEM [7,1] or KEM+AE [16] for achieving indistinguishability, and that
for symmetric independent-message communication.

Q/REM Instantiation based on KEM and AE

1. 〈pk, sk〉 ← QEM.Key(1λ): This is exactly KEM.Key(1λ).
2. 〈K, A〉 ← QEM.Enc(pk, q): First, 〈K, C0〉 ← KEM.Enc(pk). This gener-

ates the encapsulation in C0 of an AE key K. Then, C ← AE.Enc(K, 0, q).
The output of QEM.Enc(·) is A where A = C0||C is the encapsulation
output of QEM .

Security-Preserving Asymmetric Protocol Encapsulation 353

3. 〈K, q〉 ← QEM.Dec(sk, A): Parse A=C0||C. Then, K←KEM.Dec(sk, C0):
Given as input a private key sk and a key encapsulation C0, it outputs the
decapsulated secret key K, or ⊥ if the encapsulation C0 is invalid. Finally,
q ← AE.Dec(K, 0, C): Given as input a secret key K and a message cipher-
text C, it outputs the decrypted query q, or outputs ⊥ if the ciphertext C

is not authenticated. The output of QEM.Dec(·) is q or ⊥.
4. B ← REM.Enc(K, i, r): Do B ← AE.Enc(K, i, r): Given a secret key K, a

counter i and a response r, it outputs the authenticated ciphertext B. The
output of REM.Enc(·) is B.

5. r ← REM.Dec(K, i, B): Do r ← AE.Dec(K, i, B) or ⊥ if B is not authen-
ticated. The output of REM.Dec(·) is r or ⊥.

The following result shows that this Q/REM instantiation is secure; a detailed
proof is in Appendix A.

Theorem 1. If KEM is IND-CCA-secure, and AE is AE-secure, then the
Q/REM construction described above is secure.

3 Provably Secure Encapsulation

We prove here how to secure asymmetric protocols with arbitrary rounds, in-
volving two parties: a client system S issuing an initial query q (resp. subsequent
query denoted rt) to a server oracle O who replies with response r (resp. rt+1).
Both parties interact with an (a priori untrusted) environment E . We term as
“system” the S ↔ O combination which lives with environment E .

Ideally, the environment does not see the S ↔ O interaction, nor even see
when it occurs. In reality, this interaction is necessarily insecure, for which we
will show here how to securely model this ideal interaction by encapsulation. An
adversary against S is a malicious environment who interacts with the system,
for which we can tell if he succeeds in following the rules of a local game Γ .
The notion of “rule of a local game” Γ should be understood as a given judge
algorithm Γ who determines from the interactions between E and S only (and
not other interactions e.g. between E and O) if the attack succeeded, i.e if the
adversary won the game against S. (See Fig. 1.) Not every security notions for
a system can be expressed locally. When it is possible to express security this
way, it is quite a strong security property because we are saying that having the
extra interaction with O does not give the adversary any additional advantage
over just having interaction with S alone. Our goal is to show how to preserve
this local security when the ideal S ↔ O interaction is in reality instantiated
with a secure protocol encapsulation.

Definition 5 (Local security). An oracle-system S ↔ O in a hostile environ-
ment E is locally secure w.r.t. a game Γ i.e. (ε, c)-Γ -secure, if no adversary E
with complexity less than c succeeds in winning game Γ with probability larger
than ε.

354 R.C.-W. Phan and S. Vaudenay

We assume the complexity of the adversary includes that of the environment E
and system S.

Local security applies in the examples given in Section 1. For database queries,
Γ checks if E guessed a bit f(e) telling whether Company A is interested in some
chosen event e. For EMV, Γ checks if the payment system accepted a fake credit
card.

Here, our notion of local security ideally assumes that the S ↔ O interaction
is done through a perfectly secure channel. In reality, this channel is an insecure
one going through E , for which we would like to secure by means of encapsulation
while preserving local security. See Fig. 2 for the resultant encapsulate-system.

Definition 6 (Encapsulate-system). Given an oracle-system S ↔ O and a
Q/REM encapsulation scheme, we define an encapsulate-system Senc ↔ O as
follows:

– Initially, Senc runs QEM.Key, stores sk and outputs pk to the environment.
– When the environment inputs something to Senc, this is forwarded to a sim-

ulated S, and when S outputs something for the environment, this is output
by Senc to the environment.

– When S outputs a query q for the oracle O, this executes QEM.Enc(pk, q)→
〈K, A〉 and a message “QUERY A” is returned to the environment by a
special IS port. The IS port stores 〈K, 0〉.

– When a message “QUERY A′” is input by the environment to Senc by a
special IO port, this executes QEM.Dec(sk, A′) → 〈K ′, q′〉, queries O with
q′ and gets r′ in return, executes REM.Enc(K ′, 1, r′)→ B′ and returns the
message “RESPOND B′” to the environment by the same port. The IO port
stores 〈K ′, 1〉. If QEM.Dec does not work, Senc aborts.

– When “RESPOND B” is input by environment to Senc by a special IS port
storing 〈K, t〉, this increments t and runs REM.Dec(K, t, B) → r and re-
turns r to S. If REM.Dec does not work, Senc aborts.

– Subsequently, when S outputs a response rt for the oracle and the IS port
stores 〈K, t〉, this post-increments t, runs REM.Enc(K, t, r) → B and a
message “RESPOND Bt” is returned to the environment by the same port.

– When “RESPOND Bt” is input by environment to Senc by a special IO port
storing 〈K ′, t〉, this post-increments t and runs REM.Dec(K ′, t, B) → r′,
sends r′ to O to get r′′; increments t again; runs REM.Enc(K ′, t, r′′)→ B′

S

�
�

O

�
�

E

�
�

Γ�

�

output

r

q

Fig. 1. An oracle-system S interacting with an oracle O and an environment E

Security-Preserving Asymmetric Protocol Encapsulation 355

S

�
�

I
S

�
�

�
�

�

Gen(·)
pk sk

pk QUERY A
′

/RESPOND Bt

RESPOND B
′

/RESPOND B
′
t+1

QUERY A

/RESPOND Bt
RESPOND B

I
O

�
�

q/rt

r/rt+1

q
′
/r

′
t

r
′
/r

′
t+1

E

� � �
� O

�
�

S

enc

Γ�

�

output

Fig. 2.Anencapsulate-system including oracle-system S , interfaces I and generator Gen

and returns the message “RESPOND B′t+1” to the environment by the same
port.

Any notion of Γ -security on S ↔ O naturally extends to Senc ↔ O by making
Γ ignore all communication through the IS and IO ports.

Definition 7 (Encapsulate-security). An oracle-system S ↔ O is (ε, c)-Γ -
encapsulate-secure relative to a Q/REM encapsulation scheme if its encapsulate-
system Senc ↔ O is (ε, c)-Γ -secure.

The notion of encapsulate-security captures the fact that local security (with
respect to a local game Γ) is preserved when the oracle-system in the ideal case
as per Fig. 1 is instantiated in reality with an encapsulate-system as per Fig. 2.

In reality, encapsulation necessary leaks side information:
• [Timing] the point in time at which S makes its queries and gets its responses,

and
• [Length] the length of those query/response messages.

In fact, strong notions of encryption secrecy e.g. IND-CCA also assume that
length information is necessarily leaked.

Thus, to prove that encapsulation preserves local security in the practical
setting, we must assume that this kind of leakage is harmless. To this end,
we define the notion of “toll-security”, which captures the oracle-system in the
setting similar to Fig. 1 but for which the above side information are inevitably
leaked. This is the system that our encapsulate-system needs to emulate.

Definition 8 (Toll-system). Given an oracle-system S ↔ O, we define a toll-
system Stoll ↔ O (see Fig. 3) as follows.

– When the environment inputs something to Stoll, this is forwarded to a sim-
ulated S, and when S outputs something for the environment, this is output
by Stoll to the environment.

– When S outputs a query q (resp. a subsequent response rt) to the oracle, a
message “S : |q|” (resp. “S : |rt|”) with the length |q| of q (resp. |rt| of rt)
is output by Stoll to the environment by a special I port and the delivery of
q (resp. rt) to O through the secure channel is stalled.

– When the delivery of q (resp. rt) is released, O is queried with q (resp. rt) to
get the response r (resp. rt+1). An “O : |r|” (resp. “O : |rt+1|”) message with

356 R.C.-W. Phan and S. Vaudenay

S

�

�

I

�

�

q/rt

r/rt+1

GO
S : |q|

/S : |rt|
GO O : |r|

/O : |rt+1|

I
�

�

O

�

�

q/rt

r/rt+1

E

��

� �

Stoll

Γ�

�

output

Fig. 3. A toll-system including the oracle-system S and the interface I

the length |r| of r (resp. |rt+1| of rt+1) is output by Stoll for the environment
by a special I port and the delivery of r (resp. rt+1) is stalled.

– When the environment inputs a “GO S” (resp. “GO O”) signal to Stoll by
a special I port, the delivery of the message to O (resp. S) is released.

Definition 9 (Toll-security). An oracle-system S ↔ O is (ε, c)-Γ -toll-secure
if its toll-system Stoll ↔ O is (ε, c)-Γ -secure.

Note that many secure oracle-systems are trivially toll-insecure, i.e. they become
insecure when side information are leaked. For instance, given a secure signature
scheme in the randomoraclemodel, we define a new signature scheme for which the
signature algorithmon messagem first computes someBooleanbit(m, sk) function
depending on theprivate key sk and, if thebit is 0, does a query to the randomoracle
with an empty input, otherwise does nothing, then simulates the original signature
scheme. Obviously, this is equivalent to the original scheme in the random oracle
model, but leaksbit(m, sk) to the environment in the toll-systemvariant.This helps
the adversary to reconstruct sk after a few queries when bit is well chosen.

To prove that encapsulation preserves local security with stateful oracles,
extra treatment is needed: the oracle must be immune to replay attacks.

Definition 10 (Immunity to replay attacks). An oracle O is immune to
replay attacks, if duplicate queries do not modify the state of O and produce
responses with either an error message, or the same distribution and same length
as the previous query.

This requirement is necessary otherwise a toll-secure system may not be
encapsulate-secure if the oracle is stateful and allows repeated queries. To moti-
vate this assumption, we consider that we have a stateful oracle who simulates a
perfect random oracle except when a query is repeated, in which case the oracle
answers with a constant value (e.g. 0) to the repeated query. An adversary can
actually repeat any query from the system and make the system accept answers
to the second query, which provokes responses (in this case a constant value) to
be perfectly predictable. In a case where queries by the Enquirer are unknown to
E , we can have loss of local security when encapsulating the protocol. This can
be avoided with an oracle O that is immune to replay attacks as per Definition
10. For instance, a stateless oracle or an oracle who repeats the same response
to repeating queries without modifying its state would satisfy this condition.

Security-Preserving Asymmetric Protocol Encapsulation 357

Finally, S must not make concurrent queries to O. Concretely, S never sends
a new message to O if he is still waiting for a response. Otherwise, E could get
advantage in modifying the order in which they are sent to a stateful oracle.

We now state our main result about secure asymmetric protocol encapsu-
lation. The proof of Theorem 2 is in Appendix B, and shows that if for any
Q/REM secure in the sense defined in section 2, then the encapsulate-system is
computationally indistinguishable from the ideal toll-system.

Theorem 2. For any oracle-system S ↔ O in which O is immune to replay
attacks and S initiates at most Q (non-concurrent) protocol sessions with O, for
any notion of local security Γ , there exists some μ such that if S ↔ O is (ε, c)-
Γ -toll-secure and if the Q/REM scheme is (εsem, εauth, c)-secure, then S ↔ O
is (Q(εsem + εauth) + ε, c− μ)-Γ -encapsulate-secure.

4 Conclusion

We have put forth a generic notion of security for asymmetric (query-response)
protocols, that is set up to permit leakages of timing and message length to
closely model types of information leakages in practice. In doing so, we proposed
a generic construction of a provably secure query-response encapsulation scheme
that can be used to this respect, and our results apply to any arbitrary-round
asymmetric protocol.

In our proof of encapsulation, we have also modeled the time when a query
is made because otherwise it may not properly capture the leakage of side in-
formation that would break the system. We prove the security of encapsulation
with the assumption

1. that our underlying primitives are secure,
2. that the query-response protocol remains secure when the existence and time

of the query and response, and their length leak,
3. that the server is a stateless machine or a stateful one that is immune to

replay attacks.

We further demonstrate that the last two conditions are necessary.

Acknowledgement

The second author thanks Tom Shrimpton for discussions on [24] and on AE
in general. We thank the anonymous referees for comments that contributed to
the clarity of this paper. Une partie de ce travail a été réalisée pendant les longs
soirs d’ été à St. Sulpice.

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A New Frame-
work for Hybrid Encryption and a New Analysis of Kurosawa-Desmedt KEM. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

358 R.C.-W. Phan and S. Vaudenay

2. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: a Paradigm for Designing
Efficient Protocols. In: Proc. ACM-CCS 1993, pp. 62–73 (1993)

4. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: Proc. IEEE FOCS 2001, pp. 136–145 (2001), Full version available
at IACR ePrint Archive http://eprint.iacr.org/2000/067

5. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

6. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and
Secure Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 337–351. Springer, Heidelberg (2002)

7. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal of
Computing 33(1), 167–226 (2004)

8. Dierks, T., Allen, C.: The TLS Protocol: Version 1 (1999)

9. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol: Version
1.1, RFC 4346 (April 2006)

10. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

11. EMVCo, LLC, EMV 4.1 Specifications (June 2004), Available online at
http://www.emvco.com/specifications.asp?show=3

12. Evdokimov, S., Fischmann, M., Gunther, O.: Provable Security for Outsourcing
Database Operations. In: Proc. IEEE ICDE 2006, pp. 117 (2006)

13. Freier, A.O., Karlton, P., Kocher, P.C.: The SSL Protocol: Version 3.0. Internet
Draft (March 1996)

14. Ge, T., Zdonik, S.: Fast, Secure Encryption for Indexing in a Column-Oriented
DBMS. In: Proc. IEEE ICDE 2007, pp. 676–685 (2007)

15. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal of Computing 17(2), 281–308
(1988)

16. Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsula-
tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

17. Krauß, C., Stumpf, F., Eckert, C.: Detecting Node Compromise in Hybrid Wireless
Sensor Networks using Attestation Techniques. In: Proc. ESAS 2007, LNCS 4572,
pp. 203–217 (2007)

18. Krawczyk, H.: The Order of Encryption and Authentication for Protecting Com-
munications (or: How Secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001)

19. Leung, A., Mitchell, C.J.: Ninja: Non Identity Based, Privacy Preserving Authenti-
cation for Ubiquitous Environments. In: Krumm, J., Abowd, G.D., Seneviratne, A.,
Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 73–90. Springer, Heidelberg
(2007)

20. Nagao, W., Manabe, Y., Okamoto, T.: A Universally Composable Secure Chan-
nel Based on the KEM-DEM Framework. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 426–444. Springer, Heidelberg (2005)

http://eprint.iacr.org/2000/067
http://www.emvco.com/specifications.asp?show=3

Security-Preserving Asymmetric Protocol Encapsulation 359

21. Nagao, W., Manabe, Y., Okamoto, T.: A Universally Composable Secure Channel
Based on the KEM-DEM Framework. IEICE Trans. Fund. Electronics, Communi-
cations & Computer Sciences E89-A(1), 28–38 (2006)

22. Pashalidis, A., Mitchell, C.J.: Single Sign-On using Trusted Platforms. In: Boyd,
C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 54–68. Springer, Heidelberg
(2003)

23. Rackoff, C., Simon, D.: Non-interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

24. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap
Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

25. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Transport Layer Protocol, RFC
253 (January 2006)

A Proof of Theorem 1

To obtain the proof for Theorem 1, we need to recall the definitions of KEM,
AE and their corresponding security notions.

KEM. A key encapsulation mechanism (KEM) [7] is given by the triple of
algorithms KEM.Key(1λ), KEM.Enc(pk) and KEM.Dec(sk, C0), where:

1. 〈pk, sk〉 ← KEM.Key(1λ): this is a PPT algorithm that takes a security
parameter 1λ and returns a pair 〈pk, sk〉 of matching public and private
keys.

2. 〈K, C0〉 ← KEM.Enc(pk): this is a PPT algorithm that takes as input a
public key pk and outputs a key/ciphertext pair 〈K, C0〉.

3. K ← KEM.Dec(sk, C0): this is a deterministic polynomial time algorithm
that takes as input the private key sk and ciphertext C0, and outputs key
K or a special symbol ⊥ implying the ciphertext was invalid.

It is required that completeness be fulfilled, i.e. for all (pk, sk) output by KEM.

Key(·), and for all C0 output by KEM.Enc(pk), then KEM.Dec(sk, C0) = K.
The security notion of IND-CCA-KEM is as follows:

1. KEM.Key(·) is run to generate the public pk and private key sk for the
protocol, and pk is given to the adversary A.

2. A generates some ciphertext queries and sends them to the challenger. He
calls the decryption oracle KEM.Dec(·) who decrypts them and the results
are returned to A.

3. The challenger runs KEM.Enc(·) to generate 〈K∗, C∗0 〉. He generates a ran-
dom string K̃ where |K̃| = |K∗|. He chooses b ∈ {0, 1}. If b = 0, he outputs
〈K∗, C∗0 〉, otherwise he outputs 〈K̃, C∗0 〉.

4. A generates further ciphertext queries, but cannot query the challenge ci-
phertext C∗0 .

5. A outputs a guess b̃ ∈ {0, 1}.

360 R.C.-W. Phan and S. Vaudenay

Let ΠKEM be a KEM. The advantage of ΠKEM for adversary A, is defined as:

AdvIND−CCAA,ΠKEM
(λ) = |Pr[b̃ = b]− 1/2|.

ΠKEM is secure if AdvIND−CCAA,ΠKEM
(λ) is negligible for any PPT adversary A.

AE. A non-deterministic Authenticated-Encryption (AE) scheme is composed
of a key generator and symmetric encryption which use an extra input called the
“header” h. [24] follows a series of papers on authenticated-encryption, notably
[2] and proposes an all-in-one definition which is adapted below. The decryption
algorithm may return ⊥ if the ciphertext is not consistent with the header. An
AE is ε-secure if for any distinguisher with access to two oracles: the left and
the right oracle, the advantage for distinguishing the two sets of oracles below
is at most ε.

– The left oracle is an encryption oracle. The right oracle is a decryption oracle.
Both oracles are first set up with a random key prior to any query.

– The left oracle is a random generator. The right oracle returns ⊥ except for
(y, h) queries such that y was previously output by the left oracle with a
(x, h) query: in this case, the right oracle returns x.

Proof of Theorem 1

Proof. Indistinguishability. We first reduce the IND-CCA-QREM game, i.e. we
construct an adversary AKEM against IND-CCA-KEM using an adversary A
that breaks IND-CCA-QREM. When AKEM receives pk, this is forwarded to A.
Queries A = C0||C for OQEM.Dec(A) from A to AKEM are answered by for-
warding C0 to KEM.Dec(·) oracle. The returned K is used by AKEM to perform
AE.Dec(K, 0, C) and result q is returned to A as 〈K, q〉.

During the challenge stage, A chooses q∗ and sends to AKEM. Meanwhile,
KEM.Enc(pk) is run by the KEM challenger in challenge phase of the IND-
CCA-KEM game to generate the key-encapsulation pair 〈K†, C∗0 〉. Then de-
pending on a flipped bit b, either the computed K† or a random one K̃ is
returned as K∗ with C∗0 to AKEM as the challenge K∗||C∗0 . AKEM sets q0 = q∗

and selects a random q1 of same length. Then AKEM flips a bit b′ and performs
C∗ = AE.Enc(K∗, 0, qb′). A∗ = C∗0 ||C∗ is returned to A as a challenge.

After this, queries for OQEM.Dec(A) by A are answered similar to before,
except for A = C0||C with C0 = C∗0 (and C 	= C∗). In such a case, AKEM

runs AE.Dec(K∗, 0, C) directly since it knows the decapsulated K∗. Queries for
OIREM.Enc(i, r) can be easily answered by AKEM since it knows K∗ and b′, i.e.
it sets r0 = r and selects a random r1. Then it returns B = AE.Enc(K∗, i, rb′)
to A. Finally, when A outputs a bit b̃, AKEM outputs b̃⊕ b′.

Let IND-CCA-QREM∗ be the modified game which behaves just like the
original IND-CCA-QEM game except that instead of the secret K∗ used in
AE.Enc(·) and AE.Dec(·), a completely independent and random key K̃ is
used. Note that for b = 0, A plays the IND-CCA-QREM game with AKEM. When

Security-Preserving Asymmetric Protocol Encapsulation 361

b = 1, A is essentially playing the IND-CCQ-QREM∗ game with AKEM. Let X

and X∗ be events that A wins the IND-CCA-QREM and IND-CCA-QREM∗

games respectively. We obtain

Pr[AKEM wins]− 1
2

= Pr[b̃⊕ b′ = b]− 1
2

=
1
2
(Pr[b̃ = b′|b = 1]− Pr[b̃ = b′|b = 0])

=
1
2
(Pr[X∗]− Pr[X]).

Since |Pr[AKEM wins]− 1
2 | ≤AdvIND−CCAπKEM

(λ), thus |Pr[X∗]−Pr[X]|≤2AdvIND−CCAπKEM
(λ).

We now reduce the IND-CCA-QREM∗ game to the AE game, i.e we use an
adversary A against IND-CCA-QREM∗ to construct an adversary AAE against
AE security. Note that KEM is no longer relevant in the IND-CCA-QREM∗

game because the key K̃ used to key AE is random instead of being generated
by KEM.
AAE runs KEM.Key(·) obtaining 〈pk, sk〉. pk is given toA. Queries A = C0||C

for OQEM.Dec(A) from A to AAE are trivially answered by AAE since it has sk

to run QEM.Dec(sk, C0) obtaining K which is then used in AE.Dec(K, 0, C).
The result q is returned to A as 〈K, q〉 for q 	=⊥.

During the challenge stage, A chooses q∗ and sends to AAE. AAE sets q0 = q∗

and selects a random q1. Then flipping a bit b′, it sends 〈0, qb′〉 to the AE
challenger. The challenger selects a random key K̃ and flips a bit b. If b = 0,
it runs AE.Enc(K̃, 0, qb′) and returns the result as C∗. Else, a random C∗ is
returned. AAE runs KEM.Enc(pk) to obtain 〈K∗, C∗0 〉, discards K∗ and returns
A∗ = C∗0 ||C∗ to A as the challenge.

Further queries for OQEM.Dec(A = C0||C) by A are answered similarly
as before, except for C0 = C∗0 , where 〈0, C〉 is sent to AE.Dec(·). (Note that
C must differ from C∗). Queries for OIREM.Enc(i, r) are answered by AAE

who sets r0 = r and selects a random r1 and gives 〈i, rb′〉 to the AE challenger,
where b′ is that chosen by AAE during the challenge phase. AE challenger returns
B = AE.Enc(K̃, i, rb′) if b chosen by it during the previous challenge phase is
0, else it returns a random string. When A outputs a bit b̃, AAE outputs b̃⊕ b′.

For b = 0, A plays the IND-CCA-QREM∗ game with AAE. Further, let X∗∗

be the event that A wins conditioned to b = 1. We obtain

Pr[AAE wins]− 1
2

= Pr[b̃⊕ b′ = b]− 1
2

=
1
2
(Pr[b̃ = b′|b = 1]− Pr[b̃ = b′|b = 0])

=
1
2
(Pr[X∗∗]− Pr[X∗]).

Since |Pr[AAE wins]− 1
2 | ≤ AdvAEπAE

(λ), thus |Pr[X∗∗]−Pr[X∗]| ≤ 2AdvAEπAE
(λ). Also

note that for b = 1 no information on b′ leaks, so Pr[X∗∗] = 1
2 . Rearranging, we

have

Pr[X]− 1
2
≤ 2AdvIND−CCAπKEM

(λ) + 2AdvAEπAE
(λ)

AdvIND−CCA−QREMπQREM
(λ) ≤ 2AdvIND−CCAπKEM

(λ) + 2AdvAEπAE
(λ).

Authentication. We consider reducing the AUTH-CCA-QREM game. This is
similar to the previous reduction for IND-CCA-QREM, so we will only highlight

362 R.C.-W. Phan and S. Vaudenay

the differences. The simulation proceeds similarly, except during the challenge
phase. In more detail, the IND-CCA-KEM challenger runs KEM.Enc(pk) to
obtain 〈K†, C∗0 〉. It then flips a bit b and if b = 0 it returns 〈K∗ = K†, C∗0 〉 to
AKEM. Else it returns a random key K̃ as K∗. When AKEM receives q∗ from A it
computes C∗ = AE.Enc(K∗, 0, q∗) and returns A∗ = C∗0 ||C∗ as the challenge.

Queries for OREM.Enc(i, r∗) can be easily answered by AKEM since it knows
K∗, i.e. it returns B∗ = AE.Enc(K∗, i, r∗); additionally each of these B∗ are
recorded.

Finally, when A outputs a 〈i, B〉, AKEM runs AE.Dec(K∗, i, B) and checks the
resulting r. If no ⊥ is obtained (meaning B is valid) and if B does not match with
a previously recorded B∗, then it is clear that A wins, and thus AKEM outputs a
guess b̃ = 0. Else it outputs b̃ = 1.

When b = 0, A plays the AUTH-CCA-QREM game with AKEM. Let AUTH-
CCA-QREM∗ be the modified game corresponding to b = 1, and X and X∗ be
the corresponding events that A wins in these AUTH-CCA-QREM and AUTH-
CCA-QREM∗ games respectively:

Pr[AKEM wins] −
1
2

= Pr[b̃ = b] −
1
2

=
1
2
(Pr[b̃ = 0|b = 1] − Pr[b̃ = 0|b = 0])

=
1
2
(Pr[A wins|b = 1] − Pr[A wins|b = 0]) =

1
2
(Pr[X∗] − Pr[X]).

Since |Pr[AKEM wins]− 1
2 | ≤AdvIND−CCAπKEM

(λ),thus |Pr[X∗]−Pr[X]| ≤2AdvIND−CCAπKEM
(λ).

Consider now reducing AUTH-CCA-QREM∗ to the AE game. The steps are
similar to the case for IND-CCA-QREM∗ so we only mention the differences.

During the challenge stage, when AAE receives q∗ from A it forwards 〈0, q∗〉
to the AE challenger, who selects a random key K̃ and flips a bit b. If b = 0,
it runs AE.Enc(K̃, 0, q∗) and returns the result as C∗. Else, a random C∗ is
returned. AAE runs KEM.Enc(pk) to obtain 〈K∗, C∗0 〉, discards K∗ and returns
A∗ = C∗0 ||C∗ to A as the challenge.

Finally, when A outputs a B, AAE checks that B does not equal the output
of any previous OREM.Enc(i, r) query, and passes r to the AE challenger who
depending on the bit b selected during the challenge phase either returns the
result r = AE.Dec(K̃, i, B) or ⊥. If no ⊥ is obtained meaning A wins, then AAE

outputs a guess b̃ = 0. Else it outputs b̃ = 1.
Let X∗∗ be the event that A wins the game conditioned to b = 1. We obtain

Pr[AAE wins] −
1
2

= Pr[b̃ = b] −
1
2

=
1
2
(Pr[b̃ = 0|b = 1] − Pr[b̃ = 0|b = 0])

=
1
2
(Pr[A wins|b = 1] − Pr[A wins|b = 0]) =

1
2
(Pr[X∗∗] − Pr[X∗]).

Since |Pr[AAE wins]− 1
2 | ≤ AdvAEπAE

(λ), and Pr[X∗∗] = 0; thus |Pr[X∗∗]−Pr[X∗]| ≤
2AdvAEπAE

(λ).
Rearranging, we have

Pr[X] ≤ 2AdvIND−CCAπKEM
(λ) + 2AdvAEπAE

(λ)
AdvAUTH−CCA−QREMπQREM

(λ) ≤ 2AdvIND−CCAπKEM
(λ) + 2AdvAEπAE

(λ). �

Security-Preserving Asymmetric Protocol Encapsulation 363

B Proof of Theorem 2

Proof. Let Q be the number of protocol sessions initiated by S in the encapsulate-
system; and l + 1 be the number of messages within each protocol session. We
take an adversary E against the encapsulate-system Senc ↔ O of complexity
c−μ where μ = max(μ1, μ2, μ3) with μ1, μ2, μ3 to be later defined. We construct
a sequence of hybrid systems Si and S′i for i = 1, . . . , Q with S0 = Senc, and
S′0 = SQ interacting with the adversary E and oracle O . S′Q will almost be the
toll-system Stoll.
Si and S′i keep record of all 〈A′, B′1, B′2, B′3, . . . , B′l, q′, r′1, r′2, r′3, . . . , r′l〉. System

S′i further keeps additional record of some 〈K, A, q〉 triplets.
We define the oracle-system Si ↔ O which slightly differs from Si−1 ↔ O.

Let A be the ith encapsulated query from S, i.e. the value of the ith “QUERY
A” message. It encapsulates the ith query q. Let Bt (for t = 1, 2, . . . , l) be
the encapsulations of the corresponding responses rt to this ith query q. If the
environment submits a “RESPOND Bt” message (t ∈ {1, 2, . . . , l}) to Si, the
system checks if some 〈A′, B′1, B′2, B′3, . . . , q′, r′1, r′2, r′3, . . . 〉 with A′ = A and
B′s = Bs (for s ≤ t) exists in its record. r′t is returned if this is so. In other cases,
Si aborts.
Si−1 and Si only differ in the treatment on the “RESPOND Bt” (for t =

1, 2, . . . , l) messages initiated by the ith “QUERY A” message. They can be
simulated without the initial secret key sk provided that we get pk and we can use
an OQEM.Dec(·) oracle to treat “QUERY A′” with A′ 	= A messages. We define
an adversary Ai against the AUTH-CCA-QREM game this way (See Fig.4):
The adversary first receives the public key pk and simulates the interaction
with adversary E and O until S issues its ith query q. Then, Ai submits q∗

to the challenger and receives an encapsulation A∗. The adversary can call the
OQEM.Dec(·) oracle except for input A∗ to treat the “QUERY A′” message
with A′ 	= A∗. To treat the “QUERY A′” and subsequent “RESPOND B′t”
messages with A′ = A∗ and B′s = Bs (for s ≤ t), recall that Ai knows q∗ so
it simply queries O with q∗ as many times as necessary to get r∗t+1 and calls
OREM.Enc(t+1, r∗t+1) to get B∗t+1. Note that it is important to query O every
time since the oracle may not be deterministic, e.g. stateful oracles. The final
Bl in the “RESPOND Bl” message to the system is the final Bl in the AUTH-
CCA-QREM game, so the simulation is perfect. In the event E that Bl equals
one of the obtained B∗t from OREM.Enc, then Ai fails to win the AUTH-CCA-
QREM game; in which case the behavior of E(Si−1,O) and E(Si,O) are identical,
and Ai perfectly simulates Si−1 or Si to E . Hence Pr[E(Si−1,O) wins|E] =
Pr[E(Si,O) wins|E]. Otherwise, Ai wins. If Q/REM is AUTH-CCA secure, the
advantage for Ai is negligible, meaning that Pr[Ai wins] ≤ εauth. We deduce
|Pr[E(Si−1,O) wins]− Pr[E(Si,O) wins]| ≤ εauth since the complexity of Ai is
c− μ + μ1 for some small overhead cost μ1.

We define the oracle-system S′i ↔ O which slightly differs from S′i−1 ↔ O.
Now, instead of encapsulating q to produce 〈K, A〉 in the ith query from S, S′i
encapsulates a random query q̃ of the same length and keeps record of 〈K, A, q〉.
Similarly, for any “QUERY A′” message from the environment with A′ = A

364 R.C.-W. Phan and S. Vaudenay

E Ai simulates Si QREM Challenger
pk←− pk←− QEM.Key(1λ) = 〈pk, sk〉.

Case: Receive jth query q (for j �= i) from S .
QEM.Enc(pk, q) = 〈K, A〉.

QUERY A←− Keep 〈j, K〉 in memory.
QUERY A

′−→ OQEM.Dec(A′)−→ QEM.Dec(sk, A′) = 〈K′, q′〉.
If q′ =⊥ then halt. Else O(q′) = r′1.

〈K
′
,q

′
〉←− .

REM.Enc(K′, 1, r′1) = B′

1.
RESPOND B

′
1←− Record 〈K′, A′, B′

1, q
′, r′1〉.

RESPOND Bt(t=1,...)−→ For (j < i),
if 〈K′, A′, B′

1, B
′

2, . . . , q
′, r′1, r

′

2, . . . , 〉 exists
s.t. A′ = A and B′

s = Bs(s ≤ t),
answer r′t to S/O else halt.

For (j > i), REM.Dec(K, t, Bt) = rt.

If rt =⊥ then halt.
Else answer rt to S/O and get r′t+1.
REM.Enc(K′, t + 1, r′t+1) = B′

t+1.
RESPOND B

′
t+1←− Add 〈B′

t+1, r
′

t+1〉 to the record.

Case: Receive ith query q∗ from S.
q
∗

−→ QEM.Enc(pk, q∗) = 〈K∗, A∗〉.
QUERY A

∗←− Keep 〈q∗, A∗〉 in memory.
A

∗←−
QUERY A

′−→ If A′ �= A∗, then proceed as for normal QUERY A′

RESPOND B
′
1←− : : :

QUERY A
′−→ If A′ = A∗, then O(q∗) = r∗1 .

OREM.Enc(1,r
∗
1)−→ REM.Enc(K∗, 1, r∗1) = B∗

1 .
RESPOND B

∗
1←− Record 〈A∗, B∗

1 , q∗, r∗1〉.
B

∗
1←−

RESPOND B
′
t(t=1,...)−→ If 〈A′, B′

1, B
′

2, . . . , q
′, r′1, r

′

2, . . . 〉 exists
s.t. A′ = A∗ and B′

t = B∗

t ,

then answer r′t to S/O else halt. Get r∗t+1.
OREM.Enc(t+1,r

∗
t+1)−→ REM.Enc(K∗, t + 1, r∗t+1) = B∗

t+1.
RESPOND B

∗
t+1←− Add 〈B∗

t+1, r
∗

t+1〉 to the record.
B

∗
t+1←−

RESPOND Bl−→ If 〈A′, B′

1, B
′

2, . . . , B
′

l , q
′, r′1, r

′

2, . . . , r
′

l〉 exists
s.t. A′ = A∗ and B′

l = Bl, answer r′l to S .

Else, output Bl to QREM challenger.
Bl−→

Fig. 4. Reduction from Γ -encapsulate-secure∗ to AUTH-CCA-QREM

for some 〈K, A, q〉 record, S′i gets q from the record, queries O with q′ = q,
and obtains the response r′1 = r1. Nevertheless, instead of encapsulating r1, the
system directly encapsulates a random response r̃1 to produce B′1. The record
〈A′, B′1, q, r1〉 is inserted. This querying of the oracle O is just to update the
internal state of O to handle the case of stateful oracles. The same occurs when
producing subsequent response messages rt+1 (t ∈ {1, 2, . . . , l}) triggered by a
preceeding message rt i.e. a random r̃t+1 is encapsulated instead of querying
O(rt) and 〈B′t+1, rt+1〉 are added to the record.
S′i−1 and S′i only differ in the treatment on the ith “QUERY A” message and

related “QUERY A′” messages with A′ = A; and corresponding “RESPOND
Bt” and “RESPOND B′t” messages. They can be simulated without the initial
secret key sk provided that we get pk and we can use an OQEM.Dec(·) oracle
to treat “QUERY A′” with A′ 	= A messages; and OREM.Dec(·) oracle to treat
“RESPOND Bt” with B′s 	= Bs(s ≤ t) messages. We define an adversary A′i
against the IND-CCA-QREM game this way (See Fig. 5): The adversary first
receives the public key pk and simulates the interaction with adversary E and
O until S issues its ith query q∗. Then, A′i submits q∗ to the challenger and
receives an encapsulation A∗. The adversary can call the OQEM.Dec(·) oracle
except for input A∗ to treat the “QUERY A′” message with A′ 	= A∗. To treat

Security-Preserving Asymmetric Protocol Encapsulation 365

E A′

i simulates S′

i QREM Challenger
pk←− pk←− QEM.Key(1λ) = 〈pk, sk〉.

Receive jth query q from S .

If (j < i): Set q† = q̃ for random q̃.

QEM.Enc(pk, q†) = 〈K, A〉. Record 〈K, A, q〉.
If (j > i): Set q† = q. QEM.Enc(pk, q†) = 〈K, A〉.
If (j = i):

q
∗=q−→ Choose b ∈ {0, 1}.

: Set q0 = q∗. Select random q1.
QUERY A←− Record 〈⊥,A∗, q〉. A

∗←− QEM.Enc(pk, qb) = 〈K∗, A∗〉.
QUERY A

′−→ If 〈K, A, q〉 exists s.t. A′ = A, then:
O(q) = r1.

If K �=⊥ then set r† = r̃ for random r̃.

REM.Enc(K, 1, r†) = B′

1.

Else if K =⊥ call OIREM.Enc(1, r1).
OIREM.Enc(1,r1)−→ Set r0 = r1. Select random r1.

Set B′

1 = B∗. Record 〈A′, B′

1, q, r1〉. B
∗←− REM.Enc(K∗, 1, rb) = B∗.

Else call OQEM.Dec(A′).
OQEM.Dec(A′)−→ QEM.Dec(sk, A′) = 〈K′, q′〉.

If q′ =⊥ then halt. O(q′) = r′1.
〈K

′
,q

′
〉←−

RESPOND B
′
1←− REM.Enc(K′, 1, r′1) = B′

1. Record 〈A′, B′

1, q
′, r′1〉.

RESPOND Bt−→ If 〈K, A, B1, B2 . . . , q, r1, r2, . . . 〉 exists
s.t. A′ = A and B′

s = Bs(s ≤ t), then:
Answer rt to S/O and get rt+1.

If K �=⊥ then set r† = r̃ for random r̃.

REM.Enc(K, t + 1, r†) = B′

t+1.

Else if K =⊥ call OIREM.Enc(t + 1, rt+1).
OIREM.Enc(t+1,rt+1)−→ Set r0 = rt+1. Select random r1.

Set B′

t+1 = B∗. Add 〈B′

t+1, rt+1〉 to record.
B

∗←− REM.Enc(K∗, t + 1, rb) = B∗.

Else call OREM.Dec(t + 1, B′

t+1).
OREM.Dec(t+1,B

′
t+1)−→ REM.Dec(K∗, t + 1, B′

t+1) = r′t+1.
RESPOND B

′
t+1←− If r′t+1 =⊥ then halt. Add 〈B′

t+1, r
′

t+1〉 to record.
r
′
t+1←−

RESPOND Bl−→ If 〈A′, B′

1, . . . , B
′

l, q
′, r′1, . . . , r

′

l〉 exists
s.t. A′ = A and B′

l = Bl, answer r′l to S .
Γ−Judge: end−→ If A wins, output b̃ = 1, else b̃ = 0.

b̃−→

Fig. 5. Reduction from Γ -encapsulate-secure∗∗ to IND-CCA-QREM

the “QUERY A′” message with A′ = A∗, A′i knows q∗ so it simply queries
O with q∗ as many times as necessary to get r∗t (for t = 1, 2, . . . , l). and calls
OIREM.Enc(t, r∗) to get B∗. The success of the Γ -adversary against the system
yields the final guess bit in the IND-CCA-QREM game. If Q/REM is IND-CCA
secure, the advantage for A′i is negligible, meaning that Pr[A′i wins] ≤ εsem. We
deduce |Pr[E(S′i−1,O) wins] − Pr[E(S′i ,O) wins]| ≤ εsem since the complexity
of A′i is c− μ + μ2 for some small overhead cost μ2.
S′Q is such that whenever E(S′Q,O) wins for any i, between any ith QUERY

A and ith “RESPOND Bt” messages, there is at least one “QUERY A′” with
A′ = A and B′s = Bs(s ≤ t) from E (otherwise some modified treatment of
the “RESPOND Bt” message brought by Si fails, since if A′ = A and and
B′s = Bs(s ≤ t) then Si will not answer r′t to S). Due the assumption on O,
discarding repeating queries is harmless. We define a new system S′′ ↔ O which
differs from S′Q ↔ O in the sense that for any “QUERY A′” or “RESPOND
B′t” message such that there is one record 〈K, A, B1, B2, . . . , q, r1, r2, . . . 〉 with
A′ = A then O is not queried but S′′ picks a random r̃ of same length as
r′, does REM.Enc(K∗, t, r̃) = B′t and answers “RESPOND B′t”. Obviously,
Pr[E(S′′,O) wins] ≥ Pr[E(S′Q,O) wins].

366 R.C.-W. Phan and S. Vaudenay

E A′ Stoll

pk←− QEM.Key(1λ) = 〈pk, sk〉.
QUERY A

′−→ QEM.Dec(sk, A′) = 〈K′, q′〉.
RESPOND B

′
1←− O(q′) = r′1. REM.Enc(K′, 1, r′1) = B′

1.
RESPOND Bt−→ REM.Dec(K′, t, Bt) = r′t.

RESPOND B
′
t+1←− O(r′t) = r′t+1. REM.Enc(K′, t + 1, r′t+1) = B′

t+1.
QUERY A←− Pick random q̃ of length l. QEM.Enc(pk, q̃) = 〈K, A〉. QUERY l←−
QUERY A

′−→ If A′ �= A, do as before. Else if A′ = A, pick random r̃ of length m.

REM.Enc(K, 1, r̃) = B′

1.
GO−→

RESPOND B
′
1←− RESPOND m←−

RESPOND Bt−→ If B′

t �= Bt, do as before. Else pick random r̃ of length m.

REM.Enc(K, t + 1, r̃) = B′

t+1.
GO−→

Fig. 6. Going from S ′′
to Stoll

Finally we construct a new adversary E ′ against Stoll from the adversary
E attacking S′′. See Fig. 6. E ′ first generates QEM.Key(1λ) = 〈pk, sk〉 and
simulates E with input pk. Interactions between E and S remain unchanged.
When E ′ receives a “QUERY l” message from Stoll, E ′ picks a random q̃ of
length l, runs QEM.Enc(pk, q̃) = 〈K ′, A′〉 and sends a “QUERY A” message
to E . When E yields a “QUERY A′” message with A′ = A, a “GO” message
is given to Stoll and a random response r̃1 is encapsulated. When Stoll issues a
“RESPOND m” message to E ′, then E ′ answers “RESPOND B′t” to E . Finally
when E sends a “RESPOND B′t” message to E ′, then E ′ sends a “GO” message
to Stoll. Obviously, Pr[E ′(Stoll,O) wins] = Pr[E(S′′

,O) wins]. Since S is ε-Γ -
toll-secure with O, we know that Pr[E(Stoll,O) wins] ≤ ε since the complexity
of E ′ is c−μ+μ3 for some small overhead cost μ3. Hence, Pr[E(Senc,O) wins] ≤
(Q(εsem + εauth) + ε). �

Author Index

Alomair, Basel 102
Ando, Ruo 131
Aumasson, Jean-Philippe 309

Chorin, Xavier 144
Collard, Baudoin 77
Comuta, Aya 297
Cotrina, Josep 251
Cukier, Michel 144

Domingo, Neus 251

Elliott, Stephen 168

Feng, Dengguo 239
Fernandez, Marcel 251

Geiselmann, Willi 1

Hu, Jinwei 49

Jiang, Li 64
Jin, Changlong 168

Kadobayashi, Youki 131
Kawazoe, Mitsuru 297
Khoo, Khoongming 116
Kim, Chong Hee 273
Kim, Hakil 168
Kim, Jangseong 37
Kim, Kwangjo 37
Kim, Zeen 37

Lazos, Loukas 102
Lee, Pil Joong 273
Li, Ruixuan 49
Loe, Chuan-Wen 116
Lu, Jiqiang 11
Lu, Zhengding 49

Maximov, Alexander 89
Meier, Willi 309
Mendel, Florian 324, 335
Miyaji, Atsuko 282
Molina, Jesus 144
Moradi, Amir 259

Pan, Xuezeng 64
Phan, Raphael C.-W. 346
Ping, Lingdi 64
Poovendran, Radha 102

Quisquater, Jean-Jacques 77, 273

Rijmen, Vincent 324, 335

Salmasizadeh, Mahmoud 259
Sanadhya, Somitra Kumar 193
Sarkar, Palash 180, 193
Scemama, Antoine 27
Shalmani, Mohammad T. Manzuri 259
Shin, Jong Hoon 273
Shinoda, Youichi 131
Soriano, Miguel 251
Standaert, F.-X. 77
Steinwandt, Rainer 1

Takahashi, Tetsuya 297

Vaudenay, Serge 346

Wang, Huaimin 156
Wang, Xiaoyun 206, 227
Wen, Yan 156
Wu, Wenling 239

Yu, Hongbo 206

Zhang, Haina 227
Zhang, Wentao 239

	Title Page
	Preface
	Organization
	Table of Contents
	Cryptanalysis of a Hash Function Proposed at ICISC 2006
	Introduction
	The Proposal from ICISC 2006
	General Construction
	Suggested Parameters

	Finding Collisions
	Using the Chinese Remainder Theorem
	Using Linear Algebra
	A Collision for the Proposed Parameters

	Conclusion

	Cryptanalysis of Reduced Versions of the HIGHT Block Cipher from CHES 2006
	Introduction
	Preliminaries
	Notation
	The HIGHT Block Cipher

	Impossible Differential Attack on 25-Round HIGHT
	16-Round Impossible Differentials
	Attacking Rounds 6--30

	Related-Key Cryptanalysis of Reduced HIGHT
	Related-Key Rectangle Attack on 26-Round HIGHT
	Related-Key Impossible Differential Attack on 28-Round HIGHT

	Conclusions
	Procedure of the Related-Key Rectangle Attack on 26-Round HIGHT

	A Cryptanalysis of the Double-Round Quadratic Cryptosystem
	Introduction
	Description of the Double-Round Quadratic Cryptosystem
	Notation
	Idea of the Cryptosystem
	How It Works

	The Kipnis-Shamir Formalism
	Relinearization Technique
	Cryptanalysis
	Recovering the C Matrix
	Recovering the B and A Matrices

	The Affine Case
	Complexity Analysis

	A Lightweight Privacy Preserving Authentication and Access Control Scheme for Ubiquitous Computing Environment
	Introduction
	Background and Related Work
	Related Work
	System Architecture for a Campus UCE
	System Requirements

	Our Proposed Scheme
	Credential Generation
	Credential Authorization
	Verification of Credential and Session Key Establishment
	Extension for Out-of-Order Requests

	Analysis of Our Proposed Scheme
	Performance
	Security

	Conclusion

	Establishing RBAC-Based Secure Interoperability in Decentralized Multi-domain Environments
	Introduction
	Preliminaries
	Framework Overview
	Interoperability Establishment
	The Method of Setting Interoperability
	Comparison with Existing Works

	Cross-Domain Link Rules
	Constraint Violation Caused by Cross-Domain Links
	Cross-Domain Link Rules
	Generation of Cross-Domain Link Rules
	Enforcement of Cross-Domain Link Rules
	Evolution of Cross-Domain Link Rules

	Related Work
	Conclusion
	Pseudo-code for the Generation of Cross-Domain Link Rules
	Proof for Theorem 1

	Handling Dynamic Information Release
	Introduction
	Security Policy
	Security Labels
	Language Syntax and Semantics
	Security Specification

	Intransitive Endorsement
	Local Endorsing Policy
	Intransitive Endorsement Security Policy

	Type-Based Security Analysis
	An Example
	Related Work
	Conclusion
	References
	Appendix

	Improving the Time Complexity of Matsui’s Linear Cryptanalysis
	Introduction
	General Framework for $Algorithm 2$
	Improving the Framework
	Rewriting the Algorithm
	Analysis of the New Algorithm
	Fast Algorithm
	Implication for Multiple Linear Approximations
	Extension to Key Additions $Modulo 2^k$

	Practical Improvements
	Conclusion and Further Works

	On Large Distributions for Linear Cryptanalysis
	Introduction
	Notation and Preliminaries

	Binary vs. Multidimensional Approximations
	Relation Between Approximations
	Multidimensional Noise as a Collection of Binary Noises

	New Techniques to Compute Large Distributions
	Splitting into Sub Distributions Through Events
	Time Complexity Reduction: Method of Gluing of the Events
	Supplementary Techniques: Substitution and Prediction

	Conclusions

	Passive Attacks on a Class of Authentication Protocols for RFID
	Introduction
	Adversarial Model
	Description of the M^2AP and EMAP Protocols
	The M^2AP Mutual Authentication Protocol
	The EMAP Mutual Authentication Protocol

	Passive Attacks Against M^2AP and EMAP
	Passive Attack Against M^2AP
	Passive Attack Against EMAP

	Related Work
	Conclusion

	Side Channel Attacks on Irregularly Decimated Generators
	Introduction
	Outline of ABSG
	Timing Analysis on ABSG
	Phase Shift Fault Analysis on ABSG
	An Example
	Simulation Results

	Bit Flipping Fault Analysis on ABSG
	An Example
	Simulation Result

	Non Side-Channel Attacks
	Weak Key/IV Mixing Functions
	Weak Keys for Input Fault Attack

	Cryptanalysis on DECIM
	Conclusion
	Appendix

	Asynchronous Pseudo Physical Memory Snapshot and Forensics on Paravirtualized VMM Using Split Kernel Module
	Introduction
	Virtual Machine Monitor
	HIDS, NIDS and VMM Based IDS
	Memory Snapshot and Forensics Using VMM

	Proposed Method
	Related Work
	Paravirtualized VMM of XEN
	Event-Channel of XEN
	Split Kernel Module

	Asynchronous Notification Using Split Kernel Module
	Enhancing Memory Snapshot for Malware Forensics
	LKM-Rootkit
	System Call Extension
	Behavior Detect Using MAC

	Experimental Result
	Conclusion

	Filesystem Activity Following a SSH Compromise: An Empirical Study of File Sequences
	Introduction
	Experimental Setup
	Data Analysis
	Statistics on Filesystem Activity: Files
	Statistics on Filesystem Activity: File Sequences
	Attack Sequences Related to Attacker Activity
	Related Work
	Conclusions
	References

	A Secure Virtual Execution Environment for Untrusted Code
	Introduction
	The Architecture of Pollux
	Pollux Implementation
	Pollux VMM
	Virtual Simple Disk Based on Volume Snapshot

	Evaluation
	Evaluation of Functionality
	Performance Evaluation

	Related Work
	Conclusions and Future Work
	References

	Liveness Detection of Fingerprint Based on Band-Selective Fourier Spectrum
	Introduction
	Proposed Method
	Experimental Results
	Database
	Results

	Conclusions and Future Work
	References

	Improving Upon the TET Mode of Operation
	Introduction
	Invertible Block-Wise Universal Hash Function
	Block-Wise Polynomial Evaluation [4]
	A New Construction

	The HEH Construction
	Other Issues

	Discussion and Comparison
	Comparison to Other Construction

	Security Statement for HEH
	Conclusion

	New Local Collisions for the SHA-2 Hash Family
	Introduction
	SHA-2 Family of Hash Functions
	Differential Properties of Boolean Functions
	Linear Approximation of SHA-2 Round Function
	Technique for Finding Local Collisions
	Case B of Table 3

	Differential Path
	Reduced Round Collisions for the SHA-2 Family
	Results

	Multi-collision Attack on the Compression Functions of MD4 and 3-Pass HAVAL
	Introduction
	Description of MD4 and 3-Pass HAVAL
	MD4 Compression Function
	3-Pass HAVAL Compression Function

	Modular Differential Attack on Hash Functions
	Selecting a Message Difference
	Searching the Differential Path
	Determining the Chaining Variable Conditions
	Message Modification

	New Multi-collision and Multi-near-Collision Attack
	Finding 4-Collisions on MD4
	Finding 4-Collisions on 3-Pass HAVAL
	Finding 8-Near-Collisions on 3-Pass HAVAL
	Conclusion

	Differential Cryptanalysis of T-Function Based Stream Cipher TSC-4
	Introduction
	A Brief Description of TSC-4
	Cipher Body
	State Initialization

	Two Special Differential Characteristics in the State Initialization
	Chosen IV Differential Attack on TSC-4
	Weak Keys Resulting in the High Occurrence Probability of Differential Characteristic ω_Y
	Identifying and Recovering the Weak Keys

	Conclusion

	New Results on Impossible Differential Cryptanalysis of Reduced AES
	Introduction
	Description of AES
	Notations

	Four-Round Impossible Differentials of AES
	Attacking 6-Round AES
	The First Attack
	The Second Attack

	Attacking 7-Round AES
	Attacking 8-Round AES-256
	An Improvement of R.C.W.Phan's Attack on 7-Round AES-192
	Summary

	A Note About the Traceability Properties of Linear Codes
	Introduction
	Previous Work
	Our Contribution
	Organization of the Paper

	Definitions and Previous Results
	Background and Previous Results on c-TA Traceability Codes

	Sufficient and Necessary Conditions for c-TA Linear Codes
	The c-TA Property in Linear Codes
	The c-TA Conditions for Cyclic Codes

	Conclusions

	Power Analysis Attacks on MDPL and DRSL Implementations
	Introduction
	MDPL and DRSL Styles
	MDPL
	DRSL

	Information Leakage of the CMOS D-flip-flop
	Attacks
	Attack on a Simple MDPL Circuit
	Attack on a AES S-Box Implemented in DRSL Style

	A Proposal to Decrease the Leakage of MDPL and DRSL Flip-Flops
	Conclusions

	Safe-Error Attack on SPA-FA Resistant Exponentiations Using a HW Modular Multiplier
	Introduction
	Safe-Error Attacks
	Fault Attack Model
	Safe-Error Attack on SPA-FA Resistant Exponentiations
	Safe-Error Attack on the Scheme of Boscher et al.
	Practicability of the Attack
	Safe-Error Attack on the Scheme of Giraud

	Conclusions and Future Works

	Generalized MMM-Algorithm Secure Against SPA, DPA, and RPA
	Introduction
	Preliminaries
	Elliptic Curve
	Power Analysis
	A Review of Mamiya-Miyaji-Morimoto-Algorithm

	Generalized MMM-Algorithm
	Algorithm Intuition
	GMMM-Algorithm
	The Optimal Division with the Best Coordinate
	Performance

	Comparison
	Conclusion

	Pairing-Friendly Elliptic Curves with Small Security Loss by Cheon’s Algorithm
	Introduction
	Pairing Based Cryptosystem
	Protocols Based on Pairing-Related Problem and Cheon's Algorithm
	Pairing-Related Problems
	Cheon's Algorithm and Its Improvement
	The Effect of Cheon's Algorithm for Constructing Pairing-Friendly Elliptic Curves

	How to Reduce a Security Loss of a Cyclotomic Family
	The Condition of a Large Prime Factor of $\Phi_{2n}(x)$
	Our Construction
	Examples

	Conclusion

	Analysis of Multivariate Hash Functions
	Introduction
	Preliminaries
	Security Definitions
	Multivariate Hash Functions
	Solving Multivariate Systems

	Non-universality of Sparse Function Families
	General Case
	Case of Even Components over GF(2)

	Solving Underdefined Semi-sparse Systems
	Description of the Method
	Application to Multivariate Hash Functions

	Key Recovery for NMAC and HMAC
	Pseudo-randomness and Unpredictability
	Weak Instances of the Stream Ciphers QUAD
	Conclusion

	Colliding Message Pair for 53-Step HAS-160
	Introduction
	Description of the HAS-160
	The Attack on 53-Step HAS-160
	Characteristic for 53-Step HAS-160
	Set of Sufficient Conditions
	Finding a Colliding Message Pair

	Improved Collision Attack
	A Colliding Message for 53-step HAS-160
	Extending the Attack to 59 Steps of HAS-160
	Conclusion
	References

	Weaknesses in the HAS-V Compression Function
	Introduction
	Description of the HAS-V Hash Function
	Message Expansion
	State Update Transformation

	Alternative Description of HAS-V
	Pseudo-near-Collisions and Pseudo-collisions for the HAS-V Hash Function
	Pseudo-collisions in HAS-V with Tailored Output
	Pseudo-collisions in HAS-V

	(Second) Preimages for the HAS-V Hash Function
	Conclusion
	References

	Security-Preserving Asymmetric Protocol Encapsulation
	Introduction
	A Generic Construction for Query-Response Encapsulation
	Query/Response Encapsulation Mechanism (Q/REM)
	Asymmetric Protocol Encapsulation with Q/REM
	Instantiating Q/REMs

	Provably Secure Encapsulation
	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2

	Author Index

