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Abstract. In this work we focus on the use of SVMs for monitoring
techniques applied to nonlinear profiles in the Statistical Process Control
(SPC) framework. We develop a new methodology based on Functional
Data Analysis for the construction of control limits for nonlinear profiles.
In particular, we monitor the fitted curves themselves instead of moni-
toring the parameters of any model fitting the curves. The simplicity and
effectiveness of the data analysis method has been tested against other
statistical approaches using a standard data set in the process control
literature.
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1 Introduction

The technique of Statistical Process Control (SPC) was introduced by Shewhart
in 1924 [9]. The basic tools of SPC are the control charts. The central aim of
control charts is the monitoring of processes, where the performance is deter-
mined by quality characteristics. In particular, control charts are useful to test
the stability of a process. The process is often represented by a curve or function
(called profile) that involves a response variable Y and a number of explanatory
variables (X1, X2, . . .). The simplest profiles are generated by linear models, but
often more realistic nonlinear models are demanded.

In this paper, we are concerned with a different class of profile data that
cannot be adequately represented by a linear structured model. This kind of
data are generally known as nonlinear profiles. Very little work has been done
for monitoring of nonlinear profiles (see [17,5,3]). For an overview of profile
monitoring techniques see [18].

There are two phases involved in the SPC methodology. In Phase I, an his-
torical amount of process data is available and has to be analyzed. The targets
here are to test the stability of the process, to understand the variation in the
process over time and to model the in-control process performance. In Phase II,
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the goal is to monitor the process. Using on-line data, the system (adjusted in
Phase I) has to perform a quick detection of shifts.

In Multivariate SPC, when the underlying distribution of the quality charac-
teristics is not multivariate normal, the design of the control limits is not trivial,
and regression Support Vector Machines (SVMs) may be used to design a control
boundary limits which adapt to the shape of the data. In this work we propose
a technique for Phase I analysis of nonlinear profiles using SVMs.

The rest of the paper is organized as follows. In Section 2 some background
on profiles is given. In Section 3 SVMs for regression are briefly described. In
Section 4 we show how to use SVMs for the monitoring of nonlinear profiles, and
our method is compared to other state-of-the-art methods. Section 5 concludes.

2 Basics on Profiles

Profile data consist of a set of measurements with a response variable Y and one
or more explanatory variables X(i), i ∈ {1, . . . , k}. The explanatory variables are
used to assess the quality of a manufactured item. In the case of linear profiles
we have a linear regression model with a response variable Y and the vector of
explanatory variables X = (X(1), . . . , X(k))T ,

Y = A0 + AT
1 X + ε ,

where ε is the random error, A0 is a constant and A1 is a vector of parameters.
Applying the linear profile, we have to pool n set points x1, . . . , xn ∈ IRk. For

the sample i the process output is:

yi = A0 + AT
1 xi + εi , with i ∈ {1, . . . , n} ,

where εi are random variables, independent and normally distributed with mean
zero and variance σ2. The estimations of the vector A1 and the intercept A0 can
be obtained using the least squares method (see [4]).

The extension of the linear model to the nonlinear case is

Y = f(X, β) + ε ,

where ε is the random error, β is a vector of parameters and f is a nonlinear
function. Unlike linear profiles, which can be represented by a linear regression
model whose regression model parameters can be used for monitoring and detec-
tion, nonlinear profiles are often sampled into high dimensional data vectors and
analyzed by non-parametric methods. Examples of nonlinear profiles are given
in [15,16].

3 Regression Support Vector Machines in a Nutshell

It is usual in SVMs tutorials to consider the regression problem from a geometric
point of view. Consider a regression problem where the regression function is
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nonlinear. The idea underlying Regression Support Vector Machines [13,2] is to
map the data into a “Feature Space” so that the estimated regression function
becomes linear. This mapping, denoted Φ in the sequel, determines a dot product
K in the Feature Space, called kernel, of the form K(x, y) = Φ(x)T Φ(y).

Regression SVMs work by solving the following optimization problem:

min
w,b,ξ,ξ′

1
2
‖w‖2 + C

n∑

i=1

(ξi + ξ′i)

s.t. (wT Φ(xi) + b) − yi ≤ ε + ξi i = 1, . . . , n ,
yi − (wT Φ(xi) + b) ≤ ε + ξ′i i = 1, . . . , n ,
ξi, ξ

′
i ≥ 0 i = 1, . . . , n .

(1)

Notice that ε appears only in the constraints, forcing the solution to be calcu-
lated taking into account a confidence band around the regression equation (see
Figure 1).

ξ1

ξ
2 ε

Fig. 1. Support Vector Regression

The ξi and ξ′i are slack variables that allow for some data points to stay
outside the confidence band determined by ε. This is the standard support vector
regression formulation. This optimization problem is convex and therefore, it has
no local minima. The linear regression equation will take the form:

R∗(x) = w∗T Φ(x) + b∗ ,

where w∗ and b∗ are the values of w and b at the solution of the previous opti-
mization problem. Notice that the inclusion of the mapping implies nonlinearity.

It can be shown that the problem described above can be stated as a regu-
larization problem [12]. Regularization methods include, among others, smooth-
ing splines [14] or kriging [1]. Regularization allows the construction of smooth
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functions. In fact, it can be shown (see, for instance [7,8]) that the previous
problem can be formulated as a regularization problem of the form:

min
f∈HK

1
n

n∑

i=1

L(yi, f(xi)) + μ‖f‖2
K , (2)

where μ > 0, HK is the Reproducing Kernel Hilbert Space (RKHS) associated to
the kernel K, ‖f‖K denotes the norm of f in the RKHS, (xi, yi) are the sample
data points, and L(yi, f(xi)) = (|f(xi) − yi| − ε)+, ε ≥ 0 is known as the ‘ε-
insensitive loss’ function. By the Representer Theorem (see, for instance [7]), the
solution to problem (2) has the form f(x) =

∑n
i=1 αiK(xi, x)+b, where xi are the

sample data points. Notice that the penalization term μ‖f‖2
K in eq. (2) favours

the choice of smooth solutions to the optimization problem under consideration.
It is immediate to show that ‖f‖2

K = ‖w‖2, where w =
∑n

i αiΦ(xi) and Φ is the
mapping defining the kernel function. In this way, R∗(x) = f(x).

4 An Application of SVMs to Nonlinear Profiles

We will apply Regression SVMs to the example given in [15,16,18]. The data
set is made up of 24 curves, each one corresponding to a vertical density profile
(VDP). These data come from the manufacture of engineered woodboards. In
the production of engineered wood boards the control of the density properties
of the boards produced is crucial. Multiple measurements on a sample (usually
a 2 × 2 inch piece) to form the vertical density profile of the board have been
taken. Figure 2 shows the 24 profiles. Each one consists of 314 measurements
taken 0.002 inches apart. The VDPs are divided in three groups. Each group
is made up by boards selected in the same 8-hour shift. Group 1 consists of 9
boards (1,. . . , 9), group 2 consists of 11 boards (10,. . . , 20), and group 3 consists
of 4 boards (21,. . . , 24).

Fig. 2. 24 profiles. Each one consists of 314 measurements
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The way in which we will apply Regression SVMs for profile monitoring falls
into the area of Functional Data Analysis [11]. We will calculate the control
limits by regularizing the percentile curves obtained from the profiles. Figure 3
shows, in bold, the 0.005 and 0.095 percentiles for the 24 curves. Between both
percentiles, 99% percent of the curves should be contained. In the following
application we will use the Gaussian kernel K(x, y) = e−‖x−y‖2/σ with σ = 0.025,
and in the SVM formulation we will take C = 100. The parameters have been
fixed by cross-validation (see [14] and [6] for details).

0.0 0.1 0.2 0.3 0.4 0.5 0.6

40
45

50
55

60

Fig. 3. 0.005 and 0.095 percentiles for the 24 curves

In order to obtain smooth control limits, we regularize these percentile curves
using a Regression Support Vector Machine. Figure 4 shows the 24 curves and
the regularized control limits in bold.

Using these control limits, outlying profiles can be calculated. In this appli-
cation, we will consider a profile as out of bounds if its regularized version at
some moment comes out of the band delimited by the upper or lower regularized
control limits. The use of the regularized version of the profiles is justified by
the need of avoiding the effect of the peaks of the nonregularized curves. Figure
5 shows the estimated curve for one of the profiles, in particular for the profile
named 10. Figure 6 shows the regularized curves for all the profiles, and the
control limits (the two bold curves).

Using our methodology, three profiles are obtained as out of bounds, in par-
ticular, profiles 3, 6 and 16. The regularized version of curve 3 is out of bounds
279 times, curve 6 is out of bounds 296 times and curve 16 is out of bounds
11 times. The remaining curves remain always between the control limits. Since
each profile consists of 314 measurements, we may design a measure (taking val-
ues between 0 and 1) to decide how outlying is a profile (the proportion of time
that its regularized version is out of control). In this way, the results for these
three profiles are 0.89, 0.94 and 0.035, respectively. Figure 7 shows the outlying
regularized profiles (black lines) and the control limits (dashed lines).
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Fig. 4. The 24 curves and the regularized control limits in bold

Fig. 5. Profile 10 and its corresponding regularized curve

Curves 3 and 6 are the ones clearly out of bounds, being their corresponding
values for the outlying measure high, that is, 0.89 and 0.94 respectively. Curve
16 is out of bounds only in the tails of the lower control limit (being its measure
0.035, a low value). For the shake of completeness, Figure 8 shows the regularized
control limits and the non-regularized version of the outlying curves.

Notice that using less restrictive criterions in order to decide whether a given
curve is out of bounds (for instance, a percentage of times coming out of the
limits), fewer curves would be considered as outlying ones.

4.1 Comparison with Other Methods

The analysis of nonlinear profiles has been previously afforded using standard
statistical methods. In particular, in [17] three methods are applied to this data
set. These methods are based on the monitoring of the parameters obtained by
estimating each VDP using a ‘bathtub’ function model. Given the data points
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0.0 0.1 0.2 0.3 0.4 0.5 0.6

40
45

50
55

60

Fig. 6. The 24 regularized curves and the regularized control limits in bold

(xk
i , yk

i ) for the ith profile (in our case i ∈ {1, . . . , 24}, k ∈ {1, . . . , 314}), the
following model has to be estimated:

fi(xk
i , βi) =

⎧
⎨

⎩

ai1(xk
i − di)bi1 + ci , xk

i > di ,

ai2(−xk
i + di)bi2 + ci , xk

i ≤ di ,
(3)

where xk
i is the kth regressor variable value for the ith profile, and βi = (ai1, ai2,

bi1, bi2, ci, di)T is the vector of parameters corresponding to the model estimat-
ing the ith profile. Notice that there exists a ‘bathtub’ model for each of the 24
profiles. Once βi has been estimated by β̂i, i ∈ {1, . . . , 24}, three covariance ma-
trices S1, S2 and S3 (for methods 1, 2 and 3, respectively) are calculated (see [17]
for details). Then three T 2-statistics of the form T 2

i = (β̂i − ¯̂
βi)T S−1

i (β̂i − ¯̂
βi)T ,

i ∈ 1, 2, 3 are calculated in order to monitor the parameters simultaneously.
These Ti follow standard statistical distributions and control limits can be cal-
culated.

In [17] it is shown that, for the three statistics, board 15 is outlying. For two
of the three statistics board 18 is borderline, while the third statistic indicates
that boards 4, 9, 18 and 24 are outliers. It is apparent that none of these boards
are outliers as they are included within the calculated control limits.

4.2 Principal Component Analysis

The results obtained with the regularization methodology are coherent with the
ones of the following experiment. We have considered each profile as a single
data point of dimension 314. Then, we have made a Principal Component Anal-
ysis (PCA) on the 24 profiles. The first principal component explains 98% of
the variability. Figure 9 shows the 24 profiles projected on this first principal
component, with profiles 3, 6 and 16 in bold. It is clear that the most outlying
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Fig. 7. Outlying regularized curves. Control limits in dashed.
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Fig. 8. Regularized control limits (dashed) and the non-regularized version of the out-
lying curves
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Fig. 9. The 24 profiles projected on the first principal component, with profiles 3, 6
and 16 in bold

profiles are these three ones, being profiles 3 and 6 the most outlying ones. The
PCA method can be considered a qualitative method rather than a quantitative
one. Therefore, it does not provide a decision value to determine if a given profile
can be considered as an outlier, while the method that we propose does.
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5 Conclusions

In this work we have developed a new methodology based on Functional Data
Analysis for the construction of control limits for nonlinear profiles. Our tech-
nique is not based in the monitoring of the parameters of any model fitting
the curves. Instead, we monitor the fitted curves themselves. Therefore, we do
not need to find a particular nonlinear regression model that must adapt to the
particular shape of the profiles in each case. The use of the regularized curve
corresponding to each profile has the effect of automatically considering the
variability within the profile. Similarly, by building the percentile curves and the
control limits we are taking into account the variability among different profiles.

The simplicity and effectiveness of the data analysis method has been tested
against other statistical approaches using a standard data set in the process
control literature. In particular we have shown that our method outperforms
other state-of-the-art methods in term of outlying board detection.

Further research will include the study of density estimation methods to de-
tect the outlying curves, by considering the profiles as data points in a functional
data space. To this aim, we will extend the techniques presented in [10] to the
functional data case.
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