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Preface

These proceedings offer a written account of the scientific contributions presented
at the 12th Iberoamerican Congress on Pattern Recognition (CIARP 2007), held
in Viña del Mar-Valparáıso, Chile. The aim of the congress was to promote and
disseminate ongoing research and mathematical methods for pattern recogni-
tion, image analysis, and applications in such diverse areas as computer vision,
bioinformatics, robotics and remote sensing, industry, health, space exploration,
data mining, document analysis, natural language processing and speech recog-
nition, among others. The volume is a manifestation of the ongoing success of
the Iberoamerican Congress on Pattern Recognition (CIARP) that has featured
in the landscape of international scientific conferences on pattern recognition
and computer vision in the past few years. It provides evidence of the growing
stature of the Iberoamerican scientific community in this subject area and of the
interest its scientific contributions generate worldwide. As in the previous years,
CIARP 2007 hosted participants from all over the world.

CIARP 2007 was organized by the Department of Informatics Engineering of
the University of Santiago de Chile (USACH) and the Department of Informatics
of the Technical University Federico Santa Maŕıa (USM). The event was spon-
sored by the Advanced Technologies Application Center of Cuba (CENATAV),
the Mexican Association for Computer Vision, Neurocomputing and Robotics
(MACVNR), the Cuban Association for Pattern Recognition (ACRP), the Por-
tuguese Association for Pattern Recognition (APRP), the Spanish Association
for Pattern Recognition and Image Analysis (AERFAI), the Special Interest
Group on Pattern Recognition of the Brazilian Computer Society (SIGPR-SBC),
the Chilean Society for Computer Science by means of its technical committee,
the Chilean Association for Pattern Recognition (AChiRP), the International
Institute for Innovation and Entrepreneurship (3IE) and the Southeastern Pa-
cific Research Institute for Advanced Technologies (SEPARI). CIARP 2007 was
endorsed by the International Association for Pattern Recognition (IAPR).

CIARP 2007 received contributions from 36 countries, registering a total of
200 papers submitted, out of which 97 were accepted for publication in these pro-
ceedings and for presentation at the conference. The review process was carried
out by the Scientific Committee composed of internationally recognized scien-
tists, all experts in their respective fields. Each paper was subject to a double-
blind review, carried out by at least two reviewers. We are especially indebted
to the reviewers for their effort, ensuring the quality of the papers selected for
the proceedings.

The conference program was augmented by invited keynote papers, presented
by internationally renowned scientists. The talks addressed an interesting mix
of topics in theory and applications of pattern recognition and were given by:
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– Prof. Anil Jain, Department of Computer Science and Engineering, Michigan
State University, USA.

– Prof. Horst Bunke, Institute of Computer Science and Applied Mathematics,
University of Bern, Switzerland.

– Prof. Maria Petrou, Department of Electrical and Electronic Engineering,
Imperial College, UK.

– Prof. Sorin Draghici, Department of Computer Science, Wayne State
University, USA.

We would like to express our thanks to the members of the Organizing Com-
mittee for their contribution to the success of the conference and to these pro-
ceedings. We would also like to convey our special thanks to the members of the
Local Committees for their help in the submission and reviewing process, as well
as in editing these proceedings. Finally, we would like to express our gratitude to
the members of the Steering Committee for their support and help in bringing
this congress to Chile for the first time.

Luis Rueda
Domingo Mery

Josef Kittler
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Bloch I. Escuela Nacional Superior de

Telecomunicaciones, France
Borges D. Universidade do Brasilia, Brazil
Bunke H. University of Bern, Switzerland
Campilho A. Universidade do Porto, Portugal
Cano S. Universidad de Oriente, Cuba
Carrasco-Ochoa J. A. Instituto Nacional de Astronomı́a, Óptica y
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Martinez-Trinidad J.F. Instituto Nacional de Astronomı́a, Óptica y
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Mexico
Perales F. Universidad de las Islas Baleares, Spain
Pereira F. Instituto de Telecomunicacçõnes, Portugal
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Pinto C. Universidade Técnica de Lisboa, Portugal
Pla F. Universitat Jaume I, Spain
Randall G. Universidad de la República, Uruguay



X Organization

Rannou F. Universidad de Santiago de Chile, Chile
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Ricardo Ñanculef
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European Portuguese Accent in Acoustic Models for Non-native
English Speakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734

Carla Simões, Carlos Teixeira, Miguel Dias, Daniela Braga, and
António Calado

A Statistical User Simulation Technique for the Improvement of a
Spoken Dialog System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
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Learning in Computer Vision: Some Thoughts
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Abstract. It is argued that the ability to generalise is the most impor-
tant characteristic of learning and that generalisation may be achieved
only if pattern recognition systems learn the rules of meta-knowledge
rather than the labels of objects. A structure, called “tower of knowl-
edge”, according to which knowledge may be organised, is proposed. A
scheme of interpreting scenes using the tower of knowledge and aspects
of utility theory is also proposed. Finally, it is argued that globally con-
sistent solutions of labellings are neither possible, nor desirable for an
artificial cognitive system.

1 Introduction

The word “learning” has many interpretations among the pattern recognition
community in general, and the computer vision community in particular. It has
been used to loosely mean anything between the identification of the best value of
a parameter from training data, to learning how to recognise visual structures.
So, perhaps we should try to distinguish the interpretation of the word as it
appears in the mathematical formulation of problems, from its interpretation as
it appears in cognition related tasks. In the sections that follow, we shall try to
understand the significance of learning in the context of computer vision and
identify a possible relationship between these two interpretations of the word.

2 The Main Characteristic of Learning

Some of the first learning algorithms in relation to cognitive tasks, that have
been proposed in the past, are the various types of neural network. Proponents of
neural networks often comment on the generalisation capabilities of the networks
they develop. Generalisation is one of the characteristics of learning. Indeed, we,
humans, teach our children often with fairy tales and parables, assuming that
they have the ability to generalise to real situations. It is preposterous to expect
that we shall have to teach our children about all individual possible situations
they may encounter in life, in order to make sure that we have taught them
well. We may safely conclude, therefore, that the ability to generalise is the most
important characteristic of learning.
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This implies that classical pattern recognition methods, that use training ex-
amples to span the feature space, are not really learning methods in the cognitive
sense of the word. Even neural network based methods, in order to generalise
well, rely heavily on the availability of enough training samples to populate ade-
quately the feature space. The training patterns are used by the neural networks
to approximate the class boundaries in the feature space with piece-wise linear
segments. When an unknown pattern arrives, it can be associated with the class
that has been identified to populate the part of the feature space where the pat-
tern appears. Some old [3] and some more recently developed methods [1], that
can work with fewer training patterns than straightforward methods, do so by
selecting the patterns that matter most in defining the class boundaries, rather
than by using some higher level generalisation abilities of the classifier [23]. So,
neural networks and pattern classification methods are not learning methods in
the cognitive sense of the word.

The question then that arises is: is learning, as understood by cognitive scien-
tists and psychologists, algorithmic, or is it something beyond the current grasp
of mathematical formalism? Evidence against learning being algorithmic is the
ability of humans to learn even from single examples. A counter-argument is
that humans take a lot of time to learn, and it is possible that what we wit-
ness as super-fast learning is simply a manifestation of the application of some
meta-knowledge, some generic rules that have been slowly and painfully learnt
subconsciously. I would like to clarify that “learning” here does not refer to get-
ting a University degree. This is indeed a very long process and it takes almost
one third of the life span of a person. Learning here refers to survival skills, to
skills needed to operate in everyday life. Given that a human becomes reproduc-
tive roughly between the ages of 12–15, we may assume that nature considers the
human child becoming ready for life at that stage. So, we may say that humans
“learn” what they have to learn, to be ready for life as independent entities,
over a period of 12–15 years, which is still a significant fraction of their life span.
Therefore, humans seem to be slow learners after all. They take a lot of time
to work out the rules of meta-knowledge. It is these rules, that have possibly
been learnt in an algorithmic way, that allow then the human to learn in the
super-fast, almost magical, way that we often witness. We may conclude from
the above arguments that:

– generalisation is an important characteristic of learning;
– generalisation in algorithmic learning may only be achieved by having enough

training examples to populate all parts of the class space, or at least the parts
that form the borders between classes;

– we have true generalisation capabilities, only when what is learnt by training
examples are rules on how to extract the identity of objects and not the
classes of objects directly. If such learning has taken place, totally unknown
objects may be interpreted correctly, even in the absence of any previously
seen examples.

This conclusion implies that what we have to teach the computer, in order to con-
struct a cognitive system, are relations rather than facts. For example, memorising
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the dictionary of a language, does not teach a person the language. The person has
to learn the relations between words in order to master the language. This is in
agreement with Winstone’s pioneering experiments on teaching the computer to
recognise arches. He did not show to the computer all possible types of arch it may
encounter. He showed it examples and counter examples of arches and taught it
to recognise relations between components, such as “supports” or “is supported
by” [26].

3 Knowledge and Meta-knowledge

There are at least 50 theories of learning developed by cognitive scientists [28]. In
computer science, we tend to distinguish two forms of learning: learning by ex-
perimentation and learning by demonstration. Inductive learning is also used by
computer scientists, but we shall not deal with that here, because it implies that
the learner has already learnt the rules of logic. So, inductive learning may be
thought of as a way of applying the already learnt rules of meta-knowledge [22].

Learning by experimentation implies the ability to try, reason about the re-
sults and draw conclusions. In its simplest form, this is what fully automatic
programs do. A fully automatic segmentation algorithm, for example, will work
as follows: perform segmentation, assess the quality of the result, adjust the
parameters and try again. The immediate conclusion is that learning by exper-
imentation requires the presence of a feed-back loop. It also requires the avail-
ability of a criterion that says how well the system has performed each time. It
is important for this criterion to be independent of the knowledge or information
used to perform the segmentation in the first place, otherwise the result will be
a self-fulfilling prophecy. In semi-automatic systems, the criterion is provided by
the human. The reported results in the literature then include a statement of the
type: “the best threshold was found by trial and error.” This method is a per-
fectly legitimate method of learning. It comes under the umbrella of supervised
learning and it corresponds to human learning with the help of a teacher.

Proceeding to fully automated methods is equivalent to assuming that the
computer has somehow passed that stage of learning the meta-knowledge, nec-
essary to construct rules, and now learning proceeds very fast, making use of
these meta-rules. For example, if we know that agricultural fields tend to have
straight borders, we may judge the output of a segmenter of an image, cap-
tured by an airborne sensor, as good or bad, according to whether it produced
regions with straight borders or not. The knowledge that fields have straight
boundaries is a meta-knowledge. The segmenter might have operated using only
texture and edge information. The straightness of the inferred borders may be
used as a criterion to drive the system to use its feed-back loop to work out
a better segmentation. The question then is: how did the system acquire this
meta-knowledge? As argued earlier, it must be the meta-knowledge that had
to be learnt by the human child (or the computer learner) painfully slowly by
seeing lots of examples of agricultural fields. And although no method has been
found yet to transplant this meta-knowledge to the brain of the human child



4 M. Petrou

from the brain of the teacher, computers have an advantage here: the teacher,
i.e. the human, may insert the meta-knowledge into the system while developing
the criterion of self assessment of the algorithm. From this line of argument, we
conclude that:

– meta-knowledge may take the form not only of relations, but also of generic
characteristics that categories of objects have;

– in interactive systems, meta-knowledge is inserted into the computer learner
by the human teacher manually;

– in automatic systems, meta-knowledge is supplied to the computer learner
by the human teacher in the form of a criterion of performance assessment.

Two questions then arise:

– what connects the knowledge with the meta-knowledge?
– how is meta-knowledge learnt in the first place?

4 Learning by Demonstration

To answer the above questions, we get a clue from the second type of learning we
mentioned earlier, namely learning by demonstration. The demonstrator here is
the teacher. The next is a story I heard from my grandmother. Remember that
the traditional way of teaching children has always been through stories and
parables. This story offers the clue we are searching for.

‘Once upon a time there was a potter who got an apprentice who wanted to
learn the art of pottery. The potter made his clay pots and put them in the
oven. After two hours, he turned the fire off, and sat down to rest and smoke, as
he was an old man. Then he took the pots out of the oven. They were perfect.
The apprentice later decided to do his own pots. He made them out of clay and
put them in the oven. After two hours, he took them out. The pots broke. He
repeated the task and he had the same results. He went back to the potter: “You
did not teach me well. Such and such happened.” “Did you stop to smoke after
you switched off the fire?” “No, I am not a smoker.” “So, you got the pots out
of the oven too soon.”’

I am sure the story was related to me in order to teach me to pay attention
to the detail. Indeed, if the apprentice had seen the potter performing the act
dozens of times with slight variation each time, but always with the pause before
the pots were taken out of the oven, he might have worked out that that pose
was crucial to the process. On the other hand, the teacher might have been a
better teacher if he had made that information explicit.

So, this story tells us that we learn fast, from very few examples, only when
somebody explains to us why things are done the way they are done. A child
asks lots of “why”s and that is how a child learns. This tells me that we cannot
disassociate learning to recognise objects from learning why each object is the
way it is. One may consider the following exchange between a teacher and a
learner:
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“What is this?”
“This is a window.”
“Why?”
“Because it lets the light in and allows the people to look out.”
“How?”
“By having an opening at eye level.”
“Does it really?”

This sequence of learning is shown in Fig. 1. This figure proposes that knowl-
edge in our brain is represented by a series of networks, forming a complex struc-
ture that I call the “tower of knowledge”. The network of nouns is a network
of object names, labels, e.g. “window”, “chimney”, “door”, etc. The network of
verbs or actions, is a network of functionalities, e.g. “to look out”, “to enter”,
“to exit”, etc. The network of appearances is a network of basic shapes necessary
for a functionality to be fulfilled, e.g. “it is an opening of human size at floor
level”. So, the flow of knowledge goes like the fragment of conversation given
above. The loop closes when we confirm that the object we are looking at has
the right characteristics for its functional purpose to be fulfilled.

The task, therefore, for the artificial vision scientist, is to model these layers
of networks and their inter-connections. We have various tools at our disposal:
Markov Random Fields [8], grammars [19], inference rules [24], Bayesian net-
works [16], Fuzzy inference [27], etc. I would exclude from the beginning any
deterministic crisp approaches, either because things are genuinely random in
nature (or at least have a significant random component), or because our mod-
els and our knowledge is far too gross and imperfect for creating crisp rules and
dogmatic decisions.

5 Markov Random Fields

Some recent work [17] showed evidence that the network of nouns (better de-
scribed in psychophysical terms as network of “ideas”) is topologically a random
network, while the network of relations, made up from pairs of ideas, is topo-
logically scale-free. For example, pairs like “fork-knife”, “door-window” come up
much more frequently in trains of thought than “door” alone, or “window” alone.
This indicates that the connections in these networks are of varied strength, and
actually are not always symmetric. For example, the idea “door” may trigger
the idea “window” more frequently than the idea “window” triggers the idea
“door”. This asymmetry in the interactions is a manifestation that Markov Ran-
dom Fields (MRFs) are not applicable here in their usual form in which they are
applied in image processing. An example of the interactions in a neighbourhood
of an MRF, defined on a grid, is shown in Fig. 2b. This MRF, and the weights it
gives for neighbouring interactions, cannot be expressed by a Gibbs joint prob-
ability density function. For example, the cell at the centre is influenced by its
top left neighbour with weight −1, but itself, being the bottom right neighbour
of the cell at the top left, influences it with weight +1. This asymmetry leads to
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instability when one tries to relax such a random field, because local patterns
created are not globally consistent (and therefore not expressible by global Gibbs
distributions) [18]. According to Li [9,10,11], relaxations of such MRFs do not
converge, but oscillate between several possible states. (Optimisations of Gibbs
distributions either converge to the right interpretation, but more often than
not, they hallucinate, i.e. they settle on wrong interpretations.)

So, one could model the network at each level of the tower of knowledge shown
in Fig. 1, using a non-Gibbsian MRF [5]. The interdependences between layers
might also be modelled by such networks, but perhaps it is more appropriate
to use Bayesian models, as the inter-layer dependencies are causal or diagnostic,
rather than peer-to-peer.

The question that arises then is: “where are we going to get the knowledge to
construct these networks?” Where does the mother that teaches her child get it
from? There is no “ground truth” or universal knowledge the mother transfers to
her child: she sees something and talks about it to the child, then she remembers
something else, according to her own network of related ideas that invoke each
other and are prompted by her own sensory input, talks again to the child, and
so on. So, all the mother (the teacher) does is to transfer to the child her own
connections between ideas and concepts. If the mother tells the child “This is a
pencil and that is a rubber. The pencil helps us write and the rubber helps us
erase what we wrote.”, the child will make the same connections as the mother
had in her own brain. Pencil-rubber will have a strong mutual recall in the child’s
network of nouns, as well as write-erase in the child’s network of verbs. So, one
thing we can do is to model our own mental connections between ideas and
functionalities. Then let the child (the computer) ask the right questions. For
every answer, the strength of the corresponding connection is increased. We may
turn these strengths into probabilities. Then a totally new scene may be shown
to the computer. The child/computer must be able to use the connections it has
learnt to interpret this new scene.

In practice, this is done by using manually annotated images. Heesch and
Petrou [5] did exactly this to interpret outdoor scenes of buildings: they used
hundreds of annotated images to learn the Markov dependencies of region con-
figurations, defining the neighbourhood of a region to be the six regions that
fulfil one of the following geometric constraints: it is above, below, to the left,
to the right, it is contained by, or contains the region under consideration. An
unknown scene was then labelled using a preliminary labelling performed on the
basis of individual measurements made on each region, and relaxing the MRF
defined on the segmented regions, using graph colourings and drawing labels for
each region according to the local conditional probability of labels, conditioned
on the current labels of the neighbours. No global consistency is guaranteed that
way, but no global consistency exists, when the interdependencies between labels
are asymmetric. We may intuitively understand this, as in an outdoor environ-
ment the long range interactions between objects are probably too weak to have
a significant effect on the identity of a region. For example, if this region that
belongs to this house here is a door, that region that is at the other end of the



Learning in Computer Vision: Some Thoughts 7

descriptions

verbs/actions

nouns

measurements

sensors
w

ha
t?

w
hy

?
ho

w
?

functionality level
An MRF at the

appearance level
An MRF at the 

semantic level
An MRF at the 

An MRF at the 
image level

is
 it

 r
ea

lly
 li

ke
 t

hi
s?

causal dependances

causal dependances

causal dependances

Fig. 1. The tower of knowledge: how knowledge may be organised. The double-headed
arrows represent contextual interactions. The thin continuous arrows represent queries.
The dashed arrows represent answers, i.e. transfer of information. The level of interest
in a cognitive vision task is the level of nouns, where we wish to assign labels to objects.
Examples of nodes with contextual connotations in the network of nouns are “door”,
“window”, “balcony”. Examples of nodes with contextual connotations in the network
of functionality are “lets air in”, “lets light in”, “allows a person to enter”. Examples
of nodes with contextual connotations in the network of descriptions are “has a glass
pane”, “is at eye-level”, “has a handle to open it”.

field of view may be a car, a bush, a window, a house, or a tree. The differentia-
tion of such options in terms of probabilities must be very small: the correlation
function between labels, referring to objects beyond a certain distance apart,
flattens out and provides no useful information. So, no global model is expected
to be relevant or useful.

6 Bayesian Inference

Bayesian approaches have been used so far in two ways: either in the form
of probabilistic relaxation (PR) [7] or in the form of Pearl-Bayes networks of
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inference [16]. Probabilistic relaxation has its origins in the seminal work on
constraint propagation by Waltz [25], who used crisp constraints and solved once
and for all the problem of globally inconsistent labellings that led to impossible
objects [6]. Probabilistic relaxation updates the probabilities of various labels of
individual objects by taking into consideration contextual information [7]. As this
contextual information is in effect peer-to-peer, probabilistic relaxation is not
an appropriate tool for modelling causal relationships. It is rather an alternative
tool to MRFs discussed in the previous section for modelling influences at the
same layer. Probabilistic relaxation, just like MRF relaxation, is not guaranteed
to converge to a unique global solution, unless special conditions are obeyed [21].
We discussed earlier that this is not an issue in reality: labellings of scenes do
not have to be globally consistent, but only locally consistent. This statement
seems to be in contradiction with a previous statement, saying that probabilistic
relaxation is the generalisation of Waltz’s algorithm which solved the problem of
inconsistent labellings in the 60s. This contradiction, however, is only superficial.
The problem of inconsistent labellings of the 60s was referring to the labellings
of single solid objects, by labelling their sub-parts [4] and not the labellings of
scenes that contain many different objects, where constraints between objects
are far weaker than constraints within the subparts of the same solid object.

The second form of Bayesian approach is that of Pearl-Bayes networks of infer-
ence. Here the relations may be causal, and so these networks are appropriate for
inter-layer inference. Bayesian approaches depend on conditional probabilities.
How to choose these conditional probabilities has always been a problem for such
methods. Conditional probabilities may have to be learnt painfully slowly from
hundreds of examples. Stassopoulou et al. [20] solved the problem of learning the
conditional probabilities, by mapping the class boundaries expressed by such a
network, to a neural network, which was subsequently trained to learn these con-
ditional probabilities. Alternatively, conditional probabilities may be transferred
ready from another already trained network: the network of the teacher. This
transference is equivalent to choosing them to have some parametric form (e.g.
Gaussian) with parameters chosen “arbitrarily”. The arbitrary choice of form
and parameters usually leads to the criticism of the approach being ad-hoc or
unjustified. It is not, if the teacher simply transfers their own hard gained knowl-
edge to the pupil (the computer). Such an approach leads us to new theories,
like for example the so called “utility theory” [12].

Utility theory is a decision theory. Assigning labels to objects depicted in an im-
age is a decision. In the Bayesian framework we make this decision by maximising
the likelihood of a label given all the information we have. In utility theory, this
likelihood has to be ameliorated with a function called “utility function”, that
expresses subjective preferences or possible consequences of each label we may
assign. The utility function multiplied with the Bayesian probability of each la-
bel and summed over all possibilities leads in one pass only to the final label. So,
this approach avoids the iterations used by MRFs and PR. The utility function
may be identified with the innate meta-knowledge somebody has acquired about
the world. It is that knowledge, that might have been learnt algorithmically and
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from many examples, but which now is expressed in the form of conditions and
prejudices that cannot be fully justified by the measurements we make. It is the
knowledge that tells us to be cautious when we want to buy a car from a man
that postponed the appointment we made several times, that did not produce im-
mediately the maintenance record of the car we requested, and so on. Such ideas
have been around for some time, without people using the term “utility function”.
For example, psychologists in the mid-nineties were talking about the so called p-
maps and m-maps. The p-maps were meant to be the prior knowledge we have
about various possible patterns that we may encounter in life. A p-map guides us
to sample a scene more or less carefully at places where it matters or it does not
matter, respectively, producing the m-map that is specific to the present situa-
tion. One may identify here the p-maps as being the utility functions of today and
the m-maps the Bayesian part of labels conditioned on the measurements we have
made1.

In the computer vision context, utility theory has been used by Marengoni [13]
to select the features and operators that should be utilised to label aerial images.
Further, one may interpret the work of Miller et al. [14] as using a utility func-
tion that penalises the unusual transformations that will have to be adopted to
transform what is observed to what the computer thinks it is. The authors effec-
tively choose labels by maximising the joint likelihood of the probability density
function of the observed transforms and the probability density function of the
labels and observations, assuming that transforms and labels/measurements are
independent.

7 Modelling the “Why” and the “How” in Order to
Answer the “What”

Let us consider the tower of knowledge presented in Fig. 1. We shall formulate
here the problem of learning to recognise objects in a scene, using this hierar-
chical representation of knowledge and utility theory.

Let us assume that we use maximum likelihood to assign labels to a scene.
In the conventional way of doing so, object oi will be assigned label lj with
probability pij , given by:

pij = p(lj |mi)p(mi) = p(mi|lj)p(lj) (1)

where mi represents all the measurements we have made on object oi, and p(mi)
and p(lj) are the prior probabilities of measurements and labels, respectively.
Probabilistic relaxation will update these probabilities according to the con-
textual information received from neighbouring regions. We do not follow that
route here. Instead, we shall use the information coming from the other layers
of knowledge to moderate this formula. Let us identify the units in the “verbs”
1 The ideas of p-maps and m-maps first came to my knowledge by Robin Shirley of

the Psychology Department of Surrey University, who passed away before he had
the chance to make them more concrete and publish them.
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level of Fig. 1 by fk, and the units at the descriptor level of Fig. 1 by dl. Then
we may choose label lji for object oi as follows:

ji = arg max
j

∑

k

ujk

∑

l

vklcil

︸ ︷︷ ︸
utility function(i,j)

pij (2)

where ujk indicates how important is for an object with label lj to fulfil func-
tionality fk; vkl indicates how important characteristic dl is for an object to have
the possibility to fulfil functionality fk, and cik is the confidence we have that
descriptor dl applies to object oi.

Note that the value of the utility function expresses the evidence we have
that region oi has the necessary characteristics to fulfil its role as object lj . For
example, if the label we consider of assigning to object oi is “balcony”, the utility
function must express whether this object has dimensions big enough to allow
a human to stand on it, whether it is attached on a wall, and whether there is
a door leading to it. All these are conditions that will allow an object to play
the role of a balcony. A learning scheme must be able to learn the values of ujk

and vkl either directly from examples (slowly and painfully), or by trusting its
teacher, who having learnt those values himself, slowly and painfully over many
years of human life experiences, directly inserts them to the computer learner.
The computer learner then must have a tool box of processors of sensory inputs
that will allow it to work out the values of cil.

−1 −1

1

−1

−1

−1 −1

(a) (b)
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Fig. 2. (a) A local neighbourhood at the pixel level with globally consistent Markov
parameters: if this field is relaxed it will lead to horizontal strips of similar labels which
will be distinct from the labels above and below. In image processing it will lead to
a texture pattern with strong horizontal directionality. (b) A local neighbourhood at
the pixel level with globally inconsistent Markov parameters: the top left pixel tells
the central pixel to be different from it; the central pixel, seen as the bottom right
neighbour of the top left pixel, tells it to be similar to it.

8 Conclusions

I have argued here that learning is characterised by the ability to generalise, and
that this can only be achieved if what is learnt is not the labels of the objects
viewed, but the rules according to which these labels are assigned. I have also ar-
gued that this meta-knowledge may be transferred to the learner (the computer)
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directly by the teacher (the human developer), in the form of rules, or in the
simplest way, by the human using the parameters of the algorithms according to
their personal experience and intuition. This puts me at odds with the majority
of the community of reviewers who tend to reject papers on the grounds that
the parameters have been chosen ad hoc with no proper explanation: these are
the cases of the teacher transplanting to the learner their painstakingly acquired
knowledge. The alternative is for the learner each time to acquire this knowledge
painfully slowly from thousands of examples.

I have also argued that we do not need globally consistent labellings of scenes.
Global consistency will never allow us to label correctly the scene painted by
Magritte of a train storming out of a fire place, because trains do not come
out from fire places! It will never allow the computer to recognise green horses
with 5 legs, but we, humans, do. So, what we need is fragments of reality and
knowledge.

In computer vision, the idea of abandoning globally consistent solutions has
now matured. This is not in isolation from other sciences. Strategy analysts talk
about “fragments of learnt actions”, and even mathematicians have long ago
abandoned the idea of a globally self-consistent mathematical science: Bertrand
Russell had to abandon the idea of globally consistent mathematics based on a
small number of axioms, when Gödel’s proof was published [15]. Natural sys-
tems are not globally consistent: they oscillate between states, and we, humans,
manage to survive through this constantly dynamic, globally inconsistent and
ambiguous world. A robotic system must be able to do the same and perhaps
the only way to succeed in doing that is to be constructed so that it is content
with a collection of fragments of understanding.

Acknowledgements. This work was supported by EU grant 027113.

References

1. Cortes, C., Vapnik, V.N.: Support-Vector Networks. Machine Learning Journal 20,
273–297 (1995)

2. Christmas, W.J., Kittler, J., Petrou, M.: Structural matching in Computer Vi-
sion using Probabilistic Relaxation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 17, 749–764 (1995)

3. Devijver, P.A., Kittler, J.: On the edited nearest neighbour rule. In: Proc. 5th Int.
Conf. on Pattern Recognition, pp. 72–80 (1980)

4. Guzman, A.: Computer Recognition of three-dimensional objects in a visual scene.
Tech. Rep. MAC-TR-59, AI Laboratory, MIT (1968)

5. Heesch, D., Petrou, M.: Non-Gibbsian Markov Random Fields for object recogni-
tion. The British Machine Vision Conference (submitted, 2007)

6. Huffman, D.A.: Impossible Objects as Nonsense Sentences. Machine Intelligence 6,
295–323 (1971)

7. Hummel, R.A., Zucker, S.W.: One the foundations of relaxation labelling process.
IEEE Transactions PAMI 5, 267–287 (1983)

8. Kindermann, R., Snell, J.L.: Markov Random Fields and their Applications. First
book of the AMS soft-cover series in Contemporary Mathematics, American Math-
ematical Society (1980)



12 M. Petrou

9. Li, Z.: A neural model of contour integration in the primary visual cortex. Neural
Computation 10, 903–940 (1998)

10. Li, Z.: Visual segmentation by contextual influences via intra-cortical interactions
in the primary visual cortex. Networks:Computation in Neural Systems 10, 187–212

11. Li, Z.: Computational design and nonlinear dynamics of a recurrent network model
of the primary visual cortex. Neural Computation 13, 1749–1780 (2001)

12. Lindley, D.V.: Making Decisions. John Wiley, Chichester (1985)
13. Marengoni, M.: Bayesian Networks and Utility Theory for the management of

uncertainty and control of algorithms in vision systems. PhD thesis, University of
Massachusetts (2002)

14. Miller, E.G., Matsakis, N.E., Viola, P.A.: Learning from one example through
shared densities on transforms. In: CVPR (2000)
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Abstract. The emerging requirements of reliable and highly accurate
personal identification in a number of government and commercial appli-
cations (e.g., international border crossings, access to buildings, laptops
and mobile phones) have served as an impetus for a tremendous growth
in biometric recognition technology. Biometrics refers to the automatic
recognition of an individual by using anatomical or behavioral traits as-
sociated with that person. By using biometrics, it is possible to recognize
a person based on who you are, rather than by what you possess (e.g.,
an ID card) or what you remember (e.g., a password). Besides bolstering
security, biometric systems also enhance user convenience by alleviating
the need to design and remember multiple complex passwords. In spite of
the fact that the first automatic biometric recognition system based on
fingerprints, called AFIS, was installed by law enforcement agencies over
40 years back, biometric recognition continues to remain a very difficult
pattern recognition problem. A biometric system has to contend with
problems related to non-universality of biometric (failure to enroll rate),
limited degrees of freedom (finite error rate), large intra-class variability,
and spoof attacks (system security). This paper presents an overview
of biometrics, its advantages and limitations, state-of-the-art error rates
and current research in representation, fusion and security issues.

1 Introduction

A reliable identity management system is a critical component in several ap-
plications that render services to only legitimately enrolled users. Examples of
such applications include sharing networked computer resources, granting ac-
cess to nuclear facilities, performing remote financial transactions or boarding a
commercial flight. The proliferation of web-based services (e.g., online banking)
and the deployment of decentralized customer service centers (e.g., credit cards)
have further enhanced the need for reliable identity management systems. The
overarching task in an identity management system is the determination (or
verification) of an individual’s identity (or claimed identity). Traditional meth-
ods of establishing a person’s identity include knowledge-based (e.g., passwords)
and token-based (e.g., ID cards) mechanisms, but these surrogate representa-
tions of the identity can easily be lost, shared, manipulated or stolen thereby

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 13–19, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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undermining the intended security. Biometrics offers a natural and reliable solu-
tion to certain aspects of identity management by utilizing automated schemes
to recognize individuals based on their inherent anatomical and/or behavioral
characteristics [1]. By using biometrics it is possible to establish an identity based
on who you are, rather than by what you possess, such as an ID card, or what
you remember, such as a password.

Although biometrics emerged from its extensive use in law enforcement to
identify criminals, i.e., forensics, it is being increasingly used today to carry out
person recognition in a large number of civilian applications (e.g., national ID
card, e-passport and smart cards) [1], [2] (see Figure 1). Most of the emerging
applications can be attributed to increased security threats as well as fraud
associated with various financial transactions (e.g., credit cards).

What physical measurements qualify to be useful in a biometric system? Any
human anatomical or behavioral characteristic can be used as a biometric char-
acteristic as long as it satisfies the following requirements:

– Universality: each person should have the characteristic;
– Distinctiveness: any two persons should be sufficiently different in terms of

the characteristic;
– Permanence: the characteristic should be sufficiently invariant (with respect

to the matching criterion) over a period of time;
– Collectability: the characteristic can be measured quantitatively.

However, in a practical biometric system (i.e., a system that employs biomet-
rics for person recognition), there are a number of other issues that should be
considered, including:
– Performance, which refers to the achievable recognition accuracy and speed,

the resources required to achieve the desired performance, as well as the
operational and environmental factors that affect the performance;

– Acceptability, which indicates the extent to which people are willing to ac-
cept the use of a particular biometric identifier (characteristic) in their daily
lives;

– Circumvention, which reflects how easily the system can be fooled using
fraudulent methods.

A practical biometric system should meet the specified recognition accuracy,
speed, and resource requirements, be harmless to the users, be accepted by
the intended population, be easy to use and be sufficiently robust to various
fraudulent methods and attacks on the system. Among the various biometric
measurements in use, systems based on fingerprints [3], face [4] and iris [5] have
received the most attention in recent years. A biometric system is essentially a
pattern recognition system that operates by acquiring biometric data from an
individual, extracting a feature set from the acquired data, and comparing this
feature set against the enrolled template set in the system database. Depending
on the application context, a biometric system may operate either in a verifi-
cation mode or an identification mode [6] (see Figure 2). A biometric system is
designed using the following four main modules: (i) sensor module, (ii) feature
extraction module, (iii) matcher module, and (iv) system database module.
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(a) (b)

(c) (d)

Fig. 1. Biometric systems are being deployed in various applications. (a) A Pay-by-
Touch system (www.paybytouch.com) at a grocery store where customers pay by finger-
prints; (b) An Interpol fingerprint expert identifies a tsunami victim using the victim’s
fingerprint at a laboratory in Phuket, Thailand; (c) A fingerprint verification system
used for computer and network log-on and (d) The US-VISIT program currently em-
ploys two-print information to validate the travel documents of visitors to the United
States (www.dhs.gov).

2 Issues and Research Directions in Biometrics

Two samples of the same biometric characteristic from the same person (e.g.,
two impressions of a user’s right index finger) are not exactly the same due to
imperfect imaging conditions (e.g., sensor noise), changes in the user’s physical
or behavioral characteristics (e.g., cuts and bruises on the finger), ambient con-
ditions (e.g., temperature and humidity) and user’s interaction with the sensor
(e.g., finger placement). In other words, biometric signals have a large intra-class
variability. Therefore, the response of a biometric matching system is a match
score that quantifies the similarity between the input and the database template
representation. A higher score indicates that the system is more certain that
the two biometric measurements come from the same person. The system deci-
sion is regulated by the threshold: pairs of biometric samples generating scores

www.paybytouch.com
www.dhs.gov
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Fig. 2. Block diagrams of enrollment, verification, and identification tasks. Enrollment
creates an association between an identity and its biometric characteristics. In a verifi-
cation task, an enrolled user claims an identity and the system verifies the authenticity
of the claim based on her biometric feature. An identification system identifies an en-
rolled user based on her biometric characteristics without the user having to claim an
identity. Here, T represents the biometric sample obtained during enrollment, Q is the
query biometric sample obtained during recognition, XI and XQ are the template and
query feature sets, respectively, S represents the match score and N is the number of
users enrolled in the database.

higher than or equal to the threshold are inferred as mate pairs (i.e., belonging
to the same person); pairs of biometric samples generating scores lower than the
threshold are inferred as non-mate pairs (i.e., belonging to different persons). A
biometric verification system makes two types of errors: (i) mistaking biometric
measurements from two different persons to be from the same person (called false
match), and (ii) mistaking two biometric measurements from the same person
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to be from two different persons (called false non-match). These two types of
errors are often termed as false accept and false reject, respectively.

Deployment of biometric systems in various civilian applications does not
imply that biometric recognition is a fully solved problem. Table 1 presents the
state-of-the-art error rates of four popular biometric traits. It is clear that there
is a plenty of scope for improvement in the performance of biometric systems.
We not only need to address issues related to reducing the error rates, but we
also need to look at ways to enhance the usability of biometric systems and
address the return on investment issue.

Table 1. False reject and false accept rates associated with state-of-the-art fingerprint,
face, voice and iris verification systems. Note that the accuracy estimates of biometric
systems are dependent on a number of test conditions (e.g., population characteristics
and specific sensors used).

Biometric Test Test Conditions False False
Trait Reject Accept

Rate Rate
Fingerprint FVC 2006 [7] Heterogeneous population 2.2% 2.2%

including manual workers
and elderly people

FpVTE 2003 [8] U.S. government 0.1% 1%
operational data

Face FRVT 2006 [9] Controlled illumination, 0.8%-1.6% 0.1%
high resolution

Voice NIST 2004 [10] Text independent, 5-10% 2-5%
multi-lingual

Iris ICE 2006 [9] Controlled illumination, 1.1%-1.4% 0.1%
broad quality range

Biometric systems that operate using any single biometric characteristic have
the following limitations: (i) noise in sensed data, (ii) intra-class variations, (iii)
lack of distinctiveness [11], (iv) non-universality, and (v) spoof attacks. Some
of the limitations imposed by unibiometric systems can be overcome by using
multiple biometric modalities (such as face and fingerprint of a person or mul-
tiple fingers of a person). Such systems, known as multibiometric systems, are
expected to be more reliable due to the presence of multiple, independent pieces
of evidence [12]. These systems are also able to meet the stringent performance
requirements imposed by various applications [13]. Multibiometric systems ad-
dress the problem of non-universality, since multiple traits ensure sufficient popu-
lation coverage. Further, multibiometric systems provide anti-spoofing measures
by making it difficult for an intruder to simultaneously spoof the multiple bio-
metric traits of a legitimate user. By asking the user to present a random subset
of biometric traits (e.g., right index finger followed by right middle finger), the
system ensures that a “live” user is indeed present at the point of data acqui-
sition. Thus, a challenge-response type of authentication can be facilitated by
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using multibiometric systems. Of course, multibiometric systems involve addi-
tional cost and increase the enrollment and verification times.

With the widespread deployment of biometric systems in various applications,
there are increasing concerns about the security and privacy of biometric technol-
ogy [14]. Public confidence andacceptance of the biometrics technologywill depend
on the ability of system designers to demonstrate that these systems are robust,
have low error rates and are tamper proof. To avert any potential security crisis,
vulnerabilities of a biometric system must be identified and addressed systemati-
cally. A number of studies have analyzed potential security breaches in a biometric
system and proposed methods to counter those breaches e.g. [15], [16]. In particu-
lar, biometric template security is an important issue because unlike passwords and
tokens, compromised biometric templates cannot be revoked and reissued. Due to
intra-user variability in the acquired biometric traits, ensuring the security of the
template without deteriorating the recognition performance is a challenging task.
Although a number of biometric template protection schemes have been proposed
[17,18,19,20,21], a comprehensive template protection mechanism with provable
security guarantees and high recognition performance has thus far remained elu-
sive and the development of such a mechanism is crucial when biometric systems
proliferate into the core physical and information infrastructure in the near future.

3 Summary

Reliable personal recognition is critical to many government and business pro-
cesses. The conventional knowledge-based and token-based methods do not really
provide positive person recognition because they rely on surrogate representa-
tions of the person’s identity (e.g., exclusive knowledge or possession). It is, thus,
imperative that any system assuring reliable person recognition would involve a
biometric component. This is not, however, to state that biometrics alone can
deliver error-free person recognition. In fact, a sound system design will often
entail incorporation of many biometric and non-biometric components (building
blocks) to provide reliable person recognition. As biometric technology matures,
there will be an increasing interaction among the market, technology, and the
applications. This interaction will be influenced by the added value of the tech-
nology, user acceptance, and the credibility of the service provider. It is too early
to predict where and how biometric technology would evolve and get embedded
in which applications. But it is certain that biometric-based recognition will have
a profound influence on the way we conduct our daily business.
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Abstract. Recently, an emerging trend of representing objects by
graphs can be observed. As a matter of fact, graphs offer a versatile al-
ternative to feature vectors in pattern recognition, machine learning and
data mining. However, the space of graphs contains almost no mathe-
matical structure, and consequently, there is a lack of suitable methods
for graph classification. Graph kernels, a novel class of algorithms for
pattern analysis, offer an elegant solution to this problem. Graph ker-
nels aim at bridging the gap between statistical and symbolic object
representations. In the present paper we propose a general approach to
transforming graphs into n-dimensional real vector spaces by means of
graph edit distance. As a matter of fact, this approach results in a novel
family of graph kernels making a wide range of kernel machines applica-
ble for graphs. With several experimental results we prove the robustness
and flexibility of our new method and show that our approach outper-
forms a standard graph classification method on several graph data sets
of diverse nature.

1 Introduction

The field of pattern recognition can be divided into two sub-fields, namely the
statistical and the structural approach. In statistical pattern recognition, pat-
terns are represented by feature vectors (x1, . . . , xn) ∈ R

n. The recognition pro-
cess is based on the assumption that patterns of the same class are located in a
compact region of R

n. In recent years a huge amount of methods for the clas-
sification of patterns represented by feature vectors have been proposed, such
as Bayes classifier, neural network, support vector machine, and many more.
Object representations given in terms of feature vectors have a number of useful
properties [1]. For example, object similarity, or distance, can easily be com-
puted by means of Euclidean distance. Computing the sum or weighted sum of
two objects represented by vectors is straightforward, too. Yet graph-based rep-
resentations, which are used in the field of structural pattern recognition, have a
number of advantages over feature vectors. Graphs are much more powerful and
flexible than vectors, as feature vectors provide no direct possibility to describe
structural relations in the patterns under consideration. Furthermore, while the
size of a graph can be adjusted to the size and complexity of the underlying pat-
tern, vectors are constrained to a predefined length, which has to be preserved
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for all patterns encountered in a particular application. On the other hand, a
major drawback of graph representations is their lack of suitable methods for
classification. This is mainly due to the fact that some of the basic operations
needed in classification are not available for graphs.

It turns out that the lack of operations needed for the implementation of clas-
sification algorithms in the graph domain can be overcome by means of kernel
methods [2,3]. Although some mathematical foundations of kernel methods have
been developed long ago [4], the practical usefulness of kernel methods for the
fields of pattern recognition, machine learning and data mining has been recog-
nised only recently [5]. During the past ten years kernel methods have become
one of the most rapidly emerging sub-fields in intelligent information processing.
The vast majority of work in kernel methods is concerned with transforming a
given feature space into a higher-dimensional space without computing the trans-
formation explicitly for each individual feature vector. However, more recently
the existence of kernels for symbolic data structures, especially for graphs, has
been shown [6]. By means of suitable kernel functions, graphs can be mapped
into vector spaces in an explicit or implicit fashion. Hence, rather than comput-
ing the Euclidean distance, a weighted sum, the average of a set of graphs, and
similar quantities in the domain of graphs – which is actually not possible in
general –, the corresponding operations are carried out in the target space of
the kernel function, i.e. in a vector space. Consequently, a large class of classifi-
cation algorithms, originally developed for feature vectors, become applicable to
graphs. Hence, by means of kernel functions one can benefit from both the high
representational power of graphs and the large repository of algorithmic tools
available for feature vector representations of objects.

In the rest of this paper, we give a general introduction to graph kernels in
Section 2. Then, in Section 3, a new family of graph kernels developed recently
is introduced [7,8,9]. In Section 4, an experimental evaluation of these kernels is
described. Finally, conclusions are drawn in Section 5.

2 Graph Kernels

For a general introduction to kernel methods we refer to [2,3]. While the bulk of
work on kernel methods has been concerned with mapping vectors from a low-
to a high-dimensional space, recently also kernels on symbolic data structures
have been proposed. In this section we give a brief survey on graph kernels. For
an earlier survey see [6].

A well-known class of graph kernels is based on the analysis of random walks
in graphs. These kernels measure the similarity of two graphs by the number of
random walks in both graphs that have all or some labels in common [10,11]. In
[10] an important result is reported. It is shown that the number of matching
walks in two graphs can be computed by means of the product graph of two
graphs, without the need to explicitly enumerate the walks. In order to handle
continuous labels the random walk kernel has been extended in [11]. This ex-
tension allows one to also take non-identically labelled walks into account. The
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problem of tottering, is addressed in [12]. Tottering is the phenomenon that, in
a walk, a node may be revisited immediately after it has been left. In order to
prevent tottering, the random walk transition probability model is appropriately
modified in [12].

Another class of graph kernels is given by diffusion kernels (e.g. in [13]). The
kernels of this class are defined with respect to a base similarity measure which is
used to construct a valid kernel matrix. This base similarity measure only needs
to satisfy the condition of symmetry and can be defined for any kind of objects.

An important contribution to graph kernels is the work on convolution ker-
nels, which provides a general framework for dealing with complex objects that
consist of simpler parts [14]. Convolution kernels infer the similarity of complex
objects from the similarity of their parts. The ANOVA kernel [15], for instance,
is a particular convolution kernel, which uses a subset of the components of a
composite object for comparison.

A number of additional kernels are discussed in [16,17,18]. In [16] support
vector machines are applied to attributed graphs where the kernel matrices are
based on approximations of the Schur-Hadamard inner product. The idea un-
derlying the kernels in [17,18] is to find identical substructures in two graphs,
such as common subgraphs, subtrees, and cycles.

In a recent PhD thesis [19] graph kernels derived from graph edit distance are
introduced. These kernels can cope with any type of graph and are applicable
to a wide spectrum of different applications.

3 Novel Graph Kernels Using Vector Space Embedding
Based on Edit Distance

The present paper introduces a new class of graph kernels which are based on
vector space embeddings of graphs by means of prototype selection and graph
edit distance computation. In contrast to some other kernel methods, the ap-
proach proposed in this paper results in an explicit embedding of the considered
graphs in a vector space. Hence, not only scalar products, but individual graph
maps are available in the target space. We observe that this approach is more
powerful than some other graph kernels for a number of reasons. First, as the
map of each graph in the target vector space is explicitly computed, not only
kernel machines, but also other non-kernelizable algorithms can be applied to
the resulting vector representation. Secondly, there are almost no restrictions on
the type of graphs the proposed method can deal with. It can be applied to di-
rected or undirected graphs, and to graphs without or with labels on their nodes
and/or edges. In case there are labels on the nodes and/or edges, these labels
can be of any nature, for example, they can be elements from a finite or infinite
set of discrete symbols, the set of integer numbers, real numbers, or real vectors.
Thirdly, the method is versatile, i.e. it is possible to integrate domain specific
knowledge about object similarity when defining the costs of the elementary edit
operations. Hence the kernel can be made more discriminative by tuning graph
similarity to the specific application area.
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3.1 Graph Edit Distance

Similarly to [19], the new graph kernels proposed in this paper make use of the
edit distance of graphs. Therefore, we give a brief introduction to this graph
distance measure in this section.

Graph edit distance is one of the most flexible graph distance measures that is
available [20,21]. The key idea of graph edit distance is to define the dissimilarity,
or distance, of graphs by the amount of distortion that is needed to transform
one graph into another. These distortions are given by insertions, deletions, and
substitutions of nodes and edges. Given two graphs – the source graph g1 and
the target graph g2 – the idea is to delete some nodes and edges from g1, relabel
some of the remaining nodes and edges (substitutions) and possibly insert some
nodes and edges, such that g1 is finally transformed into g2. A sequence of edit
operations that transform g1 into g2 is called an edit path between g1 and g2.
One can introduce cost functions for each edit operation measuring the strength
of the given distortion. The idea of such cost functions is that one can define
whether an edit operation represents a strong modification of the graph or not.
Hence, between two structurally similar graphs, there exists an inexpensive edit
path, representing low cost operations, while for structurally different graphs an
edit path with high costs is needed. Consequently, the edit distance of two graphs
is defined by the minimum cost edit path between two graphs. The edit distance
can be computed by a tree search algorithm [20], or by a faster, suboptimal
method [22,23].

3.2 Basic Embedding Approach

The novel graph kernels described in this paper are based on the idea of em-
bedding a population of graphs in an m-dimensional real vector space. Such
an embedding is motivated by the lack of suitable classification algorithms in
the graph domain. Another approach to graph embedding has been proposed
in [24]. This method is based on algebraic graph theory and utilizes spectral
matrix decomposition. Applying an error-tolerant string matching algorithm to
the eigensystem of graphs to infer distances of graphs is proposed in [25]. These
distances are then used to embed the graphs into a vector space by multidimen-
sional scaling. In [26] features derived from the eigendecompostion of graphs are
studied. In fact, such feature extraction defines an embedding of graphs into
vector spaces, too. In our approach we will explicitly make use of graph edit
distance. Hence, we can easily deal with various kinds of graphs (labelled, un-
labelled, directed, undirected, etc.) and utilize domains specific knowledge in
defining the dissimilarity of nodes and edges through edit costs. Thus a high
degree of robustness against various graph distortions can be achieved. The idea
underlying our method was originally developed for the problem of embedding
sets of feature vectors in a dissimilarity space [27]. In this paper we introduce a
new version of this method for the domain of graphs.

Assume we have a labelled set of training graphs, T = {g1, . . . , gn}. Let
d(gi, gj) be the edit distance between graph gi and gj. After having selected
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a set P = {p1, . . . , pm} of m ≤ n prototypes from T , we compute the edit dis-
tance of a graph g ∈ T to each prototype p ∈ P . This leads to m dissimilarities,
d1 = d(g, p1), . . . , dm = d(g, pm), which can be interpreted as an m-dimensional
vector (d1, . . . , dm). In this way we can transform any graph from the training
set, as well as any other graph from a validation or testing set, into a vector
of real numbers. Formally, if T = {g1, . . . , gn} is a training set of graphs and
P = {p1, . . . , pm} ⊆ T is a set of prototypes, the mapping tPm : T → R

m is
defined as a function tPm(g) �→ (d(g, p1), . . . , d(g, pm)) where d(g, pi) is the graph
edit distance between the graph g and the i-th prototype.

3.3 Prototype Selection

The method described in Section 3.2 crucially depends on the prototypes. There-
fore, an important problem to be solved is an appropriate choice of the prototype
set P = {p1, . . . , pm}. A good selection of m prototypes seems to be crucial to
succeed with the classification algorithm in the feature vector space. The pro-
totypes should avoid redundancies in terms of selection of similar graphs, and
prototypes should include as much information as possible. In this section we
discuss five different algorithms for the task of prototype selection1. Note that
all of the proposed prototype selection methods can be applied class-wise and
class-independent, i.e. the selection can be executed over the whole training set,
or the selection can be performed individually for each of the classes.
Centers. The Centers prototype selector selects prototypes situated in the
center of the graph set T . This is achieved by iteratively taking the set median
graph out of the set T . The set median graph is the graph whose sum of distances
to all other graphs in this set is minimal.
Random. A random selection of m prototypes from T is performed.
Spanning. A set of prototypes, P , is selected by the Spanning prototype selec-
tor by means of the following iterative procedure. The first prototype selected is
the set median graph. Each additional prototype selected by the spanning proto-
type selector is the graph the furthest away from the already selected prototype
graphs.
k-Centers. The k-Centers prototype selector tries to adapt to the graph dis-
trubution of set T and selects graphs that are in the center of densely populated
areas. First a k-means clustering procedure is applied to set T . The number of
clusters to be found is equal to the number of prototypes to be selected. Once
the clusters have been established, the median of each cluster is selected as a
prototype.
Targetsphere. The Targetsphere prototype selector first selects a graph gc

situated in the center of T . After finding the center graph, the graph gf ∈ T
whose distance to gc is maximum is located. Both graphs gc and gf are selected
as prototypes. The distance dmax = d(gc, gf ) is then divided in m − 1 partitions
with interval = dmax

m−1 . The m − 2 graphs that are located the nearest to the
interval borders are selected as prototypes.

1 For a detailed review of the applied prototype selection method we refer to [28].
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Of course, one can imagine other techniques and strategies for prototype se-
lection, for example, mixing some of the strategies described above with each
other. The intention of all methods remains the same – finding a good selection
of m prototypes that lead to a good performance of the resulting classifier in the
vector space.

3.4 Dimensionality Reduction

In Section 3.3 a number of prototype selectors have been introduced. Typically,
these prototype selectors are tested on a validation set and the one that leads to
the best classification performance is finally chosen. A similar procedure can be
applied in order to find the optimal number of prototypes. That is, the number
of prototypes is varied over a certain range and the number that results in the
highest classification rate is adopted for the final system.

In the current section we describe an alternative approach where we use all
available elements from the training set as prototypes, i.e. P = T and subse-
quently apply dimensionality reduction methods. This process is more principled
and allows us to completely avoid the problem of finding the optimal prototype
selection strategy. For dimensionality reduction, we make use of the well known
Principal Component Analysis (PCA) and Fisher’s Linear Discriminant Analysis
(LDA) [1,29].

The Principal Component Analysis (PCA) [1,29] is a linear transformation.
It seeks the projection which best represents the data. PCA is an unsupervised
method which does not take any class label information into consideration. We
first normalize the data by shifting the mean to the origin of the coordinate
system and making the variance of each feature equal to one. Then we calculate
the covariance matrix of the normalized data and determine the eigenvectors ei

and the eigenvalues λi of the covariance matrix. The eigenvectors are ordered
according to decreasing magnitude of the corresponding eigenvalues, i.e. λ1 ≥
λ2 ≥ . . . ≥ λn ≥ 0. The data is then represented in a new coordinate system
defined by the eigenvectors. For reducing the dimensionality of the transformed
data we retain only the m < n eigenvectors with the m highest eigenvalues.

Fisher’s Linear Discriminant Analysis (LDA) [1,29] is a linear transformation
as well. In contrast with PCA, LDA takes class label information into account.
In its original form, LDA can be applied to two-class problems only. However,
we make use of a generalization, called Multiple Discriminant Analysis (MDA),
which can cope with more than two classes. In MDA, we are seeking the projec-
tion of the data which best separates the classes from each other. For all further
details, we refer to [1,29]. Note that under this transformation the maximal di-
mensionality of the transformed feature space is c − 1, where c is the number of
classes.

3.5 Multiple Classifier System

Recently, the field of multiple classifier systems has become a very active area
of research. The fundamental observation that motivates the combination of
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classifiers is that the sets of patterns misclassified by different classifiers do not
necessarily heavily overlap. Hence, errors of a single classifier can be compensated
by the other classifiers of an ensemble [30]. In the case of statistical patterns,
that is, patterns represented by feature vectors, a large number of methods for
the creation and combination of classifiers have been developed over the past
years [31,32,33].

Regarding the family of graph kernels proposed in this paper, if we repeat the
process of random prototype selection a number of times, we can derive different
graph subsets that can be used to map a given population of graphs to various
vector spaces. As a result, one can create a statistical classifier ensemble for
structural input data.

In Algorithm 1 the random prototype selection strategy is described. This
procedure selects n times a subset of size m out of the training set. Once a
graph has been selected it becomes temporarily unavailable until all training
patterns have been selected. This is achieved by a tabu list, which contains all
patterns that are already selected (line 11). The randomized prototype selection
is performed on the subset T \ TABU only (line 9). Whenever the tabu list
contains all patterns of T , a reset is done such that all training elements become
available again (line 6 and 7).

Algorithm 1. Generating n prototype sets out of one graph set.
Input: Training graphs T = {g1, . . . , gt}, number of required prototype sets n,

and dimensionality of the resulting feature vectors m
Output: Set PROTO consisting of n different prototype sets of size m each

1: initialize TABU to the empty list {}
2: initialize PROTO to the empty list {}
3: for i = {1, . . . , n} do
4: Pi = {}
5: for j = {1, . . . , m} do
6: if |TABU | == t then
7: reset TABU to the empty set {}
8: else
9: select p randomly out of T \ TABU
10: Pi = Pi ∪ {p}
11: TABU = TABU ∪ {p}
12: end if
13: end for
14: PROTO = PROTO ∪ {Pi}
15: end for
16: return PROTO

To generate a classifier ensemble, we apply a methodology which is known as
overproduce-and-select [30]. The idea is to produce a pool of classifiers, followed
by a selection procedure that picks the classifiers that are most diverse and accu-
rate. We make use of the accuracy of the resulting ensembles to control the selec-
tion of a subset out of the classifier pool. To create a good performing ensemble a
sequential floating search selection [34] is applied. For the combination of the indi-
vidual ensemble member outputs, plurality voting, Borda count and linear score
combination have been applied, depending on the type of output delivered by the
individual classifier.
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4 Experimental Results

In this section we provide the results of an experimental evaluation of the pro-
posed embedding kernels. We aim at empirically confirming that the method
of graph embedding and subsequent classification in real vector spaces is appli-
cable to different graph classification problems and matches, or even surpasses,
the performance of a k-nearest neighbor classifier (k-NN) in the original graph
domain. Note that k-NN classifiers are the only classifiers that can be directly
applied in the original graph domain. The classifier used in the vector space is
the SVM [5]. Of course, any other classifier could be used for this purpose as well.
However, we feel that the SVM is particularly suitable because of its theoretical
advantages and its superior performance that has been empirically confirmed in
many practical classification problems.

For further results achieved with the novel family of graph kernels, especially
for comparisons with other reference systems, we refer to [7,8,9,28].

4.1 Experimental Setup

In each of our experiments we make use of three disjoint graph sets, viz. validation
set, test set and training set. The validation set is used to determine optimal pa-
rameter values for graph embedding, ensemble generation, and classification. The
embedding parameters consist of the number of prototypes, i.e. the dimension-
ality of the resulting vector space, and the best performing embedding method2.
The parameters for ensemble generation consist of the optimal dimensionality of
the random prototype sets and the optimal members of the classifier ensemble.
Finally, the parameters for classification consist of parameter k for the nearest
neighbor classifier and the different parameters for the SVM. The RBF-kernel
SVM used in this paper has parameters C and γ, where C corresponds to the
weighting factor for misclassification penalty and γ is used in our kernel function
K(u,v) = exp(−γ · ||u−v||2). The parameter values, the embedding method, the
classifier ensemble, and the dimensionality that result in the lowest classification
error on the validation set are then applied to the independent test set.

4.2 Databases

For our experimental evaluation, four data sets with quite different characteris-
tics are used. The datasets vary with respect to graph size, edge density, type of
labels for the nodes and edges, and meaning of the underlying objects.

The first database used in the experiments consists of graphs representing dis-
torted letter drawings. In this experiment we consider the 15 capital letters of the
Roman alphabet that consist of straight lines only (A, E, F, ...). For each class, a
prototype line drawing is manually constructed. To obtain aribtrarily large sam-
ple sets of drawings with arbitrarily strong distortions, distortion operators are ap-
plied to the prototype line drawings.This results in randomly translated, removed,
2 Note that with dimensionality reduction algorithms (PCA and LDA) only the dimen-

sionality has to be validated.
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and added lines. These drawings are then converted into graphs by representing
lines by edges and ending points of lines by nodes. Each node is labelled with a two-
dimensional attribute giving its position. The graph database used in our experi-
ments is composed of a training set, a validation set, and a test set, each of size 750.

For a more thorough evaluation of the proposed methods we additonally use
three real world data sets. First we apply the proposed method to the problem of
image classification. Images are converted into graphs by segmenting them into
regions, eliminating regions that are irrelevant for classification, and representing
the remaining regions by nodes and the adjacency of regions by edges [35]. The
image database consists of five classes (city, countryside, people, snowy, streets)
and is split into a training set, a validation set and a test set of size 54 each.

The second real world dataset is given by the NIST-4 fingerprint database
[36]. We construct graphs from fingerprint images by extracting characteristic
regions in fingerprints and converting the results into attributed graphs [37]. We
use a validation set of size 300 and a test and training set of size 500 each. In this
experiment we address the 4-class problem (arch, left-loop, right-loop, whorl).

Finally, we apply our novel graph kernels to the problem of molecule classifica-
tion. To this end, we construct graphs from the AIDS Antiviral Screen Database
of Active Compounds [38]. Our molecule database consists of two classes (active,
inactive), which represent molecules with activity against HIV or not. We use
a validation set of size 250, a test set of size 1500 and training set of size 250.
Thus, there are 2000 elements in total (1600 inactive elements and 400 active
elements). The molecules are converted into graphs by representing atoms as
nodes and the covalent bonds as edges. Nodes are labelled with the number of
the corresponding chemical symbol and edges by the valence of the linkage.

4.3 Results and Discussion

In Table 1 we provide the classification accuracy on all described datasets
achieved with all of the proposed methods. In the first row of the embedding
kernel classifiers the classification results achieved with an SVM based on proto-
type selection and graph embedding are given. Note that this kernel outperforms
the reference system on all datasets, in four out of six cases with statistical sig-
nificance. Similar results can be observed with the SVM based on the PCA
reduced vectors where three out of six improvements are statistically significant.
The SVM based on LDA reduced vectors perform poorly on the fingerprint and
molecule data. Note that with LDA reduction the maximal dimensionality of the
transformed feature space is c − 1, where c is the number of classes, i.e. on the
fingerprint graphs three dimensions are used and on the molecule graphs only
one dimension is used for classification. Nevertheless, on the remaining databases
three out of four improvements over the reference system are statistically sig-
nificant. The last column of Table 1 provides results achieved with a multiple
classifier system based on plurality voting. Compared to the reference system in
the graph domain four out of six improvements are statistically significant. Note
that this system achieves three times the overall best result among all proposed
methods (Letter high, Fingerprints, and Molecules).
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Table 1. Classification accuracy in the original graph domain and in the embedded
vector space

Ref. System Embedding Kernel Classifiers

Database k-NN (graph) Prototype-SVM PCA-SVM LDA-SVM Plurality Voting

Letter (low) 98.3 98.5 98.5 99.1 98.3
Letter (med) 94.0 96.9 ◦ 97.2 ◦ 96.5 ◦ 97.1 ◦
Letter (high) 90.1 92.9 ◦ 93.7 ◦ 94.0 ◦ 94.3 ◦
Image 57.4 64.8 61.1 68.5 ◦ 61.1
NIST-4 82.6 85.0 ◦ 84.6 66.6 • 85.2 ◦
Molecules 97.1 98.1 ◦ 98.2 ◦ 95.3 • 98.3 ◦

◦ Statistically significantly better than the reference system (α = 0.05)
• Statistically significantly worse than the reference system (α = 0.05)

5 Conclusions

Although graphs have a higher representational power than feature vectors, there
is a lack of methods for pattern classification using graph representations. By con-
trast, a large number of methods for classification have been proposed for object
representations given in terms of feature vectors. The present paper introduces
a novel family of graph kernels in order to bridge the gap between structural and
statistical pattern recognition. These graph kernels make explicit use of graph edit
distance and can therefore deal with various kinds of graphs (labelled, unlabelled,
directed, undirected, etc.). The basic idea of the embedding kernel is to describe
a graph by means of m dissimilarities to a predefined set of graphs termed proto-
types. That is, a graph g is mapped explicitly to the m-dimensional real space R

m

by arranging the edit distances of g to all of the m prototypes as a vector. We show
that the embedding process can be controlled by different prototype selectors or
by well-known dimensionality reduction algorithms. By means of this procedure
one obtains not only pairwise scalar products in an implicit kernel feature space
but also the maps of the individual graphs. Furthermore, the proposed family of
graph kernels lends itself to a method for the automatic generation of classifier
ensembles. From the results of our experiments, one can conclude that the clas-
sification accuracy can be statistically significantly enhanced by all embedding
methods but LDA on all considered databases.
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Abstract. The existing approaches used to identify the relevant path-
ways in a given condition do not consider a number of important bio-
logical factors such as magnitude of each gene’s expression change, their
position and interactions in the given pathways, etc. Recently, an impact
analysis approach was proposed that considers these crucial biological
factors to analyze regulatory pathways at systems biology level. This
approach calculates perturbations induced by each gene in a pathway,
and propagates them through the entire pathway to compute an impact
factor for the given pathway. Here we propose an alternative approach
that uses a linear system to compute the impact factor. Our proposed
approach eliminates the possible stability problems when the perturba-
tions are propagated through a pathway that contains positive feedback
loops. Additionally, the proposed approach is able to consider the type
of genes when calculating the impact factors.

1 Introduction

While high-throughput life science technologies have enabled the collection of
large amount of data, they have also posed challenges related to the extraction
of knowledge from these data. For instance, the typical result of a microarray
experiment is a list of differentially expressed (DE) genes that quantitatively
reflect the changes in gene activity in response to a particular treatment, or in
a given condition. The challenge common to all experiments is to translate such
lists of DE genes into a better understanding of the underlying phenomenon.
An automated Gene Ontology (GO) based approach has been proposed in order
to help in this process [1,2]. This approach uses an over-representation analysis
(ORA) of the list of DE genes in order to identify the GO categories that are
significantly over- or under-represented in a given condition. This type of analysis
has been very successful to the point of becoming a de facto standard in the
analysis of microarray data [3]. A more recent approach considers the distribution
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of the pathway genes in the entire list of genes and performs a functional class
scoring (FCS) which also allows adjustments for gene correlations [4,5,6,7,8].

Both ORA and FCS techniques currently used are limited by the fact that each
functional category is analyzed independently without a unifying analysis at a
pathway or system level [8]. This approach is not well suited for a systems biology
approach that aims to account for system level dependencies and interactions,
as well as identify perturbations and modifications at the pathway or organism
level [9]. In particular, all existing ORA and FCS approaches ignore a number of
important biological factors including the amount of change in gene expression,
the interactions between genes and their positions on a given pathway [10].

Recently, an impact analysis method was proposed that combines these im-
portant biological factors with the classical statistical analysis in order to identify
the most perturbed signaling pathways in a given condition [10]. An impact fac-
tor (IF) is calculated for each pathway incorporating parameters such as the
normalized fold change of the differentially expressed genes, the statistical sig-
nificance of the set of pathway genes, and the topology of the pathway.

In this paper, we propose using a different approach to calculate the impact
factors. Rather than propagating the perturbation through the pathway in a
neural network-like fashion, here we propose to calculate the stable-state values
of the perturbations by using a system of simultaneous equations. The main
differences occur when pathways includes loops, which is true for most of the
known gene signaling pathways. In such cases, in the previously described im-
pact analysis the computation of the gene perturbation factors (PFs) was done
through an iterative process. Problems are created by the fact that in the graph
that describes the given pathway, multiple paths of different length are usually
available to propagate the signal from any one source node to any one destina-
tion node. In order to address this, the previous version of the impact analysis
approximates the PFs by going around each loop only once. No such approxima-
tion is necessary when the pathways are described by a system of simultaneous
equations in which the PF of each gene is a function of the PFs of all other genes
on the pathway. The previous approach of approximating the PFs by propagat-
ing the perturbations from node to node is still used when the system does not
have an exact algebraic solution.

2 Impact Analysis

The aim of this approach is to establish a model that accounts for both the
statistical significance of the set of genes and the perturbations of the individual
genes on each pathway. A variety of models can be proposed here, but Occam’s
razor suggests to start with the simplest possible model and increase its com-
plexity only if this model fails to capture the complexity of the phenomenon
studied. One of the simplest possible models is a linear additive model in which
the impact factor (IF) of a pathway Pi can be calculated as the sum between a
probabilistic term and a perturbation term:
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IF (Pi) = log

(
1
pi

)
+

∣∣∣
∑

g∈Pi
PF (g)

∣∣∣

|ΔE| · Nde(Pi)
(1)

The first term captures the significance of the given pathway Pi as provided by
the classical statistical approaches, where pi corresponds to the probability of
obtaining a value of the statistic used at least as extreme as the one observed
when the null hypothesis is true. We would like the IF to be large for severely
impacted pathways (small p-values) so the first term uses 1/pi rather than pi.
The log function is necessary to map the exponential scale of the p-values to
a linear scale compatible with our intended linear model. The pi value can be
calculated using either an ORA (e.g., z-test [11], contingency tables [12,13], etc.),
a FCS approach (e.g., GSEA [6,7]) or other more recent approaches [8,14,15].

The second term in (1) is a functional term that depends on the specific
genes that are differentially expressed as well as on the interactions described
by the pathway (i.e., its topology). In essence, this term sums up the values
of the perturbation factors (PF) for all genes g on the given pathway Pi. The
perturbation factor of a gene gi is calculated as follows:

PF (gi) = α(gi) · ΔE(gi) +
n∑

j=1

βji · PF (gj)
Nds(gj)

(2)

In (2), the first term captures the quantitative information from the gene expres-
sion experiment. The factor ΔE(gi) represents the signed normalized measured
expression change of the gene gi. The factor α(gi) is a weight that captures the
potential for systemic changes associated with the type of gene gi. For most
genes, α will be 1. However, if the gene is a transcription factor or similar, α
can take a larger value set by the user. Thus, the user can divide the genes into
various categories and associate different weights to various categories depending
on the target organism.

The second term is a sum of the perturbation factors of all the genes gj on
the pathway Pi, normalized by the number of downstream genes of each such
gene Nds(gj), and weighted by a factor βji, whose absolute value quantifies the
strength of the interaction between gj and gi. The sign of β reflects the type
of interaction: +1 for induction, -1 for repression. Note that β will have non-
zero value only for the genes that directly interact with the gene gi. The second
term here is similar to the PageRank index used by Google [16,17,18] only that
we weight the downstream instead of the upstream connections (a web page is
important if other pages point to it whereas a gene is important if it influences
other genes).

Under the null hypothesis which assumes that the list of differentially ex-
pressed genes only contains random genes, the likelihood that a pathway has
a large impact factor is proportional to the number of such “differentially ex-
pressed” genes that fall on the pathway, which in turn is proportional to the
size of the pathway. Thus, we need to normalize with respect to the size of the
pathway by dividing the total perturbation by the number of differentially ex-
pressed genes on the given pathway, Nde(Pi). Furthermore, various technologies
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can yield systematically different estimates of the fold changes. For instance,
the fold changes reported by microarrays tend to be compressed with respect to
those reported by RT-PCR [19,20]. In order to make the impact factors as inde-
pendent as possible from the technology, and also comparable between problems,
we also divide the second term in (1) by the mean absolute fold change |ΔE|,
calculated across all differentially expressed genes. Assuming that there are at
least some differentially expressed genes anywhere in the data set1, both |ΔE|
and Nde(Pi) are different from zero so the second term is properly defined.

Note that (2) essentially describes the perturbation factor PF for a gene gi

as a linear function of the perturbation factors of all genes in a given pathway.
In the stable state of the system, all relationships must hold, so the set of all
equations defining the impact factors for all genes form a system of simultaneous
equations. Equation 2 can be re-written as:

PF (gi) = α(gi) ·ΔE(gi)+β1i ·
PF (g1)
Nds(g1)

+β2i ·
PF (g2)
Nds(g2)

+ · · ·+βni ·
PF (gn)
Nds(gn)

(3)

Rearranging (3) gives

PF (gi)−β1i ·
PF (g1)
Nds(g1)

−β2i ·
PF (g2)
Nds(g2)

−· · ·−βni ·
PF (gn)
Nds(gn)

= α(gi) ·ΔE(gi) (4)

Using (4), a pathway Pi composed of n genes can be described as follows:
⎛

⎜⎜⎜⎝
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− β21
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· · · − βn1
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· · · · · · · · · · · ·
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⎞
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⎟⎟⎠

Since the perturbations of the genes are obtained as the solution of a linear
system, this approach aims to characterize the steady state of the system rather
than rapidly transient states before an equilibrium has been established. Once
the perturbation factors of all genes in a given pathway are calculated, (1) is
used to calculate the impact factor of each pathway. The impact factor of each
pathway is then used as a score to assess the impact of a given gene expression
data set on all pathways (the higher the impact factor the more significant the
pathway).

For some pathways, the matrix describing the interactions between the genes
may be singular. In such cases, the perturbation factors as approximating by
propagating the perturbations as previously described [10].
1 If there are no differentially expressed genes anywhere, the problem of finding the

impact on various pathways is meaningless.



36 P. Khatri et al.

Fig. 1. Cervix data quality assessment. Unsupervised bi-clustering (left panel) of the
cervix data using the 263 genes with the largest variability irrespective of the group
identifies the two groups, term labor (TL) and term not labor (TNL), in the dataset.
Visualization of the 16 samples using PCA (right panel) also shows that the samples
are linearly separable using the first 3 principal components.

3 Results and Discussion

We used the proposed pathway impact analysis approach to analyze the dif-
ferences between cervix tissue in women after term labor (n = 9) and those
who reached the term without the on-set of labor (n = 7). The results obtained
from the impact analysis were compared with the results obtained using ORA
(hypergeometric p-value) and GSEA. The cervical transcriptome was profiled
with Affymetrix HG-U133 Plus 2.0 microarrays. The details of this study and
its biological significance are described elsewhere [21,22].

The microarray data was pre-processed using Robust Multi-array Average
(RMA) [23]. In order to assess the quality of the microarray data, we used
two unsupervised methods. First, we used a bi-clustering procedure [24] that
hierarchically partitions the genes and the samples simultaneously. We used 263
genes for clustering that exhibit the largest variability among all 16 samples
irrespective of the group they belong to. This approach is unsupervised since it
does not use group information. The result of the bi-clustering is shown in Fig.1.
As shown in the Fig. 1, the clustering retrieves the two groups of the samples.
Next, we applied the principal component analysis (PCA) [24] using all probesets
on the HG-U133 plus 2.0 microarray. The results of PCA are shown in Fig. 1. As
shown in Fig. 1, the two groups of samples can be separated in the space of the
first 3 principal components with a hyperplane. Both types of results indicate
that the data is meaningful in terms of differences between classes.
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Fig. 2. A comparison between the results of the classical approaches (A - hypergeomet-
ric, B - GSEA) and the results of the pathway impact analysis (C) for a set of differen-
tially expressed genes in term labor. The pathways marked in red are well supported
by the existing literature. After correcting for multiple comparisons, GSEA does not
identify any pathway as significantly impacted in this condition at any of the usual sig-
nificance levels (1%, 5% or 10%). The hypergeometric model identifies cytokine-cytokine
receptor interaction, complement and coagulation cascades and leukocyte transendothe-
lial migration as significantly impacted pathways at 5%, and ECM-receptor interaction
and Jak-STAT signaling at 10% after correction for multiple comparisons. In contrast,
in addition to the 3 pathways identified by the hypergeometric at 5% significance, the
impact analysis also identifies VEGF signaling, toll-like receptor signaling and ECM-
receptor interaction. Furthermore, at 10%, the impact analysis identifies Jak-STAT
signaling, antigen processing and presentation, cell adhesion molecules and focal adhe-
sion as significantly impacted pathways.
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Next, we applied a moderated t-test [25] to select a list of DE genes. The
p-values obtained from the moderated t-test were corrected using the False Dis-
covery Rate method [23]. We selected 960 genes with corrected p-value less than
0.05 and fold change greater than 2 as DE genes that are both meaningful and
verifiable. These 960 genes were used as the input to the ORA analysis using
hypergeometric distribution and the impact analysis. GSEA was applied on the
normalized expression matrix of all 19,886 unique genes on the array.

Figure 2 shows the comparison between the two classical approaches (hyper-
geometric and GSEA) and the pathway impact analysis. Note that the figure
only shows the top 15 pathways as identified by each approach. For the rest of
this section we will discuss the significance of a pathway as indicated by the
FDR corrected p-values unless noted otherwise.

When considering the nominal p-value, GSEA finds the cytokine-cytokine re-
ceptor interaction pathway significant at 5%. However, when the correction for
multiple comparisons is applied, GSEA does not find any significantly impacted
pathways at any of the usual (1%, 5% or 10%) significance levels.

The hypergeometric model yields 3 pathways significant at the 5% signifi-
cance level: cytokine-cytokine receptor interaction, complement and coagulation
cascades and leukocyte transendotheial migration. These pathways are compat-
ible with our current understanding of the phenomena involved in labor. The
cytokine-cytokine receptor interaction and leukocyte transendothelial migration
pathways are both associated with the innate immune system. The involvement
of the innate immune system in cervical dilation and remodeling is well estab-
lished in the literature [26,27]. Also, the complement and coagulation cascades
include a part of the PLAU signaling and plasmin signaling pathways. There are
several studies suggesting the involvement of plasminogen in cervical dilation
and remodeling after term labor [28,29]. In particular, the plasminogen activa-
tion cascade plays an integral role in the remodeling of extracellular matrices
during pregnancy and parturition [28]. In essence, the top 3 pathways identified
by the classical ORA approach appear to be relevant.

At the same significance level, the impact analysis agrees on these pathways,
but also identifies 7 additional pathways. Among these, VEGF signaling, toll-like
receptor signaling and ECM-receptor interaction also appear to be very relevant.
In fact, 2 of these 3 pathways point in the same direction: toll-like receptor signal-
ing is another pathway associated with the innate immune system while ECM-
receptor interaction describes the interactions between trans-membrane proteins
and the extra-cellular matrix, already known to be heavily remodeled during
pregnancy [30,31]. The remaining pathway, VEGF contains a number of genes
previously shown to be differentially expressed between labor and non-labor
(see Fig. 3) [21]. Finally, if the significance level were to be relaxed to 10%,
the impact analysis also identifies antigen processing and presentation pathway,
which is again part of the immune system.

It is important to point out that neither the hypergeometric model nor GSEA
manage to identify any adhesion-related pathway at the usual 1% or 5% levels.
Similarly, in spite of the differential expression of a number of genes related to
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Fig. 3. The VEGF signaling pathway is one of the pathways identified by impact
analysis. The genes found to be differentially expressed between labor and non-labor
are highlighted in red. A more complete discussion about this pathway and its role in
parturition is available elsewhere [21].

the VEGF-signaling, neither GSEA nor the classical ORA approach indicate
that this pathway may be meaningful.

4 Conclusion

The classical statistical approaches used to identify significantly impacted path-
ways in a given condition only consider the number of differentially expressed
genes and completely ignore other important biological factors. The impact anal-
ysis method uses a systems biology approach to extend the classical approach
by incorporating important biological factors such as the magnitude of the ex-
pression changes, the topology and the type of signaling interactions between
the genes on the pathway, and position of the differentially expressed genes on
the pathway. The previously described impact analysis approach first computes
the perturbations introduced by the differentially expressed genes in a pathway,
and then propagates these perturbations throughout the pathway in order to
calculate its impact factor. The perturbation propagation approach yields only
an approximation of the gene perturbations when the pathways include loops.
Here, we describe a modified impact analysis approach that addresses these sta-
bility issues. The results obtained on a human uterine cervix data set suggest
that: i) the modified impact analysis approach has a higher statistical power and
ii) it can identify several additional pathways that are likely to be involved in
cervical dilation and re-modeling.
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Abstract. The Σ-Δ background estimation is a simple non linear me-
thod of background subtraction based on comparison and elementary
increment/decrement. We propose here some elements of justification of
this method with respect to statistical estimation, compared to other re-
cursive methods: exponential smoothing, Gaussian estimation. We point
out the relation between the Σ-Δ estimation and a probabilistic model:
the Zipf law. A new algorithm is proposed for computing the back-
ground/foreground classification as the pixel-level part of a motion de-
tection algorithm. Comparative results and computational advantages of
the method are commented.

Keywords: Image processing, Motion detection, Background subtrac-
tion, Σ-Δ modulation, Vector data parallelism.

1 Introduction

Background subtraction is a very popular class of methods for detecting moving
objects in a scene observed by a stationary camera [1] [2] [3] [4] [5]. In every pixel
p of the image, the observed data is a time series It(p), corresponding to the val-
ues taken by p in the video I, as a function of time t. As only temporal processing
will be considered in this paper, the argument p will be discarded. The princi-
ple of background subtraction methods is to discriminate the pixels of moving
objects (the foreground) from those of the static scene (the background), by de-
tecting samples which are significantly deviating from the statistical behaviour
of the time series. To do this, one needs to estimate the graylevel distribution
with respect to time, i.e. ft(x) = P (It = x). As the conditions of the static scene
are subject to changes (lighting conditions typically), ft is not stationary, and
must be constantly re-estimated. For the sake of computational efficiency, which
is particularly critical for video processing, it is desirable that ft should be rep-
resented by a small number of estimates which can be computed recursively. In
this paper, we focus on recursive estimation of mono-modal distributions, which
means that we assume that the time series corresponding to the different values
possibly taken by the background along time, presents one single mode. This
may not be a valid assumption for every pixel, but it does not affect the interest
of the principle since the technique presented can be extended to multi-modal
background estimation.
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The Σ-Δ background estimation [6] [7] [8] is a simple and powerful non linear
background subtraction technique, which consists in incrementing (resp. decre-
menting) the current estimate by an constant value if it is smaller (resp greater)
than the current sample. Our objective is to discuss the foundations of this
method, with regards to statistical estimation. We show the relation between
the Σ-Δ estimation and the probabilistic model of Zipf-Mandelbrot, and com-
pare it with two other recursive methods: exponential smoothing and Gaussian
estimation. Section 2 presents the general framework of recursive estimation.
Section 3 presents the particular case of Σ-Δ estimation, and provides the full
numerical algorithm to compute it in the mono-modal case. Section 4 shows
some results and discuss the computational advantages of Σ-Δ background sub-
traction, proposing in particular a complete vector data parallel implementa-
tion adapted to the SIMD-within-register framework. Section 5 concludes and
presents the possible extension of the primitive algorithm.

2 Recursive Estimation

If one should represent ft by one single scalar estimate, one of the most natural
would be the average Mt of the time series It. The naive recursive computation:
Mt = 1

t It + t−1
t Mt−1 can be used as initialisation for the small values of t,

but is not numerically realisable for long series. So one common solution is
to use a constant weight (or learning rate) α ∈]0, 1[ for the current sample:
Mt = αIt + (1 − α)Mt−1. This is sometimes referred to as running average, and
corresponds to the recursive implementation of exponential smoothing.

One way of generalising this is to write the updating equation in an incre-
mental form: Mt = Mt−1 + δt(It), where δt is the increment function, depending
on the current sample It. In the case of exponential smoothing, δt is the affine
function α(It −Mt−1) (Fig. 1(1)). This linear dependence is not satisfying, since,
in most cases, a sample which is far from the average is out of the background
model and should have little effect on the estimate updating. This problem can
still be addressed in the exponential smoothing framework, by using two distinct
constants α1 and α2 such that α1 > α2, and by defining δt(It) = α1(It −Mt−1) if
It is in the background model, and δt(It) = α2(It−Mt−1) if It is foreground. This
results in a discontinuous increment function δt, as shown in Fig. 1(2), where
the decision background/foreground is done by simply thresholding the absolute
difference: The pixel is foreground if |It − Mt−1| > Th. It appears however, that
the discontinuity of δt makes the choice of Th critical.

To get a more continuous behaviour, we shall follow [9], who suggests that
the weight α attached to the current sample It should depend on its probability
ft(It). But, as noted by [10], the mere product δt(It) = ft(It) × α(It − Mt−1)
suggested by [9] is not usable in practise because of increments too small in
general to be numerically operative. A proper way to achieve this, if αmax is the
maximal desired weight, and as Mt−1 is the mode of the current distribution ft,
is to use:

δt =
αmaxft(It)
ft(Mt−1)

× (It − Mt−1). (1)
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If we use a Gaussian distribution as density model like in [9], we get the
following increment function:

δt = αmax × exp(
−(It − Mt−1)2

2Vt−1
) × (It − Mt−1). (2)

The model needs the temporal variance Vt. In [9], it is computed as the Gaus-
sian estimation of the series (It −Mt)2. But this leads to a double auto-reference
in the definitions of Mt and Vt, which is prejudicial to the adaptation capabil-
ity of the algorithm. We recommend rather to compute Vt as the exponential
smoothing of (It − Mt)2, using a fixed learning rate αV .

One of the interest of computing Vt is that it provides a natural criterion of
decision background/foreground through the condition |It − Mt| > N ×

√
Vt,

with N typically between 2 and 4. Note that the increment function (Fig. 1(3))
is very different from the previous ones, and has a derivative-of-Gaussian shape.

This Gaussian estimation provides some attractive features compared to the
exponential smoothing: the update of the estimates depends on the probability
of the current sample, and the increment values are globally higher when the
background density is more dispersed. Nevertheless, it is less used than expo-
nential smoothing because of the computational load much higher. Now, what
does the increment function look like if we take the Zipf law as the probabilistic
model ?

3 Zipfian Background Estimation

Originally the Zipf law is an empirical principle [11] at the crossroads of linguistic
and information theory, stating that, in any sense-making text, the probability of
occurrence of the nth most frequent word is 1/n the probability of occurrence of
the (first) most frequent word. So the Zipf distribution is a hyperbolic decreasing
function. Recently, it has been used in several applications of image processing
[12], in particular as a model for the distribution of local spatial features. We
use it here as a model for (pixel-wise) temporal distribution.

Because of the divergence of the sum 1/n, the Zipf density function includes
a power factor: 1/ns, with s > 1. The general expression of the continuous
symmetric Zipf-Mandelbrot distribution can be written:

Z(μ,k,s)(x) =
(s − 1)ks−1

2(|x − μ| + k)s
. (3)

In this expression, the parameter μ represents the mode of the distribution,
and k determines its dispersion. The remarkable property of Z, taken as the
density model ft of the time series It (and then, replacing eq. 3 in eq. 1), is the
shape of the increment function δt (Fig. 1(3)), which is close to the Heaviside
shaped function: H(μ,κ)(x) = −κ if x < μ, +κ if x > μ, with κ = αmaxks.
Thus it is naturally related to the Σ-Δ modulation, classically used in Analog
to Digital Conversion:
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Fig. 1. The different increment functions δt associated to the different distribution
models: (X axis: graylevel It, Y axis: increment value δt(It)). (1) Exponential smoothing
(plain: α = 1/32; dashed: α = 1/16) (1) Bi-level exponential smoothing (m = 100,
Th = 30, α1 = 1/16, α2 = 1/32) (3) Gaussian laws, αmax = 1/4 (plain: μ = 100,
σ = 30; dashed: μ = 150, σ = 50) (4) Zipf laws, αmax = 1/4 (plain: μ = 100, k = 1,
s = 1.1; dashed: μ = 150, k = 5, s = 1.1).

For every time step Δt:
If Mt−Δt > It then Mt = Mt−Δt − ε ;
If Mt−Δt < It then Mt = Mt−Δt + ε ;
Here, the average increment per time unit is κ = ε

Δt . Digitally, the elementary
increment ε is the least significant bit of the representation, i.e. 1 if the values are
integer-coded. Adaptation to the dispersion of the model can then be done by
tuning the updating period Δt: the greater the variance, the smaller Δt should
be. The following algorithm reproduces such behaviour. The principle is to attach
to every pixel, in addition to the mode estimator Mt, a dispersion estimator Vt.
Suppose that Vt ∈]0, 2m − 1[, which means that it is coded on m bits:

For every frame t: {
rank = t % 2m ; pow2 = 1 ;
do { pow2 = 2× pow2 ; } while((rank % pow2 == 0) && (pow2 < 2m))
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If (Vt−1 > 2m

pow2) {
If Mt−1 > It then Mt = Mt−1 − 1 ;
If Mt−1 < It then Mt = Mt−1 + 1 ;
}

Dt = |It − Mt| ;
If (t % TV == 0) {

If Vt−1 > max(Vmin, N × Dt) then Vt = Vt−1 − 1 ;
If Vt−1 < min(Vmax, N × Dt) then Vt = Vt−1 + 1 ;
}

}

Here x%y is x modulo y. The purpose of the two first lines of the algorithm
(which are computed once for all the pixels at every frame) is to find the greatest
power of two (pow2) that divides the time index modulo 2m (rank). Once this
has been determined, it is used to compute the minimal value of Vt−1 for which
the Σ-Δ estimate Mt will be updated. Thus the (log-)period of update of Mt is
inversely proportional to the (log-)dispersion: if Vt > 2m−1, Mt will be updated
every frame, if 2m−2 ≤ Vt < 2m−1, Mt will be updated every 2 frames, and
so on.

The dispersion factor Vt is computed here as the Σ-Δ estimation of the ab-
solute differences Dt, amplified by a parameter N . Like in Gaussian estimation,
we avoid double auto-reference by updating Vt at a fixed period TV . Vt can be
used as a foreground criterion directly: the sample It is considered foreground if
Dt > Vt. Vmin and Vmax are simply used to control the overflows ; 2 and 2m − 1
are their typical values.

Note that the time constants, which represent the period response of the
background estimation algorithm, are related here to the dynamics (the number
of significant bits) of Vt, and to its updating period TV . For the other methods,
the time constants were associated to the inverse of the learning rates: 1/αi for
the exponential smoothing and 1/αmax and 1/αV for Gaussian estimation.

4 Results

Figure 2 shows the background estimation for all the time indexes, and one par-
ticular pixel. This is a difficult case for pixel-level motion detection: an outdoor
scene where the background signal (high grass meadow with wind) is corrupted
by the passage of two foreground objects. The Boolean condition ”Dt > Vt” is
used as foreground classification.

Figure 3 shows the result for all the pixels, at 4 different time indexes of the
classical Hall sequence, in which two people are moving in radial motion, i.e. in
the direction of the optical axis. This is a difficult case too, since the values in
the centre of the moving objects do not change much (aperture problem). For
reference, the last row of Figure 3 displays the hand drawn ground truth for the
4 frames.
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Fig. 2. Σ-Δ background estimation running on a given pixel. (X axis: time index,
Y axis: graylevel). All values are 8-bit coded. Amplification factor N is 2. Variance
updating period TV is 1. Plain line: It, Dotted line: Mt, Impulses: Dt, Dashed line: Vt.

This ground truth is used for the quantitative evaluation (detection and false
alarm rates are averaged on these 4 key frames) shown on Table 1, for different
values of the amplification constant N, and of the updating period TV . Those
results are resumed on Figure 4, where the 9 Σ-Δ algorithms are compared
with 6 different Gaussian algorithms. Note that these figures relate to pixel-
level methods, and should not be interpreted in absolute, since a simple spatial
regularisation appreciably improves the two measures, in all cases.

Table 1. (Detection, False alarm) rates for 9 Σ-Δ background subtraction algorithms.
Measures are averaged on the 4 key frames of the Hall sequence.

N=1 N=2 N=4

TV = 1 (0.74,0.25) (0.62,0.10) (0.53,0.02)

TV = 8 (0.91,0.38) (0.87,0.23) (0.85,0.12)

TV = 32 (0.95,0.45) (0.94,0.38) (0.94,0.33)

The relevance and power of the Σ-Δ estimation, as a pixel-level temporal
filter, is comparable to that of the Gaussian estimation, whereas its computa-
tional cost is even inferior to that of exponential smoothing. Indeed, the algo-
rithm proposed in Section 3 is straightforward to compute in any fixed-point
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Fig. 3. Background subtraction shown at different frames of the Hall image sequence.
Row 1: Original sequence, frames 38, 90, 170 and 250. Rows 2 and 3: Σ-Δ Background
and foreground, with N=2, and TV = 8. Row 4: (Fore)ground truth.

arithmetic, using an instruction set limited to: absolute difference, comparison,
increment/decrement. Thus, it is well adapted to real-time implementation using
dedicated or programmable hardware.

Another important computational property of Σ-Δ background subtraction,
is that, once chosen the number of bits used to represent the estimates Mt and
Vt, every computation can be made at full precision without increasing the data
width. This allows in particular to make the most of the data parallelism pro-
vided by the SIMD-WAR (Single Instruction Multiple Data Within A Register)
paradigm, which consists in concatenating many short operands in one single
very long variable, and then applying scalar operations on the long variables.
This implementation is available on most personal computers, using for exam-
ple the SSE-2 (Streaming SIMD Extensions 2) instructions of the Intel R©C++
compiler [13]. We provide hereunder the vectorised pseudo-code of the Σ-Δ back-
ground subtraction. Here, a 16-times acceleration is achieved by performing the
operations on a 128-bit register made of 16 8-bit data.

vmin = 2; vmax = 255; logN = 1; Tv = 4;// Scalar constants definition
// Vector constants definition: creates 128-bit constants
// by concatenating 16 8-bit constants
VMIN = vector16_define(vmin);
VMAX = vector16_define(vmax);
// Sigma-Delta initializations
for(i=0; i<height; i++) {
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Fig. 4. Detection / false alarm rates diagram, for 9 Σ-Δ and 6 Gaussian background
subtraction algorithms. Measures are averaged on the 4 key frames of the Hall sequence.

| for(j=0; j<width/16; j++) {
| | I = I(0);// I(0): first image
| | M = I; // M(0) = I(0)
| | V = VMIN; // V(0) = vmin
| }
}
for(t=1; t<=tstop; t+=1) {// Time loop*********************************
| // Computation of the update threshold according to the time index
| rank = (t%256); pow2 = 1; thres = 256;
| do { pow2 = pow2*2; thres = thres/2;
| } while (((rank%pow2)==0)&&(thres>1));
| TH = vector16_define(thres);// vector variable
| for(i=0; i<height; i++) {// Space loop------------------------------
| | for(j=0; j<width/16; j++) {
| | | // (1) Update of Background M(t)
| | | I = I(t);//loading I(t)
| | | UPDATE = vector16_compare_greater(V,TH);// Comparison (>)
| | | //if V(t-1)>th, update= FF (-1), else update = 0
| | | C1 = vector16_compare_greater(I,M);
| | | //if I(t)>M(t-1), c1= FF (-1), else c1 = 0
| | | C2 = vector16_compare_less(I,M);// Comparison (<)
| | | //if M(t-1)>I(t), c2= FF (-1), else c2 = 0
| | | C1 = vector128_and(C1,UPDATE);// Bit-wise logical AND: Update is
| | | C2 = vector128_and(C2,UPDATE);// effective only if V(t-1) > th
| | | M = vector16_sub(M,C1);//M(t) = M(t-1) - c1
| | | M = vector16_add(M,C2);//M(t) = M(t-1) + c2
| | | // (2) Computation of absolute difference D(t)
| | | MAX = vector16_max(I,M); // max(I(t),M(t))
| | | MIN = vector16_min(I,M); // min(I(t),M(t))
| | | D = vector16_sub(MAX,MIN); // d = |I(t) - M(t)|
| | | // (3) Update of variance V(t): one over Tv frames
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| | | if (t % Tv == 0) {
| | | | ND = D; // Difference amplification (Saturated addition)
| | | | for (k=1;k<=logN;k++) ND = vector16_add_sat(ND,ND);
| | | | BDEC = vector16_max(ND,VMIN);// Variance is bounded
| | | | BINC = vector16_min(ND,VMAX);// between Vmin and Vmax
| | | | C1 = vector16_compare_greater(V,BDEC);
| | | | //if V(t-1)>max(D(t),Vmin) c1= FF (-1), else c1 = 0
| | | | C2 = vector16_compare_less(V,BINC);
| | | | //if V(t-1)<min(D(t),Vmax) c2= FF (-1), else c2 = 0
| | | | V = vector16_add(V,C1);//V(t) = V(t-1) + c1
| | | | V = vector16_sub(V,C2);//V(t) = V(t-1) - c2
| | | }
| | | // (4) Computation of Foreground label L(t)
| | | L = vector16_compare_greater(D,V);
| | | //if D(t)>V(t) L(t)= FF, else L(t) = 0
| | }
| }// end of space loop------------------------------------------
}// end of time loop**********************************************

5 Conclusion and Extensions

We have proposed a justification of using the Σ-Δ estimation as a background
subtraction method, based on the use of the Zipf law as a density model. We
have proposed an algorithm implementing this method and allowing to adapt
the background updating to the temporal dispersion. We have shown the com-
putational advantages of the Σ-Δ estimation, illustrated by the vector SIMD
implementation.

The limitations of this algorithm - used ”as is” in a motion detection system -
are inherent to its mono-modal nature: first, one single mode in the density model
can be inefficient to discriminate moving objects over a complicated background,
and second, one single dispersion estimate, related to one time constant, may not
be sufficient for certain kind of motion such as remote objects with radial velocity
w.r.t. the optical centre. Nevertheless the basic model can be enriched, either
by using a multi-modal Zipfian distribution like it is done in [9] for Gaussian
estimation, or by using several time magnitudes, as shown in [8].
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Abstract. In this paper, we proposed a model based correlation mea-
sure between gain and offset nonuniformity for infrared focal plane ar-
ray (FPA) imaging systems. Actually, several nonuniformity correction
methods perform correction of nonuniformities by means of gain and off-
set estimation in a detector-by-detector basis using several approach such
as laboratory calibration methods, registration-based algorithm, and al-
gebraic and statistical scene-based algorithm. Some statistical algorithms
model the slow and random drift in time that the gain and offset present
in many practical FPA applications by means of Gauss-Markov model,
assuming that the gain and offset are uncorrelated. Due to this, in this
work we present a study and model of such correlation by means of a
generalized Gauss-Markov model. The gain and offset model-based cor-
relation is validate using several infrared video sequences.

Keywords: Gauss-Markov Model, Image Sequence Processing, Infrared
FPA, Signal Processing.

1 Introduction

Infrared (IR) cameras use an IR sensor to digitize the information, and due to
its high performance, the most employed integrated technology in IR sensors
is the Focal Plane Array (FPA). An IR-FPA is a die composed of a group of
photodetectors placed in a focal plane forming a matrix of X × Y pixels, which
gives the sensor the ability to collect the IR radiation.

Nonuniformity noise in IR imaging sensors, which is due to pixel-to-pixel
variation in the detectors’ responses, can considerably degrade the quality of IR
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images since it results in a fixed-pattern-noise (FPN) that is superimposed on
the true image. Further, what makes matter worse is that the nonuniformity
slowly varies over time, and depending on the FPA technology, this drift can
take from minutes to hours. In order to solve this problem, several scene-based
nonuniformity correction (NUC) techniques have been developed [1,2,3,4]. Scene-
based techniques perform the NUC using only the video sequences that are being
imaged, not requiring any kind of laboratory calibration technique. Our group
has been active in the development of novel scene-based algorithms for NUC
based on statistical estimation theory. In [5,6] we have developed a Gauss-Markov
model to capture the slow variation in the FPN and have utilized the model to
adaptively estimate the nonuniformity in blocks of infrared video sequences using
a Kalman Filter. In such work the gain and offset are assumed uncorrelated.

The principal contribution of this works is a study and model the detector
gain and offset correlation. The model, called generalized Gauss-Markov model,
is based in a measure of the correlation between gain and offset nonuniformity
of infrared detectors. To study this correlation, we employ the detector parame-
ters estimated from three published nonuniformity correction method: a neural
network approach, a non-linear filtering method and statistical algorithm. With
those method the correlation function is estimated and the Gauss-Markov model
is then generalized. To validate the proposed model we tested with several in-
frared video sequences captured by an infrared camera.

This paper is organized as follows. In Sections 2 the IR-FPA model and the
Gauss-Markov model are presented. In Section 3 the generalized Gauss-Markov
model is developed. In Section 4 the correlation between gain and offset is mea-
sure and validate with sequence of real infrared data. In Section 5 the conclusions
of the paper are summarized.

2 Gauss-Markov Model for the Nonuniformity Detector
Parameters

In this paper, we model the pixel-to-pixel variation in the detectors’ responses
(nonuniformity) using the commonly used linear model for each pixel on the IR
FPA. For the (ij)th detector, the measured readout signal Yij(n) at a given time
n is represented by the approximate linear relation

Yij(n) = X
(1)
ij (n)Tij(n) + X

(2)
ij (n) + Vij(n),

where X
(1)
ij (n) and X

(2)
ij (n) are the gain and the offset of the ijth detector re-

spectively and Tij(n) is the real incident infrared photon flux collected by the
detector. The term Vij(n) represents the read-out noise associate with the ijth

detector at time n. the subscript ij is omitted with the understanding that all
operations are performed on a pixel by pixel basis.

In practice, vectors of observations are captured over which the gain and offset
are approximately constants. This is an acceptable assumption in applications
where the observation vector is short. At a later time, other vectors of observation
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are captured for which these parameters may have drifted. This slow random
variation of the gain and offset between consecutive vectors of observation is
modeled by a Gauss-Markov process. It is also considered that the gain and
offset at kth vector-time are uncorrelated. The driver noise for the gain and
offset are assumed gaussian individually and mutually uncorrelated among them.
Mathematically, the Gauss-Markov state equation is given by

Xk+1 = ΦkXk + GkW k, (1)

where Xk+1 =

[
X

(1)
k

X
(2)
k

]
is the state vector at kth vector time. Φ =

[
αk 0
0 βk

]
is

called the state transition matrix between the states at kth and k + 1th time
vector. αk and βk represent the level of drift in the gain and offset between
consecutive vectors of observation, respectively. The parameter αk (βk) is chosen
according to the magnitude of the drift between the gain (offset) at state k and

the state k+1. Gk =
[

1 0
0 1

]
is a identity matrix that randomly relates the driving

noise vector W k to the state vector Xk. W k =

[
W

(1)
k

W
(2)
k

]
, W

(1)
k and W

(2)
k are

the driving noise for the gain and offset process, respectively.
Finally, to complete the Gauss-Markov model, the observation model for the

detector response is given by

Y k = HkXk + V k, (2)

where Y is the observation vector at kth block, and the length of observa-

tion vector is lk. Hk =

⎡

⎢⎢⎢⎢⎣

T (1) 1
. .
. .
. .

T (lk) 1

⎤

⎥⎥⎥⎥⎦
is the irradiance at kth block. V k is the

vector of independent, additive temporal noise elements in the kth block. The
main assumption in the observation model is that the input irradiance T (n) is a
uniformly distributed random variable in the range [T min

k , T max
k ] constituting the

range common to all detectors of possible irradiance levels prior to saturation. For
a complete development for the gain and offset estimation of each detector in the
FPA using an optimized recursion algorithm such that Kalman filter, see [5].

3 Generalized Gauss-Markov Model

In this paper, we propose generalize the model given at equation (1) by the next
equation

Xk+1 = ΦkXk + GkW k, (3)

where the transition matrix between the states at kth and k + 1th time vector

is modified to Φ =
[
αk ρk

δk βk

]
where ρk and δk represent the cross correlation
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between the gain and offset in consecutive vectors of observation, respectively.
The stability of the system of (3) is given by |λi(Φk)| < 1, i.e., the product of
the eigenvalues must be lower than 1. Note that if we multiplied (3) by Xk+1−l

and applying the expectation value we obtain

E
[
Xk+1X

T
k+1−l

]
= ΦkE

[
XkXT

k+1−l

]
+ GkE

[
W kW T

k−l

]
GT

k , (4)

where l = 0, 1, .... For a complete knowledge of the generalized Gauss-Markov
model we need to determine the Gk and Φk matrices. Now, in the next sections
we present the development of the (4) on two cases: when l = 0 and when l > 0.
The first case permits found the matrix Gk and the second case, permit found
an expression for the transition matrix Φk.

3.1 Solution for Gk: Case Where l = 0

In this case, setting l = 0, using (3) for Xk+1, and replacing on (4) we obtain

E
[
Xk+1X

T
k+1

]
= ΦkE

[
XkXT

k

]
ΦT

k + GkE
[
W kW T

k

]
GT

k , (5)

and solve (5) for E
[
W kW T

k

]
we obtain that

E
[
W kW T

k

]
= G−1

k

{
E

[
Xk+1X

T
k+1

]
− ΦkE

[
XkXT

k

]
ΦT

k

}
G−1

k

T
, (6)

and assuming that Xk is a stationary random variable

E
[
Xk+1X

T
k+1

]
= E

[
XkXT

k

]
=

[
σ2

a σab

σab σ2
b

]

and

E
[
Xk+1X

T
k+1

]
− ΦkE

[
XkXT

k

]
ΦT

k =
[

σ2
1 σ2

0
σ2

0 σ2
2

]

where σ2
0 = (1 − αβ − δρ)σab −αβσ2

a − ρβσ2
b , σ2

1 =
(
1 − α2

)
σ2

a − 2αρσab− ρ2σ2
b

and σ2
2 =

(
1 − β2

)
σ2

b −2βδσab−δ2σ2
a, and considering Gk =

[
1 g12

g21 1

]
we found

that

E
[
W kW T

k

]
=

[
σw

2
a 0

0 σw
2
b

]

i.e., W k is uncorrelated only if g12 and g21 satisfies that

g12 − g21σ
2
1 − σ2

0

g21σ2
0 − σ2

2
= 0,
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with σw
2
a = σ2

1 − 2g12σ
2
0 + g12σ

2
2 and σw

2
b = σ2

2 − 2g21σ
2
0 + g21σ

2
1 . For example,

if g21 = 0 then g12 = σ2
0

σ2
2

and

Gk =

[
1 σ2

0
σ2
2

0 1

]
, (7)

which implies that the W k is uncorrelated. Similarly, the expectation of W k

can be obtained from (3) by means

E[W k] = G−1
k [I − Φk]E[Xk] = G−1

k [I − Φk]E[X0].

3.2 Solution for Φk: Case Where l > 0

In this case, replacing l > 0 on (4) we obtain

E
[
Xk+1X

T
k+1−l

]
= ΦkE

[
XkXT

k+1−l

]
, (8)

and expanding (8) on each elements of X, using correlation function notation
and solve for Φk we obtain

Φk =
[
RX(1)X(1)(l) RX(1)X(2)(l)
RX(2)X(1)(l) RX(2)X(2)(l)

] [
RX(1)X(1)(l − 1) RX(1)X(2)(l − 1)
RX(2)X(1)(l − 1) RX(2)X(2)(l − 1)

]−1

, (9)

or

Φk = RX(l)R−1
X (l − 1). (10)

Note that in [5] they assume that gain and offset are uncorrelated, α0 = α1 =
... = αk = α and β0 = β1 = ... = βk = β. Replacing this assumption on (9)
results

Φk =

⎡

⎣
R

X(1)X(1) (l)
R

X(1)X(1) (l−1) 0

0
R

X(2)X(2) (l)
R

X(2)X(2) (l−1)

⎤

⎦ =
[

α 0
0 β

]
, (11)

this mean that the gain and offset are signals with exponential correlation func-
tion, i.e., following a Gauss-Markov model given in (1). Note that (11) correspond
a particular case of (9), called the generalized transition matrix. In the next sec-
tion we present the methodology to obtain an estimation of Φ using (10), i.e.,
based on estimate the correlation functions RX(l) and RX(l−1) obtained using
some NUC published method.

4 Estimation and Validation of the Generalized Model

In this section we obtain an estimation of Φk from (10) using three NUC pub-
lished method: the neural networks approach [1,2,3,4], nonlinear filtering [7,8]
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and statistical algorithm [9]. Briefly, the neural networks approach use a hidden
layer like a two-point NUC neurons that models the gain and offset of each de-
tectors. This NUC technique is derived using and adaptive least-square (LMS)
approach, making it a comparison between neighboring pixels as new frames of
data are input (the retina-like processing). The second NUC method, nonlinear
filtering, is used to obtain an individual estimation of gain and offset with re-
cursive least-square (RLS) based on minimizing the error between a preliminary
true scene estimation and the corresponding frame corrected for each pixel. This
preliminary estimation of true irradiance is performed by a spatial nonuniformity
filtering of readout data reducing the spatial signal resolution that is restored by
the RLS algorithm. Both NUC methods, LMS and RLS based, perform the de-
tector parameters estimation in a frame by frame basis. On the other hand, the
statistical algorithm assumes that the irradiance at each detector is a uniformly
distributed random variable and that the gain and offset are temporally constant
within certain blocks of time. This mean that the gain and offset estimation is
performed in a block of frame basis, i.e., when a new block of raw data arrives,
the method perform the NU correction by a finite-impulse response filter and
then, the temporal filter is adapted to the changes in the detector parameters
and the gain and offset are updated to the next arrivals of raw data.

Now, to obtain an estimation for the gain and offset (X(1), X(2)) we use real
infrared data captured by the 128×128 InSb FPA cooled camera (Amber Model
AE-4128) operating in 3 − 5μm range. The sequences were collected at 1 PM
with 3000 frames collected at a rate of 30 frames/s and each pixel was quantized
in 16 bit integers. Using this raw data, we able to estimate for each method the
detector parameters correlation function RX(1) and RX(0) to obtain a suitable
estimation of Φk. Additionally, in this work we assume that Φ0 = Φ1 = ... =
Φk = Φ. Now, the correlation function between X i and Xj with i = 1, 2 and
j = 1, 2, can be estimated by [10]

R̂n
X(i)X(j)(l′) =

1
n

n−1∑

k=0

X(i)(k)X(j)(k + l′) (12)

where R̂n
X(i)X(j)(l′) is the estimation for RX(i)X(j)(1) and RX(i)X(j)(0) when

i = 1, 2, j = 1, 2 and l′ = 0, 1. In (12) the knowledge of X(1) and X(2) at each
time k is required. Since from the three NUC method we have an estimation of
the gain and offset we can express (12) by the following recursive algorithm

R̂n
X(i)X(j)(l′) =

n − 1
n

R̂n−1
X(i)X(j)(l′) +

1
n

X(i)(n − 1)X(j)(n − 1 + l′), (13)

and then, using (9) we finally obtain the estimated Φ for each method.
In summary, to obtain an estimation for Φ we needed to make the following

steps: i) using real infrared sequence captured by Amber camera, estimate the
gain and offset by three NUC methods, ii) estimate the correlation function for
RX(1) and RX(0) using (13) and finally, iii) obtain the estimated Φ for each
method using (10).
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To validate the parameters of each model, we considered two aspect: the
NUC performance and the estimation error. For study the NUC capability of
each model we use the roughness parameters defined by

ρ(f) =
||h ∗ f ||1 + ||hT ∗ f ||1

||f ||1
, (14)

where h is a horizontal mask, ||f ||1 is the L1 norm of frame f and ∗ represents
discrete convolution. In the other hand, to validate the model we use equation
(2) in order to calculate the mean-square error (MSE) between the raw data Y k

and the estimation Ŷ k(Φj) for each model, given by [11]

MSE =
1
N

N−1∑

k=0

[
Y k − Ŷ k(Φj)

]T [
Y k − Ŷ k(Φj)

]
, (15)

where Ŷ k(Φj) = HXk = HΦXk−1 is the a priori estimate of Ŷ k based on the
model Φj for j = 1, 2, 3.

Table 1. Result on Validation for different models

Model |λi(φ
j)| ρ(f) MSE

Φ1 7.59 × 10−9 2.2425 0.8844
Φ2 0.2353 2.2127 0.8591
Φ3 0.0244 2.1313 0.1909

Following the previous procedure we obtain three generalized models corre-
sponding to each NUC algorithm given by:

Φ1 =
[

0.5026 −0.5026
−0.5026 0.5026

]
(16)

Φ2 =
[

0.8834 −0.7384
−0.7384 0.8835

]
(17)

Φ3 =
[

0.6031 −0.5505
−0.1252 0.1548

]
(18)

where Φ1,Φ2 and Φ3 correspond to the model obtained with neural network
approach, nonlinear filtering and statistical algorithm respectively. Note that all
NUC methods presented are stable (see Table 1) and shows that X(1) and X(2)

are correlated. This mean that the assumption that the gain and offset in con-
secutive vector of observation are uncorrelated is not valid. Even more, whereas
LMS and RLS algorithm exhibit a large correlation, the statistical algorithm
shows that the gain strongly is influenced by the gain and offset of the previous
state, i.e., we can assume that the offset indirectly is estimate from gain. It is
very important conclusion because we need the knowledge only of one state to
reduce NU.
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(a) (b)

(c) (d)

Fig. 1. The 2220 − th frame form 1 PM sequence captured with Amber infrared cam-
era: a) the corrupted raw frame, corrected frame with b) neural network approach, c)
nonlinear filtering, and d) statistical algorithm. It can be seen by using only the naked
eyes that a good NUC is obtained from the three NUC methods.

In Table 1, the |λi(Φj)| for each model, spatial average of ρ and MSE param-
eters are presented. We can observe that the best performance is obtained for
statistical algorithm (Φ3). Additionally, from equations (16),(17) and (18) we
can observe that as the magnitude of the drift between the gain (offset) at state
k and state k+1 is more different (i.e., the correlation between gain and offset is
considered), the NU correction and the model estimation are improved. This in
addition confirms the assumption of the gain and offset are temporally constant
in a block of time. Finally, for illustration proposed, the LMS-based, RLS-based
and statistical algorithm were applied to the 2220-frame image sequence, and the
results is shown in Figure 1. In this figure, Fig. 1(a) correspond to the corrupted
frames, Fig. 1(b), Fig. 1(c) and Fig. 1(d) shows the corrected frames with neu-
ral network approach, nonlinear filtering, and statistical algorithm respectively.
This figure clearly shows that the statistical method present a good reduction
of FPN.
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5 Conclusions

In this paper a study of correlation between gain and offset is present. It was
shown experimentally using real IR data that the assumption of gain and offset
is uncorrelated is not valid on some NUC scene-based method. Indeed, when the
asymmetry is more notable in the generalized transition matrix, i.e., the magni-
tude of the drift between the gain (offset) at consecutive block of frames is more
different, the method has shown an improved in reduction of nonuniformity and
in estimation error. This allows to conclude that the gain and offset are tempo-
rally constant in a block of time and the gain and offset are correlated. From this
assumption, we can reformulate the model present on [5]. Future work consider
a generalized Gauss-Markov model by obtain an adaptive estimation of nonuni-
formity using a Kalman filter and an evaluation to compare with uncorrelated
Gauss-Markov model.
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Abstract. In several cases the vibration signals generated by rotating
machines can be modeled as cyclostationary processes. A cyclostation-
ary process is defined as a non-stationary process which has a periodic
time variation in some of its statistics, and which can be characterized
in terms of its order of periodicity. This study is focused on the use
of cyclic spectral analysis, as a tool to analyze second-order periodicity
signals (SOP), such as, those who are generated by either localized or
distributed defects in bearings. Cyclic spectral analysis mainly consists
of the estimation of the random aspects as well as the periodic behav-
ior of a vibration signal, based on estimation of the spectral correlation
density. The usefulness of cyclic spectral analysis for the condition mon-
itoring of bearings, is demonstrated in this paper, through the analysis
of several sections of vibration data collected during an endurance test
of one of the two main gearbox transmissions of a helicopter.

Keywords: Signal Processing, condition monitoring, vibration analysis,
cyclostationarity.

1 Introduction

A cyclostationary process is a non-stationary process which has a periodic time
variation in some of its statistics. The framework of cyclostationarity provides
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a powerful framework for modeling vibration signals from rotating machines.
Such signals can be characterized by the different order of cyclostationarity they
exhibit. In rotating machines, imbalances and misalignments can lead to vi-
brations that are examples of first-order periodicity processes (FOP). Whereas
modulations generated by wear, friction forces or impact forces generate vi-
bration signals that are second-order periodic (SOP) processes. To analyze FOP
signals, different techniques such as the classical spectral analysis combined with
time synchronous averaging can be employed. These methods provide powerful
analysis tools suitable for many applications.

This study aims to consider the early detection faults in gearboxes, using
vibration analysis, and exploiting the SOP structure of signals, through the use
of cyclic spectral analysis. Cyclic spectral analysis involves the estimation of the
random aspects of a signal as well as its periodic behavior. In this work the
estimation of the spectral correlation density is computed using the averaged
cyclic periodogram estimator [1,2]. The use of cyclostationarity for the detection
and diagnosis of faults of bearings is demonstrated in this paper, through the
analysis of vibration data registers from one of the two main gearboxes of an
UH-60 Black Hawk helicopter.

This paper is organized as follows. In section 2 the cyclostationary analysis
is presented. Section 3 presents the application of the cyclic spectral analysis to
faults detection based on vibration signals processing. In section 4 we validate the
proposed method using real vibration data register from gearboxes of an UH-60
Black Haw helicopter. In Section 5 the conclusions of the paper are summarized.

2 Cyclostationary Analysis

A cyclostationary process is considered as a stochastic process that exhibits
some hidden periodicities, also called periodically correlated processes [3]. Non-
stationary signals are considered cyclostationary when some of its statistics are
periodic

fx(x, t) = fx(x, t + T ), (1)

where fx(x, t) denotes some appropriate, time varying, statistic of the signal.
Some typical examples of cyclostationary signals are obtained through the peri-
odic amplitude or frequency modulation of stationary processes.

A signal x(t) is said to be nth order cyclostationary with period T if its
nth order moments exist and are periodic with period T . A signal with first-
order periodicity is defined as one which has a finite-amplitude additive periodic
component, and which consequently exhibits lines (Dirac delta functions) in its
power spectral density. The FOP components can be separated from a signal
through synchronous averaging. A pure FOP signal can be considered as being
non-stationary in the sense that its mean is time-varying. Examples of FOP
vibration signals that can be generated by rotating machines are imbalances,
misalignments, anisotropic rotors, flexible coupling, etc. Some of the most com-
mon tools used to analyze (FOP) signals are: synchronous average, comb-filters,
blind filters and adaptive comb-filters [4].
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A signal with second-order periodicity (SOP) is defined as one which can be
converted into a signal with FOP by a quadratic time invariant transformation
[5]. These types of signals do not have a time-varying mean but do have a time-
variant auto-correlation function. Stochastic processes with either amplitude or
frequency modulation are typical examples of SOP signals. Faulty gearboxes
may exhibit vibration signals that are amplitude modulated, leading to SOP, if,
for example, the load being driven by the gearbox varies randomly.

Second order tools are based on the autocorrelation function. The instanta-
neous auto-correlation, the Wigner-Ville spectrum and the spectral correlation
are second order tools, obtained from linear transformations of the autocorre-
lation function. For a cyclostationary signal x(t), the auto-correlation function
(ACF) is defined by

Rxx(t, τ) = E
{
x(t + β̄τ)x(t − βτ)∗

}
, (2)

where β̄ + β = 1. If x(t) is cyclostationary with cycle (or period) T , then the
ACF is also a cyclic function of time, i.e.,

Rxx(t, τ) = Rxx(t + T, τ), (3)

and it can be expanded into their Fourier series and the Fourier coefficients of
the ACF correspond to the cyclic ACF (CACF) given by

Rxx(τ, α) =
∫

R(t, τ)e−j2παtdt, (4)

where α correspond to the cyclic frequencies. The CACF gives an indication of
how much energy in the signal is due to cyclostationarity at each frequency α.
Note that for α = 0, the CACF yields the conventional auto-correlation function.
The Fourier transform of the CACF is known as the cyclic power spectrum given
by

Sα
xx(α, f) =

∫
Rxx(τ, α)e−j2πfτ dτ , (5)

and we can note that the spectral correlation is a continuous function in fre-
quency f and a discrete function in terms of the cyclic frequency α. For the case
α = 0, the cyclic spectrum reduces to the classical power spectrum or spectral
density function (through the Wiener-Khinchin relation) [3].

In the next section we introduce the cyclostationary analysis applied to the
gearboxes and bearings, showing the potential of this analysis tools of detection
and diagnosis of fault using vibration signals.

3 Cyclic Spectral Analysis Applied to Faults Detections

In several cases the vibration signals generated by rotating machines can be mod-
eled as cyclostationary processes. For instance, cyclic spectral analysis results in
appropriate tool to provide a statistical description of the random aspects of a
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cyclostationary vibration signal, as well as a description of the periodic behav-
ior. In this work, we focused on vibrational signals measured from two rotating
machines: gearbox and rolling bearings.

The vibration signals measured from a gearbox typically exhibit cyclosta-
tionarity of second and higher-orders. However, usually these components nor-
mally have a negligible energy when compared to the strong periodic signal
generated by the meshing of the teeth. For this reason, it is important to sub-
tract the synchronous average of the signal (FOP components) before analyzing
the SOP cyclostationarity [4]. Vibrations generated by gears are typically poly-
cyclostationary, since many different periodicities and periodic modulations as-
sociated with several rotating parts may be present in the raw signal.

For the rolling bearings signals, they usually exhibit a second order cyclosta-
tionary behavior, with the presence of localized as well as distributed defects [6].
In the case of localized defects in rolling bearings, a series of impacts are pro-
duced whose rate of repetition depends on their location. However, these impacts
are not precisely periodic due to random slippage on each rotation; to reflect this
effect the process is more correctly referred to as quasi-cyclostationary [7]. Fur-
ther, the amplitude of the impacts can be modulated by the rotations of the
inner race, outer race or the cage.

In practice, digital signal processing algorithms are required to estimate the
cyclic-statistics of a cyclostationary process. In this paper we use the Averaged
Cyclic Periodogram (ACP), which is one of the most common estimators used
to estimate the spectral correlation function, because of its high computational
efficiency [1,2]. In the cyclic spectrum, the cyclic frequencies α, are multiples of
the reciprocal of the period of the cyclostationarity. The ACP is defined by the
expression

S
α

xx (f, α) =
1

KΔt

k=1∑

K

X
(k)
N

(
f + β̄α

)
X

(k)
N (f + βα)∗, (6)

where X
(k)
N is the discrete time Fourier transform of the kth sequence. In order

to mitigate the effect of cyclic leakage, an overlap between adjacent segments of
the signal should be incorporated. When a Hanning or Hamming data window
is used, the overlap should be ≥ 67%, in order to minimize the presence of cyclic
leakage [1].

The cyclic coherence function is a useful tool for analysis of cyclostationary
signals, to determine the strength of the correlation between spectral components
spaced apart by cyclic frequencies. The cyclic coherence function is normalized
between 0 and 1, similarly to the spectral coherence. The cyclic coherence func-
tion for a single signal can be calculated from:

Γxx(f, α) =
Sxx(f, α)

[
S0

x(f + β̄α)S0
x(f − β̄α)

]1/2 . (7)
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4 Detection Faults in Helicopter Gearbox Using Cyclic
Spectral Analysis

In this section, sixty two vibration data registers of one of the two main gear-
boxes of an UH-60 Black Hawk helicopter have been analyzed using second order
tools to identify the presence of cyclostationarity. The UH-60 Black Hawk main
gearbox transmission is a complex system, composed of different gear transmis-
sions, as it is shown in figure 1. This study is focus on the analysis of a fault
detected in the inboard roller bearing SB-2205, which supports the combining
bevel pinion in one of the input modules (see figure 2a). A fault in this bearing
is particularly challenging since it is located deep inside the gearbox and the
background noise may hidden the spectral components produced by the pres-
ence of a fault. Besides, the vibratory signal is also affected by the periodical
components produced by the gear transmissions.

Fig. 1. Black Hawk’s Main transmission

The vibration data were recorded during a component endurance test, carried
out at Patuxent River, M.D. [8]. Accelerometers were used to acquire the data
during the endurance test, at a rate of 100kHz. Only the recordings within ±10%
of the full torque condition (sixty two data sets, each of 10 seconds duration),
were used for this study. During this endurance test severe degradation of the
inboard bearing SB-2205 occurred, and six chip lights were retrieved. The first
gearbox chip light went on after 10200 minutes of run time had elapsed (which



66 E. Estupiñan, P. White, and C. San Martin

corresponds to the data set index No. 40). Figure 2b shows a photograph of
showing the final condition of the bearing rollers on completion of the endurance
test.

A previous study analysing these vibration data was carried out by McInerny
[9], which included the computation of power spectral densities and envelope
spectra for selected frequency bands as well as trend plots of global indexes such
as, deviation standard, kurtosis and wavelet coefficients. It was shown by McIn-
erny that spectral components linked to the cage fault frequency (FTF) were
identified in the envelope spectra for some frequency bands. It was also shown
that the global indexes calculated showed an evident increase. However, spectral
components directly related to the fault in the balls (ball spin frequencies, BSF),
were not found.

(a) (b)

Fig. 2. a) Location of the SB-2205 bearing. b) Condition of the bearing rollers at the
end of the endurance test.

In the present study, cyclic spectra and cyclic coherence functions were com-
puted for all the sixty two vibration data registers recorded during the endurance
test using equations (6) and (7). Before computing the cyclic spectra of the data,
an adaptive strategy based on Adaptive Line Enhancer (ALE) was applied previ-
ously, to separate the FOP components and to focus the cyclostationary analysis
on the residual signals [10,11]. To illustrate this process of filtering, Figure 3,
shows the spectra of the residual signal (error signal, ek) and the filter output
(yk), after the ALE filter was applied to the vibration data register No. 42 (one
of the data registers recorded after the first chip light went on).

To illustrate the results obtained with the cyclic spectral analysis, Figures
4 and 5, show the cyclic coherence function for the residual signal of data set
registers No. 08 and No. 42 respectively. As it can be seen in figure 5, the cyclic
coherence function revealed the existence of cyclic harmonics (hidden periodic-
ities) linked with the ball spin frequency (2×BSF=361.5Hz) and the fault cage
frequency (FTF=35.5Hz) of the inboard roller bearing. Besides, a detailed anal-
ysis of the cyclic spectrum let identified, sidebands spaced apart at α = 35.5Hz
(FTF) around the harmonics at 1×BSF and 2×BSF, indicating some degree
of modulation. This cyclic harmonic structure is exactly similar to spectral har-
monic structure (f domain) expected for a bearing with defects in the rollers [12].
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Fig. 3. Adaptive Line Enhancer (ALE), applied to one of the vibration data set, after
the first chip light

Fig. 4. Cyclic coherence function of fault-free case - Data set index 08. (Only values
above 7.5% significance level are displayed).

It is important also to mention that these cyclic spectral components were not
present in the cyclic coherence function when it was computed during the initial
stages of the endurance test (see figure 4).

Additionally to the analysis of the spectral correlation functions, the cyclic
spectra were compared for two different stages of fault, when they were com-
puted at specific cyclic frequencies, linked to the fault bearing frequencies and
the shaft rotational speed, as it is suggested in previous studies [2,13]. The results
obtained are shown in figure 6. A considerable increase in the cyclostationary
energy at the cyclic frequencies related to fault bearing frequencies was detected,
as it can be seen in figures 6b, 6c and 6d, which suggests that the cyclic spectra
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Fig. 5. Cyclic coherence function of faulty case - Data set index 42. (Only values above
7.5% significance level are displayed).

Fig. 6. Cyclic spectra computed at the cyclic frequencies: a) a=95.5 Hz (shaft rotational
speed), b) a=35.5 Hz (1xFTF), c) a=180.5Hz (1xBSF), d) a=361.5Hz (2xBSF)

computed at expected fault cyclic frequencies might be used as an indicator of
damage intensity. Figure 6a, shows not evidence of increasing of the cyclostation-
ary energy, indicating that the fault in this case is not related to the rotational
frequency.

These last results suggest that the change of cyclostationarity should be not
only analyzed for α = Ω [11,13] and better results could be obtained when the
change of cyclostationairty is analyzed at cyclic frequencies related to the fault
bearing frequencies. These results also confirm the SOP cyclostationary behav-
ior of fault bearings, which has been demonstrated in [7,13]. The SOP in fault
bearings is caused mainly to the small randomness caused for the usual slip of the
rolling elements and the cage. Therefore, the separation of vibrations produced by
faults in gears (mainly in FOP components) from vibrations produced by faulty
bearings (mainly SOP components) is a crucial aspect of the diagnosis of faults.
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Fig. 7. Global indexes computed for all the vibration data sets

Finally, and to complement the cyclic spectral analysis, different global sta-
tistical metrics were computed for all of the data set indexes. It can be seen
in figure 7, that the RMS energy computed for the raw signals does not show
evidence of great changes during all of the endurance tests. However, the other
metrics shown demonstrate an evident increase, especially in the latter stages of
the endurance tests, and after the first chip light. The index of cyclostationarity
(8) and the envelope kurtosis (computed for two bandwidth frequencies) display
the highest increase at the time when the first chip light went on, and only the
RMS value computed for the error signal displays some transient increases in an
early data set.

5 Conclusions

This study has demonstrated that cyclostationary analysis combined with an ap-
propriate adaptive scheme, or another tool, to remove the FOP components from
the signal, can be an efficiently tool to be applied to the vibration monitoring of
rotating systems such as the gearbox of a helicopter.

This study has characterized properly the fault of the SB-2205 roller bear-
ing produced during endurance tests of the UH-60A helicopter main gearbox.
Through the computation of the cyclic coherence functions the fault frequencies
of the bearing (cyclic spectral components at BSF), were detected, in contrast
with a previous studies were they were not detected. Besides, an index of cy-
clostationarity is used as a global indicator and compared with the RMS global
value, it demonstrates to have a better sensitivity to the presence of a fault.
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Nevertheless, further work should be focus on the testing of these indexes in
more detail.

In this study the ACP was used as an estimator for the computation of the
spectral correlation density, due to its high computational efficiency, however
other estimators should be compared.
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Abstract. In order to discriminate and identify different industrial machine 
sounds corrupted with heavy non-stationary and non-Gaussian perturbations 
(high noise, speech, etc.), a new methodology is proposed in this article. From 
every sound signal a set of features is extracted based on its denoised frequency 
spectrum using Morlet wavelet transformation (CWT), and the distance be-
tween feature vectors is used to identify the signals and their noisy versions. 
This methodology has been tested with real sounds, and it has been validated 
with corrupted sounds with very low signal-noise ratio (SNR) values, demon-
strating the method’s robustness. 

Keywords: wavelets, Fast Fourier Transformation, non-speech sound. 

1   Introduction 

A common problem encountered in industrial environments is that the electric ma-
chine sounds are often corrupted by non-stationary and non-Gaussian interferences 
such as speech signals, environmental noise, background noise, etc. Consequently, 
pure machine sounds may be difficult to identify using conventional frequency do-
main analysis techniques as Fourier transform [1], and statistical techniques such as 
Independent Component Analysis (ICA) [2]. It is generally difficult to extract hidden 
features from the data measured using conventional spectral techniques because of the 
weak amplitude and short duration of structural electric machine signals, and very 
often the feature sound of the machine is immersed in heavy perturbations producing 
hard changes in the original sound. For these reasons, the wavelet transform has at-
tracted increasing attention in recent years for its ability in signal features extraction 
[3][4], and noise elimination [5]. While in many mechanical dynamic signals, such as 
the acoustical signals of an engine, Donoho’s method seems rather ineffective, the 
reason for their inefficiency is that the feature of the mechanical signals is not consid-
ered. Therefore, when the idea of Donoho’s method and the sound feature are  
combined, and a de-noising method based on the Morlet wavelet is added, this meth-
odology becomes very effective when applied to an engine sound detection [6].  

In this work, we propose a new approach in order to identify different industrial 
machine sounds, which can be affected by non-stationary noise sources. This paper is 
organized as follows. In Section 2 the proposed methodology is overviewed. Next the 
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Morlet wavelet transform for denoising the acoustical signals is explained as well as 
the feature extraction procedure. Some interesting experimental results are presented. 

2   Methodology 

In this section the proposed methodology to identify machine sounds highly corrupted 
with non-stationary and non-Gaussian perturbations is presented. The original sounds 
corrupted with noise will be denoted as “noisy” sounds. The procedure consists of the 
following steps: 

 
1) Given a certain number of “original” sounds recorded from different machines, 

they will be heavily corrupted with different non-stationary non-Gaussian noises 
giving different SNR (signal-noise ratio). The problem is that in the temporal 
space it is impossible to distinguish between two corrupted signals. Due to this 
reason, we propose the step 2. 

2) We will need to work in the frequency space. In order to overcome the lack of 
identification among noisy sounds, a denoised version is proposed in this article. 
To carry out the purification (denoising) process, the Morlet wavelet transform 
(Section 3) will be used as a filter step. A reconstructed version of the noisy signal 
is generated after a filtering operation, setting to zero some of the wavelet coeffi-
cients. Therefore, the frequency spectrum of this denoised signal will be used as a 
source of the feature extraction process.  

3) The features extracted from the frequency spectrum are the basis for identifying 
the original sounds. This procedure will be done by calculating the distance be-
tween the feature vectors extracted from the original signal and the denoised one.  

4) To evaluate the robustness of our methodology, we proceed reducing the SNR 
level (increasing the level of noise) until the distance between the original and its 
denoised signal exceeds two values: first, the value of the distance between the 
original signal and its noisy version (d(si, si_denoised)>d(si, si_noisy)), and sec-
ond, the value of the distance between the original signal and a denoised signal 
coming from another original signal (d(si, si_denoised)>d(si, sj_denoised)), being 
si and sj two different original signals. This fact demonstrates the robustness of the 
proposed methodology because high levels of noise can be added without mis-
identifying the signals.  

3   Wavelet Transform and Feature Extraction 

3.1   Review of Wavelet Transform 

The wavelet was originally introduced by Goupilland et al. in 1984 [7]. Let ψ(t) be 
the basic wavelet function or the mother wavelet, then the corresponding family of 
daughter wavelets consists of 

⎟
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where a is the scale factor and b the time location, and the factor 
2/1−

a  is used to 

ensure energy preservation. 
The wavelet transform of signal x(t) is defined as the inner product in the Hilbert 

space of the L2 norm, as shown in the following equation 

∫
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*
,

2/1

, )()(),(),( ψψ                               (2) 

Here the asterisk stands for complex conjugate. Time parameter b and scale pa-
rameter a vary continuously, so that transform defined by Eq. (2) is also called a con-
tinuous wavelet transform, or CWT. The wavelet transform coefficients W(a,b) can be 
considered as functions of translation b for each fixed scale a, which give the infor-
mation of x(t) at different levels of resolution. The wavelet coefficients W(a,b) also 
measure the similarity between the signal x(t) and each daughter wavelet ψa,b(t). This 
implies that wavelets can be used for feature discovery if the wavelet used is close 
enough to the feature components hidden in the signal. 

For many mechanical acoustic signals impulse components often correspond to the 
feature sound. Thus, the basic wavelet used for feature extraction should be similar to 
an impulse. The Morlet wavelet is such a wavelet defined as  

)cos()2/exp()( 22 ttt πβψ −=                                           (3) 

3.2   Feature Extraction Using the Morlet Wavelet 

The most popular algorithm of wavelet transform is the Mallat algorithm. Though this 
algorithm can save a lot of computations, it demands that the basic wavelet is or-
thogonal. The Morlet wavelet is not orthogonal. Thus, the wavelet transform of the 
Morlet wavelet has to be computed by the original definition, as shown in Eq. (2). 
Although the CWT brings about redundancy in the representation of the signal (a one-
dimensional signal is mapped to a two-dimensional signal), it provides the possibility 
of reconstructing a signal. A simple inverse way is to use the Morlet’s formula, which 
only requires a single integration. The formula is: 

∫−=
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It is valid when x(t) is real and either ψ(t) is analytic or )(ˆ ωψ  is real. The condition 

is satisfied by the Morlet wavelet. If the wavelet coefficients W(a,b), corresponding to 
feature components, could be acquired, we could obtain the feature components just by 
reconstructing these coefficients. In calculations, the feature coefficients should be  
reserved and the irrelevant ones set to zero, then the signal can be denoised by using 
formula Eq. (4). Thus, the key to obtaining the denoised signal is how to obtain these 
feature coefficients. A threshold Tw should be set in advance, but it is not evident to 
choose it properly. This threshold indicates the value from which wavelet coefficients 
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must be set to zero. The basic rule for threshold choice is that the higher the correlation 
between the random variables, the larger the threshold; and the higher the signal-noise 
ratio (SNR), the lower the threshold. In practice, the choice of the threshold Tw mainly 
depends on experience and knowledge about the signal. In fact, the quantitative relation 
between the threshold Tw and the SNR still remains an open question. 

Since the sound signal is reconstructed with the modified wavelet coefficients, the 
frequency spectrum is calculated using the Fast Fourier Transform. In the results, it is 
easy to appreciate the good level of denoising that wavelet transform is yielding. 

 

Fig. 1. Definition of features upon the frequency spectrum 

Observing in detail such a spectrum, machine sounds have the characteristic of be-
ing formed by m harmonics with different amplitude and located at different frequen-
cies. Therefore, these signals are divided in regions-of-interest (ROI) consisting of 85 
points (over 256-point FFT). The width of the ROI is chosen so that this area is con-
taining information enough to do the analysis and, consequently, the main fundamen-
tal harmonics in the signals can be found inside the ROI. A normalization step is done 
in the signal spectrums (between [0...1]). Due to the properties of mechanical acoustic 
signals, the most important parameters that we consider to characterize the machine 
sounds are: the frequency of the first harmonic (fs1), the amplitude of the second har-
monic (A2) and the number of significant harmonics (with an amplitude > 0.2), note 
that the first harmonic amplitude will be always 1, that is, the maximal value of nor-
malization. For every sound signal these three features will form the feature vector. In 
Fig. 1 the features can be observed over a generic spectrum. Nevertheless, other fea-
tures have been tried such as the frequency of the second harmonic (fs2) but the results 
do not improve. 

3.3   Distance Between Feature Vectors 

A distance measure is a function that associates a non-negative numeric value with (a 
pair of) sequences, with the idea that a short distance means greater similarity. Dis-
tance measures usually satisfy the mathematical axioms of a metric. In the Euclidean 
space ℜn, the distance between two points is usually given by the Euclidean distance 
(2-norm distance). Other distances, based on other norms, are sometimes used instead. 
In this article we use the Minkowski distance of order 2 (2-norm distance) defined as: 
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for a point (x1, x2, ...,xn) and a point (y1, y2, ...,yn). Other norms have been tested but 
the results do not improve, because the distance measure is not relevant. In our  
opinion, after the tests, the most relevant in the identification process is the feature 
extraction process. The goodness of the identification depends on the denoising meth-
odology for this kind of signals (machine sounds) and the selection of the most repre-
sentative features from the spectrum. 

For identifying the noisy signals and, effectively, to know what original signal machine 
sounds they come from, this distance will serve as a dissimilarity measure, defining: 

Table 1. Different distances between signals 

Acronym Definition Description 

dsii d(si, si_noisy) 
Distance between an original sound and one of its 
noisy versions 

dsij d(si, sj_noisy) 
Distance between an original sound and one of a 
noisy version of another original signal. Cross dis-
tances. 

dsii_denoised d(si, si_denoised) 
Distance between an original sound and one of its 
denoised versions 

dsij_denoised d(si, sj_denoised) 
Distance between an original sound and one of a 
denoised version of another original signal. Cross 
distances. 

4   Experimental Results 

In our experiments, we will demonstrate the identification capacity and the robustness 
of our methodology when the input signals are highly corrupted with low levels of 
SNR (high levels of noise). 

Initially, we use two original sound signals recorded in real industrial environments: 
s1, a car factory assembly line sound; and s2, a ship engine room sound. These two sig-
nals have been corrupted with a non-stationary, non-Gaussian and colored noise, called 
babble noise (n), with different amplitudes, creating a set of 125 noisy signals with 
decreasing SNR, ranging from 12 to 0.5. The babble noise [8] represents more than one 
hundred people speaking in a canteen. All these sounds have been recorded at a fre-
quency sample of 19.98 kHz, 16-bit, mono. Fig. 2 (up) shows original sounds and Fig. 2 
(down) their corresponding corrupted sounds before the denoising process. It is impor-
tant to remark the difficulty to discriminating between both noisy signals. 

In the denoising process, the threshold Tw is set to 30% of the maximum wavelet 
coefficients of the original signals, fulfilling the basic rule stated in that Section 3.2. 
Fig. 3 shows the similitude among the different spectra for the same signal when it is 
completely clean (original), when it is completely noisy and finally when it has been 
denoised after the wavelet reconstruction. It can be observed that denoised spectrum 
is similar to the clean one, and therefore, the features are quite similar compared with 
the features obtained from the noisy signal.  
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Fig. 2. (Up) Machine sounds; (down) with babble noise 

 

Fig. 3. Spectra of original, noisy and denoised sounds of s1 (left) and s2 (right) 

Fig. 4 shows the distance between different signals versus the SNR. It can be ob-
served that for both signals (s1 and s2) the distance from each original signal to its 
denoised versions is always lower that the distance between each original signal to its 
noisy versions, with a wide range of low SNR values. This fact is very important 
because it demonstrates that the denoising process work very well, reducing the added 
noise without losing the implicit frequency information of original signal spectrum.  

Another consequence is the high rate of discrimination between different original 
signals and their denoised versions. In the plots in Fig. 4, this fact is represented by 
the ds21, ds21_denoised, ds12 and ds12_denoised. The distances of these measures 
are always higher then the distances between ds22_denoised and ds11_denoised. 
Even, the distances ds22 and ds11, that is, the distances between one signal and its 
noisy versions are always lower that the cross distances, at least, for values of SNR 
higher than 2. 



 Robust Industrial Machine Sounds Identification 77 

 

Fig. 4. Distance between signals (see Table 1 for legends)  

5   Conclusions 

Machine sound varies depending on factors such as background noise, failures of their 
mechanisms, environmental aspects (speech, superposition...), etc. Besides, when the 
feature sound is immersed in heavy perturbations as the previously cited is hard to 
identify. CWT can be used to discover the relevant signal components respect the 
selected wavelet bases. Then, using a proper basic wavelet, we can reconstruct the 
sound signal filtering the wavelet coefficients. The machine sound can be denoised 
following this procedure. Together with a specific feature extraction and identification 
(based on a basic distance measure) the noisy signals can be effectively identified, 
even with relatively low signal/noise ratio values. 
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Abstract. This paper shows results obtained in the Automatic Speech Recogni-
tion (ASR) task for a corpus of digits speech files with a determinate noise level 
immerse. The experiments realized treated with several speech files that contained 
Gaussian noise. We used HTK (Hidden Markov Model Toolkit) software of 
Cambridge University in the experiments. The noise level added to the speech 
signals was varying from fifteen to forty dB increased by a step of 5 units. We 
used an adaptive filtering to reduce the level noise (it was based in the Least 
Measure Square –LMS- algorithm). With LMS we obtained an error rate lower 
than if it was not present. It was obtained because of we trained with 50% of con-
taminated and originals signals to the ASR. The results showed in this paper to 
analyze the ASR performance in a noisy environment and to demonstrate that if 
we have controlling the noise level and if we know the application where it is go-
ing to work, then we can obtain a better response in the ASR tasks. Is very inter-
esting to count with these results because speech signal that we can find in a real 
experiment (extracted from an environment work, i.e.), could be treated with these 
technique and decrease the error rate obtained. Finally, we report a recognition 
rate of 99%, 97.5% 96%, 90.5%, 81% and 78.5% obtained from 15, 20, 25, 30, 35 
and 40 noise levels, respectively when the corpus that we mentioned above was 
employed. Finally, we made experiments with a total of 2600 sentences (between 
noisy and filtered sentences) of speech signal. 

Keywords: Automatic Speech Recognition, Adaptative Filters, Continuous 
Density Hidden Markov Models, Gaussian Mixtures and noisy speech signals. 

1   Introduction 

The science of speech recognition have been advanced to the state where it is now 
possible to communicate reliably with a computer by speaking to it in a disciplined 
manner using a vocabulary of moderate size. The interplay between different intellec-
tual concerns, scientific approaches, and models, and its potential impact in society 
make speech recognition one of the most challenging, stimulating, and exciting fields 
today. The effect of the noise and filtering on clean speech in the power spectral do-
main can be represented as: 
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ticular Mel-spectra band. 
To transform to the log spectral domain we apply the logarithm operator at both 
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results in equations 
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Where h[k] is the logarithm of 2
)( kH ω , and the similar relationships exist between 

n[k] and ][),( kxP kN ω  and ),( kXP ω  and y[k] and ).( kYP ω  

Last expressions shows that is very difficult to intent to find noise and signal sepa-
rately.  For that is a good recommendation to eliminate the noise embedded into a 
speech signal using other methods. The different sources of variability that can affect 
speech determine most of difficulties of speech recognition. During speech production 
the movements of different articulators overlap in time for consecutive phonetic seg-
ments and interact with each other. This phenomenon is known as co-articulation 
mentioned above. The principal effect of the co-articulation is that the same phoneme 
can have very different acoustic characteristics depending on the context in which it is 
uttered [1]. 

State-of-the-art ASR systems work pretty well if the training and usage conditions 
are similar and reasonably benign. However, under the influence of noise, these sys-
tems begin to degrade and their accuracies may become unacceptably low in severe 
environments [2]. To remedy this noise robustness issue in ASR due to the static 
nature of the HMM parameters once trained, various adaptive techniques have been 
proposed. A common theme of these techniques is the utilization of some form of 
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compensation to account for the effects of noise on the speech characteristics. In gen-
eral, a compensation technique can be applied in the signal, feature or model space to 
reduce mismatch between training and usage conditions [3]. 

2   Characteristics and Generalities 

Speech recognition systems work reasonably well in quiet conditions but work poorly 
under noisy conditions or distorted channels. The researchers in our speech group 
(Digital Signal Processing Research Group in the Center for Computing Research) are 
focused on algorithms to improve the robustness of speech recognition system, so we 
demonstrated when we employed syllables and Expert Systems for that; we have 
obtained very good results. Some sources of variability are illustrated in Figure 1.  

Speaker-to-speaker differences impose a different type of variability, producing 
variations in speech rate, co-articulation, context, and dialect, even systems that are 
designed to be speaker independent exhibit dramatic degradations in recognition ac-
curacy when training and testing conditions differ [4]. 

 Substantial progress has also been made over the last decade in the dynamic adap-
tation of speech recognition systems to new speakers, with techniques that modify or 
warp the systems' phonetic representations to reflect the acoustical characteristics of 
individual speakers [5] [11] [12].   

 
Fig. 1. Schematic representation of some of the sources of variability that can degrade speech 
recognition accuracy, along with compensation procedures that improve environmental robust-
ness 

3   Automatic Speech Recognition Systems 

In Automatic Speech Recognition (ASR) systems most of speech energy is under 7 or 
7.5 KHz (woman or man voice can change the range mentioned before) dependently. 
A telephonic lower quality signal is obtained whenever a signal does not have energy 
out of the band 300-3400 Hz. The vocal tract configuration can be estimated by iden-
tifying the filtering performed by the tract vocal on the excitation. Introducing the 
power spectrum of the signal )(ωxP , of the excitation )(ωvP  and the spectrum of the 

vocal tract filter )(ωhP , we have: 

                      )()()( ωωω hvx PPP =                                             (5) 
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The speech signal (continuous, discontinuous or isolated) is first converted to a se-
quence of equally spaced discrete parameter vectors. This sequence of parameter 
vectors is assumed to form an exact representation of the speech waveform on the 
basis that for the duration covered by a single vector (typically 10-25 ms) the speech 
waveform can be regarded as being stationary. In our experiments we used the fol-
lowing block diagram for the isolated speech recognition. The database employed 
consists of ten digits (0-9) for the Spanish language.  

4   Hidden Markov Models  

As we know, HMMs mathematical tool applied for speech recognition presents three 
basic problems [6] y [7]. For each state, the HMMs can use since one or more Gaus-
sian mixtures both to reach high recognition rate and modeling vocal tract configura-
tion in the Automatic Speech Recognition. 

4.1   Gaussian Mixtures 

Gaussian Mixture Models are a type of density model which comprise a number of 
functions, usually Gaussian. In speech recognition, the Gaussian mixture is of the 
form [8] [9], [10], [11] and [12]. 
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where Σandμ  in equation 6 represent media and standard deviation of a Gaus-

sian function respectively. Equation 7 shows a set of Gaussian mixtures: 
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As we can deduce, the sum of all iw  is equal to 1. That is an interesting property 

of the Gaussian Mixtures employed for Automatic Speech Recognition. 

4.2   Viterbi Training 

We used Viterbi training, in this work for a set of training observations rO , 
Rr ≤≤1 is used to estimate the parameters of a single HMM by iteratively comput-

ing Viterbi alignments. When used to initialise a new HMM, the Viterbi segmentation 
is replaced by a uniform segmentation (i. e. each training observation is divided into 
N equal segments) for the first iteration. Apart from the first iteration on a new model, 
each training sequence O is segmented using a state alignment procedure which re-
sults from maximising 
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For i<j<N. In this and all subsequent cases, the output probability (.)jb  is as de-

fined in the following equation: 
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If ijA  represents the total number of transitions from state i to state j in performing 

the above maximisations, then the transition probabilities can be estimated from the 
relative frequencies 
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The sequence of states which maximises )(TNφ implies an alignment of training 

data observations with states. Within each state, a further alignment of observations to 
mixture components is made.  

We can use two methods for each state and each stream 

1. use clustering to allocate each observation sto  with the mixture component 

with the highest probability 

2. associate each observation sto  with the mixture component with the highest 

probability  
In either case, the net result is that every observation is associated with a single 

unique mixture component. This association can be represented by the indicator func-

tion )(tr
jsmψ  which is 1 if r

sto  is associated with mixture component m of stream s of 

state j and zero otherwise. 
The means and variances are then estimated via simple averages 
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5   Experiments and Results 

The evaluation of the adaptive filter implemented to reduce noise involved clustering 
a set of speech data consisting of 100 isolated patterns from a digits vocabulary. The 
training patterns (and a subsequent set of another 200 independent testing pattern) 
were recorded in a room free of noise. Only one speaker provided the training and 
testing data. All training and test recordings were made under identical conditions (we 
employed a special software created for us to record the sentences, at 16 kbps; mono-
channel and the sentence were normalized). The 200 independent testing patterns was 
addition with a level noise, we obtained a total of 1200 new sentences contaminated 
(200 per noise level, that is because we used 6 noise levels). After that, we used an 
adaptive filter to reduce that noise level and the results are shown below, then we 
obtained another 1200 sentences. Finally, we made experiments with a total of 2600 
sentences (between noisy and filtered sentences) of speech signal. Figure 2 shows the 
adaptive filter algorithm employed. For each corpus created, we used three databases 
test to recognition task: with same characteristics, noisy and filtered. All sentences 
were recorded at 16 kHz frequency rate, 16 bits and mono-channel. We use MFCCs 
with 39 characteristics vectors (differential and energy components). A Hidden 
Markov Model with 6 states and 1 Gaussian Mixture per state. 

 

Fig. 2. Adaptive filter algorithm 
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Table 1. Results obtained with noisy corpus created 

 

Table 1 Shows the results obtained when we used a noisy corpus to training the 
ASR. A total of 600 speech sentences were analyzed. 

As we can see, when we used a noisy corpus like we hoped, recognition level with 
noisy database was adequately. When we used high S/N rate (25, 30, 35 and 40 dB), 
the recognition rate was increased. It is important because it means that the noisy 
corpus is a good reference. Figure 3 shows a histogram related with the table contents. 
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Fig. 3. Block diagram of training step for ASR for isolated words 

Table 2. Results obtained with noisy and clean corpus created 

 

Table 2 shows the results obtained when we used a noisy corpus to training the 
ASR. A total of 600 speech sentences were analyzed. 
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As we can see, when we used a corpus compound by noisy and original signals, the 
recognition rate for filtered speech signal was increased considerably. Figure 4 shows that. 
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Fig. 4. Block diagram of training step for ASR for isolated words 

Table 3 shows the results obtained when we used a noisy corpus to training the 
ASR. A total of 600 speech sentences were analyzed. 

Table 3. Results obtained with clean corpus created 
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Fig. 5. Block diagram of training step for ASR for isolated words 
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Finally, with the original corpus the results was not satisfactory, although the rec-
ognition rate with filtered signals was better than noisy signals, it was poor and not 
enough to be considered important as Figure 5 shows. 

6   Conclusions and Future Works 

The results shown in this paper demonstrate that we can use an adaptive filter to re-
duce the noise level in an automatic speech recognition system (ASRS) for the Span-
ish language. The use of this paradigm is not new but with this experiment we pro-
pose to reduce the problems find out when we tread with real speech signals. MFCCs 
and CDHMMs were used for training and recognition, respectively.  First, when we 
used database test with the same characteristics that corpus training a high perform-
ance was reached out, but when we used the clean speech database our recognition 
rate was poor. The most important results extracted of this experiment were when the 
clean speech was fixed with noisy speech, when we used filtered speech we obtained 
a high performance in our ASR. For that, our conclusion is that if we want to con-
struct an ASR immerse in a noisy environment, it is going to have a high performance 
if we included in our database training clean and noisy speech signal. So, if we known 
the Signal/Noise ratio and it’s great than 35%, we can use the filtered signal in an 
ASR without problems. For future works is recommendable try to probe the results 
obtained using another methods employed to reduce noise into signal (wavelets i. e.), 
and extract the results. 
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Abstract. Nowadays the detection of the fundamental frequency (F0) in voice 
signals can be evaluated by several algorithms. There are two main attributes of 
these algorithms: exactness and calculation time. A considerable part of the 
algorithms are based on the well-known Fast Fourier Transformation (FFT). 
The Smoothed Spectrum Method is an FFT based process, which was 
developed for the F0 detection of recorded voice signals especially the infant 
cry. As it will be shown the SSM provides a better accuracy than regular FFT 
based algorithms or the Autocorrelation Function. In case of sound recordings 
in noisy environment the modified SSM is able to recognize significant noise 
components in the recorded signal. A further advantage of SSM is that 
additional information of the analyzed signal can be given to improve the 
performance of the method. 

Keywords: Fundamental frequency detection, voice signals, noise detection. 

1   Introduction 

The fundamental frequency (F0) is the lowest useful frequency component in the 
spectrum. The detection of the fundamental frequency has several applications, e.g. in 
mechanical engineering, in acoustical engineering, etc. In each of these applications 
various requirements are defined: robustness, calculation time, accuracy, etc [1-3]. In 
this study a novel method, named Smooth Spectrum Method (SSM) will be 
introduced, which was developed for the F0 detection of recorded voice signals 
especially the infant cry. This method is based on the spectrum obtained by the well-
known Fast Fourier Transform (FFT) [4]. 

Different types of voice signals result different spectrums. Figure 1 (a) shows the 
short-term spectrum of a sinusoid. An obvious way to estimate its fundamental 
frequency is to measure the position of the spectral peak. However this procedure 
fails for the spectrum in Fig. 1 (b) that contains multiple peaks. A simple modification 
is to accept only the largest peak, but this algorithm fails for the spectrum in Fig. 1 (c) 
for which the largest peak falls on a multiple of F0. A simple extension is to select the 
peak of lowest frequency but this algorithm fails for the signal illustrated in Fig. 1 (d) 
for which the lowest peak falls on a higher harmonic. Another cue, spacing between 
partials indicates the correct F0 for this signal, but not for the signal illustrated in 
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Fig. 1 (e). In case of recorded acoustic signals narrow-band noises, and/or wide-band 
noises, and/or significant frequency components (f) might be added into the spectrum 
from background noises, the noise from the recording device, etc. It might result that 
some of the useful frequency components of the recorded signal under the noise level 
will disappear from the spectrum, while significant noise peaks can be treated as a 
useful frequency component. 
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Fig. 1. Spectra of simple signals that illustrate basic spectral F0 estimation schemes. The 
spectrum peak determines the F0 of a pure tone (a) but a complex tone (b) has several such 
peaks. The largest peak determines the F0 of the waveform in (b), but not (c). The lowest 
frequency peak determines the F0 of the waveform of (c) but not (d). Interpartial spacing 
determines the F0 of (d) but not (e). In case of recorded acoustic signals narrow-band noises, 
and/or wide-band noises, and/or significant frequency components might be added as it is 
shown in (f). 

The inputs of the Smoothed Frequency Method are spectrums obtained from sound 
recordings of the infant cry. Cry is a multimodal, dynamic behavior; this is the first 
tool of communication and the sign of life at birth [5]. There are several purposes and 
ways to analyze the sound of crying: acoustic, physiological, psychological, phonetic, 
pediatric, etc [6-12]. The infant cry, on the analogy of voice signals, is mostly a 
harmonic signal, containing the fundamental frequency and its multiple integers, i.e. 
the subharmonics. The fundamental frequency of crying is typically between 200 and 
800 Hz [13], while subharmonics can be found for 6000-8000 Hz. The amplitudes of 
these frequency components are different; there are significant components as well as 
missing ones, depending on the formant structure of the sound. [14]. In the acoustic 
analysis of the infant cry the maximum frequency of interest is often above 8000 Hz 
to be able to analyze special unvoiced sound phonemes. 

As the Smoothed Spectrum Method is suitable not only for the F0 detection of the 
infant cry but for the F0 detection of other voice signals, in the following the inputs 
will be mostly harmonic signals (200 Hz <F0 <800 Hz), containing narrow-band 
and/or wide-band noises and/or significant noise components. 

The sampling frequency applied was 44100 Hz; there was a window size of 
2048 points. This window length (46.4340 ms) is typical in case of speech processing 
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or speech recognition, and provides a suitable resolution in the time domain. In the 
following these values will be used. 

In regular FFT based algorithms the frequency resolution of the discrete spectrum 
is limited. In case of the window length above, the resolution of the spectrum is 
21.5333 Hz. The frequency resolution of the FFT spectrums can be decreased 
theoretically e.g. by using a longer window, by zero padding, when possible and 
allowed. The Smoothed Spectrum Method is such a novel method for fundamental 
frequency detection, which provides a better accuracy than it could be reached 
theoretically by regular FFT based algorithms. 

2   Methodology 

The SSM can be divided into two consecutive parts. In the first part the input 
spectrum is smoothed and the significant peaks are detected. In the second part the 
most probable value of the fundamental frequency is calculated by statistical methods. 

First, the input FFT spectrum is smoothed by a suitable (e.g. bell shape), 
symmetric kernel function. This smoothing can be realized by weighted addition in a 
predetermined bandwidth. The purpose of this step is to emphasize the significant 
peaks in the spectrum (i.e. the harmonic components) and to reject the wide-band 
noises in the spectrum. Figure 2 shows an original spectrum and its smoothed version. 
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Fig. 2. An original spectrum (A) and its smoothed version (B). The significant peaks of the 
original spectrum are preserved, while the smaller (noise) components are rejected. 

By the detection of the local maxima in the smoothed spectrum the significant 
peaks of the original spectrum are found. Note that the smoothing of the spectrum 
does not change the frequency position of the significant peaks. 

The second part of the Smoothed Spectrum Method is based on these obtained 
peaks. As it was shown before there are several types of spectrums. In some cases the 
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fundamental frequency or higher frequency components are missing, or some 
significant noise components are present. First, let us see the cases without any noise 
components. 

2.1   SSM Without Noise 

In ideal case, the subharmonics (Fn_ideal) are whole multiples of the fundamental 
frequency (F0). 

nFF idealn ⋅= 0_  (1) 

From this expression, if a subharmonic of F0 is detected and its serial number is 
known, the fundamental frequency can be calculated by a simple division: 

nFF idealn /_0 =  (2) 

But the distance between two neighboring points in the discrete spectrum is 

NFB s /=  (3) 

where Fs is the sampling frequency and N is the window length applied at the FFT. In 
the worst case a spectral component (Fx) of the signal is placed to Fx±B/2. In this case 
(1) is modified as 

2/0 BnFFn ±⋅=  (4) 

From (2) and (4) 
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F

n
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22
/ 0000  (5) 

Where h is the absolute error of the calculation of F0, and h’ is the relative error: 

02nNF

F
h s

n =′  (6) 

As the sampling frequency (Fs) and the window length (N) are given with the input 
spectrum, the relative error can be decreased by applying higher n value, i.e. 
determining higher harmonic component in the spectrum. 

The significant peaks in the input spectrum are the local maxima in the smoothed 
spectrum. The positions of these peaks are close to the real subharmonics of F0. If the 
frequency values of these peaks are divided by their serial numbers, the resulted ratios 
will be close to the real F0 with the relative error from (6). 

Example from Figure 2: the fundamental frequency is 340 Hz, the second and the 
fifth subharmonics are missing. As the frequency resolution of the spectrum (B) is 
21.53 Hz, the detected peaks in the smoothed spectrum are at Fdet1=335.47 Hz, 
Fdet2=1027.94 Hz, Fdet3=1363.41 Hz, Fdet4=2034.35 Hz and Fdet5=2369.81 Hz. After 
the division with their serial numbers the resulted ratios are: 335.47, 342.64, 340.85, 
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339.06 and 338.54 Hz. The differences between these results and the exact value of 
the fundamental frequency are within the theoretical error bands. 

For these divisions the exact serial numbers of the detected peaks are needed. How 
could these serial numbers be obtained? By the combination of possible serial 
numbers the algorithm generates test sequences, and the ratios of the obtained peaks 
and all of these sequences are calculated. In case of the best sequence of serial 
numbers the standard deviation of the obtained ratios will be the least. 

Continuing the previous example, five test sequences are given, and the ratios are 
calculated (see Table 1). As the standard deviation of these ratios has the smallest 
value at the second case, the best sequence of serial numbers is <1,3,4,6,7>. 

Table 1. Examples of the sequences of serial numbers. As the standard deviation of the ratios is 
the smallest in the second line, the best combination is <1,3,4,6,7>. 

Ratios of the detected peaks and possible sequence of 
serial numbers (Hz) 

Sequence of 
serial numbers

Fdet1 Fdet2 Fdet3 Fdet4 Fdet5 

Standard 
deviation 

(Hz) 
<1,2,3,4,5> 335.47 513.97 454.47 508.59 473.96 72.41 
<1,3,4,6,7> 335.47 342.65 340.85 339.06 338.54  2.69 
<1,2,4,6,8> 335.47 513.97 340.85 339.06 296.23 85.22 
<2,3,4,5,6> 167.73 342.65 340.85 406.87 394.97 95.83 
<2,3,4,6,7> 167.73 342.65 340.85 339.06 338.54 77.18 
 
 
As the least value of the standard deviations is found, the fundamental frequency of 

the signal can be calculated by the division of the highest detected frequency 
component and its serial number. In this example the original F0 at 340 Hz was 
positioned in the spectrum to 335.47 Hz, while a better estimation (338.54 Hz) was 
calculated with the SSM. 

2.2   SSM with Narrow-Band and/or Wide-Band Noises 

In case of wide-band noises, some of the useful peaks in the input spectrum might not 
be visible; but the Smoothed Spectrum Method can detect the fundamental frequency 
from the remaining significant peaks. 

In case of narrow-band noises, or especially significant noise components, the 
smoothing of the spectrum might not reject these components. If such a noise 
component is expected in the signal, the algorithm of the SSM can be modified to 
recognize the extraordinary peak. In the modified algorithm divisions are evaluated 
not only with the detected peaks (including the noise peak), but with smaller groups 
of the detected peaks as well. There will be at least one group, where no noise peak is 
present. 

An example for the recognition of a significant noise component: supposing that 
the fundamental frequency is 60 Hz, and in the signal there are significant peaks 
around 40, 60, 120, 180 and 300 Hz. In this example the significant noise component 
is at 40 Hz. The divisions are evaluated first with all the peaks, second with smaller 
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Table 2. An example for the recognition of a noise component. The harmonic signal has 
components at whole multiples of 60 Hz, while an extra peak at 40 Hz illustrates the significant 
noise component. When the noise component is skipped, the resulted fundamental frequency 
value differs from the others. That is the indicator of the noise component. 

Detected peaks (Hz) The best sequence of serial 
numbers after simple SSM 

The calculated value of the 
fundamental frequency (Hz) 

40, 60, 120, 180, 300 <2,3,6,9,15> 20 
60, 120, 180, 300 <1,2,3,5> 60 
40, 120, 180, 300 <2,6,9,15> 20 
40, 60, 180, 300 <2,3,9,15> 20 
40, 60, 120, 300 <2,3,6,15> 20 
40, 60, 120, 180 <2,3,6,9> 20 

 
 

groups of the peaks. See Table 2 how the modified SSM algorithm detects a noise 
component. 

However the recognition of a noise component needs more SSM divisions, the 
modified algorithm is able to select the extraordinary peak from the significant peaks 
detected in the smoothed spectrum. 

3   Comparison 

To test the accuracy of the Smoothed Spectrum Method, harmonic signals were 
generated randomly and several fundamental frequency detection algorithms were 
applied and their results were compared. 

There were constant values, as the sampling frequency (Fs=44100 Hz) and the 
length of the signal (N=2048 points), which resulted a B=21.53 Hz frequency 
resolution in the FFT spectrum. The fundamental frequency of the generated test 
signals were integers between 200 and 800 Hz. The amplitudes of the frequency 
components were randomly generated in each case; a maximum of 10 subharmonics 
were present. 

In the comparison, besides the Smoothed Spectrum Method (SSM) the 
Autocorrelation Function (XCOR) and Regular FFT (RFFT) algorithms were 
applied. The Autocorrelation Function is a special type of the cross-correlation 
function, which is a typical method for F0 detection e.g. in speech recognition [1, 4]. 
The Regular FFT algorithms collectively use the resolution of the FFT spectrum; such 
algorithms are the local maximum detection in the spectrum within a predetermined 
frequency interval, and the Harmonic Product Spectrum method [2]. 

For each test signal the value of the fundamental frequency was determined by all 
of the algorithms mentioned above, and the differences between the exact F0 and the 
detected F0 values were calculated. After this, the mean value of the absolute 
differences and the standard deviation of the differences were obtained. The following 
table (Table 3) shows the accuracy of the compared methods. 
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Table 3. Comparison between the accuracy of F0 detection algorithms. IDEAL: in ideal case; 
SSM: by the Smoothed Spectrum Method; XCOR: by the Autocorrelation Function; and RFFT: 
by Regular FFT algorithms. 

 Difference between the  
original and the detected  

values on the average (Hz) 

Standard deviation of the  
difference between the original  

and the detected values (Hz) 
IDEAL 0.0000 0.0000 
SSM 0.6427 0.7617 

XCOR 1.6717 2.2149 
RFFT 5.3852 6.2251 

 
 
As it is shown by Table 3 after the ideal case the Smoothed Spectrum Method 

provides the least detection error. The Autocorrelation Function also has a better error 
band than what a Regular FFT algorithm could reach. 

Note that in case of regular FFT algorithms, a uniform distribution is expected for 
the detection difference between 0 and B/2=10.7666 Hz, which has an average value 
at 5.3833 Hz. 

4   Discussion and Conclusion 

A novel algorithm for fundamental frequency detection of the infant cry was 
introduced in this study. However the Smoothed Spectrum Method was developed to 
detect the fundamental frequency of crying signals, its conceptions are relevant for 
several voice signals, as speech, singing, and musical instruments. 

In summary, the algorithm of the Smoothed Spectrum Method is the following: 

• Smooth the input spectrum by a chosen kernel function in a chosen bandwidth; 
• Detect the local maxima in the smoothed spectrum within a chosen frequency 

range; 
• Generate possible sequences of serial numbers for the detected peaks; 
• Divide the peaks with these sequences and calculate the standard deviation of the 

resulted ratios; 
• Choose the smallest standard deviation to find the exact sequence of serial numbers 

and to calculate the fundamental frequency. 

A further advantage of the SSM is that additional information of the analyzed 
signal can be given to improve the performance of the method. Users can give: 

• The type of the kernel function and the bandwidth of smoothing; 
• The interval of the local maximum detection in the smoothed spectrum; 
• Rules and limitations for generating sequences of serial numbers for the division; 
• Rules for detecting and skipping noise-peaks from the division. 

For exactness the Smoothed Spectrum Method is a promising algorithm for 
fundamental frequency detection of voice signals. The modified algorithm of the SSM 
is able to recognize and eliminate the significant noise components in the signal. The 
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disadvantage of the SSM might be the calculation time, because it contains numerous 
divisions. 
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Abstract. This paper examines the application of Shifted Delta Cepstral (SDC) 
features in biometric speaker verification and evaluates its robustness to chan-
nel/handset mismatch due by telephone handset variability. SDC features were 
reported to produce superior performance to delta features in cepstral feature 
based Language Identification systems. The result of the experiment reflects 
superior performance of SDC features regarding to delta features in biometric 
speaker verification using speech samples from Ahumada Spanish database.  

Keywords: biometrics, speaker verification, cepstral features, shifted delta cep-
stral features, channel mismatch. 

1   Introduction 

Existing methods of user authentication can be grouped into three classes: possessions 
(something that you have: a key, an identification card, etc); knowledge (something 
that you know: a password, a PIN, etc) and biometrics [1]. Biometrics is the science 
of identifying or verifying the identity of a person based on physiological characteris-
tics (something that you are: fingerprints or face) or behavioural characteristics de-
pendent on physical characteristics (something that you produce: handwritten signa-
ture or speech).  

Early user authentication was based on possessions and knowledge, but problems 
associated with these methods, restrict their use. The most important drawbacks of 
these methods are: possessions can be lost, stolen, shared or easily duplicated; knowl-
edge can be shared, easy to guess, forgotten, and both, knowledge and possessions 
can be shared or stolen [1]. Consequently it is easy to deny that a given person carried 
out an action, because only the possessions or knowledge are checked, and these are 
only loosely coupled to the person’s identity. Biometrics provides a solution to these 
problems by truly verifying the identity of the individual. 

As a biometric user authentication method, speech is a behavioural characteristic 
that is not considered threatening or intrusive by users to provide. The goal of speaker 
recognition is to extract, characterize, and recognize the information in the speech 
signal conveying speaker identity [2]. Telephony is the main modality of biometric 
speaker recognition, since it is a domain with ubiquitous existing hardware and 
doesn’t need for special transducers to be installed.  
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Current automatic speaker recognition systems face significant challenges caused 
by adverse acoustic conditions as telephone band limitation and channel and handset 
variability. Degradation in the performance of speaker recognition systems due to 
channel mismatch has been one of the main challenges to actual deployment of 
speaker recognition technologies. Several techniques have been proposed to address 
this problem, new speech features that are less sensitive to channel effects can be 
extracted [3], the effect of mismatches can be reduced via cepstral normalization [4, 
5], the speaker models can be transformed to compensate for the mismatches [6, 7], 
and rescoring techniques can be used to normalize the speaker scores and reduce the 
channel and handset effects [8]. 

This paper introduces the application of a new set of dynamic cepstral features in 
speaker recognition: Shifted Delta Cepstral (SDC) features, and evaluates its perform-
ance in front of channel/handset mismatch, typical in remote applications. SDC  
features were recently reported to produce superior performance to delta features in 
cepstral feature based Language identification [9, 10]. 

SDC features are obtained by concatenating the delta-cepstral computed across 
multiple frames of speech. As a combination of dynamic cepstral features, SDC fea-
tures contain useful information about speaker identity. 

Nevertheless, in our knowledge, this is the first attempt on using SDC features for 
speaker recognition. This evaluation was performed using telephone speech samples 
of Ahumada Spanish database [11].    

2   Biometric Speaker Verification 

Voice is a combination of physiological and behavioral characteristics. The features 
of an individual’s voice are based on invariant physiological characteristics, as the 
shape and size of the vocal and nasal tract, mouth and lips, used in the synthesis of the 
sound. Nevertheless, this technology is usually classified as a behavioural too, be-
cause the way the individual speaks, their attitude and their cultural background 
strongly influences the resulting speech signal. This behavioral characteristics of a 
person’s speech (and some physiological, too) changes over time due to age, health 
conditions, emotional state, environmental reasons, etc. 

Biometric application of speaker recognition is identified as speaker verification 
because a user claims to be a client, and the system verifies this claim. Many applica-
tions of speaker verification systems are accessed remotely by users and the channel 
involved in the communication is the telephone. Because the handset and the line can 
vary from call to call, there is often an acoustic mismatch between the speech col-
lected to train the speaker models and the speech produced by the speakers at run time 
or during testing. Such mismatches are known to severely affect the performance of 
the system. However, in a remote banking application, the voice-based technique 
combined with other user’s authentication method, may be preferred since it can be 
integrated without additional effort, into the existing telephone system. 

Speaker verification systems are categorized depending on the freedom in what is 
spoken; this taxonomy based on increasingly complex tasks also corresponds to the 
sophistication of algorithms used and the progress in the art over time [1]: 
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Fixed text: The speaker says a predetermined word or phrase which was recorded at 
enrolment. The word may be secret, so it acts as a password, but once recorded a 
replay attack is easy, and re-enrolment is necessary to change the password.  

Text prompted: The speaker is prompted by the system to say a specific expression. 
The system matches the utterance with known text to determine the user. For this, 
enrolment is usually longer, but the prompted text can be changed at will. Expression 
as digit strings are more vulnerable than phrases, to splicing-based replay attacks.  

Text independent: The system processes any utterance of the speaker. Here the 
speech can be task-oriented, so it is hard to acquire speech that also accomplishes the 
impostor’s goal.  

Combined with utterance verification [2]:  The system presents to the user, a series 
of randomized phrases to repeat, and verifies not only the voice matches but also the 
required phrases match. Additionally, it is possible to use forms of automatic knowl-
edge verification where a person is verified by comparing the content of his/her spo-
ken utterance against the stored information in his/her personal profile. 

This paper evaluates the performance of SDC features as a new set of dynamic fea-
tures for speaker recognition, in a remote speaker verification system using text 
prompted task using short phrases.  

3   Shifted Delta Cepstral Features 

First proposed by Bielefeld [12], features called Shifted Delta Cepstral (SDC) are 
obtained by concatenating the delta-cepstral computed across multiple frames of 
speech information, spanning multiple frames into the feature vector. Recently, the 
proposal of using SDC features of a speech signal for language identification with 
GMM [13] and SVM [14] classifiers, has produced promising results. In our knowl-
edge, this is the first attempt to using SDC for speaker recognition. 

Cepstral features contain information about speech formants structure, and delta-
cepstral about its dynamics. SDC features evaluate speech spectral dynamics better, 
because can reflect the movement and position of vocal and nasal articulators if its 
time interval of analysis is adjusted to include spectral transitions between phonemes 
and syllables. In each cepstral frame, SDC computation obtains the dynamic of the 
articulatory movement in next frames, as a pseudo-prosodic feature vector [10] com-
puted without having to explicitly find or model the prosodic structure of the speech 
signal. Is known that the prosodic structure of the speech conveys important informa-
tion about the identity of the speaker [15].  

The computation of SDC features is a relatively simple procedure [16] and is illus-
trated in Fig. 1. First, a cepstral feature vector is computed in each frame. A shifting 
delta operation is applied to frame based cepstral feature vectors in order to create the 
new combined feature vectors for each frame. 

The SDC features are specified by a set of 4 parameters, (N, d, P, k) where: 

• N: number of c cepstral coefficients in each cepstral vector. 
• d: time advance and delay for the delta computation. 
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Fig. 1. Computation of SDC feature vector for each cepstral coefficient 

• P:  time shift between consecutive blocks. 
• k: number of blocks whose delta coefficients are concatenated to form the SDC 

vector 
For the case shown in Fig 1 the final SDC vector at frame time t is given by the 

concatenation from i =  0  to  k-1 of all the  Δc (t + iP), where:   

( ) ( ) ( )diPtcdiPtciPtc −+−++=+Δ  (1) 

Accordingly, kN parameters are used for each SDC feature as compared with 2N 
for conventional cepstral and delta-cepstral feature vectors. In language identification 
applications, SDC features substitute cepstral and delta-cepstral features, using differ-
ent combinations of (N, d, P, k). 

More recently, a modified version of SDC was reported to have even higher per-
formance in LID [9], calculated using a recurrent expression: 
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4   Front End Processing 

Cepstral coefficients derived from a Mel-frequency filter bank (MFCC) have been 
used to represent the short time speech spectra. All speech material used for training 
and testing is pre-emphasized with a factor of 0.97, and an energy based silence re-
moval scheme is used. A Hamming window with 30ms window length and 30% shift 
is applied to each frame and a short time spectrum is obtained applying a FFT. The 
magnitude spectrum is processed using a 30 Mel-spaced filter bank, the log-energy 
filter outputs are then cosine transformed to obtain 12 Mel-frequency cepstral coeffi-
cients, the zero cepstral coefficient is not used. Therefore, each window of signal 
frame is represented by a 12-dimensional MFCC features vector.  

In order to reduce the influence of mismatch between training and testing acoustic 
conditions, a robust feature normalization method for reducing noise and/or channel 
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effects has been proposed, the Cepstral Mean and Variance Normalization (CMVN) 
[16]. Assuming Gaussian distributions, CMVN normalizes each component of the 
feature vector according to the expression: 

[ ] [ ]
i

ii
i

nc
nc

σ
μ−=ˆ  (3) 

where [ ]nci   and [ ]ncî  are the i-th component of the feature vectors at time frame n 

before and after normalization, respectively, and iμ  and iσ  are the mean and vari-

ance estimates of the sequence [ ]nci . 

Delta-cepstral features are obtained for each MFCC features vector, using d=2 as 
time advance and delay for the delta computation, at last, and using equation 2, SDC 
features are obtained.  

Three set of features are used in each one of the experiments: 

1. 12 MFCC  + 12 delta , dimension 24 (baseline) : MFCC + D 
2. 12 MFCC  + SDC (12,2,2,2), dimension 36: MFCC + SDC 
3. 12 SDC(12,2,2,2), dimension 24: SDC 

5   Database and Experiments 

Ahumada [11] is a speech database of 103 Spanish male speakers, designed and ac-
quired under controlled conditions for speaker characterization and identification. 
Each speaker in the database expresses six types of utterances in seven microphone 
sessions and three telephone sessions, with a time interval between them. 

In order to evaluate the performance of SDC features in front to handset and chan-
nel mismatch in a remote biometric speaker verification using text prompted phrases, 
ten phonologically and syllabically balanced phrases in the three telephone sessions of 
Ahumada were used, the ten phrases are the same for each one of the 103 speakers. 
The performance of the verification is evaluated using a 64 mixtures GMM/UBM 
classifier, trained and tested with a subset of 50 speakers of the database; other subset 
of 50 speakers is used to train the 256 mixtures UBM. 

In our approach, the behaviour of a text prompted biometric speaker verification is 
simulated, so the system is trained with ten phrases of each one of 50 speakers in 
session T1 and tested with each one of the phrases of the same speakers in session T2 
and T3. All 50 speakers were used as targets for their corresponding models and as 
impostors for the rest of models, so we obtain 500 target and 4500 impostors in each 
test. 

In each telephone sessions, conventional telephone line was used. In session T1, 
every speaker was calling from the same telephone, in an internal-routing call. In 
session T2, all speakers were requested to make a call from their own home tele-
phone, trying to search a quiet environment, so the channel and handset characteris-
tics are unknown. In session T3, a local call was made from a quiet room, using 9 
randomly selected standard handsets, for each handset, three characteristics are 
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known: microphone sensibility and frequency response, and the ranges of signal to 
noise ratio in its associated channel.  

Each speaker in session T3 uses one of the 9 handset, then the speakers can be 
grouped in two classes, for each one of the three measured characteristics: 

• Low sensibility (< 1 mV/P) and high sensibility (> 2.5 mV/P) of the microphone. 
• Low attenuation level (< 20 dB) and high attenuation level (> 35 dB) of the mi-

crophone band pass frequency response. 
• Low and high signal to noise ratio mean (threshold: 35 dB) in the channel. 

    The experiments are organized in the following manner: 

1. Evaluation of channel mismatch  in uncontrolled conditions: trained with ses-
sion T1 and tested  with session T2 

2. Evaluation of channel mismatch due to handset sensibility: trained with 
speakers in session T1 and tested with speakers in session T3, grouped in two 
classes, low sensibility (24 speakers) and high sensibility (26 speakers). 

3. Evaluation of  channel mismatch due to handset frequency response: trained 
with speakers in session T1 and tested with speakers in session T3, grouped in  
two classes, low attenuation level (30 speakers)and high attenuation level (20 
speakers). 

4. Evaluation of channel mismatch due to signal to noise ratio in the channel: 
trained with speakers in session T1 and tested with speakers in session T3, 
grouped in two classes, low (19 speakers) and high (31 speakers) signal to 
noise ratio mean. 

6   Results  

Evaluation of the results was performed using detection error tradeoff (DET) plot 
[17].Two indicators are used to evaluate the performance: Equal error rate (EER) and 
minimum of Detection Cost Function (DCF), defined as:  

DCF= (CFR * PFR * PTarget) + (CFA * PFA * PNonTarget)   (4) 

Where 
CFR (cost of a missed detection) = 10 
CFA (cost of a false alarm) = 1 
PTarget (a priori probability of a target speaker) = 0.01 
PNonTarget (a priori probability of a non-target speaker) = 0.99 
PFR   (Miss probability) 
PFA   (False alarm probability) 
The results of the four experiments are reflected in DET plots in figures 2 to 5 and 

Tables 1 to 4 with values of indicators EER and DCF. 
DET plot of experiment 1 reflects a similar behaviour of SDC and MFCC features 

in front of  channel mismatch  where the channel and handset characteristics are un-
known. Table 1 shows that MFCC + SDC features have better performance that 
MFCC +D features (better EER and DCF). 
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Fig. 2. Experiment 1: T1 train, T2 test 
Fig. 3. Experiment 2: T1 train, T3 test black : 

high sensibility , green: low sensibility 

 

Fig. 4. Experiment 3: T1 train, T3 test   black 
: low attenuation,  green: high attenuation  

Fig. 5. Experiment 4: T1 train, T3 test  
black : high s/n,  green: low s/n 

Table 1. Experiment 1: channel mismatch in uncontrolled conditions 

Features EER DCF 
MFCC +D 0.107 0.048 
MFCC+SDC 0.102 0.047 
SDC 0.111 0.051 

 
DET plot of experiment 2 reflects a better behaviour of both sets of SDC features 

compared to MFCC features in front of  mismatch due to handset sensibility . Table 2 
shows that both sets of SDC features have lower EER and similar DCF that MFCC 
+D features in both sensibility conditions. 
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Table 2. Experiment 2: channel mismatch due to handset sensibility 

 Low sensibility High sensibility 
Features EER DCF EER DCF 

MFCC +D 0.154 0.057 0.091 0.045 
MFCC+SDC 0.119 0.057 0.080 0.049 

SDC 0.132 0.061 0.084 0.046 

Table 3. Experiment 3: channel mismatch due to handset frequency response 

 High attenuation Low attenuation 
Features EER DCF EER DCF 

MFCC +D 0.154 0.062 0.049 0.031 
MFCC+SDC 0.12 0.064 0.055 0.037 

SDC 0.133 0.067 0.05 0.032 
 
DET plot of experiment 3 reflects a better behaviour of both sets of SDC features 

compared to MFCC features in front of  high attenuation of handset frequency 
response. Table 3 shows that both sets of SDC features have lower EER and similar 
DCF that MFCC +D features in  this condition. 

Table 4. Experiment 4: channel mismatch due to signal to noise ratio in the channel 

 Low s/n High s/n 
Features EER DCF EER DCF 

MFCC +D 0.157 0.070 0.058 0.032 
MFCC+SDC 0.121 0.072 0.063 0.039 

SDC 0.127 0.074 0.061 0.035 
 
DET plot of experiment 4 reflects a better behaviour of both sets of SDC features 

compared to MFCC features in front of  low signal to noise ratio in the channel.  
Table 3 shows that both sets of SDC features have lower EER and similar DCF that 
MFCC +D features in  this condition. 

Results of experiments 2, 3 and 4 reflect a better performance of both sets of SDC 
features in front of the worst mismatch condition: low handset sensibility, high 
attenuation in handset frequency response and low signal to noise ratio in the handset 
associated channel. Table 5 reflects the relative reduction in % of EER, in each ex-
periment for both sets of SDC features respect to MFCC features. 

Table 5. Reduction in % of EER for both sets of SDC features respect to MFCC features 

Mismatch condition MFCC 
+ SDC 

SDC 

low handset sensibility 22 14 
high handset attenuation 22 13 
low s/n ratio in channel 23 19 



104 J.R. Calvo, R. Fernández, and G. Hernández 

7   Conclusions and Future Work 

The result of the experiments reflect a superior performance of SDC features respect 
to MFCC + delta features in speaker verification using speech samples from  tele-
phone sessions of Ahumada Spanish database. 

• Test in uncontrolled conditions (experiment 1) reflects similar behavior of SDC 
and MFCC features. 

• Tests under controlled conditions (experiments 2, 3 and 4) reflect a better behav-
iour of SDC respect to MFCC features in front of worst mismatch conditions. 

• In these experiments, the EER reduction due to utilization of SDC features in-
stead of MFCC features is superior to 22% using MFCC+SDC, and superior to 
13% using SDC alone.  

• Test under controlled conditions (experiment 2,3 and 4) reflect a similar behavior 
of SDC respect to MFCC features in front to better mismatch conditions, in ex-
periment 2, SDC features have a better behavior than MFCC features in both  
mismatch conditions. 

    Shifted Delta Cepstral features must be considered as a new alternative of cepstral 
features, in order to reduce the effects of channel/handset mismatch in remote speaker 
verification performance. SDC features appended to MFCC features show the best 
results, but SDC features instead of MFCC +delta features show a good result too, 
maintaining the same feature dimensionality (24 dimensions). 
    Future work will be in the direction of evaluate the influence of SDC parameters  d 
and P. SDC features must be assumed as a pseudo-prosodic vector, and these parame-
ters are related with its time-dynamic behaviour. Also, H-Norm score normalization 
must be applied.  
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Abstract. This paper presents a series of language identification (LID)
experiments for Spanish, Basque and English. Spanish and Basque are
both official languages in the Basque Country, a region located in north-
ern Spain. We focused our research on some techniques based on phone
decoding. We propose the use of phone segments as decoding units in-
stead of just phones. We describe a simple procedure to obtain a set of
phone segments that typically appear in the languages involved. In com-
parison with similar techniques that do not rely on phone segments, the
choice of these segments as decoding units yields a remarkable improve-
ment in terms of LID accuracy: from 93.02% using phones to 98.32%
using phone segments, when applied to trilingual read speech.

Keywords: language identification, phone decoding.

1 Introduction

Language identification is a classical pattern recognition problem that is strongly
tied to multilingual speech recognition and dialogue systems.

It has been addressed in the past using a variety of tactics; for instance, those
exploiting prosodic cues [1] as rhythm or intonation. Nevertheless, most of them
are based on speech recognition approximations: phone decoding approaches
[2,3], which rely on phone sequences; Gaussian mixture models [2,4] treating
only the acoustic; or large-vocabulary continuous-speech recognition approaches
[5], which operate based on full lexical sequences. A thorough analysis discussing
the current state of the LID systems can be consulted here [6].

The typical LID system is based on a phone recognition followed by n-gram
language modelling (PRLM) or, most commonly, parallel PRLM (PPRLM) [2].
In these cases, some monolingual phoneme decoders are used to tokenise the in-
put sequence, which is then analysed by phonotactic models to predict the spoken
language. Although most of these systems use language-dependent phonemes,
there are some recent works dealing with unified phoneme sets [7].
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The ultimate goal of any LID system is to identify the language being used by
an unknown speaker. In some evaluations, like those proposed by the National
Institute of Standards and Technology (NIST), 12 or 7 languages are included in
those LID systems [6]. However, for multilingual communities high performances
are required, but only for the involved languages, typically two or three.

The aim of this work is to build a LID system for Spanish, Basque and English.
Basque is a minority language, but it is the joint official language, along with
Spanish, for the 2.5 million inhabitants of the Basque Country (northern Spain).

The main differences between Spanish and Basque fall on the lexical units
and the morphosyntactic structure. From a phonetic point of view, the set of
Basque phones does not differ much from the Spanish one. The two languages
share the same vowels (only five). Nevertheless, Basque includes larger sets of
fricative and affricate sounds. English, on the other hand, is phonetically very
different from Spanish and Basque and includes a larger number of vowel and
semi-vowel sounds. In addition, the way to get the phonetic transcription is also
different. Whereas for Spanish and Basque the phonetic transcription can be
generated by means of a simple set of rules, English transcriptions require the
use of a dictionary. Thus, we could presume that English could be discriminated
from Spanish and Basque using only acoustic features. However, as suggested in
[?], a Basque-Spanish discrimination would require information about how the
phones combine in each language.

In this paper, we propose the use of phone segments as the decoding units of
a LID system. The fundamental idea is to take advantage of sequences of sounds
that appear frequently in each language, with the purpose of improving the phone
decoding rates and in order to better identify the language being used. To obtain
those segments, we propose a simple technique based on N-gram statistics.

In this sense, the remainder of the paper is organised as follows: Section 2
presents the procedure applied to obtain the phone segments, Section 3 describes
each of the LID methods used in this study, Section 4 centres on the main features
of the speech databases used in the experiments, Section 5 presents the results
obtained for the different LID approaches, comparing LID accuracy values for
both phones and phone segments, and finally Section 6 discusses the conclusions
of the present work.

2 Obtaining the Phone Segments

We propose the use of phone segments as decoding units, with the idea of getting
a better representation of each language. To obtain those segments, a simple
procedure based on N-gram statistics was used. This process is summarised in
the following points:

– Given the training corpus, identify and extract all the 2-grams, 3-grams, . . .,
n-grams available. In our case, we chose n = 5, because it takes into account
the most common prefixes, suffixes and words appearing in the languages.

– Sort them in order of decreasing values of n (5-grams before 4-grams, 4-
grams before 3-grams, ...), decreasing number of appearances and according
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to inverse alphabetical order. This final condition appears naturally when
sorting the n-grams in decreasing number of appearances using the sort
GNU/Linux command.

– Get the subset of phone n-grams that, while keeping the original order,
satisfies a minimum number of occurrences. The idea is to replace all the ap-
pearances of a sequence of phones corresponding to a n-gram with a single
unit obtained joining all the phones forming that n-gram. Some of the phone
n-grams might not appear after this process or might not satisfy the min-
imum number of occurrences, due to the fact that they could be included
in previous phone n-grams. The first of those n-grams not satisfying the
minimum number of occurrences is then removed. The process of relabelling
and search for not valid n-grams is iteratively repeated until getting the final
subset.

3 Language Identification Methods

In order to perform the proposed language identification task, some phone de-
coding methods were implemented. These techniques rely on acoustic phonetic
decoders, which find the best sequence of decoding units depending on the input
speech signal. In our case, these decoders are based on the Viterbi algorithm,
which, given an input, finds the most likely path through a probabilistic network.
When applied to an acoustic phonetic decoder, this network consists of a com-
bination of all the acoustic models, usually being them Hidden Markov Models
(HMMs) associated to a previously defined set of phonetic units of the language.
In this sense, given a set of acoustic models Λl associated to a language l and
an input sequence of acoustic observations O = o1 . . . oT , a Viterbi decoder finds
the best sequence of states Q = q1 . . . qT through the network of models. This
can be expressed in a mathematical manner as follows:

Q = argmax
q1 . . . qT

P (q1 . . . qT , o1 . . . oT |Λl) (1)

The path Q determines a sequence of decoding units X l = X1 . . . XN , based on
the previously defined set of HMMs associated to language l. In this work, we
decided to evaluate phones against phone segments as decoding units to assess
their impact upon the accuracy of the associated LID system.

The following subsections describe one by one the different techniques that
were explored.

3.1 Phone Decoder Scored by a Phonotactic Model (PD+PhM)

For every language being studied, an unconstrained acoustic decoder is ap-
plied, resulting in a sequence of decoding units for each language. A language-
dependent phonotactic model is then employed to assign a score to each of the
sequences for that language. The language of the utterance is selected to be that
with the highest score; that is, the language for which
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L = arg max
l

P (X l|Phl) (2)

where Phl represents the phonotactic model for language l. Typically, these
phonotactic models are modelled using n-grams. Thus

P (X l|Phl) =
N∏

i=1

P (X l
i |X l

i−1, . . . , X
l
i−n+1, Phl) (3)

A block diagram of the PD+PhM technique is shown in Figure 1. This tech-
nique could be considered as a simplification or variation of the commonly used
PPRLM technique.

BasqueBasque

SpanishSpanish

EnglishEnglish

phone decoder phonotactic model

PB

PS

PE

Fig. 1. PD+PhM block diagram. PB stands for Basque probability, PS stands for
Spanish probability and PE stands for English probability.

3.2 Phone Decoder Constrained by a Phonotactic Model (PDPhM)

Also known as PPR in the literature [2], this method performs a phone decoding
for each language being studied, but constrained by a phonotactic model. That is,
in this case, the phonotactic model is used during the decoding process, whereas
in the PD+PhM was applied after the decoding.

This way, the decoder is similar to a speech recognition system. In this case,
our goal is to find a sequence of phonetic units instead of a sequence of uttered
words. In this context, the best sequence of decoding units X l that fits the input
sequence of acoustic observations O is found applying the Bayes’ rule

P (X l|O) = P (O|X l)P (X l)/P (O) (4)

where P (O|X l) is the probability of the acoustic sequence for that particular
phonetic string; this value is computed using the HMMs. P (X l) is the a priori
probability of the sequence of decoding units, and is computed using a phono-
tactic model. In the same way, P (O) represents the a priori probability of the
acoustic sequence. Typically this parameter is not computed, since it has a con-
stant value across all the possible lexical strings obtained from a given decoding.
However, when comparing the output of different recognisers, this probability
should also be considered. In this work, we approximated that term using an
acoustic normalisation (referred as an acoustic confidence measure), in a similar
way as that presented in [9]. This technique reported improvements in other
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LID applications [10]. The acoustic likelihood of each of the decoded units is
normalised by the likelihood of the best unconstrained phone sequence in that
period of time.

Finally, the hypothesised language is assumed to be the one for which

L = arg max
l

P (X l|O) (5)

A block diagram of the PDPhM technique is shown in Figure 2.

Basque

Spanish

English
phone decoder

Basque likelihood

Spanish likelihood

English likelihood
& phonotactic model

Fig. 2. PDPhM block diagram

4 Speech Corpora

The experiments reported in this paper were performed using several speech
databases.

The training of the basic acoustic models for Basque was carried out by means
of a phonetically balanced database called EHU-DB16 [11]. This database con-
tains 9394 sentences uttered by 25 speakers and includes around 340000 phones.
The resulting models reported phone recognition accuracies of around 74% for
this database.

For Spanish, we resorted to the phonetic corpus of the Albayzin database [12],
consisting of 4800 sentences uttered by 29 speakers, resulting in around 187000
phones and also being phonetically balanced. The resulting models reported
phone recognition accuracies of around 75% for this database.

For English, we chose the Wall Street Journal 1 database (the SI200 corpus, to
be precise). It is composed of more than 30000 sentences uttered by 200 speakers,
resulting in more than 66 hours of speech material with around 2 million phones.
The resulting models reported phone recognition accuracies of around 58% for
this database.

The evaluation set consisted of a weather forecast database recorded initially
for Spanish and Basque [13] and later for American English. This database con-
tains 500 different sentences uttered by 36 speakers for every language. The 500
sentences were divided into blocks of 50 sentences each and every speaker uttered
the sentences corresponding to one of these blocks. A total of 1800 utterances
were recorded for each language. Table 1 summarises the main features of this
database. Although there are some spontaneous effects, the data sources are read
speech.
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Table 1. Main features of the evaluation database

Spanish Basque English

Speakers 36

Utterances 1800

Length (hours) 3 3.5 3.4

Average Length
of an 6 7 6.8

utterance (sec)

It is important to mention that not only do the three languages share the
same task and recording conditions, but also two of the languages (Spanish and
Basque) share the same speakers. This reduces possible effects benefiting one
language from another. Another important aspect to take into account is that
silences were not removed from the utterances.

5 Experimental Results

5.1 Experimental Conditions

Within the frame of the experiments that were carried out, the databases were
parametrised into 12 Mel-frequency cepstral coefficients with delta and acceler-
ation coefficients, energy and delta-energy. Thus, four acoustic representations
were defined. The length of the analysis window was 25 ms and the window shift,
10 ms.

Each phone-like unit was modelled by a typical left-to-right non-skipping self-
loop three-state HMM, with 32 Gaussian mixtures per state and acoustic rep-
resentation. The phone sets were based on the phonemes of each language. A
total of 35 context-independent phone-like units were used for Basque, 24 for
Spanish and 25 for English. This reduced set of 25 units for English is based
on the 39 phone set used by the Carnegie Mellon University (CMU) in its pro-
nouncing dictionary. A previous study was carried out to improve the acoustic
decoding accuracies over the Timit database; in this sense, and based on the con-
fusion matrices, some units were merged, leading to the definitive set of units
being used. The phone recognition accuracies improved from 59.97 to 65.46. For
the segments, the acoustic models were build concatenating the models of their
constituent phones.

For the above-mentioned LID techniques, a phonotactic model is also required
to score the recognised phone sequence. Moreover, in order to adhere to the
phonetic constraints, a k-testable in the strict sense (k-TTS) model [14] was
used throughout these experiments. The k-TTS are similar to variable-length n-
grams, with k and n having approximately the same meaning. Different k values
(ranging from k = 3 to k = 5) were evaluated.

These phonotactic models were trained using several text corpora available at
our disposal. For Basque and Spanish, these corpora were phonetically
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transcribed based on rules developed by experts, whereas for English the tran-
scription was done using a dictionary; more precisely, the CMU pronouncing
Dictionary (version 0.6).

5.2 Results of the Experiments

First of all, for every language we needed to obtain a basic set of decoding
units consisting in phone segments. For this purpose, the process described in
Section 2 was applied. As the training material for each language is different, the
minimum number of appearances required to each language was also different.
The idea was to get, initially, a similar number of segments for all three languages
(around 500). For Spanish and Basque this minimum threshold value was set to
1000 whereas for English it was set to 4000.

Once applied the process described in Section 2, the number of decoding units
was 172 for Spanish, 321 for Basque and 221 for English. These units were also
used to train the phonotactic models for the segment-based approaches. That is,
the phonotactic models of the segment-based approaches are n-grams of phone
segments.

In order to carry out Spanish-Basque-English identification experiments, a
complete utterance was presented to the LID system, implementing the various
approaches described in Section 3.

As mentioned above, one of the aims of the present work was to asses the
performance of phone-segment based systems versus those systems that rely on
phones only. The results, in terms of LID accuracy, are summarised in Table 2.
It is worth pointing out that for both techniques a decoded-string length nor-
malisation was used, since this approximation yielded the best results. Only the
PDPhM technique has been applied when using the phone segments (denoted as
PDPhM(s) in Table 2). The reasons for this is that the advantage provided by
the phone segments is that they help the uttered language while making worse
the other languages due to poorer acoustic scores. When using the PD+PhM
technique, as the system is not constrained, it is not forced to go through the
segments and no real advantage is achieved.

As can be seen, the use of phone segments as decoding units results in a
great improvement. Using better phonotactic models, phone segments can yield
accuracies of nearly 99%.

One of the differences between the PD+PhM and the PDPhM technique
is that the PDPhM includes acoustic scores. Looking at the results for the
PD+PhM and PDPhM using phones, we can see that Spanish and Basque ben-
efit form these acoustic scores, whereas English does not. This can be explained
by the fact that the Spanish and Basque HMMs are better estimated because
they are trained using more reliable phonetic transcriptions. For example, for the
PDPhM technique and k = 4, the phone recognition rates are around 85% for
Spanish and Basque, but only around 60% for English. Note also that whereas
the Spanish and Basque transcriptions are completely reliable, the English ones
are not. However, for k = 5, PD+PhM performs worse than PDPhM. Further
investigation should carried out to explain this fact.
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Table 2. LID accuracies values for several phonotactic models and according to the
techniques described in Section 3

k Spanish Basque English Overall

P
D

+
P

h
M 3 91.71 91.83 80.72 88.09

4 91.16 94.17 80.72 88.68

5 92.94 95.17 73.22 87.11

P
D

P
h
M 3 99.83 93.72 47.61 80.39

4 99.89 98.17 63.39 87.15

5 99.89 98.94 80.22 93.02

P
D

P
h
M

(s
) 3 99.89 99.61 87.83 95.78

4 99.89 99.67 95.33 98.30

5 99.89 99.56 95.50 98.32

The use of phone segments improve the results for all the languages. Even if
it looks that restricting the decoder is worse for English, when using the phone
segments a significant improvement is achieved. For Spanish and Basque the
benefits are small, mainly because of the already high accuracies. As commented
before, when using the segments, the acoustic scores assigned to the non-uttered
languages are much more small, due to they are being forced by the phonotactic
model through some predefined paths. However, the uttered language benefits
from more reliable paths assigned by the phonotactic model. For example, for
k = 4 the phone recognition rates in this case are around 95% for Basque and
Spanish and around 75% for English. The results clearly demostrate that the
phone segments are useful for languages with poorer acoustic modelling. In this
work that happened for English, but for other tasks or languages, that could
happen for other languages. This also reinforces the idea of exploring a unified
phoneme set to overcome similar problems.

6 Concluding Remarks

In this paper we have presented a simple procedure to gather some phone-
segments. The use of these phone segments as decoding units resulted in a no-
table improvement of the associated LID system in terms of accuracy: comparing
the results to those obtained using only phones as decoding units, the accuracy
increased from 93.02 to 98.32%. The effect of these phone segments is especially
significant for English, allowing a remarkable increase in the accuracies. The
phone segments help modellize better the language being uttered and worse the
others, providing the improvement in the LID accuracies. The phone segments
are useful for English in this work, but under different conditions, they could be
helpful for others as well.
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Abstract. The aim of this paper is to present a new algorithm to compute the 
distance between n-dimensional histograms. There are some domains such as 
pattern recognition or image retrieval that use the distance between histograms 
at some step of the classification process. For this reason, some algorithms that 
find the distance between histograms have been proposed in the literature. 
Nevertheless, most of this research has been applied on one-dimensional 
histograms due to the computation of a distance between multi-dimensional 
histograms is very expensive. In this paper, we present an efficient method to 
compare multi-dimensional histograms in O(z2), where z represents the number 
of bins. 

Keywords: Multi-dimensional Histogram distance, Earth Movers Distance, 
Second-Order Random Graphs. 

1   Introduction 

Finding the distance or similarity between histograms is an important issue in image 
classification or image retrieval since a histogram represents the frequency of the 
values of the pixels among the images. For this reason, a number of measures of 
similarity between histograms have been proposed and used in computer vision and 
pattern recognition. Moreover, if the position of the pixels is unimportant while 
considering the distance measure, we can compute the distance between images in an 
efficient way by computing the distance between their histograms. 

Histograms can also be used in structural pattern recognition. For instance, 
Serratosa defined the Function-Described Graphs [12], which is structure that 
represents a cluster of Attributed Graphs in which there is a probability density 
function in each node of the structure described by a histogram. Thus, to compare 
clusters (that is, to compare Function-Described Graphs), it is needed a distance 
between histograms to compare each of their nodes. Latter, the same authors defined 
the Second-Order Random Graphs [13]. This structure represents also a cluster of 
Attributed Graphs but there is much amount of information since there is a joint 
probability in each node described by a 2-dimensional histogram. The computational 
cost of comparing graphs is exponential respect the number of nodes in the worst 
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case. There are some efficient algorithms that obtain sub-optimal distances in 
polynomial cost respect the number of nodes. For this reason, it is important to reduce 
the time consuming comparing their nodes. 

Most of the distance measures presented in the literature (there is an interesting 
compilation in [1]) consider the overlap or intersection between two histograms as a 
function of the distance value but they do not take into account the similarity on the 
non-overlapping parts of the two histograms. For this reason, Rubner presented in [2] 
a new definition of the distance measure between n-dimensional histograms that 
overcomes this non-overlapping parts problem. It was called Earth Mover’s Distance 
and it is defined as the minimum amount of work that must be performed to transform 
one histogram into the other one by moving distribution mass. 

Often, for specific set measurements, only a small fraction of the bins in a 
histogram contain significant information, that is, most of the bins are empty. This is 
more frequent when the dimensions of the histograms increase. In that cases, the 
methods that use histograms as fixed-sized structures obtain poor efficiency. In the 
algorithm depicted by Rubner [2] to find the Earth Mover’s Distance the empty-bins 
where not explicitly considered. They used the simplex algorithm [3] to compute the 
distance measure and the method presented in [4] to search a good initialisation. The 
computational cost of the simplex iteration is O(z’2), where z’ is the number of non-
empty bins. The main drawback of this method is that the number of iterations is not 
bounded. Moreover, the initialisation cost is O(z’3). 

To reduce the computational cost, Cha presented in [1] three algorithms to obtain 
the Earth Mover’s Distance between one-dimensional histograms when the type of 
measurements where nominal, ordinal and modulo in O(z), O(z) and O(z2) 
respectively, being z the number of levels or bins. 

Finally, Serratosa reduced more the computational cost of comparing one-
dimensional histograms in [5]. They presented three new algorithms to compute the 
Earth Mover’s Distance between one-dimensional histograms when the type of 
measurements where nominal, ordinal and modulo. The computational cost were 
reduced to O(z’), O(z’) and O(z’2) respectively, being z’ the number of non-empty 
bins. 

It was presented in [6] an algorithm to compute the distance between histograms 
that the input was a built histogram (obtained from the target image) and another 
image. Then, it was not necessary to build the histogram of the image of the database 
to compute the distance between histograms. 

Really few have been done to compare n-dimensional histograms except in [2]. 
The main drawback of the method presented in [2] is the computational cost. The 
following papers, make use of colour histograms, although the distance between them 
is not the main object of the work. One of the earliest papers is  [7]. In that paper, the 
intersection of a pair of colour histograms (three dimensional histogram) was used to 
obtain a similarity measure between images. More recently, some kernel functions 
were defined in [8] based on the RGB and HSV histograms. In that paper, the number 
of bins per each dimension of the histograms had to be reduced to 16 due to run time 
an space requirements. And in [9], a support vector machine was used to classify 
images based on colour histograms. The bins of their histograms were not fixed-
structures but they were variable depending on the density of the pixels. Finally, in 
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[10], a tree structure was defined for image retrieval. In each node of the tree, only the 
average of the histograms were stored. 

In this paper, we present an efficient algorithm to compute the distance between n-
dimensional histograms with a computational cost of O(z2). Our algorithm does not 
depend on the type of measurements (nominal, ordinal or modulo). In the next 
section, we define the histograms and types of values. In section 3, we give the 
definitions of distances between histograms and between sets and in section 4 we 
show the algorithm to compute the distance between histograms. In section 5, we 
show a separability-class function based on the histogram distance. In sections 6 and 
7 we show the experimental validation of our algorithm and the conclusions. 

2   Sets and Histograms 

Let x be a measurement which can have one of z values contained in the set 
X={x1,...xz}. Each value can be represented in a T-dimensional vector as xi=(xi

1, 
xi

2,…,xi
T). Consider a set of n elements whose measurements of the value of x are 

A={a1,...an} where at∈X being at=(at
1, at

2,…,at
T). 

The histogram of the set A along measurement x is H(x,A) which is an ordered list 
consisting of the number of occurrences of the discrete values of x among the at. As 
we are interested only in comparing the histograms and sets of the same measurement 
x, H(A) will be used instead of H(x,A) without loss of generality. If Hi(A), 1≤i≤z, 
denotes the number of elements of A that have value xi, then H(A)=[H1(A), …,Hz(A)] 
where  

                              ( ) ∑
=

=
n

t

A
iti CAH

1

                         (1)  

and the individual costs are defined as 
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The elements Hi(A) are usually called bins of the histogram. Note that z is the 
number of bins of the histogram. In a T-dimensional histogram with m values per each 
dimension, the number of bins is z=mT. Therefore, 1≤i≤ mT. 

In this paper, the sets are images. For this reason and for the rest of the paper, the 
bins of the histograms represent the null or natural numbers, at

i ∈ {0 , N}. 
The distance between histograms presented in this paper is used as a fast method 

for comparing images and image retrieval. The most used colour representations are 
base on the R,G,B or H,S,I descriptors. The hue parameter (H) is a modulo-type 
measurement (measurement values are ordered but form a ring due to the arithmetic 
modulo operation) and the other parameters are ordinal-type measurements. 

Corresponding to these types of measurements mentioned before, we define a 
measure of difference between two measurement levels a=(a1, a2,…,aT) ∈ X and 
b=(b1, b2,…,bT) ∈ X as follows: 

( ) ∑
=

=
T

j

Sbad
1

2,    where    (3)  
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This measure satisfy the following necessary properties of a metric. Since they are 
straightforward facts, we omit the proofs. The proof of the triangle inequality for the 
modulo distance is depicted in [1] for the one-dimensional case (T=1). 

3   Distance Definitions 

In this section we present the distance between sets D(A,B) and the distance between 
their histograms D(H(A),H(B)). It was demonstrated in [11] that both satisfy the 
necessary properties of a metric and that the distance values are the same, D(A,B) = 
D(H(A),H(B)). This is an important result since we present an algorithm that obtains a 
good approximation of D(H(A),H(B)) with a quadratic computational cost respect the 
number of bins of the histogram z. Moreover, in most of the applications, z is much 
smaller than n. Another advantage is that the time consuming of the comparison is 
constant and does not depend on each set. 

Given two sets of n elements, A and B, the distance measure is considered as the 
problem of finding the minimum difference of pair assignments between both sets. 
That is, to determine the best one-to-one assignment f (bijective function) between the 
sets such that the sum of all the differences between two individual elements in a pair 
ai∈A and bf(i)∈B is minimised. See [11] for more information. 
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The distance between histograms that our algorithm computes was presented in 
[11]. It is a generalisation of the Earth Mover’s Distance presented in [2]. Intuitively, 
given two T-dimensional histograms, one can be seen as a mass of earth properly 
spread in space, the other as a collection of holes in that same space. Then, the 
distance measure is the least amount of work needed to fill the holes with earth. Here, 
a unit of work corresponds to transporting a unit of earth by a unit of ground distance.  

More formally, given two histograms H(A) and H(B), where measurements can 
have one of z values contained in the set X={x1,...xz}, the distance between the 
histograms D(H(A),H(B)) is defined as follows, 
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            (6)  

The flow between the bins of both histograms is represented by gf(i,j), that is, the 
mass of earth that is moved as one unit from the bin i to the bin j. The product 
d(xi,xj)gf(i,j) represents the work needed to transport this mass of earth. Notice that z =  
mT, being m the number of bins per each dimension and T the number of dimensions. 

In [11], we determine the flow between bins gf(i,j), as a function of the one-to-one 
assignment f between the sets A and B used to compute the distance D(A,B) as 
follows, 
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were the costs C are given in (2). 
It was demonstrated in [11] that with this new definition, we obtain two 

advantages; First, there is a relation between distances D(A,B) and D(H(A),H(B)) 
through their definition. Second, the constraints arbitrarily imposed to the flow 
between bins in [2], were converted in deducted properties that make possible to 
naturally match the distance between histograms to the transportation problem. 

4   Algorithm 

In this section, we depict an efficient algorithm used to compute the distance between 
histograms based on a solution to the well-known transportation problem [3]. Suppose 
that several suppliers, each with a given amount of goods, are required to supply 
several consumers, each with a given limited capacity. For each pair of suppliers and 
consumers, the cost of transporting a single unit of goods is given. The transportation 
problem is then to find a least-expensive flow of goods from the suppliers to the 
consumers that satisfies the consumer’s demand. Our distance between histograms 
can be naturally cast as a transportation problem by defining one histogram as the 
supplier and the other one as the consumer. The cost of transporting a single unit of 
goods is set to the distance between the bin of one histogram and the bin of the other 
one, d(xi,xj). Intuitively, the solution of the transportation problem, gf(i,j), is then the 
minimum amount of “work” required to transform one histogram to the other one 
subjected to the constraints defined by the properties of the flow gf(i,j) (see [11]). 

The computational cost of the transportation problem is exponential, respect the 
number of suppliers and consumers, that is, the number of bins of the histograms, z. 
Fortunately, efficient algorithms are available. One of the most common solutions is 
the simplex algorithm [3], which is an iterative method that the cost of one simplex 
iteration is O(z2). The main drawback is that the number of iterations is not bounded 
and that this method needs a good initial solution. The Russell method [4] is the most 
common method used to find the first solution with a computational cost of O(z3). 

In this paper, we present an efficient and not iterative algorithm (figure 1) with a 
computational cost of O(z2). 

Given a pair of bins from both histograms, i and j, our algorithm finds the amount 
of goods that can be transported, gf(i,j), and computes the cost of this transportation, 

 
Algorithm Histogram-Distance (H(A),H(B)) 
i,j = first() 
while n > 0 // n: the number of elements of both sets 
 gf(i,j) = min (Hi(A) , Hj(B)) 
 Hi(A) = Hi(A) - gf(i,j) 
 Hj(B) = Hj(B) - gf(i,j) 
 n = n - gf(i,j) 
 D = D + gf(i,j) * d(xi,xj) 
 i,j = next (i ,j) 
Return D  //distance between histograms 

Fig. 1. Algorithm that computes the distance between n-dimensional histograms 
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gf(i,j)*d(xi,xj). The algorithm finishes when all the goods have been transported, that 
is, all the elements of the sets, n, have been considered. In each iteration, a pair of 
bins is selected by the function next, in a given order.  

4.1   The Next Function  

Given a pair i,j (i and j are a supplier and a consumer, respectively), the first and next 
function returns the first and next pairs of supplier and consumer to be explored, 
respectively. The first pair of supplier-consumer and the order generated by the next 
function only depends on the dimensionality of histogram and the number of bins but 
not on the values of the histograms, for this reason, first and next can be computed a 
priori. 

The order of the pairs i,j is set by decrementing an energy function E as follows, 
         i’,j’ = next (i,j)  iff  E(i’,j’) ≤ E(i,j)              (8)  

where E is defined as, 
         ( ) ( ) ( )jDeviationPathiDeviationPathjiE ij __, +=             (9)  

The Path_Deviationj(i) is the difference between the maximum cost from the bin i 
to any bin of the histogram and the real cost from this bin to the bin j, 

         ( ) ( ) ( )jiij xxdxdistiDeviationPath ,max__ −=             (10)  

It represents the worst case that the good can be sent (supplier) or received 
(consumer) respect the best case. Note that several pairs i,j can obtain the same 
energy value. In those cases, the order between them is set arbitrarily. 

4.2   Computational Cost  

Each step of the loop of the algorithm has a constant computational cost. The next 
function is implement as an array that for each pair i,j, returns the next pair i’,j’. For 
this reason, the worst computational cost of our algorithm only depends on the 
number of iterations. The algorithm finishes when all the goods, n, have been 
transported and so, the worst case would be in the case that this is achieved at the last 
transportation from i,j, to i’,j’. The number of possible transportations is z2. 

5   Experimental Validation 

To verify the performance of the proposed method, we have conducted an experiment 
on the WANG database. The WANG database is a subset of the Corel database of 
1000 images, which were selected manually to form 10 classes of 100 images each. 
The images are subdivided into 10 classes (e.g. Africa, beach, ruins, food) such that it 
can be assumed that a user wants to find the other images from a class if the query is 
from one of these 10 classes. 

Our test database was composed by 200 images from the WANG database (20 
images for each class). In Figure 2 we can see one representative image of each class. 
The query set was composed by 20 images (2 images for each class) and the database 
set was composed by the other 180 images (18 images for each class). We decide that 
the query image belongs to a class using the 5 nearest neighbours criteria.  
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Fig. 2. Ten images of WANG database. One of each class. 

Given the depth of the pixels, the number of colours of the image, z, and also the 
computational cost of our algorithm is obtained. Besides, we can deduct the number 
of bins per dimension, m, depending on the dimensionality of the histogram. Table 1 
shows in the last three columns the possible combinations of dimensionality and 
number of bins per dimension. For instance, a 1D-histogram with 64 bins has the 
same computational cost, 4096, than a 2D-histogram with 8 bins per dimension and a 
3D-histogram with 4 bins per dimension. The empty cells in the table are the ones that 
m is not a natural number. 

Table 1. Relation between the number of bins per dimension, m, and the number of colours, z, 
and cost, O(z2) in 1D, 2D and 3D histograms 

depth z Cost m (1D)m (2D)m (3D)

of pixels (#colours) O(z2) (z=m1) (z=m2) (z=m3)

1 2 4 2   

2 4 16 4 2  

3 8 64 8  2 

4 16 256 16 4  

5 32 1024 32   

6 64 4096 64 8 4 

7 128 16384 128   

8 256 65536 256 16  

9 512 262144 512  8 

10 1024 1048576 1024 32  

11 2048 4194304 2048   

12 4096 16777216 4096 64 16 
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Figure 3 shows the recognition ratio respect the number of colours in 6 different 
cases. In the first two cases, we have considered only the hue and the luminance. In 
the other two, we have considered the hue and saturation and also hue and luminance. 
In the last two cases we have considered the red, green and blue channels and also the 
hue, saturation and luminance channels. The values in figure 3 that correspond to 
empty cells in table 1 have been interpolated. 

 

Fig. 3. Recognition ratio respect the number of colours 

As we could imagine, when the number of colours increases (that is, the depth of 
the pixels), also increases the recognition ratio. But also, given a number of colours, it 
is worth to increase the dimensionality, since the recognition increases with the same 
computational cost. We can see also, that in this experiments, the Luminance has poor 
information, since H(1D) has better results than L(1D) and  HS(2D) has better results 
than HSL(3D) or HL(2D).   

6   Conclusions and Future Work 

We have presented a new distance between multi-dimensional histograms and an 
efficient algorithm to compute this distance. Our method is useful for comparing  
multi-dimensional histograms of any type of measurements. The theoretical 
computational cost is O(z2), being z the number of bins. From the application point of 
view, we have seen that it is worth increasing the number of dimensions and reducing 
the number of bins per each dimension than reducing the number of dimensions in 
despite of increasing the bins per dimension, with a similar computational cost. 

Although the computational cost of O(z2) can be considered low, in a real 
application, the run time can be too long when the number of images to be compared 
and the number of colours per image is high. For this reason, we are thinking about 
applying the signature structure presented in [6] due to the fact that in this structure, 
the empty bins are not explicitly considered. We will have the advantage that the 
number of iterations would be reduced (in the cases that the number of colours is 
high, that is, the histograms are sparse). But we will have the drawback that the 
computational cost of the function next would not be constant. We leave as a future 
work the implementation of this new method. From a theoretical point of view, we 
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will propose the new algorithm. And from the practical point of view, we have to 
show if the reduction of the number of iterations compensates the increase of the 
computational cost of the function next.  
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Abstract. We propose a fuzzy logic recursive scheme using directional 
processing for motion detection and spatial-temporal filtering to decrease 
Gaussian noise corruption. We introduce novel ideas that employ the 
differences between images. That permits to connect these using angle 
deviations in them obtaining several parameters and applying them in the robust 
algorithm that is capable to detect and differentiate movement in background of 
noise in any way.  

Keywords: Fuzzy Logic, Video Sequences, Motion, Vectors. 

1   Introduction 

We consider motion detection in terms of robust change detection in pixels in an 
image [1]. The proposed method will not be able to distinguish completely changes 
due to motion from other changes due to rapidly camera zoom in the video sequence 
analyzed and movement in the scene present. Despite these problems, there exist 
numerous applications for this kind of motion detection [1-3]. Some techniques detect 
pixel-by-pixel changes, one of these is to simply substract the color levels of 
successive frames, and to conclude that the pixel has changed when the outcome 
exceeds a present threshold. We have developed the mathematical operations to 
consume less time, that can be achieved dividing different operations depending of 
parameters obtained using fuzzy logic membership functions. This permits to realize 
robust noise suppression and movement detection. 

The main idea is to use adaptive threshold that is adapted to the local pixel 
statistics and the spatial pixel context. The proposed method is insensitive to noise; it 
is locally adaptive to spatially varying noise levels. The presented method uses data 
incoming during long period of time, and the threshold is adapted to both temporal 
and spatial information [1-3]. 

The noise should not be labelled as motion, it is not so important if not every single 
changed pixel of an object is detected. However, in the case of motion detection 
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during the denoising processing, where the detection result is used for temporal 
filtering, undetected changes in an object can lead to motion blur, but in the same time 
if some noise is labelled as motion it is no so critical. Using fuzzy logic techniques we 
aim at defining a confidence measure with respect to the existence of motion, to be 
called hereafter “motion confidence” [2].  

2   Framework Method 

We expose the framework of the algorithm for simultaneous motion detection and 
video denoising. The proposed algorithm is shown in Figure 1 where a noisy frame is 
processed firstly with fuzzy vector motion detection using the current and previous 
processed frames using a 5x5 window to provide the reference values for following 
processing stages. 

Fuzzy Motion Detection 
updating   and 

Resursive Temporal 
Filter

Spatial 
Filtering

Noisy Input 
frame

Spatio-temporal 
denoised image 

 

Fig. 1. Proposed denoising scheme using spatial-temporal techniques 

2.1   Spatial Filtering 

We use the Gaussian estimation algorithm to suppress the noise in the first stage, 
Step 1) IF 255Fc ≤θ  THEN Histogram is increased in “1”, else is “0”. 

Step 2) Calculate probabilities for each one of these samples: 

∑=
i

iHistogramS ; SHistogramp ii = , i=0,…,255. (1) 

Step 3) Obtain standard deviation Tσ ′ : 
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1  is the mean value with 

i=1,…,N, N=9, and cy  is the central pixel. 

Additionally, each plane of the video sequence in RGB space format is processed 
in an independent way, and the parameters bluegreenredT σσσσ ′=′=′=′  are adapted along 

the video sequence. The angle deviations of central pixel with respect to others in a 
3x3 window are found [4]: ( ),i i cA x xθ = , ; 1, , 1;ix i N= −…  where i central pixel≠ .  
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Now, we detect uniform regions using the mean weighted filtering algorithm [5]: 
Step 1) IF 2 4 7 5 1AND AND ANDθ θ θ θ τ≥  THEN, 
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Step 2) IF  6 3 1 8 1AND AND ANDθ θ θ θ τ≥  THEN, Use Eq. (3). 

Such the algorithm can realize the smoothing fast for Gaussian noise. Besides, the 
central pixel has the highest weight with “1” value to preserve some characteristics in 
uniform regions. We use a 5x5 processing window to estimate the standard deviation 
in same way as in the Gaussian estimation algorithm to obtain the values Tσ , and 

then we compare with the values Tσ′ , in order to have a similarity value for each 

sample and to have a criterion in perform more or less filtering charge. From 
experiments we obtained that if TT σσ <′ , then TT σσ ′= , otherwise TT σσ =′ , where T 

can be the component red, green, or blue, that permits to improve temporal filtering 
algorithm. It has been defined experimentally by optimum PSNR and MAE criteria a 
threshold 

TTTh σ2=  to preserve some important characteristics in a spatially filtered 

frame that will be used in temporal algorithm.  

2.2   Fuzzy Vector Gradient Values  

For each pixel (i,j) of the any component image, we use a 3x3 neighbourhood 
window. Each neighbour of (i,j) corresponds to one direction as illustrates Table 1. 

If AT denotes one component input image, the definition of the gradient can be 
defined as ( ) ( ) ( ) ( )jiAljkiAjiA TTTlk ,,,, −++=∇  with { }, 1,0,1k l ∈ − , where the 

pair (k,l) corresponds to one of the eight directions that are called the basic gradient 
values [2], and (i,j) is called the centre of the gradient. To avoid blurred in presence of 
an edge, it is used not only one basic gradient for each direction but also two related 
gradient values. The three gradient values for a certain direction are finally connected 
together into one single value called fuzzy gradient value. Now we take pixels as the 
vectors to have directional process, taking the same procedure as in gradient values. 
By this way we obtain Fuzzy vector gradient values that are defined by the Fuzzy Rule 
1. The two related gradient values in the same direction and the basic gradients are 
determined by the centres making a right-angle with the direction of the 
corresponding basic gradient [3].  

Table 1. Involved gradient values to calculate the fuzzy vector gradient 

Direction Basic Gradient Involved Related Gradients Involved 
NW (i, j), (i-1, j-1)  (i+1, j-1), (i-1, j+1)  
N (i, j), (i-1, j)  (i, j-1), (i, j+1)  

NE (i, j), (i-1, j+1)  (i-1, j-1), (i+1, j+1)  
E (i, j), (i, j-1)  (i-1, j), (i+1, j)  

SE (i, j), (i, j+1)  (i-1, j+1), (i+1, j-1)  
S (i, j), (i+1, j-1)  (i, j-1), (i, j+1)  

SW (i, j), (i+1, j)  (i-1, j-1), (i+1, j+1)  
W (i, j), (i+1, j+1)  (i-1, j) (i+1, j)  
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We can use the threshold 
TTh  obtained before and use the gradient values to have 

fuzzy vector gradient values in such a form, 

Step 1) IF βγβ sT<∇  THEN calculate angle deviation in the direction γβα  and 

obtain weight value, 

( )re γβα
γβα +=′ 12  (4) 

Step 2) Obtain basic vector gradient using membership function. 
Step 3) IF βγβ sT>∇  THEN 0BIGμ = . 

where 
Ts ThT =β , WSWSSEENENNW ,,,,,,,=γ  [6], bluegreered ,,=β  

and 1=r  channels in video sequence, the membership function is ( )max ,BIG x yμ =  

with γβα′=x  and ( )1 / sy Tγβ β= − ∇ . To obtain the angle deviation in each plane of 

the image we select to work in the angle formed by vectors in only one coordinate [4]: 

( ) ( )( )( )2
2

2
2

2
2

2
1

2
1

2
1212121

1cos bgrbgrbbggrr ++++++= −α  (5) 

where, ( )111 ,, bgr  and ( )222 ,, bgr  are coordinates of two pixels.   

Last algorithm describes the process necessary to determine the basic vector 
gradient value. To determine related vector gradients the procedure is the following: 
Step 1) IF βγβ sRR T<∇ )2,1(  THEN compute angle deviation in direction ( )2,1 RRγβα  

and obtain weight value [5], 

( )
( )( )rRR

RRe 2,1122,1
γβα

γβα +=′  (6) 

Step 2) Obtain related vector gradient using membership function. 
Step 3) IF ( ) βγβ sRR T>∇ 2,1  THEN 0BIGμ = . 

where ( )2,1 RR  are the related vector gradients and the membership function is 

( )max ,BIG x yμ =  with ( )2,1 RRx γβα′=  and ( )( )1, 21 / sR Ry T βγβ= − ∇ .  

The fuzzy rule 1 is defined as, 

Fuzzy Rule 1: defining the fuzzy vector gradient value ( ),F A i jγβ β∇ , 

IF γβ∇  is BIG AND 1Rγβ∇  is BIG, OR γβ∇  is BIG AND 2Rγβ∇  is BIG, THEN 

( ),F A i jγβ β∇  is BIG, 

where γβ∇  is the basic vector gradient value, and 1Rγβ∇  and 2Rγβ∇  are two related 

vector gradient values for the direction γ  in the channel β . 

If basic and related vector gradients are close enough, in absolute difference 
(absolute norm) or in a vector criterion in angle distances (that is why we change 
gradient values to vector gradient values), this proposal is developed to obtain robust 
parameters, giving a better understanding of the nature of pixels in a window 
processing. Under this criterion we will have values denoted as fuzzy vector gradients 
that means nearby in pixels related, and they are helpful to suppress Gaussian noise 
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corruption presented on the sample. So, suppression is done by a weighted mean 
procedure where nearby close to 1 have the bigger weights in the algorithm due to the 
proposed procedure used in membership function. This suppresses noise more 
efficiently but smoothes details and edges, in our complete algorithm the temporal 
filtering are designed. The reference values where found modifying their parameters 
according to optimum PSNR and MAE values. Spatial algorithm presents good 
results in noise suppression compared with some algorithms found in literature [1-3]. 

The weighted mean algorithm is implemented by: 
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(7) 

where mean value is found doing multiplication of fuzzy vector gradient value with 
his respective pixel in that direction γ . 

2.3   Temporal Filtering Algorithm 

In here, we explain the proposed fuzzy logic recursive motion detector with temporal 
algorithm. The reference values of spatial filter presented above are used in the final 
stage in the proposed filter. Only the past and present frames are used to avoid 
dramatic charge in memory requirements and time processing. The fuzzy logic rules 
are used in each plane of two frames in independent way.  

We found angle deviations and gradient values by the central pixel in present frame 
respect to his neighbours in past frame, all done by each plane of the frames by using 
3x3 window, 

( )B
c

A
ii xxA ,1 =θ ; 9;,,1;1 ==−=∇ NNixx B

c
A
ii …  (8) 

where xc is central pixel in present frame, and A and B are past and present frames by 
planes, respectively. 

Let us define the membership functions used to obtain a value that indicates the 
degree, in which a certain gradient value or vector value matches the predicate. If a 
gradient or a vector value have membership degree one, for the fuzzy set SMALL, it 
means that it is SMALL for sure in this fuzzy set. Selection of this kind of 
membership functions is follow from nature of pixels, where a movement is not a 
linear response, and a pixel has different meanings in each frame of video sequence. 

Membership functions SMALL and BIG for angles and gradients are given by [7]: 
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where 1.02 =Sσ , 10002 =Bσ , and M can be the angle θ or gradient ∇ , for angles 

med=0.2 and med=0.9 for membership functions SMALL and BIG, respectively, and 
for gradients med=60 and med=140 for SMALL and BIG functions, respectively. 

Now we use Fuzzy Rules 2, 3, 4, and 5 to acquire corresponding values: 

Fuzzy Rules 
Fuzzy Rule 2: Defining the fuzzy gradient-vector value ( ), ,SBB x y t . 

IF ( )tyx ,,1θ  is SMALL AND ( )tyx ,,2θ  is BIG AND ( )tyx ,,3θ  is BIG AND ( )tyx ,,1∇  

is SMALL AND ( )tyx ,,2∇  is BIG AND ( )tyx ,,3∇  is BIG THEN ( ), ,SBB x y t  is true. 

Fuzzy Rule 3: Defining the fuzzy gradient-vector value ( ), ,SSS x y t . 

IF ( )tyx ,,1θ  is SMALL AND ( )tyx ,,2θ  is SMALL AND ( )tyx ,,3θ  is SMALL AND 

( )tyx ,,1∇  is SMALL AND ( )tyx ,,2∇  is SMALL AND ( )tyx ,,3∇  is SMALL THEN 

( ), ,SSS x y t  is true. 

Fuzzy Rule 4: Defining the fuzzy gradient-vector value ( ), ,BBB x y t . 

IF ( )tyx ,,1θ  is BIG AND ( )tyx ,,2θ  is BIG AND ( )tyx ,,3θ  is BIG AND ( )tyx ,,1∇  is 

BIG AND ( )tyx ,,2∇  is BIG AND ( )tyx ,,3∇  is BIG THEN ( ), ,BBB x y t  is true. 

Fuzzy Rule 5: Defining the fuzzy gradient-vector value ( ), ,BBS x y t . 

IF ( )tyx ,,1θ  is BIG AND ( )tyx ,,2θ  is BIG AND ( )tyx ,,3θ  is SMALL AND ( )tyx ,,1∇  

is BIG AND ( )tyx ,,2∇  is BIG AND ( )tyx ,,3∇  is SMALL THEN ( ), ,BBS x y t  is true. 

where ( )tyxr ,,θ  are angles values, ( )tyxr ,,∇  are gradient values, and 3,2,1=r . 

From the result values of each fuzzy rule (2 – 5) we can compare these values in 
the following way: 

Algorithm to Fuzzy Rule SBB(x,y,t) 
If SBB(x,y,t) is the biggest value found from the others: 
Step 1) IF {( SBB(x,y,t) > SSS(x,y,t)) AND (SBB(x,y,t) > BBB(x,y,t)) AND (SBB(x,y,t) > 
BBS(x,y,t))} THEN Weighted mean using SBB(x,y,t), 

( ) ( )
( )

, , , ,

, ,

A

out

p x y t SBB x y t
y

SBB x y t

⋅
= ∑

∑  
Step 2) Update standard deviation for next frames to divide details from uniform regions. 

where SBB(x,y,t) value says that central pixel is in movement because of big 
differences in corresponding local and gradient values, ( )tyxp A ,,  represents each 

pixel in last frame that fulfil with the IF condition, and outy  is the output filtered in 

spatial and temporal filtering. 
To update standard deviation we need different values by each condition in our 

algorithm to characterize in an independent manner each region of the image. This is 
achieved using the expression above, and this expression is always used after by each 
Fuzzy Rule to update the parameter: 

( ) ( ) ( )' 1 'T TOTAL Tσ α σ α σ= ⋅ + − ⋅  (13) 

where , ,T red green blue= , 875.0== SBBαα , and ( ) / 3TOTAL red green blueσ σ σ σ= + + . 
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Algorithm to Fuzzy Rule SSS(x,y,t) 
If SSS(x,y,t) is the biggest value found from the others: 
Step 1) IF {( SSS(x,y,t) > SBB(x,y,t)) AND (SSS(x,y,t) > BBB(x,y,t)) AND (SSS(x,y,t) > 
BBS(x,y,t))} THEN Weighted mean using SSS(x,y,t), 

( ) ( ) ( )
( )

( , , 0.5 , , 0.5) , ,

, ,

A B

out

p x y t p x y t SSS x y t
y

SSS x y t

⋅ + ⋅ ⋅
= ∑

∑  
Step 2) Update standard deviation for next frames to divide details from uniform regions. 

where SSS(x,y,t) shows that a central pixel is not in movement because of small 
differences in all directions, that is why we use pixels in both frames, ( )tyxp A ,,  and 

( )tyxp B ,,  are the pixels in last and present frames that fulfil with the IF condition 

will be taken in count to calculate the weighted mean, 1255.0== SSSαα , and outy  is 

the filtered output. 

Algorithm to Fuzzy Rule BBB(x,y,t) 
If BBB(x,y,t) is the biggest value found from the others: 
Step 1) IF {( BBB(x,y,t) > SBB(x,y,t)) AND (BBB(x,y,t) > SSS(x,y,t)) AND (BBB(x,y,t) > 
BBS(x,y,t))} THEN motion-noise = true. 

( ) ( )
( )

, , , ,

, ,

A

out

p x y t SBB x y t
y

SBB x y t

⋅
= ∑

∑  
Step 2) If 1motion noise confidence− = . then 0.875α = , 

else if 0motion noise confidence− =  then 0.125α = , else 0.5α = . 

Step 3) ( ) ( ) ( )_ _1 _ _out central pixel central pixely pres fr past frα α= − ⋅ + ⋅  

The BBB(x,y,t) value shows that a central pixel and its neighbours do not have 
relation among the others and it is highly probably that this pixel is in motion or is a 
noisy pixel. To solve this problem, consider the nine fuzzy gradient-vector values 
obtained from BBB(x,y,t) and take the central value and at least three fuzzy 
neighbours values more to detect movement present in the sample. We use the Fuzzy 
Rule “R” to obtain motion-noise confidence the activation degree of “R” is just the 
conjunction of the four subfacts, which are combined by a chosen triangular norm 
defined as A AND B A B= ∗ . Computations are specifically the intersection of all 

possible combinations of BBB(x,y,t) and three different neighbouring BIG 
membership degrees BBB(x+1,y+1,t), ( ), 1,0,1i j = − , using triangular norm. This can 

give 56 different values, which should be summed using algebraic sum 
A OR B A B A B= + − ∗  of all instances to obtain the motion-noise confidence. 

Algorithm to Fuzzy Rule BBS(x,y,t) 
If BBS(x,y,t) is the biggest value found from the others: 
Step 1) IF {( BBS(x,y,t) > SBB(x,y,t)) AND (BBS(x,y,t) > SSS(x,y,t)) AND (BBS(x,y,t) > 
BBB(x,y,t))} THEN Weighted mean using BBS(x,y,t), 

( ) ( )( )
( )( )

, , 1 , ,

1 , ,

B

out

p x y t BBS x y t
y

BBS x y t

⋅ −
=

−
∑

∑  
Step 2) Update standard deviation for next frames to divide details from uniform regions. 
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where, ( ), ,Bp x y t  represents each pixel in present frame that fulfil with the IF 

condition, and outy  is the output filtered in spatial and temporal filtering. 

Now it can be applied the Spatial Filter to smooth the non-stationary noise left by 
the preceding temporal filter. This is done by a local spatial filter (see sec. 2.1), which 
adapts to image structures and noise levels present in the corresponding spatial 
neighbourhood.  

3   Experimental Results 

We present the performance of the proposed algorithm obtained by simulation of the 
proposed techniques. We use “Flowers” and “Miss America” video sequences to 
qualify effectiveness of this filter to provide a better understanding in the robustness 
of the fuzzy logic algorithm. Video sequences were contaminated with different 
Gaussian noise levels, from 0.00 to 0.05 in variance with zero mean. Frames are 
treated in an RGB color space with 24 bits, 8 bits for each channel, 176x144 pixels in 
a QCIF format with 100 frames.  

The proposed Fuzzy Directional Adaptive Recursive Temporal Filter (FDARTF) 
was compared with the Vector Median M-type K-nearest Neighbor Filter 
(VMMKNNF) [8,9] and the Generalized Vector Directional Filter (GVDF) [10,11]. 
Therefore, the proposed FDARTF filter was compared with other similar algorithms, 
the Fuzzy Motion Recursive Spatial-Temporal Filter (FMRSTF) [1-3], which works 
only with gradients, and with an adaptation to this algorithm using angle deviations 
Fuzzy Vectorial Motion Recursive Spatial-Temporal Filter (FVMRSTF), which was 
not published yet.  

Table 2 presents the performance results in terms of PSNR for the frame #100 of 
video sequence “Miss America” by use different filters. From the Table 1, one can see 
that the best results in PSNR criterion are given by the proposed filter. 

Table 2. PSNR values for a frame of video sequence “Miss America” by use different filters 

Gaussian Noise VMMKNNF GVDF FMRSTF FVMRSTF FDARTF 
0.001 32.500 33.981 33.765 33.758 33.459 
0.002 31.853 32.919 31.912 31.906 33.106 
0.003 31.163 32.134 30.860 30.849 32.777 
0.004 30.535 31.408 29.963 29.976 32.371 
0.005 29.917 30.794 29.283 29.292 31.829 
0.006 29.431 30.301 28.791 28.798 31.383 
0.007 28.903 29.816 28.332 28.337 30.875 
0.008 28.467 29.419 27.977 27.978 30.504 
0.009 28.043 29.060 27.538 27.550 30.085 
0.01 27.702 28.697 27.259 27.252 29.613 

0.015 26.152 27.151 26.062 26.078 28.104 
0.02 24.955 25.969 25.163 25.153 26.950 
0.03 23.339 24.256 23.859 23.871 25.701 
0.04 22.109 22.934 22.872 22.876 24.941 
0.05 21.276 21.930 21.986 21.986 24.231 
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Figure 2 shows the visual results in the frame #100 of video sequence “Flowers” 
by use in a) FMRSTF filter, in b) FVMRSTF filter, and in c) the proposed FDARTF 
filter. These images were recovered from Gaussian noise corrupted with variance 
0.01, 0.015, 0.02, and 0.03 from top to bottom of Figure 2. From this Figure, one can 
see that the restored frames by means of use the proposed filters appear to have a 
better subjective quality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        a)                                                 b)                                              c) 

Fig. 2. Visual results in the frame #100 of video sequence “Flowers”, a) Column of restored 
images by FMRSTF, b) Column of restored images by FVMRSTF, and c) Column of restored 
images by FDARTF. These images were recovered from Gaussian noise corrupted mages with 
variance 0.01, 0.015, 0.02, and 0.03 from top to bottom. 
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4   Conclusions 

In this paper a novel robust adaptive recursive scheme for fuzzy logic based motion 
detection is presented. The proposed algorithm works in a closed loop realizing the 
spatial and temporal filtering to improve suppression noise performance and 
preservation of fine details. It is demonstrated that taking into account, both robust 
characteristics (gradients and vectors) and connecting them together, we can realize a 
better algorithm, improving the techniques that use such characteristics in a separate 
form. In future, this idea will be extended to suppress impulsive random noise in 
multichannel filtering. 
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Abstract. It is well known that multimedia applications provide the
user with information through different methods (text, data, graphics,
images, audio, video, etc.) which must be digitally represented, transmit-
ted, stored and processed. Due to the fact that there is an increasing in-
terest in developing high definition systems, multimedia applications are
demanding, among others, higher bandwidth resources and more mem-
ory requirements in embedded devices. Therefore, it is essential to use
compression techniques to reduce the time requirements of these new
applications. This work aims to design an EZW-based image compres-
sion model, which makes use of the omission and restoration of wavelet
subbands, providing high compression rates, good quality standards and
low computation time requirements. The results obtained show that our
method satisfies these assumptions and can be integrated in new multi-
media devices.

Keywords: Image Compression, Wavelet Transform, EZW Algorithm.

1 Introduction

Over the last few years there has been a massive demand for multimedia applica-
tions in telecommunication systems and, nowadays, it is still required to develop
even more sophisticated methods who take into account new user requirements.
On the one hand, the standardization of digital photography and the enormous
growth in the number of the Internet users, has led to a considerable increase
in using the Internet for exchanging images, videos or music. Consequently, file
compression has become essential to reduce file size while maintaining maximum
quality for these multimedia applications.

In addition, in order to satisfy the needs of both telecommunications plat-
forms (reducing file size to optimize the use of the available bandwidth) and
users (obtaining as much quality as possible), new multimedia mobile phone ap-
plications, such as video conferencing or capturing and sending still images and
videos, need high performance compression schemes.

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 134–141, 2007.
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Furthermore, the JPEG still image compression, which is based in the Discrete
Cosine Transform (DCT), became a standard in 1992. In recent years, though,
there has been a considerable interest in methods based on the wavelet transform;
in fact, the new standard JPEG-2000 uses wavelet-based compression methods
[1], [2]. One of the most popular wavelet-based compression methods is known as
Embedded Zerotree Wavelet (EZW) algorithm [3], [4]. In recent years, there has
been an intensive research on improving this method and related ones, such as the
Set Partitioning In Hierarchical Trees coding (SPIHT) [5], the Embedded Block
Coding with Optimized Truncation (EBCOT) algorithm [6], and many others [7].
Although wavelet-based compression schemes have both better compression rates
and higher quality results than JPEG algorithm, there are still major difficulties
in achieving a high performance encoding system, since it is not easy to find an
efficient implementation of wavelet transform calculations, which require huge
memory sizes and consume many computer resources.

As a consequence, in this work we show a new EZW-based method, which
omits and, afterwards, restores different resolution subbands, as it is described
later. This algorithm provides better results than basic EZW: (i) considering
both subjective and objective global image quality; and (ii) considering the re-
strictions of computational cost and memory storage of multimedia devices. To
complete our task, in Sec. 2 we discuss EZW algorithm and the main advantages
and drawbacks that it possess. Then, in Sec. 3 the design of a robust improve-
ment for the EZW compression scheme is shown and, afterwards, Sec. 4 considers
some of the experiments completed to verify that our system behaves properly.
Finally, some important remarks to our work, as well as some future research
tasks, are summarized in Sec. 5.

2 Overview of Image Compression Algorithms

2.1 Fundamentals of Image Compression

A digital image often has a strong correlation between pixels and, therefore, these
contain redundant information. What is essential for efficient image coding is to
find a representation of the image free from correlation. Thus, research on image
compression is focused on reducing the number of bits necessary to represent an
image, eliminating spatial redundancy as much as possible.

Lossy methods are most often used for compressing multimedia files, since they
can produce a much smaller compressed file than any known lossless method,
while still meeting the requirements of the application. Compression occurs by
means of a linear transform to remove pixel correlation, then quantizing the
resulting transformed coefficients and encoding them with minimum entropy.

Due to the huge amount of data involved and image redundancy, JPEG uses
a DCT-based lossy compression scheme. The DCT itself does not carry out
any compression, but transforms input data so that redundancy can be easily
detected and eliminated. However, wavelet-based compression schemes usually
improve image quality for high compression rates. We shall discuss this issue in
the following section.
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2.2 Wavelet Transform-Based Algorithms

Wavelets have become very popular in last years for different signal processing
algorithms. Wavelets are functions defined in finite intervals with an average
value of zero [8]; hence, they divide data into different frequency components so
that each component can be studied with a resolution matched to its scale.

Wavelet-based image compression uses subband coding, in which an image is
split up in frequency bands by means of a filterbank. Thus, a subband coding is
a coding technique where the entry signal is filtered and separated in frequency
bands combining a high-pass filter and a low-pass filter, with an average value
of zero. There is a wide variety of wavelet functions to perform this transform,
such as the Daubechies family, the Haar transformn, and many others [9].

The decomposition of images using wavelets is applied in the horizontal and
vertical directions. An image is divided into subbands by passing it through a
low pass filter and a high pass filter, and both subbands are downsampled by 2.
This leads to a 2D signal getting broken down into four subbands, known as LL,
LH, HL, and HH. The same procedure can then be applied iteratively to the LL
subband, and repeated for as many levels of decomposition as desired.

Once the method is developed, the point is how to compress the wavelet-
transformed data from an image. One of the most popular methods to do this
is the Embedded Zerotree Wavelet Algorithm (EZW). Let us describe it next.

The EZW Algorithm. In 1993 Shapiro introduced a new algorithm known
as Embedded Zerotree Wavelet for the entropic coding of the transformed coeffi-
cients of an image using the 2D wavelet transform [3]. The EZW algorithm states
that if a coefficient at a certain level of decomposition is less than a significant
level or threshold T , then all the coefficients of the same orientation in the same
spatial location at lower scales of decomposition are not significant compared
with T .

For every pass, a threshold T is chosen, against which all the wavelet coeffi-
cients are measured. If a wavelet coefficient is larger than T it is encoded and
removed from the image, if it is smaller it is left for the next pass. When all the
wavelet coefficients have been visited, the threshold is lowered and the image is
scanned again to add more detail to the already encoded image. This process
is repeated until all the wavelet coefficients have been encoded completely or
another criterion has been satisfied.

The main advantage of this encoder is that it lets the encoding process end at
any stage and, for this reason, the required compression factor is easily reached
by trunking the encoding tree. Likewise, the decoder may also end the decoding
process at any stage and, thus, generate a first approximation of the image.
EZW encoding does not really compress data, but reorders wavelet coefficients
in such a way that they can be compressed very efficiently; as a result, it should
be followed by a symbol encoder, such as an arithmetic encoder. This algorithm
obtains excellent results and has been object of intensive research since it was
developed.
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2.3 Discussion

The JPEG compression scheme is simple and has a very good performance, but
since the input image is divided into 8 × 8 blocks, correlation across the block
boundaries is not eliminated. This results in noticeable “blocking artifacts”,
particularly at low bit-rates, as shown in Fig. 1 (a) and (c).

On the contrary, the EZW algorithm provides much better quality results at
low bit-rates, as shown in Fig. 1 (b) and (d), where a Daubechies 9/7 wavelet
function is used. This is due to the fact that the generated wavelet coefficient tree
encodes significant data much more efficiently than the DCT and, consequently,
it results in high quality compressed images.

(a) (b) (c) (d)

Fig. 1. EZW compression compared to JPEG: For 0.5 bpp: (a) JPEG; (b) EZW. For
0.25 bpp: (c) JPEG; (d) EZW

Nevertheless, it must be remarked that the time spent to efficiently com-
press/decompress image data with EZW are much higher that the ones used
for standard JPEG. For instance, the compression/decompression time for a
256 × 256 image is about 27.5 times faster for JPEG than for EZW -using a
Pentium M processor and a C++ environment- and, what is more, this fact
becomes even worse when image size increases.

To sum up, we can establish the main drawbacks of both systems. Firstly,
JPEG algorithm generates a significant loss of quality at low compression rates
and, on the other hand, EZW method requires a very high processing time,
which makes it difficult to be applied in a real-time condition. Therefore, these
two constraints are the initial step to develop a new approach that overcome
these problems. This issue is considered in the next section.

3 Omission and Restoration of Wavelet Subbands

As derived from the review of the main methods for image compression, our
research has focused on two different aspects: reducing the computation time of
wavelet-based methods while keeping as much quality as possible.

In order for the computation time to be decreased, our proposal is based on re-
ducing the image size so that the number of operations for checking descendants
in the EZW algorithm would be also reduced. Therefore, the method consists of:
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1. Carrying out an iteration of the wavelet transform on the input image.
2. Considering only the LL subband, making the rest of subbands equal to 0.
3. Compressing the LL subband using the EZW algorithm.

This method significantly reduces the processing time for compressing/de-
compressing an image, as it will be shown in Sec. 4. However, the problem is
that by eliminating the subbands, a pixel of the decompressed LL subband is
now transformed into a group of four pixels (its descendants) in the restored
image, which means quite a visible distortion.

Subsequently, the next step is to improve image quality. In order to minimize
distortion when recovering images, the eliminated subbands can be restored, thus
reducing the global error. The subband restoration process is carried out once
the LL subband has been decompressed, using the EZW algorithm; hence, each
4 × 4 block B, whose pixels are descendants of another pixel a in the previous
subband, will take the value V of their ancestor a. That is, V is the mean value of
the descendants of a in the original eliminated subband. As a result, our system
distributes the error uniformly so that it is unlikely to be perceptible by the
human eye.

As a result, our compression method is called Omission and Restoration of
Wavelet Subbands (ORWS), due to the fact that it removes high frequency
subbands before the compression and, afterwards, it restores them to minimize
distortion. Figs. 2 and 3 show how the ORWS algorithm works.

HL

HHLH

LL

HL

HHLH

HL

HHLH

LL HL

HHLH

LL

LL

Fig. 2. The subband restoration process

In the next section we shall analyze some different tests carried out to validate
our algorithm.
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Fig. 3. Block diagram of the ORWS algorithm

4 Experiments

Let us show now the results of some experiments completed for our method.
Thus, we will compare the ORWS algorithm with the EZW compression method,
and also with standard JPEG compression scheme. The tests have been per-
formed with a series of well-known images, and we found that the results ob-
tained with the ORWS compression scheme confirm the reduction in compression
time and the increase in image quality regarding JPEG and EZW algorithms.
For illustrations, the results for 512 × 512, 8-bit gray-level images “Barbara”
and “Lena” are shown in Figs. 4 and 5, respectively, using the Daubechies 9/7
wavelet.

Fig. 6 (a) shows the mean gain in the execution time of the ORWS algorithm
(compression/decompression) in relation to the EZW method, for all the images
in the database. Finally, Fig. 6 (b) compares the performance of ORWS, EZW
and JPEG methods by using the mean peak signal-to-noise ratio (PSNR, see
[10] for a definition of this ratio) for all the images in the database.

(a) (b) (c) (d)

Fig. 4. ORWS for Barbara: (a) Original; (b) 0.5 bpp; (c) 0.25 bpp; (d) 0.125 bpp
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(a) (b) (c) (d)

Fig. 5. ORWS for Lena: (a) Original; (b) 0.5 bpp; (c) 0.25 bpp; (d) 0.125 bpp
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Fig. 6. (a) Time gain of ORWS in relation to EZW; (b) Comparison of PSNR between
ORWS, EZW and JPEG

From these results, we must remark that ORWS can run even 30 times faster
than EZW (Fig. 6 (a)) and that it leads to higher quality compressed images
than EZW and JPEG (Fig. 6 (b)), as it has higher PSNR values. As a result, the
ORWS algorithm is a powerful tool for increasing both the computation time of
wavelet-based compression schemes and the image quality of EZW and standard
JPEG. As a conclusion, our method is a robust technique for compressing images
and, consequently, improves existing methods both visually (subjectively) and
objectively.

5 Conclusions

With the increasing use of multimedia technologies, image compression requires
higher performance as well as new features. From our research, it can be ex-
tracted that all the existing compression algorithms have limitations under cer-
tain conditions. In particular, JPEG generates low-quality images when high
compression rates are needed. On the other hand, EZW method has a very high
computation time, which makes it difficult to be included in real-time applica-
tions.
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In this work, the ORWS algorithm, which is based on the EZW compression
method, has been proposed. The experimentation shows that our technique is
fast, robust and provides high quality results. To summarize, the main advan-
tages of our algorithm are:

– It is easy to implement and computational costs are low, while keeping good
quality standards.

– It improves the quality of DCT-based image compression schemes, such as
JPEG, for high compression rates.

– It reduces the processing time of wavelet-based algorithms.

As a future work, we consider the extension of the algorithm to color image
compression. It would be also interesting to include other mathematical tools,
such as interpolation techniques, to increase the performance of the wavelet
subbands restoration process.
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Abstract. The main difficulty in the binary object classification field
lays in dealing with a high variability of symbol appearance. Rotation,
partial occlusions, elastic deformations, or intra-class and inter-class vari-
abilities are just a few problems. In this paper, we introduce a novel
object description for this type of symbols. The shape of the object is
aligned based on principal components to make the recognition invariant
to rotation and reflection. We propose the Blurred Shape Model (BSM)
to describe the binary objects. This descriptor encodes the probabil-
ity of appearance of the pixels that outline the object’s shape. Besides,
we present the use of this descriptor in a system to improve the BSM
performance and deal with binary objects multi-classification problems.
Adaboost is used to train the binary classifiers, learning the BSM fea-
tures that better split object classes. Then, the different binary problems
learned by the Adaboost are embedded in the Error Correcting Output
Codes framework (ECOC) to deal with the muti-class case. The method-
ology is evaluated in a wide set of object classes from the MPEG07
repository. Different state-of-the-art descriptors are compared, showing
the robustness and better performance of the proposed scheme when
classifying objects with high variability of appearance.

Keywords: Shape descriptors, Multi-class classification, Adaboost,
Error Correcting Output Codes.

1 Introduction

Shape recognition is one of the most popular areas of Pattern Recognition. Its
aim consists in solving the problem of modeling and recognizing objects from a
large set of classes. It is an extremely difficult task because of the high variability
of the object appearance: changes in the perspective and viewpoint, occlusions,
rigid and elastic deformations, and high intra-class an low inter-class variabil-
ities. Several applications focus on this type of problems, such as the analysis
of handwritten documents (e.g. analysis of old handwritten archive manuscripts
and sketching or calligraphic interfaces) [8]. A lot of effort has been made in the
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last decade to develop good symbol and shape recognition methods inspired in
either structural or statistical pattern recognition approaches. In general, two
major focus of interest can be stated: the definition of expressive and compact
shape descriptors, and the formulation of robust classification methods accord-
ing to such descriptors. Zhang [5] reviews the main techniques used in this field,
mainly classified in contour-based descriptors (i.e. polygonal approximations,
chain code, shape signature, and curvature scale space) and region-based de-
scriptors (i.e. Zernique moments, ART, and Legendre moments [9]). A good
shape descriptor should guarantee inter-class compactness and intra-class sepa-
rability, even when describing noisy and distorted shapes. It has been shown that
some object descriptors, robust to some affine transformations and occlusions in
some type of objects, are not enough effective in front of elastic deformations.
Thus, the research for other descriptors that address the problem of elastic and
non-uniform distortions, as well as variations in object styles and blurring, is
still required.

Concerning the categorization of objects’ classes, many classification tech-
niques have been researched based on both statistical or structural approaches.
Elastic deformations of shapes modeled by probabilities tend to be learnt us-
ing statistical classifiers. One of the most well-known techniques in this domain
is the Adaboost algorithm due to its ability for feature selection and its high
performance when applied to binary problems [2]. Although many real prob-
lems require multi-classification, designing a single multi-class classifier remains
a hard task. In such cases, the usual way to proceed is to reduce the complexity
of the problem into a set of simpler binary classifiers and combine them in some
way. An usual way to combine these simple classifiers is the voting scheme (one-
versus-one or one-versus-all grouping schemes are the most frequently applied).
In this way, Dietterich et. al. [11] proposed the Error Correcting Output Codes
framework inspired in the signal processing coding and decoding techniques to
benefit from error correction properties, obtaining successful results [10][11][3].

The goal of this paper is two-fold: on one hand, we introduce a novel shape
descriptor, the Blurred Shape Model (BSM), that encodes the spatial probabil-
ity of appearance of the shape pixels and their context information. As a result,
a robust technique in front of elastic deformations is obtained. On the other
hand, we present a successful scheme to describe and classify binary objects.
The method aligns object shapes by means of the Hotelling transform and an
area density adjustment. Then, the BSM is used for obtaining the shape de-
scription. The Adaboost algorithm is proposed to learn the descriptor features
that best split classes, and the pairwise scheme (one-versus-one) with Error Cor-
recting Output Codes increases the classification accuracy by correcting possible
errors produced by the binary classifiers. A wide set of MPEG07 categories are
described and classified with the present methodology, showing high success and
better performance compared to the state-of-the-art descriptors.

The paper is organized as follows: Section 2 introduces the Blurred Shape
Model descriptor. Section 3 presents the full binary object recognition scheme.
Experimental results are shown in section 4, and section 5 concludes the paper.
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2 Blurred Shape Model

The Blurred Shape Model (BSM) is based on the object shape description, al-
lowing the definition of spatial regions where some parts of the shape can be
involved.

Table 1. Blurred Shape Model algorithm

Given a binary image I ,
Obtain the shape S contained in I
Divide I in n × n equal size sub-regions R = {ri, ..., rn×n}, with ci

the center of coordinates for each region ri.
Let N(ri) be the neighbor regions of region ri, defined as
N(ri) = {rk|r ∈ R, ||ck − ci||2 ≤ 2 × g2}, where g is the cell size.

For each point x ∈ S,
For each ri ∈ N(rx),

di = d(x, ri) = ||x − ci||2

End For

Update the probabilities vector v positions as:
v(ri) = v(ri) + 1/di

Di
, Di =

�
ck∈N(ri)

1
||x−ck||2

End For

Normalize the vector v as: v = v(i)
�n2

j=1 v(j)
∀i ∈ [1, ..., n2]

Given a set of object shape points, they are treated as features to compute the
BSM descriptor. The image region is divided in a grid of n × n equal-sized sub-
regions (where the grid size identifies the blurring level allowed for the shapes).
Each cell receives votes from the shape points in it and also from the shape
points in the neighboring sub-regions. Thus, each shape point contributes to a
density measure of its cell and its neighboring ones. This contribution is weighted
according to the distance between the point and the center of coordinates ci of
the region ri. Table 1 shows the algorithm.

In fig. 1, a shape description is shown for a MPEG07 sample. Figure 1(a)
shows the distances of a shape point to the nearest sub-regions centers. To give
the same importance to each shape point, all the distances to the neighbors
centers are normalized. The output descriptor is a vector histogram v of length
n×n, where each position corresponds to the spatial distribution of shape points
in the context of the sub-region and their neighbors ones. Fig. 1(b) shows the
vector descriptor updating once the distances of the first point in fig. 1(a) are
computed.

The resulting vector histogram, obtained by processing all shape points, is
normalized in the range [0..1] to obtain the probability density function (pdf) of
n × n bins. In this way, the output descriptor represents a distribution of prob-
abilities of the object shape considering spatial distortions, where the distortion
level is determined by the grid size. Referring the computational complexity, for
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(a) (b)

Fig. 1. BSM density estimation example

a region of n × n pixels, the k relevant shape points considered to obtain the
BSM require a cost of O(k) simple operations.

3 Binary Object Recognition Scheme

In this chapter, we present the different methods applied in the scheme shown in
fig. 2. First, we describe the Hotelling transform based on principal components
and the area density readjustment for aligning the object shape. Then, we discuss
the suitability of using Adaboost to train binary classifiers for the object classes
and we comment the use of the Error Correcting Output Codes framework to
extend the binary classification to the multi-class case.

Fig. 2. Process scheme

3.1 Shape Alignement

Before applying the proposed descriptor, a shape alignement process is per-
formed. This process is composed of two steps: the first step, provides invariance
to rotation by means of the Hotelling transform. And the second step deals with
the posible mirroring effect.

The Hotelling transform finds a new coordinate system equivalent to locating
the main axis of the object. Given a set of n representative object points defined
as pairs of coordinates x = (xi, yi), where i ∈ [1, .., n], the center of mass of
the object mx, and the eigenvectors V of the covariance matrix, the new trans-
formation is obtained by means of the projection of the centered points of the
object in the following way:

x′
i = V (xi − mx), i ∈ [1, .., n] (1)

Using this transform, we find the common axes for the different object in-
stances. In fig. 3(a), the mean shape for the samples of one MPEG07 category
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after applying the Hotelling transform is shown. One can observe that the shapes
are not properly aligned. For this reason, a second step, consisting of an area
density estimation process is used. Observe fig. 3(b). Horizontal and vertical
projections are applied to obtain the area of the object. Then, this area is pro-
jected on the two axes, as shown in fig. 3(b). The final alignment is obtained by
horizontal and vertical reflection of the object in the direction of the higher area
projections. The result of adjusting the alignment is shown in fig. 3(c). Another
example of alignment for two MPEG07 object categories is shown in fig. 4.

(a) (b) (c)

Fig. 3. (a) Mean aligned shape based on principal components. (b) Horizontal and
vertical area estimation. (c) Readjusted alignment.

Fig. 4. Mean aligned shapes for two MPEG07 categories

3.2 Adaboost

Different types of objects may share local features [1] (see fig. 5). For this rea-
son, Adaboost [2] has been chosen to boost the BSM models from different
classes in order to define a classifier based on the features that best discrimi-
nate one class against another. Note that when comparing object descriptors,
traditional matching distances take into account all object features for the final
classification decision. When objects are very similar, slight deformations in the
shared parts may include significant distance errors that finally can lead to a
miss-classification of the objects. Observe fig. 5. The two objects have a discrim-
inative region that splits the two categories (marked with a circle). Adaboost
focuses on these regions by selecting the highest splitting features.

Fig. 5. Discriminant object regions
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3.3 Error Correcting Output Codes

The ECOC framework is a simple but powerful framework to deal with the multi-
class categorization problem by embedding binary classifiers. Given a set of Nc

classes, the basis of the ECOC framework consists of designing a codeword1 for
each of the classes. Arranging the codewords as rows of a matrix, a ”coding
matrix” M is defined, where M ∈ {−1, 0, 1}Nc×n, being n the code length.
From the point of view of learning, M is constructed by considering n binary
problems, each one corresponding to a matrix column. Joining classes in sets,
each dichotomy defines a partition of classes (coded by +1, -1, according to their
class set membership, or 0 if the class is not considered by the binary problem).

In figure 6(d), an example of a coding matrix M design is shown. The matrix
is coded using 3 dichotomies {h1, h2, h3} for a three multi-class problem (c1,
c2, and c3). In fig. 6(a)-(c), three different sub-partition of classes are form,
corresponding to all possible pairs of classes. This strategy is also called one-
versus-one. Once we define the partitions of classes, each one is coded as a
column of the coding matrix M , as shown in fig. 6(d). The dark regions are
coded as +1 (first partition of classes), and the grey regions are coded as -1
(second partition of classes). The white regions correspond to the non-considered
classes for their respective classifiers. Now, the rows of the matrix M define the
codewords {Y1,Y2,Y3} for their corresponding classes {c1,c2,c3}.

At the decoding step, applying the n trained binary classifiers, a code is
obtained for each data point in the test set. This code is compared to the base
codewords of each class defined in the matrix M , and the data point is assigned
to the class with the “closest” codeword.

(a) (b) (c)

(d) (e)

Fig. 6. (a)(b)(c) Three bi-partitions of classes for a three multi-class problem. (d)
ECOC coding and (e) decoding for the problem.

1 The codeword encodes the membership information of each binary problem for a
given class.
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(a) (b) (c) (d)

Fig. 7. (a) Input image, (b) contour map, (c) shape alignment, and (d) 32 × 32 BSM

In fig. 6(e), an input test sample classification is shown. This input is tested
using the three binary classifiers, and a codeword X is obtained. Finally, the
Euclidean distance is applied between each class codeword and the test codeword
X in the form d(X, Yi) =

√∑n
j=1(X(j) − Yi(j))2, where i ∈ [1, .., 3]. Finally, the

test input X is classified by the class with minimum distance c1.
An example of the process execution is shown in fig. 7. Fig. 7(a) shows an

input image, which object shape is obtained in fig. 7(b) by means of a contour
map. Shape alignment is performed by means of the Hotelling transform and
the area density adjustment in fig. 7(d), and the final BSM of 32 × 32 grid size
is shown in fig. 7(d).

4 Results

To validate the system, first we describe the data, measurements, comparatives,
and experiments.

Data: To test the system, we used 23 categories from the MPEG repository
database [4]. This database has been chosen since it provides a high intra-class
variability in terms of scale, rotation, rigid and elastic deformations, as well as
a low inter-class variability. A pair of samples for each of the 23 categories are
shown in fig. 8. Each of the classes contains 20 instances, which represents a
total of 460 object samples.

Measurements: To analyze the performance of the techniques, the descriptors are
trained using 50 runs of Discrete Adaboost with decision stumps, and the one-
versus-one ECOC design with the Euclidean distance decoding. The classification
score is computed by means of stratified ten-fold cross-validation with two-tailed
t-test at 95% of the confidence interval.

Fig. 8. MPEG07 classes
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Comparatives: The methods used for the comparative are: ART, Zoning,
Zernique, and CSS curvature descriptors from the standard MPEG [7][5][6].

Experiments: To test the performance of the BSM descriptors, the comparative
is applied over the set of 23 MPEG07 classes, classifying by means of 3-Nearest
Neighbors to compare the descriptors robustness, and using the whole catego-
rization system with Adaboost and ECOC to show its suitability for multi-class
problems. Finally, we discuss the benefits of using the present methodology.

4.1 MPEG07 Classification

The details of the descriptors used for the comparatives are the followings: BSM
descriptor is of length 16×16 from the considered regions. The optimum grid size
of 16×16 has been estimated applying cross-validation over the training set using
a 10% of the samples to validate the different sizes of n ∈ {8, 12, 16, 20, 24, 28, 32}.
The selected size is the one which attains the highest performance in the train-
ing set, defining the optimum grid encoding the blurring degree based on the
database distortions. The scores obtained using cross-validation are shown in
fig. 9. For a fair comparison, the Zoning descriptor is of the same size (16 × 16).
The parameters for ART are radial order with value 2 and angular order with
value 11. Concerning to Zernique, 7 moments are used to estimate the descrip-
tor, and a length of 200 with an initial sigma of 1 increasing per one is applied
for the curvature space of the CSS descriptor.

Fig. 9. Cross-validation on the training set for different BSM grid sizes

For this experiment, we started the classification using the first 3 classes
of fig. 8. Iteratively, one class is added at each step, and the classification is
repeated until the 23 classes are processed. The main objective is to analyze the
performance of the techniques when the number of classes increases. The results
of the experiment are shown in fig. 10(a). Observing the figure, one can realize
that the BSM descriptor attains the best performance for any number of classes
in the classification system. Besides, an important point is that its performance
does not decrease significatively while increasing the number of classes, obtaining
results around 80% in all cases. The second descriptor in the ranking is Zernique,
which offers similar performance than BSM when the number of classes is small,
but substantially decreases with the number of object categories. Finally, Zoning,
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CSS, and ART descriptors offers the worst classification scores in this problem.
This can be intuitively justified by the fact that Zoning descriptors are very local,
and the database is full of shape variations. This fact also affects to the CSS
descriptor, since the points of curvature varies due to the high shape variations
among objects.

In order to validate the descriptors independently of the system, the classifica-
tion for the 23 MPEG07 classes is performed using a simple 3-Nearest Neighbors
strategy based on the Euclidean distance. The results are shown in fig. 10(b).
One can observe that for the different descriptors the performance decrease con-
siderably. It is intuitively justified by the fact that all features contribute to the
final decision, and the non-discriminative ones include distance errors that can
miss-classify many samples. Nevertheless, observe that the reduction on the case
of the BSM descriptor is less considerable, and it attains the best performance.

(a) (b)

Fig. 10. (a) Classification accuracy on the MPEG07 object categories with our system.
(b) Classification on the 23 MPEG07 object categories using 3-Nearest Neighbor and
our system.

4.2 Discussion

Concerning the suitability of the presented scheme to deal with multi-class binary
object categorization problems, several benefits should be mentioned:

The method is rotation invariant because of the use of the Hottelling trans-
form and the area density adjustment. The method is also scaling and (x, y)
stretching invariant because of the use of the n×n BSM grid. Besides, the BSM
descriptor is robust against objects with rigid and elastic deformations since the
size of the BSM grid defines the region of activity of the object shape points.
The use of Adaboost as base classifier allows to learn difficult classes which may
share several object features. The ECOC framework has the property of correct-
ing possible classification errors produced by the binary classifiers, and allows
the system to deal with multi-class categorization problems. When the classi-
fiers are trained only few features are selected, and when classifying a new test
sample only these features are computed, which makes the approach very fast
and suitable for real-time categorization problems.
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5 Conclusions

We presented the Blurred Shape Model descriptor, which defines a probability
density function of the shape of an object. The shape is parameterized with a
set of probabilities that encode the spatial variability of the object, being robust
to elastic deformations. Besides, a system to improve the performance of the
novel descriptor dealing with multi-class categorization problems is proposed.
Adaboost learns the discriminative features that better split object categories,
and the binary classifiers are embedded in the Error Correcting Output Codes
framework. The evaluation of the system is performed on 23 MPEG07 classes,
showing great performance in cases of high intra-class and low inter-class vari-
ability, and outperforming the state-of-the-art descriptors while the computa-
tional cost is far less.
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Abstract. In this work we present an application of nonlinear dimen-
sionality reduction techniques for video analysis. We review several meth-
ods for dimensionality reduction and then concentrate on the study of
Diffusion Maps. First we show how diffusion maps can be applied to
video analysis. For that end we study how to select the values of the pa-
rameters involved. This is crucial as a bad parameter selection produces
misleading results. Using color histograms as features we present several
results on how to use diffusion maps for video analysis.

Keywords: video analysis, dimensionality reduction.

1 Introduction

Most of the available techniques for video analysis begin reducing the amount of
information via feature extraction. Usually this means a strong reduction in the
amount of data contained in a video sequence. Recently, due to the increase of
memory and processing power in actual computers, some algorithms for video
analysis are based on a more detailed description of the video using a big number
of features [7,10]. Some of these methods can be rooted to image analysis method
that use all the pixels and visualize the image as a point in a high dimensional
space [7]. Other methods for video analysis recently proposed in the literature
use pixel-wise histograms to describe video segments [6]. These methods keep a
lot of information from the beginning of the processing. Although, it has been
shown that this is beneficial, novel methods for high dimensional data analysis
must be developed.

Although the idea of high dimensional data analysis is not new, recently sev-
eral authors presented new results in this direction. One of the main problems in
the context of high dimensional data analysis is dimensionality reduction. The
two main goals of this step are: visualization and extraction of smaller set of
meaningful and useful coordinates. In what follows we present a brief overview
of existing methods for dimensionality reduction.

The most popular method for dimensionality reduction is Principal Compo-
nent Analysis (PCA). PCA finds the basis of a projection space (of smaller
dimension) minimizing the square reconstruction error. It is well known that the
� Supported by Proyecto PDT-S/C/OP/46/18. A. Pardo is on leave from Facultad de

Ingenieŕıa, Universidad de la República.
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subspace which produces the minimum reconstruction error is the subspace with
maximum variance. Therefore, this method intends to preserve the covariance
structure [9]. PCA has two advantages. First, the projection is performed with
a linear transformation which is extremely easy to apply. Second, any new vec-
tor can be easily projected. Unfortunately, not all spaces are linear and a linear
combination of basis vectors will not produce good results. In the same category
we can find Independent Component Analysis (ICA) which also uses a linear
projection and Multi Dimensional Scaling [9].

The main drawback of the previous methods is that they are not capable of
dealing with nonlinear spaces1. For this reason, recently several authors pre-
sented nonlinear methods for dimensionality reduction. Some of them are graph
based methods. Basically, the idea is to discover the underlying structure of the
data constructing a graph which joins data points with a given criteria. ISOMAP
[11] is one example of these techniques. Other methods such as Locally Linear
Embedding (LLE) [8], Laplacian and Hessian Eigenmaps [1,3], and others [5]
minimize the reconstruction error using a local linear expansion. That is, each
sample is linearly reconstructed using nearby samples. In this way this method
overcomes the linear limitation. Diffusion Maps [5,2] provide a unified vision of
previous spectral methods in a unified framework. Also, this method includes a
natural notion of scale and distance. In next section we review diffusion maps.
The weakness of these methods is that is difficult to project a new sample in the
obtained projected space. The embedding is given by the data and there is no
general method to obtain the projection. In [4] the authors propose a solution
to solve the extension to new data points.

Before concluding this section we review some works that apply nonlinear
dimensionality reduction for video analysis. In [7] Pless uses Isomap to explore
video sequences. The results are for simple sequences. The work is similar to
ours but it does not include the notion of scale given by diffusion maps. We
also present results with general sequences with transitions. In [10] uses LLE to
discover periodicity in video sequences.

The outline of the paper is the following. In next section we present a detailed
review of diffusion maps. In section 3 we analyze how to select the appropriate
diffusion map parameter values. Then, in section 4 we present several examples
of diffusion maps applied to video analysis. Finally in section 5 we discuss our
results and present our main conclusions

2 Review of Diffusion Maps

In this section we review Diffusion Maps (DM) following [5]. Let Ω = {x1, ..., xn}
be a set of data points of dimension N and d(xi, xj) a distance between data
points. The idea behind DM is to construct a graph with each data point xi

being a vertex and w(xi, xj) a weight function between vertices. In what follows
we restrict ourselves to w(xi, xj) = exp(dΩ(xi, xj)2)/σ2). This graph intends to
reflect the knowledge of the local geometry of Ω. Once we have the definition of
1 There are some extensions of PCA and other methods to deal with this problem.
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the graph a Markov random walk can be defined over it. If d(x) =
∑

z∈Ω w(x, z)
is the degree of node x the quantity p1(x, y) = w(x,y)

d(x) can be interpreted as the
probability of transition from x to y. The 1 means that this transition is made
in one step and therefore reflects first order information of the graph structure.
Let the matrix P be the one with entries p1(x, y). Considering powers, P t, infor-
mation over larger neighborhoods can be captured. In this way pt(x, y) means
the probability of transition form x to y in t steps. As t increases P t captures
more global information and this enables us to view t as a scale parameter.

If the graph is connected it can be shown that: limt→∞ pt(x, y) = φ0(y) =
d(y)�

z∈Ω d(z) where φ0(x) is the stationary distribution. Based on the above elements
the distance between points in Ω can be computed as the distance between its
corresponding distributions pt. Thus, the diffusion distance, Dt(x, y) is defined
as:

D2
t (x, y) = ||pt(x, .) − pt(y, .)||21/φ0

=
∑

z∈Ω

(pt(x, z) − pt(y, z))2

φ0(z)
.

Observe that the distance includes the normalization by φ0(z) which is used to
decrease the influence of points with small densities. The main result for diffusion
distance is the following. The diffusion distance can be expressed as:

D2
t (x, y) =

n−1∑

i=1

λ2t
i (ψi(x) − ψi(y))2, (1)

where λi and ψi are the eigenvalues and eigenvectors of P (Pψi = λiψi). It can
be shown that 1 = |λ0| ≥ |λ1| ≥ ... ≥ |λn−1| and ψ0 = 1. Due to the ordering
of eigenvalues the diffusion distance can be approximated taking only the first
coordinates. The number of retained terms depends on the desired precision and
on t. The diffusion map is defined as:

Ψt : x →
(
λt

1ψ1(x), λt
2ψ2(x), ..., λt

M(t)ψM(t)(x)
)t

, (2)

where M(t) is the number of retained terms. The mapping projects the graph
information to a lower dimensional space.

3 Application of Diffusion Maps

DM not only project the data points to a lower dimensional space, but also
provide a notion on scale t and precision M(t). This means that we obtain a
lower set of coordinates with an associated significance score. In this section we
show how to use these ideas for video analysis.

First we must discuss the representation of each image in the video sequence
and the associated distance, dΩ. In this work we will use a representation based
on histograms2. We describe each frame with its histogram hi(q). For color

2 We are currently investigating a representation based on pixels.
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frames we will take xi = {hR
i (q), hG

i (q), hB
i (q)} a concatenation of the histograms

of each color channel. The distance in the original space ,dΩ(xi, xj), will be the
L2 distance3. In following paragraphs we address the specification of the DM
parameters: σ and M(t).

How can we select σ? The value of σ must be carefully selected since it deter-
mines the final graph and P . This parameter affects the weights, w(x, y), and
with them the connection between nodes. If σ is set too big it may cause the
graph to be fully connected while a too small value may produce a completely
disconnected one. At the end of the day its value is reflected in the graph topol-
ogy which is in turn what we expect to obtain as a natural description of the
data.

To set the value of σ we assume that each point (frame), xi, must be connected
with at least two other points (typically nearby frames). We set the minimum
weight for farthest points with distance dmax as θ so:

σ =
dmax√
log(1/θ)

.

In all the experiments we use θ = 0.1.
How can we decide the value of M(t)? It is clear form equation (1)

that M(t) determines the precision of the distance approximation. Since are
ordered and less or equal than one, we know that to achieve a certain level
of approximation we must retain the first coordinates. From equation (2) we
conclude that the diffusion map gives a parametrization of the data in a lower
dimensional space. Furthermore, the scale of the dimensionality reduction is
given by t and the decay of the eigenvalues.

How many data points are needed? In the case of video we may en-
counter restrictions on the amount of data points available with respect to the
dimensionality of the feature space. On one hand DM are insensitive to points
density and therefore permit to recover intrinsic data properties [4]. On the other
hand, they are more resilient to the number of samples comparing with other
existing methods such as [8]. We will confirm this in the experiments where we
have in some cases more features than samples. We will have three histograms
with 256 bins producing a feature vector of dimension 768 while some of the
video sequences have around 300 frames.

Do we need to include temporal information? Traditionally, video anal-
ysis is strongly linked to temporal relations. In fact, most of existing methods
study the distance between frames at different times4. This turns to produce an
aperture problem since we observe the data across a given temporal window.
Diffusion Maps, and other of the methods reviewed above, enable us to link
frames without taking into account small temporal windows. At the end of the
day, the method discovers the relevant coordinates within the data and sorts
them according to its relevance. This interesting feature comes with the expense
3 Other distance can be used.
4 Shot detection is a classical example.
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of bigger data sets. In the experiments we will show that there is no need to
explicitly include temporal information.

4 Experiments

In this section we present a set of experiments of video analysis using the ideas
discussed in previous sections. In the two first experiments we show the results
for video sequences which contain a smooth transition. Later we will show some
results on abrupt changes which are easier to detect.

In the first experiment, see Figure 1 we processed a sequence with a wipe which
starts at frame 120 and ends at frame 165. If we observe the first coordinate of
the diffusion map at Figure 1 we can see that it correctly detects this smooth
transition. From frames 1 to 119 and from frames 166 to 259 this coordinates
has little variation. This means that when looking a coarse description these two
sets are disjoint. Between frames 120 and 165 we observe a gradual transition
between both sets. Therefore, in this case the first coordinate correctly captures
the essence of the video sequence. If we observe the remaining coordinates up
to the fourth one, we confirm that in finer scales this transition can also be
detected. In Figure 1-(b) we depict the video trajectory along the first three

(a) (b)

(c)

Fig. 1. (a) First coordinate showing clearly showing the structure of the sequence. (b)
Video trajectory in the first three coordinates. As we can see the beginning and end
of the sequence produces two clusters while the wipe-transition produces a trajectory
between them. (c) Remaining coordinates.
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(a)

(b)

Fig. 2. (a) Features along frames, Distance Matrix and Weight Matrix for sequence in
Figure 1. (b) The same for sequence in Figure 3. Observe the video structure.

coordinates. As we can see, there is a transition which expands form frames 120
to 165. To complete the information for this sequence we show the histograms
evolution along frames, the Distance and Weight matrices (see Figure 2).

The second experiment presents the results for a dissolve transition. These
are the most difficult transitions to detect. As we can see in Figure 3 in this case
we can successfully detect the transition. The dissolve starts at frame 115 and
ends in frame 145. It is interesting to note the stability of the first coordinate
at the beginning and end of the sequences. This shows that the first coordinates
classifies, at coarse level, all these frames in the same cluster. This behavior is
repeated in the other coordinates. Obviously, as we increase the coordinate num-
ber, its corresponding eigenvalues decreases and with it its importance. Finally
we note a peak in coordinate Ψ10 at frame 31. This is due to an error on the video
as can be seen in Figure 3-(b). Therefore, at finer scales we are able to detect
such small discrepancies between frames. As we did in the first experiment we
show other complementary information in Figure 2.

For our third experiment we used sequence with 1561 frames and mainly
abrupt transitions. Observing Figure 4 we see that once again the first compo-
nents successfully summarize the characteristic of the sequence. If we look at
finer scale, in coordinates Ψ8 to Ψ10, we can see a gradual changes within a shot
obtained at coarser scales. This gradual changes are caused by a panning (see
Ψ10 in Figure 4).

To further evaluate the power of discrimination of the method we tested the
algorithm with a small sequence with only smooth transitions. In this case, the
first coordinate clearly detects a shot from frames 175 to 200, however, it is
difficult to declare other shots while looking only the first coordinate. On the
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(a) (b)

(c)

Fig. 3. (a) First coordinate showing clearly showing the structure of the sequence. (b)
Frame with error visible at finer scales (c) Remaining coordinates.

other hand, if we observe Ψ2 we can see a block of frames from frames 45 to
125. However, there is still a big variation within this block which indicates
other cluster at finer scale. This is can be confirmed observing Ψ4, Ψ5 and Ψ7.
Hence, we conclude that the method effectively detects the structure of the video
sequence. However, to do so we must observe several coordinates to discriminate
at finer scales.
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(a)

(b)

Fig. 4. (a) First nine coordinates. (b) Details at finer scales showing pannings and
some detailed activity within a shot that it is not visible at coarse levels.
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Fig. 5. First nine coordinates for the fourth example

5 Discussion and Conclusions

In this work we study the application of DM to video analysis. We showed
how this method can be successfully applied. We presented estimations for the
method parameters and confirmed this in the experiments. We showed how the
coordinates obtained compress the information of the sequence structure in few
coordinates. Although in several cases the information is compressed in the first
few components, this depends on the sequences, and in some cases we will need
to explore finer scales. This was confirmed with our last experiments. Therefore,
although this are mainly preliminary results, they are very promising. We are
currently testing other descriptions and a more exhaustive evaluation of the
results and their comparison against other methods.
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Abstract. This paper investigates the use of graph cuts for the mini-
mization of an energy functional for road detection in satellite images,
defined on the Bayesian MRF framework. The road identification process
is modeled as a search for the optimal binary labeling of the nodes of a
graph, representing a set of detected segments and possible connections
among them. The optimal labeling corresponds to the configuration that
minimizes an energy functional derived from a MRF probabilistic model,
that introduces contextual knowledge about the shape of roads. We for-
mulate an energy function modeling the interactions between road seg-
ments, while satisfying the regularity conditions required by the graph
cuts based minimization. The obtained results show a noticeable im-
provement in terms of processing time, while achieving good results.

Keywords: road detection, graph cuts, MRF-MAP labeling.

1 Introduction

Several approaches have been proposed for linear feature extraction, most of
them dealing with the problem of road extraction in either synthetic aperture
radar (SAR) images or optical images (visible range). These approaches can be
classified according to the preset objective, the extraction technique applied, the
type of sensor used, etc. [1].

Most of the reported schemes are based on two criteria: a local criterion,
involving the use of local operators, and a global criterion, incorporating addi-
tional knowledge about the structure of the objects to be detected. The methods
based on local criteria evaluate local properties on the image by using either an
edge or line detector [2] or morphological operators [3]. The performance of
these methods can be greatly increased by using techniques that introduce some
global constraints in the image analysis process. These techniques lead to an
optimal solution through the minimization of a cost function by using dynamic
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programming [4], tracking methods [5] or the Bayesian MRF framework [2], [6],
[7], [8].

Previous work at VUB-ETRO [8] proposed a method that combines both local
and global criteria for the identification of the medial axis of roads and paths in
satellite images. The approach consists of two steps Fig. 1.

Fig. 1. General algorithm of linear features detection [8]

During a local analysis, the detection of elongated structures is performed us-
ing a set of soft morphological operators, and a dedicated algorithm is employed
for line segment extraction. This results in a set of segments, Ω = Ωd

⋃
Ωc,

with Ωd the extracted line segments and Ωc the set of all possible connections
between the segments of Ωd. The elements of Ω are then organized in a graph
G = (Ω, A), where each node s ∈ Ω is a line segment, to which we associate a
normalized segment length (ls ∈ [0, 1]), an observation value ys (defined below),
and a label fs = 1 if s belongs to a road, fs = 0 otherwise. An arc, Ast ∈ A,
between two nodes s and t, correspond to a shared extremity. To each arc Ast

is associated the angle θst between the two segments.
A segment linking process is then performed in the global analysis. This is

based on the Bayesian framework incorporating an observation measure that re-
flects the likelihood value of each segment as belonging or not to a road, L(fs, ys),
and a formulation of the potential functions, Vc(f), which describes the probabil-
ity distributions of the prior model. The identification of the roads is carried out
with an appropriate labeling of the graph G = (Ω, A), in accordance with the
observation process y = (y1, . . . , ym); m = |Ω|. A Markov random field (MRF) is
defined on the graph and the optimum configuration (labeling) f = (f1, . . . , fm),
of the segments of Ω given the observation process y, can be estimated based
on the Bayes rule and a MAP criterion that maximizes the posterior probability
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P (y|f). The conditional probability distribution p(y|f) depends on the observa-
tion measurements, whereas the prior probability of labelings P (f) is based on a
Markovian model of road-like objects. From the equivalence between MRF and
Gibbs fields [11], both of them can be described with a set of potentials that
associate an energy function to the different configurations. The minimization
of this energy function gives the optimal solution to the problem.

One of the major drawbacks of the approach in [8] is the time required for
solving the MAP estimator by means of the simulated annealing algorithm,
which requires exponential time in theory and is extremely slow in practice.
The computational task of minimizing the energy associated to a particular
problem is usually quite difficult, as it generally requires minimizing a non-
convex function in a space with thousands of dimensions. However, recently a
new approach for energy minimization has been developed based on graph cuts
[9]. The basic idea is to construct a specialized graph for the energy function
to be minimized such that the minimum cut on the graph also minimizes the
energy (either globally or locally). The minimum cut, in turn, can be computed
very efficiently by max flow algorithms [10].

This paper investigates the use of graph cuts for the minimization of an MRF
based energy functional of [8]. To this end, we reformulate the Bayesian-MRF
framework previously described to fit the graph cuts theory. This energy form
turns out to be sufficient to model all the interactions between road segments,
while satisfying the regularity conditions required by the graph cuts based min-
imization.

The paper is organized as follows. Section 2 defines the MAP function to be
minimized (subsection 2.1), summarizes the graph cuts theory (subsection 2.2),
and formulates the functional of subsection 2.1 in terms of graph cuts (subsection
2.3). Section 3 describes the experiments conducted and a preliminary discus-
sion of the obtained results. Finally, Section 4 exposes the final conclusions and
addresses future improvements for the proposed approach

2 Materials and Methods

2.1 MRF-MAP Formulation for Linear Feature Extraction

The MAP-MRF estimation belongs to the general family of variational meth-
ods, where the main objective is the minimization of an energy functional that
conveys the dependencies on observed data and a series of a priori constraints,
according to the MAP criterion [11]. The MAP-MRF framework facilitates the
formulation of such an energy term by considering certain independence as-
sumptions for the data likelihoods and introducing prior knowledge in the form
of Gibbs distributions. The energy functional for linear feature extraction, de-
fined in [8], is stated in Fig. 1, being θ the set of model parameters. From this
expression, the MAP estimation is obtained to be:

f̂MAP = arg min
f∈F

(
∑

s∈Ω

L(fs, ys) +
∑

c∈C
Vc(f)

)
. (1)



Graph Cuts Approach to MRF Based Linear Feature Extraction 165

where F is the space of all possible configurations f = {fs} : s ∈ Ω, fs ∈ {0, 1}.
C is the set of all the cliques or clique space of the model. For each detected
segment, two cliques are added to C; those conformed by the connection segments
sharing one extremity with the detected segment. For more details refer to [8].
The observation, ys, of a segment s is a function of a saliency measure rs defined
as:

rs =
Rs

|θs − αs| + 1
, (2)

where θs is the line segment orientation, Rs and αs are the mean values, along
the line segment, of the response and orientation images, respectively, obtained
using soft morphological operators as described in [8] (Fig. 1). The observation
values ys are defined as:

ys = max
t∈Ns

{
(rs + rt)

2

}
, (3)

were Ns is the neighborhood of segment s. After computed, the ys are linearly
normalized to fit the [0, 1] interval. Analogously:

L(fs, ys) = (1 − ys)
(
min(

ys

τ
, 1) + log Z0

)
. (4)

where τ is a model parameter to threshold observation values, and Z0 is a nor-
malization factor found to be equal to Z0 = (1−τ)(1

e )−τ(1
e −1), with e = exp(1).

The potential functions Vc(f) are defined for each clique according to its size and
composition (number and types of segments that conform the clique) as follows:

Vc(fs) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if ∀s ∈ c, fs = 0;
K1 + 1 − ls + log Z0 if ∃!s ∈ c ∧ s ∈ Ωd : fs = 1;
sin(θst) + 1 − ls + lt + 2 logZ0 if c1;
K2

∑
s:s∈c fs otherwise.

(5)

where c1 ≡ ∃!(s, t) ∈ c × c ∧ s ∈ Ωd, t ∈ Ωc : fs = ft = 1. K1 and K2 are
parameters of the labeling model, defined by the prior road assumptions, and ls
denotes the normalized length of a segment s.

2.2 Energy Minimization Using Graph Cuts

In [9], a systematic and general formulation for energy minimization using graph
cuts was presented. The energy form is mainly restricted to functions of binary
variables, although it is easily applicable to problems that involve large numbers
of labels. Next, we describe the type of energy we are interested to minimize using
graph cuts, according to the method described in [9]. Let x = (x1, . . . , xm) : xs =
{0, 1} be a set of binary-value variables. The type of energy considered has the
form:
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E(x) =
∑

s

Es(xs) +
∑

s<t

Es,t(xs, xt) . (6)

That is, the sum of functions involving up to two binary values at a time. A more
general energy form, including functions involving up to three binary values, is
described in [9].

In order to minimize E(x) (Eq. 6) using graph cuts, a specialized energy graph
is created such that the minimum cut on the graph also minimizes E(x) (either
globally or locally). The form of the graph depends on the exact form of E(x) and
on the number of labels. Let G = (V, A) be a directed graph with non negative
edge weights that have two special vertexes (terminals), namely, the source p,
and the sink q. A p-q-cut referred simply as cut, R = {P, Q} is a partition of
the vertexes of V into two disjoint sets P and Q, such that p ∈ P and q ∈ Q.
The total cost of the cut is the sum of the cost of all edges that go from P to
Q. The minimum p-q-cut problem is to find a cut R with the smallest cost. The
solution to this problem is equivalent to computing the maximum flow from the
source to the sink [9]. There are several algorithms that solve this problem in
polynomial time with small constants [10]. A cut R is conveniently associated
with a labeling f , mapping from the set of vertexes V − {p, q} to {0, 1}, where
fs = 0 means that s ∈ P and fs = 1 means that s ∈ Q. Note that a cut is a
binary partition of a graph viewed as a labeling; it is a binary-valued labeling.

The necessary conditions for an energy function to be minimized using graph
cuts are described in terms of graph representability, which is conditioned by the
regularity of the terms conforming the energy E(x). The regularity condition
that must be satisfied is stated as follows:

Es,t(0, 0) + Es,t(1, 1) ≤ Es,t(0, 1) + Es,t(1, 0) . (7)

For a given regular energy function E(x), of the form in Eq. (6), the con-
struction of the energy graph is done for each term separately and then all
the sub-graphs merged together. The graph will contain m + 2 vertices: V =
{p, q, v1, . . . , vm}; p and q are terminal vertexes, and the non-terminal vertexes
vs will encode the binary variable xs. For a detailed description of the graph
construction process refer to [9].

2.3 Graph Cuts for Linear Feature Extraction

The goal of the graph cuts approach for linear feature extraction is to express
the energy of the global analysis step, in the form of Eq. (6), while conveying for
the assumptions of the prior model. According to the method described in [8],
the clique space can contain cliques of size greater than two, since it is possible
to have more than two connections at one extremity of a detected segment. This
makes infeasible the direct use of graph cuts for the energy form defined by the
potential functions described in Eq. (5).

In order to make use of the graph cuts theory, we propose the use of a clique
space composed by cliques of size one and two, C = C1∪C2, as follows. C1 contains
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cliques of size one, defined only by a detected segment and C2 contains cliques
of size two, conformed by a detected and a connection segment, sharing one
extremity. Thus, the prior energy term in Eq. (1) can exhibit the following form:

Eprior(f) =
∑

s∈Ωd

V1(fs) +
∑

(s,t)∈Ωd×Ωc:t∈Ns

V2(fs, ft) . (8)

The key facts used to model the prior knowledge rely on the following as-
sumptions [8]: 1) roads are long structures, 2) roads have low curvature, and 3)
multiple connections are rare. From the previous assumptions three constrains
should be imposed to the prior model: continuity, co-linearity and penalization
of multiple connections. V1(fs) is used to account for the extremity penalization
in the case of isolated segments, and detected segments with a free extremity
situated far from the border of the image. Free extremities at the border of the
image are though to belong to a long road not captured by the image, thus no
extremity penalization is included.

Let Ex(s) : Ω −→ {0, 1, 2} be a function that return the number of free
extremities of a segment s, excluding the cases when the extremity is at the
border of the image, then:

V1(fs) = fs · Kex · Ex(s) , (9)

where Kex is the extremity penalization model parameter, that accounts for
assumption 1). Analogously, the use of size two cliques is intended to penalize non
co-linear segments while favoring the co-linear ones, and to include a penalization
term for unconnected extremities. The definition of V2(fs, ft), for size two cliques,
is presented in Table 1.

Table 1. Formulation of the potential function for size two cliques

(fs, ft) V2(fs, ft)

0 0 0
0 1 +∞
1 0 Kex · wN

t|s
1 1 Kco · sin θst

Here, Kco is a weight to account for assumption 2), by providing a penalty
weight for non co-linear segments. It also serves to penalize multiple connections,
assumption 3). wN

t|s is a normalized arc measure, defined as the strength of the
path determined by the connection segment t in the direction to which it is
connected to the detected segment s. This arc measure is computed from the
quantities wt|s, given by:

wt|s = Kco sin θst +

{
(ls · rs + lt · rt) · (ls + lt)−1 if ls > lt;
0.5 · (rs + rt) otherwise.

(10)
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The quantities wt|s, after computed, are normalized locally to fit in the [0, 1]
interval to obtain wN

t|s. This normalization is accomplished locally among the con-
nection segments sharing the same extremity of a detected segment. V2(fs, ft)
is defined based on the belief that every time a connection segment is labeled
as zero then the likelihood that the corresponding detected segment is isolated
is increased. Note that in the case of a configuration labeling of a connection
segment without its corresponding detected segment, a high penalization is in-
cluded. This corresponds to the analysis that connection segments will not be
included without the evidence of a detected segment in one extremity.

From equations (4), (8), (9) and Table 1, we can express the proposed graph
cut energy in the form of Eq. (6) as follows:

E(f) =
∑

s∈Ω

[L(fs, ys) + V1(fs)] +
∑

(s,t)∈Ωd×Ωc:t∈Ns

V2(fs, ft) . (11)

The proof of the required regularity condition, Eq. (7), for the current defini-
tion of the clique potentials is straightforward as shown in Eq. (12):

V2(0, 0) + V2(1, 1) ≤ V2(1, 0) + V2(0, 1) (12)
0 + Kco · sin θst ≤ +∞ + Kex · wN

t|s

3 Results and Discussion

In order to validate the proposed approach, some experiments were conducted
using images corresponding to the blue channel of two scenes from IKONOS im-
agery, given in 2.a and Fig. 3.a. Images are available at (http://www.bauv.unibw-
muenchen.de/institute/inst10/eurosdr/).

The experiments were carried out as follows: for each image, a graph con-
taining the potential road network was obtained, using the local analysis step
described in [8] (incises b). Based on this graph, the global analysis step (graph
labeling) was accomplished using the proposed approach for different sets of pa-
rameters settings (incises c and d). Fig. 2.b illustrates the detected candidate
road segments of Fig. 2.a, composed of 630 and 441 detected and connection seg-
ments, respectively; Fig. 2.c and Fig. 2.d show the obtained road labeling, with
parameters τ = 0.165, Kco = 0.01, Kex = 0.13, and τ = 0.15, Kco = 0.008, Kex =
0.135, respectively.

Fig. 3.b illustrates the detected candidate road segments of Fig. 3.a, composed
of 870 and 704 detected and connection segments, respectively; Fig. 3.c and
Fig. 3.d show the obtained road labeling, with parameters τ = 0.15, Kco =
0.09, Kex = 0.12, and τ = 0.155, Kco = 0.09, Kex = 0.135, respectively.

In both cases, the proposed approach using graph cuts takes less than 1 sec-
ond for the optimization while the time required by the method reported in
[8] takes up to 10 minutes. As can be visually noticed, the obtained results are
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(a) (b)

(c) (d)

Fig. 2. Image Ikonos1: a) original image; b) candidate road segments; c) road labeling
composed by 63 and 51 detected and connection segments; d) road labeling composed
by 55 and 45 detected and connection segments

acceptable in terms of false alarms and correct detection of roads. Some false
alarms corresponds to the detection of elongated linear structures other than
roads, e.g. ridges and bright terrain patches. These erroneous detections are
thought to be favored by the employed observation model [8], and its ability to
effectively describe road and non road linear structures (likelihood value).

Note that the resulting road labeling, is always limited by the quality and
completeness of the potential road network, obtained in the local analysis step.
The setting of the parameters has been made empirically, using the fact that
the parameter τ depends on the intensity of the roads. The setting of Kco, as
expected, was found to be related with the presence of curvilinear roads. Lower
values of Kco favors the labeling of segments corresponding to curved paths,
since its reduces the penalization for non co-linear segments.
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(a) (b)

(c) (d)

Fig. 3. Image Ikonos3: a) original image; b) candidate road segments; c) road labeling
composed by 65 and 49 detected and connection segments; d) road labeling composed
by 50 and 39 detected and connection segments

4 Conclusions and Future Work

Despite of its simplicity, the proposed approach shows a noticeable improvement
in terms of processing time, while achieving good results. Although the obtained
results were satisfactory, these are only preliminary. Improvements should ad-
dress the observation model, and take into account curvilinear roads as well as
the automatic estimation of the involved parameters, by deriving relationships
among them. In the future, we aim to tackle these issues and to conduct several
experiments to make a comparative analysis with other methods and different
optimizers in terms of computational burden and performance.
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Abstract. In this paper, we represent a fingerprint image with a Delaunay graph 
formed by minutiae as nodes. The graph has attributes which contributes to the 
final similarity measure and are invariant under rotation and translation. We 
design an algorithm for the comparison of these graphs based on the similarities 
of multiple common substructures. We use different heuristics to tackle the 
problems of noise, deformation and partial matching found in fingerprint 
recognition. We match star structures and extend it by edges maintaining the 
local structural compatibility. Finally, we consolidate the global similarity 
taking into account the size of the common substructures and the accumulated 
similarity of all stars involved. We use a simple greedy algorithm obtaining a 
very efficient performance. We use our proposed method in some experiments 
with fingerprint images in databases from FVC2002. It shows better results 
compared to other known algorithms as K-plet, and several others recently 
published.  

Keywords: graph matching, fingerprint recognition, Delaunay triangulation. 

1   Introduction 

Fingerprints have been widely used in personal identification, access control, 
financial security, and verification of driver license applicants [1]. However, 
fingerprint matching is a difficult problem that has not been solved yet for a generic 
application. The problem of comparing fingerprint impressions appears in two 
different forms, verification and identification. The verification is applied in systems 
of access control, where it is needed to determine if a pair of impressions belongs to 
the same finger or not. Identification, used in forensic applications, refers to the 
process of establishing the identity of a person from its impression, which entails the 
comparison of this impression with the one stored in a database returning a list of 
candidates where it must appear the corresponding one in positive case. Finally the 
resulting list is examined by the specialist who is the one in charge of giving a final 
decision. 

Minutiae pattern is the most widely used method for representing a fingerprint.  
Each minutia has some characteristics as coordinates, type and direction. Extraction 
of minutiae features generally needs a series of processes, including orientation 
computation, image segmentation, image enhancement, ridge extraction and thinning, 
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minutiae extraction and filtering. This paper only discusses the process of fingerprint 
matching.  

Fingerprint matching based on minutia features is a well researched problem. Yet, 
several problems remain as challenges nowadays as tough situations of non-linear 
distortions, low-quality images and partial prints. A minutia based fingerprint 
matching system usually returns the number of matched minutiae from query and 
reference fingerprint and uses it to generate a similarity. Generally, more matched 
minutiae yield higher similarity scores. We can confidently distinguish a genuine or 
an imposter fingerprint using the number of matched minutiae when the number of 
minutiae on both fingerprints is large. However, it is not reasonable to use an absolute 
number of matched minutiae alone in case of partial fingerprint. A traditional way to 
calculate the similarity score for a minutiae-based system is n 2 / ( n1* n2 ). Where n1 

and n2 represent the number of minutiae on query and reference fingerprint, and n is 
the number of matched minutiae on both prints. This method is unreliable, especially 
when we are matching fingerprints of different sizes. For this reason we change the 
similarity score measurement. Kovacs-Vajna [2] has shown that the geometric 
deformations on local areas can be more easily controlled than global deformation. 
That is why we pose the problem as a search of multiple common substructures 
simultaneously on both graph representations of fingerprints and use an accumulative 
process of evidence about the similarity. 

Usually, the point pattern matching methods first align two sets of minutiae and 
then identify the corresponding ones using an adaptive bounding box to handle the 
spatial distortion. For that reason we propose a scheme based on graphs, to construct a 
translation and rotation invariant feature avoiding the alignment step for the local 
matching. To overcome the effect of missing or fake minutiae in a local area we 
adopted a Delaunay triangulation graph representing the proximity relations among 
minutiae.  

It is widely believed that if two fingerprints are from the same finger they would 
share the same local spatial distribution of minutiae. Human experts, in practice, pay 
special attention to the relative positions among some candidate minutiae pairs. Some 
approaches in automatic fingerprint matching imitate this observation looking for a 
global compatibility of the local structures using a graph that represents these local 
relations [3, 4, 5]. Our idea is similar to the algorithm proposed by Sharat et al., at the 
ICB2006 [6]. We also, starting in a minutia pair, expand the substructure by the 
neighbourhood maintaining the local structural compatibility. Nevertheless, we use 
for the expansion a modification of DFS (depth-first search) strategy instead of BFS 
(breadth-first search) as Sharat et al. does. The space complexity of DFS is much 
lower than BFS (breadth-first search). It also lends itself much better to heuristic 
methods of choosing a likely-looking branch as in our case of study. They used K-plet 
to represent the topological relationships of the feature set while we use a Delaunay 
triangulation with the same purpose. In the local matching they employ a dynamic 
programming approach based on string alignment algorithm and converting the 
unordered neighbours of each K-plet into an ordered sequence by arranging them in 
the increasing order of the radial distance. This order is affected because of the fact 
that distances vary with the translation of minutiae produced by ridge deformations in 
the process of capturing the image even by different skin conditions or pressure. 
Meanwhile we use a greedy algorithm for the local matching which is a simpler and 



174 M. Iglesias Ham, Y. Bazán Pereira, and E.B. García Reyes 

faster heuristic. We obtain a more elaborated consolidation taking into account the 
similarities of several common substructures representing different areas with low 
levels of noise. Meanwhile, K-plet uses only the maximum substructure found to 
measure the global similarity. The K-plet graph does not ensure a connected 
representation restricting the expansion capacity of the method, not in the case of the 
Delaunay graph of our proposal. 
   In section 2, we discuss some issues about the representation of the topological 
relationships of minutiae. Our heuristic for multiple substructures matching using 
attributed Delaunay minutiae graphs is given in section 3. The results of the 
experiments are presented in section 4 using some standard indexes of FVC 
competition protocol. Finally in section 5, conclusions and future work are presented. 

2   Representation  

Graphs provide a powerful representation technique in many areas of computer vision 
including Biometrics. In particular, the structural relationships among minutiae have a 
good discrimination power. Here the basic idea is to recognise fingerprints by 
comparing the graph-structure. To the best of our knowledge, four different kinds of 
representations have been used to capture the local structural information in 
fingerprints based on minutiae: Minutiae Adjacency Graph (MAG) [7], K-nearest 
neighbour (K-NN)[4], K-plet[6] and Delaunay triangulation[3, 8, 9]. 

MAG, K-NN and K-plet do not ensure a connection between all parts of the 
fingerprint. In MAG two nodes of a graph are considered neighbours if the Euclidean 
distance between them is less than or equal to a threshold.  In K-NN representation, 
the Euclidean distances between a minutia and its neighbours are calculated and 
arranged in an increasing order selecting the k-nearest neighbours to form a star. In K-
plet to maintain high connectivity at least a neighbouring minutia is chosen in each of 
the four quadrants sequentially leading to directed edges. The Delaunay triangulation 
connects two nodes if they have adjacent Voronoi neighbourhoods. Voronoi 
neighbourhood of a point is the set of points that are nearer to the reference point than 
to any other point [10, 11]. So in that way points connected by Delaunay triangulation 
are intuitively neighbours. The Voronoi diagrams and Delaunay triangulation 
approaches were originally introduced to study proximity relationship among objects 
in space. Delaunay triangulation ensures connectivity using approximately 2.6 edges 
by node, which is a very compact and effective representation to propagate matches 
globally, whilst K-plet needs at least 4 edges by node without warranty of a connected 
graph. 

In this paper, we represent a fingerprint feature set as a Delaunay triangulation. The 
Delaunay triangulation of a non-degenerate set of points is unique.  One problem is 
that it is sensitive to noise and distortions (e.g, introduced by missing or spurious 
minutiae points). However, the insertion of a new point in a Delaunay triangulation 
affects only the nearby triangles. As a result, noise affects the Delaunay triangulation 
only locally. This means that correct identification will be possible if some regions of 
the fingerprint have not been seriously affected. In [12] the robustness of various 
closest point graphs to corruption was investigated. The conclusion reached was that 
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the Delaunay graph is the most resistant to disruption, a result of considerable 
significance to the matching of noised fingerprints.   

We store translation and rotation invariant attributes as the minutiae type in the 
nodes; in the edges, the distance between the connected minutiae (D) and the angles 
between the minutiae directions and the edge in the clock direction (α1, α2), as shown 
in the Figure1. 

 

Fig. 1. Minutiae and edge attributes in the graph. T1 and T2 are the types of minutiae; D is the 
edge length or distance between minutiae and α1, α2 the angles between minutiae directions 
and the edge in the clock direction.  

3   Multiple Substructures Matching: MSM 

The heuristic comes from the fact that two fingerprints represented as Delaunay 
minutiae graphs share common substructures belonging to a set of nodes that remains 
in both prints with low deformation errors. An example of a common substructure in 
two fingerprints from the same finger, where the local neighbourhood of two 
matching nodes looks similar, is shown in the Figure 2.  

The method compares each node in the reference graph with each node in the 
model graph finding a common substructure starting from them simultaneously and 
propagating the match to other nodes in the neighbourhood eventually. 

3.1   Local Substructure Matching (Star Matching) 

There are two main processes for the comparison of the local substructures. The first 
is the measurement of the similarity between the adjacent edges to the central vertex 
(Sa), and the second is the measurement of the similarity between the adjacent 
vertexes to the central vertex (Sv). If both of the previous similarities are greater than 
zero then they are combined to emit a final similarity score between both stars, giving 
a predominant weight to the similarity of the adjacent edges, as shown in the 
following equation (1). 

St = 0.35 * Sv + 0.65 * Sa . (1) 
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Fig. 2. Example of a common substructure in Delaunay minutiae graphs in two fingerprint 
images of DB1A FVC2002 

3.1.1   Measurement of the Similarity Between the Adjacent Edges to the Central 
Vertex 

A greedy algorithm is used to associate the edges of the first star to the edges of the 
second local structure. The previously associated edges are marked so they are not 
associated again in further steps. The similarity of the associated edges are stored and 
counted. The inferiority in the number of vertexes in the first star is guaranteed by the 
method. The similarity between two edges is measured as follows. 

Two edges (a1 and a2) are considered similar if the angles α1 and α2 are similar 
by the formula (2) using the difference between angles (dang1, dang2). 

dang1 = ( |a1.α1 – a2.α1| > 180) ?  (360 - |a1.α1– a2.α1|) : |a1.α1 – a2.α1| . 
dang2 = ( |a1.α2 – a2.α2| > 180) ?  (360 - |a1.α2– a2.α2|) : |a1.α2 – a2.α2| . 

dang1 < AngleThreshold . 
dang2 < AngleThreshold ., 

    (2) 

and the distances (lengths of the edges) are similar by the formula (3) using the ratio 
of length (Rd). 

Rd = |a1.D - a2.D| / Min(a1.D,a2.D) . 
Rd < DistanceThreshold . 

(3) 

Finally if the constraints of distance and angles are satisfied the similarity (s) of a 
pair of edges is evaluated as formula 4 shows. 

s = 1 – Rd .    (4) 

In other cases the similarity is evaluated in zero and it is considered that the edges 
do not match. Once we have an association of adjacent edges by means of the greedy 
strategy, the final similarity (Sa) is evaluated as appears in the equation bellow (5). 

Sa  = SumEdgesPairSim / NumEdgesPairs . (5) 

Where NumEdgesPairs is the number of associated adjacent edges and 
SumEdgesPairSim is the sum of the respective similarities. 

Our proposal makes a final correction of the similarity score taking into account 
the type of minutiae in the center of the stars. If there is a coincidence in the minutia 
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type the final score is increased in a 30% otherwise is decreased in the same 
percentage.  

3.1.2   Measurement of the Similarity Between the Adjacent Vertexes to the 
Central Vertex 

In the star, similarly to the measurement of the matching scores in the adjacent edges, 
a greedy algorithm is used to associate the vertexes of the first star to the vertexes of 
the second local structure. The previously associated vertexes are marked so they are 
not associated again in further steps. The similarity of the associated vertexes are 
stored and counted. The inferiority in the number of vertexes in the first star is 
guaranteed by the method. The similarity between two adjacent vertexes is measured 
as the similarity of its respective adjacent edges using the same procedure defined in 
section 3.1.1. The final similarity between the adjacent vertexes (Sv) is defined as in 
the equation stated bellow (6). 

Sv = SumVertexPairSim / MinNumVertexes . (6) 

Where MinNumVertexes is the number of adjacent vertexes of the first vertex (degree) 
and SumVertexPairSim is the sum of the similarities of the associated vertexes. 

3.2   Local Substructure Expansion 

Given a vertex pair v1 and v2 not previously marked as belonging to the common 
substructure, the local star similarity is measured. If they are considered sufficiently 
similar based on the local similarity, the vertexes are accepted in the common 
substructure and marked. The expansion is attempted from the first pair of edges 
(selecting a reference edge adjacent to v1 and comparing to the set of edges adjacent 
to v2) with similarity greater than zero with the respective adjacent vertexes 
unmarked. The mentioned adjacent vertexes are then considered as the centers of a 
new pair of stars for performing a new local matching. If the expansion fails because 
the new vertexes are not similar enough, then the algorithm will attempt to associate 
the reference edge in v1 to other consecutive edge in v2 for a possible expansion. The 
similarities of the pairs of vertexes accepted in the common substructure measured as 
the star similarities are stored (sumStarSim) and counted (subsSize). The strategy 
mentioned is similar to the DFS with the restriction that the traversal is made 
simultaneously in both graphs and the vertexes are visited only if they have a similar 
star structure. 

The final similarity measure between a common substructure (Sim) is evaluated by 
the expression 10, taking into account a weight in the size of the substructure (sizeW) 
regarding the number of vertexes in the shorter graph (MinNumVertexes) as shows the 
formula 7, and the average of the similarities of its pairs of associated vertexes (Av) 
(8,9). 

sizeW = subsSize / MinNumVertexes . (7) 

If the size of the common substructure is greater than 6 or greater than the 70% of 
the total of vertexes of the shorter graph then the Av is evaluated as follows (8). In 
other cases formula 9 is used. 
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Av = sumStarSim / subsSize . 

Av = sumStarSim / MinNumVertexes . 

Sim = sizeW * Av . 

(8) 

(9) 

(10) 

3.3   Global Similarity Consolidation 

The human expert performs a first visual comparison of all the minutiae in the 
reference fingerprint against all minutiae in the query fingerprint taking into account 
the nearby context. Starting by a pair of minutiae, both neighbourhoods are analyzed 
looking for matching and expanding the similar area as long as it is possible. 

Our proposal reproduces this behavior. The first step is to obtain the graph with the 
lower number of vertexes (g1) to assume it belongs to the query fingerprint. The 
bigger graph (g2) represents the reference fingerprint. This is related to the search of a 
fragment of impression realized by an expert in a stored fingerprint. 

The next step is to find the correspondences of vertexes of graph g1 in the set of 
vertexes of graph g2. Each vertex of g1 is associated with the vertex of graph g2 from 
which it is obtained the best similarity using a greedy strategy. The previously 
associated vertexes are marked so they are not used again in the subsequent 
associations. It is necessary a similarity of the common substructure starting by a pair 
of vertexes greater than zero to be considered in the association process. The search of 
the common substructure is made first looking for a local minutia matching (star 
matching) and finally expanding the common local structure by a minutia in a 
sequence of local matchings. 

It is possible that starting from a pair of common minutiae there is not a connected 
substructure that contains all the coincidences of both prints even when they belong to 
the same finger. This is due to the graph deformations produced by missing minutiae 
or false minutiae occurrence in the feature extraction process, apart from the nonlinear 
geometric deformations that produce a bound in the possible expansion of the 
common substructure. This is the reason why, starting by different corresponding 
minutiae pairs it is possible to find different common substructures. Each of these 
common substructures contains relevant information for the global similarity of a pair 
of fingerprints. 

There are three cases in the consolidation of the global similarity from the 
similarities of the multiple common substructures found by each vertex of the 
reference graph: 

1. If the number of vertexes of the reference graph that found a similar substructure 
is greater than 5 then it is considered that there is a relevant number of 
representatives and the final similarity is the average of the similarities of the best 
substructures found by each vertex.  This procedure is similar to the expert criterion 
of the necessity of at least 6 minutiae to emit a relevant similarity score. 
2. If the mentioned number is lower than 6 then the ratio regarding the total of 
vertexes of g1 (the shorter graph) is evaluated. If this ratio is superior to a threshold 
then the final similarity is the average of the similarities of the best substructures 
found by each vertex. It is the case when the reference fingerprint is a segment of 
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impression with a low number of minutiae of which a considerable number reach a 
local correspondence at least. 
3. If the number of associated vertexes is not representative regarding the total of 
vertexes of the shortest graph, the final global similarity is evaluated in zero.  

4   Experimental Results 

A series of experiments have been conducted on the test data set of FVC.  We use 
standard indexes of comparison that appear published in the official site for the 
competition of verification FVC [13] as the EER and FMR. Each FVC databases 
contains 100 different fingers and 8 impressions for each one yielding a total of 800 
fingerprints. For FMR (False Matching Rate) the total number of impostor test is 
(100*99)/2) = 4950. For FNMR (False Non-matching Rate) the total number of 
genuine test is (8*7)/2*100 = 2800.  

We think it is important to compare our approach with previous methods using 
local structural similarity. First experiment compares our approach with the algorithm 
based on graph matching principles presented by Sharat et al. at ICB2006 as shown in 
Table 1. 

Table 1. A summary of the comparative results w.r.t. Sharat et al. algorithm 

Database Sharat et al. Algorithm K-plet Proposed Approach, MSM 
 EER FMR100 EER FMR100 

FVC2002 DB1 1.5% 1.65% 0.56% 0.5% 

We also compare our algorithm with a minutiae-based matching scheme proposed 
by Yansong et al. at ICPR2006 [14], which introduced a concept of compatibility to 
the minutiae triangle structures and adopted a relaxation process to adjust the 
similarity matrix of the minutiae triangle cells between the query and template 
images. This experiment was performed on the DB1_A of FVC2004. FVC2004 
databases are markedly more difficult than FVC2002 and FVC2000 ones, due to the 
perturbations and geometrical deformations deliberately introduced. Table 2 describes 
our results compared to Yansong et al. algorithm. 

Table 2. A summary of the comparative results w.r.t Yansong et al. algorithm 

Database Yansong et al. Algorithm Proposed Approach, MSM 
 EER EER 
FVC2004 DB1 9.4% 8.09% 

We compare our approach with a minutiae based fingerprint verification algorithm 
using Delaunay triangulation presented by Deng and Huo [3], at the AVBPA 2005. 
This algorithm tries to find the best-matching edge pairs in the local structure instead 
of finding best-matching minutiae pairs. The global matching score between two 
fingerprints is calculated by using an aligned-edge-guided triangle procedure. Table 3 
describes our results compared to Deng and Huo algorithm. 
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Table 3. A summary of the comparative results w.r.t Deng and Huo algorithm 

Database Deng and Huo AVBPA2005 Proposed Approach, MSM 
 EER EER 

FVC2002 DB1 1.82% 0.56% 
FVC2002 DB2 1.52% 0.71% 

5   Conclusions and Future Work 

In this paper, we apply a heuristic method to obtain a similarity measure between two 
fingerprints represented as attributed Delaunay graphs based on the comparison of 
multiple common substructures. This algorithm is simple, fast and does not need an 
explicit alignment between both fingerprints. We obtain a better global similarity 
measure taking into account the similarities of several common substructures 
representing correspondences of different areas of the impressions with low distortion 
errors. Another contribution is that we guarantee a connected graph in order to allow a 
total global substructure expansion unlike K-plet representation of Sharat et al. Also, 
the space complexity of DFS traversal is much lower than BFS (breadth-first search). 
It also lends itself much better to heuristic methods of choosing a likely-looking 
branch as in our case of study. 
    We compared our method with several algorithms recently published and we obtain 
better results without many efforts tuning the thresholds.  Especially, using FVC2002 
DB1 database we reach an EER of 0.56% and FMR100 of 0.5%. We do not tackle the 
particular problem of correcting the relevant non-linear deformations as included in 
FVC2004 databases in this contribution. However in a preliminary experiment with 
FVC2004 DB1A we obtain a better EER index compared with the Yansong et al 
proposal. Nevertheless, we notice that no linear deformation of fingerprint is an 
important issue to deal with. Also, we want to develop an automatic methodology to 
learn the thresholds.  
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Abstract. We present in this paper a new method for improving range
image segmentation, based on Bayesian regularization of edges produced
by an initial segmentation. The method proceeds in two stages. First, an
initial segmentation is produced by a randomized region growing tech-
nique. The produced segmentation is considered as a degraded version of
the ideal segmentation, which should be then refined. In the second stage,
image pixels not labeled in the first stage are assigned to the resulting
regions by using a Bayesian estimation based on some prior assump-
tions on the region boundaries. The image priors are modeled by a new
Markov Random Field (MRF) model. Contrary to most of the authors
in range image segmentation, who use surface smoothness MRF mod-
els, our MRF model is based on the smoothness of region boundaries,
used to improve the initial segmentation by a Bayesian regularization
of the resulting edges. Tests performed with real images from the ABW
database show a good potential of the proposed method for significantly
improving the segmentation results.

Keywords: Image Segmentation, Range Image, Randomized Region
Growing, Bayesian Estimation, Markov Random Field.

1 Introduction

Segmenting an image consists in assigning its pixels in homogenous, continuous,
and disjoint sets, called image regions. Image segmentation is often essential for
high level image analysis and understanding. In an image, a region is defined
as the set of contiguous pixels that share a common propriety, called the region
homogeneity criterion. In range images, segmentation methods can be divided
in two distinct categories: edge-based segmentation methods and region-based
segmentation methods. In the first category, pixels which correspond to discon-
tinuities in depth or in surface normals are selected and chained in order to
delimit the regions in the image [5,11]. Edge-based methods are well known for
their low computational cost; however they are very sensitive to noise. Region-
based methods use geometrical surface proprieties to gather pixels with the same
properties in disjoint regions [4,1]. Compared to edge-based methods, they are
more stable and less sensitive to noise. However, their efficiency depends strongly
on the selection of the region seeds.
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Few authors have integrated Bayesian inference in range image segmenta-
tion. Jain and Nadabar [9] have proposed a Bayesian method for edge de-
tection in range images. Authors use the Line Process (LP) Markov Random
Field (MRF) model [7] to label image pixels as EDGE or NON-EDGE pixels.
Wang and Wang [15] have presented a hybrid scheme for range image segmenta-
tion. First, they proposed a joint Bayesian estimation of both pixel labels, and
surface patches. Next, the solution is improved by combining the Scan Line algo-
rithm [11], and the Multi-Level Logistic (MLL) MRF model [14]. In spite of var-
ious contributions of the works previously cited, some aspects inherent to range
image segmentation were omitted. Indeed, most of the works use markovian
models that are based exclusively on the surface smoothness prior. Moreover,
the proposed methods proceed by assigning pixels to clusters without ensur-
ing the continuity of the resulting clusters. Typically, in the approach proposed
by Wang and Wang [15], pixels belonging to coplanar regions may be labeled
equally in any of these regions. The spatial continuity constraint of resulting
regions seems that it was not taken into account.

The approach proposed in this paper provides first an initial segmentation
version, using an improved region growing technique, and then refines this version
by a Bayesian-MRF labeling. The refinement of the initial segmentation consists
in a Bayesian regularization of unlabeled pixels. The latter are mostly close
to region boundaries. A new Markov random field model is used to model the
prior information on region boundaries, assuming that edges in range images
are piecewise smooth. The new MRF model uses a high-order neighborhood
system, and is based on the assumption that edge pixels are situated on straight
lines that represent region boundaries. The use of the ICM algorithm (Iterated
Conditional Modes) [3] to search for the optimal solution has allowed us to
formulate region continuity by defining a constraint on the possible labels of a
given pixel. The experimentations performed with real images from the ABW
database [8] show a good potential of the proposed method to improve results
in range image segmentation.

The remainder of the paper is organized as follows: In Section 2, we introduce
the image segmentation by randomized region growing. Section 3 is devoted to
the proposed Bayesian approach for segmentation refinement. We present in this
section the new Markov Random Field (MRF) model, as well as the adaptation
of the ICM algorithm for the search of the optimal solution. Experimentations
are shown in Section 4, in which we present respectively the evaluation frame-
work, parameter selection, and some experimental results. Finally, a conclusion
summarizes our contribution.

2 Segmentation by Randomized Region Seed Sampling

A range image is a discretized two-dimensional array where at each pixel (x, y)
is recorded the distance d(x, y) between the range finder plane and the corre-
sponding point of the scene. In order to define a homogeneity criterium allowing
region growing, we use a new representation (d∗) of the row image, where d∗(x, y)
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represents the tangent plane to the surface at (x, y). The tangent plane at (x, y)
is obtained by the multiple regression method using the set of neighboring pixels
situated within a 3 × 3 window centred at (x, y), and whose depths are close,
according to a given threshold (Trh). The plane equation in a 3 − D coordinate
system may be expressed as follows:

z = ax + by + c (1)

where (a, b, −1)T is a normal vector to the plane, and |c|/
√

a2 + b2 + 1 is the
orthogonal distance between the plane and the coordinate origin. We consider
that a pixel belongs to a planar region, given its plane equation, if the distance
between the respective planes is less than (Trh), and the angle between the
respective normals is less than Trθ, where Trh and Trθ are respectively the
distance and the angle thresholds. The quality of plane estimation q(x, y) at
(x, y) according to the regression model is also computed. The latter is used to
select the best region seeds in the region growing algorithm.

Inspired from the RANSAC algorithm [6], our region growing technique is
based on random sampling of the region seeds. A generated seed is accepted if
only the surface estimation quality q at this seed is greater than a given threshold
Q. For every accepted seed, a region growing is performed by recursively includ-
ing homogenous pixels situated on the borders the region in growth. A given
seed centred at (xt, yt) is formed by the pixels in a W ×W window, belonging to
the same plane. The seed quality is represented by the minimum of estimation
qualities of pixels that form the seed. Selection-growing process is repeated until
no new region can be created. The randomized growing algorithm is described
as follows:

t=0
Repeat

Generate a random position (xt,yt)
If seed quality q>Q then

Perform a region growing starting from (xt,yt)
EndIf
t=t+1

Until none new region was generated since t-DT; DT>>1

Random sampling of region seeds permits to select the best seeds. These lat-
ter are characterized by a good quality. It allows to include in a given region
the largest possible set of homogenous pixels. Indeed, several seeds within the
same region can be generated; however none of these seeds is accepted. The first
generated seed for which the quality q is greater than Q will be accepted and
considered for region growing.

For each generated region Rl, the residual variance σ2
l is calculated as follows:

σ2
l =

∑

(x,y)∈Rl

(alx + bly + cl − d(x, y))2 (2)

where (al, bl, cl) are the plane parameters of the region Rl.



Bayesian Edge Regularization in Range Image Segmentation 185

3 Edge Regularization as Bayesian Estimation

3.1 Bayesian-MRF Pixel Labeling

We have used the piecewise smoothness of region boundaries as prior to model
distributions of pixel labels (MRF) in range images. Let S denote the image
lattice. At each site (x, y) ∈ S, d(x, y) is the depth at the site, and d∗(x, y)
represents the corresponding tangent plane equation parameters: d∗(x, y) =
(ax,y, bx,y, cx,y). Let M be the number of regions in the image. So, each site
(x, y) can take a label fx,y from the set of labels L = {l1, . . . , lM}. The labeling
set F = {fx,y, (x, y) ∈ S, fx,y ∈ L}, represents a segmentation of the image. If
we assume that F is markovian, segmenting S according to the Bayesian-MRF
framework [14] can be done by calculating the maximum a posteriori (MAP) of
the distribution of the set F : P (F/d), by considering F as a Markov Random
Field (MRF).

According to Bayes’ rule, the maximum a posteriori P (F/d) is expressed as
follows:

P (F/d) =
p(d/F )P (F )

p(d)
(3)

P (F ) = Z−1e−U(F ) is the a priori probability of F obtained according to the
Markov-Gibbs equivalence theorem [2].
Z =

∑
F e−U(F ) is a normalization constant called the partition function. The a

priori energy U(F ) is a sum of clique potentials Vc(F ) over the set of all possible
cliques C:U(F ) =

∑
c∈C Vc(F ).

In order to model the edge smoothness we use cliques formed by 9 sites located
in a 3 × 3 window. Let c9 be a clique of 3 × 3 sites centred at (x, y), and let ζ
(ζ < 0) a potential parameter. Considering possible configurations in Fig. 1, the
potential Vc of cliques in C can be expressed as follows:

Vc(c9(x, y)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ if ∃(x′, y′), (x′′, y′′) | fx,y = fx′,y′ = fx′′,y′′

and φ((x′, y′), (x, y), (x′′, y′′)) = π

0 if ∃(x′, y′), (x′′, y′′) | fx,y = fx′,y′ = fx′′,y′′

and φ((x′, y′), (x, y), (x′′, y′′)) = 2π/3

−ζ otherwise

(4)

where φ((x′, y′), (x, y), (x′′, y′′)) is the angle between the two vectors (x′−x, y′−
y)T and (x′′ − x, y′′ − y)T .

Configurations used to define Vc depend on the surface type. For images con-
taining polyhedral objects, considered in this work, Vc is defined on the basis
that the boundary between two adjacent regions is formed by pixels belonging
to the same straight line (Fig. 1). So, configurations which correspond to locally
unsmoothed edges are penalized by using a positive clique potential (−ζ).

The likelihood distribution p(d/F ), is obtained by assuming that the obser-
vations d are degraded by an independent Gaussian noise: d(x, y) = afx,yx +
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bfx,yy + cfx,y + e(x, y), with e(x, y) ∼ N(0, σ2
fx,y

). So, the likelihood distribution
is expressed as follows:

p(d/F ) =
1

∏
(x,y)∈S

√
2πσ2

fx,y

e−U(d/F ) (5)

with the likelihood energy U(d/F ) defined by:

U(d/F ) =
∑

(x,y)∈S

(afx,yx + bfx,yy + cfx,y − d(x, y))2/2σ2
fx,y

(6)

Since p(d) is constant for a fixed d, the solution F ∗ is obtained by maximizing the
a posteriori probability P (F/d) ∝ p(d/F )P (F ), which is equivalent to minimiz-
ing the a posteriori energy U(F/d) = U(d/F ) + U(F ): F ∗ = argmin{U(d/F ) +
U(F )}.

(a) (b)

Fig. 1. Clique potential Vc(c9) defined according to the edge smoothness prior. (a) Full
locally smooth edge : Vc(c9) = ζ; (b) Partial locally smooth edge : Vc(c9) = 0; Other-
wise, the edge is not locally smooth : Vc(c9) = −ζ.

3.2 Searching for the Optimal Solution

By assuming that F is markovian, and the observations {d(x, y); (x, y) ∈ S} are
conditionally independent, we have used the ICM algorithm [3] to minimize the
a posteriori energy U(F/d). By considering U(F/d) as a sum of energies over
all image sites: U(F/d) =

∑
(x,y)∈S U(fx,y/d(x, y)), we can separate it in two

terms:

U(F/d) =
∑

(x,y)∈S′

U(fx,y/d(x, y)) +
∑

(x,y)∈S−S′

U(fx,y/d(x, y)) (7)

where S′ is the set of sites which have not been labeled in the first stage (by
region growing): S′ = {(x, y) ∈ S | fx,y is undefined }. Assuming the correct-
ness of the labeling of the set S − S′ (performed in the first stage), the term∑

(x,y)∈S−S′ U(fx,y/d(x, y)) is thus constant. Minimizing the energy U(F/d) is
equivalent to minimizing the energy U ′(F/d) which corresponds to the sites in S′:

U ′(F/d) =
∑

(x,y)∈S′

U(fx,y/d(x, y)) (8)
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The assumption of the correctness of the labeling of S − S′ allows also to define
a constraint on the set of possible values that a site in S′ can have during the
execution of the ICM algorithm. Indeed, the label fk

x,y at the iteration k, of a
site (x, y) is chosen among the set L′(x, y) ⊂ L containing the labels of the sites
labeled in the first stage, and located in a W × W window centred at (x, y).
Formally, L′(x, y) is defined as follows:

L′(x, y) = {l|∃(x′, y′) ∈ S −S′, (x′ −x, y′ − y) ∈ [−W/2, W/2]2 ∧ fx′,y′ = l} (9)

The previous heuristics allow to speed up the calculation of the minimum of
the a posteriori energy U ′(F/d). They allow also to satisfy the region continuity
constraint. For the latter problem, if we assume that the horizontal distance
between two coplanar regions R1 and R2 is greater than W , labels lR1 and lR2

corresponding respectively to R1 and R2, cannot belong to the same set L′(x, y).
For example, if the site (x, y) belongs to R1, it can not be labeled lR2 , although
energies U ′(lR1/d(x, y)) and U ′(lR2/d(x, y)) are equal.

4 Experimentation

Hoover et al. have proposed a dedicated framework for the evaluation of range
image segmentation algorithms [8], which has been used in several related works
[11,13,4,1]. The framework consists of a set of real range images, and a set of
objective performance metrics. It allows to compare a machine-generated seg-
mentation (MS) with a manually-generated segmentation, supposed ideal and
representing the ground truth (GT). Instances of region detection are classified
into Correct detection, over-segmentation (one region broken is several small re-
gions) , under-segmentation (several regions merged in one large region), missed
region and noise region. Region classification is performed according to a com-
pare tool tolerance T ; 50% < T ≤ 100% which reflects the strictness of the
classification. The 40 real images of ABW set are divided into two subsets: 10
training images, and 30 test images. In this study, four methods, namely USF,
WSU, UB and UE, cited in [8] are involved in the result comparison.

4.1 Parameter Selection

Since the evaluation framework provides a set of training images with ground
truth segmentation (GT), we have opted to a supervised approach for the esti-
mation of parameters.

For the proposed method, named EBR for Edge Bayesian Regularization, five
parameters should be fixed: Trθ , Trh, W , Q, and ζ . The performance criterion
used in parameter selection is the average number of correctly detected regions
with the compare tool tolerance T set to 80%. The parameters are divided into
two subsets: 1) Trθ , Trh, W and Q which represent respectively the angle
threshold, the depth threshold, the window size, and the seed quality threshold.
These parameters are used by the randomized region growing algorithm. 2) The
potential parameter ζ, used during the segmentation refinement. For the first
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parameter subset, 256 combinations namely (Trθ, Trh, W , Q) ∈ {15, 18, 21, 24}×
{12, 16, 20, 24} × {5, 7, 9, 11} × {0.90, 0.95, 0.97, 0.99}, were run on the training
images. Resulting optimal values of the parameters are as follows: Trθ = 21◦,
Trh = 16, W = 7 and Q = 0.97. The selected value of W permits to estimate
the plane equation by considering a wide neighborhood (W 2 pixels), whereas Q
ensure that the plane parameters are reliable, and the window W × W is not
located between two different regions.

We have used the Coding method [2] to estimate the parameter ζ. For each
image in the training set, a pair of values of these parameters is calculated. One
value of this parameter is calculated for each image in the training set. The aver-
age is then computed and used as the final parameter value. The optimal value
for each training image is calculated by the simulated annealing algorithm [12],
using a Gibbs sampler [7]. The average value of ζ obtained with the training set
is −0.587 × 10−4.

4.2 Experimental Results

Region growing by randomized region seed sampling has provided better results,
compared to deterministic region growing (Fig. 2b,c). However, the resulting
segmentation often remains unsatisfactory. In Fig. 2c, we can note that most of
the unlabeled pixels are situated on the region boundaries. Fig. 2d show the result
obtained after edge regularization. Many pixels of boundaries were assigned to
certain regions so that resulting edges are more locally smooth.

(a) (b) (c) (d)

Fig. 2. Result comparison with abw.test.6 image. (a) Range image; (b) Segmentation
result by deterministic region growing; (c) Segmentation result by randomized region
growing; (d) Segmentation result after edge regularization.

Fig. 3 illustrate the impact of the Bayesian edge regularization on the segmen-
tation results, with all the test images. The two graphs show that segmentation
results are significantly improved for the high values of the compare tool tol-
erance T. Indeed, the edge regularization in range images allows to improve
segmentation accuracy, by optimal labeling of pixels close to region boundaries.
It was reported that segmentation methods provide better results when they pay
particular attention to process region boundaries [8,10].
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Fig. 3. Comparison of average results before and after edge regularization of the test
images, according to T ; 0.5 < T ≤ 1.0

(a) (b) (c)

Fig. 4. Segmentation result of abw.test.8 image. (a) Range image; (b) Ground truth
segmentation; (c) Segmentation result after edge regularization.

Fig. 4 shows the segmentation result of the image abw.test.8, with the compare
tool tolerance T set to 80%. This image was considered as a typical image to
compare the involved methods [8,4]. Fig. 4a shows the range image; Fig. 4b
shows the ground truth segmentation, whereas 4c represents the segmentation
result obtained by our method. Metrics in Table 1 show that all image regions
detected by the best-referenced segmenter (UE) were detected by our method.
The shadowed region has not been detected by any segmenter, due to high
distortions in this region. The incorrectly detected regions are those with small
sizes and situated on the horizontal support. Compared to the other methods,
values of incorrect detection metrics are also good. Our method is equivalent to
UE and scored higher than the others.

Fig. 5 shows the average numbers of correctly detected regions for all test im-
ages and according to the compare tool tolerance T ; T ∈ {51, 60, 70, 80,90,95%}.
Results show that the number of correctly detected regions by our method is
equivalent to UE and better than those of USF, UB, and WSU. For instance,
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Table 1. Comparison results with abw.test.8 image for T=80%

Method GT Correct Over- Under- Missed Noise
region detection segmentation segmentation

USF 21 17 0 0 4 3
WSU 21 12 1 1 6 4
UB 21 16 2 0 3 6
UE 21 18 1 0 2 2

EBR 21 18 2 0 1 1

Fig. 5. Average results of correctly detected regions of all methods, according to the
compare tool tolerance T ; 0.5 < T ≤ 1.0

our system scored higher than WSU and UB for all the values of the compare
tool tolerance T . It scored higher than USF for T ≥ 60%. For all incorrect
detection metrics (Over-segmentation, Under-segmentation, Missed, Noise), our
method has equivalent scores to those of UE and USF. The two latter scored
higher than UB and WSU.

5 Conclusion

We have presented in this paper a new Bayesian method for range image seg-
mentation. The refinement of the initial segmentation using the Bayesian-MRF
framework has allowed improving significantly the segmentation results. We have
presented a new MRF model which allows to model the edge smoothness, con-
sidered as the prior assumption on region boundaries in range images. Several
tests were performed on real images from the ABW database. The average run
time is 8 sec., on a Compaq PC n×8220. The recorded run times were better
than those provided by region based methods, and equivalent to edge-based ones.
For instance, the average run time for UE algorithm was 6.3 min. Obtained re-
sults show the great potential of the proposed method for providing efficient and
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accurate range image segmentation. The proposed method scored equivalent re-
sults to those of UE algorithm, however, computing time in our case was highly
improved.
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Abstract. Segmentation through seeded region growing is widely used
because it is fast, robust and free of tuning parameters. However, the
seeded region growing algorithm requires an automatic seed generator,
and has problems to label unconnected pixels (the unconnected pixel
problem). This paper introduces a new automatic seeded region grow-
ing algorithm called ASRG-IB1 that performs the segmentation of color
(RGB) and multispectral images. The seeds are automatically generated
via histogram analysis; the histogram of each band is analyzed to obtain
intervals of representative pixel values. An image pixel is considered a
seed if its gray values for each band fall in some representative interval.
After that, our new seeded region growing algorithm is applied to seg-
ment the image. This algorithm uses instance-based learning as distance
criteria. Finally, according to the user needs, the regions are merged using
ownership tables. The algorithm was tested on several leukemia medical
images showing good results.

Keywords: Image Segmentation, Seeded Region Growing, Instance-
based learning, Color image, Multispectral image.

1 Introduction

The image segmentation process consists in grouping parts of an image into units
that are homogeneous with respect to one or more characteristics [2]. Image
segmentation can also be viewed as a process of pixel classification in the sense
that all pixels that belong to the same region are assigned the same label [6].
Automatic image segmentation is a fundamental step in many image processing
applications such as automatic object recognition, because it allows to separate
areas of interest of an image and, consequently, reduce the processing effort.

There exist five main approaches to perform image segmentation: thresh-
olding techniques [12], boundary-based methods [9], region-based methods [11]
clustering-based techniques [8], and hybrid techniques [4]. A good review of these
approaches can be found in [3]. Despite the numerous segmentation algorithms
that have been proposed in the literature, image segmentation is still subject of
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research, and is not possible to state that the segmentation problem has been
solved because of the diversity of applications [17].

Seeded region growing (SRG) is a hybrid method proposed by R. Adams and
L. Bischof [1]. This method starts with a set of n initial seeds A1, A2, . . . , An,
and, at each steep, it grows the seeds Ai by merging a pixel x with its nearest
neighboring seed region Ai. This algorithm is fast, robust, and free of tuning pa-
rameters [6], nevertheless, the algorithm does not automatically generate seeds,
and also has problems to label unconnected pixels [6] (the unconnected pixel
problem). To deal with the first problem, F. Shih and S. Cheng [14] proposed
an automatic seeded region growing algorithm for color image segmentation.
The algorithm transforms the input RGB image into a Y CbCr color space, and
selects the initial seeds considering a 3X3 neighborhood and the standard de-
viation of the Y , Cb, and Cr components. Afterwards, the seeds are grown to
segment the image. Finally, region merging is used to merge similar or small
regions. In [6] three methods to automatically generate seeds are proposed. The
first one partitions the image into a set of rectangular regions with fixed size and
selects the centers of these rectangular regions as the seeds. The second method
finds the edges of the image and obtains the initial seeds from the centroid of the
color edges. Finally, the third method extends the second method to deal with
noise applying an image smoothing filter. A. Tremeau and N. Borel [16] present a
color segmentation algorithm that combines region growing with region merging.
The algorithm starts with the region growing process taking into account color
similarity and spatial proximity, afterwards, the resulting regions are merged on
the basis of a criterion that only takes into account color similarity.

This paper introduces a new automatic seeded region growing algorithm called
ASRG-IB1 (Automatic Seeded Region Growing - Instance-based Learning) that
performs the segmentation of color (RGB) and multispectral images. First, ho-
mogeneous seeds are automatically obtained via histogram analysis. The his-
togram of each band is analyzed to obtain a set of representative pixel values,
and the seeds are generated with all the image pixels with representative gray
values (section 4.1). Second, a modified seeded region growing algorithm is ap-
plied to perform the segmentation. This algorithm makes use of instance-based
learning as similarity criteria. Finally, according to user needs, the regions are
merged using ownership tables.

This paper is organized as follows. Section 2 gives an overview of the original
seeded region growing algorithm and Section 3 gives an overview of instance
based learning. In Section 4 our proposed algorithm is described. In Section 5
the experimental results are presented and in Section 6 we present the main
conclusions of this work.

2 Seeded Region Growing

To begin, the seeded region growing algorithm needs n seeds A1, A2, . . . , An. The
decision of what is a feature of interest is embedded in the choice of seeds [1].
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Let T be the set of all unallocated (non labeled) pixels that border at least one
Ai region after m iterations:

T =

{
x /∈

n⋃

i=1

Ai|N(x) ∩
n⋃

i=1

Ai �= �
}

where N(x) is the second-order neighborhood (8-neighbors) of pixel x. If we
have that N(x) intersects only one labeled region Ai, then, we define the label
i(x) ∈ {1, 2, . . . , n} to be an index such that:

N(x) ∩ Ai(x) �= �

If we have that N(x) meets two or more regions Ai then we define δ(x, Ai) to
be a measure of how different is x from the region Ai that N(x) intersects:

δ(x, Ai) = |g(x) − meany∈Ai(x) [g(y)]|

were g(x) is the gray value of pixel x. The value of i(x) will be the value of i
such that N(x) meets Ai and δ(x) is minimized:

i(x) = {i|N(x) ∩ Ai �= � ∧ δ(x) is the minimum}

3 Instance-Based Learning

3.1 Learning Task and Framework

Instance-based learning algorithms are derived from the nearest neighbor pattern
classifier. This kind of algorithms stores and uses only selected instances to
generate classification predictions by means of a distance function. The learning
task of these algorithms is supervised learning from examples.

Each instance is represented by a set of attribute-value pairs, and all instances
are described by the same set of n attributes. This set of n attributes defines
an n-dimensional instance space. One of the attributes must be the category
attribute and the other attributes are predictor attributes.

The primary output of an Instance-based learning algorithm is a function that
maps instances to categories called concept description; this concept description
includes a set of stored instances and, possibly, information about the classifiers
past performance. The set of stored instances can be modified after each training
instance is processed. All Instance-based learning algorithms are described by
the following three characteristics:

1. Similarity function: computes the similarity between a training instance i
and the instances stored in the concept description. The similarities are
numerical-valued.

2. Classification function: This function receives the results of the similarity
function and the performance records stored in the concept description. It
yields to a classification for the training instance i.
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3. Concept description updater: Keeps the records of classification performance
and decides the instances to be included in the concept description. It yields
to a modified concept description.

Similarity and classification functions determine how the instances stored in
the concept description are used to predict the category of the training instance i.

3.2 IB-1 Algorithm

IB-1 is the simplest Instance-based learning algorithm. The distance function
that it uses is:

Distance(x, y) =

√√√√
n∑

i=1

f(xi − yi)2

where x is a test instance, y is a trainig instance and xi is the value of the
i − th attribute of instance x. The instances are described by n features. The
IB-1 algorithm is presented in Table 1.

Table 1. IB-1 Algorithm (CD = Concept Description)

CD ← �
For each x ∈ Training set do

1. For each y ∈ CD do
Dist[y] ← Distance(x, y)

2. Mdist← the y ∈ CD with minimum Dist[y]
3. class(x) = Mdist
4. CD ← CD ∪ x

To label an instance, the IB-1 algorithm computes the distance between the test
instance and the instances stored in the concept decription, and stores the nearest
instance. The class of the test instance will be the class of the nearest instance.

4 ASRG-IB1 Segmentation Algorithm

4.1 Automatic Seed Generation

An overwiew of the automatic seed generation algorithm is shown in Fig. 1.
The first step divides the histogram in subintervals. Let hb(p) be the histogram

function, this function receives a gray value p (0 ≤ p ≤ 255) and returns the
number of pixels of band b with gray value equal to p. To divide the histogram
we must find the cut points. All the gray values p that satisfy the next two
conditions will be taken as cut points:

1. hb(p − 1) ≥ hb(p)
2. hb(p + 1) > hb(p)
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Obtain the seedsFor each band

Reduce the intervals amplitude and fuse
consecutive intervals

Group the subintervals according to their amplitude
and delete the nonrepresentative subintervals

Obtain the magnitude of each subinterval

Divide the histogram in subintervals

Fig. 1. Overwiew of the automatic seed generation algorithm

Table 2. Subintervals Sj obtained from a given histogram function hb(p) with q cut
points

S1 = [0, C1]

S2 = [C1 + 1, C2]

S3 = [C2 + 1, C3]

. . .

Sm = [Cq, 255]

The cut points indicate the end and the beginning of each subinterval. Table 2
shows the subintervals Sj obtained from a given histogram function hb(p) with
q cut points, where Ci is a cut point (1 ≤ i ≤ q), Sj is a subinterval (1 ≤ j ≤ m)
and m is the number of resultant subintervals.

The second step obtains the amplitude of each subinterval. For a given subin-
terval Sj = [Sj,1, Sj,2] the amplitude is given by:

amp(Sj) = Sj,2 − Sj,1 + 1

The third step groups the subintervals according to their amplitude to delete the
non representative subintervals. For all subintervals Sj with amplitude amp(Sj)
= α, the most representative subinterval is the one with the largest amplitude:

mrs(α) = arg max
∀S|amp(S)=α

amp(S)

A subinterval Sj is nonrepresentative if:

amp(Sj) ≤ 1
2
mrs(α)

The fourth step reduces the representative intervals amplitude. For a given
representative subinterval Sj = [Sj,1, Sj,2] of band b, the most representative
gray value is:

mrg(Sj) = arg max
∀Sj,1≤β≤Sj,2

hb(β)

A gray value γ of a representative subinterval Sj of band b is representative
if:

hb(γ) >
1
2
mrg(Sj)
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All the nonrepresentative gray values must be removed from the interval,
producing a reduced interval.

Depending of the application, the consecutive resultant reduced intervals can
be merged. For example, the reduced intervals [12-18], [19-25] produce the new
merged interval [12-25]. Interval merging lower the quantity of homogeneous
seeds, and must be avoided if the application needs the highest separation among
seeds (i.e. the user needs the maximum level of homogeneity in the regions).

The final step is to generate the seeds. A pixel x is considered as a seed if
its gray values on each band fall inside a representative interval of the same
band. If the gray values of two seed pixels fall inside the same representative
intervals, the pixels will be labeled with the same region ID. The output of the
seed generator is a set with n seeds A1, A2, . . . , An.

4.2 Region Growing and Instance-Based Learning

The region growing algorithm is shown in Fig 2. The automatically generated
seeds are used to construct the classifier using the region ID as the class of the
pixel. Before the region growing step, the sets of pixels to label P and unallocated
(non labeled) pixels Q must be defined. All the seeds must be grouped according
to their region ID (region sets R). The region growing step obtains the pixels
that must be labeled (set P ) and updates the set Q. We use the IB1 classifier to
label the regions. Because all the pixels are considered without concerning what
regions they meet, pixels that in the original seeded region growing algorithm can
not be reached by the region to which they belong (unconnected pixel problem)
are labeled. After labeling, the IB1 classifier must be updated to consider the
newly labeled instances. The algorithm stops when set Q is empty.

Labeled pixels
(seeds)

Labeled pixels
(seeds)

Initial
sets

Sets and classifier

Sets
and

classifier

Initial
Classifier

Sets an updated
classifier

True

False

|Q| = 0

End of the
segmentation

Automatic

seed generation

Region growing

Pixels to classify

Unallocated pixels

P = {x | x Q N(x) R }
i = 1 i

m

Q = {x | x R P}
i = 1

i

m

Initial set construction

Regions set

Pixels to classify

Unallocated pixels

P = { }

Q = {x | x R P}
i = 1i = 1 i

m

R , R , ..., R1 2 m

Classify the elements of P

Regions

R = {R x if x was labeled with 1}
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.

R = {R x if x was labeled with m}

1 1

2 2

m m
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Bulding

Concept
Descriptor

Distance
function

Classifier

Update

Concept
Descriptor
Update

Fig. 2. Region growing algorithm
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4.3 Ownership Tables and Region Merging

In many real world applications the user may need the segmentation of an image
over different levels of abstraction, for example, in remote sensing, several regions
may form a concept (a region with a specific semantic for the user), and these
concepts may be merged to form a higher level concept.

At this point, the algorithm has obtained the homogeneous regions of the
image, these regions represent a segmentation at the lowest level of abstraction.
To complete the task it is necessary to merge the regions according to the user
needs.

Ownership tables allow the user to merge regions according to his needs. The
user manually selects the regions that must be merged and those regions ID’s are
stored in a table. An ownership table indicates which regions must be merged
to form the concept that the user wants, so, the concept must be completely
defined by its ownership table, and distinct concepts can not have the same
table. The elements of an ownership table can be of two kinds, ambiguous and
unambiguous. The unambiguous elements are regions that only belong to one
ownership table and ambiguous elements can belong to two or more tables.

Fig. 3(a) shows a white cell blood with cytoplasm in the bottom. Fig. 3(b)
shows the result of the proposed algorithm ASRG-IB1. Finally, Fig. 3(c) shows
the result after the user-guided region merging trough ownership tables. An
example of an ownership table is shown in Fig. 4.

Fig. 3. (a) RGB image of a white blood cell with cytoplasm. (b) Image segmented with
ASRG-IB1. (c) Image segmented after region merging.

Fig. 4. Ownership table for Figure 2(c)
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5 Experimental Results

This section shows the results of the proposed algorithm on RGB leukemia med-
ical images. Leukemia is a cancer of the blood characterized by an abnormal pro-
liferation of white blood cells (leukocytes). Experiments were made over thirty
distinct images, with the objective of segmenting white blood cells of the image
to study their characteristics and determine if a given patient has leukemia.

Fig. 5. (a) Original RGB images. (b) Images segmented with ASRG-IB1. (c) Images
segmented with region growing. (d) Images segmented with auto threshold.

There is not a generally accepted methodology (in the field of computer vi-
sion) which elucidates on how to evaluate segmentation algorithms [10], [15].
Comparing different segmentation algorithms with each other is difficult mainly
because they differ in the properties they try to satisfy. Segmentation qual-
ity assessment requires a manually generated segmentation (for reference) plus
computer-generated segmentations corresponding to different image segmenta-
tion algorithms or algorithm parameter settings [10]. In this domain, it is difficult
to find or generate manual segmentations so, the most common method for seg-
mentation quality evaluation is a visual inspection made by domain experts.

For this comparison we used the HALCON [7] implementations of the region
growing algorithm, and the implementation of the auto threshold algorithm.
Auto threshold segments images using multiple thresholding. First, the relative
histogram of the gray values are determined, then, relevant minima are extracted
from the histogram, which are used successively as parameters for a thresholding
operation. The thresholds used are 0, 255, and all minima extracted from the
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histogram (after the histogram has been smoothed). For each gray value interval
one region is generated. The number of regions is the number of minima + 1.

Results are shown in Fig. 5. It can be observed that the proposed algorithm (b)
improves the original instance based algorithm (c) which oversegments the orig-
inal images (a). The segmentation results of the proposed algorithm are highly
competitive with respect to auto-threshold, even more, the proposed algorithm
finds more homogeneus regions and allows the user to define a concept hierarchy
by means of ownership tables.

6 Conclusions

We presented a new automatic seeded region growing algorithm that makes use
of instance based learning as its distance criteria. This algorithm preserves all
the advantages of the original SRG algorithm; furthermore, we presented a novel
method for automatic seeds generation via histogram analysis, and a region grow-
ing scheme that eliminates the unconnected pixel problem when considering all
pxeles to label as a single set. Instance based learning is the most suited machine
learning algorithm for this task because at each growing step the algorithm is
updated, opossed to other algorithms that construct an explicit representation
of the training data, and the representation is not updated during the classi-
fication step. Finally, ownership tables allow adjusting the segmentation result
to the user needs, and make possible the definition of levels of abstraction to
represent a concept hierarchy.

Acknowledgement. The first author acknowledges to CONACYT the support
provided through the grant for Master’s studies number 201804. The first author
also acknowledges to Erika Danaé López Espinoza for her valuable comments.
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Abstract. Distinguished regions can be detected with high repeatabil-
ity in different images of the same scene. Two definitions of distinguished
regions of an image in a mathematical morphology framework are pro-
posed: one based on the use of reconstruction operators on a series of
cross sections of a greyscale image, and the second based on extracting
regions present in a large number of levels of a watershed segmentation
hierarchy. The proposed distinguished regions are evaluated by measur-
ing their repeatability in transformed images of the same scene.

Keywords: distinguished region, hierarchical segmentation, repeatabil-
ity, watershed.

1 Introduction

Regions that can be detected with high repeatability in different images of the
same scene or object have many uses in computer vision. They have been par-
ticularly useful for finding correspondences between images for wide-baseline
stereo matching [1] and for locating features for object recognition [2]. These
regions have been referred to as invariant regions [3], covariant regions [4] and
distinguished regions [1]. We use the latter name in this paper.

We investigate distinguished regions that can be extracted within a mathe-
matical morphology framework. The first part, in Section 2, is of more theoretical
interest, as we show how a stricter version of the MSER detector [1] can be de-
fined using reconstruction operators on a sequence of cross sections of a greyscale
image, in a similar way to which the regional minima and maxima are defined.

We then consider extracting distinguished regions from segmentation hier-
archies (Section 3). Hierarchies encoding the fusion of regions created during a
watershed flooding of an image have been well studied [5]. These hierarchies have
been used to create an image partition containing a specified number of regions
by choosing a specific level of the hierarchy [6] or to assist in the manual creation
of image partitions by allowing simple fusion and splitting of regions [7]. Nev-
ertheless, the calculation of image features from the complete hierarchy instead
of from a single level of the hierarchy has received little attention, showing that

� Partially supported by the EU Network of Excellence MUSCLE (FP6-507752) and
the Austrian Science Foundation (FWF) under grant SESAME (P17189-N04).

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 202–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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much information available in the hierarchy is ignored. We suggest one possible
feature that can be extracted from such a hierarchy, namely the number of levels
in which a region of the partition is present. Regions which are present in a large
number of levels are considered good candidates for distinguished regions.

Measurements of the repeatability of the proposed distinguished regions across
transformed images of the same scene are presented in Section 4.

2 Intensity-Based Distinguished Regions

Of the region detectors described in [4], two operate directly on the intensity
values of a greyscale image, while the others make use of the detection of corner
points in a scale space or operate on the entropy of the probability density
function of intensities in an area. The two intensity-based detectors are the
Intensity Extrema-Based Region Detector (IBR) [8] and the Maximally Stable
Extremal Region Detector (MSER) [1].

The IBR begins by locating local intensity extrema in a series of smoothed
images. The derivative of the intensity is then evaluated on rays emanating
from each local extremum and the derivative extremum on each ray is found.
Connecting the positions of these extrema produces an irregularly shaped region,
which is replaced by an ellipse having the same shape moments.

An MSER is a connected component of an appropriately thresholded image
[4]. Given a greyscale image f with integer greylevels, an Extremal Region Q
is a connected component with the property that ∀p ∈ Q, q ∈ δ(1)(Q) \ Q :
f(p) > f(q), or alternatively f(p) < f(q). An extremal region is considered
to be maximally stable (i.e. to be an MSER) if the following holds [1]: Let
Q1, . . . , Qi−1, Qi, . . . be a sequence of nested extremal regions, i.e. Qi ⊆ Qi+1.
Extremal region Qi∗ is maximally stable iff q(i) = |Qi+Δ \ Qi−Δ| / |Qi| has a
local maximum at i∗ (|·| denotes cardinality). Δ is a parameter of the method.

As pointed out in [1], the algorithm for locating MSERs is essentially identical
to an efficient watershed algorithm [9]. For the watershed, the focus is on finding
the positions where two catchment basins merge, whereas for the MSER detec-
tion algorithm, the focus is on the rate of change of the area of each catchment
basin with increasing threshold. The connected components at which the rate of
change of area with threshold is a minimum are chosen as MSERs.

t

t+1

u

u +1

Fig. 1. Greyscale image
cross sections

A very strict version of this MSER detection algo-
rithm, in which the connected components for which
the rate of change of area with respect to threshold
is zero, can be formulated as a morphological recon-
struction based operator. We use the following nota-
tion (from [10]): CSt(f) denotes the cross section of
greyscale image f at level t (defined as the set of im-
age pixels whose values are greater than or equal to t)
and Rδ

g(f) denotes the morphological reconstruction
by dilation of a mask image g from a marker image f .
In a similar way to finding the regional maxima and
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minima in [10], we can see that if a connected component is identical in CSt(f)
and CSt+1(f), then it will not be reconstructed by Rδ

CSt(f) [CSt(f) \ CSt+1(f)]
(see levels u and u+1 in Figure 1). If however the connected component in CSt(f)
is larger than the corresponding connected component in CSt+1(f), then it will
be reconstructed (see levels t and t + 1 in Figure 1, where the hatches represent
the set difference between the two levels). Hence the connected components at
threshold level t that are identical in level t + 1 can be found by

STt(f) = CSt(f) \ Rδ
CSt(f) [CSt(f) \ CSt+1(f)] (1)

The binary image containing all the distinguished regions is calculated as the
union of STt(f) taken over all greylevels present in the image, or

MDR(f) =
⋃

STt(f) (2)

For images which do not contain pixels which assume all possible greylevel values,
the values of t should be restricted to the greylevels for which the value of the
greylevel histogram Ht(f) is non-zero. This restriction is necessary as CSt(f)
will be identical to CSt+1(f) if no pixels with a greylevel of t exist in the image,
resulting in all connected components of CSt(f) becoming distinguished regions.

Unfortunately it is not possible to find the stable connected components by a
single greyscale reconstruction, as is done for the morphological regional maxima
and minima, because the structure of a function as a stack of binary cross sections
is not kept by the marker image in Equation 1. It may be possible to incorporate
the idea of a minimum rate of area change from the MSER calculation through
the use of attribute openings, but this remains to be investigated.

In practice, as the result of this algorithm includes very many small connected
components, we apply an area opening of size λ to the result:

AMDR(f) = γλ (MDR(f)) (3)

Figure 2(a) shows the regions obtained for an image with λ = 25 pixels.

3 Hierarchical Watershed-Based Distinguished Regions

We propose distinguished regions calculated from a watershed hierarchy based
on volume extinction values [11,5]. The hierarchy is built as follows [5]. During
the flooding process on an image, when a lake in a catchment basin is about to
overflow, the dissimilarity between this catchment basin and its neighbour into
which it would overflow is defined as the measurement of the volume of the full
lake. This can easily be represented on a region adjacency graph (RAG), where
each node represents a catchment basin, and each edge encodes the dissimilarity
between two neighbouring catchment basins. This type of flooding is most often
used to obtain a segmentation containing a specific number of regions: in order to
obtain a partition with N regions, the N −1 edges with the highest dissimilarity
values in the minimum spanning tree (MST) of the RAG are cut. Alternatively,
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(a) Rec AO25 (b) Ellipses fitted to Rec
AO25

(c) HWS Top50 (d) Ellipses fitted to HWS
Top50

Fig. 2. (a) Outlines (in white) of the reconstruction-based morphological distinguished
regions after an area opening of size 25 pixels. (c) Outlines of the 50 regions having
the highest survival values. (b), (d) Ellipses fitted to the regions.

the hierarchy can be visualised as a stack of nested partitions, where the partition
at level i contains i regions. This implies that in moving from level i to level i+1,
one of the regions in level i is split into two regions in level i + 1.

An obvious candidate for a distinguished region is a region which remains
constant over a large number of levels of the hierarchy of partitions. We define
the survival value of a region which “appears” at some level i (due to a split of a
region at level i−1), and “disappears” by splitting into two at level i+n to be n.
If these survival values are encoded into the regions in each level of the hierarchy,
then it is straightforward to find the longest surviving regions by searching for
the largest survival values. For efficient searching, the regions in level i which
are identical to regions in level i−1 are assigned survival values of 0. This avoids
having a series of identical regions in subsequent levels with stepwise decreasing
survival values, which would lead to multiple detection of a single region. On each
level of the hierarchy (except for level 1), there will therefore be two regions with
non-zero survival values. These two survival values on the same level are never
identical, as both new regions cannot split at the same level. The 50 regions with
the highest survival values in a hierarchy of 750 levels are shown in Figure 2(c).

4 Evaluation

We first summarise the framework for evaluating distinguished region repeata-
bility. A description of the experiments and a discussion of the results follows.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Part of the evaluation dataset. (a), (b) Viewpoint change, (c), (d)
Zoom+rotation, (e), (f) Image blur, (g) JPEG compression, (h) Light change. The
leftmost image of each set is the reference image (from [4]).

4.1 Evaluation Framework

The repeatability measures the extent to which regions detected in transformed
images of the same scene overlap. We use the evaluation framework presented
in [4]1. The framework consists of eight images, where each image is subjected
to five transformations, resulting in sets of six images. Examples from the image
sets are shown in Figure 3. The homographies between the reference images and
the other images for each set have been computed, allowing the overlap between
distinguished regions in the reference and another image to be evaluated.

In [4], only elliptical distinguished regions are considered, as these are intrin-
sically produced by four of the six algorithms tested. For the other algorithms,
ellipses approximating the regions are chosen. To be compatible with the frame-
work, we also fit ellipses to the edges of the regions produced by the proposed
methods, using the ellipse fitting algorithm in [12]. Examples of the ellipses fitted
to the detected regions are shown in Figures 2(b) and (d).

The repeatability is measured between the reference image and another image
from the set. The distinguished regions are detected in both images and those
1 http://www.robots.ox.ac.uk/∼vgg/research/affine/

http://www.robots.ox.ac.uk/~vgg/research/affine/
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from the second image are projected onto the reference image by using the known
homography. Two regions are said to form a region-to-region correspondence if
the overlap error is sufficiently small — in this paper we use 0.4 as was done for
the experiments in [4]. The overlap error is defined as [4]

1 −
Rμa ∩ R(HT μbH)

Rμa ∪ R(HT μbH)
(4)

where Ru is the region enclosed by the ellipse defined by xT μx = 1 and H is
the homography relating the images. The repeatability score for a pair of images
is the ratio between the number of region-to-region correspondences and the
smaller number of regions in the pair of images. Only regions located in the part
of the scene present in both images are counted. In addition, the regions are
transformed to have a normalised size before calculating the overlap, to avoid
the problems with regions of different sizes discussed in [4].

4.2 Experiments

The results of the repeatability tests for the eight groups of six images in the
dataset are shown in Figures 4 and 5, where the left column shows the repeata-
bility percentage and the right column the number of correspondences. Curves
corresponding to six methods are shown in each graph. The curves labelled
MSER and Hessian-affine correspond to the two best performing methods of
the six tested in the evaluation of affine covariant region detectors in [4].

For the distinguished regions based on the hierarchical watershed, the number
of levels of each hierarchy is set to 750 (limited by the amount of memory on
the computer used to perform the experiments). Each image is pre-processed by
applying a leveling [13] of size 3 to each channel separately. The hierarchy is built
on a gradient image obtained by applying the saturation weighing-based colour
gradient in the L1 colour space [14]. We evaluate three methods of choosing
the distinguished regions. The first two are based on setting a threshold on the
minimum number of levels that a region must survive in order to be chosen as
a distinguished region. We compared the use of a high threshold of 500 levels
(HWS Th500) and a low threshold of 100 levels (HWS Th100). This evaluates
if regions that survive over many levels in the original image also do so in the
transformed images, or if choosing a lower threshold, thereby including more
regions, leads to higher repeatability. The third method once again tests the
repeatability of the regions which survive over many levels by choosing the 50
regions with the highest survival values (HWS Top50).

For the reconstruction based distinguished regions (Equation 3), we plot the
results obtained using an area opening of size 25 pixels (Rec. AO25). Images
were converted to greyscale before applying this method.

4.3 Discussion

As has already been pointed out in [4], different algorithms perform better for
different transformations, as can be seen by the repeatability results for the
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(c) Wall repeatability
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(g) Bark repeatability
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Fig. 4. The repeatability (left column) and number of correspondences (right column)
for (a)–(d) viewpoint change and (e)–(h) scale change
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Fig. 5. The repeatability and number of correspondences for (a)–(d) blur, (e)–(f) JPEG
compression and (g)–(h) illumination change
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MSER and Hessian-affine detectors. The problem of comparing detectors pro-
ducing different densities of regions is discussed in [4]. They point out that for
detectors that produce few regions, the thresholds can be set so that the perfor-
mance is often better than average. For detectors that produce many regions, the
image may be so cluttered with regions that some get matched by accident. For
the distinguished regions from the hierarchical watershed, we examine this effect
by using the three ways listed above of choosing the number of distinguished
regions. The Hessian-affine detector produces the largest number of correspon-
dences for each image sequence except Wall, indicating that the density of the
distinguished regions is the highest.

For the viewpoint changes (Figure 4(a)–(d)), the MSER detector has the
highest repeatability. For the Graf image, it is interesting that the 50 regions with
the highest survival value (HWS Top50) are extremely stable for small viewpoint
changes and perform the worst for large viewpoint changes. The reconstruction
based detector (Rec. AO25) performs similarly to the Hessian-affine detector for
these images, outperforming it for the three largest viewpoint changes.

The morphological detectors prove to be bad at handling scale changes (Fig-
ure 4(e)–(h)). In particular for the Bark image, no matching distinguished re-
gions were found by three of the methods as the zoom-out becomes markedly
larger, leading to zero repeatability. Because we are dealing with scale changes,
the corresponding regions will occur at different levels of the watershed hier-
archy for different images. The fact that the (HWS Th100) performs the best
among the tested algorithms demonstrates this, as the (HWS Th500) and (HWS
Top50) only choose regions from the lower part of the hierarchy. Increasing the
maximum number of levels in the hierarchy should improve the repeatability for
scale change. For the blur images (Figure 5(a)–(d)), the reconstruction based
approach produces better repeatability results than the MSER for 8 of 10 trans-
formed images, but for a lower number of correspondences.

It is interesting that only for the JPEG compression images (Figure 5(e)–
(f)), the two hierarchical watershed based methods in which few distinguished
regions are selected perform better than the MSERs. Finally, for the illumination
changes (Figure 5(g)–(h)), all morphological methods have a repeatability below
that of the MSER and Hessian-affine methods.

In general, the HWS Th500 and HWS Top50 curves are very similar, indicat-
ing that there is little difference due to these methods of choosing the distin-
guished regions with the highest survival values. Based on the results, one cannot
determine whether it is better to choose a lower survival value threshold (HWS
Th100) leading to many distinguished regions or a higher threshold, as one of the
thresholds does not lead to consistently better results over all transformations.

5 Conclusion

Two methods for calculating distinguished regions in a mathematical morphol-
ogy framework are proposed. The first is based on reconstructions on a series
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of cross sections of a greyscale image and the second extracts regions from a
hierarchy calculated using a watershed based on volume extinction values.

Experiments measuring the repeatability of the extracted regions for different
types of image transformations are presented. The repeatability falls into the
range of the repeatability of the six algorithms tested in [4], without surpassing
the best algorithms. One of the drawbacks of the evaluation framework used is
that the difference in the number of regions (region density) extracted by each
algorithm is not taken into account, which could affect the repeatability results.

The limit of 750 levels of the watershed hierarchy limits the performance,
especially for scale changes. The advantage of the hierarchical approach is the
extensive information available in the hierarchy for defining distinguished re-
gions. We have so far only looked at one possible feature: the survival value. Use
of information on the region shape, region inclusion information, neighbourhood
information, etc., is an interesting area for future research.
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Abstract. Spontaneous intracerebral hemorrhage (ICH) is a common cause of 
stroke, due to this; the early evolution and quantitative analysis of the ICH is 
important for the treatment and the course of patient's recovery. Computer-
based diagnosis systems have played an important role in quantitative analysis 
of medical images aiding medical personnel in selecting the appropriated 
treatment of diseases. This paper outlines a set of three methods for ICH 
segmentation and tracking from computer tomography (CT) head images, based 
on a suitable combination of digital image processing and pattern recognition 
techniques. Two of these methods are carried out in a semiautomatic way and 
the other one is performed in a manual way. Methods developed were tested 
successfully by medical researchers in a representative dataset of CT head 
images (patient studies).  

Keywords: Intracerebral hemorrhage, medical images analysis, 3D mathematic 
morphology, segmentation and tracking, deformable models. 

1    Introduction 

Spontaneous Intracerebral hemorrhage (ICH) is a common cause of stroke, accounting 
for between 5 and 10% of all strokes. In a consecutive series of 938 stroke patients 
enrolled into the NINCDS Stroke Data Bank, primary ICH accounted for 10.7% of the 
cases. The age-adjusted annual incidence rates for primary intracerebral hemorrhage 
range from 11 to 31 per 100,000 populations in predominantly Caucasian population 
based-studies with a high rate of computer tomography (CT) scanning [1]. The early 
evolution and quantitative analysis of the human cerebrovascular illness are significant 
for the treatment and the course of patient's recovery. Computer-based diagnosis 
systems have played an important role in quantitative analysis of medical images aiding 
medical personnel in selecting the appropriated treatment of diseases [2]. 

Many approaches for ICH segmentation and tracking have been reported in the 
literature. Cosic and Loncaric [2, 3] proposed a method based on unsupervised fuzzy 
clustering and expert system-based procedure region labeling techniques that includes 
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volume measurement of the ICH and the edema regions but not always the automatic 
method perform a correct segmentation. Majcenic and Loncaric [4] proposed a 
stochastic method for ICH segmentation based on simulated annealing techniques. 
However these methods are computationally complex. 

This paper outlines a set of three methods for ICH segmentation and tracking from 
CT head images, two of these methods are performed in a semiautomatic way and the 
other one in manual way. One of the semiautomatic methods is focused mainly in 3D 
mathematic morphology operations and the other combine live wire and graphical 
information retrieval techniques. The manual method use mainly deformable models, 
but need a major user intervention although it demonstrated a more precise and 
accurate ICH segmentation. This method was included with the intention to evaluate 
the semiautomatic methods performance. 
    The set of methods was used by medical researchers to evaluate the behavior and 
changes of spontaneous ICH (shape, size, etc.) during the disease course and validated 
successfully in a representative dataset of 36 ICH CT head images patient studies.  

The paper is organized as follows: section 2 outlines the implementation of the 
proposed set of methods. In section 3 we describe results obtained with the 
application of methods to a representative dataset of ICH CT head images patient 
studies. Conclusions and some ideas about the future work are showed in section 4.  

2   Proposed Methods 

Developed methods for segmentation and tracking of spontaneous ICH from CT head 
images patient studies are based on suitable combinations of digital image processing 
and pattern recognition techniques. Included methods were:  

1. 3D mathematical morphology based method. 
2. Similarity based method. 
3. Manual based method.  

2.1    3D Mathematical Morphology Based Method 

This method relies on the application of 3D mathematical morphology, histogram 
analysis, optimal thresholding, and prior geometric information techniques. Each 
patient image study is considered as an anisotropic volume restricted manually to the 
most outer neighbor ICH slices, with the intention to increase the automation level of 
the segmentation process and to reduce the computational cost. 
    The computed tomography images have common intensities frequencies histogram, 
in that way, we can perform some important correlations between image objects of 
interest and the characteristics intensities level values of skull, grey matter and white 
matter. In our work was observed heuristically the ICH intensities frequencies 
histogram values are related to higher intensities, which was consider as the start 
point for image segmentation. 

2.1.1   Preprocessing 
The preprocessing remove short duration impulses and smooth lightly the image edges, 
applying a median filter slice by slice, in axial form, with a windows of 3x3 pixels. 
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2.1.2   ICH Auto-detection 
Autodetection consists in compute the global maximum, which is used as the 
threshold value for the ICH segmentation (to produce a binary mask). Hereafter 3D 
mathematical morphology operations are applied to autodetect the ICH. 
 
 

Algorithm 1. Semiautomatic method based on 3D mathematical morphology. 
 

1: Define ICH neighbor slices interval. 
2: Create an anisotropic volume of interest (VOI) containing the ICH slices.   
    },0,0:),,{(St 0

3
fff zzzyyxxNzyx <<<<<<∈= ;    { } 255n...ii,i,ii n321 ==  

      xf and yf means row and column image size, z0 and zf are the most outer neighbor 
slices. The studies intensities are defined as one-dimensional array i with n 
intensity levels. 

3: Compute  max(St )  gm = ;    gm is the maximum intensity value of St. 

4: Obtain ICH binary mask using gm as threshold value. 
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5: seICHmaskmer = : where represent the morphological erosion operation and 
se is an spherical structuring element ( se diameter is set to 5 voxels and it was 
determine heuristically). 

6: Select the maskfa _  (biggest foreground connected object in mer ), which is a first 

approach of the ICH segmentation. 
7: semaskfamaskICH ⊕= __ : ICH_mask is the 3D ICH binary mask. 

6: Apply a flood fill operation to avoid holes inside the ICH_mask. 
7: Multiply the new ICH_mask by the original VOI and ICH segmentation is carried 

out. 

2.2   Similarity Based Method 

Similarity based method involved two main steps: pick a query object (ICH) and 
afterward made the automatic ICH retrieval on the remainder patient study. 

2.2.1    Select Query Object 
Query object selection consists in the extraction of the ICH contour. We used live 
wire techniques [5] to extract the object edges, and hereafter based on the selected 
contour are computed automatically the initials reference points with their associated 
similarity vectors. Reference points and their associated similarity vectors are the 
query basic elements. The selection of query object (In) is made by the following 
steps: 

 
1. Extract the ICH contour (CTn).  
2. Extract the reference points (set of points that belong to query object 

contour) 
3. Create similarity vectors, from reference points. 
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Query object elements are formed by the reference points and their associated 
similarity vectors. The quantity of reference points and their associated similarity 
vectors is variable and depend of the specific problem domain knowledge. 

2.2.1.1   ICH Contour Extraction. We used live wire techniques for object contour 
extraction (segmentation). Live wire is a recently proposed interactive boundary 
tracking technique [6] that share some similarities with snakes and it is generally 
considered in the literature as a competing snake technique. Like snakes, the idea 
behind the live wire technique is to allow image segmentation to occur with minimal 
user interaction, while at the same time allowing the user to exercise control over the 
segmentation process. This technique share two essential components: a local cost 
function that assigns lower cost to image features of interest, such as edges, and an 
expansion process that forms optimal boundaries for objects of interest based on the 
cost function and seed points provided interactively by the user [5]. The contour 
obtained after live wire application is a not continuous, product of this, we interpolate 
it with a spline function to obtain a continuous curve to produce a better object 
contour approximation. The extracted curve is use after to compute the reference 
points. 

2.2.1.2   Reference Points. Reference points are formed by a set of points that are 
located close or in the object contour with direction θi , where 1..0: −αi , 

( )θα /360int= , º1800 ≤< θ  and θ  is the displacement angle, taking the object mass 

center as the center of the coordinates system. The angle θ  will be selected by the 
user and it depend of the problem knowledge domain (Fig. 1). Initial reference points 
are determined by the following algorithm: 
 

 

Algorithm 2. Generate Initial Reference Points  
 
1:  Select initial slice I(n) 
2:  Select θ , º1800 ≤<θ  
3:  Select ε : admissible (small) distance between ),( yxPi

 and CTn  

4:  Compute ),( yxPi
: reference points  

             coordinates (X,Y) of 
iP  are obtained by the  expression: 

where 1inincreaserandR1 ≤≤Ζ∈ + r,r  on each iteration until r = R and R is  

the value in which  ≤)),,(( niPi CTYXPd ε ,  d is the Euclidian distance 

between ),( yxPi
and 

nCT  

              Cx and Cy are the (X,Y) centroid coordinates 
5: Store new founded reference points in the ),( yxPi

 array 

 

)sin(*),cos(*),( irCirCYXP yxi ++=
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Fig. 1. Reference points obtained with 5.0,º45 == εθ  

2.2.1.3   Similarity Vectors. Similarity vectors (
iS ) are the basic elements that allow 

to track the object on the rest of slices (images) belonging to a selected patient study. 
The reference points represent the centroid (Cx,y) of the similarity matrixes (

iQ ). 

Similarity matrixes are MxM windows, where 1*2 += δM , δ  is a positive integer 
scalar provided by the user   (Fig. 2). The similarity vectors are obtained from the 
similarity matrixes using the following mathematic formulation: 

  ...{ 1,1aSi = ,1,ma ...2,1a ,2,ma ...,1 ma ,,mma ...1,1 +ma }1, +mma  

where 
iS  represent the set of similarity vectors corresponding to

ii QP  and . 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Similarity matrix 

2.2.2    Object Retrieval 
Object retrieval (which is carried out in an automatic way) has the aim to track the 
query object picked over (user selected) slices (images) of patient study. This 
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algorithm tries to find the points more similar to the current reference points on the 
slice under processing. The new founded points are used then as the reference points 
to detect the object in the next slice. This process is repeated over all the slices 
(selected by the user) that belong to the current patient study. 

Object retrieval is in general a process devoted to find a query object on a set of 
images or images databases [7].  

In our case object retrieval has the aim to track (extract) the ICH on a set of slices 
selected by the user that belong to the patient under study. 

Similarity descriptors are critical for the performance of object retrieval process. 
Several descriptors were evaluated, but the best results were achieved with the 
distance equation (eq. 1) proposed by Fuertes [8], which we use to select the new 
reference points belonging to the slice under analysis. 

)(*)(),( )1()()1()()1()( +++ −−= nini
t

nininini SSSSPPd  (1) 

)(niS is a similarity vector associated to reference point 
)(niP  in the 

nI  image,
)1( +niS is a 

vector associated to the point 
)1( +niP  in the 

1+nI  slice, t  denote a transpose matrix.  

The new reference points will be those 
)1( +niP  where ( ) ( ) ),( 1+nini PPd is minimum. 

The method employ the created similarity vectors on query object to find the 
reference points related to ICH: the points that identify the ICH occurrence on the rest 
of slices set of patient under study. 

The object retrieval algorithm developed is outline below: 
_____________________________________________________________________ 

Algorithm 3. Retrieval  

1: Select new slice (
)1( +nI ) 

2: Compute
ikP  points 

     for each i angle 

where σ..Dk: +1 ,σ  is a value selected by the user, D is the euclidian distance 
between 

i(n)n PandC  

      Build vector 
ikS  from 

ikP (see 2.2.1.3) 

           Compute 
ikR  

                     ),Sd(SR inikik = :  d similarity function (eq. 1) 

3: Select m=k  where 
ikR  is minimum  

4: Created and store
)1( +niP and 

)1( +niS  

    
im)i(nim)(ni  S(X,Y), S P P == ++ 11

 

5: Build the contour 
)(nCT 1+
based on 

)1( +niP array 

6: Compute the centroid from of 
)(nCT 1+
 

7: if (slice set selected is empty) then end else goto 1  

)sin(*),cos(*),( ikCikCYXP ynxnik ++=
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2.3    Manual Method 

The manual method uses gradient vector flow (GVF) snake [9, 10] for ICH 
segmentation, slice by slice. It is divided in two main tasks: first created the initial 
snake using a spline function (to obtain an approximation of ICH contour), and 
second the initial snake is deformed to produce the final segmentation.  

The following algorithm described the method: 
 

 

Algorithm 4. Manual Method 
1:  Select slice I(n) 
2:  Select Query Object  

Extract the ICH contour (CTn). (Using spline) 
3:  GVF snake deformation (CTn). 

 
This method was designed (as control method) to produce perfect segmentation 
patterns which were used to validate semiautomatic methods. 

3    Results 

We have developed a set of three methods for object segmentation and tracking: 3D 
mathematical morphology based method (3DMM), similarity based method (SBM) 
and manual based method. These methods were applied successfully for segmentation 
and tracking of spontaneous ICH from CT head images. The algorithm prototypes 
were implemented in MATLAB. These prototypes were validated by medical 
researchers in a representative dataset of 36 CT head images patient studies. Manual 
method was used as the control method to produce perfect (correct) segmentation 
patterns (see Fig.3). The performance of the semiautomatic methods was 83.3%, 30 
CT patient studies were segmented and tracked correctly. Both methods do not work 
correctly in 6 CT patient studies (where the variation in the ICH shape among 
continuous slices was very high). Despite similar results were found concerning 
precision and robustness in 30 CT patient studies; some differences were revealed in 
relation with user intervention, processing time and precision. The 3DMM has the  
 

Fig. 3. Manual method results 
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Fig. 4. Semiautomatic 3D mathematical morphology method results  

 

Fig. 5. Similarity method results. From top to bottom and left to right: First ICH slice, ICH 
query, ICH segmentation and tracking.  

advantage to require the least user intervention and processing time, but it has the 
drawback to be the least precise (see Fig.4). SBM needed more user intervention and 
more processing time, but segmentation and tracking results achieved were more 
precise compared with 3DMM (see Fig.5). 

4    Conclusion 

In this paper we proposed a set of three methods for object segmentation and tracking. 
Two of these methods can be carryout in a semiautomatic way and one in a manual 
way (control method). These methods were applied successfully for segmentation and 
tracking of spontaneous ICH from CT head images. The efficiency of semiautomatic 
methods was confirmed on a representative dataset 36 patient studies, where these 
were capable to segment and track correctly the ICH in 30 patient studies (83.3%). 
Compared with other approaches devoted to ICH segmentation [2, 3, 4, 11] our 



220 N. Pérez et al. 

approach demonstrated similar or less computational complexity. The algorithms 
developed will be easily extended, with the corresponding adaptations, to solve others 
object recognition problems related or not with the medical image analysis area. 
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Abstract. This paper presents an efficient approach to rotation discrim-
inative template matching. A hierarchical search divided in three steps
is proposed. First, gradient magnitude is compared to rapidly localise
points with high probability of match. This result is refined, in a second
step, using orientation gradient histograms. A novel rotation discrimina-
tive descriptor is applied to estimate the orientation of the template in
the tested image. Finally, template matching is efficiently applied with
the estimated orientation and only at points with high gradient mag-
nitude and orientation histogram similarity. Experiments show a higher
performance and efficiency as compared to similar techniques.

Keywords: template, matching, rotation, gradient, histogram.

1 Introduction

Visual matching consists in comparing the visual information extracted from
an image patch with the same type of information extracted from another im-
age. Applications that use visual matching are related to region recognition, for
instance, object tracking [1, 2, 3].

Existing techniques can be divided into two categories: trained and non-
trained. For the first group, classifiers are trained with a test set of positive and
negative patch examples. Research is concentrated on the data set and the clas-
sification techniques. These techniques provide an excellent compromise between
speed and performance at run-time [4]. However, the time consumed to gather
or generate the training data and to train the classifier is generally high. For the
second group, attention is paid on the description of the information rather than
in the training data or the classification scheme used. Most researchers have fo-
cused on descriptors and measures that are robust or even invariant to viewpoint
and/or illumination distortions [5]. In this case, descriptors are generally built
from a single instance of the patch to recognise. The drawback of such invariance
is often a higher computational cost during the matching process.

In this paper, we concentrate on this second category and target fast com-
putation environments such as tracking applications. For this goal, we propose
a rotation-discriminative patch descriptor and an efficient hierarchical search
strategy divided in three steps. First, similar gradient magnitude is exhaustively
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searched within the image. The most similar points are sorted out. Second, the
orientation gradient histogram is matched at those points providing a measure
of similarity, together with an estimate of the rotation that the patch has under-
gone. Again, only the most similar points are kept. Finally, template matching
is performed at those points by computing the Normalised Cross Correlation
(NCC) between the intensity neighbourhood of the point in the image and the
patch rotated according to the orientation estimated in the previous step.

2 Related Works

This section takes a more detailed look into non-trained matching techniques
related to the proposed method. The matching process is done by comparing
the descriptor of a patch with the descriptors obtained at different locations in
an image. This description determines in general the robustness of a recogni-
tion process facing viewpoint and illumination changes. Consequently, most re-
searchers concentrate their efforts on obtaining invariant descriptors. The reader
can find a comparison of descriptors in [5]. Among those descriptors and the re-
lated recognition strategies, some have been chosen according to their relation
to the method proposed here, for more in depth explanation.

Two descriptors have been used extensively for recognition purposes: tem-
plates and distributions. Templates are ordered arrays of the pixel values of
an image region and have two main advantages. First, the simplicity of con-
struction of this descriptor. Second, that the spatial information of the region is
maintained. The drawback is the high sensitivity to viewpoint and illumination
changes. Several improvements of template matching techniques exist in litera-
ture, either concentrating in illumination changes [1] or also in geometrical vari-
ations [2]. Histograms, are arrays that model the true distribution by counting
the occurrences of pixel values that fall into each bin (range of values). Different
information can be used for histogram descriptors, e.g. gray-scale, colour [6, 3],
and gradient [7]. Histograms have opposite advantages and drawbacks when com-
pared to templates. In other words, histograms loose spatial information while
viewpoint invariance can be achieved by construction. Several attempts at com-
bining spatial and distribution information exist, e.g., [8, 6, 3, 7]. Among them,
we emphasise a convex monotonic decreasing kernel [3] that weights the contri-
bution of pixels to the histogram. This kernel lessens the weight of peripheral
pixels which are the least reliable, being often affected by occlusion, background
and viewpoint changes. Also relevant is the use of spatial distribution of gradient
histograms achieving high viewpoint invariance [7].

The strategy to locate and match regions inside an image varies depending on
the application and often also on the complexity of the descriptor. In applica-
tions such as point correspondence [7], only locations with high repeatability are
considered. Once the detection of possible candidates (usually a large amount
of points) in each image is performed, a pair-wise match has to be set. In line-
search matching, the goal is to iteratively maximise the similarity between the
patch and different points of an image. At each iteration, a new position sensed
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to increase the similarity is found using, for instance, gradient information [3].
In window-search (or exhaustive) matching, the similarity is computed at each
point in a test image. As the computational power needed is proportional to
the size of the image, it is often applied only when the descriptor is computed
rapidly or the size of the image is relatively small [1].

Examples of fast rotation invariant template matching with an exhaustive
search are [6, 9]. Fredriksson et al. [6] use an orientation invariant descriptor
(colour histogram), to locate points with high probability of match. Although
this method is faster than cross correlation by FFT, histograms are not efficiently
computed in this work. Ullah et al. [9] presented a two step strategy. First,
orientation code histograms (OH) are used to estimate the orientation of a patch
in each point of an image. Second, orientation code matching (OCM) at the right
orientation is applied only to the best histogram matches. This independent work
differentiates from the method proposed here in two main contributions. First
and most important, the OC is built only upon the extracted patch at a single
orientation achieving less invariance to rotations than our descriptor. Second,
that the processing time needed to produce a match is much higher (see Sect. 4).

3 Proposed Method

The problem that we are tackling is template matching of patches that have
undergone rotations. A straight approach to this problem would be to generate
a number of rotated versions of a patch and to correlate them at each point of the
tested image. This window matching process has however a high computational
cost. Instead, we propose to estimate first which rotated version has the highest
probability of being the adequate to maximise the level of correlation. This is
done by comparing the orientation gradient histogram of the patch and that of
the neighbourhood extracted at several points in the image. In order to perform
most scan operations rapidly we take advantage of the integral image (running
sum of image) [4] and the integral histogram (running sum of bins) [10]. In this
section, the descriptor used for the recognition of a patch and the proposed
matching are detailed.

3.1 Region Description

Gradient information is chosen to generate the descriptor of a patch. One of
the reasons lies on the little sensitivity of the gradient to illumination changes,
which is one of the problems that recognition has to deal with. As described in
Sect. 1, another major problem to tackle is viewpoint invariance. We propose
a descriptor that deals with this problem concentrating on rotation robustness
and, at the same time, provides orientation information of the region it describes.

Let us first analyse the behaviour of the gradient. From a theoretical point
of view, the gradient has a continuous response to a continuous and derivable
function. Suppose that a gradient orientation histogram of N bins is computed
from a patch P. In this case, a rotation of the patch by δ degrees changes the



224 D. Marimon and T. Ebrahimi

values in the histogram. In particular, when δ = n · 360/N where n ∈ Z, the
histogram would be exactly equal to a perfect shift, and the shift in bins would
be equal to n. However, this ideal case is not fulfilled in reality.

Following the observation that histograms change with different orientations,
we propose to generate rotated versions of a patch and, from these versions,
create a single histogram that can deal with rotations. As mentioned before, ori-
entation histograms repeat approximately their shape every Δ = 360/N degrees.
This can be exploited by aligning the histograms of versions rotated exactly by
kΔ with k ∈ Z.

The histogram descriptor is obtained as explained next. Firstly, N rotated
versions of the patch P to be matched are pre-computed with an angle of rotation
of nΔ degrees (for n = 0, .., N −1) where N is the number of bins. These versions
are cropped so as to eliminate additional pixels introduced by the rotation,
leading to a vector of rotated versions of the patch

−→
P i, where i indexes the

vector. Secondly, the gradient of each of these versions is computed at each
point (x, y) as follows

dy(x, y) =
−→
P i(x, y + 1) − −→

P i(x, y − 1)

dx(x, y) =
−→
P i(x + 1, y) − −→

P i(x − 1, y)

∇m(x, y) =
√

dy(x, y)2 + dx(x, y)2

∇θ(x, y) = arctan(dy(x, y), dx(x, y)), (1)

where arctan(a, b) is a function that returns the inverse tangent of a
b in a range

[0, 2π], ∇m is the magnitude and ∇θ is the orientation of the gradient. Then,
∇θ is quantised in N bins. In order to compact the statistical description of the
patch and to reduce the effect of noise, the contribution of each point in ∇θ(x, y)
to the corresponding bin is weighted by its magnitude ∇m(x, y) (similar to the
approach in [7]). It is desirable that the weight of the peripheral pixels is lessened.
However, applying a kernel (as presented in [3]) is not possible with the integral
histogram approach. We approximate the effect of the kernel by giving double
weight to the central part of the patch. Finally, the global histogram of the patch
is the mean obtained with the N histograms aligned according to their rotation.
Fig. 1 shows an example for 16 bins with the original patch and its rotated
versions with the corresponding histogram aligned accordingly.

This average of rotated versions gives a robust descriptor when the rotation
of the image is around nΔ degrees. It could be argued that for non-integer
bin-wide angles higher variations will occur. However, experiments shows that,
with enough bins, this descriptor is reliable even around nΔ + Δ/2 degrees (see
Sect. 4).

The final region descriptor is composed of the global histogram h̃, its variance
σ2, its norm and the rotated versions of the template. Our experimentation has
shown that using the variance in the matching process enhances the performance.

f(P) =
[
h̃P, σ2

P, ‖h̃P‖,
−→
P0, . . . ,

−→
PN−1

]
. (2)
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Fig. 1. Example of histogram alignment with N = 16 bins. Central column: histograms
aligned according to their rotation; right column: corresponding original patch (i = 0)
and rotated versions (i = 1, . . . , 15).

3.2 Rotation-Discriminative Template Matching

This section describes the three hierarchical selection steps performed. Firstly, an
exhaustive gradient magnitude comparison is performed. Secondly, the
candidates with highest magnitude similarity are kept for orientation gradient
histogram matching. This matching provides also an estimate of the rotation be-
tween the patch and the image. Finally, template matching is performed at the
position of the most similar histograms using the rotation estimated previously.

Gradient magnitude matching. The norm of the histogram ‖h̃P‖ can be
used as a simple feature to rapidly scan the image for similar candidates. From
the construction of the histogram it can be found that ‖h̃P‖ �

∑
P ∇m +∑

P′ ∇m, where P′ is the central part of the patch. Following this observation,
we propose to compare this norm with each neighbourhood in a window-search
strategy. This can be efficiently performed with the integral image [4] of the
magnitude gradient. Given a neighbourhood R of a point, the measure used to

compare the norm is dm = exp−α
(
1 − (

∑
R ∇m +

∑
R′ ∇m) / ‖h̃P‖

)2
, where

α is a factor that weights this similarity according to the variance of the his-
togram. More precisely, α = N/(1000 · ‖σ2

P‖). The points in the image that have
a similarity dm > 0.9 are kept as candidates for further matching.

In the worst case where similar magnitude is found all over the image, the
number of candidates remains the same after this step. However, based on ex-
periments, this simple selection criteria permits a reduction of the number of
candidates by an average factor of 20.

Histogram matching. The gradient orientation histogram matching is applied
to the candidates with similar histogram norm. Histogram can be efficiently
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computed with the integral histogram approach [10]. The gradient orientation
histogram of a region in the image is obtained from the contribution of the
quantised ∇θ(x, y) weighted with ∇m(x, y) (as for the descriptor of the patch).

The similarity between the histogram of the patch h̃P and that of each can-
didate is computed with a custom measure to compare orientation histograms
(or, generically, circular vectors), the Circular Normalised Euclidean Distance
(CNED). Not only the CNED measures the distance d between two vectors, but
it also determines the circular shift ŝ that corresponds to the minimal distance.
Mathematically expressed CNED(a, σ2

a,b) = [ŝ(a, σ2
a,b) dŝ(a, σ2

a,b)]T , where
ŝ(a, σ2

a,b) = arg mins ds(a, σ2
a,b) and

ds(a, σ2
a,b) =

√√√√
N−1∑

i=0

(a(i) − b((i + s) mod N))2

σ2
a(i)

, (3)

where a and b are vectors of length N , s is the shift that takes a discrete value
between 0 and N − 1, mod is the modulus function, and σ2

a is the variance
associated to vector a. The result of this matching is hence a similarity score dŝ

and an estimate of the orientation of the patch ŝ · Δ for each candidate.

Template matching. The magnitude and the orientation histogram discard
many unrelated points but the result is still not selective enough (as seen below
in Sect. 4). The template is used as a further selection criterion. More precisely,
template matching is done using a Normalised Cross Correlation (NCC) between
the templates R centered at those points with high histogram similarity and the
template of the patch

−→
P ŝ.

NCC
(−→
P ŝ,R

)
=

∑ ∑
(R − R) · (

−→
P ŝ − −→

P ŝ)
√∑ ∑

(R − R)2 ·
∑ ∑

(
−→
P ŝ − −→

P ŝ)2
, (4)

where R is the average value of R. By subtracting this mean value, the result is
invariant to uniform illumination changes.

4 Experiments

This section assesses the performance of the proposed method in comparison to
other similar techniques. Firstly, the techniques compared are described. Sec-
ondly, the set of test images and image patches are presented. Thirdly, the eval-
uation methodology is explained. Finally, results are depicted and discussed.

The matching techniques compared are: the NCC computed for all the N
rotated versions at each point (we call this NCC-R), a gray-level intensity his-
togram matching (IHM), our own gradient orientation histogram matching
(GHM) but computed exhaustively in the image (this is, without magnitude
pre-sorting), the technique presented in [9] (OH+OCM), and the final correla-
tion result of our method. In order to do a fair comparison with the IHM, a
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Fig. 2. Original images used for the experiments. Average size: 300x225 pixels.

N -bin histogram of the intensity values of each rotated version is computed for
each patch. This gives N histograms which are averaged bin-by-bin into a sin-
gle intensity histogram describing the patch. Moreover, the central part of each
histogram is given more weight as for hP (see Sect. 3.1). The similarity measure
used in this case is the Euclidean distance.

The set of images used for testing is shown in Fig. 2. The first two images
(top-left) are custom whereas the other six images are taken from the Visual
Geometry Group database [11].

There is one key parameter in the method: the number of bins N in the
histogram. This number determines the value of Δ = 360/N and hence the
performance of the method. More concretely, the whole matching is expected to
work better for rotations around kΔ than around kΔ+Δ/2 (with k = 0, .., N−1).
Experiments are run on 10, 16 and 20 bins to give an approximate idea of a lower
and upper performance bounds. The images are rotated 20 and 70 degrees for
a histogram of 10 bins (Δ = 36o), and 10 and 70 degrees for both 16 bins
(Δ = 22.5o), and 20 bins (Δ = 18o). These angles correspond to almost best
and worst case scenarios for each histogram length.

For each one of the original images, a set of patches is extracted. Their sizes
range from 10x10 to 20x20 pixels, which is a common range in related research.
Around 20 patches per image are extracted with the Harris corner detector [12].
The main reason behind the choice of this point detector is that patches have
more relevant texture information in this case.

The purpose of the compared methods is to find matches. A correct match is
found when a point with high similarity coincides with the ground truth. This
idea is translated into the concept of true positive and of false positive in the
opposite case. The performance of matching technique can be given by these
two values. More precisely, the higher the number of true positives and lower
the number of false positives, the better is the result.

The level of similarity that determines a match (or positive) is given by a
range, i.e. maximum to minimum similarity, which is not the same for all the
considered techniques. Nevertheless, it is possible to find a range that varies
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equivalently. In order to find this equivalence, the values of each similarity map
are taken, independently, in descending order (highest to lowest similarity) re-
gardless of the value itself. An equivalent level of similarity is found in this case
by parsing each list of values. The true positives and false positives can then
be defined mathematically. Assume that d(f1(a), f2(b)) is the similarity between
two descriptors f1(a) and f2(b) of the respective regions a and b. Given an image
I, a rotated version Î, a patch P extracted from I at (xP, yP), and (x̂P, ŷP) being
the correspondence of (xP, yP) into Î, a true positive is

tpP,Î,t =
{

1 if ∃(x, y) ∈ G
∣∣ d(f1(P), f2(R̂x,y)) > t

0 otherwise,
(5)

and conversely, a false positive is

fpP,Î,t(x, y) =
{

1 if(x, y) /∈ G
∣∣ d(f1(P), f2(R̂x,y)) > t

0 otherwise,
(6)

where t ∈ [max d(f1(P), f2(R̂x,y)), min d(f1(P), f2(R̂x,y))] and G is the region
{Î(x, y)|x = x̂P ± 1 and y = ŷP ± 1}. A 1 pixel neighbourhood is set to account
for sub-pixel location after the image transformation.

The response of each matching method for the best 500 matches is depicted
in Fig. 3. The NCC-R indicates a great performance almost independent of the
number of candidates. This shows the high selectivity of this kind of map. In
the case of the IHM, rotation invariance is evidenced by very similar results
throughout the different cases. A poorer selectivity is shown by the GHM as a
large number of false positives is obtained in order to get a high probability of
having a true positive. The OH+OCM [9] has lower performance probably due
to its non-invariant nor robust descriptor. Using only a single version to build
the histogram is not enough to effectively face the variations in the histogram
due to rotations. The results of the GHM are greatly improved when used as an
input for the further template matching step of our method (especially visible
as the number of bins grows). Furthermore, the proposed descriptor and sim-
ilarity measure achieve the desired rotation discrimination and hence accurate
matching.

Computational complexity. The efficiency of these methods is contrasted
here with the processing time needed to produce a match. Table 1 shows this
time (averaged for the patches in the test set) when computed with a Pen-
tium M Processor at 1700 MHz. As it can be seen, the slowest algorithm is the
OH+OCM. The main reasons are the circular mask used for matching and, con-
sequently, the impossibility of using the integral histogram approach. The NCC
uses the integral image as in [1]. Despite this fast matching implementation, it
can be seen that comparing each rotated version of the template is inefficient.
The estimation of the orientation in the histogram matching step drastically
palliates this inefficiency. Moreover, the hierarchical selection proposed in our
work enables a processing time almost as fast as the most simple and efficient
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Fig. 3. Mean true positive (vertical axis) and false positives (horizontal) among all the
patches. Number of bins: 10 (top), 16 (middle) and 20 (bottom). Rotation angle: 0
degrees (left), ∼ kΔ + Δ/2 (central) and ∼ kΔ (right).

Table 1. Average processing time for a single patch

10 bins [s] 16 bins [s] 20 bins [s]

OH+OCM 4.4776 4.7115 4.9312
NCC-R 0.9001 1.2506 1.5235
GHM 0.4311 0.8816 1.3014
Proposed method 0.1773 0.2028 0.2584
IHM 0.1085 0.1275 0.1491

strategy, which is the IHM (implemented with the integral histogram). It should
be pointed out that reducing the number of candidates would further reduce the
computational cost.
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5 Conclusions

An efficient method to perform rotation discriminative template matching has
been presented. This is achieved with an orientation histogram matching followed
by template matching. The main contributions of the method are a rotation-
discriminative descriptor and the efficient matching strategy. Experimentation
shows that our results are as good as performing NCC of each rotated version of a
template but with an average speed up factor of six. In addition, performance and
efficiency of our technique is superior to the most similar technique, namely, the
OH+OCM [9]. Future path of research will focus on analysing the dependance
of the method on the texture information available in the patch.
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Abstract. The sequential approach to colour texture classification relies
on colour histogram clustering before extracting texture features from in-
dexed images. The basic idea of such methods is to replace the colour
triplet (RGB, HSV, Lab, etc.) associated to a pixel, by a scalar value,
which represents an index of a colour palette. In this paper we studied
different implementations of such approach. An experimental campaign
was carried out over a database of 100 textures. The results show that
the choice of a particular colour representation can improve classification
performance with respect to grayscale conversion. We also found strong
interaction effects between colour representation and feature space. In or-
der to improve accuracy and robustness of classification, we have tested
three well known expert fusion schemes: weighted vote, and a posteriori
probability fusion (sum and product rules). The results demonstrate that
combining different sequential approaches through classifier fusion is an
effective strategy for colour texture classification.

Keywords: Classifier fusion, Colour texture classification.

1 Introduction

Texture analysis is recognized as a key point in the development of artificial
vision systems. Within texture analysis, classification is a major research topic,
due to the numerous applications in areas like medical imaging, remote sensing,
quality control and others. Texture classification techniques are very attractive
for industrial applications, especially in those situations where it is important to
group products in lots according to the criterion of “same visual appearance”. In
many industrial areas there is a growing interest in systems capable of performing
such kind of tasks automatically.

Texture classification involves two major processes: feature extraction and la-
bel assignment. The whole formed by these two building blocks is usually referred
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c© Springer-Verlag Berlin Heidelberg 2007



232 F. Bianconi et al.

to as an expert. It is commonly accepted that substantial gain in classification
performance can be obtained by combining the results of individual experts [1,2].
In this work we adopted different combination schemes for sequential colour tex-
ture classification. The most innovative contributions of this paper are: on the
one hand, the use of colour indexing methods that have not been implemented
yet in colour texture classification by sequential approaches, and, on the other
hand, the combination of sequential colour texture classifiers by classifier fusion.

The remainder of the paper is organized as follows: section 2 describes the
colour indexing approach to texture classification. Feature spaces and classifiers
used in this work are described in section 3. Combination of experts is detailed in
section 4. The experimental activity is described in 5 and its results are presented
and discussed in section 6. Final conclusions are reported in section 7.

2 Colour Representation

Several attempts have been made to incorporate colour and texture features
during the last years. Up to now, there has been no general consensus about the
best way to combine these two properties. It is widely accepted that taking into
account colour in texture classification can provide additional information [3].
However some authors argue that colour and texture have to be regarded as sep-
arate phenomena [4]. According to Palm [5], the approaches to combine colour
and texture can be grouped in parallel, sequential and integrative approaches. In
the parallel approach, textural features extracted from the luminance plane are
considered together with pure chrominance features. Sequential methods involve
colour histogram clustering before extracting texture features from indexed im-
ages. Integrative models characterize a texture through spatial interaction within
each color plane and between different colour planes.

In this paper we focus on sequential methods. The basic idea is to replace
the colour triplet (RGB, HSV, Lab, etc.) by a scalar value, which represents
an index of a colour palette. This is usually referred to as colour indexing. The
selection of a particular technique for colour histogram clustering should be
done carefully, since it strongly influences the ability of the features extracted
from the indexed images to describe colour texture, no matter the feature space

RGB GRAY MINVAR COLORCUBE

Fig. 1. From left to right: original RGB image; grayscale conversion; minimum variance
quantization, colorcube colourmap mapping
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considered. Although there is a vast amount of work on the integration of tex-
ture and colour in a unique model, few implementations of the sequential scheme
have been reported. Song [6] proposed an approach to defect detection in colour
textures based on k-means clustering and perceptual merging. More recently,
Arvis [7] applied uniform quantization of the 3D colour histogram to texture
classification. Uniform quantization involves dividing the color cube into a num-
ber of equal-sized boxes. The effects of representing the original images through
different colour spaces as well as the effects of varying the number of colour
indices have been studied in [8].

Herein we adopted the sequential approach to colour texture analysis, also
referred to as chromato-spatial approach. In addition to the classical grayscale
conversion, we propose minimum variance quantization and colorcube colourmap
mapping as colour indexing techniques. Different colour representations are likely
to produce diverse descriptions of textural data, and thus it makes sense to
integrate them through classifier fusion. One can easily realize from figure 1,
that the transformed images look significantly different from the original RGB
images. Nevertheless, textural data are not lost: they are rather stored in a
different way, as it comes out from the results shown in section 6. Based on such
idea, we integrated colour indexing methods together with grayscale conversion
through different classifier fusion architectures.

In minimum variance quantization the RGB color cube is recursively subdi-
vided into smaller volumes of different sizes (not necessarily cubes). The size of
each cluster depends on the distribution of colours in the image [9]. In contrast,
colourmap mapping uses a predefined colourmap. Each pixel of the indexed im-
age is then assigned the index of the cluster that contains the colour of the
pixel. Applying minimum variance quantization to each image separately does
not seem a promising approach, since the meaning of the resulting indices would
change from one image to another. Instead, we compute the minimum variance
colour map by quantizing the colour distribution of the whole image database
(fig. 2). On the other hand, we have chosen Matlab’s colorcube mapping [10]
since it contains as many regularly spaced colours in the RGB space as possible,
and thus it can work well in the majority of the situations.

3 Classification Framework

3.1 Feature Extraction

The original RGB images have been converted to single-channel images as de-
scribed in the previous section. Texture features have been extracted from single-
channel images using Coordinated Clusters Representation (CCR), Local Binary
Patterns (LBP) and Gabor filters.

CCR and LBP features represent texture through the histogram of 3x3 binary
patterns [11,12]. The only difference between LBP and CCR texture models is
that LBP employs a local binarization threshold while CCR uses a global one.
In this work we used as binarization threshold the gray level (or colour index)
which splits the entropy of the histogram of a single-channel image into two equal
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parts. This technique is based on the isentropic quantization approach, which has
been successfully applied in the knowledge extraction stage of the construction
of fuzzy sets [13]. The dimension of the CCR and LBP feature space is 512 and
256, respectively.

Gabor features consist of the mean and standard deviation of the output of
a filter bank applied to the input image. Based on the result of previous work
[14,15], we adopted here a filter bank with 4 frequencies and 6 orientations. The
dimension of the associated feature space is 48.

3.2 Label Assignment

Label assignment (usually referred to as classification), is about assigning a
class label to an unknown texture. Many different approaches have been pro-
posed in literature. For a comprehensive review readers are referred to refer-
ences [16,17,18]. Herein we adopted the well known nearest neighbour approach,
which assigns a pattern the class label of the nearest labeled pattern in the
feature space.

4 Combination of Experts

Combination of multiple experts has recently emerged as a major topic in pat-
tern analysis and machine intelligence. Though numerous approaches have been
proposed and tested, they can be well classified in two main families: fusion of
label outputs and fusion of continuous-value outputs [1,2].

In the first scenario each expert ek returns, for each point x in the feature
space, a class label j:

ek(x) = j;
{

k = 1, ..., K
j ∈ {1, ..., n} (1)

where K is the number of experts and n is the number of classes.
In the second scenario each expert produces, for each point x, a vector of a

posteriori probabilities for that point to pertain to one of the possible classes:

ek(x) = [Pk(ω1|x), ..., Pk(ωn|x)] . (2)

Fusion of label outputs is usually based on some voting scheme: majority vote
or weighted majority vote. In the first approach it is assumed that all the experts
are of identical accuracy. In this case each expert gives the same contribution
to the final decision. Weighted voting, instead, tries to give the more competent
experts more power in taking the final decision. Weights are usually based on
some a priori knowledge of experts accuracy.

Three different strategies to combine multiple experts have been considered
here: weighted vote, and fusion of a posteriori probabilities based on sum and
product rule.
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4.1 Weighted Vote

For weighted vote to be applied, we need a way to estimate the reliability of
each single expert. The accuracy of each expert can be evaluated through its
confusion matrix [19,20]. The rk

ij element of the confusion matrix represents the
number of samples of class ωi that have been classified of class ωj by the expert
ek. In a perfect expert all the elements outside the principal diagonal of the
matrix should be zero. Given the confusion matrix Rk of an expert ek, an event
ek(x) = j can be described in terms of the conditional probabilities that the
propositions x ∈ ωi are true when the event ek(x) = j occurs:

P (ωi|ek(x) = j) =
rk
ij∑n

i=1 rk
ij

(3)

In practice each event ek(x) = j gives a different support (or weighted vote) to
each hypothesis x ∈ ωi, i = {1, ..., n}. The total support S(ωi) of a proposition
x ∈ ωi given a set of events ek(x) = j, j = {1, ..., n} and k = {1, ..., K}, is simply
computed as the sum of the support of each classifier:

S(ωi) =
K∑

k=1

P (ωi|ek(x) = j) (4)

The vector x is then assigned the label with the highest support.
The confusion matrix needs to be computed before classifying. Here we esti-

mate the confusion matrix of each classifier through cross-validation using the
points of the training set.

4.2 Fusion of a Posteriori Probabilities

When different experts provide a posteriori class probabilities , such values can be
combined in different ways to provide a label output. Despite various approaches
have been proposed to this purpose, the simple sum and product rules have been
recognized as reliable and robust [2,20]. A pattern x is assigned the label j which
maximizes the sum (product) of the a posteriori probabilities provided by each
expert (eq. 5 and 6).

j =
argmax

i ∈ {1, ..., n}

(
K∑

k=1

Pk(ωi|x)

)
(5)

j =
argmax

i ∈ {1, ..., n}

(
K∏

k=1

Pk(ωi|x)

)
(6)

In order to quantify a posteriori probabilities (sometimes referred to as
memberships), it seems natural to adopt a distance-based normalized similar-
ity measure: the less the distance between a test point and the nearest labeled
neighbour, the highest the probability for that point to belong to the same class
of the closest labeled point. We adopted here the following membership:
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P (ωi|x) =

1
1 + d(x,xi)

n∑

j=1

1
1 + d(x,xi)

(7)

where d is a generic distance function, and xi is the pattern of class ωi closest
to x in the feature space. Equivalent formulations have been proposed by other
authors [21,22]. In this work we adopted the L1 (Manhattan) distance.

5 Experimental Activity

Combined classifiers have been set up using the different colour conversion ap-
proaches described in section 2 and the CCR, LBP and Gabor feature spaces.
The performance of each single expert and of their combinations has been evalu-
ated over a database of 100 texture classes (fig. 2). Each texture image has been
divided into 16 sub-images, resulting in 1600 texture samples. To assess expert
performance, we considered the percentage of correctly classified textures. Classi-
fication error has been evaluated by split-half validation with stratified sampling
[23]. The error is averaged over 100 random partitions of data into training and
validation set in order to make the estimation stable.

Fig. 2. Experimental dataset
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Fig. 3. Simplified representation of the confusion matrices Rk(i, j) of the various clas-
sifiers. For visualization purposes the main diagonal of each confusion matrix has been
set to 0 (white). Each black point indicates that the k-th classifier makes at least one
mistake in classifying a patterns of class i as a pattern of class j.

6 Results and Discussion

The results (table 1) of the experimental activity are suggestive of interesting
considerations. First, it appears that the choice of a particular colour represen-
tation has significant effects on texture classification. It is worth noticing that
switching from grayscale conversion to minimum variance quantization improves
performance in the LBP feature space (87,37 % → 97,27 %), but it drastically
reduces it in the CCR feature space (87,82% → 53,07 %). Second it results that
combining multiple experts provides substantial gain in classification perfor-
mance. The percentage of correct classification shows significant increase either
by adopting different feature spaces -as one could expect- or, more interestingly,
by using different colour representations and the same feature space. The best
performance is achieved when all the nine possible combinations are employed.
The performance of the best combined expert approaches 100 %. Another in-
teresting result is that classifier fusion appears a robust approach: even if we
include a classifier that provides poor results (i.e. CCR+MINVAR), the global
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Fig. 4. Representation of the first ten texture classes of the data set of fig. 2 in the
first-two principal components space

perfomance is usually better than that of the best clasifier. Only in two cases
we have a very slight reduction: GRAY+MINVAR+COLORCUBE (LBP), from
97.27% to 97.23% (probability fusion, sum rule), and from 97.27% to 97.24%
(probability fusion, product rule). The results obtained with the three different
fusion architectures are essentially the same. Therefore the above conclusions
are valid all the fusion schemes considered in this paper.

7 Conclusions

Fusion of classifiers is supposed to work well when there is a reasonable difference
among the classifiers, or, in other words, when the classifiers do not make the
same mistakes. It is well known that LBP, CCR and Gabor features produce
different representations of textures, as we can appreciate in figures 3 and 4.
In this study we have demonstrated that diverse descriptions of textural data
can also be obtained through different colour representations. This fact can be
exploited to improve the overall classification performance by combining multiple
experts that result from different feature spaces and colour representations.
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Table 1. Performance of single experts and different combinations of experts (ex-
pressed as percentage of correct classification). The numerical results corresponding
to different fusion schemes are shown in different fonts. Normal font: weighted vote;
italics: a posteriori probability fusion (sum rule); boldface: a posteriori probability
fusion (product rule).

CCR LBP GABOR
CCR+
LBP+

GABOR

GRAY 87,82 87,37 88,86
96,40
95,82
95,88

MINVAR 53,07 97,27 78,84
97,88
98,15
97,94

COLORCUBE 87,50 96,14 89,48
97,45
97,57
97,44

GRAY+ 96,91 97,49 97,03 99,35
MINVAR+ 97,04 97,23 97,83 99,14

COLORCUBE 96,92 97,24 97,73 99,18
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Abstract. In this paper, the deterministic component of 2-D Wold de-
composition is used to obtain texture descriptors in industrial plastic
quality images, and hidden geometry of tree crown in remote sensing
images. The texture image is decomposed into two texture images: a
non-deterministic texture and a deterministic one. In order to obtain
texture descriptors, a set of discriminant texture features is selected from
the deterministic component. The texture descriptors have been used to
distinguish among three kinds of plastic quality. The obtained texture
descriptors are compared against texture descriptors obtained from the
original image. With the objective to find hidden geometry of tree crown
in remote sensing images, the deterministic component of the original
image is analyzed. The observed geometry is compared against the mod-
eled geometry in the literature of marked point processes.

Keywords: 2-D Wold Decomposition, Homogeneous Random Fields,
Texture, Geometry.

1 Introduction

Texture analysis methods have been traditionally divided into two categories
[10]. The first one, called the statistical or stochastic approach, treats textures
as statistical phenomena. A textured pattern is characterized by either statistical
of image pixel gray values or some stochastic model. The stochastic formulation
of a texture is based on a model in which a texture is viewed as a sample of a 2-D
stochastic process describable by its statistical parameters. The second category,
called the structural approach, introduces the concept of texture primitives,
often called textel or textons (texture element). In order to describe a texture, a
vocabulary of textels and placement rules that define the exact location of each
primitive in the texture are needed. The goal is to describe complex structures
with simpler primitives. However, most natural textures do not fall into any of
these two categories and it is difficult to classify textures by one single method.
Therefore, unified models have been proposed, in which the deterministic and
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non-deterministic component of a texture field is separated. The 2-D Wold-like
decomposition accomplishes this task. This unified texture model proposed by
Francos et al. [3] provides a means to analyze the stochastic and deterministic
part of a texture separately. The 2-D Wold decomposition has been applied to
the image retrieval [6] and for estimating and coding of texture [8]. In [5] a Hough
transformation is used to detect spectral evanescent components whereas in [9]
a new estimation algorithm of the evanescent field is given. This new method
is based on a projection approach and requires a set of projection directions
which is obtained by using Farey’s series. Now current work propose a new
segmentation algorithm which takes into account the deterministic component
of 2-D Wold decomposition, as the image of the external field in the MRF model
[4]. Moreover, in [11] are explored the properties of higher order statistics and
Wold decomposition theory for the sake of finding an algorithm for 3-D texture
decomposition.

In the proposed model by Francos, the texture field is assumed to be a real-
ization of a 2-D homogeneous random field. Based on a 2-D Wold-like decompo-
sition of homogeneous random field, the texture field is decomposed into a sum
of two mutually orthogonal components: a structural or deterministic compo-
nent, which results in the structural attributes of the observed realization, and
a purely stochastic or purely non-deterministic component, which represents the
randomness of the texture field. The deterministic component is further decom-
posed into a sum of two orthogonal components: a harmonic component and
a generalized evanescent component. The harmonic component represents the
periodic attributes of the texture, whereas the evanescent components represent
directional ones. Then, the perceptual property of texture images, randomness,
directional, and periodical are preserved (see Fig. 1).

Fig. 1. Wold decomposition

Texture discrimination plays a vital role in real world image segmentation and
object extraction. In order to obtain this discrimination, texture exact features
have to be extracted. A good texture feature must determinate both similar-
ities into classes and dissimilarities inter classes. In industrial applications is
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frequently to classify similar textures belonging to different classes, therefore, is
necessary to consider helpful texture descriptors in these classification problems.

Automatic extraction of objects from several remotely sensing images (such as
aerial and satellite images) is a very important research task in pattern recogni-
tion and image understanding. Many objects in remote sensing have often some
regular shape attributes, such circle, ellipse, polygon etc. and they are commonly
distributed orderly and aggregated into different object groups. The automatic
extraction of tree crown from remotely sensed images by means of marked point
processes is reported in [7]. Perrin et al. model the stand as a realization of a
marked point processes of ellipses or ellipsoids, whose point are the positions of
the trees and the marks their geometric features. Moreover, there are other vege-
tation natural resources important to study in the scale of trees whose geometry
is unknown e.g. mangrove.

In this paper, we are motived by Franco’s model in which a texture is de-
composed into constituent components allowing an analysis of the individual
components, the deterministic component is used to obtain texture descriptors
of three kinds of plastic quality and to find hidden geometry of tree crown in
remote sensing images. The implemented algorithm is based on the harmonic
field process of [3] and the evanescent field process of [5]. The obtained texture
descriptors are compared against texture descriptors obtained from the original
image and the observed geometry is compared against the modeled geometry in
the literature of marked point processes.

2 2-D Wold Decomposition of Homogeneous Random
Fields

Consider a homogeneous and regular random field y(m, n), (m, n) ∈ Z2. The
2-D Wold decomposition allows the field to be decomposed in two mutually
orthogonal components [3]:

y(n, m) = v(n, m) + w(n, m) (1)

where {v(n, m)} is deterministic and {w(n, m)} is non-deterministic. The deter-
ministic component can be decomposed in the harmonic component {h(n, m)}
and evanescent component {g(n, m)}:

v(n, m) = h(n, m) + g(n, m) (2)

In the frequency domain, the spectral distribution fuction (SDF) of {y(n, m)}
can be uniquely represented by the SDF’s of its component fields:

Fy(ω, υ) = Fv(ω, υ) + Fw(ω, υ) (3)

where Fv(ω, υ) = Fh(ω, υ) + Fg(ω, υ), and the functions Fh(ω, υ) and Fg(ω, υ)
correspond to spectral singularities supported by point-like and line-like regions,
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respectively. Under some assumptions and approximations Francos et al. [3] pro-
posed the following models:
The harmonic random field has the following representation:

h(n, m) =
P∑

k=1

{Ckcos2π(nωk + mυk) + Dksin2π(nωk + mυk)} (4)

where the Ck’s and Dk’s are mutually orthogonal random variables, and (ωp, υp)
are the spatial frequencies of the kth harmonic. This component generates the 2-
D delta functions of the “spectral density” (The 2-D delta functions are singular
functions supported on discrete points in the frequency plane).
A model for the evanescent field {g(n, m)}, which corresponds to the RNSHP
(rational non-symmetrical half-plane) defined by (α, β) ∈ O is given by a linear
combination of fields e(n, m) of the form:

e(n, m) = s(n)
I∑

i=1

{Aicos2πmυi + Bisin2πmυi} (5)

where {s(n)} is a purely non-deterministic 1-D process, I is the number of evanes-
cent components with (α, β) slope and υi is the frequency of the ith evanescent
component.

The purely non-deterministic component is given by

w(n, m) = −
∑

(0,0)≺(k,l)

b(k, l)w(n − k, m − l) + u(n, m) (6)

where {u(n, m)} is the 2-D white innovations field, whose variance is σ2.
Further details of the Eq. 4, 5 and 6 can be found in [3].

3 The Texture Model - Implementation

In general, the analysis algorithm of Francos is based on three stages:

– First, the parameters of the harmonic field are estimated (periodic features).
– Second, the evanescent components of the texture field are estimated (global

directional features).
– Finally, the parameters of the purely non-deterministic component of the

texture field are estimated (random features).

The texture reconstruction is carried out by summing the images obtained by
the inverse procedure to the analysis procedure. Further details of the analysis
algorithm can be found in [3]. We only analyze the deterministic component of
the analysis algorithm, because this component is parameterized independently
of the purely non-deterministic component. The deterministic component is ob-
tained through a global thresholding procedure, proposed in [3], which estimate
the harmonic texture field, and a Hough transformation procedure proposed in
[5], that estimate the evanescent components. The algorithm to obtain the de-
terministic component was developed in MATLAB 7.1 and the implementation
details are shown in the following sections.
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3.1 Harmonic Peak Detection

First, we search the presence of the harmonic components before estimating their
parameters. The harmonic peaks are detected in the Fourier magnitude image.
The periodogram is a frequency estimator for the unknown periodic components
by choosing the frequencies of the largest and sharpest isolated peaks of the
periodogram. The amplitude threshold value is established to the maximal value
of the periodogram. A magnitude histogram is built over the Fourier magnitude
image to establish the minimum value or cut frequency. The number of detected
spectral peaks are the harmonic component and are denoted by P , see Eq. 4.
The parameterization is done by evaluating the amplitude and the phase values
of the texture DFT at the frequencies of the detected maxima. The process to
estimate harmonic peaks is shown in Fig. 2.

Fig. 2. Process to estimate the harmonic component. Brodatz texture D64 [1].

3.2 Evanescent Line Detection

In this case we search for the frequencies of the periodogram largest peaks such
that the peaks are located in neighboring frequencies along one dimension. The
Hough transformation method for line detection is used to detect the evanescent
lines in the Fourier magnitude image. Prior to applying the Hough transform,
the spectral values associated with the harmonic peaks should be removed. Both
amplitude and phase components of the DFT are retained to parameterization.
The process to estimate evanescent lines is shown in Fig. 3, where six lines are
found for the Brodatz texture D64.

Finally, the deterministic component (see Fig 4) is estimated by summing the
images obtained by the inverse procedure to the harmonic peaks and evanescent
lines detection.
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Fig. 3. Process to estimate the evanescent lines

Fig. 4. Structural component of Brodatz texture D64

4 Experimental Results

The experimental results are presented in two parts: first, the deterministic com-
ponent of Wold decomposition is used to obtain descriptors that discriminate
among three classes of plastic quality. Second, the deterministic component is
used to extract hidden geometry of trees in texture images.

4.1 Texture Descriptors

The plastic database includes 52 images of plastic quality labeled manually. The
images were obtained directly from the industry. The classification error in this
manually labeled data is around 40%. The three plastic quality classes are shown
in Fig. 5. It can be seen that is difficult to distinguish among the three plastic
quality classes because they present very similar characteristics. The database
has 15 samples of class 1, 18 samples of class 2 and 19 samples of class 3. The size
of the images is 640x640 pixels. For the experiments the images were converted
to gray scale.

In this experiment, four texture characteristics were obtained for each image:
energy, correlation, homogeneity and contrast. Each characteristic was obtained
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Fig. 5. Images of three plastic quality classes. a)class 1 (3), b)class 2 (4-) and c)class
3 (4+).

in four directions (0◦, 45◦, 90◦ and 135◦). Because manual classification presents
high ambiguity, we follow an unsupervised approach. The four characteristics
were used as texture descriptors to classify with k-means. The texture char-
acteristics (texture descriptors) were obtained for the original images and the
deterministic components. The texture descriptors obtained from deterministic
component image (TD-DCI) are compared visually against texture descriptors
obtained from original image (TD-OI). The obtained clusters using TD-OI and
TD-DCI, are shown in Fig. 6. Graphics 6a, 6c, 6e and 6g show clustering of
TD-OI in the directions 0◦, 45◦, 90◦ and 135◦ respectively. Graphics 6b, 6d, 6f
and 6h show clustering using TD-DCI in the same directions. In deterministic
component, the cut frequency determined for the harmonic component is 9.25 of
amplitude, and two evanescent lines for each image were found. It can be seen in
graphics that the clusters using TD-DCI are better grouped than TD-OI. Using
TD-OI the cluster aren’t formed. In the experiments, the classification rate using
k-means with TD-DCI is 10% greater than k-means with TD-OI.

4.2 Geometry

The second experiment was carried out on aerial and satellite images. The size of
the images is variable. The objective of this experiment is to relate the modeled
geometry in [7] for tree crown detection with the geometry observed from the
deterministic component of the Wold decomposition. In a marked point process
frequently the tree crown is modeled by means of circles and ellipses. Fig. 7
shows the deterministic component obtained from the aerial image (Fig. 7b, 7f)
in [7]. The found geometry is represented by circles in the same way as the
modeled geometry done by Perrin (Fig. 7c, 7g). A filter to improve the contrast
of deterministic component was applied. Obtaining the border of the objects
or carrying out visual inspections help us to find the geometry, however, in
stochastic textures the geometry is not obvious. Fig. 7d and 7h show the borders
obtained from the original image. It can be seen that deterministic component
is more similar to modeled geometry than borders. Fig. 8a and 8b show the
found ellipses in a CIR (color infrared) image. Fig. 8d and 8f show the circles
and triangles geometry found in a high-resolution satellite image.

5 Conclusions

In this paper, the deterministic component of 2-D Wold decomposition was used
to obtain texture descriptors and geometry of texture fields. The implemented
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Fig. 6. Comparison of clusters in plastic images (axes x and y attributes, ∗ class 4+, ◦
class 4−, � class 3). 6a, 6c, 6e and 6g show clusters of TD-OI in 0◦, 45◦, 90◦ and 135◦

respectively; 6b, 6d, 6f and 6h show clusters using TD-DCI in the same directions.
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Fig. 7. Geometry: a) and e) original image, b) and f) deterministic component, c) and
g) modeled geometry, d) and h) border image

Fig. 8. Geometry for CIR and high-resolution satellite image of permanent cover (agri-
culture): a), c) and e) original image, b), d) and f) deterministic component

algorithm considers a global thresholding process and other processes based in
Hough transformation to estimate the deterministic component. Experimental
results show that texture descriptors obtained from deterministic component
groups better the classes than texture descriptors from original image. As well,
experimental results to find the geometry of tree crown in images show that
the obtained geometry from Wold decomposition is the same geometry modeled
in marked point processes. Future work involves modeling several covers as a
marked point process and defining precisely the geometry obtained from Wold
decomposition as the mark of the point process.
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Abstract. This paper presents a robust implementation of an object
tracker able to tolerate partial occlusions, rotation and scale for a variety
of different objects. The objects are represented by collections of interest
points which are described in a multi-resolution framework, giving a
representation of those points at different scales. Inspired by [1], a stack of
descriptors is built only the first time that the interest points are detected
and extracted from the region of interest. This provides efficiency of
representation and results in faster tracking due to the fact that it can
be done off-line. An Unscented Kalman Filter (UKF) using a constant
velocity model estimates the position and the scale of the object, with
the uncertainty in the position and the scale obtained by the UKF, the
search of the object can be constrained only in a specific region in both
the image and in scale.

The use of this approach shows an improvement in real-time tracking
and in the ability to recover from full occlusions.

Keywords: Object tracking, Harris detector, Speeded-Up Robust Fea-
tures (SURF), Unscented Kalman Filter.

1 Introduction

Object tracking is at the core of many interesting computer vision systems. It is
also challenging, due to the large space of object poses, perspective, illumination
and scale changes and clutter. If an object tracker is capable to successfully
solve these problems and at the same time keep the computational complexity
of the tracker as low as possible, then it could facilitate several applications
such as: security and surveillance, traffic management, augmented reality, mobile
robotics, etc.

Recent advances in object detection (e.g. [2] [3]), demonstrate the capabilities
of vision algorithms to deal with large occlusion and viewpoint changes. Usually,
they relay on the detection of key or interesting points to be used as features, and
on the building of descriptors around those points of interest. This robustness
to scale and occlusion usually translates in the expensive computation needed
by those algorithms.
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There are numerous approaches to detect interest points [4] [2] [3], most of
them differ on the information that the points represent, this yields to a very
important issue which is distinctiveness, which means how well the points can
be matched in different images. This and the repeatability of the points detected
between different images of the same scene under different changes in viewing
conditions, are of major concern.

In [5] it was demonstrated that the Harris detector performs well compared
to other keypoint detection algorithms in terms of repeatability, but it is well
known that this detector is not scale invariant, so to overcome this deficiency,
the multi-resolution framework proposed by [1] is used here, where for each point
detected, a SIFT-like descriptor is created at several fixed scales. This is done
only once and it is computed off-line which overcomes the computational cost of
computing the scale space in each frame as done in say SIFT [2] or SURF [6].

To predict scale and object position and their associated uncertainties, an
estimator is used. In this case, this is an unscented Kalman filter (UKF) although
other estimators are equally applicable.

The goal of this paper is to develop a fast, accurate and efficient tracker that
benefits from the repeatability of the computationally expensive detectors cre-
ated for object recognition and from the well established methods of estimation.

The first part of the algorithm consists of representing the target object with
low-level information using interest points extracted from the ROI (see Fig. 1).
These interest points are the representation of the object, the use of these points
has some advantages, they are locally extracted which gives to the object a robust
level of invariance to occlusion as well as to noise and illumination changes.
Because the object is often moving and changing its position, it may appear
different in each frame so it is important to obtain invariance to some image
transformations. This paper it is focused on rotation and scale invariance.

The remainder of this article is organised into 6 parts. Section 2 describes
related work, section 3 gives a brief description of the algorithm. Section 4 shows
the process of object representation which consists in the detection and the
description of the interest points, and describes the object tracking framework
using the UKF. Section 5 shows the experiments and the results obtained and
finally section 6 provides the conclusion.

Fig. 1. Region of Interest (black rectangle) showing a single interest point (middle
point inside the white rectangle)
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2 Related Work

In a typical visual tracker, two components can be distinguished: 1) target or
object representation and localisation, and 2) filtering and data association [7].
From the object representation point of view, amongst the wide variety of ap-
proaches adopted some employ a reduced amount of information extracted from
the object, such as color [8] [9], intensity [10], interest points [11] or spatialized
color histograms [12]. Some integrate different representations such as in [13].
There are also approaches that use a well described model of the object, this
basis is useful when the goal is to track say solid models. These approaches are
based mostly on the contour, edges or on a more detailed representation of an
image curve using a parameterisation like B-splines [14]. This level of description
can be complicated at best to achieve. There are however examples where this
approach works well e.g. [15] [16].

In the second component of a visual tracker, the principal idea is to estimate
the next state of the object, using a sequence of noisy measurements made on the
system. To do this, an estimator or filter can be used. There are different filters
used in tracking problems, under certain circumstances, it is assumed that an
optimal solution is given by the Kalman Filter (KF) when the problem is linear,
however, in a typical tracking problem there are different factors that make the
problem highly not linear.

The Extended Kalman Filter (EKF) is probably the most widely used es-
timation algorithm for nonlinear systems, unfortunately it exhibits potential
drawbacks and serious limitations. First, linearization is only reliable if the error
propagation can be approximated by a linear function and can be applied only if
the Jacobian matrix exists [17]. Second, the derivations of the Jacobian matrices
can be complex, causing implementation difficulties. A most recent alternative is
the Unscented Kalman Filter (UKF) [18], which handles the problems caused by
linearization providing a mechanism for transforming the mean and covariance
information and avoiding the calculus of Jacobian matrices. This estimation al-
gorithm will be described later with more detail. Another more general class
of filters are the particle filters which are based on Monte Carlo integration
methods. In these filters the current state is represented by a set of randomly
generated samples which are used to approximate the filtering distribution, [19]
[20] [21]. An issue with particle filters is the need to evaluate and keep a relatively
large number of particles and the complication of deciding which hypothesis to
use to indicate the location of the object. This work uses the UKF as a good
compromise but as mentioned before other estimators and filters can be incor-
porated.

3 Tracking Algorithm Overview

The first part of the algorithm consists in the object representation, its definition
does not assume a fixed form, however, the region of the image to be tracked
is delimitated by a rectangle defined by two opposite corners, this generates a
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ROI where the interest points are going to be extracted. The interest points
are extracted using the Harris detector and the points are not extracted in
different scales. To solve this problem, the scale invariance is incorporated in the
descriptor building a stack of descriptors at several scales, one for each interesting
point, this idea has been proven to work effectively using SIFT descriptors for a
visual SLAM system [1].

Once the interest points are extracted and matched against those detected in
the first frame, the object center is calculated. It can be obtained in two different
ways: the first one is by taking into account the relative coordinates of the points
calculated in the first frame to the object center and the scale, the second one is
calculating the homography between tracked and original template and getting
its center. In the second phase of the algorithm, a UKF estimates frame by frame
the center and the scale of the object. This is very important for the performance
of this tracker because the interest points are only extracted from a region of
the image constrained by the predicted scale covariance and the object center.
The predicted scale covariance and the scale predicted are also used to find the
region in the stack of descriptors where the system is going to look for possible
matches, which makes the matching step computationally easier. It is expected
that if the camera looses the object, the uncertainty in the scale and the position
of the object will grow until the search region covers the whole image and the
complete stack of descriptors in scale (see Fig. 2). If the object is “re-localised”
before that moment, an efficient use of the known information would have taken
place.

Matching

Descriptors
  Stack of New ROIDetection of 

     points

 the ROI
Delineate 

Description of points
using SURF

Detection of Points
using Harris detector

UKF estimation of object
       scale and position

Fig. 2. Block diagram of the object tracking system

One possible problem of this approach is having too many points representing
the object, making the matching step more difficult. This is solved in the next
stages of the algorithm during the object tracking procedure where the interest
points descriptors are built only at a fixed scale and are matched against only
those descriptors between a pre-defined range of scales. The interest points de-
scription is based in SURF (Speeded-Up Robust Features) [6], which has been
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proven to approximate or even outperform previously proposed schemes and the
fact that it can be computed faster makes it more reliable for our system. The
SURF descriptor will be described in the next section.

4 Object Representation

To extract the interest points, the Harris detector is used [4]. This detector is well
known for detecting not only corners but also locations in the image where the
signal changes two-dimensionally, this is achieved by using the autocorrelation
function defined by (1).

c(x, y) = [Δx, Δy] M [Δx, Δy]T (1)

where Δx and Δy are shifts of small windows centered on (x, y). The matrix M
denotes the intensity structure of the local neighbourhood, this 2 × 2 matrix is
computed from image derivatives:

M =

[ ∑
W

∂2I
∂x2 (i, j)

∑
W

∂2I
∂x∂y (i, j)

∑
W

∂2I
∂x∂y (i, j)

∑
W

∂2I
∂y2 (i, j)

]
(2)

where (i, j) are the index of the values in the window W over the image I. The
location of the feature point is obtained by doing maximum suppression over a
3 × 3 region using the next function:

cornerness = det[M ] − α[trace(M)]2 (3)

After the interest points are extracted from the ROI, the description of the
interest points is achieved using the fast descriptor coined SURF [6], which makes
use of integral images [22] and Haar-wavelets responses. A point p = (x, y) in an
integral image Integral(x, y) represents the sum of all pixels in the input image
I(x′, y′) of a rectangular region formed by the point p and the origin.

Integral(x, y) =
x∑

x′=0

y∑

y′=0

I(x′, y′). (4)

The SURF algorithm makes use of the integral image to detect the interest
points as well as to describe them.

After computing the integral image, the invariance to rotation is achieved by
calculating the Haar-wavelets responses in x and y direction. Because of the use
of the integral image, only six operations are needed to compute the response in
x or y direction at any scale.

The responses are represented as vectors. To get the dominant orientation,
first it is necessary to get the orientation in a sliding window covering an angle of
π/3, by summing all the vectors that are within the window. The longest vector
leads the dominant orientation of the feature point.
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To compute the descriptor, a square region is defined centered around the
feature point and oriented along the dominant orientation. This region is split
into 4×4 square sub-regions. In each sub-region, regularly spaced sample points
are taken and over these point, the Haar wavelets responses in x and y directions
are calculated,

for simplicity they are called dx and dy.are also weighted with a Gaussian(σ =
3.3s) centered at the feature point, this is done to achieve robustness towards
geometric deformations and localisation errors.

The responses over each sub-region are summed obtaining a vector over each
region. These vectors and the sum of the absolute value of the responses over
each sub-region give us the total entry of the descriptor. So each sub-region will
contribute to the descriptor with 4 values. The structure of the descriptor is
then D = (

∑
dxi ,

∑
dyi ,

∑
|dxi |,

∑
|dyi |, ...) where i = 1, ..., 16. The descriptor

is turned into a unit vector to achieve invariance to contrast [6].

4.1 Multi-resolution Descriptors

Instead of using a scale-space representation to achieve scale invariance, a list of
descriptors for each interest point is built at initialisation. Multiple descriptors
are constructed at the first frame at different resolutions and they are saved in
a stack list, this scheme is useful in two different ways: first, with this approach
the scale invariance is achieved and second, an efficient use of computational
resources is made. In the subsequent frames the descriptors are computed only
in a fixed resolution so this list is used to seek to match those descriptors to those
computed at a fixed resolution. In this article the terms resolution and scale are
considered equivalent. Not only the size of the region where the descriptor is
extracted is scale dependent but also the length between samples, which means
that the number of samples is fixed so it is only increased or decreased the size of
the window and the length of the sampling interval according to the resolution
where the descriptor is going to be computed [1].

In the first frame as it is known the spatial position of the object, it is also
known the object center is defined. To be able to calculate the center in subse-
quent frames, it can be done in two different ways: in the first one it is avoided
the calculation of a transforming mapping. In the first frame it is saved for each
interest point, the position (x, y) relative to the object center Pc. In the next
frames it is used this measure and the scale of the object to get the object center,
as it can be seen in the next equation:

Pc(x, y) =
∑N

i=0(Mi(x, y)/Scalei) + pi(x, y)
N

(5)

where N is the number of points that matches, Mi(x, y) is the measurement of
the point relative to the center, Scalei is the scale of the point and pi(x, y) is
the spatial position of each point.

The second way of doing it, is computing the homography. This is defined
as an invertible mapping where a plane can be projected trough a point onto
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another plane [23]. In this work it is used an affine mapping for the homogra-
phy calculation, which includes scales, rotations, translations, and shears. For a
robust estimation, the RANSAC algorithm is used to generate a better homog-
raphy. With this method the object center can be computed in each frame. The
idea is that when it calculates a bad homography, the system can still use (5) to
get the object center.

4.2 Filtering and Data Association

The tracking process is achieved by predicting the object center position and
the scale in the next frame. The Unscented Transform(UT) is used to compute
the first two statistical moments for the position and the scale, the means μp

and μs, and variances σ2
p and σ2

s . Using μs and σ2
s it can be searched in an

interval defined by I = μs ±3σ2
s , in the stack of descriptors, where the matching

scale should be found with high probability. With these statistical measures and
the size of the ROI obtained in the first frame, the region of the image where
the object is located is constrained by, WidthnewROI = WidthROI

μs
+ kσ2

s and
HeightnewROI = HeightROI

μs
+ kσ2

s , where k is a constant chosen experimentally
(see Fig. 3).

  UKF
Search Region

Region of Interest

   Best
  Match

 Stack of Descriptors

Object
    Scale Scale Region

Interest
  Points

Object Center

Fig. 3. Schematic view of the object tracking algorithm

Unscented Kalman Filter. The UKF is a variant of the Kalman Filter (KF)
for non-linear systems that address the EKF deficiencies. It is based upon the
Unscented Transformation (UT) which is a method for calculating the statistics
of a random variable which undergoes a nonlinear transformation [18]. A set of
sample points are chosen deterministically in order to compute the mean and
covariance of the random variable, when these points are propagated through
the non-linear system, then information can be extracted about the posterior
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mean and covariance with an accuracy up to the 2nd order in the Taylor series
expansion. The basic idea then is propagate the mean an covariance information
through nonlinear transformations. The UKF is an extension of the UT regard-
ing the recursive nature of the KF. More details about the UKF can be found
in [17].

5 Experiments and Results

The system was tested on a 2.2 GHz Pentium 4 PC. The implementation is on
Linux in C++ using the openCV library. A firewire camera with FOV of 42◦

which feeds video at 30 fps at a resolution of 320x240 is used.
Figure 4.I shows a comparative graphic of the tracking system developed in

this work vs the naive SURF algorithm, using a video sequence considering
changes in scale, rotation, partial occlusions and the total lost of the object. The
tracking system shows a fast recovery after temporary total lost of the object. In
graphic a), it can be seen that the frame rate is much better through the entire
sequence giving a mean of μSystem = 11.1 fps compared with μSURF = 6.04 fps.
In graphic b), the number of points detected and matched against the points
detected in the first frame are shown.
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Fig. 4. Graphic showing the performance of the tracking system compared with SURF
for two different objects: I) and II)

Figure. 4.II shows a sequence with a different object, where the number of
points detected in the first frame is less for the two approaches, 40 for the
proposed tracking system and 46 for SURF, compared with those detected from
the object I. It can be seen also from this sequence that the frame rate is better in
the whole video giving a mean of μSystem = 12.24 fps compared with μSURF =
8.63 fps.

From the graphics b) in Fig. 4 , it can be seen that the amount of points
correctly matched for the two objects are roughly the same. Figure 5 shows
sample frames of the tracked object over sequence 1. Video sequences of the
performance of the method can be seen at [24] and [25].



Robust Feature Descriptors for Efficient Vision-Based Tracking 259

a) b) c)

d)

g)

e) f)

h) i)

Fig. 5. Sample images of the test sequence using the proposed tracking system, each
image represent the next frames: a)8, b)110, c)139, d)187, e)260, f)380, g)406, h)487,
i)337

6 Conclusion

This paper presents a robust implementation of an object tracker using a vision
system that takes in consideration partial occlusions, rotation and scale for a
variety of different objects. The approach does not assume the form of the object
and the results showed that it can track successfully and efficiently identified
objects.

By utilising the proposed framework, an efficient implementation of an object
tracker is achieved. It is notorious that the use of an estimator (in this case
a UKF) of the scale and position of the object, improve the velocity of the
algorithm and makes it stable against erratic motion and fast recovery against
total lost. The use of the Harris points detector combined with SURF descriptors
has proved to give a robust way for an object representation. The scheme of
constructing multiple descriptors in the first frame gives to the system the scale
invariance and it adds a better performance due to the fact that it is done only
once and it avoids the use of scale-space in each frame.
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Abstract. The construction of surfaces from dense data points is an
important problem encountered in several applications, such as com-
puter vision, reverse engineering, computer graphics, terrain modeling,
and robotics. Moreover, the particular problem of approximating digi-
tal images from a set of selected points allows to employ methods that
are directed specifically to this task, which take advantage of the fact
that all points belong to a common 2D domain. This paper describes
a method for approximating images by fitting smooth surfaces to scat-
tered points, where the smooth surfaces are constructed using piecewise
cubic approximation. An incremental triangulation algorithm is used to
iteratively refine a mesh until a specified error tolerance is achieved. The
resulting surface is represented by a network of piecewise cubic triangu-
lar patches possessing C1 continuity. The proposed method is compared
against other surface approximation approaches and applied to several
data sets in order to demonstrate its performance.

Keywords: Surface modeling, image surface, smooth interpolation.

1 Introduction

Approximation from unorganized data points arbitrarily distributed over 2D or
3D domains is a crucial problem in several scientific and industrial applications.
Recent advances in acquisition of high-resolution images, associated with efficient
modeling techniques, have allowed the construction of models with high degree
of detail. Unless data reduction or compression methods are used, dense data
sets cannot be stored, manipulated, or visualized efficiently.

Polygonal surfaces are often used to represent 3D data sets mainly because
of their simplicity and flexibility. In the last few years, several polygonal surface
algorithms have been proposed in the literature for generating a surface contain-
ing a small number of polygons. This is important for processing, visualizing, or
transmitting larger surface data sets than the available capabilities of software,
computers, and networks permit.

Although piecewise linear approximation approaches are simple in concept
and generate compact surfaces, the generalization to a piecewise smooth repre-
sentation is a natural and, in many cases, a necessary extension. Certain regions
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of interest may consist of smoothly curved areas that meet along sharp curves.
Modeling such regions as piecewise linear surfaces usually requires a large num-
ber of polygons, whereas a curved surface can provide a more compact and
accurate model of the surface. Smooth surfaces can also produce superior results
for rendering purposes, reducing certain perceptual problems, for instance the
appearance of Mach bands along element boundaries [1].

This paper describes a method for approximating digital images or other
datasets constrained to a 2D domain, such as digital elevation models. The ap-
proximation is constructed by fitting a smooth surface to points selected from the
dataset. An incremental triangulation algorithm is used to iteratively refine the
mesh that describes the surface until a specified error tolerance is achieved. The
approximating surface is represented by piecewise cubic triangular patches pos-
sessing C1 continuity. Two strategies for the refinement method are investigated.
The first creates the triangular patches only after the iterative triangulation al-
gorithm is executed, and the second strategy already builds the mesh according
to the error generated by the cubic patches. The proposed method is applied to
several synthetic and natural data sets to demonstrate its robustness.

Section 2 briefly presents a review of some relevant surface fitting methods
found in the literature. Section 3 describes the proposed method. Experimental
results are given in Section 4. Some conclusions are summarized in Section 5.

2 Related Work

Techniques for piecewise linear approximation from data points have been pro-
posed by several researchers. The resulting surface can be generally obtained by
either refining a coarse triangulation or simplifying a fine triangular mesh until
a given tolerance error is achieved.

As an alternative to planar polygonal models, smooth surfaces can be approx-
imated more accurately with higher-order polynomials. Several adaptive meth-
ods have been developed for generating piecewise polynomial elements, such as
subdivision surfaces [2,3,4,5], hierarchical splines [6], and models composed of
triangular patches [1,7,8].

In 1974, Chaikin [9] introduced a method for generating a smooth curve from
a control polygon by recursively cutting off the corners of the polygon. This is
perhaps the first method of constructing smooth curves of arbitrary topological
type. Catmull and Clark [2], and Doo and Sabin [10] generalized the idea to
surfaces, where a subdivision surface is defined by repeatedly refining an initial
control mesh to produce a sequence of meshes that converge to a limit surface.

The Loop scheme [4] is probably the simplest subdivision method for trian-
gular meshes. Each edge of the mesh is split into two, and new vertices are
reconnected to form four new triangles. Vertices are rearranged through an av-
eraging step.

The Butterfly subdivision scheme, proposed by Dyn et al. [3], recursively
subdivides each triangular face of the control polygon into four triangular faces
interpolating the old control points. The subdivision step retains the existing
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vertices and splits each edge segment at its midpoint. The Butterfly scheme is
proven to achieve tangent plane continuity when applied to regular meshes. A
variant of the Butterfly scheme was proposed by Zorin [11], which guarantees
that the subdivision produces C1-continuous surfaces for arbitrary meshes.

A set of spline patches can be derived to fit a smooth surface over irregular
polygonal meshes, globally achieving some order of continuity [12,13,14,15,16].

3 Proposed Method

The method proposed for fitting surfaces to scattered points involves two distinct
parts, which are the surface approximation method, that creates a triangle mesh
from the provided set of points, and the interpolation method, which defines the
error between the original data and the triangles. These parts are described in
the next two sections.

3.1 Surface Approximation

A refinement method is used in order to generate a piecewise approximation of
a certain surface. The algorithm starts with an initial triangulation that covers
the boundary of the domain, and iteratively adds new points from the data set
until a specified error tolerance is achieved. The resulting surface is formed by
C0 continuous triangular patches.

The Delaunay triangulation is used to construct the mesh, generating the
triangulation that maximizes the minimum angle of all triangles. This helps to
reduce the occurrence of thin and long triangles since they can lead to undesirable
behavior, affecting numerical stability and producing visual artifacts. During
the approximation method, the error for each triangle is computed as the sum
of the squared difference between each original data point inside the domain
of the triangle and its interpolated value. Each triangle has also an associated
candidate point, which is the point of the triangle with the maximum difference.
Figure 1 presents an example where the points involved in the computation of
the triangle error are shown. The candidate point is highlighted in black.

The four steps of the refinement method can be seen in Figure 2, from (a) to
(d). At each iteration of the method, for a given mesh (a), the candidate point

A

B

C

B
A
C

Fig. 1. Vertical error
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(a) (b) (c) (d)

Fig. 2. Surface approximation method

of the triangle with maximum error is inserted into the mesh (b). Three new
triangles are created with this vertex (c), and the modified portion of the mesh
is retriangulated in order that the triangles maintain the Delaunay property (d).

The error evaluated for a given point clearly depends on the interpolation
scheme that is being used. If a linear scheme is used, the value of a point is
computed according to the plane defined by the three points of its containing
triangle. In this work, we propose a surface approximation method using cubic
interpolation, and compare it with linear interpolation. The smooth interpolation
can be used either during the iterative construction of the mesh or only to fit
a polynomial surface over an already created mesh. Our cubic interpolation
method is described in the next section.

3.2 Smooth Surface Interpolation

Our interpolation method uses cubic polynomials to construct C1 surfaces, which
is based on a scheme originally described by Clough and Tocher [17]. It divides
each triangle into subtriangles and fits an approximating function over each
subtriangle. Certain continuity conditions must be satisfied at every boundary
between two adjacent patches in order for the entire surface to be smooth.

Before describing the interpolation method, some preliminary concepts are
introduced.

Mathematical Preliminaries
The use of barycentric coordinates is a natural way of representing triangular
patches, since this guarantees a symmetric influence of all three triangle corners.
Let T be a planar triangle defined by the vertices V1, V2, V3. Any point V in
T can be expressed in terms of the barycentric coordinates (r, s, t) defined by
V = rV1 + sV2 + tV3, where r + s + t = 1 and 0 � r, s, t � 1.

Bernstein polynomials of degree n over a triangle T can be defined in terms
of barycentric coordinates (r, s, t) expressed as

Bn
i,j,k(r, s, t) =

n!
i! j! k!

risjtk (1)

which form a basis for all bivariate polynomials of degree n. The parametric
equation for a single triangular Bernstein-Bézier patch is
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p(r, s, t) =
∑

i+j+k=n
i,j,k�0

bi,j,k Bn
i,j,k(r, s, t) (2)

where the coefficients bi,j,k are called the Bézier control points of p(r, s, t).
Taking n = 3, Equation 2 gives

p(r, s, t) = r3 b3,0,0 + s3 b0,3,0 + t3 b0,0,3 + 3r2s b2,1,0 + 3r2t b2,0,1 +

3rs2 b1,2,0 + 3s2t b0,2,1 + 3rt2 b1,0,2 + 3st2 b0,1,2 + 6rst b1,1,1
(3)

where (r, s, t) are the barycentric coordinates of a point (x, y) relative to the sub-
triangle. Figure 3 shows an example of a triangular patch and its corresponding
Bernstein polynomials.

b

b0,3,0

b1,2,0
b0,2,1

0,1,2b

2,1,0

b
3,0,0b2,0,1b1,0,2b0,0,3

1,1,1b
2 3rs2

t 3rt 3r t r 3

6rst3st2

s3

3

3s t

3r s2

2 2

Fig. 3. Cubic triangular Bernstein-Bézier patch and its corresponding Bernstein poly-
nomials

Cubic Interpolant
The Clough-Tocher [17] interpolation scheme, originally developed as a tech-
nique in finite element analysis, was used to produce a piecewise cubic poly-
nomial surface during the approximation method. For the surface construction,
each triangle is subdivided at the centroid into three subtriangles, and a cubic
Bernstein-Bézier polynomial is defined over each subtriangle. Figure 4 illustrates
the Clough-Tocher interpolation scheme.

Farin [7] provides a comprehensive description of the conditions for derivative
continuity on the common boundary between two adjacent triangular patches.
To ensure C1 continuity, the first derivatives of two adjacent patches p and q
must join continuously across the shared edge. Our interpolation method is based
on the work developed by Quak and Schumaker [18]. Their paper provides a con-
struction such that derivative continuity is achieved on each shared triangle edge.

Our interpolation method is relatively simple to implement since it computes
the coefficients of the polynomial for each triangle based only on the elevation
values and the estimated values of the first partial derivatives (tangent vectors)
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Fig. 4. Clough-Tocher subdivision

at the three vertices of the triangle. The derivative at a vertex is computed as
the weighted average of the normals of the triangles adjacent to that vertex.

The 19 Bernstein-Bézier coefficients of the Clough-Tocher interpolation
scheme are given by the following equations

b0 = z0

b1 = z1

b2 = z2

b3 = ((x1 − x0)zx
0 + (y1 − y0)z

y
0 )/3 + z0

b4 = ((xc − x0)zx
0 + (yc − y0)z

y
0 )/3 + z0

b5 = ((x2 − x0)zx
0 + (y2 − y0)z

y
0 )/3 + z0

b6 = ((x2 − x1)zx
1 + (y2 − y1)z

y
1 )/3 + z1

b7 = ((xc − x1)zx
1 + (yc − y1)z

y
1 )/3 + z1

b8 = ((x0 − x1)zx
1 + (y0 − y1)z

y
1 )/3 + z1

b9 = ((x0 − x2)zx
2 + (y0 − y2)z

y
2 )/3 + z2 (4)

b10 = ((xc − x2)zx
2 + (yc − y2)z

y
2 )/3 + z2

b11 = ((x1 − x2)zx
2 + (y1 − y2)z

y
2 )/3 + z2

b12 = (b4 + b7 + (θ0 − 1)b0 + (2 − 3θ0)b3 + (3θ0 − 1)b8 − θ0b1)/2
b13 = (b7 + b10 + (θ1 − 1)b1 + (2 − 3θ1)b6 + (3θ1 − 1)b11 − θ1b2)/2
b14 = (b10 + b4 + (θ2 − 1)b2 + (2 − 3θ2)b9 + (3θ2 − 1)b5 − θ2b0)/2
b15 = (b14 + b4 + b12)/3
b16 = (b12 + b7 + b13)/3
b17 = (b13 + b10 + b14)/3
b18 = (b17 + b15 + b16)/3
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where

θ0 =
(xc − x0)(x1 − x0) + (yc − y0)(y1 − y0)

(x1 − x0)2 + (y1 − y0)2

θ1 =
(xc − x1)(x2 − x1) + (yc − y1)(y2 − y1)

(x2 − x1)2 + (y2 − y1)2

θ2 =
(xc − x2)(x0 − x2) + (yc − y2)(y0 − y2)

(x0 − x2)2 + (y0 − y2)2

(5)

The coordinates of points b0, b1, and b2 are (x0, y0, z0), (x1, y1, z1) and
(x2, y2, z2), respectively, and the derivatives at these points are (zx

0 , zy
0 ), (zx

1 , zy
1 )

and (zx
2 , zy

2 ). The point (xc, yc) is the centroid of the triangle (b0, b1, b2).
Initially, the derivatives at each data vertex are computed by estimating the

normals for each adjacent triangle. Then, three cubic triangular Bézier patches
are constructed over each subtriangle. A cubic Bézier patch is defined by 10
control points as shown in Figure 3. The 10 control points of each subtriangle
provide the degrees of freedom required to ensure continuity across the element
boundaries.

The Bernstein-Bézier representation for subtriangle (b0,b1,b18) is

p(r, s, t) = r3 b18 + s3 b0 + t3 b1 + 3r2s b15 + 3r2t b16 +

3rs2 b4 + 3s2t b3 + 3rt2 b7 + 3st2 b8 + 6rst b12
(6)

The C1 cubic surfaces for subtriangles (b1,b2,b18) and (b0,b2,b18) are com-
puted analogously.

4 Experimental Results

We compare four surface approximation methods. For the first three methods,
a triangle mesh is firstly created according to linear interpolation, and the error
of this approximation is compared when the resulting mesh is interpolated using
the linear method, our previous quadratic method [1], and the proposed cubic
scheme. For the fourth method (labeled CubicApp), the described cubic inter-
polant is directly used during the iterative construction of the triangle mesh,
and the error for the triangles and the candidate points is computed according
to this scheme.

Our method has been tested and evaluated on several different real and syn-
thetic digital images in order to demonstrate its performance, however, due to
limited space, the visual results for only three models are presented in this work.
The algorithms were implemented in C programming language on a PC Athlon
XP 2000 MHz with 512 Mbytes of main memory.

Table 1 reports the root mean square (RMS) error for a set of reconstructed
objects. Figures 5 and 6 show three sets of images obtained by applying the
linear and cubic interpolation methods, and their related contour lines. The
same number of data points are retained in both methods.
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Table 1. Summary of results (RMS Error) for reconstructed objects using 1% of the
original points

Model Linear Quadratic Cubic CubicApp

Columbia 6.84 7.76 7.45 7.43
Crater Lake 5.52 6.93 6.63 6.40
Emory Peak 13.90 16.75 15.62 15.58
Grand Canyon 16.37 19.15 18.52 18.20
Klamath Falls 8.07 10.73 9.59 9.37
Mars 4.91 7.55 7.12 6.83
Peppers 11.22 12.68 12.64 12.53
Rice Lake 1.75 2.16 2.09 2.03

(a) Linear (b) CubicApp (c) Linear (d) CubicApp

(e) Linear (f) CubicApp (g) Linear (h) CubicApp

Fig. 5. Approximations of two data sets by the linear and cubic method, respectively.
(a) and (b) Crater Lake DEM (336×459 pixels); (c) and (d) Contour lines; (e) and (f)
Half-Sphere DEM (256×256 pixels); (g) and (h) Contour lines.

Although the linear method presented lower errors than the smooth interpo-
lation schemes, the cubic interpolation used during the iterative construction of
the triangulation resulted in high quality meshes, when compared to the methods
that only fit a smooth surface over an already created linear mesh with either
the quadratic or cubic scheme. Thus, it appears as a better alternative when
lower error approximations with properties such as C1 continuity and smooth
contour lines are required.
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(a) Linear (b) CubicApp

(c) Linear (d) CubicApp

Fig. 6. Approximations of one data set by the linear and cubic method, respectively.
(a) and (b) Mars DEM (948×948 pixels); (c) and (d) Contour lines.

5 Conclusions

A method for approximating digital images by smooth surfaces is presented in
this paper. The method generates a set of piecewise cubic polynomial patches
possessing C1 continuity. The approximation error that guides the point selection
process during the iterative construction of the surface is evaluated according to
the interpolation of the cubic polynomials. Therefore, the method selects at a
given iteration the point that reduces the maximum error for the current smooth
surface.

The results show that the method constructs surfaces of high quality, which
are comparable in terms of RMS Error to surfaces constructed by the linear
method, but that are more suitable for applications where smooth approxima-
tions for digital images or other types of datasets are necessary.
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Abstract. Different researches suggest that inner facial features are not
the only discriminative features for tasks such as person identification or
gender classification. Indeed, they have shown an influence of features
which are part of the local face context, such as hair, on these tasks.
However, object-centered approaches which ignore local context domi-
nate the research in computational vision based facial analysis. In this
paper, we performed an analysis to study which areas and which res-
olutions are diagnostic for the gender classification problem. We first
demonstrate the importance of contextual features in human observers
for gender classification using a psychophysical ”bubbles” technique. The
success rate achieved without internal facial information convinced us to
analyze the performance of an appearance-based representation which
takes into account facial areas and resolutions that integrate inner fea-
tures and local context.

Keywords: Gender classification, local context, PCA, SVM.

1 Introduction

Humans make use of different static and dynamic features to successfully identify
and interact with other people. Gender is one of them.

Gender recognition is an often-studied topic in both the psychology and, since
the first work in the early 90s [1,2], the computer vision community. Recently,
very high performance was obtained using only facial information [3,4]. To the
best of our knowledge, in computer vision this task has been based almost ex-
clusively on internal facial features, except in some recent work which analyzed
the discriminative capability of external facial features [5] such as hair [6].

This latter finding is consistent with the human recognition system, which
makes use of external and other features for gender recognition, such as gait,
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hair, clothes, voice, etc. [7,8]. To illustrate this, if we look at different paintings,
e.g., August Macke’s Hat Shop, or Rene Magritte’s Son of Man, it is observed
that even when internal facial features are not distinguishable at all, different
contextual details depicted by the painter allow us to confidently infer the gen-
der of the person depicted. This observation is also supported by psychophysical
results, which suggests that local context is a robust cue to gender for low resolu-
tion or noisy images [8,9]. This paper investigates the extent to which the facial
area and resolution chosen for gender classification influence in the performance
of an automatic gender classifier.

Fig. 1. Image samples (62 × 54) pixels

2 Evidence of Local Context Influence in Human
Perception

In the psychology literature, the local context around the face has been estab-
lished as a source of information to characterize an individual. The local con-
text is defined as the information surrounding the internal features of the face,
including hair and possibly the environment surrounding the head (i.e., local
background) [10].

According to Torralba [11], object-centered approaches dominate the research
in computational vision based facial analysis. Most systems have been designed
for a resolution range in which the inner face elements are clearly distinguish-
able. This focus restricts their reliability due to the fact that these systems are
easily fooled in situations with poor viewing conditions in terms of pose, res-
olution, illumination, etc. Such conditions have been systematically studied in
psychophysical experiments [10], and the results suggest that humans make use
of the local context as the level of detail decreases to achieve greater robustness.
However, Sinha’s previous work also suggests that the role of local context is
not exclusively utilized at low resolution. Indeed, under some circumstances, the
local context provides enough discriminative features which indicates that inter-
nal facial details are not the only sources of gender information that are taken
into consideration [8,9].

To investigate the influence of local context for gender recognition, we first
analyzed which contextual features are used by human observers for gender clas-
sification. For that purpose, we used a psychophysical ”bubbles” technique [12]
to isolate those regions used by humans when only local contextual information
around the head and shoulders is available in the image. The technique was used
in [12] to identify internal facial features that provided diagnostic information for
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Fig. 2. Two different images samples after applying randomly distributed bubble. The
inner facial features are always masked but the eye locations are indicated to observers
by two red dots. Figure 1 shows some samples without any mask applied but down-
sampled to 62 × 54 pixels.

Fig. 3. The left pair shows the diagnostic image and the superimposition of the im-
age with a female sample. The diagnostic image shows diagnostic regions (and their
strength) that lead to accurate classification by humans. The right pair shows the
results for males.

gender classification. With high-resolution face images, the gender was correctly
determined using just the eyes and mouth.

In the current study, images containing aligned male and female face images
were revealed through a mask of small randomly distributed Gaussian windows
(”bubbles”). That is, the presence of a bubble over a region showed that region.
To prevent human observers from making the classification on the basis of inter-
nal facial features, the bubbles were never placed on any internal facial region,
as shown in Figure 2. Therefore, observers classified the gender based on infor-
mation contained in the local context surrounding the face. Across observers,
masks leading to correct responses are summed and normalized to reveal image
regions that were diagnostic for gender classification. The resulting normalized
images are referred to as diagnostic images.

The results (i.e. diagnostic images) for a dataset of 962 images (124 × 108
pixels) are shown in Figure 3. They indicated that the regions used by humans
to discriminate gender when internal facial features were not visible depended on
the gender of the test face. For male faces, the neck provided the most diagnostic
information (i.e., the tie or the shirt neck provided discriminative information).
By comparison, for females faces, long hair was frequently used as a diagnostic
cue. With these regions observers correctly classified the stimuli 70 − 75% on
average, without seeing too much internal facial details.
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3 Automatic Gender Classification

The psychophysical results above suggested that the local contextual information
around the head and shoulders (e.g., hair, neck tie) provided diagnostic gender in-
formation. As we mentioned above, however, automatic gender classification have
been predominantly based on internal facial features. For example, the recentwork
described in [3] used perfectly aligned and cropped frontal faces represented using
Principal Components Analysis (PCA). A Support Vector Machine (SVM) clas-
sifier [13] was subsequently used to classify the PCA-based representations. This
classifier achieved high gender classification performance even at low resolution.

We adopted the same appearance-based representation space, i.e. PCA, and
classification approach used by Moghaddam et al. [3]. However, instead of man-
ually collecting a training set for our experiments, we moved to a less restricted
scenario in which an automatic face detector [14] provided the input data source
extracted from video streams to incrementally build up the training set. In our
experiments, gender classification was performed each time a new individual
was encountered, but the system used the information extracted to iteratively
upgrade the gender classifier.

Our assumption is that the system can be improved by a supervisor which
confirms or corrects its classifications. Labelling interactively for learning is not
new [15]. The online training is therefore unconstrained in the sense that an
individual can be presented in an arbitrary order in front of a camera and labelled
by a supervisor.

Fig. 4. Samples of different facial areas used or automatic recognition. From left to
right: Cropped A (without hair line), Cropped A IN (same but with Illumination Nor-
malization [16]), Uncropped (including local context), Cropped B (including the hair
line) and Eyes. The first two areas have a dimension of 59 × 65 pixels, the second two
areas 75 × 90 pixels, and the last area has a dimension of 15 × 11 pixels.

4 Experiments

4.1 Representation

The initial representation space, based on PCA, has been set up using a dataset
of 7000 images taken randomly from the Internet. These images were annotated
by hand, and normalized according to eye position to obtain samples that were
59x65 pixels each.
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Fig. 5. Correct recognition rate achieved with different classifiers, according to the
number of eigenvalues employed, computed offline with around 3400 training images

We randomly selected half of this set for training, and the other half for test-
ing. We then computed a collection of SVM-based classifiers [13] which takes
into considering account different number of eigenvalues for the face represen-
tation. Based on the results shown in Figure 5, we employed 100 eigenvalues to
represent faces in our online experiments.

To test successive meetings, we built up a database which made use of broad-
cast television. The database contains around 1130 different video streams with
resolution equal to or greater than 320×240 pixels. The sequences correspond to
approximately 850 different identities. Unfortunately we do not have permission
from most of the sources to share the database.

For our face representation, we used incremental PCA (IPCA) approach de-
scribed in [17,18] instead of using a fixed PCA space. Thus, the learning pro-
cedure starts with an initial PCA representation space, and an initially empty
training set. The system meets individuals in a random order, after each meet-
ing, it determines a classification (once a sample is available for each class) for
that meeting based on some significant exemplars extracted. Incorrectly classi-
fied exemplars are then employed to 1) increase the training set to update the
gender classifier, and 2) to incrementally update the PCA representation space
[17,18].

4.2 Results

As mentioned above, for our experiments, we used an automatic face detector
[14] that is freely available for research purposes. To avoid artifacts produced
by the order in which videos are presented or meetings held, the experimental
procedure was repeated randomly several times for five different facial regions,
see Figure 4. We present the results achieved averaged across these repetitions.

Figure 6 presents the results achieved using the different facial areas shown in
Figure 4. The plot represents the cumulative success rate of classified meetings.
Initially, the system classified gender poorly. However in the final stages, three
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Fig. 6. Gender classification performance evolution (zoomed on the right). For each
meeting, the cumulative rate of correct classification is indicated.

Fig. 7. Gender classification performance evolution (zoomed on the right). For each
meeting, the cumulative rate of correct classification is indicated for the independent
test set.

curves reported a success rate greater than 75%, which indicates that the system
was able to recognize correctly more than 847 sequences of held meetings at
that point, and this tendency continued to grow. Two curves in Figure 6 clearly
showed relative poor performance: Eyes, and Cropped A IN.

We were also interested in testing with an independent and larger test set
of images of images not contained in the video streams. Figure 7 presents the
results achieved using again the facial areas shown in Figure 4 for the test set
used to compute the initial PCA (containing 7000 faces annotated by hand).
The overall classification performance is slightly better, and again the curves for
the Eyes, and Cropped A IN areas show worst results than the other areas.

Figure 8.left shows the number of samples automatically included in the train-
ing set by the different areas. The Cropped B appeared to build a training set that
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Fig. 8. Gender classification performance evolution. For each meeting, the cumulative
size of training set is indicated. Left) comparison of facial areas used, Right) Compar-
ison of resolutions used for Cropped B.

Fig. 9. Cropped B samples at three different resolution: a) 75×90, b) 37×45, c) 18×22,
and d) 9 × 11 pixels

was slightly smaller than the Cropped B and Uncropped areas. The Cropped B
does not include information related to hair, but does include the forehead which
could, in some situations, be affected by hair.

Another question which arose during these experiments was the influence of
spatial resolution. In [3], it was stated that the automatic system can easily
outperform a human at low resolution. Therefore, we tested four different reso-
lutions, as shown in Figure 9. For resolutions lower than 18 × 22, we observed a
significant reduction in classification performance and an increase in the num-
ber of samples, as shown in Figure 8.right. Figures 10 and 11 depict the results
for the three best curves (Cropped A, Cropped B and Uncropped) using dif-
ferent resolutions. Based on these results, we do not see a clear advantage in
performance for any one of those areas. Overall, however, the lowest resolution
revealed a decrease in performance and a corresponding increase in the size of the
training set.
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Fig. 10. Cropped A, B and Uncropped at different resolutions (full, half, 1/4 and 1/8)
using the meetings results

5 Conclusions and Future Work

In the present work, we first analyzed the influence of outer facial regions on
human gender classification performance. The results indicated that humans do
not only use inner facial regions to classify gender.

Motivated by the human data, we subsequently employed a state-of-the-art
approach to investigate which inner and outer facial areas provided better in-
formation for an automatic gender classifier. The entire process is performed
automatically from face detection to exemplars selection. Only a supervisor is
required to confirm or correct a classification performed by the system. This is
the key point for the learning system due to the fact that incorrectly classified
patterns are added to the training set.

The resulting classifiers required a much smaller training set: less than 10%
that of the classifiers used for offline learning. However, the performance of the
offline classifier was still greater.

Our results indicated that the minimal resolution required for gender recogni-
tion should not be lower than 18×22. However, we did not find a clear winner in
terms of the optimal area for gender classification (among Cropped A, Cropped
B and Uncropped). According to this finding, for our configuration the local
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Fig. 11. Cropped A, B and Uncropped at different resolutions (full, half, 1/4 and 1/8)
using the independent test set results

context, although useful for humans, does not seem to provide additional infor-
mation for gender classification if internal features are present.

In the near future we plan to test the possibility of classifying without the
availability of inner facial features. Additionally, we would like to test the possi-
bility of combining the different classifiers to get a better metaclassifier for the
gender classification problem.
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Abstract. In this paper we present a method for the automatic localization of 
local light variations and its photometric normalization in face images affected 
by different angles of illumination causing the appearance of specular light. The 
proposed approach is faster and more efficient that if the same one was carried 
out on the whole image through the traditional photometric normalization 
methods (homomorphic filtering, anisotropic smoothing, etc.). The process con-
sists in using an algorithm for unsupervised image segmentation based on the 
active contour without edges approach with level set representation model for 
localization of regions affected by specular reflection combined with a normali-
zation method based on the local normalization that considers the local mean 
and variance into the located region. The performance of the proposed approach 
is compared through two experimental schemes to measure how the similarity is 
affected by illumination changes and how the proposed approach improves the 
effect caused by these changes. 

Keywords: image segmentation, photometric normalization. 

1   Introduction 

Face recognition algorithms consist in three major parts: Face detection, normaliza-
tion and face identification [1]. Face recognition starts with the detection of face pat-
terns in sometimes cluttered scenes, continues normalizing the face images to attenu-
ate or eliminate geometrical and illumination problems, then these faces are identified 
using appropriated classification algorithms, and finally results are post-processed us-
ing model-based schemes and logistic feedback [2]. 

One illumination effect that might cause particular problems in the recognition 
process is the local reflection of light in the face. Recently many appearance-based 
algorithms have been proposed to deal with the problem [3-6]. These algorithms work 
well, but are computationally expensive.  

To find a method to efficiently and quickly solve these problems that obtains face 
images without the specular illumination effect and maintaining the features neces-
sary for identification is a challenge. 

In this paper we present a new approach to perform a detection of regions affected 
by the specular illumination effect by means of a bi-class unsupervised texture image 
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segmentation method using active contour and connected component analysis and an 
algorithm proposed by us to attenuate the local specular light through the filtering of 
the segmented regions by mean value of pixels in the neighbor regions. The first  
contribution of this paper is the fact that we use the unsupervised texture image  
segmentation method for region detection. And if in addition we consider that the seg-
mentation turns into a region previously located by the face detector, the normaliza-
tion process will be extremely fast.  

The second contribution of this paper is the fact that this process of photometric 
normalization is done only in the segmented regions and not on the whole image and 
only in those images where the illumination problem is present; this clearly reports an 
important saving of time and calculation  

The third contribution of this paper is the proposed method for the local normaliza-
tion that consider the mean value and variance into the segmented image region by 
means of a very fast processing implemented through a lookup table.  

The effectiveness of the proposed method was evaluated in several experiments  
using images from the Yale B database, taken a variety of illumination conditions. 
Obtained results demonstrate that the variations in the image similarity caused by il-
lumination are successfully eliminated or attenuated. 

2   Segmentation Algorithm 

2.1   Active Contour for Image Analysis 

There are two main approaches in active contours based on the mathematical imple-
mentation: snakes and level sets. Snakes explicitly move predefines snake points 
based on an energy minimization scheme, while level set approaches move contours 
implicitly as a particular level of a function [7]. 

The classic snakes [8] provide an accurate location of the edges only if the initial 
contour is given sufficiently near the edges because they make use of only the local 
information along the contour. Estimating a proper position of initial contours without 
prior knowledge is a difficult problem. Also, classic snakes cannot detect more than 
one boundary simultaneously because the snakes maintain the same topology during 
the evolution stage. That is, snakes cannot split to multiple boundaries or merge from 
multiple initial contours. 

Level set theory has given a solution for this limitation, a formulation to  
implement active contours, was proposed by Osher and Sethian [7]. They represented 
a contour implicitly via a two-dimensional Lipschitz-continuous function 

ℜ→Ω:),( yxφ defined on the image plane. The function ),( yxφ is called level 

set function, and particular level, usually the zero level, of ),( yxφ is defined as the 

contour.  
The advantage of using the zero level is that a contour can be defined as the border 

between a positive region and a negative region, so the contours can be identified by 
just checking the sign of ),( yxφ .  

Among the different active contours approaches for image segmentation we based 
our work on the Active Contour without Edges Model. This is a variable model for  
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2-phase image segmentation. The basic idea is to look for a particular partition of a 
given image into two regions, one representing the objects to be detected and the 
other representing the background, if we consider Ω as a bounded open subset of 2ℜ , 

with Ω∂  the boundary, we seek for ),,(inf CccF −+ : 

∫ ∫ −−++−+ −+−+⋅=
)( )(

2

0

2

0 ),(),()(),,(
Cin Cout

cyxucyxuClengthCccF λλμ  (1) 

where ℜ→Ω:0u  is the given image, c+ and c- are unknown constants represent-

ing the average value of 0u  inside and outside the curve and parameters 0>μ  and 

0, >−+ λλ  are weights for the regularizing term and the fitting terms respectively. 

In the level set method, Ω⊂C  is represented by the zero level set of a Lipschitz 

function ),( yxφ : ℜ→Ω such that 

}0),(:),{( =Ω∈= yxyxC φ  
}0),(:),{()( >Ω∈= yxyxCin φ  
}0),(:),{()( <Ω∈= yxyxCout φ  

 

(2) 

Using the Heaviside function H defined by: 
,1{)( =xH  if  0≥x  

                  ,0{   if   0<x  
(3) 

We can replace the unknown variable C using eqs. (2) and (3), then the energy func-

tional ),,( −+ ccCF  is transformed to: 

+−+∇= ∫∫
Ω

+

Ω

−+ dxHcuHccHF )())((),),((
2

01 φλφμφ  

∫
Ω

− −−+ dxHcu ))(1(
2

02 φλ  

(4) 

2.2   Segmentation  

The main purpose of our method is the segmentation of region affected by non-
uniform illumination. Therefore, we need a modification of the Active Contour with-
out Edge model defined on eq.(4), where u0  is a multispectral image , u0

i stands for 

each one of the image features (bands) and { }N

i
icc 1=++ =   , { }N

i
icc 1=−− =  are vector 

where the ith  component represent the pixel values average inside and outside of u0
i  

respectively. We can see these changes in the equation (5):  

+∇= ∫
Ω

−+ ))((),),(( dxHccHF φμφ  (5) 
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+−−+ ∫ ∑
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For this algorithm implementation we have been based on [9] where it is proposed 
a way for implementing optimization problems based on level set representation. 
When we apply it to solve the functional (eq. 5) the computational cost decreases sub-
stantially. Besides, our solution does not need to solve the Euler-Lagrange equation 
because it computes the energy directly on the functional and analyzes the energy 
variation when we move a point from inside to outside of the contour or vice versa.   

We can approximate the length term ∫ ∇ dxH )(φ  by: 

∫ ∑ −+−≈∇ ++
ji

jijijiji HHHHdxH
,

2
,1,

2
,,1 ))()(())()(()( φφφφφ  (6) 

where ji ,φ  is the value of φ at the ji, th pixel. Given an initial partitionφ > 0 and 

φ < 0 denoted by 1φ  and 2φ , assuming that there are m points in 1φ  and n points 

in 2φ : let ii Fc ,  be the average and energy for iφ , i =1, 2.  

If P is the point we want to analyze and its value is x, then if 1φ∈P  the energy 

variation when we move P from 1φ  to 2φ  can be computed as:   

1
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Similarly, if P changes from 2φ to 1φ , the change of energy is: 

1
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1
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−=Δ
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cx

m

m
cxF  (8) 

According to the needs and characteristics of the image to be segmented it can use 
or not the length term (8). 

Without its consideration our algorithm can be summarized in 5 principal steps:  

1. Give any initial partition of the image, set φ =1 for one part, and φ = -1 

for the other part. Calculate initial c1 and c2 values. 
2. For each image pixel, computes the energy variation on the functional 

moving the point from 1φ  to 2φ or vice versa. If this variation is less than 

cero, then the value of the function evaluated in this point is changed to its 
opposite, i.e. if the value of the function was 1 it turns into -1.   
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3. Apply the connected component filter to the function to eliminate the 
noise less than a specific size. 

4. Recalculate 1c  and 2c  values taking into account the new functionφ . 

5. Repeat steps 2, 3 and 4 while energy decreases. 
 
In case of consider the length term (8), first we apply the algorithm as we have 

seen before and later, we apply it but this time in the step 2 to calculate the energy 
variation we take into account the change occurred in the length when we move the 

point from 1φ  to 2φ or vice versa. 

3   A Fast Local Photometric Normalization Method 

The following proposed method is based on the local normalization algorithm that 
standardizes the local mean and variance of an image [10], [11]. In our approach we 
make a filtering by the mean value of the pixels of regions located outside the seg-
mented regions which contains the image parts affected by low frequency illumina-
tion effect (specular light) calculated by the expression: 

0),(
),(),(

.

ji
jifji I

pX
II −=  (9) 

Where, I(i,j)0,  is the original value of a pixel located at the position i,j of the segmented 
region containing the part of image affected by illumination.  

I(i,j)f is the normalized value of a pixel affected by illumination at the position i,j of 
the segmented region. 

X . is the mean value of vector formed by pixel values contained in the face region 
located outside the segmented region that contains the part of the image affected by 
low frequency illumination effect (specular light). See Fig 1. 

 

Fig. 1. Distribution of pixel values took for photometric normalization outside and inside of the 
segmented region 
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Table 1. Distance intervals and its corresponding coefficients p 

No. of interval Distance Interval Coefficient p 
1 1.2 - 1.5 10 
2 1.5 - 1.8 40 
… … … 
20 6.9 - 7.2 760 

 

Fig. 2. Example of face image normalization in the Yale B database using the proposed 
method; a) original image, b) segmented region, c) normalized image 

p. is the coefficient that depends of the Euclidean distance between the mean value 
and each value of the image inside the segmented region, the values of p are increased 
on a fixed quantity together with the distance interval, Table 1 shows the distance in-
tervals and their corresponding coefficients used by us.  

Taking in to account that the segmentation extracts pixels affected by illumination 
surrounded by non affected pixels, the normalization algorithm works with the values 
of these non affected pixels, the effect is the change of pixel values inside the region 
in function of the mean value calculated, without lost of information (see Fig 2). 

4   Experiments 

4.1   The Yale B Database 

We experimented the proposed approach in images from Yale B database [12]. 
The Yale B database contains 64 different illumination conditions for 10 subjects. 

The illumination conditions are a single light source, the position of which varies 
horizontally and vertically. For the evaluation of the effectiveness of the detection 
process we take a test set composed by 50 images. We take 5 images per subject con-
taining the low frequency illumination effect (specular light). Fig 3 shows an example 
of used images. 

 

 

Fig. 3. Example of 5 images per subject with low frequency pixel values in some areas of im-
ages (specular light) 
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4.2   Evaluation of the Performance of Segmentation Combined with the 
Photometric Normalization 

With generated images we compared the results in two experimental schemes. The 
idea was to measure how the similarity is affected by illumination changes and how 
the proposed approach improves the effect caused by these changes. Normalized cor-
relation has been chosen as it has proved to be a successful similarity measure in face 
recognition [13]. For identical images it takes the maximum value equal to unity. 

Face detection is achieved trough the Viola and John’s algorithm [14], and are im-
plemented at the OpenCV library [15]. There are several advantages offer by this 
method: The image representation called integral image, allows a very quickly com-
putation of the features used by the detectors. The learning algorithm based on 
Adaboost, allows to select a small number of features from the initial set, and to ob-
tain a cascade of simple classifiers to discriminate them [14]. A cascade of detectors 
was used to detect the faces. 

To obtain geometrically normalized images we implemented an algorithm [13] that 
consists of the following steps: Smoothing, rotating, scaling and resampling the input 
image. The smoothing is performed by convolution with a Gaussian Filter of size5x5, 
the rotation and scaling outputs an image of size 55 rows x 51 cols. The left-eye is 
mapped onto the pixel position (19, 38) and the right-eye is mapped onto the pixel po-
sition (19, 12). 

We compared results obtained in two different representation spaces, one in the 
image domain and other in the frequency domain using an illumination insensitive 
representation [13] based in the complex first derivative image to highlight the high 
frequency content and transformed it to the frequency domain and extracted the real 
part as illumination insensitive representation. 

For the time consuming evaluation we compared the time taken by our method to 
normalizing of images affected by illumination taking as the region to be normalized 
the whole image, against the time consumed by four traditional algorithms of photo-
metric normalization [16] (homomorphic filtering, anisotropic smoothing, isotropic 
smoothing and multiescale retinex) applied to whole image. 

For the evaluation of the improvement of the classification task we evaluate our 
method in a face identification system based in the PCA method [17], since it  
has demonstrated inconsistent performance when the images have illumination  
problems [18]. 

For the evaluation we took one image per person from the mentioned database for 
the training set and comparing images with illumination problems and images pho-
tometrically normalized by our method. In the experiment we made a “close set” 
identification which evaluates the rate at which an individual in a database is correctly 
identified. We used the Cumulative Match Characteristic curve (Correct Rate vs. 
Rank) to analyze the behaviour of the proposed approach . A query is regarded as cor-
rect if the true fingerprint is contained in the list outputted by the algorithm 

 The correct rate is the rate of correct queries to all queries. The rank is the size of 
the list outputted by the algorithm. For all algorithms, the correct rate increases when 
the rank increases.  
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5   Experimental Results 

The distributions of normalized correlations were compared in 4 different combina-
tions. In Table 1 we show the different variants of normalized correlations and results 
of their comparison. We can see that when we applied the proposed approach and 
compared the normalized correlations in the image domain, we obtained a significant 
increase of the correlation coefficients of all normalized images respect to the original 
image. 

Table 2. Normalized correlation and its comparison in Yale B database 

Correlations Description Nc 
In the image domain 

A 10 subjects against the same subjects using 5 different images 0.80 
B 10 subjects against the same subjects using 5 different images

(with previous photometric normalization). 
0.89 

In the frequency domain 
C 10 subjects against the same subjects using 5 different images 0.95 
D 10 subjects against the same subjects using 5 different images

(with previous photometric normalization). 
0.99 

 
A similar result is obtained using the representation in the frequency domain, in 

this case we obtained high correlation coefficients in both correlations, in concor-
dance with results obtained by Garea and Kittler [12] but when applied the proposed 
approach the correlation coefficients reached nearer values to one. 

The time consuming comparison (Table 2) shows that the proposed normalization 
method is faster than others traditionally used in computer vision even when it is ap-
plied to whole image. Taking in to account that the application of the proposed 
method will be only in those regions affected by illumination the time processing will 
decrease significantly. 

The experimental results in identification (Fig 4) demonstrate that a high accuracy 
in the matching process is achieved when the images are previously normalized by 
our method. 

Table 2. Comparison of averages of time consuming in the normalization process in 
milliseconds 

Proposed method Homomorphic  Multiescale Anisotropic Isotropic  
0.1 3.4 3.5 10.0 0.8 

6   Conclusions 

The proposed method of segmentation and photometric normalization offers a set of 
advantages, the process is carried out only on those affected regions, and as a result 
we obtain a good save of time with a low computational cost.. The total save of  
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Fig. 4. Cumulative Match Characteristic curve in the Face identification system based on PCA 
approach 

computational cost might be measure not only in the quantity of pixels that it avoids 
to process and also in the fact of having avoided the use of operations with high com-
putational cost like the logarithms and the transformations to the frequency domain. 

The proposed method might be used as a previous step in the general face recogni-
tion process and also as an independent process for the improvement of the visual ef-
fect of face images.  
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Abstract. The eccentricity transform associates to each point of a shape
the distance to the point farthest away from it. The transform is defined
in any dimension, for open and closed manyfolds, is robust to Salt &
Pepper noise, and is quasi-invariant to articulated motion. This paper
presents and algorithm to efficiently compute the eccentricity transform
of a polygonal shape with or without holes. In particular, based on exist-
ing and new properties, we provide an algorithm to decompose a polygon
using parallel steps, and use the result to derive the eccentricity value of
any point.

keywords: eccentricity transform, distance transform, polygon.

1 Introduction

To extract from a set of images the information required for a specific task, a
frequently used design pattern is to repeatedly transform the input image while
gradually moving from the low abstraction level of the input data to the high
abstraction level of the output data. The purpose is to have a reduced amount
of (important) information at the higher abstraction levels. One class of such
transforms that is applied to 2D shapes, associates to each point of the shape a
value that characterizes in some way it’s relation to the rest of the shape, e.g.
the distance to some other point of the shape.

Examples of such transforms include the well known distance transform [1],
which associates to each point of the shape the length of the shortest path to
the border, the Poisson equation [2], which can be used to associate to each point
the average time to reach the border by a random path (average length of the
random paths from the point to the boundary), and the eccentricity transform [3]
which associates to each point the length of the longest of the shortest paths to
any other point of the shape. Using the transformed images one tries to come up
with an abstracted representation like the skeleton [4] or shock graph [5] build
on the distance transform, which could be used in e.g. shape classification or
retrieval.

Minimal path computation [6] as well as distance transform [7] are used in
2D and 3D image segmentation.
� Supported by the Austrian Science Fund under grants P18716-N13 and S9103-N04.
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The eccentricity transform (ECC) has it’s origins in the graph based eccen-
tricity [8,9]. It has been defined in the context of digital images in [3,10], where
properties and robustness have been shown, and it was applied in the context
of shape matching in [11]. The eccentricity transform can be defined for discrete
objects of any dimension, closed (e.g. typical 2D binary image) or open sets
(surface of an ellipsoid), and for continuous objects of any dimension (e.g. 3D
ellipsoid or the 2D surface of the 3D ellipsoid, etc.).

For the case of discrete shapes, a naive algorithm and a more efficient one
for 2D shapes without holes, have been presented in [3]. For simply connected
shapes on the hexagonal and dodecagonal grid, an efficient algorithm was given
in [12]. Regarding continuous shapes, a detailed study has been made for the
case of an ellipse, and some preliminary properties regrading rectangles, and a
class of elongated convex shapes, have been given [13]. An algorithm for finding
the eccentric vertices (furthest points) for the vertices of a simple polygon was
given in [14].

This paper presents an algorithm for efficiently computing the eccentricity
transform of a polygonal shape. First, the shape is decomposed into patches as-
sociated to corner points then these patches are used to compute the eccentricity.

Section 2 gives a short recall of the eccentricity transform and gives the main
properties relevant for this paper. Section 3 briefly recalls existing algorithms.
Sections 4 and 5 present the proposed algorithm, followed by discussion in Sec-
tion 6 and possible extentions in Section 7. Section 8 concludes the paper and
gives an outlook of the future work.

2 Recall ECC

In this section basic definitions and properties of the eccentricity transform are
introduced following [3,11]. Let the shape S be a closed set in R

2 and ∂S be its
border1. A path π is the continuous mapping from the interval [0, 1] to S. Let
Π(p1,p2) be the set of all paths between two points p1,p2 ∈ S within the set
S. The geodesic distance d(p1,p2) between two points p1,p2 ∈ S is defined as
the length λ of the shortest path π, such that π ∈ Π(p1,p2), more formally

d(p1,p2) = min{λ(π(p1,p2)π∈Π)} where λ(π(t)) =
∫ 1

0
|π̇(t)|dt (1)

where π(t) is a parametrization of the path from p1 = π(0) to p2 = π(1).
The eccentricity transform of S can be defined as, ∀p ∈ S

ECC(S,p) = max{d(p,q)|(q ∈ S} = max{d(p,q)|q ∈ ∂S} (2)

i.e. to each point p it assigns the length of the shortest geodesics to the points
farthers away from it. In [3] it is shown that this transformation is quasi-invariant
to articulated motion and robust against salt and pepper noise (which creates
holes in the shape).
1 This definition can be generalized to higher dimensions.
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2.1 Properties of Eccentric Points

In general, an extremal point is a point where a function reaches an extremum
(local or global). In the case of the geodesic distance d on a shape S we call an
extremal point x ∈ S a point for which ∃p ∈ S s.t. d(x,p) is a local maximum.

An eccentric point of a shape S is a point e ∈ S that is farthest away in
S for at least one point p ∈ S i.e. ∃p ∈ S s.t. ECC(S,p) = d(p, e). For a
shape S, E(S) = {e ∈ S} denotes the set of all its eccentric points. The set of
eccentric points E(S) is a subset of the set of extremal points X(S) = {x} i.e.
E(S) ⊆ X(S) (eccentric points are global maxima for d, while extremal points
only local maxima).

Knowing E(S) can be used to speedup the computation of the ECC(S).
Instead of computing for each p ∈ S the length of the geodesics to all the other
points of S and taking the maximum, one can look at the inverse problem and
compute the length of the geodesics from all p ∈ E(S) to all the points of p ∈ S,
and for each p just take the maximum. This reduces the number of shortest path
computation steps by |S| − |E(S)|.

The following properties of extremal and eccentric points are relevant for this
paper and concern bounded 2D shapes.

Property 1. All eccentric points E(S) of a shape S lie on the border of S i.e.
E(S) ⊆ ∂S. (Proof due to [3]).

Property 2. Being an eccentric point is not a local property i.e. ∀B ⊂ ∂S a
boundary part (a 2D open and simple curve), and a point b ∈ B, we can con-
struct the rest of the boundary S \ B s.t. b is not an eccentric point of S.

Fig. 1. Adding missing part V to existing one B s.t. no eccentric points lie on B

Proof. Let lB be the length of B. We construct S \B with the shape of a capital
’V’ glued at its endpoints with the endpoints of B, and the length of the two
branches lV > 2 ∗ lB (Figure 1). The obtained shape S will have two eccentric
point sets clustered around the tops of the two branches of the ’V’, a diamether
max(ECC(S)) ≈ 2 ∗ lV , and no eccentric point will lie on B. 	
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Property 3. No eccentric points E(S) of a simply connected shape S lie on con-
cave or straight parts of the border of S i.e. �e ∈ E(S) s.t. ∂S is concave or
straight at e.

Proof. All points at the same distance to a point p lie on a circle C(p, r). If
the circle is contained in the shape S then there are points further away to p.
A circle C through a point x ∈ C is partly inside the shape S if x is on a
straight or concave part of the boundary. Thus there exists a point q ∈ S with
q �∈ C s.t. d(p,q) > r.

A hole can be bypassed in two ways. It partitions the points behind it in
two groups: those for which the shortest path passes on one side and, those for
which the shortest path passes on the other side of the hole. Shortest paths from
both sides meet at the separation curve. Points on the separation curve have
on both sides neighbours with smaller distances. Extremal paths never cross the
separation curve. Thus, if x is on the separation curve then it is an extremal
point no matter the curvature of ∂S at x. 	


Property 4. (from Property 3) All eccentric points E(S) of a simply connected
shape lie on convex parts of the border of S i.e ∀e ∈ E(S) ⇒ ∂S is convex at e.

Properties 1, 3 and 4 also apply to extremal points.

Property 5. For any shape S, all boundary points in convex regions of ∂S are
extermal points. (Proof similar to Property 3).

From Properties 1-4 we see that for the case of simple polygons all corner points
with angles less than 180o makeup the extremal points, but whether such a corner
point is actually an eccentric point or not, can be known only after computing
ECC(S) for the polygon.

For the case of multiply connected 2D shapes, depending on the number and
size of the holes, Properties 3 and 4 do not always hold (for a square with a
maximum size square hole, all boundary points are eccentric points). But, due
to Property 5, the corner points mentioned above are extremal points and thus
still eccentric point candidates (see Section 6 for a discussion).

3 Previous Work - Algorithms

The naive algorithm to compute ECC(S) for a given discrete shape S has a
complexity of O(|S|3) in the number of pixels |S|. Eccentric points lie only on
the boundary of S. If we assume that the average number of border points |∂S|
is much smaller than |S|, and we use Dijkstra’s algorithm [15] to compute the
shortest paths from one point to all other points (runs in O(|E| + |S| log |S|),
where |E| is the number of edges i.e. the number of adjacent pixel pairs), we get
a complexity of O(|∂S|(|E|+ |S| log |S|)) for a more efficient algorithm. One can
also use fast marching [16] for the computation of geodesic length (O(|S| log |S|)),
a case in which the complexity decreases to O(|∂S||S| log |S|).
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For continuous shapes, a detailed study of the ellipse and some properties
regarding rectangles and a class of elongated shapes are given in [13]. Ellipses
can be divided along the short diameter and to each point of the short diameter
one eccentric point in each half ellipse can be associated. The eccentricity of any
point of the ellipse can be computed in linear time by finding its corresponding
point on the short diameter [13]. Also, in the case of the ellipse, the set of
eccentric points can be analytically characterized. For the eccentricity of the n
corner points of simple polygons, an O(n log n) algorithm was given in [14].

4 Distances Inside a Polygonal Shape

Given a point o of the input polygon S we want to calculate the shortest distance
between the point o ∈ S and an arbitrary point p inside the shape. In a simply
connected convex shape it is the length of the straight line d(o,p) connecting o
and p. However concave portions and holes may not allow straight connections
in all cases.

We cover the inside of a polygonal shape by patches Pi within which the
distance of a point p ∈ Pi is the distance to a reference point ri ∈ Pi plus a
handicap hi:

d(p,o) = d(p, ri) + hi (3)

The handicap hi corresponds to the length of the shortest path inside S between
o and the reference point ri.

Create Patch(r, h, P)

1. determine the visibility polygon Q ⊂ P delineating the region inside P that
can be reached from reference point r along a straight line.

2. for all occluding points t ∈ Q do
Create Patch(t, d(r, t) + h, P \ Q)

3. return patch Q

We initialize the computation backwards from potential eccentric points by
creating patches for all corner points o ∈ S: Create Patch(o, 0.00, S).

Fig. 2 illustrates the first steps. It shows that patches overlap in the shadow
of holes. Every hole of the shape can be bypassed by the shortest path on either
sides of the hole. Hence all the points in the shadow of a hole can be reached along
two alternate paths. Two overlapping patches can be cut along the separation
curve, which is the curve where the two paths have equal length from o:

d(p, r1) + h1 = d(p, r2) + h2. (4)

In general the separation curve is a hyperbolic arc. It degenerates into a straight
line as in area H of Fig. 2 if the two handicaps are equal.
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Fig. 2. First patches created by the reference point (bottom-left corner), the obtained
handicaps, and the shadow ’H’ created by the hole

Assume that the two reference points on the hole are r1 and r2 with handicaps
h1 and h2 respectively. After translating the midpoint r1+r2

2 to the origin and
rotating, the two reference points have coordinates r1 = (−f, 0) and r1 = (f, 0).
Points p = (x, y) that the same distance to the original point must satisfy

d(p, r1) + h1 = d(p, r2) + h2 (5)

Without restricting generality we assume that h2 > h1 and set l = h2 − h1.
Then we have

√
(x + f)2 + y2 =

√
(x − f)2 + y2 + l, (x + f)2 + y2 = (x − f)2 +

y2 + 2l
√

(x − f)2 + y2 + l2, 4xf − l2 = 2l
√

(x − f)2 + y2, 16x2f2 − 8xfl2 +
l4 = 4l2(x2 − 2xf + f2 + y2), 16f2−4l2

l2(4f2−l2)x
2 − 4

4f2−l2 y2 = 1, or the hyperbola
x2

(l/2)2 − y2

f2−(l/2)2 = 1.
Note that the computation is independent for each starting point o and hence

can be done in parallel.

5 Combining Distance Patches into the ECC-Patches

Every original starting point creates a separate set of patches in which the dis-
tance to the original point can be computed locally. Let us call these original
patches the distance patches. In the following we combine the different sets of
patches into a new partition of the ECC. The new patches will be called ECC
patches.

5.1 The Smallest Common Partition

After creating a partition into patches for all starting points of the given polygon
the produced partitions will not coincide with each other. We therefore overlay
them to create a finer partition such that every patch of the finer partition fits
into any of the distance patches. Fig. 3 shows the first two sets of patches.
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Fig. 3. The first two sets of patches

The resulting finer patches may have as many reference points as there were
original points on the polygon since any extremal point on the polygon can be
reached from any patch.

5.2 Example with One Concave Part

Fig. 4 shows a simple example with 8 corner points and 11 patches A, B, C, D,
E, F, G, H, I, J, K. The table in Fig. 4 lists all the patches together with the
reference points leading to all the 8 corner points together with the handicaps.

5.3 Non-maxima Suppression

The ECC computes the longest distance between any point p inside the shape to
the farthest extremal point x inside the shape along the shortest path inside the
shape. Every patch of the refined partition of the shape contains n ≥ 1 reference
points allowing the computation of the length of the shortest paths to any of the
n original points.

First a reference point r may appear several times with different handicaps h
depending on the number of paths from original points that go across r. Only
the largest handicap must be kept (dropped handicaps are indicated by (h) in
Fig. 4).

For the ECC patch we need to keep further only the reference points r ∈ P
leading to the farthest extremal point: argmax{d(p, r)+h|p ∈ P}. In some cases
there may be more than one reference point leading to maximal distances in one
patch. The patches that have more than one reference point after non-maxima
suppression need to be further subdivided along curves separating influence areas
of extremal points.

5.4 Subdividing Center Patches

Any remaining patch has two or more reference points ri. The subdivision can
proceed similar to the generation of a weighted Voronoi diagram. Any pair of
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patch 1 2 3 4 5 6 7 8

A r 1 2 3 3 3 3 3 8
h 0.0 0.0 (0.0) (2.0) (3.0) 4.2 4.5 0.0

dmax 1.4 1.1 1.4 3.4 4.4 5.6 5.9 3.1

B r 1 2 3 3 3 3 7 8
h 0.0 0.0 (0.0) (2.0) (3.0) 4.2 0.0 0.0

dmax 1.4 1.4 1.1 3.1 4.1 5.3 5.6 2.5

C r 1 2 3 4 4 4 7 8
h 0.0 0.0 0.0 (0.0) (1.0) 2.2 0.0 0.0

dmax 2.5 2.7 1.8 3.6 4.6 5.8 5.4 2.2

D r 1 2 3 4 4 6 7 8
h 0.0 0.0 0.0 (0.0) 1.0 0.0 0.0 0.0

dmax 3.2 3.2 2.2 3.6 4.6 5.8 5.0 1.4

E r 1 3 3 4 4 6 7 8
h 0.0 1.0 (0.0) (0.0) 1.0 0.0 0.0 0.0

dmax 4.2 3.8 2.8 2.8 3.8 5.0 4.1 3.0

F r 1 3 3 4 4 4 7 8
h 0.0 1.0 (0.0) (0.0) (1.0) 2.2 0.0 0.0

dmax 2.4 2.0 1.0 2.2 3.2 4.4 4.5 2.2

G r 3 3 3 4 4 4 7 8
h 1.4 (1.0) (0.0) (0.0) (1.0) 2.2 0.0 0.0

dmax 3.4 3.0 2.0 2.0 3.0 4.2 4.5 3.6

H r 3 3 3 4 4 6 7 8
h 1.4 (1.0) (0.0) (0.0) 1.0 0.0 0.0 0.0

dmax 4.2 3.8 2.8 2.0 3.0 4.1 3.9 3.6

I r 3 3 3 4 5 6 7 8
h 1.4 (1.0) (0.0) 0.0 0.0 0.0 0.0 0.0

dmax 5.9 5.5 4.5 2.8 3.6 3.6 2.8 5.4

J r 4 4 4 4 5 6 7 8
h 3.4 (3.0) (2.0) (0.0) 0.0 0.0 0.0 0.0

dmax 5.6 5.2 4.2 2.2 2.2 2.2 3.0 5.8
K r 4 4 4 4 5 6 7 4

h 3.4 (3.0) (2.0) (0.0) 0.0 0.0 0.0 3.6
dmax 5.2 4.8 3.8 1.8 1.5 2.2 3.6 5.4

Fig. 4. Polygon with ECC patches and table of reference points (r), handicaps (h) and
distances (dmax) of ECC patches (A-K) to corner points (1-8, table header)

reference points r1, r2 subdivides the patch into two half spaces along a second
order curve through N = r1+r2

2 + (h1 − h2) r1−r2
|r1−r2| . The remaining reference

points are split among the two new patches and the subdivision repeated for all
patches having more than one reference point until all patches have only one
reference point left.

5.5 Merging Oversegmented Patches

The successive subdivision of patches may have introduced patches that have the
same reference point. These patches can be merged in the final ECC-partitions
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which subdivides the original shape into patches having exactly one reference
point. The ECC value of any point inside the patch can be computed using the
reference point r and its handicap h:

ECC(S,p) = d(p, r) + h (6)

6 Discussion

Sections 4 and 5 produce a partition of shape S into patches D(S) s.t. the eccen-
tricity tranform is analytically defined in each patch. Given the decomposition
D(S), the computation of the eccentricity of a point p ∈ S is reduced to:

Compute ECC(S,p, D):

1. find patch P = (r, h) ∈ D s.t. p ∈ P
2. ECC(S,p) = d(p, r) + h

In a hierarchical structure (e.g. binary trees, quadtrees, irregular pyramids),
step 1 runs in logarithmic time in the number of patches. Step 2 executes in a
fixed amount of time. The number of patches depends on the number of corner
points, the number of holes, and the number of points for which the computation
in Section 4 was initialized.

For a simple polygon, the correct eccentricity is computed. In the worst case
all corner points are also eccentric points and define at least one patch.

A hole makes the points in the shadow less accessible, which can make border
points on the separation curve in the shadow further away than any corner point,
and thus eccentric. The assumption that only corner points can be eccentric
might not hold, and the number of eccentric points can be infinite. In this case
the presented algorithm gives an approximation of the eccentricity transform,
less or equal to the correct value. An upper bound for the error is half the length
of the longest polygon side. To reduce this upper bound, one can initialize the
computation in Section 4 with additional boundary points.

7 Extensions

Circular Arc: Reference point and handicap can also be used to correctly de-
scribe shapes with circular arcs. In this case the center of the circle serves
as reference point and the radius as handicap. For concave circular arcs the
radius carries a negative sign.

3D triangulated surface: In a triangulated surface two adjacent triangles
share an edge. The corresponding 3D straight line serves as rotational axis
to place the two adjacent triangles into a common plane such that short-
est paths become straight lines in this new plane. Therefore the length of
the shortest path from a corner to a point in an adjacent triangle can be
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computed as the Euclidean distance to the corner after rotating it into the
common plane. This can serve as reference point for all straight lines crossing
the common edge segment.

8 Conclusion

In this paper an algorithm for efficiently computing the eccentricity transform
of a continuous polygonal shape is presented. Corner points are candidates for
eccentric points. Parallel steps are used to decompose the shape based on the
length and the topology of the shortest paths to each corner point. The resulting
decompositions are merged and used to derive the eccentricity transform of the
polygon. An algorithm for discrete shapes will be derived from the one presented
here. Future work includes a general algorithm for 2D continuous shapes.
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Abstract. In this work a new robust color and contour based object detection
method in images with varying shadows is presented. The method relies on a
physics-based contour detector that emphasizes material changes and a contour-
based boosted classifier. The method has been tested in a sequence of outdoor
color images presenting varying shadows using two classifiers, one that learnt
contour object features from a simple gradient detector, and another that learnt
from the photometric invariant contour detector. It is shown that the detection
performance of the classifier trained with the photometric invariant detector is
significantly higher than that of the classifier trained with gradient detector.

Keywords: color invariance, shadow removal, object detection, boosting.

1 Introduction

The motivation of this work is to reduce the effect of shadows when detecting objects
in a sequence of outdoor images. We show that the photometric invariant used in this
paper is more sensitive to the contours of objects that are not shadows while neglecting
shadow contours. Our experiments show a comparison between the proposed method
and one using image intensity gradient information only.

There have been other approaches for removing shadows from images. Nadimi et al.
[1] use a multistage approach based on physical models to detect moving shadows in
video. Input video frames are passed through a moving object detection stage and then
through a series of classifiers which distinguish object pixels from shadow pixels. They
show extensive experimental results demonstrating the usefulness of their approach.
Salvador et al. [2] exploit spectral and geometrical properties of shadows to segment
cast shadows from still and moving images. They make initial hypotheses assuming
that cast shadows darken the surfaces where they are cast. They further validate the
initial hypotheses using complex hypotheses based on color invariance and geometrical
properties, to end with an integration stage that confirms or rejects the hypotheses made.

In this work we also focus on a physical model and strive to remove the effects of
shadows, but unlike the aforementioned methods we are concerned with producing a
contour image invariant to shadows. This is because we base our boosting algorithm for
object detection on contour information and having them invariant to shadows greatly
improves the robustness of the detection process.

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 301–310, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Our objective is to detect objects in image sequences where there are changes in
illumination due to the presence of varying shadows. We use a gradient-like image to
perform object detection based on contours in a way different to classical methods. In-
stead of calculating the gradient modulus from the color images, we detect contours that
correspond to material changes using a modification to the approach proposed by Gev-
ers et al. [3] based on a combination of photometric invariant contours and an automatic
local noise-adaptive thresholding.

Boosting algorithms are very well known methods for fast object detection which
are based on building robust classifiers from simple (weak) features [4,5]. We follow
the framework addressed in [6], but based on contours instead of intensity images. The
use of contour images allows the use of inner and outer object contours to perform
robust detection without the drawback of background. Contour features are encoded
by Haar operators so that they can be computed in constant time using the intensity
integral image. However not all local contours are taken into account for modelling the
object as a constellation of Haar operators, since this will require for a large number
of weak classifiers. Therefore a learning boosting phase is used in order to select the
most discriminant operators and then to linearly combine them for establishing a robust
classifier.

To validate our method we have used a sequence of outdoor color images presenting
varying shadows to perform object detection. Two boosting classifiers were used, one
using simple intensity-based gradient images and the other using the contour images
obtained with the proposed method, and their results were compared. We have also
compared the effects of shadows in the appearance of spurious contours for intensity-
based gradient images and photometric invariant contour images.

2 Robust Physics-Based Contour Detection

2.1 Basic Definitions

Images are the result of complex physical interactions between the light incident over
the scene, the surfaces of the objects and the device that acquires the images. Several
models of these processes have been developed during the years. One that is commonly
used in computer vision applications is the dichromatic reflection model [7]. This model
has two terms corresponding to two reflection processes. The light reflected from a
surface is a combination of the light reflected at the interface, and the light which enters
the substrate and is subsequently reflected back as the result of scattering. It is common
to refer to these two reflection components as the interface reflection and the body
reflection. The model can be further simplified if the illumination source is assumed to
be white or spectrally smooth and the interface reflectance is assumed to be neutral, i.e.
the Fresnel reflectance does not depend on wavelength. Under these assumptions the
reflection model, expressed in term of the sensor responses, is given by

Vk = Gb(n, s)E
∫

λ

B(λ)Fk(λ) dλ + Gi(n, s, v)ESF (1)

where Vk is the kth sensor response, Gb and Gi are geometric terms denoting the ge-
ometric dependencies of the body and surface reflection component, that is surface
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normal, n, illumination direction, s, and viewing direction, v. B(λ) is the surface
albedo, E denotes the illumination source, and S denotes the Fresnel reflectance, both
assumed independent of λ. Fk(λ) denotes the kth sensor spectral sensitivity and Fk =∫

λ
Fk(λ) dλ.

2.2 Color Models

Three color models are used because of their different and complementary properties
regarding their response against parameters of the reflection model: RGB, c1c2c3 [8]
and o1o2. In the RGB color model {R, G, B} values correspond directly with Vk in
(1). The c1c2c3 color model is defined by

c1(R, G, B) = arctan(R/max(G, B)) (2)

c2(R, G, B) = arctan(G/max(R, B)) (3)

c3(R, G, B) = arctan(B/max(R, G)) (4)

and the o1o2 color model is defined by

o1(R, G, B) = (R − G)/2 (5)

o2(R, G, B) = (R + G)/4 − B/2 (6)

It follows from (1) that the RGB color model is sensitive to all parameters of the dichro-
matic reflection model. Gevers et al. [3,8] showed that under the assumptions included
in (1) the c1c2c3 color model depends only on the sensor spectral sensitivities and the
surface albedo or material for dull objects, being independent of shadows and geome-
try (E and Gb in the model). c1c2c3 still vary in the presence of highlights. They also
showed that the o1o2 color model is invariant to highlights for shiny objects under the
same assumptions. o1o2 is still dependent on geometry (Gb). These results are summa-
rized in Table 1.

Table 1. Color model sensitivity to parameters of the image formation process. + denotes sensi-
tivity and - invariance of the color model to a particular parameter.

shadow geometry material highlights

RGB + + + +
c1c2c3 - - + +
o1o2 + + + -

2.3 Contour Detection

To compute contours we start by calculating the x and y derivatives for each channel
of the three aforementioned color models using Gaussian derivatives. Then the color
gradient magnitude for each color model is computed using the Euclidean metric over
the various channel derivatives:

∇C =

√√√√
N∑

i=1

[(
∂ci

∂x

)2

+
(

∂ci

∂y

)2
]

(7)
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with C representing each color model, N being their dimensionality, and ci the partic-
ular color channels.

The presence of noise in the images can lead to the appearance of maxima in the
gradient modulus that are not related to any parameter of the image formation process
(1). If it is assumed that the sensor noise is normally distributed, and that we know
the parameters for each particular sensor, then using (14) and (15) (see appendix) the
uncertainties associated to the c1c2c3 and o1o2 color models, as well as the different
gradient moduli, can be propagated from the a priori known sensor uncertainties. Once
we have the associated uncertainty of a measure, we can use it to eliminate noise, as it
is shown in Sect. 2.4.

2.4 Contour Invariance

Once the gradient modulus of each color model is available, it is necessary to combine
them to obtain the invariance against the undesired parameters on the image formation
process.

Gevers et al. classified the edges into shadow-geometry, material and highlights [3].
To achieve this they first calculate the gradient magnitude of the RGB, c1c2 and o1o2
color models. Then they propagate the RGB uncertainties through the color models
up to the gradient magnitudes, and local thresholding was used to binarize the gradient
magnitudes to obtain Cb. The assumption that the noise is normally distributed implies
that 99% of the values fall within a 3σ margin. If the value of the gradient moduli ∇C
is greater than 3σ∇C at a particular (x, y) location then the probability of that contour
being due to noise is only of 1%:

∇Cb(x, y) =

{
1 if ∇C(x, y) > 3σ∇C(x,y)

0 otherwise
(8)

with Cb representing each color model used, that is RGB, c1c2 and o1o2. Finally
a rule-base classifier based on the sensitivity of each color model to the dichromatic
reflection model parameters, see Table 1, was used to label the resultant image as fol-
lows:

if ∇Cb
RGB �= 0 and ∇Cb

c1c2
= 0 then

classify as shadow or geometry edge
else if ∇Cb

c1c2
�= 0 and ∇Cb

o1o2
= 0 then

classify as highlight edge
else

classify edge as material edge
end if

We have taken a different approach to obtain the invariant contour image. Rather than
classifying edges according to its physical nature we only pursue to detect object con-
tours that are due to material changes, which are the contours relevant for the task we
want to solve. Besides, we have realized that a binarized contour image discards infor-
mation that might be valuable for the detection stage. Then, the contour image that we
calculate is a gray-level image, where the image intensity gives a measure similar to a
signal to noise ratio.
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As in [3], we calculate the gradient magnitudes of the three color spaces defined in
Sect. 2.2 and propagate the RGB uncertainties using (15) to obtain the uncertainties
associated with the gradient magnitude of each color space, σ∇C . Instead of perform-
ing the local thresholding defined in (8) at this stage, we define a function M in the
following way:

M = ∇RGB · ∇c1c2c3 · ∇o1o2 (9)

M will have a maximum value when the gradient moduli of all color models have
simultaneously a maximum, and will have low values when the gradient modulus of
any of the color models is low. By looking at Table 1 it is evident that the response of
M emphasizes material changes in the image, while minimizing those due to shadow-
geometry and highlights.

Then, the uncertainty in the function M is also computed using (15) to yield

σM ≤
(

∂M

∂(∇RGB)
σ∇RGB +

∂M

∂(∇c1c2c3)
σ∇c1c2c3 +

∂M

∂(∇o1o2)
σ∇o1o2

)
(10)

with σ∇C being calculated from(15) for each color model

σ∇C ≤

∑
i

[∣∣∂ci

∂x

∣∣ · σ ∂ci
∂x

+
∣∣∣∂ci

∂y

∣∣∣ · σ ∂ci
∂y

]

√
∑

i

[(
∂ci

∂x

)2
+

(
∂ci

∂y

)2
] (11)

with C representing each color model and ci the particular color channels. The un-
certainties σ ∂ci

∂x

and σ ∂ci
∂y

are calculated taking into account that the derivatives are

approximated by filtering with a mask, gaussian derivatives in this case. Using (15), it
results that the uncertainties can be computed by filtering the uncertainty planes with
the absolute value of the mask used for the derivatives. The uncertainty planes are noth-
ing more than the propagation of the RGB uncertainties to the other color models using
(14).

The assumption that the noise is normally distributed used in Sect. 2.4 is also used
here to obtain a local noise-adaptive threshold for removing noisy measurements
from M .

M ′ =

{
M M > 3σM

0 otherwise
(12)

The final result is a gray-level contour image that emphasizes the contribution of ma-
terial changes and at the same time reduces that of shadow-geometry and highlights on
the input images. Note that while a value of zero in M ′ means there is a probability
of 1% of being wrong, higher values reduce that probability further. Thus intensity in
M ′ is directly correlated with the probability of a given (x, y) location being a material
change.

3 Experiments

In order to evaluate the robustness of the proposed method we have made experi-
ments of detecting an object in a sequence of images, where there are changes in the
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illumination of the objects due to varying shadows. For the experiments we have used
two boosting classifiers that learn contour object features. One boosting classifier uses
contour features coming from a simple gradient detector. The second boosting classifier
uses our method, that is the photometric invariant contour detector.1

Using both methods, the learning boosting step selected 100 weak classifiers for
each method from a learning set of 50 object images and 200 background images. The
background images were extracted from patches of outdoor and indoor images using a
randomized process. The learning set of images included objects with small variations
of position and scale which make this classifier robust against small object transforma-
tions.

The two boosting classifiers were tested over a sequence of 934 images where one
static object under varying shadows appears. Some frames are shown in Figure 1, where
we can also appreciate some detection results. The input color images are on the left
column, the results of the classifier based on the simple gradient detector are on the
middle column, and the results of the proposed method are on the right column. Each
green square in the images represents one object detection. We can see how the classi-
cal method is perturbed by the varying shadows, being unable to detect the object under
these illumination variations. On the other hand, the classifier based on photometric in-
variant contours achieves a correct detection thanks to the shadow-free contours, being
the contour object features reliable over the sequence. The Figure 3 shows the ROC
(Receiver Operating Characteristic) curves for both methods. The proposed method
overcomes the classical one, achieving 100% detection, meanwhile the simple gradient
method performs 79% without false positives.

In Figure 4, there are some test frames when the threshold in boosting classifier
is reduced from β = 0.75 (Figure 1) to β = 0.65. We can notice that the object is
detected in all cases though with many false positives for the method based on simple
gradients, unlike the proposed method that continues detecting correctly, demonstrating
its robustness and reliability with a relaxed classification threshold.

We have evaluated the influence of shadows both in the proposed photometric invari-
ant contour images and the simple gradient images. The motivation of the experiment
was to test the relative increase in contour pixels caused by shadows. To this purpose, a
subset of the outdoor image sequence consisting of 87 images from the total of 934 was
randomly selected. This subset was enlarged by 3 images selected with the constraint of
being shadow free. Because this constraint could not be met over the entire image, the
images were cropped around the carton recycle bin used as target object in the detection
experiments.

The images were processed and both the gradient and the photometric invariant con-
tour images were obtained. One shadow free contour image was visually inspected for
each method. The inspection determined a threshold for each method that produced a
binarized image with a similar aspect between them and good correlation between ob-
ject features and contours. This shadow-free image was used as the reference image,
and then the following metric was used for all images

Ebd = count (abs (ΔI) > k) /Er (13)

1 Information about the boosting classifier can be found in [6].
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(a) (b) (c)

Fig. 1. Test 1. Frames when the threshold β in the boosting classifier is set to 0.75. (a) Input
images, (b) gradient based detections and (c) invariant based detections.

with ΔI = Ii − Ir the difference between a given image and the reference, k the afore-
mentioned thresholds, one for each method and Er = count (Ir > k) the number of
contours in the reference image. Ebd is the ratio of the number of incorrectly detected
contours to the number of contours in the reference image. The results are shown in
Fig. 2. As can be seen, the ratio is small and stable for the proposed method, with a
maximum number of misdetected contours of around 3% of the number of contours in
the reference image. For the gradient contour image the ratio is unstable and the num-
ber of misdetected contours ranges from 35 to 65 percent of the number of contours
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Fig. 2. Percent ratio of the number of misdetected contours to the number of contours in the
reference image for the photometric invariant contour image (—), and for the simple gradient
contour image (- -)
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Fig. 3. ROC curves. (a) Simple gradient and (b) photometric invariant contours.

in the reference image. This simple metric clearly shows the impact of the proposed
method in the presence of shadows.

4 Conclusions

The proposed method has demonstrated to perform robust object detection in out-
door images under varying shadows and illumination changes, overcoming the classical
method relying on a simple gradient detector. This latter method fails due to varying
shadows producing new object contour features that eventually mislead the classifier.
On the other hand, the proposed method based on photometric invariant gives a contour
image without shadow effects. This facilitates the identification task, as the classifier fo-
cuses on actual object features. The experiments showed the usefulness of the shadow
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(a) (b) (c)

Fig. 4. Test 2. Frames when the threshold β in the boosting classifier is reduced to 0.65. (a) Input
images, (b) gradient based detections and (c) invariant based detections.

invariance of the method in a sequence of outdoor images for object detection where
the illumination conditions were not controlled.
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Appendix: Error Propagation

Suppose that x, . . . , z are measured values with uncertainties σx, . . . , σz and the mea-
sured values are used to compute the function q(x, . . . , z). If the uncertainties in x, . . . ,
z are independent and random, then the uncertainty in q is [9]

σq =

√(
∂q

∂x
σx

)2

+ · · · +
(

∂q

∂z
σz

)2

(14)

In any case the uncertainty is never larger that the ordinary sum

σq ≤
∣∣∣∣
∂q

∂x

∣∣∣∣σx + · · · +
∣∣∣∣
∂q

∂z

∣∣∣∣ σz (15)
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Abstract. Accurate detection of shot transitions plays an important role on 
automatic analysis of digital video contents, and it is a key issue for video 
indexing and summarization, amongst other tasks. This work presents in more 
detail a novel strategy, based on the concept of visual rhythm, to automatically 
detect sharp transitions or cuts in arbitrary videos. The central part of the work 
is a comparative evaluation of this strategy versus three other very competitive 
approaches for video cut detection: one based on the visual rhythm concept, 
other based on pixel differentiation and a last one based on color histograms. 
The evaluation carried out demonstrated that the proposed method achieves, on 
average, higher recall rates at a cost of a slightly lower precision.  

Keywords: video cut detection, visual rhythm, pixel differentiation, color 
histograms, video summarization. 

1   Introduction 

Digital video applications, such as digital libraries, interactive TV, and multimedia 
information systems in general, are growing fast due to the advances in multimedia 
encoding and decoding technologies, increase in computing power and the ever-
expanding internet [1]. This has stimulated research in the areas video indexing, 
retrieval and summarization. While digital videos can be seen as formed by a 
concatenation of 2-D image samples (frames) of a scene, shots can be seen as a basic 
functional unit of a video. Shots are defined as uninterrupted sequences of video 
frames with graphic, spatial and temporal configurations [3]. The automatic detection 
of shots or the transition between two consecutive shots is an essential part of most 
video content analysis algorithms. 

Gradual and sharp transitions are the two most known types of video transitions 
[4]. In this paper, we focus on the problem of detecting sharp transitions (or cuts), 
which is usually taken as a simpler problem than that of gradual transition detection. 
However the state of the art, as indicated in our literature review, reveals there is still 
room for improvements in the accuracy of cut detection techniques. In a previous 
work [13], we proposed an algorithm for video cut detection based on the concept of 
visual rhythm and compared this algorithm with a previous approach, based on the 
same principle (the work by Lu et al. [10]). The visual rhythm concept [4] is 
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explained in more detail in Section 2. In the present paper, the focus was to extend the 
previous evaluation by incorporating two other widely used and well established 
techniques based on pixel differentiation (inspired on a measure of motion saliency as 
given in Wildes [16]), and one based on color histogram (combining the strategies 
presented by Lienhart [9], and Yeo and Liu [17]). 

Next section presents a bibliographic review of related work on video transition 
detection, including all the competing approaches evaluated in this paper. Section 3 
presents technical details of the principal visual rhythm approach. The comparison 
has been made using a set of arbitrary videos, collected from a public video database 
[12], which is described in more detail in Section 4. The experimental evaluation and 
results are also in Section 4. Final considerations and comments on future works are 
presented in Section 5. 

2   Bibliographic Review 

There is a variety of methods and techniques proposed to perform the automatic 
detection of video transitions. Gargi et al. [3], Lienhart [8,9] and Hanjalic [5] 
developed comparative studies for some of the most representative approaches.   

Methods that do not use computed features of compressed videos (e.g. the motion 
vectors of an mpeg video) rely on the assumption that frames from the same shots 
present a certain visual consistency, whereas frames in the vicinity of video transitions 
present important variation. Color histograms, pixel differences, edge variation and 
motion are very popular amongst the kinds of features that have been utilized in the 
characterization of such variation. 

Yeo and Liu [17] and Zhang et al. [19] proposed methods for cut detection 
designed to distinguish between sharp transitions and sharp illumination variations. 
Yeo and Liu [17] detected peaks generated by each sharp illumination variation (one 
at the beginning and another at the end of the variation). Zhang et al. [19], on the 
other hand, considered models of ideal cut and flashlight detection. Other methods 
that are based on edge detection, usually demand high computation resources and are 
sensitive to fast object and camera motion. In order to address these questions, Jun 
and colleagues [6], proposed to apply a median filter to the features extracted from the 
video and to compare it to the original signal. A similar work has been done by 
Leszczuk et al. [7], who implemented a differential motion factor. Other works 
[15,18] employed a local adaptive threshold, instead of a fixed threshold, to classify 
an inter-frame variation as sharp or not. 

In order to reduce the sensitivity of fast object and camera motion Zheng et al. [20] 
performed feature extraction (color histogram, pixel differences, standard deviation, 
mean deviation and motion vectors), in either compressed or uncompressed domains. 
From the analysis of the variation of these features, decisions (such as the choice for 
global or local thresholds) are taken and the transition detection is performed. 

A popular method for cut detection is based on the concept of visual rhythm [4,10, 
11,13]. The visual rhythm is a simplification of a video into a 2-D image [4]. A video 
sequence is typically seen as having three dimensions: one temporal (corresponding to 
the frame sequence) and two spatial (corresponding to the XY dimensions of each 
frame). The visual rhythm approach samples each video frame in such a way that it is 
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represented by a single 1-D line of pixels. These 1-D lines are, in turn, concatenated 
to form a 2-D image. Thus, a simplified video representation is obtained with only 
two dimensions: one temporal (typically the horizontal direction) and another spatial 
(typically the vertical direction). The 1-D lines that form this new 2-D representation 
can either be the main diagonal, the central row or the central column of pixels of a 
video frame. Chung et al. [2] considered the main diagonals as the most interesting 
lines to use because they contain information from both the lines and the columns of 
the frame. However, Lu et al. [10] opted to use the horizontal central line, because, 
according to them, when recording a video, the camera normally moves in the 
horizontal plane and the camera operator usually locates the interesting objects in the 
center of the field of view. 

After creating the visual rhythm signal, sharp transitions or cuts in a video can be 
detected using bi-dimensional image processing algorithms. Firstly, different patterns 
in the signal are identified, and then an association between each video transition 
event and a pattern in the visual rhythm signal is made. The video cut detection task is 
therefore to look in the signal for a pattern corresponding to a sharp transition (usually 
a distinctive vertical line that separates two homogeneous patterns, one to the left and 
another one to the right of the visual rhythm signal). 

One drawback of this approach is that the association between the sharp transition 
and the line that separates two video shot patterns is not one-to-one. Every sharp 
transition in the video creates a distinctive vertical line separating two patterns in the 
visual rhythm; however the contrary is not necessarily true, since this line can 
represent different video events.  An attempt to minimize this problem, presented by 
Guimarães et al. [4], was to perform a search for vertical lines that separate patterns in 
different visual rhythms of a same video (obtained from different video samplings).   

Other authors consider the problem of cut detection as a problem already solved. 
However, the results of current approaches are not yet close to perfect detection, so 
there is still room for improvement. Moreover, due to difficulties in annotating video 
datasets, most methods are evaluated using only a small number of videos. Existing 
methods would possibly have reduced performance for larger datasets [19].  

3   Main Approach 

This section details the main cut detection strategy evaluated in this work. A 
preliminary evaluation and additional bibliographic references related to this strategy 
can be found in an earlier paper [13] by the same authors. The strategy is based on the 
concept of visual rhythm as described in Section 2 and differs from previous works 
with regards to the computation of the visual rhythm signal and the cut detection rule.  

3.1   Description  

The approach starts with the following: for each pair of adjacent columns of a 
generated 2-D visual rhythm image, we compute the integral of the absolute 
differences of pixel intensities in all lines, according to Equation 1. 

∑
=

+−=
N

i
j jifjifD

1

)1,(),(   (1) 



314 S. Marcel Santos, D. Leandro Borges, and H. Martins Gomes 

where i and j are line and column indices; Dj is the integral of the absolute differences 
for columns j and (j+1); N is the total number of lines; f(i, j) is the pixel intensity at 
line i and column j, and f(i, j+1) is the pixel intensity at line i and column j+1. 

The values of Dj for each pair of adjacent columns create a 1-D signal that 
indicates the abrupt changes between the columns of the image (i.e. the sharp 
transitions between the frames of the video). As an example, Fig. 1(a) presents a 
sample of one of the videos used in the experiments that are described in Section 4. 
Figure 1(b) presents a 2-D image (concatenation of diagonal stripes) derived from the 
video in Fig. 1(a). Finally, Fig. 2 presents the 1-D signal created from the Fig. 1(b). 

 
… 

 
(a) 

 
(b) 

Fig. 1.  (a) Sample of one of the videos used in the experiments; (b) 2-D image generated from 
the video using a concatenation of diagonal frame stripes 
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Fig. 2. 1-D signal generated from the visual rhythm image in Fig. 1(b) 

The principle of the proposed method is that sharp peaks in the 1-D signal indicate 
the presence of sharp transitions in the video. Thus, the next step consists in 
automatically detecting these peaks and labeling the correspondent frames as cuts. 
Equation 2 formalizes this principle: a point j in the 1-D signal (Dj) is labeled as a 
sharp peak (indicating a cut or sharp transition) if it is greater than or equal the 
product between a pre-defined factor (k) and the average of the points inside a 
window (of size w) centered on the point (frame) j under analysis. 
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if Dj ≥ k × A then Dj is a cut,  (2) 

where A = {(j - hw) + [(j - hw) + 1] + … + j + … + [(j + hw) - 1] + (j + hw)} / w; and 
hw = ⎣ ⎦2

w . 

3.2   Finding Best Parameters 

The procedure adopted to define the values for window size (w) and factor (k) is 
described as follows. It is based on an exhaustive search strategy, with the evaluation 
of possible combinations of window sizes and factors given a sampling interval. The 
window size w varied from 3 to 15, in steps of 2 (this way, we guaranteed that it is 
always an odd number, i.e. the window will always have a central point), and the 
factor k was varied from 1.1 to 3.0, in steps of 0.1. For each window-factor 
combination and each of the five videos (parameter fitting set), we calculate the 

precision v
kwP ,  and recall v

kwR , metrics for the parameter fitting set, where v is a video 

from the parameter fitting set; v = 1, 2, ... 5; w = 3, 5, ... 15; and k = 1.1, 1.2, ... 3.0. 
Then, we compute the arithmetic mean between the precision and the recall, which we 
named the correctness rate (C), presented in Equation 3. 
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The window-factor combination which maximized, on average, the correctness 
rates for the five videos of the parameter fitting set was used to run the proposed 

algorithm on a new set of five videos (testing set). Precision t
kwP , , recall t

kwR ,  and 

correctness t
kwC ,  rates were again computed for the testing set, where t is a video 

from testing set; t = 6, 7, ... 10; and (w, k) is the chosen best parameter pair. 
Instead of finding the best window-factor combination from just a single pair of 

video sets (parameter fitting and testing), a cross-validation step was employed. The 
above procedure was repeated for all possible combinations of parameter fitting and 
testing sets taken from the complete set of 10 videos available. For each combination 
of parameter fitting and testing sets, we determined a window-factor pair which 
maximized the average correctness rates of the correspondent parameter fitting set. 
The several combinations of parameter fitting experiments were used to calculate the 
correctness rates of their correspondent testing sets. The averages of the several 
correctness rates obtained (for the different testing sets) were compared, and the 
window-factor pair associated with the testing set that presented the highest average 
correctness rate was defined as the ideal pair. The ideal window size (w) and factor 
(k) found as described above were 11 and 2.2, respectively.  

The purpose of this cross-validation step was to find the best set of parameters to 
be used in experiments with new videos, taking into account all possible 5-element 
combinations of the available videos at this stage. A major drawback of this 
exhaustive search approach was that it was very time consuming. A computationally 
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more attractive alternative for this task would be to use a genetic algorithm 
optimization, but this was left as future work. 

The videos used in the cross-validation described in this section were random and 
very diverse in nature, containing samples of indoor and outdoor sports, 
documentaries, TV series, and advertisements, among others. There was no special 
concern about selecting videos with static camera. The majority of the videos had 
camera movements, some especially intense. Video sizes were all of 320 × 240 pixels, 
and they have been captured in mpeg2 or avi formats, and resampled to 12 frames per 
second to reduce computational processing costs. The approximate length of each 
video was 31 seconds, resulting in about 375 frames per video. Frames where sharp 
transitions occur in the videos have been manually annotated. 

4   Database, Evaluation and Results 

The evaluation described in this section considered five new videos, not used for 
finding the ideal values of window size and the factor, as described in the previous 
section. The five new videos were taken from a public video base, the Open Video 
Project [12]. TRECVID project webpage [14] was also consulted, where annotated 
transitions are available for some videos of the Open Video Project database. In the 
TRECVID project, the videos of Open Video Project base are identified by ids. The 
videos selected for the evaluation performed in this paper are listed on Table 1. This 
table associates each id to its corresponding name in the Open Video Project [12]. 

Table 1.  Videos utilized in the evaluation 

id Original Name (Open Video Project [12]) Duration # of Frames  
(at 12 fps) 

150 Three Smart Daughters (Singer Screen Ad) 1 min 21 s 970 
160 Trip, The 48 s 604 
169 Wonderful New World of Fords, A (1960 Ford Spot) 3 min 2184 

269 Roads to Romance: The Santa Cruz Trail and Land of 
the Giant Cactus (in Arizona) 3 min 2163 

272 She Caught on Quick (Singer Screen Ad) 1 min 15 s 957 

 

These five videos have dimensions of 352 × 240 pixels, and are in mpeg format, 
sampled at 29.97 frames per second (fps). To reduce computation costs for the 
experimental evaluation, video frames were resampled to a smaller frame rate of 12 
fps (using the Adobe Premiere Pro 1.5 software). This conversion incurred in a few 
frame drops, but considered unimportant for video cut detection. Besides 
computational time reduction, there was no other special reason for this chosen frame 
rate.  For cut annotations, we started with the annotations available in TRECVID 
project webpage [14]. However, a manual revision of the original annotations was 
needed in order to correct a number of inconsistencies (this has been done in a similar 
way to the labeling performed for the ten videos used in the cross-validation, as 
commented in the previous section). Moreover, as the focus of this work is cut 
detection, gradual transitions (e.g. dissolves or wipes) were not considered. 
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Finally, cuts were annotated in the present work as frame numbers. This was done 
simply for convenience, since the raw information processed by our algorithm is at 
frame level. Time-based annotations can be easily derived from frame-based 
annotations and vice-versa. In the TRECVID project [14] webpage there is a rule that 
can help with these conversions. Table 2 presents the reviewed manual annotations 
for the five videos used in the evaluation. Each video is identified by its respective id 
presented in TRECVID webpage [14].  

Table 2. Annotated cuts (indicated by the starting frame number) for the videos used in the 
experiment. Each cut is exactly 1 frame long 

id 150 id 160 id 169 id 269 id 272 
56 

199 
291 
315 
447 
686 
753 
800 

7 
44 

146 
208 
250 
284 
358 
422 
487 
596 

149 
264 
284 
360 
384 
421 
484 
732 
925 
1075 
1283 
1355 
1393 
1552 
1735 
1804 
1837 
1870 

387 
730 
786 
969 
1006 
1314 
1442 
1506 
1666 
1695 
1861 
1927 

57 
112 
197 
234 
356 
377 
401 
477 
681 
736 
892 

 

In Table 3, the results of the application of the main visual rhythm approach are 
presented on the five new videos obtained from the Open Video Project [12], using a 
window of size 11, and a factor of 2.2 (ideal window and factor values, determined 
through the cross-validation experiment explained in Section 3). The columns named 
“Cuts Detected”, “Correct” and “Ground Truth” indicate, respectively, the total 
number of cuts detected, the number of cuts correctly detected by the approach, and 
the number of manually annotated cuts in the video. The column named “Precision” 
was calculated as the number of cuts correctly detected divided by the total number of 
cuts. The column named “Recall” was calculated as the ratio between the correct 
detections and the ground truth counts. The lines named “Mean” and “STD” indicate 
the mean value and standard deviations, respectively. Table 4 summarizes the results 
for Lu et al.’s visual rhythm approach [10] on the same set of videos. Both statistics in 
Tables 3 and 4 have been obtained in a previous work of the same authors [13].  

In order to better characterize the above results and extend the initial evaluation 
with other important video cut detection techniques, a method based on pixel 
differentiation [16], and an approach based on the very popular concept of color 
histograms [9,17] have been implemented and tested. The goal was to evaluate and 
discuss precision and recall rates between the four approaches. All algorithms were 
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Table 3. Results for the main approach [13] 

id Cuts Detected Correct Ground Truth Precision (%) Recall (%) 
150 13 8 8 61.54 100.00 
160 13 9 10 69.23 90.00 
169 23 17 18 73.91 94.44 
269 21 12 12 57.14 100.00 
272 18 11 11 61.11 100.00 

Mean 17.60 11.40 11.80 64.59 96.89 
STD 4.08 3.14 3.37 6.09 4.06 

Table 4. Results for the approach by Lu et al. [10] 

id Cuts Detected Correct Ground Truth Precision (%) Recall (%) 
150 1 1 8 100.00 12.50 
160 2 1 10 50.00 10.00 
169 2 1 18 50.00 5.56 
269 2 1 12 50.00 8.33 
272 3 3 11 100.00 27.27 

Mean 2.00 1.40 11.80 70.00 12.73 
STD 0.63 0.80 3.37 24.49 7.61 

Table 5. Results for the pixel differentiation approach [16] 

id Cuts Detected Correct Ground Truth Precision (%) Recall (%) 
150 7 3 8 42.86 37.50 
160 5 5 10 100.00 50.00 
169 12 8 18 66.67 44.44 
269 10 6 12 60.00 50.00 
272 13 9 11 69.23 81.82 

Mean 9.40 6.20 11.80 67.75 52.75 
STD 3.01 2.14 3.37 18.56 15.24 

Table 6. Resulting statistics for the color histogram approach [9,17] 

Id Cuts Detected Correct Ground Truth Precision (%) Recall (%) 
150 11 5 8 45.45 62.50 
160 11 9 10 81.82 90.00 
169 12 10 18 83.33 55.56 
269 12 4 12 33.33 33.33 
272 12 9 11 75.00 81.82 

Mean 11.60 7.40 11.80 63.79 64.64 
STD 0.49 2.42 3.37 20.48 20.03 

 
applied to the same set of videos. Tables 5 and 6 present the results for pixel 
differentiation and color histogram approaches, respectively. 

Tables 3, 4, 5 and 6 indicate that the novel visual rhythm approach presents recall 
rates higher than the ones presented by any of the compared approaches. On the other 
hand, the average precision rates presented by Lu et al.’s algorithm and by the pixel 
differentiation approach are a little higher. The standard deviations presented by the 
novel visual rhythm approach are lower for precision and recall when compared to  
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Lu et al.’s approach, and much lower when compared to the other two. This indicates 
better regularity in cut detection results, mainly regarding precision. A last 
consideration to be made upon the two approaches based on the visual rhythm 
concept is that Lu et al.’s algorithm [10], in general, is more restrictive about 
classifying frames as cuts. Thus, Lu et al.’s algorithm performs fewer cut detections, 
which can greatly favor precision, though always in detriment of recall. The novel 
approach revisited in this paper, in turn, detects more cuts, but in an efficient way, 
yielding higher recall rates and a small reduction in its average precision, relatively to 
Lu et al.’s algorithm. 

5   Final Considerations 

Accurate detection of sharp transitions is foremost important to automatic analysis of 
digital video contents. This work evaluated some of the most important techniques for 
video cut detection and presented in more detail a novel strategy based on the concept 
of visual rhythm to automatically detect sharp transitions or cuts in arbitrary videos.  

The novel strategy based on visual rhythm is a simple, yet computationally 
attractive and of promising performance approach.  When compared to three other 
competing techniques in the literature (based on visual rhythm (by Lu et al. [10]), one 
based on pixel differentiation (inspired on the work by Wildes [16]) and one based on 
color histogram [9, 17]), it presented very high recall and average precision rates. 
However, Lu et al.’s and pixel differentiation approaches performed a little better 
regarding average precision.  

Special care has been taken to perform the evaluation utilizing videos publicly 
available. Moreover, video cut annotations have been clearly presented in Section 4, 
so that other groups can build on or confirm the obtained experimental results. 

As future work, we intend to improve on this aspect by adding new constraints to 
the decision we make based on the integral of the absolute differences of pixel 
intensities for each line and each pair of adjacent columns of the 2-D signal that 
represents the visual rhythm of the video. Since the cross-validation process to find 
optimized parameters is very computationally intensive, an optimization process, 
possibly using genetic algorithms, will be an interesting approach to be investigated.  

Another future work is to extend the novel  strategy, with the accumulation of 
other evidences, aiming at: (i) gradual transition (as wipes and dissolves) detection; 
(ii) the detection of shots within shots (there are situations when a shot is interrupted 
by other shot and, after some time, the original shot continues from the point where it 
had stopped; in situations like this, the different pieces of the shot should be 
considered as only one shot; however, the proposed approach considers each piece as 
a distinct shot); and (iii) the development of techniques to perform video 
characterization/indexing/summarization based on the detected shots. 
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Abstract. Fastest three-dimensional (3D) surface reconstruction algo-
rithms, from point clouds, require of the knowledge of the surface–normals.
The accuracy, of state of the art methods, depends on the precision of esti-
mated surface–normals. Surface–normals are estimated by assuming that
the surface can be locally modelled by a plane as was proposed by Hoppe
et. al [1]. Thus, current methods for estimating surface–normals are prone
to introduce artifacts at the geometric edges or corners of the objects. In
this paper an algorithm for Normal Estimation with Neighborhood Reor-
ganization (NENR) is presented. Our proposal changes the characteristics
of the neighborhood in places with corners or edges by assuming a locally
plane piecewise surface. The results obtained by NENR improve the qual-
ity of the normal with respect to the state of the art algorithms. The new
neighborhood computed by NENR, use only those points that belong to
the same plane and they are the nearest neighbors. Experiments in syn-
thetic and real data shown an improvement on the geometric edges of 3D
reconstructed surfaces when our algorithm is used.

Keywords: Normal Estimation, Point Cloud, Surface Reconstruction.

1 Introduction

The computational representations of physical objects have large and wide ap-
plications in distinct areas like industrial design, computer simulations and
medicine, among others: an object digitalization can be easily studied, modi-
fied or replicated. In a initial stage, a complex real object is detailed scanned, by
using of a proper device, for acquiring of a point cloud with thousand or millions
of points. In a second stage, a reconstruction algorithm is applied on the point
cloud for producing a, generally triangular, mesh that approximates the object
surface. Thus the resulting mesh is a suitable representation of the real object.

The reconstruction algorithms must be able to approximate, at a reasonable
computational time, the geometric features of the real object. Among the re-
construction algorithms reported in the literature, Multilevel Partition of Unity
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Implicits (MPUI) [2] deserves our special attention. Currently, the MPUI is con-
sidered as one of the fastest and most up-to-date algorithms for surface recon-
struction, however, it is important to notice that the MPUI like the rest of the
volumetric methods [1,3,4] requires an estimation of the normal at each point.
Clearly, good normal estimations are necessary for a good surface reconstruction.

Some complex three–dimensional (3D) scanner devices estimate the surface
normals at the acquisition time. However, in order to eliminate any dependency
to those devices it is better to infer such normals from the point set. For in-
stance, Refs. [1,5] reported algorithms for addressing the surface normal prob-
lem. But those methods fail, to estimate correctly normals, at sites close to edges
or corners. In this paper we propose an edge preserving normal regularization
technique based in an adaptive rest condition spring system proposed by Rivera
and Marroquin in [6] that allows us to improve the normal-surface estimation at
points close to edges and, consequently, improving the quality of the final surface
reconstruction.

The paper is organized as follows. In Sect. 2 we present a brief review of the
reconstruction algorithms that have been developed. In Sect. 3 we describe a
pioneering technique [1], that still, is widely used for normal estimation in point
clouds. In Sect. 4 we propose an algorithm for normal estimation that increase
the accuracy in regions with edges. In Sect. 5 we compare the performance of
the MPUI algorithm [2] when the surface–normal are estimated with the method
presented in [1] and with the method we propose here. Finally, some conclusions
are discussed in Sect. 6.

2 Surface Reconstruction

Currently, one can distinguish two main lines of research in the field of surface
reconstruction from point clouds. The algorithms developed in the context of
Computational Geometry (CG) constitute a line of research [7]. In CG-based
methods the surface is reconstructed from the Delaunay tetrahedrization of the
point cloud [8,9,10]. Unfortunately, CG-based methods are very sensitive to noise
and computationally expensive; their computational complexity is of polynomial
order with respect the number of points. On the other hand, volumetric methods
constitute the alternative research line [1,2,3,4]. In this case, implicit functions
are fitted to the point cloud and the surface is extracted (see [11,12,13]) as the
zero level set of the computed functions. These methods are used extensive be-
cause their better noise tolerance and because they are able to handle large point
clouds. However, it is necessary to supply reliable information about the normal
at each point. The current state of the art in this approach includes the MPUI
algorithm based on quadratic functions [2]. It is one of the few reconstruction
algorithms able to process sharp features and also one of the fastest techniques
available [2].

The MPUI algorithm works as follows. First it creates an octree-based subdi-
vision of a box that bounds the point cloud. At each cell of the octree the local
shape is approximated with a piecewise quadratic function. These functions work
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like a signed distance function taking a positive value inside of the point cloud
and negative outside of it. The normals of the points are used to distinguish the
orientation locally. If the local approximation into a cell is not accurate, then
the cell is subdivided; such a procedure is repeated until a desirable accuracy
level is reached. The global implicit function describing the surface is given by
assembling the local approximations using local weights.

The MPUI algorithm has three types of quadratic functions that allows to
model a large variety of point set configurations. Additionally, MPUI provides
test–rule for choosing the appropriated quadratic form to fit at each cell. These
test–rule give to the algorithm the ability to deal with surface edges. The MPUI
algorithm input are the point cloud and the respective surface–normals. In the
case were only the point cloud is given (surface normals are not provided), Ohtake
et al. [2] suggest to compute such surface–normals with the technique proposed
by Hoppe et al. in [1]. The surface-normal estimation method is described in
next section.

3 Standard Surface–Normal Estimation

The estimation of surface–normals from a point cloud is usually done in two
stages, as proposed Hoppe et al. in [1] (NE–Hoppe). In the first stage the Tangent
Plane (TP) is estimated at each point. Thus the Orthogonal unitary vector to
the Tangent Plane (OTP) will be used as an approximation of the normal at
such point. In the second stage the orientation of the OTP, spatially coherent,
is computed.

Given a point set P = {p1, . . . , pN} and let be Vi the set of k nearest neighbors
(neighborhood) of the point pi. Then the TP at pi is obtained by fitting a plane
to the points in Vi by using a least-squares procedure, then the surface–normal,
ni, is the normal to the TP. Hoppe et al. [1] proposed to compute, ni, as the
third eigenvector (associated with the smallest eigenvalue) of the local covariance
matrix:

Ci =
∑

j∈Vi

(pj − ci) ⊗ (pj − ci) (1)

where ⊗ denotes the outer product vector operator1. If λ1
i ≥ λ2

i ≥ λ3
i are the

eigenvalues of Ci, their associated eigenvectors v1
i , v

2
i , v

3
i , respectively, form an

orthonormal basis. Then ni is either v3
i or −v3

i . The neighborhood size is chosen
manually based on visual inspection of the resulting normals and it is the same
for each point in the set.

The Oriented OTP (OOTP) is computed such that nearby planes are consis-
tently oriented. The NE–Hoppe algorithm, proposed in [1], considered the state
of the art, is following described. First, an Euclidean Minimum Spanning Tree
is created over the TP centers {c1, . . . , cn} and it is enriched adding the edge
< i, j > if either ci ∈ Vj , or cj ∈ Vi. Then the edge cost is equaled to 1−|ni ·nj |.
1 If v and u have components vi and uj respectively, then the matrix v ⊗ u has uivj

as its ij-th entry.
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Next, the Minimum Spanning Tree of this graph is computed. The OTP whose
TP center has the largest z coordinate is forced to point towards +z axis. Root-
ing the tree at this node, then the tree is traversed in depth first order, if during
traversal the current node i has been assigned the orientation ni and the node
j is the next node to be visited, then nj is replaced with −nj if ni · nj < 0.

Pauly et al. [5] noticed that nearby points in the neighborhood of a point
pi should have a stronger influence than distant points. Therefore, they assign
different weights to elements in the neighborhood by depending on their distance
to pi. The weighting function is proposed to be the Gaussian: w(pj − pi) =
exp(−‖pj − pi‖2/(2σ2)), where σ is chosen as one third of the square distance
between pi and its farthest neighbor: σ2 = (1/6)maxpj∈Vi ‖pj − pi‖2.

Although the previous algorithms [1,5] work well in the presence of smooth
regions and moderate noise, they perform poorly in those regions near corners
or edges. If the neighborhood at each of the points has a fixed size and it is
constructed using only the Euclidean distance then it is possible that points
considered as outliers for a certain region be used in the computation of the
normal. Hence, it is important to develop a new robust strategy that estimate
the local surface–normal by discarding neighbor points that lay beyond of a
surface edge or a corner. Figure 1 shows the normal estimation by different
approaches for a step function in two dimensions. Figure 1(a) shows the ground
truth and Fig. 1(b) shows the computed normals using neighborhoods based
only in a proximity measure, note the effect in corners of the step function. On
the other hand, Fig. 1(c) shows the results applying our approach (that will be
introduced in next section).
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Fig. 1. Normal estimation comparison in two dimensions for a step function. (a)
Ground Truth, (b) NE–Hoppe algorithm and (c) NENR algorithm.

4 Normal Estimation with Neighborhood Reorganization
(NENR)

The normal estimation using the OOTP is equivalent to apply a low-pass band
filter to the point cloud, so the resulting normal, will have a smoothness degree
which is proportional to the neighborhood size. If OOTP is used, one is implicitly
assumed that the neighborhood around each point may be modelled by simple
plane. Such assumption is incorrect at points close to edges or corners. An al-
ternative approach could be to weight each point in the neighborhood; however
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the underlying representation of each neighborhood still it is a unique plane. A
more appropriated model is to assume a plane–piecewise model. Half-quadratic
regularization (HQR) is an edge-preserving regularization technique for restor-
ing piecewise smooth signals [14,15,16,17]; the general HQR energy function is
given by

U(h, l) =
∑

i∈Ω

[
(hi − gi)

2 + α‖∇hi‖2 (1 − li)
2 + αβl2i

]
; (2)

where g is a given signal, h is the filtering signal with edge-preserving and α,
β are parameters which control the signal smoothness. li acts as an indicator
variable which disconnects the ∇hi terms with a huge contribution to the general
cost function. This technique is also applied by Calderon in [18,19], for Image
Registration.

In case of a piecewise constant surface, for a given neighborhood, we ap-
proximate this surface by TPs and it is desirable to get out points of the cloud
belonging to different TPs. So a new neighborhood is computed considering only
the nearest neighbors who belong to the same TP. Figure 2(a) shows the stan-
dard plane estimation, for the case of three points on a corner, and Fig. 2(b)
shows the plane estimation when a point is rejected, a desirable condition in
those cases. We propose a HQR cost function for this purpose and the indicator
variable in our case, is used as non-membership term, lij = 1 means that the
j − th point, in the original neighborhood, it is not in the same TP that i − th
point. The OOTP smoothness is controlled with the parameters α and β. We
proposed to compute the surface-normal as the minimization of a constrained
HRQ cost function. The additional constraint imposes a unitary norm to the flat
piecewise normal vector mi:

U(m, l) =
∑

i∈Ω

⎧
⎨

⎩‖mi − ni‖2 + α
∑

j∈Vi

[
‖mi − mj‖2 (1 − lij)2 + βl2ij

]
⎫
⎬

⎭ , (3)

s.t. ‖mi‖ = 1, ∀i ∈ Ω;

where ni is the normal vector computed with the NE–Hoppe algorithm described
in Sect. 3 for some neighborhood size. Then by using the Lagrange multipliers,
γ, we include the constraint in the Lagrangian:

L (m, l, γ) = U(m, l) −
∑

i∈Ω

γi

(
3∑

d=1

m2
i,d − 1

)
(4)

Then the solution is computed solving the Karush-Khun-Tucker conditions:

∇mL (m, l, γ) = 0, (5)
∇lL (m, l, γ) = 0, (6)

‖mi‖ = 1; (7)

where ∇x denotes the partial gradient operator. We propose to use the Gauss-
Seidel algorithm, for solving this system of equation, due the fact that the system
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of equation has a banded, diagonally dominant and semi-positive defined matrix,
so the t-th Gauss-Seidel Iteration is given by the equations (8, 9 and 10):

m̂
(t)
i,d =

m
(t)
i,d√

∑
k

(
m

(t)
i,d

)2
∀i ∈ Ω, (8)

l
(t)
ij =

∥∥∥m̂
(t)
i − m̂

(t)
j

∥∥∥
2

β +
∥∥∥m̂

(t)
i − m̂

(t)
j

∥∥∥
2 ∀ < i, j >∈ Ω2, (9)

m
(t+1)
i,d =

ni,d + α
∑

j∈Vi
m̂

(t)
j,d

(
1 − l

(t)
ij

)2

1 + γi + α
∑

j∈Vi

(
1 − l

(t)
ij

)2 . (10)
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Fig. 2. Different plane estimations using three points on a corner. (a) Plane over the
three points and (b) plane over points pi and ph when pj is not included.

The restriction for the equation (3) is fulfill at each iteration according with
equation (8), so the Lagrange multiplier γ can take any value, because their
contribution to the constrained HRQ cost function will be zero at each iteration,
for simplicity we put γi = 0 in equation (10).
The NENR algorithm is resumed in the next steps:

1. Compute the OOTP ni for some neighborhood with size k
2. Compute the reorganized neighborhood and the filter normal mi doing

– (a) Set m
(0)
i = ni and t = 0

(b) Normalize the vectors m
(t)
i applying (8)

(c) Compute the memberships l
(t)
ij using (9)

(d) Update the normal vectors m
(t+1)
i applying (10)

(e) Set t ← t + 1
(f) Repeat steps (b-e) until

∥∥∥m
(t+1)
i − m

(t)
i

∥∥∥ < ε
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3. Finally compute the robust OTP with the weighted covariance matrix:

Ci =
∑

j∈Vi

(
1 − l∗ij

)
[(pj − c∗i ) ⊗ (pj − c∗i )] (11)

with

c∗i =

∑
j∈Vi

(
1 − l∗ij

)
pj∑

j∈Vi

(
1 − l∗ij

) (12)

using the finals (optimum) memberships l∗ij , then compute the OOTP as was
described in Sect. 3.

5 Experimental Results

We perform experiments in both synthetic and real data, for comparing NE–
Hoppe and NENR algorithms. The synthetic data corresponds to a step function
and a 3D model with a ground truth while the real data corresponds to 3D models
widely used in the literature. All the 3D models were reconstructed using the
Ohtake’s MPUI implementation available at [20].

The results for the step function in two dimensions are presented in Fig. 1.
The normal vectors in Fig. 1(a) were assigned manually according with the step
function and the normal field estimated by NE–Hoppe and NENR are shown
in Figs. 1(b) and 1(c), respectively. The neighborhood sizes for both algorithms
were k = 2 and the NENR parameters were α = 50000 and β = 0.001. Note the
similarity between the NENR (Fig. 1(c)) and the original normals (Fig. 1(a))
also note the problem presented by NE–Hoppe algorithm in corners of the step
function.

For the synthetic 3D model, the normals have been assigned manually accord-
ing to the characteristics of the surface object and its surface reconstruction is
shown in Fig. 3(a). The resulting surface is used as a reference for a qualitative
comparison. The MPUI parameters in this case were a grid size of 0.005, and
a max error of 0.005 at each cell. For the rest of the parameters we took the
default configuration of Ohtake’s MPUI implementation. The neighborhood size
was taken equal to 15 for both normal estimation algorithms. Additionally, for
the NERN algorithm, we took α = 1000 and β = 0.01. The surface reconstructed
using the NE–Hoppe is presented in Fig. 3(b). Note that the edges of the re-
constructed surface are over–smoothed as a direct consequence of bad normal
estimation near these regions. Finally, Fig. 3(c) shows the surface reconstructed
using the NENR algorithm. We must notice that NENR algorithm increases the
quality of the reconstruction, shown sharped geometric edges without affecting
the smooth areas, as you can see comparing Figs. 3(b) and 3(c).

For a quantitative comparison between NERN and NE-Hoppe algorithms, we
compute the angle between the ground truth surfaces normals and the estimated
normals using both algorithms. The mean angle and standard deviation are
shown in Table 1 for the step function (Fig. 1) and the synthetic 3D model
(Fig. 3). Note the better results for the normal estimation using NERN than
NE-Hoppe in both cases.
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(a) Ground Truth (b) NE–Hoppe (c) NENR

Fig. 3. Surface reconstruction using MPUI and different Surface–Normal Estimations

Table 1. Normal estimation angle between ground truth normals and the estimated
normals of both methods

Algorithm
Step Function Synthetic Model

Mean Angle Std. Deviation Mean Angle Std. Deviation

NE-Hoppe 5.7169◦ 15.2029◦ 7.5544◦ 13.5544◦

NERN 0.1764◦ 0.1852◦ 0.9973◦ 2.0968◦

(a) Bunny (b) Golf club

Fig. 4. Surface reconstruction using MPUI and NENR for real models

Figures 4(a) and 4(b) show reconstructions, using the MPUI method with
NENR–computed normal, from a couple of real 3D models widely used in the
literature. The MPUI parameters for both models were, a grid size of 0.004, and
a max error of 0.002 at each cell. The rest of the parameters took the default
values setting by the Ohtake’s MPUI implementation. For the bunny model the
NERN parameters were k = 15, α = 100, β = 0.01 and in the case of the golf
club model were k = 12, α = 1000, β = 0.01.
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6 Conclusions

In general, the normal estimation algorithms based on the covariance matrix
as NE–Hoppe approximate a neighborhood by a unique plane independently of
its local shape. Some algorithms, in order to improve the approximation by a
unique plane, reduce the neighborhood size or weight the covariance matrix,
nevertheless the approximation continues to be a unique plane.

The NENR algorithm produces a reduction in the neighborhood size, rejecting
the neighbors that have large differences. This condition warranties that the
neighbors have the same smoothness degree between them. The NERN algorithm
was tested using synthetic examples building with shape discontinuities. The
experiments presented better quantitative and qualitative results using NENR
than NE–Hoppe.

In cases of real models, a couple of experiments were done and the results were
very similar for both algorithm, therefore, using NENR in real smooth models
does not represent a lost in quality for surface reconstruction. In general, NENR
produces a better normal estimation than NE–Hoppe, in places located near
to edges, corners and geometric discontinuities. The NERN algorithm does not
have troubles with smooth regions or smooth models.
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Abstract. In this paper, we describe a weighted principal geodesic anal-
ysis (WPGA) method to extract features for gender classification based
on 2.5D facial surface normals (needle-maps) which can be extracted
from 2D intensity images using shape-from-shading (SFS). By incorpo-
rating the weight matrix into principal geodesic analysis (PGA), we con-
trol the obtained principal axis to be in the direction of the variance on
gender information. Experiments show that using WPGA, the leading
eigenvectors encode more gender discriminating power than using PGA,
and that gender classification based on leading WPGA parameters is
more accurate and stable than based on leading PGA parameters.

Keywords: Gender classification, facial surface normals, principal
geodesic analysis, weighted principal geodesic analysis, gender discrimi-
nating power.

1 Introduction

Humans are remarkably accurate at determining the gender of a subject based
on the appearance of the face alone. In fact, an accuracy as good as 96% can
be achieved with the hair concealed, facial hair removed and no makeup [1]. In
recent years, considerable effort has been spent on the statistical feature based
approaches [2], [3], [4], [5], [6] to gender classification. Of these, principal com-
ponent analysis (PCA) is widely used to reduce the dimensionality of the high
dimensional facial data. The aim of PCA is to locate the projections that maxi-
mize the variance of the data. However, the projections that maximize the vari-
ance usually are not the projections that separate the data into distinct clusters,
and so, PCA usually does not reveal cluster structure. Therefore, most of the
current approaches employ a second step to extract gender relevant features by
performing linear discriminant analysis (LDA) on the PCA parameters. Because
of the supervised nature of LDA, this two-step feature extraction strategy is un-
suitable for unsupervised learning. Another drawback of the current approaches
is that most of them are based on 2D intensity information. Although studies
[7] have shown that the gender is not only revealed by 2D facial texture, but
also has a close relationship with the 3D shape of the human faces, in fact, only
a few studies have investigated the role of 3D shape in gender classification [6].
The computation of 3D face shape representation is significantly more complex
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than of 2D face texture. Due to the limited effectiveness and high cost of the 3D
sensors in the current market, some typical problems with range images includ-
ing missing data near dark regions and spikes in regions with high reflectivity
would also adversely affect the classification accuracy.

In this paper, we address gender classification using the parameterisation of
fields of facial surface normals or needle-maps, and propose a one-step feature
extraction method. The needle-map is a 2.5-D shape representation which is in-
termediate between the 2D intensity image and the 3D surface height function
[8]. The representation can be acquired from 2D intensity images using shape-
from-shading [9]. It therefore avoids the problems caused by the limitation of
current 3D sensors, and is invariant to illumination. To parameterize the facial
needle-maps, we use weighted principal geodesic analysis (WPGA). This is a
novel variant of principal geodesic analysis (PGA) [10], [11], which constructs a
weight matrix making use of the a priori knowledge of the gender discriminating
power of different regions of the face, and incorporate the weights into PGA.
PGA is a generalization of PCA, for data residing on a Riemannian manifold.
As a result, PGA is better suited to the analysis of directional data than PCA.
By incorporating weights into the analysis of data, we control the data variance
structure so that the variance of gender discriminating regions are larger. In this
way, the principal axis obtained after the PGA projection are in the direction
of the gender discriminating variance. So, WPGA method improves the pro-
jections separating clusters in a manner that is consistent with the projection
directions that maximize the variance. Therefore, it enables us to extract the
gender discriminating features in a single step.

The outline of the paper is as follows. Section 2 first reviews the concepts of
the Log and Exponential maps, spherical medians, and the PGA of needle-maps,
and then provides the idea of incorporating weights into PGA. Section 3 states
the probability based classification strategy. The details of how to construct the
weights and experimental results are presented in Section 4. Finally, Section 5
concludes the paper and offers directions for future investigation.

2 Weighted Principal Geodesic Analysis

The surface normal n ∈ R3 may be considered as a point lying on a spherical
manifold n ∈ S2, therefore, the intrinsic mean and PGA proposed by Fletcher
et al. [10] is suitable to analyze the variations of the surface normals.

2.1 The Log and Exponential Maps

If u ∈ TnS2 is a vector on the tangent plane to S2 at n and u �= 0, the exponential
map, denoted Expn, of u is the point, denoted Expn(u), on S2 along the geodesic
in the direction of u at distance ‖ u ‖ from n. This is illustrated in Fig. 1. The
log map, denoted Logn is the inverse of the exponential map. The exponential
and log maps reserve the geodesic distance between two points, i.e. d(n1, n2) =
d(u1, u2), where u1 = Lognn1, u2 = Lognn2.
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Fig. 1. The exponential map

2.2 Spherical Medians

It is more natural to treat the surface normal as points on a unit sphere:
n1, . . . nN ∈ S2 rather than points in Euclidian space. Instead of the Euclid-
ian mean, we compute the intrinsic mean: μ = arg minn∈S2

∑N
i=1 d(n, ni) ,

where d(n, ni) = arccos(n · ni) is the arc length. For a spherical manifold,
the intrinsic mean can be found using the gradient descent method of Pen-
nec [11]. Accordingly, the current estimate μ(t) is updated as follows: μ(t+1) =
Expμ(t)( 1

N

∑N
i=1 Logμ(t)(ni)).

2.3 PGA of Needle Maps

PGA is analogous to PCA except that each principal axis in PCA is a straight
line, while in PGA each principal axis is a geodesic curve. In the spherical case
this corresponds to a great circle. Consider a great circle G on the sphere S2.
To project a point n1 ∈ S2 onto a point on G, we use the projection opera-
tor πG : S2 −→ G given by πG(n1) = argminn∈G(n1, n)2. For a geodesic G
passing through the intrinsic mean μ, πG may be approximated linearly in the
tangent plane TμS2: Logμ(πG(n1)) ≈

∑K
i=1 V i · Logμ(n1), where V1, . . . VK is an

orthonormal basis for TμS2.
Suppose there are K training needle-maps each having N pixel locations, and

the surface normal at the pixel location p for the kth training needle-map is
nk

p. We calculate the intrinsic mean μp of the distribution of surface normals
n1

p, . . . n
K
p at each pixel location p. nk

p is then represented by its log map position
uk

p = Logμp
(nk

p). uk = [uk
1 , . . . , u

k
N ]T is the log mapped long vector of the kth

training needle-map. The K long vectors form the data matrix U = [u1| . . . |uK ].
The covariance matrix of the data matrix is L = 1

K UUT .
The numerically efficient snap-shot method of Sirovich [12] can be used to

compute the eigenvectors of L. Accordingly, we construct the matrix L̂ = 1
K UT U ,

and find the eigenvalues and eigenvectors. The ith eigenvector ei of L can be
computed from the ith eigenvector êiof L̂ using ei = Uêi. The ith eigenvalue λi

of L equals the ith eigenvalue λ̂i of L̂ when i ≤ K. When i > K, λi = 0. The m
leading eigenvectors of L form the projection matrix Φ = (e1|e2| . . . |em).
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Given a long vector u = [u1, . . . , uN ]T , we can get the corresponding PGA pa-
rameters b = ΦT u. Given the PGA parameters b = [b1, . . . bm]T , we can generate
a needle-map using: np = Expμp

((Pb)p).

2.4 Incorporating Weights into PGA

From above, we can see that PGA, which is a generalization of PCA, captures
the directions of the largest variance in the needle-maps. However these variance
usually are not associated with the differences in facial shape for different gender.
To improve the encoding of gender by the leading eigenvectors, a possible solution
is to increase the variance of the normals in the gender discriminating regions,
such as eyebrows, nose, etc. Therefore, we introduce the N × N diagonal weight
matrix W = diag(w1, . . . , wN ), which gives a weight to each position in the facial
needle-map. The positions in the gender discriminating regions are given high
weights (wh), while the other positions are given low weights (wl). In this way,
the normals in the gender discriminating regions have wh

wl
times larger variance

than the normals in the other regions. The leading eigenvectors capture the large
variance, and therefore, encode gender discriminating information.

In our experiments, the weight matrix is constructed through the angular
difference between the intrinsic means of the female facial needle-maps and male
facial needle-maps:

wk = 1 − exp[− 1
σ2 (arccos(n̄m

k · n̄f
k))2] (1)

where n̄m
k is the mean unit surface normal direction for males at the image

location where k at. n̄f
k is the corresponding mean unit normal vector for fe-

males. Using the intrinsic means reduces the influence of the differences between
identities.

Suppose, U = [u1| . . . |uK ] is the data matrix, where uk = [uk
1 , . . . , uk

N ]T is the
log mapped long vector of the kth sample data. The weighted covariance matrix
is constructed as LW = 1

K (WU)(WU)T . The snap-shot method of Sirovich are
used to compute the eigenvectors of LW . As stated in [13], 5 gender discriminat-
ing significant features will achieve the highest classification rate, we maintain
the 5 leading eigenvectors to form the projection matrix Φ = (e1|e2|e3|e4|e5).
Given a long vector u = [u1, . . . , uN ]T , the corresponding WPGA parameters
are computed as b = ΦT (Wu).

3 Classification

After the training and test facial needle-maps have been represented by their
WPGA parameters, we use the a posteriori class probabilities to classify the test
faces to one of the genders.

Let Cf and Cm denote the female and male gender classes, x denote the
WPGA parameters of a test facial needle-map. Then according to the Bayes
law, the probability that x is of class Ci is:
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P (Ci|x) =
P (x|Ci)P (Ci)∑
i∈{f,m} P (x|Ci)

(2)

We assume that the distribution of gender is Gaussian, and that the mean
and variance of class Ci are μi and σi. The a priori probabilities are P (Cf ) =
P (Cm) = 1/2. Then,

P (x|Ci) =
1√
2πσ2

i

exp(− (x − μi)2

2σ2
i

). (3)

If P (Cf |x) > P (Cm|x), then the face is classified as female. Otherwise, the
face is classified as male.

4 Experiments and Discussion

In this section, we first show how the σ value is determined for the weight ma-
trix construction, and compare the gender discriminating power of the WPGA
leading eigenvectors with the PGA leading eigenvectors. Then, the gender clas-
sification results obtained using WPGA parameters are compared with those
obtained using PGA parameters. The Max-Planck Institute for Biological Cy-
bernetics in Tuebingen, Germany provides the database used in our experiments
[14], [15]. This database consists of 200 ground truth facial needle-maps, of which
100 are females and 100 are males. The weight matrix is constructed using all
200 faces. Gender classification is performed by randomly choosing 80 females
and 80 males as training data, and using the remaining 40 faces for test. We re-
peated the randomization 10 times and the classification results are the average
of the 10 randomizations.

4.1 Construction and Evaluation of the Weight Matrix

We first examine the selection of the value of σ for the weight matrix construc-
tion. Next, we evaluate the performance of WPGA by examining the gender
discriminating power of the eigenvectors. The discriminating power is calculated
using the criterion function introduced in [16], i.e. J(ξ) = tr(S−1

w Sb) =
∑d

k=1 λk,
where Sw and Sb are the within and between class scatter matrices, and λk,
k = 1 . . . d are the eigenvalues of the matrix S−1

w Sb.

Determination to the σ value. We construct the weight matrices for 10 dif-
ferent values of σ, and obtain 10 different WPGA projection matrices, from each
of which we select the 5 leading eigenvectors. The 10 different sets of WPGA
parameters for the 200 faces are obtained accordingly. The gender discriminat-
ing power is calculated on the 10 sets of WPGA parameters and are shown in
Fig. 2. The σ value is selected to give the largest discriminating power. From
Fig. 2, we select σ from the shoulder of the curve of discriminating power and
this occurs when σ2 = 0.11 .
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Fig. 2. Selection of σ value

Fig. 3. Construction of the weight matrix. From left to right are the intrinsic mean
of female needle-maps, the intrinsic mean of male needle-maps, and the constructed
weight matrix.

The intrinsic means of the 100 female needle-maps and the 100 male needle-
maps and the weight matrix constructed using σ2 = 0.11 are shown in Fig. 3.
From the figure, it is clear that the constructed weight matrix has high weights
in regions around the eyebrows, nose, and mouth.

Discriminating power. After the construction of the weight matrix, we use it
in conjunction with principal geodesic analysis to obtain the projection matrix.
The discriminating power of each of the 10 leading WPGA eigenvectors is shown
in the left hand panel of Fig. 4, and is compared with those of the 10 leading PGA
eigenvectors which are shown in the right hand panel of Fig. 4. From the figure,
we see that although the gender discriminating power of the WPGA eigenvectors
is not in descending way, it is concentrated in the first 5 eigenvectors. The first
5 WPGA eigenvectors have the 5 largest discriminating power. By comparison,
the discriminating power of PGA eigenvectors are more widely distributed. For
example, the 8th PGA eigenvector has the 5th largest discriminating power,
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Fig. 4. Discriminating powers of the leading 10 eigenvectors. The left panel is for
WPGA and the right panel is for PGA.

and the discriminating power of the 10th PGA eigenvector is larger than that
of the 3rd eigenvector. This confirms our assumption that incorporating gender
relevant weights into PGA results in better encoding of gender information in
the leading eigenvectors. However, in WPGA, the discriminating power of the
first and second eigenvectors seem to be swapped, which need further investment
in the future.

Fig. 5 shows the plots of cumulative gender discriminating power for the
first m (m = 1 · · · 20) WPGA and PGA eigenvectors. From the figure, it is
clear that WPGA has significantly larger cumulative discriminating power than
PGA when 1 < m < 10. This gives further confirmation that the first few
WPGA eigenvectors encode most of the gender discriminating power, while the
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gender discriminating power encoded in the PGA eigenvectors are more uni-
formly distributed.

4.2 Classification Results

We randomly selected 80 female needle-maps and 80 male needle-maps from the
200 available for use as training data, and the remaining 40 as test data. We first
apply WPGA to the training data to obtain the projection matrix. Then, the
construction of separate models for females and males, and gender classification
on the test data are both performed on the 5 leading WPGA parameters. We
repeat the randomization procedure 10 times. The average classification rates
and variance obtained using WPGA and PGA are shown in Table 1, from which
it is clear that gender classification performed on the leading WPGA parameters
gives improvements not only on the classification rates, but also on the stability
of the classification when compared with PCA.

Table 1. Gender classification rates

Female Male Overall

WPGA 93.50% ± 0.0450 91.00% ± 0.0490 92.25% ± 0.0361

PGA 84.00% ± 0.1068 84.50% ± 0.1083 84.25% ± 0.0448

5 Conclusion

In this paper, we describe a weighted PGA method to extract gender discrimi-
nant features from 2.5D facial needle-maps in a single step, and perform gender
classification using the WPGA parameters. Experimental results show that the
leading WPGA eigenvectors encode more gender discriminating power than the
leading PGA eigenvectors. Moreover, gender classifications based on WPGA pa-
rameters achieve more accurate and more stable results than those based on
PGA parameters.

There are several potentially interesting avenues for future investigation. First,
instead of using ground truth facial needle-maps, we will apply the method to
needle-maps recovered from facial images using SFS. Second, we will improve
the generalization of the weight matrix. Third, unsupervised learning using the
EM algorithm will be used to perform gender classification on the WPGA pa-
rameters.
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Abstract. This paper presents a methodology for the automatic seg-
mentation of rock-scenes using a combination of range and intensity vi-
sion. A major problem in rock scene segmentation is the effect of noise
in the form of surface texture and color density variations, which causes
spurious segmentations. We show that these problems can be avoided
through pre-attentive range image segmentation followed by focused at-
tention to edges. The segmentation process is inspired by the Human
Visual System’s operation of using a priori knowledge from pre-attentive
vision for focused attention detail. The result is good rock detection and
boundary accuracy that can be attributed to independence of range data
to texture and color density variations, and knowledge driven intensity
edge detection respectively. Preliminary results on a limited image data-
set are promising.

Keywords: surface texture, color density variations, range image seg-
mentation, intensity edge detection.

1 Introduction

An instrument for measuring rock fragmentation is invaluable to the mining
and mineral processing industries where it can be used to monitor, optimize
and control blasting and communition. Image processing in particular, has been
widely accepted as the analysis method of choice for the estimation of rock-size
because of: the non-intrusive nature of the measurement process; the capability of
measuring continuously and in real time; the repeatability of measurements given
the same scene and lighting conditions; and the absence of moving mechanical
parts which implies little or no maintenance.

Intensity image analysis, in particular, has been a research area of focus for
many of the recent academic [1], [2], [3] and operational [4], [5], [6] systems,
mainly because the imaging sensor is sensitive to shadows which are formed
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around the individual particles. These shadows are detected and completed as
rock outlines during rock scene segmentation. However, limitations of intensity
sensors are well documented [7], [2]: the loss of a dimension due to the projective
nature of the sensor; and the loss of small particles due to the limitation in the
sensors resolution, etc. These limitations introduce errors into the measurement
process which are further increased by errors that can be attributed to the
environment under imaging: poor lighting; color density and texture variations.

Lighting conditions can be controlled through the elimination of natural light-
ing and proper design of synthetic lighting [2]. Color density and texture vari-
ations define a rock-scene in intensity but do not necessarily correlate to range
image data except perhaps at the edges of rocks. High quality range images of
rock-scenes have been segmented using 3D morphological techniques [8] for the
purposes of rock-size estimation. However, the processing that is required to
produce such high quality data inhibits the practical implementation of such a
system in a real plant. Consequently, rapidly generated range imagery of suffi-
cient quality can be complemented with corresponding intensity in a multisensor
fusion framework.

A review of current trends and future directions in multisensor integration and
fusion is presented in [9], where a distinction between multisensor integration and
fusion is made. Multisensor Integration is viewed as the general connenctivity of
sensors that produce information at system architecture and control level. Fusion,
on the other hand, is viewed as the process of combining multisensory information
using statistical or mathematical methods. Multisensor integration of infrared and
visual sensors has been used for human form detection[10]. Range and intensity
images have been fused for mobile robot localization in robotics[11] and deformed
object identification and bin picking in materials handling[12]. Range maps have
been fused with intensity edge maps to segment noisy range images [13].

We present a methodology that combines the analysis of range and intensity
images to address the problem of texture and color density variations during
rock edge extraction. Experience and previous work [2] has shown that the hu-
man visual system (HVS) is more than capable of rock-scene segmentation and
therefore serves as a platform upon which the image analysis is based. Initially,
pre-attentive range vision in the form of extracting preliminary rock boundaries
from a range image is executed. The boundary information is eventually used
as a priori knowledge for focused attention to intensity edges. A description of
the pre-attentive range segmentation algorithm is presented in section 2; section
3 describes the focused intensity edge detection algorithm; a methodology for
performance evaluation is presented in section 4; Results of the experiments are
presented in section 5; and conclusions are drawn in section 6.

2 Pre-attentive Range Vision

Segmentation of range data is an important part of range image perception
and understanding. The general problem of range image segmentation is that
of partitioning the range image into disjoint surfaces representing individual



342 S. Mkwelo, F. Nicolls, and G. de Jager

objects or a single object. In this work, the former condition is encountered,
where each surface represents a single rock in the image. The problem has seen
many solutions such as the HK map iterative region growing [14], the effective
jump-diffusion method[15], scan-line grouping [13], methods using morphological
operators [16], [8] and others. In [13], intensity data in the form of Intensity Edge
Maps (IEM) are fused with range data to improve range segmentation. In this
work, range segmentations are used to improve intensity image segmentation,
see section 2.2. We use a global range segmentation technique referred to as rock
model extraction, which is based on morphological operators. Specifically, the
watershed and distance transforms are used, as shown in figure 1.

Fig. 1. A block diagram representation of rock model extraction

The processing includes: the estimation of background and foreground range
values for range value thresholding to produce a binary image; connected bi-
nary models are disconnected using a combination of distance and watershed
transforms. As can be seen in figure 2 that the watershed is executed twice for
a single range image. The first watershed is used to estimate a range threshold
that separates foreground and background range values based on a discrepancy
between trough and surface range values. The second watershed combined with
the distance transform spatially splits connected binary models that result from
the previous process. The distance transform assigns a value for each foreground
pixel that is equal to its distance from the background. Consequently, connected
binary models will have cone shaped structures whose peaks are centered at the
centroids of the models with local minima or saddle points between these peaks.
This allows for a watershed transform to create boundaries at the saddle points
and hence splitting connected models.

3 Focused Intensity Vision

Perception and understanding of intensity data often requires image segmenta-
tion. The segmentation of intensity rock-scenes can be difficult without a priori
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knowledge about rocks because of noise, texture and color density variations on
rock surfaces. Crida[2] used elliptical models of rocks as a priori knowledge for
focused intensity edge detection. He used elliptical probability masks and edge
orientations to limit the search for edge pixels. In this work, a similar approach
is taken, except a shape model from a range image is used for producing prob-
ability masks and edge orientations as shown in figure 2. The process is local
by nature and therefore focuses attention to a predefined region-of-interest. Key
processing operations in the form of rock edge detection, probability masking
and optimization are described in the next section.

Fig. 2. A block diagram representation of focused intensity edge detection

3.1 Edge Detection, Masking and Optimization

The intensity sub-image is subjected to a directional edge detection process that
computes edge-responses based on a variable [3-by-3] convolution kernel whose
elements depend on the pixel position and orientation of the boundary model at
that point. The practical implementation involves predefining a set of possible ker-
nels for a number of arc intervals of a circle which defines the orientation of edges
to be detected. The radial convolutions produce noisy edge responses in areas of
mismatches between the kernel orientations and edges. We use probability masks
to spatially limit the search area of edges of interest. The masks are created by
a dilation of boundary models, distance transformation and normalization. The
masking is achieved by multiplying the edge response with the probability mask
to remove interior texture and color density noise effects. The masked response is
then optimized to narrow edge traces through a radial search for pixels with max-
imum edge responses. Figure 3 shows input intensity, edge response, probability
mask, masked response and optimized response sub-images.

3.2 Rock Shape Extraction

The objective of this stage is to fit the optimized response by a smooth boundary
to extract the underlying rock shape. This involves a transformation from an



344 S. Mkwelo, F. Nicolls, and G. de Jager

Fig. 3. Image data: intensity, boundary model, probability mask, edge response,
masked response and optimized response

Fig. 4. A sinusoidal signal as an approximation to an elliptical shape

image to an angular-series representation of radial distances. The independent
variable becomes angle in radians. The angles range from zero to 2π radians
and the distance signal wraps around at the zero and 2π radians interface. A
circle of radius r in an image becomes a DC signal of r volts in the angular-series
representation. An ellipse becomes an approximately sinusoidal signal with a DC
offset equal to the average of the principal components and amplitude equal to
the difference in principal components, as shown in figure 4.

In general, however, ore can consists particles with sharp and pointed edges
producing irregular and complex angular-series. We use an N th order least
squares polynomial as a first approximation of the angular-series points and
hence extract the underlying shape of the projected rock. The least squares
formulation determines coefficients

c = [cN , cN−1, cN−2, ..., c1]T , (1)
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from the general vector equation

y = Ac (2)

as being (AT A)−1AT . This is known as the pseudo-inverse of matrix A. A
single row of the matrix A has the form [xNxN−1xN−2...1]. The increase in the
order of the polynomial will vary the segmentations from simple to complicated
models. Least squares is known to perform well provided that there is an effective
pre-processing for removing outliers in the data. Because it is not possible to
completely remove outliers, it maybe necessary to investigate other curve fitting
methods such as Radial Basis functions and robust estimation methods which
are known to be less sensitive to outliers.

4 Methodology

A laboratory data set in the form of a calibrated stereo pair of consecutive frames
of an intensity rock-scene is used to generate a range image using dense stereo
reconstruction [17],[18]. Pre-attentive segmentation of the range image, as de-
scribed in section 2, is applied to produce boundary models, which are used to
automatically select image windows of corresponding intensity rocks. Focused in-
tensity segmentation is achieved through using variable edge orientation kernels
and probability masks from the boundary models.

The system’s performance is evaluated in terms of a visual measure of er-
ror from images coupled with numerical errors between automatically extracted

Table 1. The user-input parameter set

Parameter value
Polynomial orders 11 and 15

Probability mask width 60% of radial distance

2-tail outlier search regions 50% of range

Intensity Gaussian filter [size, σ] [9, 0.5]

Fig. 5. Experimental data set: the range image and the corresponding reference inten-
sity image overlaid with boundary models
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rock-shapes and hand segmented sub-images. Numerical differences in enclosed
areas between the segmentations of the system and the human visual system are
computed by image subtraction of the system output from the hand segmented
images. The percentage error is computed relative to the HVS segmentations.
Table 1 shows the user input parameter set that is used during the experiments
and figure 5 is the input data-set to be used by the focused intensity segmenta-
tion algorithm.

5 Results

This section presents results on a data-set of 8 sub-images. The results are di-
vided into visual and numerical categories based on performances with settings
of table 1. The visual data in the form of the input intensity image, extracted
model, angular series and segmented rock are shown in figures 6 to 9. Polynomial
fitting results with polynomials of order 15 and 11 are shown. The results show,
as predicted, that the order 11 polynomial imposes smoothness on the model,
while the 15th order can model the intricate complexities of rock shapes. The
15th order polynomial is used for comparisons to hand segmented sub-images.

Table 2 shows the numerical results of a comparison to hand segmented sub-
images in terms of over-estimation, under-estimation and overall errors. Results
show that the worst performance is produced on image 4 of figure 7, with an
overall pixel error 25.5% and an under-estimation component of 24.81%. This
image appears not to have clear indications of rock edges of interest. The system
performs best on image 5 of figure 8, with a minimum overall error of 4.24%. This
image appears to have very good edge information about the rock of interest.
Sub-image 3 of figure 7 shows the effect of the sensitivity to outliers of the least
squares method. As a result the overall error of 8.59% has an over-estimation
component of 6.55%.

These are preliminary results and therefore it is not reasonable to specify av-
erages and standard deviations as the number of image samples is not sufficient.

Fig. 6. Rock sub-images 1 and 2 with corresponding results
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Fig. 7. Rock sub-images 3 and 4 with corresponding results

Fig. 8. Rock sub-images 5 and 6 with correpsonding results

Fig. 9. Rock sub-images 7 and 8 with corresponding results
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Table 2. Segmentation error with respect to HVS segmentation results

Image number under-estimation error over-estimation error overall error
image 1 1.85% 4.09% 5.93%

image 2 9.95% 2.96% 12.9%

image 3 2.04% 6.55% 8.59%

image 4 24.81% 0.24% 25.5%

image 5 1.07% 3.17% 4.24%

image 6 18.83% 1.82% 20.65%

image 7 0.92% 4.92% 5.84%

image 8 5.14% 1.66% 6.80%

6 Conclusions

Based on the above findings and results, the following conclusions can be drawn.

– An HVS inspired methodology for rock-scene segmentation that combines
intensity and range image analysis to avoid the effects of texture and color
density variations is presented.

– Post-processing in the form of angular series representation and polynomial
fitting is used to extract the underlying rock shape with good accuracy.
However, visual and numerical results seem to agree with literature that the
least squares estimator is sensitive to outliers and therefore other estimators
must be investigated.

– The system appears to perform very well on the experimental data set.
However, more data with variation in texture and color densities is required
for a more rigorous evaluation.
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Abstract. In order to deploy mobile robots in social environments like
indoor buildings, they need to be provided with perceptual abilities to
detect people. In the computer vision literature the most typical solution
to this problem is based on background subtraction techniques, however,
in the case of a mobile robot this is not a viable solution. This paper
shows an approach to robustly detect people in indoor environments us-
ing a mobile platform. The approach uses a stereo vision system that
yields a stereo pair from which a disparity image is obtained. From this
disparity image, interesting objects or blobs are segmented using a re-
gion growing algorithm. Afterwards, a color segmentation algorithm is
performed on each blob, searching for human skin color areas. Finally,
a probabilistic classifier provides information to decide if a given skin
region corresponds to a human. We test the approach by mounting the
resulting system on a mobile robot that navigates in an office type indoor
building. We test the system under real time operation and different il-
lumination conditions. The results indicate human detection accuracies
over 90% in our test.

Keywords: human detection, human-computer interaction, face detec-
tion.

1 Introduction

An important field in Robotics is Socially interactive robots [6], which consists
in providing robots with the ability to interact with other agents. To effectively
interact socially, robots have to separate possible agents from the rest of the
scene. Then, they have to discriminate which of these candidate agents they
can interact with. The most common separation is between humans and other
objects, like furniture, doors, and decorations.

Serving as a contribution towards the development of socially interactive
robots, this paper shows an approach to robustly detect people in indoor envi-
ronments. Our goal is to mount our system on a mobile robot navigating through
an indoor environment, therefore, the use of traditional background subtraction
techniques is not a viable solution.

In our case, our approach is based on information provided by a stereo vision
system to perform the initial segmentation of candidate humans. We use the fact
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that for each person in the scene, its depth is roughly constant and appears on
the disparity image as a uniform intensity area. After this initial segmentation,
we use color cues to detect skin color pixels that feed a probabilistic classifier
that provides the final detection of humans.

The rest of the paper is organized as follows: Chapter 2 reviews relevant
previous work on human detection using computer vision techniques. Chapter 3
discusses the main details of our approach to detect people. Chapter 4 shows the
results of applying our methodology to real data in real time. Finally, chapter 5
presents the main conclusions of this work.

2 Previous Work

Human detection and tracking are important topics of research in the computer
vision literature. Applications for these topics include surveillance, elderly as-
sistance, human-robot interaction, and pedestrian counting, among others [9].
The state of the art in this area can be divided into two main categories: i)
Methods that require background substraction as a first step to detect the in-
teresting objects. ii) Methods that perform the detection using moving cameras.
Our method belongs to this last category, hence, we concentrate the review here
in methods that do not rely in background subtraction techniques, for a more
extensive review see [9].

The work in [11] proposes a method based on geometrical structures. It uses
the fact that the relative positions of various body parts are common to all
humans. On each input image, patches at multiple locations and scales are com-
pared to previously stored templates. Then a threshold is used to classify a
patch as a human or a non-human. Recognition rates between 83% and 90% are
presented for this method.

The method proposed by [12] deals with the detection of pedestrians from
video. The algorithm scans a detector over two consecutive frames of a video
sequence and extracts simple rectangular features by evaluating motion and
appearance filters. The detector is a cascade of classifiers that is trained using
AdaBoost. A static detector only with appearance information is also presented.
Results with low false positive rates and detection rates of about 80% are shown.

The work in [10] proposes a method for human detection in video sequences
for outdoor surveillance. The technique computes optic flow of several human
and non-human motion examples and trains a support vector machine (SVM)
with radial basis function (RBF) kernel using these examples. The classifier
can be applied to new input video at multiple positions and scales, followed
by pruning of detections with large overlap. Good recognition performance for
walking people are shown, even in the presence of other moving objects.

Recently, [3] describes a method that uses grids of Histograms of Oriented
Gradient (HOG) descriptors for building a support vector machine classifier.
It divides the image in small spatial parts (cells) and finds the histograms of
edge orientations over all the pixels of the cell. The combined histogram entries
form the feature representation after local contrast normalization in overlapping
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Fig. 1. System diagram. The images obtained from the stereo cameras are passed to the
segmentation process, where the stereo blobs and face candidates are detected. Then
features are extracted from the face candidates to feed a classifier that distinguishes
between person and not person.

descriptor blocks. The inclusion of four different normalizations on each HOG
improves performance from 84% to 89%.

3 Our Approach

In this chapter we show the different parts of our approach and how they are
integrated to effectively detect people. Figure 1 shows an overview of the ap-
proach. It consists of a stereo vision system that yields a stereo pair from which
a disparity image is obtained. From this disparity image, interesting objects or
blobs are segmented using a region growing algorithm. Afterwards, a color seg-
mentation algorithm is performed on each blob, searching for human skin color
areas. Then, over each blob a feature extraction process provides information to a
probabilistic classifier that finally distinguishes if a given skin region corresponds
to a human. In the next, we explain each of these steps in detail.

3.1 Stereo-Based Human Segmentation

The process we developed to make human segmentation is based on the idea that
for each person in the scene, its depth is roughly constant and appears on the
disparity image as an uniform-intensity area. Based on that, one can separate
humans from the background by finding these areas.

To obtain the stereo pair we use the SVS library [8] and the disparity image
is calculated using the library implementation of the Area Correlation Method.
Then, a Breadth First Search (BFS) region growing algorithm is performed over
the disparity image. This algorithm iteratively looks around each pixel searching
for neighbors with similar gray intensity and connecting them. This process
yields several regions of connected pixels known as blobs. Empirically, we set
that blobs smaller than 3.26% of the total image area are filtered out.
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Fig. 2. Skin pixel criteria applied to some images. Note that some colors of the T-
shirts in the first image are more difficult to filter out due to its similarity to some skin
pigmentations.

3.2 Skin-Color Based Segmentation

We want to detect humans, hence, a useful visual cue is skin color. The procedure
to obtain skin color blobs consists in searching for skin pixels inside the blobs
detected by the stereo vision algorithm (stereo blobs). To effectively classify
between skin pixels and non-skin pixels we used a transformation of the RGB
values into a “log color-opponent” space [4]. This space can directly represent
the approximate hue of skin color:

logV al1 =ln(G); logV al2 =ln(R) − ln(G); logV al3 = ln(B) − ln(R) + ln(G)
2

(1)

We classify a pixel as skin, if it meets the following criteria:

logV al1 ∈ [3.5, ∞); logV al2 ∈ [0.05, 0.8]; logV al3 ∈ [−1.25, 0] (2)

We set these intervals by sampling 32000 pixels of both skin and non-skin
classes and searching for the optimal thresholds that separate the classes. Figure 2
shows an example of the typical segmentations obtained with this scheme.

Given that our goal is to provided human detection capabilities to a social
robot, we focus in detecting people that is standing and facing the robot. Also,
due to the biological constraint that humans have their heads in the upper part
of their body, we just search for skin pixels in the upper half of the stereo blobs.
Here, we find the image row rmax and the image column cmax with maximum
number of skin pixels. If the pixel located at ( rmax , cmax ) is a skin pixel, a
Breadth First Search region growing algorithm starting on that point finds a
skin-colored blob and its bounding box; if is not, then a search for a skin pixel is
performed over its neighbors. If one of the neighbors is a skin pixel, the region
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growing algorithm is done with that neighbors as a starting point, but if none
of the neighbors is a skin pixel, then the candidate is rejected.

Finally, over the skin colored blobs obtained, we apply a size based rejection
test. Given that the size of the expected color blobs depends of the distance of
a potential person from the camera, we use training data to find an adaptive
rejection threshold. This threshold depends on the average gray intensity of the
corresponding pixels in the disparity image. The following equation shows the
relation found between minimum blob area (minArea) and average gray intensity
(dispAvg):

minArea =
1.672 · dispAvg2 − 340.3 · dispAvg + 19310

2
(3)

The numerator in Eq. 3 is obtained by sampling the area of 66 skin-colored
blobs known to be real faces versus the average gray intensity of their containing
stereo blobs, and fitting the best second-degree curve on the samples. Then, as to
ensure that most of the samples are higher than the curve, we set a conservative
tolerance for the threshold of 50% below the curve (denominator).

3.3 Feature Extraction

The skin segmentation shown in section 3.2 can yield several types of candidates.
For example, for two people very close to each other and producing one blob, we
will extract the two faces, but for a person who is waving, we will extract its face
and its hand. This originates the need to differentiate between these candidate
face blobs. To accomplish this, we extract color features from the color blobs to
perform a classification between face and non-face.

In the computer vision literature there is a large amount of work about dif-
ferent features that can be extracted from a segmented area. We try several
of them like Hu moments [7] and Flusser moments [5]. None of these features
yielded acceptable results, mainly because skin-colored blobs have a very noisy
and non-uniform shape, thus, they did not separate the face and non-face classes
well. Finally, the feature set that provide us the best results is summarized in 3
criteria, that, applied to each RGB channel makes a total of 9 features:

– Normalized Standard Deviation

σk
norm =

√
1

Ns

∑Ni

i=1
∑Nj

j=1(x
k
ij − x̄k)2

Ȳ 2

– Normalized Contrast

Ik
norm =

∑8
i=1

∑8
j=1(i − j)2 · P k[i, j]

Ȳ 2

– Normalized Uniformity or Energy

Ek
norm =

8∑

i=1

8∑

j=1

(P k[i, j])2 · Ȳ 2
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where Ni, Nj and Ns are the number of rows, columns and skin pixels of the skin
image’s bounding box, k ∈ {R, G, B}, xk

ij is the value at position ( i , j ) of the
color channel, x̄k is the mean over all xk

ij on each color channel, P k[i, j] is the
value of the 8x8 co-occurrence matrix [2] at position ( i , j ) for each color channel,
and Ȳ is the mean luma component (Y) value of the YCbCr transformation of
the skin-colored blob pixels. This value is defined as:

Ȳ =
1

Ns

∑

(i,j)∈skinBlob

0.299 ∗ R(i,j) + 0.587 ∗ G(i,j) + 0.114 ∗ B(i,j)

Note that all these features are chromatic, hence, they overcome the problem
introduced by the very noisy and non-uniform shape of the skin blobs.

σk
norm deals with the fact that in faces, pixel colors have great variability,

because of the presence of hair, eyes, nose, and mouth. In hands, the pixel colors
are, generally, less variable. In addition, the standard deviation penalizes the
high values the variance takes with very illuminated images, in order to make
this feature less responsive to that illumination.

Ik
norm and Ek

norm deals with the presence of hair, eyes, nose, and mouth in
faces by taken into account contrast and uniformity. In these face areas, changes
in pixel values tend to increase the contrast and decrease the uniformity. In
contrast, the less variable nature of hands pixels tend to decrease the contrast
and increase uniformity.

The mean squared luma value Ȳ 2 is intended to be a normalization value that
balances the difference between very illuminated and obscure pictures.

To further improve the extraction of features, we perform an exhaustive fea-
ture selection process over all possible subsets of the 9 features. This process
receives a feature set and evaluates the average number of blobs that are cor-
rectly classified, according to the classification criteria and training set described
in section 3.4. This evaluation is performed using a 10-fold cross validation over
the entire training data. The results of the best 3 set of features are summarized
in Table 1. In our final system we use the set {σR

norm,IR
norm,IG

norm}.

Table 1. Feature selection results on training data

Feature Set Average Correctly Classified Points

{σR
norm,IR

norm,IG
norm} 93.4%

{σR
norm} 91.1%

{σR
norm,σB

norm} 84.1%

3.4 Classification

Our approach classifies between person and non-person classes. The person class
corresponds to all the skin-colored blobs found to be faces and the non-person
class correspond to all other skin-colored blobs.

The classifier uses Gaussian Mixture Models (GMMs) to learn each class.
These GMMs are trained using the MATLAB toolbox described in [1] with 1000
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Fig. 3. Example of the operation of the system in an indoor office environment

examples for each class, taking care of having sufficiently different examples, that
is, a “face” training set with different skin tonalities and a “non-face” training
set representative of our intended scenario. The GMMs are normalized to the
[0,1000] range. Every skin color blob is classified according to the likelihood ratio
test between the person and non-person models, using a null threshold.

4 Results

4.1 Person Detection

The first experiment is oriented to measure the performance of the system under
two illumination conditions and different distances between the camera and the
people being detected.

The test data consists of 100 frames with two people each, corresponding to 20
frames at each of 5 different distances. Experimentally, the maximum distance
at which the stereo algorithm begins to capture a person blob is approximately
between 360 and 310 cms, and the minimum distance is approximately 130 cms.
We test the algorithm in a distance range from 150 to 350 cms. Figure 3 shows
an example of the system operating in the office building environment.

The percentage of the people correctly detected as person are shown in figure 4.
It is possible to see that, for the corridor location, the system performs better if
the people are not too far or too close from the camera. For the office location with
good illumination, the algorithm has performances that exceed 95%, except for the
case of 250 cms, where a reflex in one of the faces made the feature values lie in a
region where both person and no-person likelihoods are very similar.
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Fig. 4. Detection performance for people at different distances in two environments.
Dark bars show performance in a well lighted room. Light bars show performance in a
poor lighted corridor.

4.2 GMM Classifier

The second experiment is oriented to illustrate the robustness of the face classifier
independently of problems in the initial stereo based segmentation. Therefore the
setting of this experiment is similar to the previous one, but it only considers
the frames where the stereo algorithm manages to segment the people correctly
and at least one face candidate appears inside any of the blobs.

The test data consists of 200 frames with 1 of 5 people appearing in each.
This corresponds to 10 frames for each people, acquired at 4 different distances.
For this experiment, we consider distances from 150 to 300 cms and the results
are shown in figure 5. It can be seen that a good performance (over 90%) is
achieved, except for people at 300 cms in the office location. This is due to a
moderate amount of false positives (12%). The result shows the robustness of
the color based face detector to changes in illumination.

4.3 Real Video

To test our system mounted on a robot under real time operation, we run the
system while the robot navigates in a indoor environment. The average robot
velocity is around 0.5m/s and the system frame rate is around 2.5 fps. Figure 6
shows a map of the environment and the trajectory followed by the robot.

During its trajectory, the robot encounters 15 people. Table 2 summarizes
the test results. One person was not detected because during several consecutive
frames appeared standing at a distance that exceeds the detection range of the
system. Once this person walked towards the robot, the poor frame rate made
the system not to capture an image of this person. The two false positives are
due to the arm of a person close to a wooden furniture and with clothes with a
similar color to skin.
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Fig. 5. Classifier performance for skin blobs of people located at different distances
in two environments. Dark bars show performance in a well lighted room. Light bars
show performance in a poor lighted corridor.

Fig. 6. Robot trajectory in our office environment. The map was obtained with our
robot.

Table 2. System performance in the real video test. In the test, the robot meet 15
people.

People Correctly Detected 14
Missed People 1
False Positives 2

5 Conclusions

We have presented a person detection system mounted a moving platform, that
is able to operate in real time in indoor buildings. Promising results have been
obtained for this system with performance over 90%. The inclusion of a robust
skin pixel criteria and an illumination-invariant set of color features are also
important contributions of this work.

The results indicate that the stereo vision based segmentation process is vul-
nerable to changes in illumination conditions and distance from the camera. The
color based face segmentation process presents a better result respect to changes
in illumination and some vulnerability respect to distance. In the case of our ap-
plication distance to the camera is not a relevant issue because we have a mobile
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platform, however, we still need to further explore the illumination problems of
the stereo system.

As future area of research, we can mention: the addition of a pan-tilt mecha-
nism to add target tracking capabilities, the inclusion of probabilistic priors to
improve the classification results, and finally, the need to increase the processing
frame rate of our system to be able to deal with more crowded scenarios.

Acknowledgments

This work was partially funded by FONDECYT grant 1070760 and CONICYT
project ACT-32. We would like to thank Domingo Mery for the valuable com-
ments.

References

1. Baggenstoss, P.M.: Statistical modeling using gaussian mixtures and HMMs
with MATLAB. Naval Undersea Warfare Center, Newport, RI (2002),
http://www.npt.nuwc.navy.mil/Csf/htmldoc/pdf

2. Castleman, K.R.: Digital image processing. Prentice-Hall, Englewood Cliffs (1996)
3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 886–893. IEEE Computer Society Press, Los Alamitos (2005)

4. Darrell, T., Gordon, G., Harville, M., Woodfill, J.: Integrated person tracking using
stereo, color, and pattern detection. In: Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, pp. 601–608. IEEE
Computer Society Press, Los Alamitos (1998)

5. Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern
Recognition 26(1), 167–174 (1993)

6. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive
robots. Robotics and Autonomous Systems, Special issue on Socially Interactive
Robots 42(3-4), 143–166 (2003)

7. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Info. The-
ory IT(8), 179–187 (1962)

8. Konolige, K.: Small vision system: Hardware and implementation. In: Eighth Sym-
posium on Robotics Research, pp. 111–116 (1997)

9. Ogale, N.A.: A survey of techniques for human detection from video. Master’s
thesis, University of Maryland (May 2006)

10. Sidenbladh, H.: Detecting human motion with support vector machines. In: ICPR
2004, vol. 2, pp. 188–191 (2004)

11. Utsumi, A., Tetsutani, N.: Human detection using geometrical pixel value struc-
tures. In: Proceedings of the Fifth IEEE International Conference on Automatic
Face and Gesture Recognition, p. 39. IEEE Computer Society Press, Los Alamitos
(2002)

12. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion
and appearance. In: Proceedings of the Ninth IEEE International Conference on
Computer Vision, pp. 734–741. IEEE Computer Society Press, Los Alamitos (2003)

http://www.npt.nuwc.navy.mil/Csf/htmldoc/pdf


A Method for Estimating Authentication Performance
over Time, with Applications to Face Biometrics

Norman Poh, Josef Kittler, Ray Smith, and J. Rafael Tena

CVSSP, University of Surrey, Guildford, GU2 7XH, Surrey, UK
{norman.poh,j.kittler,r.s.smith,j.tena}@surrey.ac.uk

Abstract. Underlying biometrics are biological tissues that evolve over time.
Hence, biometric authentication (and recognition in general) is a dynamic pattern
recognition problem. We propose a novel method to track this change for each
user, as well as over the whole population of users, given only the system match
scores. Estimating this change is challenging because of the paucity of the data,
especially the genuine user scores. We overcome this problem by imposing the
constraints that the user-specific class-conditional scores take on a particular dis-
tribution (Gaussian in our case) and that it is continuous in time. As a result, we
can estimate the performance to an arbitrary time precision. Our method com-
pares favorably with the conventional empirically based approach which utilizes
a sliding window, and as a result suffers from the dilemma between precision in
performance and the time resolution, i.e., higher performance precision entails
lower time resolution and vice-versa. Our findings applied to 3D face verifica-
tion suggest that the overall system performance, i.e., over the whole population
of observed users, improves with use initially but then gradually degrades over
time. However, the performance of individual users varies dramatically. Indeed, a
minority of users actually improve in performance over time. While performance
trend is dependent on both the template and the person, our findings on 3D face
verification suggest that the person dependency is a much stronger component.
This suggests that strategies to reduce performance degradation, e.g., updating a
biometric template/model, should be person-dependent.

Keywords: Biometric authentication, performance assessment, face recognition.

1 Introduction

In general, pattern recognition can be categorized as either static or dynamic [1]. A static
pattern does not tend to change dramatically over time whereas a dynamic one does. The
latter is problematic because as the variability of dynamic patterns in the same class
becomes gradually larger, a classifier that does not update itself will have tremendous
difficulty when discriminating between dynamic patterns belonging to different classes.

Biometrics can be considered as a dynamic pattern principally because underlying
the metrics are living tissues that tend to modify themselves either as a result of muscle
movements or tissue growth (aging). In the former case, the change can take place in
seconds whereas in the latter case, the change can be gradual. Apart from this change,
variation in patterns can also be caused by an imperfect biometric acquisition process,
e.g., in the way a biometric sample is presented and the environmental conditions. These
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Fig. 1. Scatter plot of genuine user (“+”) and impostor (“◦”) match scores for a single user’s tem-
plate over 250 days (the X-axis). Higher match scores imply genuine user class. The interruption
in genuine match scores around the 100-th day is due to no observations being made during the
term break. The straight lines are the regression fits on the data (continuous line for the genuine
user match scores and dashed line for the impostor ones).

factors cannot often be decoupled but their effects can readily be observed from the
resulting match scores.

To give a further motivation, we plotted the class-conditional match scores in Fig-
ure 1 of a user selected at random from a face verification system applied to the Face
Recognition Grand Challenge (FRGC) database. This database contains images col-
lected over 250 days. Two clusters of scores are available, namely genuine user match
scores and impostor match scores. The genuine user match scores are the results of com-
paring a reference template with query images of the same user. The impostor match
scores are the results of comparing the reference template with query images of other
users. In this figure, one can observe that genuine user scores are very sparse whereas
the impostor match scores, as a result of comparing a sequence of query images from
many persons, are very dense.

The ability to track the dynamic change of biometric patterns in terms of perfor-
mance is valuable because it can determine whether or not a biometric system degrades
over time. If it does then preventive measures will have to be taken to maintain the
performance. One of the pilot studies in this direction is reported in [2], whereby the
performance of four face recognition systems coupled with two face detection algo-
rithms (hence altogether eight systems) were assessed on the FRGC database. This
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database contains 250 users whose images were captured over a period of two years. It
was observed that all the face identification systems decrease in performance (in terms
of rank-1 false rejection) with time-lapse. However, time-lapse is not the only factor;
in [2], it was noted that the precision of eye localization is another important factor.

This paper differs significantly from [2] because our concern is with the individual
user performance. According to [3], the users in a database can exhibit very different
performance. In particular, some users are more easily recognized than the others. As
a result, it is reasonable to expect that the performance change will be different from
one user to another. We argue that our approach is more useful because it can calculate
the person-specific performance. This enables one to sort the users according to their
current performance, thereby identifying the weak users in this process. If the perfor-
mance of these users can be corrected, for instance, by updating the user model, one can
potentially improve the overall system performance. Deciding when and how to update
a biometric template/model will be investigated in the future.

This paper is organized as follows: Section 2 explains how the user-dependent er-
ror over time can be calculated using the proposed procedure; Section 3 describes the
database used; Section 4 shows the results and Section 5 presents the conclusions.

2 Modeling Performance over Time on a Per-person Basis

Suppose that each user j in a database has two sequences of scores over time: one from
the genuine user set of scores and the other from its impostor counterpart. We denote
the two sequences by yk

j = [yk
j,1, . . . y

k
j,Nk

]′ for genuine user and impostor classes,
k = {G, I}, respectively, and each sequence has Nk number of scores. For clarity,
we drop the user index j everywhere. In this study, the impostor scores with respect
to the reference user are generated by the rest of the users exhaustively. Therefore,
the constraint NG � NI is true in this case. Note that each sequence of scores has a
corresponding time delay sequence dk

j = [dk
j,1, . . . d

k
j,Nk

]′ or simply dk (omitting j).
For the genuine user scores, this time delay sequence is just the time difference

between the template and the query image associated with the respective score. Suppose
that these images have the following time stamps: t0, t1, . . . , tNG . We reserve the first
image with time t0 as a template. This template is then compared to the remaining
images in the sequence. The resulting genuine match scores will have the following
relative time stamps: dG ≡ [dG

1 , dG
2 , . . . , dG

NG
]′ ≡ [t1 − t0, t2 − t0, . . . , tNG − t0]′.

For the impostor sequence, this time delay sequence is with respect to the rela-
tive time difference between the first impostor attempt and the subsequent impostor
attempts by the same impostor. Suppose the image sequence of an impostor has the
following time stamps: t1, t2, . . . tNI . We define its relative time sequence by dI ≡
[dI

1, . . . , d
I
NI

]′ ≡ [t1 − t1, t2 − t1, . . . tNI − t1]′, i.e., taking the difference between the
time stamp of an image in the sequence with the first one. Note that the first element in
this list has a time stamp of 0. By so doing, we assume that the time difference between
the first impostor attempt and the template has no importance. This is a reasonable as-
sumption given the fact that the two feature sets under impostor matching are not from
the same persons.
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The goal is to estimate the performance in terms of False Match Rate (FMR) and
False Non-Match Rate (FNMR)1 at a given time dt for t = 0, 1, . . . and for each user
to an arbitrary precision. This implies that FMR and FNMR are themselves smooth
functions over time. This is clearly a difficult task since the conditional sequence yk

has very few data points, especially for the genuine user sequence.
For each sequence k, let us fit a regression function to (dk,yk). Regression func-

tions are also called smoothers because they give in general a smoothed output of yk .
Some examples are kernel, running mean, running-line, locally weighted running-line,
running spline and regression spline smoothers [4, Chap. 3]. We will use a polynomial
regression model of order D for this purpose so that we obtain the regression parameter
p = [pD, . . . , p0]′. By evaluating the parameter p, we obtain a smoothed conditional
score μk

t = p0 + p1dt + . . . + pDdD
t at time dt along with standard deviation σk

t . By
tracing (dt, μ

k
t ) for t = 0, 1, . . ., one obtains a smoothed curve with 95% confidence

bound (dt, μ
k
t ± 2σk

t ) for each k ∈ {G, I}. In summary, for a given instance of time dt,
we have the parameters {μk

j,t, σ
k
j,t} for each class k and for each user j (note that the

index j is reintroduced here).
If the conditional regression fit is adequate, then the error residual should be approx-

imately normally distributed. Unfortunately, given a limited number of data points of
size Nk, especially for the genuine user sequence, in practice, one has no way of assess-
ing whether the fit is adequate or not. This can be determined subjectively (visually).
Another way to proceed is to use a polynomial model with a low degree of freedom
D, based on the fact that we have few data points. The consequence is that the fit will
lead to a large bias but a low variance. A more in-depth discussion of the bias-variance
trade-off in regression can be found in [4, Chap. 3].

Once the regression parameters are found, we can then model instantaneous FMR
and FNMR by:

FMRj,t(Δ) = Φ
(
Δ|μI

j,t, (σ
I
j,t)

2) (1)

and
FNMRj,t(Δ) = 1 − Φ

(
Δ|μG

j,t, (σ
G
j,t)

2) (2)

for a given threshold Δ in the score space, where Φ
(
Δ|μ, (σ)2

)
is a cumulative normal

density function with mean μ and standard deviation σ. Under such condition, a result
from [5] shows that at Equal Error Rate (EER), i.e., FMR=FNMR, the user-specific
EER is:

EERj,t =
1
2

− 1
2

erf

(
F-ratioj√

2

)
, (3)

where

F-ratioj =
μG

j,t − μI
j,t

σG
j,t + σI

j,t

, (4)

and

erf(z) =
2√
π

∫ z

0
exp

[
−x2] dx. (5)

1 Also called False Acceptance Rate and False Rejection Rate, respectively when evaluating the
overall system performance, as opposed to algorithmic-level performance.
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The end results are sequences of user-specific FMR and FNMR over the desired time
period dt estimated to an arbitrary accuracy.

The next issue to be dealt with is to calculate the population performance given the
parameters {μk

j,t, σ
k
j,t} for each class k = {G, I} and all the users j = 1, . . . , J at the

desired time dt. In order to calculate this quantity, we first need to calculate the class-
conditional score distributions of the population. From the Gaussian assumption, the
user-specific version of this distribution (for a given user j) is N (μk

j,t, (σ
k
j,t)

2). The pop-
ulation’s conditional score distribution must be then a mixture of user-specific score dis-
tributions weighted by their respective prior probabilities, i.e.,

∑J
j=1 N (μk

j,t, (σ
k
j,t)

2)
p(j|k). Therefore, the population’s FMR is

FMRt(y) =
J∑

j=1

Φ
(
y|μI

j,t, (σ
I
j,t)

2)P (j|I). (6)

Similarly, the population’s FNMR is:

FNMRt(y) = 1 −
J∑

j=1

Φ
(
y|μG

j,t, (σ
G
j,t)

2)P (j|G). (7)

The population’s EER point, i.e., FMRt(y) = FNMRt(y) can be found numerically.
The section that follows will discuss the database used before applying the proposed

procedure on the real data.

3 Experimental Approach

The publicly available FRGC Experiment 3 data [6] is divided into two parts, training
and test sets. Each part contains a set of 3D scans together with the corresponding 2D
color intensity images. Additionally the 3D coordinates of landmark points located at
the eye corners, the tip of the nose and the tip of the chin are also provided for each scan.
The data was captured in near frontal pose using a Minolta Vivid 900 range scanner at
a resolution of 640 × 480 and it includes males and females in approximately equal
numbers, covering a range of ages and ethnic backgrounds. The training set consists
of 943 face scans and images of 270 different subjects, with the number of samples
per subject varying from 1 to 8. 410 subjects were included in the test set; with the
number of samples per subject ranging from 1 to 22 for a total of 4007 scans and
images. It is worth mentioning that 31 samples of the training set were discarded for
our experiments, because the provided landmarks were off their mark by more than
50mm.

For the purpose of these experiments we use all of the training data to train face
matching algorithms. To study the effects of changes over time we choose a subset of
285 users from the test data such that each one has a sequence of more than 6 accesses
within the observed 250 days. Instead of just using the first image as template, we
also used the second and third images as templates. When the second image is used
for this purpose, the first image is not used to construct the genuine user sequence of
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match scores. This makes sense because one cannot compare a template with a sample
acquired before the template is constructed.

Three sets of face verification experiments are described in this study. These are the
PCA baseline system [6] supplied by FRGC (3D-baseline), 3D face verification with an
error-correcting output-code based matcher (3D-ECOC) and 2D face verification with
a local binary pattern based matcher (2D-LBP).

The 3D-ECOC method follows that described in [7]. Angular linear discriminant
analysis is used to establish a low-dimensional feature space in which individuals are
reasonably well separated. An error-correcting output code ensemble of Gaussian SVM
classifiers is then trained within this feature space and the outputs from this ensemble
are used to define a new feature space in which separation is further improved. A fi-
nal similarity measure between pairs of 3D scans is obtained based on the Manhattan
distance in this second feature space.

For the 2D-LBP matcher each face image is subdivided into a 7×6 grid of rectangular
non-overlapping regions and a local binary pattern histogram [8] computed for each
region. A similarity measure between pairs of images is then computed based on the
mean Manhattan difference between corresponding histograms.

The 3D verification experiments require accurate registration and this is performed
using the method of dense correspondence with a 3D model as described in [9].

4 Performance Trend Analysis

We first examined if the user-specific performance is template dependent or not. For
this purpose, we selected a user at random from the 2D-LBP experiment. Using the
first three images in the time-stamped sequence as templates, we plotted the fitted re-
gression function with time being the input (independent) variable and score being the
output (dependent) variable (see Figure 2). Their corresponding EERs are also shown
at the bottom of each sub-figure. As can be observed, the user-specific performance is
template dependent.

We then proceeded to compare the EER trends of different persons but used the
first image as a template for all users. The purpose is to examine if the user-specific
performance is person dependent or not. The results are shown in Figure 3. As can
be observed, different users can exhibit dramatically different EER trend even though
the same verification system is used. While most users decrease in performance, there
are users who actually improve in performance over time. In any case, the user-specific
performance is unlikely to be constant. This experimental result supports our conjecture
that biometric authentication (and recognition in general) is a dynamic pattern recogni-
tion problem. Furthermore, the user-specific performance is both person and template
dependent. Between the two, the choice of template seems to play a less important part
in determining the trend.

Lastly, we plotted the system performance, using DET curves, over the whole popu-
lation of users for the three different templates used. The results are shown in Figure 4.
A DET curve [10] is a plot of false rejection rate (FRR) or FNMR versus false accep-
tance rate (FAR) or FMR. As can be observed, the DET curve also changes over time.
In particular, when we analyzed the EER point in Figure 4(d), we observe that there is a
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Fig. 2. The evolution of scores as estimated by regression (in the top row of figures) and their
corresponding EER trend (bottom row) when using the first (column one), second (column two),
third (column three) images according to the time-stamped sequence of a given user. The system
used here is the 2D-LBP system. In the top figures, thick continuous lines are the expected trends
of the genuine user match scores over time and thick dashed lines are that of the impostor match
scores. Around these lines are their corresponding ± two standard deviations (shown in dotted
lines).

general decrease in error rates over time before increasing again. It can be argued that,
in general, biometric users become more acquainted with the system. As a result, the
system performance may increase with use. However, because biometrics may change
over time, the query images may gradually differ from the reference template. As a
result, the system may degrade in performance. The system-level performance can be
regarded as the average performance across users and so the above explanation cannot
be readily observed from the set of individual user performance.

5 Conclusions

In this paper, we proposed a method to estimate user-specific performance. This is a
difficult problem mainly due to the paucity of the genuine score samples. The availabil-
ity of scores in time depends very much on how regular a biometric system is used. In
the FRGC database, the most frequent interval is 7 days, followed by 14 days. By using
an empirical error estimation approach, it is thus possible to estimate the error rate on a
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Fig. 3. The EER trend of all 256 users. Each of the 4 × 8 figures shows the trend of 8 users. The
X-axis shows the number of days in [0, 250] and the Y-axis is EER (%) in [0, 50].

per day basis. By imposing the constraints that the user-specific class-conditional score
sequence is continuous in time and that it takes on a particular distribution (Gaussian
in our case), we demonstrated that our method can estimate the error rate on a per day
basis. While the use of Gaussian assumption can be appropriate in our case, we do not
claim that this is, in general, the case. The methodology, however, should be equally
applicable on other data sets with a sensible choice of distribution.

Our experiments highlight the importance of user-specific performance analysis.
This may open up a new research avenue towards customized biometric verification
system, i.e., a system that is designed to adapt to the individual characteristic of a user.
The proposed method can serve as an evaluation tool for this purpose. Customized bio-
metric system is fascinating because learning with user-specific samples is a difficult
task due to the small training sample size.

To the best of our knowledge, our study may be the first attempt to uncover person-
dependent performance in a more principled way.

Our experiments show that the impostor score sequence does not need to evolve with
time due to the aggregate effect of considering multiple impostor score sequences from
a pool of impostors. As a result, modeling the genuine user sequence is of critical im-
portance. Although a polynomial regression was used in this study, it may be logical to
replace it with one that does not assume equal variance over the entire score sequence.
Another obvious improvement is to replace the Gaussian assumption with a more real-
istic one.
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(b) DET: model 2
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(c) DET: model 3
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(d) EER trends: all three models

Fig. 4. The evolution of the entire DET curve over the population of users (285 in total) on a 50-
day interval given that the (a) first, (b) second and (c) third images in the time-stamped sequence
are used as templates. Figure (d) shows the EER trend of the three models over 250 days. The
system used here is the 3D-baseline system. The other two systems give similar trends, although
their absolute performance differs slightly.
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Abstract. A crucial issue in dissimilarity-based classification is the
choice of the representation set. In the small sample case, classifiers ca-
pable of a good generalization and the injection or addition of extra
information allow to overcome the representational limitations. In this
paper, we present a new approach for enriching dissimilarity representa-
tions. It is based on the concept of feature lines and consists in deriving
a generalized version of the original dissimilarity representation by using
feature lines as prototypes. We use a linear normal density-based classi-
fier and the nearest neighbor rule, as well as two different methods for
selecting prototypes: random choice and a length-based selection of the
feature lines. An important observation is that just a few long feature
lines are needed to obtain a significant improvement in performance over
the other representation sets and classifiers. In general, the experiments
show that this alternative representation is especially profitable for some
correlated datasets.

Keywords: Dissimilarity, representation, feature lines, generalization.

1 Introduction

The nearest neighbor method (k-NN) [1] is a simple and asymptotically well-
behaved classifier, which classifies an object x by assigning it the class label1

ĉ most frequently represented among the k nearest training objects. In a con-
ventional feature space representation, x is represented as a feature point x.
Consider a training set T = {xc

i , 1 ≤ c ≤ C, 1 ≤ i ≤ nc}, where C is the number

1 In order to simplify the notation, ours differs from the usual way to denote the set
of class labels, i.e. Ω = {ω1, . . . , ωc}. In this paper, we denote the membership or
association to one of the C classes by using the letter c as a variable running from
1 to C. Besides, when a particular value of c is used as a subscript, it is written
between round brackets.

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 370–379, 2007.
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of classes and nc the number of objects per class. For k = 1, the rule can be
written as follows:

d(x, xĉ
î
) = min

1≤c≤C, 1≤i≤nc

d(x, xc
i), (1)

where d(x, xc
i ) = ‖x − xc

i‖ is usually the (weighted) Euclidean or the city block
norm. Using the entire training set implies N =

∑C
c=1 nc distance calculations; as

a result, considerable space requirements to store T and a high computational
effort for the evaluation of new objects might be required. A straightforward
solution to this drawback is selecting a representation set R, which is chosen to
be a subset of T (R ⊆ T ) or even a distinct set having a cardinality n lower than
that of T .

More generally, d might be a dissimilarity measure, metric or not, computed
or derived from the objects directly, their sensor representations, or some ini-
tial representation [2]; in other words, if a companion feature representation is
not necessarily involved, d(x, pi) denotes a dissimilarity measure between an ob-
ject and one of the representative objects (prototypes) from R. Those measures,
arranged as a vector D(x, R) = [d(x, p1), d(x, p2), . . . , d(x, pn)], constitute a dis-
similarity representation of x. For the training set T , it extends to an N × n
dissimilarity matrix D(T, R) and a set S of new objects is provided in terms of
their distances to R, i.e. as a matrix D(S, R). Analogously to (1), the 1-NN rule
in the dissimilarity representation assigns a new object to the class of its nearest
neighbor from R by finding the minimum in the rows of D(S, R).

In addition to the storage and computational disadvantages, the NN rule suf-
fers from other limitations, e.g. sensitivity to noise and potential loss of accuracy
when a limited number of prototypes is available or when their representational
capacity is not enough to cover the possible variations of data. A number of
strategies have been proposed to handle such situations, e.g., modifying the
rule [3, 4, 5], adapting the distance measure [6, 7, 8, 9], expanding the represen-
tational capacity of the available feature points [10, 11] and building Bayesian
classifiers on the dissimilarity representations [12, 13]. Combining some of those
strategies, taking advantage of their individual properties, may be effective. In
particular, we will study the use of the nearest feature line method [10] for gen-
eralizing dissimilarity representations and constructing Bayesian classifiers in
such a generalized dissimilarity space. The generalization procedure is intended
for small sample cases. Its basic rationale is that to enhance the representation
using feature lines and to achieve a better generalization, building a Bayesian
classifier in the enhanced representation, may improve the performance of both
techniques when they are used separately. Our experiments show that the pro-
posed procedure is specially profitable for correlated (cigar-like or elongated)
datasets.

The remainder of this paper is organized as follows. Section 2 describes the
proposed procedure for generalizing dissimilarity representations. Experiments
and results on artificial and real data sets are described in Section 3. Section 4
presents the conclusions and discusses some possibilities for future work.
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2 Generalization Procedure

The procedure consists in creating the generalized dissimilarity representation
DL(T, RL), where L denotes that the representation set is composed by feature
lines. In the original dissimilarity space approach, one considers a data-depending
mapping D(x, R) : X ×X → IRn to the so-called dissimilarity space, where each
dimension corresponds to a dissimilarity D(·, pi) to a particular object pi ∈ R.
Analogously, for a generalized dissimilarity space, the considered mapping is
D(x, RL) : X × XL → IRnL . As a result, a generalized dissimilarity representa-
tion of x corresponds to the vector D(x, RL) = [d(x, L1), d(x, L2), . . . , d(x, LnL)].
In this section we review the nearest feature line method as it was originally pro-
posed for feature space representations. After that, we describe how to build a
generalized dissimilarity representation using only the information available at
D(T, R); that is, without recurring to an associated feature representation. In-
deed, feature vectors might be not available, e.g. when dissimilarities are directly
derived from the objects.

2.1 Feature Lines

The Nearest Feature Line rule, or NFL [10], is an extension of the NN rule. It
generalizes each pair of prototype feature points belonging to the same class:
{xc

i , xc
j} by a linear function Lc

ij , which is called the feature line. The line Lc
ij

is expressed by the span Lc
ij = sp(xc

i , x
c
j). The query x is projected onto Lc

ij as
a point pc

ij (see Fig. 1). This projection can be computed as

pc
ij = xc

i + τ(xc
j − xc

i ), (2)

where τ = (x−xc
i )·(xc

j −xc
i )/‖xc

j −xc
i‖2 ∈ IR; τ is called the position parameter.

The classification of x is done by assigning it the class label ĉ most frequently

pc
ij

Lc
ij

d
(
x, L

c
ij

)

xc
i

xc
j

x

Fig. 1. Feature line Lc
ij and computation of the distance to it

represented among the k nearest feature lines; for k = 1 that means:

d(x, Lĉ
îĵ

) = min
1≤c≤C, 1≤i,j≤nc

i�=j

d(x, Lc
ij) (3)

where d(x, Lc
ij) = ‖x − pc

ij‖.
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2.2 Distances to Feature Lines in Terms of Dissimilarities

Given a dissimilarity matrix D(T, R), deriving the distances to feature lines
consists in computing the height h of a scalene triangle as shown in Fig. 2 . Note
that dij must be an intraclass distance. In addition, since any metric triplet dij ,
dik and djk is Euclidean (i.e. it constitutes a Euclidean triangle), we restrict our
experiments to metric distance matrices. Such a restriction does not imply a loss
of generality because an embedding can be found to correct a non-metric D, e.g.
through a pseudo-Euclidean embedding [14].

dij

d ik

d
jk

Lc
ij

h

xc
i

xc
j

xk

Fig. 2. Scalene triangle for computing the distance to a feature line in terms of dissim-
ilarities

Let define s = (djk + dij + dik)/2. Then, the area of the triangle is given by:

A =
√

s(s − djk)(s − dij)(s − dik); (4)

but we also know that area, assuming dij as base, is:

A =
dijh

2
(5)

We can solve (4) and (5) for h, which is the distance to the feature line, i.e.
d(xk, Lc

ij). The generalized dissimilarity representation for a particular object
xk is constructed by arranging all the nL =

∑C
c=1 nc(nc − 1)/2 distances to the

feature lines in a vector D(xk, RL). As for the original dissimilarity representa-
tions, for a training set T it extends to a N × nL dissimilarity matrix D(T, RL).
In general, D(T, RL) is not square and has two zeros elements per column. The
information on a set S of new incoming objects is provided in terms of their
distances to RL, i.e., as a generalized dissimilarity matrix D(S, RL).

2.3 Classification in Dissimilarity Spaces

As D(·, pi), a dissimilarity D(·, Li) to a particular feature line Li ∈ RL can
be interpreted as an attribute, allowing for building classifiers in such a space.
Previous studies [12, 13] showed that building Bayesian classifiers in dissimilar-
ity spaces, e.g. a linear normal density based classifier, often outperforms the
k-NN rule, especially for small representation sets or non-representative train-
ing sets. The use of normal density based classifiers in dissimilarity spaces is
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suggested because the summation-based distances are often approximately nor-
mally distributed (in fact, a clipped normal distribution due to the nonnegativity
of dissimilarities) [13]. There is no practical difference between constructing a
classifier on generalized dissimilarities and to build it on non-generalized dissim-
ilarities. Thereby, the classifier definition is the same either the representation is
generalized or not. For a two-class problem, a linear decision function (BayesNL)
based on the representation set R is given by (The same applies for RL)

f(D(x, R)) =
[
D(x, R) − 1

2
(
m(1) + m(2)

)]T

×C−1 (
m(1) − m(2)

)
+ log

P(1)

P(2)
,

(6)

where C is the sample covariance matrix, m(1) and m(2) are the mean vectors,
P(1) and P(2) are the class prior probabilities. When C becomes singular, it is
regularized by using for example the following strategy [15]: Cλ

reg = (1 − λ) C +
λdiag(C). In practice, λ equals 0.01 or less [2]. We keep it fixed to 0.01 in our
experiments.

3 Experiments and Results

We test the application of the generalization method on several artificial and
real-world datasets. Two selection procedures, random and length-based, are
used for selecting prototype feature lines. Due to space constraints and in order
to illustrate when the generalization is advantageous, we only present results for
some datasets which were found to be benefited by the generalization. In other
words, we are not claiming that our strategy gives an overall best solution, but
the results do show that there exist problems for which the proposed method
is beneficial. The presented results correspond to the following artificial and
real-world problems:

Difficult normally distributed classes. It corresponds to a two-dimensional
and two-class dataset having very different class variances for the dimensions
(see gendatd function in [15]). Separation is thereby, for small sample sizes,
difficult.

Highleyman classes. A two-dimensional and two-class dataset generated by
the Highleyman distribution [16] (see also gendath function in [15]).

Wine data. The Wine data come from Machine Learning Repositary [17] and
describe three types of wine by 13 features.

Laryngeal data. The Laryngeal dataset comes from the Bulgarian Academy of
Sciences and is available at [18]. The set was originally used for a computer
decision support system, in order to aid diagnosis of laryngeal pathology and
especially in detecting its early stages. Normal and pathological voices are
described by 16 parameters in the time, spectral and cepstral domains.
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In all the experiments, a Euclidean distance was chosen for the original dissimi-
larity representations. The reported results are based on 25 repetitions; however,
in order to maintain the clarity of the plots, we do not present the resulting stan-
dard deviations. In general, we found that they vary between 2% and 6% of the
averaged errors. Implementations are done using PRTools [15].

Figs. 3 and 4 show the classification errors of the 1-NN and BayesNL classi-
fiers applied to the generalized dissimilarity representations, as a function of the
number of prototype feature lines chosen by two length-based selection methods:
ascending and descending orders. The initial representation set RL for the as-
cending method is the shortest feature line, i.e. the shortest base of the triangles
(see Fig. 2). Then, the second shortest feature line is added to RL, followed by
the third shortest one and so on. The reverse case corresponds to the selection
in descending order. In brief, the first m reported errors (m left most values) in
Figs. 3 and 4 correspond to classification using the m shortest/largest feature
lines. At the end, when all the

∑C
c=1 nc(nc − 1)/2 feature lines are included,

the length-ranked representation sets are flipped versions of each other. In these
experiments, we use nc = 15. In order to explore its influence, we performed
additional experiments for nc = 10 and nc = 20; however, it was not observed
a significant difference in the general behavior. The same figures1 show the best
results obtained by the 1-NN and the BayesNL rules in the original dissimilarity
spaces. They are plotted as horizontal lines and constitute our reference. In both
cases, the representation set R is chosen by random selection. In consequence,
such best results do not necessarily correspond to the case of using the entire T
for representation.

The BayesNL classifier based on the descending ranked RL outperforms both
the best results in the original dissimilarity space and the other studied alter-
natives in the generalized one. Comparing the two feature line selection criteria,
it is noteworthy that few long feature lines are needed to yield a good result
with the BayesNL classifier. This fact may be explained as follows: long feature
lines, which are chosen at first by the descending order selection, provide con-
tinua across the main direction of data. Such continua, in the case of elongated
datasets, resemble the principal axis of an hyperellipse. More generally, they can
be interpreted as a piecewise description. In principle (in absence of outliers),
the feature lines represent the data as a structural model, i.e. through a gen-
eralization of their geometric spread. In contrast, for small representation sets
and the descending order, the 1-NN method is negatively affected. As claimed
in [12] for non-generalized representations, a possible interpretation is that when
R or RL are small, they refer to the objects that differ much from each other,
potentially including also outliers.

1 Note that the 1-NN rule, directly applied to the dissimilarity representations D(S, R)
or D(S, RL), consists in looking for the minima in the rows of the matrices. Thereby,
its application to those representations corresponds to the 1-NN and the NFL classi-
fiers, respectively. In other words, we are not deriving a new distance representation
from the vectors D(x, R) or D(x, RL).
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Fig. 3. Artificial data. Average classification errors of the BayesNL and 1-NN clas-
sifiers in the generalized dissimilarity space. Feature lines are incrementally included
according to their length. Horizontal lines are the best results achieved in the original
dissimilarity representations.
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Fig. 4. Real-world data. Average classification errors of the BayesNL and 1-NN clas-
sifiers in the generalized dissimilarity space. Feature lines are incrementally included
according to their length. Horizontal lines are the best results achieved in the original
dissimilarity representations.

Figs. 5 and 6 show the results when the number of the selected prototypes,
for both points and lines, is fixed to be a proportion of the cardinality of T : n =
nL = ncC/5. For instance, for the Highleyman classes (two-class problem) and
12 training objects per class, the number of prototypes (points or lines) selected
for representation is 5. Again and as expected, the BayesNL classifiers yield a
better performance than the 1-NN rules based on the same representations sets
either R or RL.

As an additional criterion to evaluate the discriminative capacity of the gener-
alized dissimilarity representations, we examine the Mahalanobis distance d(i,j)
between each pair of classes. The larger Mahalanobis distance, the larger dis-
criminative capacity between data classes. A clear enlargement of such a capacity
is observed in Figs. 7 and 8.
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Fig. 5. Artificial data. Average classification errors of the BayesNL and 1-NN classifiers
in the original and the generalized dissimilarity spaces. A rule-of-thumb of selecting
ncC/5 prototypes is used.
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Fig. 6. Real-world data. Average classification errors of the BayesNL and 1-NN classi-
fiers in the original and the generalized dissimilarity spaces. A rule-of-thumb of selecting
ncC/5 prototypes is used.

4 Conclusions

Here we have proposed a generalization procedure for dissimilarity representa-
tions. The method is based on the feature line concept, which was originally
proposed for face recognition problems. Our experiments showed that the gen-
eralization procedure, when using a random and a length-based selection of
prototype feature lines, seems to be especially profitable for elongated (cigar-
like) datasets. Compared to the non-generalized dissimilarity representations,
the generalized ones exploit more the intrinsic geometric information available
at the pairwise dissimilarities, effectively finding an enriched representation. Ad-
ditionally, the method is particularly advantageous for small sample size prob-
lems because in such sparse spaces, the feature lines are somewhat filling them.
Further studies on prototype selection will be conducted as well as on general-
ization by using feature planes.
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Fig. 7. Mahalanobis distance d(1,2) for the two-class artificial datasets
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Fig. 8. Mahalanobis distances for the two real-world datasets. Pluses and stars in the
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Abstract. In this paper a novel exterior escale algorithm for the cal-
culation of FS-typical testor set of a learning matrix is proposed. This
algorithm allows to use any given similarity function between objects.
Besides, results of experiments done, shows the performance obtained
by proposed algorithm. A comparison between proposed algorithm and
an exhaustive searching algorithm, that is the only one reported on lit-
erature that can calculate the complete FS-typical testor set, is also
included.

Keywords: FS-testor, feature selection, pattern recognition, typical
testor.

1 Introduction

A relevant task in supervised classification is feature selection. This task allows
identifying those features that provide relevant information on the classification
process. Into the framework of the Logical Combinatorial Pattern Recognition [1]
and [2], feature selection is solved using Testor Theory [3]. Yu. I. Zhuravlev intro-
duced the testor concept to pattern recognition problems [4]. Zhuravlev defines
a testor like a feature subset that does not confuse objects descriptions which
belong to different classes. Subsequently, this concept has extended and gener-
alized to adjust it in other ways [3]. Another generalization model into testor
theory is the FS-testors, developed by [5]. This model allows handle any simi-
larity function among objects, opposed as classical testor models. This concept
has a special application when qualitative and quantitative features are present
(mixed data), using any similarity function among objects. Since computing
all typical testors is very expensive, all developed algorithms have exponential
complexity. Into the FS-testor model, the run time complexity depends of the
similarity function handled. If the similarity function is very complex, then more
run time of execution will necessary.

Currently, an exhaustive searching method is the only way in order to calculate
the set of FS-typical testors. All feature combinations must be evaluated to
determine if FS-testor property is fulfilled. The other way, consists in not to verify
this property for every combination, carrying out ”skips” of feature combinations
over power feature set, we know a priori that these combinations do not generate
any FS-typical testor.

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 380–386, 2007.
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In this paper, we introduce an algorithm that performs ”skips” over power
feature set, eliminating a considerable calculations amount.

2 Some Basic Concepts

Let LM be a learning matrix composed by a set of m objects Ω={O1, O2, ..., Om},
described in terms of a set R = {X1, X2, ..., Xn}, with n features of any nature
(qualitatives or mixed quantitatives), where every feature Xj , has associated
an admissible values set Mj . These objects are grouped on K classes. Every
attribute Xj has associated a comparison criterion for the values of Xj, as a
function in the form Cj : MjxMj → Lj , where Lj it is a totally ordered set.

Let T be a feature combination such that T ⊆ R. Besides, let R∗ ⊆ R be a
reference set. The following definitions were taken from [5, 6, 7].

Definition 1. The set T ⊆ R, is an FS-Differentiating feature set with respect
to ν , D′, R∗ and β of LM if

∀Oi, Oj ∈ LM [ν(ᾱ(Oi), ᾱ(Oj)) /∈ D′] ⇒
[β(I/T (Oi), I/T (Oj))�β(I/R∗(Oi), I/R∗(Oj))]

where ᾱ(Oj) = (ᾱ1(Oj), ..., ᾱq(Oj)) is the membership t-uple and I/T (Op) =
(xp1(Oj), ..., xps(Oj)) the subdescription or partial description of Oj in terms of
the features in T .

Definition 2. The set T ⊆ R, is an FS-Characteriziating feature set with re-
spect to ν , D′, R∗ and β of LM if

∀Oi, Oj ∈ LM [ν(ᾱ(Oi), ᾱ(Oj)) ∈ D′] ⇒
[β(I/T (Oi), I/T (Oj))�β(I/R∗(Oi), I/R∗(Oj))]

Definition 3. The set T ⊆ R, is an FS-testor with respect to ν , D′, R∗ and
β of LM iff T is both FS-differentiating and FS-characteriziating set for LM ,
with respect to the same parameters.

In another hand, for the case of FS-typical testors, a partial order relation is
required.

Let ν , D′, β be given as parameters, and LM , T1, T2 and R∗ feature subsets
of R, where R is the total set of features of LM . The relation of partial order ξ
is defined as follows:

Definition 4. We say that T1 antecedes to T2 with respect to ν , D′, and β in
LM and is denoted by T1ξT2 iff satisfies a) or b):

a) Exist a pair of objects Ok, Ol of LM such that β(I/T1 (Ok), I/T1(Ol)) 	=
β(I/T2 (Ok), I/T2 (Ol)), and T1 is an FS-testor for the same parameters ν, D′, T2
and β of LM .

b) For every pair of objects Oi, Oj of MA,
β(I/T1 (Ok), I/T1 (Ol)) = β(I/T2 (Ok), I/T2 (Ol)) and T1ξ2T2 where ξ2 is the follow-
ing order relation defined in [8]:
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T 1ξ2T 2 ⇔
(T1∩T2)∪((support T1\support T2)∩T 1)∪((support T2\support T1)∩T2) = T2

Note that b) is intended for the case where the classes are fuzzy; however, in the
case where classes are crisp, the result of this relation is the inclusion of sets.

Taking as base the ralation of parcial order before mentioned, we can give the
next definition of FS-typical testor:

Definition 5. The set T ⊆ R, is an FS-typical testor with respect to ν, D′, R∗
and β of LM , if T is an FS-testor for the same parameters and there are not
T ′, T ′ξT that is an FS-testor with respect to ν, D′, R∗ and β of LM .

FS-EX Plus algorithm, in order to fulfill the ”skips” over the power feature
set, uses the same search order that [9]. This search order was chosen because
it allows to the algorithm carry out the big amount of ”skips”, and these was
larger possible.

The algorithm proposed, use the following premises in order to carry out the
”skips”.

Proposition 1. Let T ⊆ R be a FS-testor. If T ′ ⊆ R, T ⊆ T ′ then T ′ is not a
FS-typical testor.

Proof. As T ⊆ T ′ (e.g. these are comparable sets) then T antecedes T ′ by
definition 4 (because only it is contemplated inclusion for crisp case). If T ′ was
FS-testor, then by definition 5 of FS-typical testor, T ′ it is not an FS-typical
testor.

Now, if T ′ was not an FS-testor, then by definition 5 of FS-typical testor, T ′

can not be neither an FS-typical testor.

Therefore, T ⊆ T ′ is not an FS-typical testor. �

Proposition 2. Let T ⊆ R, T ′ ⊆ R, such that T � T ′ and T ′
� T (e.g. these

are incomparable sets). If T is an FS-testor with respect to ν , D′, T ′ and β, T
is not an FS-typical testor.

Proof. As T is an FS-testor with respect to T ′, then by definition 4, T anteceds
T ′. And by definition 5, T ′ isn’t an FS-typical testor. �

Proposition 3. Let T ⊆ R be an FS-testor. If � T ′ ⊆ R, such that T ′ is an FS-
testor with respect to ν , D′, T and β, such that T ′ ⊆ T ; and besides � T ′′ ⊆ R,
such that T ′′ is an FS-testor with respect to ν , D′, T and β, with T � T ′′ and
T ′′

� T , then T will be an FS-typical testor.

Proof. a) Suppose that ∃ T ′ ⊆ R such that T ′ ⊆ T , T ′ FS-testor. Then, by
proposition 1, T is not an FS-typical testor!

b) Suppose that ∃ T ′′ ⊆ R such that T ′′
� T , T � T ′′ and T ′′ is an FS-testor

with respect to ν , D′, T and β. Then, by proposition 2, T is not an FS-typical
testor!

Therefore T is an FS-typical testor. �
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3 FS-EX Plus Algorithm

In general, FS-EX Plus algorithm works in the following way. The first combina-
tion is generated in the established order and it verifies if this combination is an
FS-testor. If so occur, then the combination is saved on a candidates list of FS-
typical testors and then all of its consequents supersets in the established order
are skipped (proposition 1). In candidates list, all supersets of the current com-
bination are deleted. In other case, the next combination is generated according
the established order. This process is repeated until all possible combinations of
the power set were generated.

Once the candidates list for FS-typical testors has been obtained, combina-
tions are evaluated in order to eliminate those that being incomparables, and
are anteceded among them (proposition 2). One a time all these operations have
been done, the final list containing FS-typical testor found (proposition 3) is
saved.

Description of the algorithm FS-EX plus
Input: LM (learning matrix)
Output: FSTT (FS-typical testor sets calculated)

1. Inizialitation.- FSTT = ∅; Comb = {X1}

2. Evaluation of candidates.- If last possible feature combination in the search
order has been reached, then go to step 5 (e.g. Comb = {Xn}). On another case,
the property of FS-testor is verified. If Comb was FS-testor, then Comb is saved
in FSTT (FSTT = FSTT ∪ Comb). If there are a superset of Comb in FSTT ,
then these supersets are eliminated of FSTT (proposition 1). If Comb was not
FS-testor, go to step 4.

3. Skip of non FS-typical testors combinations.- Like Comb was FS-testor,
then FS comb = Comb and Comb = Next combination(Comb) while Comb
is a superset of FS comb. This process means that subsequently supersets of
FS comb are skipped (proposition 1) until Comb is a non superset of FS comb.
Go to step 2.

4. Selection of the new combination to analyze.- The following feature
combination for verify is constructed based on before combination generated
(Comb = Next combination(Comb)). Go to step 2.

5. Generation of FS-typical testor set.- The FS-typical testor set is gen-
erated. Each Combination Combi ∈ FSTT is compared with remaining combi-
nations of FSTT (e.g. Combj ∈ FSTT, i 	= j). If Combi is and FS-testor with
respect to Combj , then Combj is eliminated of FSTT (proposition 2). The FS-
typical testor set is composed by the feature combinations of FSTT (proposition
3). The algorithm finish.
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Function Nextcombination(Comb) return the next feature combination of
Comb in the established order of the feature power set.

4 Evaluation

In order of verify the performance of proposed algorithm, a comparison with
an exhaustive search algorithm was fulfilled. The exhaustive search algorithm
evaluates all possible combinations from the power feature set.

For our comparison, we handled execution times and the number of FS-typical
testor obtained, it was used several learning matrices containing real data and
that were taken from [10]. Matrices belong to four data bases: Zoo, Votes, Mush-
room and Wine.

Values of parameters used in tests were:

ν(ᾱ(Oi), ᾱ(Oj)) =
{

1, if ᾱ(Oi) = ᾱ(Oj)
0, if ᾱ(Oi) 	= ᾱ(Oj)

and D′ = {1}, R∗ = R.
Table 1, shows the results obtained after calculating the FS-typical testors to

mentioned matrices taking as similarity function the matching function used in
typical testors.

Notation used in the table 1 is as follows:
ECE: Combinations evaluated by exhaustive algorithm
ECFS: Combinations evaluated by FX-EX plus algorithm
TE: Time in seconds used by exhaustive algorithm
TFS: Time in seconds used by FX-EX plus algorithm
NFSTT: Number of FS-typical testors generated

Table 1. Experimental results obtained to Zoo, Votes, Mushroom and Wine data sets

Data set (rows x columns) ECE ECFS TE TFS NFSTT

Zoo (101x17) 131071 22315 2145 96 53

Votes (435x16) 65535 65534 1349 1342 3

Mushroom (8124x22) 4194303 22 > 86400 1349 22

Wine (178x13) 8191 146 191 2 67

As we can observe in this results, FS-EX Plus algorithm complies with task of
realize a significant less number of evaluations, in contrast with exhaustive search
algorithm. However, it could be given the case where for a given matrix, the only
FS-testor existing given a similarity function, were the last feature combination,
as a result, the number of evaluated combinations in both algorithms would be
dramatically the same. But the cause for this would be the chosen similarity
function again. This allows to make emphasis in the complexity that involves
working with FS-testors model, since in order to such combinations exist inside
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Table 2. Time proportion for calculations between exhaustive search and FS-EX Plus
algorithms

Data set time

Zoo FS-EX plus 22 times more fast than Exhaustive algorithm
Mushroom FS-EX plus 64 times more fast than Exhaustive algorithm

Wine FS-EX plus 95 times more fast than Exhaustive algorithm

a learning matrix, it depends of many factors, which ones can be, the learning
matrix itself, the similarity function β that is using or even the reference set R∗
itself who has not either be always the total set of attributes.

From the obtained results, one can observe that FS-EX Plus algorithm found
the set of FS-typical testors in the following time proportions:

For the experiment with LM of Mushroom, the process was stopped after 24
hours and was estimated that every realized combination took 164 seconds being
evaluated, having to process 4,194303 combinations of attributes. Predicting that
exhaustive search algorithm will finish in a few more of 14 years approximately.

5 Conclusions

In this article a novel algorithm of exterior scale to calculate all the set of FS-
typical testors was introduced.

The shown performance in the experiments by algorithm was more efficient
than exhaustive search algorithm due the ”skips” realized over power feature
set, avoiding to verify a considerable quantity of combinations that do realizes
the exhaustive search algorithm.

Proposed algorithm opens a way for the construction of new exterior escale
algorithms to find FS-typical testors. These new algorithms could incorpore some
order in the attributes of the learning matrix, or other run over power set of
attributes that allows it to decrease the number of combinations to be verified.

It is relevant to say that this algorithm is the first one reported in the literature
that does not verify all possible combinations of attributes and generates the
total set of FS-typical testors. Besides, currently we do not found a reported in
the literature exhaustive search algorithm developed.

Acknowledgement. To PhD. Manuel Lazo Cortés for all the ideas given to this
project.
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Abstract. We present a methodology to analyze Multiple Classifiers Systems 
(MCS) performance, using the disagreement concept. The goal is to define an 
alternative approach to the conventional recognition rate criterion, which 
usually requires an exhaustive combination search. This approach defines a 
Distance-based Disagreement (DbD) measure using an Euclidean distance 
computed between confusion matrices and a soft-correlation rule to indicate the 
most likely candidates to the best classifiers ensemble. As case study, we apply 
this strategy to two different handwritten recognition systems. Experimental 
results indicate that the method proposed can be used as a low-cost alternative 
to conventional approaches. 

Keywords: multiple classifiers systems, pattern recognition, classifiers 
diversity, handwriting recognition. 

1   Introduction 

The traditional pattern recognition approach divides the recognition task in two steps: 
first, a feature set is extracted from the images; second, the classifier computes the 
class-conditional probabilities based on the extracted features. Different feature sets 
can be proposed as well as many distinct classifiers can be designed. Therefore, the 
problem is to find the best combination of feature set and classifier. 

In order to solve this problem many researchers have recently adopted the strategy 
of utilizing Multiple Classifiers Systems (MCS). The aim is to design a composite 
system that outperforms any of its individual component classifiers. The underlying 
principle is that it is more difficult to design one single complex classifier than to 
optimize a combination of relatively less complex ones. Several combination methods 
are found in the literature, however, one open question remains: what are the 
requirements to be fulfilled by the classifier components? 

The concept of diversity has been used to answer that question, given that an 
ensemble of identical classifiers will not outperform its components individually. 
Evidence indicates that diversity within an ensemble is vital for its success [1] [2]. 
However, there is no general agreement on how to quantify neither diversity nor its 
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relation with the ensemble average recognition rate. Aiming to group classification 
problems in a consistent way, Duin et al. [3] applied disagreement to measure the 
difference between two distinct classifiers trained on the same classification problem, 
which may be helpful in selecting appropriate tools for solving those problems. They 
admit, however, that there is still much to be investigated about disagreement between 
classifiers, although preliminary results are encouraging. 

We are interested in designing a method that does not use first-order information 
(classifier's score output) to evaluate the ensemble. The idea is to use information 
from the confusion matrix for each individual classifier and compute distances 
between those matrices that represent classifier disagreements. Thus, distances will 
provide a mechanism for a priori evaluation of the possible classifier combinations. 

2   Distance-Based Disagreement Classifiers Combination 

A method for designing pattern recognition systems, known as MCS or committee/ 
ensemble approach, has emerged over recent years to tackle the practical problem of 
designing classification systems with improved accuracy and efficiency [1]. 

Attempts to understand the effectiveness of the MCS framework have prompted 
the development of several measures, like margin, bias and variance. Recently, many 
diversity measures have been studied to determine how they correlate with ensemble 
accuracy [4]. 

In trying to achieve this goal, the main question is: How can we measure the 
efficiency of a MCS?  Our answer is to measure disagreements between classifiers, 
using their confusion matrices. This information can provide a mechanism to 
understand which classifiers can effectively contribute to boost the efficiency of the 
ensemble. 

2.1   Diversity and Disagreement 

Diversity measures can be categorized into two types [4]:  

• pair-wise: calculates the average of a particular distance metric between all 
possible pairings of classifiers in the ensemble. The distance metric used 
determines the characteristics of the diversity measure;  

• non-pair-wise: uses entropy or another similar measure to calculate a correlation 
of each ensemble member with the averaged ensemble output. 

The main difficulty with the use of diversity measures is the so-called accuracy-
diversity dilemma. As explained by Hadjitodorov et al., it is not clear how to choose 
the degree of diversity which produces the best performance, leading to a desired 
tradeoff between diversity and accuracy [5]. These authors also point that no 
convincing theory or experimental study has emerged to indicate a reliable measure to 
predict the generalization error of an ensemble. Other authors have stressed the need 
to find a balance point between diversity and accuracy [1], [4], reaching no 
agreement, however, regarding the choice of disagreement measure. 



 Confusion Matrix Disagreement for Multiple Classifiers 389 

Duin et al. [3], use the disagreement concept to measure the difference between 
two classifiers C1 and C2 trained on a classification problem Pj(j = 1,…,N; N is the 
size of the set of problems).  The disagreement is formulated as in Equation 1: 

dj(C1,C2) = Prob(C1(x) ~=C2(x) | x ∈ Pj ) (1) 

where Ci(x) returns the label for object x according to classifier Ci. M classifiers 

constitute an MxM disagreement matrix C
jD  for problem Pj, with elements C

jD (m,n) 

= dj(Cm,Cn). 
In this work we take a different approach from that of Duin et al. [3], although also 

based on disagreement. The idea is to use the confusion matrix for each individual 
classifier to compute distances that represent classifier disagreements. We call our 
approach Distance-based Disagreement (DbD) criterion. 

2.2   Confusion Matrix 

A consistent analysis of classifier behavior can be provided by the semi-global 
performance matrix, known as the Confusion Matrix. This matrix provides a 
quantitative performance representation for each classifier in terms of class 
recognition. The Confusion Matrix can be denoted as in Equation 2 [2]: 
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where RRi.j corresponds to the total number of entities in class Ci which have been 
classified in class Cj. Hence, the main diagonal elements indicate the total number of 
samples in class Ci correctly recognized by the system. From matrix A, it is possible 
to compute a global performance index for classifier A, defined by Equation 3: 
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For the ensemble of classifiers A, B,…,M (considering that all confusion matrices 
are of the same size), a distance measure DA  between classifier A and all other 
classifiers  is provided by Equation 4: 
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where k
jiRR , , k=A,B,…M, are the elements of  the confusion matrix for classifier k. 

This distance can be similarly calculated for all members of the ensemble. Therefore, 
for an ensemble of M classifiers, we can define a Distance-based Disagreement (DbD) 
measure, expressed by Equation 5: 
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which uses information from the confusion matrix of each individual classifier and 
expresses classifiers disagreement. 

2.3   Hypothesis: Soft-Correlation Rule 

Our hypothesis is based on the following idea proposed by Hadjitodorov et al. [5]: 
“The ensembles selected through median diversity will fare better than randomly 
selected ensembles or ensembles selected through maximum diversity”. We are 
calling this hypothesis the Soft-Correlation Rule. These authors observed that 
excessively increasing diversity does not lead to more accurate ensembles. They 
intuitively explain this phenomenon with the notion that in pattern clustering more 
diversity is associated with many clusters not getting the clustering structure right, 
leading to lower individual accuracy. 

Considering this hypothesis, our proposal is to compute ensemble diversity from 
the distances (Eq. 4) between confusion matrices of the component classifiers, and to 
verify whether or not the best ensemble performance corresponds to the median 
diversity value. This methodology has been applied to two handwriting recognition 
problem, as described next. 

3   Case 1: Character Recognition 

For feature extraction, the baseline system for handwritten character recognition used 
in this work combines global and local (based on a zoning mechanism) approaches, 
and uses feedforward MLP (Multiple Layer Perceptron) Class-Modular architecture in 
the classification stage, where the modular MLP classifier consists of K sub-networks, 
Mi for 0 ≤ i ≤ K-1, each responsible for one of the K classes [6].  

The system gets as input a 256 grey-level image, as depicted in Fig. 1a. The 
preprocessing step is composed of binarization and bounding box definition. The 
feature set is obtained by labeling the background pixels of the input image as 
belonging to either a concavity or a convexity region [7], as presented in Fig. 1b. The 
alphabet of symbols was adapted to handwritten characters, resulting in 24 different 
symbols. 

Several authors have presented zoning mechanisms or regional decomposition 
methods to investigate the recognition of patterns from their parts, similarly to what 
the human brain does during the reading process. Suen et al. [8] and Li et al. [9] 
applied a zoning mechanism in their experiments with hand printed characters. They 
analyzed different zone configurations, framing the character by a rectangle 
partitioned into Z parts. Based on these studies, we tested several zoning mechanisms, 
for Z equal to 4, 5 horizontal (5H), 5 vertical (5V) and 7, as shown in Fig. 2. Each 
image zone defines one classifier and these classifiers combined constitute a MCS. 
The zoning approach is beyond the scope of this paper [10]. 
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(a) (b) 

Fig. 1. Feature extraction: a) sample images from the character database and b) feature 
extraction (character “T”) 

4   Case 2: Word Recognition 

The word recognition problem analyzed in this work is the recognition of handwritten 
month words on Brazilian bank checks. This is an important task, since it constitutes a 
sub-problem of bank check date recognition. This study deals only with recognition of 
the portuguese language month names represented by a limited lexicon of 12 classes: 
Janeiro, Fevereiro, Março, Abril, Maio, Junho, Julho, Agosto, Setembro, Outubro, 
Novembro, and Dezembro. Some of these classes share sub-strings of characters, 
therefore adding to the problem complexity. 

 

Fig. 2. Zoning mechanism: Z = 4, 5V, 5H and 7 parts 

The baseline system utilizes multiple classifiers to avoid the intrinsic difficulties of 
the lexicon, by combining complementary information obtained from distinct sources 
(classifiers). Therefore, two different classifiers (Class-Modular Neural Networks [6] 
and Hidden Markov Models [11]) based on five different feature sets were evaluated. 
Similarly as used in character recognition, zoning mechanisms were utilized for 
feature extraction in order to add robustness to the system [8], [9]. The implemented 
zoning schemes are the following (Fig. 3): 

• 2 fixed sub-regions (2-FS): Zoning splits the image in two areas defined at the right 
and at the left of the word center of gravity (Fig. 3a). These system extracts 14 
features from each word in order to generate a feature vector of dimension 24 [12]; 
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• 8 fixed sub-regions (8-FS): Each sample image is divided in 8 sub-regions of equal 
size (Fig. 3b). This number corresponds to the average number of letters in the 
lexicon words. In this zoning mechanism, three different feature extraction were 
evaluated [12]: perceptual, directional, and topological feature sets; 

• N-variable sub-regions (N-VS): The features are extracted from the words images 
and a pseudo-segmentation process is applied to obtain a sequence of 
corresponding observations (Fig. 3c). Between two black-white transitions over the 
maximum peak of the horizontal transition histogram, called the Median Line, a 
segment is delimited and a corresponding symbol is designated to represent the 
extracted set of features, making up a grapheme [12], [13]. 

5   Experimental Results 

This Section presents the database used in the experiments performed to evaluate the 
DbD criterion and the experimental results obtained with the MCS applied to the two 
cases described in Sections 3 and 4. 

5.1   Character and Word Databases 

The experiments applying characters were carried out using the handwritten character 
database called IRONOFF (IRESTE/University of Nantes-France), consisting of 26 
classes of uppercase characters from Form B [14]. The IRONOFF database was selected 
because it is fully cursive. Samples were collected from about 700 writers, mainly of 
French nationality. The off-line data were scanned at 300 dpi with 8 bits per pixel.  

To develop the word recognition system it was initially necessary to construct a 
database that can represent the different handwriting styles present in Brazilian 
Portuguese language. This was done by collecting samples of each month name, from 
500 writers of different levels of education. Each writer was asked to fill a specific 
form where the word corresponding to each month name would be written once, as 
presented in Fig. 4 [12]. 

 

Fig. 3. Example of each zoning mechanism 
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Fig. 4. Sample images from the word database 

The databases have a total of 10,510 images of characters and 6,000 images of 
words, respectively. We split both databases into three sub-sets: Training (60%), 
Validation (20%), and Test (20%). 

5.2   Results 

For each zoning Z in the character recognition system presented in Section 3 and for 
each 2-FS and 8-FS feature set presented in Section 4, one NN was trained and tested, 
as proposed by Oh et al. [6]. The class decision module considers only the O0 outputs 
from each sub-network and uses a simple winner-takes-all scheme to determine the 
final class. 

The N-VS classifier for word recognition was evaluated with the same sets used for 
the other classifiers and for each class one model was trained and validated. The model 
that assigns maximum probability to one test image represents the class recognized. 

The computational time for the experiments is beyond the scope of this paper. Both 
systems account for the entire recognition process (preprocessing, feature extraction, 
recognition, DbD calculation). As described in Section 2.2, the DbD measure is 
computed from the confusion matrices, therefore after the recognition stage.  

Tables 1 and 2 show the results obtained for each zoning scheme both for the 
character and the word recognition systems, respectively. It can be seen that the best 
results were obtained using Z=7 for character recognition and 8-FS with directional 
features for word recognition. 

Table 1. Recognition rate for each classifier in character recognition system 

Classifier Recognition Rate (%) 
Z=4 83.2 
Z=5Vertical 82.4 
Z=5Horizontal 84.7 
Z=7 88.9 

Table 2. Recognition rate for each classifier in word recognition system 

Classifier Recognition Rate (%) 
2-FS 73.9 
8-FS-P (Perceptual) 86.3 
8-FS-D (Directional) 91.4 
8-FS-T (Topological) 85.0 
N-VS 81.7 



394 C.O.A. Freitas et al. 

The DbD approach described in Section 2 was applied to the classifiers confusion 
matrices, for both systems. Distance was calculated considering groups of 2 
classifiers. The calculated disagreement measures were compared with the results 
obtained combining the classifiers outputs with the weighted sum rule (WSC) defined 
by Kittler et al. [15], as presented in Tables 3 and 4. Other combination rules (average 
and product) were also tested but the best results were obtained using WSC. The 
boldfaced entries in the tables correspond to the median diversity ensembles, obtained 
by the DbD methodology, and to the best recognition rate associated to them. 

Tables 3 and 4 show that, in general, the best combination results produced by the 
WSC rule correspond to one of the median diversity (DbD) values. One exception is 
the 4-7 combination (last line of Table 3), that achieved the best recognition score 
(85.8%) with the largest (5.28) DbD value, for the character recognition case. The 
reason for this deviation is not yet clear (shall be further investigated), however, it 
does not invalidate the general observed behavior, that recognition rates decay as 
classifiers diversity moves away from the median values. 

Table 3. Classifier combination using DbD – Character recognition system 

Character Classifier DbD WSC (%) 
5H-5V 4.78 83.9 
4-5H 4.87 83.4 
4-5V 5.01 83.7 
5V-7 5.13 85.2 
5H-7 5.22 85.1 
4-7 5.28 85.8 

Table 4. Classifier combination using DbD – Word recognition system 

Word Classifier DbD WSC (%) 
8-FS-D – 8-FS-T 1.30 91.7 
8-FS-P – 8-FS-T 1.33 89.4 
8-FS-P – 8-FS-D 1.34 92.9 
8-FS-P – N-VS 1.44 93.2 
8-FS-D – N-VS 1.77 95.0 
8-FS-T – N-VS 1.88 93.4 
2-FS – N-VS 2.07 89.9 
2-FS – 8-FS-P 2.28 90.3 
2-FS – 8-FS-T 2.28 88.9 
2-FS – 8-FS-D 2.57 93.9 

 
The DbD measure has also been applied to experiments using three different 

classifiers for character recognition systems. Preliminary results obtained are shown 
in Table 5. We can observe that the best results correspond to the diversity (DbD) 
values close to the median. 
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Table 5. Classifier combination using DbD– Three different classifiers 

Character Classifier DbD Recognition Rate (%) 
4-5H-5V 27.49 85.8 
4-5V-7 27.52 90.9 
Median 27.70 ------ 
4-5H-7 27,88 91,0 
5H-5V-7 29,64 90,1 

6   Discussions and Conclusion 

This paper proposes an approach to evaluate ensembles of classifiers without actually 
having to exhaustively combining them to measure classification performance. The 
main motivation for this is the high computational cost of performing an exhaustive 
search in classifier combination space when we have a large number of classifiers. 
The DbD approach uses information from the confusion matrices of each individual 
classifier to compute distances that represent classifiers diversity. The results obtained 
with this approach reinforce the idea that median, rather than high, diversity is in 
general synonymous with high accuracy. The proposed methodology thus constitutes 
a new method for a priori evaluating multiple classifier systems, indicating the 
strongest candidates to the best classifiers combination. Using this approach, the 
search space is drastically reduced, in general to two strong candidates, which can 
then have their performance evaluated to determine the best MCS for the problem at 
hand. In this work, the method was applied to two handwriting recognition problems, 
although it can in fact be used for any pattern recognition problem. The validity of the 
DbD approach is supported by the experimental results. Future work will focus on the 
analysis of different distance criteria and the application of the DbD measure for 
ensembles of more than two classifiers, for the word recognition system. 
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2 Dept. Llenguatges i Sistemes Informàtics, Universitat Jaume I
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Abstract. Class imbalance has been reported as an important obstacle to ap-
ply traditional learning algorithms to real-world domains. Recent investigations
have questioned whether the imbalance is the unique factor that hinders the per-
formance of classifiers. In this paper, we study the behavior of six algorithms
when classifying imbalanced, overlapped data sets under uncommon situations
(e.g., when the overall imbalance ratio is different from the local imbalance ratio
in the overlap region). This is accomplished by analyzing the accuracy on each
individual class, thus devising how those situations affect the majority and mi-
nority classes. The experiments corroborate that overlap is more important than
imbalance for the classification performance. Also, they show that the classifiers
behave differently depending on the nature of each model.

Keywords: Imbalance; overlapping; classifiers; performance measures.

1 Introduction

Many traditional approaches to pattern classification assume that the problem classes
share similar prior probabilities. However, in many real-world problems, this assump-
tion is grossly violated. Often, the ratios of prior probabilities between classes are ex-
tremely skewed. This situation is known as the imbalance problem. A data set is said to
be imbalanced when one of the classes (the minority one) is heavily under-represented
in comparison to the other (the majority) class.

Most of the research addressing this problem concentrates on balancing the class
distribution in the data set. The different proposals can be roughly classified into three
categories: assigning distinct costs to the classification errors for positive and negative
examples [7], resampling the original training set, either by over-sampling the minority
class [5] and/or under-sampling the majority class [11] until the classes are approxi-
mately equally represented and, internally biasing the discrimination-based process so
as to compensate for the class imbalance [1].

Recently, several works have pointed out that there does not exist a direct correlation
between class imbalance and the loss of performance [13]. These studies suggest that
the class imbalance is not a problem by itself, but the degradation of performance is also
related to other factors. Different works explore the combined effects of class imbalance
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with the presence of small disjuncts [10], the size of the training set [9, 12], and the
degree of overlapping between classes [2, 13].

In the present work, we study the behavior of six classifiers under the presence of
both class imbalance and overlap. This study mainly tries to devise the influence of
changes in the overlap region on the classifiers, while keeping the majority/minority
ratio constant. The aim is to show that these practical situations affect the classifier
performance depending on the characteristics of the particular algorithm used, that is,
similar situations may produce different results. In order to accomplish this, we experi-
ment with artificial data sets, employing some performance measures that estimate the
accuracy on each individual class.

2 The Classifiers

In this section, we briefly describe the classifiers selected for the present experimental
study. All these algorithms work under the assumption that there exists a set of n previ-
ously labelled examples (training set, TS), say X = {(x1, ω1), (x2, ω2), . . . , (xn, ωn)},
where each element has an attribute vector xi and a class label ωi.

2.1 Nearest Neighbor Rule

One of the most popular non-parametric classification approaches corresponds to the k
nearest neighbor (kNN) decision rule [6]. In brief, this classifier consists of assigning
a new input sample x to the class most frequently represented among the k closest in-
stances in the TS, according to a certain dissimilarity measure (generally, the Euclidean
distance metric). A particular case is when k = 1, in which an input sample is decided
to belong to the class indicated by its closest neighbor.

The characteristics of the kNN classifier need the entire TS stored in computer mem-
ory, what causes large time and memory requirements. On the other hand, the kNN rule
is extremely sensitive to the presence of noisy, atypical and/or erroneously labelled
cases in the TS.

2.2 Naı̈ve Bayes Classifier

The naı̈ve Bayes classifier (NBC) [8] is arguably one of the simplest probabilistic
schemes, following from Bayesian decision theory. The model constructed by this al-
gorithm is a set of probabilities, each one corresponding to the probability P (fi|c) that
a specific feature fi appear in the instances of class c. These probabilities are estimated
by counting the frequency of each feature value in the instances of a class in the TS.
Given a new instance, the classifier estimates the probability that the instance belongs
to a specific class, based on the product of the individual conditional probabilities for
the feature values in the instance.

NBC is based on an independent feature model, that is, all the attributes are inde-
pendent given the value of the class variable. Despite the conditional independence as-
sumption is rarely true in most real-world applications, the algorithm tends to perform
well in many scenarios and it learns more rapidly than most induction algorithms.
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2.3 C4.5 Decision Tree

The C4.5 algorithm [14] uses a greedy technique to induce decision trees. A decision-
tree model is built by analyzing training data and the model is used to classify unseen
data. The nodes of the tree evaluate the existence or significance of individual features.
Following a path from the root to the leaves of the tree, a sequence of such tests is
performed resulting in a decision about the appropriate class of new objects.

The decision trees are constructed in a top-down fashion by choosing the most ap-
propriate attribute each time. An information-theoretic measure is used to evaluate fea-
tures, which provides an indication of the ”classification power” of each feature. Once
a feature is chosen, the training data are divided into subsets, corresponding to different
values of the selected feature, and the process is repeated for each subset until a large
proportion of the instances in each subset belongs to a single class.

2.4 Multilayer Perceptron

The multilayer perceptron (MLP) neural network [3] usually comprises one input layer,
one or more hidden layers, and one output layer. Input nodes correspond to features,
hidden layers are used for computations, and output layers are the problem classes.
A neuron is the elemental unit of each layer. It computes the weighted sum of its in-
puts, adds a bias term and drives the result thought a generally nonlinear (commonly,
sigmoid) activation function to produce a single output.

The most popular training algorithm for MLP is the backpropagation, which takes
a set of training instances for the learning process. For the given feedforward network,
the weights are initialized to small random numbers. Each training instance is passed
through the network and the output from each unit is computed. The target output is
compared with the output estimated by the network to calculate the error, which is fed
back through the network. To adjust the weights, backpropagation uses gradient descent
to minimize the squared error between the target output and the computed output. At
each unit in the network, starting from the output unit and moving down to the hidden
units, its error value is used to adjust weights of its connections so as to reduce the error.
This process of adjusting the weights is repeated for a fixed number of times or until
the error is small or it cannot be reduced.

2.5 Radial Basis Function

The radial basis function (RBF) [4] neural network, which has three layers, can be seen
as an especial kind of multilayer feedforward networks. Each unit in the hidden layer
employs a radial basis function, such as Gaussian kernel, as the activation function. The
output units implement a weighted sum of hidden unit outputs. The input into an RBF
network is nonlinear. The output is linear. The kernel is centered at the point specified
by the weight vector associated with the unit. Both the positions and the widths of
these kernels are learned from training instances. Each output unit implements a linear
combination of these radial basis functions.

An RBF is trained to learn the centers and widths of the Gaussian function for hidden
units, and then to adjust weights in the regression model that is used at the output unit.
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To learn the centers of the Gaussian functions, the k-means algorithm can be used,
obtaining k Gaussian functions for each attribute in the instance. After the parameters
for the Gaussian function at the hidden units have been found, the weights from these
units to the output unit are adjusted using a linear regression model.

2.6 Support Vector Machine

Support vector machines (SVMs) [15] are a set of related supervised learning methods
used for classification and regression. They belong to a family of generalized linear
classifiers. A special property of SVMs is that they simultaneously minimize the empir-
ical classification error and maximize the geometric margin; hence they are also known
as maximum margin classifiers.

SVMs map input vectors to a higher dimensional space where a maximal separating
hyperplane is constructed. Two parallel hyperplanes are constructed on each side of the
hyperplane that separates the data. The separating hyperplane is the hyperplane that
maximizes the distance between the two parallel hyperplanes. An assumption is made
that the larger the margin or distance between these parallel hyperplanes the better the
generalization error of the classifier will be.

3 Performance Evaluation in Class Imbalance Problems

In the literature, there appear many different proposals for measuring the performance
of learning algorithms in imbalanced domains. However, they all agree in the need
of measuring the classification performance over each individual class, instead of the
overall accuracy, because the misclassification costs can be different for each of them.
Most of performance measures for two-class problems are built over a 2 × 2 confusion
matrix as illustrated in Table 1.

Table 1. Confusion matrix for a two-class problem

Positive prediction Negative prediction
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

From the confusion matrix, apart from other more elaborated performance measures,
one can obtain several simple metrics on the positive (minority) and negative (majority)
classes, along with the overall accuracy and the overall error rate:

True Positive Rate: TPR = TP
TP+F N

True Negative Rate: TNR = TN
TN+F P

False Positive Rate: FPR = F P
F P+TN

False Negative Rate: FNR = F N
TP+F N

Accuracy: Acc = TP+TN
TP+F P+F N+TN

Error Rate: Err = F P+F N
TP+F P+F N+TN

In the present work, since the purpose is to analyze the classifier behavior on each
individual class, we adopt the TPR (or a+) and the TNR (or a−).
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4 Experimental Data Sets and Results

With the aim of analyzing the behavior of each classifier in situations of imbalance and
overlap, two groups of experiments have been carried out. In both cases, pseudo-random
bivariate patterns have been generated following a uniform distribution in a square of
length 100. There are 400 negative examples and 100 patterns from the minority class,
keeping the overall majority/minority ratio equal to 4 in all cases.

The experiments have been performed using the Weka toolkit [16] with the learning
algorithms described in Sect. 2, that is, 1-NN, NBC, MLP, J48 (a reimplementation of
C4.5), RBF, and SVM. We have adopted a 10-fold cross-validation method: each data
set was divided into ten equal parts, using nine folds as the TS and the remaining block
as an independent test set. This process has been repeated ten times and the results
correspond to the average over the 100 runs.

4.1 Constant Imbalance with Increasing Overlap

This experiment will be over a collection of six data sets with increasing overlap. In all
cases, the positive examples are defined on the X-axis in the range [50..100], while the
majority class instances are generated in [0..50] for 0% of overlap, [10..60] for 20%,
[20..70] for 40%, [30..80] for 60%, [40..90] for 80%, and [50..100] for 100% of overlap.
Fig. 1 illustrates two of these data sets. It is expected a similar behavior of all classifiers
since in the overlap region, the minority class is also under-represented.
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Fig. 1. Two different levels of class overlapping: (a) 0% and (b) 60%

The analysis of Fig. 2 allows to point up a number of results. First, it should be re-
minded that the majority/minority ratio keeps constant for all data sets. Despite this, the
accuracy on the minority class varies in function of the overlap level. While a+ is close
to 100% over the data set with no overlap, it drastically degrades as the overlapping
increases (independently of the algorithm used). This corroborates the conclusions of
other investigations stating that the loss of classifier performance is not especially due
to class imbalance, but to other factors (e.g., overlapping).

Another important observation is the different behavior of the 1-NN classifier on
the majority class when compared to the rest of algorithms. In the case of 1-NN,
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Fig. 2. Classifier performances on each class for the first experiment

the increase of overlapping produces a degradation of the accuracy on the majority
class (a−), due to the local nature of this classifier. Oppositely, the algorithms based on
a more global learning keep the a− close to 100% independently of the overlap degree.

In order to measure whether differences between each pair of classifiers are signif-
icant or not, a one-tailed paired t-test has been used as implemented in Weka. Table 2
gives a comparison among the learning algorithms for each individual class. The three
values in each entry of this table refer to how many times the algorithm of the column
has been significantly-better/same/significantly-worse than the classifier of the row. As
can be seen, there exist statistically significant differences when comparing 1-NN with
the remaining algorithms. For example, NBC, MLP, J48 and SVM on the majority class
have been better than 1-NN in five data sets, whereas on the minority class they have
been clearly worse. Comparisons with NBC, MLP, RBF and J48 reveal that in gen-
eral, differences are not statistically significant. On the minority class, SVM has been
significantly worse than any other algorithm.
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Table 2. Statistical comparison of the classifiers used in the first experiment

NBC MLP RBF J48 SVM
a− a+ a− a+ a− a+ a− a+ a− a+

1NN 5/1/0 0/1/5 5/1/0 0/3/3 5/1/0 0/3/3 5/1/0 0/3/3 5/1/0 0/0/6
NBC 0/6/0 1/5/0 0/4/2 2/4/0 0/6/0 2/4/0 0/6/0 0/1/5
MLP 0/3/3 0/6/0 0/6/0 1/5/0 0/6/0 0/1/5
RBF 3/3/0 0/6/0 4/2/0 0/1/5
J48 0/6/0 0/1/5

4.2 Changing the Imbalance in the Overlap Region

The second experiment uses a collection of five data sets in which the minority class be-
comes more representative than the majority one in the overlap region. The aim of this
is to analyze the behavior of the classifiers when the overall imbalance is different from
the imbalance in the overlap region. To this end, the 400 negative examples have been
defined on the X-axis to be in the range [0..100] in all data sets, while the 100 positive
cases have been generated in the ranges [75..100], [80..100], [85..100], [90..100], and
[95..100] (see Fig. 3 for two examples). The number of elements in the overlap region
varies from no local imbalance in the first case, where both classes have the same num-
ber of patterns and density, to a critical inverse imbalance in the last case, where the
minority class appears as majority in the overlap region due to an increase in density.
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Fig. 3. Two data sets used in the second experiment: (a) [75..100] and (b) [85..100]. Note that the
minority class is much denser in the latter case where its samples are confined in a smaller space.

Although in general, the behavior of all classifiers on the minority class improves
when this class is denser, thus suggesting the influence of the imbalance in the overlap
region, Fig 4 provides some interesting, even surprising results. While the 1-NN per-
formance on the majority class is clearly better than that on the minority one, the other
classifiers show a very different behavior. It is especially worth pointing up the results
achieved by NBC, in which a+ is higher than a− over all data sets. A similar behavior
is shown by J48, except when both classes are equally represented in the overlap region
(75–100). In this case, the accuracy on the minority class abruptly drops down about
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Fig. 4. Classifier accuracies on each class for the second experiment

50 points. Results on SVM show very high accuracy on the minority class for the case
[95–100], and close to 0% when this class becomes less dense.

With respect to MLP and RBF, a+ keeps superior to a− for the cases in which
the majority class is under-represented in the overlap region. Nevertheless, when the
number of negative examples is close to the number of positive patterns, the accuracy
on the minority class rapidly degrades. In summary, one can observe that in most cases,
the performance of NBC, MLP, RBF and J48 on the minority class is higher than that
of the majority class, whereas 1-NN and SVM exhibit the opposite behavior. This can
be explained by the data characteristics and the operation of both these classifiers. The
most surprising effect is on SVM, where a+ drops down rapidly as the imbalance ratio
in the overlap region approaches the overall imabalce.

Analyzing the results in Table 3, it has to be noted that in most cases all classifiers
are significantly better than 1-NN in a+, while there are no significant differences in
a− (except with respect to NBC and SVM). On the other hand, when comparing NBC,
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Table 3. Statistical comparison of the classifiers used in the second experiment

NBC MLP RBF J48 SVM
a− a+ a− a+ a− a+ a− a+ a− a+

1NN 0/1/4 5/0/0 0/3/2 4/1/0 0/5/0 3/2/0 0/3/2 4/1/0 3/1/1 2/0/3
NBC 2/3/0 0/3/2 4/1/0 0/1/4 0/4/1 2/2/1 3/1/1 0/1/4
MLP 1/4/0 0/4/1 0/3/2 3/2/0 3/1/1 0/2/3
RBF 0/3/2 3/2/0 3/1/1 0/2/3
J48 3/1/1 0/1/4

MLP, RBF and J48, it seems that there are very few differences. It can be mentioned
that the RBF accuracy on the minority class has been significantly worse than that of the
NBC four times, while significantly better in the case of a− also four times. In general,
SVM shows the most significant difference in both a+ (worse) and a− (better).

5 Conclusions and Future Work

In the framework of imbalanced data sets, recent studies have concluded that perfor-
mance degradation is not solely caused by class imbalance, but is also related to class
overlapping and other data characteristics. In the present work, we have conducted an
empirical analysis with the aim of establishing the behavior of several classifiers under
combined situations of class imbalance and class overlap. The algorithms here stud-
ied correspond to representatives of widely-used models in order to draw more general
conclusions: 1-NN, NBC, MLP, RBF, J48, and SVM.

The experiments carried out have revealed some interesting results. First, it has been
corroborated that the class imbalance is not a problem by itself, but the loss of perfor-
mance is also related to other critical factors (class overlap, small disjoints). Second,
the combined effects of imbalance and overlap strongly depend on the characteristics
of each classifier. Third, it has been observed that 1-NN and SVM are very sensitive
to noise in the data set, while NBC seems to be the most tolerant to it. Finally, it has
been shown that in certain uncommon situations (like that in the second experiment),
the results are quite different from those expected in an imbalanced scenario, that is, the
performance on the majority class appears poorer than that on the minority class.

Future research includes an extension of this study to real-world problems. Also, the
present work should be complemented with the analysis of other important factors that
can strongly affect the classifier performance in imbalanced domains. In particular, we
are especially interested in exploring the effects of feature dimensionality. Finally, the
use of classifier ensembles with the aim of exploiting the main characteristics of each
individual classifier seems an interesting field to be further investigated.
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Abstract. In this work, a fast k most similar neighbor (k-MSN) classifier for 
mixed data is presented. The k nearest neighbor (k-NN) classifier has been a 
widely used nonparametric technique in Pattern Recognition. Many fast k-NN 
classifiers have been developed to be applied on numerical object descriptions, 
most of them based on metric properties to avoid object comparisons. However, 
in some sciences as Medicine, Geology, Sociology, etc., objects are usually de-
scribed by numerical and non numerical features (mixed data). In this case, we 
can not assume the comparison function satisfies metric properties. Therefore, 
our classifier is based on search algorithms suitable for mixed data and non-
metric comparison functions. Some experiments and a comparison against other 
two fast k-NN methods, using standard databases, are presented.  

Keywords: Nearest Neighbors Rule, Fast k-Most Similar Neighbors Search, 
Mixed Data.  

1   Introduction 

The k-NN [1] rule has been a widely used nonparametric technique in Pattern Recog-
nition. However, in some applications, the exhaustive comparison between the new 
object to classify and the objects in T becomes impractical. Many fast k-NN classifiers 
have been designed to avoid this problem; most of them were designed for numerical 
object descriptions and based on metric properties. 

In some applications, the objects are described by numerical and non numerical 
features (mixed data). In this case, we can not assume the comparison function satis-
fies metric properties and therefore, we can not use most of the methods proposed for 
numerical objects. Thus, if a metric is not available but a comparison function that 
evaluates the similarity between a pair of objects could be defined, the objective 
would be to find the k most similar neighbors (k-MSN) and use them for classifying.  

The k-MSN classifier is based on a training set T of N objects. Each object is de-
scribed by d features, which can be numerical or non numerical. Given a new object Q 
to classify, the goal consists in finding the k-MSN according to a comparison function 
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and assigning to Q the majority class of its k nearest neighbors. The exhaustive search 
of the k-MSN, as occurs with the k-NN, could be very expensive if T is large. Therefore, 
in this paper we introduce a fast k-MSN classifier based on a tree structure, which does 
not assume the comparison function satisfies any metric property. 

This paper is organized as follows: Section 2 provides a brief review of fast k-NN 
classifiers based on tree structures. In Section 2.1 the comparison functions used in 
this work are described. In Section 3 our fast k-MSN classifier is introduced. In Sec-
tion 4 we report experimental results obtained using our classifier. Finally, in Section 
5 we present some conclusions and future work.  

2   Related Work 

In this section we describe some methods for solving the fast nearest neighbor classi-
fication problem. 

To avoid the exhaustive search, some methods, based on tree structures, have been 
proposed. In a preprocessing step, the objects in T are organized in a tree structure. In 
the classification step, the tree is traversed to find the k-NN. The speed up is obtained 
while the exploration of some parts of the tree is avoided. One of the first fast k-NN 
classifiers, that uses a tree structure, was proposed by Fukunaga and Narendra [2]. 

In the classifier proposed by Fukunaga and Narendra, each node p of the tree con-
tains four features, which are: the set of objects in the node p (Sp), the number of ob-
jects in p (Np), the centre of the node (Mp) and finally the maximum distance between 
the centre of p and the objects in the node p (Rp). Given a new object Q to classify, 
Fukunaga’s fast classifier searches the NN based on a branch and bound method to 
traverse the tree. Two pruning rules are used to decide whether a node or an object of 
the tree is evaluated or not. These rules are based on the triangle inequality. The first 
pruning rule for nodes of the tree is:  

),( pp MQDRB <+  (1) 
Where B is the distance between Q and the current NN and D is the distance function. 
The second pruning rule is applied to the objects that belong to a leaf node of the tree, 
in order to decide whether or not to compute the distance from the sample Q to the 
object from the node or not. The pruning rule for every object 

pi So ∈  is: 

),(),( ppi MQDMoDB <+  (2) 

The objects that satisfy condition (2) can not be closer than the current nearest 
neighbour and therefore, the distance to Q is not computed. The search process fin-
ishes when all nodes in the tree have been evaluated or eliminated by the first pruning 
rule. Finally, the class of the NN found in the search process is assigned to Q. An 
extension to k-NN is also proposed in [2], where, in the search process, B is the dis-
tance between Q and the current k-NN instead of the current 1-NN. In this case, the 
majority class of its k nearest neighbors is assigned to Q. 

In the last years, some methods have been developed to improve the Fukunaga and 
Narendra classifier [3,4,5,6,7,8]. The improvements proposed in [3,4,5,6,8] are exact 
methods to find the k-NN. However, finding the k-NN (even using a fast method) is a  
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slow process for some tasks, therefore in [7] Moreno-Seco proposed a fast approximate 
k-NN classifier, where Fukunaga’s first pruning rule is modified in order to finish the 
search when the current nearest neighbor is not too far from the exact nearest neighbor: 

BRMQDe pp >−+ )),()(1(  (3) 
Where e is an error margin that allows to decrease the number of comparisons. In this 
process, lower classification run times are obtained, but reducing the classification 
accuracy. However, Moreno-Seco’s classifier also relies on metric properties to avoid 
comparisons.  

All the mentioned methods, based on tree structures, were designed to work with 
numerical data when the object comparison function satisfies metric properties. 

2.1   Comparison Functions for Mixed Data 

In this work, in order to compare objects, the function F [10] was used. Let us con-
sider a set of objects {O1, O2, …, ON}, each of them described by d attributes {x1, x2, 
…, xd}. Each feature could be numerical or non numerical. The function F is defined 
as follows:  
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For quantitative data Ci(xi(O1), xi(O2)) is defined as follows: 
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Where, σi is the standard deviation of the attributes xi. We also used the functions: 
HVDM and HOEM, described in [11] and [12] respectively, which allow us to com-
pare objects described by mixed data. Using the functions F, HVDM and HOEM the 
most similar neighbor is the one that minimizes the function.  

3   Proposed Classifier 

In this section, an approximate fast k-MSN classifier which considers object described 
by mixed data is introduced. The classifier consists of two phases. The first one, or 
preprocessing phase, is the construction of a tree structure from T, using suitable 
strategies for mixed data. In the second phase, two fast approximate k-MSN search 
algorithms are used, which are independent of metric properties of the comparison 
function.  
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3.1   Preprocessing Phase 

In this phase, the training set is hierarchically decomposed to create a tree structure. 
The C-Means with Similarity Functions algorithm (CMSF), which is an extension of 
the C-Means algorithm to work with mixed data, is used. In the original C-Means the 
mean of the objects is considered as the centre of the cluster, meanwhile in CMSF an 
object, which represents the cluster, is used as the centre of it (see [10] for details). 

The node 0 (root) of the tree contains the whole set T. In order to create the follow-
ing levels of the tree, each node n of the tree is divided in C clusters (c1,… , cC), in 
such way that each cluster ci represents a descendant node ni of n. Each node is di-
vided again and this process is repeated until a stop criterion is satisfied. In figure 1 
the algorithm to construct the tree is described.  

Each node p of the tree contains three features which are: the set of objects that be-
long to that node Sp, the number of objects in that node Np and unlike Fukunaga’s and 
Moreno-Seco’s methods a representative object of the node Repp.  

1.          CurrentNode  = 0 
2.          NodesToDivide  = CurrentNode 

       3.          p  = 1 
       4.          While |NodesToDivide| ≠ 0 

5.                    CurrentNode  = NodesToDivide [1] 
6.                    To divide the objects belonging from CurrentNode  in C clusters  
7.                    For every cluster c =1:C 
8.                              cluster(c) = nodep  of the tree 
9.                              nodep  is a child of  CurrentNode 

      10.                              Compute the features of nodep: Sp, Np, Repp 

      11.                               If a Stop Criterion is satisfied,  then nodep  is a leaf 
      12.                               Else,  nodep  is added to the list NodesToDivide 
      13.                              p = p+1       
      14.                    End for every 
      15.                   Eliminate CurrentNode  from  NodesToDivide 
      16.          End while 

Fig. 1. Tree building algorithm 

Three different stop criteria are proposed: 
1. Stop criterion based on the node size (SCNS): in this criterion, if a node contains 
less than SC objects (Np ≤ SC), then the node is considered as a leaf. This criterion is 
used in some other works [3,4 and 7]. To implement this criterion, lines 7-14 of the 
algorithm described in figure 1, are replaced by the algorithm described in figure 2. 

               For every cluster c =1:C 
                       cluster(c) = nodep  of the tree,         nodep  is a child of  CurrentNode 

                              Compute the features of nodep: Sp, Np, Repp 

                        If  (Nn ≤ CP) then nodep  is a leaf,      
                        Else nodep  is added to the list NodesToDivide 
                        p = p+1 
                End for every 

Fig. 2. Stop criterion based on the node size (SCNS) 

2. Stop criterion based on non homogeneous nodes (SCNHN): it is proposed to con-
sider the number of objects in a cluster and the class of those objects. In this case, if 
certain percentage of the objects have the same class, then the node is considered a 
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leaf and is marked with the majority class (even if Np > SC). To implement this crite-
rion, lines 7-14 of the algorithm described in figure 1, are replaced by the algorithm 
described in figure 3. When the node is generalized by the majority class, through 
SCNHN, an error is introduced. Therefore, a third criterion is proposed. 
3. Stop criterion based on homogeneous nodes (SCHN): In this case, if certain per-
centage of the objects in a cluster belongs to the same class, two nodes are created. 
Using the objects that belong to the majority class, a leaf node is created and is 
marked with the majority class. The rest of the objects are assigned to a second node, 
which is considered as a leaf if Np ≤ SC, otherwise, this node will be divided again.  
A pseudocode of this criterion is shown in figure 4. 

               For every cluster c =1:C 
                        cluster(c) = nodep  of the tree,         nodep  is a child of  CurrentNode 
                               Compute the features of nodep: Sp, Np, Repp 
                        For every  j = 1: No.Classes 
                                  PercC (j) = Percentage of the objects in nodep that belong to the class j 
                               End for every 

                        PercM  = max (PercC (j), Classes] No. [1,   ∈∀ j )  
                        If  (PercM ≥ thres),  then nodep  is a leaf,    NodeCriterion(n) = true 
                                ClassNode (n) = the majority class of nodep  
                        Else  If  (Nn ≤ CP) then nodep  is a leaf,      NodeCriterion(n) = false  
                                 Else nodep  is added to the list NodesToDivide 
                        p = p+1 
                End for every 

Fig. 3. Stop criterion based on non homogeneous leave (SCNHL) 

               For every cluster c =1:C 
                       For every  j = 1: No.Classes 
                                  PercC (j) = Percentage of the objects in nodep that belong to the class j 

                              End for every 
                       PercM  = max (PercC (j),  
                       If  (PercM ≥ Thres), 
                                   N1 = the set of objects of cluster c that belong to the majority class 
                                   N2 = the rest of the objects 
                                  With N1: 
                                           Sp = N1, nodep  is a leaf,         nodep is a child of  CurrentNode 

                                                 Compute the features of nodep: Np, Repp 

                                           NodeCriterion(n) = true,    ClassNode (n) = the majority class of nodep 

                                  p = p+1 
                                  With N2: 
                                           Sp = N2, nodep is a child of  CurrentNode 

                                                 Compute the features of nodep: Np, Repp 

                                           If  (Nn ≤ CP) then nodep  is a leaf,       NodeCriterion(n) = false  
                                           Else nodep  is added to the list NodesToDivide 

                              Else,   if  (Nn ≤ CP) then nodep  is a leaf,      NodeCriterion(n) = false  
                                  Else nodep  is added to the list NodesToDivide 
                       End if 
                       p = p+1 
               End for every 

Fig. 4. Stop criterion based on homogeneous leave (SCHL) 

3.2   Classification Phase  

In this phase, in order to avoid the exhaustive tree traversal, the existing fast k-NN 
classifiers rely on pruning rules (based on metric properties). As we are looking a 
method applicable when the comparison function does not satisfy metric properties, 
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the pruning rules proposed by Fukunaga and Moreno-Seco would not be appropriate; 
therefore we propose to stop the search when a leaf of the tree is reached. In the first 
method (k-MSN local search) we propose to use a depth-first search and in the second 
method (k-MSN global search) we propose to use a best-first search. The proposed 
methods for searching the k-MSN are described below: 

k-MSN local search method: It begins at the root of the tree, following the path of the 
most similar node and finishes on a leaf of the tree. A list of the k-MSN is stored and 
updated during the tree traversal. When a leaf node l is reached, if l is marked with the 
majority class, then only the representative object Repl is considered to update the k-
MSN. In other case, a local exhaustive search in the node is done and the list of k-
MSN is finally updated. (see pseudocode in figure 5).   

       Current Node = node 0 
       While Current Node ≠ Leaf 
                  DesNodes = descendant nodes of the Current Node. 
           

)),((min
odes

p
DesNnode

RepQFrNodeMostSimila
p ∈∀

=
 

 
                  Current Node = MostSimilarNode         Update k-MSN  considering MostSimilarNode 
        End while 
        If  NodeCriterion(Current Node) = true,     
                 ),( eCurrentNodRepQFsim =                    Update k-MSN  considering RepCurrentNod 

       Else,  perform an exhaustive search with the objects in the Current Node  and update k-MSN   
       Class(Q)=majority class of the k-MSN 

Fig. 5. k-MSN local search method 

When a leaf is reached, if the list does not have k MSN’s, then the tree traversal 
makes backtracking to explore nodes closer to Q, in order to find k MSN’s. 

k-MSN global search method: It begins at the root of the tree, comparing Q against the 
descendant nodes of the root, which are added to a list (List_tree_traversal). After 
that, List_tree_traversal is sorted in such way that the most similar node to Q is in the 
first place. The most similar node is eliminated from List_tree_traversal and its de-
scendant nodes are compared against Q, and added to List_tree_traversal, which is 
sorted again. In this search it is possible to reconsider nodes in levels of the tree al-
ready traversed if the first node of List_tree_traversal belongs to a previous level in 
the tree (see pseudocode in figure 6). During the tree traversal, another list (List_k-
MSN) containing the k current MSN is stored and updated.  

       Current Node = node 0 
       List_tree_traversal = {0} 
       While Current Node ≠ Leaf 
                  Current Node = List_tree_traversal [1]            Delete Current Node  from List_tree_traversal 
                  DesNodes = descendant nodes of the Current Node. 
                  Compute the similarity between Q and the nodes in DesNodes               
                  Add the nodes to List_tree_traversal                       Update List_k-MSN             
                  Order List in such way that the most similar object to Q is the first element of the list.  
        End while 
        If  NodeCriterion(Current Node) = true,     
                 ),( eCurrentNodRepQFsim =                    Update List_k-MSN, considering RepCurrentNod 

       Else,  perform an exhaustive search with the objects in the Current Node  and update k-MSN   
       Class(Q)=majority class of the k-MSN 

Fig. 6. k-MSN global search method 
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When a leaf is reached, if List_k-MSN does not contain k-MSN, then the first ele-
ment in List_tree_traversal is considered to follow a new route in the tree traversal. 
The process stops when List_k-MSN contains k-MSN.  

However, using both search methods (k-MSN global and k-MSN local), it is quite 
difficult not to have k MSN’s during the tree traversal, in applications where the train-
ing set is large.  

After finding k-MSN, the majority class is assigned to the new sample Q. 

4   Experimental Results 

In this section, we report the obtained results of applying the proposed fast approxi-
mate MSN classifier over 9 datasets from the UCI repository [15]. Three of these 
datasets are numerical (Glass, Iris and Wine), two are non numerical (Hayes and 
Bridges) and four are mixed (Hepatitis, Zoo, Flag, Echocardiogram). In all the ex-
periments 10-fold-cross-validation was used.  

In order to compare our method, Fukunaga’s [2] and Moreno-Seco’s [7] classifiers 
were adapted. The adaptation consists in the use of the same tree structure proposed in 
Section 3 and the same function suitable to work with mixed data, instead of a dis-
tance function. There are other methods based in tree structures [13, 14]. However, it 
is not possible to adapt these methods to work with similarity functions because these 
methods involve techniques such as PCA which are only applicable to numerical data. 

The compared five fast k-NN (k-MSN) classifiers used in the experimentation were:  
1. The exhaustive k-NN classifier (using a dissimilarity function) 
2. Adapted Fukunaga’s k-NN classifier 
3. Adapted Moreno-Seco’s k-NN classifier  
4. The proposed classifier using k-MSN local search 
5. The proposed classifier using k-MSN global search 

To compare the classifiers, the accuracy and the number of comparisons between 
objects were considered. 

Before using adapted Moreno-Seco’s classifier, some tests with different values of 
the error margin e (e=1, 10 and 20) were proved. These experiments were carried out 
for the three stop criteria described in Section 3.1: SCNS (with SC=1, 5 and 20), 
SCNHL (with percentage threshold=50, 70 and 100) and SCHL (with percentage 
threshold=50, 70 and 100), were proved. In every experiment, different values of C 
(C=3, 5, no. of classes, 4* no. of classes, (.1)* no. of objects and (.3)* no. of objects) 
in the CMFS algorithm, were also proved. In the classification phase, all of the ex-
periments were repeated using k = 1, 3 and 5 MSN. During the tree construction and 
the classification phase, the three dissimilarity functions: HVDM, F and HOEM were 
tested.  

In all of these experiments, while the error margin e grows, the number of object 
comparisons decreases. In the next experiments, adapted Moreno-Seco’s classifier 
was used with e=20, because this value needed the smallest number of comparisons 
with a slightly accuracy reduction.  

The parameter C of the CMSF algorithm corresponds to the number of branches of 
the nodes in the tree. In order to select the best value of C, C=3, 5, no. of classes, 4* 
no. of classes, (.1)* no. of objects and (.3)* no. of objects, were proved. In the tree 
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construction phase, the three stop criteria described in Section 3.1: SCNS (with SC = 
1, 5 and 20), SCNHL (with percentage threshold=50, 70 and 100) and SCHL (with 
percentage threshold=50, 70 and 100), were proved. In the classification phase, all of 
the experiments mentioned before were repeated using k = 1, 3 and 5 MSN. During 
the tree construction and the classification phase, all experiments mentioned before, 
the three dissimilarity functions: HVDM, F and HOEM were tested. 

According to these experiments, the accuracy does not vary too much with the dif-
ferent values of C. However, the number of comparisons between objects increases 
for the adapted Fukunaga’s classifier when C grows. In the next experiments C=3 was 
used, because there is not a big variation of the accuracy and the number of objects 
comparisons is reduced for adapted Fukunaga’s and Moreno-Seco’s classifiers. 

Another important parameter in the tree construction algorithm is the stop criterion. 
To evaluate the stop criterion, all datasets mentioned before were used. In this ex-
periment, the HVDM function and 1-MSN were considered.  

First, the performance of the classifiers, using the first stop criterion (SCNS), was 
evaluated according different values of the SC parameter. From this experiments, SC=20 
was chosen, since the biggest objects comparison percentage reduction is achieved. 

The performance of the classifiers, using the criterion based on non homogeneous 
nodes (SCNHN) was evaluated with a percentage threshold equal to 50, 70, 80 and 
 

Table 1. Evaluation of the different classifiers using HVDM function, with k = 1, 3 and 5 MSN 

Exhaustive k-NN 
classifier 

Adapted Fuku-
naga’s k-NN 

classifier 

Adapted Mo-
reno-Seco’s 

k-NN classifier 

Proposed 
 classifier using 

k-MSN local  
search 

Proposed  
classifier using  
k-MSN global  

search 

General  
averages 

%Acc %Com %Acc %Com %Acc %Com %Acc %Com %Acc %Com 
k=1 

Hep 82,67 100 81,33 126,58 80,71 88,59 82,67 15,75 82,63 13,52 
Zoo 97,09 100 94,18 68,25 94,18 23,90 93,09 12,46 93,09 16,76 
Flag 53,05 100 50,39 50,38 50,39 44,12 47,84 10,56 48,37 17,41 
Echo 83,41 100 81,10 110,29 81,81 75,29 84,89 13,54 84,89 18,50 
Hayes 85,71 100 85,25 56,06 84,95 23,25 85,71 14,85 85,71 12,97 
Brid 61,82 100 56,09 68,20 54,00 51,55 55,09 9,54 55,09 15,46 
Glass 70,06 100 70,06 41,03 67,29 37,80 66,30 7,65 66,30 6,16 
Iris 94,67 100 94,67 24,95 92,67 21,37 94,00 14,55 94,00 11,17 
Wine 95,49 100 95,49 40,00 95,49 30,73 94,41 11,05 94,41 7,93 
General Avg. 80,44 100 78,73 65,08 77,94 44,07 78,22 12,22 78,28 13,32 

k=3 
Hep 82,67 100 81,29 126,58 81,33 88,59 82,67 15,75 83,92 13,52 
Zoo 96,09 100 94,09 68,25 91,09 23,90 95,09 12,46 95,09 16,76 
Flag 53,53 100 53,53 50,38 53,53 44,12 50,95 10,56 51,47 17,41 
Echo 82,64 100 79,62 110,29 79,56 75,29 80,38 13,54 80,38 18,50 
Hayes 85,71 100 85,71 56,06 84,95 23,25 85,71 14,85 85,71 12,97 
Brid 57,64 100 56,91 68,20 53,91 51,55 55,91 9,54 55,91 15,46 
Glass 68,70 100 68,70 41,03 68,11 37,80 68,66 7,65 68,66 6,16 
Iris 94,00 100 94,00 24,95 93,33 21,37 94,00 14,55 94,67 11,17 
Wine 95,52 100 95,52 40,00 95,46 30,73 94,41 11,05 93,86 7,93 
General Avg. 79,61 100 78,82 65,08 77,92 44,07 78,64 12,22 78,85 13,32 

k=5 
Hep 84,54 100 83,25 126,58 85,25 88,59 78,83 15,75 78,17 13,52 
Zoo 94,09 100 90,18 68,25 88,18 23,90 92,09 12,46 92,09 16,76 
Flag 53,66 100 53,63 50,38 53,55 44,12 52,58 10,56 53,11 17,41 
Echo 86,43 100 85,66 110,29 85,60 75,29 86,43 13,54 86,43 18,50 
Hayes 86,43 100 86,43 56,06 84,89 23,25 85,77 14,85 85,77 12,97 
Brid 60,09 100 58,09 68,20 56,09 51,55 56,18 9,54 56,27 15,46 
Glass 63,55 100 63,55 41,03 62,64 37,80 63,53 7,65 63,53 6,16 
Iris 95,33 100 95,33 24,95 94,00 21,37 94,67 14,55 94,67 12,52 
Wine 97,19 100 97,19 40,00 93,82 30,73 94,41 11,05 94,41 7,93 
General Avg. 80,15 100 79,26 65,08 78,22 44,07 78,28 12,22 78,27 13,47 
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100. The accuracy is slightly reduced using SCNHN (with percentage threshold=50, 
70 and 80) in comparison with the criterion based on the node size (SCNS, with 
SC=20). However, the comparisons percentage is reduced using SCNHN. Using 
SCNHN and SCHN, when the percentage threshold grows, both, the accuracy and the 
objects comparisons percentage increase.  

When the percentage threshold is 100, using SCHN and SCNHN the obtained accu-
racy and the comparisons percentage are the same, because in both cases, a leaf is 
marked with the majority class only when all of the objects in the node belong to the 
same class. In the next experiments, SCHN with percentage threshold =100 (which is 
the same as using SCNHN, with percentage threshold =100) and SC=20, were used. 
     In table 1, the obtained accuracy (%Acc) and the percentage of objects comparisons 
(%Com) are shown, for k=1,3, 5 in k-MSN process. The number of comparisons per-
formed by exhaustive search is considered as the 100 percent of comparisons. Using 
k=1, the higher accuracy in average is obtained with the exhaustive NN classifier. 

The experiments with different k-MSN were repeated using F and HOEM func-
tions. The performance of the different classifiers is similar for F and HOEM func-
tions. Using HOEM function, Fukunaga’s classifier is an exact method, it happens 
because HOEM function is a metric. However, for all classifiers the lower accuracy is 
obtained using HOEM function. 

In figure 7 a graphic of the accuracy against the comparisons percentage using the 
different fast NN (MSN) classifiers, with k=1, is shown. From this graph, we can see that 
all the classifiers obtained similar accuracy but the classifiers proposed in this work 
(using MSN local and MSN global search) did the smaller number of comparisons.  
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Fig. 7. Accuracy against the comparisons percentage using the different classifiers and three 
different comparison functions 

5   Conclusions 

In practical problems, it is frequent to find non numerical object descriptions or even 
mixed data (numerical and non numerical). Therefore, it is important to use methods 
that allow us to work with these kind of features.  

Exhaustive k-NN 
classifier 

Adapted Fukunaga’s k-NN 
classifier 

Adapted Moreno-Seco’s 
k-NN classifier 

PROPOSED CLASSIFIER: 
Using k-MSN local and k-
MSN global search 
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In this work, an approximated fast k-MSN classifier for mixed data was proposed. In 
order to compare our method, Fukunaga’s and Moreno-Seco’s classifiers were imple-
mented using the same object comparison functions for mixed data. Based on our ex-
perimental results, in comparison with Fukunaga’s and Moreno-Seco’s classifiers, our 
method (using MSN local and MSN global search), obtained a big reduction on the 
number of comparisons between objects with only a slightly accuracy reduction.  

As future work, we plan to look for a pruning rule non based on metric properties, 
which allow us to reduce the number of objects comparisons, but doing an exhaustive 
tree traversal during the search process. 
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Abstract. We propose a sequential forward feature selection method to
find a subset of features that are most relevant to the classification task.
Our approach uses novel estimation of the conditional mutual informa-
tion between candidate feature and classes, given a subset of already
selected features which is utilized as a classifier independent criterion
for evaluation of feature subsets. The proposed mMIFS-U algorithm is
applied to text classification problem and compared with MIFS method
and MIFS-U method proposed by Battiti and Kwak and Choi, respec-
tively. Our feature selection algorithm outperforms MIFS method and
MIFS-U in experiments on high dimensional Reuters textual data.

Keywords: Pattern classification, feature selection, conditional mutual
information, text categorization.

1 Introduction

Feature selection plays an important role in classification problems. In general, a
pattern classification problem can be described as follows: Assume that feature
space X is constructed from D features Xi, i = 1, . . . , D and patterns drawn
from X are associated with |C| classes, whose labels constitute the set C =
{c1, . . . , c|C|}. Given a training data the task is to find a classifier that accurately
predicts the label of novel patterns. In practice, with a limited amount of training
data, more features will significantly slow down the learning process and also
cause the classifier to over-fit the training data because of the irrelevant or
redundant features which may confuse the learning algorithm. By reducing the
number of features, we can both reduce over-fitting of learning methods and
increase the computational speed of classification. We focus in this paper on
feature selection in context of classification.

The feature selection task is to select a subset S of d features from a set of
available features X = {Xi, i = 1, . . . , D}, where d < D represents the desired
number of features. All feature selection (FS) algorithms aim at maximizing
some performance measure for the given class and different feature subsets S.

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 417–426, 2007.
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Many existing feature selection algorithms can roughly be divided into two
categories: filters [1], [2] and wrappers [3]. Filter methods select features inde-
pendently of the subsequent learning algorithm. They rely on various measures
of the general characteristics of the training data such as distance, information,
dependency, and consistency [4]. On the contrary the wrapper FS methods re-
quire one predetermined learning algorithm and use its classification accuracy
as performance measure to evaluate the quality of selected set of features. These
methods tend to give superior performance as they find features better suited to
the predetermined learning algorithm, but they also tend to be more computa-
tionally expensive. When the number of features becomes very large, the filter
methods are usually to be chosen due to computational efficiency. Our interest
in this paper is to design a filter algorithm.

Search scheme is another problem in feature selection. Different approaches
such as complete, heuristic and random search have been studied in the liter-
ature [5] to balance the tradeoff between result optimality and computational
efficiency. Many filter methods [6] evaluate all features individually according
to a given criterion, sort them and select the best individual features. Selection
based on such ranking does not ensure weak dependency among features, and
can lead to redundant and thus less informative selected subset of features.

Our approach to FS iteratively selects features which maximize their mutual
information with the class to predict, conditionally to the response of any other
feature already selected. Our conditional mutual information criterion selects
features that are highly correlated with the class to predict if they are less
correlated to any feature already selected.

Experiments demonstrate that our sequential forward feature selection algo-
rithm mMIFS-U based on conditional mutual information outperforms the MIFS
methods proposed by Battiti [7] and MIFS-U proposed by Kwak and Choi [8],
both of which we also implemented for test purposes.

2 Information-Theoretic Feature Selection

In this section we briefly introduce some basic concepts and notions of the in-
formation theory which are used in the development of the proposed feature
selection algorithm.

Assume a D-dimensional random variable Y = (X1, . . . , XD) ∈ X ⊆ RD

representing feature vectors, and a a discrete-valued random variable C, repre-
senting the class labels. In accordance with Shannon’s information theory [9],
the uncertainty of a random variable C can be measured by entropy H(C). For
two random variables Y and C, the conditional entropy H(C|Y ) measures the
uncertainty about C when Y is known. The amount by which the class uncer-
tainty is reduced, after having observed the feature vector Y , is called the mutual
information, I(C, Y ). The relation of H(C), H(C|Y ) and I(C, Y ) is

I(C, Y ) = I(Y, C) = H(C) − H(C|Y ) =
∑

c∈C

∫

y
p(c,y) log

p(c,y)
P (c)p(y)

dy, (1)
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where P (c) represents the probability of class C, y represents the observed fea-
ture vector Y , p(c,y) denotes the joint probability density of C and Y .

The goal of classification is to minimize the uncertainty about predictions of
class C for the known observations of feature vector Y . Learning a classifier is to
increase I(C, Y ) as much as possible. In terms of mutual information (MI), the
purpose of FS process for classification is to achieve the highest possible value
of I(C, Y ) with the smallest possible size of feature subsets.

The FS problem based on MI can be formulated as follows [7]: Given an
initial set X with D features, find the subset S ⊂ X with d < D features S =
{Xi1 , . . . , Xid

} that minimizes conditional entropy H(C|S), i.e., that maximizes
the mutual information I(C, S).

Mutual information I(C, S) between the class and the features has become a
popular measure in feature selection [7], [8], [10], [11]. Firstly, it measures general
dependence between two variables in contrast with the correlation. Secondly, MI
determines the upper bound on the theoretical classification performance [12],[9].

To compute the MI between all candidate feature subsets and the classes,
I(C, S) is practically impossible. So realization of the greedy selection algorithm
is computationally intensive. Even in a sequential forward search it is computa-
tionally too expensive to compute I(C, S).

To overcome this practical obstacle alternative methods of I(C, S) computa-
tion have been proposed by Battiti [7] and Kwak and Choi [13], [8], respectively.
Assume that S is the subset of already selected features, X \ S is the subset
of unselected features. For a feature Xi ∈ X \ S to be selected, the amount
of information about the class C newly provided by feature Xi without being
provided by the already selected features in the current subset S must be the
largest among all the candidate features in X \ S. Therefore, the conditional
mutual information I(C, Xi|S) of C and Xi given the subset of already selected
features S is maximized. Instead of calculating I(C, Xi, S), the MI between a
candidate for newly selected feature Xi ∈ X \ S plus already selected subset S
and the class variable C, Battiti and Kwak and Choi used only I(C, Xi) and
I(Xs, Xi), Xs ∈ S.

The estimation formula for I(C, Xi|S) in MIFS algorithm proposed by Battiti
[7] is as follows:

IBattiti(C, Xi|S) = I(C, Xi) − β
∑

Xs∈S

I(Xs, Xi). (2)

Kwak and Choi [8] improved (2) in their MIFS-U algorithm under the assump-
tion that the class C does not change the ratio of the entropy of Xs and the MI
between Xs and Xi

IKwak(C, Xi|S) = I(C, Xi) − β
∑

Xs∈S

I(C, Xs)
H(Xs)

I(Xs, Xi). (3)

In both (2) and (3), the second term of the right hand side is used to estimate
the redundant information between the candidate feature Xi and the already
selected features with respect to classes C. The parameter β is used as a factor
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for controlling the redundancy penalization among single features and has a great
influence on FS. The parameter was found experimentally in [7]. It was shown
by Peng et al. [11] that for maximization of I(C, S) in the sequential forward
selection a suitable value of β in (2) is 1/|S|, where |S| denotes the number of
features in S.

2.1 Conditional Mutual Information

Our feature selection method is based on the definition of the conditional mutual
information I(C, Xi|Xs) as the reduction in the uncertainty of class C and the
feature Xi when Xs is given:

I(C, Xi|Xs) = H(Xi|Xs) − H(Xi|C, Xs). (4)

The mutual information I(C, Xi, Xs) satisfies the chain rule for information [9]:

I(C, Xi, Xs) = I(C, Xs) + I(C, Xi|Xs). (5)

For all candidate features to be selected in the greedy feature selection algo-
rithm, I(C, Xs) is common and thus does not need to be computed. So the
greedy algorithm now tries to find the feature that maximizes conditional mu-
tual information I(C, Xi|Xs).

Proposition 1: The conditional mutual information I(C, Xi|Xs) can be repre-
sented as

I(C, Xi|Xs) = I(C, Xi) − [I(Xi, Xs) − I(Xi, Xs|C)] (6)

Proof: By using the definition of MI we can rewrite the right hand side of (6):

I(C, Xi) − [I(Xi, Xs) − I(Xi, Xs|C)] = H(C) − H(C|Xi)
− [H(Xi) − H(Xi|Xs)] + H(Xi|C) − H(Xi|Xs, C)
= H(C) − H(C|Xi) − H(Xi) + H(Xi|Xs) + H(Xi|C) − H(Xi|Xs, C)
= H(Xi|Xs) − H(Xi|Xs, C) + H(C) − H(C|Xi) − [H(Xi) − H(Xi|C)]
= I(C, Xi) − I(C, Xi) + H(Xi|Xs) − H(Xi|Xs, C). (7)

The last term of (7) equals to I(C, Xi|Xs).
The ratio of mutual information between the candidate feature Xi and the

selected feature Xs and the entropy of Xs is a measure of correlation (also known
as coefficient of uncertainty) between Xi and Xs [9]

CUXi,Xs =
I(Xi, Xs)
H(Xs)

=
(
1 − H(Xs|Xi)

H(Xs)
)
, (8)

0 ≤ CUXi,Xs ≤ 1. CUXi,Xs = 0 if and only if Xi and Xs are independent.

Proposition 2. Assume that conditioning by the class C does not change the
ratio of the entropy of Xs and the MI between Xs and Xi, i.e., the following
relation holds

H(Xs|C)
I(Xi, Xs|C)

=
H(Xs)

I(Xi, Xs)
. (9)
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Then for the conditional mutual information I(C, Xi|Xs) it holds:

I(C, Xi|Xs) = I(C, Xi) − CUXi,Xs I(C, Xs). (10)

Proof: It follows from condition (9) and the definition (8) that

I(Xi, Xs|C) = CUXi,Xs H(Xs|C). (11)

Using the equations (6) and (11) we obtain (10).
We can see from (10) that the second term is the weighted mutual information

I(C, Xs) with the weight equal to the measure of correlation CUXi,Xs . We pro-
pose the modification of the estimation Ĩ(C, Xi|S) for I(C, Xi|S) of the following
form

Ĩ(C, Xi|S) = I(C, Xi) − max
Xs∈S

CUXi,Xs I(C, Xs). (12)

It means that the best feature in the next step of the sequential forward search
algorithm is found by maximizing (12)

X+ = arg max
Xi∈X\S

{I(C, Xi) − max
Xs∈S

CUXi,Xs I(C, Xs)}. (13)

3 Proposed Feature Selection Algorithm

The sequential forward selection algorithm mMIFS-U based on the estimation
of conditional mutual information given in (12) can be realized as follows:

1. Initialization:
Set S = ”empty set”, set X = ”initial set of all D features”.

2. Pre-computation:
For all features Xi ∈ X compute I(C, Xi).

3. Selection of the first feature:
Find feature X� ∈ X that maximizes I(C, Xi);
set X = X \ {X�}, S = {X�}.

4. Greedy feature selection:
Repeat until the desired number of features is selected.
(a) Computation of entropy:

For all Xs ∈ S compute entropy H(Xs), if it is not already available.

(b) Computation of the MI between features:
For all pairs of features (Xi, Xs) with Xi ∈ X , Xs ∈ S compute I(Xi, Xs),
if it is not yet available.

(c) Selection of the next feature:
Find feature X+ ∈ X according to formula (13).

Set X = X \ {X+}, S = S ∪ {X+}.
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4 Experiments and Results

Feature selection has been successfully applied to various problems including text
categorization (e.g., [14]). The text categorization (TC) task (also known as text
classification) is the task of assigning documents written in natural language into
one or more thematic classes belonging to the predefined set C = {c1, . . . , c|C|}
of |C| classes. The construction of a text classifier relies on an initial collection
of documents pre-classified under C. In TC, usually a document representation
using the bag-of-words approach is employed (each position in the feature vector
representation corresponds to a given word). This representation scheme leads
to very high-dimensional feature space, too high for conventional classification
methods. In TC the dominant approach to dimensionality reduction is feature
selection based on various criteria, in particular filter-based FS.

Sequential forward selection methods MIFS, MIFS-U and mMIFS-U presented
in Sections 3 and 2 have been used in our experiments for reducing vocabulary
size of the vocabulary set V = {w1, . . . , w|V|} containing |V| distinct words oc-
curring in training documents. Then we used the Näıve Bayes classifier based
on multinomial model, linear Support Vector Machine (SVM) and k-Nearest
Neighbor (k-NN) classifier.

4.1 Data set

In our experiments we examined the commonly used Reuters-21578 data set1

to evaluate all considered algorithms. Our text preprocessing included removing
all non-alphabetic characters like full stops, commas, brackets, etc., lowering the
upper case characters, ignoring all the words that contained digits or non alpha-
numeric characters and removing words from a stop-word list. We replaced each
word by its morphological root and removed all words with less than three occur-
rences. The resulting vocabulary size was 7487 words. The ModApte train/test
split of the Reuters-21578 data contains 9603 training documents and 3299 test-
ing documents in 135 classes related to economics. We used only those 90 classes
for which there exists at least one training and one testing document.

4.2 Classifiers

All feature selection methods were examined in conjuction with each of the
following classifiers:

Näıve Bayes. We use the multinomial model as described in [15]. The predicted
class for document d is the one that maximizes the posterior probability of each
class given the test document P (cj |d),

P (cj |d) ∝ P (cj)
|V|∏

v

P (wv|cj)Niv .

1 http://www.daviddlewis.com/resources/testcollections/reuters21578.
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Here P (cj) is the prior probability of the class cj , P (wv|cj) is the probability
that a word chosen randomly in a document from class cj equals wv, and Niv is
the number of occurrences of word wv in document d. We smoothed the word
and class probabilities using Bayesian estimate with word priors and a Laplace
estimate, respectively.

Linear Support Vector Machines. The SVM method has been introduced in TC
by [16]. The method is defined over the vector space where the classification
problem is to find the decision surface that ”best” separates the data points
of one class from the other. In case of linearly separable data the decision sur-
face is a hyperplane that maximizes the ”margin” between the two classes. The
normalized word frequency was used for document representation:

tfidf(wi, dj) = n(wi, dj) · log
( |D|
n(wi)

)
, (14)

where n(wi) is the number of documents in D in which wi occurs at least one.

K-Nearest Neighbor. Given an arbitrary input document, the system ranks its
nearest neighbors among training documents, and uses the classes of the k top-
ranking neighbors to predict the class of the input document. The similarity
score of each neighbor document to the new document being classified is used as
a weight if each class, and the sums of class weights over the nearest neighbors
are used for class ranking. The normalized word frequency (14) was used for
document representation.

4.3 Performance Measures

For evaluating the multi-label classification accuracy we used the standard multi-
label measures precision and recall, both micro-averaged. Estimates of micro-
averaging precision and recall are obtained as

π̂mic =

∑|C|
j=1 TPj

∑|C|
j=1(TPj + FPj)

, ρ̂mic =

∑|C|
j=1 TPj

∑|C|
j=1(TPj + FNj)

.

Here TPj, (FPj) is the number of documents correctly (incorrectly) assigned to
cj ; FNj is the number of documents incorrectly not assigned to cj .

4.4 Thresholding

There are two variants of multi-label classification [17], namely ranking and
”hard” classifiers. Hard classification assigns to each pair document/class (d, ck)
the value YES or NO according to the classifier result. On the other hand ranking
classification gives to the pair (d, cj) a real value φ(d, cj), which represents the
classifier decision for the fact that d ∈ ck. Then we sort all classes for the
document d according to φ(d, cj) and the best τj classes are selected where τj

is the threshold for the class cj . Several thresholding algorithms to train the τj

exist.
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Fig. 1. Classifier performance on Reuters data (90 classes), with Apte split, and
RCut-thresholding. Charts of micro-averaged precision, (left-side) and micro-averaged
recall (right-side) of Näıve Bayes classifier (1st row), Support Vector Machine (2nd
row) and k-Nearest Neighbour (3rd row). Horizontal axes indicate numbers of words.

The commonly used methods RCut, PCut and SCut are described and com-
pared in the paper [18]. It is shown that thresholding has great impact on the
classification result. However, it is difficult to choose the best method. We used
the RCut thresholding, which sorts classes for the document and assigns YES
to the best τ top-ranking classes. There is one global threshold τ (integer value
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between 1 and |C|) for all classes. We set the threshold τ according to the av-
erage number of classes per one document. We used the whole training set for
evaluating the value τ .

The Näıve Bayes and k-NN classifiers are typical tools for ranking classifica-
tion, with which we used thresholding. In contrast, SVM is the ”hard” classifier
because there is one classifier for each class which distinguishes between that
class and the rest of classes. In fact, SVM may assign a document to no class. In
that case we reassign the document to such class that is best according to SVM
class rating. This improves the classification result.

4.5 Experimental Results

In total we made 21 experiments, each experiment was performed for eleven dif-
ferent vocabulary sizes and evaluated by three different criteria. Sequential FS
(SFS) is not usually used in text classification because of its computational cost
due to large vocabulary size. However, in practice we can often either employ
calculations from previous steps or make some pre-computations during initial-
ization. Since FS is typically done in an off-line manner, the computational time
is not as important as the optimality of the found subset of words and classifi-
cation accuracy. The time complexity of SFS algorithms is less than O(|V ′ ||V|2)
where |V ′ | is the number of desired words and |V| is the total number of words
in the vocabulary. The required space complexity is S(|V|2/2) because we need
to store the mutual information for all pairs of words (wi, ws) with wi ∈ V \ S
and ws ∈ S. The charts in Figure 1 show the resulting micro-averaged preci-
sion and recall criteria. In our experiments the best micro-averaged performance
was achieved by the new mMIFS-U methods using modified conditional mutual
information.

5 Conclusion

In this paper we proposed a new sequential forward selection algorithm based on
novel estimation of the conditional mutual information between the candidate
feature and the classes given a subset of already selected features.

– Experimental results on textual data show that the modified MIFS-U sequen-
tial forward selection algorithm (mMIFS-U) performs well in classification as
measured by precision and recall measures and that the mMIFS-U performs
better than MIFS and MIFS-U on the Reuters data.

– In this paper we also present a comparative experimental study of three clas-
sifiers. SVM overcomes on average both Näıve Bayes and k-Nearest Neighbor
classifiers.

Acknowledgements. The work has been supported by EC project No. FP6-
507752, the Grant Agency of the Academy of Sciences of the Czech Republic
(CR) project A2075302, and CR MŠMT grants 2C06019 and 1M0572 DAR.
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Abstract. Ensemble methods are general techniques to improve the ac-
curacy of any given learning algorithm. Boosting is a learning algorithm
that builds the classifier ensembles incrementally. In this work we pro-
pose an improvement of the classical and inverse AdaBoost algorithms
to deal with the problem of the presence of outliers in the data. We
propose the Robust Alternating AdaBoost (RADA) algorithm that al-
ternates between the classic and inverse AdaBoost to create a more stable
algorithm. The RADA algorithm bounds the influence of the outliers to
the empirical distribution, it detects and diminishes the empirical prob-
ability of “bad” samples, and it performs a more accurate classification
under contaminated data.

We report the performance results using synthetic and real datasets,
the latter obtained from a benchmark site.

Keywords: Machine ensembles, AdaBoost, Robust Learning Algorithms.

1 Introduction

Boosting algorithms, since the mid nineties, have been a very popular technique
for constructing ensembles in the areas of Pattern Recognition and Machine
Learning (see [2], [6], [8]). Boosting is a learning algorithm to construct a pre-
dictor by combining, what are called, weak hypotheses. The AdaBoost algorithm,
introduced by Freund and Schapire [6], builds an ensemble incrementally, plac-
ing increasing weights on those examples in the data set, which appear to be
“difficult”. The Inverse AdaBoost [6] is a variant of the classic approach but with
exactly the opposite philosophy, it decreases the weights of difficult objects.

In real engineering and scientific applications, data are noisy and present
outlying observations. Assumptions of the underlying data generation process
no longer holds and the model estimates are badly affected obtaining a poor
performance. For example, outliers may occur in recording data.
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In this work, we start by empirically demonstrating that the typical boosting
algorithm, AdaBoost, is seriously affected by outliers. Similar results were re-
ported in [1] and [2] for this algorithm and in [7] for bagging, another method to
build ensembles [4]. Since AdaBoost forces each learner to focus on the difficult
examples, learning rounds can strongly depend on isolated examples more than
on local patterns of the featured space. Learning such outlying observations could
seriously compromise the generalization ability of the final obtained learner. In-
verse Boosting on the other hand, systematically ignores difficult examples and
hence tends to be more robust than AdaBoost. However this is usually achieved
at the expense of a lower performance.

Following this analysis, we propose an improvement of the classical and in-
verse AdaBoost algorithms to deal with the problem of the presence of outliers in
the data. This consists in Robust Alternating AdaBoost (RADA), an algorithm
capable to alternate between the classic and inverse AdaBoost to create a more
stable algorithm. The RADA algorithm bounds the influence of the outliers to
the empirical distribution, detects and diminishes the empirical probability of
“bad” samples, and will perform a more accurate classification under contami-
nated data.

This paper is organized as follows. In section 2, we briefly introduce Ad-
aBoost and Inverse AdaBoost algorithms. In section 3, we make an analysis of
the sensitivity of AdaBoost to the presence of outliers. Our proposed algorithm
is illustrated in section 4. In section 5 we compare the performance of the classic
AdaBoost, inverse AdaBoost and our proposed algorithm called RADA. The last
section is devoted to concluding remarks.

2 Boosting Algorithms

The AdaBoost Algorithm [6], introduced in 1995 by Freund and Schapire, has
a theoretical background based on the “PAC” learning model [9]. The authors
of this model were the first to pose the question of whether a weak learning
algorithm that is slightly better than random guessing can be ”boosted” in a
strong learning algorithm. The classic AdaBoost takes as an input a training set
Z = {(x1, y1)...(xn, yn)} where each xi is a variable that belongs to X ⊂ R

d

and each label yi is in some label Y. In this particular paper we assume that
Y = {−1, 1}. AdaBoost calls a weak or base learning algorithm repeatedly in
a sequence of stages t = 1...T . The main idea of AdaBoost is to maintain a
sampling distribution over the training set. This sample set is used to train the
learner at round t. Let Dt(i) be the sampling weight assigned to the example i
on round t. At the beginning of the algorithm the distribution is uniform, that
is distribution D1(i) = 1

n for all i. At each round of the algorithm however,
the weights of the incorrectly classified examples are increased, so that the fol-
lowing weak learner is forced to focus on the “hard” examples of the training
set. The job of each weak or base learner is to find a hypothesis ht : X → {−1, 1}
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appropriate for the distribution Dt. The goodness of the obtained hypothesis
can be quantified as the weighted error:

εt = Pri∼Dt [ht(xi) �= yi] =
∑

i:ht(xi) �=yi

Dt(i) (1)

Notice that the error is measured with respect to the distribution Dt on which
the weak learner was trained. Once AdaBoost has computed a weak hypothe-
sis ht, it measures the importance that the algorithm assigns to ht with the
parameter.

αt =
1
2

ln
(

1 − εt

εt

)
(2)
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Fig. 1. Graph of the α variable given by equation (4) with the robust parameter values
r = 2, 3, 4, compared to the AdaBoost α

Figure 1 shows the graph of αt. After choosing αt the next step is to update
the distribution Dt with the following rule,

Dt+1(i) =
1
Zt

Dt(i)e−αtyiht(xi)

where Zt is a normalization factor. The effect of this rule is that, when a exam-
ple is misclassified its sampling weight for the next round is increased, and the
opposite occurs when the classification is correct. This updating rule makes the
algorithm to focus on the “hard” examples, instead in the correctly classified ex-
amples. After a sequence of T rounds have been carried out, the final hypothesis
H is computed as

HT (x) = sign

(
T∑

t=1

αtht(x)

)
(3)

The other Boosting variant considered in this paper is the Inverse AdaBoost.
This algorithm is more robust than the classic approach because it focuses on the
correct classified examples, and tries to diminish the influence of the incorrect
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examples in the distribution, however the classifiers will tend to be more and more
similar, eliminating any diversity in the process [8]. Inverse Boosting is a variant
similar to the “hedge” algorithm, first proposed in [6]. The philosophy is com-
pletely the opposite to classic boosting. Instead of increasing the sampling prob-
ability of the hard examples, we decrease it, thereby gradually filtering them out.
Each learner is created to reinforce the knowledge acquired by previous learners,
and hence the capability of the algorithm to discover new patterns is low.

3 Empirical Robustness Analysis of AdaBoost

In this section we empirically show that the classic AdaBoost algorithm lacks of
robustness and stability under the presence of outlying data.

Suppose that the weak learner ht∗ at stage t∗ correctly learns almost all its
training samples Zt∗ obtaining a very low classification error (1) (εt∗ ≈ 0),
in this case the αt∗ parameter (2) will approach to infinity. This mean that
the weak learner ht∗ will receive a very high weight in the strong hypothesis
HT (x) and the ensemble decision will strongly depended on this weak learner.
If there exists a sample in Z, say (xj , yj), that was misclassified by the weak
learner ht∗ , then the expression exp(−αt∗yjht∗(xj)) will tend to infinity as long
as αt∗ tends to infinity. Then, the sample (xj , yj), will obtain a very high weight
0 << Dt+1(j) ≈ 1 for the next round. Due to the high probability of the data
(xj , yj), it will be sampled several times during the bootstrap step and the weak
hypothesis will learn it. If this sample is a “bad” sample (for example an error)
or an outlier, an undesired effect of overfitting, poor generalization, very complex
model and learning bad data will occur.

If we even construct a robust weak learner (see [1]) it will also be affected by a
“bad sample” where most of the data in the bootstrap sample behaves different
than the majority of the original sample.

To empirically show the behavior of AdaBoost we create the following syn-
thetic case. We randomly generated 41 samples, where the 20 samples of the
class −1 were generated with a gaussian distribution N (−2, 1), 20 samples with
of the class 1 were generated with a gaussian distribution N (2, 1) and we ar-
bitrarily introduce an additional “bad” sample at location x = 5 with target
y = −1. We bootstrapped only the original 40 samples and construct a weak
learner h1, where

h1(x) =

{
1 |X [1] − x| < |X [−1] − x|
−1 |X [1] − x| ≥ |X [−1] − x|

where X
[k]

= 1
n

∑n
i=1 x

[k]
i , k = {−1, 1}, and x

[k]
i is the bootstrapped sample i of

the class k. Figure 2 shows the empirical distribution at stage 1, 2 and 3 (from
left to right), where the first row is the empirical distribution of the AdaBoost
algorithm, while the second row is the Robust Alternating AdaBoost algorithm.
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Note that in the first round all the samples weight are equal to 1
41 , but in the sec-

ond round, the misclassified sample number 41 considerably increased its weight
over 0.5 in the AdaBoost algorithm while our proposal remains lower. Due to
the high weight of this sample, in the next round, the bootstrap sample is com-
posed mostly by this data. The weak learner of stage two learns the outlying
sample but at the same time degrades the performance of the strong hypothe-
sis misclassifying other three data that were correctly classify previously. This
phenomenon does not occur to our proposal, remaining more stable.
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Fig. 2. Empirical Distribution of the AdaBoost (first row) and the Robust Alternating
AdaBoost (second row) algorithms at stages 1 (left), 2 (middle) and 3 (right)

4 Robust Alternating AdaBoost

In this section we improve the classical and inverse AdaBoost algorithms to deal
with the problem of the presence of outliers in the data. Our proposal mainly
consists in creating a variant of the AdaBoost algorithm that will alternate
between the classic and inverse AdaBoost to create a more stable algorithm that
will perform a more adequate classification.

In the previous section we empirically showed that the empirical distribution
Dt(i) of the data sample was strongly affected by the presence of outliers. The
actualization of the empirical probability Dt+1(i) of the sample (xi, yi) depends
on its weight of the previous stage Dt(i), the result of the classification ht(xi)
compared to the target yi and the variable αt. If the weak learner has a very
low error εt, then the αt variable becomes very large as it is shown in figure 1.
Furthermore if the weak learner misclassifies the sample (xi, yi), then the new
probability weight Dt+1(i) will considerably increase its value. This could mean
that if the sample corresponds to an outlying observation that was misclassified
by a good learner, it will receive a high probability distribution and will be
more probable to be selected more than once, and the next weak learner ht+1
will mostly learn this isolated observation. The resulting model could overfit the
training data, it could be more complex with several weak learners composing
the strong hypothesis, or worst, it could learn erroneous data samples.



432 H. Allende-Cid et al.

To overcome this drawback of the classic AdaBoost, we bound the value of the
αt variable by taking the r-th square root to low values of εt, i.e., we compute
αt as:

αt =

⎧
⎪⎨

⎪⎩

1
2

r

√
ln

(
1−εt

εt

)
+ αγ εt < γ

1
2 ln

(
1−εt

εt

)
εt ≥ γ

(4)

where αγ = 1
2 ln

(
1−γ

γ

)
− 1

2
r

√
ln

(
1−γ

γ

)
is a constant needed so that equation (4)

is continuous.
Applying equation (4) will prevent that the empirical distribution consider-

ably grow in one step for any sample. However the empirical distribution is
updated at each stage, and after few iterations the probability weight of the
samples that were repeatedly misclassified will have bigger values compared to
other samples. For this reason we introduce an inverting variable β(i) and an
age variable age(i) for each sample i = 1..n. The variable β(i) has an initial
value of one, meaning that the algorithm behaves for the sample as the classical
AdaBoost, i.e., increases its empirical distribution when it is misclassified and
decreases its value otherwise. If the value of β(i) is -1, then the algorithm behaves
for the sample as the inverse AdaBoost, i.e., decreases its empirical distribution
when it is misclassified and increases its value otherwise. The variable age(i)
counts the number of times that the sample i was sequentially misclassified, if
this number exceeds the threshold τ then the value of β(i) is inverted to −1. In
other words, the weight of the misclassified sample grows until the number of
iterations reaches a limit τ and then begins to decrease. If the β(i) was inverted
to −1 and the sample was correctly classified in further stages, then the value
of β(i) is inverted back to 1.

Algorithm 1 shows our proposed Robust Alternating AdaBoost algorithm.

5 Experimental Results

In this section we empirically show the performance of our Robust Alternating
AdaBoost (RADA) model proposal compared to classical Adaboost (ADA)
and Inverse Adaboost (IADA) models (see [6] and [8] respectively for further
details about these models) in both Synthetic and Real data sets, the latter was
obtained from a benchmark site.

The data of both, synthetic and real data sets, were separated in training
and test sets. All the results reported were obtained for each model as the mean
value of the metrics computed for 20 runs with the same sets of data.

For the synthetic experiment we have created a synthetic data set {(xi, yi)}n
i=1,

as an independent sample obtained from a mixture of gaussian distributions la-
beled with the class {−1, 1}. For the class y = −1, the random variable X [−1] is
a mixture of three gaussian distributions with mean μ

[−1]
1 = −10, μ

[−1]
2 = 0 and

μ
[−1]
3 = 10 and standard deviation σ

[−1]
i = σ = 1, i = 1..3 respectively. For the

class y = 1, the random variable X [1] is a mixture of two gaussian distributions
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Algorithm 1. Robust Alternating AdaBoost
1: Given is the training data set Z = {(x1, y1), ..., (xn, yn)} with n elements, where

xi ∈ X and yi ∈ Y = {−1, 1}.
2: Initialize the parameters. Pick the age threshold τ , the bound threshold λ and the

robust parameter r. Let T = 0.
3: Initialize the empirical distribution D1(i) = 1

n
, the inverting variable β(i) = 1 and

the age variable age(i) = 0 for each data sample (xi, yi), i = 1..n.
4: repeat
5: Increment T by one.
6: Take a bootstrap sample ZT from Z with distribution DT .
7: Train the weak learner hT : X → {−1, 1} with the bootstraped sample ZT as

the training set.
8: Compute the weighted error εT of the weak hypothesis hT as

εT = Pri∼DT [hT (xi) �= yi]

9: Compute αT with equation

αT =

���
��

1
2

r

�
ln
�

1−εT
εT

�
+ αγ εT < γ

1
2 ln
�

1−εT
εT

�
εT ≥ γ

10: Update the empirical distribution as

DT+1(i) =
DT (i)

ZT
× e(−αT β(i)yihT (xi))

where ZT is the normalization factor.
11: The strong hypothesis HT (x) at stage T is given by

HT (x) = sign

�
T	

t=1

αtht(x)




12: Classify the training data set Z = {(x1, y1), ..., (xn, yn)} with the strong hypoth-
esis HT (x).

13: if sample (xi, yi) is correctly classified by HT (x) (i.e, HT (xi)yi > 0) then
14: Let age(i) = 0 and β(i) = 1.
15: else
16: Increment age(i) by one.
17: if age(i) > τ then let β(i) = −1 and age(i) = 0
18: end if
19: until The stopping criterion is met
20: Output: The strong hypothesis HT (x)

with mean μ
[1]
1 = −5, μ

[1]
2 = 5 and standard deviation σ

[1]
i = σ = 1, i = 1, 2

respectively. For each gaussian we generated 20 examples, i.e., the class y = −1
has 60 samples while the class y = 1 has 40 data. The observational process was
obtained by including additive outliers: Z [k] = X [k]+V U , where X [k], k = −1, 1,
are the gaussian variables generated as was previously explained, V is a zero-
one process with P (V �= 0) = δ, 0 < δ � 1, and U has distribution N (0, σ2

U )
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Table 1. Summary results of the performance evaluation of the ADA, IADA and
RADA algorithms

Algorithm % Outliers T CE − Train Min − Train CE − Test Min − Test

ADA 0 9.8 21.45 ± 7.82 3.00 23.60 ± 8.60 8.00
IADA 0 8.7 20.95 ± 1.10 20.00 23.25 ± 1.02 22.00

RADA5 0 7.3 24.50 ± 6.51 9.00 24.30 ± 7.58 10.00
RADA10 0 8.7 22.85 ± 6.67 9.00 22.10 ± 6.80 11.00
RADA20 0 7.1 23.00 ± 7.44 7.00 24.55 ± 7.79 10.00

ADA 5 18.8 6.15 ± 2.70 3.00 9.20 ± 3.49 5.00
IADA 5 14.9 12.90 ± 7.74 3.00 15.05 ± 7.96 4.00

RADA5 5 18.6 6.55 ± 4.81 2.00 9.10 ± 4.87 5.00
RADA10 5 17.7 5.35 ± 2.43 2.00 8.00 ± 2.27 5.00
RADA20 5 17.2 5.90 ± 2.59 2.00 9.60 ± 3.30 5.00

ADA 10 17.4 10.70 ± 2.34 8.00 6.85 ± 4.57 1.00
IADA 10 10.0 19.80 ± 7.78 7.00 16.65 ± 10.66 2.00

RADA5 10 17.5 11.10 ± 3.65 8.00 6.10 ± 4.40 1.00
RADA10 10 18.2 11.80 ± 5.23 5.00 6.00 ± 6.64 1.00
RADA20 10 16.8 11.25 ± 2.67 8.00 5.45 ± 3.71 1.00

ADA 20 13.5 20.50 ± 8.52 13.00 17.25 ± 8.48 8.00
IADA 20 12.7 21.00 ± 7.17 14.00 17.55 ± 7.23 9.00

RADA5 20 13.5 18.55 ± 6.90 14.00 16.55 ± 8.46 7.00
RADA10 20 16.3 18.65 ± 5.72 13.00 15.25 ± 6.95 9.00
RADA20 20 15.6 18.75 ± 5.34 15.00 16.30 ± 6.42 9.00

with variance σ2
U � σ2. The generating process was affected with δ = 0%,

5%, 10% and 20% of outliers and σU = 9 ∗ σ. The test set was generated similar
to the training set. The classifier used in the algorithms is the Bayesian Classifier
(QDA) (see [5]).

Table 1 shows the summary results of the performance evaluation of the ADA,
IADA and RADA algorithms, where for the latter the robustifying r parameter
has the values r = 0.05, 0.10 and 0.20. As we can observe in the CE-Test col-
umn, the algorithm with better generalization ability was the RADA algorithm
with its variants outperforming in most of the experiments the ADA and IADA
algorithms with statistical significance. Nevertheless that the ADA obtained good
results in the training set, the RADA algorithm with its variants obtained lower
error in the test set. Note that in the contaminated cases one of the RADA vari-
ants always obtained the best strong hypothesis (see column Min-Test). We also
observed that when the percentage of outliers was increased all the models became
more complex and the performance was degraded. When the percentage of out-
liers was 0%, the algorithm with best performance and lowest standard deviation
was IADA, however in the contaminated data sets, it obtained the worst perfor-
mance. We can also notice, that RADA10 and RADA20 obtained better results
than RADA5, implying that the robust r parameter influences in the performance
of the RADA algorithm under contaminated data. The IADA algorithm obtained
the simplest model because its mean T value was lower than the other algorithms,
this implies that the minimum value was reached with less rounds.
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Table 2. Summary results of the performance evaluation of the ADA, IADA and
RADA algorithms

Dataset Algorithm T CE − Train Min − Train CE − Test Min − Test

ADA 6.2 1.64 ± 0.82 0.24 3.33 ± 0.29 2.93
IADA 8.9 2.52 ± 0.33 1.96 3.24 ± 0.27 2.93

Breast RADA5 4.2 1.86 ± 0.77 0.49 3.41 ± 0.41 2.56
Cancer RADA10 8.3 2.04 ± 0.53 0.98 3.30 ± 0.27 2.56

RADA20 7.3 1.93 ± 0.51 0.98 3.13 ± 0.37 2.56
ADA 24.7 22.33 ± 1.04 21.30 23.50 ± 1.27 20.52
IADA 9.7 22.47 ± 0.68 21.96 23.49 ± 0.69 21.82

Diabetes RADA5 22.1 22.23 ± 0.81 21.09 23.40 ± 1.24 21.82
RADA10 31.9 21.87 ± 0.81 20.87 22.80 ± 1.08 21.50
RADA20 30.0 22.58 ± 0.75 21.74 23.14 ± 0.90 22.15

ADA 24.4 29.18 ± 2.25 25.60 40.14 ± 3.51 38.41
IADA 31.5 35.77 ± 3.06 30.44 46.96 ± 3.88 39.86

Liver RADA5 24.6 29.95 ± 2.97 26.57 39.57 ± 3.15 35.51
Diseases RADA10 21.1 29.78 ± 2.45 25.12 39.02 ± 3.84 31.88

RADA20 23.1 30.80 ± 2.47 25.12 39.86 ± 3.67 34.78

In the real experiment we test the algorithms with three real data sets obtained
from the UCI Machine Learning repository [3]. The Diabetes, Liver Diseases and
Breast-Cancer data sets were selected. Table 2 shows the summary results of the
performance evaluation of the ADA, IADA and RADA algorithms, where RADA
has the same robustifying parameters as in the Synthetic Experiments.

The results are shown in table 2. As we can observe in the column CE-Test,
RADA obtained a better generalization ability than ADA and IADA. Our algo-
rithm outperforms the ADA and IADA algorithms with statistical significance.
Furthermore we notice that the algorithms with better results in the 3 different
real data sets were RADA10 and RADA20. RADA5 has only a better perfor-
mance than ADA and IADA in the Diabetes and Liver diseases data sets. In
the CE-Train column we observe that ADA has better performance in Liver
Diseases and Breast-Cancer. In the testing phase, the RADA algorithm and
its variants outperform the ADA algorithm. Another drawback of ADA is its
standard deviation in the training phase is high compared with RADA.

6 Concluding Remarks

In this paper we have introduced the Robust Alternating Adaboost algorithm.
This algorithm has the capability to alternate between two differents views of
approaching classification problems using a midpoint approach between robust-
ness and sensitivity.

The performance of our algorithm shows better results in the simulation study
in both the synthetic and real data sets. In the real case, we investigated three
benchmark data known as Breast-Cancer, Diabetes and Liver Diseases. The
comparative study with the classic AdaBoost and Inverse AdaBoost without
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improvement shows that our Robust Alternating AdaBoost outperforms the al-
ternative models with statistical significance, obtaining good results in both
synthetic and real data. Further studies are needed in order to analyze the con-
vergence, and to test this algorithm with other weak learners.
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Abstract. Several associative memories (AM) have been proposed in the last 
years. These AMs have several constraints that limit their applicability in com-
plex problems such as face recognition. Despite of the power of these models, 
they cannot reach its full power without applying new mechanisms based on 
current and future studies on biological neural networks. In this research we 
show how a network of dynamic associative memories (DAM) combined with 
some aspects of the infant vision system could be efficiently applied to the face 
recognition problem. Through several experiments by using a benchmark of 
faces the accuracy of the proposal is tested. 

Keywords: Associative memories, face recognition, infant vision system. 

1   Introduction 

Several statistical computationally expensive techniques such as principal component 
analysis [2] and factor analysis have been proposed for solving the face recognition 
problem. These techniques have been combined with neural networks and other clas-
sifiers. Although the accuracy of these methods is acceptable, they are computation-
ally expensive techniques. On the other hand, several associative memories (AM) 
have been proposed in the last years [1], [7], [16] and [17]. These AMs have several 
constraints that limit their applicability in complex problems such as face recognition. 
Despite of the power of these AMs, they cannot reach their full power without apply-
ing new mechanisms based on current and future studies on biological neural net-
works. In this research we described how a network of dynamic associative memories 
(DAM) combined with some aspects of the infant vision system could be applied to 
the face recognition problem. Through several experiments with a benchmark of faces 
the accuracy of the proposal is tested. 

2   Some Aspects of the Infant Vision System 

Vision has been a popular subject of study, but most of the research has focused on 
the fully developed visual systems of adult humans. To understand the role of the 
brain in perceptual processes such face recognition, we propose to focus on the visual 
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system’s development from infancy to adulthood. Within a few months of birth, the 
brain can differentiate faces from other faces or objects. Indeed, an infant can recog-
nize a known face from a stranger’s. 

Some current researches see for example [11] and [13], have demonstrated that 
young babies are not capable of detecting subtle features in a face. This fact could 
suggest that only few information of the face is used by the baby for learning and rec-
ognition. However, the question remains: which information the baby uses to recog-
nize a face?  

In this research, we conjecture that babies extract the information of a face at ran-
dom and then use this information for further recognition. We call this information 
stimulating points SPs.  

3   Dynamic Associative Model 

This model is not an iterative model as Hopfield’s model [1]. The model emerges as 
an improvement of the model proposed in [9] which is not an iterative model and the 

results are presented in [18]. Let n∈x R  and m∈y R  an input and output pattern, 

respectively. An association between input pattern x  and output pattern y  is denoted 

as ( ),k kx y , where k  is the corresponding association. Associative memory W  is 

represented by a matrix whose components 
ijw  can be seen as the synapses of the 

neural network. If 1, ,k k k p= ∀ =x y …  then W  is auto-associative, otherwise it is 

hetero-associative. A distorted version of a pattern x  to be recalled will be denoted as 

x . If an associative memory W  is fed with a distorted version of kx  and the output 

obtained is exactly ky , we say that recalling is robust. 

3.1   Building the Associative Memory 

The brain is a dynamic, changing neural network that adapts continuously to meet the 
demands of communication and computational needs [8]. This fact suggests that some 
connections of the brain could change in response to some input stimuli. We humans, 
in general, do not have problems to recognize patterns even if these appear altered by 
noise. Several parts of the brain interact together in the process of learning and recall-
ing a pattern, for details refer to [3] and [6]. Based on the above example we have de-
fined in our model several interacting areas, one per association we would like the 
memory to learn. Also we have integrated the capability to adjust synapses in re-
sponse to an input stimulus.  

Before an input pattern is learned or processed by the brain, it is hypothesized that 
it is transformed and codified by the brain. In our model, this process is simulated us-
ing the following procedure recently introduced in [10]: 

Procedure 1. Transform the fundamental set of associations into codified patterns 
and de-codifier patterns: 

Input: FS Fundamental set of associations: 

{1. Make d const=  and make ( ) ( )1 1 1 1, ,=x y x y  
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 2. For the remaining couples do { 

    For 2k =  to p { 

  For 1i =  to n{ 
    1k k

i ix x d−= + ; ˆk k k
i i ix x x= − ; 1k k

i iy y d−= + ; ˆ k k k
i i iy y y= −   

}}} Output: Set of codified and de-codifying patterns. 
 

This procedure allows computing codified patterns from input and output patterns de-
noted by x  and y  respectively; x̂  and ŷ  are de-codifying patterns. Codified and de-

codifying patterns are allocated in different interacting areas and d defines of much 
these areas are separated. On the other hand, d determines the noise supported by our 

model. In addition a simplified version of kx  denoted by ks  is obtained as: 

( )k k
ks s= =x mid x  (1) 

where mid operator is defined as ( )1 / 2 nx +=mid x . 

When the brain is stimulated by an input pattern, some regions of the brain (inter-
acting areas) are stimulated and synapses belonging to those regions are modified.  

In our model, the most excited interacting area is call active region (AR) and could 
be estimated as follows: 

( ) ( )
1

arg min
p

i
i

ar r s s
=

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

x x  
(2) 

Once computed the codified patterns, the de-codifying patterns and 
ks  we can 

build the associative memory. 
Let ( ){ }, 1, ,k k k p=x y … , k n∈x R , k m∈y R  a fundamental set of associations 

(codified patterns). Synapses of associative memory W  are defined as:  

ij i jw y x= −  (3) 

After computed the codified patterns, the de-codifying patterns, the reader can 
 easily corroborate that any association can be used to compute the synapses of W  
without modifying the results. In short, building of the associative memory can be 
performed in three stages as: 

 
1. Transform the fundamental set of association into codified and de-

codifying patterns by means of previously described Procedure 1. 
2. Compute simplified versions of input patterns by using equation 1. 

3. Build W  in terms of codified patterns by using equation 3. 

3.2   Modifying Synapses of the Associative Model 

As we had already mentioned, synapses could change in response to an input stimu-
lus; but which synapses should be modified? For example, a head injury might cause 
a brain lesion killing hundred of neurons; this entails some synapses to reconnect with 
others neurons. This reconnection or modification of the synapses might cause that in-
formation allocated on brain will be preserved or will be lost, the reader could find 
more details concerning to this topic in [5] and [12]. 
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This fact suggests there are synapses that can be drastically modified and they do 
not alter the behavior of the associative memory. In the contrary, there are synapses 
that only can be slightly modified to do not alter the behavior of the associative mem-
ory; we call this set of synapses the kernel of the associative memory and it is denoted 
by WK . In the model we find two types of synapses: synapses that can be modified 

and do not alter the behavior of the associative memory; and synapses belonging to 
the kernel of the associative memory. These last synapses play an important role in 
recalling patterns altered by some kind of noise. 

Let n∈WK R  the kernel of an associative memory W . A component of vector 

WK  is defined as:  

( ) , 1, ,i ijkw w j m= =mid …  (4) 

According to the original idea of our proposal, synapses that belong to WK  are 

modified as a response to an input stimulus. Input patterns stimulate some ARs, inter-
act with these regions and then, according to those interactions, the corresponding 
synapses are modified. Synapses belonging to WK  are modified according to the 

stimulus generated by the input pattern. This adjusting factor is denoted by wΔ  and 
could be estimated as:  

( ) ( ) ( )arw s sΔ = Δ = −x x x  (5) 

where ar  is the index of the AR. 
Finally, synapses belonging to WK  are modified as:  

( )oldw w= ⊕ Δ − ΔW WK K  (6) 

where operator ⊕  is defined as 1, ,ie x e i m⊕ = + ∀ =x … . As you can appreciate, 

modification of WK  in equation 6 depends of the previous value of wΔ  denoted by 

oldwΔ  obtained with the previous input pattern. Once trained the DAM, when it is 

used by first time, the value of oldwΔ  is set to zero. 

3.3   Recalling a Pattern Using the Proposed Model 

Once synapses of the associative memory have been modified in response to an input 
pattern, every component of vector y  can be recalled by using its corresponding input 

vector x  as:  

( ) , 1, ,i ij jy w x j n= + =mid …  (7) 

In short, pattern y  can be recalled by using its corresponding key vector x  or x  

in six stages as follows: 
 

1. Obtain index of the active region ar  by using equation 2. 

2. Transform 
kx  using de-codifying pattern ˆ arx  by applying the follow-

ing transformation: ˆk k ar= +x x x . 

3. Estimate adjusting factor ( )wΔ = Δ x  by using equation 5. 
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4. Modify synapses of associative memory W  that belong to WK  by us-

ing equation 6. 

5. Recall pattern ky  by using equation 7. 

6. Obtain ky  by transforming ky  using de-codifying pattern ˆ ary  by ap-

plying transformation: ˆk k ar= −y y y . 

 
The formal set of prepositions that support the correct functioning of this dynamic 

model and the main advantages against other classical models can be found in [19], 
interesting applications of this model are described in [14] and [15]. 

In general, we distinguish two main parts for the model: the active region part 
(PAR) which determines the active region; and the pattern recall part (PPR). PAR 
(first step during recall procedure) sends a signal to PPR (remaining steps for recall 
procedure). This indicates the region activated by the input pattern. A schematic fig-
ure of this model is shown in Fig. 1(a). 

4   Proposal 

As we have previously said, baby’s brain can differentiate faces from other faces 
within a few months of birth. However, they are not capable of detecting subtle fea-
tures in a face. This fact could suggest the baby uses only few information of the face 
in order to recognize it. 

When babies perceive a scene, we conjecture that babies at random select some 
stimulating points SPs, and then these information passes through the brain to the vis-
ual cortex, where this information is analyzed. Finally the information passes to other 
regions of the brain involved in learning and recognition processes. 

In order to recognize different images of faces we propose to use a network of as-
sociative memories nDAMs. Then, we divide the image in different parts (sub-
patterns) and over each sub-pattern, we detect subtle features by means of a random 
selection of SPs. At last, each DAM of the nDAM is fed with these sub-patterns for 
training and recognition.  

4.1   Random Selection Using a Modified DAM 

In the DAM model, the simplified version of an input pattern is the middle value of 
input pattern. This value is computed by using mid operator. In order to simulate the 
random selection of the infant vision system we substitute mid operator with rand 
operator defined as follows: 

 spx=rand x  (8) 

where ( )sp random n=  is a random number between zero and the length of input 

pattern. This represents a stimulation point. sp  is a constant value computed at the 

beginning of the building phase. During recalling phase sp  takes the same value. 

rand operator uses a uniform random generator to select a component over each part 
of the pattern. We adopt this operator based on the hypothetical idea about infants are 
interested into sets of features where each set is different with some intersection 
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among them. By selecting features at random, we conjecture that at least we select a 
feature belonging to these sets. 

4.2   Implementation of the Proposal 

During recalling, each DAM recovers a part of the image based on the AR of each 
DAM. However, a part of the image could be wrongly recalled because its corre-
sponding AR could be wrongly determined due to some patterns do not satisfy the 
prepositions that guarantee perfect recall. To avoid this, we use an integrator. Each 
DAM determines an AR, the index of the AR is sent to the integrator, the integrator 
determines which was the most voted region and sends to the DAMs the index of the 
most voted region (the new AR). In Fig. 1(b) a general architecture of the network of 
DAMs is shown. 

  
(a)     (b) 

Fig. 1. (a) Main parts of the DAM. (b) Architecture of a network of DAMs. 

In order to interconnect several DAMs we disconnect the PAR of its corresponding 
PPR. The output of the PAR is sent to an external integrator. This integrator receives 
several signals from different DAMs indicating the AR. At last, based on a voting 
technique, the integrator “tells” to each DAM which is the most voted AR.  

Schematic representation of building and recalling phase are show in Fig. 2. Build-
ing of the nDAMs  is done as follows: 

Let  k
x a b×

⎡ ⎤⎣ ⎦I  and  k
y c d×

⎡ ⎤⎣ ⎦I  an association of images and r  be the number 

of DAMs. 

1. Transform the images into a vector (
kx ,

ky ) by means of the stan-

dard image scan method where vectors are of size a b×  and c d×  re-
spectively. 

2. Decompose 
kx  and 

ky  in r  sub-patterns of the same size. 

3. Take each sub-pattern (from the first one to the last one ( r )), 
then take at random a stimulating point , 1, ,isp i r= …  and extract 

the value at that position. 

4. Train r  DAMS as in building procedure taking each sub-pattern (from 
the first one to the last one ( r )) using rand operator. 

Pattern k
yI  can be recalled by using its corresponding key image k

xI  or distorted 

version k
xI  as follows: 

1. Transform the images into a vector by means of the standard image 
scan method. 
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2. Decompose 
kx  in r  sub-patterns of the same size. 

3. Use the stimulating point, , 1, ,isp i r= …  computed during the build-

ing phase and extract the value of each sub-pattern. 

4. Determine the most voted active region using the integrator. 

5. Substitute mid operator with rand operator in recalling procedure 
and apply steps from two to six as described in recalling procedure 
on each memory. 

6. Finally, put together recalled sub-patterns to form the output pat-
tern. 

  
(a) 

 
(b) 

Fig. 2. (a) Schematic representation of building phase. (b) Schematic representation of the re-
calling phase. 

While PCA dimension reduction techniques require the covariance matrix to build 
an Eigenspace, and then project patterns using this space to eliminate redundant in-
formation, our proposal only requires a random selection of stimulating points. This 
approach contributes to eliminating redundant information, it is less computationally 
expensive than PCA, and helps the nDAMs or other classification tools to learn effi-
ciently the faces.  

The main reason to use a DAM (in our proposal) is to demonstrate that, as in the 
case of a neural network and other classifiers, DAMs can be used to solve complex 
problems. To our acknowledgment, nobody had used associative memories this way 
for face recognition. 
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5   Experimental Results 

We tested the efficiency of the proposal with the benchmark of faces given in [4]. 
This database contains twenty photos of fifteen different people. Each photo is in col-
our and of 180 200×  pixels. Refer to Fig. 3. Furthermore, people in images appear 
with different gesticulations which nowadays is still a challenge in face recognition. 
Due to the level of complexity of this benchmark, we decided to use it to test the ac-
curacy of the proposal. The database of images was divided into two sets of images. 
First photo of each person (15 in total) was used to train the network of DAMs. The 
remaining 285 photos (19 for each person) were used to test the efficiency of the 
 proposal.  

 
(a) 

 
(b) 

Fig. 3. (a) First 3 images of the photos of 3 people of the 15 used to test the efficiency of the 
proposal. (b) First 3 images of the photos the 3 people of the 15 used to test the efficiency of 
the proposal in the presence of occlusions. 

To train the nDAM, only one image of the fifteen face classes were used along 
with the building procedure described in section 4.2. Something important to remark 
is that each DAM belonging to the nDAM was trained into its auto-associative ver-
sion, i.e. k k

x y=I I . During recalling phase the second set of images and the recalling 

procedure described in section 4.2 were used.  
The accuracy of the proposal was tested using several configurations, starting with 

networks composed by one DAM until 1100 DAMs. Because of stimulating points 
(pixels) were randomly selected, we decided to test the stability of proposal with the 
same configuration 20 times.  

As you can appreciate from Fig. 4(a), the accuracy of the proposal increases when 
the number of stimulation points (or the number of DAM) also increases. In Fig. 4(a), 
we can appreciate that after a certain number of stimulating points the accuracy of the 
proposal tends to be stable. In general, the results obtained in these experiments were 
around 99 % of recognition. 

In addition, the accuracy of the proposal was tested when the testing images were 
partially occluded. For this, manually one or more parts of each image (of the second 
set of images) were occluded with regions of different forms and sizes. Figure 3(b) 
shows the first three images of three people used for testing.  

In the previous experiments, the stimulating points were also randomly selected. 
As you can appreciate from Fig. 4(b), the accuracy of the proposal increases as the 
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number of stimulating points (or the number of DAM) is increased. In Fig. 4(b), we 
can appreciate that after a certain number of stimulating points the accuracy of the 
proposal tends to stabilize. In general, the results obtained in these experiments were 
around 80 % of recognition. 

We have tested the efficiency of the proposal. We have verified that the worst per-
formance was obtained with the images in presence of occlusion. The results obtained 
with the proposal in the first set of experiments were comparable with those obtained 
by means of a PCA-based method (99% of accuracy). Although PCA is a powerful 
technique it consumes a lot of time to reduce the dimensionality of the data. Our pro-
posal, because of its simplicity in operations, is not a computationally expensive tech-
nique and the results obtained are comparable to those provided by PCA. 

 
(a)    (b) 

Fig. 4. (a) Behavior of the proposal. (b) Behavior of the proposal in the presence of occlusions. 
Maximum, average and minimum accuracy are sketched. 

6   Conclusions 

In this work we have shown that by applying some aspects of the infant vision system 
it is possible to enhance some associative memories and also make possible its appli-
cation to complex problems such as face recognition. 

Based on some biological aspects of the infant vision system, we have proposed 
some modifications to the DAM. In addition, we have described the algorithms for 
training and operation of a network of DAMs. 

Through several experiments we have shown the accuracy and the stability of the 
proposal even in the presence of occlusions. In average the accuracy of the proposal 
oscillates between 96% and 99%. Important to mention is that, to our knowledge, no-
body has reported results of this type using an associative memory for face recognition.  

The results obtained with the proposal were comparable with those obtained by 
means of a PCA-based method. Although PCA is a powerful technique it consumes a 
lot of time to reduce the dimensionality of the data. Our proposal, because of its sim-
plicity in operations, is not a computationally expensive technique and the results ob-
tained are comparable to those provided by PCA. 

Nowadays, we are applying these ideas in 3D object recognition and image re-
trieval taking into account some other aspects of the vision system. 
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Abstract. In this paper, a multilevel approach of Ant Colony Optimization to 
solve the Job Shop Scheduling Problem (JSSP) is introduced. The basic idea is 
to split the heuristic search performed by ants into two stages; only the Ant 
System algorithm belonging to ACO was regarded for the current research. 
Several JSSP instances were used as input to the new approach in order to 
measure its performance. Experimental results obtained conclude that the Two-
Stage approach significantly reduces the computational time to get a solution 
similar to the Ant System.  

Keywords: Ant Colony Optimization, Ant System, Job Shop Scheduling 
Problem. 

1   Introduction 

This paper introduces a multilevel approach of Ant Colony Optimization to solve the 
Job Shop Scheduling Problem (JSSP). In the static JSSP, a finite number of jobs need 
to be processed by a finite number of machines. A job is defined as a predetermined 
sequence of tasks, each one of those needs to be processed without interruption for a 
given period of time on a specified machine. The tasks belonging to the same job 
cannot be processed in parallel and, additionally, each job must be carried out in each 
machine exactly once. A feasible schedule is an assignment of operations to time slots 
on a machine without violation of the job shop constraints. A makespan is defined as 
the maximum completion time of the jobs. The main goal is the accomplishment of a 
schedule that is able to minimize the JSSP’s makespan. Such optimum schedule is the 
one that minimizes the total idle time for the set of machines. According to the 
complexity theory [1], the JSSP is characterized as NP-hard combinatorial 
optimization problem. Since the achievement of exact solutions for such sort of 
problems is computationally unfeasible [1], different heuristic methods have been 
applied for solving JSSP. 

Ant Colony Optimization (ACO) is a metaheuristic used to guide other heuristics 
in order to obtain better solutions than those generated by local optimization methods; 
this meta-heuristic has been successfully applied to various hard combinatorial 
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optimization problems. In ACO, a colony of artificial ants cooperates in the search of 
good solutions to discrete problems. Artificial ants are simple agents that 
incrementally build a solution by adding components to a partial solution under 
construction. This computational model was introduced by M. Dorigo. Further 
information about this procedure can be found in [2], [3] and [4]. 

In the Scheduling field, ACO has effectively dealt with the Flow-shop [5], 
Resource Constraint Project Scheduling [6] and the Single Machine Total Tardiness 
problems [7]. ACO has also proven to be profitable in finding out the solutions of 
other permutation scheduling problems such as the Traveling Salesman [8, 9] and 
Vehicle Routing problems [10]. However, the application of the ACO to Shop 
scheduling such as the JSSP and open shop scheduling has demonstrated to be quite 
difficult [11] and very few papers about the ACO implementation for the JSSP can be 
found. The first ant system (AS) coping with the JSSP appeared in 1994 [12]; more 
recently, C. Blum et al. have done significant research on the application of ACO to 
shop scheduling problems including the JSSP [11, 13]; in 2004, M. Ventresca and B. 
Ombuki introduced an application of the Ant Colony Optimization metaheuristic to 
the job shop scheduling problem[14]. 

It is worthwhile to note that ACO algorithms are appropriate for discrete 
optimization problems that can be characterized as a graph G = (C, L). Here, C 
denotes a finite set of interconnected components, i.e. nodes. The set L ⊆ C x C 
describes all of the connections (i.e. edges) at the graph (see [6] for a complete 
description). Every solution of the optimization problem may be expressed in terms of 
feasible paths across the graph. 

In this paper, a new approach of ACO is developed where the underlying idea is to 
have ants perform the heuristic search as a two-stage process; we focus on the Ant 
System algorithm belonging to the ACO family because previous studies have shown 
that it attains the best results [14]. Several JSSP instances were used as input to the 
new approach in order to measure its performance. Experimental results showed the 
two-stage approach significantly lowers the computational time to get an Ant System 
similar solution. 

2   Job Shop Scheduling Problem 

The JSSP is made up by a finite set J of n jobs to be processed on a finite set M of m 
machines. Each job J i must be executed on every machine and consists of m chained 
operations oi1, oi2,…,oim that are to be scheduled in a predetermined given order 
(precedence constraint). 

There is a total of N = n*m operations where oik is the operation corresponding to 
job Ji that is to be run on machine Mk during an uninterrupted processing time pik. The 
workflow of each job throughout the machines is independent of the other jobs’. At a 
time, each machine is able to carry out a single job and, besides, each job is to be 
processed by a single machine simultaneously (capacity constraints). The parameter 
Cmax points out the performance measure that should be minimized (longest time 
required to complete all jobs). 



 Two-Stage ACO to Solve the Job Shop Scheduling Problem 449 

The objective is to determine the starting times (tik ≥ 0) for each operation so as to 
entail a minimization of the makespan in such a way that all of the constraints are 
met: 

}M J,J:}{max{min}min{ kimax
*
max MptCC ikik

schedulesfeasible
∈∀∈∀+==  (1) 

Table 1 depicts an example of a JSSP instance whose graphical representation is 
portrayed in figure 2. Notice that each node represents an operation. Thus, node 1 
stands for the first operation of job 1, node 2 symbolizes the second operation and so 
on. In a general way, a node i represents the (i mod (m+1)) operation of the job (i div 
(m+1)) +1. 

Table 1. An example of a simple JSSP instance holding two jobs that must be processed on 
four machines. The data format is (machine, duration); numbers in bold refer to Figure 2. 

(2,10) 
1 

(1, 2) 
2 

(4,7) 
3 

(3, 5) 
4 

(1,12) 
5 

(4,6) 
6 

(3,5) 
7 

(2,2) 
8 

2.1   Types of Schedules 

According to the schedule properties, any feasible schedule can be categorized into 
four major kinds: inadmissible, semi-active, active, and non-delay schedules. The 
number of inadmissible schedules is infinite and most of them contain excessive idle 
times. A semi-active schedule can be obtained by shifting a schedule forward until no 
such excessive idle times appears. 

 

Fig. 1. The hierarchy of feasible schedules 

Further improvements on a semi-active schedule can be reached by skipping some 
operations ahead without bringing about the latter start of other operations regarding 
the original schedule. However, active schedules allow no such displacement. Thus 
the optimal schedule is guaranteed to fall within the active schedules. Non-delay 
schedules build a subset of active schedules. In a non-delay schedule, a machine is 
never kept idle if some operation is able to be executed. It is remarkable fact that the 
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best schedule is not necessarily a non-delay one. However, it is easier to generate a 
non-delay schedule than an active one. The former may be closer to the optimal 
schedule even if it is not an optimal one. Additionally, there is strong empirical 
evidence that non-delay schedules bear solutions whose mean quality is higher than 
those produced by active schedules. Nevertheless, typical scheduling algorithms 
browse the space of all active schedules in order to assure that the optimum is taken 
into consideration. 

3   Ant Colony Optimization (ACO) 

Artificial ants are straightforward agents that incrementally make up a solution by 
adding components to a partial solution under construction. They are the main 
component in Ant Colony Optimization (ACO). In such methodology, the ants 
cooperate in order that good solutions to discrete problems can be found. 

Ant System (AS) is the first ACO algorithm; it was introduced by means of the 
Traveling Salesman Problem (TSP) [7] and [9]. In TSP, we have a group of edges 
fully connecting the set of N cities {c1, …, cn}; each edge is assigned a weight dij 
whose meaning is the distance between cities i and j. The goal is to find the shortest 
possible trip which comprises each city only once before going back to the starting 
city. When ACO is used to solve these problems, pheromone trails (tij) are associated 
to the edges and denote the likeliness of visiting city j coming from city i. Initially, the 
ants are randomly positioned into cities. Throughout the subsequent steps, ant k 
computes a random proportional rule to decide which city will be visited next 
according to expression (2): 
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ijijk
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(2) 

where α and b are leveling parameters of the relative importance of the pheromone 
trail and the heuristic information, respectively. AS ants have a memory (tabu list) 
that stores visited components of their current path for preventing the chance of 
returning to an already visited city.  

After all ants have made up their tours, the tij values are updated in two stages. 
Evaporation as a fading factor of the pheromone trail is considered in stage 1, yielding 
lower tij which are calculated as shown in expression (3) by using the parameter ξ, (0 
< ξ < 1); this step is needed to avoid the unlimited accumulation of pheromone. 

tij=(1-ξ)*tij (3) 

Secondly, all ants increase the value of tij on the edges they have traversed in their 
tours according to the expression below: 

tij=tij+Incij (4) 

where Incij is the amount of pheromone dropped by all ants walking across the edge 
(i, j). Usually, the amount of pheromone dropped by ant k equals to 1/Ck, where Ck is 
the length of the tour for ant k. 
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4   Ant System for JSSP 

An instance of the JSSP in the ACO algorithm is represented as a graph where the 
nodes are connected by two kinds of edges; the nodes represent operations, that is, for 
N jobs and M machines, the graph will include N*M nodes; the oriented edges 
represent the precedence between operations belonging to the same job and the 
dashed edges stand for a likely path that ants can go through if the problem 
constraints are satisfied (See Figure 2). 

In order to apply the AS algorithm, a graphical representation G of the 
optimization problem must be built up at first. 

The meta-heuristic begins initializing the amount of pheromone in each edge of G 
with some positive real value c. Each ant is then placed into an initial position, which 
is added to its tabu list; such initial positions are randomly chosen from the possible 
ones, which are the first operations to execute in each job. 

Every agent will independently set up a solution following the probabilistic rule 1, 
where the heuristic value associated to an operation j is dij = 1/Ctimej, Ctimej 
symbolizes the completion of operation j. After the tabu list of all ants is full (a valid 
solution has been found), its path length will be determined and the best solution 
found so far will be recorded. 

Next, the pheromone values are recomputed via expressions 2 and 3, where Incij in 
this problem is the better scheduling found in the current cycle. This process is 
repeated during a given number of cycles. 

In the graph displayed in Figure 2, the possible initial positions for the ants are 
nodes 1 and 5. If ant k chooses node 5, then the likely moves that meet the problem's 
constraints are either to nodes 1 or 6 and alike. 

 

Fig. 2. A graphical representation for the 2-job and 4-machine problem instance shown in Table 1 

For this problem we can find the following feasible schedules (solutions): 
 

A: {1-2-3-5-6-7-4-8}, B: {5-6-7-1-2-8-3-4}, C: {1-2-5-6-3-4-7-8} 

Table 2. Starting from solution B, an active schedule having a makespan of 30 is built from 
scratch 

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 3
0 

M1 J2 J1         
M2 J1        J2  
M3          J2   J1 
M4       J2 J1    
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5   Two-Stage Ant System (TS-AS) in the JSSP 

The Two-Stage Ant Colony Optimization (TS-ACO) proposed in this investigation is 
based on the following idea: to split the search process performed by the ants into two 
stages so that in the first stage, preliminary results are reached (partial solutions) that 
behave as initial states for the ulterior search realized during the second stage. 

Determining an initial state in which the search process starts has been an 
interesting issue in heuristic search. Due to the well known influence the initial 
state has in the search process, the algorithm aims to approximate the initial state to 
the goal state as much as possible. Of course, it is necessary to regard a fitting 
balance between the computational cost of achieving the initial state and the overall 
cost; in other words, the sum of the costs of approximating the initial to the goal state 
plus the cost of finding the solution beginning at the “enhanced” initial state should 
not be greater than the cost of seeking the solution from a random initial state. 

More formally, the purpose is described as follows: let Ei be an initial state either 
randomly generated or computed by any other method without a meaningful 
computational cost; Ei

* is an initial state generated via approximation to the goal state 
by some method M; CM(Ei

*) indicates the cost of reaching state Ei
* from Ei through 

method M and CCHSA(x) is the computational cost of finding a solution from state x 
utilizing a Heuristic Search Algorithm (HSA). Hence, the objective expression is held 
so that CM(Ei

*) + CCHSA(Ei
*) < CCHSA(Ei). 

In the TS-AS proposed here, the procedure for calculating Ei
* and the HSA are both 

the AS algorithm, so the objective is CAS(Ei
*) + CCAS(Ei

*) < CCAS(Ei). Since AS is 
used in both stages, the difference between them is computed by assigning different 
values to some parameters of the model during each stage. A ratio (r) is introduced in 
order to measure the relative assignment of the values to the parameters of the 
algorithm in both stages; r indicates the portion of the overall search to be realized at 
the first stage. For instance, if r = 0.3, it means that the first stage will comprise 30% 
of the overall search and during the second stage, the remaining 70% shall be carried 
out (an example of the application of this ratio is exhibited in the next section). 

Setting the value of r exercises a high influence in the overall performance of the 
algorithm. The higher value of r, the closer the state Ei

* will be to the goal state. As an 
outcome, CAS(Ei

*) increases and CCAS(Ei
*) decreases. In addition to this balance 

between the costs of CAS(Ei
*) and CCAS(Ei

*), the question of how much the search 
space was explored arises; the greater the rate r is, the lower the search in the second 
stage is due to several reasons: (I) there are less ants working, (II) the amount of 
cycles becomes smaller and (III) although the number of possible initial states for the 
second stage should become greater when r increases, such number is already upper-
bounded by the result of the previous stage. 

Therefore, a key point is to study what value of rate r is the best in order to reach 
the best balance between the searches performed during both stages. This value must 
allow: 
• The minimization of CAS(Ei

*) +CCAS(Ei
*). 

• An exploration of the search space that guarantees to find good solutions. 
 
When applying AS algorithm to the JSSP, the ants begin the search starting from 
random initial states; that is, in each cycle an ant commences its trip in a randomly 
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chosen operation and picks up the next operation through rule (1). At the beginning, 
no pheromone information is available to lead the search; the heuristic information 
alone is present. 

On the contrary, the TS-AS builds up partial trips (they do not include all the 
nodes) in the first stage; this information behaves as an initial state for ants during the 
second stage of the search algorithm. In other words, instead of rebooting the search 
from scratch, the agents use the information available after the execution of the first 
stage as the starting point in the second stage. 

In JSSP, the parameters whose values depend on the ratio r are: the number of ants 
(m), the number of cycles (nc) and the number of operations (co = N * M) that will be 
included in each stage. 

The parameters values are assigned as illustrated right now: Let be 6 jobs and 5 
machines (J = 6, M = 5, N=30 total operations) and the following parameters for the 
traditional AS algorithm: m = 100, nc = 100 and co = 30. Setting r = 0.3 implies that 
the values of these parameters for the two stage ACS are computed accordingly as: m1 

= 100 * 0.3 = 30, nc1 = 100 * 0.3 = 30 and cc1 = 30 * 0.3 = 9 for the first stage; and 
m2 = 100 * 0.7 = 70, nc2 = 100 * 0.7 = 70 and cc2 = 30. It means that 30 ants will 
execute the AS algorithm for the time of 30 cycles, building a sequence of 9 
operations. In the second stage, 70 ants will run the AS algorithm throughout 
70 cycles shaping the sequence of 30 operations. This signifies that in the first stage, 
30% of the ants will be seeking size-lessened solutions (because the sequence 
comprises only 30% of the nodes) in the 30% of the total number of cycles. In the 
second stage, the remaining 70% of the ants are used; they will perform the search for 
the 70% of the total number of cycles so as to discover full problem solutions 
(including all operations). Once the first stage has finished, a subset of partial 
solutions is picked up (denoted by EI) holding cs out of the best solutions (sequences 
with the best values of the objective function) found during the first stage. 
The TS-AS-JSSP algorithm is outlined below: 

Input: Parameters beta, rho, epsilon, cc, factor r, number of solutions in EI (cs) 
Output: The best solution found. 

S1: Set the number of ants either by input data or by using some 
method depending on the number of operations. 
S1: Perform Stage 1. 
S1.1: Compute the parameters for the first stage: 
 m1 = r * m 
 nc1 = r * nc 
 cc1 = r * cc 
S1.2: Run the AS algorithm that performs nc1 cycles in the first stage. 
S1.3: Set of trips ← Trips generated by AS algorithm in the first 
stage. 
S2: Perform Stage 2. 
S2.1: Compute the parameters for the second stage: 
 m2 = m - m1 
  nc2 = nc - nc1 
  cc2 = cc 
  EI ← Pick up the cs best solutions from the  
 set of trips. 
S2.2: Run the AS algorithm (that performs nc2 cycles in the second 
stage by using the elements of EI as initial states for the ants in 
the second stage). 
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6   Experimental Results 

Table 3 shows a comparative study between the algorithms AS-JSSP and TS-AS-
JSSP using some remarkable JSSP instances found at OR-Library [17] regarding the 
quality of the solution and the computational cost in time. The same parameters were 
used in both algorithms for running the tests; that is, the number of ants (m) equals to 
the number of operations, nc = 3000, ξ = 0.1, α = 0.8 and β = 0.17. Three different 
ratios were used for the TS-AS-JSSP algorithm: r = {0.2, 0.25, 0.3}. For every test, 10 
runs on every instance were carried out and the best solution was selected. The 
columns of Table 3 stand for: the dataset name, the best solution reached for that 
dataset, the best solution found by the Ant System algorithm, the time cost (in 
milliseconds) for finding the AS solution, the best solution reported by the two stage 
approach (including the ratio used in the computation) and finally, the time cost (in 
milliseconds) for finding the two-stage algorithm solution. 

Table 3. A comparative study between Ant System and Two-Stage Ant System 

Instance BK AS-JSSP Time1 TS-AS-JSSP Time2 
la01 666 666 157502 666(r=0.3) 53513 
la02 660 673 144697 672(r=0.2) 74518 
la03 597 627 144107 607(r=0.25) 60210 
la04 590 611 144455 594(r=0.3) 53044 
la05 593 593 144531 593(r=0.25) 61224 
la06 926 926 510077 926(r=0.3) 180915 
la07 890 897 509708 890(r=0.25) 224793 
la08 863 868 508714 865(r=0.25) 216916 
la09 951 951 510802 951(r=0.3) 186744 
la10 958 958 508825 958(r=0.25) 178458 
la11 1222 1222 1276036 1222(r=0.3) 460834 
la12 1039 1039 1269386 1039(r=0.3) 450302 
la13 1150 1150 1268055 1150(r=0.3) 462080 
la14 1292 1292 1288142 1292(r=0.3) 456755 
la15 1207 1251 1271330 1247(r=0.25) 553566 
la16 945 978 930177 978(r=0.3) 353844 
la17 784 797 927918 800(r=0.2) 510641 
la18 848 901 938328 868(r=0.2) 480469 
la19 842 892 928723 871(r=0.3) 414511 
la20 902 955 933017 936(r=0.3) 354534 

These experimental results prove that the two-stage approach algorithm achieved 
better solutions than the classic Ant System algorithm, additionally lowering the time 
cost for over 50%. Also, the qualities of the solutions reached by TS-AS- JSSP are 
higher than those exposed in [14], where the algorithms Max-Min Ant System, PFS 
and NFS, introduced in [14], are used. 

The statistical analysis performed in order to compare the solution values for the 
mentioned algorithms using Monte Carlo Significance of Friedman’s test=0.000 is 
displayed in Figure 3 a), whereas b) provides the comparison among the algorithms 
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Fig. 3. Statistical Analysis for solutions values (a) and computational cost (b) 

with respect to the time needed to get the solution. Mean Ranks with a common letter 
denote non-significant difference according to Wilcoxon’s test, proving that there are 
not significative differences between the AS and TS-AS in solutions values, and 
showing an important difference between them in the time cost. 

7   Conclusions 

This paper introduces a new approach to ant colony optimization to the job shop 
scheduling problem. It consists of the splitting of the search process performed by 
ants into two stages. The study was carried out with the use of the Ant System 
algorithm. In this approach, some parameters (number of ants, number of cycles, etc.) 
are assigned a different value in each stage according to a ratio r which signals the 
portion of the overall search that corresponds to each stage. 

The algorithm’s performance was thoroughly studied by using different ratio 
values. The best results came up when this value falls within the interval [0.2, 0.3]. 

This new ACO approach yields a significant reduction of the computational time 
cost yet preserving the quality of the solutions. 
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Abstract. In this paper, a novel hybrid Taguchi-Grey-based method for feature 
subset selection is proposed.  The two-level orthogonal array is employed in the 
proposed method to provide a well-organized and balanced comparison of two 
levels of each feature (i.e., the feature is selected for pattern classification or 
not) and interactions among all features in a specific classification problem.  
That is, this two-dimensional matrix is mainly used to reduce the feature subset 
evaluation efforts prior to the classification procedure.  Accordingly, the grey-
based nearest neighbor rule and the signal-to-noise ratio (SNR) are used to 
evaluate and optimize the features of the specific classification problem.  In this 
manner, important and relevant features can be identified for pattern 
classification.  Experiments performed on different application domains are 
reported to demonstrate the performance of the proposed hybrid Taguchi-Grey-
based method.  It can be easily seen that the proposed method yields superior 
performance and is helpful for improving the classification accuracy in pattern 
classification. 

Keywords: Feature Subset Selection, Taguchi Methods, Grey-based Nearest 
Neighbor Rule, Pattern Classification. 

1   Introduction 

In recent years, different pattern classification approaches have been investigated for 
classifying new, unseen instances. In a pattern classification model [12], a set of 
training instances or examples, denoted as training set TS, is collected.  Each instance 
or example is described by p features and a class label.  Generally, all features of each 
instance will be taken into consideration during the classification process.  Many real-
world classification problems, however, involve redundant or irrelevant features that 



458 H.-Y. Chang and C.-S. Sun 

usually greatly affect the overall classification accuracy.  To improve the 
performance, various feature selection or feature subset selection methods have been 
developed.  These methods focus on selecting important and relevant features from 
the original feature set, as well as reducing the dimensionality in a particular 
classification problem. 

Feature subset selection can be viewed as a search problem [15], where each search 
state in the search space specifies a possible feature subset.  If each instance in a 
specific classification problem contains p attributes, the search space will be 
composed of 2p candidate feature subsets.  Obviously, exhaustive search through the 
entire search space (i.e. 2p candidate feature subsets) has a very high computational 
cost and thus is usually unfeasible in practice, even for medium-sized p [19].  
Consequently, it is difficult to select a best feature subset for pattern classification 
from the entire search space with respect to the tradeoff between high classification 
accuracy and small number of selected features. 

Two well-known greedy hill-climbing approaches, sequential forward selection 
(SFS) [17] and sequential backward selection (SBS) [17], are commonly used for 
feature subset selection.  As mentioned earlier, feature subset selection can be 
considered as a search problem, where each search state in the search space specifies 
a possible feature subset.  In SFS, the search procedure starts with an empty feature 
set and then successively adds features one at a time to find the final feature subset.  
By contrast, in SBS, the search procedure starts with a full feature set and then 
successively removes features one at a time to find the final feature subset.  In 
bidirectional feature subset selection methods [19], the search procedure may start 
with an empty feature set or a full feature set and then add or remove features to or 
from the search starting point [19] simultaneously.  Accordingly, the final feature 
subset can be obtained.  The above sequential search methods for feature subset 
selection are simple and easy to implement.  However, local optimal final feature 
subsets are often obtained during the search procedure.  Another similar sequential 
search method for feature subset selection is proposed in [11].  First, k features are 
added (or eliminated) to the candidate feature subset at a time.  Accordingly, l 
features are eliminated (or added) from the candidate feature subset at a time (k > l).  
These two steps are repeated until a final feature subset is obtained.  In this case, the 
values of k and l, which will significantly affect the final result, should be determined 
carefully.  To avoid being trapped into local optimal results, random search [4] 
through the entire search space is also commonly used to find the final feature subset.  
This method can help the search procedure to escape from local maximums [19] (i.e., 
non-deterministic heuristic search).  However, inconsistent final feature subsets may 
be derived from different runs [19]. 

During the search procedure, each feature or generated feature subset should be 
evaluated by an evaluation criterion.  Generally, two kinds of evaluation criteria, 
independent criterion and dependent criterion [19], are adopted to evaluate each 
feature or generated feature subset in feature subset selection. An independent 
criterion [13, 16, 18] is used to evaluate the goodness of each feature or generated 
feature subset by considering the original characteristics of the training set.  In this 
case, pattern classification methods are not involved in each evaluation process.  As 
for dependent criterion, pattern classification methods are directly used to evaluate the 
goodness (i.e., classification ability or accuracy) of each feature or generated feature 
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subset.  By contrast, the corresponding feature subset selection methods are named as 
the wrapper approaches [16].  Generally, the wrapper models, which focus mainly on 
improving the classification accuracy of pattern classification tasks, often yield 
superior performance (i.e., high classification accuracy) than the filter models.  
However, the wrapper approaches are more computational expensive than the filter 
approaches [16, 19].  As a result, many pattern classification methods that have very 
high computational costs, such as neural networks [2] and decision trees [20], may not 
be suitable to be used as evaluation criteria for evaluating each feature or generated 
feature subset. 

In this paper, a novel hybrid Taguchi-Grey-based method for feature subset 
selection is proposed.  The two-level orthogonal array is employed in the proposed 
method to provide a well-organized and balanced comparison of two levels of each 
feature (i.e., the feature is selected for pattern classification or not) and interactions 
among all features in a specific classification problem.  That is, this two-dimensional 
matrix is mainly used to reduce the feature subset evaluation efforts prior to  
the classification procedure. Accordingly, the grey-based nearest neighbor rule and 
the signal-to-noise ratio (SNR) are used to evaluate and optimize the features of the 
specific classification problem.  In this manner, important and relevant features can be 
identified for pattern classification. As a result, the hybrid Taguchi-Grey-based 
method proposed here has wrapper nature [16] (In wrapper feature subset selection 
methods, each candidate feature or feature subset is evaluated according to the 
classification ability obtained by the pattern classification model).  That is, features 
will be selected based on the special properties of the corresponding pattern 
classification model and thus the goal of feature subset selection method here is to 
maximize the classification accuracy.  Experiments performed on different 
application domains are reported to demonstrate the performance of the proposed 
hybrid Taguchi-Grey-based method.  It can be easily seen that the proposed method 
yields superior performance and is helpful for improving the classification accuracy in 
pattern classification. 

The rest of this paper is organized as follows.  The concepts of the Taguchi 
methods used in the proposed method are reviewed in Sections 2.  Section 3 proposes 
a novel hybrid Taguchi-Grey-based method for feature subset selection.  In Section 4, 
an example is given to illustrate the proposed method.  In Section 5, experiments 
performed on different classification problems are reported and discussed.  Finally, 
the conclusions are given in Section 6. 

2   Taguchi Methods 

In robust design [23], products, processes or equipments can be evaluated and 
improved by considering different related design parameters (or factors).  As a well-
known robust experimental design approach, the Taguchi method [22] uses two 
principal tools, the orthogonal array and the signal-to-noise ratio (SNR), for the above 
purpose of evaluation and improvement.  Consider that a specific object domain (e.g. 
product, process or equipment) contains q design parameters (or factors).  Orthogonal 
arrays are primarily used to reduce the experimental efforts regarding these q different 
design factors.  An orthogonal array can be viewed as a fractional factorial matrix that 



460 H.-Y. Chang and C.-S. Sun 

provides a systematic and balanced comparison of different levels of each design 
factor and interactions among all design factors.  In this two-dimensional matrix, each 
column specifies a particular design factor and each row represents a trial with a 
specific combination of different levels regarding all design factors.  In the proposed 
method, the well-known two-level orthogonal array is adopted for feature subset 
selection.  A general two-level orthogonal array can be defined as follows. 

Lw(2w-1), (1) 

where w=2k ( 1≥k ) represents the number of experimental trials, base 2 specifies the 
number of levels of each design factor, and w-1 is the number of columns (i.e., the 
number of design factors) in the orthogonal array. 

For example, an orthogonal array L16(2
15) can be created for a specific object 

domain that contains 15 design factors with two levels (i.e., level 1 and level 2).  
Notably, by using the two-level orthogonal array, only 16 experimental trials are 
needed for the purpose of evaluation and improvement.  By contrast, all possible 
combinations of 15 design factors (i.e., 215) should be taken into consideration in the 
full factorial experimental design, which is obviously often inapplicable in practice. 

Once the orthogonal array is generated, the observation or the objective function of 
each experimental trial can be determined.  Accordingly, the signal-to-noise ratio 
(SNR) is used to evaluate and optimize the design parameters (or factors) of the 
specific object domain.  In general, two kinds of signal-to-noise ratios (SNRs), the 
smaller-the-better and the larger-the-better characteristics [23], are commonly 
considered for the evaluation task. 

Consider that a set of k observations {y1, y2, …, yk} is given.  In the smaller-the-
better characteristic, the signal-to-noise ratio (SNR) is calculated as follows. 
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Similarly, in the larger-the-better characteristic, the signal-to-noise ratio (SNR) is 
calculated as follows. 
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The signal-to-noise ratio (SNR) is used to measure the robustness of each design 
parameter (or factor). That is, “high quality” of a particular object domain can be 
achieved by considering each design parameter with a specific level having high 
signal-to-noise ratio (SNR).   

In summary, the Taguchi method offers many advantages for robust experimental 
design. First, the number of experimental runs can be substantially reduced (compared 
with the full factorial experimental design). Meanwhile, the significance of each 
design parameter regarding a particular object domain can be analyzed precisely.  In 
the proposed method, the above two useful tools, the orthogonal array and the signal-
to-noise ratio (SNR), are employed for feature subset selection. 
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3   Hybrid Taguchi-Grey-Based Method for Feature Subset 
Selection 

In this section, a novel hybrid Taguchi-Grey-based method for feature subset 
selection is proposed.  Consider that a particular classification task involves a set of m 
labeled training instances, denoted as V={v1, v2, …, vm}.  Each instance is described 
by n attributes, denoted as F = (f1, f2, …, fn).  The detailed procedures of the proposed 
hybrid Taguchi-Grey-based method for feature subset selection are described as 
follows. 

Step1. Generate the two-level orthogonal array L with respect to the n attributes, 
features or factors in a specific classification problem.  In each experimental 
trial j in the two-level orthogonal array L, levels 1 or 2 in each column i mean 
feature i is selected in the corresponding feature set Sj for pattern 
classification or not, respectively. 

Step2. For each feature set Sj, determine an average classification accuracy 
regarding the training set V (denoted by ACC(V, Sj)) by using the grey-based 
nearest neighbor rule [8, 9 ,10, 14] with leave-one-out (LOO) cross-
validation method [5].  Here, ACC(V, Sj) is considered as the observation or 
the objective function of the experimental trial j in the two-level orthogonal 
array L. 

Step3. Calculate the corresponding signal-to-noise ratio (SNR) for each level (i.e., 
levels 1 or 2) of each feature or factor i according to the various observations 
in the two-level orthogonal array L. 

Step4. Select the features whose SNR for level 1 is greater than that for level 2.  
These features, denoted as feature subset S, are used as the final feature 
subset for pattern classification. 

 
The two-level orthogonal array is employed in the proposed method to provide a 

well-organized and balanced comparison of two levels of each feature (i.e., the feature 
is selected for pattern classification or not) and interactions among all features in a 
specific classification problem.  In other words, this two-dimensional matrix is mainly 
used to reduce the feature subset evaluation efforts prior to the classification 
procedure.  Accordingly, the grey-based nearest neighbor rule and the signal-to-noise 
ratio (SNR) are used to evaluate and optimize the features of the specific 
classification problem. 

Based on the grey-based nearest neighbor rule with leave-one-out (LOO) cross-
validation method [5], a classification accuracy with respect to the training set V and a 
particular feature set Sj (denoted as ACC(V, Sj)), can be obtained.  Leave-one-out 
cross-validation implies that each instance in V is considered as the test instance once 
and other instances in V are considered as the corresponding training instances.  In 
this manner, the grey-based nearest neighbor rule will be carried out m times 
according to m instances and n features in V.  Afterwards, the average classification 
accuracy is calculated for evaluating the classification performance of the 
corresponding feature set Sj.  The signal-to-noise ratio (SNR) is then used to measure 
the robustness of each feature of the specific classification problem.  That is, high 
classification performance regarding the classification task can be achieved by 
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considering each feature with a specific level having high signal-to-noise ratio (SNR).  
Here, the larger-the-better characteristic, as shown in Eq. (3), is selected for 
calculating the signal-to-noise ratio (SNR) since maximum classification accuracy is 
preferred in pattern classification.  In the proposed method, feature i with SNR of 
level 1 greater than that of level 2 means that the feature is suggested to be selected in 
the final feature subset for pattern classification.  By contrast, feature i is suggested to 
be removed from the original feature set F if the corresponding SNR of level 2 greater 
than that of level 1.  (Notably, levels 1 or 2 of feature i mean the feature is selected in 
the corresponding feature set Sj for pattern classification or not, respectively.) 

4   Illustrative Example 

This section gives an example to illustrate the proposed hybrid Taguchi-Grey-based 
method for feature subset selection.  In the Autompg classification problem [3], each 
instance has seven attributes, denoted by {A, B, C, D, E, F, G}.  By using the 
proposed method, a two-level orthogonal array L8(2

7) can be generated as Table 1. 

Table 1. L8(2
7) Orthogonal Array 

Design Factors (Features) 
A B C D E F G 

Column Number 

Number of 
Experimental

Trial
1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 
2 1 1 1 2 2 2 2 
3 1 2 2 1 1 2 2 
4 1 2 2 2 2 1 1 
5 2 1 2 1 2 1 2 
6 2 1 2 2 1 2 1 
7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2  

Restated, in each experimental trial j in the two-level orthogonal array L8(2
7), 

levels 1 or 2 of each column i mean feature i is selected in the corresponding feature 
set Sj for pattern classification or not, respectively.  For example, in experimental trial 
7, features C, D, G are selected as the final feature subset for pattern classification.  
By using the two-level orthogonal array L8(2

7), the experimental efforts regarding 
feature subset evaluation can be reduced from 128 (i.e., 27) trials to eight trials. 

Accordingly, for each experimental trial j, the average classification accuracy 
regarding the training set V and the corresponding feature set Sj (denoted by ACC(V, 
Sj)) can be determined by using the grey-based nearest neighbor rule with leave-one-
out (LOO) cross-validation method.  Here, ACC(V, Sj) is considered as the 
observation or the objective function of the experimental trial j in the two-level 
orthogonal array Ln(2

n-1).  As a result, the experimental layout and signal-to-noise data 
of the Autompg classification problem can be summarized as Table 2.  Here, the 
larger-the-better characteristic, as shown in Eq. (3), is selected to determine the 
signal-to-noise ratio (SNR) since maximum classification accuracy is preferred in 
pattern classification. 
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Table 2. Experimental layout and signal-to-noise data of the Autompg classification problem 

Column / Feature Number of 
Experimental

Trial A B C D E F G 

Classification
Accuracy 

(%)

Classification
Accuracy 
SNR (dB) 

1 1 1 1 1 1 1 1 69.10 36.79 
2 1 1 1 2 2 2 2 66.58 36.47 
3 1 2 2 1 1 2 2 72.86 37.25 
4 1 2 2 2 2 1 1 63.07 36.00 
5 2 1 2 1 2 1 2 81.16 38.19 
6 2 1 2 2 1 2 1 73.62 37.34 
7 2 2 1 1 2 2 1 71.11 37.04 
8 2 2 1 2 1 1 2 66.83 36.50  

Table 3. The signal-to-noise ratios of levels 1 or 2 of each feature regarding the Autompg 
classification problem 

 A B C D E F G 
Level 1 36.63 37.20 36.70 37.32 36.97 36.87 36.79 
Level 2 37.27 36.70 37.20 36.58 36.93 37.03 37.10  

Table 3 lists the signal-to-noise ratios of levels 1 or 2 of each feature regarding the 
Autompg classification task. As mentioned earlier, the higher the signal-to-noise ratio 
(SNR), the better the classification performance (i.e., classification accuracy). As a 
result, features B, D and E, whose SNR for level 1 is greater than that for level 2, are 
preferred to be selected in the final feature subset for pattern classification. By 
contrast, features A, C, F, and G, whose SNR for level 2 is greater than that for level 
1, are preferred to be removed from the original feature set for pattern classification.  
Consequently, the final feature subset obtained by using the proposed method for the 
Autompg classification problem is {B, D, E}.  The corresponding classification 
accuracy is 86.43%, which is significantly better than that of each experimental trial 
in Table 2. 

5   Experimental Results 

To demonstrate the performance of the proposed hybrid Taguchi-Grey-based method 
for feature subset selection, ten real datasets (classification tasks) [3] were used for 
performance comparison.  Table 4 describes the main characteristics of the datasets.   

Table 5 represents the classification accuracies (as mentioned earlier) of the above-
mentioned grey-based nearest neighbor rule with respect to the above classification 
problems when the proposed hybrid Taguchi-Grey-based method for feature subset 
selection is performed or not (In the experiments, the cross-validation technique [21] 
was used for measuring the classification accuracies).  The average classification 
accuracies regarding these classification problems can be increased from 82.35% to 
85.46% when the proposed hybrid Taguchi-Grey-based method for feature subset 
selection is applied.  That is, experimental results demonstrate that the final feature 
subset obtained by using the proposed method is helpful for pattern classification.   
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Table 4. Details of experimental classification problems [3] 

Classification task Number of 
instances

Number of 
classes 

Number of features and their 
types 

Autompg 398 3 7 (2-S, 5-C) 
Breastw 699 2 9 (9-C) 
Bridges 105 6 12 (9-S, 3-C) 
Hcleveland 303 5 13 (8-S, 5-C) 
Hepatitis 155 2 19 (13-S, 6-C) 
Hhunggarian 294 2 12 (7-S, 5-C) 
Tae 151 3 5 (4-S, 1-C) 
Voting 435 2 16 (16-S) 
Wine 178 3 13 (13-C) 
Zoo 101 7 16 (16-S) 

C: Continuous, S: Symbolic  

Table 5. The classification accuracies (as mentioned earlier) of the above-mentioned grey-based 
nearest neighbor rule with respect to the above classification problems when the proposed hybrid. 
Taguchi-Grey-based method for feature subset selection is performed or not. 

Classification
problem

The proposed method is not used 
for feature subset selection 

The proposed method is used for 
feature subset selection 

Autompg 69.10 78.89
Breastw 95.85 96.57
Bridges 87.62 91.43
Hcleveland 55.78 57.43
Hepatitis 80.00 83.87
Hhunggarian 75.85 78.91
Tae 66.23 66.23  
Voting 92.87 94.71
Wine 96.63 98.87
Zoo 96.04 97.03
Average 81.60 84.39  

6   Conclusions 

In this paper, a novel hybrid Taguchi-Grey-based method for feature subset selection 
is proposed.  The two-level orthogonal array is employed in the proposed method to 
provide a well-organized and balanced comparison of two levels of each feature (i.e., 
the feature is selected for pattern classification or not) and interactions among all 
features in a specific classification problem.  Accordingly, the grey-based nearest 
neighbor rule and the signal-to-noise ratio (SNR) are used to evaluate and optimize 
the features of the specific classification problem.  Experiments performed on 
different application domains are reported to demonstrate the performance of the 
proposed hybrid Taguchi-Grey-based method.  The proposed method yields superior 
performance and is helpful for improving the classification accuracy in pattern 
classification. 
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Abstract. Fisher’s Linear Discriminant Analysis (LDA) is a traditional
dimensionality reduction method that has been proven to be success-
ful for decades. To enhance the LDA’s power for high-dimensional pat-
tern classification, such as face recognition, numerous LDA-extension
approaches have been proposed in the literature. This paper proposes a
new method that improves the performance of LDA-based classification
by simply increasing the number of (sub)-classes through clustering a few
of classes of the training set prior to the execution of LDA. This is based
on the fact that the eigen space of the training set consists of the range
space and the null space, and that the dimensionality of the range space
increases as the number of classes increases. Therefore, when construct-
ing the transformation matrix, through minimizing the null space, the
loss of discriminative information resulted from this space can be min-
imized. To select the classes to be clustered, in the present paper, the
intraset distance is employed as a criterion and the k-means clustering is
performed to divide them. Our experimental results for an artificial data
set of XOR-type samples and a well-known benchmark face database
of Yale demonstrate that the classification efficiency of the proposed
method could be improved.

Keywords: Face Recognition, Linear Discriminant Analysis (LDA),Pre-
clustered LDA (PLDA).

1 Introduction

Over the past two decades, numerous families and avenues for Face Recognition
(FR) systems have been developed. This development is motivated by the broad

� The work of the first author was partially done while visiting at Delft University
of Technology, 2628 CD Delft, The Netherlands. This work was supported by the
Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea
government(MOST) (F01-2006-000-10008-0).
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range of potential applications for such identification and verification techniques.
Recent surveys are found in the literature [1] and [2] related to FR. As facial
images are very high-dimensional, it is necessary for FR systems to reduce these
dimensions. Linear Discriminant Analysis (LDA) is one of the most popular
linear projection techniques for dimension reduction [3]. LDA has been widely
adopted owing to its efficiency, but it does not capture nonlinear manifolds of
faces which exhibit pose and background variations1. When using LDA methods
for dimensionality reduction, thus, they sometimes fail to discover the intrinsic
dimension of the image space. To enhance the LDA’s power for FR, numerous
LDA-extensions including two-stage LDA [3], direct LDA [4], and kernel-based
LDA [5] have been proposed in the literature. Beside these, to discover the
nonlinear manifold structure, various techniques including LLE (Locally Linear
Embedding) [6], LLDA (Locally Linear Discriminant Analysis) [10], SDA (Sub-
class Discriminant Analysis) [11], and Dissimilarity-Based Classifiers (DBC) [12]
have been proposed2.

The approach that is proposed in this paper concerns treating the nonlinear
manifolds of each face class as a set of subclasses when the class is represented
by multiple separated Gaussian distributions. LDA methods effectively use the
concept of a within-class scatter matrix, Sw, and a between-class scatter matrix,
Sb, to maximize a separation criterion, such as J = tr(S−1

w Sb). It is well-known
that for c-class (and d-dimensional) problems, Sb has the rank c − 1, and subse-
quently the rank of S−1

w Sb is c−1 [13]. This means that there are, at most, c−1
eigenvectors corresponding to nonzero eigenvalues since the rank of the matrix Sb

is bounded by c − 1. When solving an eigenvalue problem on the matrix S−1
w Sb,

c − 1 eigenvalues are nonzero and the others are zero. Thus, without losing the
criterion value, the d-dimensional input space can be mapped onto the (c − 1)-
dimensional subspace spanned by the c − 1 eigenvectors corresponding to these
nonzero eigenvalues. However, the discarded (d − c + 1)-dimensional subspace
spanned by the d − c + 1 eigenvectors, which are corresponding to these zero
eigenvalues, may also contain a useful piece of information for discrimination.

From this consideration, in the present paper, a new way of improving the per-
formance of LDA-based classification is proposed. This improvement is achieved
by incorporating the clustering technique into the LDA reduction process. A
few classes of a training set are first selected. Each of the selected classes is
clustered into a set of subclasses by invoking a dividing (or clustering) method
prior to the execution of LDA. Consequently, the number of classes of the train-
ing set increases from c to c′(≥ c). In this approach, the major problems to be
addressed are those of selecting the classes to be clustered and determining the
optimal number of Gaussians per class, i.e., the number of clusters. To solve these
problems, in this paper, an Eucledian distance called as intraset distance and

1 In FR, it is well-known that facial images to be recognized have many kinds of
variations, such as pose, illumination, facial expression, distance, and background.

2 Concerning Linear Dimensionality Reduction (LDR), there are numerous variants
of Fisher’s LDR. The details of the variants of LDR can be found in the well known
literature including [7], [8], and [9].
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a k-means clustering algorithm are employed. To select the classes, the intraset
distances for all classes are first computed. After sorting them in the descending
order, some of the highest variances (i.e., the largest distance) are selected and
divided into subclasses by invoking the k-means clustering algorithm. Finally,
a classification is performed by invoking a classifier built in the c′-class feature
space, where the dimensionality is maximally c′ − 1.

The main contribution of this paper is to demonstrate that the performance of
LDA-based classifiers can be improved by employing a pre-clustering step. This
has been done by incorporating the clustering technique into the LDA reduction
process and by demonstrating its power in classification accuracy. The reader
should observe that this philosophy is quite simple and distinct from those used
in the recently-proposed LLE [6], LLDA [10], or SDA [11] strategies.

2 Optimizing LDA-Based Classification

The fundamental problem that we encounter when classifying the high-
dimensional task is that of reducing the dimensionality of the training sam-
ples. One of the most popular approaches to solve this problem is employing the
LDA. A conventional LDA-based classification method 3 is summarized in the
following:

1. Compute two scatter matrices, Sw and Sb, from the training samples, T .
Following this, construct a transformation matrix, W , by keeping the eigenvec-
tors corresponding to the nonzero eigenvalues of tr(S−1

w Sb).
2. Project the training set T into a reduced dimensional feature space by using

the transformation matrix W , where the dimensionality of the feature space is
maximally c − 1. To test a sample z, compute a feature vector, z′, using the
same transformation matrix.

3. Achieve a classification based on invoking a classifier built in the feature
space and operating on the vector of z′.

In the above algorithm, the classification performance can be improved by
increasing the number of classes from c to c′. This increase can be obtained by
dividing the manifolds of each class into a set of clusters. Rather than divide
all classes of T , a few of the classes are bisected in this paper. To choose the
classes to be clustered, the distribution variance of each class can be used as a
criterion. To measure the variance of the class, the so-called intra-set distance is
used. The distance, which is an Euclidean distance, is briefly introduced here.

Intraset Distance: Let T = {x1, · · · , xn} ∈ �d be a set of n feature vectors
in a d-dimensional space. Assume that T is a labeled data set so that T can
be decomposed into, for example, c disjoint subsets {T1, · · · , Tc} such that T =⋃c

k=1 Tk, Ti ∩ Tj = φ, ∀i �= j. Then, a criterion associated with Ti is defined

3 For want of a better term, LDA-based classification performed without utilizing the
pre-clustering technique will be referred to as “conventional” schemes.
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as follow: For an arbitrary pattern xj = (xj1, xj2, · · · , xjd)T ∈ Ti, the mean of
d (xj , Ti − {xj}) over Ti is called the intraset distance of Ti and is denoted by

D2(Ti) =
1
ni

ni∑

j=1

d2(xj , Ti − {xj}) (1)

=
1

ni(ni − 1)

ni∑

j=1

ni∑

l=1

d∑

k=1

(xjk − xlk)2.

By conveniently rearranging the elements in the triple summation of (1) and
considering the relations of xjk = xlk and (xjk)2 = (xlk)2 for arbitrary j and
l, the intraset distance can be expressed in terms of the unbiased variances
of components of the given patterns like: D2(Ti) = 2

∑d
k=1 σ2

k, where σ2
k =

ni

ni−1

{
(xjk)2 − (xjk)2

}
for all xj ∈ Ti. Details of the derivation are omitted here

in the interest of compactness, but can be found in [14]. This is the rationale
of the scheme for employing the intraset distance as a criterion to select the
classes to be clustered. To simplify the classification task, in this paper, the
chosen classes are divided into two clusters. However, this can be expanded into
a general solution by utilizing a way of automatically determining the number of
clusters and measuring the goodness of the clusters formed. The details of this
subject are omitted here, but can be found in [15].

Pre-clustered LDA-Based Classification: As mentioned previously, by the
means of clustering the nonlinear manifolds of a class into a set of subclasses,
the classification performance of the above conventional method can be improved
furthermore. To achieve this, first of all, the intraset distances for all classes are
computed to choose the class to be clustered. The proposed approach, which is
referred to as a Pre-clustered LDA-based (PLDA) classification, is summarized
in the following:

1. Compute the intra-set distances of the input training data set Ti for all i,
1 ≤ i ≤ c, and sort them with the intra-set distances in descending order,
D2(T1) ≥ D2(T2) ≥ · · · ≥ D2(Tc). Then, set c′ = c and θ1 = 1.

2. Do the following : Increasing i by unity from 1 to the number of classes in
T per epoch:

(a) Cluster the training set of class ωi, Ti, into two clusters, which are named
as Ti and Ti+c, and increase the number of sub-classes, c′ = c′ + 1.

(b) Compute two scatter matrices, Sw and Sb, from the training samples,
T = T1 ∪ T2 ∪ · · · ∪ Ti+c. Following this, construct a transformation
matrix, W , by keeping the eigenvectors corresponding to the nonzero
eigenvalues of tr(S−1

w Sb)4.

4 This step can be different depending on which method is employed. For example, in
the direct LDA, this step is performed after doing the simultaneous diagonalization
of Sb and Sw [13].
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(c) Project the training set T into a reduced dimensional feature space by
using the transformation matrix W , where the dimensionality of the
feature space is maximally c′ − 1. To test a sample z, compute a feature
vector, z′, using the same transformation.

(d) Achieve a classification based on invoking a classifier built in the feature
space and operating on the vector of z′. The classification accuracy for
all testing samples is labeled as θ2. If θ1 − θ2 > ρ, then go to the next
step. Otherwise, Step 2 is repeated after θ1 = θ2.

3. Output θ2 as the final result, then the process terminates.

In Step 2 of the above algorithm, to simplify the classification task for the
paper, the maximum iteration number can be limited experimentally. Also, in
the same step, the threshold value ρ is determined experimentally.

The computational complexity of the proposed algorithm depends on the
computational costs associated with the number of training samples and the
clustering algorithm. The time complexity of PLDA can be analyzed as follows:
Step 1 requires O(n2 ×d) + O(c) time. Step 2 requires O(n)+O(8d3) + O(n×d)
+ O(γ1) time (where γ1 is the time for training a classifier with the training set
T ) to perform the four sub-steps of computing transformation matrix, projecting
data samples onto divided sub-class space, and classifying a test sample with the
classifier designed in the sub-class space. Step 3 requires O(1) time to terminate
the algorithm. Thus, the total time complexity of the PLDA is O(n2d+d3 +γ1).
Then, the space complexity of PLDA is O(nd).

3 Experimental Results : Artificial/Real-Life Data Sets

The proposed method has been tested and compared with conventional methods.
This was done by performing experiments on an artificial data set (which is
named as XOR4) and a well-known face database, namely, the Yale 5 database.

The data set named “XOR4”, which has been included in the experiments as
a baseline data set, was generated from a mixture of four 4-dimensional Gaussian
distributions as follows: (1) p1 (x ) = 1

2 N (μ11 , I4 )+ 1
2 N (μ12 , I4 ) and (2) p2 (x ) =

1
2 N (μ21 , I4 ) + 1

2 N (μ22 , I4 ), where μ11 = [−2, −2, 0, 0], μ12 = [2, 2, 0, 0], μ21 =
[2, −2, 0, 0], and μ22 = [−2, 2, 0, 0]. Also, I4 is the 4 -dimensional Identity matrix.
Here, it is clear that each class contains two clusters. Thus, this case is better
treated as a four-class problem rather than a two-class one.

The face database captioned “Yale” contains 165 gray scale images of 15
individuals. There are 11 images per subject, one of each for the following fa-
cial expression or configurations: center-light, left-light, right-light, with glasses,
without glasses, happy, normal, sad, sleepy, surprised, and winking. The size
of each image is 243 × 320 pixels for a total dimensionality of 77760. In this
experiment, to reduce the computational complexity, each facial image of Yale
database was down-sampled into 61×80 and then represented by a centered vec-
tor of normalized intensity values. To obtain a different data set, a part of the
5 http://www1.cs.columbia.edu/ belhumeur/pub/images/yalefaces
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down-sampled image, which is 28 × 23 size and contains only facial components
without background, was extracted. This face database is termed as “Yale2” in
a subsequent section.

Experimental Method: In this paper, all experiments were performed using a
“leave-one-out” strategy. To classify an image of object, that image was removed
from the training set and a transformation matrix, W , was computed with the
n − 1 images. Following this, all of the n images in the training set and the test
object were translated into a (c′−1)-dimensional space using the transformation
matrix and recognition was performed based on the algorithm in Section 2. After
repeating this n times for every sample, a final result was obtained by averaging
them.

To perform the transformation and classification, first of all, the intraset dis-
tances for all classes were computed. After computing the distances, the data
sets of the classes were sorted in the decreasing order using the intraset dis-
tance. Then, the classes of the largest distances were selected and divided into
sub-classes by invoking a k-means clustering algorithm. Finally, a classification
was obtained by designing a classifier in the sub-classes feature space. In this ex-
periment, to simplify the classification task for the paper, only two, three, or four
classes were selected and each of them was divided into two sub-classes 6. Fur-
thermore, to reduce the dimensionality of the clustered data samples, only one
approach, namely, the direct LDA, was implemented. However, other approaches
including PCA+LDA [3], LDA/GSVD [16], and LDA/QR [17], Kernel-based
LDA [5] could have also been considered.

On the other hand, to maintain the diversity between the LDA-based clas-
sifications, different classifiers, such as the k-Nearest Neighbor Classifiers (k =
1, 3), Nearest Mean Classifiers, Normal Density based Linear Classifier, Un-
correlated Normal Density based Quadratic Classifier, Parzen Density based
Classifier, Fisher’s Least Square Linear Classifier, and Neural Network Classifier
were designed. These classifiers are implemented with PRTools 7 and will be
denoted as 1-NN, 3-NN, NMC, LDC, UDC, PZC, FSC, and NNC, respectively,
in a subsequent section. Here, NNC is a feed-forward neural net classifier with
one hidden layer of 20 sigmoid neurons.

Experimental Results: The run-time characteristics of the proposed algorithm
for the artificial data set, XOR4, and the benchmark database, Yale, are reported
below and shown in Table 1. The rationality of employing a pre-clustering step
in the LDA-based classifiers is investigated first. Following this, a comparison is
made between the conventional LDA-based method and the proposed scheme.

First, the results of the dimensionality reduction obtained in Step 2(c) of the
proposed LDA-based scheme in Section 2 were probed into. Fig. 1 shows plots
of two 2-dimensional data sets obtained from the original 4-dimensional data set

6 In this experiment, to implement the normal-density based classifiers, the samples
of at least two points were compulsorily assigned to each sub-class.

7 PRTools is a Matlab Toolbox for Pattern Recognition. PRTools can be downloaded
from the PRTools website, http://www.prtools.org/
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Fig. 1. Plots of the 2-dimensional data set obtained from the original 4-dimensional
artificial data set, namely, XOR4. In both pictures, the left is reduced with the direct
LDA and the right is obtained with the proposed method, in which the LDA is carried
out after doing a pre-clustering.

of XOR4. Here, the left is of the conventional scheme and the right is of the
proposed method, respectively. In the conventional scheme, the direct LDA was
applied to the original 4-dimensional data set, while the direct LDA was carried
out after doing a pre-clustering for the data set in the proposed method.

From the figure, it should be observed that the accuracy of the dimension-
ality reduction step for the artificial data set can be improved by employing
the philosophy of a pre-clustering. This is clearly shown in the classification
boundary built between the two classes represented with “×” and “◦” in both
pictures. This characteristic could be also observed from the real benchmark face
database. For the fifteen classes of Yale, the intraset distances obtained with Eq.
(1) are sorted as follow:

1.0e+007 *
2.9493 2.9240 2.9036 2.8759 2.5882 2.5647 2.1206 2.0010
1.9686 1.9128 1.7468 1.6376 1.6368 1.5628 1.2592

From these figures, some of the classes which are ranked among the largest
distances are selected and clustered into two sub-classes. Fig. 2 shows faces of an
object of Yale and their clustering result. Here, the left picture shows the eleven
faces of the object which has the largest distance (i.e., 1.0e+007 * 2.9493) and
the right one shows that the faces are divided into two sub-classes. Faces of the
two sub-classes are different from each other in the background.

From the above consideration, the rationale of the LDA-based classification
for employing the pre-clustering technique is proven to be valid.

Secondly, as the main results, it should be noted that it is possible to improve
the classification performance by employing the philosophy of a pre-clustering
prior to the execution of the dimensionality reduction step. Table 1 shows a com-
parison of the classification performances for XOR4 data set and Yale
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+

Fig. 2. Faces of an individual selected from Yale database. In the picture, the left
eleven faces are of the class that has the largest intraset distance, while the right
picture shows that the eleven faces are divided into two sub-classes. The details of the
figure are discussed in the text.

database8. Here, the abbreviations NON, LDA, and PLDA, which are, respec-
tively, NON-reduction classification, the conventional LDA-based classification,
and the Pre-clustered LDA-based classification, indicate the classification meth-
ods employed in this experiment. Especially, PLDA(2), PLDA(3), and PLDA(4)
are abbreviations of the classifications performed after pre-clustering the selected
two, three, and four classes, respectively. For these classification methods, the
best results obtained are printed in bold.

From Table 1, it is clear that the classification accuracies for the experimen-
tal databases can be improved by employing the pre-clustering technique (see the

8 In Table 1, the symbol “–” indicates that there are no results available due to the
characteristics of the data set and the out-of-memory problem. First of all, in the
implementation of the direct LDA for XOR4, we have a problem in diagonalization of
Sb =

�
i ni (mi − m) (mi − m)T because two means, namely, the class mean, mi,

and the global mean, m, are (almost) zero. Then, to implement the linear/quardratic
normal density based classifiers (LDC and QDC) for very high dimensional data, we
need three big dimensional matrices, for example, 10304 × 10304. To be consistent
with other methods, however, we did not fix the implementation.
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Table 1. A comparison of the classification performances of LDA-based classifiers
for XOR4 and Yale. Here, in the second column, the abbreviations NON, LDA, and
PLDA(·) indicate NON-reduction classification, the conventional LDA-based classifi-
cation, and the Pre-clustered LDA-based classification, respectively. Also the symbol
“–” indicates that there are no results available due to the characteristics of the data
set. The details of the table are discussed in the text.

Dataset Analysis Experimental Classifiers
Names Methods 1-NN 3-NN NMC LDC UDC PZC FSC NNC

NON 89.25 92.50 46.50 45.25 44.75 93.00 45.25 85.00
LDA − − − − − − − −

XOR4 PLDA(2) 90.50 94.00 95.00 94.25 95.25 94.75 94.50 94.75
PLDA(3) 90.50 94.00 95.00 94.25 95.75 94.75 94.50 94.50
PLDA(4) 90.50 94.00 95.00 94.25 95.75 94.75 94.50 94.00

NON 79.39 78.18 78.18 − − 6.67 95.76 58.79
LDA 89.70 90.91 92.12 92.12 6.67 4.85 81.82 83.03

Yale PLDA(2) 90.91 93.33 94.55 93.94 87.88 92.73 91.52 86.06
PLDA(3) 92.73 95.76 93.94 94.55 84.85 93.94 92.73 89.70
PLDA(4) 93.33 95.76 94.55 94.55 86.67 94.55 93.94 87.28

NON 78.18 76.97 78.18 95.15 73.94 6.67 89.70 58.79
LDA 90.30 89.09 92.12 92.12 86.06 90.30 84.24 80.00

Yale2 PLDA(2) 90.91 91.52 92.12 92.12 84.24 92.73 84.24 81.82
PLDA(3) 89.70 89.70 93.33 92.73 83.64 90.91 85.45 79.39
PLDA(4) 92.12 91.52 93.33 93.94 81.82 92.12 87.27 78.18

bold-faced ones). An example of this is the classification accuracy rates (%) ob-
tained with 1-NN classifiers designed for Yale. The classification accuracies of NON,
LDA, PLDA(2, 3, 4) methods are 79.39, 89.70, 90.91, 92.73, and 93.33 (%), re-
spectively. Additionally, the classification accuracies of NNC classifiers are 58.79,
83.03, 86.06, 89.70, and 87.28 (%), again respectively. From this consideration,
the reader can observe that the classification performance of NON was improved
with LDA and further improved with PLDA. The details are omitted here in the
interest of compactness. From the table, however, it should be mentioned that the
classification accuracies of PLDA(2), PLDA(3), and PLDA(4) are almost the same
while the number of classes to be clustered increases. For instance, the accuracy
rates obtained with the 1-NN classifier for XOR4 are the same as 90.50 (%). For
Yale database, the same characteristics can be observed.

From the above consideration, it should be also observed that the proposed
scheme of employing the pre-clustering technique is useful in improving the clas-
sification performance.

4 Conclusions

In this paper, a method that seeks to improve the classification performance
of LDA-based approaches for appearance-based face recognition is considered.
This method involves a pre-clustering step prior to the execution of Fisher’s
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criterion to find out the nonlinear structure of faces and divide it into a set of
clusters. The experimental results for an artificial data set and a well-known face
database demonstrate that the proposed scheme is better than the conventional
ones in terms of the classification accuracy rates. Even though an investigation
has been made, focusing on the possibility of the pre-clustering technique being
used to solve the nonlinear-manifolds problem of FR, many problems remain.
This classification performance could be further improved by developing an op-
timal division (or selection) method and by designing suitable classifiers in the
divided-class space. The research concerning this is a future aim of the authors.
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Abstract. Perceptual grouping is an important part of many computer
vision systems. When inferring a new grouping from the primitive fea-
tures there is always an uncertainty degree on this detection, that might
be useful in further reasonings. In this paper, we present a fuzzy logic
based system for the computation of the certainties assigned to pairwise
line segment relations and introduce its application to the detection of
continuity, identity, junction, L-junction, incidence, T-junction and par-
allelism relations. The results presented show that the proposed method
might be very promising for future applications.

Keywords: certainty, fuzzy logic, perceptual grouping.

1 Introduction

A major problem in computer vision and image understanding systems is the
organisation of the low level features into meaningful higher level features. The
bottom-up process of grouping features by means of perceptual principles like
proximity, similarity, continuation, closure and symmetry is referred by the com-
puter vision community as perceptual organisation or perceptual grouping [1,2].

The perceptual grouping is present at several stages of the image understand-
ing process. For example, the edges are combined into line segments or curves
and these segments are combined into closed contours. In any case, the lower
level features are treated as cues for the detection of the higher level groupings
that are considered salient for the scene understanding. This process reduces the
complexity of the scene and facilitates the operation of higher level processing
for object detection.

The target groupings of a perceptual organisation system should fulfil some
properties, in order to be considered salient for scene understanding [2]. First, the
groupings should represent significant features of the target objects; also, their
features should be invariant to projection and illumination changes; finally, the
groupings should be non-accidental, i.e. they should not be easily observed by
chance. With these properties, if the salient groupings are present in the input
image, it is very likely that the target objects have caused them and, also, the
object features that the groupings represent could be inferred from the groupings
features. However, in most applications, these groupings can not be categorically
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detected in base to the cues provided by the lower level features, but with an
associated degree of certainty. Dealing with this uncertainty is an important
issue as it may affect further reasonings based on the detected groupings. This
paper is focused on the detection of pairwise line segment groupings and in the
computation of a subjective measure of its certainty.

The detection of pairwise line segment relations has been a main subject in
several perceptual organisation applications [3,4,5,6,7]. The analysis of different
distance features using threshold based rules, has been used for the categor-
ical detection of pairwise line segment relations in [3]. Other approaches use
probabilities as rank for perceptual relation detection [4,6,5,7]. The idea of non-
accidentalness probability for the grouping is used in [4]. However, it is neces-
sary to make assumptions about the distribution of the relation evidences in the
background of the target images in order to compute these probabilities. Other
approaches like those based in Bayesian inference also need to estimate condi-
tional probabilities about the accidental occurrence of evidences in the image,
machine learning techniques have been used to address this problem in [5]. Fuzzy
sets have been also used for the detection of perceptual relations in [6,7], these
approaches use fuzzy predicates for representing the grouping properties and
computing a subjective measure of the relations certainty based on the initial
definition of their membership functions.

In this paper, we use fuzzy logic for detecting pairwise line segment relations
with an assigned uncertainty. Opposite to previous works, we primarily focus our
attention on the definition of a general and configurable approach for computing
the suitable certainty measures. The general fuzzy inference system proposed
is intended to be extensible and tunable based on the needs of further reason-
ings. Also, an analysis of the suitable properties for the detection of identity,
continuity, junction, incidence and parallelism relations between line segments
is performed, along with the proposal of new normalisation equations. This pa-
per is structured as follows. Section 2 defines the fuzzy combination of features
proposed. Section 3 describes how the method defined in section 2 is applied to
the detection of the target relations. Section 4 show the experimental results for
the proposed system. Finally, section 5 exposes the conclusions from our work.

2 Perceptual Grouping with Fuzzy Logic

Fuzzy logic [8] is a multi-valued logic that works with predicates which truth
values can not be precisely defined as true or false. Instead, their certainty is
quantified in the continuous interval [0, 1]. Formally, the truth value of a predi-
cate p over the elements x ∈ U in the universe of discourse U is assigned through
a membership function μp : U → [0, 1] The membership function μp defines the
fuzzy set of the elements in x ∈ U that satisfy p, and its value represents a
measure of the certainty on the predicate p given every element in U .

The truth values of the logical expressions containing logical connectives (∧,∨)
are derived from the truth values of its operands. The membership function of
an and expression μa∧b(x) (x ∈ U) is modelled as a triangular norm, or t-norm,
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�(μa(x), μb(x)), while the membership function of an or expression μa∨b(x) is
modelled as a triangular conorm, or t-conorm, ⊥(μa(x), μb(x)). The most widely
used t-norm and t-conorm are �(a, b) = min{a, b} and ⊥(a, b) = max{a, b},
respectively.

In this work we model pairwise relations between line segments, like paral-
lelism or collinearity, using predicates in fuzzy logic. Our universe of discourse
U is, therefore, the set of all possible segments pairs x = (s1, s2) in an image.
The membership function μR : U → [0, 1] for a given relation R is modelled as a
logical and combination:

μR(x) =
∧

f∈F
μf

R(f(x)) . (1)

where F is a set of features, a feature f ∈ F : U → Cf is a distance measured
from the input segment pairs, and μf

R : Cf → [0, 1] (∀f ∈ F) is the membership
function of a fuzzy relation R, defined over the set of values Cf that f can take.

The previous definition is flexible enough for representing the most usual rela-
tions in perceptual organisation. The definition of the relations and the certainty
values associated to them can be refined by adding new features or by adjusting
the membership functions. This is very important since the certainty values are
likely to be used in further reasoning to detect higher level groupings and, thus,
the membership functions may depend on the concrete application domain.

Note that the membership functions over the features could have been mod-
elled as logical combinations of fuzzy linguistic terms (i.e. distance is low, very
low, medium, etc.). We think that this option would lead to an extremely diffi-
cult to adjust system, since the fuzzy linguistic partitions would be shared by
different relations that would add dependencies. In return, it would add an easier
to understand knowledge representation of the reasonings, but we think that the
knowledge behind the relations in perceptual organisation is simple enough to
understand using our simple approach.

3 Line Segment Relations

As previously mentioned, this paper is focused on the detection of several per-
ceptual relations between line segment pairs, concretely: junction, L-junction, T-
junction, incidence, parallelism, continuity and identity. Most of these relations
are of high significance in different kinds of images, including those containing
man-made objects. Section 3.2 describes the features used for the detection and
section 3.2 defines the membership functions of the target relations.

3.1 Perceptual Features

Given two line segments s1 and s2, the features used for the detection of percep-
tual relations between them, depicted in figure 1, are: the minimum distance D,
the orientation difference α, the overlaps OAB and OBA, and the signed distances
from both segments to the intersection of their elongations, IA and IB .
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Fig. 1. Perceptual features for pairs of line segments

These distances are normalised in order to preserve the salience of the rela-
tions regardless of the segment lengths. The normalisation is very usual in per-
ceptual organisation and the distances are commonly normalised by the length
of the longest segment [3,6,5,7]. In this work, we propose a new approach for the
normalisation, that is described bellow.

Given the detection of a junction between two segments, a decisive feature
would be the Euclidean distance of both segments to their intersection point.
If we normalise this distance by the length of the longest segment, then the
longer this segment is, the larger this distance can be before a significant loss
in the certainty of the relation occurs. For this reason, using this normalisation
long segments are more suitable for being related with other segments regardless
of their length, which could lead to undesirable high confidence relations with
distant and short segments.

Opposite to this, if we normalise this distance by the length of the shortest
segment, then weak and blurred edges, that are likely to be detected as short
segments, may be involved in meaningful relations that are not detected this
way. In many cases, the decision of normalising by one segment length or the
other is application dependant. For this reason, the use a weighted average of the
segment lengths for normalisation, with parameters that can be independently
specified for each feature in base to the final application.

Given two line segments s1 and s2, the normalisation length Nf (s1, s2) for
each feature f is defined as:

Nf(s1, s2) = wf max{L∗
f(s1), L∗

f(s2)} + (1 − wf ) min{L∗
f(s1), L∗

f(s2)} .(2)

L∗
f(X) = min{λ+

f , max{λ−
f , L(X)}} . (3)

where L(X) is the length of the segment X , λ− and λ+ are the minimum and
maximum segment length normalisation thresholds, and wf ∈ [0, 1] is a weighting
parameter, used to choose normalisation values varying from the length of the
shortest segment when wf = 0, to the length of the longest segment when wf = 1.
The parameters λ−

f and λ+
f are chosen in base to the application domain: λ−

f

is the shortest line segment length allowed; λ+
f is the maximum segment length

considered, with larger lengths truncated to λ+
f , since larger line segment lenghts

do not imply a larger proportional distance for the detection.
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The minimum distance D(s1, s2), if the segments do not intersect, is computed
as the minimum Euclidean distance from each segments’ end points to the other
segment. If the segments intersect, D(s1, s2) is set to 0. In any case, this distance
is normalised by ND(s1, s2).

The signed distance to the intersection IA(s1, s2) is computed as the Euclidean
distance from the segment s1 to the intersection point of both segments’ elon-
gations. This distance is negative if the intersection point lies inside the s1 and
positive if it lies outside. IB(s1, s2) is computed analogously using s2, and both
distances are normalised by NI(s1, s2). Note that these distances could be infi-
nite if the orientation difference between line segments was low, for this reason,
we truncate this feature to the interval [−1, 1].

The α(s1, s2) feature is computed as the orientation difference between seg-
ments. No segment length dependant normalisation is applied in this case.

The overlap O(s1, s2) is defined as the maximum overlap between line seg-
ments. It is computed as max{OAB(s1, s2), OBA(s1, s2)}, where OAB(s1, s2) and
OBA(s1, s2) are the lengths of the projections of s1 and s2 over s2 and s1, re-
spectively. Both OAB and OBA are normalised by max{L(s1), NO(s1, s2)} and
max{L(s2), NO(s1, s2)}, respectively, in such a way that large proportional over-
laps of short segments over long segments are penalised.

3.2 Membership Functions

As previously stated in eq. 1, the membership function of each pairwise relation
is computed as the logical and of the membership functions of the corresponding
decisive features. In this section, we define the relations analysed in this work
and the membership functions associated to them.

Two line segments are identical if they correspond to the same straight edge.
In many cases, segment extraction algorithms detect a blurred edge as two or
three overlapped line segments, these line segments can be merged in one as
they probably represent an unique straight contour. The membership functions
used for the detection of identical line segments are depicted in figure 2. The
identity relation depends on the distance D, the orientation difference α and
the overlap O. Both, distance D and orientation difference α must be very low
in identity relations, as reflected in the functions depicted at figures 2(a) and
2(b) respectively. It is also necessary a significant overlap between lines in order
to state the identity, the membership function for the identity relation over the
overlap O is depicted in figure 2(c).

Opposite to the identical line segments, two line segments are continuous if one
is the collinear continuation of the other. These line segments do not necessarily
belong to a single contour but to two nearby contours. We think that the decision
whether to merge these segments or not depends on further reasoning that might
take into account other relations involving these segments. The membership
functions for the continuity detection are depicted in figure 3. Similarly to the
identity, the continuity depends on the distance D, the orientation difference α
and the overlap O. The orientation difference in continuity relations must be
very low, as the membership function in figure 3(b) shows. The overlap must be
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Fig. 2. Feature member functions for identity detection
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Fig. 3. Feature member functions for continuity detection
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Fig. 4. Feature member functions for parallelism detection

low enough as depicted in figure 3(c). The distance between line segments D,
defined as the distance between endpoints since we enforce a low overlap, can
be larger than for the identity, as depicted in figure 3(a).

The membership functions used for the parallelism detection are depicted in
figure 4. The most important feature for parallelism detection is the orientation
difference α, which should not be higher than the transformation caused by
the perspective projection. The distance D between parallel segments should
not be very low, in order to differentiate this relation from the continuity or
the identity. If the distance between segments is too high, the certainty of the
relation is lowered, as these lines are less likely to be related. But, in any case, a
high distance is not discriminative enough for refusing the parallelism relation,
so the membership function for the distance feature is the one depicted in figure
4(b). The high overlap between line segments is also indicative of parallelism
but, again, a low overlap is not discriminative enough for refusing the relation,
this membership function is depicted in figure 4(c).
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Fig. 5. Feature member functions for junction and l-junction detection
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Fig. 6. Feature member functions for incidence and t-junction detection

In this work, we differentiate between regular junctions and L-junctions, be-
ing L-junctions those where the orientation difference is close to π

2 . These L-
junctions are very likely to be present in images containing man-made objects,
since square corners are one of their characteristic features. The membership
functions used for the detection of junctions and L-junctions are depicted in
figure 5. The distance to the intersection point is the most discriminative fea-
ture used for junction detection, line segment pairs with IA and IB low positive
or very low negative are detected as junctions through the membership func-
tions depicted in 5(a) and 5(c), respectively. The membership function of the
orientation difference α, however, is different in junctions and L-junctions. For
L-junctions it must be close to π

2 , with some variations allowed due to projection
effects, while for junction can be any that is not very low, as depicted in figure
5(d) and 5(c), respectively.

Incidences and T-junctions are the only non-symmetric relations in this paper,
with a line segment being incident in a supporting line segment if its endpoints
meets the second segment in some location between its endpoints. The member-
ship functions used for the detection of incidences and T-junctions are depicted
in figure 6, the only different is the orientation difference, depicted in figure
6(b) and figure 6(d) respectively, that for T-junctions must be close to π

2 . Simi-
larly to junctions, the most decisive feature for the detection of incidences and
T-junctions are the distances to the intersection point IA and IB . If s1 is the
incident line segment and s2 is the supporting line segment, the distance to the
intersection point IA, depicted in figure 6(a), must be low and positive or very
low and negative, as we penalise more the incidences past the intersection point.
Opposite to this, the distance to the intersection point IB from the supporting
line segment s2 in an incidence relation must be negative and high enough to
establish the intersection point lies inside the segment s2, as the membership
function depicted in figure 6(d) represents.



484 J. Rouco et al.

4 Results

We have tested our system with a set of artificially generated segment pairs.
Figure 7 shows the associated certainties to the different relations analysed in this
paper. We have used the parameters wD = 0.5, wI = 0.2 and wO = 0.2 for the
example, but these parameters would not affect the results if they were different,
as the line segment lengths of each segment in the pair are very similar in all the
examples. Also, the threshold parameters have been set as neutral values as they
are of no use for this examples, concretely, we have selected λ−

f = 0 and λ+
f = ∞.

(a) (b) (c) (d) (e)

Junction 0.0 0.851 0.297 0.919 0.328
Incidence 1.0 0.0 0.0 0.003 0.833
L-junction 0.0 0.210 0.210 0.681 0.328
T-junction 0.210 0.0 0.0 0.003 0.833
Continuity 0.0 0.0 0.0 0.0 0.0
Identity 0.0 0.0 0.0 0.0 0.0
Parallelism 0.0 0.0 0.0 0.0 0.0

(f) (g) (h) (i) (j)

Junction 0.595 0.0 0.0 0.0 0.0
Incidence 0.0 0.0 0.0 0.0 0.0
L-junction 0.595 0.0 0.0 0.0 0.0
T-junction 0.0 0.0 0.0 0.0 0.0
Continuity 0.0 0.0 0.0 0.0 0.0
Identity 0.0 0.0 0.0 0.0 0.0
Parallelism 0.0 1.0 0.627 0.699 1.0

(k) (l) (m) (n) (o)

Junction 0.0 0.0 0.0 0.0 0.0
Incidence 0.0 0.0 0.0 0.0 0.0
L-junction 0.0 0.0 0.0 0.0 0.0
T-junction 0.0 0.0 0.0 0.0 0.0
Continuity 0.0 0.604 0.853 0.707 0.0
Identity 0.714 0.0 0.0 0.0 0.0
Parallelism 0.065 0.061 0.061 0.14 0.14

Fig. 7. Resulting relation certainties for 15 testing line segment pairs
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The results obtained are coherent with the perceptual interpretation of the re-
lations between the segment pairs. For example, in figure 7(b) the junction cer-
tainty is very high (0.851), but the L-junction certainty is lower (0.210) since α is
not close to π

2 . As the α gets closer to π
2 , the L-junction certainty increases closely

to the junction’s, e.g. figures 7(d) and 7(f). Note also that in figures 7(a), 7(c)
and 7(f), the minimum distance between segment endpoints are identical, but the
certainties for the junction and incidence relations are significantly different, but
coherent with how the relations between these segment pairs are subjectively per-
ceived. This is due to the use of the signed distances to the intersection point pro-
posed in this paper for junction, incidence, L-junction and T-junction detection.
Parallelisms are also detected with an adequate certainty. For example, in figure
7(h) the parallelism certainty is significantly lower than the one in figure 7(g) due
to the higher orientation difference. Also, the low overlapping causes the reduc-
tion of this certainty in figure 7(i). Similarly, the continuity certainty is lower for
figure 7(l) than for figure 7(m) due to the higher overlap.

5 Conclusions

In this paper, we have introduced a fuzzy logic based method for computing the
certainty associated to pairwise line segment relations. The features employed
by the method and the effect of normalisation on the final certainty measure has
also been widely discussed in the text.

The method proposed is general enough to be suitable for the detection of
a wide set of relations: identity, continuity, junction, L-junction, incidence, T-
junction and parallelism, among others that could have also been analysed. Also,
the method is highly parametrisable, so the certainty associated to each target
relations can be tuned in base to the application domain, whether it uses the
certainty as a discriminant measure or as a base for further uncertain reasonings.
Section 4 show the promising results of this approach that could be of use in
environments where subjective scores for perceptual relations are necessary.
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Abstract. Automatic image annotation consists on automatically label-
ing images, or image regions, with a pre-defined set of keywords, which
are regarded as descriptors of the high-level semantics of the image. In
supervised learning, a set of previously annotated images is required to
train a classifier. Annotating a large quantity of images by hand is a
tedious and time consuming process; so an alternative approach is to
label manually a small subset of images, using the other ones under a
semi-supervised approach. In this paper, a new semi-supervised ensemble
of classifiers, called WSA, for automatic image annotation is proposed.
WSA uses naive Bayes as its base classifier. A set of these is combined in
a cascade based on the AdaBoost technique. However, when training the
ensemble of Bayesian classifiers, it also considers the unlabeled images on
each stage. These are annotated based on the classifier from the previous
stage, and then used to train the next classifier. The unlabeled instances
are weighted according to a confidence measure based on their predicted
probability value; while the labeled instances are weighted according to
the classifier error, as in standard AdaBoost. WSA has been evaluated
with benchmark data sets, and 2 sets of images, with promising results.

Keywords: Automatic image annotation, Semi-supervised Learning,
Ensembles, AdaBoost.

1 Introduction

In recent years the amount of digital images in databases has grown impressively.
This situation demands efficient search methods to extract images in huge col-
lections according to the user requirements, in what is known as content–based
image retrieval. To solve this problem, one alternative is to include with each
image a list of keywords that describe the semantics of the image. However, this
is not practical, because many images do not have an associated caption, and
it is too costly to label a huge collection manually. Another alternative is auto-
matic image annotation. Automatic image annotation consists on automatically
labeling images, or image regions, with a pre-defined set of keywords, which are
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regarded as descriptors of the high-level semantics of the image. Once annotated,
the set of keywords obtained are associated to the image for future queries.

Recently, there has been an increasing interest on automatic image annotation
[3,8,9,11]. Most methods are based on machine learning techniques, where a set
of manually labeled images is used to train a classifier, and then the classifier is
used to label the rest of the images. In some cases, the labels are assigned to an
specific image region; and in others, labels are globally assigned to each image [9].
A third approach considers salient features in the images, to avoid segmentation
[11]. In these approaches the performance of the annotation systems depends
on the quantity and quality of the training set, which was manually labeled.
However, there is usually a larger set of images that has not been ma-nually
labeled, and which in principle could be used to improve the annotation system
using a semi-supervised approach.

Semi-supervised methods exploit unlabeled data in addition to labeled data
to improve classification performance. This approach could be used with diffe-
rent classification methods, such as neural networks, support vector machines
and statistical models. In this work we are interested in improving ensemble
methods, in particular AdaBoost [6], using unlabeled data. Ensemble methods
work by combining a set of base or weak classifiers (usually a simple classifier,
such as Naive Bayes) in some way, such as a voting scheme, producing a combined
classifier which usually outperforms a single classifier, even a more complex one.

In this paper, a new semi-supervised ensemble of classifiers, called WSA
(Weighted Semi-supervised AdaBoost), for automatic image annotation is pro-
posed. It is based on AdaBoost and uses naive Bayes as its base classifier. When
training the ensemble of Bayesian classifiers, WSA also considers the unlabeled
images on each stage. These images are annotated based on the classifier from
the previous stage, and then used to train the next classifier. The unlabeled
instances are weighted according to a confidence measure based on their proba-
bility; while the labeled instances are weighted according to the classifier error,
as in standard AdaBoost. Although there is some previous work in using unla-
beled data in ensemble methods [2], they assign a smaller initial weight to the
unlabeled data and from then on, the weights are changed as in AdaBoost. In
our approach, the weights of unlabeled instances are dynamic, proportional to
the probability given by the previous stage. Also, this approach has not been
applied to automatic image annotation.

WSA was experimentally evaluated on two set of experiments. In the first
one we used two standard data sets from the UCI repository [5], using diffe-
rent percentages of data as labeled and unlabeled. We compared our approach
against: (i) supervised AdaBoost and (ii) a semi-supervised version without gi-
ving weights to the unlabeled data; using 10 fold cross-validation. In the second
experiments we evaluated the performance of image annotation using two subsets
of the Corel image data set [4].

The rest of the paper is organized as follows. Section 2 describes the AdaBoost
algorithm using Naive Bayes as the base classifier, while section 3 introduces our
semi-supervised AdaBoost algorithm with variable weights (WSA). In the next
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section we briefly describe how images are segmented, and the visual features
obtained per region. In section 5 the experimental results are described, and we
conclude with a summary and directions for future work.

2 The AdaBoost Algorithm

We start by describing the base classifier used with AdaBoost.

2.1 Base Classifier

As base classifier we use the naive Bayes classifier, which is a simple method that
has shown good performance in many domains. It is also very efficient to train
and for classification, which is important when a large number of classifiers is
combined. A Bayesian classifier obtains the posterior probability of each class,
Ci, using Bayes rule. The naive Bayes classifier (NBC) makes the simplifying
assumption that the attributes, A, are conditionally independent between each
other given the class, so the likelihood can be obtained by the product of the
individual conditional probabilities of each attribute given the class. Thus, the
posterior probability, P (Ci|A1, . . . , An), is given by:

P (Ci | A1, . . . , An) = P (Ci)P (A1 | Ci) . . . P (An | Ci)/P (A) (1)

In this work we consider the discrete version of the NBC, so the continuous
attributes are previously discretized.

2.2 AdaBoost

Our method is based on the supervised multi-class AdaBoost ensemble, which
has shown to be an efficient scheme to reduce the rate error of different classifiers,
such as trees or neural networks. The main idea of AdaBoost [6] is to combine
a series of base classifiers using a a weighted linear combination. Each time a
new classifier is generated it tries to minimize the expected error by assigning a
higher weight to the samples that were wrongly classified in the previous stages.
Ensembles tend to improve the limitations of using a single classifier (e.g., [7]).
When the training samples can not provide enough information to generate a
“good” classifier; however, the correlated errors of the single classifiers can be
eliminated when the decisions of the other classifiers are considered.

Formally, the AdaBoost algorithm starts from a set S of labeled instances,
where each instance, xi, is assigned a weight, W (xi). It considers N classes, where
the known class of instance xi is yi. The base classifier is h, and ht is one of the
T classifiers in the ensemble. AdaBoost produces a linear combination of the H
base classifiers, F (x) =

∑
t αtht, where αt is the weight of each classifier. The

weight is proportional to the error of each classifier on the training data. Initially
the weights are equal for all the instances, and these are used to generate the
first base classifier, h1 (using the training algorithm for the base classifier, which
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should consider the weight of each instance). Then the error, e1, of h1 is obtained
by summing the weights of the incorrectly classified instances. The weight of
each correctly classified instance is increased by the factor βt = et/(1 − et), and
these weights are used to train the next base classifier. The cycle is repeated
until et > 0.5 or when a predefined maximum number of iterations is reached.
Supervised AdaBoost is shown in algorithm 1.

Algorithm 1. AdaBoost algorithm.
Require: S: Labeled instances, T : Iterations, W : weighted vector

Ensure: Final Hypothesis: Hf = argmax

T�

t=1

log
1

Bt

1: Initialize W . W (xi)
0 = 1

NumInst(S)
2: for t from 1 to T do
3: Normalize W . W (xi)

t = W (xi)
N�

i=1

W (xi)

4: Call weak algorithm. ht = C(S, W (xi)
t))

5: Compute the error. et =
N�

i=1

W (xi)
t if ht(xi) �= yi

6: if et ≥ 0.5 then
7: exit
8: end if
9: Bt = et

(1−et)

10: Re-compute W . W (xi)
(t+1) = W (xi)

t ∗ Bt if ht(xi) = yi

11: end for

3 Variable Weight Semi-supervised AdaBoost

Labeling large sets of instances is a tedious process, so we will like to label
only a small fraction of the training set, combining the labeled instances with
the unlabeled ones to generate a classifier. This paper introduces a new semi-
supervised learning algorithm, called WSA, for image annotation. WSA is based
on AdaBoost and uses a naive Bayes classifier as its base classifier. WSA receives
a set of labeled data (L) and a set of unlabeled data (U). An initial classifier
NB1 is build using L. The labels in L are used to evaluate the error of NB1. As
in AdaBoost the error is used to weight the examples, increasing the weight of
the misclassified examples and keeping the same weight of the correctly classified
examples. The classifier is used to predict a class for U with certain probability.
In the case of U , the weights are multiplied by the predicted probability of the
majority class. Unlabeled examples with high probability of their predicted class
will have more influence in the construction of the next classifier than examples
with lower probabilities. The next classifier NB2 is build using the weights and
predicted class of L∪U . NB2 makes new predictions on U and the error of NB2
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on all the examples is used to re–weight the examples. This process continues,
as in AdaBoost, for a predefined number of cycles or when a classifier has a
weighted error greater or equal to 0.5. The main differences with AdaBoost are:
(i) WSA uses labeled and unlabeled data, (ii) the base classifiers create new class
labels for the unlabeled instances, and (iii) the weights assigned to the original
unlabeled data depends on its predicted probability class. As in AdaBoost, new
instances are classified using a weighted sum of the predicted class of all the
constructed base classifiers. WSA is described in algorithm 2.

Algorithm 2. Semi-supervised Weighted AdaBoost (WSA) algorithm.
Require: L: labeled instances, U : unlabeled instances, P : training instances, T : Iter-

ations

Ensure: Final Hypotesis and probabilities: Hf = argmax

T�

t=1

log
1

Bt
, P (xi)

1: W (xi)
0 = 1

NumInst(L) , ∀xi ∈ L
2: for t from 1 to T do
3: W (xi)

t = W (xi)
N�

i=1

W (xi)

∀xi ∈ L

4: ht = C(L, W (xi)
t)

5: et =
N�

i=1

W (xi)
t if ht(xi) �= yi

6: if et ≥ 0.5 then
7: exit
8: end if
9: if et = 0.0 then

10: et = 0.01
11: end if
12: Bt = et

(1−et)

13: W (xi)
(t+1) = W (xi)

t ∗ Bt if ht(xi) = yi ∀xi ∈ L
14: P (xi) = C(L, U, W (xi)

t)
15: W (xi) = P (xi) ∗ Bt ∀xi ∈ U
16: end for

4 Image Segmentation and Visual Features

Before applying our semi-supervised method for image annotation, we perform
two operations on the images: (i) segmentation and (ii) feature extraction.

The Normalized Cuts algorithm [10] was used for image segmentation. This
algorithm considers the image as a non–directed complete graph. Each pixel in
the image represents a node in the graph. There is an edge between each pair
of pixels a y b, with a cost Cab that measures the similarity of a and b. The
algorithm finds those edges with a small cost and eliminates them making a
cut in the graph. Each one of the edges must keep similar pixels in the same
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segments. The minimum cut is performed by using equation (2), where cut(A, B)
is a cut between the segments A and B, volume(A) is the sum of each border
that touches A and volume(B) is the sum of the borders that touch B.

Ncut(A, B) =
cut(A, B)

V olume(A)
+

cut(A, B)
V olume(B)

(2)

Once the image is segmented, each segment or region is characterized by a set
of visual features that describe the region, and which will constitute the attribute
vector forWSA.Weconsider a set of features for color, textureand shapeper region:

Color: This feature is the most common in image retrieval. Several represen-
tations for this feature have been considered such as the histogram, momentum,
sets and color distributions. We use the color histogram in the RGB color space
(8 values per band), as well as the mean and variance for each band.

Texture: The perception of textures also plays an important role in content-
based image retrieval. Texture is defined as the statistical distribution of spatial
dependences for the gray level properties [1]. One of the most powerful tools for
texture analysis are the Gabor filters [3], which can be viewed as the product of
a low pass (Gaussian) filter at different orientations and scales. A Gabor filter
in 2D is given by equation (3).

g(x, y) =
(

1
2πσxσy

)
exp

[
−1

2

((
x

σx

)2

+
(

y

σy

)2
)

+ jw (xcosθ)

]
(3)

where θ represents the orientation of the filter in the range. The constants σx and
σy determine the fall of the Gaussian in the x-axis and the y-axis, respectively.
jw represents the frequency along x-axis. To characterize texture we used 4
filters with orientations of 0, 45, 90 and 135 grades, with one scale.

Shape: The following set of features were used to characterize the shape of
the region:

1. Area: is an scalar that measures the actual number of pixels the image region.
2. Convex Area: represents the number of pixels in the convex hull of the region.
3. Perimeter: computed as

√
4∗Area

π .
4. Major and minor axis: measure the longitude in pixels of the major and

minor axis of the region.
5. Solidity: computed as Area

Convexarea .

5 Experiments and Results

WSA was tested on datasets from the UCI Machine Learning Repository [5] and
on the Corel image database [4]. For the image collection a user interface, shown
in figure 1, was designed to easily label a small set of examples. This tool allows
to segment images and to extract their features such as color, texture, and form.
Only regions with a large proportion of a single object were manually labeled.
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Fig. 1. Graphical user interface for image segmentation, feature extraction and region
labeling

WSA was compared against AdaBoost and against a version of WSA without
changing the weights of the unlabeled instances using the predicted probability
value, which we will call SA. Real valued attributes were discretized in 10 bins
using WEKA [12].

The algorithms were evaluated by their predicted precision using 10-fold cross
validation for different percentages of unlabeled data on the training sets.

Two datasets were used from UCI repository: Iris and Balance-Scale, whose
characteristics are given in table 1. Figure 2 shows the performance of WSA, SA,
and (supervised) AdaBoost on both datasets. As can be seen from the figure,
using unlabeled data can improve the performance of AdaBoost, in particular,
when there is a large number of unlabeled instances. Also, WSA has a better
performance than SA which shows that using the probability class value on the
unlabeled instances can have a positive effect as it reduces the unwanted bias
that the unlabeled data can produce in the classifier.

WSA was also tested on the Corel images, that are grouped according to dif-
ferent topics, such as, scenes, animals, buildings, airplanes, cars, and persons,
among others. The size of these color images is: 192x128 pixels. The images were
segmented with normalized cuts (5 regions) and a set of visual features was ob-
tained per region, as describe in section 4. We performed tests in two topics:
airplanes and birds. 100 images were randomly selected from the airplane topic;
from these images 127 regions were used as the training set. In this test we con-
sidered 6 classes. We also used images of bird topic, also with 6 classes, from
which 225 regions were considered for training. Table 2 shows the characteris-
tics of these two datasets and the performance obtained by the WSA classifier
using different percentage of labeled data. Additionally, figure 3 compares the
performance of WSA, SA, and AdaBoost. For the airplanes collection, their is
a significant improvement using WSA vs. AdaBoost, for most percentages of
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labeled data; while for the birds collection, their accuracy is similar, although
slightly better with WSA. In both cases, WSA is superior to SA, which confirms
that weighting unlabeled data is important; wrongly labeled data could even
decrease the performance of the classifier, as shown in these experiments.
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Fig. 2. Performance of WSA (red/cross), SA (blue/asterisk) and AdaBoost (green/
circle) on the Iris and Balance-Scale data data sets form the UCI repository
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Fig. 3. Performance of SWA (red/cross), SA (blue/asterisk) and AdaBoost (green/
circle) on images of airplanes and birds from the Corel database

Table 1. Characteristics of the Iris and Balance-Scale datasets

Datasets Num-Instances Num-Attributes Num-Classes

Iris 150 4 3
Balance-Scale 625 4 3

Table 2. Accuracy with different percentage of labeled data

Dataset Classes Num.Inst. 10% 30% 50% 70% 90%

Airplanes sky, jet, cloud, 127 40.83 55.00 76.66 90.08 99.16
plane, sunset, helicopter

Birds branch, bird, tree, 225 32.08 51.16 74.16 86.25 90.10
grass, nest, rock
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6 Conclusions

In this paper we proposed WSA, a semi-supervised ensemble of classifiers for au-
tomatic image annotation. It is based on AdaBoost using naive Bayes as its base
classifier. It incorporates unlabeled instances, which are annotated based on the
classifier from the previous stage, and then used to train the next classifier. These
unlabeled instances are weighted according to a confidence measure based on the
class probability given by the classifier of the previous stage. The main differences
between WSA and AdaBoost are: (i) WSA uses labeled and unlabeled data, (ii)
the base classifiers create new class labels for the unlabeled instances, and (iii) the
weights assigned to the unlabeled data depends on its predicted probability class.

Initial experiments on images and other data show promising results. Using
unlabeled data we can improve the performance of AdaBoost, in particular,
when there is a large number of unlabeled instances. Also, WSA has a better
performance than SA which shows that using the probability class value on the
unlabeled instances can have a positive effect as it reduces the unwanted bias
that the unlabeled data can produce in the classifier.

As future work we plan to perform a more comprehensive experimentation
with other data sets.
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Abstract. ALVOT is a supervised classification model based on partial 
precedences. These classifiers work with databases having objects described 
simultaneously by numeric and nonnumeric features. In this paper a new object 
selection method based on the error per subclass is proposed for improving the 
accuracy, especially with noisy training matrixes. A comparative numerical 
experiment was performed with different methods of object selection. The 
experimental results show a good performance of the proposed method with 
respect to previously reported in the literature. 

Keywords: Partial precedence, mixed and incomplete data, editing method. 

1   Introduction 

In general, the better the training matrix the higher the accuracy of supervised 
classifiers. The accuracy of a classifier depends on the way that it is measured, and in 
this paper it is directly proportional to the well classification ratio. On the other hand, 
the quality measure of the training matrix is considered as a function of the classifier 
accuracy. Improving the accuracy is usually accomplished by removing noisy as well 
as redundant objects. Several techniques have been developed to deal with these two 
problems: editing and condensing methods respectively [1].  

In real world problems, sometimes the objects are described simultaneously in 
terms of numeric and nonnumeric features. Some of the object descriptions could also 
be incomplete (missing values). In these cases, we are talking about mixed and 
incomplete data (MID). For this kind of data, the tools of the Logical Combinatorial 
Pattern Recognition (LCPR) [2] have shown a good behavior. 

ALVOT [3, 4], introduced by Zhuravlev, is a model of supervised classification 
based on partial precedence. Partial precedence is the principle of calculating the 
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object similarities using comparisons between their partial descriptions. A partial 
description is a combination of feature values that should have a clear meaning in the 
problem domain. This is the way that physicians, and other natural scientists, establish 
comparisons among objects in practice [4]. This model of algorithms has been applied 
to different real world situations. In these cases new comparison criteria of feature 
values and similarity functions between sub-description of objects were introduced, 
allowing to work with MID. 

Any algorithm of ALVOT model A  works in six stages: 

Stage 1.- Determine the support sets system AΩ , which is a set of subsets of features 

Stage 2.- Find out the feature values comparison criteria and similarity function 

between sub-descriptions of objects ( )iOO ΩΩ ,β , AΩ∈Ω . OΩ  is a sub-

description of object O  using only features in Ω ; and β  is a similarity function 

Stage 3.- Rule ( )OOi ,ΩΓ  for evaluating the partial similarity between a fixed sub-

description of a new object O  and the corresponding sub-descriptions of previously 

classified objects iO  (partial evaluation by rows) 

Stage 4.- Rule ( )Oj
ΩΓ  for summarizing the partial evaluation by rows of a fixed sub-

description of a new object O  for class jK  (partial evaluation by class) 

Stage 5.- Rule ( )OjΓ  for summarizing all partial evaluations by class with respect to 

the whole support sets system of a new object O  (total evaluation by class) 

Stage 6.- Decision-making rule ( )OAΓ  based on the total evaluation by class. 

Some authors have faced the problem of improving the efficiency of an ALVOT 
classifier reducing the size of the training matrix. This is usually achieved with some 
negative impact in the classifier accuracy. In this paper a different approach is 
considered. We present an efficient method for improving the accuracy of the 
ALVOT classifiers. 

2   Previous Works 

The first editing method for ALVOT was introduced in [5, 6]. This method uses a set 
of genetic algorithms to select the support sets system, the features weights, and the 
objects in the training matrix respectively. Nevertheless, there are several problems 
where this optimization procedure can not be applied, because the parameters have a 
meaning in the problem definition domain. For example, the specialist might 
determine the support sets system and assign the feature weights according to his 
background knowledge. He can also use some procedures, with a comprehensive 
meaning in his model. Based on these facts, we compared our algorithm only with the 
object selection procedure (GA-ALVOT). 
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The chromosomes used by the genetic algorithm were binary strings consisting of 
m  bits, one for each object, representing the subsets of those which are selected. The 
i th bit has value 1 when the respective element is included, and 0 otherwise. 

In general, the algorithm works as follows: 

1. The initial population is generated randomly. The population size and iteration 
number are input parameters of the algorithm. 

2. The population’s individuals are sorted according to their fitness. The first and last 
individuals are crossed, the second is crossed with the penultimate and this process 
is repeated until finishing the population. They are crossed using a 1-point 
crossover operator in the middle of the individual. The fitness function is the ratio 
of well classified objects. 

3. For each individual in the population the mutation operator is applied. It takes 
randomly an individual’s gene and changes its value. The fitness is evaluated for 
this new population. 

4. The original individuals together with those obtained by crossing and mutation are 
sorted in descending order according to their fitness and those with highest fitness 
are chosen (taking into account the population size). The new population is used in 
the next iteration of the algorithm. 
This method has an important random component, so two different executions of 

the algorithm with the same data could have dramatically different results. As pointed 
out by Kuncheva and Bezdek [7] selecting prototypes by Random Searches and 
Genetic Algorithms could be computationally demanding and, for large data sets, may 
be infeasible.  

In the first numerical experiment of this paper our proposed method shows a clear 
superiority with respect to the GA-ALVOT. In the second experiment was considered 
larger training matrixes intentionally noised. Because the computational demanding 
of GA-ALVOT and its behavior in the first experiment, this procedure was not taken 
into consideration.  

For selecting objects for ALVOT we can apply classical editing methods based on 
NN rule. An analogue solution was reported by Decaestecker [8] and Konig et. al [9], in 
which the training matrix is edited for a Radial Based Function network, using a 
procedure originally designed for k-NN. A deep study about editing methods is outside 
of the scope of this paper, but a review can be found in [1]. Considering we are working 
with MID, in this paper we use the Compact Set Editing method (CSE) [10].  

Despite the fact that these procedures can be applied, as was shown in [11], a better 
solution could be achieved considering the way ALVOT works.  

In [11] a method to select objects for ALVOT was introduced (Voting based 
Object Selection, VOS). In VOS the objects are selected according to their voting 
power in the training data, which is calculated with the equation (1).  
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where: 
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The expression (1) was modified with respect to [11]. Instead 

( ) ( ))1( OVO
ij KK −+α  and ( ) ( ))1( '' OVO

ii KK −+α  here we use ( ) 1+O
jKα  

and ( ) 1' +O
iKα , respectively. 

In general, the algorithm VOS works as follows:  
 Calculate the voting power of each object using (1) 

 Select an initial solution, formed by ( ){ }{ }0:min
...1

>∈
∈

OKO i
si

ι  objects with 

highest voting power per class, being s  the number of classes. 
 Add (remove) the object per class with greater (lower) )(Oι , until the original 

accuracy is at least (at most) achieved. 
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In order to improve the results of VOS, in this paper we take into consideration the 
inner structure of the classes while selecting objects. 

3   The Inner Structure of the Classes in Supervised PR Problems 

In many classification problems, a class is not uniformly formed. This fact depends on 
the level of generality of the properties that determine each class. Consider, for 
example, in the universe of all humans we can define two classes: S is the class of all 
who are sick, and H is the class of all who are healthy. In the class S are grouped 
together many different objects with many different diseases, which compose 
subclasses inside the outer class. Intuitively, if an object belongs to a subclass its most 
similar neighbor must be in the same set, so one way is to consider that a subclass 
should be a union of compact sets [10]. The compact set criterion induces a unique 
partition for a given data set, which has the property that one object x  and all its 
most similar neighbors belong to the same cluster, and also, those objects for which 
x  is its most similar neighbor. 

Frequently in some compact sets there are objects with low similarity. 
Consequently, this structure is not appropriate for editing. That is why in this paper 
we introduce a new algorithm to generate the inner structure of the classes, named the 
Hierarchical Strongly Connected Components (HiSCC) algorithm. A strongly 
connected component of a direct graph is a maximal subset of vertices containing a 
directed path from each vertex to all others in the subset. 

This algorithm assumes the following issues: a) The similarity between two 
components is computed as the global minimum similarity between two elements, one 
in each component (group-minimum); b) The maximum β -similarity graph is a 

direct graph where each vertex is connected to the vertexes with maximum value of 
similarity to it, if this value is above β . The algorithm works as follows: 

Step 1: Construct the maximum β -similarity graph, 0G . 

Step 2: Compute the set of all strongly connected components (SCC) of 0G , which 

are the initial solution 0SC . 

Step 3: Construct the maximum β -similarity graph iG , where the nodes are the 

elements of 1−iSC , and the inter-component similarity is the group-minimum. 

Step 4: Find the strongly connected components of iG  in the current iteration, iSC  

Step 5: If the number of elements in iSC  and 1−iSC  differs, go to step 3. 

4   Object Selection Based on Subclass Error Correcting for 
ALVOT 

Based on the previous structuralization of the classes, a new method for editing 
ALVOT is introduced. Let A  be an algorithm of ALVOT and T  a training matrix 

formed by objects in sKK ,...,1  classes.  
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Subclass Error Correcting Object Selection (SECOS) algorithm works as follows: 

Step 1: Eliminate from T  all the objects with negative voting power, which are 

calculated with the equation (1). Let 'T  be the result matrix. (Noise filtering 
procedure) 

Step 2: Cluster the matrix 'T  using HiSCC algorithm. Let i
a
i KK ⊆ , j

b
j KK ⊆  

where ji ≠  and a
iK , b

jK  are subclasses 

Step 3: Build the validation matrix V , selecting the object with worst voting power 
from each cluster with cardinal greater than 1. 

Step 4: Build a confusion matrix AE  of A . This is a square matrix where 

[ ]b
j

a
iA KKE ,  represents the number of objects belonging to the cluster i

a
i KK ⊆ ; 

that were classified by A  as elements of b
jK  

Step 5: Select a
iK  and b

jK  with highest [ ]b
j

a
iA KKE , , ji ≠ . 

Step 6: Select ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>∈= ∑
∈ a

i

a
i

a
i

KO
Ka

i
K

b
j OV

K
OVKOX

'

'
1

: , and sort them 

descending according to ( )OV a
iK

, the summarization of the votes that O  gives to the 

objects of the subclass a
iK . For every XO ∈ , classify the validation matrix V  

using ALVOT trained with { }OT \' , until a better accuracy is achieved, and go to 

step 4. If no object O  exists or no improvement of the accuracy could be achieved, 
go to step 5 and select a different pair of subclasses 

Step 7: If no new pair of subclasses a
iK  and b

jK  can be found in step 5, finish. 

5   Experimental Results 

The experiments were made using 7 databases from UCI [12] Repository of Machine 
Learning, with mixed and incomplete data. A description of these databases can be 
found in Table 1. We conducted two different experiments. The first one was the 
accuracy comparison of A  trained with the original matrix, and the edited matrix 
with GA-ALVOT, CSE, VOS and SECOS respectively. The results of this 
experiment are shown in table 2 and 3. 

In the second experiment, we consider two databases. The training matrixes were 
intentionally noised interchanging the classes of fixed percent of objects. For 
example, in the Australian database we got from the respective training matrix 40% of 
the objects belonging to class 2 and put them in class 1, and vice versa. With these 
training matrixes the algorithms ALVOT, VOS, CSE and SECOS were executed. In 
table 4 the results of this experiment are shown.  
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Table 1. Databases used in the experiments 

Database Objects Features Missing Values Classes 
Breast-cancer 286 9 9 2 
Breast-cancer-breast 286 9 9 2 
Credit-screening 690 15 37 2 
Credit-screening-A9 690 15 37 2 
Credit-screening-A12 690 15 37 2 
Hepatitis 155 19 75 2 
Australian  690 14 37 2 

Breast-cancer-breast is the same database as Breast-cancer, but with the feature 
breast used as class feature. Credit-screening-A9 (Credit-screening-A12) is the same 
database as Credit-screening, but with the feature A9 (A12) used as class feature.  

Each database was split taking 70% for training and 30% for testing, repeating the 
process 5 times and averaging the results. 

In our experiments we used a voting algorithm A  with the following parameters: 
• The support sets system was the set of all typical testors of the training matrix. 

• ( )
( ) ( )( )
Ω

=ΩΩ
∑

Ω∈p

jpipp

ji

OOC

OO
χ

χχ
β

,

, ; partial similarity function, where 

Ω  is a subset of features, pC  the comparison criterion for the feature pχ , and 

( )ip Oχ  is the value of the feature pχ  in the object iO . 

• ( ) ( )( ) ( ) ( )
⎩
⎨
⎧ <−=

otherwise0

if1
, 21

21
ppp

ppp

OO
OOC

σχχχχ ;similarity compare-

son criteria for numeric features, where pσ  is the standard deviation of the values 

of the feature pχ  in the training matrix. 

• ( ) ( )( ) ( ) ( )
⎩
⎨
⎧ =

=
otherwise0

if1
, 21

21

OO
OOC pp

ppp

χχ
χχ ; similarity comparison 

criteria for non-numeric features. 

• ( ) ( ) ( ) ( )OOOOO ppp ΩΩ⋅Ω⋅=ΓΩ ,, βρρ ; partial evaluation by rows for a 

fixed support set, where ( ) ( )∑
Ω∈

=Ω
i

i
χ

χρρ . In the experiments ( ) 1=pOρ  was 

used. 

• The weight of the feature iχ  is calculated, following [13], with the equation: 

( ) ( ) ( )iii LP χβχαχρ ⋅+⋅=  with 0, >βα  and 1=+ βα , being α  and 
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β  two parameters, which weight the influence of ( )iP χ  and ( )iL χ  respectively 

in ( )iχρ . We used 5.0== βα . ( )iP χ  is computed: ( ) ( )
τ

τχ i
P i = , where 

( )iτ  is the number of typical testors, which contain the feature iχ  and τ  the 

amount of all typical testors. ( )iL χ  is computed: ( ) ( )

( )i

t
i

i
t

L
χ

χ χ
*

*

1

Ψ
=
∑
Ψ∈

, where 

( )iχ*Ψ  is the family of all typical testors, which contain the feature iχ  
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A

j 1
; total evaluation by classes 

• ( ) ( )( )OO s
A ΓΓΓ ,,1 … ; the majority vote. 

The quality function used was the well classification ratio.  
The accuracy of the original ALVOT A , GA-ALVOT, VOS, CSE, and SECOS 

with the edited matrixes respectively, is shown in Table 2. The accuracy of A  could 
be improved in 3 cases. In 2 of them, SECOS achieved the highest value.  

The compression ratios achieved by the algorithms are shown in Table 3.  

Table 2. Accuracy of A  without editing compared with edited by respective methods 

Database A  GA-ALVOT  CSE VOS SECOS 

Breast-cancer 0.75 0.71 0.75 0.76 0.78 
Breast-cancer-breast 0.58 0.52 0.57 0.57 0.57 
Credit-screening 0.81 0.79 0.79 0.79 0.79 
Credit-screening-A9 0.73 0.74 0.74 0.71 0.72 
Credit-screening-A12 0.64 0.62 0.61 0.62 0.62 
Hepatitis 0.73 0.74 0.68 0.75 0.78 

The performance of each editing method in the presence of noisy databases is 
shown in table 4. Because of the stability of the ALVOT classifier, its accuracy can 
not be degraded with low levels of noise. Nevertheless if the noise introduced is too 
much, the degradation is drastic, and no meaningful comparison can be done. That is 
why we only present the results for noise of 30% and 40%. The results show that 
SECOS is less sensitive to noise than other editing methods, and also it improves 
original ALVOT. This behavior can be explained because it starts with a noise 
filtering procedure. 
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The CSE editing method, although with acceptable behavior in experiment 1, has 
worse results in the presence of noise. We suppose this happens because CSE does 
not select objects taking into consideration the way ALVOT works. 

Table 3. Compression ratio 

Database GA-ALVOT  CSE VOS SECOS 
Breast-cancer 0.51 0.41 0.35 0.41 
Breast-cancer-breast 0.53 0.36 0.36 0.46 
Credit-screening 0.50 0.52 0.51 0.20 
Credit-screening-A9 0.50 0.48 0.26 0.21 
Credit-screening-A12 0.49 0.38 0.23 0.51 
Hepatitis 0.51 0.54 0.65 0.32 

Table 4. Accuracy of A  with larger and noised training matrixes 

Database/noise A  VOS CSE SECOS 

Australian 0.85    
Australian/30% 0.84 0.85 0.85 0.85 
Australian/40% 0.82 0.81 0.70 0.84 
Credit-screening 0.86    
Credit-screening/30% 0.86 0.85 0.85 0.86 
Credit-screening/40% 0.81 0.81 0.75 0.82 

6   Conclusions 

ALVOT is a model for supervised classification based on partial precedences. It is 
mainly used in problems where the objects are described in terms of numeric and 
nonnumeric features simultaneously with missing values. 

Speeding up ALVOT through object selection has been faced in some papers, but it 
is usually achieved with some degradation of the classifier accuracy. In this paper a 
method for improving the accuracy of ALVOT is presented: Subclass Error 
Correcting Object Selection (SECOS). 

SECOS first eliminates noisy objects using the voting power concept. Then it 
decomposes each class in subclasses by HiSCC, a new subclass detecting algorithm. 
Finally, a confusion matrix by subclasses is used to select the objects to be eliminated. 

Two different experiments were carried out. In the first, the comparisons with other 
methods showed that only in 3 databases of 6 the ALVOT accuracy could be 
improved. In 2 of them, SECOS achieved the highest value. In the second experiment 
artificial disturbance was introduced and it showed that the accuracy of ALVOT 
could be affected by noisy objects. The proposed algorithm improved the accuracy of 
the classifier in all databases so it can be used to detect noisy objects and improve the 
accuracy of ALVOT. 
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Abstract. Typical testors are a useful tool for feature selection and
for determining feature relevance in supervised classification problems,
especially when quantitative and qualitative features are mixed. Nowa-
days, computing all typical testors is a highly costly procedure; all de-
scribed algorithms have exponential complexity. Existing algorithms are
not acceptable methods owing to several problems (particularly run time)
which are dependent on matrix size. Because of this, different approaches,
such as sequential algorithms, parallel processing, genetic algorithms,
heuristics and others have been developed. This paper describes a novel
external type algorithm that improves the run time of all other reported
algorithms. We analyze the behaviour of the algorithm in some experi-
ments, whose results are presented here.

Keywords: feature selection, pattern recognition, typical testors.

1 Introduction

Feature selection is a significant task in supervised classification and other pat-
tern recognition areas. This task consists of identifying those features that pro-
vide relevant information for the classification process. In Logical Combinatorial
Pattern Recognition [6,8], feature selection is solved by using Testor Theory [5].
Yu. I. Zhuravlev introduced the use of the testor concept in pattern recognition
problems [4]. He defined a testor as a set of features that does not confuse objects
descriptions belonging to different classes. This concept has since been extended
and generalized in several ways [5]. This concept is especially well suited to prob-
lems which involve qualitative and quantitative features (mixed data) and even
incomplete descriptions.

Computing all typical testors is very expensive procedure; all described algo-
rithms have exponential complexity. In addition to sequential algorithms, dif-
ferent methods, such as parallel computing [14], genetic algorithms used for
calculating a subset of typical testors [13], etc. But even through the applica-
tion of these techniques, the run time of existing algorithms continues to be
unacceptable owing to several problems which are dependent on matrix size.
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The present paper proposes a novel external type algorithm, named CT-EXT,
for calculating the typical testor set of a learning matrix. The classic concept of
a testor, where classes are assumed to be both hard and disjointed, is used. The
comparison criteria used for all features are Boolean, regardless of the feature
type (qualitative or quantitative). The similarity function used for comparing
objects is also Boolean. These concepts are formalized in the following section.

2 Preliminary Concepts

Let U = {O1, O2, · · · , Os, · · ·} be a universe of objects, Ω = {O1, O2, · · · , Om} is
a subset of U, I(O1), I(O2), · · · , I(Om), are the object descriptions in terms of
the set of features R = {X1, X2, · · · , Xn}, where each feature Xi, has a set of
admissible values Mi (Mi is the domain of Xi) associated to it.

Each object description can be represented as I(Oi) = (X1(Oi), X2(Oi), · · · ,
Xn(Oi). Let us consider a function Ci : Mi × Mi → Li, where Li is a totally
ordered set, such as if Ci is a dissimilarity criterion, then Ci(Xi(Os), Xi(Os)) =
min{y|y ∈ Li} , and if Ci is a similarity criterion, then Ci(Xi(Os), Xi(Os)) =
max{y|y ∈ Li} [10] . This function can be regarded as the comparison criterion
for the feature Xi.

Set U is a union of a finite number of c disjoint subsets K1, · · · , Kc, which are
called classes. Each object O has an associated c-tuple of membership degrees,
whichdescribes thebelonging of the objectO to the classesK1, · · · , Kc.This c-tuple
of membership degrees is denoted by α(O). Then, α(O) = (α1(O), · · · , αc(O)),
where αi(O) = 1 means that O ∈ Ki and αi(O) = 0 means that O �∈ Ki [10].
The information containing both descriptions and c-tuple of membership degrees
of objects in Ω is used as learning data for classification, and we call it a Training
Sample (TS).

Other denominations like Learning Sample or Learning Matrix (LM) are also
used. Table 1 shows the general scheme of a learning matrix.

Table 1. General Learning Matrix scheme

Objects Features l-uple of belonging

O1 X1(O1) · · · Xn(O1) α1(O1), · · · , αc(O1)
...

...
...

...
...

Op X1(Op) · · · Xn(Op) α1(Op), · · · , αc(Op)

Oq X1(Oq) · · · Xn(Oq) α1(Oq), · · · , αc(Oq)
...

...
...

...
...

Om X1(Om) · · · Xn(Om) α1(Om), · · · , αc(Om)

The supervised pattern recognition problem for an object O ∈ U −Ω consists
in determining α(O) using the learning matrix and the description of object O.
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Given LM and n bi-valued comparison criteria C1, · · · , Cn, a comparison ma-
trix denoted by DM is created. We consider all comparison criteria as dissimi-
larity ones. This comparison matrix is called a dissimilarity matrix. Rows of DM
are obtained from feature by feature comparison of every pair of objects from
LM belonging to different classes. As all are dissimilarity criteria, if the objects
under comparison are not similar in terms of a feature, a value of 1 is assigned
in the corresponding column. If this is not the case, a value 0 is assigned.

Each row of DM may be represented by the set of column indexes, in which
this row has a value of 1. This set indicates the features in which the compared
objects are not similar.

It is important to realize that each row of DM may contain redundant infor-
mation.

Let f and g be two rows of DM and let F and G be their associated set of
column indexes, respectively. We say that f is a sub-row of g if F ⊂ G. We say
that f is a basic row of DM if f has no sub-rows in DM.

A sub-matrix containing all basic rows in DM (without repetitions) is called
a basic matrix and we identify it with BM.

Commonly, algorithms used for computing typical testors make use of BM
instead of DM or LM by two reasons: 1) unnecessary comparisons among objects
are avoided, BM contains the comparisons among the ”most similar” objects,
and 2) typical testors calculated over BM are the same as those calculated over
DM or LM [10]. This is because BM contains all information needed to calculate
typical testors of LM.

Definition 1. A feature subset T ⊆ R which does not confuse any two objects
belonging to different classes is called testor. A typical testor is an irreducible
testor (if any feature of T (column of LM) is eliminated, then the new set is not
a testor [10]).

3 Previous Algorithms

Algorithms for computing typical testor set can be divided into external type
and internal type algorithms. External type algorithms consider the whole power
set of features of BM in order to determine whether a feature subset is a typical
testor or not, by using a previously defined total order. These algorithms take
advantage of several properties for skipping over several sets and thus avoid the
analysis of every combination of features. Examples of this kind of algorithms
are: BT and TB [9], REC [7], CER [2] and LEX [15].

On the other hand, internal type algorithms analyze BM based on several
conditions that guarantee that a feature subset is a typical testor. Instead of
verifying whether a set of features is a typical testor, as external type algorithms
do, internal type algorithms build typical testors through different strategies.
Some of these algorithms are: CC [1] and CT [3].

Generally speaking, external type algorithms work in the following fashion:
each combination (feature subset) is represented by a characteristic n-tuple,
a total order is defined in the power set of features (natural order over the
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characteristic n-tuples, lexicographic order, etc.), a property that characterizes
a typical testor is defined. Starting from an initial combination, the algorithm
moves about the power set verifying the fulfillment of the property. If the feature
combination under analysis is a typical testor, then it is saved. In all cases,
the algorithm skips those consecutive feature combinations which may be said,
with certainty, not to be typical testors, either because they are not testors or
because they are testors but not typical. The characterizing property is verified
row by row in BM, in consideration only of columns belonging to the current
combination.

The blind generation of feature combinations, which does not take into ac-
count how much each feature contributes to the combination under construction,
is one of the main limitations of this kind of algorithm.

The most significant difference between LEX and all other external type algo-
rithms is that LEX incorporates into the combination under construction those
features that maintain the fulfilment of the typical testor characterizing prop-
erty. However, the verification of this property for each new added feature is a
costly process.

Internal type algorithms build feature combinations considering values in BM.
These algorithms take into account elements with a value of 1 in BM in order to
generate maximal feature combinations in such a way that the involved columns
represent a typical testor. There are two strategies: i) building incremental com-
binations knowing that they are testors and trying to successfully complete a
typical testor and ii) building incremental combinations that have the typicity
property and trying to successfully complete a testor. These algorithms have the
disadvantage that they generate many repetitions of feature combinations.

4 The Proposed Algorithm CT-EXT

CT-EXT is an external type algorithm which uses the same lexicographic total
order that the LEX algorithm uses. The CT-EXT algorithm generates incremen-
tal feature combinations reducing, step by step, the number of objects belonging
to different classes that are confused, until a combination which is a testor is
obtained. Subsequently, CT-EXT verifies whether the generated combination is
a typical testor. As well as LEX, CT-EXT rules out those feature combinations
that can generate a testor which is not a typical testor, preserving those candi-
dates capable of generating a typical testor only. If a testor is generated, all its
consecutive supersets (in the lexicographic order previously introduced into the
power set of features) are not analyzed. They are skipped because these feature
combinations are testors, but not typical testors.

The Algorithm’s name (CT-EXT) is obtained by combining CT (because of
the similarities in behaviour it presents with respect to the CT algorithm) and
EXT (because it carries out its search over the power set of features). Meaning,
it is an EXTernal type algorithm.



510 G. Sanchez-Dı́az and M. Lazo-Cortés

In addition to this, to improve the performance of the algorithm, a convenient
order is introduced into BM, in a similar way as the case studied in [12]. The
algorithm has the following theoretical bases.

Definition 2. Let fi be a row of BM. We say that fi is a zero row of S ⊆ R,
and we denote it by f0

i (S), if ∀Xp ∈ S, fi[p] = BM [i, p] = 0.

Definition 3. In terms of BM, a testor T ⊆ R is a feature set such that there
are no zero rows of T in BM.

From this definition, if T is a testor then, any superset of T is a testor too.

Definition 4. Let fi be a row of BM. We say that fi is a typical row of S ⊆ R
with regard to Xq, and we denote it by f1

i (S, q) if ∃Xq ∈ S, such that fi[q] =
BM [i, q] = 1, and ∀Xp ∈ S, Xp �= Xq, fi[p] = BM [i, p] = 0

Definition 5. In terms of BM, T ⊆ R is a typical testor if T is a testor and
∀Xj ∈ T, ∃f1

i (T, j)

This means that in a typical testor, for all features, there exists a row in BM in
the sub matrix associated to T, having a value of 1 in the position corresponding
to that feature, and values of 0 in all remaining positions (there are no zero rows,
and if any column of T is eliminated, at least one zero row appears, and the testor
property is not fulfilled). Although we have defined a typical testor here in terms
of BM, normally it is defined as an irreducible testor (as in definition1).

Definition 6. Let T ⊆ R and Xj ∈ R, Xj �= T . We denote by
∑

T f0 the
number of zero rows of T. We say that Xj contributes to T if, and only if,∑

T∪{Xj} f0 <
∑

T f0.

This definition indicates that one feature contributes to a feature combination
if for some zero rows in BM, considering only T, the new feature has a value of
1 in at least one of these zero rows. So, adding this feature to T, there are less
zero rows of the incremented feature combination than of T.

Being T ⊂ T ∪ {Xj}, it is not possible that
∑

T f0 <
∑

T∪{Xj} f0. If we
increase the feature combination either the zero rows are maintained and in this
case the column added does not contribute to the combination, or the number
of zero rows decreases.

Proposition 1. Let T ⊆ R and Xj ∈ R, Xj �= T . If Xj does not contribute to
T, then T ∪ {Xj} can not generate any typical testor.

Proof. Let T ⊆ R and Xj ∈ R, such that Xj does not contribute to T. Suppose
that T ′ = T ∪{Xj ∪Z} is a typical testor. Then, according to definition 5, there
exists for Xj at least a typical row in BM. Then, fi[j] = BM [i, j] = 1, and
∀Xp ∈ T ′, Xp �= Xj , fi[p] = BM [i, p] = 0. Thus, we have that fi is a zero row
of T ∪ Z and therefore, of T too. So,

∑
T∪{Xj} f0 <

∑
T f0 and we obtain that

Xj contributes to T, which contradicts the formulated hypothesis and then, we
have that there are no typical testors that include T ∪ {Xj}.
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Proposition 2. Let T ⊆ R, Z ⊆ R, Z �= ∅. If T is a testor, then T ∪ Z is a
testor too, but it is not a typical testor.

Proof. Being T a testor, we have that
∑

T f0 = 0, therefore, any feature Xp ∈ Z
contributes to T. Since T ∪ Z is a superset of T, then T ∪ Z is a testor, but
following proposition 1, it can not generate any typical testor.

Description of the algorithm CT EXT

Input: BM (Basic Matrix)

Output: TT (set of all typical testors)

1. Ordering rows and columns in BM.- The row with less quantity of
values 1, is set as the first row of BM. Columns of BM are ordered, from
left to right, each having a value of 1 in the first row and each subsequent
column having a value 0 in the first row of BM. The order of the columns
into each group (with the same value of 1 or with the same value of 0) is
irrelevant.

2. Initializing.- TT = ∅ (typical testors set); T = ∅ (current feature combina-
tion); j = 1 (first feature of BM to be analyzed)

3. Adding a new feature generator of feature combinations.- If Xj has a
value of 1 in the first row of BM then Xj is added to T (T = T ∪{Xj}), go to
step 5. In another case, the algorithm finishes (any new feature combination
will not generate a typical testor, because all these combinations have a zero
row).

4. Evaluating the new feature.- The new feature is added to the current
combination (T = T ∪ {Xj}), and it is verified whether this new feature con-
tributes to the current combination. If the answer is negative, go to step 6.

5. Verifying testor property.- Verify whether T is a testor, if yes then verify
whether it is a typical testor. If T is a typical testor, the combination is saved
in TT (TT = TT ∪ T ). If this is not the case, go to step 7.

6. Eliminating the last feature analyzed.-The last feature analyzed Xj is
eliminated from T (T = T \{Xj}). If Xj does not contribute to T, then no
combination containing T is verified (proposition 1). Go to step 7. If the com-
bination was a testor, then no consecutive superset of the current combination
is analyzed (proposition 2). If T = ∅ then j = j + 1, go to step 3.

7. Selecting a new feature to analyze.- The next non-analyzed feature in
the current combination is selected. If j < n then j = j + 1, and go to step
4. If this is not the case, go to step 6.

5 Experiments

In order to evaluate the performance of the proposed algorithm, a comparison
with three algorithms reported in the literature (BT, CT and LEX) was made.
The first algorithm selected is a classical external type algorithm, which uses the
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last reported algorithm which incorporates several improvements in performance
[12]. The second algorithm is an internal type algorithm which has the best run
times compared with other internal type algorithms [11]. The final algorithm,
LEX, reported the best run time execution of all algorithms.

In order to compare run times, we use several BM with different dimensions.
Some of them were randomly generated; one was taken from real medical diag-
nosis problems. In table 2, the experimental results obtained with the algorithms
are shown.

The matrices used are denoted by Mrows×columns, and TT denotes the number
of typical testors found by algorithms. The experiments were conducted in a
Pentium IV, with 2Ghz, and 1 Mbyte of RAM. The execution times are presented
in seconds.

Table 2. Run time execution in seconds of several algorithms

Algorithm M10×10 M10×34 M15×15 M209×32 M20×38 M10×42 M269×42 M209×47

BT 0 14 0 25 105 14 > 43200 > 43200
CT 0 0 0 39 0 0 38691 8026
LEX 0 0 0 14 0 0 2530 1799

CT EXT 0 0 0 3 0 0 928 483
TT 30 935 178 6405 2436 935 302066 184920

Experiments show that the LEX algorithm has the best performance of all
algorithms (BT and CT). The BT algorithm was unable to find the typical testors
whole set for the two largest matrices for more than 12 hours, and the execution
was aborted. In all experiments, the proposed algorithm provides faster run
times than the other algorithms. As Table 2 shows, CT-EXT run time execution
achieves reductions between 63% and 78% with respect to LEX algorithm.

6 Conclusions

This paper proposes a novel external type algorithm which affords the best
performance of all algorithms reported in the literature. With this algorithm,
thus, we provide researchers and applied scientists who might be interested in
calculating typical testors for high dimensional matrices with a useful tool.

Like LEX, the proposed algorithm does not generate a great quantity of com-
parisons, because it does not verify many feature combinations which, as one
may determine a priori, do not generate typical testors. The main difference
with respect to LEX is that LEX verifies, as a first condition, whether the com-
bination under analysis has typical rows. In contrast, CT-EXT verifies, first of
all, if the combination generated has less zero rows than previous combinations.
From this point of view, CT-EXT resembles the REC algorithm, although REC
directly works with the learning matrix [7].
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In addition to this, an analogy between algorithms LEX and CC can be noted,
because both algorithms generate combinations focusing on typical rows. On
the other hand, an analogy between algorithms CT-EXT and CT is that these
algorithms generate combinations guarantying that they are testors, and, after
that, both algorithms verify whether the testor is typical or not. The order
introduced into rows and columns of BM, allows us to avoid the analysis of a
great quantity of feature combinations.

The CT-EXT and LEX algorithms represent a new kind of algorithm for
computing all typical testors. Their chief characteristic is that both algorithms
analyze a typical testor candidate before inserting new feature in current com-
bination. They are less blind than their predecessors. Based on experimental
results, we can conclude that the proposed algorithm has the highest perfor-
mance score.

Acknowledgements. Many thanks to Dr. Francisco Martinez Trinidad from
INAOE, Mexico, for providing a LEX version for fulfill comparisons between
algorithms.
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Abstract. In this article we propose a feature extraction procedure based on di-
rectional histograms and investigate the application of a nonconventional neural
network architecture, applied to the problem of handwritten character recogni-
tion. This approach is inspired on some characteristics of the human visual sys-
tem, as it focus attention on high spatial frequencies and on the recognition of
local features. Two architectures were tested and evaluated: a conventional MLP
(Multiple Layer Perceptron) and a class-modular MLP. Experiments developed
with the Letter database produced a recognition rate of 93.67% for the class-
modular MLP. Other set of experiments utilized the IRONOFF database resulting
in recognition rates of 89.21% and 80.75% for uppercase and lowercase charac-
ters respectively, also with the class-modular MLP.

Keywords: Handwritten characters recognition, Class-modular architecture, Di-
rectional histogram.

1 Introduction

The recognition of handwritten characters has been a topic widely studied during the
recent decades because of both the theoretical challenges in pattern recognition and its
many possible applications, such as automatically processing postal ZIP codes from mail
pieces and money amount in bankchecks. However, it proves to be a challenging problem
due to the large variance the data may exhibit. Not only there are changes and distortions
from one writer to another, but even for samples produced by the same writers [11].

In this paper we propose three steps approach for recognition of handwritten char-
acters: (1) preprocessing, (2) feature extraction and (3) classification. The role of pre-
processing is to segment the pattern of interest from the background. Feature extraction
represents the image of each character by a set of significant features, i.e., each char-
acter is represented by a feature vector. Classification recognizes the class to which the
analyzed character belongs, according to the provided features.

The experimental results we present were obtained with the IRONOFF database [13]
from Nantes University, France, that contains off-line character images of the English
alphabet, with 10685 instances of lowercase and 10681 instances of uppercase charac-
ters. In addition, some preliminary tests were performed with the Letter database from
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UCI repository of machine learning [5]. The preliminary tests were used to investigate
only the classifier effectiveness, since the feature extraction procedure is already per-
formed for this database. Both databases are similar, as they contain equal number of
classes (26) and approximately the same number of classes instance: 20000 (Letter) and
21366 (IRONOFF).

This paper is organized as follows. Section 2 presents the feature extraction proce-
dure for handwritten characters recognition; Section 3 describes the architecture and
training of the class-modular neural network; Section 4 presents experimental results
and some discussions; finally, Section 5 draws some concluding remarks.

2 Feature Extraction Procedure

Studies in the area of vision show that human visual perception is strongly influenced by
high spatial and temporal frequency features [1]. Contours or edges, where the contribu-
tions of high spatial frequencies dominate, plays a primordial role in the recognition of
forms and interpretation of visual stimulus, as the sense of deepness. Since handwriting
characters are visual representations of handmade strokes, most relevant information
for the recognition task is extracted from contours.

In this article we present a feature extraction procedure based on directional and
curvature histograms for the contour image. A histogram is a frequency distribution of
some punctual feature, i.e. a feature of an isolated pixel. Some punctual features used
by Shi et al. [10] are gradient and curvature.

Several existing operators can be used to calculate an image gradient. In order to
make gradient computation more efficient, we create a gray scale image from the origi-
nal binary one using a spatial lowpass filter. This grayscale image is used to obtain the
gradient phase and curvature.

The directional histogram is a useful tool for emphasizing differences between seg-
ments of character contours. It captures the slant of other characteristics concerning
their shape. Nevertheless the histograms does not point out where those features occur.
An isolated histogram can detect an interesting feature, like a rounding stroke, but it
does not reveal where it is located on the character contour. Hence, it does not provide
sufficient information for distinguishing, for example, between digits six and nine, as it
does not points out where the looping is. In order to mitigate this problem, we devel-
oped a zoning mechanism which allows associating directional and curvature features
with the position where they occur.

The zoning mechanism adopted does not impose zones of fixed dimension, as it splits
the image into non-overlapping regions, therefore avoiding the need to perform a scale
normalization preprocessing. Thus, the image preserves all the original geometric prop-
erties. The association of directional and curvature histograms with zones of different
sizes captures structural information about the character image. In a typical image of
digit two, for instance, the pixels with high curvature usually occur in the upper right
and bottom left corner, it is also usual that a straight line segment covers the bottom
of the image and a rounding segment is present at the top. This kind of information is
captured when zones of relative size are associated with the use of histograms.



Evaluating a Zoning Mechanism and Class-Modular Architecture 517

2.1 Algorithm

The algorithm that summarizes the feature extraction process discussed in this section
is stated as follows in two phases. The first performs the preprocessing operations and
the second the features vector extraction.

Preprocessing

1. The contour of the input image is saved in a list of points. Both the inner and outer
contours were used in this work.

2. A spatial lowpass filter is applied to the binary input image r times in order to
yield a grayscale image. In the experiments described in this paper we used r = 4
(Fig. 1(a)).

3. A normalization procedure is applied to the image of step 2 in order to limit the
grayscale variation to the interval [0, 1].

4. Curvature (Fig. 1(b)) and gradient phase (Fig. 1(c)) are computed for the grayscale
image from step 3, as described in Shi et al. [10], only for the pixels saved in step 1.

(a) Pseudo-
grayscale

(b) Curva-
ture

(c) Phase

Fig. 1. Feature extracted from image

Feature Extraction Procedure

1. Image Fr×c is partitioned into zones with approximately the same size. If r ≈ c it
is segmented into 16 zones (4 × 4). If r > 1.25c, F is segmented into 5 × 4 zones.
If c > 1.25r, F is segmented into 4 × 5 zones (Fig. 2).

2. The interval [0, π] is partitioned into 10 classes of equal amplitude π/10. If two
angles differ from each other by π radians, they are considered the same.

3. The curvature is computed as in Shi et al. [10] and the interval [−∞, ∞] is divided
into 5 classes.

4. For each zone the number of pixels from each class of direction and curvature is
counted. This leads to histograms with 15 classes.

5. Each histogram is normalized.
6. The histograms are concatenated in order to compose the feature vector.
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(a) Horizontal (b) Ver-
tical

Fig. 2. Rectangular images zones

3 Classification

In character recognition systems, the type or format of the extracted features must match
the requirements of the chosen classifier [12]. Multi-Layer Perceptron Neural networks
(MLP-NN) classifiers have proven to be powerful tools in pattern recognition [14]. This
work investigates two MLP architectures: Conventional and Class-modular, such as Oh
and Suen [6] and Kapp et al. [3]. The class-modular architecture is described next.

3.1 Class-Modular Architecture

According to Oh and Suen [6], one property of the conventional MLP architecture is
that all K classes share one single network. The essential task in designing a charac-
ter recognition system is to choose features with good discriminative power and the
network should segment the chosen feature space between into the K classes regions.
However, determining the optimal decision boundaries for the K-classification network
for character recognition in a high-dimensional feature space is very complex and can
seriously limit the recognition performance of character recognition systems using MLP.

The conventional MLP-NN architecture has a “rigid” structure in which all the K
classes are altogether intermingled. This architecture cannot be locally modified or op-
timized for each class. Principe et al. [8] and Oh and Suen [6] mention specific con-
vergence problems with one large network, when the training set is not large enough
compared with the classifier size, i.e., the number of free parameters in the classifier.

To overcome such limitations Oh and Suen [6] introduce the class modularity con-
cept to the MLP classifier. To implement this concept, the original K-classification
problem is decomposed into K 2-classification subproblems, one for each of the K
classes. A 2-classification subproblem is solved by the 2-classifier specifically designed
for the corresponding class. The 2-classifier is in charge of only one specific class, dis-
criminating that class from the other K − 1 classes.

The MLP for a 2-classifier is illustrated in Fig. 3(a). The modular MLP classifier
consists of K subnetworks, Mwi for 0 ≤ i < K , each responsible for one of the K
classes. The specific task of Mwi is to classify two groups of classes, Ω0 and Ω1 where
Ω0 = {wi} and Ω1 = {wk|0 ≤ k < K and k �= i}.
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Designing subnetworks Mwi follows the same way as for the conventional MLP.
In each of the subnetworks, the three layers are fully connected. The input layer has
d nodes to accept the d-dimensional feature vector. The output layer has two output
nodes, denoted by O0 and O1 for Ω0 and Ω1, respectively.

The architecture for the entire network constructed by K subnetworks is shown in
Fig. 3(b). The feature module extracts a feature vector X which is shared by all K
classes. X is applied to the input layer of all subnetworks and each Mwi uses its own
weights set to produce an output vector D = (O0, O1). The values of O0 constitutes
the final decision [6] [3].

(a) A subnetwork Mwi . (b) Whole network.

Fig. 3. Class-modular MLP architecture [6]

For training, each of the K 2-classifiers (subnetworks) is trained independently of
the other classes, the error-backpropagation algorithm being applied in the same way
as for the conventional MLP. A distinct training set is built for each subnetwork, as
follows: the samples in the original training set are organized into two groups, ZΩ0 and
ZΩ1 such that ZΩ0 has the samples from classes in Ω0 and ZΩ1 the ones from classes in
Ω1. For recognition of the input character patterns, the class decision module considers
only the values of ZΩ0 from each subnetwork and employs a simple winner-takes-all
scheme to determine the final class. Therefore, the winner class is associated with the
subnetwork which provides the largest output to the desired pattern.

Oh and Suen [6] presented the effectiveness and superiority of the class-modular
MLP compared to the classical nonmodular approach, as shown in Table 1.

Kapp et al. [3] compared the conventional and class-modular architectures for hand-
written recognition applied to bankchecks. Experiments confirm that the modular net-
work shows a superior recognition performance. The recognition rates obtained were
77.08% for the nonmodular network and 81.75% for the modular network.
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Table 1. Recognition rates for test set of [6]

Classes Conventional (%) Modular (%)

Numerals 10 94.15 97.30
English capital letters 26 81.03 91.11
Touching numeral pairs 100 57.06 75.18
Hangul characters 352 22.46 68.75

Freitas et al. [2] investigated many non-symmetrical zoning mechanisms for hand-
written characters recognition, based on analysis of confusion matrix of individuals
classifiers (class-modular). The recognition rates obtained were: 4 zones = 82.89%,
5Horizontal zones = 81.75%, 5Vertical zones = 80.94%, 7 = 84.73% and 5Horizontal-
5Vertical-7 zones = 85.9%. The database used in experiments was IRONOFF, specifi-
cally uppercase characters.

The partitioning strategy of the training set discussed in this article is known in litera-
ture as “one-vs-all” classification. This is a common way to deal with binary classifiers,
such as SVM (Support Vector Machine), to solve the problem of multiclass classifi-
cation. Rifkin and Klatau [9] reviewed extensively the existing literature concerning
one-vs-all approach and they also defended the superiority of that approach, as we did
in this section.

Therefore, there is considerable evidence regarding the effectiveness and superiority
of the class-modular architecture, compared to the conventional architecture, in terms
of recognition performance. The experiments and results that we describe next, support
this conclusion.

4 Experiments and Results

The conventional and modular networks were implemented via the SNNS1 simulator.
For training, both for the Letter and the IRONOFF databases, we used the same param-
eter values, shown in Table 2. The results obtained for each database are presented next.

4.1 Experiments for Letter Database

For the conventional network, the MLP was composed by 16 neurons in the input layer,
one hidden layer with 64 neurons and 26 neurons in the output layer. Training termi-
nated at the 1000-th epoch. The achieved recognition rate was 83.10%.

For the class-modular networks, each one of the K 2-classifiers consists of an input
layer of 16 neurons, one hidden layer of 64 neurons and an output layer of 2 neurons.
The maximum number of training epochs was 100.

The metrics for classifier performance evaluation were sensitivity, i.e., the percentage
of positive instances that were classified as positive (true positive), and specificity, i.e.,
the percentage of negative instances that were classified as negative (true negative). These
metrics were extracted from the confusion matrix for a two-class classification problem.

1 Available in <www-ra.informatik.uni-tuebingen.de/SNNS/>
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Table 2. Parameter values applied for training of the conventional and the modular networks

Parameter Value

Layers 3
Learning algorithm backpropagation
Learning rate 0.02
Activation function sigmoid
Initial weights random [−1,1]

The average rates obtained for the set of K 2-classifiers were 90.19% (sensitivity)
and 99.81% (specificity). The higher specificity rate is justified by the fact that training
and test sets for a 2-classifier are not balanced between the two classes, as the number
of negative samples is much higher than the number of positive samples.

The global classifier output is achieved by combining the 2-classifiers individual
outputs. In this work we used a simple winner-takes-all scheme to determine the final
class. The global recognition rate by using the Letter database was 93.67%. This is
a significant improvement compared to the 83.1% recognition rate produced by the
conventional neural network, obtained despite having used a winner-takes-all strategy
in decision module.

4.2 Experiments for IRONOFF Database

The IRONOFF database contains a large diversity of handwritten character images,
provided from several authors with distinct age, sex and social level. It captures the
diversity of writing style that is a major source of difficult in handwritten character
recognition. In Fig. 4 we show some samples from uppercase and lowercase off-line
character images from IRONOFF database.

For the lowercase and uppercase characters sets we used the same nonmodular MLP.
The network consists of an input layer of 375 neurons, which corresponds to length
the feature vector, one hidden layer of 256 neurons and an output layer of 26 neurons
Training terminates at the 1000-th epoch. The recognition rates obtained were 56.14%
to lowercase characters and 63.49% to uppercase characters.

The class-modular networks were composed by 375 neurons in the input layer, 256
neurons in an one hidden layer and 2 neurons in the output layer. It was use 250 epochs
for training.

The same metrics applied to the Letter database to classifier performance evalua-
tion were used to IRONOFF database. Therefore, the sensitivity and specificity average
rates were for lowercase characters 70.35% and 90.84% and for uppercase characters
84.29% and 99.86%, respectively. The global recognition rate for lowercase charac-
ters was 80.75% and for uppercase characters was 89.21%. These results match the
best available thus far in the literature for the IRONOFF database, as illustrated in
Table 3.
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Fig. 4. IRONOFF’s samples

4.3 Discussions

Some concluding remarks can be made based on the experimental results reported in
the previous section.

• The class-modular network is superior in terms of convergence over the conven-
tional network. This is due to the fact that, for the modular network, the classifier
has been decomposed into much smaller subclassifiers, with fewer parameters to
estimate.

• The class-modular network has a better performance than the non-modular net-
work, in terms of recognition power.

In addition, training for the class-modular architecture can be easily parallelized, be-
cause each sub-network is trained independently of the others, differently from classical
architecture in which all the classes are altogether intermingled.

The experimental results for the class-modular classifier are comparable to the best
reported in the literature for IRONOFF database (see Table 3). In fact, both the class-
modular architecture and the feature extractor proved to be quite appropriate for the
handwritten characters recognition problem. The feature extraction method had al-
ready produced, in a previous work, one of the best recognition rates for the NIST
database [4]. Furthermore, to the best of our knowledge, the combination of these two
approaches had not yet been reported by anyone, being therefore an original contribu-
tion of this work.



Evaluating a Zoning Mechanism and Class-Modular Architecture 523

Table 3. Recognition rates

Letter (%) Lowercase (%) Uppercase (%)

Poisson et al. [7] – 80.5 89.9
Freitas et al. [2] – – 85.9

Matos [4] 95.6 – –
Rifkin and Klatau [9] 96.4 – –

Conventional 83.1 56.1 63.5
Class-modular 93.6 80.7 89.2

5 Conclusions

In this paper we propose and evaluate a zoning mechanism as well as a class-modular
architecture for the recognition of handwritten characters.

Directional histograms applied to the zones were used for feature extraction. This
approach was inspired on some aspects of the human visual system, which focus special
attention on high spatial features and on the recognition of local features.

The experimental results reveal the superiority of the class-modular network in terms
of convergence and recognition rate, over a conventional MLP-NN. The results match
the best recognition rates reported in the literature, as shown in Table 3.

The original contribution of this paper is the proposal of a zoning mechanism which
combined to a class-modular architecture provides an efficient classifier for the hand-
written character recognition problem.
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Abstract. In this paper we present the capability of the Median M-Type Radial 
Basis Function (MMRBF) Neural Network in image classification applications. 
The proposed neural network uses the Median M-type (MM) estimator in the 
scheme of radial basis function to train the neural network. Other RBF based 
algorithms were compared with our approach. From simulation results we 
observe that the MMRBF neural network has better classification capabilities. 

Keywords: Radial Basis Functions, Rank M-type estimators, Neural Networks. 

1   Introduction 

The artificial neural networks are nonparametric pattern recognition systems that can 
generalize by learning from examples [1,2]. They are particularly useful in problems 
where decision rules are vague and there is no explicit knowledge about the 
probability density functions governing sample distributions [1,2]. 

Recently, we proposed the robust Rank M-type (RM) estimators for image 
denoising applications [3,4]. The combined RM-estimators use different rank 
estimators such as the Median, Wilcoxon and Ansari-Bradley-Siegel-Tukey 
estimators, and the M-estimator with different influence functions to provide better 
robustness. The performances of the RM-estimators are better in comparison with 
original R- and M- estimators [3,4]. 

In this paper is proposed the Median M-Type Radial Basis Function (MMRBF) 
Neural Network for image classification purposes. The neural network uses the 
Median M-Type (MM) estimator in the scheme of radial basis function to train the 
neural network according with the schemes found in the references [5,6].  

The rest of this paper is organized as follows. The RBF neural network is presented 
in section 2. In section 3 we formulate the proposed MMRBF neural network. 
Experimental results of classification capabilities for simulated images by using our 
method and other RBF based networks are presented in section 4. Finally, we draw 
our conclusions in section 5. 
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2   Radial Basis Function Neural Network 

The Radial Basis Functions (RBF) have been used in several applications for pattern 
classification and functional modeling [7]. These functions have been found to have 
very good functional approximation capabilities [7]. The RBF have their 
fundamentals drawn from probability function estimation theory. In the RBF neural 
networks each network input is assigned to a vector entry and the outputs correspond 
either to a set of functions to be modeled by the network or to several associated 
classes [1,2,8,9]. The structure of the RBF neural network is depicted in Figure 1. 
From Figure 1, each of Nk components of the input vector X feeds forward to M basis 

functions whose outputs are linearly combined with weights { }M

jj 1=
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Fig. 1. Structure of Radial Basis Function Neural Network 

2.1   Activation and Output Layer 

Several functions have been tested as activation functions for RBF neural networks. 
In pattern classification applications the Gaussian function is preferred, and mixtures 
of these functions have been considered in various scientific fields [8,9].  

The Gaussian activation function for RBF neural networks is given by [1,2]: 

( ) ( ) ( )[ ]∑− −−−= 1
exp

j j
T

jj XXX μμφ  (1) 
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where X is the input feature vector, μj is the mean vector and Σj is the covariance 
matrix of the jth Gaussian function. Geometrically, μj represents the center or location 
and Σj the shape of the basis functions. Statistically, an activation function models a 
probability density function where μj and Σj represent the first and second order 
statistics. A hidden unit function can be represented as a hyper-ellipsoid in the N-
dimensional space. 

The output layer implements a weighted sum of hidden-unit outputs [1,2]: 

( ) ( )∑
=

=
L

j
jjkk

1

XX φλψ  (2) 

where L is the number of hidden units, M is the number of outputs with k=1,…,M. 
The weights λkj show the distribution of the hidden unit j for modeling the output k. 

2.2   Learning Techniques of RBF Networks 

Radial Basis Functions have interesting properties which make them attractive in 
several applications. A combined unsupervised-supervised learning technique has 
been used in order to estimate the RBF parameters [8]. In the unsupervised stage, k-
means clustering algorithm is used to find the pdf’s parameters, LMS or instead 
pseudo-inverse matrix can be used in the supervised stage to calculate the weights 
coefficients in the neural network [8]. 

3   Median M-Type Radial Basis Function Neural Network 

In here, we present the use of the RM-estimator as statistic estimation in the Radial 
Basis Function network architecture. The combined RM-estimators can use different 
rank estimators such as the Median, Wilcoxon or Ansari-Bradley-Siegel-Tukey [3,4]. 
In our case we use the MM-estimator with different influence functions.  

3.1   Activation Function 

The Gaussian activation function is the most used function in the RBF networks. We 
tested with different activation functions and we chose the inverse multiquadratic 
function [8,9] due this function provided the best results: 

( )
22
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j
β
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+

=
X

X  
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where X is the input feature vector, βj is a real constant. In our simulation results βj=1. 

3.2   K-Means Algorithm 

In our case we use the clustering k-means algorithm to estimate the parameters of the 
MMRBF neural network [1,2]. The k-means algorithm is used in the unsupervised  
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stage. The input feature vector X is classified in k different clusters. A new vector x is 
assigned to the cluster k whose centroid μk is the closest one to the vector. The 
centroid vector is updated according to, 

( )k
k

kk N
μμμ −+= x

1  (4) 

where Nk is the number of vectors already assigned to the k-cluster. The centroids can 
be updated at the end of several iterations or after the test of each new vector. The 
centroids can be calculated with or without the new vector. By other hand, the steps 
for the k-means algorithm are the following: 

 

Step 1 
Select an initial partition with k clusters. Repeat steps 2 through 

4 until the cluster membership stabilizes. 

Step 2 
Generate a new partition by assigning each pattern to its closest 

cluster center. 
Step 3 Compute new cluster centers as the centroids of the clusters. 

Step 4 
Repeat steps 2 and 3 until an optimum value of the criterion 

function is found. 

3.3   Median M-Type (MM) Estimator 

The Median M-type (MM) estimator is used in the proposal RBF neural network 
[3,4]. The non-iterative MM-estimator used as robust statistics estimate of a cluster 
center is given by, 

( ){ }θψμ −= XX ~medk  (5) 

where X is the input data sample, ψ~  is the normalized influence function ψ : 

( ) ( )XXX ψψ ~= , { }kXmed=θ  is the initial estimate, and k=1, 2,…,Nk. 

3.4   Influence Functions 

In our experiments we use the following influence functions [3]: 
 

- The simple cut (skipped mean) influence function, 

⎩
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- and the Tukey biweight influence function, 
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where X is a data sample and r is a real constant. The parameter r depends of the data 
to process and can be change for different influence functions. 

4   Experimental Results 

The described MMRBF neural network has been evaluated, and their performance has 
been compared with the Simple RBF, α-Trimmed Mean RBF, and Median RBF 
neural networks [5,6,8]. 

The images used to train the proposed MMRBF neural network and other networks 
used as comparative are shown in Figure 2. In this figure, the first six images of 
Group A have common texture or filling which is different form the six first images 
of Group B. The last two images of each group have a texture or filling that is similar 
to the opposite group, that is, the last two images of Group A have similar filling than 
the images of Group B, and vice versa. The main idea here of using textures in figures 
is to try to simulate medical image textures. 

  
(a) (b) (A) (B) 

  
(c) (d) (C) (D) 

  
(e) (f) (E) (F) 

  
(g) (h) (F) (H) 

Fig. 2. Training images 
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To train the networks for getting the appropriate pdf’s parameters were used 10 
images as the ones shown in Figure 2. The objective of this experiment is to classify 
between 2 main groups:  

 

Group A 
contains circles and ellipses. The geometric shapes of this group 

are denoted with small letters in Figure 2. 

Group B 
contains many kinds of polygons. The geometric shapes of this 

group are denoted with capital letters in Figure 2. 
 
In the segmentation stage were obtained 3 numerical data or characteristics, which 

are compactness, average gray value, and standard deviation [10,11].  
To train the networks implemented in this work we used the block diagram 

depicted in Figure 3: having the images, the first step is extracting numerical data 
form them. Afterwards we determined the center of the activation functions. The 
number of elements used in each activation function depends on the algorithm 
implemented. The number of elements used to train the comparative Simple RBF, α-
Trimmed Mean RBF, and Median RBF neural networks varies in accordance to the 
training algorithms found in references [5,6,12]. In the case of the proposed MMRBF 
we use eq. (5) in combination with eq. (6) and (7) to determine the elements to be 
used.  

The number of images used to train the networks was 10 (five of each group). The 
training results are shown in Table 1. 

In the test stage we use 30 images (15 of each group), these images are of different 
form that the images used in the training stage. Figure 4 presents some images used in 
the test stage. The results obtained are shown in Table 2. 

Image 1 
.
.
.

Image n

Compactness 1,…, Compactness n
Average value 1,…, Average value n
Std. Deviation 1,…, Std. Deviation n

k-means for Compactness
k-means for Average value 

k-means for Standard Deviation

Center of activation function for Compactness 
Center of activation function for Average value 
Center of activation function for Std. Deviation 

Adjustment of activation 
functions amplitude

 

Fig. 3. RBF training block diagram 
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Table 1. Results obtained with different RBF algorithms in training stage 

  Group A Group B Total 
Efficiency 60% 100% 80% 
Uncertainty 0% 0% 0% SIMPLE RBF 
Error 40% 0% 20% 
Efficiency 60% 100% 80% 
Uncertainty 0% 0% 0% MEDIAN RBF 
Error 40% 0% 20% 
Efficiency 80% 100% 90% 
Uncertainty 0% 0% 0% α-TRIMMED 

MEAN RBF 
Error 20% 0% 15% 
Efficiency 67% 100% 83.5% 
Uncertainty 0% 0% 0% MMRBF  

Simple Cut  
Error 33% 0% 16.5% 
Efficiency 67% 100% 83.5% 
Uncertainty 0% 0% 0% MMRBF 

Tukey 
Error 33% 0% 16.5% 

 

  
(a) (b) (A) (B) 

  
(c) (d) (C) (D) 

  
(g) (h) (F) (H) 

Fig. 4. Some images used in test stage 
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Table 2. Results obtained with different RBF algorithms in test stage 

  Group A Group B Total 
Efficiency 67% 93% 80% 
Uncertainty 0% 0% 0% SIMPLE RBF 
Error 33% 7% 20% 
Efficiency 67% 93% 80% 
Uncertainty 0% 0% 0% MEDIAN RBF 
Error 33% 7% 20% 
Efficiency 67% 87% 77% 
Uncertainty 0% 0% 0% α-TRIMMED 

MEAN RBF 
Error 33% 13% 23% 
Efficiency 67% 100% 83.5% 
Uncertainty 0% 0% 0% MMRBF  

Simple Cut  
Error 33% 0% 16.5% 
Efficiency 67% 100% 83.5% 
Uncertainty 0% 0% 0% MMRBF 

Tukey 
Error 33% 0% 16.5% 

From previous tables (see Tables 1 and 2) we can appreciate that the difference 
between algorithms is not big, and that percentages of efficiency, uncertainty and 
error vary from training stage to test stage. It is evident that if we use more images in 
the training stage the capabilities of proposed MMRBF neural network can be 
increased in the test stage in terms of efficiency, uncertainty, and error. 

Tables 3 and 4 show a comparison between the RBF algorithms implemented here. 

Table 3. Efficiency comparison between the RBF algorithms implemented in training stage 

Neural Networks SIMPLE RBF MEDIAN RBF
α-TRIMMED 

MEAN RBF 

MMRBF Simple Cut 3.5% 3.5% -6.5% 

MMRBF Tukey 3.5% 3.5% -6.5% 

 
 
Table 4. Efficiency comparison between the RBF algorithms implemented in test stage 

Neural Networks SIMPLE RBF MEDIAN RBF
α-TRIMMED 

MEAN RBF 

MMRBF Simple Cut 3.5% 3.5% 6.5% 

MMRBF Tukey 3.5% 3.5% 6.5% 

 
 
We can see from Tables 3 and 4 that α-TRIMMED MEAN RBF had the best 

efficiency in training stage, but in test stage the best results are given by the proposed 
MMRBF neural network. 
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5   Conclusions 

We present the MMRBF neural network, it uses the MM-estimator in the scheme of 
radial basis function to train the proposed neural network. The results obtained with 
the use of the proposed MMRBF are better than others results obtained with RBF 
algorithms used as comparative. In future, the proposed network will be extended to 
real-world datasets such as mammographic imaging.  
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Abstract. Power Quality is defined as the study of the quality of electric power 
lines. The detection and classification of the different disturbances which cause 
power quality problems is a difficult task which requires a high level of engi-
neering expertise. Thus, neural networks are usually a good choice for the de-
tection and classification of these disturbances. This paper describes a powerful 
tool, developed by the Institute for Natural Resources and Agrobiology at the 
Scientific Research Council (CSIC) and the Electronic Technology Department 
at the University of Seville, which generates electrical patterns of disturbances 
for the training of neural networks for PQ tasks. This system has been expanded 
to other applications (as comparative test between PQ meters, or test of effects 
of power-line disturbances on equipment) through the addition of a specifically 
developed high fidelity power amplifier, which allows the generation of dis-
turbed signals at real levels. 

Keywords: Power quality, electrical disturbance,  neural network. 

1   Introduction 

Power Quality (PQ) is defined as the study of the quality of electric power lines. PQ 
has been a topic of consideration for the last two decades, and has recently acquired 
intensified interest due to the wide spread use of electronic devices in complicated 
industrial processes and the generalized power quality of commercial electric power 
[1]. Thus nowadays, customers demand higher levels of PQ to ensure the proper and 
continued operation of such sensitive equipment.  

The poor quality of electrical power is normally attributed to power line distur-
bances such as waveshape faults, overvoltages, capacitor switching transients, har-
monic distortion and impulse transients. Thus, electromagnetic transients, which are 
momentary voltage surges powerful enough to shatter a generator shaft, can cause 
catastrophic damage suddenly. Harmonics, sometimes referred to as electrical pollu-
tion, are distortions of the normal voltage waveforms found in ac transmission, which 
can arise at virtually any point in a power system. While harmonics can be as destruc-
tive as transients, often the greatest damage from these distortions lies in the loss of 
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credibility of the power utilities vis-a-vis their customers. The classification and iden-
tification of each one of the disturbances is normally carried out from standards and 
recommendations depending on where the utilities operate (IEEE in the United States, 
UNE in Spain, etc). 

The detection and classification of the different disturbances which cause power 
quality problems is a difficult task which requires a high level of engineering exper-
tise [2]. Due to the above mentioned difficulties, artificial intelligence tools [3] 
emerge as an interesting alternative in the detection of electrical disturbances. The 
main intelligent tools of interest include expert systems, fuzzy logic and artificial 
neural networks (ANNs) [4]. 

Neural Networks on Power Quality 

For the detection and classification of disturbances, ANNs can be combined with 
mathematical analysis such as Fourier and Wavelet transforms for the generation of 
signal features which serve as inputs in the network [5].  Thus, feature extraction by 
wavelet transforms provides an unique characteristic which can represent every single 
PQ disturbance at different resolutions using the technique called multi-resolution 
signal decomposition or multi resolution analysis.  In this way, while the detection of 
the power quality signals has tended to be easy, their classification is still a difficult 
task in which ANNs play an important role [6][7][8].  

Pattern recognition in ANNs generally requires preprocessing of data, feature ex-
traction and final classification. One of the most important tasks in the design and 
development process of an ANN is to generate an adequate number of training pat-
terns in order to approximate future inputs. Sometimes an optimal design of the ANN 
is found but the limited number of train patterns does not give good results. In par-
ticular, in PQ a great numbers of electrical patterns are necessary due to the multiple 
combinations of different disturbances which can coincide in one or various samples. 
Another additional problem with ANNs applied to PQ is the impossibility of getting 
real patterns directly from the power line due to the irregularity in the apparition of 
disturbances. 

2   Electrical Disturbance Generator 

2.1   General Description 

Initially the function of this system was to allow the generation of training signals at 
level of files of data. Nevertheless, as we described next, has added to an interface 
(D/A converter and power amplifier) that allows the generation of these signals at the 
levels of tension of power grid with medium power levels.  

This Generator of disturbances, therefore, it has been developed in two different 
stages: the generator of electrical patterns and the power amplifier: 

In one first stage the generating subsystem of patterns has been developed (named 
with the acronym PANDORA). This system allows the programmable generation of 
signals that emulate the operation of the power grid, allowing the easy addition of 
disturbances on it. 
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Fig. 1. Electrical Disturbance Generator. General Scheme. 

The PANDORA allows to obtain the signals at level of files (sequence of numeric 
data) and by means of the use of a D/A board of signals of tension of low level (ten-
sions between +/- 10 volts. and powers of milliwatts). These two forms of outputs 
have been used to train the ANN of the system detector of disturbances, and later to 
check its operation. 

The second stage has corresponded to the design, implementation, and test of the 
power amplifier. The function of this amplifier is to elevate the level of the signals 
coming from the PANDORA, until real existing in the network (the signals of the 
order of 230 volts rms and values of power of the order of at least hundreds of watts).  

The amplifying system, in combination with subsystem PANDORA, completes the 
functionality of the generating system of disturbances allowing: 
 

1. The systematic test at levels of real power grid of our detector of disturbances in 
a reasonable term. Until the development of the amplifying system, the single  
detector of disturbances could be made a will of complete form by means of its 
connection to real power grid. The tests made in this sense have been quite satis-
factory, and the detector has worked correctly before the disturbances that have 
taken place. Nevertheless, considering, that real power grid has relatively high  
quality, this is, that the disturbances that take place are, in general, little frequent, 
and in addition unforeseeable, the produced disturbances are few for an extensive 
time of operation 

2. The comparison of our detector of disturbances with other similar equipment of 
the market. This is an essential task as opposed to demonstrate the advantages of 
our system of detection of disturbances to the alternative techniques. With the 
Electrical Disturbance Generator is possible to establish systematic protocols of 
comparative tests between equipment based on different techniques and to verify 
the limits and precision of the different techniques. 

3. Test of equipment under disturbances of the network [10][11]. The possibility of 
having a system able to generate signals equivalent to those of real power grid, 
with the possibility of generating of arbitrary form disturbances in the same one it 
allows a fan of very interesting possibilities: 



 A Precise Electrical Disturbance Generator for Neural Network Training 537 

* It allows the manufacturers of equipment to have a tool to the test of its equip-
ment before the disturbances that can take place in power grid, allowing to the 
verification of its immunity or its improvement before this type of effects. 
* It allows the providing companies to make defensive analyses before claims of 
the users by failures of equipment, demonstrating, for example, that this equip-
ment fails before disturbances that do not leave the limits established by the 
norm. 

2.2   Programmable Electrical Pattern Generator (PANDORA) 

For the task of training neural networks for the detection and classification of electri-
cal disturbances we are developing an electrical pattern generator. The objective of 
this generator is to create an unlimited number of patterns to be used by a classifica-
tion system. 

In particular, we are developing a classification system in the Electronic Technol-
ogy Department at the University of Seville and the Institute for Natural Resources 
and Agrobiology. The system is a real-time detector of power line disturbances based 
on artificial intelligence techniques (in particular, a first version based on ANNs) is 
being developed. We are going to use the Electrical Pattern Generator in order to 
carry out the ANN training. 

The Electrical Pattern Generator make it possible to configure parameters such as 
the duration of the sample, the frequency of the signal and the number of samples in 
an ideal cycle (50Hz or 60Hz) and to add one or more disturbances. From the selected 
parameters, the generator creates a text file with the voltage values of the sample. The 
structure of the file consists of a header with the file information (name, number of 
sample cycles and sampling period) and a data column corresponding to the voltages 
of each of the samples.  

The type of disturbances includes: impulse, oscillation, sag, swell, interruption, 
undervoltage, overvoltage, harmonics, flicker and frequency variations. In amplitude 
disturbances (impulses, sags, swells, interruptions, undervoltages and overvoltages), 
the tool allows us that parameters such as amplitude, start time, final time, rising and 
falling slope, be configured. The edition of harmonics allows the configuration of 
amplitude and phases as far as forty harmonic levels including the possibility of add-
ing them an offset. In the flicker menu the start time can be set and the final time of 
the flicker, its RMS, frequency and phase. 

 

Fig. 2. Ideal signal (one-phase representation) 
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Models of disturbances 
 

1.- Harmonic distortion 
 

Harmonic distortion is defined as the phenomenon in which diverse sinusoidal signals 
with diverse frequencies which are multiples of the fundamental frequency are super-
posed on the ideal signal (Figure 3). 

 

Fig. 3. Harmonic distortion 

The following mathematical model was implemented in the generator: 

1

( ) sin(2 )
N

i i i
i

C t A A f tπ ϕ
=

= + +∑                                    (1) 

• A: DC term (V). 
• Ai: Amplitude of the ith harmonic of signal (V).  
• fi: Frequency  of the ith harmonic of signal (Hz) 
• φi: Phase of the ith harmonic (Rad) 
• i: Harmonic order (i= 1,.., N).  
 

In our harmonic model C(t) is considered as consisting of a fundamental and 39 har-
monic components. 

 

2.- Frequency deviation 
 

Frequency deviation is a signal disturbance added to the harmonic distortion. The 
model consists of the frequency modulation of the signal C(t) by means of the carrier 
signal M(t), which is named modulating signal. 

 

Fig. 4. Frequency deviation 
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The mathematical expression of this signal is: 

)tjfsin(BB)t(M jm
j

j ϕπ ++= ∑
=

2
40

1

                            (2) 

• B: DC term (V). 
• Bj: Amplitude of the jth harmonic of signal (V) 
• fm: Fundamental frequency (Hz) 
• φi: Phase of the ith harmonic (Rad) 

 

Considering (1) and (2) the resultant signal would end up as: 
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which shows the harmonic content and frequency modulation. 
The addition of another kind of disturbance was carried out from the previous ex-

pression X(t). Therefore, the previous expression would be the result of an ideal elec-
trical signal or a frequency or/and harmonic disturbed signal.  

 

3.- Flicker 
 

Flicker (Figure 5) is considered an amplitude modulation of the carried signal X (t), 
which changes in function of the modulating signal F(t) [9]. The modulating signal 
has sinusoidal form with prefixed random amplitude, frequency (usually around 30 
Hz) and an initial phase.  

 

Fig. 5. Flicker 

The equation which defines the mathematical model implemented by the pattern 
generator is: 

 ( ) ( ) ( ) 1 sin(2 ) ( )fk fk fkZ t F t X t A f t X tπ ϕ⎡ ⎤= = + +⎣ ⎦                  (4) 

• Afk: flicker amplitude 
• ffk: flicker frequency 
• φfk: flicker phase 
 

4.- Overvoltages, swells, undervoltages and sags. 
 

In this kind of disturbances the amplitude of the signal rises (overvoltages or swells) 
or falls (undervoltages and sags) a certain value along a time interval.  
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Fig. 6. Sag 

In the development of the disturbance generator, a trapezoidal model for the ampli-
tude evolution (lineal slope) was considered. The model makes it possible to ap-
proximate the amplitude disturbances most frequently encountered in power systems. 
Figure 7 shows a graphical of the model used for overvoltages or swells (inverse 
trapeze for undervoltages and sags).   
 

 

Fig. 7. Overvoltage and swell model 

• p: initial sample of the trapeze 
• pip: slope of the initial ramp 
• pfp: slope of the final ramp 
• n1: number of samples of the initial ramp 
• n2: number of samples of the final ramp 
• t: number of samples when the climb is reached 
• select: total number of samples 
 

5.- Transients 
 

The electrical pattern generator models transients as a damped sine through a super-
posed exponential function, which is added to X(t) at a certain point.  
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Fig. 8. Overvoltage 

 

Fig. 9. Transient 

The implemented mathematical model obeys to:  
 

)tfsin(Ae)t(T rrr
at ϕπ += − 2                                     (5) 

• a: transitory exponent. 
• Ar: amplitude of the ripple (V) 
• fr: frequency of the ripple (Hz) 
• φr: initial phase of the ripple (Rad) 

 

6.- Noise 
 

The generator makes it possible to add Additive White Gaussian Noise (AWGN) 
(Figure 10) in order to simulate more realistic signals of the power line. 

 

Fig. 10. Additive White Gaussian Noise (AWGN) 
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2.3   The Power Amplifier 

The power amplifier was specifically developed for the application. The main re-
quirements were: 
- Output Voltage up to:  +/- 600 volts (instantaneous), 400 (RMS) 
- Power, up to 200 watts. 
- Band Width (minimum) ( 25 Hz to 5 Khz) 
- High fidelity. That implies: THD<0.2%, and SNR>60dB. 
 

Architecture 
 

This amplifier consists of: 
- Module 1.- Electronic Voltage Amplifier. Class AB on C.I. (LM3886 of National 

Sem.). It will amplify the signals at medium levels of tension (20~40 volts rms) 
with medium powers (> 100 watts). 

- Module 2.- Coupler Transformer. It will elevate the voltage (trafo ratio 1:10) at 
the required levels of tension. It will establish an input/output galvanic isolation. 

T1

Audio Transf ormer

1 5

4 8
-G

G

Vout
Vin

POWER AMPLIFIER

1:10AB Class Amplifier

 

Fig. 11. Proposed Amplifier Architecture 

The use of a transformer like element of connection to the load isolates the input 
and the output and allows to work with amplifiers at low voltage level. A medium 
power (500watts) audio professional transformer has been chosen to avoid the prob-
lems of bandwidth limitation and distortion that implies another type of transformers. 

For the electronic amplifier the chosen configuration has been type AB as opposed 
to other types (example: D Type), due to its smaller distortion. On the other hand, the 
levels of power output are not as elevated as that the energy efficiency was the key 
question.  It has been decided on a design based on Power Linear I.C.  (LM3886 of 
National Sem.) to simplify  the design because  the device includes all the protection 
subsystems. 
 

System Tests 
 

The system was put under a complete set of typical tests, and the obtained general 
results have been satisfactory in all the parameters: 
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Table 1. Test results 

Characteristics 

1.-Input Impedance >25 Koh 
2.- Output Imp. <10 Oh 
5.- Gain Up to 450 
6.- Band width <10Hz/>20Khz 
7.-  Vout(max) 420(rms) +/-600(inst.) 
8.- Power (Note 1) 160 watts 
9.- SNR out >63dB 

A characteristic that specially has been studied has been the harmonic distortion of 
the amplifier. In order to guarantee the global operation of the equipment, it has been 
necessary to carry out measures of this parameter at different input frequencies and 
different power outputs. 

 

Fig. 12. Scheme of the assembly to test the amplifier 

 

Fig. 13. Gain ‘versus’ frequency (BW) 

 Trafo Amplifier

Voltage 
source 

 
Function  
generator 

System to test

      Loads

Señales

    Polimeter    Oscilloscope  
  Computer   
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We developed a low cost experimental tool, based on PC with standard audio 
board and MATLAB©, for the measurement of Harmonic Distortion. 

 
  
 
 
 
 
 
 
 
 
 
 

Fig. 14. Experimental setup and Harmonic Distortion Measurement System 

This tool, based on DFT, allows us to measure for different inputs frequencies and 
output powers the n order Harmonic Distortion Index HDi, and the Total Harmonic 
Distortion (THD). The THD of the amplifier fulfilled the requirements (THD<0.2%) 
for all the bandwidth (25Hz-5Khz) and for powers up to 160 watts. 

 
 
 
 

 

 

 

 

 

Fig. 15. Periodogram of output signal (Input 0Hz) and Measurement of HDi index and THD 

3   Conclusions 

Today it is known that neural networks are a good choice for detecting and classifying 
electrical power disturbances. Often the problem lies in generating a sufficient num-
ber of training patterns to get that neural networks obtain good results in future inputs.  

We have developed an electrical pattern generator which is capable of generating 
common disturbances which can be found in a power line with the aim of making the 
training of neural networks easier. The tool can generate a set of disturbance data 
which include: impulse, oscillation, sag, swell, interruption, undervoltage, overvolt-
age, harmonics, flicker and frequency variations. In addition, it can add different 
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kinds of noise to the generated signals. This generator has been recently patented by 
the University of Seville. 

We have added a high fidelity power amplifier specifically developed for the ap-
plication that allows obtained outputs at real level in terms of voltage and with small 
power levels (up to 200 watts). This paper describes the generator, the different 
mathematical models for each disturbance as well as the power amplifier and the 
global performance of the system.  
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Abstract. In this work we present an algorithm for training an associative 
memory based on the so-called multi-layered morphological perceptron with 
maximal support neighborhoods. We compare the proposal with the original 
one by performing some experiments with real images. We show the superiority 
of the new one. We also give formal conditions for correct classification. We 
show that the proposal can be applied to the case of gray-level images and not 
only binary images.  

Keywords: Associative memories, Morphological neural networks, maximal 
support neighborhoods.  

1   Introduction 

Neural networks have shown to be an excellent alternative to face problems where it is 
difficult to find no algorithmic solution. Based on the functioning of the human nervous 
system, lots of researchers have proposed different neural processing models. Probably 
the best know model is the Back-propagation Neural Network [1], [2] and [3]. 

The study of the internal structure of neural cells has revealed that all cells have the 
same simple structure, independently of their size and shape. Information from a cell 
voyages through the signals that neurons send to other neurons through their 
dendrites. It is believed that the cellular body adds up the received signals; when 
enough inputs are available a discharge is produced. Initially, this discharge occurs in 
cellular body, it then propagates between the axon until the synapses that sends a new 
signal to the other neurons. 

An artificial neural network can be seen as a non-linear mapping between two 
pattern spaces: the input pattern set and the output pattern set. Normally the internal 
parameters of this mapping are determined by means of a training process and are 
denoted as synaptic weights. 

In the decade of the 50’s, Rosenblatt ([2], [3]) introduces the well-known perce-
ptron, which is the classical model that has been used for most of the actual 
developments. However, in the 90’s, Ritter et al., ([4], [5], [6]) and Sussner [12] 
presented a new kind of neural network model, the so-called morphological neural 
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network. Here, the classical operations of multiplication and addition are replaced by 
summations and max (or min), respectively. One difference between this model and 
the classical models is the computational cost when computing the value of i -th 

neuron at time 1t +  that in this model is less. 
In the last years it has been found that, apparently the processing of information 

not only occurs at the cellular body but also at the dendrites [7]. This affirmation 
could give an explanation of the great efficiency of our nervous system, since 
processing of the information happens practically along the communication channel.  

The material just presented along with the morphological paradigm is the departure 
point of this paper. 

2   Associative Memory Based on the Morphological Perceptron 

In [7] it is presented how a morphological perceptron allows classifying any compact 
set in the pattern’s domain, which can be used to build an associative memory able to 
recall patterns affected by mixed noise. The idea is to build a three layer associative 
memory (an of input, one hidden, and of output) as can be appreciated in Figure 1. 

 

 

 Fig. 1. Associative memory of three layers based on the morphological perceptron 

First layer works as register of the number of elements of the input pattern. Second 
one (the hidden layer) is composed of morphological perceptrons [7], one for each 
class, while the output layer is formed by perceptrons based on the max operator with 
a linear gating function, one perceptron for each component of the output patterns. 

The perceptrons of the hidden layer are morphological perceptrons with one input 

dendrite. The classified region is thus a hyper-rectangle in R n , whose goal is to 
classify the corresponding pattern inside the on-region. For the better functioning of 
this model, the perceptron outputs a zero in its on-region and −∞  in its 
complements. 

The output of a perceptron at the output layer is given as 

( )
1

K
k

i i k
k

z y xϕ
=

⎡ ⎤= +⎢ ⎥⎣ ⎦∨                                             (1) 

where k
iy  is the i -th component of the k -th output pattern, and ( )k xϕ  is the 

output of the k -th perceptron of the hidden layer. Thus, when taking the max of the 
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outputs of the perceptrons kϕ  that output a −∞  unqualify pattern ky  as possible 

output of the associative memory. To train this associative memory, we have simply 
to define the supports of each key pattern. In this case the on regions of the 
corresponding patterns represent these supports. 

 From [3], during training, all supports of the memory are built as hyper-cubes of 
side equal to α , where α  is obtained as 

( )1
min ,

2
i j

i j
d x xα

<
<                                              (2) 

where ( ),i jd x x  is defined as 

( ) { }1,
, maxi j i j

l l l n
d x x x x

=
= −

…
                                 (3) 

and ( ) 1, ,ix i m= …  is the set of key patterns. 

To avoid collisions at the moment of classification it is necessary that the supports 
are disjoint two by two. This is not demonstrated in [7]. Next a brief proof that this 
happens is given. 

Proposition 1. Let M a multi-layered associative memory. If each key pattern kx  has 

a support ( ){ }: , k
kS x d x x α= < , with α  as defined in equation (2), then it hold 

that ,i jS S i j∩ =∅ ∀ ≠ . 

Proof. Let us suppose that i j≠∃  such that i jS S∩ ≠∅ , this means that there is a 

x  such that ( ), id x x α<  and ( ), jd x x α< . When summing and using triangles’ 

inequality we get: ( ) ( ) ( ) ( ), , , 2i j i jd x x d x x d x x α α α≤ + ≤ + = , then 

( ), 2i jd x x α< , or in other words 
( ),

2

i jd x x
α< !!, which is a contradiction, 

thus the proposition hold. 
 

One of the drawbacks of this method to construct the supports is that if two of them 
are of them too close, the (radius) of the neighborhood’s supports reduce drastically. 

In [7] it is proposed another method to increase the neighborhoods of the supports 
by means of the kernels’ method. According to [7], with this the range of permissible 
noise is increased. However, this method makes expensive the computational cost and 
besides it imposes restrictions over the patterns very difficult to get. 

3   Proposed Training Algorithm 

In the content of this work, let us suppose that a pattern is represented in terms of n  
object features; then at each coordinated axis we can compute the variation obtained 
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per feature by ordering all components. By computing the average of variability per 
pattern it is possible to define a threshold. For practical purposes, this threshold 
allows to consider if two patterns can be considered to be the same from the point of 
view of one of their components. This way we avoid having very tiny supports with 
respect to the coordinated axis. This way the drawback of the algorithm described in 
last section is surpassed. 

 

 

 

 Fig. 2. Flowchart to get average variation threshold  

The algorithm to find the average variation threshold by axis is observed in Fig. 2.  
In this case, X  is a matrix of n m× . At j -th column it is j -th pattern, while at i -

th line are the m  features of the i -th axis of each pattern. In iU  it is the average 

variation threshold for the i -th axis. The key point for the training of the multi-
layered morphological perceptron consists on constructing the supports for each 
pattern. In general these supports must be disjoint two by two to avoid that two 
patterns be assigned to the same output. This is fulfilled in the proposed algorithm 
thanks to the following: 

 

Proposition 2. Let iΩ  and jΩ  two arbitrary supports corresponding to different 

patterns in R n , built according to average variation threshold, then it holds that 

i jΩ =Ω  or i jΩ ∩Ω =∅ . [13]. 
 

Proof. Let ix  and jx  the corresponding patterns to supports iΩ  and jΩ , 

respectively, then we have two cases: 
 

a. If it holds that 1,,i j
k k k k nx x U =− < ∀ … , with kU  is the average variation. 

If this holds then i jΩ =Ω . 

b. If 1, ,k n=∃ …  such that i j
k k kx x U− >  would imply that at k th−  coordinate, 

the support does not coincide and on the axis they are disjoint, thus they are 

disjoint in R n . 
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Evidently, when the patterns are too close, the neighborhoods would present 

occlusions. In these cases i jΩ =Ω  for i j≠ , one variant of this algorithm would 

be to consider that i jΩ ∩Ω ≠∅ , but that each neighborhood is centered at its 

respective key pattern. The advantage of this enhancement is that neighborhoods 
allowing more noise to be added to the patterns will be enlarged. 

4   Numerical Examples 

Example No. 1. Let the following set of key patterns in R n : 
 

1 2 3 4 5 63 1 2 2 4 3
, , , , ,

4 4 2 3 5 2
x x x x x x

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − −⎪ ⎪⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = = =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
    (4) 

  

a) Solution obtained by means of algorithm proposed in [7]: 
 

By applying the algorithm proposed in [7], according to equation (2) 0.5α= . 
Figure 3 shows the neighborhoods obtained when using this value of α .  

 
 

 
 Fig. 3. Neighborhoods obtained when algorithm proposed in [7] is used 

b) Solution obtained by means of algorithm proposed in this paper (first 
variant): 

 

When using the algorithm to get the maximal support neighborhoods, by applying the 
flowchart shown in Figure 3, we get the threshold value U  as: 

 

1.166

1.5
U

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

                                                             (5) 

The neighborhoods obtained by using this threshold value are shown in Figure 4. 
The differences can be immediately appreciated. In this second case the range on 
noise for each pattern, as can be appreciated, is bigger.  
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Fig. 4. Neighborhoods obtained when using first variant of the proposed algorithm 

c) Solution obtained by means of algorithm proposed in this paper (second 
variant): 

 

We apply the same procedure used by the first variant, but in this case the 
neighborhoods are centered at the corresponding key patterns. The threshold is the 
same given by equation (5). 

 

Fig. 5. Neighborhoods obtained when using second variant of the proposed algorithm 
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The neighborhoods obtained are shown in Fig. 5. Due to the neighborhoods are 
now centered at their respective key patterns, in this case the support for noise is 
bigger. Note also the occlusions between classes that do not occur in the first 
variant. 

In the following section we show how the proposal described in this paper can be 
used not only to recall binary patterns but also gray-level patterns such images. 

5   Experiments with Real Patterns 

For this experiment we used the images shown in Fig. 6. These images are gray-level of 
262 326×  elements. They were perturbed with noise from 5% to 15%, in steps of 5%. 

     

Fig. 6. Original images of experiments 

The input key patterns where formed by describing each image by means of known 
Hu invariants ([10], [11]). Figures 7 to 9 show graphically the results obtained when 
using the algorithm proposed in [7], and the algorithm proposed in this paper to the 
images is shown in Figs. 10 to 12. From all of these figures we can observe that when 
adding, even small quantities of noise to the patterns, the original algorithm proposed 
in [7] fails to recall practically of the patterns, while the proposal, although with 
modest percentage, several of the desired patterns are correctly recalled. 

 

     
(a) 

     
(b) 

Fig. 7. (a) Images altered wit 5% of noise. (b) Images recalled using [7].  
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(a) 

     
(b) 

Fig. 8. (a) Images altered wit 10% of noise. (b) Images recalled using [7]. 
 

     
(a) 

     
(b) 

Fig. 9. (a) Images altered wit 15% of noise. (b) Images recalled using [7].  
 

 

     
(a) 

     
(b) 

Fig. 10. (a) Images altered wit 5% of noise. (b) Images recalled using the proposal.  
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(a) 

     

(b) 
Fig. 11. (a) Images altered wit 10% of noise. (b) Images recalled using the proposal. 

 

     
(a) 

     

(b) 

Fig. 12. (a) Images altered wit 15% of noise. (b) Images recalled using the proposal 

6   Conclusions 

In this paper we have presented an algorithm to train the multi-layered morphological 
perceptron that allows to build more efficient support neighborhoods, since the point 
of view of pattern recall, from the set of key pattern patterns of the training set of an 
associative memory in both its auto-associative or hetero-associative way of 
operation. By several experiments with real patterns, we have shown that the proposal 
can be used to recall gray-level images and not only binary images. We show the 
superiority of the new one. 
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Abstract. Information Fusion is becoming increasingly relevant in fields
such as Image Processing or Information Retrieval. In this work we pro-
pose a new technique for information fusion when the sources of infor-
mation are given by a set of kernel matrices. The algorithm is based on
the joint diagonalization of matrices and it produces a new data rep-
resentation in an Euclidean space. In addition, the proposed method is
able to eliminate redundant information among the input kernels and it
is robust against the presence of noisy variables and irrelevant kernels.

The performance of the algorithm is illustrated on data reconstruction
and classifications problems.

Keywords: Information Fusion, Approximate Joint Diagonalization,
Kernel Methods, Support Vector Machines.

1 Introduction

Fusion information techniques are becoming increasingly relevant in different
fields such as classifier combination [9] or image processing [17]. Data fusion
processes combine different sources of information to feed some data processing
algorithm. For instance, in the problem of kernel combination [4], there are
several metrics available and the task is to produce a single kernel to increase
the classification performance of Support Vector Machine algorithms. In image
fusion [3], a typical problem considers different satellite pictures, with different
resolutions and different color qualities, and the task is to produce a picture that
has maximum resolution and the best color quality. In the field of Information
Retrieval, the goal can be to classify a set of web pages [8], and the information
that has to be combined lies in the co-citation matrix and in the terms-by-
documents matrix.

In this paper we approach the problem of information fusion in the context of
kernel methods. Consider a set of kernels K1, ..., Kt. By the Mercer theorem [11]
each positive-definite kernel Ki induces a transformation of the data set into a
(possibly) high dimensional Euclidean space IRni . Thus, each kernel induces a
particular representation of the data set using some basis {vi} for IRni . If we
want to combine the information provided by a set of kernels, we will have to find
some ‘common’ basis {v∗} from the individual basis {vi}, such that the inmersion

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 556–563, 2007.
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of the data set in the resulting IRn∗
contains all the relevant information from

the individual kernels Ki.
Any technique to produce the desired combination basis needs to take into

account the problem of information redundance. To illustrate this problem, let
us consider a data set, and two representations given by two projections on
two pairs of principal axes: (x, y) and (x, z), where the x variable is present
in both representations. If we use the direct sum of the corresponding spaces as
solution for the combination problem, we will have the representation (x, y, x, z).
Thus, the weight of the x variable will be doubled when using the Euclidean
distance and the results of the classification and regression algorithms will be
distorted. In the general case the correlation between the variables will cause
similar problems.

The Joint Diagonalization (JD) is a procedure that can be applied for fusion
information purposes. The basis {vi} for the individual representation spaces
are given by the eigenvectors of the Ki matrices. JD is able to produce a new
basis {v∗i } from the {vi} basis and provides information to weight the new vari-
ables. Redundant kernel information can be removed during the process and the
problem of overweighting variables avoided.

The paper is organized as follows. In Section 2 we review the simultaneous
diagonalization process and introduce the case for more than two kernels. In
Section 3 a new algorithm for kernel fusion is presented based on the joint
diagonalization of matrices. Finally, in Section 4 the performance of the new
data fusion methodology is tested using an ilustrative example.

2 Joint Diagonalization of Matrices

The calculus of eigenvalues is an usual task in many pattern recognition algo-
rithms such as FDA [10], Kernel PCA [13,1], or Kernel Canonical Correlations
[6] among others. Given a matrix A ∈ IRn×n the diagonalization process seeks
matrices V orthogonal and D diagonal such that AV = V D, or equivalently:

A = V DV T . (1)

When A is symmetric then a solution always exists and the elements of D are
real numbers.

Some algorithms require the simultaneous diagonalization of two matrices. For
instance, in FDA the within-class scatter matrix and the between-class scatter
matrix have to be simultaneously diagonalized to find discriminative directions.

It is well known that exact simultaneous diagonalization is always possible
[12]. This problem is referenced in the literature as the Generalized Eigenvalue
Problem. Given two matrices A, B ∈ IRn×n the problem is stated as finding
V ∈ IRn×n, and two diagonal matrices D1 and D2 such that AV = BV D. In
other terms,
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V T AV = D1
V T BV = D2. (2)

The base of vectors given by the columns of V is not necessarily orthonormal.
This base is not unique and it is proven that V is orthogonal when the matrices
A and B conmute, that is when AB = BA. If B is non-singular, the problem can
be solved as and ordinary eigenvalue problem where the target matrix is B−1A.
See [7,5] and references therein for further details.

Next we afford the problem of diagonalization of more than two matrices at
the same time.

2.1 Approximate Joint Diagonalization Algorithm

Given a set of matrices S = {A1, ..., At} it is not possible in general to achieve
perfect joint diagonalization in a single step, unless AiAj = AjAi ∀i, j ∈ {1, ..., t}.
These restrictions do not hold for most theoretical or practical problems. In
practice we will have to find an orthonormal change of basis which makes the
matrices in S ‘as diagonal as possible’ in a sense that will be detailed right away.

In this paper we consider the Approximate Joint Diagonalization (AJD) of
symmetric matrices [14,2,15]. Given a square matrix A, we can measure the
deviation of A from diagonality by defining

off(A) = ‖A − diag(A)‖2
F =

∑

i�=j

a2
ij , (3)

where ‖A‖F =
∑

i

∑
j a2

ij is the Frobenius norm. If A is a diagonal matrix then
off(A) = 0, while off(A) will take small positive values when the off-diagonal
values of A are close to zero.

Given the set S, the target is to find an orthonormal matrix V such that the
departure from diagonality of the transformed matrices D′

i = V T AiV is as small
as possible ∀i ∈ {1, ..., t}. Therefore the goal will be to minimize

J(V ) =
∑t

k=1 off(V T AkV )
s.t.

‖V T V − I‖F = 0
‖diag(V − I)‖F = 0,

(4)

where the restrictions have to be included to achieve orthonormality and to
avoid the trivial solution V = 0. After solving (4) we will obtain quasi diagonal
matrices D′

1, ..., D
′
t, where D′

i = V T AiV ∀i ∈ {1, ..., t}.
There is no closed solution for the problem in (4) and some type of numerical

approach has to be adopted. We will apply the algorithm described in [2,16]. The
idea is to generate a sequence of similarity transformations of the initial matrices
that drive to zero the off-diagonal entries. The convergence of the algorithm is
proven to be quadratic and the obtained eigenvalues and eigenvectors are robust
against small perturbations of the data.
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3 Fusion Joint Diagonalization Algorithm (FJDA)

As already mentioned, Approximate Joint Diagonalization involves the compu-
tation of a base of orthogonal vectors in which the set of kernels approximately
diagonalize. We will obtain relevant information about the data structure by an-
alyzing the resulting eigenvalues, or equivalently, the diagonal matrices obtained
from the joint diagonalization procedure. The ideas are similar to that used in
Principal Components Analysis, where the covariance matrix is diagonalized and
the resulting eigenvalues can be interpreted as the weights of the new variables.

Let {v1, ..., vn} be the column vectors of the matrix V obtained from the
JD algorithm (the {v∗i } vectors in the introduction). These vectors constitute
the basis where both kernels diagonalize and can be interpreted as the average
eigenspace of the kernels. A detailed analysis of the kernels redundancy can be
done in terms of the values of the diagonal matrices D′

1, D
′
2, ..., D

′
t obtained.

Given the kernel Kl, their components can be interpreted as follows:

– D′
l(i, i) = 0: the vector vi is irrelevant for the kernel Kl. That is, the i-th

variable vi is in the null space of Kl.
– D′

l(i, i) �= 0: in this case vi is a relevant component for Kl.
– D′

l(i, j): These values can be interpreted as the interactions among the new
variables. Due to the JD operation, D′

l(i, j) ≈ 0.

Given V and D′
1, D

′
2, ..., D

′
t, the straightforward sum of the kernel matrices can

be reexpressed as:
t∑

i=1

Ki = V T

(
t∑

i=1

D′
i

)
V (5)

Given that the off-diagonal values of {D′
1, ..., D

′
t} are quite close to zero, D′

l(i, i)
can be interpreted as the weight that kernel Kl assigns to the i-th variable in
the new basis. Since the new base is orthogonal, independent information is
given by each component. The straightforward sum of kernels implies to include
redundances in the operation and to overweight variables that appear in more
than one kernel at the same time. In order to avoid these redundances, the sum
of the quasi-diagonal matrices of expression (5) can be replaced by the function
F (D′

1, D
′
2, ..., D

′
t) defined as follows:

F (D′
1, D

′
2, ..., D

′
t) =

{
max{D′

1(i, j), ..., D
′
t(i, j)} if i = j

0 if i �= j
(6)

The justification of this choice is as follows. The relevance of the i−th variable in
the basis induced by kernel Kl is given by D′

l(i, i). The use of the max function
guarantees that the i-th variable will be relevant in the resulting combined basis
if this is the case for any of the individual representations. Thus, the weight of
ith variable in the fusion kernel will be max{D′

1(i, i), ..., D
′
t(i, i)}.

The final algorithm for kernel fusion is shown in Table 1 and it provides a
global framework for kernel fusion. Notice that, since the matrix V is orthogonal
and the diagonal matrices of F (D′

1, D
′
2, ..., D

′
t) are positive, K∗ is always a Mercer

kernel matrix.
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Table 1. Scheme of the Fusion Joint Diagonalization Algorithm in three steps

INPUT: Kernel matrices K1, ..., Kn

OUTPUT: Kernel combination K∗

1.- (V, D′
1, ..., D

′
n) = AJD(K1, ..., Kn)

2.- D∗ = F (D′
1, ..., D

′
n)

3.- K∗ = V T D∗V

4 Experiments

In order to validate the effectiveness of the proposed methodology some exper-
imental results are shown in this section. First, the algorithm is tested in a
data reconstruction example where partial information about the data is given.
Finally, the methodology is successfully tested in a real classification problem..

4.1 Simulated Example

In this example we illustrate the performance of the new JD algorithm in a data
structure recovery task.

We consider two different one-dimensional random projections π1 and π2 of
the spiral data in Figure 1 and calculate the kernel matrices K1 and K2 by
applying the linear kernel k(x, y) = xT y to the projected data points, that is,
Ki(x, y) = πi(x)T πi(y). We add a corrupted (random) representation of the data
and calculate K3 from this representation in the same way. K3 plays the role of a
non informative (non-related) piece of information in the system. This situation
happens when the distance function is not appropiate for the data set under
consideration or when we try to use irrelevant information to solve a problem.
The task is to recovery the original data set from the three projections.

Two fusion schemes were compared in the experiment: The straightforward
sum of kernels Ksum = K1 + K2 + K3 and the combination K∗ calculated with
the Fusion Joint Diagonalization Algorithm. In Figure 2 the results are shown.
It is clear that our procedure is able to recover the original data set structure
while the straightforward sum of kernels fails on the task of recovering the data
set structure.

4.2 Sonar Data

In this example we perform a study of classification of sonar signals [18]. The
goal is to discriminate between two types of signals: those bounced off a metal
cylinder and those bounced off a roughly cylindrical rock. The data set has 208
observations measured on 60 variables that take values in the interval [0, 1]. Each
value represents the energy within a particular frequency band, integrated over a
certain period of time. The goal is classify the objects as rocks or mines.
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Fig. 1. Spiral data
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(a) Direct fusion of kernels for
the Spiral data
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(b) Fusion Joint Diagonaliza-
tion Algorithm applied to the
Spiral data set

Fig. 2. Representations for recovered data structures after the direct combination of
three kernels and after the Fusion Joint Diagonalization algorithm

We consider two Radial Basis Funtion kernels Ki(x, y) = e−γi‖x−y‖2
, i ∈

{1, 2}, where γ = 1 and γ = 0.1. We want to combine K1 and K2 using the
straightforward sum and the AJD fusion method. In order to evaluate the per-
formance of both fusion approaches we will feed one SVM classifier with the
resulting fusion kernels. The penalty value C is set to one in all the experiments.
Table 2 shows the classification results for the SVM classifier using four different
kernels: the individual kernels K1 and K2, and the two fusion kernels: Sum for
the straightforward sum and KAJD for the AJD kernel.

It is apparent from the results that K1 performs better than K2. When the
straightforward sum is considered, the performance of the SVM is worse than in
the case of using the RBF kernel with γ = 1. It seems that the bad performance



562 A. Muñoz and J. González

Table 2. Percentage of missclassied data, and percentage of support vectors for the
Sonar data set after 10 runs. Standard deviations in brackets.

Kernel Train Error Test Error %SV

K1 (γ = 1) 1.144 (0.460) 15.952 (0.372) 40.0 (0.0)
K2 (γ = .1) 16.56 (0.077) 25.761 (0.170) 48.7 (0.0)

KSum 1.325 (0.516) 16.666 (0.380) 76.6 (1.8)
KAJD 0.783 (0.499) 15.238 (0.404) 82.9 (2.2)

of K2 damages the performance of the straightforward sum approach. On the
other hand, the kernel obtained by the AJD algorithm shows a better classifi-
cation performance than the other fusion method and also than the individual
kernels.

5 Conclusions and Future Work

In this work, we present a new framework for information fusion when the sources
of information are given by a set of kernel matrices. The algorithm, based on the
Approximate Joint Diagonalization of matrices, produces a new representation
of the data set in a Euclidean space, where the basis is created from the rep-
resentations induced by the individual kernels. In addition our method is able
to eliminate redundant information from the individual kernels. The proposed
fusion scheme has been tested in a couple of significative examples. Furthermore,
the procedure is shown to be robust against the inclusion of noisy variables.

Future research will include the study of Joint Diagonalization Algorithms
that take into account the label information in classification problems and also
JD algorithms specific for regression problems.
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Abstract. Many regression tasks in practice dispose in low gear in-
stance of digitized functions as predictor variables. This has motivated
the development of regression methods for functional data. In particu-
lar, Naradaya-Watson Kernel (NWK) and Radial Basis Function (RBF)
estimators have been recently extended to functional nonparametric re-
gression models. However, these methods do not allow for dimensional-
ity reduction. For this purpose, we introduce Support Vector Regression
(SVR) methods for functional data. These are formulated in the frame-
work of approximation in reproducing kernel Hilbert spaces. On this
general basis, some of its properties are investigated, emphasizing the
construction of nonnegative definite kernels on functional spaces. Fur-
thermore, the performance of SVR for functional variables is shown on
a real world benchmark spectrometric data set, as well as comparisons
with NWK and RBF methods. Good predictions were obtained by these
three approaches, but SVR achieved in addition about 20% reduction of
dimensionality.

Keywords: Support Vector Regression, Functional Data, Kernel
Function.

1 Introduction

The fast development of instrumental analysis equipment, such as spectropho-
tometers, chromatographs, signal analyzers and other modern measurement de-
vises, provides huge amount of data as high-resolution digitized functions. As
a consequence, regression tasks in which the predictor variable is some type of
Functional Data (FD), instead of a low-dimensional vector, are quite common.
For example, it is very important nowadays the prediction of chemical physical
properties of a product from its spectral function [4], [16].

The direct application of classical multivariate regressions methods for this
type of data exhibits serious limitations. Indeed, digitized functions (e.g., spec-
tral data) are generally represented by high-dimensional vectors whose coor-
dinates are strongly correlated. Furthermore, usually the dimension of such
vectors greatly exceeds the number of independent observations (e.g., the num-
ber of measured spectra). In such situations, standard regression analysis leads
to ill-posed inverse problems, which cause a number of difficulties.
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As an alternative, Functional Data Analysis is an extension of traditional
multivariate analysis that is specifically oriented to deal with observations of
functional nature [12]. For this, each individual is characterized by one or more
continuous real-valued functions, rather than by a finite-dimensional vector. This
allows for applying functional processing techniques such as derivation, integra-
tion, etc. On this basis, over the last years several classical multivariate statistical
methods have been extended to FD. In respect to regression, first works in this
direction were focused on linear models. In particular, least squares methods have
been elaborated for linear regression with functional predictors (see, e.g., [11],
[12], and references therein). Also, some dimensionality reduction approaches
for linear regression, such as principal component regression and partial least
squares, have been generalized to FD [1], [3], [9]. More recently, a number of
estimation methods for functional nonparametric regression models have been
also introduced. Namely, estimators based on functional data adaptations of
classical neural networks [13], Naradaya-Watson Kernel (NWK) estimators [6],
[7] and regularization in Reproducing Kernel Hilbert Spaces (RKHS) [9]— the
latter including Radial Basis Function (RBF) methods. Likewise their classical
counterparts in multivariate analysis, these nonparametric techniques provides
high flexibility to approximate a wide class of functional regressions. However,
a difficult with them is that a high amount of computer memory is required to
encode the estimates in order to make future predictions (e.g., the whole data
set has to be retained for predicting by NWK and RBF methods).

In the present paper, the drawback just mentioned is approached by introduc-
ing Support Vector (SV) regression methods on functional spaces. Though SV
regression have been studied by several authors in the more general framework
of abstract RKHS methods (see, e.g., [15], [5], [2]), to our knowledge no work
have been carried out to deal with its application to FD. On the basis of the
RKHS framework we study some properties of SV regression for FD, emphasizing
specificities related with the construction of nonnegative definite (nnd) kernels
on functional spaces. Furthermore, the feasibility and practical performance of
SV regression for FD, as well as comparisons with NWK and RBF estimators,
are shown on a real world benchmark spectrometric data set.

2 Estimation of Abstract Nonparametric Regression
Models by Regularization in Reproducing Kernel
Hilbert Spaces

Estimation methods for very general regression models have been elaborated by
several authors on the basis of regularization in RKHS (see, e.g., [15], [5], [2],
and references therein, for definitions and detailed expositions). We will here
briefly describe this abstract framework before considering its specification for
regression with FD in the next Section.

Let X be a linear space with norm ‖‖X , and R
X be the set of functions from

X into R. Suppose it is given some positive definite (pd) function (or kernel)
κ : X × X →R. It is known that there exists a RKHS Hκ⊂R

X with reproducing
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kernel κ. The norm on Hκ will be denoted by ‖‖Hκ
. Consider the abstract

nonparametric regression model:

Y = Ψ (X) + e,

where (X, Y ) is a random variable on some probability space (Ω, F , P ) with val-
ues in X×Y, Y ⊂R, e is a real-valued random variable with zero mean, which is
assumed to be independent from (X, Y ), and Ψ is an unknown mapping X →R.
The variables X and Y are interpreted, respectively, as the predictor and re-
sponse variable in this regression model. The problem of interest is to estimate
the regression mapping Ψ on the basis of data (Xi, Yi), 1 ≤ i ≤ n, formed by
independent and identically distributed observations of (X, Y ).

For this, let H0 be a given finite-dimensional linear subspace of R
X with basis

G1,...,Gm, such that the matrix (Gj (Xi)), 1 ≤ i ≤ n, 1 ≤ j ≤ m, has rank m.
Denote by H = Hκ+H0 the space of functions F = Fκ + F0 with Fκ ∈ Hκ and
F0 ∈ H0. Henceforth, it will be assumed that Ψ ∈ H. To assess the closeness
of each F ∈ H to the unknown Ψ , suppose that a function c : X×Y × H →R+
(called a contrast function) has been specified. The risk of approximating Ψ by
an element F = Fκ + F0 ∈ H is then quantified by

R (F ) = E (c (X, Y, F (X))) ,

where E is the expectation with respect to the distribution of (X, Y ). The cor-
responding empirical risk and the regularized empirical risk are defined, respec-
tively, as

Remp (F ) =
1
n

n∑

i=1

E (c (Xi, Yi, F (Xi)))

and
Rλ (F ) = Remp (F ) + λ ‖Fκ‖Hκ

,

where λ ≥ 0 is a a given constant (regularization hyperparameter). The regular-
ized estimate Ψ̂λ of Ψ is defined through the optimization problem

Ψ̂λ = arg min
F∈H

Rλ (F ) .

As has been pointed out by several authors, this general framework provides
an unified treatment of several approaches to nonparametric regression, in depen-
dence of the specification of the contrast function c (see,e.g., [5] and references
therein). In particular:

c1) Regularized least squares regression methods correspond to the quadratic
contrast

c (X, Y, F (X)) = (Y − F (X))2 .

More particularly, standard RBF regression methods are obtained when the
quadratic contrast is adopted, X is a subspace of R

d (for some d ∈ N), and the
kernel has the radial form κ (x, x) = g (‖x‖) for some function g : R+ → R. Here,
‖x‖ is the euclidean norm on R

d.
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c2) Support Vector regression methods correspond to the so-called ε-insensitive
contrast function

c (X, Y, F (X)) = |Y − F (X)|ε = max (|Y − F (X)| − ε, 0) ,

where ε ≥ 0 is some given constant. In this case, H0 is taken as either the one-
dimensional space generated by the constant function G1 (x) ≡ 1 or H0 = {0}.

3 Support Vector Estimators for Functional
Nonparametric Regression

The general framework for regression estimation through regularization in
RKHSs, as sketched above, can be applied for any specification of the space
X , the pd kernel κ on X , the contrast function c, and the finite-dimensional
subspace H0 of R

X .
Classical applications of RKHS methods for regression deal with situations

in which X ⊂ R
d, and so H ⊂R

X is constituted by multivariate functions
F : X ⊂ R

d → R. This is the setting of multivariate regression methods, in
which the regression mapping Ψ to be estimated is a multivariate function, i.e.,
a function on R

d.
On the contrary, functional nonparametric regression models deal with cases

in which X ⊂ R
T is a set of functions x : T → R, where T is an infinite-

dimensional set. For example, in some practical situations of interest, T = [a, b]
is a closed interval in R, and X is the space L2 ([a, b] , R) of squared-integrable
functions defined on [a, b]. Thus, in regression models with FD the unknown
regression mapping Ψ is a functional defined on a normed space X of real-valued
functions.

The estimation of functional regression models by RKHS methods have been
recently initiated in [9] under the quadratic contrast, hence providing regularized
least squares estimates. These are instances of the general class (c1) described
in the previous Section.

In the present work we introduce methods to estimate regression models for
FD adopting the ε-insensitive contrast function, i.e. we adapt to functional data
the general approach (c2) mentioned above.

It is known that under quite general conditions on the contrast function c
(which are satisfied by both the quadratic and the ε-insensitive contrasts), the
regularized estimate Ψ̂λ in any abstract regression model has the following ex-
plicit form: for all x ∈ X ,

Ψ̂λ (x) =
n∑

i=1

aiκ (xi, x) +
m∑

j=1

bjGj (x)

for some ai, bj ∈ R that depend only on the hyperparameter λ and the matrices
K = (κ (xi, xj)), G = (Gj (xi)).

Therefore, once the kernel κ is given, the numerical computation of RKHS-
based regularized estimators Ψ̂λ in regression for FD input (i.e., when X is a
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space of functions) is exactly the same as in regression for multivariate input
(i.e., when X is a subspace of some finite-dimensional linear space R

d).
Furthermore, both for quadratic and ε-insensitive contrast functions ( i.e., for

regularized least squares and SV regression approaches), many properties of the
estimator Ψ̂λ in the FD setting can be quite directly derived from known results
in the framework of abstract regression models. For example, if Y is bounded by
a constant MY and κ is bounded by a constant Mκ then, for any λ ≥ 0,

Remp

(
Ψ̂λ (x)

)
− R

(
Ψ̂λ (x)

)
→ 0

in probability exponentially fast as n → ∞ ([10], see also [2] and [15]). Likewise,
some results on uniform convergence in probability

Remp (F ) − R (F ) → 0

over sets of the form
{
F : ‖F‖Hκ

≤ A
}
, A ∈ R, are discussed e.g. in [5].

However, RKHS-based regularization has important specificities in case of
regression models for functional data. Some of them, mainly related with the
interpretation and construction of pd kernels on functional spaces, are discussed
bellow.

4 Nonnegative Definite Kernels on Functional Spaces

Nonnegative definite (nnd) kernels on finite-dimensional linear spaces R
d are

usually constructed on the basis of classical differential operators or completely
monotone functions of order q ∈ N, from which standard spline and RBF ap-
proximations to multivariate functions are derived [18]. Unfortunately, these ap-
proaches are not directly applicable to obtain nnd kernels on infinite-dimensional
spaces. This difficulty poses a challenge to the RKHS approach to regression for
FD.

In this Section we will give some results that allow for the construction of some
classes of nnd kernels on functional spaces. It will be assumed that X is some
(infinite-dimensional) separable normed space. Thus, all results are applicable
to typical problems with FD, in which X ⊂ R

T and T is an interval of the real
line. Notations and definitions introduced in the previous Sections are assumed.

The following lemma can be easily proved.

Lemma 1. Let
ϕ (x) = E

(
eiW (x)

)

be the characteristic function of a stochastic process (W (x) : x ∈ X ) on X . If
x → W (x) is a linear functional, and if for all x ∈ X , the distribution of the

random variable W (x) is symmetric around zero, then

κ (x, x́) = ϕ (x − x́)

is a (real-valued) nnd kernel on X .



Support Vector Regression Methods for Functional Data 569

A direct consequence of this lemma is the following well-known fact. If X is a
separable Hilbert space and h 
 0 then the Gaussian function

ϕ (x) = e−
1
h ‖x‖2

defines a nnd kernel on X (called the Gaussian kernel [15]) by means of

κ (x, x́) = ϕ (x − x́) = e−
1
h‖x−x́‖2

.

Indeed, it is known that there exists a probability space Ω and a Gaussian
and linear stochastic process (W (x) : x ∈ X ) on Ω with zero mean (called the
isonormal or Gaussian process on X ) such that

E (W (x) W (x́)) = (x, x́) ,

where (x, x) is the scalar product in X . Hence, the conditions of the lemma 1
are satisfied by taking

ϕ (x) = E
(
eiW (x)

)
= e−

1
h‖x‖2

.

Lemma 1 provides other interesting classes of nnd kernels, as the one stated
in the following theorem.

Theorem 1. Let T be an interval of R, α ∈ (0, 2], h ≥ 0, and X be a set of
measurable functions X ⊂ R

T such that

‖x‖Lα
=

(∫

T
|x (t)|α dt

) 1
α

is finite for each x ∈ X . Then,

κ (x, x́) = e−
1
h‖x−x́‖α

Lα

is a nnd kernel on X (which we will call an ”α-stable kernel”).

Indeed, define

W (x) =
1
h

∫

T
x (t) dZ (t) , (1)

where (Z (t) : t ∈ T ) is a standard symmetric α-stable Levy motion [14] Then,
it can be shown that W satisfies the conditions of lemma 1.

Notice that, more generally, also as a consequence of lemma 1, if the stochastic
process (Z (t) : t ∈ T ) is any semimartingale whose increments have symmetric
distributions, and if the stochastic integral (1) is well-defined for all x ∈ X , then

κ (x, x́) = E
(
ei(W (x)−W (x́))

)

is a nnd kernel.
The investigation of the variety of kernels for FD provided by these results is

an interesting issue for further research. As a first step in this direction, in the
next Section we will restrict to explore the performance of SV regression with
Gaussian kernels on a real FD set.
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5 Application to Real Data

The main objective in this section is to demonstrate the feasibility of Support
Vector Regression (SVR) for FD, and its behavior regarding RBF and NWK
estimators.

The considered experimental data comes from the food industry named Teca-
tor [17], It consist of 215 near-infrared absorbance spectra of meat samples,
recorded on a Tecator Infratec Food and Feed Analyzer. Each observation con-
sists in a 100-chanel absorbance spectrum in the 850-1050 nm wavelength range.
Each spectrum in the data base is associated to a content description of meat
sample, obtained by analytic chemistry; the percentage of fat, water and pro-
tein are reported. The regression problem consists in the prediction of the fat
percentage from the spectrum.

From the 215 spectra, 43 are kept aside as a testing set and the 172 remaining
sample is used for model estimation (training set). It should be mentioned that
the spectra are finely sampled, leading to very smooth curves. Each function
was represented by a 4th order B-spline approximation with 32 basis functions.
The adopted kernel was the Gaussian kernel with the L2 norm of the second
derivative of the spectrum. This norm was computed on the basis of the B-
spline representation of the spectrum. All calculations were performed using
Matlab. For SVR, the LIBSVM implementation embedding in a Matlab toolbox
was used.

Table 1. Prediction accuracy for different regression estimators

rmse max Abs Error max. Rel. Error Avrg. Rel. Error

SVR 0.5451 1.2933 0.1653 0.0276

RBF 0.9279 2.8486 0.3061 0.0512

NWK 1.4563 5.6000 0.2196 0.0642

In order to select best hyperparameter values (λ , ε, h) to train the SVR, 10
folds Cross-Validation over a grid search was done. For RBF and NWK estimates,
Generalize Cross-Validation [18] was applied to tune the hyperparameters.

Figure 1 contains plots of predicted values versus real values of the response
variable in the testing sample for each regression method: SVR, RBF and NWK.
It is clear that prediction accuracies (generalization capabilities) are quite good
for all these methods but SVR seems to exhibit the best one.

This is quantitatively confirmed in Table1 which summarizes the values of
several measures of prediction accuracy over the testing sample for each method:
root mean squared error (rmse), maximum absolute error (max Abs Error),
maximum relative error (max. Rel. Error) and average relative error (Avrg. Rel
Error). SVR shows the best predictive behavior in terms of all error measures
while the NWK method is the worst one, particularly in respect to the maximum
absolute error.
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Fig. 1. Real values vs. Predicted values for a) SVR, b) RBF, and c) NWK estimates

Fig. 2. Functional regression estimates for (a) SVR, (b) RBF, (c) NWK estimator

In order to aid to a better understanding of the different regression estima-
tors in terms of prediction capabilities and shapes of the regression estimates,
a graphic representation of the fitted regression functional would be convenient.
However, their complete visualization is not possible due to the fact that they
live in an infinite dimensional space. To overcome this, a (metric) multidimen-
sional scaling transformation to the two-dimensional euclidean space was applied
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to the inter-distance matrix among all spectra (distances computed according to
the L2 norm of second derivatives mentioned above). In this way each spectra xi

is (approximately) represented by a point (ui, vi) in the plane. For each method,
Figure 2 shows the (interpolated) surface formed by the predicted values ŷi (ver-
tical axis) as a function of the multidimensional scaling representations (ui, vi),
i = 1, ..., n (in the horizontal plane). The points (ui, vi, yi) that represents the
original fat percentage values yi corresponding to the spectra xi are also plotted
as asterisks.

It is observed that Figure 2 further corroborates the nice goodness of fit at-
tained by the three estimation methods considered, as well as the shape similarity
of their estimates of the regression functional.

However, two advantages of SVR should be highlighted. First, it showed a
slightly better prediction accuracy as reflected by all error measures in Table 1.
Second, SVR achieved about 20% of dimensionality reduction by retaining from
the original data (100% ) only a proper subset of selected support vectors (80
%). This is in contrast to the other two methods that require to keep all the
training data to predict a future sample.

6 Conclusions and Final Remarks

This paper demonstrates the theoretic and practical viability of SVR methods
for functional data inputs.

A comparison of the prediction errors among SVR and two other regression
methods for functional nonparametric regression, namely RBF and NWK esti-
mators, is presented on a spectroscopy benchmark data set. SVR exhibits the
best performance in terms of absolute and relative measures of prediction accu-
racy, closely followed by RBF. An additional advantage of SVR was its capability
for dimensionality reduction, which was around 20% in the analyzed data set.
This in contrast to the other two methods that must retain all the training data
in order to make a prediction for a new sample.

Notwithstanding, it should be noted that computing SVR estimates involves
slightly larger learning times and number of tuning hyperparameters than RBF
and NWK methods.

On the theoretic side, we emphasize the important open problem of developing
methods for constructing nnd kernels with desired smoothness properties on
infinite-dimensional functional spaces. Results derived in the present paper offer
some classes of nnd kernels for functional data, such as α-stable kernels that
have long tails. Further research is necessary to explore their practical relevance,
and to widen the toolkit of nnd kernels for FD.

We also recommend to take into account in future investigations on simi-
lar data sets the possible influence of spectral preprocessing in the quality of
regression estimates.

We conclude that SVR for FD appears as a promising and competitive tool for
functional nonparametric regression tasks in practice due to its approximation
flexibility and its capability for dimensionality reduction.
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Abstract. In this work we focus on the use of SVMs for monitoring
techniques applied to nonlinear profiles in the Statistical Process Control
(SPC) framework. We develop a new methodology based on Functional
Data Analysis for the construction of control limits for nonlinear profiles.
In particular, we monitor the fitted curves themselves instead of moni-
toring the parameters of any model fitting the curves. The simplicity and
effectiveness of the data analysis method has been tested against other
statistical approaches using a standard data set in the process control
literature.

Keywords. Kernel methods, Statistical Process Control, Support Vector
Machines.

1 Introduction

The technique of Statistical Process Control (SPC) was introduced by Shewhart
in 1924 [9]. The basic tools of SPC are the control charts. The central aim of
control charts is the monitoring of processes, where the performance is deter-
mined by quality characteristics. In particular, control charts are useful to test
the stability of a process. The process is often represented by a curve or function
(called profile) that involves a response variable Y and a number of explanatory
variables (X1, X2, . . .). The simplest profiles are generated by linear models, but
often more realistic nonlinear models are demanded.

In this paper, we are concerned with a different class of profile data that
cannot be adequately represented by a linear structured model. This kind of
data are generally known as nonlinear profiles. Very little work has been done
for monitoring of nonlinear profiles (see [17,5,3]). For an overview of profile
monitoring techniques see [18].

There are two phases involved in the SPC methodology. In Phase I, an his-
torical amount of process data is available and has to be analyzed. The targets
here are to test the stability of the process, to understand the variation in the
process over time and to model the in-control process performance. In Phase II,

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 574–583, 2007.
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the goal is to monitor the process. Using on-line data, the system (adjusted in
Phase I) has to perform a quick detection of shifts.

In Multivariate SPC, when the underlying distribution of the quality charac-
teristics is not multivariate normal, the design of the control limits is not trivial,
and regression Support Vector Machines (SVMs) may be used to design a control
boundary limits which adapt to the shape of the data. In this work we propose
a technique for Phase I analysis of nonlinear profiles using SVMs.

The rest of the paper is organized as follows. In Section 2 some background
on profiles is given. In Section 3 SVMs for regression are briefly described. In
Section 4 we show how to use SVMs for the monitoring of nonlinear profiles, and
our method is compared to other state-of-the-art methods. Section 5 concludes.

2 Basics on Profiles

Profile data consist of a set of measurements with a response variable Y and one
or more explanatory variables X(i), i ∈ {1, . . . , k}. The explanatory variables are
used to assess the quality of a manufactured item. In the case of linear profiles
we have a linear regression model with a response variable Y and the vector of
explanatory variables X = (X(1), . . . , X(k))T ,

Y = A0 + AT
1 X + ε ,

where ε is the random error, A0 is a constant and A1 is a vector of parameters.
Applying the linear profile, we have to pool n set points x1, . . . , xn ∈ IRk. For

the sample i the process output is:

yi = A0 + AT
1 xi + εi , with i ∈ {1, . . . , n} ,

where εi are random variables, independent and normally distributed with mean
zero and variance σ2. The estimations of the vector A1 and the intercept A0 can
be obtained using the least squares method (see [4]).

The extension of the linear model to the nonlinear case is

Y = f(X, β) + ε ,

where ε is the random error, β is a vector of parameters and f is a nonlinear
function. Unlike linear profiles, which can be represented by a linear regression
model whose regression model parameters can be used for monitoring and detec-
tion, nonlinear profiles are often sampled into high dimensional data vectors and
analyzed by non-parametric methods. Examples of nonlinear profiles are given
in [15,16].

3 Regression Support Vector Machines in a Nutshell

It is usual in SVMs tutorials to consider the regression problem from a geometric
point of view. Consider a regression problem where the regression function is
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nonlinear. The idea underlying Regression Support Vector Machines [13,2] is to
map the data into a “Feature Space” so that the estimated regression function
becomes linear. This mapping, denoted Φ in the sequel, determines a dot product
K in the Feature Space, called kernel, of the form K(x, y) = Φ(x)T Φ(y).

Regression SVMs work by solving the following optimization problem:

min
w,b,ξ,ξ′

1
2
‖w‖2 + C

n∑

i=1

(ξi + ξ′i)

s.t. (wT Φ(xi) + b) − yi ≤ ε + ξi i = 1, . . . , n ,
yi − (wT Φ(xi) + b) ≤ ε + ξ′i i = 1, . . . , n ,
ξi, ξ

′
i ≥ 0 i = 1, . . . , n .

(1)

Notice that ε appears only in the constraints, forcing the solution to be calcu-
lated taking into account a confidence band around the regression equation (see
Figure 1).

ξ1

ξ
2 ε

Fig. 1. Support Vector Regression

The ξi and ξ′i are slack variables that allow for some data points to stay
outside the confidence band determined by ε. This is the standard support vector
regression formulation. This optimization problem is convex and therefore, it has
no local minima. The linear regression equation will take the form:

R∗(x) = w∗T Φ(x) + b∗ ,

where w∗ and b∗ are the values of w and b at the solution of the previous opti-
mization problem. Notice that the inclusion of the mapping implies nonlinearity.

It can be shown that the problem described above can be stated as a regu-
larization problem [12]. Regularization methods include, among others, smooth-
ing splines [14] or kriging [1]. Regularization allows the construction of smooth
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functions. In fact, it can be shown (see, for instance [7,8]) that the previous
problem can be formulated as a regularization problem of the form:

min
f∈HK

1
n

n∑

i=1

L(yi, f(xi)) + μ‖f‖2
K , (2)

where μ > 0, HK is the Reproducing Kernel Hilbert Space (RKHS) associated to
the kernel K, ‖f‖K denotes the norm of f in the RKHS, (xi, yi) are the sample
data points, and L(yi, f(xi)) = (|f(xi) − yi| − ε)+, ε ≥ 0 is known as the ‘ε-
insensitive loss’ function. By the Representer Theorem (see, for instance [7]), the
solution to problem (2) has the form f(x) =

∑n
i=1 αiK(xi, x)+b, where xi are the

sample data points. Notice that the penalization term μ‖f‖2
K in eq. (2) favours

the choice of smooth solutions to the optimization problem under consideration.
It is immediate to show that ‖f‖2

K = ‖w‖2, where w =
∑n

i αiΦ(xi) and Φ is the
mapping defining the kernel function. In this way, R∗(x) = f(x).

4 An Application of SVMs to Nonlinear Profiles

We will apply Regression SVMs to the example given in [15,16,18]. The data
set is made up of 24 curves, each one corresponding to a vertical density profile
(VDP). These data come from the manufacture of engineered woodboards. In
the production of engineered wood boards the control of the density properties
of the boards produced is crucial. Multiple measurements on a sample (usually
a 2 × 2 inch piece) to form the vertical density profile of the board have been
taken. Figure 2 shows the 24 profiles. Each one consists of 314 measurements
taken 0.002 inches apart. The VDPs are divided in three groups. Each group
is made up by boards selected in the same 8-hour shift. Group 1 consists of 9
boards (1,. . . , 9), group 2 consists of 11 boards (10,. . . , 20), and group 3 consists
of 4 boards (21,. . . , 24).

Fig. 2. 24 profiles. Each one consists of 314 measurements
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The way in which we will apply Regression SVMs for profile monitoring falls
into the area of Functional Data Analysis [11]. We will calculate the control
limits by regularizing the percentile curves obtained from the profiles. Figure 3
shows, in bold, the 0.005 and 0.095 percentiles for the 24 curves. Between both
percentiles, 99% percent of the curves should be contained. In the following
application we will use the Gaussian kernel K(x, y) = e−‖x−y‖2/σ with σ = 0.025,
and in the SVM formulation we will take C = 100. The parameters have been
fixed by cross-validation (see [14] and [6] for details).

0.0 0.1 0.2 0.3 0.4 0.5 0.6

40
45

50
55

60

Fig. 3. 0.005 and 0.095 percentiles for the 24 curves

In order to obtain smooth control limits, we regularize these percentile curves
using a Regression Support Vector Machine. Figure 4 shows the 24 curves and
the regularized control limits in bold.

Using these control limits, outlying profiles can be calculated. In this appli-
cation, we will consider a profile as out of bounds if its regularized version at
some moment comes out of the band delimited by the upper or lower regularized
control limits. The use of the regularized version of the profiles is justified by
the need of avoiding the effect of the peaks of the nonregularized curves. Figure
5 shows the estimated curve for one of the profiles, in particular for the profile
named 10. Figure 6 shows the regularized curves for all the profiles, and the
control limits (the two bold curves).

Using our methodology, three profiles are obtained as out of bounds, in par-
ticular, profiles 3, 6 and 16. The regularized version of curve 3 is out of bounds
279 times, curve 6 is out of bounds 296 times and curve 16 is out of bounds
11 times. The remaining curves remain always between the control limits. Since
each profile consists of 314 measurements, we may design a measure (taking val-
ues between 0 and 1) to decide how outlying is a profile (the proportion of time
that its regularized version is out of control). In this way, the results for these
three profiles are 0.89, 0.94 and 0.035, respectively. Figure 7 shows the outlying
regularized profiles (black lines) and the control limits (dashed lines).
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Fig. 4. The 24 curves and the regularized control limits in bold

Fig. 5. Profile 10 and its corresponding regularized curve

Curves 3 and 6 are the ones clearly out of bounds, being their corresponding
values for the outlying measure high, that is, 0.89 and 0.94 respectively. Curve
16 is out of bounds only in the tails of the lower control limit (being its measure
0.035, a low value). For the shake of completeness, Figure 8 shows the regularized
control limits and the non-regularized version of the outlying curves.

Notice that using less restrictive criterions in order to decide whether a given
curve is out of bounds (for instance, a percentage of times coming out of the
limits), fewer curves would be considered as outlying ones.

4.1 Comparison with Other Methods

The analysis of nonlinear profiles has been previously afforded using standard
statistical methods. In particular, in [17] three methods are applied to this data
set. These methods are based on the monitoring of the parameters obtained by
estimating each VDP using a ‘bathtub’ function model. Given the data points
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Fig. 6. The 24 regularized curves and the regularized control limits in bold

(xk
i , yk

i ) for the ith profile (in our case i ∈ {1, . . . , 24}, k ∈ {1, . . . , 314}), the
following model has to be estimated:

fi(xk
i , βi) =

⎧
⎨

⎩

ai1(xk
i − di)bi1 + ci , xk

i > di ,

ai2(−xk
i + di)bi2 + ci , xk

i ≤ di ,
(3)

where xk
i is the kth regressor variable value for the ith profile, and βi = (ai1, ai2,

bi1, bi2, ci, di)T is the vector of parameters corresponding to the model estimat-
ing the ith profile. Notice that there exists a ‘bathtub’ model for each of the 24
profiles. Once βi has been estimated by β̂i, i ∈ {1, . . . , 24}, three covariance ma-
trices S1, S2 and S3 (for methods 1, 2 and 3, respectively) are calculated (see [17]
for details). Then three T 2-statistics of the form T 2

i = (β̂i − ¯̂
βi)T S−1

i (β̂i − ¯̂
βi)T ,

i ∈ 1, 2, 3 are calculated in order to monitor the parameters simultaneously.
These Ti follow standard statistical distributions and control limits can be cal-
culated.

In [17] it is shown that, for the three statistics, board 15 is outlying. For two
of the three statistics board 18 is borderline, while the third statistic indicates
that boards 4, 9, 18 and 24 are outliers. It is apparent that none of these boards
are outliers as they are included within the calculated control limits.

4.2 Principal Component Analysis

The results obtained with the regularization methodology are coherent with the
ones of the following experiment. We have considered each profile as a single
data point of dimension 314. Then, we have made a Principal Component Anal-
ysis (PCA) on the 24 profiles. The first principal component explains 98% of
the variability. Figure 9 shows the 24 profiles projected on this first principal
component, with profiles 3, 6 and 16 in bold. It is clear that the most outlying
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Fig. 7. Outlying regularized curves. Control limits in dashed.
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Fig. 8. Regularized control limits (dashed) and the non-regularized version of the out-
lying curves
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Fig. 9. The 24 profiles projected on the first principal component, with profiles 3, 6
and 16 in bold

profiles are these three ones, being profiles 3 and 6 the most outlying ones. The
PCA method can be considered a qualitative method rather than a quantitative
one. Therefore, it does not provide a decision value to determine if a given profile
can be considered as an outlier, while the method that we propose does.
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5 Conclusions

In this work we have developed a new methodology based on Functional Data
Analysis for the construction of control limits for nonlinear profiles. Our tech-
nique is not based in the monitoring of the parameters of any model fitting
the curves. Instead, we monitor the fitted curves themselves. Therefore, we do
not need to find a particular nonlinear regression model that must adapt to the
particular shape of the profiles in each case. The use of the regularized curve
corresponding to each profile has the effect of automatically considering the
variability within the profile. Similarly, by building the percentile curves and the
control limits we are taking into account the variability among different profiles.

The simplicity and effectiveness of the data analysis method has been tested
against other statistical approaches using a standard data set in the process
control literature. In particular we have shown that our method outperforms
other state-of-the-art methods in term of outlying board detection.

Further research will include the study of density estimation methods to de-
tect the outlying curves, by considering the profiles as data points in a functional
data space. To this aim, we will extend the techniques presented in [10] to the
functional data case.
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Universidad Nacional Autónoma de México (UNAM),
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Abstract. In this article we present a new polynomial function that
can be used as a kernel for Support Vector Machines (SVMs) in binary
classification and regression problems. We prove that this function fulfills
the mathematical properties of a kernel. We consider here a set of SVMs
based on this kernel with which we perform a set of experiments. Their
efficiency is measured against some of the most popular kernel functions
reported in the past.

Keywords: MP-Polynomial Kernel, Kernel Methods, Support Vector
Machine.

1 Introduction

Kernel methods have been a matter of study in the last years given their re-
markable power and robustness to tackle nonlinear systems. Any kernel method
solution comprises two parts: a) A module that performs the mapping into a
high dimensional feature space and b) A learning algorithm designed to discover
linear patterns in that space. Part (b) has been the focus of research in statis-
tics and machine learning for decades, while part (a) rests on kernel functions.
These kernel functions make it possible to represent linear patterns and ensure
adequate representational power in higher-dimensional spaces [1]. In particular,
a SVM is a kernel method that has been successfully used in recent years for the
solution of a multiplicity of practical applications.

The use of kernel functions in SVMs aims at the solution of non-linearly sepa-
rable classification and non-linear regression problems. Some conditions must be
fulfilled by those functions in order to be considered valid kernels. The main pur-
poses of this article are: a) To propose a new polynomial kernel, b) To describe
its implementation in SVMs and c) To compare its efficiency in the solution
of classification and regressions tasks with some other kernels which have been
used in previous applications of SVMs. In section 2, some important concepts
regarding the characterization of kernel functions are discussed. In section 3 we
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review the main elements of an SVM for classification and regression problems.
In section 4 a new kind of polynomial kernel is advanced and we prove that this
kernel fulfills the conditions of section 2. Finally, in section 5, some experiments
are performed to exemplify our approach. We close with some conclusions and
future work considerations.

2 Kernel Functions

All the concepts and formal statements presented here were taken from [1], where
a complete analysis of kernel methods and their applications is presented.

Definition 1 (finitely positive semi-definite functions). A function:

κ : XxX → R, (1)

satisfies the finitely positive-definite property if it is a symmetric function for
which the matrices formed by restriction to any finite subset of the space X are
positive semi-definite.

A formal characterization of a Kernel function is shown here as follows:

Theorem 1. (Characterization of kernels) A function

κ : XxX → R, (2)

which is either continuous or has a countable domain, can be decomposed

κ (x, z) = 〈φ (x) , φ (z)〉 (3)

into a future map φ into a Hilbert space F applied to both its arguments followed
by the evaluation of the inner product in F if it satisfies the finitely positive-
definite property.

Some properties of Kernels, which are called closure properties [1], are as follows:

κ (x, z) = κ1 (x, z) + κ2 (x, z)
κ (x, z) = aκ1 (x, z)
κ (x, z) = κ1 (x, z)κ2 (x, z) (4)
κ (x, z) = f (x) f (z)
κ (x, z) = κ3 (φ (x) , φ (z))
κ (x, z) = xT Bz

where κ1 and κ2 are Kernels over XxX , X ⊆ Rn, a ∈ R+, f (.) a real valued
function on X , φ : X → RN with κ3 a kernel over RNxRN , and B a symmetric
positive semi-definite nxn matrix.

The characterization of kernel functions, kernel matrices and the previous
properties are needed to decide whether a candidate kernel is a valid one and to
combine simple kernels to obtain more complex and useful ones.
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3 Support Vector Machine

In the last decade of the past century the SVM approach was discovered by [2] and
has been studied and applied in multiple practical applications [3] [4] [5]. A broad
and conscientious exposition of this methodology can be found in [6] and [7].

3.1 Classification

In the case of binary pattern classification with SVM, a training sample τ =
{xi, di}N

i=1 is considered where xi is the input pattern and di is the target output.
When attempting pattern classification, the goal is to find a hyper-surface that
allows the separation of the objects in the sample into two classes: the first class
should be on one side of the surface di = 1 and the second class on the other side
di = −1. The distance of the nearest points of both classes is called the margin
of separation and the optimal surface considered to have been found when such
margin is maximized. The optimal surface is known as Optimal Hyperplane
(OHP)[2].

The objective of the SVM is to find the OHP for a given training set. This
results in a constrained optimization problem. In practice a Quadratic Opti-
mization Problem (QOP) is formulated in order to solve it. However, its dual
formulation is more adequate, since only the Lagrange Multipliers (LMs) of the
QOP need to be found. The dual form is as follows:

Maxα

N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

αiαjdidjK (xi, xj)

s.t. :
N∑

j=1

α∗
i di = 0 (5)

0 ≤ αi ≤ C

The solution of (5) is given by αi, i = 1, 2, ..., N ; C is known as the regularization
parameter and appears in (5) as an upper bound for each αi. This parameter
controls the trade-off between the complexity of the SVM and the number of
acceptable misclassifications (a low value for C corresponds with a higher pro-
portion of errors allowed in the solution, while fewer errors are permissible for
high C values). The kernel function, K (x, xi), is used to construct a decision
surface that is nonlinear in the input space but whose image in the feature space
is linear. Once the solution of (5) is found, a function classifier is determined
through the following expression:

f (x) =
N∑

i=1

αiK (x, xi) + b (6)

where the points corresponding with αi �= 0 are called support vectors.
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3.2 Nonlinear Regression

In the case of nonlinear regression problems, the training set is analogous to the
one used for classification problems; however, the values for di are continuous.
Given this training set, the goal of SVM is to find a function f(x) such that∣∣∣f (x) − d̂i

∣∣∣ < ε for each element and a small ε. In other words, errors are disre-
garded as long as they are smaller than a properly selected ε. The function f(x)
has the a similar form as in the classification problems and it can also be found
by solving a QOP. The dual form of this optimization problem is, as before,
more appropriate. The dual formulation is as follows:

Maxα,α∗ −1
2

N∑

i=1

N∑

j=1

(αi − α∗
i )

(
αj − α∗

j

)
K (xi, xj)

−ε
N∑

i=1

(αi + α∗
i ) +

N∑

i=1

yi (αi − α∗
i ) (7)

s.t. :
N∑

j=1

(αi − α∗
i ) = 0

αiα
∗
i ∈ [0, C]

The regularization parameter C > 0 determines the tradeoff between the
flatness of f(x) and the acceptable number of points with deviations larger than
ε. The value of ε is inversely proportional to the number of support vectors
((αi − α∗

i ) �= 0) [7]. An adequate determination of C and ε is needed for a
proper solution. Their determination is explained in section 4.

Once the solution of (7) is obtained, the support vectors are used to construct
the following regression function:

f (x) =
N∑

i=1

(αi − α∗
i )K (x, xi) + b (8)

We wish to emphasize that in both formulations (classification and regression)
the kernel is used to train the SVM and to construct the classifier and regression
function, respectively.

3.3 Polynomial Kernel

Many functions can be used as kernels, but only if they fulfill Mercer’s theorem
[8] and the conditions of section 2. Some of the most popular kernels discussed
in the literature are the radial basis functions, the perceptrons and the algebraic
polynomials. In this paper we focus on the last one and we compare its accuracy
versus the one obtained with more complex polynomials.

K (x,xi) = (1 + x.xi)
p (9)
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For instance, if m=2 and p=2, equation (9) is as follows:

K (x,xi) = 1 + x2
1x

2
i1 + 2x1x2xi1xi2 + x2

2x
2
i2 + 2x1xi1 + 2x2xi2 (10)

Of particular interest here is the degree of this kind of kernel which corresponds
to the parameter p in (9). The selection of this parameter is very important
not only for SVMs but also for other approaches where polynomial kenels are
used. This parameter determines the complexity of the model and affects its
accuracy. For that reason, different approaches have been proposed in the past
for its optimal selection [9][10].

4 MP-Polynomial Kernel

Consider the following function:

F (x) =
ρ∑

j1

ρ∑

j2

. . .

ρ∑

jm

aj1,j2,...,jm

(
xj1

1 xj2
2 . . . xjm

m

)
(11)

We algebraically show that function (11) may be used as a valid kernel. The first
disadvantage in trying to use this expression is that it holds as an argument an
m-dimensional vector whereas a kernel requires two arguments. This problem
was solved considering the following expression:

K (x,xi) =
ρ∑

j1

ρ∑

j2

. . .

ρ∑

jm

(
xj1

1 xj2
2 . . . xjm

m

)
.
(
xj1

j1x
j2
i2 . . . xjm

jm

)
(12)

where x is a vector representing an element of the training set, with m in-
dependent variables and xi, the i-th object taken from this set. Notice that
the functional structure of (11) and (12) is rather similar except for the term(
xj1

1 xj2
2 . . . xjm

m

)
, which was gotten from the elements of xi, but that it may be

considered as a constant. The structure of (12) now does indeed have a kernel
structure. It just remains to be proven that it complies with the mathematical
requirements, as is now established:

Proposition 1. The expression in (12) is a function with domain in RmxRm

and satisfies the required conditions for being a valid kernel.

Proof (of proposition). The first step in this proof relies on the observation that
the expression in (12) may be represented in the form:

K (X,Xi) = [Xj1 ⊗ Xj2 ⊗ · · · ⊗ Xjm]T · [X1 ⊗ X2 ⊗ · · · ⊗ Xm] (13)

where,

Xi =

⎛

⎜⎜⎜⎜⎝

x0
i

x1
i

x2
i

· · ·
x

(1+p)m

i

⎞

⎟⎟⎟⎟⎠
, Xji =

⎛

⎜⎜⎜⎜⎝

x0
ji

x1
ji

x2
ji

· · ·
x

(1+p)m

ji

⎞

⎟⎟⎟⎟⎠
,
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and ⊗ is Kronecker’s matrix product. Therefore, expounding and applying the
properties of a kernel we get:

K (X,Xi) = [Xj1 ⊗ Xj2 ⊗ · · · ⊗ Xjm]T · [X1 ⊗ X2 ⊗ · · · ⊗ Xm]

= Φ (Xj)
T · Φ (X)

=
[
Φ1 (Xj) , · · · , Φ(1+p)m (Xj)

]
·
[
Φ1 (X) , · · · , Φ(1+p)m (X)

]T

=
(1+p)m∑

k=1

Φk (Xj) · Φk (X)

=
(1+p)m∑

k=1

iTk [xj1 ⊗ xj2 ⊗ · · · ⊗ xjm]T · iTk [x1 ⊗ x2 ⊗ · · · ⊗ xm] (14)

where iTk is a vector having 0′s in all his positions except for the kth one, in
which it takes the value of 1.

K (X,Xi) =
(1+p)m∑

k=1

(
x

[k]
j1 · x[k]

j2 · · ·x[k]
jm

)T

·
(
x

[k]
1 · x[k]

2 · · · x[k]
m

)
(15)

In (15) we find a scalar product which may be grouped in couples as x
[k]
j1 x

[k]
1

and from properties (4) the scalar product represents a kernel; in fact, it is the
simplest possible one. Hence, we may put:

K (X,Xi) =
(1+p)m∑

k=1

κ
(
x

[k]
j1 , x

[k]
1

)
· · ·κ

(
x

[k]
jm, x[k]

m

)
(16)

Finally, according to properties (4), the kernel product is in itself a kernel, so
we have that:

K (X,Xi) =
(1+p)m∑

k=1

κ[k] (xj , x) (17)

This last expression is simple a summation of kernels which, from properties
(4), also results in a valid kernel, which completes the proof.

We had called this new kernel as MP-Polynomial Kernel (MPK). A simple
example of this kernel is as follows: if we assume two independent variables
(m=2) and a degree p=2. Then K (X,Xj) = [Xj1 ⊗ Xj2]

T · [X1 ⊗ X2], where:

X1 ⊗ X2 =
[
x0

1x
0
2, x

0
1x

1
2, x

0
1x

2
2, x

1
1x

0
2, x

1
1x

1
2, x

1
1x

2
2, x

2
1x

0
2, x

2
1x

1
2, x

2
1x

2
2
]

Xj1 ⊗ Xi2 =
[
x0

j1x
0
i2, x

0
j1x

1
i2, x

0
j1x

2
i2, x

1
j1x

0
i2, x

1
j1x

1
i2, x

1
j1x

2
i2, x

2
j1x

0
i2, x

2
j1x

1
i2, x

2
j1x

2
i2

]

which yields:

K (X,Xi) = (x0
1x

0
j1)(x

0
2x

0
i2) + . . . + (x2

1x
2
j1)(x

2
2x

2
i2) (18)
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Given this result, it turns out that it is possible to train an SVM using this new
kernel. It only remains to verify the convenience of its adoption in practical cases.
To this effect we performed a set of experiments regarding binary classification
(i.e. the one involving only two classes) and non-linear regression. An important
point in showing the validity of MPK is that its use is not limited to applications
involving SVMs but, rather, it may also be applied as the basis for other kernel
based methods.

5 Experiments and Results

It is well known that two key properties are required for a kernel to be used
in practice [1]. The first one requires that the kernel retains the measure of
similarity appropriate to the particular task or domain. The second is that its
evaluation should not be computationally intensive. The purpose of this section
is determine experimentally if these properties are fulfilled by the MPK.

Two different tasks were tackled in this section: binary classification and re-
gression. The dataset for classification was taken from UCI Machine Learning
Repository. It refers to the identification of two kinds of diabetes. In case of re-
gression, the data also has to do with diabetes, but now it refers to the study of
the factors affecting patterns of insulin-dependent diabetes mellitus in children1.
The diabetes classification (DC) dataset consist of 750 instances and 8 features.
The diabetes-regression (DR) dataset has 43 cases and 2 features.

To analyze the performance of SVM in the solution of these tasks we used
two popular kernels (polynomial in (9) and Gaussian) to compare their accuracy
and efficiency with the MP-Polynomial Kernel.

In the case of classification, one statistical approach suggested by [11] was
used. This test is known as 5x2cv paired t test, based in 5 iterations of 2-fold
cross-validation. In each replication of the test, the available data are partitioned
into two equal-sized sets S1 and S2. The comparison of two different algorithms,
for example RBF-SVM vs MPK-SVM2, is made by subtracting their correspond-
ing error estimates in the application of 2-fold cross-validation in each replica-
tion. The means and variances (s2

i ) are also successively estimated and finally a
t statistic is defined:

t̃ =
p1
(1)√

1
5

∑5
i=1 s2

i

(19)

This is called 5x2vc t̃ statistic and it has an approximate t distribution with
4 degrees of freedom. The value of p1

(1) represents the difference between the
estimated errors for the two algorithms in the first replication. The comparison
of two algorithms is based on the null hypothesis that there is no difference
between their performances. The null hypothesis is rejected if

∣∣t̃
∣∣ > t4.

1 This dataset can be downloaded from:
http://www.liacc.up.pt/ ltorgo/Regression/DataSets.html

2 RBF-SVM stands for an SVM trained with a Radial Basis Function kernel and
similar to MPK-SVM.
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The results of the comparison of MPK-SVM vs the other kernels are shown
in Table 1. It is important to remark that we used Matlab’s program of [12]
which was designed to train SVM for classification and regression problems. We
modified this algorithm in order to compute the MPK.

The results of the tests for the diabetes classification problem are shown in
Table 1, where the values of the t̃ statistics for the hypothesis: 1) p̂p − p̂mp = 0,
2) p̂p − p̂g = 0 and 3) p̂mp − p̂g = 0, where p̂p, p̂mp and p̂g are the estimated
errors for PK-SVM3, MPK-SVM and RBF-SVM, respectively, are shown in the
second column. The third column of Table 1 indicates that there is no statistical
evidence to reject the null hypothesis in any case, i.e., there is no strong evidence
supporting the idea that any algorithm is better than any other one. The pa-
rameter selection for the SVM was determined using 6-fold Cross Validation, so
that the parameters for the polynomial kernels (MPK-SVM and PK-SVM) are
C=16, p=1 and for the RBF-SVM are C=2, σk = 0.6. In the case of regression

Table 1. Hyphotesis tests for classification accuracy

Test t-statistic Null Hyp
PK-SVM vs MPK-SVM -0.12 No reject
PK-SVM vs RBF-SVM 0.41 No reject
MPK-SVM vs RBF-SVM 0.41 No reject

problems, the models were chosen once the parameters ε, C, p and σ were cali-
brated. Regarding the model trained with the radial basis kernel, the couple [C,
ε] was determined following the methodology proposed by [13], where the value
of C is calculated as the maximum value resulting from {ȳ − 3 ∗ σy, ȳ + 3 ∗ σy}
and the computation of ε was determined by ε = στ

√
ln(n)/n, being τ , σ and

n, a parameter set to 3 [13], the noise deviation and the number data train,

respectively. The calculation of σ required the computation of
�N

i=1(yi−ŷi)2

n−d ; in
this case, ŷ represent the target values when a high order polynomial function is
estimated using the training data. We applied the Genetic Multivariate approach
[14] to estimate this polynomial and tried several degrees, choosing the one with
the smallest Press statistic and the σ according with the best parameter of the
radial basis function gotten from the application of Leave-one-Out Cross Vali-
dation (LoOCV). The Press statistic is used for model selection and is obtained
by adding the square of the residual errors that result from training the SVM N
times and leaving one observation out every time to determine the residual at
every step[15]. Actually, the Press statistic and the methodology of LoOCV are
equivalent in this case, since for any particular observation the squared residual
and the mean squared error for that observation are the same. The parameters
obtained from this method were: C=6.9082, σk = 0.6 and ε = 0.6779

Since a similar analytical approach is not possible to calibrate C for polyno-
mial kernels, we apply LoOCV for that purpose. We look for the best value that

3 Stands for SVM trained with a classical polinomial kernel.
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belongs to this set (1, 2, 4, 8, 16, 32, 64, 128, 254, 512, 1024). In the case of ε we
used the value estimated for the radial basis function. The p parameter of the
kernel function was chosen according with the lowest Press statistic (or LoOCV
error) which reflects the best selection for the C parameter. The best values for
C and p were 2 and 1, respectively.

In table 2, the Press statistic indicates that the MP-polynomial performs as
well as the classical polynomial kernel; RBF based SVM performs better than
SVMs based on the other polynomials. R2 (which is a measure of the expressive
capabilities of the learning machine) also supports that result. The LoOCV error
is presented in column 3; it yields similar results.

Table 2. Hyphotesis tests for regression accuracy

Model Press R2 LoO error
PK-SVM 14.4 0.34 0.34
MPK-SVM 14.5 0.33 0.34
RBF-SVM 12.5 0.43 0.29

According to the results shown, it is possible to assert that MP-polynomial
kernel performs as well as the alternative classical counterparts tested in this
paper for both classification and regression problems. Moreover, this kernel can
also be used to represent the decision or regression function, derived from the
application of SVMs, as an algebraic explicit expression, in which the relationship
among independent variables and their powers is straightforward. This result
has been explored with succes in the past using traditional polynomial kernels,
where the resulting algebraic structure was compared with the one gotten from
the application of Multivariate Polynomial Analysis [14]. However, two different
structures were obtained. Fortunately, with the use of MPK is now possible to
get the same algebraic stuctures with the use of those approaches and, hence,
comparisons between them become also straighforward.

6 Conclusions

A new polynomial kernel (which we called ”MP-Polynomial Kernel”) is used
to train a SVM in the solution of classification and regression problems. The
characterization and mathematical proof of this function as a valid kernel was
shown. The results of the experiments show that the use of this function for
training SVMs is adequate in terms of accuracy. This conclusion is gotten by
comparing its performance with other popular (polynomial and Gaussian) kernel
functions. The statistical tests confirm this fact. An important advantage that
we pointed out is the use of MP-polynomial kernel in the construction of an
explicit algebraic expression as decision function of a SVM and its comparison
with similar ones derived from other techniques. The use of this new kernel as a
basis in applications with other kernel methods is a matter of future work.
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Abstract. An adaptive, support vector machine based ECG processing
and compression method is presented in this study. The conventional
pre-filtering algorithm is followed by a characteristic waves (QRS, T,
P) localization. The regressive model parameters that describe the rec-
ognized waveformes are determined adaptively using general codebook
information and patient specific data. The correct regocnition ratio of
the QRS waves was above 99.9% using single channels from the MIT-
BIH database files. The adaptive filter properly eliminates the perturbing
noises such as 50/60 Hz power line or abrupt baseline shift or drift. The
efficient signal coding algorithm can reduce the redundant data about
12 times. The good balance among proper signal quality for diagnosis
and high compression rate is yielded by a support vector machine based
system. The properly obtained wave locations and shapes, using a high
compression rate, can form a solid base to improve the diagnosis perfor-
mance in clinical environment.

Keywords: signal compression, QRS clustering, support vector ma-
chine, adaptive estimation.

1 Introduction

Nowadays the computerized ECG signal processing can be considered a well-
developed application. An on-line performing analyzer and encoder system must
be able to evaluate the signal with maximum few seconds delay to recognize in
time the potentially dangerous and life threatening arrhythmia. These systems
are based on filtering, beat detection (recognition and clustering), classification,
storage and diagnosis.

Despite the presence of serious perturbation, a reliable analysis must involve
at least the detection of QRS complexes, T and P waves, automatic rhythm anal-
ysis, classification and diagnosis, enabling physicians to derive more information
for cardiac disease diagnosis. To perform a reliable evaluation of the ECG, it is
important to correctly determine the position and amplitude of every charac-
teristic event, as they play an important role at producing the diagnosis. The
performance of an optimally functioning computerized ECG filtering algorithm
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is limited by the ability to separate the signal from artifacts, and by the amount
and nature of distortion introduced by the filter. As a filter can perform much
better using some predefined patient specific information, it is desired to use a
post-filtering step to reduce the signal distortion. The speed and accuracy re-
quirements during ECG processing represent a hard task, the varying shape of
the ECG and the subjectivity of the diagnosis make it even harder.

The most important task in the ECG signal processing is the accurate lo-
calization of QRS complexes. The established QRS places constitute the basic
a-priori information for all further processing steps. Many times the recorded
ECG is disturbed by different kind of noises that can imply a pre-filtering or
discarding of the studied segment. To assure the good quality of the ECG, and
to prevent the loss of clinically significant information, the usage of human and
artificial noise detection schemes is required. As the perturbing noise can only
be diminished, but not eliminated from the measured signal, it is important to
use processing methods with good noise susceptibility. The non-linear behavior
of the human body requires adaptive processing that follows the patient’s state.

The design of an optimal matched filter can increase the signal-to-noise ratio,
but the non-stationary nature of the signal and noise in an ECG represents an
obstacle in the application of these filters for QRS detection. A linear filter cannot
properly whiten the non-linear ECG signal. Artificial neural networks (ANN) [12]
are inherently non-linear models, so an ANN-based filtering is potentially useful.
In practical use, the ANN model can adapt far better than linear models. The
number of input units corresponds to the filter order that should not be increased
too much, in order to assure constantly good transient properties. The selection
of the right number of hidden layers is important to provide good learning speed
and adaptation at the same time. After pre-processing, filtering, evaluation and
model’s parameter estimation, the signal reconstruction is needed. In this step,
the post-filtering method knows the main ECG specific information, and can
better separate all artificial noises. To create an efficient filter, it is necessary to
use all ECG and patient dependent information. This problem can be handled
only if the computer knows the formation of the ECG signal.

The collected noise during ECG signal acquisition makes almost meaningless
the usage of loss-free compression [4]. In this paper we focused on lossy methods
as a compromise between bandwidth and final reconstruction possibility, using
sophisticated medical knowledge-based reconstruction algorithms [9]. The sig-
nal’s main characteristics are represented by exponential parameterization that
is delivered by a processing system that uses support vector machine (SVM)
[5]. This robust model involves the filtering, analysis and compression step of an
automatic ECG evaluation method.

2 Materials and Methods

The proposed complex ECG signal compression algorithm can be divided into
the following steps (see Fig. 1):

– Irregular signal recognition and processing;
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Fig. 1. The proposed ECG signal filtering, processing and compression

– Pre-filtering;
– Segmentation into R-R intervals, R-R period based filtering;
– Create/update a temporal template bank for whole beats;
– Determine all recognizable characteristic points (for R, T and P waves);
– R, T and P wave location based filtering;
– Extract the waveform estimation model’s parameters;
– Post-filtering using pattern database and the model-based estimation;
– Complete the general and patient specific template bank for all recognized

waves;
– Adjust long term prediction;
– Adaptive smoothing and advanced distortion analysis;
– Residual signal estimation, entropy coding, data storage, back-estimation;
– Medical parameter estimation and computer aided diagnosis.

Before starting the characteristic waveforms (R, T and P waves) recognition
and proceed an accurate segmentation, we need to pre-filter the signal in or-
der to eliminate all perturbing phenomena, like noise caused by the electrical
network, the perturbing artifacts caused by bad contacts, motion or breathing.
The elimination of the noise caused by the electrical network is recommended
by windowed FFT and IFFT combined with a parameter estimator and filter,
which contains the following steps:

– Perform a windowed FFT for an interval of length between five and twenty
seconds. All intervals are overlapped by at least fifty percent of their length;

– Estimate the amplitude and phase of the 50 (60) Hz component and its
harmonics from the amplitudes and phases of the adjacent frequencies;

– Modify the signal spectra;
– Process the IFFT algorithm;
– Performed a regressive elimination of the artificial noise caused by modifica-

tions in signal’s spectra.

In our approach, because the studied signal has a non-linear behavior, we
define a non-linear adaptive estimation algorithm. The main drawback of this
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method is the cumbersomeness to determine the optimal phase of the 50 (60) Hz
component of the measured ECG signal, but paper [8] presents how to handle
this problem.

In high frequency noise elimination, the non-linear parameter estimation
methods could reach better performance than transformation methods.

Let X̂L(n) and X̂R(n) the n-th left and right aimed estimation, defined as:

X̂L(n) = pL · X̃L(n) = pL

q∑

i=−q

aL,iX(n − i) + (1 − pL)
q∑

i=1

bL,iX̂L(n − i) (1)

X̂R(n) = pR · X̃R(n) = pL

q∑

i=−q

aR,iX(n − i) + (1 − pR)
q∑

i=1

bR,iX̂R(n − i) (2)

where aL,i, aR,i, bL,i and bR,i are prediction coefficients, pL and pR are balance
probabilities determined by the dispersions

σX̂L−X(n, l), σX̂R−X(n, l), σ
�XL−X(n, l) and σ

�XR−X(n, l), (3)

constrained by the condition pL+pR = 1. For better separation of the signal from
the noise, the length l should select more than one R-R period. On-line processing
requires the estimation to be delayed with at least 3 · q samples, but preferably
with more than one R-R interval, in order to minimize the differences of the
efficiency between X̂L(n) and X̂R(n). The resulting sample X̂(n) is obtained by
the following formula:

X̂(n) = p

q∑

i=−q

aiX̂L(n − 1) + (1 − p)
q∑

i=−q

biX̂R(n − 1). (4)

The high level of the noise can massively degrade the performance of the
parameter extraction models. In this situation, a well constructed transformation
algorithm can outperform the parameter estimation procedure. Our proposed
transformation method for QRS complex detection uses wavelets. The selected
mother wavelet is:

Ψ(t) =
1√
2πσ

· exp
(

− t2

2σ

)
· sin(2π · α · t · exp(−β|t|)) (5)

Parameters α and β are selected according to the highest frequency in ideal
(noise free) ECG signal, while σ is the dispersion that acts like an attenuation
factor for the wavelet’s shape. After the analysis of more than 100 recordings,
we obtained as a good robust result α = 100 and β = 1/3. The robustness in
this step is far more important, than a local performing index.

The first step in the recognition of the characteristic waveforms of the ECG
consists of accurate detection of the QRS beats. These waveforms contain most
of the signal’s power, so they must be included into the template collection. This
collection may be altered during ECG processing.

Although the automated waveform classification based on a decision tree algo-
rithm could produce remarkable results, the self-organizing (SO) adaptive clus-
tering [3] based method have several advantages:
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– It is not susceptible to variations of beat morphology and temporal charac-
teristics;

– It can perform a real-time unsupervised learning;
– It needs much less amount of knowledge for the same performance.

The clusters are built up according to the following rules:

– σi ≤ σMax; σMax is predetermined; i = 0 . . . n;
– The mean value of a cluster is Mi and is determined in such a way, that σi

to be minimal;
– For every R (T and P) wave, which belongs to a cluster

||X || =
n∑

i=0

(
Xi − Mi

σi

)2

≤ RMax, (6)

where RMax is predetermined; X is a vector, representing a wave in the
space.

Each waveform in the template bank is represented by 8 characteristic points
that were selected using a shape estimation error minimization process. The
indicator vector of each waveform is represented as X̄T = (p0(X), . . . , pn−1(X))
where n is the number of clusters and pI(X) is the probability that X belongs
to the cluster CI , having the value:

pI(X) =
7∏

k=0

1
σI,k

exp
(

− (Xk − MI,k)2

2σI,k

)
. (7)

The clustering process must work properly even if the studied patient man-
ifests abnormal QRS wave patterns. To assure this, the main database must
contain the most specific abnormal waveforms that are patient-free. It case of
heavily patient dependent waveforms, such as ectopic beats, the studied wave-
forms are collected and included in a new, patient dependent cluster. These
clusters are representative only for a patient but not for a larger group.

The optimal filter is based on the pre-processed signal and the template bank.
Let

X̄(n) =
nr−1∑

k=0

⎛

⎝sk ·
q∑

i=−q

aF,i · Xk(n − i)

⎞

⎠ (8)

and

X̃(n) = pF,X− �X(n) · X̄(n) + (1 − pF,X− �X(n)) ·
q∑

i=−q

biB(m, i) (9)

be the processed data. The low value of pF , pF < 0.2, justifies the need of the
collection B, whose m-th element has the maximal correlation value with X̄(n).

The characteristic point localizer algorithm is performed in a similar way to
the template bank building method. An important difference consists in the
appliance manner of pre-filtered data. Firstly the template bank is created for
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every recognizable event. With the aid of pre-filtered data, we can minimize the
isoelectric line displacement caused problem. Such a pre-filtered and denoised
signal consist the entrance of a SVM trained ANN. This kind of formulation of
learning leads to quadratic programming with linear constraints.

The problem of learning SVM [11] is formulated as a task of separating learn-
ing vectors Xi into two classes of destination values d = +1 or d = −1 using
maximal possible separation margin, that gives a high robustness to the obtained
solution. The maximization task of function Q(α) is defined as follows:

Q(α) =
p∑

i=−p

αi − 1
2

p∑

i=−p

p∑

j=−p

αi · αj · di · dj · K(xi · xj) (10)

with linear constraints
∑p

i=−p αi ·di = 0, where 0 ≤ αi ≤ C [1,10]. The α values
are Lagrange multipliers, and function K represents the kernel, p is the number
of learning pairs and C is a user defined constant (in our study C was selected
between 0.1 and 0.5). In this case we applied radial Gaussian kernel function.
The output signal y(x) of the SVM network in retrieval mode (after learning) is
determined as the combination of kernels

y(x) =
NSV∑

i=1

αSV i · di · K(xSV i · x) + wopt (11)

where NSV is the number of support vectors and wopt is the optimal weight
vector. Although SVM separates the data into two classes, the recognition of
more ones is straightforward by applying either ’one against one’ or ’one against
all’ methods [2]. After the ANN is trained, we used it to estimate the ECG as
an output of a whitening filter.

The non-linear intermediate result is:

Zp(t) = f

⎛

⎝
j∑

k=−j

cpk(t) · X(t + k)

⎞

⎠ , (12)

where Xk(t) = Y (t+k), and f() is a normalized Gauss function. The cpk weight
coefficients connect the input and the hidden layers. The output of the filter is:

Yw(t) = Y (t) − Ŷ (t) = Y (t) −
i∑

p=−i

cp(t) · Zp(t). (13)

The adaptive behavior of the filter is assured by the permanent variance of the
genetic search method based upon least mean square (LMS) algorithm computed
coefficients [4]. Both the input signal and the selected template are processed
through the main filter. During this process, the template bank is changing
adaptively. The whitened template is:

Tw,r(t) = T (r) −
i∑

p=−i

cp(t) · Zp(t), (14)

where r = j, . . . , L − j, and L is the size of the template. The output of the
matched filter will be:
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Yw(t) =
L−j∑

r=j

Tw,r(t) · Yw(t − L + r). (15)

After the signal is filtered, a smoothing operation should be performed to
reduce the size of the compacted data. The compression strength should be se-
lected in accordance with the diagnosis performance decrease from the recovered
signal. The main aim of this algorithm is to decrease the length of the compressed
signal and to keep the data quality as high as possible. Let

X̃[sm](n) =
1
k

(
k−1∑

i=1

X̃[sm](n − iτ) + X̃(n)

)
, (16)

where k = 2j, with j and τ positive integers, and X̃(n) = Yw(n). Normally the
adjacent samples are highly correlated, and we select the positive integer τ that
minimizes the auto-correlation function of the ECG signal. Usually the sampling
delay τ is about half a QRS complex duration. The inverse transform is given by:

X̃(n) = k · X̃[sm] −
k−1∑

i=1

X̃[sm](n − iτ). (17)

In the meantime of the transform, the values of X̃(n) and X̃[sm](n) can be
modified with k/2 in order to reduce the reconstruction error or the dispersion
of the smoothed signal. The efficiency of this algorithm highly depends on the
chosen values for k and τ .

Because the variance of the filtered and optionally smoothed signal σ
�X[sm]

(n, l)
is too high to allow sufficient compression rate, a linear prediction transform
is needed. This method eliminates the redundancy due to correlation between
adjacent samples and beats. The resulting data

Y (n) = P (n) ·
q∑

i=1

aE,iX̃(n − i) + (1 − P (n)) ·
q∑

i=−q

bE,iB(m, i), (18)

where P (n) = pE, �X[sm]−B(m)(n)), support the calculation of the residual signal

r(n) = Y (n) − X̃[sm](n).
Verifying processes determine the compression caused performance decrease

in accordance to square error and diagnostic robustness. More iterations should
be calculated to determine the optimal set of parameters. In most cases, the
estimation errors have nearly normal distribution. In order to reduce the length of
the residual data, an adaptive method-based entropy coding is needed. For every
moment we determine the dispersion σr(n, l) and the probability pσr(n,l)(r(n, l))
of the errors. The output value is obtained by:

N[act](n, k) = I1(n−k+1)+p1(n−k+1)·I2(n−k+2)+
k−1∏

i=1

pi(n−k+i)·Ik(n) (19)

using pi(n − k + i) = p(r(n − k + i), l) and Ik−i =
∫ r(n−i)
−∞ pk−i(n − i)dr.
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Fig. 2. The structure of the ANN-based adaptive filter

Table 1. Representation of the entropy coder’s performance using 32 parameters

MIT-BIH record no. Theoretic entropy Huffman code size SVM-based coding

102 161677 193419 163589
103 171223 201448 173295
107 169442 200102 171142
202 162735 192781 164814
205 182493 214923 184456
220 167321 198274 169121
223 180039 211952 181935

Fig. 3. (a) The recognition ratio of R, T, P and QV1, QV2 waves plotted against RM-
SRE; (b) Representation of various beat forms: the normal QRS beats are represented
by N, and three different ventricular extra beats are represented by QV1, QV2 and
QV3 in plain representation (the calculation space has 32 dimensions, and the two
most significant orthogonal combinations were selected for planar representation)
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3 Results

For a better comparability we used the MIT-BIH arrhythmia database for eval-
uation. All processing steps were tested on the ECG registrations of MIT-BIH
database (sampled at 360 Hz with 11-bit resolution) and our own recordings
(sampled at 200-500 Hz with 12-bit resolution). Most of these files contain one
or two channels. The performance is determined by the number of estimation pa-
rameters, smoothing strength, resolution and sampling rate. The entropy coding
can decrease at least 12 times the theoretical ’waste’, compared with Huffman
coding, during signal compacting.

The characteristic wave recognition performance heavily depends on the level
of allowed root mean square error during signal compression. Figure 3(a) repre-
sents the level of detection error of P, T and R waves when the relative RMSE
varies from 0 to 20%. We investigated the detection error in function of the nature
of R wave. The ventricular ectopic beats QV1 and QV2 included in this study
were treated patient specific. Figure 3(b) illustrates the separation problem of
various QRS waveforms in a 32-dimensional parameter space.

4 Discussion and Conclusion

Table 1 illustrates the compaction effectiveness for some of the most perturbed
files, whose noise level and missed R wave detection rate was almost maximal.
The new coding formula (19) has far better results than the adaptive Huffman
coding. The elements distribution is close to normal and its change is not recom-
mended without further knowledge. The smoothing strength should be adjusted
by k and τ (see (16), (17)). Experiments show that (Fig. 3) the R wave can be
accurately recognized even if RMSRE is about 10%. For T and P wave detection
[7] the root mean square error must not exceed 3-5% of the signal’s power. S (J),
Q points and U wave cannot be recognized in most of the cases if RMSRE is
higher than 1%. The lower amplitude of the T and P waves is the main reason
of the lower detection rate. The amplitude of the QV1 and QV2 ectopic beats is
about the same as in case of R waves, but the uncommon patient-specific shape
of them inhibit the usage of a priori waveforms (we considered new patients,
so the database had not any information about them). It can be observed a
smoother shape of the performance graph for the studied QV1 and QV2 ectopic
beats caused by the much lower available occurrence (almost 100 times less).

An experimental real-time processing using this method needs a powerful
computer able to perform massively parallel algorithms. In Holter telemetry and
diagnostic systems [6], where a vast amount of data is acquired and transmitted
by radio wave, the compression is an unavoidable step of the computerization.
Sophisticated long computation and lingering unpack of the signal could be
the major disadvantages of this process. Although quite often the calculation
term doesn’t admit on-line computerization (in multitasking mode), the rapid
evolution of the computers will shortly change this fact.
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Abstract. This work proposes a new approach to the alignment of mul-
tiple sequences. We take profit from some results on Grammatical Infer-
ence that allow us to build iteratively an abstract machine that considers
in each inference step an increasing amount of sequences. The obtained
machine compile the common features of the sequences, and can be used
to align these sequences. This method improves the time complexity of
current approaches. The experimentation carried out compare the per-
formance of our method and previous alignment methods.

Keywords: Grammatical inference, processing of biosequences, multiple
alignment of sequences.

1 Introduction

Multiple alignment of biological sequences [1] is one of the commonest task in
bioinformatics. Some applications of this task are: to find diagnostic patterns
in order to characterize protein families; to detect or demonstrate homology
between new sequences and existing families of sequences; to help predict the
secondary and tertiary structures of new sequences; to suggest oligonucleotide
primers for PCR; or as a essential prelude to molecular evolutionary analysis.

In order to perform an exact alignment, it is necessary to consider an n-
dimensional space, where n denotes the number of sequences. There are some
strategies used to avoid the high computational cost of the multiple alignment of
sequences. One of the most successful strategies used is the so named progressive
alignment (i.e. [2]). This approach considers evolutionary relations to build a phy-
logenetic tree. Following its branching order it is possible to align first the those
most related sequences, gradually adding in more distant sequences/alignments.
A pairwise alignment procedure is used in each alignment step. This approach can
deal with alignments of virtually any number of sequences, obtaining good results.

Two main problems arise when this approach is used. The first one is due to the
greedy nature of the method that does not guarantee that the global optimal solu-
tion would be obtained. The second problem consist on the choice of the alignment
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under contract TIN2007-60769, and Generalitat Valenciana, contract GV06/068.
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parameters. Usually, a distance matrix between symbols and two gap penalties are
chosen: the opening and the extension of a gap. On the one hand there is no way
to obtain a consensus matrix for every kind of sequences, on the other hand the
gap penalty values are key to obtain good results when divergent sequences are to
be aligned. Furthermore, in protein sequence alignments, gaps do not occur ran-
domly (they occur more often between secondary structures than within).

Other successful approach aims to reduce the greedy effect of the progressive
alignment method by considering a library of local and global alignments instead
of a distance matrix [3]. Due to the fact that a given pair of symbols can be
treated in many ways in the library, the score given to a pair of symbols is
position dependent. This lead to a more flexible approach and a better behaviour,
avoiding errors in early stages of the process.

Inductive Inference is one of the possibilities to tackle the problem of Auto-
matic Learning. This approach uses a set of facts (training data) in order to
obtain the most suitable model, that is, the model that compile better the fea-
tures of the data. Once the inference process is finished, the model obtained is
able to correctly process data that shares some common features with the train-
ing set. When the inductive process obtains a formal language as the model,
then the approximation is known as Grammatical Inference (GI) [4,5,6,7,8,9].

The Error Correcting Grammar Inference algorithm (ECGI) [10] builds iter-
atively a finite automaton (learns a regular language) from the training data.
Each step considers the automaton of the previous step (the first step it con-
siders the empty automaton) and a new sample from the training data. The
algorithm uses an edit distance algorithm to detect the set of operations of min-
imum cost needed to force the automaton to accept the sample. These operations
are used to modify the automaton, adding new states and transitions in such a
way that neither loops nor cycles are added (the resulting automaton accepts a
finite language). This GI method has been successfully applied in some pattern
recognition tasks [11,12].

In our work we used this algorithm to learn a language from biological se-
quences. Once the finite automaton is obtained, it is possible to extract an
alignment using the automaton’s accepting path of each sequence. This step is
bounded by a polynomial because the automaton lacks of loops. Our approach
improves the time complexity of current procedures.

This paper is organized as follows: section 2 introduces some notation and defi-
nitions as well as the ECGI algorithm. Section 3 explains the proposed alignment
method and analyzes its time complexity. Section 4 shows the experimentation
carried out and comparative results with current alignment methods. The con-
clusions and some lines of future work end the paper.

2 Definitions and Methods

2.1 Theoretical Concepts

Let a finite deterministic automaton be a system A = (Q, Σ, δ, q0, F ) where: Q
is a finite set of states; Σ is a finite alphabet; q0 ∈ Q is the initial state; F ⊆ Q is
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the set of accepting or final states and δ : Q × Σ → Q is the set of transitions of
the automaton. It is possible to change the definition of the transition function to
allow multiple transitions from a state on the same symbol δ : Q×Σ → 2Q. Such
an automaton is referred to as non-deterministic finite automaton. Both types
of automata recognize the same class of formal language. Finite automata can
be extended to process strings of symbols, to do so, the transition function has
to be extended to consider strings. Let p, q be states in Q, let a be a symbol in Σ
and w a string, in the following we show the extension for the non-deterministic
case:

δ : Q × Σ∗ → 2Q

δ(q, λ) = q

δ(q, wa) =
⋃

p∈δ(q,w)

δ(p, a)

A string w over Σ is accepted by a finite automaton A if and only if δ(q0, w)∩
F �= ∅. The set of strings accepted by the automaton is denoted by L(A). Let
Σ∗ be the set of words of any length over Σ. Let L ⊆ Σ∗ be a language over the
alphabet. L is a regular language if and only if there exists a finite automaton
A such that L(A) = L. Please, refer to [13] for further definitions.

2.2 The Error Correcting Grammar Inference

The Error Correcting Grammar Inference (ECGI) algorithm proposed by Rulot
and Vidal [10] was originally designed to recognize isolated words. Nevertheless,
due to its features, it has been used in many others pattern recognition tasks.
The ECGI solve two basic drawbacks of grammatical inference when applied to
pattern recognition tasks. First, these algorithms are usually extremely recur-
sive, that is, they ignore the relative position of the different substructures of
the training sample. Second, grammatical inference algorithms, usually, do not
maintain position-dependent features of the strings, which are key in some tasks.
The ECGI algorithm obtains a finite language that preserves the main common
features of the samples together with this relative position.

ECGI algorithm is an iterative process. ECGI considers one new sample and
the current automaton and finds the most similar string to the sample (applying a
criterion of similarity between strings that take into account a distance measure).
The algorithm detect those transitions with minimum edition cost to be added
in order to accept the new sample. The search of the most similar string to
the sample in the automaton is made by a standard Error-Correcting Syntax
Analysis method (Viterbi). An example of run is shown in Figure 1.

The language inferred by the automaton with ECGI method contains the
training samples, is finite (therefore regular) and is not deterministic. The au-
tomaton obtained is ambiguous and without cycles. Due to its heuristic nature,
the inference algorithm obtains different result depending on the samples order.
The algorithm has been successfully applied to syntactic pattern recognition
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Fig. 1. Example of run of the original ECGI algorithm when the set S = {ab, b, abb, bbb}
is considered as the training sample. Dashed lines show error transitions. Note that the
processing of the first string of the training set S returns the canonical automaton
(see A). In order to avoid lambda transitions, the ECGI algorithm adds a transition
to the next state (see B). Loops are avoided by the creation of a new state (see C),
substitution are treated in the same way (see D). Note that, in the resulting automaton,
all the incoming transitions to each state are labeled with the same symbol.

tasks [11,12], where the best performance of the algorithm is obtained when the
longest samples are supplied first.

3 Incremental Alignment of Biosequences

3.1 Description of the Alignment Procedure

The method we propose for the multiple sequence alignment consist on two
steps: the first one considers the set of sequences and obtains an automaton
with a modified ECGI algorithm; the second step uses the learned automaton
and the same set of sequences to construct the multiple alignment.

The Error-Correcting Syntax Analysis method used by the original ECGI
algorithm considers three weights: to substitute, to insert and to erase a symbol.
The modification we introduce allows the use a parameterizable distance matrix
among the symbols and three gap-related penalties: to open, to extend and to
close a gap. This modification of the analysis step does not add time complexity
to the algorithm, and basically aims to change, in a somewhat biological way,
the set of non-error transitions of the automaton obtained in each analysis. The
use of such gap penalties is justified biologically and widely used by existing
approaches. The alignments obtained this way have lesser and more concentrate
gaps. Figure 2 shows the different behavior of the modified algorithm when the
same sample is considered.

The alignment method we propose uses the set of sequences to align as the
training set. Once inferred the automaton, the sequences are processed to obtain
the accepting path in the automaton. We considered those states used by more
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Fig. 2. Final automaton obtained by the original and modified ECGI algorithms. The
same set of samples S = {GGCCTGTA, GGCTATTA,GGTA} has been used. The
optimal parameters were used to carry out this examples (see Section 4 for details).
Note that the addition of gap penalties modifies the set of non-error transitions, and
therefore, the final result.

ALIGNMENT

PATHS[]

AUT

set of paths obtained by Viterbi’s analysis using the automaton AUT and STRINGS[];

aligment obtained using the set of paths PATHS[], the automaton AUT and STRINGS[];

result of the ECGI algorithm using as input the strings into STRING[];

END

BEGIN

INPUT:  STRINGS[]
OUTPUT:  ALIGNMENT

PROGRAM: MULTIPLE SEQUENCE ALIGNMENT

Fig. 3. Multiple sequence alignment algorithm based on Grammatical Inference

than one sequence as synchronization points. This is justified because, each step,
the error-correcting inference method looks for the best accepting path for the
samples, adding the minimum cost transitions needed to accept the sample. The
lack of loops allow to efficiently process the sequences in a parallel way, adding
gaps when one synchronizing state is reached by some sequences but not all that
use the state. The description of the algorithm is showed in Figure 3 and an
example of multiple alignment in Figure 4.

In order to compare the performance of our approach, two alignment programs
have been selected. The first one, Clustal-W [2], is probably the most widely used
by the biological community. T-Coffee [3] is the second program considered.
Briefly, T-Coffee could be seen as a refinement of the progressive approach to
multiple alignment that avoids the use of a distance matrix. These two programs
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original ECGI modified ECGI

string 1 GGCCTG.TA GGCCTGTA
string 2 GG.CTATTA GGCTATTA
string 3 .G...G.TA GG....TA

Fig. 4. Alignment example using the automata from Figure 2. Considering the version
that uses the modified ECGI, please note that the state 10 is a synchronizations point
for all the strings. Note that the third string reaches this state with its third symbol. The
other two strings need to analyze several symbols to reach the same state. Therefore,
somewhat the third string “has to wait”, and a gap is opened. The gap is closed
when all the strings reach the synchronization state. Also note that the original ECGI
automaton lead to an alignment that contains more gaps than the alignment obtained
when the modified ECGI algorithm is used.

allow us to compare the GI approach in terms of computational complexity as
well as their experimental behaviour.

3.2 Computational Complexity

In the following let n denote the number of sequences to align and let M denote
the length of the longest sequence. The time complexity of Clustal-W algorithm
is O(n2M2). The time complexity of T-Coffee is higher than the complexity of
Clustal-W algorithm (O(n2M2) + O(n3M) + O(n3) + O(nM2)).

The approach we propose needs O(n) steps to build the automaton and each
one can be carried out in O(M2), therefore, the automaton can be obtained with
complexity O(nM2). The second step implies the alignment of the sequences, and
can be carried out with complexity O(nM). Therefore, the final time complexity
of our alignment method is O(nM2), therefore improving previous results.

4 Experimental Results

In order to carry out the experimentation, a benchmark database of RNA align-
ments was considered [14]. Structural alignment of RNA remains as an open
problem despite the effort on the development of new alignment procedures to
protein sequences. This dataset is divided into five subsets that take into account
structural features. In their work, Gardner et al., compare the performance of
several methods. Their results were the reason to select Clustal-W and T-Coffee
as the two better methods.

From the five subsets of the database, one of them was thought to be untrust-
worthy, and was not considered. Further testing has shown the alignments of the
set to be perfectly reliable and were considered in our work.

To assess the performance of the results, two different scores have been used
[15]. The sum-of-pairs score (SPS) increases with the number of sequences cor-
rectly aligned. Therefore, it is useful to measure whether the program succeeds
in aligning some of the sequences in an alignment. The column score (CS) is a
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more strict parameter and it is a way to test whether the program aligns or not
all the sequences properly.

Given an alignment of N sequences and M columns, let ai1, ai2, . . . , ain denote
the symbols on the ith column. pijk is defined such that pijk = 1 if symbols aij

and aik are aligned with each other in the reference alignment and pijk = 0
otherwise. Let the score Si be defined as follows:

Si =
N∑

j=1

N∑

k=1
k �=j

pijk

let Mr denote the length of the reference alignment and Sri the score of the ith
column for the reference alignment. The SPS for the alignment is then:

SPS =

M∑
i=1

Si

Mr∑
i=1

Sri

For any given alignment described as above, let Ci = 1 if all the symbols in
the ith column are aligned in the reference, otherwise let Ci = 0. Then, CS for
the alignment is obtained as follows:

CS =

M∑
i=1

Ci

M

Clustal-W and T-Coffee software were downloaded from the European Bioin-
formatics Institute (http://www.ebi.ac.uk/). The experiments were run with the
DNA default parameters for each program because they are reported as the most
suitable ones. We tested both the basic ECGI algorithm and the modified one.
The same alignment scheme explained in Section 3 was followed in any case.

All the parameters used in the alignment step of our approach were empirically
set to: an identity distance matrix with substitution value set to 6; a gap open
penalty set to 10; a gap extension penalty set to 6.66; and a closing gap penalty
set to 0.5. The original version of the ECGI algorithm showed poor performance
(results not showed). The main reason of this behaviour was the high amount of
gaps introduced in the alignment, mainly due to the lack of gap penalties.

Experiments were carried out for each alignment group in the dataset. From
the data shown we can consider that, no matter which group is considered,
there is no substantial difference in the behaviour of the methods tested. Three
homology levels were studied: low homology for sequences below the 50% of
identity, medium homology for sequences between 50% and 70% of identity, and
high homology for sequences over 70% of identity. No relevant difference in the
methods’ performance was observed. Finally, Figure 5 shows the global results.
From the data obtained we conclude that all the three methods behave in the
same way. Table 1 summarizes all the results.
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Fig. 5. Global experimental results

Table 1. Summary of the experimental results

T-Coffee Clustal-W ECGIalign
SPS CS SPS CS SPS CS

Results by
group

G1 0.698 0.506 0.700 0.508 0.682 0.476
G2 0.895 0.773 0.927 0.836 0.906 0.800
G3 0.835 0.679 0.856 0.719 0.836 0.679
G4 0.802 0.665 0.849 0.731 0.868 0.755
G5 0.782 0.582 0.779 0.593 0.780 0.583

Results by
homology

Low 0.735 0.536 0.749 0.562 0.746 0.549
Med 0.868 0.736 0.903 0.801 0.892 0.780
High 0.910 0.831 0.928 0.863 0.929 0.862

Global results 0.801 0.638 0.820 0.674 0.813 0.656

5 Conclusions and Future Work

Multiple alignment of biological sequences is one of the commonest task in bioin-
formatics and have several important applications. Structural alignment of RNA
remains as an open problem despite the effort on the development of new align-
ment procedures to protein sequences. In this work, we address this task using
only the sequences of the molecules to align.

Inductive inference is one of the possibilities to tackle the problem of Au-
tomatic Learning. In our work we used a grammatical inference algorithm and
biological information to learn a finite automaton. This automaton is used to
obtain an alignment using the each sequence accepting path in the automaton.

It is important to note that the time complexity of our approach to multiple
sequence alignment improves previous results. Our method achieves the same
performance but reduces by one degree the time complexity of previous ap-
proaches (O(nM2) instead O(n2M2) where n denotes the number of sequences
to align and M denotes the length of the longest sequence).
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Several lines of work remain open and could lead to improve our results. As
noted above, ECGI algorithm obtains different automata when the training set is
ordered in different ways. Therefore it should be possible to improve the results
by ordering the samples as a preprocessing of the training set. Nevertheless this
preprocessing would lead to an increasing of the time complexity, and it has to
be studied whether the performance worth the increased complexity.

Another important feature of the grammatical inference algorithms is that the
more data available, the best results obtained. Therefore, it has to be studied
whether the more sequences considered, the better alignment results obtained.

One of the drawbacks of previous alignment methods is the greedy behaviour
of the approach that makes impossible of change first stages alignments. It can
be argued that our approach can also produce bad first-stage decisions. In order
to smooth this greedy behaviour, it should be possible to take advantage of
the ambiguity of the automata by using stochastic automata. In this way, those
better accepting paths in the automata would be selected, leading to better
alignment results.
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Abstract. Cancer classification using high-throughput mass spectrom-
etry data for early disease detection and prevention has recently become
an attractive topic of research in bioinformatics. Recently, several stud-
ies have shown that the synergy of proteomic technology and pattern
classification techniques is promising for the predictive diagnoses of sev-
eral cancer diseases. However, the extraction of some effective features
that can represent the identities of different classes plays a critical factor
for any classification problems involving the analysis of complex data.
In this paper we present the concept of a fuzzy fractal dimension that
can be utilized as a novel feature of mass spectrometry (MS) data. We
then apply vector quantization (VQ) to model the class prototyes using
the fuzzy fractal dimensions for classification. The proposed methodol-
ogy was tested with an MS-based ovarian cancer dataset. Using a simple
VQ-based classification rule, the overall average classification rates of the
proposed approach were found to be superior to some other methods.

Keywords: Feature extraction, fuzzy fractal dimension, fuzzy c-means,
vector quantization, mass spectrometry data, cancer classification.

1 Introduction

Proteomics has increasingly been a major role in the discovery of disease path-
ways and biomarkers for new drug treatment and development [1,2]. In compar-
ison with transcriptional profiling in functional genomics, proteomics has some
obvious advantages in that it provides a more direct approach to studying cel-
lular functions because most gene functions are characterized by proteins, and
more insight on exploring gene functions by studying protein expression.

The identities of expressed proteins in a protemome can be determined by
protein separation, identification, and quantification. Protein separation meth-
ods involve two-dimensional gel electrophoresis followed by gel image processing.
Once proteins are separated, protein differential expression can be characterized
using mass spectrometry (MS) which is a high-resolution technique for determin-
ing molecular masses. A mass spectrometry dataset consists of relative intensities
at chromatographic retention time and the ratios of molecular mass over charge

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 614–623, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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(m/z). Thus the mass spectrum for a sample is a function of the molecules and
used to test for presence or absence of one or more molecules which may relate
to a diseased state or a cell type. Proteomic patterns have recently been used for
early detection of cancer progressions [3,4]. Obviously, early detection of such
diseases has the potential to reduce mortality. In fact, it has been forseen that
advances in mass-spectrometry based diagnostics may lead to a new revolution
in the field of molecular medicine [5,4,6].

Several methods for classification of normal and diseased states using mass
spectrometry data have been recently developed. Petricoin et al. [3] applied
cluster analysis and genetic algorithms to detect early stage ovarian cancer
using proteomic spectra in serum generated by mass spectrometry to distin-
guish neoplastic from non-neoplastic disease within the ovary. Lilien et al. [7]
applied principal component analysis and a linear discriminant function to clas-
sify ovarian and prostate cancers using whole spectrum surface-enhanced laser
desorption/ioinization time of flight (SELDI-TOF) mass spectronometry data
of human serum. Wu et al. [8] compared the performance of several methods
for the classification of mass spectrometry data. These classification methods
include linear discriminant analysis, quadratic discriminant analysis, k-nearest
neighbor algorithm, bagging and boosting classification trees, support vector
machine, and random forest. The authors tested these methods against ovarian
cancer and comtrol serum samples obtained from the National Ovarian Cancer
Early Detection Program clinic at the Northwestern University hospital (USA)
and found that the random-forest based classifier outperformed other methods
in the discrimination of normal individuals from cancer patients based on mass
spectrometry data.

Tibshirani et al. [9] proposed a probabilistic approach for sample classifica-
tion from protein mass spectrometry data. These authors applied the so-called
peak probability contrast technique to determine a set of common peaks of the
ovarian cancer MALDI-TOF (matrix-assisted laser desoprtion and ionization
time-of-flight) data. Based on the assumption that mass spectrometry involves
complex functional data where the features of interest are the peak signals,
Morris et al. [10] applied wavelet transforms and peak detection for feature ex-
traction of MS data. This procedure consists of two steps as follows. Firstly
the MS peaks are extracted; and secondly the resulting mass spectral peaks
are then quantified. Yu et al. [11] developed a method for dimensionality re-
duction for high-throughput MS data. This method consists of four steps for
data preprocessing based on binning, Kolmogorov-Smirnov test (KS-test), re-
striction of coefficient variation, and wavelet transforms. These authors applied
the support vector machines (SVM) to train the wavelet coefficients of an ovarian
high-resolution SELDI-TOF dataset, and reported that the SVM based classifier
outperformed several other classification algorithms such as voted perceptron,
discriminant analysis, decision tree analysis, naive Bayes, bagging and boosting
classification trees, and random forest.

In this paper, we introduce the concept of a fuzzy fractal dimension and its
vector quantization for extracting a novel feature of mass spectrometry signals
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and classification respectively. Application of such computational framework has
never been explored before for the analysis of proteomic data.

2 Feature Extraction by Fuzzy Fractal Analysis

The fractal dimension [12] is a mathematical expression of the space filling prop-
erties of an object whose concept leads to many different types of fractal dimen-
sions [13]. The simplest form of fractal dimensions is the self-similarity dimen-
sion. The self-similarities of the line, square, and cube are equal to 1, 2, and 3
respectively. Consider a geometrically self-similar fractal object which consists
of line segments. If each line segment is divided into M smaller line segments,
then N smaller objects are produced. Furthermore, if the object is geometrically
self-similar, then each of the objects of smaller sizes is an exact but reduced size
copy of the whole object. The self-similarity dimension d is then expressed as [13]

N = Md (1)

which can be written in a another form as

d =
log(N)
log(M)

(2)

Because the self-similarity dimension requires that each smaller subject
formed by the division of the whole object must be an exact copy of the whole
object, it can only be used to study objects that are geometrically self-similar.
Such a fractal dimension is not very useful for analyzing many real objects that
usually have irregular shapes. Thus more general fractal dimensions have been
developed as more general forms of the fractal dimension. Two such popular
forms are known as the capacity and the Hausdorff dimensions. The capacity of
an object can be determined by covering it with balls of a radius r. The smallest
number of balls N(r) that covers all the parts of the object is counted. Then the
radius of the previous balls is reduced and again N(r) is counted. The capacity
is the value of log N(r)/ log(1/r) in the limit as r shrinks to 0. The relation-
ship of the capacity and the self-similarity dimensions is that if M = 1/r, then
N = Md. The Hausdorff-Besicovitch dimension is similar, but not identical, to
the capacity dimension. In the capacity dimension, the object is covered with the
number of balls N(r) of a given radius r; whereas in the Hausdorff dimension,
the object is covered with sets.

There are two general principles of the concept of the fractal dimension: the
scaling dimension and the Hausdorff dimension [14]. The first principle, which
is often called the telescope-microscope principle, states that the decrease of
the measuring scale of an object by a factor s is equivalent to the increase of
the measuring scale of the object by the factor s. The second principle states
that any measurement of the “mass” of a fractal of the Hausdoff dimension d
contained in a box of side s is proportional to sd. There are many natural ways
for computing the mass of a fractal set such as the box counting method [13],
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the area-perimeter method [15], and the mass-radius method [12]. We develop
herein a new method for obtaining the fractal dimension using the framework of
the fuzzy c-means algorithm, that can be useful for extracting some novel feature
of mass spectrometry data and easily implemented by the vector quantization
technique for pattern classification.

Let Mfc be the fuzzy c-partition space, and J : Mfc × Rcp → R+ be [17]

Jm(U,v) =
n∑

k=1

c∑

i=1

(uik)m(dik)2 (3)

where U ∈ Mfc is a fuzzy partition of X = (x1,x1, . . . ,xn); v = (v1,v2, . . . ,vc)
∈ Rcp with vi ∈ Rp is the cluster center of ui, 1 ≤ i ≤ c; dik = ||xk − vi|| and
|| · || is any inner product induced norm on Rp; and m ∈ [1, ∞).

Observation of (3) reveals that dik is the the measure of dissimilarity between
each data point xk and fuzzy cluster center vi, whose squared distance is then
weighted by the term (uik)m. Thus, Jm is a square error clustering function, and
solutions for this fuzzy clustering algorithm is to

minimizeMfc×Rcp Jm(U,v) (4)

There exists an infinite family of fuzzy clustering algorithms – one for each
m ∈ [1, ∞) – via the conditions for solutions of (4).

In the fuzzy c-means (FCM) algorithm; c, the number of clusters, needs to be
given. In many practical cases, c is unknown. It is reasonable to expect cluster
substructure at more than one value of c, and therefore necessary to estimate
the most plausible value of c for the cluster analysis. This problem is known as
cluster validity. It is very difficult to formulate the cluster validity problem in a
mathematically tractable manner, because the basic question is imposed on the
definition of a cluster. For fuzzy clustering, one should examine which pairs of
fuzzy groups/classes overlap, and this leads to the question of how fuzzy a fuzzy
c-partition is. A heuristic solution to this problem is to calculate the measure of
fuzziness in U, and then assign c as the most valid value that has the least fuzzy
partitions.

The first functional designed for cluster validity measure is the partition co-
efficient [17]. This partition coefficient of a fuzzy c-partition of U ∈ Mfc of X is
expressed as

F (c) =
1
n

n∑

k=1

c∑

i=1

(uik)2 (5)

Another equivalent expression for (5) that emphasizes various properties of F
is the Euclidean inner product for two matrices I, J ∈ Vcn is < I,J >= Tr(IJT ),
where Tr is the trace of a matrix, and JT is the transpose of J. And (5) has
alternative forms

F (c) =
Tr(UUT )

n
=

< U,U >

n
=

||U||2
n

(6)
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Now it can be analyzed that: if F (c) = 1 then U contains no fuzzy clusters (U
consists of only zeros and ones); if F (c) = 1/c (all elements in U is equal to 1/c)
then U is completely fuzzy; and in general 1/c ≤ F (c) ≤ 1. As F (c) increases, the
partition of the data sets is more effective. Thus the formal strategy for selecting
the most valid c∗ is as follows. Let Ωc represents any finite set of optimal U’s
∈ Mfc, and c = 2, 3, . . . , n − 1. The optimal c∗ is determined by direct search

c∗ = argmax
c

[max
Ωc

F (c)] (7)

An observation of the relationship between c and F (c) reveals that F (c) can
be interpreted as a type of the measure of the fuzziness or the “fuzzy mass” of the
partition space U as a function of the number of clusters of size c. Based on the
second principle of dimension for fractals, F (c) is equivalent to the approximate
power law

F (c) ∝ c dfcm (8)

where dfcm is called the FCM-based fractal dimension or the fuzzy fractal di-
mension (FFD) of U, which can be determined as

dfcm = lim
c→c∗

log F (c)
log c

(9)

It can be further shown that if the plot of log F (c), the vertical axis, versus
log c, the horizontal axis, is represented by a straight line using the method of
least squares; then a straight line in a x-y diagram can be expressed as

log F (c) = dfcm log c + b (10)

where dfcm is the slope of the line, and b is the intercept of the fitting line with
the vertical axis. Alternatively,

F (c) = b c dfcm (11)

Thus, the fuzzy fractal dimension dfcm expression in (9), in the limit where c
approaches c∗, can be determined as the slope of the plot of log F (c) versus log c.
The basic idea is that if an object is self-similar, then the slope of log F (c) versus
log c is the same as the limit of log F (c)/log c as c approaches c∗. However, the
determination of the slope is much easier than c∗.

For recognition or classification of complex patterns, it has been reported
that the use of a single fractal dimension is not sufficient enough to obtain
good results; and therfeore suggested multifractal models [16]. Based on the
minimization of Jm expressed in (4), an infinite set of the FCM-based fractal
dimensions Dfcm can be obtained in terms of the weighting exponent m:

Dfcm =
∞⋃

m=1

dm
fcm (12)

To obtain a finite vector of fuzzy fractal dimensions, we set the range for
m with some discrete values being greater than one (as m = 1, the FCM al-
gorithm becomes a hard-clustering case). We now turn our discussion on the
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implemenation of the fuzzy fractal dimensions for pattern classification using
vector quantization approach in the next section.

3 Classification Using FFD-Based Vector Quantization

To obtain the set of codewords or codevectors which can be modeled as the
prototype of a certain class, we apply the method for quantizing the vectors of
the fuzzy fractal dimensions. Let at be a vector of fuzzy fractal dimensions; and
the codebook of the vectors of fuzzy fractal dimensions be C = {c1, c2, . . . , cL},
where cj = (cj1, cj2, . . . , cjp), j = 1, 2, . . . , L are codewords, Each codeword cj is
assigned to an encoding region Rj in the partition {R1, R2, . . . , RL}. The source
vector at can be represented by the encoding region Rn and expressed by

V (at) = cn, if at ∈ Rn (13)

The main idea of the vector quantization (VQ) is to find an optimal codebook
such that for a given training set and a codebook size, the average distortion in
representing each vector at by the closest codeword cn is minimum. One of the
most popular methods for VQ design is the LBG (Linde, Buzo and Gray) algo-
rithm [18]. The LGB-VQ method requires an initial codebook, and iteratively
bi-partitions the codevectors based on the optimality criteria of nearest-neighbor
and centroid conditions until the number of codevectors is reached.

For the particular study, the MS cancer classification system based on the
fuzzy fractal analysis and VQ-codebook approach works as follows. In the train-
ing phase, the MS signals are analyzed by the fuzzy fractal analysis to obtain the
vectors of fuzzy fractal dimensions (FFD). The training FFD vectors are then
quantized using the number of codebooks according to the number of different
classes. In the testing phase, an input unknown MS signal, denoted as s, is ana-
lyzed by the fuzzy fractal analysis resulting in the FFD vector. The dissimilarity
between the FFD vector of the unknown sample and each trained codebook is
computed. The dissimilarity measure of the unknown sample s and a particular
known class represented by the codebook Ci is determined using the minimum
rule:

D(s, Ci) = min
1≤j≤L

D(xm, ci
j) (14)

where D is a measure of dissimilarity taken as the L2 norm, xm is the FFD
vector of the unknown sample s, ci

j is the j FFD-VQ codevector of a particular
known class represented by codebook Ci.

The unknown sample s is assigned to class i∗ if the dissimilarity measure of
its FFD vector xm and the FFD-VQ codebook Ci is minimum, that is

assign s to class i∗ if
i∗ = argmin

i
D(s, Ci) (15)
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4 Experiment

The ovarian high-resolution SELDI-TOF mass spectrometry dataset, which can
be obtained from the FDA-NCI Clinical Proteomics Program Databank was
used to test the proposed approach. The dataset was generated using a non-
randomized study set of ovarian cancers and control specimens on an ABI Qstar
fitted with a SELDI-TOF source to study ovarian cancer case versus high-risk
control. The dataset consists of 100 control samples and 170 cancer samples.
Figures 1 and 2 show the typical MS signals of ovarian control and ovarian
cancer respectively.

A vector of 8 fuzzy fractal dimensions is extracted for each sample by using
8 arbitrary values for the FCM weighting exponent m ranging from 1.5 to 5.0
with the interval of 0.5. Two codebooks of 8 and 16 codevectors were used
to generate the two prototypes for the control and cancer classes respectively.
The validation of the classification of the proposed approach was designed with
similar strategies to those carried out in [11], who applied support vector machine
(SVM) for the classification, so that comparisons can be made. The first measure
of performance is the k-fold cross validation where k = 2, 3, . . . , 10, and each k-
fold validation was carried out 1000 times. The second measure of performance
is the leave-one-out cross validation.

It is noted that the raw ovarian high-resolution SELDI-TOF dataset used by
Yu et al. [11] consists of 95 control samples and 121 cancer samples; while the raw
ovarian high-resolution SELDI-TOF dataset we used to test the performance of
the proposed approach has 100 control samples and 170 cancer samples. In the
leave-one-out cross validation, the proposed method only misclassified 2 control
and 2 cancer samples in comparison with 6 control and 2 cancer samples being
misclassified by the SVM [11]; and 4 control and 2 cancer samples misclassified by
the linear predictive coding (LPC)-VQ method [19]. It was also reported that the
principal component analysis (PCA) was applied to reduce the large number of
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Fig. 1. MS-based ovarian control data
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Fig. 2. MS-based ovarian cancer data

Table 1. k-fold cross validation results for ovarian cancer data

SVM LPC-VQ FFD-VQ
k Control mean Cancer mean Control mean Cancer mean Control mean Cancer mean

2 0.8930 0.9492 0.9224 0.9637 0.9314 0.9707
4 0.9058 0.9722 0.9327 0.9811 0.9450 0.9766
6 0.9094 0.9760 0.9348 0.9825 0.9531 0.9818
8 0.9098 0.9784 0.9362 0.9852 0.9570 0.9862
10 0.9096 0.9801 0.9377 0.9885 0.9564 0.9890

features and the PCA-reduced first nine components were used to train the SVM-
based classifer [11]. For leave-one-out cross-validation, 9 control and 2 cancer
samples were misclassified by the SVM using the PCA reduced dataset. Table 1
shows the mean classification values of the k-fold cross validation obtained from
the SVM classification on the preprocessed data, the LPC-VQ, and the FFD-
VQ. Except for k = 2 and 6, where the cancer means obtained from the LPC-
VQ method are highest; the overall results show that the proposed method is
most favorable for MS-based ovarian cancer classification than the other two
approaches. We also report herein that the Hurst components [16] for all the MS
samples are close to one showing the persistency in the MS samples and hence
confirms the reliability of the fractal dimensions.

5 Conclusion

Fuzzy fractal dimensions (FFDs) have been used as an effective features for
classification of cancers using MS data. The use of the fuzzy fractal dimensions
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is suitable for this study because it can capture the inherent spatial information
of the MS data, and can be applied to other classification methods.

It has been predicted that the advancement of proteomics pattern diagnostics
will lead to a revolution in the field of molecular medicine such as the concept
of personalized medicine [20]. It is because this technology not only represents
a new model for disease detection but it is also clinically feasible [6]. It is still
now the clinical impact of proteomic pattern diagnostics is in the very early
stage where the results have not been validated in large trials. Furthermore,
recent research outcomes have illustrated the role of MS-based proteomics as an
indispensible tool for molecular and cellular biology and for the emerging field
of systems biology [2].

Given these promising results, identifying biomarkers using MS data is a chal-
lenging task which requires the combination of the contrast fields of knowledge
of modern biology and computational methodology. We have presented in this
paper a novel application of fuzzy fractal analysis for extracting a novel feature
of mass spectrometry data. The simple decision logic of the VQ-based classifi-
cation rule is effective for the implementation of the fuzzy fractal dimensions of
MS-based cancer data.
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Abstract. We describe a Bayesian inference method for the identifi-
cation of protein coding regions (active or residual) in DNA or RNA
sequences. Its main feature is the computation of the conditional and a
priori probabilities required in Bayes’s formula by factoring each event
(possible annotation) for a nucleotide string into the concatenation of
shorter events, believed to be independent. The factoring allows us to
obtain fast but reliable estimates for these parameters from readily avail-
able databases; whereas the probability estimation for unfactored events
would require databases and tables of astronomical size. Promising re-
sults were obtained in tests with natural and artificial genomes.

Keywords: coding regions, ab-initio DNA tagging, Bayesian inference.

1 Introduction

We describe here a new statistical inference method for finding protein-coding
regions in genomes. Our method is well-grounded on Bayesian inference theory,
and is easily adapted to different genome models.

1.1 Coding and Non-coding Regions

The protein-coding regions of a genome specify the sequence of aminoacids in
some protein, according to the well-known protein genetic code [1]. A coding
region is active if it is still transcribed by the organism in appropriate circum-
stances. Such regions comprise only a fraction of an organism’s genome — vary-
ing from almost 100% in viruses, prokaryotes, and archaea, to 10% or less in
eukaryotes. Another important fraction of the genome, which may be dominant
in eukaryotes, consists of fossil coding regions — copies of active coding regions
of some ancestral genome, which have become inactive or un-transcribable due
to mutations and truncations. These fossil regions may be embedded in any
non-functional part of the genome, such as between genes and in the introns
of eukaryotes. Finally, genomes are believed to contain junk regions that are

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 624–634, 2007.
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the result of “accidental” events — such as single-base insertions and duplica-
tion of pre-existing junk sequences. The primary goal of a genome classification
algorithm is to identify the protein-coding regions of a given genome.

1.2 Homology-Based Methods

The most successful genome classifiers are the homology-based methods, that
rely on the detection of known gene expression clues (operons, mRNA splicing
markers) and comparison with previously identified bio-sequences, from the same
organism or from other organisms [2].

By their own nature, homology-based methods can identify only coding re-
gions that are still active, or that can still be recognized (by similarity) as de-
scendants of active regions in some ancestral genome. They cannot distinguish
truly junk regions from fossil coding regions which are not similar to any known
active region. Homology methods may also fail to identify an active coding
region if its nucleotide sequence is “new to science” (not represented in available
databases) — a situation which is not as rare as one may think [3].

1.3 Ab-Initio Methods

To distinguish fossil coding regions from junk and other types of DNA, one must
resort to ab initio genome classifiers — algorithms that rely only on the fact that
protein-coding regions, being constrained to represent useful and functioning
proteins, have different local statistics than other parts of the genome.

The ab-initio approach imposes certain limitations on the performance and
results of the classifier. Being based on statistical (rather than logical) inference,
the result too is usually probabilistic rather than categorical, and subject to mis-
takes due to freak coincidences. Moreover, since the differences between coding
and non-coding regions are small, one must analyze relatively long segments of
the genome in order to get confident and accurate classifications. For this reason,
ab-initio methods cannot be expected to detect very short coding or non-coding
regions, or locate the exact transition point between two adjacent regions.

1.4 Previous Work

There are many ab-initio classifiers described in the literature [4], but none is
definitely better than all the others [5]. They use various mathematical models
and algorithms, such as neural networks [6], signal processing [7], and Markov
models (generally between 2nd and 5th order) [8]. While all those classifiers rely
on statistical differences between coding and non-coding regions, their statistical
models and inference rules are often ad-hoc and/or hidden in an inscrutable com-
putation model. Methods that explicitly use statistical inference include those
of Fickett [3] and Staden and McLahan [9].

1.5 Outline of Method

Our algorithm breaks the input sequence into overlapping windows, typically 10
to 100 bases long, and uses Bayesian inference to determine the probability that
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each window belongs to a coding region or to a non-coding region, or contains a
transition between two such regions.

Direct estimation of the conditional probabilities required by Bayes’s formula,
with any useful accuracy, would require labeled databases (“training sets”) and
tables of astronomical size. Our algorithm avoids the problem by factoring each
possible labeling of the window into a sequence of short events, whose probabil-
ities can be easily and accurately estimated from existing databases [10].

2 Definition of the Problem

2.1 Genome Model

In our model, the classifier’s input is a DNA sequence, represented as a string b =
(b0, b1, . . . , bn−1) where each bi is a letter from the base alphabet B = {A, T, C, G}.
The string b is assumed to be the concatenation of several non-empty regions,
each being either coding or non-coding. We assume furthermore that each coding
region derives from a gene, a concatenation of three-letter codons. However, in
order to account for mRNA editing in active coding regions, and accidental
truncations in fossil coding regions, we allow that a coding region of the input
string may be an arbitrary substring of its original gene.

2.2 Genome Labelings

A (full) labeling of the input string is another string e = (e0, e1, . . . , en−1), with
the same length n, where each ei is a letter from the label alphabet E = {N, D, E, F}.
In the true or correct labeling, the label ei is N if nucleotide bi belongs to a non-
coding region; otherwise it is D, E, or F according to whether bi descends from the
first, second, or third base, respectively, of a codon in the original gene. Needless
to say, the true labeling of a natural genome is usually unknown (and, in fact,
essentially unknowable).

Table 1.

ei

i∗ D E F N
0 o + - ?
1 - o + ?
2 + - o ?

A full labeling e of the input string implies a weak label-
ing c = (c0, c1, . . . , cn−1), where each ci is N if ei is N, and
K (meaning “a coding base”) if ei is D, E, or F. A full label-
ing also implies a frame labeling φ = (φ0, φ1, . . . , φn−1),
where each φi is either ‘-’, ‘o’, ‘+’ or ‘?’, depending on the
full label ei and the value of i∗ = i mod 3 according to the
table at right.

Note that the frame label is constant (-, o, or +)
within each coding region, and specifies one of the three possible codon read-
ing frames [1] for that region.

2.3 Window Probabilities and Ergodicity

We define a window of the input genome as any finite set of consecutive indices
w = {r, r + 1 . . . , s} ⊆ {0, 1, . . . , n − 1}. The size of that window is |w| = s−r+1;
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its content is the basis sequence b[w] = (br, br+1, . . . , bs); and its true labeling is
the label sequence e[w] = (er, er+1, . . . , es).

We assume that the input genome is ergodic; in the sense that, considering
all possible input genomes, the probabilities Pr(b[w] = β ∧ e[w] = η), for each
window w and each pair β ∈ B|w| and η ∈ E |w|, depend only on η and β (and
on the window size |w|), but not on the position of the window w. Then we can
write simply Pr(η) = Pr(e[w] = η), Pr(β) = Pr(b[w] = β), Pr(η | β) = Pr(e[w] =
η | b[w] = β), and so on, where w is any window of size |β| = |η|.

2.4 Classifier Output

The goal of our algorithm is to compute, for each input base bi, four real numbers
P[i, N], P[i, D], P[i, E], and P[i, F], where P[i, ε] is the probability that ε is the
true full label of input base bi. Note that from this data one can compute the
probability that base bi belongs to a coding region, namely P[i, K] = P[i, D] +
P[i, E] + P[i, F]; and also a probability for each frame label (?, -, o, or +). See
Fig. 1.

...
681 A 0.398 *0.601 0.000 0.000 D:N* 0.398 *0.601 K:N*
682 A *0.668 0.000 0.331 0.000 N:N. *0.668 0.331 N:N·
683 G *0.548 0.000 0.000 0.451 N:N. *0.548 0.451 N:N·
684 T 0.161 *0.838 0.000 0.000 D:N* 0.161 *0.838 K:N*
685 A *0.593 0.000 0.405 0.000 N:N. *0.593 0.406 N:N·
686 T 0.447 0.000 0.000 *0.552 F:F. 0.447 *0.552 K:K·
687 A 0.120 *0.879 0.000 0.000 D:D. 0.120 *0.879 K:K·
688 C 0.449 0.000 *0.549 0.000 E:E. 0.449 *0.550 K:K·
689 C 0.276 0.000 0.000 *0.723 F:F. 0.276 *0.723 K:K·
690 C 0.077 *0.921 0.000 0.000 D:D. 0.077 *0.922 K:K·
...

Fig. 1. Sample output from our classifier

The first two columns of Fig. 1 are the index i and the contents bi of each base.
The next four columns show the computed probabilities P[i, ε] for each full label
ε ∈ {N, D, E, F}; the most likely label is flagged with ‘*’. The next column has the
format X : Y Z; where X is the label ε with largest P[i, ε], Y is the user-given
“true” label ei, and Z is ‘.’ if X = Y , ‘*’ otherwise. The next three columns give
similar probabilities for the weak label ci (N or K).

3 Description of the Algorithm

3.1 Classifying Bases by Context

In our method, the four probabilities P[i, ε], for each index i, are estimated by
analyzing the base bi and the p nearest bases on either side of it; where p is a
user-specifiable parameter.
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Let W p
i = {i − p, i − p + 1, . . . , i + p} be the window with size k = 2p + 1

centered at position i; and let β = b[W p
i ] be its (known) content. Its (unknown)

true labeling e[W p
i ] could be any string in Ek. Our algorithm actually computes

(implicitly or explicitly) a probability Pr(η | β) = Pr(e[W p
i ] = η | b[W p

i ] = β) for
each possible labeling η ∈ Ek, taking into account its known content β. These
probabilities are then combined into the four probabilities P[i, ε] according to
the central label ηp of η; that is, P[i, ε] =

∑ {
Pr(η | β) : η ∈ Ek ∧ ηp = ε

}

3.2 Window-Based Bayesian Inference

In theory, the probabilities Pr(η | β) could be obtained by analysis of a training
set — a reference database of labeled genomic sequences, whose labels can be
assumed to be true. Specifically, we can use the approximation Pr(η | β) ≈
#(η ∧β)/ #(β), where #(β) is the the total number of windows in the training
set with content β, and #(η ∧ β) is the number of windows with labeling η and
content β.

However, this approximation is accurate only if #(β) is sufficiently large, and
is in fact useless if #(β) = 0. By a rough estimate, using this method with
k = 21 (a rather modest window size) would require a training set with more
than 421 = 1012 correctly labeled bases — far beyond what is currently available.

To circumvent this problem, we first use Bayes’s inference formula to express
the “deductive” conditional probabilities Pr(η | β) in terms of the “generative”
probabilities Pr(β | η). For all β ∈ Bk and all η ∈ Ek

Pr(η | β) =
Pr(β ∧ η)

Pr(β)
=

Pr(β | η) Pr(η)∑
σ∈Ek Pr(β | σ) Pr(σ)

(1)

3.3 The Independence Hypotheses

In order to apply formula (1), we need to know Pr(β | η); which is the probability
that a random window of the genome with length k = |η| = |β|, whose true
labelling is η, contains the bases (β0, β1, . . . , βk−1). We also need Pr(η); which
is the probability that η is the true labeling of any k consecutive bases of the
genome, a priori (i.e. independently of which bases are found at those positions).

Needless to say, we cannot estimate these probabilities by counting frequencies
in some training set, since the frequency approximation #(β ∧ η)/ #(η) is just
as impractical for Pr(β | η) as #(β ∧ η)/ #(β) is for Pr(η | β). We get around
this problem by making certain independence assumptions about the statistics
of the input data. In our tests, specifically, we assumed that

H1. Within a gene, each codon is independently chosen.
H2. Within a non-coding region, each base is independently chosen.
H3. There is no correlation between the contents of distinct regions.

These assumptions seem to hold for available labeled genomes [9]. They imply,
in particular, that there is no correlation between the content of coding and non-
coding regions; and that any two adjacent non-coding regions can be treated as
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Table 2. Frequencies Pr(β | DEF) of codons in the exons of Reese’s human genome
sample. See Sec. 4.2 for details on the data set.

Codon Freq
AAA 0.018

AAT 0.013

AAC 0.021

AAG 0.035

ATA 0.004

ATT 0.012

ATC 0.024

ATG 0.022

ACA 0.011

ACT 0.011

ACC 0.023

ACG 0.007

AGA 0.008

AGT 0.008

AGC 0.020

AGG 0.010

Codon Freq
TAA 0.001

TAT 0.010

TAC 0.018

TAG 0.001

TTA 0.003

TTT 0.013

TTC 0.024

TTG 0.010

TCA 0.008

TCT 0.011

TCC 0.018

TCG 0.005

TGA 0.002

TGT 0.008

TGC 0.014

TGG 0.014

Codon Freq
CAA 0.010

CAT 0.008

CAC 0.015

CAG 0.036

CTA 0.005

CTT 0.010

CTC 0.022

CTG 0.051

CCA 0.014

CCT 0.018

CCC 0.025

CCG 0.008

CGA 0.006

CGT 0.005

CGC 0.016

CGG 0.013

Codon Freq
GAA 0.023

GAT 0.018

GAC 0.028

GAG 0.045

GTA 0.005

GTT 0.008

GTC 0.016

GTG 0.033

GCA 0.013

GCT 0.019

GCC 0.036

GCG 0.010

GGA 0.014

GGT 0.012

GGC 0.030

GGG 0.017

a single region. On the other hand, one observes quite unequal frequencies for
the 64 possible codons, as shown in Table 2.

Table 3. Observed base frequencies

D E F K N
A 0.248 0.300 0.144 0.231 0.263
T 0.160 0.263 0.184 0.203 0.278
C 0.261 0.235 0.351 0.283 0.227
G 0.330 0.200 0.318 0.283 0.232

The irregularities of Table 2
imply significant differences in
nucleotide frequencies between
coding and non-coding regions.
Table 3 shows the frequencies of
nucleotides A, T, C, G observed in
Reese’s data set, in five contexts:
respectively, in the first, second,
and third base of codons within
the exons (columns D, E, F), in any position within the exons (K), and outside
the exons (N).

Note that the codon frequencies shown in Table 2 differ significantly from
those that one would expect if the three letters were chosen independently with
the probabilities of columns D, E, and F of Table 3. These discrepancies im-
ply significant correlations between bases bi and bj in coding regions, whenever
|i − j| ≤ 2.

3.4 Factoring the Productive Probabilities

Hypotheses H1–H3 allow us to break down the factor Pr(β | η) of Formula (1)
into products of probabilities of atomic events which are easier to estimate.
Firstly, suppose that a window labeling η can be split as η′η′′, where the last
label ε′ of η′ and the first label ε′ of η′′ are any pair in E2 except NN, DE, EF, or FD.
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In that case, the sub-windows of the input genome corresponding to η′ and η′′

necessarily belong to distinct regions. Then, by assumption H3, and elementary
probability calculus, we have

Pr(β | η) = Pr(β′ | η′) Pr(β′′ | η′′) (2)

for any strings β, β′, β′′ such that |β′| = |η′| and |β′′| = |η′′|. Moreover, by
assumptions H1 and H2, Formula (3) holds also when the label pair ε′ε′′ is NN
(two consecutive non-coding bases) or FD (the boundary between two codons).

In other words, we can split β and η between any two codons, any two non-
coding bases, or at any place that, according to η, is obviously the boundary
between two distinct regions. It follows that, for any β ∈ Bk and η ∈ Ek,

Pr(β | η) =
m∏

j=1

Pr(βj | ηj) (3)

where

• η = η1η2 · · · ηm, and β = β1β2 · · · βm;
• for each j, βj ∈ B|ηj |;
• for each j, ηj ∈ {N, DEF, DE, EF, D, E, F};
• for each j, (ηj , ηj+1) /∈ {(D, EF), (DE, F), (D, E), (E, F)}.

Note that the deductive probabilities Pr(η | β) cannot be factored in this way;
that is the reason why we need formula (1).

3.5 Relevant Labelings

In principle, the Bayesian inference Formula (1) should be evaluated for all
possible labelings η ∈ Ek; which is obviously impractical for k beyond 10 or so.
Fortunately, most of those labelings turn out to be so unlikely that they can
be ignored, without significant effect on the classification. More precisely, we
replace Formula (1) by the approximation

Pr(η | β) ≈ Pr(β | η) Pr(η)∑
σ∈Z Pr(β | σ) Pr(σ)

(4)

The set of relevant labelings Z is a parameter of the algorithm. As shown in
Secs. 3.4 and 3.6, the algorithm’s running time is proportional to nk # Z, and
one can get useful results with a set Z of size O(k).

3.6 Estimating the a Priori Labeling Probabilities

Besides the generative probabilities Pr(β | η), Bayes’s Formula (1) also requires
the a priori probabilities Pr(η) for each labeling η ∈ Ek. Since the genome is
assumed to consist of relatively long regions, each uniformly coding or uniformly
non-coding, there is substantial correlation between the labels of adjacent bases
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— even in non-coding regions and across codon boundaries. As a consequence of
these long-range correlations, there is no factoring result analogous to Formula 3
for the a priori probabilities Pr(η).

To compute Pr(η), we need to extend the genome model with information
about the lengths of coding and non-coding regions, and how the former are cut
out from the ancestral genes. For the tests reported below, we assumed that:

L1. Coding and non-coding regions alternate in the input string.
L2. Every region is at least k bases long.
L3. The mean lengths μK, μN of coding and non-coding regions are known.
L4. The first (or last) base of a coding region may have true label D, E, or F,

with equal probability.

Assumptions L1–L4 greatly reduce the window labelings η that need to be con-
sidered, from Ek to the following possibilities:

E1. The window is totally non-coding, i.e. the true labeling η is NNN . . ..
E2. The window is totally coding, i.e. η is DEFDEF . . ., EFDEFD . . ., or FDEFDE . . ..
E3. The window straddles the boundary between two regions, one coding and

one non-coding.

There is only one window labeling of type E1, three of type E2, and 6(k − 1) of
type E3 (since there are k−1 positions for the transition within the window, two
choices for the order of η′ and η′′, and three choices for the first coding label).
That makes 6k − 2 labelings to consider for each window.

Given hypotheses L1–L4, the a priori probability Pr(η) of each labeling η
depends only on the mean lengths μK and μN of coding and non-coding regions.
Namely, we expect one N-K transition and one K-N transition every μK +μN bases,
and each of these transitions will be straddled by k − 1 windows. It follows that
Pr(η) is, for each type,

E1:
μN − k + 1
μK + μN

E2:
1
3

μK − k + 1
μK + μN

E3:
1
6

1
μK + μN

(5)

4 Experimental Results

4.1 Test Runs

We tested the algorithm on a set H of natural eukaryotic DNA sequences, as well
as on a randomly generated artificial dataset A. Both datasets were processed
with windows of size 1, 3, 5, 9, 17, 33, 65, and 129.

4.2 The Natural Dataset

The natural dataset H was a collection of annotated human DNA sequences
prepared by Martin Reese [11]. The collection comprises 462 separate files, each
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covering one human gene (or part of one gene). After excluding a few unsuitable
files (such as genes which had been tagged by software), there remained 448 files
with 5,258,181 nucleotide bases, 439,761 of them (8.4%) belonging to exons. The
average length of exon and non-exon regions were μK = 160 and μN = 1516,
respectively.

Within exons, we set each “true” label ei to D, E, or F according to its position
in the expressed gene (after mRNA splicing). For all other bases, we set ei to N.
The atomic probabilities Pr(β | η) of tables 3 and 2 were obtained by counting
occurrences of β and η in a subset of these sequences (with about 3.21 million
bases), assuming the e labeling as “true”, as described in Sec. 3.4. The rest of
the data set (about 2.05 million bases) was then classified with our algorithm,
and the output was scored using the same labeling e as the truth.

4.3 The Artificial Dataset

The artificial dataset A consisted of a single sequence with 45,000 nucleotide
letters, obtained by concatenating coding and non-coding regions, alternately.
Each region was independently generated according to hypotheses H1–H3, using
the probabilities of Table 3 for each base in non-coding regions, and of Table 2
for each codon in coding regions. The first and last codons were truncated so
that each coding region was equally likely to begin or end with a D, E, or F base.
The length of each region was 100 + � where � was drawn from an exponential
distribution, with mean 50 for coding regions and 800 for non-coding regions —
resulting in mean lengths μK = 150 and μN = 900, respectively. The true labeling
ei of each base was recorded during its generation.

4.4 Scoring Table and Mean Hit Score

To evaluate the performance of the algorithm, we compared its probability esti-
mates P[i, ε] for each base bi with the corresponding “true” label ei. Specifically,
we computed the scoring table

SC[ε, ε′] =
1
n

n−1∑

i=0

(ei = ε′) P[i, ε] (6)

for all ε, ε′ ∈ E ; where the factor (ei = ε′) is 1 if the equality holds, 0 otherwise.
We can use the sum σ =

∑
ε SC[ε, ε] of the diagonal elements of that table as

the mean hit score of the classifier.

4.5 Test Results

Table 4 shows the mean hit scores obtained by the algorithm on the two data
sets, as a function of the window length k. The columns σKN and σDEF are the
scores achieved on the weak K/N classification problem and on the reading frame
identification problem, respectively.
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Table 4. Hit scores for the human (H) and artificial (A) test data

H A
k σKN σDEF σKN σDEF

1 0.14 0.36 0.15 0.36
3 0.17 0.40 0.18 0.39
5 0.19 0.45 0.19 0.43
9 0.24 0.55 0.24 0.49

17 0.33 0.68 0.36 0.58
33 0.52 0.81 0.54 0.69
65 0.73 0.92 0.69 0.80

129 0.83 0.98 0.76 0.86

Figure 2 shows the variation of P[i, K], the estimated probability of bi belong-
ing to a coding region, along a segment of the A sequence, with k = 9 (top),
k = 33 (middle), and k = 129 (bottom). The dashed line is the output of the
ideal classifier (1 when ei = K, 0 when ei = N). Note that the coding region at
bases 335-405 was was practically indistinguishable with k = 9, but clearly and
confidently detected with k = 129.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

Pr
(C

)

Base position

Window length 9

C
O

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

Pr
(C

)

Base position

Window length 33

C
O

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

Pr
(C

)

Base position

Window length 129

C
O

Fig. 2. Graph of P[i, K] for the artificial dataset A

4.6 Discussion of Test Results

While the test with natural data would seem more relevant for users, it was
distorted by the use of an incorrect reference labeling. The non-exon DNA re-
gions, which we assumed to be entirely non-coding (N), surely contained many
undocumented fossil coding regions, which we should have labeled with D/E/F.
This mislabeling of fossil regions had also the effect of “blurring” already small
differences between the probabilities Pr(β | η) of coding and non-coding regions.

Nevertheless, the algorithm performed fairly well on the natural dataset H,
with a hit score σDEF = 0.857 on the frame labeling problem. While the test
with artificial data A used the same tables Pr(β | η), which were distorted
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by the mislabeling above, the algorithm’s performance was much better, with
σDEF = 0.982 on the frame labeling problem — presumably, because the output
was scored against the correct labeling. In any case, the performance obtained
in both tests is only a lower bound on the performance that one could obtain
with better-labeled natural training set.

5 Conclusions and Future Work

The main advantages of our method are consistency, correctness, and flexibility,
at a modest computational cost. The use of Bayesian inference ensures that the
proposed algorithm produces the best possible classification. The inclusion of
coding/non-coding transitions in the Bayesian inference leads to sharp estimates
for the position of those transitions for large |w|. The methods is easily adapted
to other statistical models by changing the set of allowed window labelings Z,
the probability tables Pr(β | η), and the a priori probabilities Pr(η).
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Abstract. Identifying protein coding regions in DNA sequences is a basic step 
in the location of genes. Several approaches based on signal processing tools 
have been applied to solve this problem, trying to achieve more accurate 
predictions. This paper presents a new predictor that improves the efficacy of 
three ones that use the Fourier Transform to predict coding regions, and that 
could be computed using an algorithm that reduces the computation load. ROC 
curves are used to demonstrate the efficacy of the proposed predictor, based on 
the computation of 25 DNA sequences from three different organisms.  

Keywords: Bioinformatics, Digital Signal Processing, Fourier Transform, 
Coding region prediction, Computational load reduction. 

1   Introduction 

The genomic information is usually represented by sequences of nucleotide symbols 
in the strands of DNA molecules, by symbolic codons (triplets of nucleotides), or by 
symbolic sequences of amino acids in the corresponding polypeptide chains. When 
representing by sequences of nucleotide symbols, the alphabet consists of the letters 
A, T, C and G; represent adenine, thymine, cytosine, and guanine respectively.  The 
segments of DNA molecule responsible for protein synthesis are the genes. The 
regions containing useful information from genes are called exons; in eukaryotes 
these regions are separated by introns, whereas in prokaryotes they are continuous. 

The computational recognition of genes is one of the challenges in the analysis of 
newly sequenced genomes, and it is a basic step to an understanding of the genome. It 
is needed to find accurate and fast tools to analyze genomic sequences and annotate 
genes. A number of methods have been proposed for gene and exon detection, based 
on distinctive features of protein-coding sequences, and among them many techniques 
using digital signal processing [1-8] have been used and shown to be successful; 
based on the period-3 periodicity present in most of genome exons due to the non-
uniform distribution of codons in coding regions. 

In this paper we propose a new coding region predictor based on a combination of 
others approaches that use the Short Time Fourier Transform (STFT) [1-3], and that 
could be computed using an algorithm [9] design for the authors to improve the 
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computational load. In order to validate the results of the proposed predictor, ROC 
curves are used, which show a slight increase of the efficacy of the predictor when 
compared with the others that use STFT. 

2   Materials and Methods 

In the following paragraphs there is a presentation of the new predictor we propose, 
introducing firstly the technique we used to convert the genomic information to a 
numerical sequence. In this work we have made extensive use of a fast algorithm 
previously developed by the authors [9], in order to reduce the computational load 
associated to the use of the predictor . At the end a brief presentation of ROC curves 
is made as a validation approach. 

2.1   Obtaining Numerical Sequences from Genomic Information 

There are several approaches [2, 6-8, 10, 11] to convert genomic information in 
numeric sequences using its different representations. The most relevant for the 
application of signal processing tools are the assignation of complex numbers to each 
base of the nucleotide sequence, and the indicator sequences. The complex numbers 
to be assigned are selected according to their mathematical properties, their relation 
with the bases and the properties of the resulting numeric sequence. Indicator 
sequences are defined as binary sequences for each base, where 1 at position k 
indicates the presence of the base at that position, and 0 its absence. For example, for 
the DNA sequence x[k] = TACAGAACTTAGC…the binary indicator sequences for 
each base are: 

…= 1000101011000][kxA  

…= 0001000000011][kxT  

…= 0010010000100][kxC  

                                       …= 0100000100000][kxG                                    (1) 

One of the advantages of using indicator sequences lies in their simplicity, and in 
the possibility of providing a four-dimensional representation of the frequency 
spectrum of the character string, when computing the Discrete Fourier Transform of 
each indicator sequence.  

2.2   Combining Approaches Based on Discrete Fourier Transform 

The Discrete Fourier Transform (DFT) has been used by several authors to predict 
coding regions in large DNA sequences. Based on the non-uniform distribution of 
codons in coding regions, a three-periodicity is present in most of genome coding 
regions, which show a notable peak at frequency component N/3 when calculating 
their DFT [12, 13]. Taking into account the validity of this result the Short Time 
Fourier Transform has been applied to large DNA sequences to predict coding 
regions, using a sliding window along the sequence, calculating the Fourier 
Transform of each subsequence, and taking only the N/3 frequency component. In [1] 
Tiwari introduces the Spectral Content Measure (SCM), defined as:    
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][][][][][ kXkXkXkXkS GCTA +++=  .                   (2) 

Here XA[k], XT[k], XC[k] and XG[k] are the frequency component at k of the 
Fourier Transform for the indicator sequences. In [2] Anastassiou introduces a new 
predictor, which he called Optimized Spectral Content Measure (OSCM), and that 
was defined as:  

                         
2

)()()()( sgGscCstTsaAW +++=  .                              (3) 

where A(s), T(s), C(s) and G(s) are the frequency component at N/3 of the Fourier 
Transform for sequence s. The values a, t, c and g are numerical complex constants 
obtained as a solution of an optimization problem proposed by the author to maximize 
the discriminatory capacity between coding and non-coding regions. This predictor 
demonstrated to be significantly better than the Spectral Content Measure for the 
sequences analyzed by Anasstasiou. 

Using an expression similar to (3), Kotlar proposes in [3] the Spectral Rotation 
Measure (SRM) (4), where μA, μT, μC and μG are the approximated average values, in 
coding regions, of arg(A(s)), arg(T(s)), arg(C(s)), and arg(G(s)) respectively; and σA, 
σT, σC and σG are the angular deviation corresponding to A(s), T(s), C(s), and G(s). 
The magnitude shown in equation (4), proposed by Kotlar, achieves an increase in the 
magnitude on coding regions when computing this measure. 
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In his paper Kotlar demonstrates on all experimental exons, and for all non-coding 
strands of length greater that 50 bp from the first 15 Chromosomes of S. cerevisiae, 
that this predictor is more efficiently that the other two exposed methods. The 
measures were calculated using chromosome 16 of S. cerevisiae, 

Based on these three predictors we designed a new predictor defined as a linear 
combination of them. In order to determine the linear combination coefficients, we 
first considered the True Positive Fraction (The fraction of bases in the sequence that 
are predicted as coding regions, when they are truly inside a coding region) detected 
only by each predictor using a sample composed by 25 DNA sequences from different 
sizes and belonging to three different organisms. In Figure 1 it is shown the 
distribution of these fractions associated to each predictor for all possible decision 
thresholds using a sliding window of length 351, which is a typical value according to 
[2] when computing the DFT. 

The distribution of the true positive fraction detected only by the Optimized 
Spectral Content Measure appeared as hardly noticeable, which led us to eliminate 
this predictor from the lineal combination. The performance of the two remaining 
predictors when using the ROC analysis is very similar (Figure 2), and after analyzing 
the similarity of the mean squared error of each predictor, we obtained the following 
equation: 

                                       [ ] [ ] [ ]knSkmRkP +=  .                                               (5) 
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Fig. 1. Distribution of the true positive fraction detected only by each predictor for all possible 
decision thresholds 

Where R[k] and S[k] are the Spectral Rotation Measure and the Spectral Content 
Measure respectively, and m and n are the inverse of the maximum value reached by 
the corresponding predictor when computing the sequence. The objective of the 
previous multiplication of the measures by the values m and n is to normalize these 
measures before adding them.   

2.3   Reducing the Computational Load 

The use of two predictors and a lineal combination of these predictors increases the 
computational load of the approach. Using the algorithm proposed by the authors in a 
previous paper [9] to calculate the DFT for sliding windows, which reduced at great 
extent the computational load associated to this task, we also reduced the general 
computation load, considering that the N/3 frequency component coefficient of the 
Discrete  Fourier Transform  for each window is computed once per indicator 
sequence.  

2.4   Evaluation Method: ROC Curves 

In order to measure and compare the efficacy of the proposed predictor with the other 
three, we have used receiver operating characteristic (ROC) curves [14, 15], which 
provide a global representation of the prediction accuracy.  

When we evaluate a dichotomic test (results can be only interpreted as positives or 
negatives), the sensibility is defined as the probability an individual be correctly 
classified when its real status is the one defined as positive, regarding the condition 
studied by the test. It’s also known as True Positive Fraction (TPF). The specificity is 
the probability an individual be correctly classified when its real status is the one 
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defined as negative. It is the result to subtract the False Positive Fraction (FPF)  
from 1. 

In Table 1 it is shown the statistical procedure to obtain the sensibility and the 
specificity, considering the problem of coding region prediction in DNA sequences. 

Table 1. Statistical procedure to obtain the sensibility and the specificity in coding region 
prediction 

 Coding region Non-coding region 
Positive Prediction True Positive (TP) False Positive (FP) 
Negative Prediction False Negative (FN) True Negative (TN) 

 
Sensibility (Ss) = TP/(TP+FN) = TPF 
Specificity (Sp) = TN/(TN+FP) = True Negative Fraction = 1 – FPF 
 
Basically the ROC curve plots for every possible decision threshold, which ranges 

from zero to the maximum value reached by the predictor, the pair (1-Sp, Ss) when 
computing the whole sequence and the results are compared with the real values. The 
closer the ROC curve is to a diagonal, the less useful is the predictor in order to 
discriminate coding and non-coding region of a DNA sequence. The more the curve 
moves to the upper left corner on the graph, the better the predictor.  

3   Results 

For the validation of the experiments all the techniques were applied to 25 genomic 
sequences with different features and sizes, belonging to three organisms: S. 
cerevisiae, S. pombe and C. elegans. These sequences can be retrieved directly from 
the Genbank database, maintained by National Center for Biotechnology Information 
(NCBI) [16]. 

Figure 2 shows the ROC curves associated to each predictor when computing the 
25 selected DNA sequences, using a sliding window of size 351. Notice that the graph 
corresponding to the proposed predictor (solid line) is more effective than the three 
others. The approximated values when calculating the area under the curve for each 
predictor are:  Proposed Predictor: 0.7767, Spectral Content Measure: 0.7352, 
Optimized Spectral Content Measure: 0.7319 and Spectral Rotation Measure: 0.7351; 
demonstrating that the Proposed Predictor increases the efficacy of the Spectral 
Content Measure in 6.12%. Using sliding window of lengths 180, 480 and 702 we 
obtained similar results.     

Figure 3 shows the graph obtained at using the proposed predictor to a DNA 
sequence composed by 16680 bp inside chromosome X of S. cerevisiae. Real coding 
regions are represented using the rectangles.  

In order to evaluate the computation time of the proposed predictor when using the 
fast algorithm described in [9], in Table 2 it is shown the average execution time, in 
seconds, when compute the Spectral Rotation Measure using the direct (traditional) 
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Fig. 2. ROC curves associated to each predictor. Proposed Predictor (Solid line), Spectral 
Content Measure (dash dot), Optimized Spectral Content Measure (dotted), Spectral Rotation 
Measure (dashed line). 

 

 

Fig. 3. Application of the proposed approach to a sequence contains 16680 bp inside 
chromosome X of S. cerevisiae. Rectangles indicate real coding regions.  

method and the proposed predictor using the fast algorithm for two sequences with 
different lengths and using two different window lengths, under the same conditions.  

The percentage of time used by the proposed predictor using the fast algorithm is 
about 3% of the time employed to compute the Spectral Rotation Measure using the 
direct method. 
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Table 2. Computation time comparison, in seconds, between the SRM using the direct method 
and the proposed preditor using the fast algorithm for different DNA strings  

DNA stretch length 8000 bp 16680 bp 
Window Length 351 702 351 702 
Spectral Rotation Measure 
using direct method 

1.4210 2.1700 2.9030 4.6050 

Proposed predictor using 
the fast algorithm 0.0470 0.0620 0.0930 0.1090 

4   Conclusions 

The prediction of coding regions in large DNA sequences is a basic problem to 
annotate genes. Digital Signal Processing techniques have been used successfully to 
solve this problem; however the current tools are still unable to predict all the coding 
regions present in a DNA sequence.  

In this work, a new predictor is proposed based on the linear combination of two 
other methods that showed good efficacy individually and also on a fast algorithm 
previously developed by the authors to reduce the computational load. The efficacy of 
the proposed predictor was evaluated by means of ROC curves, which showed a 
better performance in coding regions detection when compared to the previous 
methods. A computation time comparison between the Spectral Rotation Measure 
using the direct method and the proposed predictor using the fast algorithm 
demonstrated that even when combining two predictors the computational load does 
not increase significantly.  
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Abstract. A major difficulty of text categorization problems is the high 
dimensionality of the feature space. Thus, feature selection is often performed 
in order to increase both the efficiency and effectiveness of the classification. In 
this paper, we propose a feature selection method based on Testor Theory. This 
criterion takes into account inter-feature relationships. We experimentally 
compared our method with the widely used information gain using two well-
known classification algorithms: k-nearest neighbour and Support Vector 
Machine. Two benchmark text collections were chosen as the testbeds: Reuters-
21578 and Reuters Corpus Version 1 (RCV1-v2). We found that our method 
consistently outperformed information gain for both classifiers and both data 
collections, especially when aggressive feature selection is carried out. 

Keywords: feature selection, typical testors, text categorization. 

1   Introduction 

Text Categorization (TC - also known as text classification) is the task of assigning 
documents to one or more predefined categories (classes or topics). This task relies on 
the availability of an initial corpus of classified documents under these categories 
(known as training data). Depending on the application, TC may be either single-label 
(i.e., exactly one category must be assigned to each document) or multi-label (i.e., 
several categories can be assigned to each document).  

Text Categorization is an important component in many information management 
tasks such as spam filtering, real time sorting of email or files into folders, document 
routing, document dissemination, topic identification, classification of Web pages and 
automatic building of Yahoo!-style catalogs. That is why during the last decade there 
has been a great interest from researchers. 

TC literature mainly relies on Machine Learning methods such as probabilistic 
classifiers, decision trees, nearest neighbour classifiers, support vector machines and 
classifier committees, to mention a few. However, a major difficulty of text 
categorization problems is the high dimensionality of the feature space, which can be 
tens or hundreds of thousands of terms for even a moderate-sized text collection. 
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Most of the features are irrelevant and others introduce noise that diminishes the 
classifier effectiveness. Thus, feature selection becomes a crucial task for improving 
both the efficiency and effectiveness of the classification algorithms. Moreover, 
feature selection techniques reduce overfitting (i.e., the tendency of the algorithm to 
better classify the data it has been trained on than new unseen data), and makes the 
problem more manageable for the classifier. 

Let τ be the original set of features and ϕ  a certain feature selection criterion 

function. Without any loss of generality, let us consider a higher value of ϕ  to 

indicate a better feature subset. Formally, the problem of feature subset selection 
consists of finding a subset τ’ ⊆ τ such that τ ′ « τ  and )(max)( t

t
ϕτϕ

τ⊆
=′ [1]. 

According to John et al. [2] there are two main approaches to feature subset 
selection used in Machine Learning: wrapper and filtering. The idea of the wrapper 
approach is to select feature subset using the evaluation function based on the same 
algorithm that will be used for learning on domain represented with selected feature 
subset. This can result in a rather time consuming process, since, for each candidate 
feature subset that is evaluated during the search, the target learning algorithm is run 
usually several times. This approach has the advantage of being tuned to the learning 
algorithm being used. However, the sheer size of the space of different term sets 
makes its cost-prohibitive for standard TC applications. On the contrary, in the 
filtering approach a feature subset is selected independently of the learning method 
that will use it. It keeps terms that receive the highest score according to a function 
that measures the “importance” of the term for the TC tasks. Because of 
computational complexity the filtering approach is preferable over the wrapper 
approach to feature subset selection in TC. We will explore this solution in this paper. 

The filtering methods can be also divided into two categories: Best Individual 
Feature (BIF) selection methods and global subset selection methods. In the former, 
some evaluation function that is applied to a single feature is used. All the features are 
independently evaluated, a score is assigned to each of them and the features are 
sorted according to the assigned score. Then, a predefined number of the best features 
is taken to form the best feature subset. BIF selection methods completely ignore the 
existence of other words and the manner how the words work together. Scoring of 
individual features can be performed using some of the measures used in machine 
learning, for instance: information gain [3], document frequency, mutual information, 
χ2 statistic [4] and odds-ratio [5]. The mathematical definitions of these functions are 
summarized in [6]. Yang et al. [4], Mladenic et al. [7], Rogati et al. [8] and Forman 
[9] give experimental comparison of the above mentioned measures in text 
categorization tasks. Information gain was reported to work well on text data.  

As opposed to the BIF methods the global selection procedures reflect to a certain 
extent the dependencies between words. These methods include, for instance, forward 
and backward selection algorithms and oscillating search. Forward selection 
algorithms start with an empty set of features and add one feature at a time until the 
final feature set is reached. Backward elimination algorithms start instead with a 
feature set containing all features and remove features one at a time. Oscillating 
search [10] is not dependent on pre-specified direction of search. It is based on 
repeated modification of the current subset of features by alternating the so-called 
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down- and up-swings. However, these sequential methods can show to be too slow to 
yield results in reasonable time, because of their combinatorial nature. 

In this paper, we propose a new feature selection method based on Testor Theory 
[11] for text categorization tasks. This criterion not only takes into account inter-
feature relationships but also it is computationally feasible. We experimentally 
compared our method with information gain using k-nearest neighbour and Support 
Vector Machine classifiers over two benchmark text collections. We found that our 
method consistently outperformed information gain for both classifiers when 
aggressive feature selection is carried out. 

2   Basic Concepts 

Before presenting our feature selection method, we review the main definitions of the 
Testor Theory [11]. 

Let ζ  be the set of training samples, each of them described in terms of features 
τ={t1,…,tn} and grouped into the classes C1,…,Cr, r ≥ 2. Each feature ti takes values 
in a set Di, i = 1,…,n. Let M be the training matrix, whose rows represent the training 
samples and columns represent the features describing them.  

A comparison criterion of dissimilarity ψi : Di x Di → {0,1} is associated to each ti 
(i=1,…,n). Applying these comparison criteria for all possible pairs of objects 
belonging to different classes in M, a Boolean comparison matrix is built. Notice that 

the number of rows in the comparison matrix is ∑ ∑
−

= +=
=′

1

1 1

r

i

r

ij
ji CCm , where |Ci| 

denotes the number of objects in class Ci. 
In the Testor Theory, the set of features π = {ti1

,…,tik
} ⊆ τ and their corresponding 

set of columns {i1,...,ik} of a matrix M is called a testor, if after removing from M all 
columns except {i1,...,ik}, all rows of M corresponding to distinct classes are different. 
In terms of the comparison matrix, a testor can be described as a set of features for 
which a whole row of zeros does not appear in the remainder comparison submatrix, 
after removing all the other columns. A testor is called irreducible (typical) if none of 
its proper subsets is a testor [11].  

Thus, the set of all typical testors of a matrix M contains the combinations of 
features that distinguish the classes. 

3   Proposed Feature Selection Method 

Broadly speaking, our approach to feature selection is a combination of the individual 
and global approaches. More specifically, we use individual feature selection by 
applying word frequency criterion to select a first subset of features. Then, we apply 
Testor Theory to select the subset of these features that better discriminate the 
different target classes. Thus, this approach takes profit from both viewpoints: 
individual filtering speeds-up notably the selection of features and the global one 
takes into account possible feature correlations and discriminating power. Moreover, 
Testor Theory provides us a natural method to select for each class, independently of 
its weight and training set size, the set of features that better discriminates their 
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examples from the rest of classes. This approach alleviates the problem of unbalanced 
classes, which is a very common problem in TC, and implies that aggressive feature 
selection affect to all the classes not only the smaller ones. Next paragraphs describe 
in detail how Testor Theory is applied to filter features. 

In our text categorization problem, ζ is the set of training documents, τ contains all 
terms occurring in the documents and C1,…,Cr are the categories. Each document dj is 

represented as a vector of term weights ),...,( 1
j

n
j

j wwd = . The selection of terms 

includes removing tags and stop words, lemmatization and proper name recognition. 
Weights are computed by using the standard ltc variant of tf-idf function [12], i.e., 

)(
log)),(log1(

i
ji

j
i tdf

dtTFw
ζ

⋅+= , where TF(ti,dj) denotes the number of times ti 

occurs in dj and df(ti) is the number of documents in ζ in which ti occurs at least once. 
The representative of a category Ci, denoted as ic , is calculated as the average of 

the documents of that category, that is, 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

∑∑
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Given a category Ci, let T(Ci) = {t1,…, tnci
} be the most frequent terms in the 

representative ic , i.e., the terms tj such that ε≥ic
jw , j = 1,…, nci

 and ε is an user-

defined parameter that represents the minimum frequency required to consider a term 
in the global subset selection process.  

For each category Ci, we construct a matrix MR(Ci), whose columns are the terms 
of T(Ci), and its rows are the representatives of all categories, described in terms of 
these columns. Notice that this matrix is different in each category. 

In order to calculate the typical testors, we considered two classes in the matrix 
MR(Ci). The first class is only formed by ic and the second one is formed by the other 

category representatives. Notice that our goal is to distinguish the category Ci from 
the other categories.  

For the calculus of the typical testors, the key concept is the comparison criterion 
of the values of each feature. In our case, the features that describe the documents are 
the terms and its values are the weights of terms. The comparison criterion applied to 
all features is:  

⎪⎩

⎪
⎨
⎧ ≥−=

otherwise

wwifww
ji

ji
c
k

c
k

c
k

c
k

0

1),( δψ , 

where ji c
k

c
k ww ,  are the weights in the category representative ic  and jc  in the 

column corresponding to the term tk respectively, and δ is a dissimilarity threshold (in 
our experiments we use δ=0.15). As it can be noticed, this criterion considers the two 
values (weights of the term tk) different if the term tk is frequent in category Ci and not 
frequent in category Cj. 

In order to determine all typical testors of each matrix MR(Ci), we use the 
algorithm LEX [13], which computes efficiently the typical testors of a data 
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collection. Finally, the selected feature subset is the union of typical testors of all 
categories. Notice that, unlike global feature selection methods, the number of desired 
features is not fixed beforehand, but it depends on the ε parameter. 

The proposed feature selection method is summarized as follows: 

Algorithm Feature selection 
Input: M: training matrix. 

   ε: term frequency threshold. 
Output: τ’: set of selected features. 
1. For each category C: 

a. Construct the matrix MR(C). 
b. Calculate the typical testors of the matrix MR(C), 

regarding two classes: C and its complement.   
c. Let U(C) be the union of all typical testors 

found in the step b. 

2. τ’ = ∪
C

CU )(  

4   Experimental Results 

As mentioned before, Information gain had been one of the best performing  
feature selection measures for text categorization. It takes into account the presence  
of the term in a category as well as its absence and can be defined by 

∑ ∑
∈ ∈ ⋅

⋅=
},{ },{

2 )()(

),(
log),(),(

ii kkCCC ttt
ik CPtP

CtP
CtPCtIG  [6]. In this formula, probabi-

lities are interpreted on an event space of documents (e.g. ),( ik CtP  indicates the 

probability that, for a random document d, term tk does not occur in d and d belongs to 
category Ci), and are estimated by maximum likelihood. We use the maximum value 
over all categories as the global score. 

In this section, we compare the proposed feature selection method with 
Information gain. With this aim, two high-performing classifiers for the experiments: 
k-Nearest neighbour (parallel implementation, [14]) and Support Vector Machines 
(LibSVM, [15]) are selected. We used the standard C-SVC form of the SVM 
classifier with C=1, the linear kernel and tolerance of termination criterion = 0.1. No 
data scaling has been done. We also used the binary approach, which extends the one-
against-all multi-class method for multi-label classification. 

4.1   Data Sets 

In our experiments two benchmark text collections were chosen as the testbeds: 
Reuters-215781 and Reuters Corpus Version 1 (RCV1-v2) [16]. The distribution of 
training documents into the categories is quite unbalanced in both collections. 

                                                           
1 The Reuters-21578 collection may be freely downloaded from http://kdd.ics.uci.edu.  
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Reuters-21578 consists of a set of 12902 news stories classified under 135 
categories related to economics. In this paper, we used the subset of 90 categories 
with at least one positive training example and one test example. This collection is 
partitioned (according to the “ModApté” split we have adopted) into a training set of 
7058 documents and a test set of 2740 documents. The dimension of the document 
space is 26602 terms. 

RCV1-v2 collection consists of over 800000 newswire stories that have been 
manually classified into 103 categories. The topic codes were selected as class labels. 
This collection is partitioned (according to the LYRL2004 split we have adopted) into 
a training set of 23149 documents and a test set of 781265 documents. The dimension 
of the document space is 47152 terms. 

As we used a parallel implementation of k-Nearest neighbour classifier [14], our 
experiments are carried out over the entire RCV1-v2 collection. However, SVM is 
unable to handle such a collection, and consequently we used a small percentage (2%) 
of it. The documents were randomly chosen, and split into a 70% training set and 30% 
test set, while maintaining the distribution of the class probabilities in the original 
training and test sets. The resulting set has 11224 training documents and 4815 test 
documents. 

4.2   Results 

The first experiments are conducted to compare the categorization performance of our 
feature selection method (TT) against Information Gain (IG) using k-NN and SVM 
classifiers on the two above-mentioned Reuters collections. In our experiments, we 
set ε = {0.1, 0.15, 0.2, 0.25, …, 0.7} to obtain feature subsets of different sizes. For 
instance, we obtained a subset of 502 features in Reuters-21578 and 639 features in 
RCV1-v2 collection when ε is fixed to 0.4. Figures 1, 2, 3 and 4 show the classifiers 
performance w.r.t. different feature subset selections (including all features). 
Effectiveness is evaluated with both micro-averaged and macro-averaged F1 
measures. Whereas micro-F1 depends on the size of the evaluated categories, macro-
F1 depends on the number of categories to be evaluated. Thus, a classifier that 
behaves well on large categories will obtain a high micro-F1 value, but if it does not 
with small ones it will obtain low macro-F1. This is because in text collections, large 
categories cover a very large portion of the collection and small categories are much 
more numerous than large ones. As a result, when applying feature selection it is 
more difficult to improve macro-F1 values than micro-F1 ones. 

Several observations can be made by analyzing the results in Figures 1, 2, 3 and 4. 
First, our feature selection method consistently outperformed information gain for 
both classifiers and both data collections at all number of selected features. The 
increase of performance is much larger for macro-averaged F1 (27% for Reuters-
21578 and 18% for RCV1-v2 in average) than micro-averaged F1 (0.37% for Reuters-
21578 and 5% for RCV1-v2 in average). This fact seems to suggest that our feature 
selection method is more insensitive to the problem of unbalanced class distribution. 
Another interesting observation is that the lesser number of selected features, the 
higher increase of performance is obtained. 
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Fig. 1. Macro-averaged F1 scores for Reuters-21578 collection 
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Fig. 2. Micro-averaged F1 scores for Reuters-21578 collection 

A second fact that also emerges clearly from the figures is that our method 
achieves better F1 scores with very aggressive feature selection than those obtained 
when all features are regarded for both classifiers and both text collections. 

Finally, in Figure 1 we observe that a good feature selection method enables k-NN 
classifier surpasses SVM’s performance. 

Our second experiment was focused on evaluating the time performance of our 
feature selection method (see Fig. 5). It can be seen that the behaviour is exponential 
as the number of selected features increases. From a practical point of view this is not 
a problem. Notice that execution times are negligible for aggressive feature selections,  
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Fig. 3. F1 scores for k-NN classifier on the entire RCV1-v2 collection 
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Fig. 4. F1 scores for SVM classifier on the small percentage (2%) of the RCV1-v2 collection 

at the same time that good effectiveness improvements are achieved for them (see 
Figures 1-5). When the feature selection is not so aggressive (e.g. 2209 features), the 
combinatorial explosion arises but at the same time effectiveness improves very 
slightly. In this way, this indicates that global methods (as ours) are useful when 
applying aggressive feature selection, and that individual methods (e.g. tf-idf) are 
useful when selecting large feature subsets. 

Comparing to other global methods, our execution times contrast with, for 
example, the 11 hours that Oscillating search takes to select around 2000 features in a 
subset of our test collection [17]. 
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Fig. 5. Computational time of our feature selection method over Reuters-21578 collection 

5   Conclusions 

In this paper, a feature selection method that combines word frequency criterion and 
Testor Theory for Text Categorization tasks has been proposed. This method not only 
takes into account feature relationships and discriminating power but also it is 
computationally feasible. In this sense, it takes advantages from both individual and 
global methods for feature selection. 

The experiments were conducted on two benchmark text collections (Reuters-
21578 and RCV1-v2) using two high-performing classifiers (k-nearest neighbour and 
SVM). Results show that our method consistently outperformed information gain, 
especially when aggressive feature selection is carried out. The better performance 
improvements are obtained with respect to macro-averaged F1. This suggests that the 
proposed method is not affected by unbalanced class distribution. 

The proposed method achieves good F1 scores with very aggressive feature 
selection, and even better than those obtained when all features are regarded. Thus, it 
may significantly ease the application of more powerful and computationally 
intensive machine learning methods to very large text categorization problems which 
are otherwise intractable. 

As future work, we plan to study how this feature selection method can be applied 
in the context of adaptive document filtering tasks. 
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Abstract. In this paper the Methodology of conceptual characterization
by embedded conditioning CCEC, oriented to the automatic generation of
conceptual descriptions of classifications that can support later decision-
making is presented, as well as its application to the interpretation of
previously identified classes characterizing the different situations on a
WasteWater Treatment Plant (WWTP). The particularity of the method
is that it provides an interpretation of a partition previously obtained
on an ill-structured domain, starting from a hierarchical clustering. The
methodology uses some statistical tools (as the boxplot multiple, intro-
duced by Tukey, which in our context behave as a powerful tool for nu-
meric variables) together with some machine learning methods, to learn
the structure of the data; this allows extracting useful information (using
the concept of characterizing variable) for the automatic generation of
a set of useful rules for later identification of classes. In this paper the
usefulness of CCEC for building domain theories as models supporting
later decision-making is addressed.

Keywords: Hierarchical clustering, class interpretation, Knowledge Dis-
covery and Data Mining.

1 Introduction

In automatic classification where the classes composing a certain domain are
to be discovered, one of the most important required processes and one of the
less standardized one, is the interpretation of the classes, closely related with
validation[1] and critical in the later usefulness of the discovered knowledge.
The interpretation of the classes, so important to understand the meaning of
the obtained classification as well as the structure of the domain, use to be done
in an artistic-like way. But this process becomes more and more complicate as
the number of classes grows. This work tries to face the problem of the automatic
generation of useful interpretations of classes in such a way that decisions about
the treatment of a new object can be modelled, to develop, in the long term, a
software tool which supports decision-making.
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Conceptual characterization by embedded conditioning (CCEC)[2] is the pro-
posal presented in this paper to cover these goals. Given a clustering, CCEC
provides an automatic interpretation for it that supports the later construction
of intelligent decision support systems for assisting decision-making. A particular
application to WWTP is addressed. The presented proposal integrates different
findings from a series of previous works [3][4] in a single methodological tool
which takes advantage of the hierarchical structure of the clustering to over-
come some of the limitations observed in [3], [5]. The application is presented in
next section in order to be used for illustration in §3.
This paper is organized as follows: After the introduction, WWTP are presented
in §2 as well as, the description of the specific data base that has been analyzed,
the basic concepts are in §3. The §4 presents the proposed methodology CCEC
and the results of applying CCEC to the data described in §5. Finally in §6 the
conclusions and the future work are addressed.

2 Application

In this paper a real WWTP is used to validate the proposed methodology [4].
First, a very brief description of the general WWTP process is briefly introduced
the water flows sequentially through three or four processes (see [6] for a detailed
description of the process): (i): In the pretreatment, an initial separation of solids
from wastewater is performed. (ii) Primary treatment consists of leaving the
wastewater in a settler for some hours. Solids will deposit down the settler and
could be sent out. (iii) Secondary treatment occurs inside a biological reactor; a
population of microorganisms (biomass) degrades the organic matter solved in
the wastewater. (iv) In the advanced treatment another settler is used to separate
the water from the biomass. The settler output (solids or biomass) produces a
kind of mud which is the input of another process called sludge line. Next the
plant used in this research described is a WWTP is located in Catalunya (Spain).
Data analyzed in this work is a sample of 396 observations taken from September
the first of 1995 to September the 30th of 1996. Each observation refers to a daily
mean, and it is identified by the date itself.

The state of the Plant is described through a set of 25 variables, consid-
ered the more relevant upon expert’s opinions. They can be grouped as: (i)
Input (measures taken at the entrance of the plant): Q-E: Inflow wastewa-
ter (daily m3 of water);FE-E Iron pre-treatment (g/l); pH-E; SS-E: Suspended
Solids (mg/l); SSV-E: Volatile suspended solids (mg/l); COD-E: Chemical or-
ganic matter (mg/l); BOD-E: Biodegradable organic matter (m/l). (ii) After
Settler (measures taken when the wastewater comes out of the first settler):
PH-D: pH; SS-D: Suspended Solids (mg/l); SSV-D: Volatile suspended solids
(mg/l); COD-D: Chemical organic matter (mg/l); BOD-D: Biodegradable or-
ganic matter (m/l). (iii) Biological treatment (measures taken in the biological
reactor): Q-B: Biological reactor-flow; V30: Index at the biological reactor (mea-
sures the sedimentation quality of the mixed liquor, in ml/l); MLSS-B: Mixed
liquor suspended solids at the biological reactor; MLVSS-B: Mixed liquor volatile



Towards Automatic Generation of Conceptual Interpretation of Clustering 655

suspended solids: MCRT-B: Mean cell residence time at the biological reactor.
(iv) Output (when the water is meeting the river): PH-S: pH ; SS-S: Suspended
Solids (mg/l); SSV-S: Volatile suspended solids (mg/l); COD-S: Chemical or-
ganic matter (mg/l); BOD-S: Biodegradable organic matter (m/l). (v) Other
variables: QR-G: Recirculated Flow ; QP-G: Purged flow; QA-G: Air inflow.

0

4149.89

8299.79

cr385 cr382

cr388

�

cr390

cr391

cr393

cr394 The standard input of a clustering algorithm
use to be a data matrix with the values of
K variables X1 . . . XK (numerical or not) ob-
served over a set I = {1, . . . n} of individu-
als. Variables are in columns, while individ-
uals in rows. Cells contain the value (xik),
taken by individual i ∈ I for variable Xk, (k =
1 : K). The set of values of Xk is named
Dk = {ck

1 , ck
2 , ..., ck

s} for categorical variables
and Dk = rk for numerical ones, being rk

= [minXk,maxXk] the range of XK . A par-
tition in ξ classes of I is denoted by Pξ =
{C1, ..., Cξ}, and τ = {P1,P2,P3,P4, ...,Pn}
is an indexed hierarchy of I. Finally, P2 =
{C1, C2} is a binary partition of I. Usually, τ
is the result of a hierarchical clustering over
I, and it can be represented in a graphical way
in what is known as a dendrogram (or hierar-
chical tree, see figure 1, [4]).

Fig. 1. Left: Hierarchical tree [τEn,G
Gi2,R1][2]; Right: Notation

The data base previously presented, was classified in a previous work [4] by
using clustering based on rules [3], producing the hierarchical tree of Figure
1(left).

The Figure 2 contains the class panel graph [7] of the 25 variables regard-
ing the top partition P2 = {C393, C392} where the multiple boxplot [8] of vari-
ables for each class are displayed. As usual in hierarchical clustering, the final
partition is the horizontal cut of the tree that maximizes the ratio between
heterogeneity between classes with respect to homogeneity within classes, what
guaranties the distinguishability of classes. The result is a 4-classes partition
P4 = {C392, C389, C390, C383}.

3 Basic Concepts

Four main concepts are in the kernel of this work (basic notation is introduced
in Figure 1(right)):

– Variable Xk is Totally characterizing of class C ∈ P , if all the values taken
by Xk in class C are characteristic of C (objects of other classes take other
values). As an example, see variables Q-E or QR-G in Figure 2.

– Variable Xk is Partially characterizing of class C ∈ P if there is at least
one characteristic value of C, although the class can share some other values
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Classe nc Q-E QB-B QR-G QP-G QA-G

classer393

classer392

390

6

◦
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◦

Classe nc FE-E PH-E SS-E SSV-E DQO-E

classer393

classer392

390

6

◦∗∗∗∗∗∗∗ ◦∗∗∗∗∗∗ ◦◦◦◦◦◦◦◦◦ ◦◦◦
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Classe nc DBO-E PH-D SS-D SSV-D DQO-D
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390

6
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Classe nc DBO-S V30-B MLSS-B MLVSS-B MCRT-B
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Fig. 2. class panel graph of P2

with other classes. See PH-E in Figure 2, which is partially characterizing
the class C392 if it takes very low or high values.

– Covering (Cov): Given a rule r : xik ∈ Ik
s −→ C the covering of r is the num-

ber of objects in I that satisfy the rule. Cov(r) = card{i ∈ C tq xik ∈ Ik
s }

– Relative covering (CovR): Given a rule, the relative covering is the propor-

tion of of class C that satisfy the rule. CovR(r) = card{i ∈ C tq xik∈Ik
s }

card{C} ∗100

Boxplot based discretization (BbD) is presented in [2], [9] and revised in [10],
as an efficient way of transforming a numerical variable into a qualitative one
in such a way that the cut points for discretizing identify where the subsets of
intersecting classes between classes change and, given Xk, P , it consists of the
following steps:
1. Calculate the minimum (mk

C) and maximum (Mk
C) of Xk inside any class.

Built Mk = {mk
C1

, . . . , mk
Cξ

, Mk
C1

, . . . , Mk
Cξ

}, where card(Mk) = 2ξ

2. Built the set of cutpoints Zk by sorting Mk in increasing way into Zk =
{zk

i ; i = 1 : 2ξ}. At every zk
i the intersection between classes changes arity.

3. Built the set of intervals Ik induced by P on Xk by defining an interval
Ik
s between every pair of consecutive values of Zk. Ik = {Ik

1 , . . . , Ik
2ξ−1} is

the boxplot based discretization of Xk. The Ik
s , s ∈ {1, 2ξ − 1}, intervals

are variable length and the intersection among classes changes from one to
another.

As an example, Table 1(left) contains descriptive statistics of Q-E versus P2. In
the right hand side of Table 1 the set of minimums and maximums of every class
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Table 1. (left): Summary statistics for Q-E vs P2; (right): MQ−E, Set of extreme
values of Q-E|C ∈ P2 and ZQ−E , corresponding ascendant sorting

Class C393 C392
Var. N = 396 nc = 390 nc = 6

Q-E X̄ 42,112.9453 22,563.7988
S 4,559.2437 1,168.8481

min 29,920 20,500
max 54,088.6016 23,662.9004
N* 1 0

MQ−E ZQ−E

29,920 20,500

20,500 23,662.9004

54,088.6016 29,920

23,662.9004 54,088.6016

MQ−E is sorted into ZQ−E and its values can be considered as the cut points of a
discretization of Q-E in 3 intervals: IQ−E = {IQ−E

1 , IQ−E
2 , IQ−E

3 }, with IQ−E
1 =

[20500.0, 23662.9], IQ−E
2 = (23662.9, 29920.0), IQ−E

3 = [29920.0, 54088.6]. Thus,
IQ−E is a discretization of Xk which takes 3 values. Only elements of C392 can
take value IQ−E

1 . Only elements of C393 take value IQ−E
3 and IQ−E

2 is empty. For
variable ISS−S = {ISS−S

1 , ISS−S
2 , ISS−S

3 }, with ISS−S
1 = [2.80, 3.200), ISS−S

2 =
[3.20, 20.00], ISS−S

3 = (20.0, 174.8]. Only elements of C391 can take value ISS−S
1 ;

along ISS−S
2 ,C391 is intersectingwithC389 andalong ISS−S

3 doesnot intersect.The
values of Mk are identifying the points where intersections among classes change.

The methodology boxplot based induction rules (BbIR) is presented in [9]. It
is a method for generating probabilistic concepts with a minimum number of
attributes in the antecedent, using of the boxplot based discretization of Xk.

1. Use the boxplot based discretization to build rs : Ik = {Ik
1 , Ik

2 , Ik
3 , . . . , Ik

2ξ−1}.
2. Build table Ik × P where rows are indexed by s ∈ {1, 2ξ − 1}, and columns

by C ∈ {1, ξ}.
3. Built the table Ik | P by dividing the cells of Ik ×P by the row totals. Cells,

psc = P (C|Ik = Ik
s ) = P (i ∈ C|xik ∈ Ik

s ) = card{i : xik∈Ik
s ∧i ∈C}

card{i∈I:xik∈Ik
s } = nsc�

∀s nsc

If ∃C : psc = 1 & Cov(rs) = 100%, then Xk is a totally characterizing
variable of C.

4. For every cell in table Ik | P produce the rule: If xik ∈ Ik
s

psc−→ i ∈ C

For example, see Table 2(left) IQ−E × P2, since card{i ∈ I : xik ∈ IQ−E
1 } =

card{i ∈ I : i ∈ C392} = card{i ∈ I : xik ∈ IQ−E
1 ∧ i ∈ C392} = 6. Then

p1C392 = 1 and the rule: xQ−E,i ∈ (23662.9, 29920.0] 1.0−→ C392 is generated.

From IQ−E | P2 (see Table 2(center)) the following system of probabilistic
rules, can be induced for the variable Q-E:

rQ−E
1,classer393 : xQ−E,i ∈ [20500.0, 23662.9] 0.0−→ classer393

rQ−E
1,classer392 : xQ−E,i ∈ [20500.0, 23662.9] 1.0−→ classer392

rQ−E
3,classer393 : xQ−E,i ∈ [29920.0, 54088.6] 1.0−→ classer393

rQ−E
3,classer392 : xQ−E,i ∈ [29920.0, 54088.6] 0.0−→ classer392

Finally too more concepts are used in this work.
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Table 2. (left): IQ−E × P2; (center): IQ−E | P2 table; (right): P2 × P3

C2
392 C2

393

IQ−E
1 6 0

IQ−E
2 0 0

IQ−E
3 0 389

C2
392 C2

393

IQ−E
1 1 0

IQ−E
2 0 0

IQ−E
3 0 1

P3 vs P2 C2
393 C2

392

C3
392 0 6

C3
391 320 0

C3
389 70 0

4 The Metodology

CCEC takes advantage of the existence of τ , and uses the property of any binary
hierarchical structure that Pξ+1 has the same classes of Pξ except one, which
splits in two subclasses in Pξ+1. Binary hierarchical structure will be used by
CCEC to discover particularities of the final classes step by step also in hierarchi-
cal way. The CCEC [2] allows generation of automátic conceptual interpretations
of a given partition P ∈ τ . The steps to be followed are described bellow. The
application to the WWTP is illustrated in section §5:

1. Cut the tree at highest level (make ξ = 2 and consider P2 = {C1, C2}).
2. Use the boxplot based discretization presented in [9] and revised in [10], to

find (total or partial) characteristic values for numerical variables [5].
3. Use boxplot based induction rules (BbIR), to induce a the knowledge Base

describing both classes.
4. For classes in P2, determine concepts Aξ,Xk

1 : “[Xk ∈ Ik
s ]”, Aξ,Xk

2 : ¬Aξ,Xk

1
associated to C1, C2, by taking the intervals provided by a totally character-
istic variable or the partial one with greater relative covering and psc = 1.

5. Go down one level in the tree, by making ξ = ξ +1 and so considering Pξ+1.
As said before Pξ+1 is embedded in Pξ in such a way that there is a class
of Pξ split in two new classes of Pξ+1, namely Cξ+1

i and Cξ+1
j and all other

classes are common to both partitions.
Since in the previous step Cξ+1

i ∪ Cξ+1
j were conceptually separated from

the rest, at this point it is only required to find the variables which separate
(or distinguishes) Cξ+1,Xk

i from Cξ+1,Xk

j , by repeating steps 2-4. Suppose
Bξ+1,Xk

i and Bξ+1,Xk

j the concepts induced from Cξ+1,Xk

i and Cξ+1,Xk

j , in
the step ξ + 1.

6. Integrate the extracted knowledge of the iteration ξ + 1 with that of the
iteration ξ, by determining the compound concepts finally associated to the
elements of Pξ+1. The concepts for the classes of Pξ+1 will be: Aξ+1,Xk

q =
Aξ,Xk

q , Aξ+1,Xk

i = ¬Aξ,Xk
q ∧ Bξ+1,Xk

i and Aξ+1,Xk

j = ¬Aξ,Xk
q ∧ Bξ+1,Xk

j

7. Make ξ = ξ + 1, and return to the step 2) repeating until Pξ = P .

5 Results

The 2-class Partition. For the presented data, P2 = {C393, C392}. Figure 2
shows the class-panel graph of P2 [7]. As stated in §3, Ik is built using Boxplot
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based discretization (BbD) for all variables. Table 2(left) shows the crossing of
IQ−E and P2. Then the Ik | P2, table is built and totally characterizing variables
are identified as those with Ik | P table having one 1 per row. Next is to use
BbIR to generate all the rules induced for P2. Only rules with psc = 1 are
considered. Totally characterizing variables are those with psc = 1 and CovR =
100% (Q-E, QB-B, QR-G, QP-G, MCRT-B). In this case any of them is useful
for conceptualization. Here Q-E is choosen. The Table 3 shown the knowledge
Base whit certain rules (psc = 1) for classer392.

Since Q-E is a totally characterizing variable the following concept association
can be done:
– A2,Q−E

C392
= “xQ−E,i ∈ [20500.0, 23662.9]” is associated to C392

– A2,Q−E
C393

= “xQ−E,i ∈ [29920.0, 54088.6]” is associated to C393

Or, in other words:
– Class C392, “Low values of Inflow wastewater”.
– Class C393, “High values of Inflow wastewater”.
Being low and high defined according to the above numeric limits. Any totally

characterizing variable could be used instead. The next step is to go one level
down the tree.

The 3-class partition. Take P3 = {C392, C391, C389} and first identify corre-
spondences between the classes of P2 = {C393, C392} and P3 ={C392, C391, C389}.
Table 2(right) shows the crossing and elicits that class C393 splits into C391 (re-
ferred as C3

i in methodology ), C389 (referred as C3
j in methodology) while C392

remains in both P2 and P3 (C392 is referred as C2
i in methodology). From the

previous iteration it is already known that there is a common characteristic of
both C391 and C389 (Q-E is greater) which distinguishes them from C392 (with
lower Q-E). Thus, it is only required to find the separation between C391 and
C389. A similar procedure as the used in previous step for separating C392 and
C393 was used with all the variables regarding C391 and C389.

Totaly characterizing variables do not exists here. So partially characterizing
variables with greater relative covering are considered, in this case SS-D and
SSV-D, using variable SS-D for this example. The following system of proba-
bilistic rules than can be induced for the variable SS-D in P3 \ {C392}:

rSS−D
2,classer391 : xSS−D,i ∈ [63, 136]

0.8547−→ classer391

rSS−D
3,classer391 : xSS−D,i ∈ (136, 192]

1.0−→ classer391, being B3,SS−D
391 = xSS−D,i ∈ (136, 192]

rSS−D
1,classer389 : xSS−D,i ∈ [48.0, 63)

1.0−→ classer389 , being B3,SS−D
389 = xSS−D,i ∈ [48, 63)

Combining with the results of previous iteration of CCEC leads on the fol-
lowing interpretation of P3:
-Class C392 is such that “Q-E is in [20500.0, 23662.9]” (A2,Q−E

392 )
-Class C391 is such that “Q-E is in [29920.0,54088.6]” and
“SS-D is in (136,192]” (¬A2,Q−E

392 ∧B3,SS−D
391 )

-Class C389 is such that “Q-E is in [29920.0,54088.6]” and
“SS-D is in [48, 63)” (¬A2,Q−E

392 ∧B3,SS−D
389 )
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Table 3. Knowledge Base for classer392

Concep. Rules Cov CovR

A2,Q−E
392 rQ−E

1,classer392 : xQ−E,i ∈ [20500.0, 23662.9] 1.0−→ classer392 6 100%

A2,QB−B
392 rQB−B

1,classer392 : xQB−B,i ∈ [19883.0, 22891.0] 1.0−→ classer392 6 100%

A2,QR−G
392 rQR−G

1,classer392 : xQR−G,i ∈ [17932.6, 18343.5] 1.0−→ classer392 6 100%

A2,QP −G
392 rQP−G

1,classer392 : xQP−G,i ∈ [0.0, 0.0] 1.0−→ classer392 6 100%

A2,QA−G
392 rQA−G

1,classer392 : xQA−G,i ∈ [96451.0, 124120.0) 1.0−→ classer392 3 50%

A2,SSV −E
392 rSSV −E

1,classer392 : xSSV −E,i ∈ [19.0, 30.0) 1.0−→ classer392 1 16,7%

A2,DQO−E
392 rDQO−E

1,classer392 : xDQO−E,i ∈ [27.0, 100.0) 1.0−→ classer392 3 50%

A2,DBO−E
392 rDBO−E

2,classer392 : xDBO−E,i ∈ [73.0, 73.0] 1.0−→ classer392 1 16,7%

A2,SS−D
392 rSS−D

1,classer392 : xSS−D,i ∈ [40.0, 48.0) 1.0−→ classer392 2 33,33%

A2,SSV −D
392 rSSV −D

1,classer392 : xSSV −D,i ∈ [13.0, 30.0) 1.0−→ classer392 3 50%

A2,DQO−D
392 rDQO−D

1,classer392 : xDQO−D,i ∈ [27.0, 90.0) 1.0−→ classer392 3 50%

A2,DBO−D
392 rDBO−D

2,classer392 : xDBO−D,i ∈ [54.0, 54.0] 1.0−→ classer392 1 16,7%

A2,MLSS−B
392 rMLSS−B

3,classer392 : xMLSS−B,i ∈ (2978.0, 3294.0] 1.0−→ classer392 2 33,33%

A2,MLV SS−B
392 rMLV SS−B

3,classer392 : xMLV SS−B,i ∈ (2054.0, 2100.0] 1.0−→ classer392 1 16,7%

A2,MCRT −B
392 rMCRT−B

3,classer392 : xMCRT−B,i ∈ [179.8, 341.99] 1.0−→ classer392 6 100%

Table 4. Knowledge Base for classer389

Concep. Rules Cov CovR

B3,Q−E
389 rQ−E

3,classer389 : xQ−E,i ∈ (52255.8, 54088.6] 1.0−→ classer389 3 4,28%

B3,QB−B
389 rQB−B

3,classer389 : xQB−B,i ∈ (49695.8, 52244.6] 1.0−→ classer389 3 4,28%

B3,QR−G
389 rQR−G

1,classer389 : xQR−G,i ∈ [26218.0, 27351.0) 1.0−→ classer389 2 2,85%

B3,QP−G
389 rQP−G

1,classer389 : xQP−G,i ∈ [188.0, 327.6) 1.0−→ classer389 2 2,85%

B3,QA−G
389 rQA−G

1,classer389 : xQA−G,i ∈ [124120.0, 136371.0) 1.0−→ classer389 2 2,85%

B3,PH−E
389 rPH−E

3,classer389 : xPH−E,i ∈ (7.9, 8.0] 1.0−→ classer389 1 1,42%

B3,SS−E
389 rSS−E

1,classer389 : xSS−E,i ∈ [62.0, 82.0) 1.0−→ classer389 1 1,42%

B3,SSV −E
389 rSSV −E

1,classer389 : xSSV −E,i ∈ [30.0, 60.0) 1.0−→ classer389 2 2,85%

B3,DQO−E
389 rDQO−E

1,classer389 : xDQO−E,i ∈ [100.0, 158.0) 1.0−→ classer389 1 1,42%

B3,DBO−E
389 rDBO−E

1,classer389 : xDBO−E,i ∈ [69.0, 90.0) 1.0−→ classer389 5 7,14%

B3,SS−D
389 rSS−D

1,classer389 : xSS−D,i ∈ [48.0, 63.0) 1.0−→ classer389 24 34,28%

B3,SSV −D
389 rSSV −D

1,classer389 : xSSV −D,i ∈ [30.0, 47.0) 1.0−→ classer389 25 35,71%

B3,DBO−D
389 rDBO−D

1,classer389 : xDBO−D,i ∈ [36.0, 56.0) 1.0−→ classer389 5 7,14%

B3,DBO−S
389 rDBO−S

1,classer389 : xDBO−S,i ∈ [2.0, 4.0) 1.0−→ classer389 2 2,85%

B3,MLSS−B
389 rMLSS−B

3,classer389 : xMLSS−B,i ∈ (2696.0, 2978.0] 1.0−→ classer389 1 1,42%

B3,MCRT−B
389 rMCRT−B

3,classer389 : xMCRT−B,i ∈ (28.8, 34.4] 1.0−→ classer389 1 1,42%

Since anyone of these interpretations is based on non totally characterizing vari-
ables, some degree of certainty should be associated depending on the probabili-
ties of the corresponding generated concepts. The interpretation with the highest
global degree of certainty is the one that intends to be refined in the following it-
eration. Table 4 showns the Knowledge Base with certain rules (psc = 1) induced
for classer389.
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Table 5. Knowledge Base for classer383

Concep. Rules Cov CovR

¬C4,SS−E
390 rSS−E

3,classer383 : xSS−E,i ∈ (480.0, 655.0] 1.0−→ classer383 5 14,70%

¬C4,SSV −E
390 rSSV −E

3,classer383 : xSSV −E,i ∈ (336.0, 593.0] 1.0−→ classer383 4 11,76%

¬C4,DQO−E
390 rDQO−E

3,classer383 : xDQO−E,i ∈ (1279.0, 1579.0] 1.0−→ classer383 1 2,94%

¬C4,DBO−E
390 rDBO−E

3,classer383 : xDBO−E,i ∈ (382.0, 987.0] 1.0−→ classer383 7 20,58%

¬C4,MLV SS−B
390 rMLV SS−B

1,classer383 : xMLV SS−B,i ∈ [185.0, 611.0) 1.0−→ classer383 2 5,88%

¬C4,MCRT−B
390 rMCRT−B

1,classer383 : xMCRT−B,i ∈ [1.8, 6.2) 1.0−→ classer383 1 2,94%

The final partition. The process would continue separating the classes C390
and C383 of the following partition P4, see figure 1(left), which are the subdi-
vision of C391. Similarly, the following interpretation of P4, which is the final
partition [4] is obtained with the following Knowledge Base with certain rules
for classer383(Table 5) and classer390 (Table 6):

And de final interpretation is:
– Class C392 is such that A2,Q−E

392
– Class C389 is such that ¬A2,Q−E

392 ∧ B3,SS−D
391

– Class C390 is such that ¬A2,Q−E
392 ∧ ¬B3,SS−D

391 ∧ C4,DBO−E
390

– Class C383 is such that ¬A2,Q−E
392 ∧¬B3,SS−D

391 ∧¬C4,DBO−E
390 . Or, in other words:

– Class C392, “Low values for Inflow wastewater”
– Class C389, “High values for Inflow and few Suspended solids at the settler”
– Class C390, “High values of Inflow wastewater, high Suspended solids at the

exit and few Biodegradable organic matter at the input”
– Class C383, “Medium-high values of Inflow wastewater, high Suspended solids

at the settler and high Biodegradable organic matter at the input.”
This set of rules can, in fact, be considered as a domain model which can

support later decision on the treatment to be applied to a new day, provided
that a standard treatment is previously associated to every class by experts.
In this association the possibility of easily interpreting the classes is critical as
well as to provide the experts means for easily understanding the meaning of
the classes. In this sense the proposed method provides simple and short rules
which use to be easier to handle than those provided by other induction rules
algorithms. This final interpretation is consistent with the one provided by the
experts and presented in [4].

6 Conclusions and Future Work

In this paper the first approach of a methodology to generate automatic inter-
pretations from a group of classes is presented. Concepts associated to classes
are built taking advantage of hierarchical structure of the underlying clustering.
The Conceptual characterization by embedded conditioning CCEC [2] is a quick
and effective method that generates a conceptual model of the domain, which
will be from great support to the later decision making based on a combination
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Table 6. Knowledge Base for classer390

Concep. Rules Cov CovR

C4,Q−E
390 rQ−E

1,classer390 : xQ−E,i ∈ [29920.0, 34284.4) 1.0−→ classer390 9 3,15%

C4,QB−B
390 rQB−B

3,classer390 : xQB−B,i ∈ (39000.0, 49695.8] 1.0−→ classer390 60 21,06%

C4,QR−G
390 rQR−G

3,classer390 : xQR−G,i ∈ (44568.6, 49527.0] 1.0−→ classer390 13 4,56%

C4,QP −G
390 rQP−G

3,classer390 : xQP−G,i ∈ (831.1, 1080.0] 1.0−→ classer390 56 19,64%

C4,QA−G
390 rQA−G

1,classer390 : xQA−G,i ∈ [136371.0, 156320.0) 1.0−→ classer390 7 2,45%

C4,F E−E
390 rF E−E

3,classer390 : xF E−E,i ∈ (63.3, 89.8] 1.0−→ classer390 7 2,45%

C4,P H−E
390 rPH−E

3,classer390 : xPH−E,i ∈ (7.8, 7.9] 1.0−→ classer390 8 2,80%

C4,SS−E
390 rSS−E

1,classer390 : xSS−E,i ∈ [82.0, 114.0) 1.0−→ classer390 4 1,40%

C4,SSV −E
390 rSSV −E

1,classer390 : xSSV −E,i ∈ [60.0, 92.0) 1.0−→ classer390 7 2,45%

C4,DQO−E
390 rDQO−E

1,classer390 : xDQO−E,i ∈ [158.0, 414.0) 1.0−→ classer390 113 39,64%

C4,DBO−E
390 rDBO−E

1,classer390 : xDBO−E,i ∈ [90.0, 220.0) 1.0−→ classer390 126 44,21%

C4,P H−D
390 rPH−D

1,classer390 : xPH−D,i ∈ [7.2, 7.3) 1.0−→ classer390 3 1,05%

C4,SS−D
390 rSS−D

3,classer390 : xSS−D,i ∈ (112.0, 192.0] 1.0−→ classer390 30 10,52%

C4,SSV −D
390 rSSV −D

3,classer390 : xSSV −D,i ∈ (92.0, 134.0] 1.0−→ classer390 11 3,85%

C4,DQO−D
390 rDQO−D

3,classer390 : xDQO−D,i ∈ (329.0, 538.0] 1.0−→ classer390 22 7,71%

C4,DBO−D
390 rDBO−D

3,classer390 : xDBO−D,i ∈ (224.0, 274.0] 1.0−→ classer390 4 1,40%

C4,P H−S
390 rPH−S

3,classer390 : xPH−S,i ∈ (7.8, 8.0] 1.0−→ classer390 16 5,61%

C4,SS−S
390 rSS−S

3,classer390 : xSS−S,i ∈ (29.0, 174.8] 1.0−→ classer390 25 8,77%

C4,SSV −S
390 rSSV −S

3,classer390 : xSSV −S,i ∈ (19.0, 134.8] 1.0−→ classer390 38 13,3%

C4,DQO−S
390 rDQO−S

3,classer390 : xDQO−S,i ∈ (95.0, 163.0] 1.0−→ classer390 24 8,4%

C4,DBO−S
390 rDBO−S

3,classer390 : xDBO−S,i ∈ (35.0, 84.0] 1.0−→ classer390 4 1,40%

C4,V 30−B
390 rV 30−B

1,classer390 : xV 30−B,i ∈ [77.0, 140.0) 1.0−→ classer390 26 9,12%

C4,MLSS−B
390 rMLSS−B

3,classer390 : xMLSS−B,i ∈ (2248.0, 2696.0] 1.0−→ classer390 17 5,96%

C4,MLV SS−B
390 rMLV SS−B

3,classer390 : xMLV SS−B,i ∈ (1726.0, 2054.0] 1.0−→ classer390 18 6,31%

C4,MCRT −B
390 rMCRT−B

3,classer390 : xMCRT−B,i ∈ (16.0, 28.8] 1.0−→ classer390 8 2,81%

of boxplop based discretization and an interactive combination of concepts upon
hierarchical subdivisions of the domain. This is a preliminary proposal that has
been applied with success to real data coming from a WWTP. Benefits of those
proposal are specially interesting in the interpretation of partitions with great
number of classes. Automatic generation of interpretations cover the important
goal of KD of describing the domain [11]. However, in this proposal a direct
connection between the generated concepts and the automatic rules generation
allows direct construction of a decision model for the domain oriented to later
class prediction. As a matter of fact, automatic production of probabilistic or
fuzzy classification rules regarding concepts provided by CCEC is direct, as dis-
cussed in [12]. By associating an appropriate standard treatment to every class a
model for deciding the appropriate treatment of a concrete day upon a reduced
number variables is obtained together with an estimation of the risk associated
to that decision (which is related with the certainty of the rule). At present other
automatic criteria for deciding which variable is kept at every iteration (here the
covering of the all concepts was used) and how to propagate uncertainty from
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one iteration to the next is in progress (here rules with psc = 1 are used). The
idea is to use an approach which avoids the explicit construction of all the con-
cepts to evaluate their coverage. Comparison of rules produced with CCEC and
other inductive methods ID3-like is also in progress, as well as validation with a
second real WWTP from Slovenia.
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Abstract. In this paper we present a new algorithm for document clus-
tering called Condensed Star (ACONS). This algorithm is a natural evo-
lution of the Star algorithm proposed by Aslam et al., and improved by
them and other researchers. In this method, we introduced a new con-
cept of star allowing a different star-shaped form; in this way we retain
the strengths of previous algorithms as well as address previous short-
comings. The evaluation experiments on standard document collections
show that the proposed algorithm outperforms previously defined me-
thods and obtains a smaller number of clusters. Since the ACONS algo-
rithm is relatively simple to implement and is also efficient, we advocate
its use for tasks that require clustering, such as information organization,
browsing, topic tracking, and new topic detection.

Keywords: Clustering, Document processing.

1 Introduction

Clustering is the process of grouping a set of data objects into a set of meaningful
subclasses, called clusters; these clusters could be disjoint or not. A cluster is a
collection of data objects that have high similarity in comparison to one another,
but are very dissimilar to objects in other clusters.

Initially, document clustering was evaluated for improving the results in infor-
mation retrieval systems [9]. Clustering has been proposed as an efficient way of
finding automatically related topics or new ones; in filtering tasks [2] and group-
ing the retrieved documents into a list of meaningful categories, facilitating query
processing by searching only clusters closest to the query [10].

Several algorithms have been proposed for document clustering. One of these
algorithms is Star, presented and evaluated by Aslam et al. [1]. They show that
the Star algorithm outperforms other methods such as Single Link and Av-
erage Link in different tasks; however, this algorithm depends on data order
and produces illogical clusters. Another method that improves the Star algo-
rithm is the Extended Star method proposed by Gil et al. [6]. The Extended
Star method outperforms the original Star algorithm, reducing considerably the
number of clusters; nevertheless this algorithm can leave uncovered objects and
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in some cases produce unnecessary clusters. Another version of the Extended
Star method was proposed by Gil et al. to construct a parallel algorithm [7].
However, this version also has some drawbacks.

In this paper we propose a new clustering method, called Condensed Star or
ACONS. In ACONS, we introduced a new definition of star allowing a different
star-shaped sub-graph, in this way we retain the strengths of previous algorithms
as well as solve the above-mentioned drawbacks. The experimentation – compar-
ing our proposal against the original Star and the Extended algorithms – shows
that our method outperforms those algorithms.

The basic outline of this paper is as follows. Section 2 is dedicated to related
work. Section 3 contains the description of the ACONS method. The experimen-
tal results are discussed in section 4. The conclusions of the research and some
ideas about future directions are exposed in section 5.

2 Related Work

In this section we analyze the Star algorithm and two proposed versions of the
Extended Star method for document clustering, and we show their drawbacks.

The Star algorithm was proposed by Aslam et al. in 1998 [1], with several
extensions and applications in filtering and information organization tasks [2,3].
They formalized the problem representing the document collection by its simi-
larity graph, finding overlaps with dense sub-graphs; it is done so because the
clique cover of the similarity graph is an NP -complete problem, and it does not
admit polynomial time approximation algorithms. With this cover approxima-
tion by dense sub-graphs, in spite of loosing intra-cluster similarity guarantees,
we can gain in computational efficiency.

Let V = {d1, ..., dN} be a collection of documents and Sim(di, dj) a similarity
(symmetric) function between documents di and dj , we call similarity graph to
an undirected and weighted graph G = 〈V, E, w〉, where vertices correspond to
documents and each weighted edge corresponds to the similarity between two
documents. Considering a similarity threshold σ defined by the user we can define
a thresholded graph Gσ as the undirected graph obtained from G by eliminating
all the edges whose weights are lower than σ. The Star algorithm approximate
a clique cover of Gσ using denser star-shaped sub-graphs [1].

This algorithm has some drawbacks: (i) dependency on the data order pro-
cessing, and (ii) production of “illogical” clusters, since two star centers are never
adjacent. These drawbacks were properly explained in [6]. The Extended Star
algorithm was proposed by Gil et al. to solve the aforementioned drawbacks
[6]. They represent also the document collection by its thresholded similarity
graph, defining a new notion of star center, obtaining as a consequence, different
star-shaped clusters that are independent of data order.

Unlike the Star algorithm, the obtained clusters are independent of data order.
Nevertheless, the Extended Star algorithm has also some drawbacks. First of
all, it can leave uncovered vertices, producing an infinite loop. This situation is
illustrated in Fig. 1 (A).
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Fig. 1. Drawbacks of Extended algorithm

This situation is not an isolated case. We can generalize that any time that
there is a vertex v – such as the illustrated in graph (B) of Fig. 1 – that satisfies
the condition described in (1), then the algorithm produces an infinite loop,
leaving the vertex v uncovered.

∀si, 1 ≤ i ≤ k, |v.Adj| > |si.Adj| ∧ ∀ci, 1 ≤ i ≤ k, |ci.Adj| > |v.Adj| . (1)

In this graph, each si represents the corresponding neighbours (adjacent ver-
tices) of v, and ci, is the adjacent center of si with highest degree. In (1) and in the
following expressions, x.Adj represents the set of adjacent vertices of the vertex x.

The second drawback of this algorithm is that it can produce unnecessary
clusters, since more than one center can be selected at the same time. As can
be noticed in graph (C) of Fig. 1, vertex 2 and vertex 3 should not be centers at
the same time because we only need one of them to cover vertex 4.

A different version of the Extended Star algorithm was proposed by Gil et al.
to construct a parallel approach [7]. This new version is also independent of data
order, and solves the first drawback of the former Extended Star algorithm, but
it can produce unnecessary clusters and illogical (less dense) clusters.

3 ACONS Algorithm

In this section we introduce a new concept of star allowing a different star-shaped
form and as a consequence a new method, called ACONS, is obtained. As with
the aforementioned algorithms, we represent the document collections by its
thresholded similarity graph Gσ.

3.1 Some Basic Concepts

In order to define this new star concept and to describe the method, we define
a finite sequence of directed graphs called transition graphs. Each new transi-
tion graph removes the unnecessary edges to get better clusters. Thus, the last
transition will hold the vertices with real possibilities to be centers.

We call the first transition of Gσ = 〈V, Eσ〉 to the directed-graph G
(0)
σ =

〈V, E
(0)
σ 〉 resulting from adding the directed-edge (v, u) to E

(0)
σ iff the edge

(v, u) ∈ Eσ.
Let n ≥ 0 be an integer number, we call the next transition of G

(n)
σ = 〈V, E

(n)
σ 〉,

to the directed-graph G
(n+1)
σ = 〈V, E

(n+1)
σ 〉, resulting from adding the directed-

-edge (v, u) to E
(n+1)
σ iff (v, u) ∈ E

(n)
σ and v.out[n] ≥ u.out[n], where v.out[n]
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denote the out-degree of v in G
(n)
σ , i.e the number of edges (v, x) ∈ E

(n)
σ . It is

important to notice that as G
(n)
σ is not affected in the construction of G

(n+1)
σ ,

we can conclude that this process does not depend on data order.
Thus, starting from Gσ, we can construct a sequence of graph transitions

{G
(0)
σ , G

(1)
σ , . . . , G

(n)
σ , . . .}. Furthermore, the integer positive sequence {en}∞n=0,

where en = |E(n)
σ |, is decreasing and there is a unique integer h ≥ 0 such that the

finite sequence of terms {en}h
n=0 is strictly decreasing and the sequence {en}∞n=h

is constant. Then we say that G
(h)
σ is the last transition of Gσ. Given u, v ∈ V ,

we say that u is an r-satellite of v, if 0 ≤ r ≤ h and (v, u) ∈ E
(r)
σ . We denote

v.Sats[r] = {u ∈ V | u is an r-satellite of v} as the set of all r-satellites of v.
A condensed star-shaped sub-graph of m+1 vertices in Gσ, consists of a single

center c and m adjacent vertices, such that c.out[h] > 0. Each isolated vertex in
Gσ will be considered as a degenerated condensed star-shaped sub-graph with
only one vertex.

Starting from this definition and guaranteing a full cover C of Gσ, this method
should satisfy the following post-conditions:

∀x ∈ V , x ∈ C ∨ x.Adj ∩ C �= ∅ , (2)
∀c ∈ C, ∀u ∈ c.Sats[h] , c.out[h] ≥ u.out[h] . (3)

The first condition (2) guarantees that each object of the collection belongs at
least to one group, as a center or as a satellite. On the other hand, the condition
(3) indicates that all the centers satisfy the condensed star-shaped sub-graph
definition.

3.2 ACONS Algorithm

In order to define the ACONS algorithm, we introduce the concepts of voting-
degree of a vertex and the redundancy of a center.

Let G
(h)
σ be the last transition of Gσ and v ∈ V a non-isolated vertex.

The voting-degree (v.vd) of a vertex v is v.vd = |{u | v ∈ u.Electees}|, where
u.Electees = arg maxx{x.out[h] | x ∈ u.Adj ∪ {u}}.

Let C be a set of centers obtained by the algorithm, a center vertex c will be
considered redundant if it satisfies the following conditions:

1. ∃d ∈ c.Adj ∩ C, d.out[h] > c.out[h], i.e. vertex c has at least one adjacent
center (with greater out-degree) on its neighborhood.

2. ∀s ∈ c.Sats[h], s ∈ C ∨ |s.Adj ∩ C| > 1, i.e. vertex s has more than one
adjacent center (a neighboring center different to c) on its neighborhood or
vertex s is a center.

The logic of the ACONS algorithm is to generate a cover of Gσ by the densest
condensed star-shaped sub-graphs. The centers are selected from a candidates
list, formed by the vertices with positive voting-degree in the last transition of
Gσ. The algorithm is summarized in Fig 2.

The functions FindFirstTransition and FindLastTransition are applied to con-
struct the first and the last transition of Gσ based on the concepts and definitions
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Algorithm 1: ACONS
Input: V = {d1, d2, . . . , dN}, σ-similarity threshold
Output: SC-Set of clusters

// Phase 11

G
(0)
σ := FindFirstTransition(V, σ);2

G
(h)
σ := FindLastTransition(G(0)

σ );3

forall vertex v ∈ V do v.Electees := arg maxx{x.out[h] | x ∈ v.Adj ∪ {v}};4

forall vertex v ∈ V do v.vd := |{u | v ∈ u.Electees}|;5

L := {v ∈ V | v.vd > 0};6

// Phase 27

C := {v ∈ V | v.Adj �= ∅} ;8

U := ∅;9

while L �= ∅ do10

v := arg maxx{x.vd | x ∈ L} ; // Only one vertex is selected11

if v.Adj ∩ C �= ∅ then C := C ∪ {v}12

else13

F = {u ∈ v.Sats[h] | u.Adj ∩ C �= ∅};14

if F �= ∅ then15

if ∃f ∈ F , v.out[h] > f.out[h] then C := C ∪ {v}16

else U := U ∪ {v};17

end18

end19

L := L \ {v};20

end21

// Phase 322

forall vertex v ∈ U do23

if ∃u ∈ v.Sats[h], u.Adj ∩ C �= ∅ then C := C ∪ {v};24

end25

// Phase 426

“Sort C in ascending order by out-degree”;27

SC := ∅;28

forall center c ∈ C do29

if c is redundant then C := C \ {c}30

else SC := SC ∪ {{c} ∪ c.Adj};31

end32

Fig. 2. Pseudo-code of ACONS Algorithm

mentioned in section 3.1. Both functions are very easy to be implemented, be-
cause it is not necessary to preserve all transition states.

The algorithm is made up of five phases: (1) computes the last transition of
Gσ, and calculates the candidates list L using voting-degrees, (2) determines
centers list C and uncertain centers lists U from L, (3) processes U to find new
centers, and (4) removes from C the redundant centers and constructs the set
of clusters.
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The phase (1) is very important, because it guarantees the selection of vertices
that actually have real possibilities to be selected as center, i.e. vertices that
could form a dense condensed star-shaped sub-graph. Notice that the starting
candidates list L after phase (1) is made up of the vertices v ∈ V with v.vd > 0.
Thus, the vertices outside L are isolated or satellites with at least one adjacent
vertex in L.

The isolated vertices are selected as centers at the beginning of the phase (2).
Afterward, the vertices of L are processed in a decreasing order regarding the
voting-degree; in this way, we ensure that any selected center will satisfy the post-
condition (3). In each iteration, the vertex v is processed considering the following
situations:

1. If v has not been covered yet by an adjacent vertex c ∈ C then we add v to
C; thus we try to reduce the overlapping among sub-graphs and ensure that
v is covered at least by itself.

2. If v has some adjacent vertex f that has not been covered yet and satisfy:
(a) If f has a lesser out-degree than v then we add v to C; thus we ensure

that such vertex f will belong to a sub-graph denser than the one it can
form.

(b) Otherwise, v is added to uncertain list U postponing the selection of v
as center.

At the end of each iteration, we remove the vertex v from L to guarantee the
phase (2) ending.

During phase (3) all of the vertices v ∈ U are processed in the insertion order,
selecting v as center if it is needed to cover some adjacent vertex. Thus, each
vertex s outside C has at least one adjacent vertex in C, i.e. the post-condition
(2) is fulfilled. Finally (phase(4)), we check the redundancy of each vertex to
eliminate the redundant centers in C .

3.3 General Considerations of ACONS Algorithm

The ACONS method – as the original Star algorithm and the two versions of the
Extended algorithm – generates clusters which can be overlapped and guarantees
also that the pairwise similarity between satellites vertices in a condensed star-
shaped sub-graph be high.

As we can see in Fig. 3, unlike its previous algorithms, the ACONS algorithm
can not produce illogical clusters because all the centers satisfy the condensed

Fig. 3. Solutions to uncovered vertices (A), unnecessary clusters (B) and illogical clus-
ters (C)
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star-shaped sub-graph definition. The ACONS algorithm does not produce un-
covered vertices – this property is ensured by the fulfillment of postcondition (2)
– and avoid the generation of unnecessary clusters presented in graph (A) and
(C) of Fig. 1 respectively.

The dependence on data order is a property that the Extended Star method
certainly solves. Nevertheless, as we had previously indicated, it is necessary
only when that dependence affects the quality of the resulting clusters. Thus,
the ACONS algorithm solves the dependence on data order (for non symmetric
or similar solutions) observed in the Star algorithm.

4 Experimental Results

In this section we present the experimental evaluation of our method, comparing
its results against the Extended Star method and the original Star algorithms.
The produced clustering results are evaluated by the same method and criterion
to ensure a fair comparison across all algorithms.

Two data sets widely used in document clustering research were used in
the experiments: TREC-5 and Reuters-21578. These are heterogeneous regard-
ing document size, cluster size, number of classes, and document distribution.
The data set TREC-5 contains news in Spanish published by AFP during 1994
(http://trec.nist.gov); Reuters-21578 was obtained from http://kdd.ics.
uci.edu . We excluded from data sets the empty documents and also those
documents do not have an associated topic.

In our experiments, the documents are represented using the traditional vector
space model. The index terms of documents represent the lemmas of the words
appearing in the texts. Stops words, such as articles, prepositions and adverbs are
removed from document vectors. Terms are statistically weighted using the term
frequency. We use the traditional cosine measure to compare the documents.

The literature abounds in measures defined by multiple authors to compare
two partitions on the same set. The most widely used are: Jaccard index, and
F-measure.

Jaccard index.- This index (noted j) takes into account the objects simulta-
neously joined [8]. It is defined as follows:

j(A, B) =
n11

N(N−1)
2 − n00

. (4)

In this index, n11 denotes the number of pairs of objects which are both in
the same cluster in A and are also both in the same cluster in B. Similarly, n00
is the number of pairs of objects which are in different clusters in A and are also
in different clusters in B.

The performances of the algorithms in the document collections considering
Jaccard index are shown in Fig. 4 (A) and (B).

F-measure.- The aforementioned index and others are usually applied to par-
titions. In order to make a better evaluation of overlapping clustering, we have

http://trec.nist.gov
http://kdd.ics.uci.edu
http://kdd.ics.uci.edu
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considered F-measure calculated over pairs of points, as defined in [4]. Noted as
Fmeasure, this measure is the harmonic mean of Precision and Recall:

Fmeasure =
2 ∗ Presicion ∗ Recall

Presicion + Recall
, (5)

where:

Presicion =
n11

Number of identified pairs
, Recall =

n11

Number of true pairs
.

The performances of the algorithms in the document collections considering
F-measure are shown in Fig. 4 (C) and (D).

Fig. 4. Behavior in AFP (A,C) and Reuters (B,D) collections with Jaccard index and
F-measure

As can be noticed, the accuracy obtained using our proposed algorithm is in
most cases (for all the indexes) comparable with that obtained from the other
methods investigated; moreover, our proposal can outperform those methods for
all the indexes. But, this behavior is not homogeneous for all similarity thresh-
olds; for each collection, there is a minimum value for which ACONS outper-
forms previous Star methods. Starting from this minimum value, the accuracy of
ACONS is in general as good as, or even in many cases higher than, the others.

Furthermore, ACONS in all cases obtains lesser clusters than the other al-
gorithms (see Fig. 5), and in most cases obtains denser clusters. This behavior
could be of great importance for obtaining a minimum quantity of clusters with-
out loosing precision.

It is important to notice that the Extended algorithm could cover all the
vertices, but only in these experiments. Nevertheless, as it was explained, theo-
retically the Extended algorithm may fail with other repositories.
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Fig. 5. Number of generated clusters in AFP (A) and Reuters (B) collections

Despite the experiments carried out by Aslam et al. in [1], and in order to
ensure the effectiveness of our proposed algorithm, we made a new experimenta-
tion to compare the performance of ACONS algorithm against the Single Link
and Average Link [5] algorithms, which uses different cost functions. For a fair
comparison across all algorithms, we used the same thresholds of the previous
experiments, stopping the execution of the Single Link and Average Link al-
gorithms when the two selected clusters to be joined do not satisfy the current
threshold, meaning that the evaluation of the cost function for all pair of clusters
in the current algorithm return a value greater than the selected threshold. After
that, we evaluated each algorithm considering the Jaccard index and F-measure,
and we selected the average value of each algorithm for the selected measures
for all thresholds.

The performances of the algorithms in the document collections considering
Jaccard index, and F-measure are shown in Fig. 6.

Fig. 6. Behavior in AFP (A,C) and Reuters (B,D) collections with Jaccard index and
F-measure

As we can see, our proposal also outperforms the Single Link and Average Link
algorithms in both collections. Thus, the ACONS algorithm represents a 68.2%
improvement in performance compared to average link and a 42.3% improvement
compared to single link in AFP collection considering the Jaccard index; if we
consider F-measure, then the ACONS algorithm represents a 57.6% improvement
in performance compared to average link and a 33.3 improvement compared
to single link in the same collection. In the case of the Reuters collection the
improvements are higher and even in some cases it doubles the result.
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5 Conclusions

In this paper we presented a new clustering algorithm called Condensed Star
(ACONS). As a consequence, we obtained different star-shaped clusters. This al-
gorithm solves the drawbacks observed in Star and Extended Star methods: the
dependence on data order (for non symmetric or similar solutions), the produc-
tion of uncovered vertices and the generation of illogical and redundant clusters.

We compared the ACONS algorithm with the original Star and the Extended
Star methods. The experimentation shows that our proposal outperforms pre-
vious methods for all the measures and aspects. These performances prove the
validity of our algorithm for clustering tasks.

This algorithm can be used for organizing information systems, browsing,
topic tracking and new topic detection. Although we employ our algorithm to
cluster documents collections, its use is not restricted to this area, since it can
be applied to any problem of pattern recognition where clustering is needed.

As a future work, we want to do some other experiments considering other
representations of the documents and other similarity measures. These experi-
ments could help us to decide a priori how to choose the threshold value in order
to obtain the best performance of our algorithm.
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Abstract. In supervised classification, the object selection or instance selection 
is an important task, mainly for instance-based classifiers since through this 
process the time in training and classification stages could be reduced. In this 
work, we propose a new mixed data object selection method based on cluster-
ing and border objects. We carried out an experimental comparison between our 
method and other object selection methods using some mixed data classifiers.  

Keywords: Supervised Classifiers, Object Selection, Clustering, Mixed Data. 

1   Introduction 

The supervised classification is a process that assigns a class or label to new objects 
according to their features using a set of previously assessed objects called training 
set, denoted in this paper as T. 

In practice, T contains objects with useless information for the classification task, 
that is, superfluous objects. Due to the superfluous objects in a training set, it is nec-
essary to select those objects (in T) that give relevant information for the classifier. 
This selection process is known as object selection. The main goal of an object selec-
tion method is to obtain a set S ⊂ T such that S preserves the classification accuracy. 

Several methods have been proposed for solving the object selection problem, the 
Condensed Nearest Neighbor (CNN) [1] and the Edited Nearest Neighbor (ENN) [2] 
are two of the first proposed methods for object selection. The CNN method starts 
with S= ∅ and its initial step consists in randomly including in S one object belonging 
to each class. After the initial step, each object in T is classified (with k-NN) using S 
as training set, if an object O is misclassified then O is included in S to ensure that 
new objects near to O will be classified correctly. The ENN rule consists in discarding 
from T those objects that do not belong to their k nearest neighbors’ class. This 
method is used as noise filter because it deletes noisy objects, that is, objects with a 
different class in a neighborhood. An extension of ENN is REEN (Repeated ENN) [3] 
which applies ENN repeatedly until all objects in S have the same class that the major-
ity of their k nearest neighbors. 
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Other object selection methods are the DROP (Decremental Reduction Optimiza-
tion Procedure) which were proposed in [4], their selection criterion is based on the 
concept of associate. The associates of an object O are those objects such that O is 
one of their k nearest neighbors. These methods discard the object O if its associates 
can be classified correctly without O. 

In [5] the Iterative Case Filtering algorithm (ICF) was proposed, this method is 
based on the Reachable(O) and Coverage(O) sets which are the neighborhood set and 
the associates set described above. ICF discards an object O if |Reachable(O)| > |Co-
verage(O)|. 

Clustering can be used for object selection [6, 7] so that after splitting T in n clus-
ters, S is the set of centers of each cluster. In [8] the CLU object selection method is 
based on this rule and it was applied to the signature recognition problem. 

In a training set, the border objects of a class are located in a region where there are 
objects from different classes. These objects give useful information to the classifier 
for preserving the class discrimination regions [4, 5]. On the other hand, interior ob-
jects of a class (objects that are not border) could be less useful. In this paper, we pro-
pose a mixed data object selection method based on clustering; our method finds and 
retains border objects and some interior objects. 

In order to show the performance of the proposed method, we present an experi-
mental comparison between our method and some other object selection methods 
using the obtained object sets as training for different mixed data classifiers. 

This paper is structured as follows: in section 2 our object selection method is in-
troduced, in section 3 we report experimental results obtained by our method, and 
finally, in section 4 some conclusions and future work are given.  

2   Proposed Method 

In a training set, interior objects could be deleted without loosing classification accu-
racy. In this paper we propose a method called MOSC (Mixed data Object Selection 
by Clustering) which finds and retains border objects and some interior objects. The 
selection criterion in MOSC is based on clustering, mainly on non homogeneous  
clusters. 

An homogeneous cluster is a set of objects such that all objects belong to the same 
class whereas in a non homogeneous cluster there are objects belonging to different 
classes. 

In order to find border objects, the MOSC method generates clusters and analyses 
non homogeneous clusters since border objects are located in regions which contain 
similar objects belonging to different classes.  

In order to handling mixed data, MOSC uses the k-means with similarity functions 
algorithm (kMSF) [9] for creating clusters. This algorithm is based on the same idea 
as k-means but for comparing objects it uses a similarity function and instead of com-
puting means, it computes representative objects for each cluster. The kMSF algo-
rithm determines the representative object in a cluster Aj using the next expression 
(for more details see [9]): 
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),( qj OOΓ  is the similarity between objects Oj and Oq, 
r
qO  is the representative ob-

ject in cluster q and n is the number of clusters. )( jA O
i

β  is the average similarity of 

Oj with the other objects in the same cluster Ai. The )( jA O
i

α  function evaluates the 

variance between )( jA O
i

β and the similarity between Oj and the other objects in Ai 

and )( jA O
k

η  is the average dissimilarity of Oj with the other representative objects.  

The most representative object ORi in Ai must be the most similar in average with 
other objects in the cluster and the most dissimilar with respect to the other represen-
tative objects. These properties directly depend on )( jA O

i
β  and )( jA O

k
η  values re-

spectively then ORi is that object that maximizes the expression )( jA Or
i

. 

The MOSC method (figure 3.1) starts creating n clusters. Once the clusters have 
been obtained, for each cluster Aj it is necessary to decide whether Aj is homogeneous 
or not. 

If the cluster Aj is non homogeneous then Aj contains some objects located at criti-
cal regions, that is, border objects. In order to find the border objects, MOSC finds the 
majority class objects. Once these objects have been found, the border objects in the 
majority class are those objects that are the most similar to an object in Aj belonging 
to different class, and by analogy, the border objects of Aj in the other classes are 
those objects that are the most similar to each border object in the majority class. 

If the cluster Aj is homogeneous then the objects in Aj are interior objects and they 
could be discarded from T without affecting the classification accuracy. Therefore, 
MOSC finds the representative object of the homogeneous cluster Aj and discards the 
remaining objects so that Aj is reduced to its representative object. 

The objects selected by MOSC are the representative objects from each homogene-
ous cluster and the border objects from each non homogeneous cluster. 
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MOSC (Training set T, number of clusters n): object set S 
S= ∅  
Clust= kMSF(T, n)   // create n clusters from T  
For each cluster Aj in Clust  
   If Aj is non homogeneous then 
      Find the majority class CM in cluster Aj 
      For each class Ck in Aj  (Ck ≠ CM ) 
         For each object Oj belonging to class Ck 
             Find Oc∈CM , the most similar object to Oj with class CM 
             S = S ∪ { Oc } 
             Find OM , the most similar object to Oc with class different to CM 
             S = S ∪ { OM } 
   Else    // Aj is homogeneous 
      Oi = representative object of the cluster Aj 

      S = S ∪ { Oi } 
Return S      
 
 

Fig. 3.1. MOSC method for object selection 

 
 

 
a) 

 

 
b) 

 

 
c) 

 

 
d) 

Fig. 3.2. a) Dataset with classes “+” and “• ”. b) Clusters created from the dataset. c) Objects 
selected in each cluster. d) Objects set obtained by MOSC. 
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To illustrate in a graphical way how MOSC finds border objects let us consider the 
dataset shown in figure 3.2a which is a bi-dimensional dataset created by hand with 
objects belonging to the classes “+” and “• ”. In figure 3.2b, the clusters (C1…C12) 
created from the dataset are depicted, the non homogeneous clusters are C2, C6 and 
C11 whereas the remaining clusters are homogeneous. 

In the clusters C6 and C11 the minority class is “+”, then the border objects in the 
most frequent class ( • ) are the most similar objects to each minority class object (+). 
On the other hand, the border object in class “+” are the most similar objects (belong-
ing to class “+”) to each border object in class “• ”.  

The same process described before is applied to cluster C2 where the minority 
class is “• ”. The objects selected in each cluster are depicted in figure 3.2c and the 
objects set obtained by MOSC is depicted in figure 3.2d. We can observe that MOSC 
finds border objects and some interior objects (representative objects in the homoge-
neous clusters). 

3   Experimental Results 

In this section, we report the results obtained applying the MOSC method over ten 
datasets from the UCI dataset repository [10], four of them (Glass, Iris, Liver, Wine) 
are full numeric and the other six datasets are mixed. For all the experiments 10-fold 
cross validation is reported. 

We show a performance comparison among MOSC, CLU and the DROP methods 
because according to the results reported in [4, 5], the DROP methods outperform to 
other relevant object selection methods such as ENN, RENN and ICF. We also com-
pare against CLU because it is also an object selection method based on clustering.   

For MOSC and CLU it is necessary to generate n clusters, n ≥ c, where c is the total 
number of classes in the dataset. For these methods, we used the k-means with simi-
larity functions algorithm for creating clusters. 

In this work we used the next similarity function: 

m

OOHVDM
OO qj

qj

),(
1),( −=Γ  (5) 

Where HVDM (Heterogeneous Value Difference Metric) [4] is the function used and 
proposed by the DROPs authors and m is the number of features. 

In order to choose the number of clusters n to be used in our experiments, we car-
ried out an experiment over ten datasets using different values for n to choose the best 
ones where MOSC and CLU had the best performance in the average case. In table 4.1 
we show the classification accuracy obtained by MOSC and CLU using the values n= 
2c, 4c, 6c, 8c and 10c. For testing the object sets selected by MOSC and CLU, the k-
Most Similar Neighbor (k-MSN) classifier (k=3) was used, that is, k-NN but using a 
similarity function instead of a distance function for comparing objects. Also we show 
the classification obtained by the original training set (Orig.). 

According to the results shown in table 4.1, the best value for n using MOSC was 
n=8c and the best one for CLU was n=10c, therefore these values were used in all the 
experiments reported in the next tables. 
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Table 4.1. Classification accuracy obtained by CLU and MOSC  using different number of 
clusters 

Number of clusters Dataset  
n=2c n=4c n=6c n=8c n=10c 

 Orig. CLU MOSC CLU MOSC CLU MOSC CLU MOSC CLU MOSC 

Bridges 66.09 46.09 45.45 51.63 51.63 53.54 56.54 58.36 59.45 61.27 61.09 
Echocardiogram 95.71 89.82 94.46 85.90 86.42 90.71 86.42 94.10 91.42 90.71 85.53 
Glass 71.42 42.85 54.71 50.45 62.27 55.64 64.04 61.29 64.48 62.00 63.52 
Heart Cleveland 82.49 73.00 69.98 74.61 71.26 73.00 73.27 75.29 72.26 76.33 74.00 
Heart Swiss 93.72 84.61 73.07 69.23 67.69 84.61 83.91 74.88 79.55 84.61 86.21 
Hepatitis 79.29 79.25 77.25 77.50 73.12 75.00 75.37 75.87 79.29 73.66 75.54 
Iris 94.66 64.64 90.66 89.33 92.66 88.66 91.33 91.33 94.66 90.00 90.00 
Liver 65.22 55.03 57.98 53.94 59.68 48.19 59.40 46.40 59.40 51.89 59.15 
Wine 94.44 73.33 86.66 88.88 88.88 92.22 94.44 90.00 91.11 94.44 94.44 
Zoo 93.33 76.66 84.44 84.44 90.00 91.11 92.22 90.00 90.00 90.00 91.11 
            

Average 83.64 68.53 73.47 72.59 74.36 75.27 77.69 75.75 78.16 77.49 78.06 

 
In table 4.2 we report the results obtained by DROP3, DROP5 (the best DROP 

methods reported in [4]), CLU and MOSC over the ten datasets. For each method we 
show the classification accuracy (Acc.) and the percentage of the original training set 
that was retained by each method (Str.), that is, 100*|S|/|T|. In addition, we show the 
classification obtained by the original training set (Orig.). The classifier used was k-
MSN with k=3 (the value of k reported in [4] for DROP methods, using k-NN). At the 
bottom of each table we show the average accuracy and storage obtained by each 
method. 

Table 4.2. Classification (Acc.) and retention (Str.) results obtained using: the original training 
set (Orig.), DROP3, DROP5, CLU and MOSC 

Dataset Orig. DROP3 DROP5 CLU MOSC 

 Acc Str. Acc Str. Acc Str. Acc Str. Acc Str. 

Bridges 66.09 100 56.36 14.78 62.82 20.66 61.27 63.68 59.45 51.79 

Echocardiogram 95.71 100 92.86 13.95 88.75 14.87 90.71 30.03 91.42 23.87 

Glass 71.42 100 66.28 24.35 62.16 25.91 62.00 31.15 64.48 48.33 

Heart Cleveland 82.49 100 78.89 11.44 79.87 14.59 76.33 18.33 72.26 26.21 

Heart Swiss 93.72 100 93.72 1.81 93.72 1.81 84.61 18.06 79.55 15.89 

Hepatitis 79.29 100 78.13 11.47 75.42 15.05 73.66 14.33 79.29 10.46 

Iris 94.66 100 95.33 15.33 94.00 12.44 90.00 22.22 94.66 25.48 

Liver 65.22 100 67.82 26.83 63.46 30.59 51.89 6.44 59.40 46.44 

Wine 94.44 100 94.41 15.04 93.86 10.55 94.44 37.03 91.11 34.69 

Zoo 93.33 100 90.00 20.37 95.56 18.77 90.00 76.41 90.00 50.24 
           

Average 83.64 100 81.38 15.54 80.96 16.52 77.49 31.77 78.16 33.34 

 
In figure 4.1, the classification (horizontal axis) versus retention (vertical axis) 

scatter graphic from results shown in table 4.2 is depicted. On this kind of graphic, the 
most located at right the best classification accuracy and the most located at bottom 
the best retention percentage. 

Based on the results in table 4.2 and figure 4.1, we can observe that in the average 
case, the best object selection methods were DROP3 and DROP5. The classification 
accuracy obtained by MOSC and CLU were smaller than those obtained by DROPs 
but OSC outperformed CLU. 
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The best methods in table 4.2 were the DROPs since the classifier was k-MSN and 
the DROPs are based on the Nearest Neighbor or Most Similar Neighbor rules, how-
ever it is important to test the object sets selected (obtained in the previous experi-
ment by DROPs, CLU and MOSC) as training sets for other classifiers, in particular 
we are interested in testing with classifiers that allow handling mixed data. 
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Fig. 4.1. Scatter graphic from results shown in table 4.2 

Therefore, another experiment was done using the object set obtained by DROPs, 
CLU and MOSC as training sets for the C4.5 [11] and ALVOT [12] classifiers, which 
allow handling mixed data. For ALVOT, we used as support sets system all the fea-
tures subsets with cardinality 3. The row evaluation function for a fixed support set 
Ω was: 

),(),( OOOO pp ΩΩ =Γ β  (6) 

Where AΩ∈Ω , AΩ is the support set system, and ),( OOpβ  is the similarity func-

tion shown in (5) but comparing only the features of Ω . 
The class evaluation function for a fixed support set Ω  was: 
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Where mj is the number of objects in the j-th class. 
The evaluation by class for the whole support set system AΩ was obtained using 

the next expression: 
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Finally, a new object is assigned to the class where it obtains the higher evaluation. 
The C4.5 and ALVOT results are reported in tables 4.4-4.5 and figures 4.2-4.3 re-

spectively. 
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Table 4.4. Classification results obtained using the original training set (Orig.) and the object 
sets obtained by DROPs, CLU and MOSC as training for the C4.5 classifier 

Dataset Orig. DROP3 DROP5 CLU MOSC 

Bridges 65.81 47.90 39.54 55.45 59.17 
Echocardiogram 95.71 84.10 92.85 93.21 95.89 
Glass 67.29 60.19 53.76 58.35 62.22 
Heart Cleveland 71.96 68.59 72.16 76.57 73.59 
Heart Swiss 93.71 93.71 93.71 84.61 82.81 
Hepatitis 76.70 63.33 63.41 71.58 65.68 
Iris 93.99 92.66 90.66 92.66 93.99 
Liver 63.67 59.48 63.67 57.96 61.11 
Wine 94.44 84.43 78.88 86.65 86.65 
Zoo 93.33 81.10 88.88 92.21 93.33 
      

Average 81.66 73.55 73.75 76.93 77.44 
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Fig. 4.2. Scatter graphic from results shown in table 4.4 

Table 4.5. Classification results obtained using the original training set (Orig.) and the object 
sets obtained by DROPs, CLU and MOSC as training for the ALVOT classifier 

Dataset Orig. DROP3 DROP5 CLU MOSC 

Bridges 22.81 23.09 27.27 22.81 20.00 
Echocardiogram 93.21 93.21 90.35 93.21 87.50 
Glass 40.56 29.95 28.09 40.90 40.56 
Heart Cleveland 72.59 73.26 73.89 73.26 72.30 
Heart Swiss 66.53 76.23 76.23 76.21 76.00 
Hepatitis 81.12 35.12 41.87 24.08 45.58 
Iris 86.66 88.66 88.66 87.33 88.66 
Liver 48.44 48.57 54.77 48.07 48.44 
Wine 90.00 83.69 89.86 92.22 92.22 
Zoo 96.66 90.00 84.44 96.66 96.66 
      

Average 69.86 64.18 65.54 65.48 66.79 
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Fig. 4.3. Scatter graphic from results shown in table 4.5 

Based on the results shown in tables 4.4 and figure 4.2, in the average case, for 
C4.5, the best object selection method was MOSC followed by CLU, that is, in this 
experiment, the subsets obtained by the DROPs were not as good as the obtained by 
MOSC. 

According to results shown in table 4.5 and figure 4.3, again (as in table 4.4), in the 
average case for ALVOT, the best method was MOSC followed by DROP5 and CLU 
respectively. Notice that in table 4.5, there are some low accuracy results; this is due 
to the ALVOT sensitivity to imbalanced classes. 

4   Conclusions 

The object selection is an important task for instance-base classifiers since through 
this selection the times in training and classification could be reduced. In this paper 
we proposed and compared the MOSC object selection method based on clustering. 
This method finds some interior and border objects since through these last it is pos-
sible to preserve discrimination capability between classes in a training sample. In 
addition, MOSC allows handling not only numeric but also nominal data which is 
useful since in practice it is very common to face with mixed data problems. 

The experimental results showed that MOSC is a good method for solving the ob-
ject selection problem when a classifier different from k-MSN is used. Since most of 
the object selection methods follow the nearest or most similar neighbor rule, the ob-
ject sets obtained by these methods have not a good performance when they are used 
as training for other classifiers which are not based on the nearest or most similar 
neighbor rules, as it can be seen in our experimental results. These results showed that 
the objects sets selected by MOSC had a better average performance when they are 
used as training for the C4.5 and ALVOT classifiers. 

As future work, we will do experiments using other mixed data clustering methods 
and we will propose another way for selecting border objects in non homogeneous 
clusters. 
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Abstract. In clusters analysis, a problem of great interest is having methods 
that allow the representation of the topology of input space without the need to 
know additional information about it. This gives rise to growing competitive 
neural methods which are capable of determining the structure of the network 
autonomously during the process of training. This work proposes a variation of 
the Growing Neural Gas (GNG) algorithm, calling GNG with post-pruning 
(GNG-PP), and a method of clustering based on the search for topological 
neighborhoods generated by the former. These were combined in a three-phase 
process to clustering the S&P100 set, which belongs to the macroeconomic 
field. This problem has a high dimensionality in the characteristics space. Its 
results are compared to those obtained by SOM, Growing Cell Structures 
(GCS), and a non-neural method. Evaluation of the results was made by means 
of the kappa coefficient, using as evaluation set the GICS industrial 
classification. The results show that when using the proposed methods the best 
clustering are generated, obtaining a kappa coefficient of 0.5643 in the GICS 
classification.  

Keywords: clustering, vectorial quantization, GNG, S&P100. 

1   Introduction 

The discovery of structures that allow the representation of data spaces has led to the 
creation and use of a large variety of techniques. 

The most widely used methods for this purpose are those of unsupervised 
competitive self-learning, in particular neural networks, which are capable of creating 
topological representations by means of the distribution of a set of neurons over the 
input data, capturing most of the relations of the original space [1].  

This is known as vectorial quantization and allows reducing the original data set to 
a smaller one, but equally representative, allowing work to be done on the vectors 
instead of doing it directly on the data. By means of this technique it is possible to 
solve, for example, the data clustering problem [2]. 

The most traditional competitive learning method is that of Kohonen's Self-
Organizing Maps (SOM), which however present some limitations in practical 
problems because they require previous knowledge to define the structure of the 
network, i.e., its configuration and the number of neurons. 
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In view of this, neural methods arise that incorporate a new philosophy in their 
operation: the growth of neurons. In these it is the network itself what determines 
autonomously its structure, whether it is the required number of neurons, the 
connections between them, or the possible eliminations of both [3].  

Examples of these are the Growing Cell Structures (GCS) and Growing Neural 
Gas (GNG) networks 

In this paper a proposal is made of a variation of the GNG algorithm, called GNG 
with post-pruning (GNG-PP), which allows eliminating and repositioning neurons so 
that vectorial quantization is improved. Furthermore, a clustering method is proposed 
whose operation is based on the topological information acquired during the training 
process, through the same neural method, called Neighborhood Clustering. 

These methods will be applied to the clustering of data by means of a three-phase 
process. First, quantize the input space by means of a GNG network with post-
pruning (GNG-PP). In a second stage, use the Neighborhood method to clustering the 
quantization vectors, and finally, associate the data with the closest vectors according 
to a measure of distance, identifying them with the cluster to which the related vector 
belongs. 

To evaluate the results obtained, use was made of the S&P100 set, belonging to the 
macroeconomic field, which contains the stock market variation indices of Standard 
& Poor’s stock market of the 100 largest companies in the USA in terms of capital 
market. This data set has the peculiarity that each subject (company) is represented in 
a very high space dimensionality with 249 characteristics, which transforms it into an 
icon for evaluation. The clustering were evaluated by means of the kappa coefficient 
because the real classification of the companies was known, in this case the Global 
Industry Classification Standard (GICS).  

Finally, the results are compared with those obtained by a traditional neural 
method (SOM), a growing one (GCS), and a non-neural one, which has been found to 
be one of the most efficient in the treatment of these kinds of problems.  

2   Methods 

2.1   Growing Neural Gas with Post-Pruning (GNG-PP) 

The GNG algorithm [4] gets a series of characteristics from other self-organizing 
methods (SOM [5], NG [1, 6] and GCS [7]) for quantizing the input space. 

But it incorporates others like the no need to predefine a topological structure or to 
maintain the consistent structure of the network during the training. It also introduces 
the concepts of local error for each neuron, and age for each connection, allowing 
them to be created and eliminated at any time, giving the network greater flexibility in 
the representation sought [3]. 

Another of its characteristics is that it bases its topological preservation capacity in 
obtaining the induced Delaunay triangulation (IDT) [8], which allows the input space 
to be divided into regions or clusters of vectors (during its vectorial quantization 
process), generating neural connections only in those areas of space where data are 
found. It is precisely the generation of the IDT what allows GNG to find clusters in 
the data space.  
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However, one of the risks of working with growing networks is that an inadequate 
training termination criterion can be chosen, and therefore the model obtained would 
not truly represent the input space. An example of this could be to use very few 
training steps or a very high range of quantization error.  

 

Fig. 1. Post-pruning process: (a) Identification of the non useful neurons. (b) Elimination of 
neurons and identification of new coordinates. (c) Final GNG model. In each image the shaded 
regions represent input data distributions. 

To solve this problem it is proposed to carry out a post-pruning of the GNG 
models once the training stage has ended, with the purpose of eliminating and/or re-
localizing the neurons that do not contribute to decreasing the quantization error. The 
general operation of the method is the following: 

i) As initial information it uses the neural model (neurons and connections) 
obtained by GNG. 

ii) The closest vector is associated with each datum by means of the calculation of 
a distance measure. 

iii) The neurons that are not useful for minimizing the quantization error, i.e. those 
to which no data were associated in the previous step, are identified, and they 
are assigned to set Vin. In Figure 1.a it would be Vin={a,b,c,d,e,f,g,h,i}. 

iv) The neurons of Vin are eliminated and/or relocalized. In this step, one of three 
cases may occur:  
• If a disconnected neuron is found, such as c in the example, it is eliminated. 
• If neurons connected only to neurons belonging to Vin are found, they are 

also eliminated together with their connections. In the example, a, b, d and h. 
• If neurons connected at least to a useful neighbor are found, they are not 

eliminated (in the example, e, f, g and i). Here, two cases must be 
distinguished: 
a) If the neuron has only one useful neighbor, then it will be relocated in a 

zone where it can help to decrease the quantization error, but without 
losing the connection (neurons highlighted in Figure 1.b). The new 
location is given by a differential of the position of the useful neuron to 
which it is connected. 

b) If the neuron is connected to more than one useful neighbor, it cannot be 
displaced (neurons highlighted in Figure 1.c). 
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The treatment process of the non useful neurons is done in the same order in which it 
was presented, with the purpose of relocalizing the largest possible number of 
neurons, eliminating first all the model's leftover nodes. 

2.2   Clustering by Neighborhoods 

Although growing methods are capable of finding the clusters in the input space, they 
do not provide information on which neurons are part of each cluster. To solve this a 
method is proposed that identifies the groups of vectors from the following concepts:  

Direct and indirect neighbors. The former are those that have a direct connection that 
joins them, while the latter, in spite of not being connected directly, are related by 
means of direct neighbors common to them (see Figure 2.a).  

Neighborhood. It is formed by the set of direct and indirect neighbors of a set of 
neurons. In the case of Figure 2.b there are 2 neighborhoods, A and B. 

   
B

A

(a) 

Indirect neighbors 
communicated by means 
of node a 

Direct 
neighbors 

a 

(b)  

Fig. 2. Neighborhood relations: (a) Direct and indirect. (b) Neighborhoods. 

The general operation of the method is the following: 

i) Initialize the label index: i=1. 
ii) Look for the first neuron v ∈ A not associated with any cluster, where A 

corresponds to the structure or set of neurons of the network. 
iii) Determine the direct neighbors of neuron v:  

 
Nd(v) =  {∀ i ∈ A | (v,i) ∈ C} (1) 

where C is the set of connections of the structure. Figure 3 shows an example 
in which Nd(v)={a,b,c,d,e}.  

iv) Determine the direct neighbors of each neuron of the set Nd(v) that do not 
belong to the same set: 

 
Nd(w) = {∀ j ∈ A | (w,j) ∈ C ∧ j ∉ Nd(w) }, ∀  w ∈ Nd(v) (2) 

In the example we have that Nd(b)={f,g}, therefore the indirect neighbors of v 
will be: Ni(v)={f,g}. 
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v) Join in set N the direct and indirect neighbors of v. In the example, it would be 
N={a,b,c,d,e,f,g}. 

vi) Label, in set M, all the nodes belonging to N (including neuron v), associating 
them to neighborhood i: 

 
M(k) = i,∀  k ∈ N ∩ v (3) 

In the example it would be M(a)={1}, M(b)={1}, …, M(v)={1}, as shown in 
Figure 3.b. 

vii) Continue the revision, returning to step iii), with the following unrevised 
element in N. In the example, it would be to continue with v=a. 

viii) If there are no unrevised elements in N, increase the label index: i=i+1. 
ix) If there are unmarked neurons of A, return to step ii), otherwise the algorithm is 

ended. In the example, it would be to continue with neuron q (see Figure 3.b). 
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Fig. 3.  Clustering by neighborhoods: (a) Direct and indirect neighbors of neuron ‘v’. (b) Mark 
of the neurons associated with ‘v’ (inner segmented line), identification of ‘neighborhood1’ 
(outer segmented line) and next unmarked neuron (node q). 

2.3   Clustering Strategy 

A clustering in phases approach presented in [2] will be used:  
 

Phase 1: Vectorial quantization 
In this phase a vectorial quantization of the data input space is made, generating a 
structure formed by vectors and neighborhood relations between them reflecting their 
topological characteristics. 

Phase 2: Clustering of quantization vectors 
In this phase the clustering of the vectors obtained in the previous phase takes place. 
In this case it is proposed to use the by Neighborhood method for this purpose. 

Phase 3: Association of data and vectors 
Once all the model's neighborhoods have been identified, each datum is associated 
with the nearest vector from a distance measure (for example, Euclidian), identifying 
them with the cluster or neighborhood to which the related vector belongs. 
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3   Experimental Results 

3.1   Data 

Standard & Poor’s 100 1 (S&P100) index is one of the main of stock market 
indicators in the USA, which measures the performance of the largest 100 companies 
(over US$ 6 trillion) in terms of market capitalization. 

For any given company, the values of the S&P index are related to the time series 
of the price of its own stock in a given time period.  

In this work the set of data was calculated, as indicated in Inostroza-Ponta et al. 
[9], i.e., the experimental value yi at time t is given by: 

 

 ( ) ( ) ( ) ( )
( )htP
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iii
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++⋅−−= 2

 
(4) 

 

where Pi(t) corresponds to the price of the stock of company i in week t, h represents 
the interval used to calculate the price variation of the stock (in this case it 
corresponds to one week), and Pi(t - h) is the normalization to eliminate any influence 
introduced by the current stock price. 

In this way the experimental set was formed by 100 registers (one per company) 
and 249 columns or dimensions (associated to the value yi). In this case use was made 
of the S&P indices between the years 1999 and 2004. 

3.2   Clustering Evaluation 

The kappa coefficient was used to obtain a measure of the quality of the clustering 
obtained. This is an indicator of the agreement between the values estimated by the 
model and the true values of the evaluation set [10]. 

It was chosen to use this index because the real classification of the S&P set was 
known beforehand. In this case the evaluation set corresponds to the Global Industry 
Classification Standard 2 (GICS), which classifies the companies in four levels, with 
different subclassifications according to it (see Table 1). However, in this study only 
the first two levels will be considered. 

Table 1. Classification of companies by level according to GICS 

Level No. Level Name  No. of subclassifications 
1 Sector 10 
2 Group of industries 22 
3 Industries 39 
4 Industrial branch 53 

                                                           
1 www2.standardandpoors.com/portal/site/sp/en/us/page.topic/indices_rtv 
2 www2.standardandpoors.com/portal/site/sp/en/us/page.topic/indices_gics 
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3.3   Results 

The clustering were made by means of the strategy of three phases, varying the 
vectorial quantization algorithm for phase 2 and using a Euclidian distance relation in 
phase 3. 

In this case neural methods were used to quantize the space: a fixed one with 
topological structure and predetermined shape (SOM), a growing one with rigid 
dimensional structure (GCS), and the proposed algorithm (GNG-PP). 

In the case of the SOM, the clustering strategy was to use each neuron of the 
network as a group by itself [2], so two configurations were used, one of 5x2 and one 
of 5x4 neurons (SOM-1 and SOM-2 models, respectively), because it was attempted 
to obtain a sensitive clustering both at level 1 and at level 2 of the GICS classification.  

In both cases it was decided to use hexagonal lattices because in them, in contrast 
with rectangular lattices, the neurons have not only vertical and horizontal 
connections, so the evolution of their neighborhood zones affects a greater number of 
neurons at a time, achieving greater capacity to adapted to the input space. 

In the case of growing methods, the values of the training parameters were defined 
from their function within the corresponding algorithm [4, 7, 11]. In the case of the 
learning rates (εb and εn) small values were chosen with the aim of moving the 
neurons from their random initial positions, with some balance, in all directions. It 
must always be true that εb >> εn, because otherwise it would be the neighbors and not 
the winner neuron that would move faster toward the input vector, reflecting the 
existing topology inadequately. 

With respect to the decrease in the local error rates of each neuron (α and β), their 
values are associated with the purpose of increasing the influence of the most recent 
errors in order to avoid an uncontrolled growth of the local errors. 

In the case of the growth parameter λ, use was made of values associated with the 
capacity of each network to generate the vectors clusters by means of pruning neurons 
during the training. In this way, in the case of GCS the network was increased every 
500 training steps, because in each elimination of leftover neurons it is possible to 
eliminate many others to maintain consistent the structure of growing cells.  

For GNG-PP this was done only every 100 steps, trying to generate models with no 
more than 100 neurons, avoiding the creation of too many nodes with respect to the 
total data (in this case only 100 companies). For the same reason, 100 were used as 
maximum age for each connection (amax).  

As to the threshold for the elimination of neurons in GCS (η), its value was used 
according to a recommendation from the literature [7]. 

Finally, the termination criterion used for the growing methods was the number of 
training steps. Because of this and due to the pruning characteristics of each method, 
more than twice the number of steps was used to train the GCS network compared to 
GNG-PP, to try to generate a more robust model in terms of the number of final 
neurons. Table 2 shows the values used for each parameter in each neural model. 

Using these training values, the clustering with each growing method were 
generated, finding the groups autonomously and automatically. In the case of  
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Table 2. Values of the training parameters for the growing methods 

Method Training εb εn amax λ α β η 
GCS 110000 0.01 0.00010 - 100 0.5 0.0005 0.09 

GNG-PP 50000 0.01 0.00005 100 500 0.05 0.0005 - 
 

Table 3. Classification of companies by level according to GICS 

Method # Groups # Neurons Kappa Level 1 Kappa Level 2 
GNG-PP 20 98 0.5643 0.4622 
Non neural 10 - 0.5242 0.3618 
SOM-2 20 20 0.5078 0.3441 
GCS 7 124 0.3792 0.2347 
SOM-1 10 10 0.3690 0.2349 

 
GNG-PP there were 20 clusters, and in that of GCS there were 7, with 98 and 124 
neurons, respectively. Table 3 presents a summary with the results obtained by each 
method considering only levels 1 and 2 of the GICS classification. 

As to the GNG model without post-pruning, 21 groups were obtained in 110 
neurons, 12 of which were not useful in vectorial quantization. Using post-pruning, 3 
of them were eliminated and 9 were relocated in positions of the space where they 
contributed to decrease the quantization and topological errors [5, 12], in that way 
improving the characterization of the input space.  

Furthermore, the results obtained by a non neural method presented in Inostroza-
Ponta et al. [9] were added; it considers that each market stock is a node of a graph, 
and that each edge has a weight associated with the correlation between the stock. 
Thus, the method divides the graph recursively into disconnected subgraphs forming 
the clusters. As far as we can tell, this is the most efficient method for solving this 
problem. 

With respect to the visualization of the results, it was decided to use the projection 
algorithm of the GCS method [7], because the model proposed by Fritzke does not 
have characteristics that restrict it exclusively to the growing cell method, so it was 
used without any modification.  

The projection for GNG was restricted only to a bidimensional space, favoring its 
ease of visualization over the possible loss of topological characteristics. This means 
that it is possible that the distances represented in the projection may not be strictly 
related to the real positions of the n-dimensional space. 

Figure 4 shows the projection obtained by the GNG-PP model for the S&P100 set, 
giving an approximate idea of what happens in the n-dimensional input space. It also 
shows the projection obtained by means of a classical method: Multidimensional 
Scaling (MDS) [13]. This carries out the space transformation in a metric and 
nonmetric way, and that would indicate if the relation between the initial proximities 
matrix and the distances of the new space will be linear or nonlinear. 
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                                              (a)                                                                         (b) 

Fig. 4. Projection of the GNG-PP model (generated from the S&P100 set) obtained by: (a) the 
growing method. (b) MDS. 

4   Discussion and Conclusions 

After the clustering made of the S&P100 set, it was found that the GNG algorithm 
with post-pruning got the best kappa coefficients, both for level 1 and for level 2 of 
the GICS classification. This is because GNG has a series of improvements that 
distinguish it from the other methods used and also make it a method sensitive to the 
characterization of data spaces. 

In the SOM models, since they have a rigid, predefined topological structure and 
are not capable of making prunings in their network, there are limitations in the 
results obtained, because they lead to the use of alternatives such as forcing each 
neuron to be a cluster by itself.  

Therefore, a bad choice of the number of neurons would make it lose capacity for 
the topological representation of the space, generating very poor quality clustering. 
This is the case of both SOM models, whose results are incapable of improving the 
results obtained by GNG-PP. 

With respect to the use of growing methods, one of their greatest limitations is that 
they are extremely sensitive to the values of their training parameters, because an 
incorrect choice of them can generate very poor results or processes that would use 
much computer time and resources to generate them. 

In the case of GCS, its weak results can be due, together with the above, to the fact 
that at each pruning of the network useful units were eliminated in the vectorial 
quantization with the purpose of maintaining the cell structure consistent, losing too 
much topological information. 

However, for GNG the influence of its parameters is attenuated, in terms of data 
clustering, because none of them have a direct influence in the partition of the space. 
On the other hand, by not depending on a rigid topological structure and allowing 
each neuron to have different numbers of neighbors, greater flexibility is achieved in 
the characterization of the original space, giving the possibility of relocating neurons 
in places where they can help in improving its quantization.  

Also, by using post-pruning, it is possible to eliminate neurons which, being 
useless in the characterization of the input space, can generate a distortion in the 
number of clusters found.  
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In this way more robust models are constructed, in terms of the quantization of the 
input space, making use of most of the neurons that were incorporated in the process of 
growth of the network. In the case of S&P100, the results obtained by the non-neural 
method were even improved, in spite of the fact that GNG-PP bases its operation 
exclusively on the calculation of distances, and may achieve results as robust as this 
method that uses optimization techniques in the fractioning of the data set. 

As to the projection achieved by GNG-PP, it turns it into an important aid in the 
cluster analysis, because it makes it possible to appreciate visually how the groups are 
distributed in the plane, keeping most of the topological relations of the n-dimensional 
original vector space.  

The above is because the space transformation is obtained during the training of 
the network, and therefore reflects all the changes produced in the model until it 
represents the input space of the data. This is precisely what does not happen with the 
MDS projection method, which depends on the type of transformation used (either 
metric or non-metric).  

Finally, it is important to mention that the evaluation has been made with a case 
study whose difficulty is centered in its high dimensionality. It would also be of 
interest to evaluate this method with benchmarks in which the number of cases is 
significant, such as the case of applications in the field of bioinformatics. 
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Abstract. Diversity is a key characteristic to obtain advantages of com-
bining predictors. In this paper, we propose a modification of bagging to
explicitly trade off diversity and individual accuracy. The procedure con-
sists in dividing the bootstrap replicates obtained at each iteration of the
algorithm in two subsets: one consisting of the examples misclassified by
the ensemble obtained at the previous iteration, and the other consist-
ing of the examples correctly recognized. A high individual accuracy of
a new classifier on the first subset increases diversity, measured as the
value of the Q statistic between the new classifier and the existing clas-
sifier ensemble. A high accuracy on the second subset on the other hand,
decreases diversity. We trade off between both components of the indi-
vidual accuracy using a parameter λ ∈ [0, 1] that changes the cost of a
misclassification on the second subset. Experiments are provided using
well-known classification problems obtained from UCI. Results are also
compared with boosting and bagging.

Keywords: Ensemble Methods, Bagging, Diversity, Neural Networks,
Classification Algorithms.

1 Introduction

Ensemble methods actually constitute an active research area that has lead to
a family of learning algorithms applied to a wide range of problems including
classification, clustering and regression. These methods are based on the idea of
combining a set of simple predictors instead of using only one, maybe more com-
plex. The interesting point is that with an appropriate design, the expected per-
formance of the combined predictor can be better than the average performance
of the individual predictors, even if these are weakly good. A key characteristic
to obtain such behavior seems to be diversity of the combined predictors. This is
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intuitively clear, since combining a set of identical models is hardly better than
using any single member of the set.

A well-studied method for ensemble generation is bagging, introduced by
Breiman in [3]. Bagging can be described as an algorithm with only an im-
plicit search for diversity, because no information about the predictions of the
other models is incorporated to generate each predictor. Recent works [10] [9]
have shown that the action of bagging is to control the effective influence of
training examples in the estimation process, which is implicitly implemented by
the bootstrapping plan carried out at each round of the algorithm. According to
this reasoning, the robustness of bagging to overfitting, is not related to the inde-
pendence of the different bagging rounds. An explicit search for diversity could
hence be incorporated, allowing visibility between the learners while preserving
the robustness characteristic of bagging.

In this paper we focus on binary classification, that is, we are given with a
set of examples S = {(xk, yk); k = 1, . . . , m}, obtained sampling independently a
distribution P (x,y), where xk ∈ R

p represents a set of features and yk ∈ {−1, 1}
a class label. We are asked to build a classifier M : R

p → {−1, 1} capable
to recognize the class corresponding to a given x, specifically we are asked to
minimize the misclassification probability EP (x �= M(y)).

In this type of problems, diversity can be quantified using the so called Q
statistic [13] [11]. For a pair of classifiers, this measure depends on the frequency
with which the classifiers coincide and disagree in the recognition and misclas-
sification of the training examples. As stated in [5], diversity can be harmful if
this is maximized at the expense of the individual accuracy and hence, an im-
perfect correlation between diversity and accuracy is observed in practice [11].
In this paper, we propose a modification of bagging, to explicitly trade off diver-
sity and individual accuracy, decomposing the training objective of each learner
in a component that contributes to diversity and other that decreases diversity.
This algorithm has the same spirit of some algorithms proposed for regression
problems, for example the negative correlation algorithm [6].

We start by presenting in section 2 the bagging algorithm [3] and a possible jus-
tification of its effectiveness. In section 3 we briefly review the concept of diversity
in ensembles. In section 3 we show how to modify bagging to explicitly balance
diversity and local accuracy. This algorithm inherits the robustness of bagging to
overfitting because it preserves at each iteration, the resampling plan character-
istic of bagging. In the final section we provide experimental results on classifica-
tion problems obtained from UCI[2] and systematically used in the literature to
analyze classifier ensembles. We also compare the algorithm with other methods,
boosting and bagging, using different numbers of component learners.

2 Bagging

One of the most widely used techniques for creating an ensemble is bagging
(short for Bootstrap Aggregation Learning), where a base classifier is provided
with a set of patterns obtained randomly resampling the original set of examples
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and then trained independently of the other classifiers. The final hypothesis is
obtained as the signum of the averaged predictions. The algorithm is summarized
in figure (1)

1: Let S = {(xi, yi); i = 1, . . . , m} be training set.
2: Generate T bootstrap samples St, t = 1, . . . , T from S.
3: for t = 1 to T
4: Train the classifier ft with the set of examples St to minimize the classification

error
�

j I(yj �= ft(xj)), where I(S) is the indicator of the set S.

5: Set the ensemble predictor at time t to be F t(x) = sgn
� 1

t

�t
i=1 f t

i (x)
�
.

6: end for

Fig. 1. Bagging

Breiman [3] presents bagging as a procedure capable to reduce the variance
of predictors mimicking averaging over several training sets.

In [14] it is shown that for well behaved loss functions, bagging can provide
generalization bounds with a rate of convergence of the same order as Tikhonov
regularization. The key observation is that using bagging, an α-stable algorithm
can becomes strongly α-stable with appropriate sampling schemes. Strongly α-
stable algorithms provide fast rates of convergence from the empirical error to
the true expected prediction error.

The key fact in the previous analysis is that certain sampling plans allow
some points to affect only a subset of learners in the ensemble. The importance
of this effect is also remarked in [10] and [9]. In these works, empirical evidence is
presented to show that bagging equalizes the influence of training points in the
estimation procedure, in such a way that points highly influential (the so called
leverage points) are down-weighted. Since in most situations leverage points
are badly influential, bagging can improve generalization by making robust an
unstable base learner. From this point of view, resampling has an effect similar to
robust M-estimators where the influence of sample points is (globally) bounded
using appropriate robustifying functions.

Since in uniform resampling all the points in the sample have the same prob-
ability of being selected, it seems counterintuitive that bagging has the ability
to selectively reduce the influence of leverage points. The explanation is that
leverage points are usually isolated in the feature space. To remove the influence
of a leverage point it is enough to eliminate this point from the sample but to
remove the influence of a non-leverage point we must in general remove a group
of observations. Now, the probability that a group of size K be completely ig-
nored by bagging is (1−K/m)m which decays exponentially with K. For K = 2
for example (1 − K/m)m ∼ 0.14 while (1 − 1/m)m ∼ 0.368. This means that
bootstrapping allows the ensemble predictions to depend mainly on “common”
examples, which in turns allows to get a better generalization.
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3 Diversity for Classifier Ensembles

Several works have revealed that diversity is a very important characteristic to
get real advantages of combining predictors [13] [11] [12] [5]. In regression prob-
lems, diversity can be rigorously defined by the so called ambiguity decomposition
[5]. It can be easily proved that if a set of individual regressors f1, f2, . . . , fm are
linearly combined as F =

∑
i wifi, the quadratic loss of the ensemble prediction

F (x) at a fixed pattern (x, y) can be decomposed as

(y − F )2 =
∑

i

wi(y − fi)2 −
∑

i

wi(fi − F )2 (1)

This decomposition states that the ensemble accuracy not only depends on the
individual accuracies but also on the variability of the individual predictions
around the combined prediction. From this result, is clear that differences be-
tween individual outputs contribute toward the overall ensemble accuracy, if the
individual accuracies are maintained. We can hence define the level of diversity
in the ensemble as the second term of equation (1), computed and averaged over
the training examples. Similar measures of diversity can be obtained in terms of
the correlation between the individual errors.

In classification problems, predictors are usually not aggregated using simple
linear combinations and hence equation (1) does not hold. Moreover, if base clas-
sifiers can only output discrete class labels, quadratic loss cannot properly be
used. Definition of diversity for a set of classifiers is hence a more complex task
that has been tackled on different ways. Great part of the work examining classi-
fier diversity is due to Kuncheva [13] [11]. In [13], several diversity measures are
analyzed, which can be separated between pairwise and non-pairwise measures.
Pairwise measures compute a statistic between a pair of classifiers based on the
complete set of examples, and then this is averaged over all possible pairings.
Non-pairwise measures in contrast, compute a statistic for each example based
on the predictions of the set of classifiers and then the average among the exam-
ples. The pairwise measures analyzed in [13] depend on the frequency with which
a pair of classifiers agree or disagree in the recognition of a training example.
Given two classifiers fi, fj we can count the number of examples N11 for which
both are correct, the number of examples N00 for which both are incorrect, the
cases N10 for which fi is correct but fj incorrect and the cases N01 for which
fj is correct but fi incorrect. These four types of situations can be summarized
in the following table:

fj correct fj incorrect

fi correct N11 N10

fi incorrect N00 N01

From these statistics, several metrics of diversity can be derived. Since dif-
ferent measures show great similarity, Kuncheva recommends the use of the so
called Q statistic for easy of interpretation. For a pair of classifiers fi and fj this
is computed as
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Q(fi, fj) =
N11N00 − N10N01

N11N00 + N10N01 (2)

If the classifiers tend to misclassify and correctly classify the same instances, the
Q statistic will take a positive value achieving a maximum of +1. If on the other
hand, the classifiers show different patterns of errors, the Q statistic will take a
negative value with a minimum value of −1. For independent classifiers Q = 0.

4 Bagging with Asymmetric Costs for Misclassified and
Correctly Classified Examples

According to the taxonomy proposed in [5] for diversity creation methods, ma-
nipulation of the training data is one the most investigated techniques for en-
semble generation. In particular, resampling of the training set is part of the
two currently most successful ensemble algorithms: boosting [7] and bagging [3].
Bagging can be considered as an implicit method to generate diversity because
it does not use any information about the behavior of the other learners to ma-
nipulate the training data. This algorithm can however significatively decrease
the generalization error of the base learner because, as we have explained in the
previous sections, resampling limits the influence of isolated examples on the
ensemble, stabilizing the overall prediction. In contrast to bagging, Adaboost is
an algorithm explicitly designed to focus each learner in the instances of the
training set where the previous learners perform bad.

Suppose we generate an ensemble sequentially, adding at each step t a new
classifier ht to the ensemble generated in the previous steps. Suppose we generate
the new classifier to maximize the Q statistic between the existing classifier Ht−1
(resulting from the combination of the previously generated classifiers) and the
new classifier. Hence, if the ensemble correctly classifies a subset C of examples
of the training set S and misclassifies a subset M , the new classifier ht has to
misclassify all the examples in the set C but correctly recognize the patterns in
M . In this case, Q(Ht−1, ft) = −1 and diversity is clearly maximized. However,
for reasonable aggregation functions this procedure has only sense if the existing
classifier has an accuracy lower than 50% or the margin for the classification of
the correctly classified examples is wide enough. It would be possible to over-
come this problem using instance-dependent aggregation functions, but this is
out of the scope of this paper. On the other hand, the problem of determining
which classifiers behave well for a given instance is a classification problem itself,
which could be even more complex than the original classification problem. As
stated by [5], the problem is that diversity can be harmful if individual accuracy
is completely sacrificed to obtain differences between the predictors outputs. For
this reason it is difficult to speak about a perfect correlation between the di-
versity measure and the ensemble accuracy [11]. The latter observation holds
also for regression ensembles where clear diversity measures can be defined. For
example, the ambiguity decomposition and similar decompositions in regression
estimation, have lead to algorithms that look for an adequate tradeoff between
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individual accuracy and diversity. In the negative correlation algorithm [6] this
achieved training each learner with the objective function

Ei =
∑

(xi,yi)∈S

(yi − f(xi))2 + λ
∑

i∈S

(fi − F̄ )2 (3)

where F̄ is the ensemble output. It can be shown that diversity can decrease
the ensemble accuracy if this is not balanced with other components of the
ensemble error. In this spirit, we propose an algorithm to explicitly trade off
diversity and individual accuracy. The procedure works iteratively, by adding
a new classifier ht to the existing ensemble Ht−1 at each step t = 1, 2, . . . , M .
Following bagging, each learner is trained using a bootstrap sample St of the
original set of examples S. Bootstrapping at each iteration allows us to inherit
the robustness of bagging to overfitting, which is not based on the independence
of the different bagging steps, but on the effects of the resampling plan. Instead
of generating each learner independently of the others, we propose to train the
learner at step t with the following objective function

Et =
∑

(xi,yi)∈Mt−1

I(yi �= ht(xi)) + λ
∑

(xi,yi)∈Ct−1

I(yi �= ht(xi)) (4)

where Mt−1 is the set of examples incorrectly classified by the ensemble obtained
at step t − 1 and Ct−1 the set of correctly recognized examples. Note that I(S)
is the indicator of the set S. Hence, the first component of equation (4) is the
total classification error on the set Mt−1 and the second is the total error on the
set Ct−1. The greater the first term, the greater the Q statistic between the new
classifier and the existing ensemble. Optimization of the second term in contrast,
monotonically decreases diversity measured as the value of the Q statistic. Both
components of Et contribute to the individual accuracy of the new classifier.
In other words, equation (4) represents a tradeoff between individual accuracy
that contributes to generate diversity and individual accuracy that decreases
diversity. Note that if λ = 1, the algorithm coincides with bagging and accuracy
is optimized independently of the diversity the new classifier incorporates to
the ensemble. If λ is allowed to increase beyond 1, then accuracy that damages
diversity would be preferred over accuracy compatible with diversity generation.
If λ is allowed to go below 0, then it leads to a better optimization of the Q
statistic, but both individual and ensemble accuracy can be seriously damaged,
especially when the existing ensemble has performance over the 50%.

Algorithm(2) summarizes the proposal of the paper.The implementation of this
procedure canbe carriedout in severalways.Themostnatural of them is to consider
weights for each example: a weight λi = 1 for the examples (xi, yi) misclassified by
the previous ensemble and a weight λi = λ for the correctly recognized examples.
Another possibility, if thebase learner cannotmanipulateweights for each example,
is to use a samplingplanwithprobabilities coincidingwith thedesiredweights.This
approach is used for example in the adaBoost algorithm [7] [8].

The resultant algorithm is similar in spirit to the half-and-half bagging algo-
rithm proposed by Breiman [4]. In this method predictors are generated
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1: Let S = {(xi, yi); i = 1, . . . , m} be training set.
2: Generate T bootstrap samples St, t = 1, . . . , T from S.
3: Train the classifier f1 with S1 to minimize

�
j I(yj �= ft(xj))

4: for t = 2 to T
5: Classify each example xj of St using the classifier ensemble F t−1. If the example

is correctly classified put it in the set Ct−1, otherwise put it in the set Mt−1.
6: Train the classifier ft to minimize

Et =
�

j∈Mt−1

I(yj �= ht(xj)) + λ
�

j∈Ct−1

I(yj �= ht(xj))

=
�

j∈St

λjI(yj �= ht(xj))

where λj = 1 if (xj , yj) ∈ Mt−1 and λj = λ if (xj , yj) ∈ Ct−1.
7: Set the ensemble predictor at time t to be F t(x) = sgn

� 1
t

�t
i=1 f t

i (x)
�
.

8: end for

Fig. 2. The proposed algorithm

sequentially using different subsets of the original training set. At each round, an
example is randomly selected and classified by the learners previously generated
that did not use the example in their training sets. If the example is misclassi-
fied by majority voting on the latter predictions this is incorporated in a set M.
Otherwise the example is incorporated in a set C. This process is repeated until
the sizes of M and C are equal to s = n/4, where n is the total number of exam-
ples. The next classifier is trained on the examples of M and C with equal costs. It
should be noted that the number of correctly classified examples will be in general
greater than the number of misclassified examples, especially when several rounds
of the algorithm have been elapsed. Hence, this method implicitly puts more fo-
cus than standard bagging in the misclassified examples. The constant propor-
tion of the correctly classified examples in the next training sample on the other
hand, ensures each learner achieves a reasonable individual accuracy of the orig-
inal training set and that misclassified examples do not dominate excessively the
next training round. This is a clear difference with the adaBoost algorithm [7] [8].
In contrast to standard bagging, adaBoost forces the learners to focus on the diffi-
cult training examples and pay less attention to the examples correctly classified
by the last predictor. This is achieved by computing example weights and then
bootstrapping the training data with probabilities coinciding with these weights.
Although very effective in practice, adaBoost is highly more sensitive to leverage
points (in particular outliers) than bagging [1]. In some rounds, adaBoost could
be completely dominated by few isolated examples more than in local patterns
present in the data. With the algorithm proposed in this section, the relative im-
portance of a misclassified example with respect to an already recognized example
is kept constant and hence the former cannot dominate excessively.
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5 Experimental Results and Discussion

In this section we present results of empirical studies to evaluate the proposed
algorithm. In the whole set of experiments, two real and well-known data sets
were used, namely Phoneme and Diabetes. A detailed description of these data

Table 1. Analysis of the parameter λ

Phoneme Diabetes
λ Training Error Testing Error Training Error Testing Error
0.0 0.2730 ± 0.0810 0.2793 ± 0.0758 0.3503 ± 0.0383 0.3935 ± 0.0368

0.1 0.1687 ± 0.0154 0.1810 ± 0.0111 0.1939 ± 0.0048 0.2600 ± 0.0101

0.2 0.1643 ± 0.0073 0.1777 ± 0.0102 0.1927 ± 0.0049 0.2465 ± 0.0113

0.3 0.1676 ± 0.0090 0.1762 ± 0.0094 0.1896 ± 0.0042 0.2359 ± 0.0107

0.4 0.1659 ± 0.0062 0.1786 ± 0.0077 0.1911 ± 0.0040 0.2384 ± 0.0097

0.5 0.1661 ± 0.0077 0.1774 ± 0.0110 0.1884 ± 0.0035 0.2375 ± 0.0097

0.6 0.1709 ± 0.0081 0.1811 ± 0.0103 0.1892 ± 0.0036 0.2329 ± 0.0105

0.7 0.1691 ± 0.0059 0.1814 ± 0.0107 0.1891 ± 0.0040 0.2314 ± 0.0098

0.8 0.1717 ± 0.0072 0.1805 ± 0.0104 0.1900 ± 0.0033 0.2338 ± 0.0093

0.9 0.1675 ± 0.0065 0.1811 ± 0.0082 0.1908 ± 0.0040 0.2316 ± 0.0095

1.0 0.1730 ± 0.0045 0.1850 ± 0.0118 0.1919 ± 0.0040 0.2333 ± 0.0115

Table 2. Experimental results on the Phoneme dataset

N Boosting Bagging Proposal
λ = 0.3

Training Set
2 0.1992 ± 0.0178 0.1973 ± 0.0186 0.1893 ± 0.0165
4 0.1885 ± 0.0098 0.1846 ± 0.0134 0.1665 ± 0.0077
6 0.1822 ± 0.0111 0.1776 ± 0.0046 0.1726 ± 0.0167
8 0.1840 ± 0.0139 0.1748 ± 0.0043 0.1648 ± 0.0067
10 0.1786 ± 0.0075 0.1777 ± 0.0092 0.1662 ± 0.0088
12 0.1769 ± 0.0071 0.1746 ± 0.0066 0.1654 ± 0.0117
14 0.1753 ± 0.0074 0.1760 ± 0.0076 0.1609 ± 0.0067
16 0.1751 ± 0.0065 0.1737 ± 0.0051 0.1642 ± 0.0087
18 0.1754 ± 0.0062 0.1725 ± 0.0046 0.1587 ± 0.0062
20 0.1746 ± 0.0075 0.1712 ± 0.0048 0.1570 ± 0.0049

Testing Set
2 0.2058 ± 0.0193 0.2093 ± 0.0205 0.1972 ± 0.0155
4 0.1978 ± 0.0125 0.1965 ± 0.0158 0.1764 ± 0.0101
6 0.1910 ± 0.0161 0.1904 ± 0.0116 0.1822 ± 0.0174
8 0.1937 ± 0.0190 0.1865 ± 0.0112 0.1752 ± 0.0099
10 0.1882 ± 0.0094 0.1863 ± 0.0110 0.1768 ± 0.0118
12 0.1862 ± 0.0093 0.1848 ± 0.0083 0.1765 ± 0.0039
14 0.1863 ± 0.0101 0.1849 ± 0.0082 0.1733 ± 0.0131
16 0.1872 ± 0.0122 0.1853 ± 0.0084 0.1729 ± 0.0091
18 0.1886 ± 0.0123 0.1846 ± 0.0095 0.1729 ± 0.0129
20 0.1867 ± 0.0130 0.1837 ± 0.0091 0.1674 ± 0.0101
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Table 3. Experimental results on the Diabetes dataset

N Boosting Bagging Proposal
λ = 0.7

Training Set
2 0.2247 ± 0.0068 0.2083 ± 0.0058 0.2092 ± 0.0062
4 0.2080 ± 0.0061 0.1986 ± 0.0046 0.1966 ± 0.0043
6 0.2013 ± 0.0053 0.1944 ± 0.0045 0.1921 ± 0.0037
8 0.1956 ± 0.0052 0.1921 ± 0.0044 0.1894 ± 0.0042
10 0.1920 ± 0.0054 0.1919 ± 0.0040 0.1891 ± 0.0040
12 0.1896 ± 0.0053 0.1905 ± 0.0038 0.1890 ± 0.0036
14 0.1869 ± 0.0055 0.1899 ± 0.0038 0.1889 ± 0.0039
16 0.1850 ± 0.0054 0.1895 ± 0.0037 0.1880 ± 0.0035
18 0.1835 ± 0.0055 0.1892 ± 0.0035 0.1863 ± 0.0036
20 0.1818 ± 0.0053 0.1892 ± 0.0035 0.1860 ± 0.0036

Testing Set
2 0.2616 ± 0.0126 0.2467 ± 0.0106 0.2465 ± 0.0107
4 0.2650 ± 0.0125 0.2386 ± 0.0087 0.2386 ± 0.0104
6 0.2621 ± 0.0117 0.2354 ± 0.0105 0.2349 ± 0.0109
8 0.2561 ± 0.0110 0.2343 ± 0.0111 0.2314 ± 0.0101
10 0.2589 ± 0.0125 0.2333 ± 0.0115 0.2314 ± 0.0098
12 0.2588 ± 0.0121 0.2340 ± 0.0104 0.2316 ± 0.0105
14 0.2573 ± 0.0112 0.2305 ± 0.0108 0.2297 ± 0.0104
16 0.2560 ± 0.0116 0.2302 ± 0.0097 0.2319 ± 0.0097
18 0.2596 ± 0.0117 0.2321 ± 0.0099 0.2323 ± 0.0093
20 0.2590 ± 0.0110 0.2306 ± 0.0102 0.2317 ± 0.0095

sets can be obtained from [2]. For comparison purposes, three algorithms will be
evaluated: Boosting, Bagging, and the proposed algorithm. In addition, neural
networks with five sigmoidal hidden units and trained with standard backpropa-
gation were employed as base learners. For each experiment, t-student confidence
intervals will be reported with a significance of 0.02 obtained after 50 simulations.
The estimation process is carried out with a 75% of the available observations
and testing with the rest 25%.

Table (1) shows the proposed algorithm performance by using different values
of parameter λ in the Phoneme and Diabetes datasets.

Table (2) and table (3) show confidence intervals for the mse of Boosting,
Bagging and the proposed algorithm versus the number of learners in the en-
semble, obtained with the Phoneme and Diabetes dataset respectively. In this
experiment, we use the test error optimal values of λ found in the previous ex-
periment. It should be remarked that these values of λ are the optimal found
with 10 base learners.

For this paper only two benchmark problems have been chosen, which however
allow us to draw preliminary representative conclusions. Table (1) shows clearly
that the optimal value of λ is problem dependent, as it was already shown in
the case of Negative Correlation applied to regression problems [6]. In both
benchmarks however, the optimal value of λ was lower than 1. It should be
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remarked λ = 1 is equivalent to bagging. This parameter may be selected using
a validation set or adjusted with an evolutionary algorithm. Table (2) illustrates
that the proposed method, with λ = 0.3 reaches a lower mean square error than
Boosting and Bagging on the test set. It is known that the Diabetes classification
problem suffers from “missing information” and mse results at the level of 0.25
are already considered to be good. Boosting reaches this level with 16 base
learners in the ensemble. Bagging obtains the best result (mse 0.2302) with an
ensemble of the same size. The proposed method, with λ = 0.7, obtains a result
(mse 0.2314) which is better than Boosting and slightly weaker than Bagging
using however only 8 base learners.
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Abstract. In our previous work we have proposed two methods for evaluating 
semantic similarity / dissimilarity of nouns based on their modifier sets regis-
tered in Oxford Collocation Dictionary for Student of English. In this paper we 
provide further details on the experimental support and discussion of these 
methods. Given two nouns, in the first method the similarity is measured by the 
relative size of the intersection of the sets of modifiers applicable to both of 
them. In the second method, the dissimilarity is measured by the difference be-
tween the mean values of cohesion between a noun and the two sets of modifi-
ers: its own ones and those of the other noun in question. Here, the cohesion be-
tween words is measured via Web statistics for co-occurrences of words. The 
two proposed measures prove to be in approximately inverse dependency. Our 
experiments show that Web-based weighting (the second method) gives better 
results. 

Keywords: Semantic relatedness, word space model, lexical resources, Web as 
corpus, natural language processing. 

1   Introduction 

Several works evaluate semantic similarity or dissimilarity between words, see [3, 11] 
and references therein. The majority of evaluations are based on semantic hierarchies 
of WordNet [4, 5]. In this class of methods, semantic dissimilarity between words is 
considered proportional to the number of steps separating corresponding nodes of 
 the hierarchy. The nodes are synsets that include the words under evaluation, while 
the arcs are subset-to-superset links between the synsets. The greater the distance, the 
greater dissimilarity. This measure proved to be useful in many applications and tasks 
of computational linguistics, such as word sense disambiguation [9], information re-
trieval, etc. 

Another possible way for estimation of semantic proximity of words consists in 
comparing the sets of other words frequently co-occurring in texts in close vicinity to 
the two words in question [6]. The more similar the recorded beforehand sets of stan-
dard neighbors of any two words of the same POS, the more semantically similar the 
                                                           
* Work done under partial support of Mexican Government (CONACyT, SNI, SIP-IPN, 

COTEPABE-IPN). Authors thank anonymous reviewers for valuable comments. 
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words [7]. As applied to nouns, the accompanying words are primordially their modi-
fiers. In European languages, these are usually adjectives or participles; in English 
these are also nouns staying in preposition and used attributively. 

We evaluate semantic similarity or dissimilarity of English nouns by two methods 
in this paper. Both of them are based on those standard modifier sets for few tens of 
commonly used English nouns that are registered for them in OCDSE that seems the 
most reliable source of English collocations so far [10]. The nouns were preferred 
with more numerous collections of modifiers recorded. 

In the first method, the similarity Sim(N1, N2) of the noun N1 to the noun N2 is 
measured by the ratio of the number of modifiers commonly applicable to the both 
nouns and the number of modifiers of N2.  

In the second method, we weight the relatedness between the noun and its modifi-
ers by the Web co-occurrence statistics. Namely, the dissimilarity DSim(N1, N2) of N1 
from N2 is measured by the residual of two mean values of specially introduced Stable 
Connection Index. SCI is exteriorly like Mutual Information of two words [8] and op-
erates by raw statistics of Web pages containing these words considered separately 
and in their close co-occurrences. In contrast to Mutual Information, it does not re-
quire repetitive evaluation of the total amount of pages under search engine’s control. 
One mean value covers SCIs of all ‘noun → its own modifier’ pairs, another mean 
value covers SCIs of all ‘N1 → a modifier of N2’ pairs. English modifiers usually pre-
cede their nouns forming bigrams with them, thus facilitating reliable Web statistic 
evaluations. In other words, Sim is determined through coinciding modifiers of nouns, 
while DSim is determined through alien modifiers. 

The main idea of the two methods discussed here was briefly presented in our pre-
vious work [2]. In this paper, we give more details on the experiments conducted to 
compare these two methods. 

Namely, our experimental data show that though the Sim and DSim measures can 
be rather arbitrary in each specific case, on average they show an inverse monotonic 
interdependence. However, in our experiments DSim showed higher resolution. By 
higher resolution we mean that while many noun pairs have zero Sim values as meas-
ured according to the OCDSE, they differ significantly in their DSim values. 

2   Modifier Sets Selected for Evaluations 

English nouns with all their recorded modifiers—both adjectives and nouns in attribu-
tive use—were taken from OCDSE. The nouns were picked up in rather arbitrary 
manner, without taking into account their mental similarity. Our only preferences 
were with the nouns with larger modifier sets. 

For 32 nouns taken, total amount of modifiers (partially repeating) is 1964, and the 
mean modifiers group size equals to 61.4, varying from 39 (for comment and disease) 
to 119 (for eyes). The second and the third ranks determined by the set sizes are with 
expression (115) and effect (105). The nouns selected and sizes of their modifier sets 
are shown in Table 1. 

We have limited the number of nouns to 32 units, since the total amount of ac-
cesses to the Web in experiments of the second method (cf. Section 5) grows ap-
proximately as a square of the number of words in question, so that, taking into  
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Table 1. Selected nouns and sizes of their modifier sets 

S/N Noun MSet Size  S/N Noun MSet Size 
1 answer 44  17 effect 105 
2 chance 43  18 enquiries 45 
3 change 71  19 evidence 66 
4 charge 48  20 example 52 
5 comment 39  21 exercises 80 
6 concept 45  22 expansion 44 
7 conditions 49  23 experience 53 
8 conversation 52  24 explanation 59 
9 copy 61  25 expression 115 

10 decision 40  26 eyes 119 
11 demands 98  27 face 96 
12 difference 53  28 facility 89 
13 disease 39  29 fashion 61 
14 distribution 58  30 feature 51 
15 duty 48  31 flat 48 
16 economy 42  32 flavor 50 

account limitations of Internet searchers and the general trend of all statistics to grow, 
we could afford several days to acquire all necessary statistics but not a month.  

Some nouns (conditions, demands, enquiries, exercises, and eyes) were taken in 
plural, since they are used with the recorded modifier sets in plural more frequently 
than in singular. 

3   Influence of Intersection of Modifier Sets 

In our first method, the similarity Sim(Ni, Nj) is defined through the intersection ratio 
of modifier sets M(Ni) and M(Nj) of the two nouns by the formula 

                               ( ) ( ) ( )
( )
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i j

i j

i

M N M N
Sim N N

M N
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        (1) 

where |M(Ni)| means cardinal number of the set M(Ni), ∩ designates set intersection. 
With such definition, the similarity measure is generally asymmetric: Sim(Ni, Nj) ≠ 

Sim(Nj, Ni), though both values are proportional to the number of commonly applica-
ble modifiers. We can explain the asymmetry by means of the following extreme 
case. If M(Ni )⊂ M(Nj), each member of M(Ni) has its own counterpart in M(Nj), thus 
Sim(Ni, Nj) reaches the maximum equal to 1 (just as when M(Ni) = M(Nj)), but some 
members of M(Nj) have no counterparts in M(Ni), so that Sim(Nj, Ni) < 1. 

To better visualize the similarity, we put to Table 2 symmetric ratios 
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Table 2. Similarity measure for the 32 nouns 

2 9              
3 5 7             
4 2 7 3            
5 10 2 4 2            
6 7 2 9 2 5            
7 6 11 7 2 11 6           
8 10 2 2 4 11 4 4          
9 4 6 0 7 6 2 13 4         

10 12 5 11 0 0 7 9 2 6        
11 5 9 12 10 6 9 12 1 3 8       
12 6 10 28 2 2 18 4 4 2 11 14      
13 0 0 2 2 3 0 2 2 0 0 2 4      
14 0 4 6 0 8 4 8 5 3 0 5 14 2      
15 0 2 2 6 7 6 0 2 0 0 9 2 0 4      
16 0 2 7 2 0 5 2 2 2 5 11 8 0 8 2      
17 9 3 20 3 3 3 4 1 0 3 7 13 2 1 0 8      
18 9 0 4 6 12 9 0 8 2 7 8 4 0 2 9 7 4      
19 9 6 6 4 0 9 4 2 6 10 9 12 0 2 0 6 12 11      
20 10 11 2 0 4 6 6 8 5 2 3 13 4 0 0 0 5 0 7      
21 10 2 7 2 5 12 6 6 6 11 8 5 2 3 5 3 2 7 4 9      
22 0 5 25 2 0 4 2 0 4 5 14 23 0 8 0 16 9 4 6 6 7      
23 4 4 3 2 4 2 4 11 4 4 6 4 4 2 2 0 5 0 8 8 6 2      
24 35 6 5 2 10 19 7 13 3 4 5 11 2 2 4 0 5 14 8 9 10 0 5      
25 8 1 3 3 7 6 5 5 4 1 5 5 3 2 1 0 5 6 10 9 5 0 6 12      
26 4 4 2 0 3 3 1 3 1 3 6 9 0 1 1 0 1 3 5 4 2 4 4 2 11      
27 3 2 1 3 2 2 3 8 4 2 3 1 2 0 0 0 1 2 4 4 1 0 3 4 12 9      
28 5 8 3 2 3 8 11 4 8 3 9 6 2 4 2 3 1 3 5 6 9 2 4 6 1 1 0     
29 8 2 5 2 2 10 4 7 3 2 8 4 0 3 2 2 4 2 6 7 7 2 0 10 1 1 5 4    
30 0 2 8 2 2 15 6 2 4 9 8 23 2 0 0 6 12 2 3 19 9 8 4 2 7 1 3 7 4   
31 0 7 5 2 0 0 0 0 2 2 1 2 0 0 0 0 1 0 0 0 0 2 0 0 1 3 1 2 0 2  
32 4 6 5 2 2 2 4 4 5 2 7 6 2 4 0 4 4 2 5 8 3 0 4 7 8 4 7 4 2 10 0 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Because of the symmetry, we may consider the elements (in percents) only with 
i ∈ [1, ..., j–1] (numbers at the left border and the bottom of the Table 2 are as in 
 Table 1) and j ∈ [1, ..., 32].  

The average value of Sym(Ni, Nj) in Table 1 is the 0.05. It reaches the maximum 0.35 
for the pair {answer, explanation}, which are semantically closest words among these 
few under consideration. The following pairs decreasing in similarity are {change, dif-
ference}, {change, expansion}, {difference, expansion}, {difference, feature}, {change, 
effect}, {comment, explanation}, {concept, difference}, {economy, expansion}, {con-
cept, feature}, etc. Some meaning clusters could be already seen, but we should admit 
that a more trustworthy clustering needs a vaster set of nouns and vaster sets of  
modifiers.  
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Quite dissimilar pairs (with zero Sym value) are quite numerous (76): {change, 
copy}, {charge, decision}, {comment, decision}, {answer, disease}, {chance, dis-
ease}, etc. The nouns for human features eyes and face proved to be very productive 
in modifiers (119 and 96 relatively) but very specific (their Sym measures are close to 
zero for majority of noun pairs).  

4   Words Cohesion in Internet 

Any words W1 and W2 may be considered forming a stable combination if their co-
occurrence number N(W1,W2) in a text corpus divided by S (the total number of words 
in the corpus) is greater than the product of relative frequencies N(W1)/S and N(W2)/S 
of the words considered apart. Using logarithms, we have a measure of word cohesion 
known as log-likelihood ratio or Mutual Information [8]:  

.
)()(

),(
log),(

21

21
21 WNWN

WWNS
WWMI

⋅
⋅≡  

MI has important feature of scalability: if the values of all its building blocks S, 
N(W1), N(W2), and N(W1,W2) are multiplied by the same factor, MI preserves its value. 

Any Web search engine automatically delivers statistics on a queried word or a 
word combination measured in numbers of relevant Web pages, and no direct infor-
mation on word occurrences or co-occurrences is available. We can re-conceptualize 
MI with all N() as numbers of relevant pages and S as the page total managed by the 
engine. However, now N()/S are not the empirical probabilities of corresponding 
events: the words that occur at the same a page are indistinguishable in the raw statis-
tics, being counted only once, and the same page is counted repeatedly for each word 
included. We only hope that the ratios N()/S are monotonically connected with the 
corresponding empirical probabilities for the events under consideration. 

In such a situation a different word cohesion measure was construed from the same 
building blocks [1]. It conserves the feature of scalability, gives very close to MI re-
sults for statistical description of rather large sets of word combinations, but at the 
same time is simpler to be reached, since does not require repeated evaluation of the 
whole number of pages under the searcher’s control. The new cohesion measure was 
named Stable Connection Index: 
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The additive constant 16 and the logarithmic base 2 were chosen rather arbitrary. 
The constant 16 does not affect the comparisons discussed in this paper and is in-
cluded purely for sake of tradition (since this is how the notion of SCI has been intro-
duced previously); the reader can safely ignore it. 

Since our experiments with Internet searchers need minimally several days to per-
form, some additional words on Web searchers are worthwhile here.  

The statistics of searcher have two sources of variation in time. The first one is 
monotonic growing because of steady enlargement of searcher’s DB. In our experi-
ence, for huge searcher’s BDs and the queried words forming stable combinations, the 
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raw statistics N(W1), N(W2), N(W1,W2) grow approximately with the same speed, so 
that SCI  keeps its value with the precision to the second decimal digit, even if the sta-
tistics are got in different moments along the experimental day.  

The second, fluctuating source of instability of Internet statistics is selection by the 
searcher of a specific processor and a specific path through searcher’s DB—for each 
specific query. With respect to this, the searchers are rather different. For example, 
Google, after giving several very close statistics for a repeating query, can play a 
trick, suddenly giving twice fewer amount (with the same set of initial snippets!), thus 
shifting SCI significantly. Since we did not suffer of such troubles so far on behalf of 
AltaVista, we preferred it for our experiments. 

5   Dissimilarity Based on Mean Cohesion Values  

Consider first the mean cohesion values 

    
( ) ( )
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∑

∈ iNMx
i

i

xNSCI
NM

,
1  

between the noun Ni and all modifiers in its own modifier set M(Ni). One can see in 
Table 3 that all mean SCI values are positive and mainly rather big (4 to 8), except for 
enquiries. As to the latter, we may suppose that occurrence statistics of British Na-
tional Corpus—the base for selection of collocations in OCDSE—differ radically 
from Internet statistics, probably because OCDSE is oriented to the British variant of 
the English language, while Internet is mostly composed of texts written in American 
English or in international sort of English. Hence the collocations intellectual / joint / 
open / critical / sociological... enquiries, being rather rare in whole Internet, were in-
serted to OCDSE by purely British reasons. This is not unique case of British vs. USA 
language discrepancies. We had rejected orthographic differences like flavour vs. fla-
vor, but we did not feel free to sift out such OCDSE collocations as coastal flat ‘prop-
erty by the sea,’ which proved to be rare in Internet as a whole. 

When calculating the SCI value of ‘noun → modifier of a different noun’ pairs that 
mainly are not normal collocations, we frequently observe the cases with zero co-
occurrence number in Internet. Then formula (2) gives SCI value equal to –∞. To 
avoid the singularity, we take the value –16 for such cases, i.e. the maximally possible 
positive value, but with the opposite sign. 

We define the dissimilarity measure as 
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i.e., as the mean difference between the SCI value of the modifiers of Ni with Ni and 
Nj, respectively. Note that in this formula the noun in question is compared with the 
set of its own modifiers defined by the dictionary and with the set of the modifiers of 
the other noun. Two things can be observed as to this definition. 
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Table 3. The mean SCI values of nouns with their own modifiers 

S/N Noun Mean SCI  S/N Noun Mean SCI 
1 answer 6.3  17 effect 6.7 
2 chance 4.9  18 enquiries 1.4 
3 change 6.5  19 evidence 8.0 
4 charge 5.6  20 example 6.1 
5 comment 4.4  21 exercises 4.0 
6 concept 5.9  22 expansion 6.4 
7 conditions 6.5  23 experience 7.7 
8 conversation 6.0  24 explanation 6.1 
9 copy 5.4  25 expression 4.9 

10 decision 7.2  26 eyes 6.0 
11 demands 4.1  27 face 5.7 
12 difference 6.2  28 facility 4.5 
13 disease 8.3  29 fashion 5.1 
14 distribution 6.7  30 feature 5.9 
15 duty 5.6  31 flat 4.3 
16 economy 6.7  32 flavor 6.1 

First, the formula is not symmetric. As it was discussed above, we consider the re-
lations between different nouns more as inclusion than as distance: cat is a perfect an-
imal, i.e., in our terminology we would say that cat is no different from animal, while 
animal by no means is a perfect cat. 

Another observation about this definition is more theoretical. It seems to be con-
tradicting: while we use the objective reality, the Web (as corpus) to measure the re-
latedness between a noun and a modifier, we seemingly arbitrary restrict the set of 
participating modifiers to be considered by those found in a dictionary, which were 
subjectively selected by a lexicographer. What is more, this seemingly leads to the 
necessity to use in our method a specialized large lexical resource, which does not ex-
ist in all languages, and it is not clear how the results obtained with different such re-
sources would coincide. 

Though we did not conduct any corresponding experiments, we believe that the 
formula above can be modified to use the whole set of words of the language (occur-
ring in a large corpus or in the Web). The formula is then to be modified to take into 
account the cohesion between each word and the noun in question; those words that 
have low value of such cohesion would be weighted out. However, this would be a bit 
impractical. So we here use an approximation to such a totally unsupervised ap-
proach. Our approximation takes advantage of an already existing resource to roughly 
indicate which words are expected to correlate with the given noun. 

Note that in this sense the second method can be thought of as a weighted variant 
of the first one. 

Table 4 shows the pairs with the smallest and the greatest dissimilarity measure in 
our small dataset. One can notice the pairs with the smallest dissimilarity, such as 
{enquiries, explanation}, do have similar or related meaning, while those with greater 
dissimilarity, such as {disease, enquiries}, look totally unrelated. 
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Table 4. Most and least similar noun pairs in our sample 

Least dissimilar noun pairs Most dissimilar noun pairs 
Noun1 Noun2 DSim Sim Noun1 Noun2 DSim Sim 

enquiries explanation 0.3 0.156 disease enquiries 18.5 0.000 
enquiries distribution 0.5 0.022 eyes enquiries 15.8 0.017 
enquiries comment 0.6 0.111 effect enquiries 14.8 0.029 
enquiries conversation 0.6 0.089 face enquiries 14.7 0.010 
enquiries change 0.9 0.044 experience enquiries 14.4 0.000 
difference change 1.1 0.321 disease economy 14.2 0.000 
enquiries fashion 1.1 0.022 disease chance 14.0 0.000 
enquiries charge 1.2 0.067 flavor enquiries 14.0 0.020 

In fact, the very small DSim measure can indicate that the words are nearly syno-
nyms or nearly antonyms, but this results from a different our research. 

6   Comparison and Discussion 

Comparing the Sim and DSim values for the 16 pairs in Table 4, one can see that the 
pairs with maximal Sim values usually have minimal DSim values and vice versa, i.e. 
an inverse monotonic dependency exists between the two measures. More representa-
tive comparison is given in Figure 1 that gives correlations between Sim and DSim on 
the plane. 

A statistically proved inverse monotonic dependency is quite clear form Figure 1. 
One can also comprehend that DSim has higher resolution for semantically most dif-
ferent nouns. Indeed, the numerous pairs with zero Sim values have quite diverse 
DSim values, from 14.0 for {disease, flat} to 4.2 for {flat, answer}. Hence the use of 
DSim measure seems preferable.  

7   Conclusions and Future Work 

Two methods of numerical evaluation of semantic similarity of any nouns is pro-
posed. The evaluations are based on comparison of standard modifiers of the nouns 
registered in OCDSE. The first method evaluates similarity by the portion of common 
modifiers of the nouns, while the second one evaluates dissimilarity by the change of 
the mean cohesion of a given modifier set with its own noun and an alien one.  

Cohesion measurements are based on raw Web statistics of occurrences and co-
occurrences of supposedly cohesive words. It is shown that dissimilarity measured 
through the Web has higher resolution and thus may have greater reliability. 

Both methods do not depend on language and can be easily tested on the resources 
of other languages. Currently we are conducting experiments with Spanish and Rus-
sian, which are morphologically-rich languages. For English, it is worthwhile to re-
peat evaluations for a greater number of nouns and for different source of modifiers 
sets, e.g. for a large corpus of American origin. Finally, we believe that this method 
can be applied to words of parts of speech other than nouns, though one should be 
much more careful with, say, verbs, where the co-occurrence patterns are much more 
lexicalized and less semantic than those of nouns. 
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Fig. 1. Correlations between Sim and DSim 
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Abstract. In this work, we propose and formulate two different ap-
proaches for the language model integrated in a Continuous Speech
Recognition System. Both of them make use of class-based language
models where classes are made up of segments or sequences of words. On
the other hand, an interpolated model of a class-based language model
and a word-based language model is explored as well. The experiments
carried out over a spontaneous dialogue corpus in Spanish, demonstrate
that introducing segments of words in a class-based language model a
better performance of a Continuous Speech Recognition system can be
achieved.

Keywords: language model, classes, segments of words.

1 Introduction

Within the field of Continuous Speech Recognition (CSR) the use of a language
model (LM) is required in order to represent the way in which the combination of
words is carried out in a specific language. Nowadays, Statistical Language Mod-
els (SLMs), based on n-grams, are the most commonly used approach in CSR [1].
They learn the frequency of occurrence of word sequences from a training cor-
pus. Specifically, word n-gram LMs have demonstrate their effectiveness when it
comes to minimizing the word error rate (WER) [2]. Alternatively, some formal-
ism based on regular grammars and context free grammars have also been used
in language modeling [3]. Language constraints, such as long-term dependencies,
could be better modeled under this kind of syntactic approaches. However, they
still present difficulties of learning and integrating, e.g. into a Continuous Speech
Recognition system, when dealing with complex, real tasks.

In this work, we take advantage of both approaches by using k-testable in the
strict sense (k-TSS) LMs. k-TSS languages are a subclass of regular languages and
can be inferred from a set of positive samples by an inference algorithm [4]. k-TSS
LMs are considered as the syntactic approach of the well-known n-gram models,
where n is represented by k in the k-TSS model. This syntactic approach leads
to the use of a Stochastic Finite State Automaton (SFSA) to represent the LM
at decoding time. Moreover, the required smoothing, needed to deal with unseen
events, is carried out by interpolating K k-TSS models, where k = 1, . . . , K, into
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a unique smoothed SFSA under a backing-off structure [5]. Then, acoustic models
can easily be incorporated to this network into a CSR system.

Large amounts of training data are required to get a robust estimation of
the parameters defining the mentioned models. However, there are numerous
CSR applications, e.g. human-machine dialogue tasks, for which the amount
of training material available is rather limited. One of the ways to deal with
sparseness of the data is to cluster the vocabulary of the application into a
smaller number of classes. Thus, an alternative approach, as a class n-gram LM,
could be used [6,7].

A class n-gram LM is more compact and generalizes better on unseen events.
Nevertheless, it only captures the relations between the classes of words, while
it assumes that the inter-word transition probability depends only on the word
classes. This fact degrades the performance of the CSR system. To avoid the
loss of information associated with the use of a class n-gram LM, other authors
have proposed different approaches, e.g. model interpolation, aiming to take
advantage of both the accurate modeling of word n-grams for frequent events,
and the predictive power of class n-gram models for unseen or rare events [6,8,9].

On the other hand, using phrases or word segments is a technique that
has already successfully been used in language modeling for speech recogni-
tion [10,11,12] and machine translation [13]. In this work, a LM based on classes
made up of segments of words is employed in order to combine the benefits of
word-based and class-based models. That is, a class n-gram (k-TSS in our case)
LM is generated to deal with the sparseness of the data. However, the proposed
classes consist of sequences or segments of words, instead of being made up of
isolated words. Therefore, the relations between words can be captured inside
each class.

We propose and formulate in this work two different approaches to class k-
TSS LMs based on word segments. Both are fully explained in Section 2. On the
other hand an interpolated model is proposed as well. Such a model is defined
as a linear combination of a word-based and a class-based LM, where classes are
made up of segments of words.

The proposed models were integrated into a CSR module in a dialogue sys-
tem application. The task consists of telephone queries about long-distance train
timetables, destinations and fares uttered by potential users of the system. Sev-
eral series of experiments were carried out on a spontaneous dialogue corpus in
Spanish, in order to asses the proposed models (Section 5). These experiments
show that the integration of word segments into a class-based LM yields a better
performance of the CSR system.

2 Word Segments in Class-Based Language Models

Two different approaches to class-based LMs are formulated below. Both of them
are generated introducing segments or sequences of words inside the classes of
a class-based LM. However, in the first approach, Msw, the words in a segment
are separately studied and the transition probability among them is calculated.
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In the second approach instead, Msl, the words in a segment are joined and the
whole segment is treated as a unique new “word” or lexical unit. Finally, a hybrid
model is proposed as a linear combination of a word based and a class-based LM.

2.1 LMs Based on Classes of Word Segments: Msw

Our goal is to estimate the probability of a sequence of N words w̄ = w1, w2, . . .
, wN in accordance with a LM based on classes consisting of segments.

Let us define a segmentation (s) of the sequence of words into M segments, as
a vector of M indexes, s = (a1, . . . , aM ), such that a1 ≤ . . . ≤ aM = N . The w̄
sequence of words can be represented in terms of such segmentation as follows:

w̄ = w1, . . . , wN = wa1
a0=1, . . . , w

aM =N
aM−1+1 (1)

where wai
ai−1+1 = wai−1+1, . . . , wai . The set of all possible segmentations of a w̄

sequence of words is denoted as S(w̄).
On the other hand, let C = {ci} be a previously defined set of classes, selected

using any classification criteria. Each class consists of a set of segments previously
defined as well. Each segment within a given class is made up of a sequence of
several words. If the words in w̄ are classified using the C set of classes, the
corresponding sequence of classes is written as c̄ = c1, c2, . . . , cT where T ≤ N .

In this work, only segmentations compatible with the possible sequences of
classes (c̄) associated to each sequence of words are considered. This set of seg-
mentations is denoted by Sc̄(w̄). That is, only segmentations having the following
form will be considered

w̄ = w1, . . . , wN = wa1
a0=1, . . . , w

aT =N
aT −1+1 (2)

where wai
ai−1+1 must be a segment belonging to the ci class.

The segmentation of a sequence of words can be understood as a hidden
variable. In this way, the probability of a sequence of words w̄, according to a
LM based on classes made up of segments (Msw), can be obtained by means of
Equation 3

PMsw (w̄) =
∑

∀c̄∈C

∑
∀s∈Sc̄(w̄)

P (w̄, c̄, s)s =
∑

∀c̄∈C

∑
∀s∈Sc̄(w̄)

P (w̄, s|c̄)P (c̄) =

=
∑

∀c̄∈C

∑
∀s∈Sc̄(w̄)

P (w̄|s, c̄)P (s|c̄)P (c̄) (3)

being C the set of all the possible class sequences, given a predetermined set of
classes C.

The probability of a given sequence of classes, p(c̄), can be calculated as a
product of conditional probabilities, as Equation 4 shows. The history (ci−1

1 ) is
usually truncated to the n most recent categories, when classical n-grams are
used, or to the kc most recent categories under the k-TSS approach, where kc is
the maximum length of the considered class history.

P (c̄) =
T∏

i=1

P (ci|ci−1
1 ) �

T∏

i=1

P (ci|ci−1
i−kc+1) (4)
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The term P (s|c̄), on the other hand, could be estimated using different ap-
proaches: zero or higher-order models, assuming that all the segmentations have
the same probability, etc. Let us assume, in this work, the segmentation proba-
bility to be constant P (s|c̄) = α, as proposed in several phrase-based statistical
machine translation works [14].

Finally, P (w̄|s, c̄) is estimated in accordance with zero-order models. Thus,
given a sequence of classes c̄, and a segmentation s, the probability of a segment
given a class ci only depends on this ci class, but not on the previous ones, as
Equation 5 shows.

P (w̄|s, c̄) �
T∏

i=1

P (wai
ai−1+1|ci) (5)

The term P (wai
ai−1+1|ci) represents the probability of a sequence of words, which

must be a segment, given the class of this segment and is estimated using a
k-TSS model as shown below.

P (wai
ai−1+1|ci) �

ai∏

j=ai−1+1

P (wj |wj−1
j−kw+1, ci) (6)

where kw stands for the maximum length of the word history that is considered
in each class ci.

Summing up, the probability of a sequence of words can be computed from
Equation 7:

PMsw (w̄) � α
∑

∀c̄∈C

∑
∀s∈Sc̄(w̄)

T∏
i=1

[[
ai∏

j=ai−1+1
P (wj |wj−1

j−kw+1, ci)

]
P (ci|ci−1

i−kc+1)

]

(7)
Under this approach, several SFSAs need to be integrated into the CSR system:
a SFSA representing the transition probabilities among classes as well as one
additional SFSA for each class, representing the transition probabilities among
the words contained in the segments of the class. Moreover, acoustic models
should also be integrated in the search network. A static full integration of all
these models is computationally prohibitive, thus, each SFSA is integrated “on
the fly” [15] in the search network only when needed.

2.2 LMs Based on Classes of Linked Words: Msl

In a second approach, we propose a LM based on classes consisting of joined se-
quences of words. In this approach each segment, wai

ai−1+1, will be considered as a
new lexical unit that cannot be divided into different words. Let us denote each lex-
ical unit by li, where li ∈ {Σ}, being {Σ} the previously defined set of all the possi-
ble segments that will be inside the classes. The same hypothetical sets of segments
and classes of 2.1 are considered here but assuming now that the segments cannot
be separated in different words. Thus, a sequence of lexical units l̄ = l1, . . . , lM
corresponds to a specific segmentation (s) of the sequence of words w̄.
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w̄ = wa1
a0=1︸ ︷︷ ︸
l1

, . . . , waM
aM−1+1︸ ︷︷ ︸

lM

(8)

Assuming again that only segmentations compatible with a given class sequence
(c̄ = c1, . . . , cT ) are to be considered; the possible sequences of lexical units, for
a given sequence of words, will have the following form l̄ = l1, . . . , lT , where li is
a segment belonging to ci.

A sequence of lexical units involves a specific segmentation itself, thus, in this
case, l̄ is considered as a hidden variable and the probability of a sequence of
words is given by Equation 9.

PMsl
(w̄) =

∑
∀c̄∈C

∑
∀l̄∈Lc̄(w̄)

P (w̄, c̄, l̄) =
∑

∀c̄∈C

∑
∀l̄∈Lc̄(w̄)

P (w̄, l̄|c̄)P (c̄) =

=
∑

∀c̄∈C

∑
∀l̄∈Lc̄(w̄)

P (w̄|l̄, c̄)P (l̄|c̄)P (c̄) (9)

being C the set of all the possible class sequences, given a predetermined set of
classes C. Lc̄(w̄) is the set of all the possible sequences of lexical units compatible
with the given sequence of words and the possible sequences of classes.

The third term in Equation 9, P (c̄), is estimated as stated in Equations 4 (see
previous Section).

The second term in Equation 9 is the probability of a sequence of lexical units
given a sequence of classes. Assuming again zero-order models, this probability
is calculated as:

p(l̄|c̄) =
T∏

i=1

P (li|ci) (10)

A k-TSS model, with k = 1, i.e. an unigram, has been used to estimate this kind
of probability for each class.

Finally, the fist term in Equation 9, P (w̄|l̄, c̄) is equal to 1 when the sequence
of lexical units, l̄, and the sequence of classes, c̄, are compatible with the sequence
of words, w̄, and 0 otherwise. Taking into account that the restriction l̄ ∈ Lc̄(w̄)
has been established, the term P (w̄|l̄, c̄) is equal to 1 in all the cases we have
considered.

Summing up Equation 9 can be rewritten as follows:

PMsl
(w̄) �

∑

∀c̄∈C

∑

∀l̄∈Lc̄(w̄)

T∏

i=1

[
P (li|ci)P (ci|ci−1

i−kc+1)
]

(11)

Here, smoothed k-TSS models are used again to represent the class based LM.
The corresponding SFSAs are integrated in the search network represented by
Equation 11 “on-the-fly” only when required.

2.3 Interpolating an Msw Model and a Word-Based LM, Mh

The interpolation of a class-based and a word-based LM has demonstrated to
outperform both mentioned models. In this work a hybrid model (Mh) is defined



Segment-Based Classes for Language Modeling Within the Field of CSR 719

as a linear combination of a a word-based LM, Mw, and a LM based on classes
made up of word segments, Msw.Using such a model the probability of a word
sequence is given by Equation 12.

PMh
(w̄) = λPMw (w̄) + (λ − 1)PMsw (w̄) (12)

In the above equation, the term PMw (w̄) is the probability of a word sequence
using a classical word-based language model, and in this work, a k-TSS model
was used to estimate this probability, as Equation 13 shows.

PMw (w̄) =
N∏

i=1

P (wi|wi−1
1 ) �

N∏

i=1

P (wi|wi−1
i−k+1) (13)

The term PMsw is the probability given by Equation 7 in Section 2.1.

3 Classes and Word Segments

In order to deal with the proposals presented in the previous Section, a set of
segments and a set of classes formed by those segments needed to be obtained
from the selected corpus. Two different types of criteria were used.

Statistical classes and segments: In this case, we first obtained a set of
segments using a statistical criterion. The most frequent n-grams of the corpus
were selected as segments. In this sense, and in order to avoid rare or unimportant
n-grams, a minimum number of occurrences was required. In the experiments
shown in Section 5 the n-grams (where 1 ≤ n ≤ 5) appearing in the corpus
a number of times above a prefixed threshold were included in the set of the
defined segments. Then, a segmented training corpus was generated with the set
of segments. Finally, different sets of statistical classes constituted by the defined
segments were obtained with the aid of mkcls [16].

Linguistic classes and segments: In this case, the set of segments and the set
of classes were simultaneously obtained under a linguistic criterion by applying
a rule based method. These classes are independent of the task and consist of
word segments having the same linguistic function in the sentence. This set of
classes, as well as the segments the classes are made up of, were provided by
ametzagaina1. Furthermore, they provided us with the segmented and classified
corpus. An example of some employed classes and segments appears below:

– IZ (stands for a noun phrase, NP): “el próximo viernes”, “un billete de ida
y vuelta”, “el de las once”, ...

– LO-que (stands for any phrase ending with the word “que”): “el que”, “los
que”, “un euromed que”, “d́ıgame los que”, ...

– PR-despues (stands for a prepositional phrase, PP, beginning with the
word “después”): “después de las dos”, “después de las quince”, ...

1 Ametzagaiña R&D group, member of the Basque Technologic Network,
http://www.ametza.com
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4 Task and Corpus

The experiments were carried out over a task-oriented corpus that consists of
human-machine dialogues in Spanish, DIHANA (acquired with a Consortium of
Spanish Universities) [17]. In this corpus, 225 speakers ask by telephone for in-
formation about long-distance train timetables, fares, destinations and services.

Table 1. Features of the corpus

DIHANA

T
ra

in
in

g Sentences 8,606
Different sent. 5,590
Words 77,476
Vocabulary 865

T
es

t

Sentences 1,348
Words 12,365
Vocabulary 503
OOV 72
PP (k = 3) 14.59

Table 2. Different sets of classes and segments

linguistic statistical
|C| 57 50 100 200 300 400

|Σ| 3,851 1,289

total no. cat. 55,053 57,078

total no. seg. 55,053 57,078

A total of 900 dialogues were acquired using the Wizard of Oz technique.
This task has intrinsically a high level of difficulty due to the spontaneity of
the speech and the problematic derived from the acquisition of large amount of
transcriptions, of human-machine dialogues, for training purpose. Therefore, it
is well-suited to study the improvements associated to modifications in the LM.
The features of the corpus are detailed in Table 1.

As already mentioned in Section 3, different sets of classes were obtained
using two different classification criteria: a linguistic criterion and a statistical
one. Furthermore, two different sets of segments were obtained, also using two
different criteria and the techniques described in Section 3. Table 2 shows the
statistics of the resulting groups of classes and segments, as well as the total
number of classes and segments that are in the training corpus once it has been
segmented or classified.

5 Experiments and Results

The LMs proposed in this work were fed into an CSR system, which was subse-
quently evaluated in terms of WER. The CSR system makes use of the Viterbi
Algorithm to search for the best sequence of uttered words for a given sequence
of acoustic observations. Thus, the decoder finds the best sequence of states
through a probabilistic network, combining classes, segments, words and acous-
tic models (The acoustic models are continuous Hidden Markov Models).

Three series of experiments were carried out in order to evaluate the proposed
approaches in Section 2.
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Firstly, the LM based on classes consisting of word sequences, Msw, was
fed into the CSR system, according to Equation 7. Making use of this LM, different
experiments were carried out, choosing for all of them a value of kc = 3 and kw = 2.
First of all, the set of linguistic classes was employed. Then, five experiments were
carried out using 50, 100, 200, 300 and 400 statistical classes respectively.

On the other hand, LMs based on classes consisting of linked words,
Msl, were integrated into the CSR system according to Equation 11. A value
of kc = 3 was established. Experiments were carried out using the same sets of
linguistic and statistical classes described above. The same sets of segments were
also employed here.

Finally the hybrid model was integrated into the CSR system according to
Equation 12. For the Msw model a value of kc = 3 and kw = 2 was established,
whereas for the classical word-based model, Mw, a value of k = 3 was employed.
On the other hand, the λ parameter was selected to obtain the best WER result
(λ = 0.1). The same experiments with the same mentioned sets of classes and
segments were repeated with this model.

Table 3 illustrates WER results using the proposed LMs and the classical
word-based LM mentioned above, Mw, (with a value of k = 3) as a baseline.

First of all, looking at the results in Table 3 it can be concluded that statistical
classes yield better results than linguistic ones, even when the number of classes
is similar (50 statistical classes vs. 57 linguistic classes).

The results obtained in Table 3 were also compared with the values of WER
obtained in another work [18], over the same task and using a classical class-
based model with classes made up of isolated words. As shown in the mentioned
work, class-based LMs using 50, 75 and 100 statistical classes achieve WER
values of 24.20, 23.05 and 22.22 respectively. It can be concluded from this, that
better results are obtained when using word segment based classes (in both Msw

and Msl models), than when employing classical class-based LMs using classes
made up of isolated words.

Regarding the results obtained with the Msw model, when 50 classes were used
the results improve by 7%, whereas for 100 classes the corresponding improvement
equals 4.5%. Nevertheless, using a word based LM (Mw), WER values are lower

Table 3. WER results for a classical word based LM (Mw) and for the proposed LMs
(Msw, Msl and Mh) using different sets of classes: 57 linguistic classes and 50, 100,
200, 300 and 400 statistical classes respectively

WER (%)
no. cat. Msl Msw Mh Mw

ling. 57 22.78 25.97 20.04

19.84

st
at

is
.

50 20.96 22.52 19.23
100 19.83 21.21 18.84
200 19.42 20.79 18.14
300 19.27 20.66 18.22
400 19.63 21.38 18.52
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than those obtained for theMsw model and the selected sets of classes and segments.
This could be due to some strong assumptions made in the definition of the model.

On the other hand, regarding the experiments carried out with the Msl model,
a significant drop of the WER is observed compared to the previous model (Msw)
for all of the selected sets of classes. The best result is obtained for 300 statistical
classes, achieving an improvement of a 6.7% with respect to the value obtained
in the same conditions for the Msw model. Furthermore, the result obtained with
300 statistical classes and an Msl model improves the WER values obtained with
the word based LM (Mw) by a 2.8%.

However, the use of a hybrid model, interpolating the Msw and the Msl mod-
els, outperforms the results obtained with all the previous proposals. Moreover,
the best result is obtained for 200 statistical classes where an improvement of a
8.56% is observed with respect to the word-based LM.

6 Concluding Remarks and Future Work

In this work, we propose and formulate two different approaches to language mod-
els, which are based on classes made up of segments of words. On the other hand,
an interpolated LM was explored as well. The proposed models were integrated
into a CSR system in order to evaluate them in terms of WER. The experiments
carried out show that using a LM based on classes consisting of segments of words
instead of a classical class n-gram (or k-TSS) LM, a better performance of a CSR
system can be achieved. On the other hand, although some of the results attained
with the class-based models in this work, outdo those obtained with a classical
word-based LM, the observed improvement is not very significant. Therefore, the
interpolation of a word-based LM and a LM based on classes made up of segments
of words was employed. Using such a model a better performance of a CSR system
can be achieved compared to a word-based LM.

However, since the Msl model provides better results than the Msw one, it
could be interesting, for further work, to explore the interpolation of the Msl

model and a LM based on the same words or lexical units that Msl employs.
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Abstract. The automatic detection of appropriate subtopic boundaries in a 
document is a difficult and very useful task in text processing. Some methods 
have tried to solve this problem, several of them have had favorable results, but 
they have presented some drawbacks as well. Besides, several of these solutions 
are application domain dependant. In this work we propose a new algorithm 
which uses a window below the paragraphs to measure the lexical cohesion to 
detect subtopics in scientific papers. We compare our method against two 
algorithms that use the lexical cohesion too. In this comparison we notice that 
our method has a good performance and outperforms the other two algorithms.  

Keywords: Text processing, Segmentation by topic, Lexical cohesion. 

1   Introduction  

The concept of segmentation in text processing has been used with different 
interpretations. For example, Boshakov and Gelbukh in 2001 structured it as: thematic 
(topic) and lexico-grammatical segmentation [3]. In this work, we will focus on topic 
segmentation. 

A document usually contains several pieces of text about a more specific content 
(subtopic) regarding the content of the whole text (topic). Such pieces are formed by 
textual units (words, sentences or paragraphs). The marks, subtitles or comments that 
can identify the subtopics are not always used by the authors of the documents. The 
pieces of text obtained by means of automatic processing, that identify the subtopics 
that form the text, are known as segments, and this process is known as Texts 
Segmentation by Topic. 

The process of segmentation by topic is useful in several text processing tasks. For 
example, Texts Summarization, News stories segmentation from broadcast news, 
Information Retrieval and others [1], [5], [10], [11], [13]. 

The segmentation methods by topic are used in Information Retrieval specifically 
in Passages Retrieval to return segments or passages more related with the user’s 
queries instead of the whole document. Text Summarization would be more robust by 
knowing all the subtopics that form a document, because they can be used as a guide 
to select the main ideas which may include a summary of the whole document. 
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The segmentation that we will propose in this work will be used in a scientific 
information retrieval system to find document segments that topically satisfy specific 
requirements or profiles.   

A scientific paper is usually a text of multiple paragraphs that explicitly explain or 
teach about a topic, in which the most significant words that form a subtopic are 
frequently reiterated.   

Although there are some approaches to solve the segmentation problem, the results 
that they achieve do not always have a high quality.  

This and all the reasons exposed here have motivated our work. We propose in this 
paper a new segmentation algorithm, which is based on the following assumption: if a 
lexical terms group (vocabulary) is used during the course of the discussion of a 
subtopic and this subtopic changes, a significant portion of this vocabulary changes too.  

We have structured the present work as follows. In Section 2 we briefly explain 
some previous works to solve the segmentation problem and their drawbacks. In 
Section 3 we describe the proposed method. In the last section we present the 
experimental results by using a textual corpus which we prepared with articles 
selected from the ICPR '2006 proceedings. 

2   Methods of Segmentation by Topic 

Many of the researches about segmentation by topic use the linguistic term Lexical 
Cohesion. This term was defined by Halliday and Hasan in 1976 as a sense 
relationship that exists among the textual units in a text [4]. The repetition or lexical 
reiteration, synonymy and others are mechanisms that indicate sense relationships.       

The results of these researches have shown that the Lexical Cohesion is a very 
useful way to detect the subtopics changes inside a text, because the textual units that 
are strongly related by Lexical Cohesion usually constitute a segment about a simple 
subtopic [5], [6],[9],[12].  

We consider proper to mention that there are some works in segmentation focused 
on discovery of topical units and not on subtopic structure inside documents although 
this is not the goal of this work. 

The Stokes, Carthy and Smeaton’s work is an example of the previous one. This 
work is called SeLeCT, which is intended to distinguish individual news stories from 
a broadcast news programme [12]. SeLeCT is based on an analysis of the lexical 
cohesion strength among the textual units using a linguistic technique that is called 
Lexical Chaining [13].  

Ponte and Croft proposed a method that has as application goal the topic tracking 
of broadcast speech data and topic identification in full-text databases. Their work is 
focused on text with relatively small segment sizes and for which sentences inside a 
segment have relatively few words in common turning segmentation into a more 
difficult problem. This method uses a query expansion technique to find common 
features for the topic segments [8]. 

Next we will describe two segmentation methods that are focused on the 
identification of subtopic structures in documents; they are based on lexical reiteration 
to detect relationship among textual units. 
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2.1   Segmentation Proposed by Hearst 

We found that the most interesting research in identification of subtopic structures is 
the Hearst work. She proposed an algorithm which he called TextTiling. This 
algorithm splits explanatory texts into discourse units of multiple paragraphs. In 
contrast to many discourse models that assume a hierarchical segmentation model, the 
author has the goal of identifying subtopic boundaries by attempting only a linear 
segmentation. Also, Hearst assumes that if a lexical terms group (vocabulary) is used 
during the course of the discussion of a subtopic and this subtopic changes, then a 
significant portion of this vocabulary changes too.  

The algorithm has three main parts: pre-processing, lexical score determination and 
boundary identification. 

In the first one stopwords are eliminated and a morphological analysis is applied to 
the text. Besides, the text is subdivided into sequences of a predefined size of the 
resulting words, without considering punctuation marks, which she called sentences 
(pseudosentences). 

Then a lexical score is determined. TextTiling proposes two lexical score methods. 
The first method compares adjacent blocks of sentences, and assigns a similarity score 
between two blocks according to how many words they have in common, the 
sentences blocks are represented by the Vector Space Model. The second method, 
called vocabulary introduction, forms text intervals with sentences and assigns a 
lexical score to the midpoint of the interval, based on how many new words (words 
not seen before in the text) appear around this midpoint. 

Finally, the identification of the limit is made identically for the two lexical scoring 
methods. Keeping in mind this lexical score, a depth score is assigned to each gap 
between blocks with lowest lexical scores, called valleys. 

The depth score of a valley corresponds to how strongly the features for a subtopic 
changed on both sides of the valley and is based on the distance from the valley to the 
two peaks that make it up. In other words, if a low lexical score is preceded and is 
followed by a high lexical score this is assumed as an indicator of a change in the 
vocabulary, which will correspond, according to what the author assumed, to a 
subtopic change. 

Then, the depth scores are sorted and used to determine segment boundaries. The 
larger the score, the more likely the boundary occurs at that location [5]. 

This algorithm maintains a good performance, but it presents a drawback that 
causes the interruption of a segment that contains a simple subtopic; this problem also 
produces many segments that surpass the considered valid amount. This occurs when 
there is a short paragraph or other (e.g. paraphrase) which interrupts a cohesive text 
chain. TextTiling does not detect this behavior. In these anomalous cases, TextTiling 
gets a notable low score and, then, assigns a segment boundary.  

2.2   Segmentation Proposed by Heinone 

Unlike Hearst, Heinone proposed a method which uses a sliding window to 
determine, for each paragraph, which is the most similar paragraph inside the 
window. The sliding window will be formed by several paragraphs on both sides 
(above and below) of every processed paragraph. 
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This segmentation method is especially useful when it is important to control the 
segment length. The author uses a dynamic programming technique that guarantees to 
get segments of minimum cost. The segment cost is obtained by a lexical cohesion 
curve among the paragraphs, a preferential segment size specified by the user, and a 
defined parametric cost function [6].  

Firstly, as in TextTiling, Heinone suggests a text preprocessing stage. Then, the 
paragraphs are represented by the Vector Space Model similar to TextTiling as well. 

Later, a cohesion vector ( n...CoheCohe1 ) is built for the document, where each 

paragraph is associated with the highest similarity value inside its window. 
As the algorithm considered the segment length, a length cost function 

),,( hpxclen is used to evaluate the closeness between the real and the preferential 

segment length, where x  is the real segment length, p  the preferential segment 

length, and h  a scale parameter to adjust the length.  
The algorithm calculates, in a sequential way from the first to the last one, the 

minimum cost segmentation by paragraph. To this end, the following expressions 
were considered: 
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were k
iS is a segmentation that considers a segment from k-th to i-th paragraphs. 

Besides, for each paragraph, its segment boundary is defined, which is the last 
paragraph of the previous segment. This boundary is determined by the expression:  

)(1 k
iii SCostSCostwerekLimP =−=  . (5) 

This method achieves a good assessment among the segment length, the preference 
length and the similarity value associated with each paragraph. Besides, the use of a 
sliding window can diminish the interruption of a cohesive text chain, in 
contradistinction to Hearst’s proposal. 

However, this method entails a shortcoming as well. The cohesion vector 
associates each paragraph with the highest similarity value in its window, but this 
value can belong to a paragraph above or below the paragraph in question. In case the 
value belongs to a paragraph above, the algorithm – not distinguishing this situation – 
could decide to include the paragraph in the segment below. As we can observe, it is 
incorrect to allow the similarity value to be chosen with paragraphs above to decide 
the inclusion of a paragraph in a segment below. This weakens the method 
assumptions by enabling low cohesion segments to be obtained. 

On the other hand, for each paragraph, the method looks for the most similar 
paragraph inside its window, causing that other very similar paragraphs are 
underestimated. 
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Besides, this method has another drawback; it requires an approximate subtopic 
length, which is an unpredictable value that is not always the same for all the 
subtopics. Lastly, when the cost length function establishes a matching between the 
approximate and real length, the algorithm can interrupt the segment cohesion. 

3   Segmentation Method TextLec 

We propose a novel method called TextLec, which intends to segment scientific papers 
into subtopics. With TextLec we solve the drawbacks aforementioned. We also use term 
repetitions as a mechanism to indicate the lexical cohesion among the text units. 

In this work we take the paragraph as the minimum text unit, because, as we have 
said before, our work is intended to the segmentation of multiple paragraphs. 

We assume a lineal segmentation and also that whenever there is a subtopic change 
we are in the presence of a vocabulary change, just as Hearst assumed. Besides, we 
consider that: the neighbor paragraphs that maintain a considerable lexical cohesion 
among them, regarding the use of a lexical terms group, should belong to the same 
segment. 

We establish that, if the value that expresses the lexical cohesion between two 
paragraphs is bigger than a similarity threshold U, then these paragraphs have a 
considerable lexical cohesion among them. From now on, we only use the term 
cohesive to refer to paragraphs whose lexical cohesion is bigger than the threshold U. 

With the frequency of the resulting terms after a preprocessing, we represent the 
paragraphs with the Vector Space Model. We will compute the lexical cohesion by 
applying the cosine measure.  

For each paragraph, we define a lower window to find inside a cohesive paragraph 
that will be, opposite to Heinone, the farthest cohesive paragraph. 

We only use a lower window to distinct if paragraphs, above or below, are 
cohesive, and to diminish the possibility of wrongly including a paragraph into a 
segment. Besides, we decided to take the farthest cohesive paragraph inside each 
window instead of the most cohesive; so, we do not leave all the potential cohesive 
paragraphs, what diminishes the possibility of excluding a paragraph incorrectly from 
a segment. This also allows us to avoid more efficiently the effect of paragraphs that 
interrupt a coherent text chain. 

Besides, with the control of the farthest cohesive paragraph we can determine a 
possible end of a segment. 

Another interesting aspect of this method is that by increasing the window size we 
are able to obtain longer segments, because we increase the possibility of finding a 
farthest cohesive paragraph, although the segment cohesion would decrease. 

3.1   Preliminary Conditions 

We use the vector Parf with the purpose of controlling the farthest cohesive paragraph 
inside the window for each paragraph. It is possible that a paragraph does not have 
any cohesive one inside its window; in this case, we consider that the paragraph is 
cohesive at least to itself. 
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On the other hand, we use the variable MaxBel to control the possible end (lower 
boundary) of the segment in process while the segmentation algorithm is executed. 
This variable will allow knowing the farthest cohesive paragraph from the segment in 
process. Therefore, the paragraph controlled by MaxBel will be possibly the one that 
closes the segment. 

Besides, we use the vector Lim to control, for each segment, the lower boundary, 
where Limk will contain the finish paragraph of segment k. For example, if Limk = 5, 
then we will get a segment k that finishes in paragraph 5. 

3.2   Segmentation Process  

The segmentation process that we propose will include paragraphs into a segment until 
finding a paragraph that is not cohesive with any paragraph inside the segment and also 
if there is no paragraph inside the segment cohesive with a paragraph below it. 

We show the segmentation algorithm pseudo-code in Fig. 1. 

Algorithm: TextLec
Input:  Parf - vector of more similar paragraph below
        N - total of paragraphs
Output: Lim – boundary of segments
1) MaxBel = Parf1;
2) k = 1;
3) for i = 2 to N do begin
4)   if MaxBel = i-1; then begin
5)     Limk = MaxBel;
6)     k = k + 1;
7)   end
8)   MaxBel = max( Parfi, MaxBel );
9) end

10) Limk = N  

Fig. 1. Pseudo-code of TextLec Algorithm 

We suppose that the texts will have one paragraph at least, and we also suppose 
that we will also obtain a segment formed by one paragraph at least.  Then we have as 
initial values: MaxBel = Parf1 and k = 1.   

During the execution, we analyze the other paragraphs and we determine whether 
we include a paragraph or not in the segment that we are building. During this 
process, a paragraph i can be in any of the following situations: 

• There is no paragraph inside the segment that is cohesive with i or cohesive with 
a paragraph below i, (MaxBel = i - 1). In this case we take the paragraph 1−i as 
lower boundary of the segment, and we include i into a new segment. 

• The paragraph i is cohesive with some paragraph inside the segment, (MaxBel = 
i). In this case we include i into this segment. 

• There is no a paragraph inside the segment, that is cohesive with i, but there is at 
least one inside cohesive with a paragraph below i. Then, we do not interrupt this 
segment and we include i into it. 
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After the inclusion of the paragraph i into a segment we verify if the cohesive 
paragraph with i is farthest than MaxBel; in this case, we update MaxBel. 

When the process finishes all the lower boundary of the segments are into Lim, and 
k is the amount of detected segments. 

4   Evaluation 

The evaluation of the segmentation by topic has two major related difficulties. The 
first one is given by the subjective nature of detecting the appropriate subtopic 
boundaries, in which several human readers can even disagree, regarding where 
boundaries should be placed and how fine-grained an analysis should be. This makes 
it difficult for us to select a reference segmentation to compare our results. Usually, 
this difficulty is solved by comparing the segmentation results against the marks or 
subtitle that the authors use to identify the subtopics inside a document; but these 
marks are not always specified. Some authors evaluate the algorithm in terms of how 
well it distinguishes entire articles from one another when they are concatenated into 
one file and where different topics are distinguished. Another way is to compare the 
results against a manual segmentation based on the several human judgments, which 
make a “gold standard” [5], [7], [12]. 

The second difficulty is that error importance depends on the applications where 
the segmentation techniques are necessary. For example, in Information Retrieval it 
can be accepted that the segment boundaries will differ in a few sentences from the 
real segment boundaries. However, in order to segment news stories from broadcast 
news the accuracy of boundaries location is very important [7]. 

On the other hand, finding an appropriate evaluation metric to determine the 
segmentation algorithm accuracy has generated much debate. Two of the evaluation 
measures that have been used by many authors are Precision and Recall, which are 
standard measures in Information Retrieval experimentations. In the estimation of the 
segmentation accuracy, the Precision and the Recall are defined likes this. 

Precision: The percentage that represents the segment boundaries correctly detected 
by the algorithm from all boundaries detected by it.     

Recall: The percentage that represents the segment boundaries correctly detected by 
the algorithm from all boundaries in the reference segmentation. 

Precision and Recall are usually very convenient in applications where the 
accuracy of boundaries location is very important. But in applications where it is not 
very necessary they have some problems. These measures strongly penalize the 
algorithm when boundaries that do not agree exactly with the reference segmentation 
are detected, because they are not sensitive to the proximity between the boundaries 
of both segmentations. Another difficulty with Precision and Recall is that there is 
inherent tradeoff between precision and recall; improving one tends to cause the score 
for the other to decline [2], [7]. This difficulty is usually solved in Information 
Retrieval with F-measure; it is defined as: 

RecallPrecision

RecallPrecision
2measure-F

+
××=  . (7) 
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F-measure has been used in segmentation as well. Nevertheless, we should note 
that as F-measure depends on Precision and Recall it shows the first problem, i.e., it is 
not sensitive to the proximity between the boundaries of both segmentations. 

Pevzner and Hearst proposed a metric to improve the segmentation evaluation 
process, called WindowDiff [7]. WindowDiff uses a sliding window of length k  to 
find disagreements between the reference and algorithm segmentation.  

In the segmentation literature there are many authors that experiment with several 
window sizes, i.e., with several k values. In this work we take k as the half of the 
average true segment size in the reference segmentation. 

The boundaries amount inside the window of both segmentations is determined for 
each window position; the algorithm is penalized if the amount of boundaries 
disagrees. Later, all penalizations found are added. This value is normalized and the 
metric takes a value between 0 and 1. WindowDiff takes a score of 0 if the algorithm 
assigns all boundaries correctly and it takes a score of 1 if it differs completely from 
the reference segmentation. The WindowDiff formal expression is defined as follows: 

∑
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where ),( jib  represents the number of boundaries between positions i  and j  in the 

text and N represents the textual units number in the whole text, regarding goal 
applications; ref is the reference segmentation and hyp  the algorithm segmentation. 

In this section we show the result of the three segmentation methods: TextTiling, 
the Heinone’s, and TextLec. The corpus that we used in the experimentation was built 
joining 14 different papers taken from The 18th International Conference on Pattern 
Recognition ICPR'2006 proceedings. The resultant corpus has 305 paragraphs and an 
average of 22 paragraphs approximately for each paper. 

We chose from all the marks or subtitles inside the papers defended by the authors 
those that, in our opinion, have the clearest boundaries to select the reference 
segmentation based on our judgment. Also, we added to the reference segmentation 
the boundaries among each different article. 

We show the comparison among the three algorithms by calculating the Precision, 
Recall and metric WindowDiff values for each one, regarding the reference 
segmentation. These values are shown in Table 1. 

Table 1. Precision, Recall and metric WindowDif values for three segmentation methods: 
TextLec TextTiling, and the Heinone’s  

Algorithms Precision Recall F-measure WindowDiff 
TextLec  61,74 52,59 56,8  0,21 
TextTiling 45,90 62,22 52,83  0,33 
Heinone’s 45,24 42,2 43,67 0,26 

In the experimentation we can notice a better performance in TecxLec compared to 
the other two algorithms. TextLec obtained a better WindowDiff value, i.e., closer to 
0. Also, both values, Precision and Recall, are greater than 50%, but we should notice 
that if the amount of obtained boundaries increases then the Recall may improve but, 
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at the same time, Precision may decline. For example, TextTiling has a recall value 
higher than TextLec, but it has a lower precision value and lower than 50%. In any 
case, TextLec has a higher F-measure value than the TextTiling and Heinone’s algorithm. 

5   Conclusion 

The use of text methods of segmentation by topic would improve the results of many 
text processing tasks; for example, Text Summarization, News stories segmentation 
from broadcast news, Information Retrieval, and others. We proposed here a new 
segmentation algorithm, which has as a goal the segmentation of scientific papers to 
apply its results on a scientific information retrieval system. 

We based our research on term repetition as a lexical cohesion mechanism to 
determine strongly cohesive segments. The paragraphs were represented by the 
Vector Space Model. We measure the lexical cohesion by computing the similarity 
among the paragraphs, and using the cosine measure. In this way we could diminish 
the possibility of interrupting the subtopic coherence obtaining more cohesive 
segments, what increases the TextLec performance when we compare it with other 
segmentation algorithms. 

As future work, we propose to continue improving this method looking for other 
computational models to represent the textual units, and determining with greater 
robustness the lexical cohesion between these textual units, to detect the subtopics in 
a document with better precision. 
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Abstract. The development of automatic speech recognition systems poses 
several known difficulties. One of them concerns the recognizer’s accuracy 
when dealing with non-native speakers of a given language. Normally a 
recognizer precision is lower for non-native users,  hence our goal is to improve 
this low accuracy rate when the speech recognition system is confronted with a 
foreign accent. A typical usage scenario is to apply these models in applications 
where European Portuguese is dominant, but where English may also frequently 
occur. Therefore, several experiments were performed using cross-word 
triphone based models, which were then trained with speech corpora containing 
European Portuguese native speakers, English native speakers and English 
spoken by European Portuguese native speakers. 

Keywords: Acoustic Models, European Portuguese accent, Speech Recog-
nition. 

1   Introduction 

The tremendous growth of technology increased the need of integration of spoken 
language technologies into our daily applications, providing an easy and natural 
access to information. These applications are of different nature with different user 
interfaces. Besides voice enabled Internet portals or tourist information systems, 
Automatic Speech Recognition (ASR) systems  can be used  in home user 
experiences where TV and other appliances could be voice controlled, discarding 
keyboards or mouse interfaces, or in mobile phones and palm-sized computers for a 
hands-free and eyes-free manipulation.  

When we think of the potential of ASR systems we must deal with the problem 
of language-dependency. This includes the non-native speaker’s speech with 
different phonetic pronunciations from those of the language native speakers. The 
non-native accent can be more problematic than a dialect variation on the language. 
This mismatch depends on the individual speaking proficiency and speaker’s 
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mother tongue. Consequently, when the speaker’s native language is not the same 
as the one that was used to train the recognizer, there is a considerable loss in 
recognition performance. Teixeira et al. [1], [2] have identified a drop of 
approximately 15% in the recognition accuracy when using a recognizer of native 
speakers. This paper describes several experiments and results using Portuguese 
speaker’s using English, in order to improve the recognition performance of English 
language in a speech recognizer system within a European Portuguese dialogue 
system. 

1.1   Approach and Related Work 

A considerable number of methods and experiments for the treatment of non-native 
speech recognition has already been proposed by other authors. The simplest idea is 
to use non-native speakers’ speech from a target language and train new acoustic 
models. This method is not reasonable because it can be very expensive to collect data 
that comprehends all the speech variability involved. An alternative is to apply 
speaker adaptation techniques such as Maximum Likelihood Linear Regression 
(MLLR) or Maximum A Posteriori (MAP) adaptation on speaker-independent context 
to reduce the disparity between the foreign accent and the native accent [3][12]. There 
is also research on the use of multilingual models using statistical data-driven models 
known as Hidden Markov Models (HMMs). The purpose is to develop standard 
acoustic models of phonemes where the similarities of sounds between languages are 
explored [4], [5], [6]. Another possibility is to include pronunciation variants to the 
lexicon of the recognizer using acoustic model interpolation [7], where each model of 
a native-speech recognizer is interpolated with the same model from a second 
recognizer which depends on the speaker’s accent. Stefan Steidl et al. [8] considers 
that acoustic models of native speech are sufficient to adapt the speech recognizer to 
the way how non-native speakers pronounce the sounds of the target language. The 
HMM states from the native acoustic models are interpolated with each other in order 
to approximate the non-native pronunciation. Another approach is the training of 
selective data [11], where training samples from different sources are selected 
concerning a desired target task and acoustic conditions. The data is weighted by a 
confidence measure in order to control the influence of outliers. An appliance of such 
method is selecting utterances from a data pool which are acoustically close to the 
development data. 

In this work we apply a number of acoustic modeling techniques to compare their 
performance on non-native speech recognition. The case of study is focused on 
English language spoken by European Portuguese speakers. Initially we explore the 
behavior of an English native model when tested with non-native speakers as well as 
the performance of a model only trained with non-native speakers. HMMs can be 
improved by retraining on suitable additional data. Regarding this we have trained a 
recognizer with a pool of accents, using  utterances from English native speakers and 
English spoken by Portuguese speakers. Furthermore, we used adaptation techniques 
such as MLLR to reduce the variance between an English native model and the 
adaptation data, which in this case refers to the European Portuguese accent when 
speaking English language. To fulfill that task a native English speech recognizer is 
adapted using the non-native training data. Afterwards, we explore the pronunciation 
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adaptation through adequate correspondences between phone sets of the foreign and 
target languages. Considering Bartkova et al. [6], we extended this approach when 
training new models with a new phone set, created by mapping the English and the 
Portuguese phone sets in order to support English words in a Portuguese dialogue 
system. 

1.2   Overview 

This article is organized as follows: the training and test corpora are presented in 
section 2. The training process, parameters and baseline systems are described in 
section 3. The several accomplished experiments such as pooling models, accent 
adaptation and new phone set mapping are described and discussed in section 4. A 
brief conclusion and reference to future work is presented in section 5. 

2   Corpora 

Our study was based on an experimental corpus of English spoken by European 
Portuguese speakers. This corpus is part of a larger one used in the Teixeira and 
Trancoso [2]. There are approximately 20 speakers (10 male and 10 female) for each 
accent, but only the male sub-set corpus was used in these experiments. To 
accomplish the experiments related with the application of the adaptation techniques 
or updating models, a native English Corpus (Teixeira and Trancoso) was used [2]. 
The audio files were sampled at 8 kHz with 16 bits-linear precision. Each speaker has 
recorded two times approximately 227 English isolated words. The training and the 
test set are then separated to build a combined model for a speaker-independent 
speech recognition system. Table 1 shows the implied corpus and the partition for 
training and testing data set in this study. 

Once the wave files were organized, the word level transcriptions were mapped 
into monophone level and then to triphone level. This procedure is further explained 
in the following sections. The phone sets of the languages presented in this study are 
defined using the SAMPA phonetic alphabet. 

Table 1. Database overview 

Data Partition Speakers Utterances Minutes  

Training 8 3468 35  Non-native 
Data Testing 3 1221 12  

Training 7 3476 34  
Native Data 

Testing 2 996 9  

3   Acoustic Model 

All the experiments described in this paper are based on HMMs. Recognition was 
done using the Viterbi algorithm [9], used for obtaining the best sequence of states 
that match the sequences of speech frames that correspond to a certain unit. Our 
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system is a cross-word triphone system and it is developed in an HTK based training 
tool [14] [15]. Each HMM has 3 states; each state represents a short segment of 
speech. This segment is the result of splitting the spoken utterances into frames of 10 
milliseconds each. This representation is described mathematically by Gaussians 
probability distributions. Multiple mixture Gaussians are used and acoustically similar 
information is shared across HMMs by sharing/tying states called senones [16]. 

To train a set of HMMs, every file of training data must have an associated phone 
level transcription. The starting point of phone transcription is an orthographic 
transcription in HTK label format, a Master Label File (MLF), which is a single file 
containing a complete set of transcriptions. This allows the same transcriptions to be 
used with diferent versions of the speech data to be stored in diferent locations.  

The training begins by converting word level transcriptions into monophone level 
transcriptions. Once reasonable monophone HMMs have been created, a forced 
alignment of the training data can be performed. Concerning this, a new phone level 
MLF is created in which the choice of pronunciations depends on the acoustic 
evidence. This new MLF can be used to perform a final re-estimation of the 
monophone HMMs. These models are iteratively updated by repeatedly traversing the 
training data and mapping the models to the monophone labels in the transcription.  

After producing an initial monophones’ model, the respective cross-word triphones 
are cloned for each monophone. This is done in two steps, first, the monophone 
transcriptions are converted to cross-word transcriptions and the cross-word triphones 
re-estimated to produce initial single-mixture models. Then, similar acoustic states of 
these triphones are clustered and tied to ensure that all state distributions can be 
robustly estimated. Since the system size is vastly reduced at this stage, we can 
increase the number of mixtures per senone. This leads to an initialized cross-word 
acoustic model, which is used to run through the training data and re-label the 
transcriptions to allow multiple pronunciations. After that these cross-word 
transcriptions are re-used to update the cross-word acoustic model leading once again 
to the final cross-word triphone system (Fig. 1 represents the training process 
described above) [14]. 

To carry out the experiments we have defined 1500 tying states (senones). For an 
initial number of mixtures we have a total of 12 mixtures and as a final smoothing 
stage we reduce the average total mixtures of the final system to 8 mixtures. For 
 

 

Fig. 1. Training Acoustic Models Flowchart 
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testing the several speech recognition systems we have defined a set of data dedicated 
to testing (see Table 1). Because we are talking about command and control systems, 
a grammar, which specifies the sequences of recognizable words, had to be defined. 
For that purpose a context free-grammar (CFG) was built with all the words found in 
the test set. 

3.1   Baseline Systems 

Both non-native and native acoustic models were trained with the respective training 
set described in Table 1. The training lexicon that lists the phonetic pronunciation of 
all the words in the corpus uses the English phone set. The parameters and training 
procedure are the same for the two models. The non-native and native speech engines 
were tested with the same corpus. Table 2 shows the performance on the non-native 
and native test set when using the both models. The remaining scores show better 
recognition performance when non-native models are used for the foreign accent. 

Table 2. Accuracy rate on non-native and native data (WER %) 

Models 
Non-Native 
Models 

Native 
Models 

Non-Native test set 6.28% 13.41% 

Native test set 22.89% 4.09% 

4   Experiments and Results 

We explore different acoustic modeling methods to test their efficiency for 
recognition improvement on non-native speech. The results refer to experiments with 
cross-word triphone models which were obtained in a process reported in [14]. The 
different experiments and their results are described in the following sections.  

4.1   Pooled Models 

Non-native speech recognition can be viewed as speaker independent recognition 
problem, for which the traditional approach has been pooling all the speech data from 
as many speakers as possible as if it would belong to a single speaker. Pursuing this 
idea the native model was retrained with the available non-native data (pooled 
models). As we can see (Fig. 2) the improvement from pooling the native and non-
native training data indicates that recognition of non-native data can profit from 
native data. Since both corpus have almost the same training utterances, one way of 
weighting the non-native training utterances is to set up the weight parameter of the 
non-native training corpus. 

The optimal weighting factor was found to be 2.0 for non-native data where 
recognition scores reveal a Word Error Rate (WER) of 6.02% (non-native test) and 
4.17% (native test). The recognition performance is slightly better when comparing 
these results with the English baseline system (Table 2). In [13] a pooled model using 
English native data and German accent shows an accuracy increasing of 1.2%. 
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Fig. 2. Pooled models using different corpus weights for non-native corpus 

4.2   Adapting English Native Model 

The adaptation of acoustic models reduces the mismatch between a certain model set 
and the adaptation data. Adaptation can be at speaker level, environment or 
characteristics of a group of speakers such as foreign accent. The most used 
techniques are the Maximum Likelihood Linear Regression (MLLR) [12] and the 
maximum a-posteriori (MAP) [3]. MLLR computes a set of transformations, where 
one single transformation is applied to all models in a transformation class. More 
specifically it estimates a set of linear transformations for the context and variance 
parameters of a Gaussian mixture HMM system. The effect of these transformations 
is to shift the component means and to alter the variances in the initial system so that 
each state in the HMM system is more likely to generate the adaptation data.  

In MAP adaptation we need a prior knowledge of the model parameter distribution. 
The model’s parameters are re-estimated individually requiring more adaptation data to 
be effective. When larger amounts of adaptation training data become available, MAP 
begins to perform better than MLLR, due to this detailed update of each component. 

Since we have a small amount of data in this experiment we used only the MLLR 
method, applied to English native model (baseline model) adapted with non-native 
corpus. Each model adaptation was iterated 4 times. Adaptation has improved 
performance on non-native recognition, revealing 6.21% WER for non-native test. On 
a native English test no changes were found, giving the same WER as the native 
model, 13.41%. 

4.3   Mapping English Phonemes into Portuguese Phonemes 

Speaking a foreign language can change the native phonological structure (e.g. the 
English pharyngeal voiceless fricative in <hit> is commonly not articulated by 
Portuguese native speakers when speaking in English, since this phoneme is not present 
in the Portuguese phone set) or adapt unfamiliar sounds to similar/closer ones from their 
native phoneme inventory [6][10]. This also depends on the speaker proficiency, which 
will determine how different a native accent is from a foreign accent. 

In order to get better recognition results on non-native accents, English phonemes 
were mapped into Portuguese phonemes. The mapping was done by a linguist expert 
who defined which phoneme inventory should be taken into account to describe a 
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standard Portuguese English pronunciation. This phoneme inventory was selected 
bearing in mind the pronunciation of a Portuguese prestigious group/community, with 
a good knowledge of English language. As prestigious group we mean the higher 
literacy level group that uses a dominant variant or pattern dialect of a given language 
[17] [18]. 

Using the phonetic inventory SAMPA, 33 phones were defined to transcribe the 
English language when spoken by native Portuguese speakers. The majority of 
English phones suffered a direct mapping, except those that represent non Portuguese 
existing sounds. One example of that is the dental voiceless fricative [T] (e.g. 
<thriller>, <thirties>), that in European Portuguese language is converted to a dental 
voiceless plosive [t] or alveolar voiceless fricative [s]. We consider that the 
prestigious group recognizes this sound so we have included it in our new phone set. 
Another non existing sound in European Portuguese is the pharyngeal voiceless 
fricative [h] (e.g. <hang>). However, for the prestigious group there is, for example, 
differentiation in pronunciation between <and> and <hand>, which made us include 
this phone in the English-Portuguese mapped phone set.  

Finally, another important difference we need to consider is the approximant [r] 
(e.g. <red>). This phone does not exist in the European Portuguese phone set. Despite 
this, in some words, when a Portuguese speaker uses English, like <red>, we can say 
[R E d] (PT SAMPA), in other cases such as <car> we say [k a r] (PT SAMPA). For 
this reason we added this phone to the new mapped phone set. 

Afterwards, new word transcriptions of the corpus vocabulary were required, 
following an accurate process accomplished by the linguist expert. The initial English 
phonetic transcription was directly mapped to the Portuguese form (using the new 
phone set), which is not enough for a reliable representation of English spoken with a 
Portuguese accent. An improved phonetic transcription was accomplished by 
modifying the phonetic transcription of each word, taking into account the Portuguese 
prestigious accent while using English. An example of that adaptation is the way an 
English or a Portuguese speaker will pronounce words that end with a plosive 
consonant such as [t] (e.g <art>). In English we should transcribe the word <art> like 
[Q r t] (PT SAMPA) but in Portuguese we say [Q r t @] (PT SAMPA). 

Results reveal 7.26% of WER for the new trained models using the phone set 
described above. The recognition accuracy has decreased, when comparing it with the 
baseline non-native system or the pooled model experiment, but it is still far  from the 
English native model when tested with a non-native test set. This is an encouragement 
for continuing exploring this subject. 

Another experiment was training a pooled model using this new phone set, but 
instead of using the English native model, we experimented it with a Portuguese 
native model. Doing this we are representing a European Portuguese recognition 
system that also supports English words with a Portuguese accent. The Portuguese 
native model was trained with 87 hours of speech for a total of 553 speakers (266 
male and 287 female). The audio files were sampled at 16 kHz with 16 bits-linear 
precision. The results of such experiment were encouraging, as the system reveals 
9.81%  of  WER when testing with the non-native test set. This value is still above the 
baseline English system results, which means that an accurate phonetic representation 
may improve recognition performance of non-native speakers. 
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5   Conclusions 

In this paper we have explored several ways of adapting automatic speech recognition 
systems to non-native speakers. The results presented in this paper show that a small 
amount of data can be successfully used for the improvement of non-native accent 
recognition. Even though some applied methods reveal worst performance results 
when compared to the only non-native trained models, there are considerably 
improvements on the English native models recognizing non-native accents. 

The following graphic (Fig. 3) gives the best results and its proportion between 
methods. As we can infer from the last experience, where we use the mapped phone 
set to train new models, the test using the English native test corpus was not 
performed. In this experiments we work with a different phone set from the one used 
in the English native model, so the results related with testing those models with 
English native speaking are not relevant for the experiment. 
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Fig. 3. Best results of the different experiments 

In the future, we plan to explore some of these methods, especially to continue the 
study of pronunciation in the context of  Portuguese speaking foreign words, in order 
to improve recognition performance of dialogue systems.  

References 

1. Teixeira, C., Trancoso, I., Serralheiro, A.: Recognition of Non-Native Accents. In: 
Eurospeech, vol. 5, pp. 2375–2378 (1997) 

2. Teixeira, C., Trancoso, I.: Word Rejection using Multiple Sink Models. In: Proc. ICSLP, 
pp. 1443–1446, Banff (1992) 

3. Zavaliagkos, G., Schwartz, R., Makhoul, I.: Batch, Incremental and Instantaneous 
Adaptation Techniques for Speech Recognition. In: Proc. ICASSP (1995) 

4. Kunzmann, S., Fischer, V., Gonzalez, J., Emam, O., Gunther, C., Janke, E.: Multilingual 
Acoustic Models for Speech Recognition and Synthesis, IEEE. In: ICASSP (2004) 



742 C. Simões et al. 

5. Kohler, J.: Multi-lingual Phoneme Recognition Exploiting Acoustic-Phonetic Similarities 
of Sounds, Siemens AG, Munich, Germany 

6. Bartkova, K., Jouvet, D.: Multiple models for improved speech recognition for non-native 
speakers. In: SPECOM (2004) 

7. Livescu, K., Glass, J.: Lexical Modelling of Non-Native Speech for Automatic Speech 
Recognition. In: ICASSP (2000) 

8. Steidl, S., Stemmer, G., Hacker, C., Nöth, E.: Adaptation in the Pronunciation Space for 
Non-Native Speech Recognition. In: ICSLP, Korea (2004) 

9. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech 
recognition. Proceedings of the IEEE 77(2), 257–286 (1989) 

10. Flege, J.E., Schirru, C., MacKay, I.: Interaction between the native and second language 
phonetic subsystems. Speech Communication 467–491 (2003) 

11. Arslan, L.M., Hansen, J.H.L.: Selective Training in Hidden Markov Model Recognition. 
IEEE Transactions on Speech and Audio Processing 7(1), 46–54 (1999) 

12. Leggetter, C.J., Woodland, P.C.: Speaker Adaptation of HMMs Using Linear Regression 
(1994) 

13. Wung, Z., Schultz, T., Waibel, A.: Comparison of Acoustic Model Adaptation Techniques 
on Non-Native Speech, IEEE. In: ICASSP (2003) 

14. Morton, R.: The Training Guide, A Guide for Training Acoustic Models, Microsoft 
Document 

15. Young, S., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., Woodland, P.: The HTK 
Book (1999) 

16. Woodland, P., Young, S.: The HTK Tied-State Continuous Speech Recognition. In: Proc. 
Eurospeech (1993) 

17. Ferreira: Variação linguística: perspectiva dialectológica, in Faria et al. 1996. Introdução á 
Linguística Geral e Portuguesa,Lisboa, Caminho: 483  

18. Fromkin, Rodman: Introdução á Linguagem, Coimbra, Almedina: 273 



A Statistical User Simulation Technique for the
Improvement of a Spoken Dialog System�

Lluı́s F. Hurtado, David Griol, Emilio Sanchis, and Encarna Segarra

Departament de Sistemes Informàtics i Computació (DSIC)
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{lhurtado,dgriol,esanchis,esegarra}@dsic.upv.es

Abstract. In this paper, we present a statistical approach for the automatic gen-
eration of dialogs by means of a user simulator. This technique can be used to
generate dialogs with reduced effort, facilitating the evaluation and improvement
of spoken dialog systems. In our approach for user simulation, the user answer is
selected taking into account the history of the dialog and the last system turn, as
well as the objective(s) set for the dialog. The user model is automatically learned
from a training corpus that is labeled in terms of dialog acts. This methodology
has been evaluated within the framework of the DIHANA project, whose goal is
the design and development of a dialog system to access a railway information
system using spontaneous speech in Spanish.

Keywords: spoken dialog systems, user simulation, dialog management, dialog
system evaluation.

1 Introduction

A dialog system is a man-machine interface that is able to recognize and to understand
a spoken input and to produce an oral output as answer. Different modules usually take
part in order to carry out this final goal: they must recognize the pronounced words,
understand their meaning, manage the dialog, make the error handling, access to the
databases and generate the oral answer. Nowadays, diverse projects have developed
systems to provide information and other services automatically; for example, informa-
tion and booking of airplane and train trips [1] [2] [3] [4] and other types of information
[5] [6] [7].

An important area of research within the framework of dialog systems is the devel-
opment of techniques that facilitate the evaluation of these systems and the learning of
an optimal strategy for dialog management. A technique that has attracted increasing
interest in the last decade is based on the automatic generation of dialogs between the
Dialog Manager (DM) and an additional module, called user simulator, which repre-
sents user interactions with the dialog system. The user simulator makes it possible to
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generate a great number of dialogs in a very simple way. Therefore, this technique re-
duces the time and effort that would be needed for the evaluation of a dialog system
with real users each time the system is modified.

The construction of user models based on statistical methods has provided interest-
ing and well-founded results in recent years and is currently a growing research area.
The overall goal of techniques of this kind is to learn optimal strategies for dialog man-
agement from training data. A probabilistic user model can be trained from a corpus of
human-computer dialogs to simulate user answers. Therefore, it can be used to learn a
dialog strategy by means of its interaction with the DM. In the literature, there are sev-
eral approaches that are related to the development of corpus-based methods for user
simulation. These describe different alternatives for carrying out the evaluation of the
techniques and for learning optimal management strategies and evaluating the dialog
system [8] [9] [10] [11]. A summary of user simulation techniques for reinforcement
learning of the dialog strategy can be found in [12].

We have developed different statistical approaches for the design of a DM [13] [14]
and for user modeling [15]. The methodology that we present in this paper for develop-
ing a user simulator extends our work to model the system behavior, which is described
in [14]. The user simulator is automatically learned from a training corpus that is labeled
in terms of dialog acts. In our system, both DM and user behaviors are corpus-based.

The new user turn is selected by taking into account the information provided by the
simulated user throughout the history of the dialog, the last system turn, and the objec-
tive(s) set for the dialog. The user turn, which is represented as dialog acts, is selected
using the probability distribution provided by a neural network. With this methodol-
ogy, an initial dialog corpus can be extended by increasing its variability and detecting
dialog situations in which the DM does not provide an appropriate answer.

This approach has been used for the construction of a user simulator within the
framework of the DIHANA project [16]. This project undertakes the design and de-
velopment of a dialog system for access to an information system using spontaneous
speech. The domain of the project is the query to an information system about railway
timetables, fares, and services in Spanish.

Section 2 briefly presents the main characteristics of the dialog system developed
for the DIHANA project. It also describes a corpus and the semantic and dialog-act
labeling that is used for learning the user model. Section 3 presents the proposed user
simulator. Section 4 and 5 present an evaluation of this approach and our conclusions.

2 The System Architecture

Within the framework of the DIHANA project, we have developed a mixed-initiative
dialog system to access information systems using spontaneous speech [16]. We have
built an architecture that is based on the client-server paradigm. The system consists
of six modules: an automatic speech recognition (ASR) module, a natural language
understanding (NLU) module, a dialog manager (DM), a database query manager, a
natural language answer generator, and a text-to-speech converter.

We are currently using the CMU Sphinx-II system (cmusphinx.sourceforge.net) in
our speech recognition module. For speech output, we have integrated the Festival
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Fig. 1. Architecture of the DIHANA dialog system. [1] Interaction with real users. [2] Operation
with the user simulator.

speech synthesis system (www.cstr.ed.ac.uk/projects/festival). The specific information
relative to our task is stored in a PostGres database using dynamic information extracted
from the web.

Our dialog system has two operation modes. First, the system uses the ASR and the
NLU modules for the normal interaction between the system and the real users. Second,
the system allows the automatic acquisition of dialogs by means of the user simulator
module. Figure 1 shows the modular architecture of our system: (1) the interaction with
real users and (2) the operation with the user simulator.

The behavior of the principal modules that make up the dialog system is based on
statistical models that are learned from a dialog corpus that was acquired and labeled
within the framework of the DIHANA project.

2.1 The DIHANA Corpus

A set of 900 dialogs (6,280 user turns) was acquired for the DIHANA project using
the Wizard of Oz technique (WOz). Real ASR and NLU modules were used for the
acquisition and the WOz played the role of the DM following a predefined strategy. Five
files were stored for each acquired dialog: the output of the recognizer, the output of the
understanding module, the answer (dialog act) generated by the system, the values of
the attributes during the successive turns, and the queries made to the Database. This
information is used to model the behavior of the system depending on the succession
of dialog acts, the semantic representation of the user turn, and the values associated to
the attributes (and their confidence scores).The characteristics of this corpus are shown
in Figure 2.

For the acquisition, a set of 300 scenarios were defined. These scenarios can be
classified into two categories depending on the number of objectives. Type S1 defined
only one objective for the dialog and Type S2 defined two objectives.
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Number of users 225
Number of dialogs/user 4
Number of user turns 6280
Average number of user turns/dialog 7
Average number of words/user turn 7.74
Vocabulary 823
Duration of the recording (hours) 10.8

Fig. 2. Main characteristics of the DIHANA corpus

In order to learn statistical dialog models, the dialogs were labeled in terms of di-
alog acts. The user dialog acts correspond to the classical frame representation of the
meaning of the utterance. In other words, one or more concepts represent the intention
of the utterance, and a sequence of attribute-value pairs contains the information about
the values given by the user. The Understanding Module takes the sentence supplied
by the recognition process as input and generates one or more frames as output. In this
task, we defined eight concepts and ten attributes. There are two kinds of concepts:

1. Task-dependent concepts: they represent the concepts the user can ask for, such as
Hour, Price, Train-Type, Trip-Time and Services.

2. Task-independent concepts: they represent typical interactions in a dialog, such as
Affirmation, Negation and Not-Understood.

The attributes are: Origin, Destination, Departure-Date, Arrival-Date, Departure-
Hour, Arrival-Hour, Class, Train-Type, Order-Number and Services.

The system turns were labeled using a set of three-level dialog acts. The first level
describes the general acts of any dialog independently of the task. The second level rep-
resents the concepts involved in the turn and is specific to the task. The third level rep-
resents the values of the attributes given in the turn. The following labels were defined
for the first level: Opening, Closing, Undefined, Not-Understood, Waiting, New-Query,
Acceptance, Rejection, Question, Confirmation and Answer. The labels defined for the
second and third level were the following: Departure-Hour, Arrival-Hour, Price, Train-
Type, Origin, Destination, Date, Order-Number, Number-Trains, Services, Class, Trip-
Type, Trip-Time and Nil. Each turn of the dialogs was labeled with one or more dialog
acts. From this kind of detailed dialog act labeling and the values of attributes obtained
during a dialog, it is straightforward to construct a sentence in natural language.

An example of the user/system labeling is shown below:

User turn:
I would like to know the timetables from Valencia to Madrid.
Semantic representation:
(Hour)
Origin: Valencia
Destination: Madrid
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System turn:
Do you want timetables to Madrid?
Three-level labeling:
(Confirmation:Arrival-Hour:Destination)

A more detailed description about the WOz acquisition and the corpus labeling can
be found in [14].

3 The User Simulator

In our system, the user simulator replaces the functions performed by the ASR and the
NLU modules. It generates frames in the same format defined for the output of the NLU
module, i.e, in the format expected by the DM.

The methodology that we have developed for user simulation is based on the statis-
tical modelization of the sequences of user and system dialog acts. As stated above, the
user answers are generated taking into account the information provided by the simu-
lator throughout the history of the dialog, the last system turn, and the objective(s) pre-
defined for the dialog. A labeled corpus of dialogs is used to estimate the user model.
The formal description of the proposed model extends the methodology proposed in
DIHANA for dialog management:

Let Ai be the output of the dialog system (the system answer) at time i, expressed in
terms of dialog acts. Let Ui be the semantic representation of the user turn. We represent
a dialog as a sequence of pairs (system-turn, user-turn):

(A1, U1), · · · , (Ai, Ui), · · · , (An, Un)

where A1 is the greeting turn of the system (the first turn of the dialog), and Un is the
last user turn. We refer to a pair (Ai, Ui) as Si, the state of the dialog sequence at time i.

Given this representation, the objective of the user simulator at time i is to find an
appropriate user answer Ui. This selection, which is a local process for each time i,
takes into account the sequence of dialog states that precede time i, the system answer
at time i, and the objective of the dialog O. If the most probable user answer Ui is
selected at each time i, the selection is made using the following maximization:

Ûi = argmax
Ui∈U

P (Ui|S1, · · · , Si−1, Ai, O)

where set U contains all the possible user answers.
As the number of possible sequences of states is very large, we establish a partition

in this space (i.e., in the history of the dialog preceding time i).
Let URi be the user register at time i. The user register is defined as a data structure

that contains the information about concepts and attribute values provided by the user
throughout the previous history of the dialog. The information contained in URi is a
summary of the information provided by the sequence S1, . . . , Si−1. Different state
sequences can lead to the same UR.

The partition that we establish in this space is based on the assumption that two dif-
ferent sequences of states are equivalent if they lead to the same UR. This assumption
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provides a great reduction in the number of different histories in the dialogs at the ex-
pense of a loss in the chronological information. However, we do not consider the order
in which the information is supplied by the user to be a relevant factor in determining
the next user turn Ui.

After applying the above considerations and establishing the equivalence relations in
the histories of the dialogs, the selection of the best Ui is given by:

Ûi = argmax
Ui∈U

P (Ui|URi−1, Ai, O) (1)

In our previous work on dialog management, we proposed the use of a multilayer per-
ceptron (MLP) to obtain the system answer. In this work, we also propose using the
MLP to make the assignation of a user turn. The input layer receives the current situa-
tion of the dialog, which is represented by the term (URi−1, Ai, O) in Equation 1. The
values of the output layer can be viewed as the a posteriori probability of selecting the
different user answers defined for the simulator given the current situation of the dia-
log. The choice of the most probable user answer of this probability distribution leads to
Equation 1. In this case, the user simulator will always generate the same answer for the
same situation of the dialog. Since we want to provide the user simulator with a richer
variability of behaviors, we base our choice on the probability distribution supplied by
the MLP on all the feasible user answers.

3.1 Codification Defined for the MLP Classifier

For the DIHANA task, the UR is a sequence of 15 fields that correspond to the five
concepts (Hour, Price, Train-Type, Trip-Time, and Services) and ten attributes (Ori-
gin, Destination, Departure-Date, Arrival-Date, Departure-Hour, Arrival-Hour, Class,
Train-Type, Order-Number, and Services) defined for our task. For the user simulator
to determine the next user turn, we have assumed that the exact values of the attributes
are not significant. Even though these values are important for accessing the database
and for constructing the output sentences of the system, the only information necessary
to determine the next user action is the presence or absence of concepts and attributes.
Therefore, the information we used from the UR is a codification of this data in terms
of two values, {0, 1}, for each field in the UR according to the following criteria: 0 if
the concept is not activated, or the value of the attribute is not given; 1 if the concept or
attribute is activated.

For the DM of the DIHANA task, we have defined a total of 51 possible system
answers taking into account the different combinations of three-level labeling. Thus,
the system answer is modeled using a variable with 51 bits.

3.2 The Error Simulator

Our corpus includes information about the errors that were introduced by the ASR and
the NLU modules during the acquisition. This information also includes confidence
measures, which are used by the DM to evaluate the reliability of the concepts and
attributes generated by the NLU module.
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An error simulator module has been designed to perform error generation and the
addition of confidence measures in accordance with an analysis made of our corpus.
This information modifies the frames generated by the user simulator. Experimentally,
we have detected 2.7 errors per dialog. This value can be modified to adapt the error
simulator module to the operation of any ASR and NLU modules. As future work, we
want to make a more detailed study of the errors introduced in our corpus.

4 Evaluation

To carry out the evaluation of the simulation process, 50,000 dialogs of each one of the
two types of scenarios defined (Type S1 and Type S2) were generated.

Two criteria were defined for closing the dialog. The first criterion consists of final-
izing the dialog when the number of system turns exceeds a threshold obtained experi-
mentally. The second criterion is applied to generate a user request to close the dialog
when the manager has provided the set of information defined for the objective(s) of the
dialog. The successful dialogs are those that end when the second criterion is applied.

We defined five measures for the evaluation of the simulated dialogs: the number of
successful dialogs (SD), the average number of turns per dialog (NT), the number of
different successful dialogs (DD), the number of turns of the shortest dialog (TS), and
the number of simulated dialogs that are contained in our initial corpus (CD). Using
these measures, we tried to evaluate the success of the simulated dialogs as well as its
efficiency and variability with regard to the different objectives.

Table 1 shows the values of the different measures obtained for the simulated corpus
of 100,000 dialogs. Taking the two types of scenarios into account, the simulator gen-
erated a total of 22,614 dialogs that achieved their objectives (22.6%). The number of
simulated dialogs that were initially contained in the WOz corpus, CD, corresponds to
only a small partition of these dialogs (1.2%). It can be viewed that Type S2 dialogs are
more complicated to simulate due to the two objectives must be satisfied.

Table 1. Evaluation of the simulated corpus

Type SD NT DD TS CD
S1 18,400 10.4 11,550 5 224
S2 4,214 12.1 3,833 7 42

First, we evaluated the behavior of the original DM that was learned using the train-
ing corpus (obtained by WOz). Then, we evaluated its evolution when the success-
ful simulated dialogs were incorporated to the training corpus. A new DM model was
learned each time a new set of simulated dialogs was generated. For this evaluation,
we used a test partition that was extracted from the DIHANA corpus (20% of the sam-
ples). We considered four measures: the number of unseen situations (#unseen), i.e.
the dialog situations that are present in the test partition but not in the corpus used for
learning the DM; the number of answers provided by the DM that would cause the fail-
ure of the dialog (#error); the percentage of answers provided by the DM that exactly
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follow the strategy defined for the WOz to acquire the training corpus (%strategy); and
the percentage of answers provided by the DM that are coherent with the current state
of the dialog although they do not follow the original strategy defined for the WOz
(%coherent).

Figure 3 and Figure 4 respectively show how #unseen and #error decreased when
the training corpus was enriched by adding the simulated dialogs, which is the expected
behavior. These measures continued to decrease until 60,000 dialogs were simulated.
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Fig. 3. Evolution of the #unseen with regard to the incorporation of new simulated dialogs
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Fig. 4. Evolution of the #error with regard to the incorporation of new simulated dialogs

Figure 5 shows the evolution of %strategy and %coherent. It can be observed that
the DM improved the generation of coherent answers when the new dialogs were in-
corporated. In addition, the number of coherent answers that are different from those
defined in the WOz strategy was increased. In other words, the original strategy was
modified, thereby allowing the DM to tackle new situations and generate new coherent
answers.
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Fig. 5. Evolution of the %strategy and %coherent with regard to the incorporation of new simu-
lated dialogs

5 Conclusions

In this paper, we have presented a corpus-based approach for the development of a user
simulator. The proposed methodology allows the generation of new dialogs with little
effort. We have described an evaluation of this methodology within the framework of a
dialog system, in which both the DM and the user simulator are statistically modeled
from a data corpus. The definition of the user register allows the user simulator to take
into account the complete history of the dialog in order to generate the next user turn.

The results of the evaluation demonstrate that the coverage of the DM is increased by
incorporating the successful simulated dialogs and that the number of unseen situations
can be reduced. A study of the evolution of the strategy followed by the DM has also
been carried out. This study shows how the DM modifies its strategy by detecting new
correct answers that were not defined in the initial strategy. As future work, we plan to
apply this technique to a new domain, the booking of sports installations, to evaluate
the task-portability.
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Abstract. Efficient content-based image retrieval of biomedical images
is a challenging problem of growing research interest. This paper de-
scribes how X-ray images of the spinal columns are analyzed in order to
extract vertebra regions and contours. Our goal is to develop a computer
vision tool able to determine a global polygonal region for each vertebra
in first time. After this step, we apply a polar signature system in or-
der to extract the effective contour of each vertebra. Finally, we use an
edge closing method exploiting a polynomial fitting. The aim is to pro-
pose a closed contours detection representing each vertebra separately.
We suggest an application of the proposed method which consists on an
evaluation of vertebra motion induced by their movement between two
or several positions.

Keywords: Vertebral Mobility Analysis, X-ray Images, Region Vertebra
Selection, Contour Detection, Template Matching, Polar Signature.

1 Introduction

Medical staffs often examine X-rays of spinal columns to determine the presence
of abnormalities or dysfunctions and to analyze the vertebral mobility. Neverthe-
less, the result is generally qualitative and subjective. To help them to establish
a good diagnosis, medical image processing and analysis applications automate
some tasks dealing with the interpretation of these images. It permits the ex-
traction of quantitative and objective parameters related to the form and the
texture included in pictures. These image parameters allow to measure, compare
and detect the changes between images. X-ray images segmentation is an essen-
tial task for morphology analysis and motion estimation of the spinal column.
Several methods have been proposed in the literature to analyze and to extract
vertebra contours from X-ray images [11]. Extensive research has been done by
Long et al. [1,9] to automatically identify and classify spinal vertebrae. They
formulated the problem of spine vertebra identification by three level of process-
ing: In the first stage they used an heuristic analysis combined with an adaptive
thresholding system to obtain basic orientation data, providing basic landmarks
in the image; in the second stage, boundary data for the spine region of interest
were defined by solving an optimization problem; the third stage was expected
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to use deformable template processing to locate individual vertebra boundaries
at finely grained level. The main drawback of this approach is the need of a good
grayscale thresholding. Stanley and Long [2] proposed a new method of sublux-
ation detection. They used the spatial location of each vertebra in the spinal
column and the variation in its position. They applied a second order spinal col-
umn approximation by using vertebral centroids. The goal of their approach was
to quantify the degree to which vertebra areas within the image are positioned
on their posterior sides.

In an other work, Kauffmann et al. [4] first detected the axis of the spinal col-
umn by manually placing points along it and fitting a curve through them. The
fitted curve was used to initialize and rigidly match templates of vertebral body
with the image data to obtain vertebral outlines. Verdonck et al. [5] manually
indicated specific landmarks in the image and founded others using an interpo-
lation technique. The landmarks, together with a manually indicated axis of the
spinal column, were used to automatically compute endplates on vertebrae and
the global outline of the spine.

Techniques using Hough transform [6,7] and Active Shape Models [8] are other
examples of the various approaches developed. These methods use a large set
of templates to capture the great variability in vertebra shapes. But, in most
of the cases, it leads to prohibitive computation time, as in the case of Hough
transform, and usually needs a large and accurate training set in the case of
Active Shape Models.

In this work, we propose a new segmentation approach applied to vertebral
mobility analysis. The proposed segmentation approach is based on a first semi-
automatic step of region vertebra selection. After this, we achieve vertebra con-
tour detection using a polar signature system followed by a polynomial fitting
process. The extraction of some quantitative measures of particular changes be-
tween images acquired at different moments allows determining vertebral mobil-
ity. For instance, to measure and compare the corresponding vertebrae between
several images, we analyze vertebra edges extracted from some images corre-
sponding to the cervical vertebra of the same person, in flexion, neutral and
extension positions. This paper is organized as follows: In section 2 we present
the principles of the region vertebra selection process. After this we describe in
section 3 the polar signature system used for vertebra contours detection. In
section 4, we describe the numerical segmentation results given by this method,
and presented by the angular measures of each vertebra. These results allow the
estimation of vertebral mobility.

2 Region Vertebra Selection

This first step allows the creation of a polygonal region for each vertebra. This
will facilitate edge detection, and also make easier other processing like deter-
mining relative positions between vertebrae. Each region represents a specific
geometrical model based on the geometry and the orientation of each vertebra.
We propose a process where the user has to click once inside each vertebra.
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We initially place a click by vertebra, towards the center of the vertebra. These
landmarks represent the starting points P (xi, yi) for the construction of verte-
bra regions, figure (1-a). After this, we compute the distance between each two
contiguous points (Di,i+1), equation (1), and the line L1, figure (1-b), which
connects the contiguous points, by a first order polynomial, equation (2).

(a) (b)

Fig. 1. (a) : The first order polynomial function: (L1) between the click points. (b): The
inter vertebral distance computation, P (xi, yi) and P (xi+1, yi+1) are the click points
associated to the first and the second vertebrae.

Di,i+1 =
√

(P (xi, yi) − P (xi+1, yi+1))
2 (1)

L1 = f [a, b; P (xi, yi), P (xi+1, yi+1)] (2)

The calculated distance between the click points allows the estimation of the
inter vertebral distance. We use the line L1 and the consecutive click points to
carry out a relative estimation of order zero for the angles between vertebrae.

On the other hand, the line L1 will be used as reference for a template
displacement by the function T (x, y). This template function represents an inter-
vertebral model, which is calculated according to the area shapes between ver-
tebrae. To build the function T (x, y), we analyzed the figures (2-a) and (2-b).
The figure (2-b) presents the intensity values distribution along the line L1. We
notice that this intensity deployment can be decomposed of two main shapes:
vertebral and inter-vertebral areas. We focus our analysis on the inter-vertebral
area which takes a valley form. So, we propose a template function T (x, y) with
an opposite exponential trajectory. This function is given by equation (3). This
template function depends on a new reference plane on the direction of L1. Fig-
ure (2-c) is a three dimensional representation of the template function T (x, y)
which is built by auto repetition of T (x, y) along an axis.

We use the L1 function and the inter vertebral distances to calculate the inter
vertebral angles (αiv) and to determine a division line for each inter vertebral
area. The goal of the proposed template matching process is to find the position
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(a) (b) (c)

Fig. 2. (a): Representation of the vertebra area and the inter vertebra region; (b):
Distribution of the of intensity values along the line L1; (c): Three dimensional repre-
sentation of the template function proposed

on the image which is best correlated with the template function (See [3] for more
detail). So, for each vertebra, the template function T (x, y) is first placed on the
geometrical inter-vertebral central point P (xic, yic), which represents the average
position between each two contiguous click points: P (xi, yi) and P (xi+1, yi+1).
The new reference plane is created with P (xic, yic) as center. The X axis of this
plane is the line L1. The Y is axis therefore easily created by tracing the line
passing through P (xic, yic) and orthogonal to L1. We notice that the orientation
angle of this second axis present the initial value of the orientation angle αiv.
To determine the points representing border’s areas, we displace the template
function T (x, y), equation (3), between each two reference points P (xi, yi) and
P (xi+1, yi+1), along the line L1. Then, we compute the correlation degree DC

between the template function and the image I(x, y). The central geometrical
point is moved in the two directions in top and bottom along the L1 axis for
a distance equivalent to a parameter Tr fixed experimentally according to the
X-ray images used at ±25% of the inter-vertebral distance (Di,i+1). Also, for
each position on the line L1 obtained by this translation, we operate a shift of
the orientation angle αiv using an angle parameter βr, fixed experimentally at
±30◦, (T (x, y) ± βr), with a step of 2◦.

T (x, y) =
(
1 − e(−rx2

l )
)

with r = k/Di,i+1 (3)

With k = 0.1 an empirical value and xl the coordinate of the point (x, y) in the
new reference plane.

The correlation degree is a similarity measurement which permits to obtain
the ideal template function that joins perfectly the borders between the areas
of vertebrae. The maximum correlation value DC between templates function
T (x, y) and the image I(x, y) for all the analyzed positions will correspond to
the most stable position. This position corresponds to an angle αiv and a po-
sition P (xiM , yiM ) for the template function, i.e. the position on the image
(P (xi, yi) ± Tr ∗ D(i,i+1), ±βr) in which the template function T (x, y) is best
placed. In figure (3-a), the click points P (xi, yi) are represented. In figure (3-b),
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we present the inter-vertebral points P (xiM , yiM ) given by the proposed pro-
cedure. In figure (3-c), boundary lines between vertebrae are traced accord-
ing to the angle αiv given by the same procedure and centered on the points
P (xiM , yiM )). To obtain vertebral regions, we connect the extreme points of the
boundary lines, figure (3-d).

The Results obtained by the region vertebra segmentation method in flexion
and neutral and extension positions are represented in figure 4. Already at this
step, we can estimate vertebral mobility. Indeed, the mobility of the vertebrae
can be approximated by the mobility of their anterior sides. We rely on angular
variations measurements and comparisons to determine this one. Once all the
segments that represent each polygonal region are found, we extract the seg-
ments representing the anterior (frontal) faces ([3]). After this, we can make a
first estimation of the orientation angle belonging to each vertebra, the angular
variation between two consecutive vertebrae and the angular variation for the
same vertebra in two different positions. But, to have better precision, we apply
the contour detection of each vertebra inside its area. This process allows the
computation of some parameters characterizing each vertebra, like their posi-
tions, dimensions, orientation, and other cervical information.

(a) original image (b) order points given by (c) boundary lines (d) vertebrae regions
reference template matching process between vertebrae

Fig. 3. Results obtained by the region vertebra segmentation method

3 Contour Detection

After the region localization step, we proceed to vertebra contours detection. To
this aim, we use a polar signature method [12] applied to each vertebra region.
A general approach to determine the polar signature of objects boundaries is
illustrated in figure (6). We choose to use this polar signature approach in order
to explore all region points likely to be corresponding to vertebra contours.

A polar signature technique applied to vertebra region is represented in fig-
ure (7). The center point of the polar signature system is the click point. We
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(a) (b) (c)

Fig. 4. Results obtained by the region vertebra segmentation method for three X-ray
images of the spinal column in three positions: (a): flexion position, (b): reference
position, (c): extension position

Fig. 5. Graphical comparison between three cervical spine positions using a frontal
face computing by Region vertebra segmentation

Fig. 6. Example of contour points obtained by a polar signature approach



A New Approach for Cervical Vertebrae Segmentation 759

make the radial vector turn by 360◦ around the central points with a step pa-
rameter, Δα degree. More Δα is high, more the computing time is less. But more
Δα is high, more the contour is open. In order to get a closed contour, we apply
an edge closing method to the contours obtained, a polynomial fitting to each
face for each vertebra. In deed, for a better approximation of vertebra contours,
we use a second degree polynomial fitting [10]. We achieve this 2D polynomial
fitting by the least square method, figures (8-a, 8-b).

(a) Polar signature system (b) Polar signature direction (c) Research area in Gradient intensity

Fig. 7. Polar signature applied to vertebra region

Fig. 8. (a) Contour and corners points, (b) Polynomial fitting for each vertebra face

4 Experimental Results

We apply the proposed method to a large set of X-ray images of the cervical
spinal column. We have tested the algorithm on a set of 100 images belonging
to real patients. The figure (9). shows the results obtained by applying the pro-
posed method to three X-ray images of the cervical spinal column. We notice that
the process of region selection, figure (3) gives good results and permits to iso-
late each vertebra separately in a polygonal area. On the other hand, contours
extracted with the polar signature system combined with template matching
process are given with high precision. The great advantage of our method is
the fact that segmentation results are presented by closed contours. This will
essentially facilitate the use of these results for image indexing and retrieval.
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(a) (b) (c)

Fig. 9. Results obtained by the proposed contour vertebra selection method

Fig. 10. Graphical comparison between three spine positions

Vertebral mobility is estimated by the computation of the orientation angles
belonging to each face of the contour. In table 1, we present some quantitative
measurements of the orientation angle for each vertebra face. So, we present the
orientation angles for the five vertebrae belonging to the images (a), (b) and (c)
in figure (9). This allows motion head estimation and vertebral mobility compu-
tation. The error margin by applying only region segmentation method instead
of the region vertebra segmentation combined with polar signature is shown in
table (2). The results given in table (2) are corresponding to the neutral posi-
tion and the frontal faces of vertebrae V 1 to V 5. Two graphical representation
of the angular variation between these three positions using region and contour
detection with polar signature methods are shown in figures (5) and (10). It
will be noticed that if figures (5) and (10) resemble, the error margin Delta is
rather significant. This shows the utility of an additional treatment like the polar
signature.
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Table 1. Orientation angles for the five first vetebrae in figure. 9, with Sp = 1◦

PF: Posterior face FF: Frontal face SF: Superior face IF: Inferior face

(a)

PF FF SF IF

(b)

PF FF SF IF

(c)

PF FF SF IF
V1 114.0 113.6 25.3 29.3 V1 103.8 102.0 15.6 18.5 V1 117.0 113.5 26.9 29.8
V2 107.7 106.4 26.8 25.5 V2 93.1 91.7 13.1 8.6 V2 111.5 110.5 12.7 28.2
V3 112.0 110.0 32.4 29.7 V3 101.1 90.0 15.2 8.1 V3 112.6 106.2 34.0 31.4
V4 119.5 113.8 37.2 37.3 V4 102.1 91.6 16.4 14.3 V4 112.5 99.4 23.2 24.5
V5 124.6 127.6 49.4 43.0 V5 104.3 91.7 23.5 17.9 V5 107.1 90.0 18.8 13.3

Table 2. Error margin between (R.V): frontal face detection with only region vertebra
selection method and (S.P): frontal face detection with polar signature approach

R.V + S.P. R.V. Delta
101,6 99 101,6-99=2,6
91,7 95,9 -4,2
90 94,9 -4,9

91,6 98,3 -6,7
91,7 98,1 -6,4

5 Conclusion

In this a paper, a new method of vertebra segmentation has been proposed. The
goal of this work was to propose a method for closed contours detection repre-
senting each vertebra separately. This method permits to overcome some classical
problems related to closed contours extraction. Our approach lies on three steps.
First, we proposed a region vertebra selection. This step allows the creation of
a polygonal region for each vertebra and facilitate edge detection. In the second
step we applied a polar signature to extract the effective contour of each vertebra.
Finally, we used an edge closing method exploiting a polynomial fitting. We have
applied, with good results, the method to a large set of real images. The major ad-
vantage of the polar signature is the facility and the precision of the results. But,
if the precision is obtained by increasing azimuths number, the cost in time com-
puting can be sometimes unfavorable according to images complexity. After the
contour segmentation process, we have estimated vertebral mobility. The applied
techniques have given good results to measure the mobility of cervical vertebrae.
For this, we calculated the angular variations between two consecutive vertebrae
within the same image as well to measure the angular variation of a vertebra in
several images, in particular between three cervical spine positions. In our future
works, we are aiming to develop a template matching method for all the process
of contour extraction, and also limiting to only one the number of click points
initially placed by the user. Currently we are developing a content based image
retrieval system by using the results presented in this paper.
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Abstract. This paper presents an original method for splitting over-
lapped cells in microscopical images, based on a template matching
strategy. First, a single template cell is estimated using an Expectation
Maximization algorithm applied to a collection of correctly segmented
cells from the original image. Next, a process based on matching the
template against the clumped shape and removing the matched area is
applied iteratively. A chain code representation is used for establishing
best correlation between these two shapes. Maximal correlation point is
used as an landmark point for the registration approach, which finds the
affine transformation that maximises the intersection area between both
shapes. Evaluation was carried out on 18 images in which 52 clumped
shapes were present. The number of found cells was compared with the
number of cells counted by an expert and results show agreement on a
93 % of the cases.

Keywords: Cell quantification, Overlapping objects, Segmentation,
Clump splitting.

1 Introduction

Clumping of objects of interest is a relatively frequent phenomenon in different
computer vision domains. Its identification results crucial in many cytological
applications [1,2,3], in which the expected result is a population count; although
human experts are capable of separating the constituent objects, most real ap-
plications require a count of a large number of these objects, thereby many
conclusions of cytological studies lye on statistical or qualitative approaches [4].
Manual methods have been replaced in hematological cell counting by automated
techniques because of a superior repeatability and the avoidance of the many
error sources present in manual methods [4]. Besides, manual strategies are in
general limited in cases such as random aggregates of cells produced by smearing
failures or dye deterioration [4].

Available clump splitting methods are based on prior knowledge about shape,
size or region gray level intensities [5,6,7]. These methods include mathematical
morphology [3,8,9], watershed techniques [10,11] and concavity analysis [12,13,3].
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Di Ruberto [8] applies a size defined disk as a structural element to separate
clumped red cells while Ross [9] complements it using a gray level granulometry
for separating objects in the image. Concavity analysis methods are based on
the hypothesis that superimposed objects can be separated at some specific cut
points in which either the curvature abruptly changes or the overlapped objects
present differences in the gray level intensities. The drawback of these methods
is that they are only applicable for objects with specific shapes and sizes. On
the other hand, Kumar [3] proposes a method based on a concavity analysis,
adaptable to many shapes and sizes and which depends on a set of parameters
that are obtained from a large set of training samples. However, this method is
not accurate enough (79%), many samples are synthetic and there is not a study
of the degree of overlapping at which the method is capable to deal with.

The clump-splitting method herein proposed addresses the issue that for the
particular case of cytology, the a priori information about the predominant cell
shape and size are already present in the image. For this, a cell model ob-
tained from the image is used for separating cell aggregates. This approach is
simple and permits reliable quantification, independent of any pre-determined
geometric feature (shape and size). It enables the accurate splitting of clumps
composed of cells of different sizes and with a variable degree of overlap. This
paper is organized as follows: the construction of a cell model template, esti-
mated from single cells segmented from actual microscopical images is presented
in Section 2.2. This template is then used for an efficient search of similar ob-
jects in the clumped shapes via a template matching approach, (Section 2.3).
Finally, some preliminary results and conclusions are presented in Sections 3 and
4 respectively.

2 Methodology

In figure 1 the main steps of the whole process are illustrated. Firstly, single and
clumped cells are extracted from an initial image. Then, single cells are used
for estimating a cell model, an estimation which is formulated as a maximum
likelihood problem and solved with an Expectation Maximization algorithm. The
cell model is finally used as a template for splitting cells in clumped shapes. This
approach searches the better matching between a chain code representation of
the contours of the clumped shape and the cell model.

2.1 Single Cell Extraction

Cell features are highlighted using very specific histological procedures, which
mostly consist in coloring the different cell components so that color is essentially
the base of any differential diagnosis and the main strategy for finding objects
in histological samples [14]. Single cell extraction can be achieved through a
variety of segmentation techniques [15]. Cells are herein extracted from a binary
partition of the image, obtained from a process in which objects are segmented
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Fig. 1. Proposed method: single and clumped cells are extracted from a initial segmen-
tation. Single cells are then used for estimating a cell model, which is used for splitting
clumped shapes via a template matching strategy.

using a color strategy. Therefore, searched objects in these histological images
are clustered using their color characteristics.

The problem of color segmentation can be formulated as to find the set of
boundaries in the RGB cube, which optimally separates tissues. This corresponds
to assign to each image pixel a particular class, based on the color structure of
the image. Colour classification at the level of pixel is thus the first step for
identifying fundamental relationships in the digital image. Evaluation images
were segmented using a trained neural network, a multilayer perceptron with
one hidden layer, which classified pixels using the RGB cube as the parameter
space. Training points were selected by a pathologist from one image and applied
to the whole set of histological images. It was needed two training sets, one drawn
from images of malaria and the other from plasmocytoma images.

Once pixels are separated into their constituent classes, they are assembled
together into objects using neighbor information. Formally, this is a connected
operator graph [16], which uses filtering operations for finding relevant morpho-
logical structures. This image representation easily permits separation of the
single and clumped objects in the image. The graph is constructed with the
number of levels needed to represent the hierarchical relationships of the image.
Once the graph representation is complete, a number of connected operators are
then successively applied for removing redundant information and identifying
interest objects. Finally, single cells are extracted and aligned into the same axis
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using a standard principal component analysis (PCA) [15] and the single cells
bounding boxes dimensions are set to the bounding box of the larger feature.

2.2 Template Construction Via the EM Algorithm

For the cell template construction, we assume that each single cell drawn from
the image is one instance of a true model. Each is assumed to be generated
from a process that modifies the true model by adding a random noise, which
models the complex interaction of factors such as the biological variability, the
histological procedure and the illumination capturing conditions.

Let Di = (D1
i , . . . , D

n
i ) be a vector of n elements, which stores the n binary

pixel values of a single cell image, with i = 1 . . .N and N the number of single
cells extracted from the image. Let I be a vector of n elements too, which stands
for the pixel values of the ideal cell (true model) so that

Dj
i = Ti(Ij) (1)

where T is a stochastic function that generates the model instance and is defined
as follows

Ti(1) =

{
1 with probability pi

0 with probability 1 − pi

Ti(0) =

{
1 with probability 1 − qi

0 with probability qi

(2)
Where pi and qi control the probability of error on the generated instance. A

Ti with pi = qi = 1 means that instances generated by Ti corresponds to the
true model. The problem is then to find the pi and qi values which maximise the
likelihood of the instances being generated from the model:

(p, q, I) = arg max
p,q,I

(L(D|p, q, I)) (3)

where the likelihood

L(D|p, q, I) =
N∏

i=1

n∏

j=1

P (Dj
i |pi, qi, I

j) (4)

=
N∏

i=1

n∏

j=1

P (Dj
i |pi, qi, I

j = 1)Ij

P (Dj
i |pi, qi, I

j = 0)1−Ij

(5)

=
N∏

i=1

n∏

j=1

p
IjDj

i

i q
(1−Ij)(1−Dj

i )
i (1 − pi)Ij(1−Dj

i )(1 − qi)(1−Ij)Dj
i (6)

A first naive approximation to this problem could be an intensive search of
the parameters, but this is no feasible because of the size of the parameter space,
which is potentially infinite. An alternative approach is to iteratively improve



Automatic Clump Splitting for Cell Quantification in Microscopical Images 767

the estimation of the optimal parameters. For this purpose, a Expectation Max-
imization (EM) strategy was adapted from the original work of Warfield [17].

The main idea of the approach is to consider the true model (I) as a hidden
variable, which is estimated from the observed data and a set of values for
the parameters pi and qi. The initial values of pi and qi are further improved by
local optimization. The process of alternatively estimate I (expectation step) and
improve the pi and qi values (maximization step) is iterated until convergence.
This convergence is guaranteed since the likelihood function has an upper bound,
as was stated in [18].

The initial parameter estimates pi and qi are set to 0.9, as the fundamental
hypothesis in this work is that the instances do not differ too much from the
true model. The final estimation of I corresponds to the true model that will be
later used as a template to find cells in the input image.

2.3 Splitting Via Template Matching Strategy

Tradionally, template matching techniques have been considered as expensive
regarding computational resources since the template must slide over whole im-
age. However, the approach herein used is mainly based on a simplified version of
both the template and the clumped shape through a chain code representation,
which searches for an anchorage point that results in a “best match” when the
two shapes are superimposed.

A chain code is typically used to represent the object boundary by a sequence
of straight-line segments with their associated directions. A randomly selected
pixel from the object boundary is chosen as the initial point. Afterwards, the
pixel’s neighbors are numbered from 0 to 7 (8-neighbor mask) and the pixels
belonging to the boundary are selected following a clockwise direction. Finally,
the obtained chain code is normalized for achieving an invariant representations
regarding the initial point and orientation [15]. This normalization is performed
computing the distance difference between two consecutive segments and assum-
ing that the chain code is a circular sequence.

Once a chain code representation is achieved for both the clumped and tem-
plate shapes, a maximal correlation point is determined in the registration phase.
This point is from now on a landmark which limits transformations of the found
template shape. Provided that our true model may differ from cells which result
trapped into aggregates and which generally are deformed because of the contact
with other cells, this landmark is used to bond both the ideal model contour and
the clump boundary and constitutes the initial search point. Registration is ad-
dressed to find the affine transformation which maximises the intersected areas
between the two shapes: the template and the clumped. Overall, the template
size (width and height) was varied from 70% to 120% for allowing to find a “best
match”, even if the cell was deformed into the clump. Likewise, orientationwas var-
ied in steps of 5%, sliding the template code over the clumped shape. After a first
cell is found, its corresponding intersection surface is eliminated of the clumped
shape as well as its equivalency from the chain code. Procedure is iterated until
the remaining area is lower than 0.2 of the original clumpled shape.
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3 Experimentation

3.1 Experimental Setup

In the present investigation we performed evaluations on two different types of
cells. Figure 2 displays two microscopical images obtained from the two cell types:
plasmocytoma (left panel) and thin blood smears infected with malaria parasite
(right panel). Upper row displays the original digital images, while bottom row
shows the obtained images using the segmentation approach described before.
Our objective was thus to find the cells within the clumped shapes, formed after
the segmentation process.

Fig. 2. Fist row corresponds to the original microscopical images. Bottom row displays
segmented images obtained from the original ones. Several clumped shapes appear in
both cases, a result of the overlapped cells.

A group of 18 microscopical images was used for evaluation, 14 from thin blood
stained samples and 4 from a plasmocytoma slide, chosen from two different
unrelated studies. These samples corresponded to a two very different tissues,
each entailed with different color properties.

3.2 Results and Discussion

Figure 3 shows the final and intermediate results. Upper row (First row) displays,
from left to right different microscopical images, among which the first two are
extracted from thin healthy blood samples and the next five are extracted from
thin blood samples infected with Plasmodium falciparum. In the same row the
last five images come from a plasmocytoma slide, characterized by large nuclei
with different shapes, sizes and in which the variable to determine is the number
of nuclei.
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a)

b)

c)

d)

e)

Fig. 3. Figure illustrates the whole process using actual cytological images from dif-
ferent tissues. From the upper to the lower row: row a) displays the original digital
images and the first five images from left to right correspond to red cells infected by
plasmodium falciparum; the rest of the row shows images from a plasmocytoma, a kind
of cancer in the lymphatic system. Row b) depicts the binarized images after the color
classifier has segmented objects, rows c) and d) show first and second iterations of the
proposed method and finally, row e) shows the superimposed results of the splitting
cells and the clumped contour shape.

From upper to lower row, results shown in Figure 3 summarise the entire
process: row a illustrates some examples of sets of cells which are touching or
overlapping each other in the two cases herein evaluated (thin blood stains and
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plasmocytoma). Row b shows results after the binarization strategy for every
original image in the upper row. It should be strengthen out that at this state,
the graph has been already constructed and every single cell has been ruled
out so that the graph is uniquely composed of clumped shapes. Notice that the
color strategy can also produce overlapping shapes because of the segmentation
process, see for example the eighth panel (from left to right) of row a and observe
the resulted segmentation at the corresponding image in row b. Overall, cells are
easily separated using color differences. However, the segmentation process may
result in complex shapes such as the shown in the mentioned panel. For this
reason, yet color characteristics are at the base of differences among objects, they
are difficult to establish since histological objects are complex mixes of different
intensities and chrominances which are seen in the RGB space as boundaries
varying from one image to other. Rows c and d illustrate the splitting process
i.e. a first best matching is shown in row c while a second best matching is
displayed in row d. Observe that there is no a systematic trend about a preferred
initial location among the whole set of assessed shapes. Finally, row e shows the
original clumped contour superimposed with the different locations at which the
template has found a relevant shape.

The proposed technique was applied to the set of evaluation images, the iden-
tified cells were quantified and the results compared against a manual quantifi-
cation. In every case, the algorithm was able to match a shape which definitely
was an actual cell, a finding which was correlated with the results obtained from
observations performed by an expert on the whole set of images. Automatic
quantification (the number of found cells for these shapes) coincided in 49 of
52 clumped shapes, resulting in a 93% agreement. Failures were mostly due to
an overlapping larger than 50% or to very deformed cells which have lost their
geometrical properties and were very different from the estimated template. Re-
garding time performance, the whole process for a 640 × 480 image size was
0.7 ± 0.17 s.

4 Conclusions

Automatic methods for performing a precise cell counting are limited by a large
number of artifacts, among which the formation of clumped shapes is one of
the most frequent. In this research, an entirely automatic method is proposed
for splitting cells within clumped shapes. The process starts by performing a
binarization of the microscopical image, after which every single cell is counted
and stored for the construction of a model cell. This cell model is inferred from
single cells by an Expectation Maximization algorithm applied at the level of
each pixel. The clumped and template contours are then transformed into a chain
code, which is used for the registration phase. Registering is performed through
affine transformations of the template, under the restriction that the maximal
correlation point between the two shapes is fixed. The proposed method has
shown to be robust by splitting cells of diverse sizes and shapes whose overlap
varies, it is also reliable and reproducible on the test group of evaluation images.
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Future work includes the evaluation of the proposed method in different ap-
plications domains and the exploration of different representation alternatives
for the true cell model.
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Abstract. This work tackles the problem of learning a robust classifica-
tion function from a very small sample set when a related but unlabeled
data set is provided. To this end we define a new semi-supervised method
that is based on a stability criterion. We successfully apply our proposal
in the specific case of automatic diagnosis of intestinal motility disease
using video capsule endoscopy. An experimental evaluation shows the
viability to apply the proposed method in motility disfunction diagnosis.

Keywords: Feature Extraction, Intestinal Motility Diseases, Semi-
Supervised Learning, Suppor Vector Machine, Wireless Capsule Video
Endoscopy.

1 Introduction

In many pattern classification problems, the acquisition of labeled training data
is costly and/or time consuming, whereas unlabeled samples can be obtained
more easily. Semi-supervised learning addresses this problem by using unlabeled
data, together with the labeled data, to build better classifiers. Because semi-
supervised learning requires less human effort and gives higher accuracy, it is of
great interest both in theory and in practice [1,2].

Semi-supervised methods can be seen as a solution to the problem of gen-
eralizing from small samples. Successful learning from a very small number of
training samples requires the introduction of a certain hypothesis bias using ad-
ditional information, and one such source of information may be unlabeled data.
Semi-supervised learning methods use unlabeled data to either modify or repri-
oritize hypotheses obtained from labeled data alone. Although not all methods
are probabilistic, it is easier to look at methods that represent hypotheses by
p(y|x), and unlabeled data by p(x). Generative models have common parame-
ters for the joint distribution p(x, y). It is easy to see that p(x) influences p(y|x).
Mixture models with EM are in this category, and to some extent self-training.
Many other methods are discriminative, including transductive SVM, Gaussian
processes, information regularization, and graph-based methods.
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The simplest method of incorporating unlabeled data into a new model is self-
training [3]. In self-training a classifier is first trained with the small amount of
labeled data. The classifier is then used to classify the unlabeled data. Typically
the most confident unlabeled points, together with their predicted labels, are
added to the training set. The classifier is re-trained and the procedure repeated.
Self-training has been applied to several natural language processing tasks like
word sense disambiguation [4] or to classify dialogues as ’emotional’ or ’non-
emotional’ [5], and also to computer vision problems like object detection from
images [6].

Co-training is another way to train models from unlabeled data [7]. Unlike
self-training, co-training requires multiple learners, each with a different ”view”
of the data. When one learner is confident of its predictions about the data, we
apply the predicted label of the data to the training set of the other learners.

A variation suggested by Dasgupta et al. [8] is to add data to the training set
when multiple learners agree on the label. If this is the case, we can be more con-
fident that the data was labeled correctly than if only one learner had labeled it.

In the case of supervised learning, a learned function generalizes well if it
does about as well on new inputs as on the old ones. Given an appropriate mea-
sure for the ’cost’ of an error, the most common approach for assuring that a
learning algorithm holds the previous property is to choose the least expensive
function over the set of training samples, an approach to learning called empirical
risk minimization. A classical result in learning theory shows that the functions
learned through empirical risk minimization generalize well only if the ’hypothe-
sis space’ from which they are chosen is simple enough. The classical definition of
a ’simple enough’ hypothesis space is based on the Vapnik-Chervonenkis dimen-
sion [9], but although this approach has generated powerful learning algorithms,
the complexity of hypothesis spaces for many realistic scenarios quickly becomes
too hard to measure with this definition.

Recently Poggio et al. [10] proposed an elegant solution to this difficulty that
shifts attention away from the hypothesis space. Instead, they require the learn-
ing algorithm to be stable if it is to produce functions that generalize well. An
algorithm is stable if the removal of any one training sample from any large set
of samples results almost always in a small change in the learned function.

We formulate our problem as follows: given a reduced set of labeled samples
belonging to two different classes and a set of unlabeled samples, the task is
to learn a binary classification function that generalizes well when tested by a
Leave-One-Out Cross-Validation method. The problem is challenging because
the number of labeled samples is small and we cannot use classical re-sampling
methods to assess generalization capacity of the classifier when considering un-
labeled data. To this end we introduce a stability criterion based on data per-
turbation methods that allows us to select which unlabeled samples are added
to the learning set in order to modify the generated hypothesis. This method
is applied to a Support Vector Machine classifier trained with the problem of
intestinal motility disease diagnosis.
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This paper is organized as follows. In the next section we describe the pro-
posed semi-supervised learning method and the stability criterion. In Section 3
we explain the problem, the diagnostic of intestinal motility disfunction using the
video capsule endoscopy. In Section 4 we expose the experimental results, com-
paring the results when using a supervised learning method with the obtained
results when using the proposed semi-supervised learning method. Finally, Sec-
tion 5 ends the paper with our conclusions and future work.

2 Semi-supervised Learning Based on Stability Criterion

In view of these considerations, we propose a semi-supervised method that uses a
stability criterion to add samples to the training data set. The proposed stability
criterion differs slightly from the one defined by Poggio et al. [10] in order to be
used with small sample sets. We define a statement as follows:

Stability Criterion: ”An algorithm is stable if adding one training sample from
a set of samples results in a small change in the learned function”.

In order to use the stability criterion during the application of a semi-supervised
method, we need to define how to measure small changes in the learned function
when adding a training sample. To this end we adopt the following strategy (see
Fig. 1):

1. Given a binary classification problem with two class labels {−1, +1}, a train-
ing set with an additional training sample, and a learning method that is
able to assign a confidence level to the classification of any sample, perform
a Leave-One-Out Cross-Validation test over the training set, including the
new training sample.

2. At each stage of the Cross-Validation test, repeat n times the following
procedure:
(a) Add random noise to the samples, creating a perturbed data set.
(b) Build a classifier and classify the ”left out” sample.
(c) Return the class and the confidence level of the sample classification.

3. Compute the mean confidence classification level for each sample and rank all
training samples from both classes by assigning the lowest rank to the most
confident sample from class -1 and the highest rank to the most confident
sample from class +1.

4. Compute a measure of stability of the algorithm for the additional training
sample by comparing the produced rankings (a learned function is stable
if the sample ranking change is insignificant). To compare two rankings we
can use Spearman’s rank coefficient [11]. This is a non-parametric measure
of correlation that assesses how well an arbitrary monotonic function can
describe the relationship between two variables, without making any as-
sumptions about the frequency distribution of the variables. The coefficient
is defined as:

rab = 1 − 6
N∑

i=1

(da
i − db

i)
2

N(N2 − 1)
(1)
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where the sum is taken over all samples d, da and db, are the obtained ranks of
the d sample using two differently perturbed data sets a and b, respectively,
and N is the number of samples. At the end we average the pairwise rank
correlation coefficient over all n iterations. We consider that the example
with the highest correlation coefficient is the most stable for the classifier.

Fig. 1. Strategy to measure the stability coefficient. The obtained ranks for data set
A and B are da = {1, 3, 5, 2, 6, 4} and db = {1, 4, 6, 2, 5, 3}, respectively, and N=6.

Table 1. Stability based semi-supervised learning algorithm

1. Pick one classification method.
2. Train a classifier f using the labeled data set (x, y) ∈ (Xl, Yl).
3. Use f to classify all unlabeled items x ∈ Xu.
4. Compute the stability criterion for each x ∈ Xu.
5. Pick from the unlabeled data set the sample x∗ with the highest stability on the
results of the classification, and add (x∗, f(x∗)) to labeled data.
6. Repeat this procedure until all samples from the unlabeled data set are added to
the labeled data set.

Once we know how to measure the stability criterion we can define our stability
based semi-supervised learning algorithm. The basic idea is to add at each step
the sample from the unlabeled data set which presents the highest stability with
respect to the classifier. Table 1 summarizes the proposed algorithm.

3 Applying to Intestinal Motility Analysis

With the recently appeared Wireless Capsule Video Endoscopy (WCVE) a new
field of research is opened to study small intestine affections. Currently, the most
extended diagnosis test for small bowel motility disorders is intestinal manom-
etry [12]. This technique has some drawbacks: it is highly invasive, require the
hospitalization of the patient and monitorization of the whole process by medical
staff, and also the acquired information is limited to examination of some kind
of information.

The WCVE is an ingestible device provided with all the suitable technologies
for image acquisition, including auto illumination and radio frequency emission.
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For more details see [13]. The capsule is swallowed by the patient and emits a
radio frequency which is received and stored by an external machine. The result
is a video which records the ”travel” of the capsule along the intestine with a
frame ratio of two frames per second.

The human intestine is the portion of the alimentary canal extending from
stomach to the anus. It is divided in two segments, the small intestine and the
large intestine. The small intestine is subdivided into duodenum, jejunum and
ileum, and the large intestine is subdivided into cecum, colon and rectum. We
are interested in the part of the intestine comprised between post-duodenum
and cecum, because in the other part of the video we can not extract reliable
information. In the portion of the video corresponding to this part, we can ob-
serve three different elements or events: the intestine wall, the intestinal content,
and some artefacts related with the movement of the intestine. In Fig.2 we can
see an example of the intestine image visualized by the WCVE. In this image
the lumen and the intestinal wall are visualized. The lumen is the cavity where
digested food goes thought and from where the nutrients are absorbed. It can
be recognized in the video images as a dark area. In order to quantify the infor-

Fig. 2. Example of intestinal video image

mation that is visualized in the video, we have to extract the values related to
several features. All these analyzed features are, according to medical experts,
important in the diagnostic of the intestinal motility disfunctions. The features
that we analyze from the video are:

Static rate. Static frames appears when the camera has a null apparent motion
and the visualized frames are almost the same. The experts believe that a high
level of static frames could be considered as a symptom of intestinal disease. An
example of this kind of sequences can be seen in Fig.3 - 1st row. We characterize
this feature with Earth Mover Distance method (EMD) [14]. From this feature
we are interested in quantifying the next information: percentage of static frames
in the video; percentage of static frames in those parts of the video that turbid is
not present ; the mean length of the static sequences ; and the static level of the
video, all of them computed with the mean of the static level of each frame.

Turbid. The turbid is food in digestion or intestinal juices. The food appears
as small pieces through the gut and the intestinal juices could be presented as
liquid or bubbles (Fig.3 - 2nd row). For details about turbid detection using
WCVE see [15]. Related with turbid we get the next values: percentage of turbid
frames in the video; percentage of turbid frames that are apparently stopped ; and
static level in the parts that the turbid is not present.
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Fig. 3. Some different intestinal video images. From top to bottom: Static Sequence,
Turbid frames examples, Tunnel Sequence, Occlusive contraction, Non-Occlusive con-
traction and Sustained Contraction.

Tunnel. A tunnel is a sequence of frames where the lumen appear static for a
long period of time (Fig.3 - 3rd row). The interpretation of the tunnel is that
the intestine is relaxed, and there is not contractile movement.

The tunnel is described in terms of the lumen area of a sequence of nine
frames. In order to estimate the area of the lumen, a Laplacian of Gaussian
filter is applied (LoG)[16]. For further details about detecting these frames see
[17]. We are interested in assessing: percentage of tunnel in the video; percentage
of tunnel in those frames that turbid is not present ; the mean length of the tunnel
sequences ; and the level of static level of all tunnel frames.

Contractions. Intestinal contractions are the result of muscular stimulation
produced by the nervous system. The analysis of these contractions has been
proved to be a meaningful method for diagnosis several intestinal dysfunctions
[18]. From a physiological point of view, intestinal contractions can be divided
into the following three groups:

– Occlusive contractions: the lumen in the central frame of these contractions
is completely closed. These are considered as the classical intestinal contrac-
tions (Fig.3 - 4th row).

– Non-occlusive contractions. In this type of contraction the lumen never ap-
pears completely closed. The origin of this kind of contraction is based in
the physiological fact that the intestinal wall do not perform enough pressure
during the contractile activity (Fig.3 - 5th row).

– Sustained contractions. They are produced by the muscular tone, and can be
visualized as a continuous closing of the intestinal lumen (Fig.3 - 6th row).

The method to classify frames as contractions has been described elsewhere and
is called Cascade [17]. Each step of the Cascade receives as input the output of
the previous step. The initial input is all the frames of the video, and the output
is the set of frames where a contraction is suggested to appear.
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We use a Relevance Vector Machine classifier (RVM) [19] in order to detect the
non-occlusive contractions from all the contraction set detected by the system .
The principal feature to characterize this type of contraction is the area of the
lumen in each frame. Generally, in non-occlusive contractions the lumen area
of the central frame is bigger than it is in the rest of the contractions. This
area is estimated in the same way as is done in the tunnel frame detection. The
resulting vector of nine lumen areas is used as feature vector to the classification
of occlusive or non-occlusive contractions.

We are interested in analyzing: the number of contractions per minute in the
video; the number of contractions per minute in those parts that the turbid is not
present ; and the percentage of the contractions that are non-occlusive.

Wrinkle pattern level presence. The wrinkle star pattern is an omnipresent
characteristic of the sustained contractions. In the frames where the wrinkle
pattern appears we observe strong edges of the folded intestinal wall, distributed
in a radial way around the intestinal lumen. In order to localize this pattern in
video frames an accurate wrinkle detection is essential. For more information
about this method see [20]. The output is the level of wrinkle presence in each
frame. Related with this feature we get: the percentage of video frames with
wrinkles ; the percentage of the frames without turbid where the winkle star pattern
appears ; the mean length of the wrinkle sequences ; the percentage of frames with
a very low level of wrinkle presence; the percentage of frames with a high level
of wrinkle presence; and the percentage of contractions with wrinkles.

All these features are assembled in an 21-dimensional feature vector that is
used to diagnose subjects in intestinal motility disfunctions.

4 Experimental Results

In this section we evaluate the proposed method over our problem. Our video
set is provided by the Digestive Diseases Department of General Hospital Vall
d’Hebron in Barcelona, Spain. This video set was obtained using the wireless
endoscopic capsule developed and provided by Given Imaging, Ltd., Israel. All
videos were created at the same conditions, patients and healthy volunteers were
in fasting (without eating and drinking in the previous 12 hours). There are three
different group of videos, one from patients, another from healthy volunteers, and
finally another one from persons with non conclusive manometric diagnose that
are used as unlabeled data. Healthy volunteers were randomly selected from a
bigger pool of subjects without any symptom. We consider these subjects as
healthy subjects without performing a manometry test, because the probability
to be patient is too small and anyone of them has any symptom to be patient,
statistically the probability of error is very low. Our data set is composed by
50 healthy volunteers, 15 patients and 17 unlabeled subjects. It is important to
notice that the intestinal motility diseases are very odd ones. This is the reason
why the number of available patient cases is very low.

We evaluate the performance of this methodology using a Leave-One-Out
Cross-Validation Method [21] with the data set. Before performing this test
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we normalize the data with zero mean and standard deviation set to one. The
results are validated using several measures that are described in terms of true
positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN) as follows: Error = FP + FN, Sensitivity= TP/(TP + FN), Specificity=
TN/(TN + FP ), Precision= TP/(TP + FP ) and False Alarm Ratio, FAR =
FP (TP + FN). Table 2 summarizes these definitions.

Table 2. Validation Measures

Error Sensitivity Specificity Precision FAR

FP + FN TP
TP+F N

TN
TN+F P

TP
TP+F P

F P
TP+F N

In order to perform our classification test we use the Support Vector Machine
classifier (SVM) [22]. SVM classifier looks for the hyperplane which separates pos-
itive and negatives samples, maximizing the distance to the hyperplane. The orig-
inal algorithm by V. Vapnik was a linear classifier, however there is a way to create
non-linear classifiers by applying the kernel trick to the SVM framework. We used
the SVM classifier with the radial basis function kernel [23] represented by:

Krbf(x, xi) = exp
−|x − xi|2

2σ2 (2)

where the parameter σ will be found by Cross-Validation in each test.
Our first test is performed only using the supervised data (healthy volunteers

and patients). In the first row of Table 3 we display the obtained results for this
test. We get a 4.61% of error, 80.00% of sensitivity, and specificity, precision and
FAR are: 100.00%, 100.00% and 0.00% respectively. It means that all healthy
subjects are correctly classified, but three patients are considered as healthy
subjects.

The previous test present an important drawback, the limited size of the data
set. In order to overcome this problem and be able to get better results we
perform another test using both, the supervised and unsupervised data set in
the proposed semi-supervised learning method. Before using this algorithm we
have to define two important issues:

– Which binary classifier is used and how we estimate the confidence level of
the sample classification, and

– How we perturb the original data.

For the first issue we again use an SVM classifier. To get the classification confi-
dence value of a given classified sample, we take the distance from this sample to
the SVM hyperplane. To create the perturbed data set we choose to add a per-
centage f of Gaussian noise to the original data set. We test our method with dif-
ferent percentages of noise obtaining the same results when 0% <= f <= 40%.
Finally for this percentage was fixed to f = 20%.
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The semi-supervised learning method labels 8 examples of the unsupervised
data set (of 17 elements) as patients and 9 of these examples as healthy vol-
unteers. We use this new training set in order to perform the validation for
proposed method of our problem. As we can see in the second row of Table 3
we get 1.53% of error, 93.00% of sensitivity, and specificity, precision and FAR
are: 100.00%, 100.00% and 0.00% respectively. It means that the system only
fails in one case, when it considers one example of the patients as a healthy
subject.

Table 3. Classification Results

Error Sensitivity Specificity Precision FAR

supervised learning 4.61% 80.00% 100.00% 100.00% 0.00%
semi-supervised learning 1.53% 93.33% 100.00% 100.00% 0.00%

5 Conclusions

In this paper we proposed a new semi-supervised learning method for the diag-
nostic of intestinal motility dysfunctions. The principal difficulty of this problem
is the low number of patients samples available. However, we have another set
of unlabeled data and we propose to use it with the semi-supervised learning
method.

We propose the stability as the criterion used in the semi-supervised learning
method. The stability measure that has been defined is based on the Spearman’s
Rank Correlation.

The performed experiments show that using this semi-supervised learning
method with an unlabeled set of samples results in an improvement of results. It
is important to notice that we obtain this improvement of the results avoiding
the computation of the error (on the unsupervised data) as the criterion to be
optimized.

Even if the tests have been performed on a very small data set the WCVE
and this method is very promising in order to diagnose intestinal motility dys-
functions. The good results demonstrate that this method could be a candidate
to replace, in a close future, the most used diagnosis tests for intestinal motility
dysfunctions, the manometry test.
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Abstract. In this paper, a set of three features for aiding classification of
lung nodule bearing candidates based upon morphological characteristics
is proposed. Metrics were validated using Support Vector Machine
(SVM) technique as classifier. Preliminary results indicate the efficiency
of the adopted measurements, taking into account the sensitivity and
specificity high rates obtained from the studied samplings.
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1 Introduction

In the last years lung cancer is gaining attention from the scientific community
due to its high occurrence among people and also due to the difficulty to treat it.
Nevertheless, it is well known that the principal cause of the illness is associated
with the smoking habits, especially among males population, in such a way
that the chances for a positive diagnostic increase from 20 to 30 times amongst
smokers [1].

Research has been performed in the computer field aiming at producing tools
to aid the physician in the analysis of computer tomography imaging (CT).
Those tools can be divided into two main groups: lung nodule detection and
diagnosis aiding ones.

Lung nodule detection is characterized by the identification, from a set of
CT images, of a region presenting features that identify it as lung nodule. To
do this, in general, a two fold process is conducted: first, the various structures
existing in the parenchyma are segmented; next, the structures are classified as
to identify which among them represent the nodules and which are associated to
the rest of structures that lay, usually, in the lung parenchyma (non-nodules).

In the area of lung structures classification through CT, significant progress
has been observed. Several discriminatory measures have been proposed as to
differentiate nodules from non-nodules. There are morphological approaches
that use geometrical structure characteristics, both bi-dimensional and three-
dimensional, to describe them. [2] introduced a new characteristic able to
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estimate the nodule tissue radial distribution in a non binary way, getting
promising target hitting [3]; on the other hand, he developed a method
for rebuilding lung trees supported on highlighting filters, demonstrating its
applicability as an aid tool for nodule detection.

There are, also, works that adopt texture characteristics to describe lung
tissue and thus, identify it. In [4], for example, there were used 22 characteristics
texture based to classify the regions of a CT image from 6 possible groupings,
among which the nodule, bronchial-vascular and normal.

In most of the works, once the structures’ representative characteristics have
been calculated, classifiers for identifying them within the group of nodule or
non-nodules are used. One of the classifiers that became very popular because of
its high generalization capacity is the Support Vector Machine (SVM), already
used in several researches [5], [2], [6]. Neural networks and grouping algorithms
are other very popular type of classifiers, also presenting satisfactory results.

In spite of these developments, however, there is not yet a methodology neither
in the segmentation area nor in the classification one, which could be considered
as definitive for lung nodules identification. Most of them still need improvements
concerning target hitting rates or generalization capacity, making it still an open
problem.

In fact, lung structures classification is still facing several difficulties. One of
them, for example, says respect to the tissue density, which is very alike among
the blood vessels and some kind of nodules, leading the classifier to commit same
mistakes.

Another difficulty concerns the malignant nodules form. This kind of nodule
usually presents spikes and branching due to its disordered nature. The
classification problem derived from this is that these branches are similar to
the vessels irrigating the nodule which, in its turn, are also numerous in the case
of a malignant lesion.

Thus, a great deal of the problem faced by researchers is linked with the
difficulty of proposing measures for describing the lung parenchyma inner
structures, in such a way as to allow a maximization of the used classifier target
hitting rates. This dilemma can still be aggravated by the fact that, under certain
aspects such as tissue density or form, a nodule could be considered similar to a
lung’s normal structure, confusing the classifier.

Besides the techno-scientific challenges above, this problem presents social
motivation due to its close association with human health. Hence, the present
work aims at contributing with the automation efforts for detecting lung nodules
while proposing some novel discriminatory characteristics for the parenchymal
structures using them, associated to a SVM classifier, to compare its efficiency
with other traditional approaches.

This work is organized as follows: In Section 2, the methodology and the
features proposed for the geometrical description of the structures under analysis
is explicated. Next, in Section 3, presents the criteria and parameters used in
the analysis of the proposed characteristics, as well as the results obtained with
them and their comparison with other studies results. Finally, Section 4 closes
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the study by analyzing the viability of the described features supported by the
obtained results.

2 Methods

In this Section, the proposed method for lung nodules detection is presented
and demonstrated the data base formation process used in trials and
method validation. Next, three new classification features based upon objects’
morphology is also presented. Finally, the SVM technology, basement of the
classifier, is introduced.

2.1 Pulmonary Structures Segmentation

The images were acquired with a Helical GE Pro Speed tomography under the
following conditions: tube voltage 120 kV, tube current 100 mA, image size
512×512 pixels, voxel size 0.67 × 0.67 × 1.0 mm and reconstruction interval of 1
mm. The images were quantized in 12 bits and stored in the DICOM format [7].

It is important to stand out that the CT exam was performed with no
contrast injection, which may be clinically used in order to increase the diagnosis
readiness but also carries some morbidity and occasional mortality by allergic
complications.

It is also necessary to highlight that the nodules were previously diagnosed by
physicians and that the final diagnosis of benignity or malignancy was posteriorly
confirmed by histopathological exam of the surgical specimen or by radiologic
3-year stability, which explains the reduced size of our sample.

Nodules were semi-automatically segmented by a specialist physician who
used the Lung Nodule Analysis System (Bebúi). This system, proposed in [8],
allows the three-dimensional segmentation of the lung nodule by means of a
region growing algorithm starting from given seed indicated by the specialist
physician. A preliminary segmentation is, next, submitted to the users’ approval
through the observation of two dimension slices. At this point, if necessary,
the physician may manually tune the segmentation as to increase the results
accuracy.

Other parenchymal structures, such as blood vessels and bronchia, were
automatically segmented through a serial processing of the TC data, under
a segment modularizing scheme. This segmentation scheme uses parameters
dynamically defined through properties obtained from the images of each
examination. This approach avoids the dependency on parameters statically
defined which could embarrass the generality of the method.

The entirely automatic processing starts by removing from the bulk the
dense tissues involving the lung, mainly composed by muscles and bones,
through a selective threshold algorithm by location. Next, by using the
morphology technique known as rolling ball, the lung walls are restored as not
to neglect peripheral nodules. The next step is to remove from lungs the soft
tissues, principal constitutive of the parenchyma, preserving only the structures
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contained in it, what is again performed aided by a dynamical threshold.
Finally, by using region growing algorithm, each structure is identified and
isolated. Samples of the segmented structures through the described methods
can be seeing in Figure 1. Figures 1a and 1b represent normal lung structures
automatically segmented, while the ones of Figures 1c and 1d isolated lung
nodules segmented by the Bebúi system.

Fig. 1. Structures sampling present in the parenchyma. c and d are isolated lung
nodules.

Considering both methods, it was possible to build a database with samples
corresponding to nodules segmented by the Bebúi system and the rest of the
lung parenchymal structures.

In total, 38 samples were used, corresponding to benign and malignant nodules
which volume varied between 0.06cm3 and 88cm3. There were also used 228
structures belonging to the class non-nodule, among which blood vessels and
bronchia.

2.2 Proposed Features

As to allow classification and attain satisfactory target hitting rates, it is
important to use the under analysis structures’ characteristics. Thus, this Section
presents the proposal of three new measurements based on the object’s geometry
(morphology) to be classified.

Spherical Disproportion. Morphologically it is well known that blood vessels
are very different than lung nodules, when observed three dimensionally. While
the former presents elongated shape, being possible branches formation, the
latter presents a compact and round feature.

Conducting the analysis under this aspect, the measurement of the round
disproportion can tell us until which extent certain structure presents unsmooth
surface with respect to another totally round surface. This is got by means of
a comparison between the estimation of the area the volume should have, if it
were totally spherical, and its actual area.

It must be noted the difference between border voxels and surface area. The
set of border voxels of an object forms a volume, i.e, it is a three dimensional
magnitude, while the outside area is a surface, hence a bi-dimensional one.

In such a way, the spherical disproportion is calculated by Equation 1:

D =
A

4πR2 (1)
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where A is the object’s surface area, R is the estimated sphere’s radius with the
same volume as the object. The estimated radius (R) is obtained by

R = 3

√
3V

4π
(2)

where V is the object’s volume.
The Spherical Disproportion assumes smaller values for round objects and

higher values for irregular or elongated objects. The measurement also presents
invariant properties with respect to the rotation, translations and to the scale.

Spherical Density. As already said, the various structures, nodular or not,
found at the lung parenchyma, have more or less compact formats according to
their own nature. In such a way, more compact structures are very similar to
spheres, while less compact structures look differently.

A very ordinary measurement for measuring how compact a structure is
consists in comparing its volume with that one of the minimum box [9]. There
are, however, variations of this technique through which it is possible to use
the convex hull [10] or, yet, other geometrical figures such as ellipses [9]; but in
general, the method encloses the calculation of an object’s circumscribed figure
and compare its volume with the one occupied by the object under study.

These techniques, nevertheless, face the problem of calculating the best
object circumscribed figure alignment or inconsistencies related with the lack
of alignment, such as different values for identical objects, but with different
rotation, that is, they are not rotationally invariant.

The spherical density, on the other hand, uses a sphere, a figure rotationally
invariant, but without having to calculate optimal measurements to circumscribe
it to the object. What is in fact done is to use a sphere which volume is the
same as the one of the object under study, with origin in the object’s center of
mass. Thus, the measurement of the spherical density will consist in this sphere’s
percentage that, in fact, also corresponds to the objects’.

Figure 2 visually represents this feature in 2D format, even though the feature
is in 3D, as to easy the visualization and the understanding through a media
that is also bi-dimensional. Note that, in Figure 2a, the object occupies most of
the circle, resulting in a high spherical density, In Figures 2b and 2c occurs the
opposite due to greater dispersion of the object’s volume, in such a way that the
resulting spherical density assumes smaller values.

Spherical Density is calculated by:

100 · n

V
. (3)

In this paper, the following notation was used: every time x, y and z, together
or separately, would appear underlined, it would indicate a point coordinates,
whereas whenever they appear in between parenthesis, they will be indexing an
antecedent variable with respect to the respective axis in the objects voxels grid.
Thus, in Equation 3, p(x, y, z) is the voxel value with coordinates x, y and z, n
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Fig. 2. Spherical Density bi-dimensional Illustration

is the amount of voxels p such that p(x, y, z) �= 0 and (x − Mx)2 + (y − My)2 +
(z − Mz)

2 ≤ R2, V is the object’s volume, R is the estimated radius obtained
through Equation 2 and Mx, My, Mz is the object’s center of mass coordinate.

The Spherical Density presents the property of getting close to zero in very
elongated objects or with external mass center, while it assumes values close to
100 for more round volumes, even though the interval [0,1] could be used without
affecting the results just by removing the constant in the Equation 3. Besides this,
it is an invariant measurement with respect to changes in the object concerning
rotation, translation and scale; being, thus, a very fair stable measurement to
be used as a reliable morphological describer.

Weighted Radial Distance. Feature that calculate the flatness or lengthening
of an object based on circumscribed images or on global characteristics are flawed
because they fail in measuring these objects’ real peculiarities.

In Figure 3 one can notice that, even when the three objects minimum boxes
factually present the same dimensions, the own objects themselves are very
different. Measurements taken upon these boxes’ dimensions run the risk of
falling into significant lack of accuracy.

Fig. 3. Objects represented in their minimum boxes

Global measurements such as area and volume not always are ideal descriptors
for certain objects’ characteristics as it is known, again, that those ones holding
the same measurements may present very different shapes.

The Weighted Radial Distance ponders the degree of flatness of an object,
starting from voxels’ local measurements, increasing the overall precision of this
descriptor.

The idea behind this measurement lays in the distance relationship between
the volume’s voxels and its own medial axis. In very elongated volumes, the
voxels, in average, tend to be at a short distance from the medial axis, while in
more concentrated volumes the voxels assume longer radial distances.



Lung Structure Classification Using 3D Geometric Measurements and SVM 789

Nevertheless, the mean radial distance with respect to the medial axis,
even when it already supplies an idea of the objects’ degree of flatness, is
not a consistent measurement, once volume objects will tent to present higher
coefficients.

Thus, the Radial Distance is taken in a pondered fashion, so assuring that the
volume’s dimension will not interfere in the measurement magnitude, but just
in its format.

The Weighted Radial Distance can be obtained by means of

P = R−1
∑

x,y,z

c(x, y, z) (4)

where R is the estimated radius obtained through Equation 2, c(x, y, z) is the
weighting coefficient applied to each voxel by means of

c(x, y, z) =
3
4π

[
[r (x, y, z) + 0, 5]3 − [r (x, y, z) − 0, 5]3

]−1
(5)

and r(x, y, z) is the radial distance of a voxel with coordinates x, y, z.
The radial distance r(x, y, z), as explained before, is the voxel’s distance to

medial axis at that point. It is calculated by the inverse distance transform.
Initially, the distance’s transform is done in a smooth manner on the volume,

assigning to each voxel an index which represents its degree of remoteness from
the borders. The most inner voxels, which are part of the medial axis, will
present, then, higher values.

The inverse radial distance is but nothing else than the reversal of the
ascendant direction of those values, given the value zero to the central voxels
and to the remaining ones, as they go away, successively higher values until the
borders are reached.

It is important to notice that the same result can not be obtained just from
the conventional radial distance calculation based in the origin. This happens
because the former is based upon the distance with respect to a single central
point, while the radial distance calculated through the described process obtains
the voxels distance with respect to the object medial axis, which is formed by a
series of points.

The Weighted Radial Distance presents the property of assuming values close
to unity in not very elongated volumes, and higher values for more elongated
volumes. It is also an invariant measurement for rotations, translations and
scales.

2.3 Support Vector Machine

The Support Vector Machine (SVM) introduced by V. Vapnik in 1995 is a
method to estimate the function classifying the data into two classes [11]. The
basic idea of SVM is to construct a hyperplane as the decision surface in such
a way that the margin of separation between positive and negative examples is
maximized. The SVM term come from the fact that the points in the training set



790 J.R.F. da Silva Sousa, A.C. Silva, and A.C. de Paiva

which are closest to the decision surface are called support vectors. SVM achieves
this by the structural risk minimization principle that is based on the fact that
the error rate of a learning machine on the test data is bounded by the sum
of the training-error rate and a term that depends on the Vapnik-Chervonenkis
(VC) dimension.

In the proposed work, the characteristics obtained from each candidate trough
of the Equations 2, 3 and 4 had to be supplied to the classifier in such a way
as allowing it to evaluate the classes separation hyper-plane and, next, classify
other objects.

Nevertheless, each characteristic varies in different value bands, which would
lead to a tendency, by the part of the classifier, for super-estimating the relevance
of some of them, due to a greater interval variation. As to avoid this fact to
become a problem, it is necessary to proceed with a quantization as to translate
all the intervals of each characteristic to a common variation band.

The interval selected in this work was [-1,1], once it is conventionally accepted
and used with SVM.

After the quantization of all the intervals, the characteristics obtained in such
a way give raise to the x points of the input space.

2.4 Validation of the Classification Methods

In order to evaluate the classifier in respect to its differentiation ability, we
have analyzed its sensitivity, specificity and accuracy. Sensitivity is defined
by TP/(TP + FN), specificity is defined by TN/(TN + FP ), and accuracy is
defined by (TP + TN)/(TP +TN +FP +FN), where TP is true-positive, TN
is true-negative, FN is false-negative, and FP is false-positive. Herein, true-
positive means Mass samples were correctly classified as Mass. The meaning of
the others are analogous.

3 Results

The adopted SVM classifier was the libsvm [12] library configured to use, during
classification, the Gaussian RBF kernel due to its well known generalization
power.

The target hitting statistical evaluation procedure conducted the samples
cross validation, taking for each iteration a pair of two elements arbitrarily
grouped for testing purposes, and the remaining ones for training, i.e., the diverse
samples compounding the data base were occasionally, and at different iterations,
used for both, training and validation, according to the group they belonged at
that very moment. This sort of validation allowed the use of all samples as to
obtain a more consistent training, as well as a more precise validation.

This procedure for targer hitting evaluation was separately conducted for
all three measurements, all together with the three proposed measurements.
According within this criterion, it was verified that, among the proposed
characteristics, the one who presented the best results was the Spherical Density.



Lung Structure Classification Using 3D Geometric Measurements and SVM 791

This feature, alone, was able to attain a rather good target hitting degree, as
can be checked in Table 1.

Table 1. The proposed features comparison

Features Sensitivity Specificity Accuracy
% % %

Spherical Disproportion 78.94 100 96.99

Spherical Density 100 99.56 99.62

Weighted Radial Distribution 71.05 97.36 93.60

The three proposed features 100 100 100

Radial Volume distribution 91.40 99.5 -

Nevertheless, the most important was that the remaining proposed features,
together with the Spherical Disproportion, even though they did not do in
isolation such a good classification, characterize the nodule candidate in such
a precise way that, the total target hitting rate reached 100%.

Based on the presented results, we have observed that this new methodology
provides significant support for a more detailed clinical investigation.
Nevertheless, there is the need to perform tests with a larger database and more
complex cases in order to obtain a more precise behavior pattern.

For comparison, Table 1 also presents the results obtained from other
approaches. The Radial Volume Distribution was proposed by [2], who
demonstrated this as having a very high descriptive power.

4 Conclusion

This paper presented a set of three geometrical measurements to be used in the
discrimination between nodules non-nodules. The results of the classification
based upon these measurements were compared with the results obtained from
other works, verifying that the proposed measurements present a rather good
discrimination power.

It was also confirmed that, once each measurement was destined to describing
a morphological aspect different of that one of the candidates, they, in isolation,
can not fully characterize them. However, the set of features proved to be fairly
efficient in the candidates’ description, reaching 100% correct classification in
the test samples.

The size of the samples used for tests, however, was too small for getting any
definitive conclusion, but the statistics obtained from the tests, specially the
ones concerning the target hitting rate, showed that the proposed measurements
appear themselves as viable alternatives for geometrical objects description for
a variety of applications, particularly in the medical area for classifying lung
nodules.
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1 Grupo de Bioingenieŕıa, Universidad Nacional Experimental del Táchira,
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abravo@unet.edu.ve
2 Laboratorio de F́ısica, Departamento de Ciencias, Universidad de Los
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Abstract. In this paper a left ventricle (LV) contour detection method
is described. The method works from an approximate contour defined by
anatomical landmarks extracted using Support Vector Machine (SVM)
classifiers. The LV contour approximation is used as an initialization step
for the deformable model algorithm. An optimization method based on
a gradient descend algorithm is used to obtain the optimal contour that
provides a minimum energy value. Both classifier and edge detection
method performances have been validated. The error is determined as
the difference between the shape estimated by the algorithm and the
shape traced by an expert.

Keywords: anatomical landmarks, left ventricle, support vector
machines, edge detection, deformable models.

1 Introduction

Segmentation and contour extraction are fundamental tasks in high–level image
analysis. The main goal is to divide an image into parts that have a strong
correlation with objects or real shapes contained in the image [1].

In cardiac medical imaging modalities, anatomical boundaries cannot be de-
tected by algorithms that use only edge or region information. Low contrast,
noise, and non–uniformity of regional intensities are some of the problems as-
sociated with cardiac imaging modalities. These problems are always present in
ventriculograms. The left ventricle boundary detection in X–ray ventriculograms
is a rather complicated task because of the presence of fuzzy superposition of
anatomical structures [2].

The aim of this paper is to develop a method combining both SVM and
deformable model approaches for LV contour detection.
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1.1 Support Vector Machines

Support vector machine is a methodology based on the Vapnik–Chenovenkis
learning theory and the structural risk minimization principle [3]. SVMs are
efficient non–parametric classification and regression tools [4,5]. In classifica-
tion problems SVMs are used for constructing a discriminant function to sep-
arate classes using vectors nearest to the decision boundary. The examples
or training set for a two–class classification problem can be represented as:
S = {(xi, yi)}l

i=1 ⊂ IRN × {+1, −1}.
The classification task (from S) addresses the general problem of finding a

discrimination function defined from an input space IRN into an unordered set
of classes {+1, −1}. This discrimination function in some m–dimensional feature
space is a separating hyper-plane expressed as follows:

f(x) = sign(w · x + b) , (1)

where w is normal to the hyper-plane, b is the bias, ‖w‖ is the Euclidean norm of
w, and |b|/‖w‖ is the perpendicular distance from the origin to the hyper-plane.

The SVM objective is to find the hyper-plane with minimum norm ‖w‖2. The
classification problem using linear machines trained on non–separable examples
[6,7], can be formulated as a quadratic programming problem where the optimal
solution is obtained using Lagrange Multipliers. This solution can be written as:

w =
l∑

i=1

λiyixi , (2)

where {λ1, . . . , λl} are positive Lagrange multipliers. In (2), the examples for
which λi > 0 are known as support vectors and correspond to the critical ele-
ments of the training set. In real classification tasks a linear SVM is not appro-
priate because the classes are generally separated by a non–linear function [7].
In this case, the examples are projected to a feature space of higher (possibly
infinite) dimensions via a nonlinear mapping function Φ(·). This projection pro-
cess is applied to transform the non–linear problem in the N –space to a linear
problem in the M –space. The SVM solution can be written as:

f(x) = sign

(
l∑

i=1

λiyiΦ(xi) · Φ(x) + b

)
. (3)

1.2 Deformable Models

A deformable model is a parametric contour C located in the image plane (u, v) ∈
IR2. This contour could be represented as a controlled continuity spline expressed
as p(s) = (u(s),v(s))�, where u and v are vectors of coordinate functions and
s ∈ [0, 1] is the parametric domain [8]. The left ventricle shape defined by contour
C is modeled by the following functional:

E(p) = I(p) + P(p) + R(p) . (4)
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This functional represents the contour energy that includes the internal en-
ergy I(p), the image energy P(p) and the external energy R(p). The optimal
contour shape corresponds to the minimum of this energy function. The internal
deformation energy (5) incorporates the smoothness and bending properties of
the contour.

I(p) =
∫

s

α(s)
∣∣∣∣
∂p
∂s

∣∣∣∣
2

+ β(s)
∣∣∣∣
∂2p
∂s2

∣∣∣∣
2

ds , (5)

where α(s) and β(s) are weighting coefficients for the smoothness and bending
terms respectively. The functional representing the image energy (6) is generally
based on the edge detection theory. Several approaches use the theory proposed
by Marr and Hildreth [9], where the intensity changes can be detected by finding
the maximum or the minimum of Gσ ∗ I that represents the convolution of an
image I with a bi-dimensional Gaussian kernel Gσ. The image energy pushes
the deformable model toward the contour that constitutes the target features.

P(p) = −|∇Gσ ∗ I(p)| , (6)

where σ is the spread parameter (standard deviation) of the Gaussian kernel.
The energy constraints R imposes additional external forces leading to the

minimum energy corresponding to the contour. Different approaches for defining
the external constraint forces have been reported by Kass [8].

2 Method

2.1 Initialization

The proposed method uses the traditional deformable contour model for detec-
tion of the left ventricle boundary. This deformable model uses a parametric
contour p(s) (see section 1.2) as the input. This parametric contour is deformed
in order to minimize the energy functional (4). The deformable model is very sen-
sitive to initialization. Therefore, selecting the initial contour is a very important
stage.

Our initial contour is estimated from myocardial landmarks extracted using
an approach based on machine learning [10]. This approach uses support vec-
tor machines (SVM) to localize left ventricle landmarks in ventriculographic
sequences. The apex (AP), the basal regions (BA2, BP3, BP4) and the aortic
valve sides (VA, VP) are selected as landmarks of interest to construct the SVM
classifier (see Figure 1).

A SVM classifier is constructed using the Gaussian Radial Basis Function
as parametric kernel. The MatLab Support Vector Machines library is used for
performing the training based on a set of 1500 patterns.

SVM Training. Each LV landmark is a 31×31 pixel pattern manually traced by
a cardiologist. A total of 300 patterns constitutes the landmarks dataset (50 pat-
terns for each landmark). A similar procedure is used for obtaining a dataset of
1200 non–landmark pixel patterns generated from angiographic images without
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Fig. 1. Fifteen anatomical landmarks established by the American Heart Association

including any landmark information. The training process is used to construct
a decision surface. This surface enables classification of input pixel patterns as
left ventricle landmarks or non–landmarks. During the test phase a set of 116
images not included in the training set was used. A landmark recognition rate
of 98.35 % was obtained.

SVM Based Landmark Detection. The left ventricle approximate border is
constructed from landmark points extracted by the SVM classifier. Given the input
ventriculographic image, landmarks are located by exhaustively scanning the im-
age for landmark-like patterns. Landmark localization is performed using a 31×31
sliding window whose content is analyzed by the SVM todetermine whether a land-
mark is present or not. Each landmark is identified by the center point of the 31×31
pattern considered. After all landmark points are identified, they are joined clock-
wise starting from VA landmark point and ending in the VP landmark point. Iden-
tification of the VA landmark is performed using prior knowledge about the upper
part of the aortic valve localization in ventriculographic images.

Initial Contour Estimation. Five more points are estimated using a linear
interpolation method from the previously calculated points (AP, BA2, BP3,
BP4, VA, VP). The five new points are obtained as follows: the midpoint of
the line described by VA and BA2 landmarks is computed. This midpoint is
used to construct a new line perpendicular to the line described by VA and BA2
landmarks. The maximum image gradient is searched over this perpendicular
line, and the first new point of the set is the one located at the maximum
gradient along the line. The remaining points are obtained following the same
process between the corresponding pair of landmarks: BA2–AP, AP–BP4, BP4–
BP3, and BP3–VP. At the end, a new set of eleven points is available to describe
the initial LV contour. This set of points is used to generate the parameterized
contour using the b–spline method [11]. A final discrete set of evenly distributed
points is determined by re-sampling the parameterized contour providing the
initial contour for the deformable model.

2.2 Edge Enhancement

The approaches based on gradient have been widely used for edge enhancement
[9,12] while smoothing filters have been used for minimizing noise content. We
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propose four different techniques to enhance the edges of the left ventricle cavity
in the angiographic images. These techniques are based on four smoothing filters:
1) the averaging filter [13], 2) the Gaussian filter [2], 3) the similarity filter [14],
and 4) the top–hat morphological filter [15]. Once smoothed, the images are
processed using an optimal gradient operator [16]. The filters are applied after
the initial contour detection. The smoothing filters are applied to the input
image, the gradient operator is applied to the smoothed images.

The averaging filter. According to this filter, if a pixel value in the input
image (Iin) is greater than the average of its neighbors plus a certain threshold
ε, then the pixel value in the output image (Iaverage) is set to the average value,
otherwise the output pixel is set to the pixel value in the input image. The
threshold value ε was set to the standard deviation of the input image.

The Gaussian filter. Gaussian filtering is a frequently used technique for image
smoothing. Each pixel value in the output image (IGauss) is the result of the
convolution between the input image (Iin) and a kernel that represents a 2–D
Gaussian distribution.

The Similarity filter. This filter quantifies the difference between the gray–
level values of pixels in the original image Iin and in the smoothed image (Iaverage)
based on a similarity criterion [14]. The similarity filter is constructed using the
procedure proposed in [17]:

– For each p Iin(i, j) ∈ Iin and each p Iaverage(i, j) ∈ Iaverage obtain the feature
vectors pvIin=[I1, a] and pvIaverage=[I2, b]. Where, I1 and I2 denote the in-
tensities associated with pixel (i, j) and, a and b are the intensity average in
a l × l neighborhood around the pixel (i, j).

– The filter output or similarity image (IS) is obtained according to equation
(7).

IS = ω1(I1 − I2)2 + ω2(I1 − b)2 + ω3(I2 − a)2 , (7)

where ω1, ω2 and ω3 were set to one.

The top–hat morphological filter. The top–hat is a gray-level morphological
operator that can be used as a nonlinear filtering technique. These filters preserve
the location of the border transition, and at the same time denoise the image.
We consider the white top–hat (WTH) and its dual, the black top–hat (BTH).
The white top–hat is defined as the difference between the average image and the
opened Gaussian filtered image. The black top–hat is obtained by subtracting
the average image from the closed Gaussian filtered image. A disk structuring
element (D) of size 11 × 11 is used for both the opening and closing operators.
Opening (◦) and closing (•) morphology operators are derived from the basic
operations of erosion (�) and dilation (⊕) [18]. The top–hat images IBTH and
IWTH are calculated according to equation (8).

IBTH = Iaverage − (IGauss • D), IWTH = Iaverage − (IGauss ◦ D) . (8)

The optimal gradient operator. These operators can be constructed using
a consistency criterion as proposed in [16]. The optimum 5×5 operator (∇5×5)
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developed by Ando [16, p. 258] is used to obtain x− and y−directional gradients
associated with the smoothed images.

2.3 Left Ventricle Deformable Model

Shape model. The shape model used in our approach is a bi-dimensional dy-
namic parametric contour C. The smoothness constraint force in the shape model
is represented by the internal energy term I(p). In this paper, we use the in-
ternal energy formulation proposed by Kass [8], which is related to the local
contour curvature. The internal energy is represented by a linear combination
of smoothness and bending contour properties as expressed in (5). This energy
term is discretized using the finite difference scheme.

The image energy term P , in the contour energy functional (9), is defined as
the average of the gradient magnitude for the smoothed images.

P(p) = −γ
1
3

(‖∇ IGauss(p)‖ + ‖∇ IWTH(p)‖ + ‖∇ IBTH(p)‖) , (9)

where ∇ represents the optimum gradient operator ∇5×5 proposed in [16] and
γ is a weighting constant.

Our deformable model incorporates a regularization term R for attracting
the deformable model towards the cardiac cavity edge. The restriction term R
allows to reorient the direction field associated with the image energy term.
The restriction is defined from the similarity image obtained using (7). This
functional is expressed according to (10) where κ is a weighting constant.

R(p) = −κ‖∇ IS(p)‖ . (10)

Shape evolution. The dynamics of this model is established according to de-
formable model theory (see Section 1.2). In this kind of models, the energy
functional (E) gives rise to forces deforming the model. The LV shape model
energy (E) is minimized by using an iterative optimization process based on a
gradient descent algorithm. The aim of this iterative optimization process is to
express the current contour shape based on the knowledge of the corresponding
previous contour energy. The normalized equation is given by (11).

pk+1 = pk + δ
E(pk)

‖E(pk)‖ , (11)

with δ denoting the gradient descent step size and k the iteration number.

3 Results

The proposed method has been tested with mono–plane sequences of ventriculo-
graphic images that have been acquired from patients using a digital flat–panel
X–rays system (InnovaTM 4150, General Electric Medical System). These images
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were acquired using the right anterior oblique (RAO 30◦) view. Each image has
a resolution of 512 × 512 pixels. Each pixel is represented with 8 bits.

The SVM classifier was constructed using the Gaussian radial basis function
as a parametric kernel. Our SVM anatomical landmarks classifier is constructed
using the Least Squares Support Vector Machines library [19]. The support vec-
tors obtained in the training stage are used to construct the decision surface
used to detect the LV landmarks in the original image. The proposed approach
has been tested with ventriculograms acquired at several instants of the car-
diac cycle. In figure 2, results of the LV landmarks extraction approach for the
ventriculogram sequences are shown. Validation of the approach is performed
by quantifying the difference between the LV landmark location obtained with
respect to the LV landmark located by a cardiologist. The average of the errors
obtained (mean ± standard deviation) for five sequences of ventriculograms in
the RAO view, including 163 images is 2.17 mm ± 0.93 mm.

Fig. 2. Bounding white boxes represents the anatomical landmarks obtained

The ventriculographic images are enhanced using the techniques described
in section 2.2. Figure 3 shows the enhancement procedure for an end–diastole
ventriculogram image. The smoothed image using the Gaussian filter is shown
in figure 3.a. Figures 3.b and 3.c show the top–hat images (obtained using equa-
tion (8)). The similarity image is shown in figure 3.d. Figures 3.e–3.h show the
gradient magnitude images obtained from the smoothed images.

The approximate contour is constructed using the procedure described in sec-
tion 2.1. This approximation is used to initialize our deformable model method.
Given the initial contour, the forces associated with the model and its dynam-
ics can be obtained using equations (5), (9), (10) and (11) using the informa-
tion extracted from preprocessed images as these shown in figure 3. Two of
the five sequences analyzed are used to train and initialize the parameter set
as follows. The detection process is applied by varying each parameter value.
For each parameter, a comparison between the resulting contour and the con-
tour traced by the cardiologist is obtained. The optimal parameter values are
{α = 0.005, β = 0.00005, γ = 0.01, κ = 0.01, δ = 0.5}. Figure 4 shows the results
of the edge detection process. The image shows a zoom of the LV region where
the initial and final contours are located. Figure 4.a shows the approximate con-
tour used to initialize the deformable model. The approximate contour evolution
towards the optimum contour is shown in figure 4.b, where the initial contour is
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Edge enhancement results. a) Gaussian filtered image. b) Black top–hat image.
c) White top–hat image. d) Similarity image. e) Gradient magnitude for the Gaussian
image. f) Gradient magnitude for the Black top–hat image. g) Gradient magnitude for
the White top–hat image. g) Gradient magnitude for the Similarity image.

indicated by white dash-dotted line and the final contour by black dash-dotted
line. Figure 4.c shows the contour energy behavior where the minimum energy
state is reached after few iterations. Figure 5 shows the results obtained for the
end diastole images in four ventriculographic sequences. The contours traced by
the expert are shown using white dash-dotted lines and the final segmentations
are shown using black dash-dotted lines. The performance of the segmentation
method is validated using the approach proposed by Suzuki [20, p. 335]. Five
ventriculogram sequences including a total of 163 images are considered during
the validation process. Comparison between the segmented contours and the
contours traced by a cardiologist shows an average contour error EC of 5.97 %
and an average area error EA of 3.71 %.

(a) (b) (c)

Fig. 4. Edge detection process. a) Initial contour (white dash-dotted line). c) Evolution
to final contour (black dash-dotted line). c) Contour energy evolution.
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Fig. 5. Results of the left ventricle segmentation. Ground truth contour indicated by
a white dash-dotted line. Contour extracted by the proposed approach is shown using
a black dash-dotted line.

4 Conclusions

This paper has presented an automatic method for segmentation of the LV shape
using SVM and deformable models. The accurate initialization of the deformable
model is performed based on landmarks extracted using Support Vector Machine
classifiers. The SVM classifier approach does not require preprocessing of the in-
put data. The deformable model incorporates information about the ventricular
edge by means of an energy functional expressed as a linear combination of the
gradient magnitude estimated from several edge enhanced images.

The proposed segmentation method is accurate for automatically detecting
the left ventricle contour in ventriculograms. The accuracy has been accessed
by tests performed for the SVM based initialization approach as well as the
validation for the complete segmentation method. Further research is aimed at
using a multi-class SVM and at performing a more complete validation.

Several efforts to develop an automatic contour detection method for ventric-
ular images have been reported so far [20,1,21]. However, these methods have not
been subjected to an extensive clinical validation. In this paper, we have proposed
an alternative automatic method that can be implemented easily. It enables the
quantitative analysis of the cardiovascular function based on ventriculograms.
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Abstract. According to the World Health Organization (WHO) breast cancer is 
the most common cancer suffered by women in the world, which during the last 
two decades has increased the women mortality in developing countries. Mam-
mography is the best method used for screening; it is a test producing no incon-
venience and with small diagnostic doubts of breast cancer since the preclinical 
phase. For this reason, unfailing Computer-Aided Diagnosis systems for auto-
mated detection/classification of abnormalities are very useful and helpful to 
medical personnel. In this work is proposed a novel method that combines de-
formable models and Artificial Neural Networks among others techniques to 
diagnose diverse mammography abnormalities (calcifications, well-defined / 
circumscribed masses, spiculated masses, ill-defined masses, architectural dis-
tortions and asymmetries) as benign or malignant. The proposed algorithm was 
validated on the Mammographic Image Analysis Society (MiniMIAS) database 
in a dataset formed by 100 mammography images, which were selected  
randomly.  

Keywords: Breast cancer, mammography images, deformable models, artificial 
neural networks. 

1   Introduction 

According to the World Health Organization (WHO) breast cancer is the most com-
mon cancer suffered by women in the world with 1151298 cases in 2002. During the 
last two decades this disease has increased the women mortality in developing coun-
tries having, up to date, 31% of cases. Breast cancer is one of the major causes of 
death in women aged 35 – 64 years in Latin America.  

Mammography is the best method used for screening; it is a test producing no pa-
tients inconvenience and with small diagnostic doubts of breast cancer since the pre-
clinical phase. For this reason, unfailing Computer-Aided Diagnosis (CAD) systems 
for automated detection/classification of abnormalities are very useful and helpful, 
providing a valuable “second opinion” to medical personnel [1, 2].  
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Several methods have been reported to detect the presence of abnormalities in digi-
tal mammograms. Basically is possible to classify the developed methods in two 
classes:  methods for enhancing mammography abnormalities details (only to be  
classified by specialized medical personnel) and automatic or semiautomatic CAD 
methods (in which is produced an automatic or semiautomatic abnormalities classifi-
cation). Some of CAD methods reported are: methods for masses detection using 
multiple circular path convolution neural networks models [3], the combination of 
Artificial Neural Networks (ANN) and Wavelet Transform (WT) for detecting micro-
calcifications [4], CAD algorithms to identify breast nodule malignancy combining 
multiple sonographic features and ANN classifiers [5], learning contextual relation-
ships in mammograms based on hierarchical pyramid ANN [6], neural-genetic  
algorithms for feature selection to classify microcalcifications [7], and methods for 
discrimination and classification of mammograms in benign, malignant and normal 
tissues using independent component analysis and ANN [8] among others techniques.  

Methods mentioned before represent important approximations (with interesting 
results) to improve (in major or minor degree) the mammography image analysis 
process, but in general (at present) reported techniques are paying attention only to 
classify some specific class of masses or calcifications and not put together the com-
plete classification problem. Wide-ranging techniques including the possibility to 
classify calcifications and diverse classes of masses are still a not solved problem.  

In this work we propose a new method that combines deformable models and ANN 
among others techniques to diagnose a wide range of mammography abnormalities 
classes (calcifications, well-defined/circumscribed masses, spiculated masses, ill-
defined masses, architectural distortions and asymmetries) as benign or malignant 
tissues. The proposed algorithm was validated on the Mammographic Image Analysis 
Society (MiniMIAS) database, with a dataset formed by 100 images selected ran-
domly, of which 60 images were used in the training set and the rest for method 
evaluation.  

The remainder paper is organized as follows: section 2 describes the technical as-
pect related with the new proposed method. Section 3 outlines the achieved results. 
Conclusions are presented in section 4, where also are included some ideas for future 
work. 

2   Proposed Method 

The developed method includes five steps: region of interest (ROI) selection, adjust 
image intensities, segmentation, features extraction and abnormalities classification. 
An algorithm prototype was implemented in MATLAB (version 7.0) to test the pro-
posed method on the MiniMIAS database. The MiniMIAS (MiniMammographic) is a 
reduce version of Mammographic Image Analysis Society (MIAS) database with a 
resolution of 200 microns by pixel and clipped/padded so that every image size is 
equal to 1024 x 1024 pixels. We selected randomly a representative dataset that in-
cluded examples of diverse classes of abnormalities: calcifications, well-defined/ 
circumscribed masses, spiculated masses, ill-defined masses, architectural distortions 
and asymmetries. The dataset was composed by 100 images, of which 60 images were 
used in the training set and the rest for method evaluation.  
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2.1   ROI Selection 

ROI Selection is a fundamental step because the selected region represents the mam-
mography image part used as input for the developed algorithm. This process allows 
that the user select for processing only regions suspicious to contain abnormalities 
(see Fig. 1b).  

2.2   Adjust Image Intensities  

One of the most common defects of photographic or electronic images is poor con-
trast resulting from a reduced, and perhaps nonlinear, image amplitude range. Image 
contrast can be often improved by amplitude rescaling of each pixel. Adjust image 
intensities is a conventional contrast enhancement technique. To enhance the  
mammography images contrast we map the grayscale intensity values of input mam-
mography images to new values such that 1% of data is saturated at low and high 
intensities to produce a new image in which the contrast is increased (see Fig. 1c).  

2.3   Segmentation 

Segmentation is considered an important step in any image analysis process because 
correct objects segmentation can reduce drastically the time and the computational 
cost of any image analysis process. Deformable models (snakes) have been used suc-
cessfully in many and diverse image segmentation tasks. Our method used a novel 
variant of deformable models: the live wire techniques to produce faster and precise 
abnormalities segmentation of selected ROIs (see Fig.1d).  

Live wire (or intelligent scissors) is an interactive boundary tracing technique, con-
sidered as a competing technique to snakes. This technique allows (with minimal user 
interaction) to exercise control over the segmentation process. Live wire have two 
essential components: a local cost function that assigns lower cost to image features 
of interest (edges) and an expansion process to form optimal boundaries for objects of 
interest, based on the cost function and seed points provided by the user. Boundary 
finding in live wire can be formulated as a directed graph search for an optimal 
(minimum cost) path using Dijkstra´s algorithm in the underlying graph model. A 
more profound live wire technique definition, with examples of applications to medi-
cal images are presented in [9],[10],[11] and [12].  

We apply the live wire technique to produce the first curve contour approximation 
E (edge points) of the abnormality present in the selected ROI (see Fig. 1d). Due 
to E be not a continuous curve we interpolate E using a spline function to produce a 
continuous curve: a better abnormality approximation. Final E contour is used after to 
compute the morphometric feature vector of the abnormality under study.  

2.4   Feature Vector 

Diverse sets of morphometric features were evaluated and tested [13], but based on 
statistical evaluations we selected a set of five features to include in the feature vector 
(related with shape and size), which were sufficient to classify correctly the  
abnormalities under study. These features are: object area, brightness, object shape, 
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roughness and elongation. For computing these features we take as input the edge 
pixels that belong to the closed curve (contour) represented by E . Mathematic formu-
lation used for computing the features was the following: 

 

•  O  set of pixels that belong to the abnormality segmented 

•  OE ⊂ edge pixels (subset of   O) 

• OArea =   
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• 
DIAM

diam
Elongation =  ,  

• 
Area

Perimeter
Roughness

××
=

π4

2

   

• 
)(8

)(
Area

DIAMdiamPerimeter
Shape

×
+×=  

• )(OmeanBrightness =    

(b)                             (c)

(a) (d)                                  (e)  

Fig. 1. a) Original Image, b) ROI selected, c) Adjusted intensities of (b), d) Segmented abnor-
mality, e) Feature vector computed from (d) 

2.5   Abnormalities Classification 

Semiautomatic or automatic abnormalities classification has the aim to offer one 
“second opinion” (diagnostic) to medical personnel about abnormalities present on 
the mammography images. We designed and tested different ANN models to classify 

where diam and DIAM represent the 
minimum and maximum diameters

Intensity levels average of pixels that belong 
to the selected abnormality
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abnormalities under study, but better results were obtained with Feedforward  
Backpropagation (FFBP) and Learning Vector Quantization (LVQ) ANN models. 
These neural networks models were trained with 60 vectors, which contain the com-
puted features described before in 2.4 (including benign and malignant examples) 
representative of diverse abnormalities classes: calcifications, well-defined/ circum-
scribed masses, spiculated masses, ill-defined masses, architectural distortion and 
asymmetries. 

2.5.1   Feedforward Backpropagation Neural Network 
The Feedforward Backpropagation (FFBP) is one of the more studied neural network 
by the scientific community and the most common used in many medical applica-
tions. Morphologically, the FFBP is formed by a set of organized neurons in layers: 
hidden and output layers. Network architecture is determined by the number of neu-
rons in the hidden layers. 

The learning process of a FFBP network is characterized to be supervised, the net-
work parameters (known as weights) are estimated from a group (pairs) of training 

patterns composed for input and output patterns ntyx tt ..1)},{( = . 

The backpropagation algorithm [14] is a generalization of the delta rule proposed 
by Widrow-Hoff [15]. The term “backpropagation” refers to the form in that the error 
gradient function is calculated for the FFBP network. Therefore, the network adjust 
takes place as a result of the estimation of weights parameters. The learning involves 
an adjustment of the weights comparing the desired output with the network answer 
so that the error is minimized. 

Our FFBP network was designed with three layers: two hidden layers with 14 and 
8 neurons respectively and an output layer with 12 neurons. Each neuron from output 
layer represent one (benign or malignant) abnormality class (calcifications, well-
defined/circumscribed masses, spiculated masses, ill-defined masses, architectural 
distortions and asymmetries). The logarithmic sigmoid (logsig) was the transfer func-
tion used on the three layers.  Mathematical definition of this function is the follow-
ing: (-n)) +  / ((n) = exp11logsig . 

A MATLAB network implementation can be observed below in Fig.2. 

 
Fig. 2. Feedforward Backpropagation Neural Network 

2.5.2   Learning Vector Quantization 
Learning Vector Quantization (LVQ) is a precursor of the well-known self-organizing 
maps (also called Kohonen feature maps) and like them it can be seen as a special 
kind of ANN[16]. Both types of networks represent a set of reference vectors, the 
positions of which are optimized with a given dataset. A neural network for learning 
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vector quantization consists of two layers: an input layer and an output layer. It  
represents a set of reference vectors, the coordinates of which are the weights of the 
connections leading from the input neurons to an output neuron. Hence, one may also 
say that each output neuron corresponds to one reference vector. The learning method 
of learning vector quantization is often called competition learning, because it works 
as follows: for each training pattern the reference vector that is closest to it is deter-
mined. The corresponding output neuron is also called the winner neuron. The 
weights of the connections to this neuron - and this neuron only: the winner takes all - 
are then adapted. The direction of the adaption depends on whether the class of the 
training pattern and the class assigned to the reference vector coincide or not. If they 
coincide, the reference vector is moved closer to the training pattern, otherwise it is 
moved farther away. This movement of the reference vector is controlled by a pa-
rameter called the learning rate. It states as a fraction of the distance to the training 
pattern how far the reference vector is moved. Usually the learning rate is decreased 
in the course of time, so that initial changes are larger than changes made in later 
epochs of the training process. Learning may be terminated when the positions of the 
reference vectors do hardly change anymore.  

We utilized an LVQ network formed by a competitive layer (input layer) of 16 
neurons and a linear layer (output layer) of 12 neurons. Each neuron from linear layer 
represent one (benign or malignant) abnormality class (calcifications, well-defined/ 
circumscribed masses, spiculated masses, ill-defined masses, architectural distortions 
and asymmetries), that we consider the adequate design to classify the abnormality 
classes under study.  

A MATLAB network implementation can be observed in Fig.3. 

 

Fig. 3. Learning Vector Quantization Neural Network 

3   Results and Discussions 

Proposed method was evaluated in the MiniMIAS (MiniMammographic) database. 
MiniMIAS is a reduce version of MIAS database, with a resolution of 200 microns by 
pixel and clipped/padded so that every image size is equal to 1024 x 1024 pixels. 
MiniMIAS have included an information file with several details as: image reference 
number, type of background tissues, class of abnormality present, severity of abnor-
mality (benign or malignant), the x, y coordinates of the abnormality center and an 
approximated radius (in pixels) of a circle, which enclose the abnormality. This  
information file was used to select correct ROI surrounding the abnormalities. 
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We selected randomly a representative dataset (including examples of all abnor-
malities classes: calcifications, well-defined/circumscribed masses, spiculated masses, 
ill-defined masses, architectural distortions and asymmetries) formed by 100 images, 
of which 60 images were used in the training set and 40 for method evaluation.  

FFBP and LVQ developed networks models were then trained with a matrix 
formed by the 60 vectors representing the selected morphometric features (abnormal-
ity area, brightness, roughness, shape and elongation). These vectors were computed 
from abnormalities presents on the images ROIs belonging to the training set.   

Classification results are expressed in terms of three parameters: True Positive 
(TP), False Positive (FP) and False Negative (FN). A TP is obtained when a mam-
mogram abnormality is classified into the correct (benign or malignant) class. When a 
benign mammogram abnormality is incorrectly classified into another benign class or 
into a malignant class, it is defined as a FP. A FN is obtained when a malignant 
mammogram abnormality is incorrectly classified into another malignant class or into 
a benign class. 

Table 1 resume obtained results with the application of both (FFBP and LVQ) de-
veloped neural networks models to the simulation set formed by 40 abnormalities 
vectors (not includes in the training set). Calcifications, other ill-defined masses and 
well-defined/circumscribed masses were the classes with major incidence of true 
positives. Spiculated masses and architectural distortion were the classes with minor 
incidence of true positives classifications. 

Summarizing was observed that FFBP model had a better performance in relation 
with the LVQ model. FFBP model obtained a classification score of 97.5%, 39 true 
positives, only 1 false positive and 0 false negative versus LVQ model with a classifi-
cation score of 72.5%, 29 true positives, 5 false positives and 6 false negatives.  

Table 1. Classification score 

Neural Networks 
FFBP LVQ Anormalities No.

ROIs    TP FP FN (%) TP FP FN (%) 
Calcifications 7 7 - - 100 7 - - 100 
Well-defined/ 
Circumscribed 
Masses

7 7 - - 100 6 1 - 85.7 

Spiculated Masses 7 7 - - 100 3 2 2 42.9 
Other Ill-defined 
Masses

7 7 - - 100 7 - - 100 

Architectural Dis-
tortion

6 5 1 - 83.3 2 2 2 33.3 

Asymmetry Masses 6 6 - - 100 4 - 2 66.6 
Total 40 39 1 - 97.5 29 5 6 72.5 

 

4   Conclusions 

We have developed a new method based on the suitable combination of deformable 
models and ANN capable to classify correctly (as benign or malignant) six different 
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types of breast cancer abnormalities on mammography images. Also was demon-
strated that a simple set of five morphological features (feature vector) computed 
from segmented abnormality edges are sufficient to obtain good (true positives) clas-
sification results. A full prototype was implemented in MATLAB (version 7.0) to test 
the algorithm performance, which was verified successfully with two different neural 
networks models: FFBP (97.5%) and LVQ (72.5%) true positives in a dataset of 40 
vectors not include in the networks training set.  

Our future work will be focused to enrich the feature vector with new features and 
to improve the networks models that allow better abnormalities classification. 
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Abstract. Malaria is an infectious disease which is mainly diagnosed by
visual microscopical evaluation of Giemsa-stained thin blood films using
a differential analysis of color features. This paper presents the evalu-
ation of a color segmentation technique, based on standard supervised
classification algorithms. The whole approach uses a general purpose
classifier, which is parameterized and adapted to the problem of sepa-
rating image pixels into three different classes: parasite, blood red cells
and background. Assessment included not only four different supervised
classification techniques - KNN, Naive Bayes, SVM and MLP - but dif-
ferent color spaces -RGB, normalized RGB, HSV and YCbCr-. Results
show better performance for the KNN classifiers along with an improving
feature characterization in the normalized RGB color space.

Keywords: Cell detection, Supervised classification, Color spaces,
Performance comparison.

1 Introduction

Malaria is a leading cause of morbidity and mortality in tropical and sub-tropical
countries, with an estimated of 300 to 500 worldwide million infections per year
and 1 to 2 million deaths [1]. Plasmodium falciparum is the most mortal of the
four species. In recent years, many research works have been addressed to de-
velopment of new therapeutic alternatives for control of this disease [2], which
involves in vitro drug susceptibility analysis by parasitism level quantification.
Although different approaches have been developed for determining the level of
infected erythrocytes with Plasmodium falciparum, visual microscopical evalua-
tion of Giemsa-stained thin blood films is so far the most widely used in develop-
ment countries. Its main drawback is that it is a subjective and time consuming
method which demands trained technical personnel. In this context, develop-
ment of mechanisms that automate the process of evaluation and quantification
in thin blood films, becomes a high priority.

Several digital image processing techniques have been previously used for de-
tecting malaria parasites on Giemsa stained slides [3], [4], [5], [6], [7].Plasmodium

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 812–821, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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falciparum parasites are highlighted in a dark purple colour, while erythrocytes
are colored in slight pink colors. Object detection has been performed using a
threshold on single components of the RGB and HSV histograms [3], [6]. Like-
wise, parasite detection has been achieved in two consecutive steps: a former
stained/non-stained pixel classification - based on the RGB values - is followed
by setting the pixel to any of the parasite/non-parasite categories - based on
other features such as shape, color and Hu moments [4]. Finally, the color co-
occurrence matrix has been calculated for pixel classification in cells previously
detected by a template matching strategy [5].

In this paper, we present a very simple approach for automatic identification
of infected and no infected erythrocytes in thin blood images by means of a su-
pervised pixel classification method. Herein, an exhaustive study of the effect of
selecting both a color space representation and a particular classifier on actual
Plasmodium falciparum slides is presented. We investigated four color spaces
(RGB, normalized RGB, HSV and YCbCr) and four supervised classification
algorithms (Naive Bayes, SVM, KNN and Neural network). A separate analysis
was performed only on the chrominance component of each color space. This pa-
per is organized as follows: color representations and color pixel classification al-
gorithms are described in Section 2, comparison results are presented in section 3
and discussion and conclusions are given in Section 4.

2 Cell Identification Based on Pixel Classification

The overall approach for identification of cells proposed in this paper is illustrated
in figure 1. First, a set of training samples was manually extracted by an expert.
Each training sample corresponded to a pixel labeled as erythrocyte, parasite or
background. Then, a classification model was trained using these sample pixels,
which was used for classifying the whole color space (RGB, normalized RGB,
HSV or YCbCr). The classified color space was so used as a look-up table (LUT)
for classifying pixels. Finally, the image was re-colored in three gray level values
(background, erythrocyte and parasite) and a a two-scan connected component
labeling algorithm [8] was applied for identifying and counting the objects present
in the image.

2.1 Color Representation

As mentioned before, different color spaces were used to building the pixel clas-
sification model since features are differently represented in each. For instance,
Di Ruberto found found that it is easier to identify parasites in the S component
of the HSV color space [3]. The different color spaces assessed in this work are
described in the following subsections.

RGB. This color space is used for acquiring and displaying color digital images.
Each color pixel is represented by its three components: R(Red), G(Green) and
B(Blue).
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Fig. 1. The main steps of the whole erythrocytes and parasites detection

Normalized RGB (RGBn). This transformation is obtained by a simple
procedure of RGB normalization:

rN = R
R+G+B

gN = G
R+G+B

bN = B
R+G+B

(1)

This nonlinear transformation reduces the sensitivity of the distribution to
color variability, making it more robust to illumination changes than RGB. Since
r + g + b = 1, when two components are given, the third component can be
determined. Thus, only two of these three were used.
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HSV. This transformation decorraleted color and intensity information in the
image. Color information is represented by hue and saturation components, while
intensity is determined by the value component. Hue defines the basic color in
the pixel, saturation measures its colorfulness related to its brightness and value
corresponds to the luminance color.

YCbCr. Is a family of color spaces commonly used to represent digital video.
Luminance information is stored as a single component (Y), and chrominance
correspond to the two color-difference components (Cb and Cr). We have used
the YCbCr transformation specified in the ITU-R BT.601 standard for computer-
display oriented applications.

2.2 Classification Models

Supervised learning is the area of machine learning or pattern recognition, that
addresses the problem of building models for performing classification or re-
gression tasks. This is one of the areas more deeply and extensively studied in
machine learning. Tens of algorithms have been proposed, ranging from biolog-
ically inspired to pure statistical techniques. Each has its own weaknesses and
strengths and, according to the No-Free Lunch Theorem [9], there is not one
that could be deemed as superior to the rest for any classification task. In gen-
eral, one algorithm may outperform another algorithm in a particular task, but
may under perform in other task. According to the previous discussion different
algorithms were tried. The chosen algorithms are representative of the state of
art and of different approaches to supervised learning.

The Naive Bayes Approach. Likely, this is the simpler classifier and is based
on the hypothesis that features are conditionally independent, which in terms of
the Bayes theorem amounts to

P (C|x1, x2, . . . , xn) =
1
K

P (C)
n∏

i=1

P (xi|C) (2)

where K is a constant dependent only on xi and P (c) is a prior probability of the
class C, which is herein calculated during the training phase by merely counting
the number of occurrences in the training data set.

The k-NN decision rule. The k-nearest neighbors method is well known
used in the pixel classification problems [10][11]. It is an intuitive method that
classifies unlabeled samples based on their similarity with samples in the training
set. Given the knowledge of N prototype features (vectors of dimension Σ) and
their correct classification into M classes, the k-NN rule assigns an unclassified
pattern to the class that is most heavily represented among its k neighbors in
the pattern space (under some appropriate metric).

A Neural Network strategy (MLP). Networks with organizations that em-
ulate nervous system connections have been used in a large variety of image
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segmentation problems. Herein, a Multi Layer Perceptron (MLP) trained using
back-propagation was used [12]. The idea of this method is to connect layers of
“neurons”, while the particular neuron response is modeled with a continuous
sigmoid approximation .

The SVM algorithm. A support vector machine (SVM ) is a classification
model that finds an optimal separating hyperplane that discriminates two classes.
In principle, a SVM is a linear discriminator, however it can perform non-linear
discrimination thanks to the fact that it is a kernel method. In this work, a
version of SVM that uses sequential minimal optimization algorithm is used
[13]. The multi-class classification problem is solved creating one classifier for
each pair of the target classes, ignoring instances that belong to other classes
and estimating a probability for each target class. Absolute probability estimate
for each class is computed combining the probability estimate from all pairwise
classifiers.

3 Experimentation

3.1 Data Set

A total of 25 microscopical fields from three different thin blood films were
digitized using a Sony high resolution digital video camera Handycam DCR-
HC85 (640 × 480 pixels to 1200 × 16000), coupled to a Carl Zeiss Axiostar
Plus microscope, provided with Carl Zeiss 426126 and 456006 adapters (Carl
Zeiss, Light Microscopy, Gottingen, Germany). Use of intermediate lens and a
×100 power objective yielded a total of ×1006 magnification. Optical image
was a 102 × 76μm2 for a 640 × 480 image size, resulting in a total resolution
of 0.0252 μm2/pixel. A total of 1226 erythrocytes and 60 parasites were found
in these images, indicating that the most relevant class (parasite) was barely
represented by a 5 %.

Before applying the classification process, a correction of the luminance dif-
ferences in the original image is performed through a local low pass filter. This
filter is essentially a local adaptive filter, defined for a window size of the larger
image feature, i.e. a typical erythrocyte size. Firstly, the m × n RGB luminance
and chrominance image components are decorrelated through a YCbCr trans-
formation. Luminance channel is split into disjoint regions of approximately the
larger feature in the image and a mean pixel value is calculated from each. These
mean values make up a matrix which is smoothed out using a moving smaller
window, whose size is adjusted in order to eliminate the tiling effect of the fil-
ter. Afterward, luminance is corrected by ruling out the lower frequencies found
before. Finally, the color image is re-constructed using this luminance correction
and the original chrominance information. Figure 2 displays two microscopical
images obtained from thin blood smears. Upper row displays the original dig-
ital images, while bottom row shows the obtained images using the proposed
filter.
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Fig. 2. Pre-processed image results. Fist row corresponds to the original microscopical
images, bottom row displays filtered images obtained from the original ones.

3.2 Experimental Setup

Four classification algorithms were assessed (Naive Bayes, KNN, SVM and MLP).
Each classification model was tuned independently for its own particular set of
parameters as follows: k-NN was assessed by varying the k odd nearest neigh-
bors between 1 and 15. SVM was evaluated with different kernels i.e. radial or
polynomial [13]. In both cases C gap was set to 1. Additionally, in the former
case the γ parameter was varied between 100 and 1000 with increment steps
of 100, while an optimal polynomial degree was determined for the later case
(1, 2, 3). The Bayes algorithm was trained with a normal distribution and a 95%
confidence interval. The neural network was provided with a hidden layer on
which the number of neurons was varied between 3 and 9, with increment steps
of 3 and error rates among (0.005, 0.1, 0.2, 0.5, 0.9). All classifiers were trained
using sets of 500, 1000 and 2000 pixel samples, classified manually by an expert
in two representative images.

The different color spaces stand for the characteristic spaces so that six dif-
ferent feature vectors were analyzed : four complete (RGB, HSV, YCbCr, nor-
malized RGB) and two incomplete color spaces (HS, CbCr).

3.3 Evaluation

Classification performance was assessed based on a reference-manual segmenta-
tion, using two strategies: pixel classification and interest-object detection (ery-
throcytes and parasites) rates. In this analysis, performance estimation through
a conventional accuracy comparison results inappropriate because of the high im-
balanced class distribution of parasites related to erythrocytes and background.
That is to say, the assessment may report a high accuracy even if parasites are
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not identified. As an alternative to accuracy, we used the F-measure, or effec-
tiveness measure, [14] computed as Fβ = (1+β)∗RC∗PR

β∗PR+RC , with RC (recall) defined
as TP

TP+FN and PR (precision rate) computed as TP
TP+FP , where TP stands for

the true positives, FN for the false negatives and FP for the false positives. The
β > 0 coefficient controls the relative importance of recall and precision rates;
β = 1 gives the same importance to both measures, whilst precision rate is more
important with a higher value of β. Herein, β was set to 2/3, since we attempt
to detect as many objects as possible even at expense of lower precision. Fβ = 1
means a perfect score, i.e. PR = RC = 1.

Pixel wise evaluation is performed by comparing re-colored images, generated
by each set of training points and classifier parameters, with a manual segmenta-
tion. In this case, the test set is composed of labeled pixels. Precision and recall
are calculated based on the number of rightly/wrongly classified pixels.

Interest-object wise evaluation is based on the objects identified by a method
that includes the classification process as the first step. After the application
of the classification method, objects are identified as follows: a basic filtering
process is performed for keeping only relevant objects in the image; thus, small
or large regions identified as flaws (particulate matter from the stain or from
fragments of released hemazoin, acquisition artifacts) are removed; likewise, near
unconnected segments are evaluated for establishing their relevance to a given
parasite, if they are relevant they are considered as a unique object.

For interest-object wise evaluation, the test set is composed of images where
interest-objects (erythrocytes and parasites) are labeled. Precision and recall are
calculated based on the rightly/wrongly identified objects.

3.4 Results and Discussion

As it was mentioned before, training sets with different sizes were used. It was no-
ticed that, in all the cases, increasing the size of the training set from 500 to 2000
did not improve significantly the performance of the different classifiers. There-
fore, all subsequent experiments were performed using a 500 elements training
data set.

The different classification algorithms were trained and evaluated with differ-
ent parameter values, as mentioned in the experimental setup (for the sake of
brevity, these intermediate results are not shown). The best parameter values for
each algorithm were identified: K = 15 for KNN, error rate = 0.1 and 6 neurons
in hidden layer for MLP, polynomial degree = 1 for SVM with polynomial kernel
(SV MP ) and γ = 100 for SVM with radial base kernel.

Effectiveness measure results for pixel wise and interest-object wise evalua-
tions are shown in Tables 1 and 2. The F-measure is reported independently for
the erythrocyte ( FEr

β ) and parasite (FP
β ) classes, respectively.

Pixel Wise Evaluation. Pixel wise evaluation results are shown in Table 1.
Fβ values suggest that performance is good for the erythrocyte class, while it
is not as good for the parasite class. The pattern is the same for all classifier
algorithms and color spaces. Our hypothesis is that the complex mix of colors,
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present in the parasites, makes it difficult to discriminate individual pixels using
only color information.

The best overall performance is accomplished by the combination of a KNN
classifier and YCbCr color space, with FEr

β = 0.95 and FP
β = 0.72. However,

there are other combination that produce similar results such as KNN classifier
and normalized RGB color space (FEr

β = 0.95 and FP
β = 0.71), MLP-classifier

and normalized RGB color space (FEr
β = 0.94 and FP

β = 0.71) and SV MP -
classifier and YCbCr color space (FEr

β = 0.94 and FP
β = 0.72).

From the point of view of color space, normalized RGB and YCbCr have better
performance. This indicates that these color spaces emphasize the differences
between classes. From a classifier stantpoint KNN , MLP and SV MP clearly
outperform SV MRBF and Naive Bayes.

Table 1. Fβ measure results for pixel wise evaluation for different classification al-
gorithms and color spaces. F-measure is reported independently for the erythrocyte
(F Er

β ) and parasite (F P
β ) classes.

Naive Bayes KNN MLP SV MP SV MRBF

k = 15 er = 0.1, n = 6 degree = 1 γ = 100

ColorSpace F Er
β F P

β F Er
β F P

β F Er
β F P

β F Er
β F P

β F Er
β F P

β

RGB 0.88 0.13 0.95 0.69 0.95 0.68 0.94 0.68 0.92 0.17

HSV 0.90 0.35 0.89 0.70 0.90 0.68 0.89 0.65 0.89 0.05

HS 0.90 0.37 0.91 0.72 0.90 0.62 0.89 0.67 0.94 0.62

RGBn 0.95 0.52 0.95 0.71 0.94 0.71 0.94 0.70 0.93 0.45

Y CbCr 0.89 0.52 0.95 0.72 0.94 0.68 0.94 0.72 0.86 0.07

CrCb 0.84 0.68 0.85 0.71 0.86 0.63 0.86 0.70 0.86 0.50

Interest-Object Wise Evaluation. Table 2 shows the results of the interest
object wise evaluation. The best overall performance is clearly accomplished
by the combination of a KNN-classifier and normalized RGB color space with
FEr

β = 0.99 and FP
β = 0.83, followed by SV MP -classifier and YCrCb color

spaces (FEr
β = 0.97 and FP

β = 0.81). This means that normalized RGB and
YCrCb color spaces produced again the best results. This is no really surprising
as object identification is based on pixel classification.

With regard to the classifier algorithm, SV MRBF and Naive Bayes produced
the best results for erythrocyte detection, however their performance on parasite
detection was really poor. Both KNN and SV MP produced a good balance of
parasite and erythrocyte detection.

An interesting finding in these results, is the fact that the performance is much
better at the level of object identification than at the level of pixel classification.
The main reasons is that pixel classification is more sensitive to noise, while the
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Table 2. Fβ measure results for erythrocytes and parasites detection. for different
classification algorithms and color spaces. F-measure is reported independently for the
erythrocyte ( F Er

β ) and parasite (F P
β ) classes.

Naive Bayes KNN MLP SV MP SV M RBF

k = 15 er = 0.1, n = 6 degree = 1 γ = 100

ColorSpace F Er
β F P

β F Er
β F P

β F Er
β F P

β F Er
β F P

β F Er
β F P

β

RGB 0, 98 0, 19 0, 99 0, 76 0, 99 0, 78 0, 93 0, 73 0, 99 0, 18

HSV 0, 97 0, 43 0, 96 0, 75 0, 97 0, 72 0, 96 0, 71 0, 98 0, 11

HS 0, 97 0, 44 0, 97 0, 75 0, 97 0, 65 0, 95 0, 74 0, 99 0, 67

RGBn 0, 99 0, 57 0,99 0,83 0, 98 0, 78 0, 96 0, 74 0, 98 0, 40

Y CrCb 0, 97 0, 47 0, 97 0, 77 0, 98 0, 77 0, 97 0,81 0, 98 0, 10

CrCb 0, 95 0, 80 0, 92 0, 81 0, 94 0, 72 0, 90 0, 76 0, 95 0, 51

object identification process is able to eliminate this noise thanks to the filtering
process that improves the results of the pixel classification step.

4 Conclusions

A simple an efficient method for parasite and erythrocyte detection in thin blood
images was proposed. The approach is based on a classification process that finds
boundaries that optimally separate a given color space in three classes, namely,
background, erythrocyte and parasite. The classified color space is stored and
used as a look-up table for classifying pixels from new images.

The method was evaluated at two levels: pixel classification and object detec-
tion. Different classification algorithms and color spaces were evaluated. KNN
algorithm with normalized RGB color space was found to have higher detection
performance compared to other tested classifiers. Furthermore, this color space
requires less computational resources as only two components are needed to fully
determine a point in this space (the third one is calculated from the first two).
Color spaces traditionally used as RGB or HSV produced poorer results. The
performance result at the object-identification level was superior to the perfor-
mance at the pixel-classification level. This shows that the filtering step used
by the object-identification process is able to reduce noise, making the overall
process robuster.

Future work is focused on evaluating the feasibility of using combined color
spaces and more specialized classification algorithms.
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Abstract. Non-invasive imaging of small animal and its quantification 
techniques are needed to be evaluated by comparison with ex vivo image. To 
overcome the existing method, hand-operated comparison with the unaided eye 
observation, we present an algorithm that matches the target area in PET 
scanned in vivo with an autoradiography image acquired ex vivo. We applied a 
coregistration algorithm that uses voxel similarity to find the corresponding 
slices and to make quantitative measurements. Automatic matching of in vivo 
and ex vivo images is novel, and can provide better validation than manual 
matching techniques.  

Keywords: Image registration, in vivo-ex vivo validation, small animal image. 

1   Introduction  

Small experimental animals such as mice and rats play a crucial role in enhancing our 
understanding of human disease. In vivo animal imaging technologies enable the 
development of a disease in its early stage, or the efficacy of a drug to be observed. 
These technologies allow repetitive, long-term follow-up studies and replace invasive 
and destructive observations by biopsy or histology. Many methods have been 
proposed for non-invasive extraction of quantitative information about a target area, 
and they can achieve better results than measurement using a caliper. Nevertheless, 
image-based analysis can be inaccurate. So in existing preclinical experiments the 
animal is sometimes sacrificed after non-invasive image analysis to obtain physical 
measurements in vitro or ex vivo for comparison. In comparing two images, it is 
difficult to find the same region of interest in both, and this is usually done manually 
until now. Besides, a quantitative comparison between the images may also be 
performed with the unaided eye[1,2] so the evaluation cannot be achieved objectively.  
                                                           
* Corresponding author. 
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To overcome this approach, we propose an algorithm that automatically finds the 
same target area and extract its quantitative characteristics both in in vivo and ex vivo 
images using image registration. We also estimate the error range to establish the 
robustness of this approach to image quantification.  

Nevertheless of necessity of in vivo - ex vivo image matching, existing image 
registration algorithms applied to small animal images have been designed to compare 
only between in vivo images so far. Furthermore, most of their methods are based on 
hardware or stereotactic approaches. Jan[3] proposed a way of combining PET, CT, 
and SPECT images using a calibration phantom and an animal holder, and Chow[4] 
aligned coordinate systems between images by moving the imaging cylinder. 
Rowland[5] and Shen[6] developed respectively, MRI-PET, MRI-SPECT image 
registration algorithms to observe structural and functional information simultan-
eously. In this paper we suggest the scheme of finding corresponding positions 
between in vivo – ex vivo images using an automatic and robust registration.  

In Section 2 we described the features of the in vivo and ex vivo images used in this 
study, and the intensity-based image matching method used for automatic inter- 
image comparison. Section 3 explains how we evaluated the matching method by 
quantifying the overlapped images. Experimental results and conclusions follow in 
Sections 4 and 5.  

2   Coregistration of in vivo and ex vivo Images 

In this section, we introduce two input image modalities: PET (Positron Emission 
Tomography) image which is acquired in vivo and autoradiography, which is obtained 
ex vivo. And we present an inter-image matching algorithm that performs registration 
based on voxel intensity statistics.  

2.1   Image Characteristics and Preprocessing  

PET provides a dynamic view of functional information about living animals, 
enabling the detection of biological and biochemical changes at the molecular level, 
using a radiotracer as a marker for a specific physiological function. In the resulting 
images we can see the distribution of the marker from the intensity of the radiation. 
The resulting data can quantify the distribution, and kinetics of a drug, and its likely 
mode of action on body function such as metabolism and blood flow. However, 
because of the low resolution and blurring artifact of PET images, it is difficult to 
determine the exact shape of a target area.  

Autoradiography also involves injecting a radioactive tracer, but in this case the 
animal is then sacrificed to get more detailed anatomical information. The animal’s 
organs are then sliced up and each slice is imaged with a detector that is sensitive to 
radiation.  

Even though both PET and autoradiography use a radiotracer to visualize 
metabolic functions, autoradiography image shows fine anatomical structures because 
the sliced specimen is laid in contact with the radiation detector. To obtain 
autoradiography images after taking PET images of the small animal requires a 
preparation procedure that includes sacrificing, freezing and sectioning. During this 
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time the radio-isotope used will decay, so we have to choose a radio-tracer with a 
long half-life so that the radioactivity remains strong until image acquisition is 
completed.  

The image acquisition protocol is described in Fig. 1.  

 

Fig. 1. Imaging protocol  

However, much care is taken, the images acquired will still have some drawbacks. 
The slice thickness for autoradiography is 30~50㎛. This is so thin that some data can 
be lost during the slicing process (Fig. 2(a)), which can lead to inconsistency with 
PET data, and incorrect registration. Therefore we specify a small ROI (region of 
interest) as a boundary box at a preprocessing step (Fig. 2(c)). Only this region is 
considered during the subsequent image registration procedure, which speeds up the 
algorithm and makes it robust.  

 

                                   
         (a)                                      (b)                                           (c) 

Fig. 2. Resolving problems with input images: (a) partial data loss, (b) inconsistency between 
PET and autoradiography data, (c) ROI(tumor area) 

2.2   Registration Using Voxel Similarity  

To compare a target area in PET and autoradiography data, it is necessary to match 
the same position in both images and then overlay them. PET is scanned for animal 
whole body three dimensionally at one time, but autoradiography is obtained slice by 
slice fashion. Because of the difficulties of slicing with uniform thickness, whole-
body imaging by autoradiography is practically impossible. So when one 
autoradiography image is acquired during the experiment, finding corresponding 
image slice which shows the same tissue in PET volume data is needed. This 
matching processing is done by image registration.  
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Fig. 3. Concept of finding corresponding slices in PET and autoradiography images 

Image registration is the process of aligning images in order to correspond with 
their features[7]. In this process, one input image should be defined as a reference 
volume and the other is a test volume. And the test volume is repeatedly transformed 
until the most similar image is found.  

In this paper, autoradiography image is treated as a reference because it has to be 
used as a validation standard and furthermore, when an image with higher resolution 
is used as a reference, image processing time and artifact due to the voxel 
interpolation can be reduced[8]. And to determine similarity between two images, we 
used an intensity based approach which does not need to extract feature points such as 
points or surfaces because it is difficult to segment geometrical structures in blurry 
PET image. In intensity based method the transformation factor can be computed by 
maximizing a similarity measure assuming statistical dependency between the 
intensity value of the two images.  

In this study, we used mutual information[9], one of the most widely used measure 
in multi-modal image registration. Mutual information stems from information theory 
and statistics and it is expressed as the difference between the sum of the entropies of 
the individual images, H(A) and H(B), and the joint entropy of the combined image 
where they overlap, H(A,B) [10]. The entropy of a single image can be computed 
from the probability distribution of its intensities, and the joint entropy of two images 
can be estimated by computing a joint histogram of paired intensities. So this is a 
measure of the extent to which one image explains the other.  
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However, mutual information measure is sensitive to the changes of the number of 
overlapped voxels and changes in overlap of very low intensity regions such as noise 
in the background. To overcome these kind of problems modified version by 
normalization has suggested and has proved very robust[11].  

During the process of image registration two images A and B can should be 
corresponded by searching for an optimal transformation T which has the maximum 
normalized mutual information. Finding the transformation factor is represented as 
Eq. (2) where the original image A(x) and the transformed image B(T(x)), where x is 
a voxel in image A, and the closest voxel in image B is T(x), so that  

                                        ))((),((maxargˆ xTBxAIT
T

= .                                       (2) 
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At this point, this requires the specification of the degrees of freedom of 
transformation. We assumed the animal body is fixed which means that there're no 
movements or structural changes to the animal during the whole image acquisition. 
Because the animal stays motionless because of gas anaesthesia during PET scanning 
and the animal is immediately sacrificed after PET acquisition and slicing for 
autoradiography is started as soon as cadaveric stiffening is apparent. Therefore we 
only applied the rigid transformation. 

3   Quantitative Measurement and Its Validation 

To validate the accuracy of image-based analysis, comparing the quantitative 
information by measuring the size, length, or biological activity of target tissue is 
required. Therefore, once the corresponding image slices have been found, we 
delineate the target area and extract its characteristics quantitatively from both in vivo 
and ex vivo image. In this section, we describe the target area detection algorithm and 
the methods of quantitative measurement used to obtain both morphological and 
biological information, shown in Fig. 4.  

 

Fig. 4. Quantification of the target area 

3.1   Target Area Detection  

In this study, two image scans are acquired from a tumor-bearing mouse to observe 
metabolic activity in the tumor tissue and its growth rate. We segment the tumor area 
manually in the autoradiography data, because it is used as the reference standard in 
this study, as this data obtained ex vivo and shows the anatomical structure in fine 
resolution.  

We now present a target area delineation algorithm to detect the tumor area in the 
PET data automatically [12] in two steps using a clustering algorithm. The tumor 
tissue looks bright compared to the surrounding normal tissue because of its high 
glucose uptake. We therefore can identify tumor tissue and other several types of 
normal tissue using voxel intensity.  
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In the first step, we use an iterative thresholding method to separate the 
foreground, which is the whole of the body area, from the background in a very noisy 
PET image. Then, we calculate a membership function for each element in the 
foreground using the fuzzy C-means(FCM) objective function:  
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Where U is the matrix that contains the membership value of pixel xi with respect to 
each cluster, ui is an element of that matrix, and mj is the center of class j. Voxel 
clustering is done by minimizing this equation using the following iteration:  
 

               

∑

∑

=

=

⋅
=

n

i

b
ij

i

n

i

b
ij

j

xu

xxu

m

1

1

)]([

)]([
 ,        (5)      

∑
=

−

−

−

−
=

c

k

b

ji

b

ji
ij

mx

mx
xu

1

)1(

1

)1(

1

2

)
||||

1
(

)
||||

1
(

)(
 .                     (6) 

 

However, after intensity-based clustering, the tumor cluster may still include regions 
corresponding to normal organs such as the heart or bladder, which also show high 
intensity value because of glucose metabolism. To separate the tumor from this false 
positive region, we use a geometric clustering algorithm in which connected voxels 
are regrouped into the same cluster. 

In Fig. 5(a) shows an image segmented into three clusters using brightness; the 
second cluster(shown in blue) is then divided into two using connectivity information. 
The small pink region is finally selected as the target area.  

           
                                  (a)                                                (b)  

Fig. 5. Target area segmentation: (a) segmentation of PET data by fuzzy clustering, and (b) 
manual segmentation of autoradiography data 
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3.2   Measurement of Morphological and Biological Information  

Morphological information can be used to estimate the state of tumor growth, 
regression and regrowth. We compute the tumor size by counting the number of 
voxels in target area and multiplying by the voxel size in millimeters. To determine 
the length of the boundary of the tumor, we use a chain code algorithm to extract a 
contour and then count voxels along the line. We calculate the eigenvectors of the 
contour and consider its first principal axis as a diameter. 

We can also extract biological information by computing metabolic activity, as a 
standard uptake value(SUV), in the tumor tissue:  
 

     ))(/)(/()/( gbodyWeightmCseinjectedDoccmCivitymeanROIactSUV ii=                (7) 
 

This functional gives the information about tumor viability or a metabolic disorder. It 
can allow the stage of cancer to be determined, whether it is malignant or benign, and 
the efficacy of an anti-cancer drug observed.  

4   Implementation and Experimental Results 

We used PET and autoradiography to measure a tumor in a mouse. Hummm Burkitt 
Lymphoma Raji cell was injected into the right thigh of C57BR/cdJ SCID mouse and 
I-124 was injected into a vein as a biotracer. The spatial resolution of the PET scan 
was 256x256x63 and the voxel size was 0.85x0.85x1.21㎜. The resolution of each 
autoradiography slice was 1050x1998 and the voxel size was 40㎛. To match PET and 
autoradiography data using image registration algorithm, every image slice of PET 
volume was compared to find the one which has the most similar intensity distribution 
with an autoradiography image. 

Fig. 6 (a), (b) are the ROI of each input image in coronal view that is used in 
registration process. On this region, normalized mutual information is calculated and 
the plot of voxel similarity for a series of PET image slices is shown in Fig. 6 (d). The 
image which has the maximum value has to be transformed and Fig. 6 (c) shows its 
result. Table 1. provides quantitative comparisons for a selection of image pairs. It 
shows that, as the voxel similarity increases, the differences in quantitative parameters 
are reduced.  

    
                 (a)                                   (b)                             (c)                               (d)  

Fig. 6. PET-autoradiography Coregistration using voxel similarity: autoradiography, (b) PET, 
(c) registration result, (d) similarity measure 
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Table 1. Quantitative comparison of target area characteristics 

 Auto-
radiography 

PET 
(33th image) 

PET 
(37th image) 

PET 
(40th image) 

Similarity 
measure · 1.4864 1.5949 1.5827 

Radius(mm) 0.85 0.83 0.85 0.86 
Length(mm) 4.5 4.3 4.6 4.5 
Size(mm3) 6529.23 6246.07 6624.60 6701.91 

SUV 10.04 9.7 9.8 11.20 

Because we consider the animal fixed during the image acquisition procedure, the 
registration error within any specific region of the mouse can be expected to be the 
same as the calculated for the global registration error. Therefore, the transformation 
parameters calculated for the small ROI can be applied to the entire image. After we 
have done this, we overlaid three images of the animal section changing the 
transparency to provide an intuitive understanding (Fig. 7). 

      

Fig. 7. PET, autoradiography, and visible-light images of a single section of the tumor-bearing 
mouse 

5   Conclusions and Future Work 

We have developed a coregistration algorithm to match in vivo PET and ex vivo 
autoradiography data. This allows image processing algorithms, including target area 
detection and quantification, applied to in vivo images to be validated by comparison 
with an ex vivo image. This comparison shows an error-rate within 0.1~0.2 %, which 
suggests that the proposed algorithm for in vivo quantification is sufficiently accurate. 
Results are proven robust even when the experimental image, especially autoradio-
graphy, has partial data missing problem which is frequently occurred during the 
image acquisition.  

In the future, we plan to develop inter-image matching algorithms to compare 
autoradiography with other in vivo image modalities.  
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Abstract. This paper presents an original work for aircraft noise monitoring 
systems and it analyzes the airplanes noise signals and a method to identify 
them. The method uses processed spectral patterns and a neuronal network 
feed-forward, programmed by means of virtual instruments. The obtained 
results, very useful in portable systems, make possible to introduce redundancy 
to permanent monitoring systems. The noise level in a city has fluctuations 
between 50 dB (A) and 100 dB (A).  It depends on the population density and 
its activity, commerce and services in the public thoroughfare, terrestrial and 
aerial urban traffic, of the typical activities of labor facilities and used 
machinery, which give varied conditions that must be faced of diverse ways 
within the corresponding normalization. The sounds or noises that exceed the 
permissible limits, whichever the activities or causes that originate them, are 
considered events susceptible to degrade the environment and the health. 

Keywords: Aircraft, monitoring, noise, pattern, recognition. 

1   Introduction  

The goal of this research stage is to make aircrafts noise signals analysis, that allows 
creating a recognition method, that will do possible to identify types or class of 
aircrafts by means of its noise patterns.  These types of aircrafts can be of propeller, 
turbojet and reaction.  On the other hand, it is possible to classify the aircrafts as long 
reach (high power), medium reach (medium power) and short reach (low power).  

Committees of Aerial Transport and Environmental propose an aircraft 
classification based on the level of noise emission. The proposed common 
classification of aircraft is based on the principle that the aircraft operator should pay 
a fair price that should be proportional to its noise impact, independently of the 
weight of the aircraft or of the transport service rendered. Such data would make it 
possible to recognize the environmental merits of larger aircraft, even if these aircraft 
are noisier in absolute terms when compared to smaller aircraft [1].  

Much of this work involves the collection and analysis of large amounts of aircraft 
noise data from the Noise and Track Keeping systems (NTK) installed at airports. 
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Like any other measured quantity, aircraft noise measurements are subject to some 
uncertainty, which can influence the quality of the final measured result [2]. 

The uncertainty contributions for a typical noise study can be considered in two 
groups. The first group includes the components of uncertainty associated with the 
measurement of aircraft noise at a particular monitoring location. The second group 
includes the components of uncertainty associated with any subsequent data analysis 
that may be carried out [2], [3], [4]. The overall accuracy of any type of measurement 
is limited by various sources of error or uncertainty. Components of uncertainty can 
essentially be classified as either random or systematic in nature. When making a 
series of repeated measurements, the effect of the former is to produce randomly 
different results each time, which are all spread or scattered around an average (mean) 
value. In contrast, systematic components of uncertainty cause the measurement to be 
consistently above or below the true value. For example, when measuring the time 
with a watch that has been set 1 minute slow, there will be a systematic error (or bias) 
in all the measurements. In a well-designed measurement study, the systematic 
components of uncertainty should generally be smaller than the random components 
[2], [5].  Possible sources of uncertainty for aircraft noise measurements include not 
only the noise instrumentation itself, but also variations in the noise source and 
propagation path, meteorological variations, the local environment at the 
measurement site, and also any variance due to data sampling - all of these individual 
uncertainty components can influence the quality of the final measured result [1]. An 
internationally accepted procedure for combining and expressing measurement 
uncertainties is given in the ISO Guide to the Expression of Uncertainty in 
Measurement [6], [7], [8]. 

2   Diagrams and Description of Typical Architecture of an 
Aircraft Noise Monitoring Station [9], [10] 

Generally, a noise monitoring complex system detects, identifies and analyses the 
noise produced by arriving and departing aircrafts. The Fig. 1 presents a typical 
architecture of aircraft noise monitoring stations. The noise monitoring system (NMS) 
measures aircraft noise according to defined criteria. The first step of the system is the 
collection of the detected aircraft noise, the second the attribution of the noise to a 
specific aircraft movement. To perform the correlation of the aircraft noise, additional 
information is necessary, which will be described later. 

2.1   EMU - Environmental Monitoring Unit 

The EMU consists of: a) a digital microphone; b) a local unit for data backup; c) a 
modem for transmitting data to the central processing system. 

2.1.1   Microphone Unit 
Each unit is mounted at the end of a mast and equipped with a digital microphone, an 
anti-wind and bird guard and a lightning arrestor. The microphone captures the 
analogue noise signal and performs the critical conversion of the signal immediately 
at the microphone head, and transmits the noise data in digital form to the EMU’s 
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Fig. 1. Typical architecture of aircraft noise monitoring stations and correlation principle 

electronics. The immediate conversion to a digital signal provides a higher immunity 
to interference. The unit guarantees an omni directional detection of noise with high 
reception qualities. The 5 local units are synchronized by the central system GPS 
clock. 

2.2   Central Processing System 

All the data collected via network or modem from the airport radar, the flight plan 
processing system and the EMUs are put through to the central processing system 
which consists of Communication Server and Global Environment Monitoring 
System (GEMS). The Communication Server collects: a) the noise events of the five 
EMUs; b) the radar aircraft tracks; c) the flight plans from FDP (Flight Data 
Processor); d) the GPS (Global Positioning System) to guarantee the synchronization 
of the noise monitoring system.  

The GEMS processes and correlates the data acquired by the Communication 
Server in order to identify an aircraft that produced a noise event. The essential 
processing in the GEMS consists of: a) correlating the real time data from the 
Communication Server; b) archiving the acquired data, and generating reports about 
individual events, daily, monthly or annual summaries. 

Identification of the noise event: The EMU continuously analyses the incoming 
noise signal to identify the source of noise. By using various detection algorithms it is 
possible to identify noise generated by an aircraft flying past, known as event. The 
process of identifying a noise event is based on threshold and time change criteria. 
The incoming data are noise events, aircraft flight plans and Radar information. The 
correlation principle is observed in the right side of Fig 1. 

3   Aircrafts Noise Patterns 

The used airplanes noises in this work have been acquired by means of MP201 
microphone. It is a good choice for use in IEC61672 class 1 sound level meters and 
other noise measurements requiring class 1 accuracy [11]. It is a 1/2" prepolarized 
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free-field measurement microphone.  The data acquisition card is USB-9233. It is a 
four-channel dynamic signal acquisition module for making high-accuracy 
measurements from IEPE sensors. The USB-9233 delivers 102 dB of dynamic range. 
The four USB-9233 input channels simultaneously acquire at rates from 2 to 50 kHz. 
In addition, the module includes built-in antialiasing filters that automatically adjust 
to your sampling rate. The USB-9233 uses a method of A/D conversion known as 
deltasigma modulation. If the data rate is 25 kS/s, each ADC actually samples its 
input signal at 3.2 MS/s (128 times the data rate) and produces samples that are 
applied to a digital filter. This filter then expands the data to 24 bits, rejects signal 
components greater than 12.5 kHz (the Nyquist frequency), and then digitally 
resamples the data at the chosen data rate of 25 kS/s. This combination of analog and 
digital filtering provides an accurate representation of desirable signals while 
rejecting out-of-band signals. The built-in filters automatically adjust themselves to 
discriminate between signals based on the frequency range, or bandwidth, of the 
signal.  

In this work, the noise samples were acquired with sampling frequencies of 22050 
Hz (Samples/second: S/s) and 11025 Hz (S/s), monophonic and during 24 seconds. In 
general, this interval is greater than to aircraft takeoff time, or greater to the time in 
which the produced noise affects the zones near an airport. It is possible to extend this 
sampling time interval (>24 seconds). For a same aircraft, many noise events were 
acquired, taken for different meteorological conditions, several microphone 
orientations and background noises. The takeoff direction is always the same one and 
this reduces the disturbances of Doppler Effect. 

3.1   Aircraft Noise Signals Analysis 

The Fig. 2 and Fig. 3 present examples of some aircrafts noise signals.  

 

Fig. 2. Noise of Falcon aircraft taking off, with sampling frequency of 22050 Hz 

For all used aircraft noises the typical form of the amplitude spectrum is observed 
from 0 to 5000 Hertz, for this reason, in this work was used a sampling frequency of 
11025 Hz, in order to reduce the number of taken samples in 24 seconds (264600 
samples). The amplitude spectrum has 132300 harmonics, with fΔ = 0.04167 Hz. In 

other aircraft noise analyses, the recommended sampling frequency is 25 Ks/s and D, 
C and A-weighting filters. 
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Fig. 3. Noise of Falcon aircraft taking off, with sampling frequency of 11025 Hz 

3.1.1   Reduction of the Spectral Resolution 
It is necessary to reduce the spectral resolution because of the following reasons: 

1. The amplitude spectrum has 132300 harmonics and its processing will be very 
complex. 

2. It is only of interest the spectral form. 

The following hypotheses are presented: 

1. Any reduction method of spectral resolution introduces a tolerance in the initial 
and final times within the measurement interval of aircraft noise. 
For example, a feedforward neural network is trained with one noise pattern 
which was acquired from zero seconds from the aircraft takeoff until 24 seconds 
later. In run time, if the aircraft takeoff noise is acquired from 5 seconds until 24 
seconds, this time displacement of 5 seconds will affect little the spectral form if 
its spectral resolution has been reduced. 

2. A median filter (moving average filter) creates a typical form of the aircrafts 
takeoff noises spectrums. 

3. The decimation of average spectrum, with a rate X, conserves the spectral form 
of aircrafts takeoff noises. 

3.1.2   Spectral Estimation 
In the present work is used the Bartlett-Welch method [12] for spectral estimation. 
The Bartlett method consists on dividing the received data sequence into a number K, 
of non-overlapping segments and averaging the calculated Fast Fourier Transform.  

It consists of three steps: 
1. The sequence of N points is subdivided in K non overlapping segments, where 

each segment has length M. 

( ) ( )i ix n x n iM= + , i 0,1,...,K -1= , n 0,1,...,M 1= −                  (1) 

2. For each segment, periodogram is calculated 

( ) ( )
2M 1

j2 fn
xx i

n 0

1
P̂ f x n e

M

−
− π

=

= ∑ , i 0,1,...,K 1= −                (2) 

3. The periodograms are averaged for the K segments and the estimation of the 
Bartlett spectral power can be obtained as: 
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The statistical properties of this estimation are the following ones:   
    The average value is: 
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The true spectrum is convolutioned with the frequency characteristic of the Bartlett 
window ( )Bw m . Reducing the length of the data window of N points to M=N/K, it 

results in a window whose spectral wide has been increased by the factor k. 
Consequently, the frequency resolution has decreased for the factor k, in exchange 
for a variance reduction. 

The variance of the Bartlett estimation is: 
2K 1

B (i) (i) 2
xx xx xx xx2

i 0

1 1 1 s i n 2 fMˆ ˆ ˆvar P (f ) var P (f ) var P (f ) P (f ) 1
K K M si n 2 fK

−

=

⎡ ⎤π⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = +⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ π⎝ ⎠⎢ ⎥⎣ ⎦
∑ (6) 

 

Welch Method [12], [13], [14]: unlike in the Bartlett method, the different data 
segments are allowed to overlap and each data segment is windowed. 

         ( ) ( )ix n x n iD ,  n 0,1,...,M 1,  i 0,1,...,L 1= + = − = −                        (7) 

Where iD is the point of beginning of the sequence i-th. If D=M, the segments are not 
overlapped. If D=M/2, the successive segments have 50% of overlapping and the 
obtained data segments are L=2K. 

Another modification proposed by Welch to the Bartlet method consists on using a 
window for the data segments before calculating the periodogram. The result is the 
"modified" periodogram: 

          ( ) ( ) ( )
2M 1
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Where U is a normalization factor for power of the function window and it is selected as: 

                                          ( )
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The Welch estimation of spectral power is the average of these modified 
periodograms: 

                                   ( ) ( )
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The average of the Welch estimation is: 

        ( ) ( ) ( ) ( ) ( )
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The normalization factor assures that: ( )
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The variance of the Welch estimation is: 
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Why Welch method is introduced? 
- Overlapping allows more periodograms to be added, in hope of reduced variance. 
- Windowing allows control between resolution and leakage. 
The Welch method is hard to analyze, but empirical results show that it can offer 

lower variance than the Bartlett method, but the difference is not dramatic. 

•  Suggestion is that 50 % overlapping is used. 
In this paper, the data segment of 264600 samples, acquired in 24 seconds, is 

divided in 24 segments: K=24, with 50% of overlapping, therefore, L=2K=48 
overlapped data segments, later is applied the FFT (periodogram) to each segment 
and they are averaged. 

3.2   Examples of Some Aircrafts Noise Patterns 

 

Fig. 4. Example of noise pattern of Falcon aircraft taking off (turbojet) 
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Fig. 5. Example of noise pattern of T6 aircraft taking off (propeller) 

 

Fig. 6. Example of noise pattern of f Boeing 707 aircraft taking off  

In this stage, 16 aircrafts types were tested with 12 patterns by aircraft. In all, the 
neural network was trained with 192 patterns. Ninety and six patterns were used for 
testing. 

4   Neural Network 

The neural network has 221 inputs. Every input is a normalized harmonic and some 
examples were presented in Fig. 4, 5 and 6. The output layer has 16 neurons, 
corresponding to the 16 recognized aircrafts. After several tests, the neural network 
was successful with a hidden layer of 14 neurons. The activation functions are tan-
sigmoid. The Fig 7 presents the topological diagram and training performance. The 
training performance was successful with an error of 1.51281e-10 in 300 epochs. The 
training finished in 19 minutes in a Pentium IV of 3 GHz. 
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Input: 221 neurons  
(aircrafts noise harmonics)

Output layer: 16 neurons 
(aircrafts type)

 

Fig. 7. Neural network topology and training performance 

5   Analysis of Results 

For aircraft noise used in neural network training, the recognition was successful. For 
an aircraft noise non-used in the training, the neural network non-recognized a 
specific aircraft and the program presented a message with three aircrafts whose 
mixed noise patterns have similarity to the acquired noise event (see Fig. 8). Table 1 
shows results of a test of aircrafts recognition.  

 

 

Fig. 8. Example of two tests of patterns recognition and non-recognition 

Table 1. Certainty of recognized aircrafts in the first test 

Aircrafts 
type 

Evaluated 
Aircrafts

Recognized 
aircrafts with 

certainty  of more 
than  80% 

Recognized aircrafts with 
certainty of mote than 

60% and less than  80% 

Propeller 5 4 1 
Turbojet 17 13 4 

Reaction 4 4 0  
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6   Conclusions and Future Work 

The presented work tested successfully a methodology to create aircrafts noise 
patterns. It combines the decrease of spectral resolution, a moving average filter and 
decimation of average spectrum, this method allows reducing the number of 
significant harmonics in amplitude spectrum, so that a feedforward neural network 
with 221 inputs can recognize the aircraft type. The decrease of spectral resolution 
using the Bartlett-Welch method introduces a tolerance in the initial and final times 
within the measurement interval of aircraft noise, which produces a better recognition 
of the patterns when the measurements can have uncertainties. This research tests the 
feasibility to identify the aircraft that produces a certain noise level, having only noise 
information. The obtained results make possible to introduce redundancy to 
permanent monitoring systems of aircraft noise (Fig. 1). These results are very useful 
in portable systems. The noise intensity and others environmental contamination 
indicators are calculated by statistical methods using noise time series. The next tests 
will include more aircrafts types using a distributed and portable system. 
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Abstract. This paper presents a new method for echocardiographic im-
age sequence compression based on active appearance model. The key
element is the intensive usage of all kind of a priori medical information,
such as electrocardiography (ECG) records and heart anatomical data
that can be processed to estimate the ongoing echocardiographic image
sequences. Starting from the accurately estimated images, we could ob-
tain lower amplitude residual signal and accordingly higher compression
rate using a fixed image distortion. The realized spatial active appear-
ance model provides a tool to investigate the long term variance of the
heart’s shape and its volumetric variance over time.

Keywords: Echocardiography, active appearance model, image com-
pression, QRS clustering.

1 Introduction

Echocardiography is a popular medical imaging modality due to its noninva-
sive and versatile behavior. There are no known side effects, and the measuring
equipment is small and inexpensive relative to other options, such as MRI or CT.
Reducing storage requirements and making data access user friendly are two im-
portant motivations for applying compression to ultrasound images, with the
retention of diagnostic information being critical [2]. A typical echocardiography
image consists of a non-rectangular scanned area, and a passive background,
which may contain patient related text or limited graphics (e.g. a single channel
ECG signal). The resulting spatial variation in image statistics presents a hard
task to coding methods that use a single partition strategy. For example, many
modern image compression algorithms, such as zero-tree coding [16] and set par-
titioning in hierarchical trees (SPIHT) [8,15] are based on the wavelet transform,
which partitions the input images into frequency bands whose size decreases
logarithmically from high frequencies to low ones. This kind of decomposition
strategy works well when the input images are statistically homogeneous, but
not in the case of echocardiography image sequences.

In paper [5] is presented the investigation results of the improved transforma-
tion based lossy compression techniques for ultrasound and angiography images.
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The goal of the study was to clarify, where the compression process could be
improved for the medical application. It was proved that wavelet transform out-
performs discrete cosine transform applied to ultrasound image sequence. The
analysis of international image compression standards was carried out with spe-
cial attention to the new still image compression standard: Joint Photographic
Experts Group (JPEG) 2000. The JPEG2000 compression is better than ordi-
nary JPEG at higher compression ratio levels. However, some findings revealed
this consideration is not necessarily valid for lower compression levels. In study
[17] the qualities of the compressed medical images such as computed radio-
graphy, computed tomography head and body, mammographic, and magnetic
resonance T1 and T2 images were estimated using both methods. The negative
effect of blocking artifacts from JPEG was decreased using jump windows.

The impact of image information on compressibility and degradation in med-
ical image compression was presented in paper [7]. This study used axial com-
puted tomography images of a head. Both JPEG and JPEG 2000 compression
methods were evaluated using various compression ratios (CR) and minimal
image quality factor (MIQF).

In pattern recognition research the dimensionality reduction techniques are
widely used since it may be difficult to recognize multidimensional data when
the number of samples in a data set is comparable with the dimensionality of
data space. Locality pursuit embedding (LPE) is a recently proposed method
for unsupervised linear dimensionality reduction. LPE seeks to preserve the local
structure, which is usually more significant than the global structure preserved
by principal component analysis (PCA) and linear discriminant analysis (LDA).
In paper [25] the supervised locality pursuit embedding (SLPE) is investigated.
These dimensionality reduction methods can improve the understanding level of
the medical information borrowed in the recorded image sequences [24].

Usually the medical applications do not tolerate much loss in fidelity, so the
distortion free methods, such as context-based adaptive lossless image coding
(CALIC) [22] have been recently adapted to ”near-lossless” situations [23] with
good results. Erickson et al. [4] have compared SPIHT and JPEG methods to
compress magnetic resonance imaging (MRI) and ultrasound images. They con-
cluded that wavelet-based methods are subjectively far superior to JPEG com-
pressed at moderately high bit rates. Medical images are typically stored in
databases, so it is possible for computers to extract patterns or semantic connec-
tions based on a large collection of annotated or classified images. Such automat-
ically extracted patterns can improve the processing and classifying performance
of the computers.

In the recent past, researchers in the image analysis community have suc-
cessfully used statistical modeling techniques to segment, classify, annotate and
compress images. Particularly, variations of hidden Markov models (HMMs) have
been developed and successfully applied for image and video processing. The
key issue in using such complex models is the estimation of system parameters,
which is usually a computationally expensive task. In practice, often a trade-
off is accepted between estimation accuracy and running time of the parameter
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estimation method [9]. The matching pursuit (MP) signal coding technique was
developed by Mallat and Zhang [12] and enhanced to code the motion predic-
tion signal by Neff and Zakhor [14]. The task of the MP coder is to measure the
energy of different subunits, each of which represents a motion residual.

Such a statistical information-based estimation highly depends on biological
parameters. In our case, the most important task in efficient echocardiography
image compression is the accurate detection of QRS complexes from the simul-
taneously measured ECG signal. Due to the semi-periodic behavior of the ECG
signal and echocardiography image sequences, the parameters of the patient
model can be more precisely estimated.

Active appearance models (AAM), introduced by Cootes et al. [3], are promis-
ing image segmentation tools that may provide solutions to most pending
problems of echocardiography, as they rely on both shape and appearance (inten-
sity and/or texture) information. Bosch et al. [1] proposed a robust and time-
continuous delineation of 2-D endocardial contours along a full cardiac cycle,
using an extended AAM, trained on phase-normalized four-chamber sequences.

An accurate investigation of the physiology and patho-physiology of the heart,
besides studying the electrical activity and spatial distribution of its structures,
must also consider the movement of these structures during normal and abnormal
cardiac cycles. In this order, simultaneous ECG signal and ultrasound image
sequence recording is proposed [20], which reliably supports the localization of
the investigated events.

Several papers have already reported the usage of spatial AAM [13,18]. The
present work has the following contributions: (1) we developed a heart recon-
struction algorithm including time-dependent wall boundaries, to estimate the
image variances, that allow a better compression rate than conventional methods
at a fixed image quality; (2) reported techniques classify ultrasound images only
as belonging to systolic or diastolic interval. Our approach distinguishes normal
and extra beats, and processes the corresponding images accordingly.

2 Materials and Methods

Simultaneous echocardiography sequence recording and ECG signal measure-
ment were carried out at the County Medical Clinic of Târgu-Mureş, using a
2-D echocardiograph that produces 30 frames per second, and a 12-lead ECG
monitoring system that samples at 500 Hz frequency and 12-bit resolution. Each
image frame received a time stamp, which served for synchronization with ECG
events. Two different series of measurements were recorded. The first series,
which served for AAM training, consisted of 35 patients (12 of whom having
extraventricular beats), 20 ultrasound sequences for each patient, of 10-15 sec-
onds length each, with previously established transducer placements. Based on
these data, an a priori information database was created, which organized the
ultrasound images grouped by corresponding ECG events.

The second series of measurements, which involved 8 patients, consisted of
two stages. In the first stage, the same measurements were performed, as in the
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first series, in order to provide patient-specific training data for the AAM. In
the second stage, several measurements of the same individuals but recorded in
different moments were performed using different placements and positions of
the transducer. In this order, image sequences were recorded at 8 parallel cross
sections in horizontal and rotated (45◦ to the left and to the right) positions
with a 1 cm inter-slice distance. We used 10 common axis planes that were
placed at the front, lateral and back side of the torso, resulting for each patient
10 × 8 × 3 = 240 image sequences of 2-3 seconds duration.

The duration of the recorded image sequences was restricted by the semiperi-
odic behavior of the ECG signal. The spatial movement of the heart is con-
strained by the course of the depolarization-repolarization cycle [19]. The studied
ECG parameters were: shape of QRS beat, QT and RR distances. These param-
eters characterize the nature of a QRS complex, and were determined as pre-
sented in [19]. ECG event clustering was accomplished using Hermite functions
and self-organizing maps [10]. Two main event clusters were created: normal
and ventricular extra beats. This latter group, because of the patient specific
manifestation of ventricular extras, had to be dealt with separately patient by
patient. QRS beats not belonging to any cluster were excluded from further pro-
cessing, together with their corresponding ultrasound sub-sequences. A further
condition for normal QRS complexes to be included was having RR distance be-
tween 700-800 ms and QT distance between 350-400 ms. A detailed presentation
of ECG processing is presented in Fig. 1.

The time-varying evolution of the cardiac volume is determined by the in-
terconnection of electrical and mechanical phenomena. In a whole cardiac cycle
there are two extremity values. The maximal volume can be coupled with the
starting moment of ventricular contraction. The moment of minimal volume
shortly precedes the termination of ventricular contraction, but is much more
difficult to identify, due to the dead time of a normal cardiac cell. This delay is
caused by the behavior of a regular cardiac cell, whose electric response precedes
with 60-80 ms the mechanical contraction [21]. The combination of the electrical
and mechanical properties of the heart and the usage of knowledge-base allowed
us to create a performance evaluation module, shown in Fig. 2, that determines
the most probable wall position. This image presents an overview of the image
processing and volumetric reconstruction procedure. The first algorithmic step is
noise elimination. Speckle noise represents a major difficulty to most ultrasound
imaging applications [6]. In our case, the suppression of such phenomena was
accomplished using the well-known motion adaptive spatial technique presented
in [20]. Due to the measuring technique of traditional echocardiography, the ob-
tained images are distorted. In order to become suitable input for 3-D processing,
they need to go through a normalization transform. Every recorded ultrasound
slice is represented by a plane, whose spatial alignment depends on the position
and rotational angle of the transducer. The normalization process also takes into
consideration the distance of each image pixel from the transducer.

The AAM was trained using the spatial position of each slice recorded in the
first measurement series. By averaging these spatial distributions, a mean 4-D
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Fig. 1. The proposed ECG signal filtering, processing and compression

Fig. 2. The data recording and analyzing procedure: all echocardiography and ECG
data go through the same processing module. The AAM is constructed from the mea-
surements of series 1, and fine tuned afterward using the patient specific data resulting
from series 2 stage 1. Stage 2 data serve for the detailed cardiac volumetric analysis.
Reconstructed 3-D objects are finally aligned using an iterative LMS-based algorithm.

Fig. 3. Residual data construction and distortion analysis using the recorded image,
heart beat phase information and AAM-based 4D organ shape to determine the most
probable image in the next cycle. As the y(n + 1) output signal is obtained, a WDD
and PRD-based distortion analysis is performed, using image features given by AAM.
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heart shape model is obtained, which will be the base shape of the AAM [1,11].
Landmark points are determined as by Mitchell et al. [13]. The sparse character
of the obtained spatial description model doesn’t allow the landmark points have
3-D texture information, so we restricted the texture to 2-D.

Subjects have their own specific, time-dependent inner structure, which can-
not be properly approximated from a population of few dozens of individuals. In
order to make further adjustments to the AAM, the base structure was adjusted
to the patient using the measurements made in the second series, first stage. The
landmark points determined on the images recorded during the second stage of
the second series allowed us to create a 3-D distribution point model, which
was established according to [13]. Having the distribution points established,
the AAM will be enabled to adjust itself to a diversity of biological factors like
the phase of ECG and breathing. A detailed description of the manifestation of
these phenomena and the model adaptation is given in [18]. Our algorithm acts
similarly, but it treats the cardiac cycle differently: not only systolic and dias-
tolic phases are distinguished, but also a QRS complex clustering is performed
to give different treatment to normal and ventricular cardiac cycles.

Spatial texture maps are determined via averaging [18]. The visual aspect
of the heart and its environment, because of their mutual motion, is changing
in time. AAM models only include information on the texture situated within
the model. The time dependent representation of the ultrasound slices obtained
from the large stack of sequences enabled us to accurately determine the 4-D
structure of the heart [13]. The iterative algorithm of the AAM demands the
comparison of measured and expected shapes. The AAM was adjusted using a
quadratic cost function, until the desired accuracy was obtained.

Due to its adaptive behavior, the compression method can handle patient-
dependent data and efficiently separate the measured artifacts from the useful
signal. The proposed signal compression algorithm consists of the following steps:

– Intelligent image sequence analysis and filtering, that involves the automatic
recognition of echocardiography image, ECG signal and various changing and
constant labels and letters that appear on the recorded image sequence;

– Background selection (the constantly dark region);
– ECG signal processing (see Fig. 1);
– Segmentation of ultrasound image (see Fig. 2);
– Calculation of the heart’s 4-D shape (3-D + time) using AAM;
– Estimation of probable image;
– Residual signal estimation, 2-way entropy coding and back-estimation.

Compression results were evaluated using the percentage root mean square dif-
ference (PRD) and weighted diagnostic distortion (WDD) [26]. WDD measures
the relative preservation of the diagnostic information (e.g. location, duration,
intensity, shapes, edges) in the reconstructed image. These diagnostic features
were determined by physicians. The distortion estimation and signal (ultrasound
image and all auxiliary data) coding process is presented in Fig. 3.
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3 Results

Figure 4(a) presents two series of ultrasound slices indicating the contour of the left
ventricle of the 2nd patient, detected during a ventricular contraction. The two
columns of slices show two different views, having 60◦ angle difference. The four
slices in each column represent subsequent images of the sequence, showing the
approximately 100 ms duration of a ventricular contraction. Figure 4(b) exhibits
the sameultrasound slices after beingnormalized, that is, transformed toEuclidean
space. Figure 4(c) shows twodifferent reconstructed 3-D shapes of the left ventricle.

Figure 5 presents the decoded echocardiography images at various compres-
sion rates. The variation of RMSE level against inverted compression rate is
shown in Fig. 5(e). The RMSE graph was created for an averaged normal QRS
beat shape, and average RR and QT distances.

Fig. 4. Results of shape reconstruction: (a) and (b) time varying 2-D contour of the
left ventricle before and after normalization, (c) reconstructed 3-D structure of the left
ventricle

4 Discussion

The recognition of the relation between echocardiography images and simul-
taneously recorded ECG signal is a key element in efficient image sequence
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Fig. 5. Results of image reconstruction: (a) original image, (b) decoded image at 1/22
compression rate, (c) decoded image at 1/39 compression rate, (d) decoded image
at 1/54 compression rate, (e) representation of root mean square error (RMSE) vs.
inverted compression rate, (f) feature-base corrected image at 1/22 compression rate,
(g) feature-base corrected image at 1/39 compression rate, (h) feature-base corrected
image at 1/54 compression rate

compression (see Table 1). However, various events like aspiration and expiration
may influence the measured data. During a whole cardiac cycle, the shape and
volume of the left ventricle changes considerably. It is difficult to determine the
performance of the reconstruction method for the sporadically occurred ventric-
ular extra-systolic beats. Even for patients that produce at least five extra beats
with similar shapes in each minute the reconstruction performance remains well
below the normal QRS cluster’s accuracy, due to the sparse distribution of the
processable slices.

From Fig. 5 we can observe that even a well-working WDD correction method
cannot handle a compression rate better than 1/60 without a serious image
distortion that can lead to wrong medical diagnosis. Table 1 demonstrates the
higher performance of the proposed image compression method, that exists due

Table 1. The obtained inverted compression rates obtained for normal beats, at var-
ious RMSE levels, using the following methods: Wavelet-based compression, Image
comparison-based estimation, ECG and echocardiography image compression using
QRS long-term prediction (LTP), JPEG 2000, Matching Pursuits, proposed AAM-
based compression

Compression Method vs. RMSE 1% 2% 3% 4% 5%

Wavelet-based compression [8] 10.2 15.4 17.3 18.8 19.9
Image comparison [22] 14.2 21.2 24.0 26.1 27.8
QRS and LTP image comparison [26] 17.4 26.6 29.6 31.8 33.7
JPEG 2000 13.7 20.5 23.2 25.1 26.6
Matching pursuits [12] 15.7 22.9 27.1 29.5 31.4
Proposed AAM-based 22.7 36.3 40.2 44.1 47.7
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to the advanced QRS beat analysis and spatial AAM-based organ reconstruction.
Such an analysis can lead to a much better ’estimated image’ quality that reduces
the amplitude of the residual signal. The improvement brought by the proposed
method is more relevant in case of normal beats, because the AAM can better
adapt itself to their characterization due to their higher incidence.

5 Conclusions

The investigation of simultaneously recorded ECG and echocardiography images
enables us to study the relations between the electrical and mechanical phenom-
ena concerning the heart. The signal and image estimation is made by using
various priori medical information, and the algorithm yields lower amplitude
residual signal and better compression ratio at given distortion level.

The compression method presented in this paper performs well in case of
normal and quite well for ventricular beats. The presence of pathological image
and signal samples may lower the performance difference among the proposed
method and the tested algorithms. This kind of approach of the problem may
result in deeper understanding of electrical and mechanical properties of the
heart, that provides a much efficient compression than other algorithms using
less a priori information.
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19. Szilágyi, S.M., Szilágyi, L., Benyó, Z.: Support Vector Machine-Based ECG Com-
pression. Ser. Adv. Soft Comput (IFSA 2007) 41, 737–745 (2007)
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Abstract. This paper presents a new way to solve the inverse problem of
electrocardiography in terms of heart model parameters. The developed
event estimation and recognition method uses a unified neural network
(UNN)-based optimization system to determine the most relevant heart
model parameters. A UNN-based preliminary ECG analyzer system has
been created to reduce the searching space of the optimization algorithm.
The optimal model parameters were determined by a relation between
objective function minimization and robustness of the solution. The fi-
nal evaluation results, validated by physicians, were about 96% correct.
Starting from the fact that input ECGs contained various malfunction
cases, such as Wolff-Parkinson-White (WPW) syndrome, atrial and ven-
tricular fibrillation, these results suggest this approach provides a robust
inverse solution, circumventing most of the difficulties of the ECG inverse
problem.

Keywords: Heart model, unified neural network, inverse ECG problem.

1 Introduction

Nowadays the health problems related to the malfunction of the heart affects
large groups of people and have become the most important mortality factor
[3]. These malfunctions are usually caused by heart attack, rhythm disturbances
and pathological degenerations. Modern health study is focusing on predicting
these kinds of tragic events, and identifying the endangered patients, to make it
possible to apply a preventing therapy.

Traditional computerized electrocardiogram (ECG) analyzer systems used the
collected signal as an input to suggest an empiric-information-based evaluation
of the ECG [10]. These systems may recognize various waveforms, but the leakage
of information about the inner functioning of the heart inhibits to understand
the producing phenomena [13].

The construction of a heart model [20] may allow computers to recognize the
origin and the evolvement process of the ECG signal [5]. These systems may
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unify the vast empiric information applied in traditional systems with model-
based-recognition, creating hybrid processing structures [17]. These hybrid sys-
tems may activate the model-based-approach at any moment to handle correctly
almost all unrecognizable waveform. The strange waveforms may appear in case
of unknown patients or uncommon states, such as ventricular fibrillation [19]. In
these cases the model-based approach estimates the causes of the encountered
phenomenon.

A dynamic organ such as the heart places special demands on modeling tech-
niques. To understand its physiology and patho-physiology, not only the electri-
cal activity and spatial distribution of its structures is important, but also their
movement during cardiac cycles [10]. The shape of the measured ECG signal is
influenced during repolarization by the mechanical contraction of the heart [9].

The main problem of inverse ECG processing consists in reconstruction of
cardiac electrical events from measurements [14]. In contrast to the forward
problem of electrocardiography, the inverse problem does not possess a mathe-
matically unique solution [6] and in order to improve stability, it needs to adopt
regularization techniques [4,15].

The problem of multiple solutions of the inverse models enforced the devel-
opment of several approaches such as equivalent cardiac generators (such as
equivalent dipole and multi-pole) [9], heart surface isochrones [1], or epicardial
potential [2]. These methods led to a significant progress, but the different uncer-
tainty elements of the processing method hinder the potentially beneficial ECG
inverse solutions from becoming a routine clinical tool.

An almost complete ECG data acquisition from the human torso is accom-
plished by the body surface potential mapping (BSPM) technique [8]. BSPM
may have a great advantage over the standard 12-lead system in different sit-
uations due to deeper accessible information. Mirvis has shown some cases of
BSPM recordings that clearly demonstrate the inadequacies of the standard
ECG lead sets in a variety of pathologies [8]. The better understanding of
the depolarization-repolarization mechanism may enlighten the origin of diverse
pathological events.

In the area of data processing, numerous interesting biomedical applications
of artificial neural networks are included [7]. The best known neural solutions
involve multilayer perceptrons [20], Kohonen self-organizing networks [17], fuzzy
or neuro-fuzzy systems [16], genetic algorithms [19] and the combination of var-
ious solutions within a hybrid system [11].

Earlier heart modeling systems applied many neural networks and chose the
best one, while the others were discarded. After a deep investigation of the
obtained results, it was recognized that the most efficient approaches should
rely on the combination of many classifiers utilizing either different classifier
network structures or different data preprocessing methods [11].

The conventional artificial neural networks (ANNs) suffer from diverse draw-
backs that can be handled by the support vector machines (SVMs) pioneered by
Vapnik [21], which had to face to following problems:
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– Modern biological problems are high-dimensional, and if the underlying map-
ping is not very smooth, the linear paradigm needs an exponentially increas-
ing number of terms with an increasing dimensionality of the input space,
that implies an increase in the number of independent variables. This is
known as ’the curse of dimensionality’;

– The real-life data generation laws may typically be far from the normal
distribution and a model-builder must handle any kind of distribution in
order to construct an efficient learning algorithm;

– The maximum likelihood estimator (consequently the sum-of-error-squares
cost function, too) should be replaced by a new induction paradigm that is
uniformly better. This indicator may accomplish the properly modeling of
non-Gaussian distributions.

SVM classifiers have become quite popular due to their robustness and stabil-
ity [12]. A SVM used in a heart modeling system is rigorously based on statistical
learning theory and simultaneously minimizes the training and test errors. Apart
from that, they produce a unique globally optimal solution and hence are exten-
sively used in diverse applications including medical diagnosis [16].

This paper presents an event recognition study performed with ECG signal
analysis and 3D heart model using unified neural networks (UNNs). These UNNs
are based both on conventional ANNs and SVMs. The main purpose is to eval-
uate the strength and weakness of the method, and to analyze the cooperation
efficiency in malfunction diagnosis.

2 Materials and Methods

2.1 Unified Neural Networks

In case of two-class classification using linear discriminant functions, the respec-
tive decision hypersurface in the n-dimensional feature space is a hyperplane
that can be described as:

g(x) = wT · x + w0 = 0, (1)

where w = [w1, . . . , wn]T is known as the weight vector and w0 as the threshold
value. A given vector xd is situated on the decision hyperplane if only if g(xd) =
0. The distance z between a vector x and the decision hyperplane is computed
as: z = |g(x)|/||w||, where ||w|| =

√∑n
i=1 w2

i .
The purpose in a classification problem consists in the optimization of a vector

w in such a way, that the criteria function J(w) is minimized. Let ω1 and ω2 be
the two classes that we need to separate. We assume this task can be performed
using a linear relation, meaning that there exists at least one such hyperplane
w̄ that fulfils the following relations:

w̄T · x > 0 for ∀x ∈ ω1, and w̄T · x < 0 for ∀x ∈ ω2. (2)

If we design a classifier with a desired output y = 1 for ∀x ∈ ω1 and y = −1
for ∀x ∈ ω2, and try to modify weights in vector w in such a way that the
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criteria function J(w) =
∑N

i=1(yi − fs(wT · xi))2 is minimized, then we have
constructed a root mean square (RMS) error based separation method. In the
previous formula, fs denotes a sigmoid function.

The SVM-s based classifier algorithms are very popular due their robustness.
The main concept incorporates the search for the ’most robust solution’ vector
w that gives the maximum possible margin. The margin is represented by the
minimal distance z = |g(x)|/||w||, which requires the minimization of ||w||.

Although both these methods, the traditional RMSE approximation and
SVM-based classification, deliver good results in a certain noise-free environ-
ment, in biomedical simulation such sterile conditions never occur, mainly be-
cause of measurement errors and the improper estimation of unmeasurable
biological parameters.

Root mean square classifiers have the following drawbacks:

– Improper solution in case of asymmetric transfer functions;
– Large estimation error of the criteria function in case of border-close high

dispersion (uncertain) inputs;
– In a noisy environment, the criteria function may possess multiple local

minimal solutions that may cause low quality results;
– The white noise is ’non-learnable’, so the function J(w) will saturate at an

uncontrollable error level.

The SVM produces a considerably superior result in hostile environment, and
can avoid the above mentioned problems, but fails to take into consideration the
topology of the input vectors, as presented in Fig. 1(a). This topology becomes
more important is case of multi-dimensional spaces and non-linear separation
borders, than in case of linear separation in a two dimensional space.

To overcome the above mentioned problems for both presented classification
metods, we propose for classification a UNN. The main difference between UNN
and the described classifiers consists in the equation of its criteria function:

J(w) = λd ·
N∑

i=1

(yi − fs(wT · xi))2 + λm · fm(z) + λu ·
N∑

i=1

fu(wT · xi), (3)

that is composed by three additive terms responsible for the difference error,
margin and smoothness, respectively. The function fu(α) = α−2 represents a
repelling force that doesn’t let the boundary be close to any of the vectors xi.
Coefficients λd, λm, λu adjust the tradeoff among these three terms. The margin
value is represented by z.

The presented UNN can work in non-linear environment, too. In this case
the distance of a point from the separation hyperstructure is considered the
closest distance from any point of it. The SVM formulation can work in the
same manner, the structure tries to have a shape that keeps maximal distance
from the clusters elements. The third term forces the separation structure to
places that suffer from minimal repelling force.

The non-linear form of the criteria function takes into consideration the topol-
ogy of the separation hyperstructure as presented in Figure 1(b). For example,
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Fig. 1. A two-class separation problem is presented: (a) linear separation performed
by SVM-based classifier cannot yield optimal solution in all cases; (b) distance of an
object from the non-linear separation barrier should depend on the topology of the
classes

the two closest × and • have the same distance from the non-linear separation
barrier, but the × has better topology (the adjacent calculated distances are
shorter for × than for the • point) so is considered closer than the • point.

2.2 Study Records

The BSPM signal resource contains 192-channels sampled at 1000 Hz with 12-
bit resolution, obtained from the Research Institute for Technical Physics and
Materials Science (MTA-MFA) of Budapest. These registrations, which were
separated in two independent series, hold various malfunction cases, such as
WPW syndrome, atrial and ventricular fibrillation, flutter. Our 12-lead ECG
registrations were recorded at the County Medical Clinic Nr. 4 of Târgu Mureş.
These signals were sampled at 500-1000 Hz with 12-bit resolution.

The coarse calibration of the implemented models, such as cell model, tissue
model, torso model and spatial heart model was realized using the Series 1
BSPM measurements. The preliminary ECG analyzer system (PAS) uses both
the Series 2 of the BSPM recods and our 12-lead registrations.

2.3 The Approach of ECG Inverse Problem

Most fundamental problems in theoretical ECG can be described by an inverse
solution. Their goal is to describe bioelectric cardiac sources based on knowledge
of the ECG and the volume conductor properties that surrounds the sources.

As mentioned earlier, the most cumbersome point of the inverse solutions
consist in its stability. In order to decrease the sensibility of our solution, in
our approach the heart model parameters are obtained indirectly. This approx-
imation of the inverse problem is in contrast to methods that directly solve
the matrix equation linking electrical sources with electrical potential fields to
estimate the inverse ECG solution.

We constructed the PAS based on detailed, a priori knowledge of human
anatomy and physiology. It was developed using an ANN, tested and validated
by physicians in clinical environment (see Fig. 2).
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The most important parameter that describes a whole cardiac cycle is related
to the site of origin of cardiac activation. This information was obtained using
the PAS module, where the output of the ANN provides the initial heart model
parameters.

The ECG generator unit uses the cell, tissue and torso model to simulate a
BSPM or 12-lead ECG. The objective functions that assess the similarity be-
tween the measured and simulated signals were also determined. As the structure
of the used models was determined by the anticipative general model creation
unit (AGMCU), only the proper parameter values has to be established. These
heart model parameters were determined and adjusted with the aid of optimiza-
tion algorithms or in certain cases by physicians. The simulation procedure is
performed until the objective functions satisfy the a priori given convergence
criteria. Finally the parameters are validated by physicians.

2.4 ANN-Based Preliminary ECG Analyzer System

The high number of heart model parameters implies a high dimensional searching
problem. The a priori biological knowledge must be used to drastically reduce the
number of necessary dimensions of the parameter space of heart model. The role
of PAS unit consists in a rough determination of the cardiac status and state,
that is used to initialize the model parameters and to simplify the searching
problem for the optimization system.

In the present study, the PAS was developed using a three-layer UNN. This
network is capable of mapping the non-linear input-output relationship, with
the desired degree of accuracy. An adaptively weighted coefficient calculation
method was used to train the ANN. The input layer incorporates 192 neurons,
corresponding to the number of body surface electrodes used in the present
simulation study. In case of 12-lead records, the unused channels’ signals were
estimated. From heuristical considerations, the number of hidden layer neurons
was selected to 125. The output layer had 512 neurons, which corresponded to 32
ventricular myocardial segments of computer heart model. Sixteen cardiac cellu-
lar units were selected for each of the 32 myocardial segments in the ventricles,
and each of these 16 × 32 = 512 sites was then paced in the forward simulation
using the computer heart-torso model, generating the data set for training the
ANN.

3 Results

A parameter classification algorithm was applied to distinguish normal QRS
complexes from abnormal ones, in order to determine the specific differences
between the normal and abnormal parameter values. For normal cases the de-
tection ratio is practically 100%. The signals presented in Fig. 3 were obtained
via simulation using the initial parameter set for a normal and abnormal (bypass
tract) situation.

Figure 4 presents a series of cell activation simulations. In Fig. 4(a) and (b) the
simulation of the cell depolarization mechanism is presented. The excitation rises
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Fig. 2. The schematic diagram of the heart analyzer and modeling method

Fig. 3. The simulated ECG signal in normal and abnormal case (bypass tract)

Fig. 4. The simulated depolarization in normal and abnormal case (bypass tract): (a)
activated cells in normal case after 200ms (b) activated cells in case of WPW syndrome
after 200ms (c) activation time of cells in normal case (d) activation time of cells in
case of WPW syndrome
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at the sino-atrial node. The state of the cells is illustrated with a 200ms delay
from the excitation moment. Figures 4(c) and (d) show the activation moment
of the cardiac cells. The neighbor slices have 10mm distance from each other,
so a totally 5 centimeter wide ventricular tissue is visualized. The position of
the slices is considered at a repolarized moment. Table 1 shows the efficiency of
simulation for different cases. The evaluation of the simulated results was made
by physicians. The performance was determined as the ratio of correct and total
decisions.

Table 1. Simulation performance for normal and pathological cases

Pathological case Correct Failed Performance
decisions decisions

Normal 49 0 100.00 %
Ectopic beat 24 0 100.00 %
WPW syndrome 15 1 93.75 %
Atrial flutter 43 2 95.55 %
Atrial fibrillation 20 1 95.23 %
Ventricular fibrillation 21 1 95.45 %
Re-entry mechanisms 29 3 90.62 %
Triggered activity 41 2 95.34 %
Aberrant ventricular conduction 21 1 95.45 %

Total cases 263 11 95.98 %

4 Discussion and Conclusion

Table 1 reveals that the 3D heart simulation [17,18] succeeds in most cases, such
as WPW (Wolf Parkinson White) syndrome, pre-excitations, and tissue activa-
tion modeling. The performance in case of re-entry mechanisms and triggered
events is slightly decreased due to the hazard nature of the events. The applica-
tion in practice of the model has several obstacles, which can be classified into
the following groups:

– Effects of internal and external perturbations (such as environment, sympa-
thetic and parasympathetic despondence);

– Lack of information on different elements of the model;
– Lack of technical background.

Several problems could be found, but the most important limitations are:

– The processes performed inside the cells are not well known, the behavior of
the studied components cannot be determined with an acceptable precision;

– In critical cases, if a group of cells does not get the necessary food, it changes
its behavior. A model created to simulate the normal behavior of the cell
will not simulate it correctly in abnormal case;
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– Because the structure of the heart differs from patient to patient, this struc-
ture is not known a priori, it has to be determined in real-time, based on the
available information;

– The structure of the torso introduces the same problem. It is hard to deter-
mine the electrical conductivity and precise position of its elements.

In case of human system identification the most important disturbing phe-
nomena are:

– It is known, that respiration makes the heart change its shape and posi-
tion. Although the motion of the heart can be tracked, it is not possible to
determine from the ECG the amplitude of the motion;

– The continuous motion and displacement involves very hard problems. Be-
cause the motion has an effect on the behavior of all internal elements, the
behavior of the heart will also be modified. The model has to follow the
changes of the cell properties. For example: a resting man suddenly jumps
out of the bed. The controlling mechanisms start their adjustment, the values
of model parameters will change;

– Fever and respiration frequency can also cause alterations.

External events (the patient senses something annoying or pleasant) change
the dependence between the previously measured signals, and the determined
parameters. This is one of the causes why the perfect simulation of a human
body is impossible.

At present, the performance of personal computers does not make possible the
real-time determination of parameter values. The practical application is possible
only in case of strongly parallel systems. The simplified model can be applied in
real-time, but its efficiency is reduced because of the neglected parameters. The
waveform of the simulated ECG in normal cases can be considered acceptable.
The shape and duration of basic waves have realistic values. In case of abnormal
cases the obtained waveform is not acceptable and more simulations are needed.
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Abstract. Image segmentation is a fundamental technique in medical
applications. For example, the extraction of biometrical parameter of
tumors is of paramount importance both for clinical practice and for
clinical studies that evaluate new brain tumor therapies.

Tumor segmentation from brain Magnetic Resonance Images (MRI) is
a difficult task due to strong signal heterogeneities and weak contrast at
the boundary delimitation. In this work we propose a new framework to
segment the Glioblastoma Multiforme (GBM) from brain MRI. The pro-
posed algorithm was constructed based on two well known techniques:
Region Growing and Fuzzy C-Means. Furthermore, it considers the in-
tricate nature of the GBM in MRI and incorporates a fuzzy formulation
of Region Growing with an automatic initialization of the seed points.

We report the performance results of our segmentation framework
on brain MRI obtained from patients of the chilean Carlos Van Buren
Hospital and we compare the results with Region Growing and the classic
Fuzzy C-Means approaches.

Keywords: Fuzzy Spatial Growing (FSG), Magnetic Resonance Imag-
ing (MRI), Glioblastoma Multiforme, Fuzzy C-Means, Region Growing,
Anisotropic Diffusion Filter, Image Segmentation.

1 Introduction

The high definition, contrast and resolution of soft tissues obtained with Mag-
netic Resonance Imaging (MRI), makes this image modality very useful in the
characterization of many pathological diseases located at the Central Nervous
System (CNS) (see [8], [9] and [10]). Image processing techniques, such as seg-
mentation, have motivated the development of many quantitative analysis meth-
ods to improve diagnostic and therapeutical outcomes (see [1], [9] and [15]).
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In the present work, our interest is advocated to Glioblastoma Multiforme
(GBM) segmentation from MRI. This class of glial tumor (also called glioma
grade IV) has the highest mortality and morbidity ratio between all known
brain tumors, due primarily to its very aggressive pathological behavior. This
aggressive behavior causes uncertainty in the pathological border definition and
constitutes the main inconvenient to obtain a precise anatomical diagnosis (see
[4] and [10]).

In the context of medical images many different segmentation methods exist,
but there is no universally applicable segmentation technique for all kind of image
characteristics even for the same acquisition modality (see [6]). To develop or
to apply a segmentation method, the specific pathology characteristics must be
considered before analyzing the image (see [11] and [13]).

An improved framework to segment the Glioblastoma Multiforme is proposed.
This method considers the fuzzy nature of the pathological appreciation made
by radiologist. This new algorithm incorporates the fuzziness definition of the
GBM boundaries in MRI. The formulation of our method is based on the classical
Region Growing and Fuzzy C-Means algorithms to perform tumor segmentation,
and considers the pathological nature of the GBM. We call our algorithm Fuzzy
Spatial Growing (FSG) for GBM segmentation.

We report the performance results of our segmentation framework on brain
MRI obtained from patients of the chilean Carlos Van Buren Hospital and a com-
parative study with the classical Region Growing and Fuzzy C-Means algorithms
is made.

This work is organized as follows. In section 2 the proposed segmentation
framework is stated. Section 3 shows the results obtained by applying the seg-
mentation framework to the dataset. Discussion of the results are given in
section 4. Finally concluding remarks are given in the last section.

2 Methodology

In this section we propose a framework for the GBM segmentation on MRI. We
begin the explanation with the description of the available images and then the
segmentation algorithms.

2.1 Magnetic Resonance Images Dataset

The images available for this study were obtained from two patients of the Carlos
Van Buren chilean Hospital. The patients were histopathologically confirmed to
be affected with Glioblastoma Multiforme. The images were acquired in a 1.5T
General Electric (GEMS, Milwaukee, USA) MRI System1. Each slice consists of
the following featured images: in the axial plane, T1-weighted (Fluid Attenuated
Inversion Recovery (FLAIR) sequence, with TE/TR/TI of 24/1875/750 ms),

1 This study has the corresponding agreement and authorization of the Carlos Van
Buren Hospital.
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T1-weighted + C (with gadolinium contrast enhancement, Spin Echo (SE) se-
quence, with TE/TR of 100/4375 ms and 80◦ flip angle) and T2-weighted (Fast
Spin Echo (FSE) sequence, with TE/TR of 100/4375 ms). In the coronal plane,
T1-weighted + C and T2-weighted with the same acquisition parameters as de-
scribed above. Lastly, in the sagittal plane, T1-weighted + C and T1-weighted
were acquired. From the two patients we obtained 77 images from a total of 32
anatomical slices, with spatial resolution of 4 mm3 and a slice gap of 1.5 mm.

2.2 Anisotropic Diffusion Filter

A fundamental step in medical image processing is the application of filters to
minimize effect of noise. Classical techniques for noise reduction, such as gaussian
filter or isotropic linear diffusion filter, shift the edges localization and blur the
images. This situation is undesirable due to the mismatching between the original
and resulting localization of the boundaries between regions (i.e. Glioblastoma
Multiforme).

In this work, the anisotropic diffusion filter (see [2] and [7]) was employed to
minimize noise contamination as well as to avoid boundary localization problems
(i.e. blurring) by reduction of the diffusivity in the edges that have high gradient
magnitudes. Their nonlinear process behaves as a feedback system that preserves
the edges in the different regions by adapting a diffusivity function to the image
gradient. The filter is given by:

∂f

∂t
= div(g(f, t) · |∇f |) (1)

where |∇f | is the gradient magnitude of the image f , and g(f, t) is the diffusivity
function given by

g(f, t) = exp
(

−|∇f |2
κ2

)
(2)

where κ is the diffusivity parameter and determines the gradients magnitudes
where the diffusion will begin to decrease, and therefore the edges that will be
preserved. The performance of anisotropic diffusion filter is strongly dependent
on the diffusivity function g(f, t) and on the time interval t (or the number of
iterations in the discrete domain). This function modulates the gradient magni-
tude in each iteration to decrease diffusion along the image prominent edges.

2.3 Region Growing

The Region Growing algorithm is a classical region-based approach for medical
image segmentation (see [3] and [16]). The basic approach is to start with a set
n of seed points vi, i = 1..n, of voxels interactively selected. From these seed
points regions grow by adding to each seed those neighboring voxels that have
similar properties based on predefined criteria. In this successive growing process
n regions Ri, i = 1..n, will be formed.

The similarity criteria to consider a voxel as member of the region Ri is
established according to the image properties, for example texture, topology,
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etc. In our implementation, let x be a neighbor voxel to some voxel belonging to
the region Ri. If the euclidean distance between the voxel x and the seed point
vi is less than a threshold θ then the voxel x is included to the region Ri. Finally,
the region of interest is obtained by merging each grown region

⋃
i=1..n Ri.

Unfortunately, the performance of this algorithm will strongly depend on
the correct selection of seed points and this selection depends directly on the
histopathological behavior of the Glioblastoma Multiforme in MRI. The capa-
bility of the user (radiologist) to identify the several tumor domains will be
of paramount importance for the appropriate growing process. Such domains
will be, for example, necrosis, i.e., high cellularity activity, and other biological
features proper to this tumor class.

2.4 Fuzzy C-Means

Other common approach to segment MR images is Fuzzy C-Means (FCM). This
technique is an unsupervised clustering algorithm that has been extensively used
in Pattern Recognition (see [14]). The fuzzy set obtained from classification
of the intensity distribution is especially interesting in MRI of Glioblastoma
Multiforme, due to the fuzzy definition between the tumor boundary and its
surrounding brain tissue.

This unsupervised method is an iterative procedure of fuzzy partition of the p-
dimensional feature space in C clusters. The algorithm starts from C randomly
selected vectors {v1, ..., vC} called centroids or clusters centers. The member-
ship of each data xj , j = 1..N, to the class i, i = 1..C, is computed with the
membership function given by

μ(vi, xj) = μij =
1

∑C
k=1

(
d(xj,vi)
d(xj,vk)

) 2
m−1

(3)

where m is the fuzziness exponent and d(xj , vi) is the euclidean distance measure
between the xj feature vector and the vi centroid. The membership function (3)
satisfies the properties that 0 ≤ μij ≤ 1 and

∑C
i=1 μij = 1. The centroids of each

cluster are computed in each iteration as:

vi =

∑N
j=1 μm

ij xj
∑N

j=1 μm
ij

i = 1..C (4)

The cost function, that should be minimized, is given by

Jm =
N∑

j=1

C∑

i=1

μm
ij d2(xj , vi) (5)

The centroids and the membership degrees of all features vectors are updated
until there is no meaningful change in the cost function, or equivalently, in the
centroid location in the feature space.
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In our application, we selected four clusters: fat/tumor, white matter, gray
matter and cerebral spinal fluid (CSF)/background. Additionally, to improve
the tumor classification with this method, a preprocessing (simply thresholding)
step is applied in order to eliminate fat in the images.

After applying FCM a defuzzification stage is performed in order to convert
the fuzzy membership of the feature vectors into a crisp set. This stage consists
in the specification of a certain threshold for decoding the membership degrees
into a crisp set to obtain the tumor voxels.

2.5 Fuzzy Spatial Growing for Glioblastoma Multiforme
Segmentation

A new segmentation framework is introduced in this section to avoid the draw-
backs of the above mentioned algorithms for Glioblastoma Multiforme segmen-
tation. Our method is based on the classical Fuzzy C-Means and Seeded Region
Growing approaches described above. We call our proposed framework Fuzzy
Spatial Growing (FSG) for Glioblastoma Multiforme segmentation.

The FSG method incorporates an automatic procedure to obtain seed points.
The method starts by applying first the anisotropic diffusion filter and then the
Fuzzy C-Means (FCM) algorithm. The clusters are defuzzified and the tumor
cluster is obtained. The tumor intensity features is obtained according to the
skeleton of the tumor region obtained with FCM.

The skeleton is a mathematical morphology technique described in [5]. The
skeleton determines the closest boundary points for each point in an object and
allows to extract a region-based features representing the tumor of interest. With
this approach, we obtain a vector composed by the histopathological intensity pat-
terns across the tumor region represented by all tumor intensities in the skeleton
(i.e., low to high contrast enhancement). The automatic seed points initialization
is done on points located at the skeleton of the tumor (see figure 1).

The membership function of the tumor voxels is constructed from the infor-
mation of the skeleton intensity pattern and the filtered image is considered as a
fuzzy set F . The membership values μF (x) are computed for each voxel x of the
image and depends on the information of the global gray-level image histogram.
The membership function is a trapezoidal linguistic variable constructed as

μF (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 ≤ x < α
x−α
β−α α ≤ x ≤ β

1 β < x ≤ γ
x−1
γ−1 γ < x ≤ 1

(6)

where the parameters α, β and γ are computed from the histogram. α is the mode
of the histogram and correspond to the most frequent intensities values of the
intracraneal cavity. The parameters β and γ are the minimum and maximum of
the tumor skeleton intensities respectively, and the parameters correspond to the
range of intensities where the membership to the tumor is 1, because we know for
certain that the tumor has this intensities. The intrinsic heterogeneity signal of
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the GBM in MRI and the variable degree of GBM neighboring tissue infiltration
determines that some intensities of poor contrast enhancement are between the
histogram mode and β, that are formed mostly by the gray and white matter.
Figure 1 shows how the gold standard has similar intensities than the gray and
white matter. For this reason we define α as the mode of the histogram. On
the other hand, some high cellularity tumor domains, blood vessels or fat have
similar high intensities bigger than γ, then the voxels are considered to have
some membership degree (less than one) at high intensity levels. The left side of
figure 1 shows the membership function.

After the image fuzzy set F is obtained, the spatial growing process begins
from a seed extracted from the skeleton. All the skeleton voxels are included to
the fuzzy tumor region R. The algorithm picks a voxel x from R and will add to
the fuzzy tumor region R all the neighboring voxels v ∈ N8(x) that satisfy the
following similarity criteria:

T {μF (x), S∗{v1, v2, ..., v8}} ≥ λ (7)

where

S∗{v1, v2, ..., v8} = S
{
S{S{μF (v1), μF (v2)}, S{μF (v3), μF (v4)}},

S{S{μF (v5), μF (v6)}, S{μF (v7), μF (v8)}}
}

λ is an inclusion threshold, and, T and S are the T-norm and T-conorm re-
spectively, examples of this triangular norms are the Zadeh and Lukasiewicz
approaches (see [12]).
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Fig. 1. (left) Histogram of the GBM MR image intensities, shows the empirical distri-
bution of the intensities of the overall image and the tumor gold standard, furthermore
it shows the tumor membership function used in the FSG algorithm. (right) Skeleton
used to estimate the parameters of the tumor membership function.

2.6 Evaluation Criteria

To evaluate the quality of segmentation of the algorithms, GBM were manually
segmented on MRI with the assistance of a neuroradiologist of the Carlos Van
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Buren Hospital. This manually segmented image will be our gold standard, or
also called ground truth (see [9]).

The quality was evaluated with the accuracy index. The accuracy index is
expressed as the percentage of tumor area present in both the segmented image
and in the gold standard.

The false positive error (FP ) is expressed as the percentage of tumor area
segmented that does not belong to the gold standard, i.e., region that was erro-
neously segmented as tumor region with the algorithm. The false negative error
(FN) is the percentage area of the tumor region of the gold standard that were
not segmented with the algorithm.

3 Results

In this section, we compare the quality of segmentation of the Fuzzy Spatial
Growing algorithm with the classical region growing and Fuzzy C-Means ap-
proaches. The Region Growing, FCM monospectral (1-dimensional) and FSG
algorithms were applied to T1-weighted + C images. The FCM multispectral
(2 and 3-dimensional) was applied to T1-weighted, T1-weighted + C and T2-
weighted images in the axial plane, T1-weighted, T1-weighted + C in coronal
plane, and in T2-weighted and T1-weighted + C in sagittal plane. Additionally,
for the FCM multispectral algorithm we present the results obtained with a
preprocessing stage to eliminate the fat available in all the images.

The anisotropic diffusion filter was used with parameter κ = 10 and with 10
iterations. In fuzzy clustering techniques a value of m = 2 was employed for
fuzziness exponent and four clusters were considered (gray matter, white mat-
ter, CSF-background and fat-tumor). Furthermore, all thresholds were applied
interactively.

During the experiments, the FSG algorithm outperforms the Region Growing
and FCM algorithms when the pathological condition of the tumor have an
insufficient contrast enhancement and high fuzziness in the boundary between
the tumor and the white matter. This phenomenon is due to the low cellular
metabolism or high infiltration to the neighboring tissue. Figure 2 shows two
cases, a typical segmented image and the worst GBM segmentation case.

The accuracy, false positive error and false negative error results of the three
algorithms are shown in table 1. Note that our FSG algorithm outperforms in
the three criteria to the other algorithms. This results will be discussed in the
next section.

Table 1. Outcomes obtained with each segmentation method

Technique. Accuracy (std. desv.). FP (std. desv.). FN (std. desv.).

Fuzzy Spatial Growing 96.38 % (7.16) 9.18 % (9.84) 3.63 % (7.16)

Region Growing 95.54 % (7.35) 7.65 % (9.55) 4.87 % (7.64)

FCM monospectral 93.75 % (12.63) 5.51 % (7.19) 6.24 % (12.62)

FCM multispectral 93.93 % (12.36) 5.78 % (7.79) 6.08 % (12.35)

FCM multispectral (fat eliminated) 94.79 % (9.25) 5.63 % (7.16) 5.21 % (9.25)
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Fig. 2. Segmented T1-weighted + C Magnetic Resonance images of GBM
with Fuzzy Spatial Growing algorithm: (left) Gold Standard of a segmented
GBM. (middle-left) GBM segmented with FSG. (middle-right) Gold Standard of
a segmented GBM, worst case. (right) Worst segmented case of the GBM with the
FSG.

4 Discussion

We have described a flexible method for Glioblastoma Multiforme Segmentation
in MRI that allows us to deal with the difficult properties of this tumor class. The
difficulty is due to the aggressive infiltration of cancerous cells into neighboring
tissue. This situation is the main disadvantage of the segmentation of this tumor
and is the focus of our formulation.

The possible guidance of the user expert knowledge gives Fuzzy Spatial Grow-
ing approach an additional suitability and flexibility in the segmentation process
and allows a continuous refinement of the outcomes.

The tumor segmentation result will depend on both the histopathological
properties of the Glioblastoma Multiforme and the characteristics revealed in
the MR image. After processing of all the images by Fuzzy Spatial Growing,
Region Growing and FCM, these results were compared with the gold standard.
We found both false positives and false negatives errors in the comparison be-
tween the segmented image and the gold standard. The false negative errors
corresponds to areas with weak or intermediate contrast enhancement in the tu-
mor boundary. In this sense, Fuzzy Spatial Growing was better to include these
areas, but yet it could be further optimized.

In those GBM boundary areas between the tumor and neighboring tissue
where the tumor presents high cellular activity pattern, the performance of
the FCM (monospectral and multispectral), and Region Growing algorihtms
were higher than 95%. Instead, in situations where the tumor has low contrast
enhancement areas the performance of these algorithms was poor in terms of
accuracy, with respect to the tumor areas that have more angiogenesis ratio
(formation of blood vessels, resulting in high intensities and better definition
of the tumor). For this reason, the possibility to obtain a good performance of
the segmentation algorithms resides in the detection of these tumor areas that
exhibit low contrast enhancement.

Fuzzy Spatial Growing has the advantage that it does not require seed points
initialization, i.e., the parameters selection by the users are minimized, although
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the FSG requires at least one seed point, automatically selected. On the other
hand, the drawback of the Region Growing approach in this work is that the
seed points should be selected manually by the users, and the performance of
the algorithm will depend on the expert knowledge to identify the several tumor
areas like necrosis, low and high contrast enhancement domains.

The FCM approach is intrinsically an automated method and we used it
as automatic initialization of the seed points for the FSG. Furthermore, the
intensity patterns obtained for both fuzzification stage and automatic seed points
initialization take into account more information content along the tumor that
the classical method of manually select seed points.

The assumptions that we made about the parameter values to obtain the fuzzy
set of the tumor and to initialize a single seed point work well in all of our images.
Furthermore, in the different stages of our method, the user can modify parameter
values in order to consider certain biological situations of the GBM, that allows
to refine and to grant flexibility of the segmentation process.

The only necessary user interaction consists in selecting a region of interest to
specify the tumor location and the threshold λ that controls the spatial growing
of the obtained tumor border.

5 Conclusion

In this work, we introduced and applied a suitable algorithm to segment Glioblas-
toma Multiforme on Magnetic Resonance Images. Furthermore, our reliable
method combines the expert knowledge and fuzzy properties of Glioblastoma
Multiforme to segment the brain tumor slices separately.

Our developed algorithm is based on classical approaches for image segmenta-
tion, such as Fuzzy C-Means and Mathematical Morphology to extract pattern
of intensities of the Glioblastoma Multiforme and to select seed points automat-
ically to perform the Fuzzy Spatial Growing. Additionally, a Fuzzy similarity
criteria is considered to measure the voxels memberships to the tumor.

Further work is needed to incorporate the bias field estimation to correct
or compensate the intensity inhomogeneities introduced during the acquisition
process in MRI. The FSG algorithm can be applied to other types of brain
tumors, such as low grade gliomas. Last but not least, other types of membership
functions to obtain the fuzzy sets can be explored in the algorithm.

In conclusion, Fuzzy Spatial Growing approach constitutes an applicable
method to the daily clinical practice for Computer Assisted Techniques that
have an enormous potential to increase the safety in surgical intervention of
Glioblastoma Multiforme, improving the surgical outcome and the prognosis of
the patients.
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Département TSI - Télécom-Paŕıs (2004)
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Abstract. One necessary task in the operating room is to establish a
common reference frame, in order to relate the information obtained from
different sensors, and to combine both the preoperative with the intraop-
erative information. To estimate the transformations between different
data, fiducial markers are typically used. In this paper we present a for-
mulation of the known hand-eye calibration problem, to estimate the
transformation between an endoscopic camera and the set of spherical
markers placed on it, using the conformal geometric algebra framework.
Such markers are tracked by an optical stereo tracking system, which help
to relate the real world with the virtual model created before surgery.
Experimental results shows that our method is reliable and useful for
medical applications in real time like neurosurgery.

Keywords: Hand-Eye Calibration, Geometric Algebra, Neurosurgery,
Endoscope Calibration.

1 Introduction

In general, the registration process consists in the estimation of a common ge-
ometric reference frame between two or more data sets. These data sets can
be data taken using different modalities, or the same modality but in different
times. In surgery, the registration is made with the purpose of having more pre-
operative and intraoperative information for diagnostic and navigation. That is,
registration helps to relate the positions of surgical instruments tracked in real
time by an optical tracking system, with the virtual model created with pre-
operative images. In the operating room, there are multiple local coordinates
systems that must be related in order to show to the surgeon a virtual model of
what is happening in the real world. The figure 1 illustrates the scenario. When
using information obtained from endoscopy or neuro-sonography, we must relate
what is been observed by the endoscopic camera (or ultrasound system), with
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Fig. 1. Some of the different coordinates systems present in the operating room: sur-
gical instruments (1,2), optical tracking system (3), virtual model(4), endoscopy (5)

the virtual model. Therefore, calibration techniques are needed to register all
the equipment needed in surgery.

In this paper we are proposing a formulation of the hand-eye calibration prob-
lem, which is known in robotics community [3,4,5,6], but in terms of the Confor-
mal Geometric Algebra in order to calculate the transformation (rotation and
translation) between the coordinate system of the endoscopic camera, and the
coordinate system of the spherical markers placed to the endoscope. We call this
task the endoscope-tracking calibration. The proposed method in this paper in
contrast to [3], computes both rotation and translation, at the same time; in ad-
dition to, our formulation avoids to take care of certain particularities which we
need to take into account in other methods [4,5,6], making simpler to understand
and to compute them.

2 Geometric Algebra

The Geometric Algebra Gp,q,r is constructed over the vector space Vp,q,r, where
p, q, r denote the signature of the algebra; if p �= 0 and q = r = 0, the metric is
Euclidean; if only r = 0, the metric is pseudo euclidean; if p �= 0, q �= 0, r �= 0,
the metric is degenerate. In this algebra, we have the geometric product which is
defined as in (1) for two vectors a, b, and have two parts: the inner product a · b
is the symmetric part, while the wedge product a ∧ b is the antisymmetric part.

ab = a · b + a ∧ b. (1)

The dimension of Gn=p,q,r is 2n, and Gn is constructed by the application of the
geometric product over the vector basis ei. This results in a basis for Gn con-
taining elements of different grade called blades (e.g. scalars, vectors, bivectors,
trivectors, etc): 1, e1...e12...e123...I, which is called basis blade; where the element
of maximum grade is the pseudoscalar I = e1 ∧e2...∧en. Given a multivector M
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(linear combination of blades), if we are interested in extracting only the blades
of a given grade, we write 〈M〉r where r is the grade of the blades we want to
extract (obtaining an homogeneous multivector M ′ or a r-vector).

2.1 Conformal Geometric Algebra

To work in Conformal Geometric Algebra (CGA) G4,1,0 means to embed the
Euclidean space in a higher dimensional space with two extra basis vectors which
have particular meaning; in this way, we represent particular objects of the
Euclidean space with subspaces of the conformal space. The vectors we add are
e+ and e−, which square to 1, −1, respectively. With these two vectors, we define
the null vectors

e0 =
1
2
(e− − e+); e∞ = (e− + e+), (2)

interpreted as the origin and the point at infinity, respectively. From now and
in the rest of the paper, points in the 3D-Euclidean space are represented in
lowercase letters, while conformal points in uppercase letters. To map a point
x ∈ V3 to the conformal space in G4,1, we use

X = x +
1
2
x2e∞ + e0. (3)

The table 1 shows the representation some the entities in CGA. All these entities
and their transformations can be managed easily using the rigid motion operators
described later.

Table 1. Standard representation of different entities in conformal geometric algebra

Entity Standard representation Entity Standard representation

Sphere S = c + 1
2 (c2 − ρ2)e∞ + e0 Point pair PP = S1 ∧ S2 ∧ S3

Point X = x + 1
2x2e∞ + e0 Circle Z = S1 ∧ S2

Line L = rIE + e∞mIE Plane P = nIE − de∞

r = a − b n = (a − b) ∧ (a − c)

m = a ∧ b d = (a ∧ b ∧ c)IE

In CGA, rotations are represented by the rotors, which are defined as

R = e
1
2bθ = cos

θ

2
+ b sin

θ

2
(4)

where b is the bivector dual to the rotation axis, and θ is the rotation angle.
Rotation of an entity is carried out by multiplying it by the left with the rotor
R, and by the right for the reversion of the rotor R̃: X ′ = RXR̃. Translation is
carried out by the so called translator

T = e
e∞t

2 = 1 +
e∞t

2
(5)
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where t ∈ 〈G3〉1 is the translation vector. Note that this operator can be inter-
preted as a special rotor, expressed in a null space because e2

infty = 0. Transla-
tions are applied in a similar way to rotations: X ′ = TXT̃ .

To express rigid body transformations, rotors and translators are applied con-
secutively. The result is called motor :

M = TR (6)

Such operator is applied to any entity of any dimension by multiplying the entity
by the operator from the left, and by the reverse of the operator from the right:
X ′ = MXM̃ . The motor M is a special multivector of even grade. To see its
components, let us carry out the multiplication of R and T

M = TR

= (1 +
1
2
e∞t)(cos(

θ

2
) + b sin(

θ

2
))

= cos(
θ

2
) + b sin(

θ

2
) +

1
2
e∞(t(cos(

θ

2
) + b sin(

θ

2
)))

= R + R′ (7)

Since the multiplication of a vector t ∈ 〈G3〉1 by a bivector b ∈ 〈G3〉2 results in
a multivector of the form λ1e1 +λ2e2 +λ3e3 +λ4e123, and since t cos( θ

2 ) ∈ 〈G3〉1,
we can rewrite (7) as

M = cos(
θ

2
) + b sin(

θ

2
) +

1
2
e∞(t cos(

θ

2
) + tb sin(

θ

2
))

= cos(
θ

2
) + b sin(

θ

2
) +

1
2
e∞(t cos(

θ

2
) + λ1e1 + λ2e2 + λ3e3 + λ4e123

= cos(
θ

2
) + b sin(

θ

2
) + e∞(t′ + λe123)

= cos(
θ

2
) + b sin(

θ

2
) + e∞t′ + λe∞123) (8)

where t′ ∈ 〈G3〉1 and λ = 1
2λ4. Note that e∞t′ is a bivector with components

e∞1, e∞2, e∞3. If we take only the bivectorial parts of the motor M, we obtain

〈M〉2 = 〈R〉2 + 〈R′〉2
= m + m′

= sin(
θ

2
)b + e∞t′ (9)

Therefore, if we express the vector t′ in terms of their dual bivector t′ = t′′IE ,
we can rewrite (9) as

〈M〉2 = b′IE + e∞t′′IE (10)

If we see the representation of the lines in the table 1, we observe that the
bivectorial part of the motor M is in fact a line and it corresponds to the screw
axis in which is carried out the rotation and translation of the object.
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3 The Endoscope-Polaris Calibration in CGA

The hand-eye calibration is the calculation of the relative pose (position and
orientation) between a robotic hand (arm) and a rigid camera mounted on it.
Using this camera, we can determine the position in its coordinate system of an
objective to catch or to reach; however, the commands of movements are in the
coordinate system of the robotic hand (arm); therefore, to know the hand-eye
transformation can be of great utility in this kind of tasks.

The usual way to describe the hand-eye calibration is by means of homoge-
neous transformation matrices [3,4]. In order to solve this problem, at least two
movements are required with non parallel rotation axes, and several methods
have been proposed to find the solution: some people estimate the rotation at
first and later the translation [3], while others make it simultaneously [4]. Dani-
ilidis [5] presents a solution based on dual quaternions, while [6] proposes the
use of the motor algebra G3,0,1. This work formulates the problem in terms of
motors of the conformal geometric algebra framework. Since motor algebra is a
subalgebra of conformal algebra, we can also formulate in conformal geometric
algebra the hand-eye problem making use of the motors in CGA. Following the
formulation of [6] for the hand-eye calibration problem, it will be expressed as

MAMX = MXMB (11)

where MA = A + A′, MB = B + B′ and MX = R + R′ (Sect. 2.1). In [6], it is
shown that the problem is solved using the lines defined by the motors

LA = a + a′

= MXLBM̃X

= (R + R′)(b + b′) ˜(R + R′)
= RbR̃ + e∞(RbR̃′ + Rb′R̃ + R′bR̃) (12)

where a, a′, b, b′ are bivectors (like in (9)). By separating the real part and the
part multiplied by e∞, we have

a = RbR̃ (13)
a′ = RbR̃′ + Rb′R̃ + R′bR̃ (14)

Multiplying from the right by R and using the relationship R̃R′ + R̃′R = 0, the
following relationships are obtained

aR − Rb = 0 (15)
(a′R − Rb′) + (aR′ − R′b) = 0 (16)

which can be expressed in matrix form as
[

a − b [a + b]× 03×1 03×3

a′ − b′ [a′ + b′]× a − b [a + b]×

] [
R
R′

]
= 0 (17)
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We call D to this 6×8 matrix; the unknown vector [R, R′]T is 8-dimensional. The
notation [u]× represents the skew-symmetric matrix formed with the vector u.
The matrix D is composed only by bivectors (blades of any other grade are not
included), therefore we can use the SVD method to find [R R′]T as the kernel
of D.

Considering that we have n ≥ 2 movements, the following matrix is built

C =
[
DT

1 DT
2 DT

3 DT
4 ...

]T (18)

in order to apply the SVD method and to find the solution for [R, R′]T . Since
the range of the matrix C is at most 6, the last right two singular vectors, v7 and
v8 correspond to the two singular values whose value is zero or near to zero, and
such vectors expand the null space of C. Therefore, as [R, R′]T is a null vector
of C, we can express it as a linear combination of v7 and v8. If we express these
vectors in terms of two vectors of 4D v7 = (u1, v1)T and v8 = (u2, v2)T , this
linear combination can be expressed as

[
R
R′

]
= α

[
u1
v′1

]
+ β

[
u2
v′2

]
(19)

Taking into account the geometric constraints

RR̃ = 1 y R̃R′ + R̃′R = 0 (20)

we obtain the following quadratic equations in terms of α and β

α2uT
1 u1 + 2αβuT

1 u2 + β2uT
2 u2 = 1 (21)

α2uT
1 v1 + αβ(uT

1 v2 + uT
2 v1) + β2uT

2 v2 = 0 (22)

In order to solve these equations, we make a change of variable, substituting
in (22) μ = α/β and we obtain two solutions for μ. Going back to (21) and
replacing the relationship α = μβ, we obtain

β2(μ2uT
1 u1 + μ(2uT

1 u2) + uT
2 u2 = 1 (23)

which takes two solutions for β.
The optical tracking system used is the Enhanced Hybrid Polaris System,

which is labeled as (3) in the scenario shown in figure 1. This system emits
infrared light that is reflected by markers placed to the object we are interested
to track; the reflected light is detected by the sensors of the Polaris system, and
then it estimates the 3D position of the different markers. We attach the local
coordinate system of the markers to one of them. By this way, we know the
transformation between the markers reference frame and the Polaris reference
frame.

When using information obtained from endoscopy or neuro-sonography, we
must relate what is been observed by the endoscopic camera (or ultrasound sys-
tem), with the virtual model. To solve this problem, we propose the formulation
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of the hand-eye calibration problem in terms of the Conformal Geometric Alge-
bra, to calculate the transformation between the coordinate system of the endo-
scopic camera, and the coordinate system of the spherical markers placed to the
endoscope. We call this task the endoscope-Polaris calibration. The scenario is
shown in figure 2, where the reader can see that there is a (rigid) transformation
between the calibration grid, and the Polaris System, MBg . Such transformation
will be used to validate the results of the endoscope-Polaris calibration method.
The transformations involved in the problem are expressed as motors of the

Fig. 2. The problem of the calibration between the endoscopic camera and the optical
tracking system (Polaris)

CGA: M = TR.
The procedure is summarized as follows

1. Given n movements of the endoscopic camera (we move it freely by hand to
arbitrary positions), MBi , and their corresponding movements MAi , verify
if their scalar parts are equal.

2. For the movements that fulfill the previous requirement, extract the direc-
tions and moments of the lines LAi and LBi defined by the motors. Build
the matrix C as in (18).

3. Apply SVD to matrix C. Take the right singular vectors v7 and v8 corre-
sponding to the two singular values nearest to zero (a threshold is applied
by the noise).

4. Compute the coefficients for (22) and find the two solutions of μ.
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5. For both values of μ, compute the value of μ2uT
1 u1 + 2μuT

1 u2 + uT
2 u2 and

choose the one that gives the biggest value. Then, compute α and β.
6. The final solution is αv7 + βv8

4 Experimental Results

In order to validate the accuracy of the estimated transformation MX, we use
the calibration grid used to calibrate the endoscopic camera by Zhang’s method
[7], and shown in Fig. 3.a. Let be Xg the set of points corresponding to the
corners of the calibration grid, referred to Ogc . These coordinates are expressed
in millimeters, according to the size of each square in the calibration grid, which
in our case has 1.25 mm by side.

1. Taking the points Xg in the grid reference frame, apply the transforma-
tion MAi to express them in the camera’s reference frame. Let be XAi the
resulting points.

2. Project the points XAi to the image plane using

xAi = K [RMA tMA ] XAi (24)

These points should be projected on the corners of the squares in the cali-
bration grid on the image (Fig. 3).

3. Taking the points Xg, apply the transformations MBg , MBi and MX. Let
be XMBiX the resulting points.

4. Project the points XMBiX onto the image plane using

xBi = K [RMBiX tMBiX ] XMBiX (25)

In the ideal case (without noise), the projected points xAi should match
with the projected points xBi . However, as a result of noise in the Polaris
readings or noise in the estimation of transformations, takes place a small
linear displacement between xAi and xBi (see Fig. 4.a). We can measure the
error ε between the two projections as

ε =
∑n

i=1 (xAi − xBi)
n

(26)

a) b)

Fig. 3. a) Original image; b) Result of the projection using (24); it is included a zoom
of the marked region for better visualization
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a)

b)

Fig. 4. a) Result of the projection using (25); b) Result applying (27)

5. In order to correct the displacement, the centroid of each point set is calcu-
lated: cAi and cBi . Then, the points xBi are displaced in such a way that
the centroids match.

x′
Bi

= xBi + (cAi − cBi) (27)

After the displacement, the average error is calculated as

ε′ =
∑n

i=1 (xAi − x′
Bi

)
n

(28)

The figure 4.b shows the result after doing such correction to the points
showed in figure 4.a.

The table 2 shows the errors measured for 9 different images without the
telescope, while the table 3 shows the measured errors with 16 images with the
telescope attached to the camera. Remember that the telescope is attached to
the camera, then it is introduced to the patient’s head in order to see and
navigate inside the head.

Table 2. Average errors according to (27) and (28), measured in millimeters when
projecting to the image plane the points Xg , according to (24) and (25) without the
telescope attached to the camera

Image ε (26) ε′ (28) Image ε (26) ε′ (28) Image ε (26) ε′ (28)

1 0.029 0.246 4 0.038 0.254 7 0.036 0.242

2 0.029 0.291 5 0.054 0.273854 8 0.030 0.290

3 0.029 0.327 6 0.026 0.285 9 0.030 0.263
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Table 3. Average errors according to (27) and (28), measured in millimeters when
projecting to the image plane the points Xg according to (24) and (25) attaching the
telescope to the camera

Image ε (26) ε′ (28) Image ε (26) ε′ (28) Image ε (26) ε′ (28) Image ε (26) ε′ (28)

1 0.068 0.111 5 0.125 0.149 9 0.039 0.041 13 0.048 0.051

2 0.067 0.222 6 0.057 0.146 10 0.244 0.258 14 0.031 0.103

3 0.048 0.150 7 0.163 0.204 11 0.063 0.462 15 0.057 0.082

4 0.076 0.162 8 0.075 0.090 12 0.048 0.142 16 0.033 0.1022

5 Conclusions

In this work we have presented a method to estimate the transformation relat-
ing an endoscopic camera used in surgical procedures, with the set of spherical
markers placed on it, which are tracked by an optical tracking system. By this
way, we have all the transformations needed to appropriately compute a com-
posed transformation relating the preoperative data (virtual model) with the
intraoperative data obtained from the endoscopic camera.

The presented approach take advantage of the representation of rigid trans-
formations (rotation and translation) in the conformal geometric algebra, which
are expressed as versors called motors. The composition of such motors was ana-
lyzed, showing that they contain the line representing the screw axis in which is
carried out the rotation and translation of the object. Then the transformation
is estimated based on the lines defined by the motors in different movements of
the endoscopic camera. We think that numerical results prove that the method
is accurate enough and it is suitable to be used in real surgeries.
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Abstract. The quality of biometric samples used by multimodal bio-
metric experts to produce matching scores has a significant impact on
their fusion. We address the problem of quality controlled fusion of mul-
tiple biometric experts and focus on the fusion problem in a scenario
where biometric trait quality expressed in terms of quality measures
can be coarsely quantised. We develop a fusion methodology based on
fixed rules that exploit the respective advantages of the sum and product
rules and can be easily trained. We show in experimental studies on the
XM2VTS database that the proposed method is very promising.

Keywords: Biometric authentication, fixed rules, multiple classifiers
system, multimodal fusion, quality dependent fusion.

1 Introduction

Biometric authentication is the verification of a user’s identity by means of
his/her physical and behavioural characteristics. Studies, e.g. [1] have shown
that the fusion of experts improves the system performance when compared with
individual experts. However poor quality biometric data may have the opposite
effect [2,3]. This finding motivated the investigation of quality based fusion.
It has been shown in [4,5,6,7,8,9,10] that quality based fusion improves signif-
icantly the performance, as compared to conventional fusion methods ( fusion
without the use of quality information).

The recent research into quality based score fusion shows that it is beneficial
to include quality information as input to the fusion process. In confidence based
decision fusion, quality information is also used as a control parameter to select
which modality’s decision to follow. Most of the quality based multimodal fusion
techniques deploy training for the fusion stage design [4,5,6,10]. The exception
is [7], where the product rule is used, after adapting the scores by computing
the likelihood ratio of estimated densities.

In this paper we address the problem of quality controlled fusion of multiple
biometric experts. We focus on the fusion problem in a scenario where biometric
trait quality expressed in terms of quality measures can be coarsely quantised.
We develop a fusion methodology based on fixed rules that can be easily trained.
The methodology involves a two stage process whereby in the first stage expert
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scores are grouped according to the quality of the underlying biometric sample.
In each quality group the scores are combined by averaging. The resulting group
scores are finally combined by product. We argue that the proposed scheme ex-
ploits the properties of fixed fusion rules in the best possible way and provide
experimental evidence to support this argument. The proposed scheme is exper-
imentally evaluated on the XM2VTS database. The results show that significant
performance gains can be achieved. The performance is comparable to the state
of the art method reported in [10] but the proposed fusion system is much easier
to design and requires less data for training.

The rest of the paper is organised as follows. In Section 2 we introduce the
proposed methodology. The database used in the study is described in Section 3.
An overview of the biometric experts used for experiments is presented in Section
4. Section 5 discusses the quality measures used to characterise biometric sample
quality. We also report in this section the coefficients of correlation between
expert scores in different quality categories. The fusion experiments carried out
are described in Section 6 where the results of experiments are also discussed.
Section 7 draws the paper to conclusion.

2 Proposed Methodology

The study of fixed fusion rules in [1] demonstrates that the sum rule outperforms
all other fixed rules. Alkoot et al. showed in [11] that the product rule may
outperform even the sum rule, provided the veto effect of conflicting low valued
scores is suppressed. The product rule and the sum rule have been compared by
Kittler et al. in [1] and Tax et al. in [12]. These studies demonstrate that the
sum rule is robust to noise. The sensitivity of the product rule to noise is due to
the veto effect. Tax et al. also show that the product rule outperforms the sum
rule when the correlation between data is low and noise is low. However if the
noise is high, the product rule becomes unreliable even when correlation is low.
These studies lead to the following conclusion:

– if a high level of noise is present, the sum rule is preferable.
– for low noise and low correlation, the product rule should be favoured as it

outperforms the sum rule in these conditions.
– when experts are highly correlated, even when the noise level is low the

sum rule should be chosen, as it outperforms the product rule under these
conditions.

[1] shows theoretically that the product rule is more sensitive to noise than the
sum rule, hence why it deteriorates on noisy data.

In this paper we consider the problem of fusing multiple experts providing
scores on biometric data of varying quality. The scores are assumed to be nor-
malised, so that any fixed rule, including the product rule can be used for fusion.
Thus the score values are confined to the interval [0, 1]. Without loss of gener-
ality, we assume that a score is high (close to 1) for a good match, i.e. when
comparing a probe of a genuine claimant against a template of the true client
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identity. Impostor score values, of course, would be lower. Clearly for biometric
samples of low quality, both the client scores and impostor scores would shift to-
wards the lower end of the score range. It is evident, that when the quality of the
biometrics trait varies, a single threshold would not be adequate, as the scores
generated by high quality traits of imposters are likely to exceed the scores of
true clients derived from low quality biometric data. This problem can be solved
by considering the threshold to be a function of the set of quality measures char-
acterising the biometric data. However learning the regression function requires
a large amount of data which is not always available.

A similar problem, but greatly amplified, arises in multiple expert fusion.
The additional complexity derives from the fact the threshold for the fused
score becomes a function of the quality measures of all biometric modality traits
jointly. The reason for this is that the fusion potentially involves expert scores
associated with different qualities and this will impact on the optimal threshold
to be applied to the fused score. The regression function defining the optimal
threshold is much more difficult to learn, as the number of variables involved
in regression increases without the commensurate increase in the number of
training samples. This problem was investigated in detail in [10] where it was
demonstrated that significant gains in performance can be obtained by quality
dependent fusion where the fusion was realised as a Support Vector machine
using both component expert scores and biometric trait qualities as features.

It would appear, therefore, that the key advantage of fixed fusion rules, namely
their simplicity and ease of training, is seriously compromised when the experts
to be fused use data of different quality. However, in many situations the bio-
metric data quality will not necessarily be uniformly distributed with respect to
the various quality measures. Instead, it is likely to be clustered. For instance, if
the biometric data is collected in a small set of distinct environments, or using
a small set of devices supplied by different manufacturers or involving sensor
technology for a particular biometric trait designed on different principles, the
data acquired will tend to cluster into a number of quality states corresponding
to the distinct conditions of data acquisition. In such situation it would be fea-
sible to group the experts according to the quality state of the biometric data
used for computing their score. In each group, it should then be possible to use
a fixed fusion rule and subsequently, combine the group scores to produce the
final fused result.

We shall develop the above ideas into a practical fusion methodology applica-
ble under the assumption that the biometric data can sensibly be divided into
two quality states. We shall see in Section 5 that this assumption is valid for the
biometric database, XM2VTS, used for our experiments. In order to be more
specific, we shall introduce the necessary mathematical notation.

Let i = 1 : n samples, j = 1 : R experts, and m = 1 : M modalities. The
decision whether to assign the quality of a biometric sample xj,i to high or low
quality, is dependent on the quality measure, qi,m, of the sample, its mean qm

and the standard deviation σqm and biometric modality in the evaluation data
set. A sample xj,i is marked as high quality if qi,m ≥ qm − σqm , else it is of



884 O. Fatukasi, J. Kittler, and N. Poh

low quality. Let rz,i be the number of experts working with samples of quality
zε{high, low}. Based on this decision rule we can identify three situations: i)
all-high rlow,i = 0, ii) all-low rhigh,i = 0, and iii) mixed where both rhigh,i and
rlow,i are nonzero.

We shall see in Section 5 that experts tend to be correlated. Thus for every
sample, within each group, the preferable fixed fusion rule is the sum rule. The
fused score for the ith sample in group with quality z is thus given as

Sz(i) =
{ 1

rz,i

∑rz,i

p=1 xp,i if rz,i ≥ 1
1 if rz,i = 0

}
(1)

Setting the sum to 1 when a group contains no expert is for a later convenience.
Now, in each group we will end up with two averaged scores Shigh(i) and

Slow(i). Especially in the mixed group these two scores can further be combined
by a fixed rule. We shall see later that the score averaging process in each
group results in fused scores Sz(i), zε{high, low} which are much less noisy, and
surprisingly, also less correlated. This suggests that the optimal fixed fusion rule
for this second fusion stage should be the product rule. Accordingly, the final
fused score S(i) for sample i will be given as

S(i) = Shigh(i) × Slow(i) (2)

The resulting score S(i) is then compared against the threshold Dθ where
θε{high, low, mixed}. These thresholds are estimated from the training data but
it is a relatively simple task.

3 Database

In the current study, we used the original XM2VTS database[13] and its degraded
version [14] in both the training and the test phase of the fusion methods. The
original database contains mugshot images with well controlled illumination.
The low quality section contains images taken under strong side illumination,
which has been shown to degrade significantly face verification performance [14].
This database contains 295 individuals, divided into 200 clients, 25 impostors for
the algorithm development (training), and 70 impostors for algorithm evaluation
(testing). For each subject, face and speech biometric modalities are acquired
in four sessions; the first three are used for training the classifiers and the last
one for testing. For the face modality we consider the dark data set with left
illumination as the ”fifth session” and the one with right illumination as the
”sixth” session. There is unfortunately no equivalent of degraded speech data
that can be paired with the degraded face images. We created degraded biometric
data by first introducing additive white noise with a uniform random distribution
between 0 and 20dB signal-to-noise ratio on the clean speech database, hence
resulting in a degraded speech database with exactly the same size as the clean
database. We then paired the degraded face images with the degraded speech
data according to Table 1. For instance, the first row shows that the first shot
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Table 1. Matching of degraded face and speech data

Degraded face Degraded speech
session shot session shot

5 1 1 2
5 2 2 2
6 1 3 2
6 2 4 2

of degraded face image in the fifth session is matched with the second shot of
the degraded speech recorded in session one, and so on.

Experimentation with good and degraded data set is important as it reflects
a more realistic scenario than the use of only good data. During the data cap-
ture of the development data set the environment can be controlled, however in
operation the quality is likely to be more varied. Having a good biometric data
for the development set and mixed quality biometric data for the operational
phase can lead to bad system performance as degraded data is not taken into
account in the development stage. It is therefore essential to have representative
examples of degradation also for the development.

Unfortunately, the way the experimental data set has been constructed does
not allow us to test systematically the merit of fusion when one modality is of
good quality and the other one is degraded. Although this is more realistic, there
is no obvious solution to introducing this scenario.

The original experimental protocols known as the Lausanne Protocols, did not
envisage that for the XM2VTS database the degraded data sets would be used for
algorithm development. However, in order to make degraded data avaliable for
training, we used the 25-impostor data set in which good and degraded quality
data is available. For clients, we divided these 200 subjects into 20- and 180-client
data sets such that the 20-client data set is set aside uniquely for algorithm devel-
opment and the 180-client for both algorithm development and evaluation. The
resulting protocol for mixed quality scenario is summarised in Table 2.

Table 2. The XM2VTS clean and degraded protocol

Sessions Shots 180 Clients 20 Clients 25 Imposter 70 Imposter

S1 1 Training Training
2 Evaluation Evaluation

S2 1 Training Training
2 Evaluation Evaluation Evaluation Test

S3 1 Training Training
2 Evaluation Evalaution

S4 1 Test Test
2

Degraded L1,R1 Test Evalaution Evaluation Test
L2,R2 degraded degarded degraded degraded
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4 Experts

The classifiers used for the face experts in this paper can be found in [15]. There
are two classifiers with three types of pre-processing, hence resulting in a matrix
of six classifiers. The two classifiers used are Linear Discriminant Analysis (LDA)
with correlation as a measure of similarity [16] and Gaussian Mixture Model
(GMM) with maximum a posteriori adaptation, described in [17]. The use of
the GMM in face authentication was proposed in [18]. The face pre-processing
algorithms used include the photometric normalisation as proposed by Gross and
Brajovic [19], histogram equalisation and local binary pattern (LBP) as reported
in [15]. The feature extraction and classification algorithms are implemented in
the open-source Torch Vision Library1.

The speech system used is implemented with the ALIZE toolkit [20].

5 Quality Measures

In this paper, we used a set of proprietary quality measures developed by Om-
niperception Ltd for the face image quality assessment. These measures are:
“frontal quality”, measuring the deviation from the frontal face; and “illumina-
tion quality”, quantifying the uniformity of illumination of the face.

Two quality measures are used for the speech system: signal-to-noise ratio
(SNR) and “entropy quality”. Both measures are used for voice activity detec-
tion, i.e., to separate speech from non-speech.

These measures can be found in [21]. Thus each modality has two quality mea-
sures; “frontal quality” and “illumination quality” for face, signal-to-noise ratio
(SNR) and “entropy quality” for speech. These are averaged for each modality.

Table 3. Coefficient of correlation between the six face and one speech experts com-
puted on the development set for the client (in bold) and imposter (in italic). f1 to
f6 are the six face experts and v1 is the speech expert. (a), (b) and (c) shows the
correlation coefficient for claims where the quality measure for the biometric data is
mixed, low, or high for all experts repectively.

f1 f2 f3 f4 f5 f6 v1

(a) Mixed quality dataset

f1 1.00/1.00 0.82/0.51 0.76/0.39 0.74/0.20 0.71/0.06 0.70/0.08 0.32/0.00
f2 0.82/0.51 1.00/1.00 0.85/0.47 0.84/0.17 0.84/0.07 0.79/0.03 0.42/-0.02
f3 0.76/0.39 0.85/0.47 1.00/1.00 0.78/0.16 0.73/0.08 0.80/0.11 0.20/-0.01
f4 0.74/0.20 0.84/0.17 0.78/0.16 1.00/1.00 0.93/0.39 0.02/0.31 0.38/0.05
f5 0.71/0.06 0.84/0.07 0.73/0.08 0.93/0.39 1.00/1.00 0.91/0.37 0.49/0.09
f6 0.70/0.08 0.79/0.03 0.80/0.11 0.92/0.31 0.91/0.37 1.00/1.00 0.29/0.07
v1 0.32/0.00 0.42/-0.02 0.20/-0.01 0.38/0.05 0.49/0.09 0.29/0.07 1.00/1.00

1 Available at “http://torch3vision.idiap.ch”. See also a tutorial at “http://www.
idiap.ch/marcel/labs/faceverif.php”.
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It is interesting to note the correlation between the experts using low and high
quality data. Table 3 shows the correlation coefficient between all the experts
for clients (in bold) and imposters (in italic) in the development data set. It can
be noted that all the face experts are correlated, but the speech expert is not
correlated to any of the face experts.

Most importantly, for the mixed quality scenario the resulting two fused scores
have low correlation. In fact the correlation coefficient of the combined scores
obtained by averaging in each group is 0.3684/-0.2888 client/imposter for the
development set and 0.2946/-0.3235 client/imposter for the evaluation set. This
confirms that these group scores are better suited for fusion by the product rule,
as proposed in Section 2.

6 Experiments and Results

We have designed experiments to compare the following:

– fixed rule fusion with trained fusion.
– fixed rule fusion with quality and conventional fixed rule fusion
– using quality as a feature in the fusion process and using quality controlled

fusion.

The performance of the six face and one speech experts is shown in Table 4.
The overall performance is not high due to the influence of low quality biometric
data. We consider the set of all 26 − 1 possible combinations of the face experts
to be fused with the speech expert for multimodal authentication.

Table 4. Baseline systems, a priori half total error rate (HTER) (%) of good +
degraded test data, with the a priori HTER (%) of the good and degraded data sets
recorded separately. The separate good and degraded data results were obtain by using
the threshold (Δ) set on the good + degraded training data.

good + degraded good degraded
modality no. HTER (%) HTER (%) HTER (%)

face 1 11.06 6.66 13.50
face 2 7.67 3.48 9.78
face 3 8.29 5.86 9.57
face 4 10.39 2.13 17.17
face 5 24.56 2.97 39.28
face 6 16.96 5.51 23.42

speech 1 11.40 1.15 17.48

Figure 1(a) shows the result of the sum rule vs the proposed quality controlled
fusion. It can be seen that the quality controlled fusion outperforms the sum rule
in all fusion tasks. Another interesting point to note is that the best performance
was not obtained when all the face experts were used jointly, but when two, three,
or at most four experts are fused together.
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Fig. 1. (a) A priori HTER (%) of good + degraded test data, with Mean Fusion vs
Proposed Quality Controlled Fusion. Each point in the figure represents one of the pos-
sible 63 multimodal fusion tasks. The numeric labels in the legend indicate the number
of face experts fused with the only speech expert. (b) Relative a priori HTER(%) of
the sum fusion, logistic regression without quality measure, logistic regression with
quality (Kittler et al. [10]), SVM with quality measure (Fierrez-Aguilar et al. [4]), and
the proposed quality controlled fusion.

Figure 1(b) shows the relative a priori HTER (%) of conventional sum fusion,
a logistic regression with just the expert score as the input to the fusion process,
logistic regression with quality measure added as an input feature, proposed
in [10], SVM with quality measure used to normalised the score proposed by
Fierrez-Aguilar et al. in [4], and the proposed quality controlled fusion method.
It is interesting to note the following:

1. For logistic regression the average observed relative improvement is 14%
with the best improvement realising 39%. This is expected as a trained rule
is likely to outperform a fixed rule when the performance of expert varies, as
shown in Table 4. However for certain sets of experts, the logistic regression
can degrade the performance by as much as 9%.

2. For the method proposed in [10], there is an improvement in all fusion tasks
with an average of 33% but as much as 49% can be achieved.

3. For the method proposed by Fierrez-Aguilar et al. in [4] an average improve-
ment of 15% with a peak gain of 42% and the worst loss of 8%.

4. For our proposed quality controlled fusion method, there is an improvement
in all the fusion tasks with an average improvement of 27%, but up to 39%
can be achieved.

These observations highlight the following:

1. Fusion using quality information outperforms conventional fusion.
2. In score level fusion, quality measures can be used in two ways; as input to

the fusion process, or as a control parameter.
3. When using quality measures as part of the input to the score level fusion,

the method proposed in [10] provides the best average performance and clear
improvement in all the fusion experiments. This is evident from Figure 1(b).
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4. The score level fusion with the proposed quality control offers very good
average performance, and it also provides improvement in performance in all
fusion tasks in the experimental comparison with the sum rule. In fact the
proposed quality control with a fixed rule performs better than the logistic
regression, as shown in Figure 1(b).

7 Discussion and Conclusion

We addressed the problem of quality controlled fusion of multiple biometric ex-
perts. We focused on the fusion problem in a scenario where biometric trait qual-
ity expressed in terms of quality measures can be coarsely quantised. We devel-
oped a fusion methodology based on fixed rules that can be easily trained. The
methodology involves a two stage process whereby in the first stage expert scores
are grouped according to the quality of the underlying biometric sample. In each
quality group the scores are combined by averaging. The resulting group scores
are finally combined by product. We argued that the proposed scheme exploits the
properties of fixed fusion rules in the best possible way and provided experimental
evidence in support of this argument. The proposed scheme was experimentally
evaluated on the XM2VTS database. The results showed significant performance
gains over conventional fusion. The performance is comparable to the state of the
art method reported in [10] but the proposed fusion system is much easier to de-
sign and requires less data for training. The proposed method can be used not
only for multimodal fusion, but also for intramodal fusion, provided the quality
measures of the biometric sample is different for each expert [9].
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Abstract. Image registration is an important preprocessing procedure for 
remote sensing image applications, such as geometric correction, change 
detection, and image fusion. Since it is a time-consuming and labor-intensive 
task to correctly register the remote sensing image, this paper proposes a fully 
automatic and robust approach for the remote sensing image registration. First, 
the image pyramid of working and reference images are constructed for coarse 
to fine matching processing. Second, the feature points can be automatically 
extracted from the reference image, and the matching point can be searched on 
the working image. Third, in order to improve the accuracy of registration, the 
robust estimation serves as an important tool in preserving the correctly 
matched points. Three sets of satellite images, which include multi-sensor, 
multi-temporal and multi-spectrum images, are used to test the proposed 
approach. Results show that the approach is capable of automatically registering 
the working image to the reference image with great precision.     

Keywords: Image Registration, Remote Sensing Image, Automatic and Robust. 

1   Introduction 

The use of satellite images has become an increasingly important tool in envir-
onmental monitoring in recent years, as they own a large swath width, a high spatial 
resolution and a high receive frequency. In order to efficiently and accurately use the 
remote sensing images, image registration is a necessary preprocessing procedure for 
remote sensing image applications, such as image geo-correction, land change 
detection, and image fusion [1][2]. Image registration is a process that involves the 
establishment of a geometric mapping function between two images, which can be 
adopted in multi-temporal, multi-sensor, multi-spectrum and multi-resolution images. 
Conventionally, after the remote sensing images are acquired, the images will be 
corrected systematically by colinear condition models [3]. However, due to 
limitations in the digital terrain model accuracy and number of ground control points, 
various systematic geometric errors (sometimes more than 1 pixel) will exist in the 
satellite image products, which could result in problems when applied further. Hence, 
in order to improve the results of remote sensing applications, image registration is a 
necessary process in eliminating the geometric distortions within two images. Over 
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the past years, a considerable amount of studies have been made on image registration 
techniques and applications. The image registration method can be divided into two 
major categories [4], the geometric image feature based method and voxel similarity 
measure based method. The geometric image feature based algorithm uses the point, 
line or surface features to register two images via least squares fitting [5][6]. As the 
algorithm is a scale, offset and rotation invariant transformation, it is widely used in 
computer vision applications. The voxel similarity measure based algorithm 
maximizes the similarity between the target and search window, the most accurate 
registration position can be determined [7][8]. The image registration of remote 
sensing images is quite different to the registration on medical and computer vision 
images. In general, the radiometric responses of the same feature on the satellite 
images may very with the viewing angles, atmospheric conditions, cloud, haze and 
land cover changes. Therefore, in order to perform the automatic and accurate 
registration of the remote sensing images, the algorithm has to take into account the 
radiometric variation of the features, when applied to multi-temporal, multi-sensor 
and multi-spectrum remote sensing images.   

A fully automatic approach for accurate and robust remote sensing image 
registration is proposed in this paper. In light of the high efficiency advantages in the 
geometric image feature based method, and high accuracy in the voxel similarity 
measure based method; proposed approach not only uses the normalized cross 
correlation to accurately match the conjugate points, but also constrains the geometric 
relations of matching points in finding out the correctly matching ones. By repeatedly 
removing the points with the largest geometric errors, the incorrect matching point 
will be eliminated point by point. Moreover, the accuracy of the image registration 
can be further improved to the sub-pixel level. In order to make the image registration 
task more efficient and accurate, the concept of the coarse to fine matching is also 
applied in this research [9]. The proposed approach consists of three major steps: (1) 
the construction of image pyramids, (2) the detection and matching of feature points, 
and (3) the robust estimation and image registration. A detailed explanation of the 
three procedures will be presented in the following segments. The organization of this 
paper is as follows. Section 2 delineates the methodologies used in this research. The 
three different experiments that were conducted to test the proposed approach are 
introduced in section 3. The experimental results are shown in section 4, and the 
conclusions will be addressed in section 5. 

2   Methodologies 

Image registration can be regarded as a precision correction procedure, which 
provides the relative orientation of two images. Conventionally, the relative 
orientation of two images can be described by a mapping function, and the parameters 
of the mapping function can be calculated via finding the conjugate points on both 
images. In this study, an automatic feature point operator is applied to detect the 
feature points on the reference image and an area based matching is used to find the 
most similar point on the working image. By using the least squares adjustment and 
the coordinates of conjugate points, the parameters of the mapping function can be 
calculated. However, the area based matching can only provide the matched point 
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with the highest similarity instead of the highest correctness. Accordingly, in order to 
increase the accuracy of the image registration, the incorrect matched points will be 
continuously detected and eliminated by the robust estimation, until the registration 
accuracy reaches the sub-pixel level.   

One of the critical processes of the proposed approach is the feature point 
matching. Needless to say, the efficiency and correctness of the matching process are 
highly dependent on the size of the search area. A larger search area will increase the 
computation time and decrease the correctness of the matching results. Hence, based 
on the coarse to fine matching concept, during the first step of the proposed method, 
an image pyramid is constructed on both the reference and working images. 
Afterwards, each image pyramid level will be registered respectively from a coarse to 
fine and level-by-level basis. A systematic flowchart of the proposed approach is 
illustrated in Fig 1. The following sections will describe the physical mechanisms of 
each step in greater detail. 

 

Fig. 1. Flowchart of the proposed approach 

2.1   The Construction of Image Pyramid 

The purpose of this paper is to register the working image by finding the correct 
matched feature points in both the working and reference images. However, due to 
influences from the viewing angle, atmospheric conditions and land cover changes, it 
is impossible for two temporal images to be exactly the same. Accordingly, the image 
pyramid concept is employed in the first step. The image pyramid is a hierarchical 
structure and the original image is the Lv.0 of pyramid. Lv.0 is low-pass filtered and 
sub-sampled by a factor of two to construct the next pyramid level. Further repetitions 
of the filter/sub-sample steps generate the remaining pyramid levels. The low-pass-
filter properties of the image pyramid not only can reduce the differences between the 
two images but also increase the efficiency and accuracy of the matching task. Fig. 2 
is a simple example in illustrating the advantages of the image pyramid construction 
procedure. A QuickBird image with a higher spatial resolution (2.4m) is regarded as 
the reference image, while a FORMOSAT2 image with a lower spatial resolution 
(8m) is adopted as the working image. Results of the image pyramids of both the 
QuickBird and FORMOSAT2 images are presented respectively in Fig. 2. Fig. 2(a) 
and (b) are the original images at the first level of the image pyramid; (c) and (d) are 
both the images at the second level, (e) and (f) are the images at the third level. Since 
the image pyramid can improve the accuracy of the matching results, and also shrink 
the boundary of the search area, its construction is a necessary pre-processing step for 
the following procedures. 
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Fig. 2. Illustration of image pyramids. (a) and (b) are original images of QuickBird and 
FORMOSAT2 at the first level (Lv. 0). (c) and (d) are both images at the second level (Lv.1). 
(e) and (f) are both images at the third level (Lv.2). 

2.2   Detection and Matching of Feature Points 

In order to establish the mapping function between the reference and working images 
in each image pyramid, it is required to find the conjugate points on both images. 
Hence, the proposed method detects the feature points on the reference image, and 
searches the matching points on the working image. It is clear that the large amount of 
well-distributed conjugate points can improve the accuracy of the image registration. 
The Target Defined Ground Operator (TDGO) is employed in this approach to 
automatically and uniformly detect a significant number of feature points from the 
reference image [11]. A bit pattern table is used in TDGO to detect the points with the 
right-angle features. The bit patterns of feature points are illustrated in Fig. 3(a). In 
order to quantitatively measure the pattern of a 3 x 3 window, a bit value (BV) 
calculated from the grey value differences in a 3 x 3 window is defined in Eq. (1) and 
(2). Therefore, the points that have exactly the same BV’s as the patterns of feature 
points (Fig. 3(a)) will be regarded as the feature points. The advantage of TDGO is 
the ability of identifying the points with right-angle features, which is critical for 
image matching. Accordingly, an area-based matching algorithm for each feature 
point is subsequently applied to find the matching points on the working image. This 
study selects the Normalized Cross Correlation (NCC) as the objective function for 
the area-based matching. The NCC measures the correlation via a two blocks’ 
comparison. A higher value of the NCC means a higher probability of the two blocks 
being similar. Since the NCC is a normalized operation, the matching results will not 
be influenced by illumination conditions. Thus, the NCC is more suitable for the 
application of satellite image matching. 

81,2,i             B   else  B   Threshold)GG( if i
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Where Gx is the grey value at pixel x; Gi are the grey value of 8 neighbouring pixels; 
Bi is the binary code transformed from the grey level differences; the TDGO 
Threshold used in this study is 70 and the BVx is the Bit Value at pixel x.  

After the NCC matching procedure, each feature point, which is detected by 
TDGO on the reference image, can find a matching point with the highest correlation 
coefficient on the working image. The value of the correlation coefficient is 
between –1 to 1, where a higher correlation coefficient value signals a higher 
similarity of two matching blocks. In this study, 0.75 is used as a threshold to evaluate 
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the matching results. It is deemed successful when the correlation coefficient value is 
higher than the threshold, and vice versa when it is lower. Fig.3 indicates the results 
of the feature point detection and matching procedure. The green crosses in Fig. 3(b) 
denote the feature points, which are detected automatically by TDGO on the reference 
image pyramid Lv. 1(QuickBird), while the yellow crosses in Fig. 3(c) represent the 
success matching points on the working image pyramid Lv. 1(FORMOSAT2). The 
area-based matching technique is a viable tool for finding success matching points. 
However, if there are several similar features on the searching area (e.g. the corner of 
building or the central line of the runway), it may lead to incorrect matching results. 
Consequently, the next logical step is to preserve the correct matching points from the 
success matching points, and register the working image via the construction of a 
mapping function. 

�

Fig. 3. Results of the feature points detection and matching. (a) Patterns of feature points used 
in TDGO. (b) Feature points (green crosses) detected on the reference image. (b) Success 
matching points (yellow crosses) on the working image.  

2.3   Robust Estimation and Image Registration 

The detection and feature points matching can automatically extract the success 
matching points on the working image. However, it is difficult to guarantee that the 
point with the highest similarity will be the correctly matched one. Hence, it is 
necessary to remove the incorrect matching points, as they decrease the accuracy of 
the image registration. Therefore, based on the assumption that all of the conjugate 
points have common transformation parameters, the robust estimation is a powerful 
criterion in preserving the correct matching points. Since both the working and 
reference images have been systematically corrected, the assumption used in this step 
is reasonable. The geometric relation between the working and reference image can 
be described by the Affine-Transformation in Eq. (3). By using the least squares 
adjustment, the variation of the observation equation is an important index that 
notably figures out which point has the largest bias relative to the others. The 
equations are shown in Eq. (4). 
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Where: 
n : Number of success matching points

( )ii YX ,  : Coordinates of feature point i in reference image 

( )ii yx ,  : Coordinates of matching point i in working image 

( )
yx ii vv ,  : Transformation variations of point i in x and y axis 

[ ]Tfedcba  : Parameters of Affine Transformation 

By calculating the variation of each success matching point, the point PL with the 
largest variation can be found. If the variation of PL is larger than the given threshold, 
it denotes that the accuracy of the matching point PL is not good enough, where it will 
be eliminated from the success matching points. The removal of the PL and the 
recalculation of the preserved point variations will proceed repeatedly until the largest 
variation is smaller than the threshold. However, when the working image is totally 
different with the reference ones, and the number of success matching points is less 
than 10 points, the robust estimation procedure will stop, resulting in the image 
registration task to fail. If the procedure of the robust estimation is completed, the 
working image can be correctly registered to the reference image via the parameters 
of the Affine Transform. The flowchart of the robust estimation and image 
registration is illustrated in Fig 4. 

 

Fig. 4.  Flowchart of robust estimation and image registration 

As mentioned above, the proposed method is a coarse to fine matching approach, 
and the image registration task is processed by a level-by-level and coarse-to-fine 
procedure. Hence, the highest level of the working image pyramid will be registered 
to the referenced ones during the beginning. Since the working image has already 
been refined in the previous level, the size of the searching area used in the feature 
points detection and matching step can be decreased. Moreover, the efficiency and 
accuracy of the image registration can be improved level-by-level.   

3   Experiments 

Three different experiments containing the “Multi-sensor”, “Multi-temporal” and 
“Multi-spectrum” images are used to test the practicability and robustness of the 
proposed approach. The purpose of the “Multi-Sensor” experiment is to test the 
ability of the proposed approach in robustly correcting the satellite image. A roughly 
corrected satellite image can register to a well-corrected one by the image registration 
technique. Therefore, in the “Multi-sensor” experiment, the reference image is a well 
geometric corrected QuickBird satellite image, where the accuracy of the image is 
less than 2 meters. The working images used in this experiment are two poor quality 
corrected FORMOSAT2 images, which are corrected only by the satellite orbit 
parameters. The error in the image can reach up to 300 meters. Moreover, in order to 
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perform the robustness test of the proposed method, two images containing clouds 
and featuring a distinctive black border are selected as the working images. In order to 
distinguish the reference image from the working one, it is shown in true color in Fig. 
5(a), while the two working images are depicted by a false color in Fig. 5(b) and 5(c). 
The ground coverage of the reference and working images are 3km by 3km and 4km 
by 4km, respectively. The geometric difference between the reference and working 
images can be observed clearly in Fig. 5(d) and 5(e) after they are overlapped.  

 

Fig. 5. Test images used in the “Multi-sensor” experiment. (a) Reference image. (b) Working 
image 1. (c) Working image 2. (d) and (e) are image enlargements of the overlapping reference 
and working images.  

Land change detections are an important application of remote sensing images. 
However, to ensure a successful change detection, there should be no relative 
distortion between the temporal images. Since it is difficult to satisfy the condition 
merely through a systematic geometric correction, the image registration technique 
serves as a powerful tool in eliminating the relative distortion of the temporal images. 
Two different sets of images are tested in the “Multi-temporal” experiment. Both the 
reference and working images are well geo-corrected FORMOSAT2 images and 
taken respectively on 02/06/2007 and 02/27/2007.  The reference images are shown in 
false color in the left of Fig. 6(a) and 6(c), and the working images are illustrated by a 
true color in the right. Since both test images are well geo-corrected, there appears to 
be no obvious geometric gap when the two images are overlapped.  However, the 
small geometric gaps (about 10 meters) can still be observed in both two sets from the 
border between the two images in Fig. 6(b) and 6(d). 

 

Fig. 6. Test images used in the “Multi-temporal” experiment. (a) The overlapping of the 
reference and working image 1. (c) The overlapping of the reference and working image 2. (b) 
and (d) are image enlargements of the overlapping reference and working images. 
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The “Multi-Spectrum” experiment is designed for image fusion applications.  
Caused by the different spatial resolution in the multi-spectrum (8m in 
FORMOSAT2) and panchromatic (2m in FORMOSAT2) images, they undergo the 
systematic geometric correction by their own respectively. Accordingly, even though 
the multi-spectrum and panchromatic images were taken within the same time frame, 
small geometric displacements may still occur. In this experiment, the FORMOSAT2 
panchromatic image, which owns a higher accuracy of the image ground position, 
serves as the reference image. The FORMOSAT2 multi-spectrum image, on the other 
hand, functions as the working image. The overlapping of the two different images is 
shown in Fig. 7(a), where an image enlargement is shown in Fig. 7(b). Some 
displacements are seen to exist between the reference and working image. (Marked by 
the green circle in the image enlargement). 

 

Fig. 7. Test images used in the “Multi-spectrum” experiment. (a) The overlapping of the 
reference (Panchromatic 2m resolution in bottom) and working (Multi-spectrum 8m resolution 
in top) images. (b) Image enlargements of the overlapping reference and working images.  

4   Results and Discussions 

The experimental results in this research were evaluated by overlapping the reference 
and registered images for visual comparisons, along with calculations of the Root 
Mean Square Error (RMSE) of the check points in the registration accuracy 
evaluation. The visual comparison results of the three experiments (Multi-sensor, 
Multi-temporal and Multi-spectrum) are shown respectively in Fig. 8, Fig. 9 and Fig. 
10; the RMSE of the check points are presented in Table 1. Two working images 
were tested in “Multi-sensor” experiment via the overlapping of the reference and 
working images. Fig. 8(a) and Fig. 8(b) both demonstrate that the proposed approach 
can correctly register the Working Image 1 and 2 to the reference ones. Table 1 also 
indicates that the RMSE of the check points have been substantially decreased to a 
level less than 2 pixels. Even though the black border and clouds cover resulted in 
differences between the working and reference images, the proposed approach can 
still correctly register them. As that the working images used in the “Multi-sensor” 
experiment were geo-corrected only by the orbit parameters, it is impossible to correct 
the geometric distortion without the terrain model. Consequently, the roughly geo-
corrected working images in the “Multi-sensor” case led to a higher RMSE in the 
check points. 

In the “Multi-temporal” experiment, since both the reference and working image 
are systematically geo-corrected, the geometric displacement between the temporal 
images is relatively small (Fig. 9(a)(c)(e) and (g)). However, the proposed approach 
can still improve the accuracy of the working image to the sub-pixel level (Fig. 9(b) 
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(d)(f) and (h)). Fig.10 indicates the difference of the fusion results between, before, 
and after the image registration process in the “Multi-spectrum” experiment. The 
color-mismatch phenomenon can be clearly observed in the fusion results without the 
image registration preprocessing (Fig. 10(a) (c) and (e)). The fusion results with the 
image registration preprocessing are shown in Fig. 10 (b) (d) and (f). As both the 
figures and the table indicate, the proposed approach can successfully and accurately 
be applied to the multi-spectrum applications.    

 

Fig. 8.  Overlapping of the reference and registered working images in the “Multi-sensor” case. 
(a) The registration results of Image 1. (b) The registration results of Image 2. 

 

Fig. 9.  Overlapping of the reference and working image before and after registration in the 
“Multi-temporal” case. The image enlargements of the overlapping before the registration are 
shown in (a) (c) (e) and (g); the results after the registration are shown in (b) (d) (f) and (h).  

 

Fig. 10. The fusion results before and after the image registration process in the “Multi-
spectrum” case. The fusion results without the image registration are shown in (a), (c) and (e); 
the fusion result with the image registration preprocessing are shown in (b), (d) and (f).  

Table 1. The Root Mean Square Error of the check points before and after the registration 

Case RMSE of Check points (Pixels) 
Before Registration 

RMSE of Check points (Pixels) 
After Registration 

Multi-Sensor (Image 1/2) 38.9 / 7.1 1.7 / 1.9 
Multi-Temporal (Image 1/2) 3.2 / 1.9 0.9 / 0.5 

Multi-Spectrum 1.1 0.6 
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5   Conclusions 

This paper introduces a fully automatic approach for an accurate and robust remote 
sensing image registration. The proposed approach consists of three major steps – 
Step1: Construction of the image pyramids of both the reference and working image. 
Step2: In order to establish the geometric relation between the two images, the feature 
point detection and matching techniques are applied to find the conjugate points. 
Step3: The working image can be accurately registered to the reference image by the 
robust estimation. Three different sets of satellite image were designed to test the 
reliability of the proposed approach. The experimental results indicate it can indeed 
successfully and accurately register the working image to the reference image. This 
hold true even if the two images were taken by different sensors or varying time 
frames and spectrums. These results prove that the proposed approach can 
successfully be applied as a preprocessing procedure to the remote sensing image 
application, such as geometric correction, land change detection and image fusion.  
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Indoor Environments Using Virtual Corners
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Abstract. This paper deals with the problem of finding the movement
of a mobile robot given two consecutive laser scans. The proposed method
extracts a line map from the sequence of points in each laser scan, us-
ing a probabilistic approach, and then computes virtual corners between
two lines in the same line map. The movement of the robot is estimated
from correspondences of virtual corners between the two line maps. The
combination of the probabilistic approach to find lines and the reduced
number of virtual corners are the key ideas to get a simple, fast, robust
to outliers, and reliable method to solve the local localization problem.

Keywords: Mobile Robotics, Local Localization, Line Based Map.

1 Introduction

A large number of today’s mobile robots use a 2D laser range finder as a proxim-
ity sensor because it is fast and accurate. The range images given by a laser range
finder can be used directly to perform simple tasks. However, most autonomous
mobile robot tasks require that a map be built from the environment.

Normally a laser range finder takes measurements on a plane parallel to the
floor and each laser scan provides n points from the environment, with each
point expressed in polar format (αi, ri), i = 1 . . . n, where ri is the distance from
the sensor to the detected object at direction αi.

The local localization problem consists of finding the relative pose of the robot.
One way to solve the localization problem is to register two consecutive range im-
ages while the robot is moving, such as those shown in figure 1. In other words, we
want tofind thebestparameters: translationand rotationof the robot [Δx, Δy, Δθ]
that match sensed image (figure 1b) and the reference image (figure 1a). The prob-
lem of matching two images is known as image registration. An overview of tech-
niques to solve image registration in computer vision is presented in [18].

There are two general methods to solve the registration problem: area–based
methods and feature–based methods [18]. The feature–based methods are recom-
mended if the images to be matched contain enough distinctive and easily de-
tectable objects. The main idea relative to feature based–methods is to find
invariant features in both images, find their correspondences, and then estimate
the optimal transformation.

It is possible to apply the simple Iterative Closest Point (ICP) algorithm [2]
directly to the raw points of the two consecutive range images. The ICP can

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 901–910, 2007.
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robot

(a)

robot

(b)

Fig. 1. Two consecutive Range Images

be considered as an area–based method because it uses raw data and does not
extract any features from the data.

The ICP algorithm is specially effective when the robot has a good initial
estimate of the post–move position. Unfortunately, without a good post–move
position estimate, excessive processing time is required to achieve a good esti-
mation. To solve the excessive processing time as well as including some infor-
mation related to the environment, feature–based methods have been proposed.
The kind of feature selected to resolve the image registration problem depends
on the application. Many applications use lines, such as in [7]. For indoor mo-
bile robots lines are useful because man–made environments are rich in planar
objects. Lines also have a simple model and they are easy to detect.

Several features based on lines have been proposed to solve the laser scan
matching problem in indoor environments: complete line segments [17], angles
between consecutive or random lines [1], parallel or orthogonal lines [13], corners
[9] or statistical information from the original raw data of the lines [6]. Other
authors such as [11] [16] [15] select polylines instead of lines because polylines
integrate information from several adjacent lines into a single feature. Polylines
can be viewed as a generalization of lines or as an approximation of other types
of curves.

This paper proposes a feature–based method to find the parameters of the
rigid transformation [Δx, Δy, Δθ] between two range images provided by a laser
scan mounted on a mobile robot. In order to do this, the method takes advan-
tage of the angle invariance of any two lines along the point intersection of the
lines, these information is merged in a single feature called virtual corner. It is
important to note that a virtual corner can be produced by two adjacent lines
or by any two lines. The method consists in two steps:

1. Feature detection. This step first learns a set of lines, called the line
map, from both range images. This is done by using a probabilistic search
to manage outliers. Then, from each line map a set of virtual corners are
calculated, one per each line map.
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2. Feature matching. In this step every virtual corner of the first image is
matched with one or more virtual corners of the second image. Every pair
of virtual corners gives a set of parameters for the rigid transformation.
To select the best set of parameters, an evaluation function measures the
similarity between line maps using only the geometric parameters of their
lines and the number of points associated with each line.

This approach has many advantages: it is simple, robust to noise, fast and
reliable. In addition, feature detection is based on a probabilistic method to
manage outliers. It also avoids the problem of estimate real corners (like [9]),
specially when data are noisy, and it takes advantage of the intersection of any
two lines. The proposed similarity measure is fast to compute and includes line
comparisons and the number of points of each line.

The rest of the paper is organized as follows: section 2 describes the feature
detection step and the section 3 describes the feature matching step. Section
4 shows some experimental results, and section 5 presents the advantages and
drawbacks of the method and future work.

2 Feature Detection

Given a rigid transformation (translation and rotation only), the angle between
any two lines, denoted by l̂1l2, is an invariant. See for instance lines in polar
representation l1 : (α1, ρ1) and l2 : (α2, ρ2) shown in figure 2a. If lines l′1 and
l′2 in figure 2b correspond to l1 and l2 then l̂1l2 = l̂′1l

′
2 or l̂1l2 � l̂′1l

′
2 for real

situations where measurements are noisy. While other methods can use length
ratios as an invariant, in the case of range images taken by a mobile robot
some lines can be detected partially and the length ratio can differ drastically
(specially when the robot approaches a door).

Virtual corners are based on the angle invariance of two lines, but also includes
the intersection point of the lines. A virtual corner can correspond to a real corner
of two adjacent line segments or an imaginary corner if the actual line segments
are replaced by their lines. Even two parallel lines have a virtual corner located in
the ideal or infinite point where parallel lines meet, see [8] for more information
about infinite points. For further processing, a virtual corner of two lines l1 and
l2 is represented by the intersection point p12, the minor angle l̂1l2 between the
lines, and their line’s inclinations α1 and α2.

This section describes the process of finding virtual corners from a range
image, this process is comprised of two steps: line map computation and virtual
corner detection.

2.1 Computing Line Maps

There are several methods to calculate a set of lines, called line map, M =
{l1 . . . lm} from a sequence of points P = (p1 . . . pn), for an overview see [14]. To
manage problems associated with outliers (atypical data) it is preferable to use
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l1

l2 p12�l1l2

(a)

l′1

l′2

p′
12

�l′1l
′
2

(b)

Fig. 2. Angle invariance between two range images

a robust method. We use the Window Sampled Consensus (WSAC) algorithm
[12] because it is fast and gives good quality line maps. To extract a line the
WSAC algorithm is divided in two stages:

Local Search. The local search stage looks for a line l inside a set of tl consecu-
tive points. As an example figure 3a shows a window with tl = 25 consecutive
points. To find the best local line l this stage is based on the well–known
RANSAC algorithm [5] and the M–Estimators [10]. If the algorithm success-
fully finds a local line l then the global fit is performed.

Global Fit. This step looks for other points that fit with the line l, as shown in
figure 3b. The global search is comprised by three steps: First the algorithm
determines the set of points that support line l by searching into the whole
laser scan P . Second, the points that belong to small length segments are
removed. This step finds the segments by applying a Breakpoint Detector
algorithm similar to the one presented in [3]. Finally the line parameters are
recomputed using the set of inliers and the line is added to the map M.
Figure 3b shows the line l after the global fit, it has three segments: s1, s2
and s3.

An important consideration is that after the global fit the points that belong
to l are removed from the laser scan P . The WSAC algorithm tries iteratively
the local search step and global fit step to find the line map M.

2.2 Detecting Virtual Corners

Given the line map M = {l1 . . . ln}, a set of virtual corners is calculated by
intersecting any two lines li, lj ∈ M. Virtual corners that have point intersection
at infinity or at some point far away are removed from the map. The number of
possible virtual corners is O(n2).

3 Feature Matching

In this step, the correspondence between the virtual corners detected in the
sensed image and those detected in the reference image is established. For this
purpose, every virtual corner in the sensed image is compared against virtual
corners in the reference image. Only pairs of virtual corners having similar angles
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l

(a)

s1

s3

s2

(b)

Fig. 3. WSAC Algorithm

are selected. Every pair of virtual corners give a putative set of parameters
[Δθ, Δx, Δy]. Given two virtual corners from the reference and the sensed images
as the shown in 4a and 4b, the parameter Δθ is calculated from two lines (for
instance l2 and l′2 in figure 4c), then parameters Δx and Δy are also calculated by
aligning virtual corners as shown in figure 4d. Other putative parameters can be
calculated by aligning two different lines, for instance l1 and l′2. For reducing the
complexity and avoiding incorrect estimations the set of parameters must fulfil
some requirements, as an example, |Δθ| < tθ and

√
(Δx)2 + (Δy)2 < tt, where

tθ and tt are thresholds that depends on the maximum rotation and translation
expected of the robot.

To select the best set of parameters, line maps M and M′ associated to
reference and sensed image respectively, must be compared. To compare them the
first step is to transform the line map M′ into M′

T , that is, for each line l′ ∈ M′

new parameters (α′
T , ρ′T ) are calculated considering the putative transformation

T : [Δθ, Δx, Δy]. This is done by using:

α′
T = α′ + Δθ

ρ′T = ρ′ + Δx cos α′ + Δy sin α′

To evaluate the similarity S between M and MT , we propose the following
function;

S(M, MT ) =
∑

l ∈ M
l′T ∈ M′

T

s(l, l′T ) · min(w, w′)
(

1 − |w − w′|
max(w, w′)

)
(1)

where w and w′ are the number of inliers of l and l′T respectively and s(l, l′T )
is a similarity value between any two lines l ∈ M, l′T ∈ M′

T . The measure of
similarity between lines was taken from [4]:
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s(l, l′T ) =
1

1 + (Δα)2 ∗ α0 + (Δρ)2 ∗ ρ0

where Δα = α − α′, Δρ = ρ − ρ′, and α0, ρ0 are constants. The optimal trans-
formation T ∗ is retrieved as the transformation T which gives the highest value
S(M, M′

T ).

l2

l1

(a)

l′2

l′1

(b)

l′2

Δθ

l2

l′1

l1

(c)

l′2

l′1

l2

l1

Δx

Δy

(d)

Fig. 4. Aligning two virtual corners. a) A corner in the reference image, b) on the
sensed image, c) finding Δθ, d) finding Δx, Δy.

4 Experimental Results

The algorithm described above was tested in a set of range images taken by
our real mobile robot equipped with a LMS209–S02 SICK Laser Measurement
System. Each laser scan covers 180◦ with a lateral resolution of 0.5◦, a total of 361
points per laser scan. The values used for tθ and tt were π

2 and 1m respectively.
Figure 5 shows an example of the proposed method using range image 1 and

range image 2. The final match achieves the desired result and so the translation
of the robot was accurately estimated.

Figure 6 shows a more complex example where the robot rotates and so each
laser scan see different parts of the environment. In other words, there are some
points in one laser scan which do not correspond to any points in the other laser
scan. The final match achieves the desired result and so the rotation of the robot
was accurately estimated.

Table 1 shows a summary of the test performed considering 50 movements
of the robot, translations (50cm) and rotations (±25◦). This table shows the
average number of lines detected per laser scan, the average number of virtual
points, the total number of virtual corner correspondences, and finally the actual
number of correspondences which were evaluated using the similarity measure.
As the reader can see, there is a significant amount of correspondences that are
not evaluated, because they do not have a similar angle (first filter) or they give
translations or rotations greater than tt or tθ (second filter).
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(a) (b)

(c) (d)

Fig. 5. The robot moves forward: (a) Range image 1, (b) Range image 2, (c) overlapped
images with no robot movement and (d) Final match

5 Conclusions and Future Work

Local localization is one of the most important tasks for mobile robots. One way
to solve the local localization problem is the registration of consecutive range
images provided by a laser range finder. This paper proposes a method that
uses virtual corners to solve the localization problem and it does not require
an odometric estimation. A virtual corner is a feature that includes geometric
information of any two lines discovered in range images. The results show that the
method is fast and reliable but requires that almost two reliable virtual corners
being discovered: one from the reference image and their equivalent from the
sensed image.



908 C. Lara and L. Romero

(a) Range image 1

(b) Range image 2

(c) Final match

Fig. 6. Local localization when the robot rotates
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Table 1. Results considering 50 movements (translations and rotations) of a mobile
robot

Parameter Average

Lines detected 10.92
Virtual Points 118.36

Correspondences 15148.96
Evaluated Correspondences 160.10

In the near future we are going to include: i) a robust line estimator in the
global fit stage, ii) a new filter to reduce the number of correspondence evalua-
tions, for instance clustering results, iii) a new probabilistic similarity measure
based on the points supporting lines, and iv) more features such as single points.
The goal is to improve the accuracy of the results and the method could be ap-
plied to solve the global localization and mapping problems.
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Abstract. In this article, we present a new algorithm to deal with foreground-
background separation in very degraded documents. In particular, our work is 
applied to patrimonial document images which suffer from several types of deg-
radation as aging effects, noise, back-to-front ink interference, etc. Our main 
objective is to correctly classify ink and paper to allow an efficient segmenta-
tion of the image creating high quality monochromatic images. This makes eas-
ier the broadcast of these images through the Internet. The new algorithm is 
based on the classical Shannon definition of entropy and a generalization  
defined as Tsallis Entropy and it is compared to 19 well-known classical algo-
rithms, including DjVu algorithm. It achieved the best results by analyzing pre-
cision, recall, accuracy, specificity, PSNR and MSE. 

Keywords: Document processing, Image thresholding, Entropy. 

1   Introduction 

This research is part of the DocHist Project [8][9][10] for image processing of histori-
cal documents which aims the preservation and broadcast of a file of thousands of 
patrimonial documents. Even more, it is important to improve the readability of the 
digital documents. The archive used in this paper is composed of more than 6,500 
letters and documents which amounts more than 30,000 pages from the end of the 
nineteenth century onwards. 

For preservation purposes, the documents are digitized in 200 dpi resolution in true 
color and stored in JPEG file format with 1% loss for better quality/space storage rate. 
Even in this format each image of a document reaches, in average, 400 KB. In spite of 
the common use of broadband Internet access nowadays, the visualization of a be-
quest of thousand of files is not easy. Even in JPEG all the archive consumes Giga 
Bytes of space. The conversion of the digital images to bi-level comes as a possible 
solution to this problem. 

There are several research efforts in the development of image thresholding or bi-
narization techniques [11]. This is the first step in some image processing applications 
as optical character recognition (OCR). Threshold algorithms search for a cut-off 
value that separates object and background in an image. This value defines which 
colors belong to one or another class. In the case of images of documents these two 
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classes are the paper (the background) and the ink (the foreground). A good threshold 
value for this application is one that preserves in the final bi-level image all the in-
formation content of the document. This is quite a simple task when one deals with 
recent documents where, in general, the paper is almost completely clear which is not 
the case of ancient documents. This type of documents is degraded by the presence of 
background artifacts. For these cases, image enhancement techniques could be used 
first to improve the visual appearance of the image for further thresholding. 

Images of historical documents present some unique features that make a binariza-
tion process very difficult 1) some documents are written on both sides of the paper 
and the ink from one side passes to the other side, creating a back-to-front interfer-
ence (also known as bleed-through effect); 2) some paper sheets are very consumed 
and the paper has darkened over the time (the show-through effect); 3) the last case 
presents the documents where the ink has faded so much that it has almost the same 
color as the paper. Examples of these classes of documents can be seen in Fig. 1. 

 

Fig. 1. Sample documents: (left) a very faded document; (center) a document with darkened 
paper and (right) a document with back-to-front interference 

Next Section discusses some of the researches being developed for processing im-
ages of historical documents. The new proposed method is fully described in Section 3 
and its results are disposed in Section 5, followed by the Conclusions of the paper. 

2   Image Thresholding of Patrimonial Documents 

Thresholding [11] is a classical problem for image processing. There is a great variety 
of algorithms defined for this purpose. Most of them are for general use, but there are 
specific algorithms for historical documents.  

Previous works related to image processing of patrimonial documents can be found 
in literature. The problem of bleed-through interference is dealt in [16] where a canny 
edge detector is used to detect and to suppress undesired background patterns consid-
ering that the writing angle in the foreground opposes the writing angle in the back-
ground. This approach, however, does not deal with horizontal and vertical lines as 
can be found in a handwritten letter "T" for example. The same authors also propose a 
new method to deal with ink bleeding through the matching of the images from both 
sides of the paper which is a very difficult task [17]. 

The authors in [7] propose the use of multi-stage thresholding, i.e., different algo-
rithms are used in different stages of the complete process in order to create the best 
image possible. The authors propose this and they also claim that global thresholding 
algorithms must not be used in this kind of images which is not validated in our work.  
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It is proposed in [3] the use of quadtree decomposition to break down the image 
into sub-regions and to apply different thresholding algorithms in each of these re-
gions. Background removal is also treated in [6] and [1]. 

An algorithm for background normalization is proposed in [15] to decrease the 
background influence and for further binarization. Unfortunately, the method is ad-
justed only for documents written on just one side of the paper. 

A combination of global and local thresholding algorithms is presented in [5] using 
Iterative Global Thresholding (IGT). Sub-areas n by n of the image are analyzed to 
verify if they have more black pixels than they should have. The authors, however, do 
not explain how the size of the sub-areas must be defined. 

Several well-known thresholding algorithms were tested in the images of our ar-
chive. None of them achieved satisfactory results. The tested algorithms are: Brink, 
C-Means, Fisher, Huang, Iterative Selection, Kapur, Kittler, Li-Lee, Mean Grey 
Level, Otsu, Percentage of Black, Pun, Renyi, Two Peaks, Wu-Lu, Yager and Ye-
Danielsson.. A review of these methods can be found in [13] and the results of the 
application of some of them are presented in Fig. 2. 

     

             

Fig. 2. Application of Brink, Huang, Pun, Percentage of Black and Otsu thresholding algo-
rithms in (top) document of Figure 1-right and (bottom) document of Figure 1-center 

3   A New Tsallis-Entropy Based Thresholding Algorithm 

Tsallis entropy [18] has been considered a new information measure. It has been used 
in several image processing applications as Content Based Image Retrieval (CBIR) 
[12] and even thresholding [19][20] (however both papers present just the possibilities 
of the use of Tsallis entropy; certain parameters are not clearly specified in them). 
According to Tsallis, an universal definition of entropy is given by: 
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where p(i) is a probability as in the classical definition of entropy and α is a real pa-
rameter. When α tends to 1, Tsallis entropy reduces to Boltzmann-Gibbs entropy: 
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Eq. 2 settles that if a system can be decomposed into two statistical independent sub-
systems, say A and B, then H has the extensive or additivity property. This means that 
H(A+B) = H(A) + H(B). This fact is used in Pun’s thresholding algorithm, for exam-
ple. Tsallis entropy has a nonextensive property for statistical independent subsys-
tems, defined by the following pseudo addivity entropic rule: 

Hα(A + B) = Hα(A) + Hα(B) +(1 - α) Hα(A) Hα(B) 

However, mathematically, Tsallis entropy (Eq. 1) can be broken into two parts: 
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where Xb + Xw = 1. It can be defined then that: 
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In the equations above, t is the threshold value. In our case, t is the most frequent 
color in the image. It is reasonable to consider that this most frequent color is part of 
the background. Hbα is the entropy of the pixels below the color t and Hwα is the en-
tropy of the colors above the threshold t. The variable t is also used to define the val-
ues of Xb and Xw, as Xb is the percentage of colors below t and Xw is the percentage of 
colors above t.  

The α parameter is a real number and it characterizes the degree of nonextensivity. 
Its value is not fixed in Tsallis definition. For thresholding purposes, variations in this 
value can modify the cut-off value. For our project, α is equal to 0.3 for the most part 
of the images, changing in just one case as further explained. 
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At first, the document images are separated into classes. There are three main 
classes of documents:  

• Class 1: documents with few parts of text or documents where the ink has faded; 
• Class 2: common documents with around 10% of text elements; 
• Class 3: documents with more black elements than it should have; this includes 

documents with a black border or documents with bleed-through effect. 

In order to classify an image as one of these classes, we evaluate Shannon entropy 
(H) using Equation 2 but with the logarithmic basis taken as the product of the dimen-
sions of the image. As defined in [4], changes in the logarithmic basis do not alter the 
definition of the entropy. The previous three classes of documents are defined by: 

• H ≤ 0.26: Class 1 documents; 
• 0.26 < H < 0.30: Class 2 documents; 
• H ≥ 0.30: Class 3 documents. 

These boundaries were defined in previous works [9][10] and they were adjusted in 
our new proposal. For example, the sample documents of Fig. 1 belong, from left to 
right, to classes 1 (H = 0.23), 2 (H = 0.29) and 3 (H = 0.32). 

The entropy value can be broken into the entropy of black pixels, Hb, and the en-
tropy of the white pixels, Hw, bounded by a threshold t: 
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In our case, t is the most frequent color of the image. 
For each of these classes, an analysis must be made to process the images that be-

long to them as can be seen next. The final threshold value, th, is defined by: 

αα wb HmwHmbth ** +=  
where mb and mw are multiplicative constants that are going to be defined for each 
class. Hbα and Hwα can be seen as projections of the Hα value; changes in those values 
(generated by the product by mw or mb) produces changes in Hα itself. 
 

Class 1 Documents: 
As said before, this class involves documents with few ink elements or few text parts. 
This can happens in cases where the letter has just few words or the ink has faded. In 
this class, we can also find most part of the typewritten documents as, in general, the 
typewriter ink is not so strong as handwritten characters making them more suscepti-
ble to degradation of their colors. 

Although the images of this class have similar features in some way, they differ in 
basic aspects as, for example, typewritten documents must occupy a complete sheet of 
paper (opposing the fact that this class groups documents with few text parts). Be-
cause of this, another aspect must be considered within this class. We must consider 
the distribution of the pixels of the original image using the values of Hw or Hb. We 
choose Hw with no loss of generality. For these kind of images, we have: 
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• If (Hw≥0.1), then mb=2.5 and mw=4.5 (typewritten documents with dark ink and 
bright paper); 

• If (0.08<Hw<0.1), then mb=mw=6 and α=0.35 (documents with the ink faded); 
• If (Hw≤ 0.8), then mb=mw=4 (documents with dark ink and paper). 

Class 2 Documents: 
The most common documents just need a boost in Hbα and Hwα  to achieve the best 
threshold value. So, in general, the algorithm defines mb = 2.2 and mw = 3. Some 
darkened documents need another treatment. If a document belongs to class 2 and Hw 
> 0.1, then the value of mw decreases by half (i.e., mw = 1.5), unless the most fre-
quent color is greater than 200 (brighten documents) for which mw = 9. Fig. 6 shows 
sample documents from class 2 darkened or not and their bi-level images. 
 

Class 3 Documents: 
These are the documents with more black pixels than expected in a normal document. 
In this class, we have documents with a black border or documents with back-to-front 
interference. As the ink from one side transposes to the other side, it creates an inter-
mediary element in the image: there is no more just paper or background; the trans-
posed ink is an element between them. In these cases, there is no need to increase the 
dark measures. The system must deal just with the paper and the transposed ink turn-
ing them to white. Because of this, the mb parameter is fixed as 1. In most documents, 
we have mw = 2. Some cases, however, must be considered when the documents have 
brightened paper again. In this class, brighten paper documents are the ones with most 
frequent color (t) greater than 185: 
• If (t >= 185) then 

o If (0.071 < hw < 0.096) then mw = 9; 
o If (0.096 <= hw < 0.2) then mw = 6; 

4   Results 

The proposed algorithm was tested in a set of 200 images that are considered repre-
sentative of the complete file. The results were considered very satisfactory by visual 
inspection. However a most objective measure is also necessary. In this set, 18% of 
the documents belong to the class 1, 40% are from class 2 and 42% from class 3. 

To make a quantitative evaluation of the performance of the new algorithm, its re-
sults are compared against the ground truth knowledge (an ideal image with the back-
ground removed manually). This comparison is made using the concepts of: precision, 
recall, accuracy and specificity. In order to use a more automatic process, our analysis 
is based on the number of pixels correctly classified as paper or ink. For this purpose 
the ideal image is considered as what should be the final target of the algorithm. With 
this in mind, we can have the number of ink pixels correctly classified as ink (TP - 
True Positives), the number of pixels correctly classified as paper (TN - True Nega-
tives), the number of pixels misclassified as ink (FP - False Positive) and number of 
ink elements misclassified as paper (FN - False Negative), defining:  

Precision = TP/(TP + FP)    Recall = TP/(TP + FN) 
Accuracy = (TP + TN)/(TP + TN + FP + FN) Specificity = TN/(FP + TN) 
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Based on these measures, a good algorithm must have: 

• Precision=1: there were no misclassification of the paper elements (FP = 0); 
• Recall=1: there were few mistakes in the classification of the ink elements 

(FN=0); 
 
• Accuracy=1: there was no misclassification at all (FP + FN=0); 
• Specificity=1: every pixel that belongs to the paper were classified as that 

(FP=0). 

Table 1 presents the average result for these four measures applied to a set of 200 
documents binarized by the new proposed algorithm and classical algorithms in com-
parison with their ideal versions. Our algorithm achieved very good values for the 
four measures. We also analyzed the values of PSNR (Peak Signal-to-Noise Ratio) 
and MSE (Mean Square Error). Their average values are also presented in Table 1. 

Table 1. Average values of precision, recall, accuracy, specificity, PSNR and MSE in a set of 
200 bi-level documents generated by the new proposal and classical methods compared with 
their ideal version generated manually 

Algorithm Precision Recall Accuracy Specificity PSNR MSE 
New Algorithm 0.82 0.88 0.97 0.98 21.65 0.03 
Brink 0.91 0.69 0.95 0.98 20,91 0.06 
C-Means 0.88 0.79 0.93 0.99 15.61 0.27 
Fisher 0.95 0.51 0.73 0.99 20.97 0.06 
Huang 0.88 0.80 0.94 0.99 20.63 0.07 
Iterative Selection 0.38 0.48 0.94 0.94 20.27 0.06 
Kapur 0.88 0.79 0.93 0.98 20.30 0.05 
Kittler 0.94 0.73 0.96 0.99 16.33 0.11 
Li-Lee 0.00 0.57 0.89 0.89 20.13 0.04 
Mean Grey Level 0.95 0.71 0.96 0.99 20.21 0.07 
Otsu 0.81 0.81 0.97 0.98 21.18 0.03 
Percentage of  Black 0.99 0.23 0.63 0.99 19.20 0.05 
Pun 0.94 0.69 0.93 0.99 10.41 0.37 
Renyi 0.88 0.77 0.93 0.99 19.54 0.07 
Two Peaks 0.87 0.82 0.95 0.98 8.49 0.62 
Wu-Lu 0.94 0.71 0.95 0.99 18.89 0.06 
Yager 0.99 0.17 0.39 0.91 21.37 0.05 
Ye-Denielsson 0.87 0.77 0.93 0.99 19.86 0.05 

We should expect that the perfect algorithm must have the four measures next to 1, 
high PSNR value and low MSE value. So a good algorithm must have all these fea-
tures at the same time. Our new proposal has the higher PSNR and lower MSE. For 
precision, recall, accuracy and specificity, other algorithms achieved satisfactory 
results (as Otsu, Brink, Mean Grey Level, Huang) but our algorithm has a better per-
formance in average. 

Table 2 presents a second test as our algorithm is compared to images generated by 
DjVu technology [2] which is defined specifically for document image thresholding 
and compression. Table 2 shows the average and standard deviation values of the 
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same measures as before, comparing the images generated by our algorithm and the 
ones created by DjVu and the ideal images. 

Fig. 3 presents some very difficult images and the results of the application of the 
algorithm. In particular, Fig. 3–left presents the same document of Fig. 1-left. This is 
the best response ever achieved by an automatic algorithm for this image without any 
pre-processing technique for contrast enhancement. 

Table 2. Average and standard deviation values of precision, recall, accuracy, specificity, 
PSNR and MSE in a set of 200 bi-level documents generated by the new proposal and DjVu 
technique in comparison with their ideal versions 

Measure DjVu New Algorithm 
Average 0.90 0.82 Precision 
Standard Deviation 0.12 0.12 
Average 0.72 0.88 

Recall 
Standard Deviation 0.24 0.09 
Average 0.90 0.97 

Accuracy 
Standard Deviation 0.20 0.01 
Average 0.99 0.98 

Specificity 
Standard Deviation 0.01 0.02 
Average 19.60 21.65 

PSNR 
Standard Deviation 0.10 2.03 
Average 0.90 0.03 

MSE 
Standard Deviation 0.12 0.01 

Fig. 4 presents a document with differences of illumination along it. Even with this 
problem, our algorithm reached the best global threshold value possible as it can be 
seen in the comparison with classical well-known algorithms as Otsu and DjVu, 
which results are presented in the center part of this figure. 

 

Fig. 3. (top) Sample documents and (bottom) their bi-level images produced by the new  
algorithm 
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Other sample document from another database is shown in Fig. 5. This document 
is available at http://www.site.uottawa.ca/~edubois/documents. Fig. 5 presents a 
zooming into one of these documents and the binary versions generated by Otsu and 
our new algorithm. Again, our method achieved higher values of precision, recall, 
accuracy, specificity, PSNR and lower value of MSE. This shows that our method can 
be applied to other databases of similar features. 

 

Fig. 4. (left) A document with different illumination along it, (right) the binarization produced 
by our new algorithm and at the center the results of the application of Otsu and DjVu 
algorithms 

   

Fig. 5. (left) Zooming into another sample document from a different database; (center) bi-level 
image generated by Otsu algorithm and (right) the one produced by our new algorithm 

5   Conclusions 

This paper presents a new entropy-based thresholding algorithm for images of histori-
cal documents. The algorithm uses both Shannon and Tsallis definition of entropy to 
find the best cut-off value. The algorithm was applied in a set of 200 representative 
images of a file from the 19th century and beginning of the 20th century. The use of the 
algorithm was analyzed by visual inspection and by comparison with perfect bi-level 
images. The values of precision, recall, accuracy and specificity were evaluated for 
the complete set and the algorithm achieved satisfactory results. 

Three classes of documents are identified using the classical Shannon entropy defi-
nition. After this, a set of rules is used to define the best threshold value. For this, 
Tsallis entropy is separated into two components which are boosted in order to define 
the cut-off value. The method proved to be very effective as could be analyzed using 
precision, recall, accuracy, specificity, PSNR and MSE metrics in comparison with 
several well-known thresholding algorithms, including the DjVu technique. 
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Abstract. Many approaches to Information Extraction (IE) have been proposed
in literature capable of finding and extract specific facts in relatively unstructured
documents. Their application in a large information space makes data ready for
post-processing which is crucial to many context such as Web mining and search-
ing tools. This paper proposes a new IE strategy, based on symbolic and neural
techniques, and tests it experimentally within the price comparison service do-
main. In particular the strategy seeks to locate a set of atomic elements in free
text which is preliminarily extracted from web documents and subsequently clas-
sify them assigning a class label representing a specific product.

Keywords: Information Extraction, Neural Network, Text Classification.

1 Introduction

With the Internet becoming increasingly popular, more and more information is avail-
able in a relatively free text format. This situation creates the premise for efficient on
line services and Web mining application in several domains. The on line availability
of ever larger amounts of commercial information, for example, creates the premise
for profitable price comparison services allowing individual to see lists of prices for
specific products.

However critical aspects such as information overload, heterogeneity and ambiguity
due to vocabulary differences limit the diffusion and usefulness of these advanced tools
requiring expensive maintenance and frustrating users instead of empowering them.

To address these problems, efficient Information Extraction (IE) techniques must be
provided capable of finding and extract specific facts in relatively unstructured doc-
uments. Their application in a large information space makes data ready for post-
processing which is crucial to many context such as Web mining and searching tools.

Information extraction programs analyze a small subset of any given text, e.g., those
parts that contain certain trigger words, and then attempt to fill out a fairly simple form
that represents the objects or events of interest. An IE task is defined by its input and its
extraction target. The input can be unstructured documents like free text that are written
in natural language (e.g., Fig. 1) or the semi-structured documents that abound on the
Web such as tables or itemized and enumerated lists (e.g., Fig. 2). The extraction target

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 921–929, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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The Motorola RAZR V3i is fully loaded* - delivering the ultimate com-
bination of design and technology. Beneath this sculpted metal exterior
is a lean mean, globe-hopping machine. Modelled after the Motorola
RAZR V3, the RAZR V3i has an updated and streamlined design, of-
fering consumers a large internal color screen, . . .

Fig. 1. An unstructured document written in natural language that describes the product ’Motorola
RAZR V3i’

Fig. 2. Semi-structured documents written in natural language that describes a set of products

of an IE task can be a relation of k-tuple (where k is the number of attributes in a record)
or it can be a complex object with hierarchically organized data.

Many approaches to IE have been proposed in literature and classified from differ-
ent points of view such as the degree of automation [1], type of input document and
structure/constraint of the extraction pattern [2].

This paper proposes a new IE strategy and tests it experimentally within the price
comparison service domain. Most price comparison services do not sell products them-
selves, but show prices of the retailers from whom users can buy. Since the stores
are heterogeneous and each one describes products in different ways (see example in
Fig. 3), a generic procedure must be devised to extract the content of a particular
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Fig. 3. List of potential descriptions in (b) that may be used to describe product (a)

information source. In particular our IE strategy seeks to locate a set of atomic ele-
ments in free text preliminarily extracted from web documents and subsequently clas-
sify them accordingly. In this context, our principal interest is to extract, from a textual
description, information that identify a commercial product with an unambiguous label
in order to be able to compare prices. In our experiments product price was associated
to the description, therefore its extraction is not necessary.

Following the terminology used by Chang et. al[3] the salient aspects are

– an hybrid solution for building thesaurus based on manual and supervised neural
technics

– a tree structured matcher for identifying meaningful sequences of atomic elements
(tokens);

– a set of logical rules which interpret and evaluate distance measures in order to
assign the correct class to documents.

2 System Overview

The IE system developed is composed of two main parts, matcher and classifier, and
acts on free text documents obtained from original web documents. It specifically ad-
dresses the following problems typical of the price comparison service information
space: an attribute may have zero (missing) or multiple instantiations in a document;
various permutations of attributes or typographical errors may occur in the input docu-
ments (see an example in Fig. 3).

Prior to both matching and classification phases the tokenizer divides the text into
simple tokens having the following nature:

– word: a word is defined as any set of contiguous upper or lowercase letters;
– number: a number is defined as any combination of consecutive digits.

2.1 Matcher

In our context the matcher has to operate on specific annotations that can be matched to
brands (B) and models (M ) of products enlisted in the price comparison service. The
matcher is then constructed starting from a set KB = {(b, m)|b ∈ B, m ∈ Mb} that
contains the couples formed by a brand b and a model m. b belongs to the set of brands
B of a given category of products, while m belongs to the set of models Mb that have b
as brand.
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A thesaurus that collects all the synonyms commonly used to describe a particular
category of products is used to extend the KB. In particular if there are one or more
synonyms in the thesaurus for a couple (b, m) then we add a new couple (b̄, m̄) to the
KB for each synonym.

The tokenizer associates with every couple in the KB a sequence of tokens Tb,m =
(tb1, t

b
2, . . . , t

m
1 , tm2 , . . .) where tbi and tmj are all the tokens obtained from the brand b

and the model m respectively. Every sequence Tb,m is used to construct a path within the
matcher tree structure: it starts from the first node associated with token tb1 and arrives
at a leaf node associated with the label derived from (b, m) (see example in Fig. 4).

Fig. 4. An example of KB set and thesaurus used to build the matcher

Fig. 5. Role of edit distance and position distance during the matching process. In case of tokens
having equal ed measure (ed(ti+1, dj+1) = ed(ti+1, ds) = ed(ti+1, dr)) the token dj+1 with
minimum pd is selected

Based on these solutions, the IE task is accomplished splitting an input document
into a tokens sequence (d1, d2, . . .). Starting from the root node the search for the sub-
sequent node (better match in the subsequent layer) is performed using the concept of
edit distance (ed) between input tokens and every token of a tree’s layer and the posi-
tion distance (pd) between two matched input tokens. The edit distance between two
tokens measures the minimum number of unit editing operations of insertion, deletion,
replacement of a symbol, and transposition of adjacent symbols [4] necessary to convert
one token into another. The position distance measures the number of tokens di found
between two matched dj dk tokens that would have to be consecutive
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The system first searches a sequence of perfect match (
∑

ed = 0) that leads to
recognition of all the tokens tbi associated with one brand. In this way we obtain a list of
possible brands associated with the input document. Starting from the last node (with
token tbi ) of a matched brand, the algorithm begins the search for the most probable
model. The system searches all the paths that lead to a leaf node with the sum of ed
equal to zero. If this is not possible the system returns the path with minimum ed.

In case of a token ti with multiple match (dj , dk, . . .), with identical minimum ed,
the input token with minimum pd (compared to the parent token in the tree) will be
selected (see example in Fig. 5).

2.2 Classifier

A rule based classifier was designed with the aim of assigning a class label representing
a specific product to each document using the information extracted from the matching
phase.

The classifier receives in input the output of the matcher i.e. the set of matched
sequence Tb,m of tokens weighted as a function of the ed. These input values are used
to construct a sub-tree of the Matcher starting from which the classifier computes the
class of the given document.

The set of predefined classes is constituted by all the products (b, m) inserted in the
KB. The classifier selects a class from a subset obtained by the input set of matched
sequence Tb,m (there is one class for each matched sequence).

Position and edit distances are evaluated to decide class assignment: the classifier
start from the leaves of the sub-tree and at each step compares each node tij with its
parent ti−1 using the following rules:

– select the node tij having minimum pd(tij , ti−1) for each j or with minimum av-
erage pd computed through all the seen tree nodes;

– in case of a node tij with multiple match associated with its parent ti−1, with
identical minimum ed, the input token ti−1 with minimum pd will be selected (see
example in Fig. 6);

– between two nodes tij with identical weight (ed + pd) in the same layer i, select
that with a greater path starting from the leaf node;

– if all the previous rules find no differences between two nodes tij and its parent
ti−1 then selects that with minimum pd computed by the matcher.

Fig. 6. Role of edit distance and position distance during the classification process. In case of
tokens having equal ed measure ( ed(ti−1, dk) = ed(ti−1, dr) = ed(ti−1, ds)) the token ds

with minimum pd is selected.
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3 Automatic Thesaurus Building

The accuracy strongly depends on the completeness of the thesaurus. Unfortunately,
thesaurus maintenance is an expensive process. The present work proposed a neural
adaptive tool able to support thesaurus updating.

The main idea of our solution is to automatically induce from examples general rules
able to identify the presence of synonyms within sequences of tokens produced by the
matcher. These rules, difficult to hand-craft and define explicitly, are obtained adaptively
using neural learning. In particular, a Multilayer Perceptron (MLP) [5] is trained to
receive in input the following types of features from the sequence of matched tokens:

– edit distance between the tokens
(tb1, t

b
2, . . . , t

m
1 , tm2 , . . .) of the KB and tokens found in the document;

– number of characters between two consecutive tokens found in the document;
– typology of found tokens (word or number);
– bits that identify the presence of each token.

As illustrated in Fig. 7, each pattern is divided into four groups of P features, where P
represents the maximum number of tokens obtainable from a product (b, m).

Fig. 7. An example of input pattern/output construction for the MLP model

The output pattern identifies a synonym S̄ of S, where S is a particular sequence
of tokens extracted from Tb,m, and S̄ is a different sequence of tokens extracted from
Tb,m or from the sequence of matched token of the document. Each output pattern has
a dimension equal to 3P . The output of the trained neural network is used to add a
new item S = S̄ to the thesaurus: when an output neuron has a value greater than a
threshold, the corresponding token will be considered part of a synonym.
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4 Experiments

The aim of these experiments was to measure the classification effectiveness in terms
of precision and recall, and to measure the contribution of neural thesaurus updating
within the overall strategy.

4.1 Text Collection

Document collection is taken from the price comparison service Shoppydoo (http://
uk.shoppydoo.comand http://www.shoppydoo.it), a price comparison
service that allows users to compare prices and models of commercial products.

Two experiments were conceived and conducted in the field of price comparison ser-
vices. Two product categories were identified, cell-phones and digital-cameras. Three
specific brands were considered in our set of couples (b, m) KB for each category
(Nokia, Motorola, Sony for cell phones and Canon, Nikon Samsung for digital-camera).
The total number of documents collected for the cell-phone category was 1315 of which
866 associated with one of the three identified brands. The number of documents be-
longing to the digital-camera category were 2712 of which 1054 associated with one of
the three identified brands. Remaining documents belonging to brands different from
those considered in the experiment, must be classified not relevant.

4.2 Evaluation Metrics

Performance is measured by recall, precision and F-measure. Let us assume a collection
of N documents. Suppose that in this collection there are n < N documents relevant
to the specific information we want to extract (brand and model of a product). The IE
system recognizes m documents, a of which are actually relevant. Then the recall, R,
of the IE system on that information is given by

R = a/n (1)

and the precision, P, is given by

P = a/m (2)

One way of looking at recall and precision is in terms of a 2 × 2 contingency table
(see Table 1).

Table 1. A contingency table analysis of precision and recall

Relevant Not-relevant Total
Matched a b a + b = m

Not-matched c d c + d = N − m
Total a + c = n b + d a + b + c + d = N

Overall accuracy (OA): (a + b)/N

http://uk.shoppydoo.com
http://uk.shoppydoo.com
http://www.shoppydoo.it
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Another measure used to evaluate information extraction that combines recall and
precision into a single measure is the F-measure Fα defined as follows:

Fα =
1

α 1
P + (1 − α) 1

R

(3)

where α is a weight for calibrating the relative importance of recall versus precision [6].

4.3 Results

The results of the two experiments are summarized in Tables 2 and 3. We started with
an empty thesaurus that was then populated with the support of the neural network.
For both datasets we obtained Precision and Recall equal to 100% after adding new
synonyms to the thesaurus to resolve all the cases not perfectly matched.

Table 2. Evaluation metrics for the problem ’cell-phone’ with thesaurus (a) and without the-
saurus(b)

Relevant Not-relevant Total
Matched 866 0 866

Not-matched 0 449 770
Total 866 449 1315

Recall 100%
Precision 100%

Fα=0.5 100%
OA 100%

Relevant Not-relevant Total
Matched 755 0 755

Not-matched 111 449 560
Total 866 449 1315

Recall 87.18%
Precision 100%

Fα=0.5 93.15%
OA 91.56%

(a) (b)

Table 3. Evaluation metrics for the problem ’digital-camera’ with a thesaurus (a) and without
thesaurus(b)

Relevant Not-relevant Total
Matched 1054 0 1054

Not-matched 0 1658 1659
Total 1054 1658 2712

Recall 100%
Precision 100%

Fα=0.5 100%
OA 100%

Relevant Not-relevant Total
Matched 963 0 963

Not-matched 91 1658 1749
Total 1054 1658 2712

Recall 91.37%
Precision 100%

Fα=0.5 95.49%
OA 96.64%

(a) (b)

5 Conclusions and Future Works

The present work tested a system that make use of IE and classification in the context of a
price comparison service. The approach proved highly accurate but it requires the assis-
tance of an expert during the construction of the KB and the corresponding thesaurus.
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Future work will extend the present solution including a tool for building the KB by
automatically extracting unknown models of a product from a document.
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José Medina Pagola, Ansel Y. Rodŕıguez González,
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Advanced Technologies Application Center (CENATAV), 7th Avenue # 21812
% 218 and 222, Siboney, Playa, Havana City, Cuba

{jmedina,arodriguez,ahechavarria}@cenatav.co.cu

Abstract. Text information processing depends critically on the proper
document representation. Traditional models, like vector space model,
have significant limitations because they do not consider semantic rela-
tions amongst terms. In this paper we analyze a document representation
that uses an association graph scheme model called Global Association
Distance Model or GADM, the significance of the formal distance for
the association strength, and the application of several distance-strength
functions in this model. We evaluate this significance for topic classifica-
tion tasks.

Keywords: Document modelling, Document processing, Document
re-presentation.

1 Introduction

Nowadays, due to the rapid scientific and technological advances, there are great
creation, storage and data distribution capacities. This situation has boosted
the necessity of new tools to transform this big amount of data into useful
information or knowledge for decision makers. This transformation process is
known as Knowledge Discovery in Databases (KDD).

Recent studies and analyses have concluded that complex data require a high
number of components to be completely described. This data has to be embedded
in high-dimensional spaces (from tens to thousands dimensions). Examples are
spectrophotometer data, gene expression data, pictures and texts. In this paper,
we focus our analysis on textual data and their representation.

The representation model that is used affects critically almost any text pro-
cessing task; like information retrieval, classification, clustering, summarization,
question-answering, etc. The vector space model is the classic one and by far
the most widely used model. Nevertheless, some studies have shown that the
weakness of this model is to leave out semantic complexity of the textual data.

As terms appear related to other terms in any document, their meanings
strongly depend on the meanings of the surrounding terms; even more, term
meanings emerge from mutual sense reinforcement. If we assume that sentences

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 930–939, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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are the main semantic unit in texts, then mutual sense reinforcements or asso-
ciations amongst their terms should be as strong as possible. Nevertheless, it is
well known that these reinforcements or associations are feasible in other con-
texts, such as paragraphs or groups of them. The Global Association Distance
Model (GADM) is an association graph scheme that includes this consideration
for document representation.

In this paper we analyze the significance of the formal distance for the asso-
ciation strength in GADM, especially in classification tasks using a K-NN clas-
sifier. Besides, we evaluate the characteristics of the distance-strength function
proposed for this model and propose other functions with better performance.

The basic outline of this paper is as follows. Section 2 is dedicated to related
work. In section 3 we describe GADM. Section 4 analyzes several considera-
tions related to formal distance, the association strength, the characteristics of
the original distance-strength function and other better functions proposed for
GADM, as well as the experimental results obtained.

2 Related Work

Document categorization, clustering and information retrieval tasks are often
based on good data representation. At a high level, the manipulation of textual
data can be described as a series of processing steps that transform the original
document representation into another one, simpler and easier to be processed
automatically by computers.

This usually involves enriching the document content by adding information,
using background knowledge, normalizing terms, etc. At the start of the process,
the textual data may exist as a paper, for instance, and the final representation of
the preprocessing could be a straight ASCII text enriched with some additional
information. This preprocessing final representation is used to represent data in
a useful way for computer calculation.

These terms could be organized in different forms but, in general, they are
considered as groups or bags of words, usually structured using a vector space
model [1]. In this model, term sequences, or their syntactical relations, are not
analyzed; therefore, they are considered as unigrams supposing an independence
of their occurrences.

In the vector space model, each document is a vector of terms. The values
of these vectors could be assumed as weights according the term occurrences in
the document or in the document collection, and considering different interpre-
tations [2]: Boolean, Term Frequency and Term Frequency - Inverse Document
Frequency.

These vectors of terms are used in a second stage, among other tasks, to
analyze the similarities among documents, or groups of them, using different
measures as the cosine, applied to the angle between the vectors, defined as [2]:

sim(di, dj) = cos(di, dj) =
(di • dj)

||di|| ∗ ||dj ||
=

∑
wir ∗ wjr√∑
w2

ir ∗
∑

w2
jr

, (1)
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where di, dj are the vectors of documents i, j, ||di||, ||dj|| the norms of the
vectors, and wir, wjr are the term weights in the vectors di, dj, respectively.
Other common measures are Dice and Jaccard coefficients.

Alternative approaches to the vector space model are the language models.
These consider the probabilities of occurrence of a phrase S in a language M ,
indicated by P (S/M). However, the phrases are usually reduced to one term,
assuming again unigrams and independence among them. An example of this
model is the Kullback-Leibler Divergence (a variation of the cross-entropy), de-
fined as:

D(di||dj) =
∑

P (t/di)log
P (t/di)
P (t/dj)

. (2)

This expression could be combined in both directions to obtain a similarity
measure, as was pointed out by Feldman and Dagan [3].

Other implementation is the proposal of Kou and Gardarin [4]. This proposal
is a kind of language model, considering the similarities between two documents
as:

sim(di, dj) = di • dj =
∑

r

wirwjr +
∑

r

∑

s�=r

wirwjs(tr • ts) , (3)

where wir and wjs, using Kou-Gardarin terminology, are the term weights in doc-
ument vectors di, dj , respectively, and (tr • ts) is the a priori correlation between
terms tr and ts. Actually, the authors included in the first part of the expres-
sion the self-correlation in tr, considering that (tr • tr) = 1. The authors propose
the estimation of the correlation through a training process. As can be noticed,
those correlations express the probabilities P (tr, ts/M) of phrases containing the
terms tr, ts in a language M . Besides, that expression could be reduced to the co-
sine measure (normalized by the length of the vectors) if the term independence
is considered and, for that reason, the correlation (tr • ts) is zero.

Another vector space model is the Topic-based Vector Space Model (TVSM)
[5]. The basic premise of the TVSM is the existence of a space R which only has
positive axis intercepts. Each dimension of R represents a fundamental topic.
It is assumed that all fundamental topics are independent from the others. In
this model, each document is represented as a vector of term-vectors; each term-
vector is a set of weights between the term and the fundamental topics.

The approaches mentioned above are variants of the Generalized Vector Space
Model proposed by S.K.M Wong et al. [6]. In their work, they expressed that
there is no satisfactory way of computing term correlations based on automatic
indexing scheme.

We believe that up to the present time that limitation has not been solved yet.
Although several authors have proposed different methods of recognizing term
correlations in the retrieval process, those methods try to model the semantic
dimension by a global distribution of terms, but not with a local evaluation of
documents.

In general, it could be assumed that the better the semantic representation
of the information retrieved and discriminated, the better this information is
mined.
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3 Global Association Distance Model

The Association Graph Model assumes that the same term in two documents
could designate different concepts [7]. Besides, two terms could have different
relations, according to the subject of each document, and those relations could
exist only in the context of some documents, forming a specific group, and re-
gardless of the relations in a global dimension or language.

In order to model the relation between two terms in a document, the shortest
formal (or physical) distance between those terms has been considered. The
basic premise of this model can be expressed as follows: Two documents should
be closer if the number of common terms is greater and the shortest formal
distances among them in each document are similar.

Considering the distance by paragraph, without ignoring the natural co-
occurrence when appearing in the same sentence, and considering: (pr, nr),
(ps, ns), the paragraph and sentence numbers of terms tr and ts respectively,
the formal distance between these terms (Drs) is defined as follows.

Drs =
{

1 (r = s) ∨ [(pr = ps) ∧ (nr = ns)]
|pr − ps| + 2 otherwise

. (4)

Observe that the minimum value of Drs, as could be expected, is not zero, but
one. This consideration is only a convenient assumption to expressions defined
further on.

According to this, a document is modeled by a graph, where the vertices
are the distinguished terms and the edges are their relations, weighted by their
distances. Notice that this is a fully connected graph, where any term has some
relation (stronger or not according to the distance) with the others.

As an improvement to this model, the Global Association Distance Model
(GADM) has been proposed [8]. This model uses the preliminary ideas of the
classical vector space model proposed by Salton, i.e. to consider “a document
space consisting of documents ..., each identified by one or more index terms ...
weighted according to their importance” [1]. In GADM, the importance of a term
tr in a document d is related to its Global Association Strength (gtr ) and can
be calculated as follows.

gtr =
∑

ts∈d

1√
Drs

. (5)

Therefore, the Global Association Distance Model can be defined as a vector
space model (VSM) where each term is weighted by their global association
strength. Nevertheless, in contradistinction to the original VSM that considers
the term relevance by the number of its occurrences in a document, GADM
considers the co-occurrences (actually, the association strengths) amongst terms
in sentences, paragraphs and so on.

So, a document d can be modelled by a vector of association strengths (6).

−→
d = (gt1 , ..., gtn) . (6)
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It is not difficult to understand that the similarity measure between two docu-
ments in this model can be calculated by any of the measures defined for the
classic vector space model. In that proposal, and also in this work, the cosine
measure (1) has only been considered.

4 Relevance of Formal Distance for the Association
Strength

In order to better understand GADM, consider - as a very simplified example-
the following four terms that appear in the introduction of this proper paper:
data, model, classification, and distance. The association strengths amongst these
terms are shown in Table 1.

Table 1. Formal distances in the introduction

Drs t1 t2 t3 t4
t1 - data 1 1 2 3
t2 - model 1 1 1 1
t3 - classification 2 1 1 1
t4 - distance 3 1 1 1

Notice that D12 = 1, because data and model appear together in the third
sentence of the third paragraph; D13 = 2, because data and classification appear
together on the third paragraph but in different sentences; and D14 = 3, because
the third paragraph is the last where data appeared and the fourth paragraph
is the first where distance appeared. Also, it can be noticed that the term model
has the highest association strength and the term data has the lowest.

Although, in the original work, the formal distance amongst terms was ex-
plicitly considered and the authors showed that this single feature can improve
the classical VSM with a primary proposal, the relevance of this feature has not
been evaluated in all the possible approaches. In the following subsections we
will analyze other characteristics of this feature, its significance for this model,
and other proposals with better performance.

4.1 The Distance-Strength Assumption

The basic assumption of the Global Association Distance Model is that two doc-
uments should be closer if the shortest formal distances amongst terms in each
document are similar. But also, it indirectly considers the following assumption:
The association strength between two terms decreases (increases) as their short-
est formal distance increases (decreases). Nevertheless, in the original work, the
experimentation was made with two repositories: TREC-5 and Reuters-21758,
both with short documents. So, a question is open: Is that assumption true for
any distance? Can an upper limit for the distance be considered without losing
accuracy?
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In order to find the correct answer, we evaluated one of the short corpora:
TREC-5 in Spanish 1. TREC-5 is an AFP news corpus with 695 items published
during 1994-1995 and classified in 22 topics. Besides, we prepared a new one with
the proceedings of the 18th International Conference on Pattern Recognition
(ICPR 2006), held in Hong Kong in 2006. The proceedings have 1130 papers
explicitly split into four classes.

All documents were preprocessed and lemmatized with TreeTager [9]. In all
the evaluations, we have used a k-NN classifier with k = 5. The experimental
evaluation was done using s-fold cross-validation with s = 10.

Precision, Recall and F -measure are three evaluation measures of performance
commonly used. For a single category or topic, these measures can be defined
as [10]. Precision is the quotient of the correctly assigned and the ones assigned
to the category, Recall is the quotient of the correctly assigned and the ones
belonging to the category, and F -measure is a ponderable representation of both
above.

For evaluating the performance average across categories, there are two con-
ventional methods: Macro-averaging and Micro-averaging performance. Macro-
averaged performance scores are computed by a simple average of the perfor-
mance measures for each category. Macro-averaged performance score gives equal
weights to every category or topic, regardless of its frequency. Micro-averaged
performance scores are computed by first accumulating the corresponding vari-
ables in the per-category expressions, and then using those global quantities to
compute the scores. Micro-averaged performance score gives equal weights to
every document.

Fig. 1 a) and b) show the experimental results for Micro-average with TREC-5
and ICPR-2006 respectively. In this experimentation, we have considered differ-
ent upper limits of the formal distance, from 1 to 8, and 10 and 50. So, those
terms ts, whose distances Drs are greater than each limit, are not considered in
formula (5) for term tr.
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GADM with upper limit

GADM without upper limit

VSM
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GADM with upper limit

GADM without upper limit

VSM

Fig. 1. Results for different upper limits a) TREC-5 b) ICPR-2006

As can be noticed in TREC-5, the best performance is obtained when the
formal distance is limited to the same paragraph (upper limit = 2). However,
in ICPR-2006 unexpectedly, the best performance is obtained when the upper

1 http://trec.nist.gov/pubs/trec5
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limit is one, although the results for almost all the upper limits are better than
the original results. Nevertheless, as we will show afterwards, it is partially true
for GADM.

As a preliminary conclusion, apparently we can obtain better results limiting
the formal distance and considering not fully connected graphs, but thresholded
graphs with a very small upper limit.

4.2 The Distance-Strength Function Shape

In the original work, the global association strength is calculated using formula
(5). Nevertheless, other formulae could be used. So, this expression can be gen-
eralized in the following way:

gtr =
∑

ts∈d

ds(Drs) , (7)

where ds(D) is a distance-strength function applied over a formal distance be-
tween two terms. In (5) this formula is the function 1/

√
D. However, it has not

been proved that this function is the best choice for this model.
The shape of the function is one aspect that should be evaluated first. In this

work we have considered three types of functions: convex, linear and concave
types.

ds(D) = Ma − Da . (8)

The function (8) can be used to model those three types of functions, where M
is a superior value of D and a is a parameter that generates the three shapes in
the following way:

– If a < 1, it is a convex function; that is, firstly the strength quickly decreases
and at the end it decelerates the decrease with the distance increase.

– If a > 1, it is a concave function; that is, firstly the strength slowly decreases
and then it accelerates the decrease with the distance increase.

– If a = 1, it is a linear function.

Fig. 2 shows examples of this function with a = 0.5, 1, and 2.
Fig. 3 a) and b) show the behavior of (8) for Micro-average with TREC-5 and

ICPR-2006 respectively, taking M as the maximum of paragraph number of each
data set. In both figures, the behavior of (8) is compared to the VSM and the

d
s
(D

)

D

d
s
(D

)

D

d
s
(D

)

D

Fig. 2. Example of a convex (left), a linear (center) and a concave (right) function
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Fig. 3. Behavior of the function with different shapes a) TREC-5 b) ICPR-2006

original GADM formula (5). As can be noticed in both figures, the best results
are obtained with convex shapes. It means that, although the formal distance
could have a relevant effect, its strength decreases relatively quickly for shortest
distances (or nearest paragraphs).

4.3 The Optimum Distance-Strength Function

Although the function (8) with a convex shape achieves the best results, it has,
as a constraint, to define a constant M which completely depends on document
sizes. As an alternative, we can use another family of convex functions, defined
in (9), easier to be applied with any document size. Observe that the formula
used in (5) is the same as (9) with a = 0.5.

ds(D) =
1

Da
. (9)

Fig. 4 a) and b) show the behaviors of this new formula for Micro-average with
TREC-5 and ICPR-2006 respectively. In both, the behavior of (9) is compared
with the VSM and the original GADM formula (5). From this experimentation,
we can observe that the original formula (5) is not amongst the best results;
moreover, the best results are achieved with formula (9) for values of a in the
interval [4, 5] in both data sets.

Considering, as a result of the first experimentation made in subsection 4.1
that using an upper limit over the formal distance could improve the behavior,
we decided to evaluate formula (9) with different values of a and different upper
limits.

Fig. 5 a) and b) show the behaviors of these combinations for Micro-average
with TREC-5 and ICPR-2006 respectively. In both, the behavior of (9) is com-
pared with the VSM. Analyzing these results, we can observe that the prelimi-
nary conclusion made in subsection 4.1 is partially valid; that is, we can consider
not fully connected graphs, or thresholded graphs, with a reasonable upper limit,
simplifying the processes associated to GADM. Besides, we can notice that, in
TREC-5, the best upper limits are 2 or 3 and in ICPR-2006 could be from 2 to 5.

As a conclusion, at least in classification tasks with the Global Association
Distance Model, we recommend to use the formula (10) as a distance-strength
function, considering thresholded graphs with upper limits according to the size
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Fig. 4. Behavior of formula (9) a) TREC-5 b) ICPR-2006
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Fig. 5. Behavior of formula (9) and different upper limits a) TREC-5 b) ICPR-2006

of documents to be processed. Also, we can conclude that, although the distances
limited to sentences and paragraphs produce the biggest association strengths,
and so it is modeled by the best functions, we should take into account the
distances to nearest paragraphs because these also contribute, to a lesser extent,
to the global improvement.

ds(D) =
1

D5 . (10)

With this new formula and a thresholded graph we obtain the results shown in
Table 2 for Micro-average.

Table 2. Results for Micro-average

Collection VSM GADM,1/
√

D GADM,1/D5

TREC-5 0.869401 0.870809 0.882238

ICPR-2006 0.600885 0.610619 0.645133

Notice that formula (10) represents a 1.48% improvement in performance
compared to VSM and a 1.31% to the primary proposal in TREC-5, and 7.36%
to VSM and 5.65% to the primary proposal in ICPR-2006.

5 Conclusion

In this paper we have analyzed the significance of the formal distance for the
association strength in GADM, especially in classification tasks using a k-NN
classifier.
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In our experimentation, we showed that GADM not only achieves better re-
sults than the classic vector space model in the original formulation, but also in
a family of functions with significant improvements.

Besides, we evaluated the characteristics of the distance-strength assumption
with different functions and distance thresholds. Also, we proposed a new func-
tion with a better performance.

As a future work, it can be analyzed the performance of these considera-
tions with other similarity measures or other forms for modelling the association
strength.
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Abstract. Access to collections of cultural heritage is increasingly be-
coming a topic of interest for institutions like libraries. With the easy
access to information provided by technologies such as the Internet, new
ways exist for consulting ancient documents without exposing them to
more dangers of degradation. One of those types of documents is written
ancient music. These documents suffer from multiple kinds of degrada-
tion, where bleed-through outstands as the most damaging. This paper
proposes a new method based on the Takagi Sugeno fuzzy classification
algorithm to classify the pixels as bleed-through, after performing a gen-
eral background restoration. This method is applied to a set of double-
sided ancient music documents, and the obtained results compared with
methods present in the literature.

Keywords: Ancient Music Restoration, Image Processing, Document
Degradation, Bleed-through Removal, Registration, Adaptive Thresh-
olding, Fuzzy Classification, Clustering.

1 Introduction

One of the main current goals for institutions like libraries is to give access to its
rich collections of cultural heritage, written documents in particular. However,
much of those documents suffer from different kinds of degradations that are
not corrected in the digitization process. As such, there is an active research on
automatic methods to restore these kinds of documents.

Restoration can be seen as a transformation that gives the original aspect to
documents showing a certain state of degradation. Degradation, on the other
hand, can be described as “every sort of less-than-ideal properties of real docu-
ment images, e.g. coarsening due to low digitizing resolution, ink/toner drop-outs
and smears, thinning and thickening, geometric deformations, etc” [1]. Restora-
tion is necessary not only to enhance the visual appearance of a document, but
also to improve the results of further segmentation and recognition operations.

Degradation can be divided into three types [2], according to the parts
of a document that are subject to interference: 1) background degradation;

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 940–949, 2007.
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2) foreground degradation; and 3) global degradation. We are concerned with
background degradation, which accounts for the majority of defects found in
documents of ancient music. It includes blotches due to humidity, marks re-
sulting from ink that traverses the paper (bleed-through) or resulting from the
scanning process (show-through), underlines, strokes of pen, annotations, and
the superimposition of other symbols. Examples of these degradations are de-
picted in Fig. 1.

(a) (b)

Fig. 1. Images of ancient music showing background degradation

Current approaches for bleed-through removal are split between blind and
non-blind methods. Blind methods process a single side of a leaf of paper – the
recto – while non-blind methods use both sides – the recto and the verso. Blind
methods have the immediate advantage of not requiring the verso image to be
present. Non-blind methods, however, dispose of additional features that can be
extracted by processing both sides simultaneously, which can lead to a better
segmentation.

A previous work by Castro and Pinto [3] has analyzed and compared different
recto-based approaches to restore images of ancient music, including global and
adaptive thresholding, color clustering, and edge detection. One of the work’s
conclusions was that none of the methods was able to successfully remove the
defect that resulted from sipped ink, i.e., bleed-through. This therefore demands
for a specialized treatment, which is the main focus of this paper.

Non-blind methods are typically comprised of: 1) matching of the recto and
verso images; 2) heuristics to distinguish bleed-through from the valid
foreground; 3) bleed-through removal; 4) inpainting [4], to fill in the removed
bleed-through regions; and 5) pre and/or post-processing algorithms. Sharma [5]
developed a simple model of the show-through effects, assuming that the distor-
tion in the documents is due to show-through and that the impairment when
scanning such documents can be modeled by the properties of the physical scan-
ning process. However, this method does not apply to the case of bleed-through
due to its nature in the derivation of a physical model that describes the show-
through phenomenon. Wang and Tan [6] proposed a method that matches pixels
on the two sides to remove interference and corrects the result using a Canny
edge detector [7]. However, this correction is favored by the orientation of the
characters, which cannot be applied to the case of written ancient music as
these are typically written in a nearly vertical orientation. Dubois and Dano [8]
segment a document into four regions: foreground only, bleed-through only, back-
ground, and foreground and bleed-through overlap. Bright areas are considered
to be background, whereas areas that are dark on the side of interest and not on
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the reverse are considered to be foreground. Areas that are dark on both sides,
but more so on the reverse side, are considered to be bleed-through, while if
they are dark on both sides but similar they are considered regions of overlap.
Thresholds are used to determine if one side is sufficiently darker than the other,
and correlations are used to determine whether they are similar. They state that
their segmentation scheme is empirical and could therefore be improved.

The rest of this paper is organized as follows. Section 2 details our proposed
method. Section 3 presents and analyzes the results, comparing them to an exist-
ing method. Section 4 concludes the paper and indicates future work directions.

2 Method

The method we propose processes the images corresponding to the two sides
of a leaf of paper in order to restore them. General deterioration, like water
blotches and inhomogeneous backgrounds, is removed, but the main focus is on
eliminating bleed-through.

The images are converted to gray scale before processing. Besides this conver-
sion, the verso image is flipped horizontally in order for its coordinate system to
match that of the recto.

The method is comprised of multiple steps. First, the recto and the verso im-
ages are registered. Background homogenization is then performed using adap-
tive thresholding. Following thresholding, the staff lines are detected. Finally,
features are extracted and classification is performed, after which the method
proceeds with a final post-processing step.

The result of the method is a binary image that distinguishes from the fore-
ground and the background. All the detected deterioration, including bleed-
through, is incorporated into the background. Throughout the exposition of the
method, the recto image will stand as the target for restoration, with the verso
image being used, in addition, to restore it. The restoration of the verso image
follows the exact same approach and therefore will not be covered here.

Problem Formulation. We formulate the problem using a notation that is
similar, in part, to that found in the work of Dubois and Dano [8]. Let fO

r (x, y)
and fO

v (x, y) denote the original recto and verso digital images, respectively, after
being converted to gray scale and flipping the verso. The points (x, y) lie on a
two-dimensional rectangular space and the range of the functions is the interval
[0, 1], with 0 and 1 corresponding to white and black, respectively. Each of the
two images is comprised of foreground, background and bleed-through areas.
The foreground area contains the writing that was intentionally applied to the
paper. The bleed-through area contains part of the verso’s writing that has bled
through the page. The remainder of the recto corresponds to the background.
The original recto image can therefore be represented as

fO

r (x, y) = fO

rfg(x, y) + fO

rbt(x, y) + fO

rbg(x, y) , (1)

where fO

rfg(x, y), fO

rbt(x, y) and fO

rbg(x, y) correspond to the original recto fore-
ground, bleed-through and background areas, respectively.
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This allows us to model the relationship between the two sides:

fO

r (x, y) = C(fO

rfg(x, y), fO

rbg(x, y), fO

vfg(x, y)) , (2)

where fO

vfg(x, y) denotes the original verso foreground and C is a function that
combines its arguments in some way. Possible models for this combining function
were presented by Dubois and Pathak [9]. A simple additive model defines it as

C(μ, ρ, τ) = μ + ρ + α · τ , (3)

where α represents the attenuation of the verso foreground sipping to the recto.
Still, our method does not highly depend on a specific model of the bleed-

through effect. Its ideal purpose is to create a restored recto image, which we
denote as fr(x, y), that nullifies both the background and the bleed-through
areas, maintaining only the valid writing:

fr(x, y) = C(fO

rfg(x, y), 0, 0) = fO

rfg(x, y) . (4)

Conceptually, we wish to determine the parts of an image that correspond to
the valid intentional writing. To this accomplishment, the background and bleed-
through areas need to be removed. As the bleed-through areas depend on the
verso’s writing, information from the verso needs to be incorporated and com-
bined with the recto. In practice, however, it is not possible to establish a perfect
relation between the two sides. On one hand, the sipping of ink is irregular, as
only part of the verso writing does sip to the recto and the bleed-through area
may be somewhat diffuse, thus occupying a larger area in the recto than it orig-
inally occupied in the verso. On the other hand, ink may have sipped to areas of
the recto that already contained valid writing, thereby making it extremely diffi-
cult, even for human readers, to distinguish the foreground from bleed-through.
Therefore, the main purpose of our method is to restore as much deterioration
as possible, recognizing the problem’s difficulties beforehand.

Registration. The necessity for using registration comes from the variability
in the way the recto and the verso images are captured. When scanning the
recto and the verso using typical machines, differences may arise in the resulting
images, when compared to each other. This includes mostly shifting, rotation,
and some skewing. These properties can be modeled by an affine transformation
At, of parameter vector t = [t11 t12 t13 t21 t22 t23] [10], defined as [8]

(Atf)(x, y) = f(t11x + t12y + t13, t21x + t22y + t23) . (5)

The parameter vector is estimated by solving the optimization problem:

t̂ = argmin
t

∑

x

∑

y

[
fO

r (x, y) − (Atf
O

v )(x, y)
]2

. (6)

The registered verso image, i.e., the image that results after applying the affine
transformation to the original verso, can then be calculated with

fR

v (x, y) = (At̂f
O

v )(x, y) , (7)
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while the recto image remains unchanged, thereby having its registered version
represented as

fR

r (x, y) = fO

r (x, y) . (8)

Background Homogenization. After registering the images, the registered
recto background fR

rbg is estimated and removed, along with the degradation it
contains. Sauvola’s adaptive thresholding method [11] was chosen, as it not only
aims at dealing with cases in which the background contains light texture, big
intensity variations and uneven illumination, but also has been shown to perform
well with written ancient music [3]. This algorithm calculates a threshold value
for each pixel based on the mean and standard deviation of all the pixels in a
local neighborhood. A window of size W × W is moved over the image and the
threshold value, for a pixel (x, y), is calculated as

t(x, y) = m(x, y) ·
[
1 + K ·

(
s(x, y)

R
− 1

)]
, (9)

where m(x, y) and s(x, y) are the mean and standard deviation values, respec-
tively, in a local neighborhood of size W ×W of pixel (x, y), and R is the dynamic
range of standard deviation. The values of W = 15, K = 0.2 and R = 128 were
used, as they provided the best results in previous experiments [3].

We denote fB
r as the binary image that results after applying Sauvola’s thresh-

olding to fR
r . This image contains all background pixels set to 0 and the remain-

ing pixels set to 1. It will be the task of the classification step to distinguish from
the registered recto foreground and bleed-through, now that the background has
been detected.

Staff Line Detection. Staff lines are detected because line pixels may become
incorrectly classified as bleed-through in the classification step, leading to broken
lines. This allows to restore those lines as a post-processing step.

We used a method that has been shown to perform well with written ancient
music [12]. This method uses horizontal projections and small rotations of fB

r ,
finding peak areas of the projections and classifying them as staff lines.

Features. The extraction of features was accomplished by taking both the recto
fR

r and the verso fR
v into account. All the pixel positions (x, y) were selected as

possible candidates according to the following criteria:

∀x,y

[
((fB

r (x, y) = 1) ∧ (fR

r (x, y) < fR

v (x, y))) → ((x, y) ∈ Candidates)
]

.

From these candidates, 4 features were extracted: 1) correlation coefficients; 2)
differences; 3) recto values; and 4) verso values. The correlation coefficients relate
to information about whether the verso is similar to the recto, near a certain
candidate pixel. For each candidate position, a window of size 9 × 9 is centered
on the recto and the verso, forming two matrices A and B, respectively. The
correlation coefficient for a given candidate is then calculated as

r =
∑

m

∑
n(Amn − A)(Bmn − B)√

(
∑

m

∑
n(Amn − A)2)(

∑
m

∑
n(Bmn − B)2)

, (10)
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where Amn and Bmn are pixels with coordinates (m, n) within the windows A
and B, respectively, and A and B are the means of the pixels within A and B,
respectively.

The differences correspond to the distances between the pixel values on the
two sides. They relate to the subtraction of the recto from the verso, i.e., fR

v −fR
r .

The last two features correspond to the pixel values in the recto and the verso.

Classification. In a classification problem the aim is to learn the behavior
between the input and output of the training data. The use of fuzzy models in
classification problems has been adopted in many domains [13,14,15], because
they are able to solve difficult problems, exhibit robust behavior and present
linguistic representations, which are easy to interpret.

The fuzzy models used in this paper are an extension of the Takagi-Sugeno
fuzzy models [16] in the affine form. This fuzzy classification rule is a fuzzy
if-then rule whose consequent part is a class label [14,15]. It can be described by

Rk : If x is Ak then x ∈ classκ with confident value CV k , (11)

where k = 1, 2, . . . , K, i = 1, . . . , K, K denotes the number of rules in the
rule base, Ri is the ith rule, n is the number of features, Ai1, . . . , Ain are fuzzy
sets defined in the antecedent space, yi is the output feature for rule i, ai is
a parameter vector and bi is a scalar offset, κ is the number of classes, and
CV k is the confident value of the rule Rk. The confident value of the if-then
rule represents the rule weight interpreted as its confident strength. This type
of model is used because it focuses on the precision of the obtained model.

To form the fuzzy system model from the data set with N data samples, given
by X = [x1, x2, . . . , xN ]T , Y = [y1, y2, . . . , yN ]T where each data sample has a
dimension of n (N >> n), first the structure is determined and afterwards the
parameters of the structure are identified. The number of rules characterizes
the structure of a fuzzy system. Fuzzy clustering in the Cartesian product-space
X × Y is applied to partition the training data. The partitions correspond to
the characteristic regions where the system’s behavior is approximated by local
linear models in the multidimensional space. Given the training data XT and the
number of clusters K, a suitable clustering algorithm is applied. In this paper we
used the fuzzy c-means [17], one of the most widely used clustering algorithms.

As result of the clustering process a fuzzy partition matrix U = [μik] is ob-
tained. The fuzzy sets in the antecedent of the rules are identified by means of
the partition matrix U which has dimensions [N × K]. One-dimensional fuzzy
sets Aij are obtained from the multidimensional fuzzy sets by projections onto
the space of the input variables xj . This is expressed by the point-wise projection
operator of the form μAij (xjk) = projj(μik). The point-wise defined fuzzy sets
Aij are then approximated by appropriate parametric functions. The consequent
parameters for each rule are obtained by means of linear least square estimation,
which concludes the identification of the classification system.

Post-processing. Having classified all pixels as bleed-through or foreground,
we now have fR

rfg and fR

rbt, where the first corresponds to the registered image
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without bleed-through. As a final step, two operations need to be performed.
First, the initially detected staff lines are restored. Second, bleed-through diffu-
sion, visible as a set of pixels surrounding bleed-through, is suppressed. To this
intent, a window of size 5×5 is centered on each bleed-through pixel and all the
pixels connected to it, inside that window, showing intensity levels at most 0.04
darker or lighter than the center pixel value, are marked as bleed-through.

We now have the final restored image fr, containing the detected valid writing,
which is derived from the detected foreground fR

rfg, according to (4) and (8), as

fr(x, y) = fO

rfg(x, y) = fR

rfg(x, y) . (12)

3 Results

Experiments were conducted in order to determine whether our method achieves
a good segmentation. The method of Dubois and Dano [8] was also tested, and
the results of the two methods compared. The quality of the restoration, as
observed in the resultant images, was the main emphasis of our tests. Compu-
tational issues were therefore not considered.

Methodology. Images of written ancient music were provided by the Por-
tuguese National Library and the Biblioteca Geral da Universidade de Coimbra,
Portugal. A total of 14 images, i.e., 7 pairs of recto-verso images, scanned at
a resolution of 150dpi, were used throughout the experiments. These images
contain diverse degradation types, as well as different musical notations and
illumination characteristics. They are representative of the majority of images
present in the studied collections from the two referred libraries. All images were
first manually restored, using graphics editing software, in order to be used as a
standpoint for comparison. From the 14 images, one side of each pair was used
for training and the other for validation.

It must be noted that the method of Dubois and Dano [8] does not perform
binarization. Its purpose is to detect and remove bleed-through areas, preserving
the remaining parts of the image. Therefore, for it to be comparable to our
method, Sauvola’s thresholding was applied to it. The image is thresholded after
registration, but the algorithm proceeds as normal, ignoring the thresholded
image. Only in the end, when bleed-through pixels have been detected, thresholds
are combined to form the resulting image, which constitutes of the thresholded
image with the detected bleed-through pixels removed.

The test images were processed by the chosen methods and compared to
the manually restored images. The comparison was evaluated by the standard
measures of precision and recall [18], with a slight modification. To evaluate text
segmentation, these measures are typically used with the precision of a character
or word. In the context of ancient music, this does not apply so well as the musi-
cal notation is varied, including notes, clefs, key and time signatures, rests, bar
and staff lines, as well as text, among other symbols. All of these symbols could
be treated as characters, but that would ignore the great differences in shapes and
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sizes among them. Therefore, we opted to perform a bitwise comparison and, as
such, the precision (P ) and recall (R) measures were used as

P =
Correctly Detected BT

Total Detected BT
and R =

Correctly Detected BT
Total BT

, (13)

where “Correctly Detected BT” refers to the bleed-through pixels that were
correctly binarized (i.e., that are equal to those of the manually restored images),
“Total Detected BT” refers to the total bleed-through pixels that were binarized,
and “Total BT” refers to the total bleed-through pixels that are present in the
manually restored images.

Precision and recall reflect the performance of removing interfering strokes and
restoring valid strokes, respectively. To relate the two measures, the geometric
mean (g-mean) was used, being defined as

g-mean =
√

P ∗ R . (14)

This measure was used because it does not depend on the distribution of ex-
amples between classes [19]. This is convenient as the number of bleed-through
pixels is typically a minority, when compared to the entire set of pixels within
an image.

Results. The results of evaluating our method, which we denote as CAP, and
that of Dubois and Dano, denoted as DD, on the 7 selected images, are presented
in Table 1. Our method achieved a good overall segmentation, with a better
performance in almost all images. It should be noted that there is an inherent
degree of error in these results, as they are based on a pixel-wise comparison
with manually restored images. When restoring those images by hand, it is hard
to determine the exact class for each pixel, as the value of some pixels is not
visually distinct.

Table 1. Detailed precision (P ), recall (R) and g-mean (G) results obtained by ap-
plying the methods to 7 images of ancient music

Image 1 2 3 4 5 6 7 Average

P 0.249 0.719 0.487 0.713 0.514 0.400 0.025 0.444
CAP R 0.921 0.814 0.718 0.770 0.795 0.833 0.788 0.806

G 0.479 0.765 0.591 0.741 0.639 0.577 0.139 0.562

P 0.135 0.423 0.254 0.667 0.230 0.241 0.032 0.283
DD R 0.832 0.737 0.509 0.807 0.859 0.845 0.894 0.783

G 0.335 0.558 0.360 0.734 0.444 0.452 0.169 0.436

Parts of two images used throughout the tests are presented in Fig. 2. It can
be noted that the readability is greatly improved with the removal of bleed-
through areas. It can also be observed that the removal is naturally not perfect,
as some bits of diffusion still remain. However, these bits are dispersed, therefore
not creating a serious visual impact to the reader.
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(a) (b)

(c) (d)

Fig. 2. Results of processing two of the original images with the proposed method.
The first column presents the original images, while the second shows the restoration
results.

4 Conclusion

Written ancient music images often present multiple types of degradation. Typ-
ical cases of degradation were presented and analyzed, including the specialized
case of bleed-through. A restoration method for images of ancient music suffering
from bleed-through has been proposed. A methodology for method evaluation
was established and the method compared to an existing one. The results demon-
strate that the proposed method performs well and greatly improves the visual
appearance of the documents.

Some work is still necessary to fine-tune the proposed method. This includes
the difusion removal in the post-processing step, as well as a general performance
optimization that should be considered. Furthermore, some research is still nec-
essary to fully automate the application of this method to the mass restoration
of written ancient music. This will be the concern of future work.
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Abstract. With recent computational advances, several interaction devices can 
be used by different users who share the same virtual world, allowing the 
simulation of realistic environments, such as surgical rooms. In order to deal 
with this feature, assessment systems must be generalized to evaluate, 
individually, all users of the simulation and to make the aspects of their 
interactions known. In this paper we propose a new assessment system for 
training based on virtual reality which can evaluate more than one user at a 
time. The methodology proposed uses data collected from user interaction and 
group interactions during training to create user profile and group profile. The 
main advantages of that approach are: both of reports can be used to increase 
group performance and the interactions among users, during training, can be 
monitored to correct and improve group tasks in procedure such as sequential, 
simultaneous or collaborative tasks. 

Keywords: Multiple Assessment System, Training Based on Virtual Reality, 
Fuzzy Expert System, Statistical Measures, Statistical Models. 

1   Introduction 

The features found in training systems based on virtual reality can be the 3D 
environments composed of objects with topologies and behaviours similar to real 
objects, the interaction ways to deal with this world, the possibility of performing the 
training as much as necessary without risk or damage, among others [4]. Systems for 
different modalities in medicine have been developed as training in laparoscopy [23], 
bone marrow harvest [9], gynaecological exam [10] and bone surgery [17]. The goal 
of most of these systems is to provide a training environment similar to a real 
procedure environment by the use of devices and techniques which explore the human 
senses. All these systems can provide training for only one user at a time. However, 
some procedures need to be performed by more than one person. 

Training systems based on VR for simultaneous use in complex training 
environments are being planned, as virtual surgery rooms for several purposes of 
training. The advances of cluster machines, improvements of video cards, processors 
and networks will provide training system for multiple users simultaneously in a few 
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years at a low cost. Other important advance is the speed of input/output devices for 
virtual reality systems such as haptic devices. Nowadays, it is possible to connect 
more than one interaction device on a single computer. 

Although the possibilities of training which can be simulated in VR systems, any 
kind of training has little value if the trainee does not have any feedback about his/her 
performance. Then, the existence of an on-line assessment tool attached to a 
simulation system based on VR is important to allow the learning improvement and 
the users assessment. This paper presents a brief overview of assessment in VR 
training systems for single users and proposes a method for assessment in 
collaborative training environments for simulators based on VR. 

2   Assessment in Virtual Reality Simulators 

The first methodologies for automatic assessment of training were proposed only a 
few years ago. This section presents a brief overview of assessment methodologies for 
training based on virtual reality. It can be noticed that several of them may also be 
potentially applied to other research areas. Basically, assessment methods can be 
divided in off-line and on-line. Off-line methods can be defined as methods not 
coupled to VR systems, whose assessment results are provided some time (which can 
be minutes, hours or days) after the end of the VR-based training. On the other hand, 
on-line assessment methods are coupled to the training system and collect user data to 
provide a result of his/her performance at the end of the simulation. 

In medicine, some models for off-line or on-line assessment of training have been 
proposed. Some of them use Hidden Markov Models (HMM) [12, 19], fuzzy rule-
based system [8], Fuzzy Gaussian Mixture Models [13], Evolving Fuzzy Neural 
Networks [14] and, recently, Fuzzy Bayes Rule [15]. An evaluation tool must 
continuously monitor all user interactions and compare his performance with pre-
defined expert's classes of performance to recognize user’s level of training. In spite 
of the methodologies proposed in literature, they are concerned with the assessment of 
only one user at a time. Up to the time being, methodologies which monitor multiple 
users in complex training environments based on virtual reality have not been found 
in literature. 

3   Multiple Assessment for Multiple Users in Virtual Reality 
Simulators 

Computational systems for multiple users have been developed since the 1990's, as 
RB2 [3], DIVE [5], MR Toolkit [20], some of them support haptic devices. Systems 
to provide interaction among multiple-user have been proposed too. Baier et al. [2] 
proposed a system for telepresence using haptic and visual interactions. Recently, 
systems for multi-user collaboration were developed [7, 16, 24]. The main differences 
of training systems based on virtual reality for multiple users are: increase of 
complexity of the virtual reality system – use of clusters of computers or a computer 
capable to generate realistic multiple views, support changes in virtual environments 
for multiple users and support assessment system; high speed peer-to-peer network 
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for communication among computers without compromising the simulation. 
Eventually, more than one haptic device were installed in a computer and/or tracking 
systems for each user in training. 

The most common problem in distributed systems based on network or Web, for 
multi-user interactions, is the latency [18]: users may have different views in the 
shared workspace which damages the users' performance involved in the simulation. 
For user assessment, the main problems related are the computational complexity and 
the accuracy, even when only one user is been trained. An on-line assessment system 
must have low complexity to does not compromise VR simulations performance, but 
it must have high accuracy to does not compromise the assessment.  

Due to several specific necessities for multi-user training, a different approach for 
the assessment system is required. The requirements are: to monitor all users in 
training according to relevant variables to the training; in multi-user environment 
some tasks must be completed by specific users and according to a specific schedule; 
take measures of specific interactions among users during the time of simulation; take 
into account the length of assessment; to create a user profile and a group profile; to 
present low complexity not to compromise VR simulations performance, but present 
high accuracy level. 

In the literature, some kinds of assessment have been proposed. Gande and 
Devarajan [6] have used an Instructor/Operator Station to monitor user movements 
and to increase or decrease the degree of difficulty in a simulation. Their Instructor 
Station is able to evaluate and monitor the resident's performance, based on the 
specifications mentioned, to generate training effectiveness reports. The GeRTiSS 
system [1] can provide the user an assessment report at the end of simulation. That 
report contains the total time of intervention, number of cuts and cauterisations, 
among other information. The surgeon can use these pieces of information to perform 
an assessment of his/her intervention.  

4   A Proposal for Multiple Assessment 

A tool for multiple assessment must be interconnected with all users and must receive 
from them synchronized information about all variables of interest. An assessment 
system works coupled to a virtual reality simulator, as showed in the Figure 1 [13]. As 
an on-line assessment system, which should be capable to monitor user interactions 
while he/she operates the simulation system, a multiple assessment must be capable to 
monitor, simultaneously, the interactions of each user. In order to reach that, it is 
necessary to collect information about position in the space, forces, torque, resistance, 
speeds, accelerations, temperatures, visualization and/or visualization angle, sounds, 
smells, etc. To collect some information as force, force feedback, angles and torques, 
it is necessary to use specific devices to provide them. This information will be 
collected for each user in training system, as well as for all groups, to be used to feed 
the assessment system. Additionally, synchronization in time and space is necessary 
for all users to measure interactions among them, to determine the ordering of tasks 
and to provide details of user's performance. 

User's interactions with the system are monitored and the information are sent to 
the assessment system which analyses the data and emits, at the end of the training, an 
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assessment report about the user's performance according pre-defined classes of 
performance. Therefore, a multiple assessment tool must be capable to monitor each 
user individually, as well as, all group. Then, at the end of simulation, another 
assessment report will be emitted about the group performance. 

 

Fig. 1. Diagram of a VR simulator with an assessment system for a single user 

As mentioned above, several methods were proposed to assess single user in 
training based on virtual reality. Most of them were based on classical classifiers. 
However, besides the fact that several of them could be used in multiple assessment 
tasks, there are calibration problems for multiple users. To minimize those problems, 
a multiple assessment system based on a fuzzy expert system [3, 11, 22] is proposed 
in this paper. This way, a set of fuzzy rules of an expert system time dependent 
defines each one of the possible performance classes. This set is designed, for single 
users and for group, from specialists knowledge. Additionally, interaction variables 
will be monitored according to their relevance to the training. Then, each application 
will have their own set of relevant variables which will be monitored [13]. The same 
happens with relevant variables which measure interactions among users in the group.  

The methodology proposed for multiple assessment uses data collected from user 
interaction and group interactions during training to create user profile and group 
profile. That information is used to evaluate trainee and allows the improvement [21] 
of his performance in real tasks. That methodology makes a union of statistical tools 
and fuzzy rule based expert systems to construct an individual profile for trainee and 
for group. Statistical tools are programmed to make an automatic analysis of the 
database and construct statistical measures, tables, graphics and time dependent 
statistical models. From this information (statistical measures and parameters), the 
fuzzy expert system will create an individual user and group profiles and two kinds of 
report. These assessment reports present individual and group profiles and shows the 
performance of specific tasks with statistical measures, tables, graphics, models and 
some phrases in pseudo-natural language.  

Figure 2 shows the new methodology presented. It can be observed that the 
Assessment System from Figure 1 has been changed and now it is called Individual 
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Assessment System. To construct the Multiple Assessment System, the Group 
Assessment Tool, the Users and Group Profiles were also added. The N users perform 
their training using a VR Simulator and interacting with a Interactive System, which 
is responsible by management of the virtual environment. The Interactive System 
must provide visual and haptic simulations for all users according their point of view 
and their haptic devices. From these information, statistical measures and parameters 
are taking and they are used as input for a fuzzy expert system, which analyse that 
information to recognize user’s and group levels of training. 

At the end of training, the new Multiple Assessment System creates two kinds of 
report: individual assessment report, for each user, and group assessment report. The 
first report is about the individual user performance on the training and the second 
assessment report is about group performance and the interactions among users during 
training. That kind of interactions are monitored to correct and improve details in 
specific procedures, as sequential tasks, simultaneous tasks or collaborative tasks. 
These kind of tasks are common in surgical rooms and the group's performance in 
some tasks can be essentials for the life and the patient's recovery. 

 

Fig. 2. Diagram of new Assessment System with approach of Continuous Assessment 

This methodology for Multiple Assessment System can be used for several kind of 
training in medicine, as procedures in surgical rooms, training paramedics groups in 
emergency situations, etc. However, it is a generic methodology and can be used in 
training systems for other areas, as aeronautical simulators, maintenance group, 
managing of nuclear, thermoelectric, hydroelectric power plant, etc.  

However, this Multiple Assessment System cannot be classified as on-line or off-
line as in single user assessment systems. As mentioned before, an on-line assessment 
system must generate reports immediately after of the end of training session. 
Sometimes, the Multiple Assessment System will be capable to do that, but in another 
cases it will be not. The main reasons for that involve: computers configuration, 
possible delay in networks, number of statistical time dependent models necessary to 
measure some variables, complexity of simulation and number of interactions. 



 Multiple Assessment for Multiple Users in Virtual Reality Training Environments 955 

5   Conclusions 

This paper presents a review for assessment systems for training based on virtual 
reality for single user. It was presented also the future of training based on virtual 
reality for multiple users with interactions among them. For this, are necessary new 
methodologies to allow the assessment of training for each user as well as for the 
group. In order to do that, was introduced a new methodology for multiple assessment 
for multiple users in training. This methodology is based on time-dependent fuzzy 
based rules expert system which uses input variables from training, statistical 
measures and time dependent statistical models in order to create measures of 
assessment for trainees and group performance.  

The Multiple Assessment System can create two kinds of report: an assessment 
report for individual user, about his/her performance on the training, and an 
assessment report about group performance and interactions among users during the 
training. The Multiple Assessment System can be used in training situations when a 
group of trainees performs a task together, as in surgical rooms. 

The methodology is generic and can be used in training systems for other areas, as 
aeronautical simulators, maintenance group, managing of nuclear, thermoelectric, 
hydroelectric power plant, etc. The main advantages of that approach are: a) 
individuals and group reports can be used to increase group performance and b) the 
interactions among users during training can be monitored to correct and improve 
specific details in procedure such as sequential tasks, simultaneous tasks or 
collaborative tasks. 
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Valeria Latorre-Reyes3,4, Felipe Calderón B.2, and Michael Seeger P.3

1 Departamento de Electrónica
tarredondo@elo.utfsm.cl

2 Departamento de Informática
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Abstract. Fuzzy based models have been used in many areas of re-
search. One issue with these models is that rule bases have the potential
for indiscriminant growth. Inference systems with large number of rules
can be overspecified, have model comprehension issues and suffer from
bad performance. In this research we investigate the use of a genetic al-
gorithm towards the generation of a fuzzy inference system (FIS). We
propose using a GA with a dynamic penalty function to manage the rule
size of the fuzzy inference system (FIS) while maintaining the exploration
of good rules. We apply this method towards the generation of a fuzzy
classifier for the search of metabolic pathways. The GA based FIS in-
cludes novel mutation and a penalty based fitness scheme which enables
the generation of an efficient and compact set of fuzzy rules. Encourag-
ing implementation results are presented for this method as compared
with other classification methods. This method should be applicable to
a variety of other modelling and classification problems.

Keywords: Fuzzy logic, inference system, genetic algorithm, system
modelling.

1 Introduction

A common task in bioinformatics research consists in the search and identifica-
tion of genes encoding the enzymes of metabolic pathways of interest in recently
sequenced genomes. Towards this purpose there exists a diverse set of tools,
databases (e.g. KEGG, NCBI) and applications (e.g. BLAST, Artemis, Vector
NTI). The integration of these resources is a current area of interest given the
complexity and skill required to manually utilize all these means efficiently. One
of these initiatives is GeXpert [1,2], an implementation of an integration frame-
work that involves a systematic search scheme for the identification of genes
encoding enzymes of metabolic pathways.
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One of the tools that GeXpert includes is a gene evaluator based on a set
of fuzzy rules [3] that attempts to estimate how good a candidate DNA coding
sequence is for a given enzyme in a metabolic path. Until now, the rules used by
this classifier were created manually from the knowledge provided by a group of
bioinformatics researchers. Our current proposal is to use a penalty based GA to
data-mine the classification rules from the set of previously analyzed genes for the
organism under investigation. To the best of our knowledge, a GA based agent for
fuzzy inference system (FIS) rule data-mining and training in bioinformatics is a
novel application that has not been attempted before. We have also introduced
new mutation and fitness schemes in this GA which attempt to emulate how a
researcher would operate. Finally we have introduced a dynamic penalty function
in order to constrain the number of fuzzy rules generated without affecting the
initial exploration of the system. Initial results have shown that this algorithm
is capable of synthesizing an efficient and compact fuzzy rule set when compared
to other methods.

In section 2, we briefly explain the integration architecture and the imple-
mentation of GeXpert. Section 3 describes the FIS used in GeXpert. Section 4
describes the fuzzy trainer module that was implemented. In section 5, we de-
scribe the experiments performed to validate our work. In section 6, we explain
our test results. Finally, in section 7 some conclusions are drawn and future
research directions are presented.

2 Integration Framework Architecture

Towards metabolic reconstruction based on sequenced genomes, GeXpert im-
plements an efficient research methodology as has been proposed in [4]. This
methodology considers the following integrated workflow:

1. Create or import (e.g. KEGG) the metabolic pathway of interest in the
organism under study.

2. Download the sequence of the enzyme (or subunits) being searched from a
database (e.g. GenBank).

3. Perform alignments using tblastn between the selected proteins and the
genome under investigation.

4. Using the fuzzy classifier, classify the sequences found according to their
alignment scores: Identity, E-value, Gaps, Bit-Score.

5. Verify (e.g. using ARTEMIS) if there is an coding sequence (CDS) containing
the sequence of the best alignments that were found.

6. If a CDS is found, the sequence is tested with a blastp alignment versus the
proteins in a public database (e.g. GenBank).

7. If the proteins found that are aligned with the CDS sequence correspond
with the enzyme that was searched for initially and there are documenta-
tion references (e.g. PUBMED) that validate its existence as a non putative
protein then this enzyme or subunit is considered to have been found in the
organism.
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Fig. 1. GeXpert FIS graphical interface

The integration architecture includes three layers: the presentation layer, the
logical layer and the data layer [2]. In our implementation of the presentation layer
several graphical interfaces (e.g. as seen in Fig. 1) have been developed (e.g. to edit
metabolic pathways, protein searches, visualizing CDS results and blast align-
ments). The logical layer contains the business logic relating with the different
objects that encapsulate the applications and utilities used in the research pro-
cess (e.g. relating with alignments, fuzzy classification, and CDS searches). The
data layer manages all the interfaces (e.g. App Call, JDBC, SOAP) with various
internal and external data sources (e.g. KEGG, GenBank, NCBI) and applica-
tions (e.g. BLAST, CN3D, Artemis). In this implementation, the training agent
initiates interfaces with the core engine which is where the fuzzy system resides.

3 Fuzzy Inference System Workflow

The fuzzy inference system workflow is shown in Fig. 2. After a protein that forms
part of a metabolic pathway that is being reconstructed has been identified,
the researcher will perform a GenBank search using tblastn (Fig. 2(a)). This
is to verify that the gene encoding the protein in question is found in another
organism. Next, a list of possible candidates (each including four BLAST output
values) will be transmitted to the fuzzy engine (Fig. 2(b)). The fuzzy engine will
analyze the parameters and will make a recommendation to the user with respect
to the quality of each of the candidates (Fig. 2(c)). Once the expert concludes
(True of False) whether the gene encodes or not an enzyme or subunit of the
metabolic pathway then the parameters, fuzzy recommendation and the expert
conclusion are stored in the database as a training case (Fig. 2(d)).

If sufficient database entries are available, the scheduling agent or a user can ini-
tiate the fuzzy engine training processwith the goal of tuning the recommendations
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Fig. 2. FIS workflow

generated by the fuzzy inference engine (Fig. 2(e)-2(g)). This tuning can be peri-
odically performed as the size of the training set increases.

4 Fuzzy Trainer Module Design

Fuzzy inference systems (FIS) are generally composed of: fuzzy rules, member-
ship functions and a form of fuzzyfication/deffuzyfication. Any of these elements
could be updated or modified towards tuning the FIS. In [5] the simultaneous
modification of the membership functions and the rule base is proposed to op-
timize an FIS. The approach taken in our work follows [6,7] in which only the
rule base is actualized during training.

4.1 Fuzzy Engine Structure

Fuzzy Rules. The rule base of the system follows the Mamdani method and
has the following structure:

IF E-value is INVALUE AND Bit-Score is INVALUE AND Identity is IN-
VALUE AND Gaps is INVALUE THEN Output is OUTVALUE.

Where INVALUE is a membership values with one of the following possible val-
ues {Very Low, Low, Medium, High, Very High}. OUTVALUE is the expected
result for said combination of fuzzy inputs. OUTVALUE can take the following
values {Very Bad, Bad, Regular, Good, Very Good}.

Membership Functions. Fuzzy membership functions take input parameters
from [0, 1]. Input parameters that have different ranges are normalized before
they are introduced into the FIS. Membership functions are triangular as is seen
in Fig.3. The defuzzifier uses the centroid method using the maximum of all
activated functions.
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Fig. 3. Membership functions

4.2 GA Trainer Structure

As mentioned previously, the FIS is trained using a genetic algorithm. In this
algorithm, each individual is composed of n genes, where each gene corresponds
to a fuzzy rule.

GA Individuals. In our encoding, each fuzzy rule is defined by a set of 5 values
that identify the different fuzzy sets for each of the four BLAST output values (E:
E-value, B: Bit Score, I: Identity, G: Gaps) and the result (O: Output). These
four output values are scored according to the alignment between sequences.
Their relationship to whether a CDS truly encodes a given enzyme is not trivial
to determine. As seen by the example in Fig.4, the fuzzy values {Very Low, ...,
Very High} and {Very Bad, ..., Very Good} are represented by {1, 2, 3, 4, 5}
respectively.

Fig. 4. GA codification

Genetic Operators. In our scheme, we have used one crossover operator and
three different mutation operators. The mutation operators used generate a vari-
able number of rules used which is essential to explore the problem search space
given that we are using fixed membership functions. Using fixed membership
functions and a variable number of rules is in our opinion more intuitive than
other methods and better emulates how a human expert would update the FIS.

Crossover. In our system we are using a simple one point crossover that selects
two individuals, ind1 and ind2, from the current population. Randomly selecting
a value e, that is found in the interval [0, a], with a = min(size(ind1), size(ind2)).
After this, the first e number of rules are exchanged between the individuals.
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Mutation. The three mutation operators implemented are the following:

1. Adding Rules. This operator increases the rules of an individual by adding
new random rules (genes) up to a specified factor μ of the original number
of rules.

2. Removing Rules. This operator reduces the number of rules of an individual
by removing up to a certain percentage factor ν of number of rules (genes).
The rules are selected at random for removal.

3. Changing rules. This operator selects a random number of genes for modifica-
tion in each individual. This operator selects the first b rules of an individual
and mutates them, where b is a whole number chosen at random in the inter-
val [0, size(ind)]. The mutation consists in choosing and changing at random
one of the parameters that compose it.

The values for μ and ν were empirically chosen to be 0.33 as to not be too de-
structive but at the same time to allow for significant changes in the individuals.

Fitness Function. The fitness function used consists of two parts, the first is
the sum of the hits (sh) obtained using the FIS. The value of sh is calculated
based on the training cases tci that are stored in the database where tc =
[tc1, tc2, . . . , tcn]T are generated as shown in Fig. 2. The second part consists of
a penalty value that is applied to individuals which have a large number of rules
(rp). To obtain the value of sh we sum the points obtained by the individual
when we apply the values from each training example tci. The value of sh(tci, Oi)
is calculated using the values from scoring Table 1, where tci will have the values
True or False and where Oi is the output expected for the i-th training example.
Hence, sh(tc) is calculated according to

sh(tc) =
n∑

i=1

sh(tci, Oi). (1)

A bivariate sigmoid function is used for penalizing individuals with an excess
number of rules depending on the current iteration number of the GA. This
equation is defined as

rp(x, y) =
(

α(y − β)
1 + e(x−γ)δ

)
, (2)

where x indicates the number of rules that compose the individual, y is the
iteration number and α, β, γ, δ are parameters. The parameter β indicates up to
which iteration exploration should be favored (thus rewarding new rule creation
and exploration). Past this iteration, the penalty for the number or rules begins
to be effective. The other parameters are for sigmoid scaling. Finally, the fitness
of an individual can be expressed as

F = sh(tc) − rp(x, y) (3)

The parameters used in our experiments were empirically determined. Six tests
were performed with various GA parameter values (e.g. crossover and mutation
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probability) and in all situations only marginal fitness differences were seen (e.g.
1 − 5%). The number of elite individuals was chosen as to not cause too much
premature convergence. In the case of α (penalty scaling) and β (beginning itera-
tion for penalization) another six combinations were investigated. All resulted in
minor differences in final results (e.g. considering true positives and negatives).
Finally these were set to: α = 0.08, β = 80, γ = 100, δ = −0.06. γ and δ were set
such that the penalty curve have an impact within a range of 0 − 225 iterations.

Table 1. Scoring table for truth value assignation

Very Bad Bad Medium Good Very Good No Rule Fired

True 3 4 5 6 7 0

False 7 6 5 4 3 0

GA Parameters. The GA parameters were set as follows:

– Crossover probability=0.6.
– Mutation probability=0.26.
– Maximum generations=225.
– Population size=30.
– Number of elite individuals=4.
– Roulette selection method.

Fig. 5. Results obtained for the best set of rules (GA-2). In (a) we show true positives
(Good, Very Good) and false negatives (Very Bad, Bad, Medium). In (b) we show true
negatives (Very Bad, Bad, Medium) and false positives (Good, Very Good).

5 Experiments

Two experiments were performed in order to test our approach. The first was to
compare the efficiency of using the current GeXpert system versus the previous
manual research method. Results considered compared timings for 6 different
metabolic pathways which genes are were organized in operon(2), distributed
(2) and non existent(2). These results were taken from seven users of varying
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competence. Three pathways were researched using the manual method and the
other three were researched using GeXpert.

The other experiment was done in order to examine the training system de-
veloped. For this experiment, we used 248 sample genes. Out of these, 124 genes
(true positives or TP) are encoding proteins of metabolic pathways of the bac-
teria Burkholderia xenovorans strain LB400 [8]. The other 124 genes were de-
termined not be part of its genome (true negatives or TN). Out of this sample
space, the system was trained with 62 true positive (TP) genes chosen at ran-
dom and 62 true negatives that were also chosen at random. The other 124 genes
(50% TN and 50% TP) were used as test cases to validate the method.

6 Results Obtained

In this section we present the results for the two experiments previously de-
scribed. We present pathway search times and compare classifier performance.

The efficiency experiment showed that for our six researchers using GeXpert
provides an average 400% faster search time than when using the previous man-
ual research method. This vast improvement in time was tempered by a small
average increase in enzyme error recognition (about 15%) which could be ex-
plained due to a lack of system familiarity or the reduced amount of spare time
(e.g. idle time waiting) when using GeXpert. This error is reduced or even non
existent in those researchers who were most familiar with GeXpert.

Table 2. FIS result comparison

Classifier # Rules SD Rules TP% FN% TN% FP% Total True% Total False%

SVM NA NA 86.0 14.0 100.0 0 92.7 7.3

H-Naive 400 0 86.0 14.0 30.0 70.0 58.0 42.0

H-Expert 163 0 70.0 30.0 100.0 0.0 85.0 15.0

GA-1 93 31 89.8 10.2 98.5 1.5 94.1 5.9

GA-2 60 15 89.9 10.1 98.9 1.1 94.4 5.6

In the fuzzy rule performance experiment, we compare five different classifiers:
two sets of fuzzy rules (GA-1 and GA-2) that were generated by the GA train-
ing method, two human generated rules (H-Naive and H-Expert) and a standard
SVM classifier implementation (Weka SMO [9]). GA-1 uses the method described
previously but the fitness value (F ) does not include the penalty function (rp)
while GA-2 does. The H-Naive rules were constructed by analyzing in a short
timespan (about 3 hours) the training data with the aim of covering the entire
spectrum of possibilities. For the H-Expert rules a more detailed analysis was
performed (about 6 hours) of the training data. For this analysis, fuzzy rules
were created based on the input given by expert biochemists that work in the
field of gene searching. Table 2 shows the results that were obtained includ-
ing true positives (TP), true negatives (TN), false positives (FP), false negatives
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(FN) as well as the total percentage true values obtained. For each test case of
GA-1 and GA-2 an average of 40 test experiments are shown.

7 Conclusions

As seen by the test results, using the integrated search environment provides
for much faster metabolic pathway search times than previous manual methods
without much penalty in terms of additional error. The small error introduced
was found in users who had less experience with the application and should be
reduced as they gain more experience with it.

From these initial results it can be observed that using our training best
algorithm (GA-2) we have obtained an overall improvement of 9% over the re-
sults obtained from the human expert rule sets. When compared with the other
classifiers, GA-2 also provided good results with the lowest FN and FP values.
GA-2 and its included penalty also produced smaller rule sets that had a lower
standard deviation with respect to the number of rules generated (e.g. more
predictable and smaller execution times). Otherwise results between GA-1 and
GA-2 generated rule sets seem equivalent. GA-2 has a somewhat better overall
performance than SVM given that its results are comparable when classifying
true negatives but are better in the classification of true positives.

In our observations, in the case of GA-2 the number of rules is significantly
lower than the rules that would be generated by other methods. The resulting
reduction in FP and FN in GA-2 could be due to a reduction in the overspec-
ification of the model regarding the training data or due to a reduction in rule
contradictions. Other GA based fuzzy optimization methods [6,7] (without such
a penalty function) could possibly benefit from such an approach. Also a reduc-
tion in the number of rules makes the FIS much more intuitive and easier to
understand. Another benefit of the system is the flexibility provided by having
multiple sets of parameter values (e.g. scoring table values, F function parame-
ters) in order to penalize FP and FN in a differentiated manner.

Reducing rule bloat is an objective that seems to have been accomplished
without any real damage to classification capability. In the future, we will focus
on implementing our penalty based method on other fuzzy based classification
applications (e.g. robotics [10]) to validate whether this approach is applicable
to a variety of other problems. In general the system was robust to parameter
variations which leads us to believe that they should work in a variety of situa-
tions. Function penalty is calculated in each generation and for each individual
during training, but being a simple evaluation should not greatly increase the
total execution time. Also, run time savings obtained through rule reductions
should more than compensate for the training time increase.
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Benyó, Zoltán 594, 841, 851
Berlanga-Llavori, Rafael 643
Bianconi, Francesco 231
Binaghi, Elisabetta 921
Biscay, Rolando J. 564
Bolea, Yolanda 71
Bolshakov, Igor A. 704
Borges, Dı́bio Leandro 311
Braga, Daniela 734
Bravo, Antonio 793
Bunke, Horst 20

Calado, António 734
Calderón B., Felipe 957
Calderon, Felix 321
Calvo, José R. 96
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Pérez, Noel 212
Pérez-Bonilla, Alejandra 653
Peris, Piedachu 604
Petrou, Maria 1
Pham, Tuan D. 614
Pinto, J.R. Caldas 940
Pogrebnyak, Oleksiy 831
Poh, Norman 360, 881
Ponomaryov, Volodymyr I. 124, 525
Pons-Porrata, Aurora 643
Psarakis, Stelios 574
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