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Summary. Growth is involved in many fundamental biological processes such as
morphogenesis, physiological regulation, or pathological disorders. It is, in general,
a process of enormous complexity involving genetic, biochemical, and physical com-
ponents at many different scales and with complex interactions. The purpose of this
paper is to provide a simple introduction to the modeling of elastic growth. We first
consider systems in one-dimensions (suitable to model filamentary structures)to in-
troduce the key concepts. Second, we review the general three-dimensional theory
and show how to apply it to the growth of cylindrical structures. Different possible
growth mechanisms are considered.
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1 Introduction

Biological growth is a fascinating process of tremendous complexity that has
attracted the attention of generations of biologists and remains today a fun-
damental scientific problem. Surprisingly, this problem has met with little
interest in the physics and mathematics community. However, with the devel-
opment of quantitative biomechanics (in the footsteps of scientists like Skalak
and Fung), the mathematical development of exact elasticity, the physical
modeling of growth, and computational advances, a theory of growth has
emerged and the mathematical analysis of its consequences is finally possible.
The purpose of this article is to provide an introduction to the problem of
growth, its mathematical issues and the scientific challenges ahead of us.

The emphasis will be on the particular role played by mechanical quantities
(such as stresses and strains) and their interaction with changes in geometry
arising during growth. Based on these observations and simple mechanical
systems in one dimension we will discuss different approaches to modeling
macroscopic growth in continuum mechanics and show how to generalize the
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classical theory of exact elasticity. The mathematical analysis of such a theory
of growth enables us to understand the particular interaction between geome-
try and mechanics and helps us to identify particular mechanisms that can be
used either in building specific material properties, in homeostatic regulation,
or in embryonic development through instability-driven pattern formation.

2 One-dimensional Theory: Elasticity, Visco-elasticity,
and Plasticity

We start with a simple conceptual framework by considering growth phenom-
ena in one dimension. That is, we consider the growth of a (mostly) filamen-
tary structure. This type of growth is found in many microbial systems such
as filamentous bacteria and fungi but also in plants where stems, roots, and
tendrils all display some aspects of one-dimensional growth. In size, these sys-
tems span at least 6 orders of magnitude from microns to meters. Biologists
would be quick (and correct) to point out that growth in these systems is
much more complex and involves structural details at the wall level which
are necessary to describe any features related to growth. Here we choose to
look at these systems as a mechanical continuum for which some features and
time-evolution are dominated by its slenderness and hence can be modeled as
elastic filaments.

Before reviewing the published plant growth models it is useful to recall
the basic facts about Kelvin solids, Maxwell fluids, and Bingham fluids.

2.1 Kelvin Solids

A purely elastic material is one in which the response to applied stresses is
instantaneous and reversible. A Kelvin solid is an elastic solid but one in which
the response to the stress occurs over a finite time determined by the viscous
characteristic of the “solid”. In the simplest one dimensional case, one can
write

σ = Eε + η
πε

πt
, (1)

where σ denotes the (applied) stress, and ε denotes strain. E is an elastic
modulus and η a coefficient of viscosity. If η = 0 the equation reduces to the
classical constitutive relation for an elastic solid. If η �= 0, the basic idea can
be illustrated by the case of a constant applied stress σ0.

σ0 = Eε + η
πε

πt
. (2)

The equation is easily solved for ε to give

ε(t) =
σ0

E

(
1 − e−t/τr

)
, (3)
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where
τr = η/E, (4)

is the “visco-elastic” relaxation time. Another standard exercise is to impose
a periodic stress σ(t) = σ0 cos(ωt) which gives, in the limit t → ∞

ε(t) =
σ0E

E2 + η2E2
cos(ωt − α), (5)

which shows a phase lag α between the strain and the applied stress, where

α = arctan(τr/τσ), (6)

represents the competition between the response time of the solid τr = η/E
and the time scale of the applied stress τσ = 1/ω. One should also note that
if the stress is suddenly turned off, the strain relaxes as

ε ∼ e−t/τr . (7)

2.2 Maxwell Fluids

A Maxwell fluid is a viscous fluid with some elastic properties. The simplest
model is one in which the rate of strain obeys the equation

πε

πt
=

1
η
σ +

1
E

πσ

πt
. (8)

Three simple comments:

1. If the second term on the r.h.s is dropped one is left with the simplest
fluid model

πε

πt
=

1
η
σ, (9)

in which rate of strain is proportional to the stress and the fluid exhibits
irreversible flow.

2. If the first term on the r.h.s. is dropped one is left with

πε

πt
=

1
E

πσ

πt
, (10)

which represents the elastic component of the material: after integrating
both sides w.r.t. time one simply has the pure elastic response ε = σ/E.

3. If the strain is turned off, the stress relaxes as

σ ∼ e−t/τr , (11)

where τr is as above - which should be contrasted with the equivalent
strain relaxation of a Kelvin solid when the stress is turned off.
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Basic features of the Maxwell model can be illustrated with an applied stress
of the form

σ = σ0

(
1 − e−t/T

)
. (12)

If T is small the stress ramps up rapidly; if T is large, the stress ramps up
slowly. The rate of strain equation can be integrated explicitly to give

ε(t) =
σ0

η

(
t + T

(
e−t/T − 1

))
+

σ0

E

(
1 − e−t/T

)
. (13)

(i) For the case 0 < t < T , with T small, i.e. for short times in the case of a
rapidly ramped stress, one finds that

ε ∼ σ0

ET
t, (14)

which shows that the strain follows the applied stress according the elastic
part of the system, ε̇ ∼ σ̇/E.
(ii) For t � T , one finds that

ε ∼ σ0

η
t, (15)

which shows that the strain is dominated by the fluid component of the system,
ε̇ ∼ σ/η.

2.3 Bingham Fluids

In a simple fluid there is (irreversible) flow in response to applied stress,
however small. For non-Newtonian fluids such as paint, flow does not begin
until a critical yield stress, σ∗, has been exceeded. This is the Bingham model
which, in its simplest form, is expressed as

πε

πt
=

1
ν

[σ − σ∗], (16)

where [σ− σ∗] = max(0, (σ −σ∗)). This model of irreversible extension (flow)
once a critical stress has been exceeded, has been the paradigm for most plant
growth models. The Bingham model can easily be generalized to a Maxwell-
Bingham type system represented by

πε

πt
=

1
ν

[σ − σ∗] +
1
E

πσ

πt
. (17)

In terms of terminology, the convention is (or should be!) to call a Maxwell
fluid visco-elastic, reflecting the combination of irreversible flow generated
by viscous stresses with an elastic component; and to term a Bingham fluid
plastic - a much misused term which is (or should) be used to mean an irre-
versible deformation beyond a critical yield stress. A comparison of the strains
produced by the different models is given in Fig.1).
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Fig. 1. Comparison of strains produced by a ramping of the stress for four different
materials, ν = 1/4, σ∗ = 1/2, E = σ0 = η = 1, T = 1/4.

3 One-dimensional Theory: Growth Models

3.1 Lockhart-Ortega-Cosgrove Model

Lockhart’s model is one of the earliest quantitative models of plant cell growth
[45]. Geometrically the plant cell is considered to be an axisymmetric cylinder
of constant radius, but growing length. This growth in length is related to the
increase in volume due to water entering the cell, and the irreversible length
increase is, in turn, taken to be the result of the turgor pressure exerted on
the cell wall (in fact, in this model, this is the pressure exerted on the end of
cylinder which is treated as a flat cap). Lockhart’s discussion begins with a
seemingly simple statement about the elastic strain in the system which he
defines as

ε =
l − l0

l0
, (18)

and is governed by a simple Hooke’s law, namely
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ε =
1
E

σ. (19)

Assuming a constant applied stress σ, time differentiation of the strain gives

ε̇ =
l̇

l0
− l

l0

l̇0
l0

= 0, (20)

and hence
l̇

l
=

l̇0
l0

. (21)

In terms of our own language, what does this mean? If we regard l as the
current length and l0 as the reference length, then if both are growing in time,
a constant rate of strain can be maintained if the reference length extends
elastically, at each instant, the same amount as the current length. Lockhart
points out that the time scale of elastic equilibrium for plant cells (minutes)
is much more rapid than the time scale of the irreversible extension (hours);
hence the system is claimed to always be in a state of elastic equilibrium as it
grows. Lockhart’s argument proceeds in two parts. The increase in (current)
length due to volume increase (due to osmosis) is expressed as

dl

dt
=

KA

a
(ΔΠ − P ) (22)

where K is a water permeability constant, A = 2πrl is the cylinder side wall
area, a = πr2 the cross-sectional area, ΔΠ an osmotic pressure variable, and
P the turgor pressure. This is re-expressed as

1
l

dl

dt
=

2K

r
(ΔΠ − P ). (23)

The left hand side l̇/l could be thought of as a “current configuration rate of
strain”. He then goes on to define the “irreversible wall extension” as

1
l0

dl0
dt

= Φσ, (24)

where Φ characterizes the cell wall’s “rate of irreversible flow” (Lockhart’s
terminology). A few comments: (i) the left hand side l̇0/l0 could be thought
of as a “reference configuration rate of strain” - from the point of view of a
growth process it may indeed be appropriate to measure the growth in terms
of the change in reference configuration length; (ii) the equation of motion
represents a simple fluid flow (i.e. rate of strain ∝ stress); (iii) as Lockhart
points out (24) could be modified to correspond to a Bingham type flow,
namely

1
l0

dl0
dt

= Φ[σ − σ∗]. (25)
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The stress σ is expressed, in the standard way, in terms of the (turgor) pressure
on the end cap and the wall thickness, δ, i.e. σ = πr2P/2πrδ. The equation
of motion (24) is then used to express P in terms of the extension, namely

P =
2δ

rΦ

1
l0

dl0
dt

=
2δ

rΦ

1
l

dl

dt
, (26)

where (21) is used to obtain the last equality. This expression for P is then
combined with (23) to give

1
l

dl

dt
=

2rKΔΠΦ

4δK + r2Φ
, (27)

which is essentially Lockhart’s main result (introducing a Bingham type flow
only modifies the equation slightly) which, in the end, relates the current rate
of strain to a stress representing the interplay of osmotic and turgor pressures.
The various way in which strain, and rates of strain, are defined - and then
connected through the assumption of constant elastic strain - is not especially
satisfactory. We also note (see below) that the equation does not depend on
the elastic modulus of the system.

The assumed state of constant elastic equilibrium is a consequence of the
assumed constancy of the stresses. This means that the constitutive relation
(24) is simply that of a (simple) fluid. Ortega proposed that the effect of
elasticity can be explicitly restored by replacing (24)or (25) by a Maxwell
type relationship [58], namely

de

dt
= Φ[σ − σ∗] +

1
E

dσ

dt
, (28)

where de/dt is the elongation strain rate which Ortega defines as de/dt =
(1/l)dl/dt. Ortega’s analysis of his model yields some interesting extensions
of Lockhart’s model - which we shall not pursue here. A somewhat similar
discussion/extension of Lockhart’s model was also given by Cosgrove [11].

3.2 Goodwin Model

Goodwin [22] begins by summarizing the Lockhart-Cosgrove-Ortega model in
the form

1
V

dV

dt
= φ[P − Y ] +

1
E

dP

dt
, (29)

where he describes Y as the yield threshold, φ as the extensibility coefficient
of the wall, and E as the volumetric elastic modulus E = V dP/dV . Noting
that the volumetric growth rate (1/V )dV/dt is analogous to a rate of strain
and P corresponds to a mechanical stress, he recasts the equation in the form

E
dε

dt
=

1
τ

[σ − Y ] +
dσ

dt
, (30)
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where ε is the strain and in the form of a Maxwell-Bingham constitutive
relationship. He notes that when σ > Y , the strain ε is a combination of an
elastic strain (proportional to the stress variations) and a growth strain Γ ,
where the rate of growth is expressed as

E
dΓ

dt
=

1
τ

[σ − Y ] (31)

We see that (30) can be written as

dε

dt
=

dΓ

dt
+

1
E

dσ

dt
. (32)

and as we will see this is the bridge to the three-dimensional growth model
by Rodriguez et al. described in section 4.1. Goodwin defines the growth rate
in terms of the reference length, namely

dΓ

dt
=

1
l0

dl0
dt

, (33)

and hence the growth rate equation
1
l0

dl0
dt

=
1
τ

[ε − s], (34)

where s = Y/E and the stress σ is expressed in terms of the elastic strain, i.e.
σ = εE, This latter assumption may not be a good physical model. The growth
rate equation (34) is now a strain based model, i.e. irreversible extension if
the elastic strain exceeds a critical strain threshold. Goodwin then argues that
there could also be a contribution to the growth as a result of a change in the
elastic modulus. Thus assuming the Hooke’s law σ = Eε and differentiating
both sides w.r.t. time under the assumption of constant stress gives

dε

dt
= − ε

E

dE

dt
, (35)

If the elastic strain ε is taken to be ε = (l− l0)/l0 and that the variations in ε
is due to changes in l0 (a proposition that might require a little more thought)
then the above relationship can be cast in the form

1
l0

dl0
dt

=
ε

1 + ε

1
E

dE

dt
. (36)

If this is added to (34) one has the Goodwin growth rate model

1
l0

dl0
dt

=
1
τ
[ε − s] +

ε

1 + ε

1
E

dE

dt
. (37)

Two comments: (i) the recognition of a total rate of strain being decomposed in
to a growth rate part analogous to a simple Bingham fluid flow, and an elastic
(rate of strain) part is fundamental to the model and is, in fact, equivalent to
the simplest form of Prandtl-Reuss equations for elasto-plastic deformation ;
(ii) the separate consideration of the elastic stress variation (35) and then its
addition to the growth rate component, could be interpreted as a statement
of the widely different time scales of the growth and elastic processes.
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3.3 Stein Model

The discussion of (biological) rod growth by A.A. Stein [71] is the most self-
consistent of the models to date and, as is quickly apparent, a linearized
version of the more general approach of Rodriguez et. al. (see section 4.1).
His starting point is

ε̇ = ε̇g + ε̇e, (38)

which could be interpreted as the total rate of strain, ε̇ equals the growth rate
ε̇g plus the elastic rate of strain ε̇e. 1 He proposes that the growth rate takes
the general form

ε̇g = A + Mσ, (39)

and the elastic strain, εe, satisfies a Hookean relationship

εe = Kσ. (40)

In the above three equations all variables are now taken to be tensorial. Given
the above, the rest is straight forward. In component form (38) is thus

ε̇kl = Akl + Mklmnσmn +
d

dt
(Mklmnσmn) . (41)

He makes an intriguing aside that since the elastic deformations are so small,
the type of time derivative is unimportant, so d/dt can be taken as differenti-
ation w.r.t. time for fixed comoving coordinates, and that use of the Oldroyd
derivative instead of this would only add negligibly small corrections. The
stresses are assumed to satisfy the standard equilibrium equations

πσkl

πxl
+ F k = 0. (42)

Stein first considers the case of a growing rectangular cylinder under pressure
yielding simple equations for the growth of the cylinder length (no great sur-
prises found here). It would appear that be defines his (total) rate of strain as
l̇/l where l is the current length. He then goes on to tackle the more difficult
case of a growing bending rod.

3.4 Growing Cosserat Rods

A rod [2, 10, 47] is represented by its centerline r(s) where s is a material
parameter taken to be the arc length in a stress free configuration (0 ≤ s ≤ L)
and two orthonormal vector fields d1(s), d2(s) representing the orientation
of a material cross section at s.
1 Care must be taken when defining “elastic rate of strain” - a point we will discuss

later. (We comment that Stein refers to the various ε̇ as “velocity tensors of the
[associated]...strains”. As a pedantic point - which we will pursue later - we note
that velocity gradients and rates of strain are only equivalent in infinitesimal
elasticity theory.)
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Fig. 2. The director basis represents the evolution of a local basis along the rod.

A local orthonormal basis is obtained (see Fig. 2) by defining d3(s) =
d1(s) × d2(s) and a complete kinetic description is given by:

r′ = v, (43)
d′

i = u× di, i = 1, 2, 3, (44)
ḋi = w × di i = 1, 2, 3, (45)

where ( )′ and ˙( ) denote the derivative with respect to s and t, and u, v
are the strain vectors and w is the spin vector. The components of a vector
a = a1d1 + a2d2 + a3d3 in the local basis are denoted by a = (a1, a2, a3)
(following [2], we use the sans-serif fonts to denote the components of a vector
in the local basis). The two first components represent transverse shearing
while v3 > 0 is associated with stretching and compression. The two first
components of the curvature vector u, are associated with bending while u3

represents twisting.
The stress acting at r(s) is given by a resultant force N(s) and resultant

moment m(s). The balance of linear and angular momenta yields [2]

n′ + f = ρAr̈, (46)

m′ + r′ × n + l = ρ
(
I2d1 × d̈1 + I1d2 × d̈2

)
, (47)
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where f(s) and l(s) are the body force and couple per unit length applied on
the cross section at s (these body forces and couple can be used to model
different effects such as short and long range interactions between different
part of the rod or can be the result of self-contact or contact with another
body), A is the cross-section area, ρ the mass density, and I1,2 are the principal
moments of inertia of the cross section (corresponding to the directions d1,2).

To close the system, we assume that the resultant stresses are related to
the strains. There are two important cases to distinguish.

Extensible and Shearable Rods

First, we consider the case where the rod is extensible and shearable and we
assume that there exists a strain-energy density function W = W (y, z, s) such
that the constitutive relations for the resultant moment and force in the local
basis are given by

m = f(u − û, v − v̂, s) = ∂yW (u − û, v − v̂, s), (48)
n = g(u − û, v − v̂, s) = ∂zW (u − û, v − v̂, s), (49)

where v̂, û are the strains in the unstressed reference configuration (m = n = 0
when u = û, v = v̂). Typically, W is assumed to be continuously differentiable,
convex, and coercive. The rod is uniform if its material properties do not
change along its length (i.e. W has no explicit dependence on s) and the
stress-free strains v̂, û are independent of s.

Inextensible and Unshearable Rods

In the second case, we assume that the rod is inextensible and unshearable,
that is we take v = d3 and the material parameter s becomes the arc length.
In that case, there is no constitutive relationship for the resultant force and
the strain-energy density function is a function only of (u − û), that is

m = ∂yW (u − û) = f(u − û) (50)

In the simplest (and most widely used) case the energy is

W1 = K1u
2
1 + K2(u2 − û2)2 + K3(u3 − û3)2, (51)

where û2 and û3 represent the intrinsic curvature and torsion that represent
the shape of the filament when unloaded. Explicitly, the resultant moment is

m = EI1u1d1 + EI2(u2 − û2)d2 + μJ(u3 − û3)d3 (52)

where E is the young modulus, μ is the shear modulus, and J is a parameter
that depends on the cross-section shape (an explicit form for J and examples
can be found in [29]). For a circular cross-section, these parameters are:
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I1 = I2 =
J

2
=

πR4

4
, (53)

where R is the radius of the cross-section. The products EI1 and EI2 are usu-
ally called the principal bending stiffnesses of the rod, and μJ is the torsional
stiffness.

The orthonormal frame (d1,d2,d3) is different from the Frenet-Serret
frame defined by the triple (normal,binormal,tangent)=(ν, β, τ ). If we take
v1 = v2 = 0, v3 = 1, then the vectors (d1,d2) lie in the normal plane to the
axis and are related to the normal and binormal vectors by a rotation through
an angle ϕ:

d1 = ν cosϕ + β sinϕ (54)
d2 = −ν sin ϕ + β cosϕ (55)

This rotation implies that

u = (κ sinϕ, κ cosϕ, τ + ϕ′) (56)

where κ and τ are the usual Frenet curvature and torsion.

Growing Rods

We are now in a position to model growth in elastic rods. There are actually
three different ways that this can be achieved. The first approach, which we
refer to as parameter variation consists in considering families of rod solutions
(typically static due to the slow time evolution of growth with respect to
viscous damping in the rod) parametrized by one of the material parameters.
For instance, in the growth of a tree, one may consider the length and width
as two parameters that evolve in time. At each time, we increase the value of
such parameters and recompute the static solution that match the boundary
conditions. The second approach is remodeling. The idea is now to consider
a separate evolution law for the material parameters that may depend on
time and history of the material. This is fundamentally different from the
previous approach since the material parameters may now be a local function
of the position and their values depend on the evolution in time. The third
approach is the evolution of the natural configuration. This is somewhat more
subtle and will open the discussion to the general discussion of growth in
three-dimensional nonlinear elasticity.

Growing Rods: Parameter Variation

In this quasi-static approach, each solution remains a solution of the classic
Kirchhoff equations and growth is studied by considering the evolution of such
solutions w.r.t. the parameters. The idea is to study the evolution of shape
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Fig. 3. Growth of a tendril. Once attached the tendril develops a perversion com-
posed of two helical structure with opposite handedness Drawing from [12]. In the
first stage (A), the tendrils are circumnutating until they find an attachment. In the
second stage (B), the tendrils are attached and perversion sets in.

and change in shape through a bifurcation process mediated by a control
parameter.

As a first example, consider the evolution of tendrils in plants [28, 50]. A
tendril is a modified leaf that can be found at the extremities of some climb-
ing plants and are used by the plants to achieve vertical growth by attaching
itself to other supports. A tendril can be modeled as an elastic rod under
tension. Once a tendril has grasped a support, it starts developing curvature
by differential growth until it bifurcates to a shape made out of 2 (or more)
helical structures with opposite handedness called a perversion (this is due to
the fact that the original structure has no twist and neither ends are allowed
to rotate–See Fig.3). These helical springs provide the climbing plant with a
firm but elastic connection to its support [12]. The creation of these helical
structures from a straight filament can be understood in terms of parameter
variation. The tendril is modeled as an initially straight filament under ten-
sion. Its constant intrinsic curvature increases slowly in time and the filament
is considered to be in static equilibrium at all time. The problem reduces to
exploring the possibility of a bifurcation from a straight solution to a solution
connecting asymptotically two helical structure of opposite handedness (See
Fig. 4).
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Fig. 4. Model of perversion. A straight rod under tension undergoes a bifurcation
when its intrinsic curvature is increased (from top to bottom). Reproduced from [50].

As a second example, consider the growth of twining vines. Twining plants
achieve vertical growth by revolving around supports of different sizes on
which they exert a pressure. During growth, the growing tip waves around
in a circular motion known as circumnutation until it finds an appropriate
upright support and then start wrapping around it to extend upward. The
tip of the vine keeps nutating and the vine pursue its climbing process by
forming a spiral around the support. The growth process of twining plants
raises many interesting mechanical questions already noted by 19th century
botanists and further studied by Silk, Holbrook and co-workers [48,64,68–70].
Viewed as a growth problem, we can study the possible equilibria of a rod with
intrinsic curvature and torsion in contact with a cylinder and with increas-
ing length. Therefore the problem reduces to finding suitable solution with
increasing length, taken as our control parameter. There exist many different
regimes that can be studied from a bifurcation standpoint, in particular, one
can determine the maximal pole radius around which a vine can grow, an in-
teresting question raised by Charles Darwin (1888) (see [25] for details). Here
we restrict our attention to the problem of finding a solution that corresponds
to the correct mechanical behavior of the plant during growth. That is, the
vine connect a helical solution to a hook like structure (termed the anchor).
Such solutions were found and an example is given in Fig.5.

Another example of growth through parameter variation can be found
in [76] where the growth of twisted circular ring with application to the growth
of B. subtilis was considered (See below).

Growing Rods: Remodeling

In the previous examples, growth was passive. That is, it is modeled by the
evolution of an outside control parameter without any feedback from the form
to the material parameters. In many growth process, the evolution of the struc-
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Fig. 5. A sequence of three-dimensional solutions to the attachment problem. Note
the continuous, almost helical, solution, followed by the anchor that provides tension
in the filament. Figure reproduced from [25].

ture directly influences the evolution of the material parameter. For instance,
a branch of a tree can be trained to grow in a certain shape (which makes for
beautiful alleys in French garden). At first, the elastic structure is loaded and
stressed into a particular shape. As time passes, the structure remodels itself
in such a way as to relieve the stresses and the structure permanently sets in,
even in the absence of loading.

As a simple example, consider the case of an unshearable, inextensible
planar rod under end compression [21]. As the rod buckles it takes a new
shape. At this point it is assumed that the natural state of the rod will evolve
towards this equilibrium shape. That is, its intrinsic curvature κ̂ = û2 evolves
in time towards its actual curvature. A simple model for viscoelastic relaxation
of curvature is

T
∂κ̂

∂t
= κ − κ̂ (57)

where T is a typical time corresponding to the viscoelastic response of the ma-
terial. The important point to notice here is that, after buckling, the curvature
changes at all points and when the intrinsic curvature relaxes it takes different
values at all point. The process depends on the loading and the parameters
but also on the history of the loading process which makes it fundamentally
different from the previous modeling (through parameter variation). To em-
phasize this point, consider Fig. 6 where an initially straight rod was loaded
with a given ramp and allowed to relax following the rule given.
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Fig. 6. Filaments trained with time-dependent forces. For each of the force-time
profiles shown in (a) is the corresponding sequence of filament shapes (a) shown
at intervals of Δt = 0.01. Dashed line indicates end of linear ramp [21]. As can be
clearly seen in picture (i), the filament has remodeled into its shape and retains it
after the load is removed. With longer unloading times ((ii) to (v)), the filament
when unloaded, partially relaxes to its original shape.

Growing Rods: Evolution of the Natural Configuration

The two previous modeling approaches work for systems where the law for the
growth evolution of the material can be described by changes in the material
parameters. However, it is not suitable to describe other aspects of growth.
For instance, consider a naturally straight untwisted rod in its unstressed
configuration and allow it to increase in length. If the increase in length is
uniform (independent of the material parameter), then it can be described by
changing the length (a material parameter) as before. However, if growth is not
uniform but depends on the position, stresses, or strains, the growth evolution
cannot be simply described by a change in the material parameters. The
essence of the problem comes from the fact that the reference configuration
of the rod changes due to growth. For the purpose of this discussion consider
an unshearable but extensible rod assume that growth only acts by changing
the local element of length. The strain variable associated with a local change
in length is v3 = λ. If the rod is not growing, a typical constitutive law for
λ = λe is

n3 = ε(λe − 1) (58)
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with an extension modulus ε relating the tension in the rod to its elastic
extension (λe > 1) or compression (0 < λe < 1). Now, the extension may
also be created through growth. In the absence of tension, we introduce λg

to describe the local extensional growth (λg > 1 for growth). In general when
both growth and elasticity are combined, we split the extensional strain into

λ = λeλg (59)

Since we have introduced a new strain variable λg a constitutive relationship
for its evolution must be prescribed. This depends on the system being consid-
ered (see Section 4.1 for a discussion). Typically, an equation for the evolution
of the growth rate as a function of the stress and material parameter will be
specified

λ̇g = λgF (n, s). (60)

As an example of a local growth law, we consider the evolution of length and
twist in a model for the growth of Bacillus subtilis.

3.5 Application to the Growth of Bacillus subtilis

The individual cells of the bacterial strain Bacillus subtilis are rod-shaped
and typically of length 3 − 4μm and diameter 0.8μm. Under certain circum-
stances they are found to grow into filaments consisting of the cells linked
in tandem due to the failure of daughter cells, produced by growth and sep-
tation, to separate. As they elongate these filaments, which are immersed in
a liquid environment (whose temperature and viscosity can be controlled),
are observed to twist at uniform rate. The degree of twist and handedness
can, in fact, be controlled experimentally and a wide range of states from
left-handed to right-handed forms, can be produced. The actual twist state of
the cells seems to be related to properties of the polymers which are inserted
into the the cell wall during growth. As they elongate the filaments are ob-
served to writhe and eventually deform into double-helical structures. These
continue to grow and periodic repetition of this process results in macroscopic
fibers (termed “macro-fibers”) with a specific twist state and handedness. (A
schematic representation of this dynamics is given in Fig. 7).

A striking feature of this iterated process is that at every stage of the
self-assembly, the handedness of the helical structures that are created is the
same (e.g. a right-handed double helix gives rise to a right-handed four-strand
helix and so on). The nature of the environment does, however, influence cer-
tain aspects of the self-assembly. In a viscous environment the basic writhing
instability leads to something of a “buckling” at the middle of the filament
with the formation of a tight central loop; this is followed by a helical wind-up
which starts at the base of this loop (Fig. 7B). By contrast, in a non-viscous
medium, the instability causes the filament to fold over into a large loop closed
by contact between the ends of the filament. This closure is then followed by
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Fig. 7. The two basic looping of Bacillus subtilis: A. In non-viscous medium, B. In
viscous medium (Picture courtesy of Neil Mendelson).

a helical wind-up starting at that point. In both cases this self-assembly con-
serves handedness and usually continues over long periods until macro-fibers,
several millimeters long, are formed.

The dynamics of the self-assembly and the mechanical properties of the
bacterial threads have been studied in great detail by Mendelson and co-
workers over many years [51–53]. In addition to the fascinating questions of
growth and form raised by this process, the macrofibers themselves offer the
prospect of unusual bio-materials that can be mineralized and packed in ways
that are are of practical biomedical and biotechnical use.

Mathematical modeling of Bacillus subtilis presents many challenges. With
a little thought the handedness preserving nature of the basic instability can
be explained in qualitative terms in which an “under-twisted” filament un-
dergoes a writhing instability. Fundamental to this picture is the idea of an
“intrinsic twist” associated with each cell and which drives the dynamics. This
picture is, in a sense, quite universal and can also be seen in other filamentary
structures ranging from the microscopic (e.g. DNA) to the macroscopic (e.g.
telephone cables). The case of Bacillus subtilis is complicated by the fact that
the cell filament is growing exponentially and that the ends of the filament
are normally unconstrained. This freedom of the ends is a nontrivial feature
of the basic instability that initiates the self-assembly. Once the filament has
folded over (in either a big loop for non-viscous media or a tight central loop
for viscous ones) the resulting self-contact effectively blocks free rotation of
the filament. This changing of boundary conditions (one end is now effec-
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tively fixed) provides the mechanism for the subsequent helical wind up of
the strands.

In Bacillus subtilis (and DNA) where the twisting and supercoiling are of
the same handedness. The key to this transition is the idea of an intrinsic
twist; namely a natural state of the filament with a non-zero twist density
(twist per unit length) as described in the Kirchhoff model by Eq.(52) with a
non-vanishing parameter û3.

To understand the process, consider a rubber tube with right-handed in-
trinsic twist represented by drawing marker lines with a right-handed helical
pitch. One end is twisted in the opposite direction to the marker lines until
they are approximately straight. The twist density of the filament now ap-
pears to be zero whereas its natural state is one of non-zero twist density -
as indicated by the original helical marker lines. Thus we now have a “twist
deficit”. To return to its natural state the tube must make up for this deficit
by restoring twist. This can be achieved in two different ways. If one end is
freed the tube winds sending a twist wave down the rod. Alternatively, if the
ends are held but brought towards each other, the tube will relax by super-
coiling with the same handedness as the intrinsic twist. This is the behavior
observed in Bacillus subtilis and DNA. In the latter case the “intrinsic” twist
corresponds to the right-handed helical architecture and in the former it is
believed to be related to either the cell wall architecture or anisotropy.

In order to model Bacillus subtilis each bacterial cell is assumed to possess
an “intrinsic” twist and to make up part of an elastic filament. Reproductive
growth of all the cells in the bacterial filament results in an exponential growth
of its length accompanied by a reduction of twist density.

Torsional waves

Maximum Twist Deficit

      =>   Instability 

Growth induced tension

Exponential growth

Torsional waves}

Fig. 8. Exponential growth and linear torsional wave competition, as the filament
growth exponentially, the linear twist wave propagating from the end do not reach
the middle of the filament where the twist deficit is maximal.
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Using Kirchhoff’s model as a starting point, we can study the dynamical
properties of filaments and generalize it, as explained in the previous sec-
tion, to include the effect of growth. Mathematical results on the stability of
thin elastic rods [27] have enabled us to develop a complete picture of the
mechanism of self-assembly in Bacillus subtilis [26] as well as computer sim-
ulation [41, 42]. Among other things the model gives quantitative predictions
about the self-assembly geometry, such as the way the loop size scales with
environmental conditions. The computer simulation of growing rod with in-
trinsic twist predicts the formation of looping in filaments remarkably similar
to the ones found in the experiments (See Fig. 9)

t= 0 t= 2 8

t= 4 0 t= 4 7

t= 5 2 t= 5 5

t= 5 8 t= 6 1

Fig. 9. Writhing Dynamics of B. subtillis. Left: experiments (Courtesy of Neil
Mendelson), Right: Simulation of Kirchhoff rods with growth [41,42].

A great deal of experimentation has shown that the twist state and helix
hand of B. Subtillis macrofibers stem from the individual cell from which the
fiber is derived. The information required to control macrofiber morphogen-
esis appears to reside in the growth plan of this cell and all its descendants.
Intrinsic twist, a key feature of the dynamic model described here, is a logical
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candidate for the mechanical information in the growth plan that dictates all
subsequent growth and form.

Although our discussion here has focussed on the behavior of B. subtillis,
filamentary structures are common in biological materials encompassing scales
from molecular to organismal and we believe that the types of arguments
forwarded here; namely the importance of axial growth, the decomposition of
strain variables, buckling instability, twist-to-writhe conversion as a dynamical
process and the special role played by intrinsic twist (or, presumably in other
contexts, intrinsic curvature), may have quite general applicability.

4 Three-dimensional Growth

We now turn our attention to a general formulation of growth for three-
dimensional nonlinear elastic body.

4.1 Basic Definitions of Morphoelasticity

Consider a continuous body with reference configuration B0. Let X denote
the position vectors in B0. Now suppose the body is deformed to a new con-
figuration, B1. We refer to B1 as the current configuration where the body is
defined by x = χ(X, t). The deformation gradient, F(X,t)=Grad χ, relates
a material segment in the reference configuration to the same segment in
the current configuration. The key idea2introduced by Rodriguez, Hoger, and
McCulloch [60] is to decompose the total deformation into a growth tensor
G(X,t) and an elastic tensor A(X,t)

F(X, t) = A(X, t) ·G(X, t). (61)

That is, the growth deformation may not result in a continuous change from
point to point and may not be compatible. However, if we require continuity
as the body grows, then an elastic deformation is introduced to maintain
compatibility. As shown in Fig. 10, the growth tensor G(X,t) maps B0 to the
virtual configuration V1 which is locally stress-free. The elastic deformation
then maps V1 to a grown stressed state B1 in order to maintain continuity of
the body. The overall deformation gradient is the composition. Because of the
need to ensure compatibility, the elastic deformation is introduced which in
turn causes residual stress in the body.
2 We also note that this decomposition was earlier introduced by Lee [44] who

proposed representing elasto-plastic deformations in the form F = FeFp, where
Fe denotes the contribution to the total deformation as a result of elastic defor-
mation, and Fp denotes the contribution to the total deformation due to plastic
deformation. This has become a classical tool of elasto-plasticity. Note however,
that there are still fundamental problems associated with such multiplicative de-
composition (see for instance [55] or [77]).
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Fig. 10. The decomposition of finite growth. The deformation gradient F maps
the reference configuration B0(X,t) into the current configuration B1. F can be
represented as the product of a growth tensor G and an elastic deformation tensor
A. The intermediate configuration V1 is a virtual state because G may not maintain
continuity.

4.2 Strain Rate

We first recap some of the standard formalism and terminology. The tensor
F is the deformation gradient, and

E =
1
2
(FT F− I), (62)

is the Green (Lagrangian) strain tensor, and

D = A − I, (63)

is the displacement gradient. Thus

E =
1
2
(D + DT + DT D). (64)

The linearization of this, E = 1
2 (D + DT ) is, of course, the familiar strain

tensor of linear elasticity theory. If ˙( ) denotes differentiation w.r.t. time for
fixed reference coordinate values, X , then one may show that the rate of
deformation

Ḟ = ΓF, (65)

where
Γ = gradv(x, t), (66)

is the Eulerian velocity gradient tensor, and hence
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Ė = FT ΣF, (67)

where
Σ =

1
2
(Γ + Γ T ), (68)

is the Eulerian strain rate tensor [56]. Because Σ = F−T ĖF−1 it is not a
direct time derivative of E, and thus cannot be called a (true) rate of strain
tensor. However to first order

Ė = AT ΣF 	 (I + D)T Σ(I + D) 	 Σ + h.o.t, (69)

and thus, for the linear theory, we can call Σ, a rate of strain tensor.
Equation(61) is the starting point for our own discussions of the combina-

tion of elasticity and growth in a three-dimensional setting. By analogy with
elasto-plasticity, we will refer to this approach as the theory of morphoelas-
ticity. It is worth recalling how it was originally introduced [60]. For a system
with density, ρ, the rate of growth of mass per unit volume, V , is

ṁ =
d(ρV )

dt
, (70)

while by basic conservation

ṁ =
πρ

πt
+ div(ρvg), (71)

where vg is the growth velocity vector. It should be noted that vg is defined in
the Eulerian frame. For constant density these two equations combine to give

dV

dt
= divv = TrDg, (72)

where Dg is the rate of growth tensor - which is analogous to the rate of
deformation tensor in classical continuum mechanics. Since Dg is Eulerian it
has the advantage of not requiring a reference configuration but, it can be
related to a Lagrangian rate of growth stretch tensor, U̇g, through

Dg =
1
2

(
U̇gU−1

g + U−1
g U̇g

)
. (73)

Since U̇g is Lagrangian, the actual growth stretch tensor Ug is simply given
by

Ug =
∫ t

U̇gdt. (74)

The growth stretch tensor Ug is related to the growth deformation gradient
tensor G by the right polar decomposition

G = RgUg. (75)

A general argument is that, without loss of generality, one can set Rg = I
and work with G = Ug. 3

3 It appears to us that the reason given by many authors about how the rota-
tion part of G can always be absorbed in the rotational part of F, and that G
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4.3 Cauchy Stress and Equations of Motion

The forces distributed on a body B1 include a contact-force density tn and a
body-force density b. In accordance with Euler’s laws of motion, the balance
of linear momentum is written as∫

B1

ρ(x, t)b(x, t)dv +
∫

∂B1

tnda =
∫
B1

ρ(x, t)v̇(x, t)dv. (76)

Cauchy’s theorem states that if tn is continuous in x, then tn depends linearly
on the unit normal n. In other words, there exists a linear transformation T
independent of n such that

tn = Tn, (77)

where T is referred to as the Cauchy stress tensor. Using (77) and applying
the divergence theorem to (76) leads to∫

B1

(ρ(x, t) + divT − ρ(x, t)v̇(x, t)) dv = 0. (78)

Equation (78) is valid for any body B1. This leads to Cauchy’s first law of
motion,

div(T) + ρb = ρv̇. (79)

If the body is at rest, that is v(x,t)=0 for all x∈ B1, the equilibrium equation
becomes

div(T) + ρb = 0. (80)

Furthermore, if body forces are absent, (80) reduces to

div(T) = 0. (81)

4.4 Strain-energy Functions

We assume that our material is hyperelastic. That is, there exists a strain-
energy function W = W (F) from which the stresses can be derived.

T = J−1F
∂W

∂F
− p1, (82)

where J = det(F) is equal to one in the incompressible case and p is a Lagrange
multiplier associated with the internal constraint of incompressibility (p = 0
in the compressible case). Many different general functional forms have been
proposed for the the response of elastic materials under loads [6,62,65]. Here,
we show some typical functions that have been proposed to model either
elastomers or soft tissues. For the sake of simplicity, we restrict our attention

needs to be diagonal to ensure objectivity is not satisfactory and requires further
discussions–see [77].
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to homogeneous isotropic materials. The energy can be written in terms of the
principal stretches λ1, λ2, λ3 (the square roots of the principal values of FTF)
or, equivalently for incompressible solids, in terms of the first two principal
invariants of the Cauchy-Green strain tensors,

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

2λ
2
3 + λ2

3λ
2
1 + λ2

1λ
2
2. (83)

An essential property of many biological material is the strain-stiffening prop-
erty which can be modeled either by algebraic power dependence (one-term
Ogden model), by exponential behavior (as in the popular Fung model), or by
limited chain extensibility (Gent model [19, 35, 38]). These three models can
be written with a single parameter (ν, α, β, respectively) such that the clas-
sical neo-Hookean model is obtained in the limits ν → 2, α → 0, or β → 0.
Additionally, we also use the classical Mooney-Rivlin strain-energy density,
often used to model elastomers.

Name Definition soft tissues elastomers

neo-Hookean Wnh =
1

2
(I1 − 3)

Mooney-Rivlin Wmr =
(I1 − 3) + μ(I2 − 3)

2(1 + μ)

1-term Ogden Wog =
2(λν

1 + λν
2 + λν

3 − 3)

ν2
ν ≥ 9 ν ≈ 3

Fung Wfu =
expα(I1 − 3) − 1

α
3 < α < 20

Gent Wge =
− log[1 − β(I1 − 3)]

β
0.4 < β <3 β < 0.05

Table 1. A list of strain-energy functions. Note that the materials share the same
infinitesimal shear modulus, which without loss of generality was taken equal to
one. The limits μ → 0, α → 0, β → 0, ν → 2 all lead to the neo-Hookean potential.
References: 1-term Ogden [5,66], Fung [13,34] Gent [19,20,36,37].

4.5 Constitutive Theory for G

There is an interesting discussion as to whether G or Ġ = U̇g (the Lagrangian
rate of growth tensor) can/should be a function of the Cauchy stress, namely

G = f(T), or Ġ = g(T). (84)

Fung suggested that there might exist a growth equilibrium stress state T̄ at
which the growth rate would be zero, i.e.

Ġ = g(T − RT̄RT ) (85)
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where the rotation tensor R comes from the polar decomposition and is re-
quired to ensure that both T and T̄ are measured in the same frame of refer-
ence as required by objectivity.

There have been early on attempts to use the morphoelasticity formal-
ism to model simple situations and understand the effect of growth and the
feedback due to stress. These include the following cases:

Constant Growth

The simplest choice for G is to consider a constant tensor. A constant diagonal
tensor G has been used in spherical geometry by Hoger and co-workers [9,43].
This case is interesting since analytical results can be obtained corresponding
to small increments and explicit values of residual stress computed for growth
without loading. In [4], the stability of such growing shells is considered.

Position Dependent Growth

Many growth processes depend on the location in the material. This effect
is sometimes referred to as differential growth to indicate that some parts
of a tissue grow faster than others. In morphoelasticity, it implies that G
is a function of either X or x. Both situations are of interest. In the first
case, growth is a function of material points X in the reference configuration
and this dependence assumes that the material is made out of points that
grow at different rates and keep growing differentially as time goes by. In the
second case, the ability of a tissue to grow depends on its location at any
given time. This is the case, for instance, when cell reproduction depends on
the availability of some nutrients that diffuse through the boundary. At any
given time, the amount of nutrient may be described by the distance to the
boundary as in the case in the growth of spheroids in tumor experiments [33].
The stability analysis of differentially growing shells was considered in [24].

Stress-dependence

It has been recognized experimentally and theoretically in many systems (such
as aorta, muscles and bones) that one of the main biomechanical regulator of
growth is stress [18,39,59,60,72–74]. It has even been suggested that stresses
on cell walls play the role of a pacemaker for the collective regulation of tissue
growth [67]. Accordingly, the growth rate tensor should be a function of the
Cauchy stress tensor which could also vary according to the position of tissue
elements in the reference configuration.

Most growth laws are of a phenomenological nature (See however the dis-
cussion in [18]) and currently there is no established theory of how they can
be derived from biophysical principles An intriguing contribution appeared
in [14] where it is assumed that growth can be associated with mechanical
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accretive forces. In this context, the energy stored in the growth process can
be transformed into mechanical elastic energy. By neglecting the possibility
of energy sources and under suitable assumptions, a dissipation principle for
the growth law can be derived, which in turn leads to a constitutive equation
for the growth rate

G−1.Ġ = M0 − W I + AT WA (86)

where, as before, W is the free energy. We note that W I−AT WA has the form
of an Eshelby tensor as found in the theory of elasto-plasticity [15,49], and that
for small deformations, M0 plays the role of a constant (homeostatic) stress.
These constitutive relations (shown here in the simplest case) are typically
nonlinear and deserve further exploration.

4.6 Cumulative Growth

Now consider a sequence of growth steps in which each step can be decomposed
into a growth deformation and an elastic deformation (see Fig. 11).

Fig. 11. Cumulative growth with k steps.

The cumulative deformation gradient is given by

F(k) = Fk · Fk−1...F2 · F1

= Ak · Gk · Ak−1 · Gk−1...A2 ·G2 ·A1 · G1.

Assume the growth and elastic tensor commute, that is Ai ·Gj = Gj ·Ai, for
all i, j. Then the elastic and growth tensors can be written as

A(k) = Ak ·Ak−1...A2 · A1, G(k) = Gk · Gk−1...G2 ·G1. (87)

The stress in Bk is
∇xk

· (Tk) = 0, (88)

where
Tk = A(k) · ∂A(k)W − pk1. (89)

An example of a cumulative process of growth is given in Section 4.9.
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4.7 A Simple Example of Homogeneous Growth

As a first example, we revisit the model of Rodriguez, et al. [60] where growth
is a function of the stress tensor. Because the problem is homogeneous, resid-
ual stress is absent. A rectangular block of bone is subjected to compression
along its longitudinal axis. It grows along the x and y directions as a linear
function of the difference between the axial stress and a no-growth equilib-
rium stress state. The bone is assumed to have a Young’s modulus of 18.4
GPa along the z-axis. According to the authors “...at each step the axial
strain is adjusted so that the applied axial force remains constant.” Recalling
that stress = force/area, the calculation proceeds as follows. At each step the
cross sectional area S(t) = Axx(t)Ayy(t) = λxx(t)λxx(t)/λz(t) is computed.
In order to ensure that the axial force, F = Tzz(t)S(t), where Tzz is a certain
function of λz , remains constant, λz is reduced as necessary. This, in turn,
reduces Tzz at the next step until it reaches T̄zz at which point the computa-
tion stops. In this model the stresses are only as a result of loading so there
is no residual stress.

More explicitly, the reference configuration is compressed along the longi-
tudinal axis which results in the elastic deformation gradient

A = diag
(

1√
λz

,
1√
λz

, λz

)
, (90)

where λz is the stretch ratio corresponding to a 0.1% shortening (λz = 0.999).
The strain is calculated from the Green strain tensor

E =
1
2
(AT A − I), (91)

and the longitudinal stress is found from

T = AT ∂W

∂E
A, (92)

where the strain energy is given by

W = c1(E2
xx + E2

yy + E2
zz). (93)

The stress along the z-direction is then

t3 = 2c1EzzFzzEzz

= c1λ
2
z(λ

2
z − 1),

where 2c1 is the value of the Young’s modulus along the z-direction. Following
the elastic deformation, the tissue grows or resorbs along the x and y axes
until equilibrium is restored. The equilibrium value for the longitudinal stress
is given by t∗3. The rate of growth in the x and y directions at time t is given
by
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λx(t) = kx(t3(t) − t∗3), (94)

λy(t) = ky(t3(t) − t∗3), (95)

where kx and ky are growth rate constants with equal values of -0.27
time−1GPa−1 and the no-growth equilibrium longitudinal stress t∗3 is -4.5
MPa. The growth stretch ratios with respect to the reference configuration
can be written as

λx(t + dt) = λx(t) + λ̇xdt, (96)

λy(t + dt) = λy(t) + λ̇ydt, (97)

where dt corresponds to one iteration. The growth deformation gradient is
then

G(t + dt) = diag (kx(t3(t) − t∗3)dt + Gxx(t), ky(t3(t) − t∗3)dt + Gyy(t), Gzz) .
(98)

The axial stress is computed after each iteration and the tissue growth is then
calculated. The applied axial load remains constant through each iteration
and the axial stress is adjusted in order to maintain this force. Each growth
deformation is assumed to be compatible and therefore no residual stress
arises. Fig. 12 shows the axial stress and the growth stretch ratios (λx and
λy) as functions of time. Following each iteration, the cross-sectional area
increases which causes a decrease in the elastic stress and a decrease in the
growth rate.
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Fig. 12. A load leading to a 0.1% shortening on a block of bone is imposed. The
block grows as a linear function of the difference between the loading stress and
the no-growth equilibrium stress state. The left panel shows the axial stress as a
function of time as it approaches the no-growth equilibrium stress. The right panel
displays the growth ratios for the x and y directions.

The evolution of the axial stress can be written as a discrete mapping
given by
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t3(t + dt) =
t3(0)(√

t3(0)
t3(t)

+ kx(t3(t) − t∗3)
)2 . (99)

The mapping can be converted to the following differential equation:

dt3(t)
dt

=
t3(0)t3(t)(√

t3(0) + kx

√
t3(t)(t3(t) − t∗3)

)2 − t3(t). (100)

Fig. 13 shows the discrete mapping presented by Rodriguez et al., as well as
the numerical solution to Equation (100).
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Fig. 13. Comparison between the continuous solution (solid curve) and the discrete
solution (open circle) obtained by incremental computation.

To supplement the previous results, consider stress-dependent growth in
the case of a cylindrical tube. The tube is initially subjected to compression
along its longitudinal axis resulting in a 0.1% shortening (λz = 0.999). An
elastic energy associated with a Neo-Hookean material is used. After axial
compression, the cylinder is allowed to grow in which the following stress
dependent growth deformation gradient is used:

G(t + dt) = diag (k(t3(t) − t∗3)dt + Grr(t), k(t3(t) − t∗3)dt + Gθθ(t), Gzz) .
(101)

where k = −0.27 time−1GPa−1 and t∗3 = −4.5 MPa.
In the cylindrical case, the material response is not homogenous, and

therefore the longitudinal force is now a function of the radial component.
Therefore, consider the resultant load, N =

∫ b

a
rt3(r)dr, and the resultant
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longitudinal force Fz = N · Area. In each iteration, the resultant axial stress
is evaluated and the material is allowed to grow. The applied resultant axial
force Fz is constant at each step and the the resultant longitudinal stress is ad-
justed accordingly to maintain the constant force. Fig. 14 shows the resultant
axial stress as a function of time. The curve is approaching the equilibrium
resultant stress, N∗ =

∫ b

a rt∗3dr.
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Fig. 14. Resultant longitudinal stress for an axially loaded cylinder. An initial five
percent shortening was incurred. The cylinder was allowed to grow as the state of
stress goes toward the predetermined equilibrium state.

We comment that the convenient thing about doing the calculation in
discrete time steps is that one does not have to worry about separating elastic
and growth time scales: one simply makes whatever elastic adjustments are
necessary before implementing the next growth step.

4.8 Cylinder Growth: One Step Growth

We now consider a simple growth tensor to demonstrate how residual stress
can arise from growth. Consider a cylindrical tube whose reference config-
uration has length L and internal and external radii A and B respectively.
Therefore the tube is defined as

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L. (102)

Now let the cylinder undergo uniform circumferential growth or resorption
which then results in an elastic deformation. The resulting deformation is
given by
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r = r(R), θ = kΘ, z = λzZ. (103)

The deformation gradient in cylindrical coordinates is

F = diag(r′,
r

R
, λz) (104)

where r′ = dr
dR . Assume there is no change in length so that λz = 1. The defor-

mation tensor is decomposed as F = A·G. Assuming constant circumferential
growth, the growth deformation gradient is

G = diag(1, k, 1), (105)

where G maps the reference state B0 into the grown stress-free state V. In
order to maintain continuity of the body, an elastic deformation

A = diag(
1
α

, α, 1), (106)

maps the virtual stress-free state V to the final intact configuration B1. Note
the incompressibility condition detA = 1 is used to express the three principal
strain components in terms of a single variable α. Assuming the cylindrical
tube is composed of a Fung material, the strain energy function is

Wfu =
c

2
(eQ − 1), (107)

where c is a constant and Q is a function of the three principal strain values,
that is Q = 2b1(λ2

1 + λ3
2 + λ2

3). In the present case λ1 = 1/α, λ2 = α, and
λ3 = 1. Therefore, Q is given by

Q = 2b2(
1
α2

+ α2 − 2). (108)

The incompressibility constraint is det(A) = 1, or equivalently det(FG−1) =
1. This implies det(F) =detG, so that

r′r
R

= k. (109)

The previous equation can be integrated to obtain

r = (a2 + k(R2 − A2))1/2. (110)

The incompressibility constraint along with the relation F = AG provides
an equation for the strain, α = r/(kR). The only non-vanishing equilibrium
equation in (81) is

∂t1
∂r

+
t1 − t2

r
= 0. (111)

The radial stress and hoop stress are denoted as t1 = T11 and t2 = T22,
respectively. Using the stress-strain relationship in Equation (82), equations
for the radial and hoop stress can be written as
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t1 =
1
α

∂W

∂λ1
− p (112)

t2 = α
∂W

∂λ2
− p. (113)

Substitute these values into (111) to obtain a closed equation for t1:

∂t1
∂r

=
α

r
∂αŴ (114)

where Ŵ = W ( 1
α , α, 1). In terms of R,

∂t1
∂R

=
∂αŴ

kαR
. (115)
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Fig. 15. Plots of residual stress vs. undeformed radius for a cylindrical tube following
uniform circumferential resorption (a) and growth (b). The cylinder is unload which
results in zero radial stress at the boundaries in both cases. When k=0.9 (resorption)
the circumferential residual stress is in compression in the inner wall and in tension
in the outer wall. When k=1.1 (growth) the circumferential residual stress is tensile
in the inner layers and compressive in the outer layers.

Using the boundary conditions t1(A) = t1(B) = 0, integrate the last equa-
tion to obtain an equation for the radial stress

t1(R) =
1
k

∫ R

A

∂αŴ

αR
dR, (116)

and now the hoop stress can be evaluated as t2 = t1 + α
2 ∂αŴ . The hollow

cylindrical tube model demonstrates how circumferential growth produces a
transmural distribution of residual stress that would cause the cylinder to
change shape when cut. Consider a tube with initial internal and external
radii of 2.0 and 3.0 cm and k = 0.9 (resorption). Fig. 15(a) shows the radial
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stress t1 and the circumferential stress t2. The radial stress is zero at the
boundaries (r = A and r = B) because the cylinder is unloaded. The circum-
ferential stress is in compression in the inner layers and tension in the outer
layers. The grown internal and external radii were 1.75 and 2.75 cm.

Now consider the growth case where k = 1.1. The equilibrium internal and
external radii were 2.25 and 3.25 cm. Notice in Fig. 15(b) the graphs are
reversed from the resorption case. The circumferential stress is in tension in
the inner layers and compression in the outer layers. The longitudinal stress
t3 is nonzero in both the resorption and growth cases. The longitudinal stress
will cause the cylinder to extend or shorten. However, the resultant stress is
close to zero, and therefore the simplifying assumption of λz = 1 will not
affect the circumferential residual stress. In the three-dimensional problem,
we will later discuss how to circumvent the issue of a non-zero longitudinal
stress on the ends of the cylinder.

4.9 Cylinder Growth: Modeling Incremental Growth

Consider once again a cylindrical tube but now assume the incremental growth
tensor Ginc is a function of position. There is growth only along the z-axis, so
that Gi =diag(1, 1, g(ri)). Because the incremental growth tensor is depen-
dent on the current configuration, an implicit dependence on the stress tensor
exists which must be computed at each iteration [23]. The growth function ginc

at the kth step along the z-axis is written as the product g(R) =
∏k−1

i=1 ginc(ri)
where ri is the current configuration following the i-th deformation. The cu-
mulative deformation gradient in cylindrical coordinates after i steps is

Fi = diag(r′i,
ri

R
, λzi), (117)

where the cylinder is extended uniformly to length li = λzi li−1. Denote the
internal and external radii in the initial configuration by A and B, and let
ai = ri(A) and bi = ri(B) be the radii in the current configuration. The
principal stretches of the elastic tensor A are

λi1 = gi(R)(αiλzi)
−1, λi2 = αi =

ri

R
, λi3 =

λzi

gi(R)
, (118)

where αi is defined as the azimuthal principal stretch. Assume the elas-
tic cylindrical tube is composed of a neo-Hookean material, that is Wnh =
μ(λ2

i1 + λ2
i2 + λ2

i3 − 3). The incompressibility condition det(Ai) = 1 implies
det(Fi) =det(Gi) so that

λzi

r′iri

R
= g(R). (119)

Integrate the last equation to find
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ri(R) =

(
a2

i +
2

λzi

∫ R

A

ρg(ρ)dρ

)1/2

. (120)

The constitutive relationships for t1 and t2 are as follows:

t1 = λi1
∂W

∂λi1
− p, (121)

t2 = λi2
∂W

∂λi2
− p. (122)

The only nonvanishing equilibrium equation of ∇xi ·(T1) = 0 is, as previously
shown in (111),

∂t1
∂r

+
t1 − t2

r
= 0. (123)

Rearrange the previous equation and use (121) and (122) to obtain

∂t1
∂ri

=
αi

ri
∂αŴ (124)

where Ŵ = W ( g(R)
αλzi

, α,
λzi

g(R) ). In terms of R,

∂t1
∂R

=
Rg(R)αi

λzir
2
i

∂αiŴ (125)

where (120) and (118) are used to express ri = ri(R) and αi = αi(R). We
would like the surface of the cylinder to be free of any traction,

t1(ai) = t1(bi) = 0, 0 ≤ θ ≤ 2π, 0 ≤ zi ≤ λzi li−1, (126)

and
t3(0) = t3(λzi li−1) = 0, 0 ≤ θ ≤ 2π, ai ≤ ri ≤ bi. (127)

However, t3 = t3(R) and does not explicitly depend on zi. Therefore (127)
requires t3 = 0, but t3 is a function of R and is not equal to zero. Instead,
at each iteration we may solve for λzi so that a zero resultant load N is
imposed [17, 30–32]

Ni(λzi) = 2π

∫ bi

ai

rit3(ri, λzi)dri = 0. (128)

Therefore, the end conditions in (127) are replaced by the condition above.
Using (120), (125), and (126), the longitudinal stretch λzi , the deformed radius
ai, and the radial stress t1 can be found at each iteration and the deformation
is completely determined. At each stage the growth function along the z-axis
can be computed for the next iterate,
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g(R) =
k∏

i=1

ginc(ri). (129)

First consider a linear incremental growth function ginc(ri) = 1 + μ(ri − ai)
where no longitudinal growth occurs at the inner wall and the growth lin-
early increases toward the outer wall. Choose initial values A = 1, B = 2,
and calculate μ at each iteration such that the volume increases by 1%. Next
consider the growth function ginc(ri) = 1 + μ(bi − ri) where no longitudinal
growth occurs at the outer wall and the growth linearly increases toward the
inner wall. Fig. 16 shows the cumulative growth function in the current con-
figuration.
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Fig. 16. The cumulative growth function viewed in the current frame g = g(r). The
volume increase in each step is 1%. The cumulative growth curve is plotted every
ten steps.

Now consider changing μ and looking at how the longitudinal stress
changes after one step. Fig. 17 shows N(λz) = 2π

∫ b

a
rt3(r, λz)dr as μ in-

creases from zero to 1.5. In order to obtain a zero resultant load, we need
to find λzcrit such that N(λz) = 0. Once λzcrit is found, Fig. 17 shows the
longitudinal stress. When the inner layers of the cylinder grow faster than the
outer layers, the inner layers are in compression and the outer layers are in
tension as predicted. In contrast, when the outer layers of the cylinder grow
faster than the inner layers, the inner layers are tensile and the outer layers
are compressive.

4.10 Cylinder Growth: Embedded in an Elastic Medium

We can also nest two materials with different strain functions (i.e. a neo-
Hookean material inside Fung material) or different growth factors. The
boundary between the two materials, which we call C and c in the refer-
ence and current configurations respectively, is constrained so that no gaps
form between materials.
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Fig. 17. Longitudinal stress along the cylinder radius (right). Note the compressive
and tensile stress in different regions depending on which part of the cylinder grows
faster.

As an example we look at two different materials. The inner material is
neo-Hookean, and subject to shrinking in the radial direction (γ1 = 0.5), while
the outer material is Fung and is growing radially (γ1 = 2). We set external
pressure to zero, and set the initial boundary between the materials to halfway
between the shell boundaries (C = 1.5).

Fig. 8 and Fig. 9 show the results for this configuration. As can be seen
in the first figure, the deformation r(R) is continuous, but the position of the
boundary between layers is no longer halfway between the edges, rather it is
closer to the inner deformed radius a. The second figure shows the stresses in
the material due to growth, and there exist tensile and compressive stresses
on all axes.

4.11 Cylinder Growth: with Twist

We now comment on growth models involving twist. The decomposition F =
AG is not unique and some thought needs to go into making a reasonable
choice. Our model is that of a cylindrical rod that grows in length and exhibits
growth induced twist, but maintains a constant radius. This would correspond
to the (total) deformations
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Fig. 18. The strain function α(R) and the deformation r(R) for two nested materials
(see text).

Fig. 19. The radial, circumferential and axial stresses for two nested materials (see
text).

r = R (130)
θ = Θ + zτ = Θ + λZτ (131)
z = λZ. (132)

Note that the torsion in the current configuration depends on the current
height z. With these deformations, the (total) deformation gradient tensor is

A =

⎛⎝1 0 0
0 1 rλτ
0 0 λ

⎞⎠ . (133)

For our growth tensor we choose
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G =

⎛⎝1 0 0
0 1 rτ∗

0 0 λ

⎞⎠ , (134)

which corresponds to the growth-induced deformation

r = R (135)
θ = Θ + Zτ∗ (136)
z = λZ, (137)

where τ∗ is a (fixed) twist determined by the growth process. Note that in
the growth process we claim that the amount of torsion depends on the refer-
ence configuration height Z. The elastic deformation gradient tensor is easily
determined to be

F = AG−1 =

⎛⎜⎝1 0 0
0 1 r

(
τ − τ∗

λ

)
0 0 1

⎞⎟⎠ . (138)

With this form of B, the Cauchy elastic stress tensor is

T(F) =

⎛⎝T11 0 0
0 T22 T23

0 T32 T33

⎞⎠ , (139)

where

T11 = P + Φ + Ψ

(
2 + r2

(
τ − τ∗

λ

)2
)

(140)

T22 = P + Φ + 2Ψ + (Φ + Ψ)r2

(
τ − τ∗

λ

)2

(141)

T23 = (Φ + Ψ)r
(

τ − τ∗

λ

)
(142)

T32 = (Φ + Ψ)r
(

τ − τ∗

λ

)
(143)

T33 = P + Φ + 2Ψ, (144)

where P is the turgor pressure and Φ = 2πW/πI1, Ψ = 2πW/πI2. For a
Mooney-Rivlin material, Φ and Ψ are constant.

If we require that during growth the process is free of (residual) torsional
stress, i.e. Tθz = 0, then the twist must obey

τ =
τ∗

λ
, (145)

which also eliminates the elastic torsional strain, i.e. Fθz = 0. If our growth
model allows for (gradually) increasing length, i.e. λ increases with time, then
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condition (145) shows that as the cylinder grows it gradually unwinds. Under
this condition, all the other stress

Trr = Tθθ = Tzz = P + Φ + 2Ψ, (146)

only depend on the load (the turgor press P ) and hence there is no residual
stress at all.

5 Conclusions

In this article, we have reviewed different models to describe growth in biologi-
cal systems. The common thread to most of these models is the decomposition
of strain variables in elastic and growth components. The elastic component
is connected to the stresses by the usual constitutive equation whereas the
strain associated with growth requires a separate evolution law. These laws
are not yet well-understood and much experimental and theoretical work is
needed before a clear picture of how growth is related to stress emerges. Nev-
ertheless, it is already possible to explore the consequences of growth such as
the ability of a growing body to either build mechanical properties or undergo
pattern formation through a buckling instability.

An area in which growth modeling will play an increasingly important role
is in the modeling of tumor growth and cancer. We would just like to mention
the existence of growing body of literature on various modeling aspects and
data analysis of the problem that will drive the theory of growth (see [1, 3, 7,
8, 16, 33, 46, 54, 61, 63, 75]).

It is important to note that the description given here is not the only pos-
sible approach to modeling growth. Other interesting approaches to growth
have been proposed either in terms of mixture theory, coupled with the evolu-
tion of natural configurations [40] or by focusing on the evolution of residual
stress in the material [57].
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